Surveys of areas having potentially high botanical diversity near Pooncarie, South Far Western Plains

AnneMarie Clements, Tony Rodd, Rosalind J. Moore, Adele G. Crane and John Simpson

Abstract

Clements, AnneMarie, Rodd, Tony, Moore, Rosalind J., Crane, Adele G. (Anne Clements and Associates Pty Ltd, P.O. Box 1623, North Sydney, NSW Australia, 2059) and Simpson, John (RZM Pty Ltd, 250 St. Georges Terrace, Perth, W.A. Australia, 6000) 2000. Surveys of areas having potentially high botanical diversity near Pooncarie, South Far Western Plains. Cunninghamia 6(3): 611-643. Vegetation in the remote Pooncarie region of south-western New South Wales was surveyed in the springs of 1995 and 1997 following rain. One area of $100 \mathrm{~km}^{2}$ was examined in 1995 and three zones totalling 468 km² were surveyed in 1997. Sampling in 1997 targeted sites removed from artificial watering points and human habitation. Two of the three areas examined in 1997 were remote from access tracks. These areas were assumed to be relatively free from human impacts, have reduced grazing pressures and hence higher plant species diversity and a greater conservation value than areas which were closer to human disturbance or artificial water supplies.

Both the 1995 and 1997 data were statistically analysed using a hierarchical agglomerative clustering technique. Three broad vegetation groupings were discerned, Mallee dune crests, Lake beds and Mallee with Trioda scariosa.

Species richness for the area was high with 36% of the total species recorded being ephemerals. Exotic species were found in almost all the sampling locations, accounting for approximately 10% of the total species diversity. As exotic species are indicators of disturbance, it can be concluded that disturbance, or its influence, is widespread, but relatively minimal, throughout the area. Scats of native and exotic grazing animals were found throughout the survey areas.

A total of 375 species (328 native and 47 exotic) from 64 families/subfamilies was recorded in both surveys. In the 1995 survey, 263 species (226 native and 37 exotic) from 57 families/subfamilies were recorded. In the 1997 survey, 311 species (277 native and 34 exotic) from 61 families/subfamilies were noted. In terms of species of conservation significance, two species of national, five species of state and 21 species of regional significance were recorded. One new species was recorded for New South Wales and 25 new species were recorded for South Far West Plains botanical division.

Introduction

The vegetation of some of the most remote areas within the South Far Western Plains botanical division of New South Wales, east of the Darling River and west of Lakes Garnpung and Mungo (Fig. 1), was surveyed in the springs of 1995 and 1997 following rains. The November 1995 survey followed 52.6 mm of rain in October 1995. Prior to the September / October 1997 survey, 31 mm fell in August (Fig. 2). Wellard (1987) and

Fig. 1. Location map of 1995 and 1997 sampling areas.

Robertson (1987) found that rainfall in the previous six months explained 70% of the biomass variation in arid areas. In the repetitive sampling of mallee vegetation in western New South Wales from $100 \mathrm{~m} \times 40 \mathrm{~m}$ quadrats, Fox (1990) found that both the number and composition of species recorded varied as a function of seasonal rainfall.

The initial survey in November 1995 was centred on an area surrounding 629000 N 680000 E (Australian Grid Map) covering about $100 \mathrm{~km}^{2}$ on the western shore and parts of the dry lake bed of Lake Garnpung. There was minimal human impact and few artificial watering points in this area. The high species diversity and low weed occurrence were likely to be related to the relatively low intensity of grazing (Landsberg et al. 1997). Dr J. Landsberg, Wildlife and Ecology, CSIRO, Canberra and Professor T. Dawson, School of Biological Sciences, University of New South Wales (personal communication, March 1997) both estimated that feral goats had a grazing impact range of 5 km from watering points. In an attempt to survey ungrazed vegetation in the region, three areas, more than 5 km from artificial watering points, were targeted for investigation in the 1997 survey. These areas are within the Australian Map Grid rectangle 625000-632000N 640000-690000E (Fig. 3), at an elevation of approximately 70-120 m:

- Northern Area - $18 \mathrm{~km}^{2}$ (631000N, 690000E) on Pan Ban and Garnpung Stations
- Central area - 300 km² (L-shaped 628000N, 647000-670000E; 628000-635000N, 670000E) on Lethero, Balranald Gate, Pt Balranald Gate, Birdwood, Yarraman and Garnpung Stations
- Southern area - 150 km² (626500N, 647000-670000E) on Studley, Lethero, Murragi, Petro and Arumpo Stations.

Climate

The climate of western NSW is semi-arid to arid. The features of the region are low, unreliable and highly variable rainfall, low humidity, high summer temperatures and evaporation rates, frequent dry periods lasting from several months to a number of years and occasional floods with rainfall occurring as intense storms (Date 1992).

In the study region, the average annual rainfall varies between recording stations within a narrow range of $234-275 \mathrm{~mm}$, with a mean of 254 mm for ten stations in the vicinity. The average rainfall is uniformly distributed through the year with a 3% mean difference between summer and winter rainfall. Annual evaporation is about eight times the average rainfall (Dare-Edwards 1979).

Temperatures are consistently hot in summer and mild in winter (Date 1992). The monthly maximum temperature is $33.9^{\circ} \mathrm{C}$ in January and the monthly minimum is $4.7^{\circ} \mathrm{C}$ in July (Menindee Post Office meteorological station \#047019) (Bureau of Meteorology 1988).

Soils

The 1995 survey sampled vegetation from six of the land systems described by Green (1980) in the Pooncarie 1: 250000 sheet, namely: Arumpo Dunefields (Ap), Leaghur

Fig. 2. Pooncarie: monthly precipitation January 1995-December 1997.

Fig. 3. Location of 1995 and 1997 survey areas in relation to artificial watering points.

Dunefields (Lh), Mandelman Dunefields (Mm), Overnewton Sandplains (Ov) and Garnpung Playas and Basins (Gn). The 1997 transect survey, although covering a greater area, only sampled flora from Ap, Mm and Mungo Playas and Basins (Mu) systems (Appendix 1). Leaghur Dunefields (Lh), Gn and Ov systems were sampled in spot surveys during 1997. Mandelman Dunefield is the only land system that occurred in both the 1995 and all 1997 survey areas.

Land use

The first wave of human occupation of the mallee lands of the South Far Western Plains Area dates from $50000-40000$ years BP. Intervening arid phases with dune destabilisation and xeric conditions probably prevented any continuous occupation (Harris 1990). Evidence of ancient human occupation is found in the high shoreline gravels on Outer Arumpo and on the western side of all major lakes. In the dry lakes of the Willandra Creek system, there is evidence of a core and scraper industry associated with fires, burnt bones and unionid shells, coinciding with periods when lake water and aquatic life were present (17000-32 000 years BP) (Bowler 1971).

In the 1870s, European occupation of the hinterland became possible with the introduction of well, bore and tank sinking techniques (Palmer 1991). Pastoral and agricultural activities introduced to the area expanded, leading to over-grazing, removal of vast areas of native vegetation and encroachment of exotic species of both fauna and flora (Webb 1998). The first reports of rabbit invasions occurred in 1884 concurrent with records of the proliferation of inedible native shrubs Dodonaea spp. (Hopbush), Senna spp. (Punty Bush) and Eremophila sturtii (Turpentine). Legislation in 1884 divided runs into term leasehold areas (Palmer 1991).

The 1901 New South Wales Royal Commission into the conditionof crown tenants in the Western Division of New South Wales listed seven principal factors contributing to widespread depression and general unprofitibility of the pastoral industry. The majority of these were based on the unsuitability of the environment for European farming practices, namely low rainfall, rabbit plagues, overstocking, sandstorms, growth of non-edible scrub, fall in prices and want of sufficient area (Noble 1997). Vast areas were windswept, with sand drifts covering fences, water troughs, stockyards and earthen dams. Extensive areas of perennial shrubs, notably the Atriplex spp. (Saltbush) and Maireana spp. (Bluebush), were destroyed, often on the more erodible soils (Palmer 1991).

Currently, grazing on uncleared land is the major land use. There are some shortrotation pastures and crops. These have varying success dependent on the erratic climate of the mallee land systems (Calder 1990). Condon (1986) suggested that there has been a major recovery since the 1940s and early 1950s with the frequency of these events having declined. He attributes this decline to the tight controls on land use in the Western Division of New South Wales exercised by the Western Lands Commission. Limitations are placed on the proportion, total area and pattern of clearing on any grazing leases. Restrictions on the clearing of sandhills have contributed to the relatively small proportion of mallee being cleared in the Western Division of New South Wales in recent years. The Western Division occupies an area
of $320000 \mathrm{~km}^{2}$. Budd et al. (1990) noted that of the $28783 \mathrm{~km}^{2}$ of mallee in New South Wales (Fitzpatrick 1982), $22940 \mathrm{~km}^{2}(80 \%)$ occur in the Western Division within the Murray Geological Basin. This represents approximately 7\% of the area of the Western Division. The vast majority of this area is Crown Land, held under pastoral leases administered by the Department of Land and Water Conservation. In the mid to late 1980s approximately 8% of the Western Division was under the control of National Parks and Wildlife Service (Pickard 1987).

Previous flora surveys

One of the earliest surveys of the vegetation of south-western NSW (Turner 1904) describes the area between $141-147^{\circ} \mathrm{E}$ and between $33^{\circ} \mathrm{S}$ and the NSW-Victorian border. The current study area is located at approximately $143^{\circ} \mathrm{E}, 33.4^{\circ} \mathrm{S}$. In Turner's accompanying tables, 147 members of the Compositae (family Asteraceae), including 23 exotics were listed.

The 1945 vegetation map (1:1 000000) of western NSW (Beadle 1948) is the most extensive representation of vegetation of the mallee areas of NSW. The vegetation communities identified by Beadle in the region were:

Atriplex vesicaria Association (Saltbush)
Kochia pyramidata (now Maireana pyramidata)-Kochia sedifolia (now Maireana sedifolia) Association (Bluebush)

Casuarina-Heterodendrum (now Alectryon) Association (Belah and Rosewood)
Eucalyptus oleosa-Eucalyptus dumosa Association (mallee)
Porteners and Ashby (1996) describe the vegetation of the Pooncarie 1:250 000 map sheet recording the vegetation communities, native plant species with descriptions of significant species and plant uses. For the Pooncarie 1: 250000 sheet, Porteners et al. (1997) recognise 18 plant communities and record 330 species of vascular plants. Exotics accounted for $40(12 \%)$ of the species. Their sampling sites were close to primary and secondary roads. The composition and extent of the present native vegetation was mapped from 1: 100000 Landsat images and ground-truthed from 110 sites each of $1000 \mathrm{~m}^{2}(50 \mathrm{~m} \times 20 \mathrm{~m})$. They noted that during their survey (May 1994 to April 1995) the region was undergoing a severe drought.

In the area covered by the 1995 survey, Porteners et al. (1997) identified five plant communities (Irregular Dune Mallee, Linear Dune Mallee, Belah-Rosewood, BelahRosewood/Lunette Shrubland and Open Area/Scattered Belah-Rosewood).

In the 1997 survey target areas, four plant communities were identified (Irregular Dune Mallee; Linear Dune Mallee; Belah-Rosewood and Black Bluebush/Disturbed Shrubland Complex).

The area of Irregular Dune Mallee (3a) south east of Pooncarie, extending over parts of Lethero, Petro and Arumpo Stations and known locally as 'No Man's Land' was identified as one of key conservation value (Porteners et al. 1997). This area was targeted in our 1997 survey.

In the 1: 250000 land system mapping of the Western Division (Walker 1991), the vegetation was categorised into broad vegetation types, resulting in a vegetation map of low resolution (Fox 1984).

Mungo National Park, adjoining the study area, was surveyed by by Westbrooke and Miller (1995) in September 1992 following rain. Two hundred and thirty-five plant species were noted of which 26% were exotic. Morcom and Westbrooke (1990) mapped the vegetation of Mallee Cliffs National Park, located to the south of the study area (Fig. 1). They recognised 215 plant species, 20% of which were exotic.

Methods

In November 1995, the vegetation from 56 transects and 68 spot locations was surveyed. The majority of transects used in the 1995 survey were $100 \mathrm{~m} \times 10 \mathrm{~m}$, consisting of ten contiguous $10 \mathrm{~m} \times 10 \mathrm{~m}$ quadrats. Transects $50,54,55$ and 56 were all half this size, $50 \mathrm{~m} \times 10 \mathrm{~m}$ (consisting of five $10 \mathrm{~m} \times 10 \mathrm{~m}$ quadrats), the stands of homogeneous vegetation being of a smaller size at these locations. During the 1995 survey species-area curves were used to determine the minimum area required to adequately sample the vegetation. This area was found to be $500-600 \mathrm{~m}^{2}$.

The relative frequency of plant species was objectively assessed by recording the presence/absence of each species in each of the contiguous $10 \mathrm{~m} \times 10 \mathrm{~m}$ quadrats, though species not exceeding 2 m height were scored only for a $5 \mathrm{~m} \times 5 \mathrm{~m}$ sub-quadrat in each quadrat. In each $10 \mathrm{~m}^{2}$ quadrat, the numbers of individuals over 2 m high of each species were noted. In both surveys, transect sampling was supplemented by spot recordings.

Target areas for the 1997 survey were selected on the basis of being at a distance of over 5 km from known artificial watering points. The transect sampling area chosen was consistent with the $1000 \mathrm{~m}^{2}$ sampling area size ($50 \mathrm{~m} \times 20 \mathrm{~m}$) used in the 1: 250000 Pooncarie sheet survey (Porteners et al. 1997). Transects of $100 \mathrm{~m} \times 10 \mathrm{~m}$ were examined, homogeneity of vegetation recorded in the transects was assessed visually at the time of sampling, so that each transect should sample only one vegetation type. 'Spot' recording sites of 10 m radius (sampling area $300 \mathrm{~m}^{2}$) were also examined.

In the 1997 survey, the methods were as used in 1995. Data from the northern, central and southern target areas were collected.

For the northern area, vegetation was sampled at a total of 27 locations, with 22 transects (57-66, 97-108) and five spot locations (A69, A79-A81 and A85). All spot locations and 20 of the 22 transects were within 1 km of the northern target area.

In the central area, vegetation was sampled from 44 sampling locations, with 30 transects (67-96) and 14 spot locations A70-A78, A82-A84, A86-A87). All but one of the transects and 11 of the spot locations were within 1 km of the central target area.

For the southern area 22 transects (109-130) and 40 spot locations (A88-A94, A96-A106, A109-A130) were surveyed. Spot locations A109-A130 were within 100 m of transects. Of the 62 locations, 19 transects and 30 spot locations were within 1 km of the southern target area.

Boundary and exploration tracks were used to identify exact locations during the 1995 survey. In 1997, sampling locations were recorded using a Garmin 38 GPS. In the northern and the central areas sampling was evenly spread over the area, whereas in the southern area, sampling was adjacent to access tracks. Sampling in the central area was limited to an individual land holding. Geographical co-ordinates for both the 1995 and 1997 transect and spot locations are shown in Appendix 1.

Due to the remoteness of the study area and small size of many of the plants to be identified, samples of all plants in each quadrat were collected and bagged separately, except for very common species which were collected at least once per transect. All bagged specimens were checked before data entry and any species of conservation significance sent to the Royal Botanic Gardens, Sydney for further confirmation. During 1997, in addition to the vegetation study, animal scats were collected from the transects. The scat data were supplemented by spot recordings allowing for an objective assessment of the presence of animal species.

Results

Flora observations

A total of 375 species (328 native and 47 exotic) were recorded in the 1995 and 1997 surveys. In the 1995 survey, 263 species (226 native and 37 exotic) were recorded. In 1995, the number of species per transect ranged from 21 (transect 34) to 57 (transects 1 and 21) (Appendix 1) with an average of 39 species of which 89% were native. Two transects recorded zero exotics.

Of the total 311 species (277 native, 34 exotic) recorded in the 1997 survey for the northern, central and southern areas, the following were observed in the individual areas:

Northern area: 167 species (145 native and 22 exotic). The number of species per transect ranged from 13 (transect 62) to 54 (transect 104) (Appendix 1) with an average of 33 species of which $31(94 \%)$ were native. The transects with the greater number of species have the higher percentages of exotic species. In this relatively small area only two of the 22 transects had zero exotic species.

Central area: 218 species (199 native and 19 exotic). The number of species per transect ranged from 19 (transects 69 and 79) to 57 (transect 86) (Appendix 1) with an average of 34 species per transect of which $32(95 \%)$ were natives. In 10 of the transects (33%), there were no exotic species recorded.

Southern area: 233 species (210 native and 23 exotic). The number of species per transect varied from 13 (transect 126) to 58 (transect 128) (Appendix 1) with an average of 33 species of which 31 (94%) were natives. No exotic species were recorded in 50\% of the southern area transects.

The percentages of exotic species found in the 1997 survey were lower than those noted by Westbrooke and Miller (1995) in Mungo National Park (26\%), and Morcom and Westbrooke (1990) in Mallee Cliffs National Park (20\%), indicating that the remoteness of the 1997 target areas had aided the conservation of the indigenous flora.

Ephemerals

These are described in Flora of New South Wales (Harden 1990-1993) as annual herbs, except for a very few that are described as annual or perennial. In the arid western New South Wales environment, a species described as annual or perennial would most commonly behave as an annual. A total of 136 species of ephemerals was recorded in the 1995 and 1997 surveys (Appendix 2), accounting for 36% of the species. Of these $106(78 \%)$ were native and $30(22 \%)$ exotic. Ephemerals formed 36% of the total flora in both surveys. In 1995 there were 95 ephemeral species recorded, 22 (25%) of which were exotics. The 1997 survey recorded 112 ephemeral species, of these, 25 (22%) were exotic.

The number of ephemerals varied between the three 1997 survey areas (Appendix 2). In the northern and central areas compared with southern area there were higher percentages of ephemerals (47 and 42% compared with 37% respectively) and lower total numbers of species recorded (167 and 218 compared with 233 respectively).

Conservation significance

Communities

No Endangered Ecological Communities, as defined in the NSW Threatened Species Conservation (TSC) Act 1995, were noted in either the 1995 or 1997 surveys. Although there are existing mallee reserves in New South Wales, there has also been widespread retention of mallee on Crown Lands held as Western Lands Leases, in part to reduce the risk of dryland salinity and soil loss in agricultural areas (Brickhill 1988).

The Eucalyptus socialis-Eucalyptus dumosa-Eucalyptus gracilis-Eucalyptus polybractea mallee vegetation community is found in nine conservation reserves (Yathong, Nombinnie, Kajuligah, Round Hill, Tollingo and Loughnan Nature Reserves; Mallee Cliff, Mungo and Cocoparra National Parks), representing a large part of the range of the biogeographic regions in which the community occurs (Specht et al. 1995).

Species

In the 1995 survey, twelve species of conservation significance were recorded; one species at a national (ANZECC 1997, Briggs \& Leigh 1996) and state (TSC Act 1995) level, namely Brachycome papillosa, one species, Swainsona sericea (formerly Swainsona oroboides subsp. sericea) under a state Vulnerable listing (TSC Act 1995) and twelve at a regional (Pressey et al. 1990) level: Atriplex nummularia, Blennodia canescens, Boronia caerulescens, Brachycome papillosa, Calandrinia volubilis, Exocarpos sparteus, Grevillea pterosperma, Nicotiana occidentalis subsp. obliqua, Poa fax, Podotheca angustifolia, Sida sp. aff. corrugata and Swainsona sericea.

Nineteen species of conservation significance were recorded in the 1997 survey, including one at national (ANZECC 1997, Briggs \& Leigh 1996) level, namely Lepidium monoplocoides; four at state (TSC Act 1995) level namely: Acacia acanthoclada, Lepidium monoplocoides, Santalum murrayanum and Swainsona sericea and nineteen at a regional (Pressey et al. 1990) level, namely: Acacia acanthoclada, Atriplex nummularia (includes

Atriplex nummularia subsp. omissa in Harden (1990-1993)) Atriplex vesicaria subsp. macrocystidia, Blennodia canescens, Boronia caerulescens, Calandrinia volubilis, Ceratogyne obinoides, Eucalyptus porosa, Exocarpos sparteus, Gahnia lanigera, Grevillea pterosperma, Lepidium monoplocoides, Menkea australis, Nicotiana occidentalis subsp. obliqua, Podotheca angustifolia, Santalum murrayanum, Sida sp. aff. corrugata, Swainsona sericea and Velleia arguta. In the southern area twelve species of conservation significance were recorded, eleven species of conservation significance were recorded for the central area, and four species of conservation significance were recorded for the northern area (Table 1).

New records for New South Wales

No new records for New South Wales were noted in 1995. In the 1997 survey, one new record for New South Wales was found, namely Lasiopetalum behrii. A specimen has been lodged with the National Herbarium of NSW, Royal Botanic Gardens, Sydney.

Lasiopetalum behrii, a stiff-leaved shrub to 1.5 m high, flowering July to October (Jessop \& Toelken 1986), was recorded at spot location A114 in the southern area in the 1997 survey. This species has been recorded by Willis (1973) for the region of north-western Victoria approximately north of Horsham and west of Swan Hill. Jessop and Toelken (1986) record Lasiopetalum behrii in the following botanical regions of South Australia: Flinders Ranges, Eyre Peninsula, Northern Lofty, Murray, York Peninsula, Southern Lofty, South Eastern and Kangaroo Island. These regions are all in the south-east quarter of that state.

Species not recorded by Porteners et al. (1997) and/or previously unrecorded for the South Far Western Plains botanical division

Our surveys found 74 species not listed by Porteners et al. (1997), doubtless a result of the better rainfall preceding our visits and the more extensive sampling of areas away from roads. In addition, 25 species not recorded by Harden (1990-1993) as occurring in the South Far Western Plains botanical division were noted (Table 2). Some species fell into both these categories, so that the total number of additional species records was 78 .

Numerical analysis of the transect data

The combined data from 1995 and 1997 were numerically analysed using PATN (Belbin 1995). The transects were grouped using a hierarchical agglomerative clustering technique with a Bray-Curtis similarity measure of the abundance ($0-10$) of species within each transect. The estimate is based on the presence/absence of plant species in quadrats of the transects.

Three broad groupings were identified, namely:
Group 1 Mallee dune crests, mallee with Callitris spp. and lake shore with sand overblow (transects 9, 40, 42). This group was well represented in the 1995 survey area, with 22 of 56 transects. In the 1997 survey it occurred in the northern area (8 of 22 transects), in the central area (3 of 30 transects), but not in the southern area.

Table 1. Species of conservation significance recorded in 1995 and 1997 at the sampling locations
1995: 1995 transects/points
N : northern 1997 transects/points
C : central 1997 transects/points
S : southern 1997 transects/points

Species

 nal LocationROTAP

$m \stackrel{\leftarrow}{m} \quad \ddagger \quad \infty \quad \sim \stackrel{\leftrightarrow}{m}$ m $\quad \underset{m}{\infty}$ 3B, 4A $\stackrel{\infty}{m} \quad \stackrel{\sim}{m} \underset{m}{m}$ m ш ш ' $\stackrel{\circ}{\circ}$. . m岗 ANZECC (1997)
 S: 124, A96, A126
1995: 11,47
C: 78
C: 78
S: 128,130, A105
1995: 6
N:58, 97
1995: 7, 15, 26, 27
S: A88
1995: A59, A60
1995: $11,13,28,32,54$
C: 78 C: 130, A105
C: 88 S: $110,111,113$, A116 S: A92
A10,
A77
 1995:

 て8
61
74,75 C: $74,75,84$
S: $113,115,117,120$,
123, 124, A116
1995: 1, 4, 19, 21, 23, 27,
$28,29,30,32,33,39,40$,

Species
Poa fax
Podotheca angustifolia
Santalum murrayanum
Sida sp. aff. corrugata
Swainsona sericea
(formerly Swainsona oroboides subsp. sericea)
Velleia arguta

Key for Table:	
National ROTAP (Briggs \& Leigh 1996) ANZECC (1997) 3: distribution of $>100 \mathrm{~km}$ E: endangered E: endangered V: vulnerable C: present in a conservation reserve i: inadequately conserved	

Table 2. Species not recorded by Porteners et al. (1997) and/or not previously recorded for SFWP (South Far Western Plains) as listed in Harden (1990-1993)

New SFWP	Botanical name	When Found
Yes	Acacia havilandiorum	97
Yes	Aira caryophyllea	95,97
-	Amphipogon caricinus var. caricinus	95,97
Yes	Amyema cambagei	97
Yes	Anagallis arvensis	95,97
-	Angianthus tomentosus	97
Yes	Aotus subspinescens	97
Yes	Atriplex turbinata	95
-	Austrostipa mollis (formerly Stipa mollis)	95
Yes	Austrostipa scabra subsp. scabra (formerly Stipa scabra subsp. scabra)	95,97
Yes	Austrostipa tuckeri (formerly Stipa tuckeri)	97
-	Avena barbata	95
-	Bertya sp.	95
Yes	Beyeria leschenaultii	95,97
-	Billardiera versicolor	97
-	Blennodia canescens	95,97
-	Brachycome ciliaris var. lanuginosa	95,97
-	Bulbine alata	95
Yes	Calandrinia granulifera	97
-	Calandrinia volubilis	95,97
-	Carthamus lanatus	95
-	Centipeda thespidioides	95
-	Citrullus lanatus	95
-	Cressa cretica	97
Yes	Cryptandra amara var. floribunda	95,97
Yes	Daviesia acicularis	95,97
-	Einadia nutans subsp. oxycarpa	95,97
-	Epaltes australis	95
-	Eragrostis dielsii	95
-	Erodium cygnorum subsp. glandulosum	95,97
-	Frankenia serpyllifolia	95
-	Gahnia lanigera	97
-	Gnaphalium sphaericum	95,97
-	Gnephosis eriocarpa	95
-	Goodenia glauca	97
Yes	Goodenia havilandii	95,97

New SFWP	Botanical name	When Found
Yes	Gypsophila australis	97
-	Halosarcia pergranulata	97
-	Halosarcia sp.	97
Yes	Lasiopetalum behrii	97
-	Lemooria burkittii	95,97
-	Lepidium monoplocoides	97
-	Lepidosperma sp. aff. viscidum	97
-	Limosella curdieana	97
-	Lomandra leucocephala subsp. leucocephala	95,97
-	Lotus cruentus	95
-	Maireana pentagona	95
-	Menkea australis	97
-	Millotia tenuifolia var. tenuifolia	97
-	Myoporum platycarpum subsp. perbellum	95
Yes	Pentaschistis airoides	97
-	Plantago turrifera	95,97
-	Poa fax	95
-	Pogonolepis muelleriana	95,97
-	Polygonum aviculare	95
-	Pterostylis sp. aff. biseta	97
Yes	Ranunculus trilobus	95
-	Rhodanthe microglossa	95
-	Rhyncharrhena linearis	95,97
-	Rutidosis helichrysoides	95
Yes	Sagina apetala	97
-	Scaevola spinescens	97
-	Senecio quadridentatus	97
-	Sida sp. aff. corrugata	95,97
Yes	Silene nocturna	97
-	Stuartina hamata	97
Yes	Stuartina muelleri	97
Yes	Swainsona sericea	95,97
-	Synaptantha tillaeacea	97
-	Thysanotus patersonii	95,97
-	Tripogon Ioliiformis	97
Yes	Triptilodiscus pygmaeus	95,97
Yes	Velleia arguta	97
Yes	Velleia paradoxa	97
-	Vittadinia condyloides	95,97
-	Vittadinia eremaea	95,97
Yes	Vittadinia sulcata	95,97

Group 2 Lake beds with Casuarina pauper, Dodonaea viscosa subsp. angustissima, Alectryon oleifolius subsp. canescens, herbfield, or Atriplex vesicaria subsp. macrocystidea shrubland; mallees without abundant Triodia scariosa and sometimes with Casuarina pauper. This group was represented in all survey areas with 13 of 56 transects in 1995 survey and 5 of 22 transects in the northern area, 12 of 30 transects in the central area, but only 2 transects in the southern area and 4 transects outside the southern target area in the 1997 survey.

Group 3 Mallee with abundant Triodia scariosa. This group was represented in all survey areas with 21 of 56 transects in the 1995 survey, 9 of 22 transects in the northern area, 15 of 30 transects in the central area, and 16 of 22 transects in the southern target area in the 1997 survey.

The grouping of individual transects is shown in Appendix 1.

Fauna observations

Investigations by Dawson and Ellis (1994) on open plains in far western New South Wales demonstrated that domestic sheep (Ovis aries) and red kangaroos (Macropus rufus) had considerable dietary overlap (87%) with grasses being the major component for both species. The diet of feral goats (Capra hircus) at Fowlers Gap Research Station (approximately 250 km north of the study area) was studied by Dawson and Ellis (1996). Fowlers Gap lies approximately 250 km north of the study site and has a diverse topography, the western portion includes part of the Barrier Ranges, whereas flood plains occur in the east. Goats have a broad diet with a preference for browsing, taxa consumed included Acacia aneura (Mulga), Alectryon oleifolius (Rosewood), Canthium oleifolium (Wild Lemon), Casuarina pauper (Belah) and Myoporum platycarpum (Sugarwood), eucalypts were not eaten.

Scats were collected at the time of the vegetation survey. At this time, there was standing water in many of the clay former lake beds. Grazing animals, especially kangaroos, were observed near standing water. Kangaroo scats were recorded in all transects where scats had been collected. Goats were the second most widespread of the animal species noted in the area. Goat scats were not recorded in:

- the central area in mallee with Triodia (transects $67,69,70,79,83,84,85$) and former lake beds (transects $72,78,80,81,82,86$)
- the southern area in mallee with Triodia (transect 115) and former lake bed (transect 130).

Goats were recorded in all transects sampled in the northern area. Sheep were recorded once and possibly twice on four sampled transects in the northern area, four times in 20 sampled transects in the central area, and three times on 22 sampled transects in the southern area. Emus (Dromaius novaehollandiae) were recorded infrequently. Emus did not appear to discriminate in terms of vegetation structure and were noted on each of the three major vegetation groups (transects 71, 74, 129).

Rabbits were not recorded in the northern area. They were noted once in the central area (transect 71 in mallee with Triodia) and in 7 of the 22 transects in the southern area (five lake bed, and two mallee with Triodia transects). The scat collections appear to be
consistent with Dawson and Ellis (1996) at Fowlers Gap, namely that kangaroos can travel large distances from watering holes, goats are tolerant of the arid conditions and sheep are restricted. The fencing in the area may have limited the distribution of sheep, but it is more likely that the lack of water determined their distribution. The southern area contained the largest core area of undisturbed vegetation; observations of scat densities during surveys in the southern area indicated a marked decrease in goat presence at distances in excess of 8 km from water sources.

Conclusion

Surveys of the Pooncarie area were conducted in 1995 and 1997. An area centred at 629000 N and 680000 E was examined during 1995, whereas the 1997 survey targeted three zones that were selected to be more than 5 km from any artificial watering points. The areas surveyed, $100 \mathrm{~km}^{2}$ (1995) and $468 \mathrm{~km}^{2}$ (1997) were relatively remote from roads and human habitation. The surveys covered approximately 4% of the 15 $180 \mathrm{~km}^{2}$ mapped by Porteners et al. (1997). Porteners et al. (1997) reported nine species not previously recorded for the South Far Western Plains botanical subdivision of New South Wales, namely, Abutilon fraseri, Amaranthus macrocarpus var. macrocarpus, Chamaesyce species B, Cheilanthes distans, Cheilanthes lasiophylla, Digitaria ammophila, Evolvulus alsinoides var. decumbens, Leptorhynchus panaetiodes and Sporobolus caroli. None of these species was recorded in our 1995 and 1997 surveys. However, we noted 78 species that had not previously been recorded by Porteners et al. (1997) and / or recorded in the South Far Western Plains botanical division (Harden 1990-1993). There were 136 ephemeral species (95 in 1995 and 112 in 1997) recorded. Of these ephemerals, $30(22 \%)$ were exotics. The timing of the Porteners et al. (1997) survey coincided with a drought, whereas the 1995 and 1997 surveys followed rain which would have encouraged the germination of ephemerals.

Despite the remoteness from artificial watering points, scats of native and exotic grazing animals were found in the 1997 survey areas. Kangaroo scats were recorded at all collection locations and goat scats were frequently observed. Animals were observed near the standing water that collected in the clay former lake beds after rain.

In the 1997 survey, the number of plant species recorded in the $300 \mathrm{~km}^{2}$ central area (218 total, 199 native, 19 exotic) was similar to the number in the $150 \mathrm{~km}^{2}$ southern area (233 total, 210 native, 23 exotic). The lower number of species recorded in the $18 \mathrm{~km}^{2}$ northern area (167 total, 145 native, 22 exotic) is likely to be related to the smaller size of the sampling area (Fig. 2). Exotic plants were part of the flora assemblage in virtually all locations sampled. The presence of exotic seedlings, such as Hypochoeris glabra, indicates their very high wind-borne dispersal ability. In many communities, their seeds germinate after rain but the plants fail to establish in the longer term. The numbers of exotic species have been consistent between the 1995 survey (39 exotics) and the 1997 survey (34 exotics), also between the three target areas in 1997 (19-22 exotics). In $1995,15 \%$ of the species noted were exotics. Exotics formed approximately 10% of the total species diversity in the 1997 surveys (13% in northern area, 9% in central and 10% in southern areas).

In terms of conservation significance, nineteen species of National, State and/or Regional level were recorded in the areas surveyed in 1997. Four species of significance were noted in the northern, 11 in the central and 12 in the southern area. In 1995, 12 species of conservation significance (National, State and/or Regional) were recorded. No Endangered Ecological Communities (TSC Act 1995) were noted.

Acknowledgments

Dr Ian Sluiter (Ogyris Ecological Research) for collecting the southern area data; Dr Marti Anderson, Marine Ecology Laboratories, University of Sydney for statistical analysis of transect data from the 1995 and 1997 surveys; Trevor Biggs, Pooncarie Post Office for providing rainfall data; Dr Trish Holdway for proof reading the document; Geoff Horn (Anne Clements and Associates Pty Ltd) for fieldwork assistance and plotting of sampling locations; Phil Cupper (Ogyris Ecological Research) and John Peel (RZM Pty Ltd) for field assistance in the southern area; Hannah McPherson for map collation and proof reading; Ian and Julie Wakefield, Top Hut Station, and Steve and Sharon Smith, Birdwood Station, for accommodation.

References

ANZECC (1997) Threatened Australian Plants. Prepared by the Endangered Flora Network for the Australian and New Zealand Environment and Conservation Council.
Beadle, N.C. (1948) The vegetation and pastures of western New South Wales with special reference to soil erosion (Government Printer, Sydney).
Belbin, L. (1995) PATN pattern analysis package. Technical reference (Division of Wildlife and Ecology: CSIRO).
Bowler, J.M. (1971) Pleistocene salinity and climatic change: evidence from lakes and lunettes in southeastern Australia. In Maleny D.J. and Golson J. (eds) Aboriginal man and environment in Australia. (ANU Press: Canberra).
Brickhill, J. (1988) Conservation of mallee in western NSW. National Parks Journal. 32(3): 34-37.
Briggs, J.D. \& Leigh, J.H. (1996) Rare or threatened Australian plants (CSIRO: Canberra).
Budd, G.R., Williams, R.M., Cook, P. \& Walker, G. (1990) Impact of Mallee clearing on rainfall accession to the groundwater in far southwest New South Wales: implications for management. In Noble J.C., Joss P.J. and Jones G.K. (eds) The Mallee lands - a conservation perspective (CSIRO: Melbourne).
Bureau of Meteorology (1988) Climatic averages Australia (Australian Government Publishing Service).
Calder, M. (1990) Nature conservation in mallee lands in Australia. In Noble J.C., Joss P.J. and Jones, G.K. (eds) The Mallee lands - a conservation perspective (CSIRO: Melbourne).
Condon, R.W (1986) Recovery of catastrophic erosion in western NSW. In Joss P.J., Lynch, P.W. and Williams, O.B. (eds) Rangelands: a resource under siege (Australian Academy of Science).
Dare-Edwards, A. (1979) Late Quaternary soils on clay dunes of the Willandra Lakes, New South Wales. unpub. PhD thesis, ANU, Canberra.
Date, W. (1992) Climate. In Simpson I. (ed.) Rangeland management in Western New South Wales. (NSW Agriculture) pp. 17-23.
Dawson, T.J. \& Ellis, B.A. (1994) Diets of mammalian herbivores in Australian arid shrublands: seasonal effects on overlap between red kangaroos), sheep and rabbits, and on dietary niche breadths and electivities. Journal of Arid Environments 26: 257-271.
Dawson, T.J. \& Ellis, B.A. (1996) Diets of mammalian herbivores in Australian arid, hilly shrublands: seasonal effects on overlap between euros (hill kangaroos), sheep and feral goats, and on dietary niche breadths and electivities. Journal of Arid Environments 34: 491-506.

Fox, M.D. (1984) Mapping the vegetation of the mallee landscapes. In Storrier R. R. and Stannard M.E. (eds) Aeolian landscapes in the semi-arid zone of south-eastern Australia. Australian Society of Soil Sciences Inc., Riverina Branch, Wagga Wagga. pp. 147-148.
Fox, M.D. (1990) Composition and richness of New South Wales Mallee. In Noble J.C., Joss P.J. \& Jones G.K. (eds) The Mallee lands - a conservation perspective (CSIRO: Melbourne).
Green, D.R. (1980) Pooncarie 1:250 000 land system mapping. In Walker P.J. (1991 compiler) Land systems of Western New South Wales. Soil Conservation Service of NSW. Technical Report No. 25.
Harden, G.J. (ed.) (1990-1993) Flora of New South Wales. Volumes 1 to 4 (University of New South Wales Press: Kensington).
Harris, C.R. (1990) The history of mallee land use: Aboriginal and European. In Noble J.C., Joss P.J. and Jones G.K. (eds) The Mallee lands - a conservation perspective (CSIRO: Melbourne).

Jessop, J.P. \& Toelken, H.R. (ed.) (1986) Flora of South Australia (South Australian Government Printing Division: Adelaide).
Landsberg, J., James, C.D., Morton, S.R., Hobbs, T.J., Stol, J., Drew, A. \& Tongway, H. (1997) The effects of artificial sources of water on rangeland biodiversity. Final report to the Biodiversity Convention and Strategy Section of the Biodiversity group, Environment Australia, CSIRO and Environment Australia.
Morcom, L. \& Westbrooke, M. (1990) The vegetation of Mallee Cliffs National Park. Cunninghamia 2(2): 147-166.
Noble, J. C. (1997)The delicate and Noxious Scrub - CSIRO Studies on Native Tree and Shrub Proliferation in the Semi-Arid Woodlands of Eastern Australia. CSIRO.
NSW Threatened Species Conservation Act (1995) New South Wales State Government.
Palmer, D. (1991) Western New South Wales - A miracle of recovery. Australian Journal of Soil and Water Conservation 4(4) November 1991.
Pickard, J. (1987) Mallee management strategy (Western Lands Commission: Sydney).
Porteners, M.F. \& Ashby, E. M. (1996) Plants of Pooncarie and the Willandra Lakes (Royal Botanic Gardens: Sydney).
Porteners, M.F., Ashby, E.M. \& Benson, J.S. (1997) The natural vegetation of the Pooncarie 1: 100 000 map. Cunninghamia 5(1): 139-232.
Pressey, R.L., Cohn, J.S. \& Porter, J.L. (1990) Vascular plants with restricted distributions in the Western Division of New South Wales. Proceedings of the Linnaean Society of NSW 112(4): 213227.

Rice, B. (1986) Aspects of the vegetation of the Willandra World Heritage Region. Final report to the NSW Department of Environment and Planning on investigations under the National Estates Program.
Robertson, G. (1987) Plant dynamics. In Caughley G., Sheperd N. and Short J. (eds), Kangaroos: their ecology and management in the sheep rangelands of Australia, pp. 14-34 (Cambridge University Press).
Specht, R.L., Specht, A., Whelan, M.B. and Hegarty, E.E. (1995) Conservation atlas of plant communities in Australia (Centre for Coastal Management, Southern Cross University: Lismore).
Turner, F. (1904) Botany of South-western New South Wales. Proceedings of the Linnaean Society of NSW 29: 132-181.
Walker, P.J. (1991) Land systems of western New South Wales. Soil Conservation Service of New South Wales Technical Report No. 25.
Webb, C. (1998) Westward ho! National Parks Journal 42(3).
Wellard, G. (1987) The effect of weather on soil moisture and plant growth in the arid zone. In Caughley G., Sheperd N. and Short J. (eds), Kangaroos: their ecology and management in the sheep rangelands of Australia, pp. 35-49 (Cambridge University Press).
Westbrooke, M. \& Miller, J.D. (1995) Vegetation of Mungo National Park, western New South Wales. Cunninghamia 4(1): 63-80.
Willis J.H. (1973) A handbook to plants in Victoria. Volume 2 (Melbourne University Press).
$\begin{aligned} & \text { Percent } \\ & \text { exotic } \\ & \text { species }\end{aligned}$
5
0
0
0
0
0
0
0
0
0
17
7
23
10
0
0
17

Exotic
species

$\overline{\overline{0}}$ 芜

Vegetation

n

A88-A94, A96-A106, A109-A130: Southern 1997
3a Irregular Dune Mallee, 3b Linear Dune Mallee, 3d Sandplain Mallee,
4 Belah-Rosewood, 8 Black Bluebush, 22 Disturbed Shrubland Complex, 30 Lunette Shrubland
OA Open Areas, C Cleared and/or cropped
Spots A1-A68: 1995
A69, A79-A81, A85: Northern 1997
A69, A79-A81, A85. Northern 1997

	OOmmo60^00m
$\overline{\overline{0}}$	
© 0 0 0 0 0 0	$\underset{\sim}{[}$

Spot
locations

Spot
locations
North

z
0
0
0
0
0
0

z
0
0
0
0
0
0
0

z
0
0
0
0
0
0
0
0

z
0
0
0
0
0
0

z
z
0
0
0
0
0
0
0

$$
\circ \stackrel{\infty}{\sim} 0 \quad \stackrel{ \pm}{\sim} 0 \stackrel{\infty}{\sim}-\stackrel{ \pm}{-} 0 \circ \stackrel{\circ}{-} 00000 \stackrel{\sim}{N} 0000 \div 0
$$

060
OLONO-NOOROOOOO-OOOONO
$-m$ -

Spot
locatio

Transects 1-56: 1995

57-66, 97-108: Northern 1997
67-96: Central 19971997
Site key: A.I = Acacia ligulata, A.o. = Alectryon oleifolius subsp. canescens, B.o. = Beyeria bursariifolia,
Site key: A.I. = Acacia ligulata, A.o. = Alectryon oleifolius subsp. canescens, B.o. = Beyeria bursariifolia,
Ca.p. = Callitris preissii, C.p. = Casuarina pauper, D.b. = Dodonaea bursariifolia, D.h. = Duboisia hopwoodii,
D.v. $=$ Dodonaea viscosa, G.p. $=$ Grevillea pterosperma, L.c. $=$ Leptospermum coriaceum, T.s. $=$ Triodia scariosa $(X)=$ number of quadrats out of a total of 10, in which Triodia scariosa was found. \qquad
$664900 E$
$667400 E$
$669200 E$
$678600 E$
$678600 E$
$678400 E$
$678000 E$
$677300 E$
$676400 E$
$674200 E$
$674800 E$
$674700 E$
$675600 E$
$675900 E$
$676750 E$
$676750 E$
苂

io ठ $\dot{\sim}$
Vegetation
Mallee, no T.s.
Mallee, T.s. (6)
Open C.p., no T.s.
Mallee, Ca.p., T.s. (7)
Mallee, T.s. (10)
Mallee dune crest, T.s. (7)
Dense mallee, T.s. (10)
Mallee, Ca.p.,T.s (10)
Lake Shore, D.h., no T.s.
Mallee, T.s. (2)
Lake bed, no T.s.
Mallee, T.s. (9)
Mallee, T.s. (8)
Mallee on dune crest, T.s. (10)
Mallee on dune crest, T.s. (10)
Mallee, Ca.p., T.s. (9)
Mallee, Ca.p., T.s. (9)

Total no.

Exotic
species

 group

$\neg m m \sim N \sim N \sim \sim m m \sim \sim \sim N$
Site key: A.I. = Acacia lig

Site

Mallee, Ca.p., T.s. (7)
Mallee, T.s. (10)
Mallee dune crest, T.s. (7)
Dense mallee, T.s. (10) Lake Shore, D.h., no T.s. Mallee, T.s. (2) Mallee, T.s. (9)
Mallee, T.s. (8) Mallee on dune crest, T.s. (10) Mallee on dune crest, T.s. (10)
T
$\wedge \stackrel{\infty}{-}$
6290700 N
6291000 N
6290750 N

 6294500 N 6294400 N 6294000 N \begin{tabular}{l}
 z

\hline 0

O

N

O
\end{tabular} z

O
N
N
O z
Z
N
N
O z
Z
N
N
O
0 2
Z
N
N
N 6292900 N
 z
z
O
O
O
Ò

 6309200N
 z
Z
M
O
O
O
 $\stackrel{\infty}{\sim}$ $\stackrel{\sim}{\sim}$ $\stackrel{n}{n}$ ㄴN N $\stackrel{\infty}{\sim}$ 이 \quad m $\underset{m}{n} \underset{m}{m} \underset{m}{n}$ $\stackrel{\bullet}{m} \underset{m}{\infty}$

$$
\pm \bar{\sim} \stackrel{\sim}{\sim} \underset{\sim}{\circ} \stackrel{\infty}{\sim}
$$

$$
\stackrel{\infty}{\sim}
$$

$$
\infty
$$

$$
\infty \quad \sigma
$$

$$
\infty _
$$

$$
\simeq N
$$

$$
0 \text { : }
$$

$$
=\alpha
$$ $\stackrel{\infty}{-}$ $6 \div \wedge n m$ Exotic

species Total no.
of species
 Ordination
group Site
Mallee on rocky outcrop, C.p., T.s. (2)
Depression, Ca.p., T.s. (9)
Mallee, T.s. (9)
Depression, D.h., T.s. (7)
Lake bed, no T.s.
Mallee, no T.s.
C.p. woodland, no T.s.
Mallee, open sand, T.s. (4)
Mallee on clay depression, C.p., no T.s. Mallee on clay depression, C.p., no T.s.
Mallee, Ca.p., T.s. (4) Mallee, T.s. (10) D.v., no T.s. Mallee, Ca.p., T.s. (2) Dune crest mallee, T.s. (10) Dune crest mallee, T.s. (7) Mallee, T.s. (10) Lake bed, A.o., T.s. (4) Mallee, T.s. (10) Lake bed, C.p., no T.s. Dune crest, sandy, mallee, no T.s. Mallee, T.s. (10) Dune crest, sandy, L.c., T.s. (10) Mallee, T.s. (10)
 East
677800 E
678300 E
679600 E
679800 E
679300 E
679100 E
679500 E
676900 E
677500 E
675250 E
674750 E
677600 E
678000 E
671600 E
671400 E
671100 E
670400 E

666400 E | Transects | |
| :--- | :--- |
| T | North |
| | |
| 39 | 6290200 N |
| 40 | 6290300 N |
| 41 | 6291250 N |
| 42 | 6291400 N |
| 43 | 6291750 N |
| 44 | 6291900 N |
| 45 | 6297200 N |
| 46 | 6289100 N |
| 47 | 6289000 N |
| 48 | 6290100 N |
| 49 | 6291400 N |
| 50 | 6293200 N |
| 51 | 6293300 N |
| 52 | 6283600 N |
| 53 | 6282600 N |
| 54 | 6281200 N |
| 55 | 6275600 N |
| 56 | 6275000 N |
| 57 | 6314100 N |
| 58 | 6312800 N |
| 59 | 6312200 N |
| 60 | 6311800 N |
| 61 | 6311900 N |

 Total no.
of species
 Ordination
group $\sim m \sim N m \sim m m m-N \sim--$
Site
Dune crest, A.. I., T.s. (10)
Lake bed, C.p., A.o., no T.s.
Ridgetop with mallee, T.s. (10)
Sparse mallee, A.I., T.s. (5)
Lake bed, no T.s.
Sparse mallee, T.s. (4)
Lake bed, no T.s.
Lake bed, C.p., no T.s.
Lake bed, C.p., no T.s.
Open sand plain, T.s. (1)
Mallee with B.o., T.s. (5)
Mallee on gravel slope, T.s. (6)
Sand dune mallee, T.s. (4)
Low sand ridge, open mallee
woodland, no T.s.
Ridgetop woodland, A.o., no T.s.
Lake bed, C.p., A.o., no T.s.
Mallee, T.s. (10)
Mallee, T.s. (8)
Mallee, T.s. (8)
Lake bed, C.p., A.o., no T.s.
Mallee, T.s. (10)
Mallee, T.s. (8)
Dune ridge, A.o., no T.s.

East
671500 E
671000 E
670000 E
667900 E
665750 E
664200 E
661900 E
658500 E
657600 E
656100 E
653000 E
656700 E
689900 E
689200 E
688900 E
687400 E
686000 E
685900 E
685800 E
687100 E
687200 E
686900 E
687200 E

Transects

 Ordination
group $\quad \begin{array}{ll}\text { Total no. } \\ \text { of species }\end{array} \quad \begin{aligned} & \text { Exotic } \\ & \text { species }\end{aligned}$ Site
Mallee, T.s. (10)
D.v., no T.s.
Mallee on dune crest, T.s. (8)
Mallee on dune crest, T.s. (2)
Swale of parabolic dune, no T.s.
Mallee on dune crest, T.s. (9)
Mallee on red swale, D.b., T.s. (2)
Sand plain mallee, T.s. (10)
Sand plain mallee, T.s. (10)
Sand plain mallee, T.s. (8)
Sand plain mallee, T.s. (7)
Mallee on red swale, T.s. (10)
Dune crest mallee, T.s. (10)
Sand plain mallee, T.s. (9)
Red swale, T.s. (3)
Sand plain mallee, T.s. (10)
Dune crest mallee, T.s. (8)
Mallee on red swale, no T.s.
Dune crest mallee, T.s. (10)
Sand plain mallee, T.s. (9)
Lake bed, no T.s.
Lake bed, no T.s.
Lake bed, no T.s.
 East
687800E
$649500 E$
$661600 E$
$662000 E$
$661000 E$
$658100 E$
$658100 E$
$658500 E$
$658650 E$
$658850 E$
$669600 E$
$669800 E$
$670000 E$
$670000 E$
$648900 E$
$649100 E$
$649300 E$
บม.
108 6308900N

1096267400 N 110 6262900N 111 6261600N 1126261200 N 113 6259500N 114 6260100N | z |
| :--- |
| 0 |
| \vdots |
| 0 |
| 0 |
| 0 |

 6262800N | z |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| O |
| O |

 z
2
\vdots
0
0
0

0 | z |
| :--- |
| |
| |
| \vdots |
| \vdots |
| 0 |
| 0 |

 \begin{tabular}{ll}
2

\hline

z

\hline-

0

0

0

0

0
\end{tabular} $\begin{array}{ll}z & z \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$ 6266100N

 z
Z
ò
ò
oे z
\vdots
\vdots
\vdots
\vdots
\vdots

Appendix 2. Ephemeral Species

Key : * : exotic species
95: 1995 survey
97e: entire 1997 survey
N : northern area, 1997
C: central area, 1997
S: southern area, 1997

Species
Dicotyledons

Aizoaceae

Tetragonia moorei sp. nov.
Apiaceae
Daucus glochidiatus Trachymene cyanopetala Trachymene sp. (unidentified)

Asteraceae
Actinobole uliginosum Angianthus brachypappus
Angianthus tomentosus
Brachycome leptocarpa
Brachycome lineariloba
Bracteantha bracteata
Calotis cymbacantha
Calotis hispidula
*Carthamus lanatus
*Centaurea melitensis
Centipeda thespidioides
Ceratogyne obionoides
Chthonocephalus pseudevax
Epaltes australis
Gnaphalium sphaericum
Gnephosis eriocarpa
Gnephosis tenuissima
Hyalosperma semisterile
*Hypochoeris glabra
Isoetopsis graminifolia
Lemooria burkittii
Millotia macrocarpa
Millotia perpusilla
Millotia tenuifolia var. tenuifolia
Myriocephalus pluriflorus
Myriocephalus stuartii
Podolepis capillaris
Podolepis sp. (unidentified)
Podotheca angustifolia Pogonolepis muelleriana
Pseudognaphalium luteoalbum
Rhodanthe corymbiflora
Rhodanthe floribunda
Rhodanthe microglossa
Rhodanthe moschata
Rhodanthe pygmaea
Rhodanthe sp.
Rhodanthe stuartiana
Rhodanthe uniflora
Senecio glossanthus
Senecio gregorii
*Sonchus asper
*Sonchus oleraceus
Stuartina hamata

95 97e N C S

x	x	x	x	x
x	x	x	x	x
x	x		x	x
	x		x	
x	x	x	x	x
	x			x
x	x			x
x	x	x	x	x

x
x
$x \quad x \quad x \quad x \quad x$

X
X
x
$x \quad x \quad x$

x		x	x
x	x	x	x

 x
 $x \quad x \quad x$
x
$x \quad x \quad x$

x	x	x
x	x	x

$\begin{array}{lll}x & x & x \\ x & x & x\end{array}$
$x \quad x$
x
x
$x \quad x \quad x$
$x \quad x \quad x$
x
x

X
x
$x \quad x \quad x$
$x \quad x \quad x$

$x \quad x \quad$| x |
| :--- |
| x |

$x \quad x \quad x$
x
x

Species

Asteraceae cont.
Stuartina muelleri
Triptilodiscus pygmaeus
Vittadinia cervicularis subsp. cervicularis
Vittadinia cuneata var. morrisii
Vittadinia dissecta var. hirta
Vittadinia eremaea
Vittadinia pterochaeta
Vittadinia sp.
Vittadinia sulcata
Waitzia acuminata

Boraginaceae

*Echium plantagineum
Omphalolappula concava
Plagiobothrys plurisepaleus

Brassicaceae

*Alyssum linifolium
Blennodia canescens
*Brassica tournefortii
*Carrichtera annua
Geococcus pusillus
Harmsiodoxa brevipes var. brevipes
Lepidium fasciculatum
Lepidium monoplocoides
Lepidium papillosum
Lepidium phlebopetalum
*Lepidium sp.
Menkea australis
Sisymbrium erysimoides
Stenopetalum lineare
Stenopetalum sphaerocarpum

Campanulaceae

Wahlenbergia gracilenta
Wahlenbergia tumidifructa

Caryophyllaceae

Gypsophila australis
*Herniaria hirsuta
*Sagina apetala
Scleranthus minusculus
*Silene apetala
*Silene nocturna

Chenopodiaceae

Chenopodium cristatum
Chenopodium desertorum subsp. desertorum
Chenopodium desertorum subsp. indet.
Chenopodium desertorum subsp. rectum
Chenopodium melanocarpum

Crassulaceae

Crassula colorata var. acuminata

Euphorbiaceae

Poranthera microphylla

Fabaceae Faboideae

*Medicago laciniata
*Medicago minima

Geraniaceae

*Erodium cicutarium
Erodium crinitum
Erodium cygnorum subsp. glandulosum Erodium sp.

95 97e N C S

	x			x
x	x		x	x
	x	x		x
x	x	x	x	
x	x	x	x	x
x	x	x	x	x
x	x		x	
x	x	x	x	x
x	x	x	x	
x	x	x	x	x

X

x	x	x	x	x
x	x	x	x	

$x \quad x \quad x \quad x \quad x$
$x \quad x$
$x \quad x$
X x x
x

X
X
x
x
x
$\begin{array}{ll}x & x\end{array}$
$x \quad x \quad x$
$x \quad x \quad x$
$x \quad x \quad x$

$x \quad$| x | x |
| :--- | :--- |
| x | x |

x	x	x	x	x
x	x	x	x	

$x \quad x \quad x \quad x$

	x	x		
x	x	x	x	
	x		x	
x	x	x	x	x
x	x	x	x	x
	x			x

x	x		x	x
x		x	x	x
x		x	x	x
x	x	x	x	x
			x	x

X

Species	95	97e	N	C	S
Goodeniaceae					
Goodenia havilandii	X	X	X	x	x
Goodenia pusilliflora	x	x	x	x	x
Malvaceae					
*Malva parviflora	x				
Plantaginaceae					
Plantago cunninghamii	x				
Plantago drummondii	X	x		x	x
Plantago sp.		x	x		X
Plantago turrifera	x	x	x	x	x
Portulacaceae					
Calandrinia eremaea	x	x	x	x	x
Calandrinia granulifera		x		X	x
Ranunculaceae					
Myosurus minimus var. australis	x				
Ranunculus pentandrus var. platycarpus		x			x
*Ranunculus trilobus	x				
Rubiaceae					
Synaptantha tillaeacea		x		x	
Solanaceae					
Nicotiana occidentalis subsp. obliqua	x		x	x	x
Thymelaeaceae					
Pimelea trichostachya	x	x	x	x	x
Urticaceae					
Parietaria debilis		x	x	X	x
Zygophyllaceae					
Zygophyllum ammophilum	x	x	x	x	x
Zygophyllum apiculatum	x	x	x	X	x
Zygophyllum aurantiacum	x				
Zygophyllum iodocarpum	x	x	x	x	
Zygophyllum ovatum	x	x	x	X	
Zygophyllum simile	x	x	x	x	x
Monocotyledons					
Asphodelaceae					
Bulbine semibarbata	x	x	x	x	x
Juncaginaceae					
Triglochin calcitrapum		x	x	x	x
Poaceae					
Agrostis avenacea	x				
*Aira caryophyllea	X	x	X	X	
Bromus arenarius	x	x	x	x	x
*Bromus rubens	x	x	x	X	x
* Bromus sp.	X				
*Hordeum leporinum	x	x	x		
*Hordeum marinum		X			X
Pentaschistis airoides		X	x	x	x
Poa fax	x				
*Rostraria pumila	X	X	x	X	X
*Schismus barbatus	X	X	X	X	X
* Vulpia bromoides	x	x			x
* Vulpia muralis	x	x		x	
* Vulpia myuros	x	X	x	X	x
*Vulpia sp.		x		x	x

