The electronic publication

Beobachtungen über die Vegetation einer Versuchsfarm in Südägypten

(Bornkamm 1985)

has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany).

Please include its persistent identifier <u>urn:nbn:de:hebis:30:3-377015</u> whenever you cite this electronic publication.

Due to limited scanning quality, the present electronic version is preliminary. It is not suitable for OCR treatment and shall be replaced by an improved electronic version at a later date.

Beobachtungen über die Vegetation einer Versuchsfarm in Südägypten

- Reinhard Bornkamm -

ZUSAMMENFASSUNG

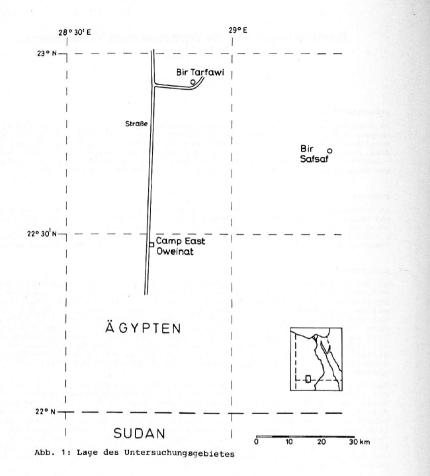
Im Süden Ägyptens, in einem absolut vegetationsfreien Gebiet, hat die General Petroleum Company im Jahre 1982 eine bewässerte Versuchsfarm errichtet. Das Wachstum zahlreicher Kulturpflanzen wird hier geprüft; eine ganze Reihe von Unkräutern hat sich inzwischen angesiedelt. Zwei Pflanzengesellschaften können bisher unterschieden werden: Eine Melilotus indicus - Lolium rigidum-Ges. der beetartigen Felder und eine Soirpus tubevous-Ges. der rinnenartigen Pflanzeungen junger Gehölze. Zwischen den Gebäuden dominiert Chmodon dactulon.

ABSTRACT

In Southern Egypt, in an area completely void of vegetation, an experimental irrigation farm was established by the General Petroleum Company in 1982. Numerous crop species are tested here, and a variety of weeds have appeared also. Two plant communities can be discerned: a Melilotus indicus-Lolium rigidum-community in the small fields, and a Soirpus tuberosus-community among the rows of young woody plants. Cynodon dactylon dominates between buildings.

EINLEITUNG

An der TU Berlin arbeiten im Sonderforschungsbereich "Geowissenschaftliche Probleme arider Gebiete"1) zahlreiche Fachdisziplinen seit 1981 gemeinsam im ägyptischen und nordsudanesischen Raum der Ost-Sahara. Von ägyptischer Seite werden diese Arbeiten insbesondere durch die General Petroleum Company (GPC) und ihre Einrichtungen unterstützt. Im Rahmen dieser Arbeiten ergab sich im März 1984 die Möglichkeit, eine Versuchsfarm aufzusuchen, die dem GPC-Camp East Oweinat angegliedert ist. Dieses Camp liegt ganz im Süden Kgyptens (Abb. 1), über 300 km von den nächsten bewohnten Gebieten (New Valley Oasen bzw. Niltal) entfernt. Es wurde in Anlehnung an das ca. 400 km entfernte Oweinat-Gebirge, dessen Vorberge den Südwestpfeiler Ägyptens bilden, "East Oweinat"


Das Untersuchungsgebiet liegt im extrem ariden Klimabereich III 1 N nach WAL-TER & LIETH (1967), und zwar dort, wo er die größte Ausdehnung besitzt. Die Werte von den nächstgelegenen Dauerstationen (Tab. 1, Sp. 1 und 2) zeigen, daß es sich um den trockensten Teil der Sahara handelt, und damit um das trokkenste Gebiet der Erde, in dem die Jahresmittelwerte des Niederschlags deutlich unter 1 mm/a bleiben. Die Jahresschwankung der Monatsmittelwerte der Temperatur liegt bei 18-19⁰, nur 2⁰ niedriger sind aber die mittleren tägl i c h e n Temperaturdifferenzen, und zwar im Winter und im Sommer. Dies, wie auch das niedrige mittlere Minimum im Januar, zeigt, daß hier trotz der südlichen Lage durchaus Fröste auftreten können.

Seit Ende 1981 werden auch im Camp East Oweinat Klimadaten erhoben. Die Werte in Tab. 1, Sp. 3-5 sind den Werten von Kharga und Dakhla recht ähnlich. Die Kürze der Meßreihen erlaubt es noch nicht, Unterschiede herauszuarbeiten. Bezüglich der Frage nach dem Vorkommen und der Andauer von Frösten ist interessant, daß in den bisher erfaßten 3 Januarmonaten das Wetterhüttenmaximum 44 mal \leq 3,0° war (Minimum -1,8° am 3.1.83). Die 3°- Marke, die zweifellos mit Bodenfrösten einhergeht, wurde letztmalig erreicht bzw. unterschritten am 16.2.82, 17.3.83 (1) bzw. 31.1.84.

Camp und Farm East Oweinat liegen auf einer weiten, ebenen, sandigen Serir-Fläche (KLITZSCH & LIST 1980) in ca. 260 m Höhe. Das Grundwasser steht in 24 m Tiefe, während es 60 km weiter nordöstlich an der Oberfläche austritt. Hier befindet sich längs der Grenze paläozoischer Gesteine eine Reihe unbewohnter Kleinoasen wie Bir Tarfawi, Bir Safsaf u.a. (s. Abb. 1). Das Bewässerungswasser wird aus 40 m Tiefe entnommen, und zwar seit April 1984 mittels Sonnenenergie.

Die älteren Teile der Versuchsfarm wurden Anfang 1982 angelegt, weitere Teile erst in den darauffolgenden Jahren. Es erschien nun von Interesse, in einem

¹⁾Der Deutschen Forschungsgemeinschaft danke ich für die Finanzierung des Projekts.

Tab. 1	1.1	Klimadaten	für	das	Untersuchungsgebiet	und	seine	Umgebung

		Kharga	Dakhla	Eas	t Oweir	nat
Mittl. Temperatur	Januar (⁰)	13,9	12,0	14,5	8,4	11,5
	Juli (⁰)	31,9	30,9	30,1	32,2	
	Jahr (⁰)	24,4	22,6	22,7	-	- i -
Mittl. Minimum	Januar (⁰)	5,8	4,0	6,2	0,5	3,6
Mittl. Maximum	Juli (⁰)	39,3	38,4	37,4	40,3	-
Mittl. Tagesschwan	kung d.Temperat	ur(⁰) 16,3	16,9	17,0	-	-
Mittl.Niederschlag	g Jahr (mm)	0,8	0,5	۰.	-	-
Meereshöhe (m übe	r NN)	10	120	260		
Zeitraum		1931 - 78	1931 - 78	1982	1983	1984
Quelle		ABU ZIADA 1980	ABU-ZIADA 1980	C	rigina	l) lwerte

¹⁾Der GPC (Cairo) danke ich für die Oberlassung der Werte

neuen Kulturland von so exponierter Lage die Einwanderung von Pflanzen zu einem möglichst frühen Zeitpunkt zu erfassen.

ERGEBNISSE

Das Gelände der Farm wird von Windschutzpflanzungen aus Casuarina equisetifolia umgeben. Es besteht z.T. aus den für Ägypten typischen beetartigen Feldern für krautige Pflanzen, die über die Oberfläche bewässert werden, z.T. aus rinnenartig angelegten jungen Gehölzkulturen, die durch Tröpfchenbewässerung versorgt werden. Nur wenig Vegetation befindet sich zwischen den Gebäuden des Camps außerhalb der eigentlichen Farm. Das Wachstum einer großen Zahl von Kulturpflanzen wird hier getestet, die zumeist aus den Dakhla-Oasen als dem nächstgelegenen und klimatisch gut vergleichbaren Gebiet stammen (mündl. Mitteilung von H. EL-SHAZLY, Agronomist, Director der Farm).

In möglichst vielen Parzellen wurden pflanzensoziologische Aufnahmen erhoben, wobei möglichst eine Standard-Flächengröße vom 25 m² eingehalten wurde. Die Pflanzennamen stimmen mit TÄCKHOLM (1974) überein.¹) Da die Deckungswerte häufig gering sind, wurden in Tab. zusätzlich auch Angaben über die Frequenz der Arten gemacht, die Unterschiede oft deutlicher erkennen lassen.

Tab. 2 läßt zunächst die hohe Zahl kultivierter Pflanzen erkennen. Sie erreichen oft nur eine geringe Deckung (wobei man allerdings die Frequenz berücksichtigen muß), was unter den am Standort herrschenden extremen Bedingungen nicht verwundern kann. Einige von ihnen verbreiten sich subspontan aus ihren eigenen Kulturparzellen heraus. Daneben ist aber in der kurzen Zeit des Bestehens der Farm eine ganz erhebliche Zahl von Wildpflanzen eingewandert und hat Anfangsstadien von Unkrautgesellschaften gebildet. Ob einige dieser Arten eine Bindung an bestimmte Kulturpflanzen haben, läßt sich nach dem vorliegenden Material nicht entscheiden. Deutlich ist aber zu erkennen, daß das Management eine entscheidende Rolle spielt: Auf den Beeten (Tab. 2 II) eine *Malilotus indicus-Lolium rigidum-*Ges. entwickelt, während an den Ruderalstellen mit oder ohme *Ricinus*-Anpflanzung (Tab. 2 III) *Cynodon dactylon* allein dominiert. Die diagnostisch wichtigen Arten sind in Tab. 3 zusammengestellt.

Betrachten wir die Struktur der Gesellschaften, so fällt die Artenarmut auf (Tab. 4): Die Einheiten I und II enthalten rund 5 Arten auf 25 m², Einheit III nur etwa 2! Umgekehrt liegt der Deckungsgrad bei den Einheiten I und III in ähnlicher Größenordnung (20-30%), bei jungen Gehölzarten ist er wesentlich geringer.

Charakteristisch ist auch die Verteilung der Arealtypen. Urteilen wir nach den 28 spontan oder subspontan wachsenden Arten, die sich nach ZOHARY (1966, 1972) bzw. FEINBRUN-DOTHAN (1978) u.a. pflanzengeographisch zuordnen lassen, so ergibt sich folgendes Bild: 15 Arten sind pluriregional kosmopolitisch oder mit mediterranem Kerngebiet verbreitet, 9 Arten sind in weiterem Sinne mediterran mit Einstrahlungen in den irano-turanischen und saharo-arabischen Bereich. Zwei Arten sind pluriregional mit tropischem Schwerpunkt verbreitet (Imperata cylindrica und Tagetes minuta), nur 2 Arten verkörpern mehr oder weniger zonale Elemente, nämlich Trigonella hamosa und der ägyptische Endemit Sinapis allionit.

DISKUSSION

Bereits MIGAHID et al. (1955) erwähnen eine Pflanzengesellschaft aufgelassener Kcker in den Dakhla-Oasen, in denen u.a. *Melilotus indicus, Convolvulus arvensis, Trigonella hamosa* und *Eruca* spec. vorkommen. Sie betonen bereits, daß mit dem Wechsel von Winter- und Sommerfrüchten eine starke Saisonalität der Unkrautgesellschaften einhergeht.

Dies wird besonders deutlich bei den umfangreichen Untersuchungen von ABU ZIADA (1980) in den Dakhla- und Kharga-Oasen. Sie beschreiben eine Winterfrucht-Gesellschaft und eine Sommerfrucht-Gesellschaft. In beiden erreichen Cynodon dactylon, Sorghum virgatum und Sonchus oleraceus eine Präsenz von 25% aller untersuchten Flächen. Nur in den Winterkulturen gilt dies auch für Melilotus indicus und Eruca sativa, nur in den Sommerkulturen auch für Echinochloa colonum, Chenopodium murale, Convolvulus arvensis, Alhagi maurorum

 Herrn Prof.Dr. SCHOLZ (Berlin) danke ich für die Revision und Bestimmung der Poaceen, Herrn M.Sc.G. BAILLARGEON (Ouébec/Berlin) für Revision und Bestimmung der Brassiaceen.

Tab.2. Pflanzengesellschaften

Beete mit überwiegend krautigen Kulturpflanzen, a)Gerste,b)Weizen.c)Brassicaceen.d)Auberginen.e)Leguminosen.f)diverse III Rinnen.uberwiegend junge Gebäude, a) mit Ricinue.Sträuchen, b)Tritakten.tzhecken.c)Aprikosen. d)diverse III) Ruderalflächen um die Gebäude, a) mit Ricinue.Sträuchen, b)Tirtitlächen.
 Angegeben.ist.jeweils der Deckungsgrad in %, sowie die Frequenz (in Klanmern). In den Feldern, in denen eine Kulturpflanz

offensichtlich angebaut wurde, ist ihr Deckungsgrad unterstrichen. Seltene Arten: Arten, die nur in einer Einheit mit Deckungsgrad <0.5% vorkommen.	rde, ist en.	ihr Deck	, sowie ungsgrad	unterst	uenz (ın richen.	seltene .	n). In d Arten: A	en Felde rten, di	rn, in d e nur in	enen ein einer E	e Kultur inheit m	oflanze it	
	I						II				III		
	ø	q	J	P	e	f	ø	q	U	p	ø	q	
Hordeum sativum Triticum aestivum	$\frac{36(100)}{0,0(17)}$	36(100) 0,0(17) 18(100)	0,4(17)	0,1(20) 0,2(40)	0,2(40) 0,2(30)	0,1(25)	0,0(7)	0,4(17) $0,1(20)$ $0,2(40)$ $0,1(25)$ $0,0(7)$ $0,1(11)$ $0,2(40)$ $0,2(30)$		0,1(13) 0,1(13)			
Brassica nigra Eruca sativa Panhanus sativus	4,2(100	4,2(100) 1,1(83)	$\left(\frac{3,4(33)}{19}(83),0,5(20),0,2(40),1,1(75),0,0(7)\right)$	0,5(20)	0,2(40)	1,1(75)	0,0(4) 0,0(7)	0,3(22)		0,1(13) 0,1(13)			
Brassica rapa Solanum lycopersicum			$\frac{3,8}{0,1}(33)$	102)1.0	0,1(20)		0,0(4) 0,1(25)			0,1(13)			
Solanum melongena Medicago sativa	2,1(64)			31(100)	3,8(50)		0,2(21) 0,1(11)			0.3(13)			-
Vicia faba Trigonella foenum-graecum					$\frac{10}{4.0(20)}$		0,5(32)	0,1(25)					
Lens culinaris Trifolium alexandrinum Luninus securetifatius					3,8(10) 2,0(10)	0,1(25)	0,0(7) 0,2(32)	3.3(10) 2.0(10) 0.1(25) 0.2(32) 0.1(25) 0.1(25) 0.1(25)	0,1(25)	0,1(25)			
Trifolium resupinatum					0,1(10)	0,1(25)							
Sorghum spec. Zea mavs				0,4(80)		14/501	0,0(4)	0,0(4) 0,2(11) 0,1(25) 0,1(13) 0,3(67)	0,1(25)	0,1(13)	0,3(67)		
Allium cepa Lactuca sativa						$\frac{5.0(25)}{2.5(25)}$	- - 1 15						
Citrus aurantium Casuarina equisetifolia							0,5(100)	11/1001	D 61261	161/1 0			
Ricinus communis Prunus armeniara	i.		-		45-5 12	0,1(25)	0,0(4)	$0,1(25) 0,0(4) \left \frac{1}{0,2}(44) \right _{2,5/100} 0,1(13)$	(ng) n n	(11 11 10	23(100)	23(100) 0,2(20)	
Phoenix dactylifera Helianthus annuus	k Gl		0,1(17)			0,1(25)	$0.1(14) \\ 0.1(14)$	$0,1(25)$ $\begin{pmatrix} 0,1(14)\\ 0,1(14) \end{pmatrix}$ $0,1(22)$	(001)C . 2	$\frac{2,6(25)}{0,3(25)}$			
Melilotus indicus Lolium rigidum Avena fatua	$ \begin{array}{c} 0,6(82)\\ 0,6(82)\\ 0,6(32)\\ 0.4(73) \end{array} $	0,1(17) 0,2(33) 0,0(17)	$\binom{3,4(33)}{0,1(17)}$	0,1(20)	$\begin{array}{c} 3.4(33)\\ 0,1(17)\\ 0,1(20)\\ 0,3(60)\\ 0,3(30)\\ 0,3(30)\\ 0,4(25)\\ 0,1(18)\\ 0,1(18)\\ \end{array}$	0,4(25)	$0,0(7) \\ 0,1(18)$	11110	0,3(50) 0,2(38)	$\binom{0,1(13)}{0,2(38)}$			
icellata	(6)0,0		0.1(17)	0.1(20)	0,1(10)			/					
Tamarix cf.tetragyna Vicia monantha			0,1(17)		1/10/		0,0(4)			0,3(13)	10.0		
Imperata cylindrica Brassica tournefortii					0,1(20) 1,0(10)		0,0(7)	0,2(11) 0,1(22)					

100
15(
001)
2,8
0,8(75) 0,2(44) 0,5(100 0,6(75) 2,8(100) 15(100) 1,1(100) 0,3(56) 0,5(100) 0,6(55) 0,1(12) 0,3(23) 0,1(11) 0,3(50) 0,1(13) 0,1(13) 0,3(50) 0,1(11) 0,1(13) 0,1(13) 0,1(13) 0,1(13) 0,1(11) 0,1(13) 0,1
0,60,400,10,10
(100)
0,5(
11)
0,8(75) 0,2(44) 1,1(000) 0,3(55) 0,1(18) 0,3(22) 0,2(39) 0,1(11) 0,3(50) 0,1(11)
75) 39) 39)
0.8(75) 1.1(00) 0.1(18) 0.2(39) 0.3(50)
10)
0,1(10)
(6)0.0
0.0
us sus us eus
Cynodon dactylon Scirpus tuberosus Sorghum virgatum Sonchus oleraceus Euphorbia peplus
s tu s tu s ol
oport do
Eup

Seltene Kulturarten: Ic) Arachis hypogaea 0.1(17); Allium sativum 0.1(17); Coriandrum sativum 0.1(17); IId) Olea europaea (2(38); Vitis vinifera 0.1(25); Prunus persica 0.1(13); Sesbania sesban 0.1(13); Pisum sativum 0.1(13); Portulaca olera-co. 0.1(13). Seltene Wildarten: Ib) Beta maritima var. foliosa 0.1 (17); Ic) Emex spinosus 0.1(10); Sinapis allionii 0.1(10); IIa) Tri-gonella hamosa 0.1(11); Conyza aegyptiaca 0.0(4); Chenopodium album 0.0(7); Lathyrus cf. sphaericus 0.0(4); Digitaria san-ginalis var. ciliaris 0.0(4); Solanum nigrum 0.0(4); Chwolyulus arvensis 0.0(4); Polypogon monspeliensis 0.1(14); IIb) Polypogon fugax 0.1(11); Phragmites australis 0.1(11);IId)Tagetes minuta 0.1(13); Anagallis arvensis 0.1 (13); Ammi ma-jus 0.3 (13).

Tab.3. Vergleich des Vorkommens diagnostisch wichtiger Arten W = Winterkulturen: S = Sommerkulturen; sonstige Abk.wie Tab.2

n iva nigre indicus uberosus peplus irgetum actylon	Gebiet	Camp Eas	Camp East Oweinat		New Val	New Valley-Oasen	IVEA	Agypten	
n 42 48 24 32 4 2.9(75) 0.1(8) - 29 - - - 2.9(75) 0.1(8) - 29 - - - - 0.7(33) 0.0(4) - 8 -	Quelle	vorl. Ar	beit		ABU ZIA	0A 1980	ADIDI &	KOSINOVA 197	-
n 42 48 8 24 32 62 2,9(25) 0,1(8) -	Parameter Einheiten	лескила I	II	III		S (*)	3	S S	
2,9(25) 0,1(8) - 29 - 40 0,1(43) 0,0(6) - 8 - 40 0,1(33) 0,0(6) - 8 3 20 0,2(33) 0,0(12) - 6 3 20 0,2(33) 0,0(2) - 6 3 20 0,2(33) 0,0(2) - 6 3 20 0,2(33) 0,0(2) - 6 3 30 0,0(2) 0,9(64) - - 6 3 0,0(2) 0,9(64) - - 6 3 0,0(2) 0,9(64) - - 6 3 0,0(2) 0,9(64) - - - - 0,0(2) 0,0(2) - 23 30 0,0(2) 0,0(12) - - - - 0,0(2) 0,0(12) - - - - 0,0(2) 0,0(12) - - - - 0,0(2) 0,0(12) - - - - 0,0(2) 0,0(12) - - - - 0,0(2) 0,0(12) - -	Anzahl der Flächen	42	48	80	24	32	62	64	1 1
0.0(4) - 8 - (1,1) 0.7(33) 0.0(6) - 8 - 6 0.7(32) 0.0(2) - 8 - 10,0 10,1 0.7(32) 0.2(32) - 6 - 8 - 10,0 0.7(32) 0.9(12) - - 6 - - 10,0 0.7(32) 0.9(2) - - - - 10,0 - <td>Eruca sativa</td> <td>2,9(25)</td> <td>0,1(8)</td> <td></td> <td>ଷ</td> <td></td> <td>•</td> <td>•</td> <td></td>	Eruca sativa	2,9(25)	0,1(8)		ଷ		•	•	
0.7(33) 0.0(6) - 46 22 85 0.5(23) 0.0(2) - 46 23 20 0.2(32) 0.0(2) - 8 3 20 0.2(32) 0.9(84) - 6 5 - 0.2(31) - 4 3 30 - 0.2(31) - 1 2 34 - - 0.1(234) - 2 23 34 - 0.0(2) 0.6(71) 0.1(100) 46 71 80	Brassica nigra	1,1(43)	0,0(4)	1	80		40	13	
0.2(23) 0.0(2) - 8 3 20 0.3(45) 0.0(2) - 6 - 6 0.3(45) 0.9(64) 6 - 6 0.0(2) 0.9(64) 6 - 0.2(21) - 2 - 0.2(21) - 2 - 0.2(21) - 5 - 0.2(21) - 5	Melilotus indicus	0.7(33)	0,0(6)	•	46	22	85	1	
0,1(48) 0,1(21) 6 - 0,0(2) 0,9(84) - 4 3 30 - 0,2(31) 4 3 30 - 0,2(21) 34 - - 0,1(21) - 54 28 70 0,0(2) 0,6(71) 10,1(100) 46 71 80	Avena fatua	0,2(29)	0,0(2)	•	60	e	20	7	
0,0(2) 0,9(84) - 4 3 30 - 0,2(31) - 0,1(24) - 29 34 - - 0,1(24) - 28 70 0,0(2) 0,6(71) 10,1(100) 46 71 80	Lolium rigidum	0,3(48)	0,1(21)		ĸ	9	•	ı	
- 0,2(31)	Scirpus tuberosus	0,0(2)	0,9(84)		4	e	30	13	
- 0,2(18) - 29 34 - 0,1(24) - 54 28 70 0,0(2) 0,6(71) 10,1(16) 46 71 80	Euphorbia peplus	•	0,2(31)	•	,	ł	,	1	
- 0,1(24) - 54 28 70 0,0(2) 0,6(71) 10,1(100) 46 71 80	Sorghum virgatum	•	0,2(18)	•	56	34	•	40	
0,0(2) 0,6(71) 10,1(100) 46 71 80	Sonchus oleraceus		0,1(24)		54	28	70	53	
	Cynodon dactylon	0,0(2)	0,6(71)	10,1(100)	46	71	8	80	

85

84

Tab.4. Struktur der untersuchten Pflanzengesellschaften (Abkürzungen wie Tab.2)

	I								
	a	Ь	С	d	e	f			
Zahl der Aufnahmen	11	6	6	5	10	4			
mittl.Fläche (m ²)	25	25	20	25	25	24			
mittl.Deckung ()	38	20	33	39	27	21			
mittl.Artenzahl	5,3	3,0	3,5	3,2	4,6	3,8			
	11				111		1 1	II	III
	a	b	с	d	a	b	17		
	28	9	4	8	3	5	42	49	8
	25	28	25	21	22	23	24	25	23
	2	10	3	10	22	16	29	5	18
	6,6	4,1	4,5	5,6	2,7	2,0	4,2	5,8	2,3

und Malva parviflora. Vergleichen wir die in der vorliegenden Arbeit beschriebenen Gesellschaften mit den Gesellschaften ABU ZIADAs, so wird deutlich, daß die Ähnlichkeit zu den Winterkulturen größer ist als zu den Sommerkulturen (Tab. 3). Das gilt auch, wenn wir die Angaben von EL-HADIDI & KOSINOVA (1971) für ganz Ägypten berücksichtigen. Dies ist damit zu erklären, daß unsere Aufnahmen Ende März gemacht wurden und damit zu einem Zeitpunkt, an dem die Winterkulturen reiften und die Sommerkulturen soeben angelegt wurden.

Dieser Vergleich beschränkt sich vorrangig auf unsere Einheit I. Ein Gegenstück zu Einheit II ist bisher nicht beschrieben worden, was zweifellos damit zu tun hat, daß die rinnenförmige Anlage der Kulturflächen mit Tröpfchenbewässerung sonst nicht üblich ist.

Ein erheblicher Teil der von uns gefundenen Arten ist typisch für junge Kulturflächen. Von den von EL-HADIDI & KOSINOVA (1971) genannten entsprechenden Arten sind hier Convolvulus arvensis, Brassica nigra, Avena fatua und Beta maritima zu nennen, während keine der für alte Kulturflächen typischen Arten in unseren Aufnahmen vorkommt.

Floristisch gesehen sind alle in der vorliegenden Arbeit aufgeführten Arten neu für das Gebiet, da dieses ja vor der Anlage der Versuchsfarm vegetationsfrei war. (So ist es auch bei FRANKENBERG & KLAUS 1980 ausgewiesen). Die nächsten natürlichen Vegetationsgebiete sind der Bereich um Bir Tarfawi mit Phoenix dactylifera, Tamarix mannifera, Alhagi maurorum, Sporobolus spicatus und Juncus rigidus sowie der Bereich um Bir Safsaf mit Phoenix dactylifera, Hyphaene thebaica, Acacia ehrenbergiana und Phragmites australis (vgl. hierzu auch EL-HADIDI 1980). Die Flora des Camp East Oweinat hat sehr große Ähnlichkeit mit der Flora der New Valley Oasen. Von 33 von uns beobachteten spontanen und subspontanen Arten werden von EL-HADIDI & KOSINOVA (1971) oder ABU ZIADA (1980) 29 auch in Kharga und 24 in Dakhla angegeben. Interessant ist das Vorkommen von Polypogon fugar, das in East Oweinat erstmalig für Ägypten nachgewiesen wurde (s. SCHOLZ, im Druck).

Das Vorherrschen weit verbreiteter Arten und der geringe Differenzierungsgrad der Vegetation zeigt, daß die Gesellschaftsbildung im Untersuchungsgebiet erst in den Anfängen steht. Es wäre wünschenswert, die Untersuchung wiederholen zu können, um etwas mehr von der Dynamik der Bestände zu erfassen.

SCHRIFTEN

ABU ZIADA, M. EL-SAYED A. (1980) Ecological Studies on the Flora of Kharga and Dakhla Oases of the Western Desert of Egypt. - Diss. Mansoura-Univ., Egypt.

- EL-HADIDI, M.N. (1980): Vegetation of the Nubian Desert (Nabta Region). In: WENDORF, F., SCHILD, R.: Prehistory of the Eastern Sahara: 345-351. Acad. Press. London.
- , KOSINOVA, J. (1971): Studies on the weed flora of cultivated land in Egypt. 1. Preliminary survey. - Mitt. Bot. Staatssamml. München 10: 354-367.

FEINBRUN-DOTHAN, N. (1978): Flora Palaestina III. - Jerusalem.

- FRANKENBERG, P., KLAUS, D. (1980): Atlas der Pflanzenwelt des Nordafrikanischen Trockenraumes. - Arbeiten a.d. Geogr. Inst. d. Univ. Bonn, Reihe A, Nr. 133.
- KLITZSCH, E., LIST, F.K. (1980): Geological Interpretation Map, Sheet 2821 (Selima), 1:500 000. - Berlin (Techn. Fachhochschule).

MIGAHID, A.M., EL SHAFEI ALI, M., ABD EL RAHMAN, A.A., HAMMOUDA, M.A. (1960): An ecological study of Kharga and Dakhla Oases. - Bull Soc. Géogr. d'Egypte 33: 279-309.

SCHOLZ, H. (im Druck): Willdenowia.

TÄCKHOLM, V. (1974): Students Flora of Egypt. 2nd edition. - Beirut. 888 pp.

WALTER, H., LIETH, H. (1967): Klimadiagramm-Weltatlas. - VEB G. Fischer, Jena.

ZOHARY, M. (1966/1972): Flora Palaestina I/II. - Jerusalem.

Anschrift des Verfassers:

Prof.Dr. Reinhard Bornkamm Institut für Ökologie der TU Rothenburgstraße 12

D - 1000 Berlin 41