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Abstract
Technologies which convert light into energy, and vice versa, rely on complex,
microscopic transport processes in the condensed phase, which obey the laws of
quantum mechanics, but hitherto lack systematic analysis and modeling. Given
our much improved understanding of multicomponent, disordered, highly
structured, open quantum systems, this ‘focus on’ collection collects cutting-
edge research on theoretical and experimental aspects of quantum transport in
truly complex systems as defined, e.g., by the macromolecular functional
complexes at the heart of photosynthesis, by organic quantum wires, or even
photovoltaic devices. To what extent microscopic quantum coherence effects
can (be made to) impact on macroscopic transport behavior is an equally
challenging and controversial question, and this ‘focus on’ collection provides a
setting for the present state of affairs, as well as for the ‘quantum opportunities’
on the horizon.
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Modern societies are in urgent need of affordable and efficient energy technologies, and the Sunʼs
light is arguably the most abundant resource available. Nature is using this supply by
photosynthesis with remarkable efficiency. With solar cells and light-emitting diodes, devices for
an efficient conversion of light into current and vice versa are available on a large scale. In all
these cases, energy conversion relies on complex, microscopic transport and recombination
processes in the condensed phase, which obey the laws of quantum mechanics. However, almost
exclusively, some sort of phenomenological, ‘hybrid’ quantum–classical approaches are used to
describe these devices or the recombination center of the photocycle. While recombination is
treated quantum mechanically, usually on the basis of Fermiʼs golden rule, the interaction with a
thermal bath and disorder in the system is approximated by the Bose or Fermi distribution and an
inhomogeneous distribution of energy levels, respectively. This ‘focus on’ collection gathers
work taking the quantum mechanical description of quantum efficiency to a new and more
systematic level, including the effects of disordered systems with or without realistic coupling to a
heat bath, which have hitherto been too complex for systematic (quantum) analysis and modeling.

Given our much improved understanding of multicomponent, disordered, highly structured,
open quantum systems, the present ‘focus on’ collection brings together cutting-edge research on
theoretical and experimental aspects of quantum transport in truly complex systems as defined by,
e.g., the macromolecular functional complexes at the heart of photosynthesis [3, 6, 12, 14, 16], or
semiconductor (light-emitting) diodes [5, 7]. All these examples involve transport of quantum
particles or excitations as a crucial ingredient determining the efficiency of the respective system
or device. Since experiments on excitonic energy transport in photosynthetic light harvesting
complexes reported the existence of long coherence times [18, 19], the question of whether (or in
which way) the presence of quantum coherences is related to the high transport efficiency of these
complexes has been strongly debated.

As a first approach to this question, let us start out with the idealized case of an isolated—
and thus fully coherent—quantum system. In [2], an ensemble of disordered networks with
random coupling strengths between the various nodes is investigated as a model for coherent
excitation transport. Whereas most networks within the random ensemble give rise to destructive
interference on the output node—and thus rather low transport efficiency—the opposite is true for
specific (and on average more symmetric, see [2]) configurations leading to constructive
interference. These findings agree with the following general picture of coherent wave transport
in random media [17]: coherence reduces transport on average, due to enhanced backscattering
[10, 20, 21] and disorder-induced localization (e.g. Anderson localization [13, 22]), whereas, at
the same time, fluctuations around the average are increased [23], thus admitting the existence of
specific disorder realizations with exceptionally high transfer efficiency.

With respect to the biological systems or semiconductor devices mentioned above, this
picture of coherent transport needs to be supplemented by the inevitable influence of noise
induced by coupling to additional degrees of freedom such as phonons/vibrations or (e.g., for
photosynthetic light harvesting units) the surrounding protein scaffold and its interplay with
quantum coherent effects. In general, noise reduces coherence and thus enhances transport
since, as mentioned above, most molecular configurations give rise to predominantly
destructive quantum interference [24–26]. On the other hand, too much noise (e.g. dephasing
noise with a very large dephasing rate) may also have a localizing effect (‘quantum Zeno
effect’ [27]). Under these premises, there in general exists an optimal noise level that
maximizes the transport efficiency, as established in the theory of open, disordered quantum
systems [28]. When equipped with an additional switching mechanism between a nearly perfect
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light-harvesting state and a quenching state, efficiency and robustness of photosysthesis may
thus be ensured over a wide range of light intensities [14].

This ‘focus on’ collection contains several contributions that significantly expand our
understanding of noise effects in quantum transport efficiency. In particular, various novel
aspects of the intricate interplay between noise and quantum coherence in determining the
efficiency of transport at the optimal level of noise are discussed in [1, 6, 9, 13]. The relevance
of such an interplay is especially evident in view of the fact that, e.g. in light-harvesting
complexes, electronic degrees of freedom are typically strongly coupled to vibrational modes
[8]. In this case, a more accurate description of environmental effects will be obtained if the
separation between ‘system’ (i.e. electronic excitations) and ‘bath’ (remaining degrees of
freedom) is properly redefined, e.g., by including the most relevant vibrational modes into the
system Hamiltonian [3, 29] or employing a polaron transformation that mixes system and bath
degrees of freedom [9, 15]. The mechanisms by which dissipative dynamics generates
entanglement may furthermore lead to a better scaling of quantum metrology error with system
size [4]. Last but not least, our ‘focus on’ collection also contains new results on the modeling
of non-Markovian [11] or site-correlated [12] baths, which provide an additional degree of
freedom for the optimisation of transport efficiencies.
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