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Myelodysplasia is in the niche: novel concepts and emerging
therapies
E Bulycheva1, M Rauner2, H Medyouf3, I Theurl4, M Bornhäuser1,5, LC Hofbauer2,5 and U Platzbecker1

Myelodysplastic syndromes (MDSs) represent clonal disorders mainly of the elderly that are characterized by ineffective
hematopoiesis and an increased risk of transformation into acute myeloid leukemia. The pathogenesis of MDS is thought to evolve
from accumulation and selection of specific genetic or epigenetic events. Emerging evidence indicates that MDS is not solely a
hematopoietic disease but rather affects the entire bone marrow microenvironment, including bone metabolism. Many of these
cells, in particular mesenchymal stem and progenitor cells (MSPCs) and osteoblasts, express a number of adhesion molecules and
secreted factors that regulate blood regeneration throughout life by contributing to hematopoietic stem and progenitor cell (HSPC)
maintenance, self-renewal and differentiation. Several endocrine factors, such as erythropoietin, parathyroid hormone and
estrogens, as well as deranged iron metabolism modulate these processes. Thus, interactions between MSPC and HSPC contribute
to the pathogenesis of MDS and associated pathologies. A detailed understanding of these mechanisms may help to define novel
targets for diagnosis and possibly therapy. In this review, we will discuss the scientific rationale of ‘osteohematology’ as an
emerging research field in MDS and outline clinical implications.
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DEFINITION AND COMPOSITION OF THE OSTEO-HEMATOPOIETIC
NICHE
Hematopoietic stem and progenitor cells (HSPCs) reside within the
so-called ‘bone marrow niches’, which are defined as cellular and
molecular microenvironments that cooperate with cell intrinsic
mechanisms to maintain and regulate stem cell functions.1 The
complexity of the niche is attributed to the fact that it
simultaneously contains stem cells, precursor cells and terminally
differentiated cells. HSPC represent precursors for osteoclasts
(OCs) responsible for bone resorption, whereas mesenchymal
stem and progenitor cells (MSPCs) progressively differentiate to
give rise to mature osteoblasts (OBs) that produce the bone
matrix.1 Below, we will summarize the role of bone cells and their
respective progenitors, in particular, in the maintenance of the
HSPC niche.

Mesenchymal stem cells and their progeny
Despite the established concept of the niche, there are still
controversies concerning the composition and relevance of
various compartments of the HSPC niche. OBs are considered
key factors of the osteo-hematopoietic niche as transplanted HSPC
often, but not always, lodge in close proximity to the bone
trabecules.2 Indeed, depletion of MSPCs3 or osteoblastic
progenitors4 results in a decreased number of bone marrow
HSPC. Similarly, the dependence of HSPC engraftment on the
calcium-sensing receptor,5 as well as the ability of OB to produce
several key cytokines and adhesion molecules, support the
essential role of the osteoblastic lineage in maintaining
hematopoiesis.

More recent studies have focused on dissecting the osteogenic
HSPC niche. This has led to the identification of intermediate
filament protein nestin-expressing MSPC and CXCL12-abundant
reticular (CAR) cells, which are critical for niche homeostasis.6 Most
of the nestin+ cells (60%) are found adjacent to HSPC both within
and outside the endosteal region3 and highly express important
genes for HSPC maintenance, such as CXCL12, interleukin-7 (IL-7),
angiopoietin-1 and osteopontin. Deletion of CXCL12 from osterix-
expressing stromal cells, which include CARs and OBs, results in
constitutive HSPC mobilization,7 indicating that they have a critical
role in maintaining HSPC self-renewal and differentiation. Nestin+

MSPCs, CAR cells, as well as recently described stem cell factor-
expressing LepR+ cells are clearly important components of the
HSPC niche, but the extent to which they may overlap is still under
investigation.8 Moreover, it remains to be clarified which cell type
requires direct contact with HSPC within the niche and which
component acts through paracrine signals.

OCs and their precursors
OCs represent polynuclear HSPC-derived cells of the monocytic/
macrophagic lineage specialized in bone resorption. OCs mod-
ulate calcium and mineral balance, which affects the maintenance
of HSPC.5 Functionally, OCs can degrade bone matrix and release
numerous growth factors, including transforming growth factor β,
into the bone marrow cavity. Moreover, OCs may directly
modulate the mobilization of HSPC from the bone marrow to the
circulation,9 both in normal and stress conditions, via cathepsin
K-mediated cleavage of CXCL12. Experiments on osteopetrotic
mice lacking OC demonstrated increased HSPC mobilization, thus
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indicating bone resorbing cells as important regulators of the
hematopoietic system.10 Interestingly, zoledronic acid, which is
known to suppress OC activity, supports HSPC indirectly by
increasing the secretion of bone morphogenetic proteins (BMP)-2
and -6, which stimulate OB functions.11 Importantly, niche
formation is severely affected in the absence of OC with reduced
capacity of MSPCs to differentiate into OB and attract hemato-
poietic progenitors.12 This indicates that OC have a critical role in
the initial steps of the osteo-hematopoietic niche formation.
The OC progenitors, monocytes, are responsible for the

protection of the HSPC pool from exhaustion both in steady-
state conditions and during stress.13 They can be recruited from
the blood circulation into the marrow, where they differentiate
into macrophages and reside within the niche. Monocytes and
macrophages are the main cells found in the bone marrow niche
after irradiation, where they protect the HSPC pool from
exhaustion by producing prostaglandin E2 to maintain undiffer-
entiated primitive HSPC; loss of macrophages results in the egress
of HSPC to the bloodstream.14 Moreover, macrophages also
indirectly support HSPC through the modulation of the CXCR4–
CXCL12 axis. Prostaglandin E2, synthesized by macrophages,
increases CXCL12 expression on nestin+ stromal cells13 and CXCR4
expression on primitive HSPC,15 thus improving maintenance and
survival of HSPC in the bone marrow. Importantly, macrophages
represent an important link between HSPC and bone cells. Indeed,
beyond their effect on hematopoiesis, macrophages stimulate
proliferation and mineralization of OB and enhance the bone-
anabolic effect of parathyroid hormone (PTH).16

IMPACT OF INTRINSIC AND EXTRINSIC FACTORS ON THE
OSTEO-HEMATOPOIETIC NICHE
The role of age
Functional properties of MSPCs are modulated by age and
gender.17 In fact, Maijenburg et al.18 demonstrated that expression
of MSPC surface markers, such as CD146, is age dependent.
Interestingly, CD146 expression also depends on the proximity of
MSPCs to certain bone compartments, with higher expression
observed in perivascular niches, and lower levels in the
osteoblastic niche.19 Moreover, a unique MSPC subset specific
for fetal bone marrow has been identified. Currently, the reduced
capacity of aged MSPCs to differentiate into OB is thought to be
due to the deregulation of specific histone demethylases.20

Growth rate and clonogenic potential are substantially higher in
MSPCs from younger female donors compared with aging
counterparts.17,21 It could be partially explained by an increase
in adipocyte number, which exhibits suppressive influence on
hematopoiesis in aged bone marrow.20

Vice versa, coupling between HSPC functions and bone
turnover during aging and development of osteoporosis is
supported by the fact that HSPC are able to guide MSPCs toward
the osteoblastic lineage through increased BMP-2 and -6 secretion,
whereas this effect is diminished in aged mice.22 These observa-
tions suggest that the relative size and composition of niches are
dynamic and require different types of MSPCs at different age
periods.

The role of PTH and cytokines
The function of MSPCs and their progenies is modulated by
several hormones (for example, PTH, estrogens) and local signals
(for example, BMPs, Wnt). PTH is an approved polypeptide for the
treatment of osteoporosis because it stimulates bone formation
that results in increased bone mineral density with additional
known effects on hematopoiesis.23 Indeed, PTH can directly
stimulate the proliferation and survival of HSPC, but it also partially
exerts its effects through the OB24 by increasing the production of
Jagged 1 in OB, which in turn activates Notch receptors on nearby

HSPC. Moreover, PTH has also been shown to act through the
insulin-like growth factor pathway, which is specifically upregu-
lated in OB, but not MSPCs in response to PTH.25 The effects of
PTH on HSPC expansion are IL-6 dependent, as they are lost in
IL-6-deficient mice. Blocking IL-6 also attenuated PTH anabolic
action on OB.26 Taken together, these data indicate that the effect
of PTH through various molecules including IL-6 couples
osteoblastic and hematopoietic activity.
At the local level, both the Wnt and BMP pathways are of crucial

importance.27 Canonical Wnt/β-catenin signaling pathway, speci-
fically via Wnt3a, promotes proliferation of MSPCs and suppresses
their osteogenic differentiation.28 At the same time, β-catenin
inhibits formation of OB through increased osteoprotegerin
expression.29 Wnt5a, a member of the non-canonical pathway,
has been shown to suppress MSPC proliferation, but to increase
the number of alkaline phosphatase-positive OB.30 This is further
supported by the fact that Wnt inhibitory factor-1 acts as a
negative regulator of OB differentiation in mouse MSPCs.31 The
non-canonical Wnt pathway also has a role in forming OB–OC
balance, as the upregulation of RANK by Wnt5a is a key step for
osteoclastogenesis in response to receptor activator of nuclear
factor kappa-B ligand (RANKL) secreted from OB.32 Importantly,
lower Wnt-related transcripts in MSPCs are observed in old
compared with young individuals, which may be a correlate of
osteoporosis as an age-related disease.33

BMP-6 is one of the most consistent and potent regulators of
MSPC differentiation into OB as the lack of the Bmp6 gene caused
a reduction of bone formation because of the OB dysfunction.34

Moreover, systemic administration of BMP-6 restores the bone
capacity by promoting MSPC differentiation toward OB and
decreasing HSPC differentiation toward OC.35 Importantly, MSPCs
can produce BMP-2, -4 and -6 in an autocrine manner that induce
osteogenesis of marrow-derived MSPCs in vitro.36

In addition, autonomic neuronal regulation also modulates the
osteo-hematopoietic niche (as reviewed by del Toro and Mendez-
Ferrer).37

The effects of erythropoietin (Epo)
Epo receptor expression has long been thought to be restricted to
the erythroid lineage. However, Epo can also directly stimulate the
formation of bone by inducing OB differentiation and increasing
mineral deposition.38 Experiments in vivo revealed that Epo first
activates osteoclastogenesis, which is later followed by osteo-
blastogenesis either directly or via HSPC-mediated BMP secretion.
These seemingly opposing effects of Epo on bone loss and
formation have been shown to be context dependent. In
developing or in BMP-driven bone regeneration, Epo increases
bone formation by increasing bone remodeling, whereas it
increases bone resorption rather than bone formation in mature
and old bones.39 Although the molecular mechanisms remain
poorly defined, recent data suggest that mammalian target of
rapamycin signaling may have a role in Epo-mediated OBs and
OCs formation.40 The rapid loss of trabecular bone volume
observed after Epo exposure in mice41 is believed to be driven
by a release of oncostatin M from erythroblasts, which in turn
induces OB to secrete RANKL thereby potentiating OC maturation.
Moreover, zoledronic acid, which is a known molecule that inhibits
OC formation and function, completely blocked Epo-induced
decrease in bone, indicating the involvement of OC in this Epo-
mediated process. Importantly, bone remodeling is crucial for a
normal erythropoietic response to Epo, as bisphosphonate
treatment also reduced the magnitude of the erythroid response
to Epo.
Epo-releasing scaffolds showed induction of chemotaxis of

MSPCs and their pro-osteogenic differentiation.42 MSPC motility
was also increased after Epo exposure.43 Furthermore, in vivo
implementation of Epo loaded scaffolds showed that they
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promote osteogenic activity. It is also important to mention that
OBs are also capable of driving erythropoiesis by their ability to
produce Epo.44 Together these data demonstrate an intimate
coupling between hematopoiesis and bone formation
through Epo.

THE IMPACT OF THE OSTEO-HEMATOPOIETIC NICHE ON THE
PATHOGENESIS OF MDS
The pathogenesis of myelodysplastic syndrome (MDS) is thought
to be due to an altered phenotype of the HSPC compartment as a
result of genetic instability and disease-modifying mutations.
There are several well-described somatic genetic abnormalities,
which are commonly, although not exclusively, found in MDS. At
least one genomic alteration can be found in 78% of MDS
patients, with genes involved in RNA splicing (SF3B1, SRSF2) to be
the most common and the earliest in disease evolution.45

Intriguingly, these early mutations could also influence the further
development of the disease, as later cooperating mutations are
shown to be different between these two genes, despite the fact
that they are both involved in the same pathway. Finally, some
data support the notion that the disease phenotype may be
closely linked to the mutation profile. Indeed, SF3B1 is associated
with the presence of ring sideroblasts, whereas SRSF2 mutation is
more commonly observed in chronic myelomonocytic leukemia.46

Although the most important event in MDS pathology appears
to be a molecular defect in HSPC, evidence suggests that
ineffective hematopoiesis may also result from abnormalities in
the bone marrow microenvironment, including altered hemato-
poietic–stromal interactions and deregulated production of
growth factors and hematopoietic modulators (Figure 1).

Preclinical models
Animal models represent powerful tools to model and study
human diseases and are useful preclinical platforms. Several
mouse models have been generated to represent MDS pathology.
Most of them are connected with the mutations in HSPCs (Evi-1
overexpression, Npm1 hetero mice, Nup98/HoxD3 transgenic mice,
mutated Aml1,microRNAs-145 and 146a knockdown).47–50 NUP98-
HOXD13 transgenic mice represent among others a very accurate
preclinical model. The NUP98 gene is found to be affected in
chromosomal translocations commonly seen in MDS. Mice with
this phenotype develop all of the key features of MDS, including
peripheral blood cytopenias, bone marrow dysplasia, impaired
differentiation of early hematopoietic progenitors and transforma-
tion to acute leukemia.51 The most recently developed mouse
models have the merit of combining genetic events that are found
in the HSPC of patients with MDS, such as concurrent loss of Ezh2
and Tet2,52 deletion of Asxl153 and haploinsufficiency of SAMD9L
mimicking monosomy 7.54 However, given the tremendous
heterogeneity of MDS in patients, it is likely that no single genetic
mouse model can recapitulate all the subtypes at once and
therefore patient-specific models using xenografts would be
highly valuable tool to study the biology of human MDS.
One noteworthy model of MDS/myeloproliferative neoplasm is

connected with the deregulation of Wnt canonical pathway. After
serial transplantations of HSPC with loss of the APC gene, which is
a known negative regulator of Wnt pathway, mice developed an
MDS/myeloproliferative neoplasm phenotype. APC is a tumor
suppressor located on human chromosome 5q, which indicates
that this model can be attributed to the well-known 5q–
syndrome.55

Another model represents microenvironment-induced myelo-
dysplasia with Dicer1 deletion in osteoprogenitors. Raaijmakers
et al.56 have provided evidence for the first time that a disturbance
of the endosteal niche can result in MDS. Deletion of Dicer1—an
RNase III endonuclease essential for microRNA biogenesis and

RNA processing in mouse osteoprogenitors, but not in mature OB
disrupts the integrity of hematopoiesis. OB number was sig-
nificantly decreased, whereas OC number and function was not
affected. These mice developed fatal neutropenia with hyperplas-
tic bone marrow and dysmyelopoiesis, which is highly suggestive
of MDS. When transplanted into wild-type recipient mice, these
MDS cells were not able to propagate the disease, suggesting that
this phenotype was not cell autonomous. Conversely, when Dicer
knock-out mice were reconstituted with bone marrow cells from
wild-type mice they developed MDS, thus demonstrating the
essential role of the niche in instructing HSPC to acquire an MDS
phenotype. Interestingly, MSPCs isolated from MDS patients also
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Figure 1. (a) Cellular and humoral components within the osteo-
hematopoietic niche. Lines, differentiation/self-renewal, dash-lines,
signaling pathways. (b) Potential therapeutic targets in modulating
the osteo-hematopoietic niche of patients with MDS. Allo-HSPCT,
allogeneic HSPCT; OPG, osteoprotegerin; TGFβ, transforming growth
factor β; Wnt, Wnt signaling pathways.
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exhibit a low expression of Dicer1 and DROSHA—another RNA III
endonuclease, as well as a global downregulation of microRNA
expression.57

Although genetic mouse models strongly argue in favor of a
critical role of the bone marrow niche, translation of these findings
to human MDS remains highly speculative. A recent study,
however, has provided the first proof of concept that patient-
derived stromal cells have a crucial role in the propagation of
human MDS stem cells in vivo, thus establishing a robust
xenograft model of lower-risk MDS.58 Indeed the authors showed
in a cohort of lower-risk MDS cases with different genetic makeup
that co-injection of patient-derived CD34+ cells and the corre-
sponding MSPCs into the bone marrow cavity of immunocom-
promised mice, lead to long-term and significant engraftment of
bone fide MDS cells, as demonstrated by a strong myeloid bias and
clonality tracking. In contrast, injection of CD34+ cells alone was
highly inefficient; especially in the context of lower-risk MDS, as
previously reported by others.59 Interestingly, the properties of co-
transfused MSPCs appear to be of importance, as patient-derived
MSPCs were more efficient, than healthy age-matched MSPCs, in
supporting MDS stem cells. Importantly, the authors also provided
experimental evidence that a number of processes involved in
cellular cross-talk were deregulated in MDS-MSPCs, some of which
are instructively imposed by the diseased hematopoietic cells.
Taken together, these data argue in favor of the view that stromal
niche elements likely contribute to MDS pathogenesis, and that
the bi-directional cross-talk may lead to yet to be defined stepwise
events that may very well facilitate disease progression. Finally,
the fact that specific MSPCs properties are important for MDS
propagation, is also supported by the fact that cells with
overexpression of CD146 (MCAM) exhibit an increased ability to
support short-term (5–13 weeks) MDS engraftment and propaga-
tion (mostly higher risk cases), when compared with their
cytokine-secreting counterparts.60

Alterations of the cellular components of the niche in patients
with MDS
Published data on the involvement of the cellular components of
the ‘niche’ are summarized in Table 1. The majority have
demonstrated alterations of niche cells. The first report revealed
decreased OB and OC numbers and bone formation rate.61

Multiple data have shown that osteoprogenitors—MSPCs—
exhibit normal morphology and frequency in the bone marrow
of MDS patients,62 as well as undisturbed osteoblastic, adipocytic
and chondrocytic differentiation potential in vitro. Similarly,
MDS-MSPCs were reported to support the in vitro growth of
MDS-derived HSPC.63,64 In contrast, other groups demonstrated
reduced osteogenic differentiation and low ability to support
hematopoiesis in long-term culture-initiating cells assays.65,66 A
probable role of the chemokine CCL3 secreted by malignant cells
in this process is suggested.67

Antigen expression of adhesion molecules on the cell surface of
MDS-MSPCs does not seem to differ from the normal counter-
parts, although some authors have postulated significantly lower
expression level of CD90 and CD105.68,69 CD49b—an integrin
involved in the interaction of MSPCs and collagen type I—is
expressed at a higher level that can implicate changes in
extracellular matrix synthesis and MSPC growth defects.63,70

MSPCs display a more widespread expression of CXCL12 in MDS,
which may expose HSPC to increased contact-mediated signaling
with CXCL12-expressing cells. Thus, these stromal cells fail to
support trafficking of maturing hematopoietic cells to the
microenvironment compartments.71 On the other hand, CXCR4
expression on HSPC has been found to be downregulated in MDS
that could be successfully corrected by treatment with
lenalidomide.72

Various cytogenetic abnormalities have been shown to be
present in MSPCs of up to 50% of patients with MDS, which are
different from those detectable in the HSPC compartment.73

Chromosomes 1 and 7 were shown to be more frequently
involved in MSPC structural aberrations and a correlation between
aberrations in MSPCs and overall survival has been published.74

The presence of chromosomal abnormalities (mainly aneuploidy)
in MDS-MSPCs is associated with the deregulated expression of
AURKA and AURKB genes.75 Thus, the presence of genetic
abnormalities in MSPCs suggests that a genetic instability of the
bone marrow microenvironment may facilitate the expansion of
malignant cells and be, therefore, a particular mediator of
leukemogenesis.
Other important cellular components, which can contribute to

the disturbance of the hematopoietic niche, are monocytes and
macrophages. In fact, monocytes from patients with MDS are
derived from clonal HSPC and fail to upregulate matrix
metalloproteinase-9 (MMP-9) gene expression in response to
stromal signals.76 Given the role of MMP-9 in facilitating the egress
of cells from the bone marrow, it is reasonable to assume that
non-responsive monocytes accumulate over time, whereas
inducible levels of MMP-9 decline, thus resulting in hypercellular-
ity in the bone marrow of patients with MDS. Macrophages can
interrupt the normal interaction between MSPCs and hemato-
poietic progenitors in MDS through increased synthesis of tumor
necrosis factor-α.77 Moreover, macrophages represent target cells
of iron deposition during transfusion-associated iron overload,
which may further impair their function. Clearly, a better
delineation of signaling pathways responsible for altered
responses between stromal cells, macrophages and HSPC, as well
as the activities that trigger these pathways in MDS are needed.

Impact of disturbed signaling within the osteo-hematopoietic
niche
The issue of secreted cytokines and adhesion molecules in MDS is
controversial, as some groups claim no difference in cytokine

Table 1. Overview of published data on the potential role of MSPCs and derivates in the pathogenesis of MDS

PROs CONs

▪ Cytogenetic aberrations in MDS-MSPCs62,63,74 ▪ Normal cytogenetics in MDS-MSPCs64,66

▪ Lower expression of Dicer1, DROSHA,56,57 AURKA, AURKB75 genes in MDS-MSPCs ▪ Normal structure, proliferation and differentiation
potential of MDS-MSPCs62,63,64,66

▪ Altered immunophenotype in MDS-MSPCs: decreased CD44 and CD49e,70 CD90,
CD104 and CD10568 expression, increased CXCL12 expression71

▪ Normal HSC support by MDS-MSPCs62,63,64

▪ Impaired proliferation and differentiation capacity of MDS-MSPCs58,65,70

▪ Impaired cytokine production, including IL-32, by MDS-MSPCs58

▪ Deregulation of Wnt signaling pathway in MDS-MSPCs82,89

▪ Impaired HSPC support by MDS-MSPCs65,66

Abbreviations: HSPC, hematopoietic stem and progenitor cell; IL-32, interleukin-32; MDS, Myelodysplastic syndrome; MSPC, mesenchymal stem and progenitor cell.
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status between MDS patients and healthy donors, whereas the
others demonstrate profound deregulation of secretion of
vascular endothelial growth factor, leukemia inhibitory factor
and so on and highly upregulated N-cadherin expression in MDS-
MSPCs.58 An increased production of IL-1β and stem cell factor
was observed in response to tumor necrosis factor-α stimulation,78

whereas tumor necrosis factor-α secretion itself induced conflict-
ing data63 with a proposal of its possible role together with
interferon-γ in disease progression.79

The impact of deregulated Wnt signaling in MSPCs on MDS
pathogenesis remains largely elusive. Genes encoding known Wnt
antagonists have been shown to be hypermethylated80 in patients
with MDS, suggesting a direct correlation between methylation
status and risk of leukemia evolution.81 On the other hand, global
gene expression profiling showed a significant downregulation of
genes involved in canonical Wnt signaling, especially in the 5q–
syndrome. This data led to the hypothesis that the imbalance
between canonical and non-canonical Wnt signaling may
contribute to the defective self-renewal of HSPC.82 This altered
signaling is also suspected to have a role in iron regulation and
appears to be an important factor in MDS pathogenesis, which
requires further studies. Of note, deregulation of Wnt signaling not
only affects HSPC, but also has an influence on the bone marrow
niche.83 As such, overexpression of various Wnt-inhibitors in OB
exhibits a dual effect by altering the niche architecture with the
reduction in trabecular bone and affecting hematopoietic
progenitor cells,84–86 both impairing their localization and function
within the bone marrow.87 Depletion of iron can activate Wnt/β-
catenin pathway and induce osteoblastic differentiation of
MSPCs.88 However, it remains to be seen whether this has
implications in the clinical setting, when iron chelation is
administered to MDS patients. Importantly, activating mutation
of β-catenin in OB, also found in patients with MDS, led to the
increased synthesis of Notch ligand Jagged 1, which in turn
activates Notch signaling in HSPC, leading to alteration of
differentiation potential of hematopoietic progenitors and acute
myeloid leukemia development.89 This coupling of stromal and
hematopoietic signaling pathways clearly highlights the need for
developing new strategies aiming at disrupting this pathological
niche–hematopoietic cell interaction.
Deregulation of the Epo signaling pathway may also be

involved in hematopoietic niche alterations. The fact that Epo
analogs induce erythroid responses in only up to 40% of
unselected patients with lower-risk MDS90 can be explained in
part by the observation that most patients already have elevated
Epo serum levels as a result of inefficient hematopoiesis. It is
speculative to consider that the continuous and sometimes
excessive elevation of endogenous Epo levels may lead to
alterations of the bone microenvironment. Moreover, MDS HSPC
exhibit an altered signaling in response to Epo in MDS,91

suggesting that HSPC-derived OC could also mediate this process.
It is also conceivable that Epo may promote the production of
other OB- or OC-stimulating proteins such as Wnt proteins or
RANKL. Increased levels of circulating Epo and decreased
sensitivity of erythroid progenitors to this factor have been found
in TfR2− /− mice, used as a model of iron overload. In fact, TfR2 is
a component of the Epo receptor complex,92 which may imply
that Epo is involved in the process leading to iron overload in MDS
patients.

The role of iron overload and disturbed iron homeostasis
The idea that iron metabolism is involved in the regulation and
alteration of the bone marrow niche is based on several lines of
evidence. First, iron overload is very common in MDS—both
because of blood transfusions and inefficient erythropoiesis itself.
Second, in general, iron overload is widely regarded as a risk
factor for osteopenia and osteoporosis, as it has been shown to

inhibit osteoblastic differentiation and increase osteoclastic
differentiation, potentiating bone resorption. Finally, osteoporosis
is a very common complication of other diseases connected with
iron overload, such as sickle cell anemia, thalassemia and
hemochromatosis.
Defects in bone regulation in case of iron overload can be

observed at various levels. Even in the most primitive non-cellular
model, growth of hydroxyapatite crystals was inhibited because
iron binds tightly phosphate groups and thus affects the nature of
precipitates.93

Several studies indicate adverse effects of iron overload on
bone homeostasis. Precursors of OB are able to incorporate iron
particles and inorganic iron, and both transferrin and ferritin were
capable to inhibit alkaline phosphatase activity, a major enzyme
required for proper OB function. Iron overload also suppressed
OB-specific gene expression, such as osteocalcin, osterix and
Runx2, in a dose-dependent manner. Thus, iron itself can inhibit
essential OB functions such as bone formation.94 These observa-
tions were confirmed at the organism level by creating an iron
overload in HFE gene knock-out mice, representing the model of
hereditary hemochromatosis. These mice exhibited a significant
decrease in bone mineral density even when iron overload was
mild.95 However, changes in the functional capacity of the
hematopoietic system were not investigated. The iron deteriora-
tion of OB activity can, at least partially, be mediated by ferritin
and its ferroxidase activity, which inhibited the calcification,
whereas mutant ferritin lacking ferroxidase activity failed to
provide any inhibition.96 The main component of the non-
transferrin bound iron—labile plasma iron—is responsible for
the formation of free radicals, which can lead to cell damage. The
importance of oxidative stress in labile plasma iron-mediated
toxicity was demonstrated in an experiment with iron-overloaded
mice mimicking transfusional siderosis: increased reactive oxygen
species (ROS) correlated with the severity of iron overload and
thinning and alteration in the material properties of the bone. The
prevention of bone abnormalities with the antioxidants supports
the idea that oxidative stress is involved in the pathogenesis of the
bone loss during iron excess.97

Importantly, OC have also been found to be involved in the
deterioration of the bone structure and function during iron
overload.97 Ferric application enhanced the formation of tartrat-
resistant acid phosphatase-positive mononuclear cells from pre-OC
cell lines in a dose-dependent manner,98 whereas the treatment
with iron chelators induced inhibition of osteoclastogenesis.99 One
of the mechanisms connected with these effects is also attributed to
the formation of ROS.100 Iron treatment alone or together with
RANKL increased intracellular ROS in pre-OCs and therefore led to
oxidative stress, which favored OC differentiation, whereas the
treatment with antioxidants could neutralize these effects. ROS,
induced by iron application, could also upregulate RANKL mRNA,
but had little effect on osteoprotegerin, therefore again favoring OC
development.98

In the process of iron overload, an altered production of
hepcidin has been postulated to have an important role. Although
early data about rate of hepcidin excretion in patients with MDS
were rather conflicting,101,102 recent analysis clearly showed that
mean hepcidin levels are very heterogenous and depend on MDS
subtype with the lowest level in refractory anemia with ringed
sideroblasts and the highest in refractory anemia with excess
blasts and chronic myelomonocytic leukemia.103 These data are in
concordance with an in vitro study showing a prominent
variability in the ability of serum from MDS patients to suppress
hepcidin expression in hepatocytes.104

Thus, there are convincing studies highlighting a potential role
of iron in the modulation of several components of the osteo-
hematopoietic niche. However, whether iron overload or deple-
tion is able to significantly alter the cross-talk of hematopoietic
cells with the microenvironment in MDS has not been yet
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investigated in details. Clearly, more research is required to assess
this in preclinical and clinical studies.

PROPOSAL OF ‘OSTEOHEMATOLOGY’ AS A HOLISTIC
APPROACH IN MYELODYSPLASIA
The existence of complex interactions between hematopoietic
cells and their niche has been documented manifold and provides
a rationale for developing a holistic approach, when it comes to
treating pathologies of the osteo-hematopoietic niche, such as
MDS. Concomitance of higher incidence of MDS in old individuals
and age-related alterations of bone structure and function
supports this idea. Further, multiple alterations of key signaling
pathways are common in both types of cells, which proposes that
a better understanding of the disease pathology may facilitate the
development of effective therapeutic targets.

Potential therapeutic targeting of the osteo-hematopoetic niche
The proposal of osteohematology provides a new concept of
possible concurrent medical impact on both hematopoietic and
stromal cells in MDS (and other diseases like multiple myeloma).
One of the best examples of an osteo-hematological approach can
be demonstrated by means of allogeneic HSPC transplantation
(HSPCT). Engraftment and maturation of donor-derived multi-
potent HSPC defines the success of this approach. The pre-
requisite for that is an appropriate milieu provided by a
competent bone marrow microenvironment, which is chimeric
following allogeneic HSPCT, containing recipient MSPC-derived
cells and monocytes/macrophages, which may remain iron
overloaded. Thus, when allogeneic stem cells are infused, they
encounter a microenvironment, which is possibly impaired for a
sustained period of time. This may in part explain the higher rates
of graft failure and relapse as well as the prolonged time to stable
engraftment seen in MDS patients mainly after HSPCT with
reduced intensity conditioning. Given the long-term engraftment
in this group of patients, irreversible MSPC defects seem rather
unlikely and the problems are probably more related to disturbed
cross-talks between hematopoietic cells and the bone microenvir-
onment. On the other hand, allogeneic HSPCT may reprogram the
microenvironment by modulating other HSPC-derived compart-
ments including OCs. Comparative analyses on the functional
capacity of the microenvironment in MDS before and after
allogeneic HSPCT are not yet available.
Other therapeutic approaches, which are approved or currently

in clinical studies, for MDS treatment are listed in Table 2. Two

hypomethylating agents—azacitidine and decitabine—which
were originally thought to affect only the defective leukemic
clone are now shown to have an influence also on the bone cells.
As such, azacitidine inhibits the Wnt signaling pathway in MDS
cells and may improve bone metabolism as well.105 Further,
hypomethylating agent could increase expression of BMP
molecules in OB, thus potentially favoring the process of bone
formation compared with bone resorption.106

The most prominent example of potential simultaneous effect
represents the activin receptor type II ligand trap sotatercept
(ACE-011).107 It represents a chimeric protein, which consists of
extracellular domain of the ActRIIA receptor and Fc portion of the
human immunoglobulin G antibody. Its main action is antagoniz-
ing activin and other ligands of the transforming growth factor β
family and interfering with downstream signaling cascades,
mainly the SMAD pathway. Activin levels correlate with bone
lesions and in the preclinical studies ACE-011 increased bone
formation, mineral density and strength of trabecular bone in
monkeys.108 Concurrent prevention of paclitaxel-induced anemia
in murine models,109 as well as observed increase in hemoglobin
in patients, treated with this drug for postmenopausal
osteoporosis110 and myeloma bone lesions,111 led to the idea
that ACE-011 could have an impact on erythropoiesis either
directly or by modifying the functions of bone cells. However, it
does not affect differentiation of erythroid progenitors or
precursors directly, thus this effect is expected to be mediated
by factors present within bone marrow niche.112,113 Indeed,
stromal cells showed alterations in the expression of various
important genes and cytokines in response to the drug.113

The analogous molecule ACE-536 (luspatercept) is a related
compound targeting preferentially growth differentiation factor-8
and growth differentiation factor-11. It corrects the anemia
associated with ineffective erythropoiesis in abovementioned
NUP98-HOXD13 murine model.114 Importantly, both ACE-011 and
ACE-536 promote maturation of late-staged Epo-independent
erythroid precursors. Co-treatment with Epo induced synergistic
responses, which provides a rational for a combination therapy in
patients with MDS-related anemia.112 Interestingly, RAP-011
(murine ortholog of ACE-011) itself increased plasma levels of
Epo, indicating that regulation of erythropoiesis by RAP-011 may
not be limited to its activity within the bone marrow
microenvironment.112 These findings indicate that sotatercept/
ACE-011 and ACE-536 may represent effective treatments for
impaired erythropoiesis in MDS with concomitant alterations of
the osteo-hematopoietic niche. Currently, two clinical trials are

Table 2. Currently available therapeutic options for patients with MDS and their potential impact on the functional properties of the osteo-
hematopoietic niche

Agent Mechanism

HMA (azacitidine/decitabine) * Demethylation of Wnt-antagonist gene promoters and reduction of the non-phosphorylated β-catenin in
HSPCs105

* Upregulation of BMP-2, -4 and -6 expression in osteoblasts106

Lenalidomide * Inhibiting angiogenesis, suppressing the production of proinflammatory cytokines (for example, TNFα),
inhibiting cytokinesis in MDS cell lines78

* Decrease of CXCL12 secretion by MSPCs, thereby detaching HSPC from their niche; enhancement of CD29
(integrin β1) expression69

* Increase in expression of adhesion molecules in HSPCs; increase in CXCL12 and ICAM-1 secretion by MSPCs, thus
improving their hematopoiesis-supporting capacity72

ACE-011/ACE-536 * Trap of important soluble factors (that is, activin, BMP-2, BMP-6) secreted by stromal cells107,112

* Modulating of the SMAD signaling pathway, which leads to changes in the transcription of SMAD-regulated
target genes113

Iron chelation * Activation of Wnt/β-catenin pathway and induction of osteoblastic differentiation of MSPCs117

Abbreviations: BMP, bone morphogenetic protein; HMA, hypomethylating agent; HSPC, hematopoietic stem and progenitor cell; ICAM-1, intercellular
adhesion molecule-1; MDS, myelodysplastic syndrome; MSPCs, mesenchymal stem and progenitor cells; TNFα, tumor necrosis factor-α.
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recruiting patients to evaluate the effect of activin receptor type II
ligand trap on anemia in patients diagnosed with low- or
intermediate-1 risk MDS (ACE-011/sotatercept—NCT01736683;
ACE-536/luspatercept—NCT01749514) and preliminary data
suggest clinical activity.115

Another approach to interfere with the osteo-hematopoietic
niche in MDS may be through counteracting the phenomenon of
iron overload. The mainstay of systemic iron overload treatment is
iron chelation; however, treatment efficacy is compromised by
suboptimal compliance and drug toxicity. Iron chelation seems to
be important because of its role in improving hematopoiesis.
Recent data suggest that iron chelation could even lead to the
hematologic improvement in some patients.116 Various mechan-
isms have been proposed to mediate this effect, such as reduced
oxidative stress and improved stromal support.117 Indeed,
deferoxamine could partially attenuate MSPCs injury and inhibit
signaling pathways induced by excessive iron. A role for iron
chelation in the improvement of stromal cells function and their
ability to support hematopoiesis is yet to be reported.
Novel agents, which influence the hepcidin–ferroportin axis,

including exogenous hepcidin, transferrin, hepcidin analogs and
signaling agonists, could provide an effective alternative. So far, in
a mouse model of ineffective erythropoiesis the systemic
transferrin application improved red blood cell survival and, most
importantly, normalized the level of labile plasma iron.118

Furthermore, hepcidin and its analogs are attracting more
attention as potential agents to treat iron overload and improve
erythropoiesis. When HFE knock-out mice, representing parench-
ymal iron overload, were crossed with transgenic mice constitu-
tively overexpressing hepcidin, iron accumulation was completely
prevented.119 Synthetized minihepcidins showed an improved
potency and longer action in comparison with natural hepcidin, its
efficacy in iron depletion in mice raises the possibility of its
potential usage in humans.
Another appealing approach, which couples iron homeostasis

and bone physiology, is the treatment with BMP-6, which in
cooperation with its receptor acts as an ‘iron-sensing’ system.
Administration of BMPs, as well as upregulation of the BMP-6
signaling has shown not only in vitro, but also in vivo promising
results in increasing hepcidin and reducing serum iron level.120

Thus, members of this group of molecules, being at the same time
the stimulators of the osteogenic differentiation of MSPCs, could
be considered as the stimulants of hepcidin synthesis through
targeting the BMP/SMAD signaling pathway.
In general, the regulation of hepcidin–ferroportin system could

be an important approach in iron overload accompanying MDS,
but the side effects, such as iron deficiency or excessive
calcification should be avoided.

CONCLUDING REMARKS
The concept of ‘osteohematology’ provides a novel view onto the
processes occurring within the bone marrow and raises new
paradigms for pathomechanisms of hematological and skeletal
diseases. MDS in particular, represents a disease with vivid
interactions within the osteo-hematopoietic niche and the
contribution of the niche has only recently been appreciated.
Thus, treatment strategies need to be developed that not only
target the leukemic cells, but also the signaling pathways
connecting both sides to provide a holistic and effective approach
to this disease.
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