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Abstract

Objective

Multivariate data sets often differ in several factors or derived statistical parameters, which
have to be selected for a valid interpretation. Basing this selection on traditional statistical
limits leads occasionally to the perception of losing information from a data set. This paper
proposes a novel method for calculating precise limits for the selection of parameter sets.

Methods

The algorithm is based on an ABC analysis and calculates these limits on the basis of the
mathematical properties of the distribution of the analyzed items. The limits im-plement the
aim of any ABC analysis, i.e., comparing the increase in yield to the required additional ef-
fort. In particular, the limit for set A, the “important few”, is optimized in a way that both, the
effort and the yield for the other sets (B and C), are minimized and the additional gain

is optimized.

Results

As a typical example from biomedical research, the feasibility of the ABC analysis as an ob-
jective replacement for classical subjective limits to select highly relevant variance compo-
nents of pain thresholds is presented. The proposed method improved the biological inter-
pretation of the results and increased the fraction of valid information that was obtained
from the experimental data.

Conclusions

The method is applicable to many further biomedical problems in-cluding the creation of di-
agnostic complex biomarkers or short screening tests from comprehensive test batteries.
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Thus, the ABC analysis can be proposed as a mathematically valid replacement for tradi-
tional limits to maximize the information obtained from multivariate research data.

Introduction

A recurring problem in biomedical research is the high dimensionality of data sets and the
complexity of derived results. Multivariate data sets often differ in several factors or derived
statistical parameters, which have to be selected for a valid interpretation. This selection is usu-
ally based on contextual and mainly traditional statistical limits. This leads occasionally to the
perception of losing information from a data set; however, crossing the accepted statistical lim-
its will be rejected almost certainly by a scientific audience. Dealing with the problem of statisti-
cal limits is an active research topic; however, the correct statistical approach at a rational
selection of the most informative set of variables derived from multivariate analyses is not obvi-
ous. Scientists are therefore often inclined to use conservative statistical selection criteria to
avoid o error. This is widely accepted but has a tendency toward occasionally disregard of valid
information from experimental data.

Therefore, a theoretical basis for the selection of parameter sets that are interpretable in
multivariate data is highly desirable to identify the optimum information that can be validly re-
trieved from biomedical data. The present report proposes a novel method that uses concepts
developed in economical sciences. In particular concepts are used in the search for a minimum
possible effort that gives the maximum yield. In many circumstances it has been observed that
this converges toward the effect that with 20% of the effort 80% of all yield can be obtained,
which is commonly called the “Pareto 80/20 rule” [1,2]. A more general approach is the so-
called “ABC analysis”, which divides the data set into the three disjoint sets A, B and C, in such
way that set “A” should contain the “important few”while set “C” contains the “trivial many”
[2].

The determination of the set limits for an ABC analysis has so far been left to subjective con-
siderations. In this paper, a calculation method is presented that allows calculating these limits
on the basis of the mathematical properties of the distribution of the analyzed items. The utility
of the proposed method will be illustrated by an example from own previous research [3]
where this method improves the biological interpretation of the results and increased the frac-
tion of valid information that can be obtained from experimental data. Further biomedical ap-
plications, such as deriving screening tests from complex test batteries, will be discussed.

Methods
Properties of ABC curves

The selection of the most prominent components of a PCA is a special case of a common prob-
lem met during multivariate data analysis. Let x;,. . ., x,, be a set of n positive values (x; > 0)
that describe n different variables of an empirical data set with respect to properties such as
“importance”, “weight”, “effect” or “yield”. The distribution of the values x; is unequal, i.e., few
x; have very large values while many x; have small values. This can be plotted by means of ABC
curves where x; are sorted in decreasing order, x; > x;, ;.The fraction of the first i elements to

n, E; = i/n, represents costs or “efforts”, E;, while the fraction of the cumulative sum of the x;,

relative to the total sum, is called the “yield”, Y}, of x;,. . .x; obtained as ¥; = M An ABC

Z” i
Xt
i=1
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Fig 1. ABC plot of n = 10,000 data points, x;, drawn from the y? distribution (see also Fig 3). In addition, APC plots of the identity distribution, x; =
constant (magenta line), and of the uniform distribution in the data range UJmin(xi),max(xi)] (green line) are shown. The second main diagonal (dashed line)
delivers the points where the yield Y equals the remaining effort described as Y = 1—E. The BreakEven point, i.e., the point on the ABC curve where the profit
gain dABC equals 1 which means that the slope of the ABC curve at this point equals a value of 1, is marked a as green star. The limits of sets A, Band C

resulting from the present ABC analysis are drawn as red lines.

doi:10.1371/journal.pone.0129767.g001

curve [4] is a plot of Y; versus E; (Fig 1) as a special form of a graphical representation of cumu-
lative distributions [5,6].
ABC curves are always non-decreasing concave functions in the unit square space. They are
scale-invariant in the values of x. That is, a multiplicative modification of the x-values does not
modify the ABC curve, i.e., ABC(x) = ABC(x-c) for any ¢ # 0. However they are not invariant
to the location of x. That is, an additive modification of the values of x does modify the ABC
curve, i.e., ABC(p) # ABC(p+c) for any ¢ # 0. For x;” = x; + ¢ with ¢ > 0, the ABC curve ABC
(x’) will flatten and approach the identity distribution (green line in Fig 1). A special case is ob-
served when x; approaches a value of 0. Then, the curve approaches a “winner-takes-it all” dis-
tribution, i.e., tends to take a path through the points (0,0)—(0,1)—(1,1). Thus, the localization

PLOS ONE | DOI:10.1371/journal.pone.0129767 June 10,2015

3/15



@’PLOS ‘ ONE

Computed ABC Analysis: Rationally Selecting Most Informative Variables

of ABC curves of a given data set relatively to (i) the identity distribution, i.e., all x; have the
same value x; = ¢, and (ii) the uniform distribution, i.e., all values that x; can take are equally
likely in the interval from min(x;) to max(x;), can be used to investigate the inequality of a dis-
tribution (Fig 1). Specifically, for all more right-skewed data distributions than the uniform dis-
tribution, the ABC curves will be located more toward the upper left corner of the plot.

To further describe ABC curves, their relation to Lorenz curves can be used [7]. For a proba-
bility density function pdf(x) and the cumulative distribution function cdf(x) with a (general-
ized) inverse icdf(F) the Lorenz curve L(cdf(x)), respectively L(F) is given as

X F.
L(cdf(x)) = M , respectively : L(F) = M .
[t pdf (t)dt [, icdf (F)dF

ABC curves are related to Lorenz curves as follows: Let L(p) be a Lorenz curve for a proba-
bility distribution. The corresponding ABC curve ABC(p) can be derived as ABC(p) = I—L(1—
p) and vice versa L(p) = 1—ABC(1—p). Following this interrelations, theoretical properties of
ABC curves can be derived from the corresponding Lorenz curves. Moreover, analytical deriva-

tions of well-known distributions available for Lorenz curves can also be used for ABC curves
(Table 1).

Calculation of precise limits for ABC analysis

An ABC analysis aims at identifying the minimum possible effort that gives the maximum
yield. It divides the values x;, . . ., x,, into three disjoined sets A, B, and C [8]. Set A should con-
tain the “critical few”, i.e., those elements that allow obtaining a maximum of yield with a mini-
mal effort [1,2]. Set B comprises those elements where an increase in effort is proportional to
the increase in yield. In contrast, set C contains the “trivial many”, i.e., those elements with
which the yield can only be achieved with an over-proportionally large additional effort. The
determination of these sets has been so far left to subjective judgments [8,9].

The derivation of statistically justified set limits regards the increase in “yield”(Y) versus the
increase in “effort” (E). Formally, this is the first derivative (slope) of the ABC curve (dY/
dE = dABC), in the following called “profit gain”. Set A should contain profit gains > 1
(COND1), set B should contain profit gains around a value of 1 (COND?2), while the profit gain
in set C should be substantially less than 1 (COND3). During ABC analysis the yield Y should
be maximized while the necessary effort E minimized. Thus, to obtain the limit between sets A
and B two variables need to be optimized. Moreover, as maximizing Y can be achieved via max-
imizing the unrealized yield UY = I -E, the optimization problem can be reduced to concomi-
tantly minimizing both, E and UY.

Table 1. ABC curves, ABC(p), for some common distributions and their corresponding cumulative
distribution functions, cdf(x), as well as Lorenz curves, L(p).

Distribution cdf(x) ABC(p) L(p)
Equality 0 x<c p p

1 x>c
Exponential 1 - et~ p—p -In(p) p+(1=-p)-In(1-p)
ek 1— ()" P 1-(1-p)
Uniform in [a..a+b] == 0.5 bp>+(a+b)p 0.5 bp®+ap

a+0.5b a+0.5b

Uniform in [0..b] x -p%+2p o?

doi:10.1371/journal.pone.0129767.t001
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Fig 2. The ABC curve for x; drawn from an uniform distribution U[0,m], i.e., the drawn values are equally likely in the range from 0 to m with x, ..
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X, being a set of n positive data values (x; > 0) sorted such that x; > x;, ;. The fraction of the first i elements to n (i/n) represents costs or efforts (E; = i/n),
the fraction of the cumulative sum of the first xi values with regard to the total sum of the x; is called the yield, Y, of the set xy,. . .x;. The ABC curve (blue line) is
a plot of Y; versus E;. Intermediate points are interpolated by means of quadratic splines [7]. The ABC curve is independent of m. The red star marks the so
called Pareto point A(A,,A,), i.e., the point at the smallest distance (left oblique black line) to the ideal point at, xy, E =0 and Y = 1. The green star marks the
point on the ABC curve where its slope, dY/dE, equals 1. At this point, the profit gain dABC equals 1, therefore it is called the BreakEven point B(Bx,By). The
blue star marks the point C(C,,C,) that has the smallest distance to the ideal situation where all gain has been achieved, i.e., E=By,and Y = 1 (right oblique

black line).

doi:10.1371/journal.pone.0129767.g002

Derivation of the limit between sets A and B. The derivation of the A/B set limits will be
elaborated at the continuous uniform distribution U = Uniform [0,m] where the data points x

are drawn with uniform probability % within the interval [0,m] (Fig 2). The ABC curve of Uis
given by ABC(p) = —p” + 2p (Table 1). Note that this curve is independent of the limit m. The
profit gain of this distribution is JABC(p) = —2p + 2, i.e., it starts at 2 (p = 0) and decreases to
zero (p = 1) with a gradient of -2. An ideal limit for an ABC analysis is the point with zero effort
(E = 0) and maximum effect (Y = 1), i.e., ABCideal = (0,1). Hence, the optimization problem
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can be formulated as a distance point of the ABC curve to the ABCideal point. There are two
immediate possible choices of a suitable distance function, namely (i) the Manhattan distance
[10] consisting of the sum of the differences in x (Ax) and y directions (Ay; i.e., Ax +Ay) and (ii)
the Euclidean distance represented by y/Ax? + Ay2. The Manhattan distance leads to the opti-
mization of distM = E + (1-ABC) whereas the Euclidean distance leads to the optimization of
distE = \/E* + (1 — ABC) 2. The minimization of either distance functions provides possible
choices for the limit of set A. However, the minimum of distM leads to a profit gain limit of ex-

actly 1, which fails to fulfill the condition for a valid definition of set A for which the profit gain
should be greater than 1 (CONDI). In contrast, minimization of distE results in profit gain of
1.18, which meets the above requirements and was therefore selected.

The point on the ABC curve which has the smallest (Euclidean) distance to ABCideal is
called the Pareto point A(A,,A,). Its x-value, A,, provides a precise limit for data points in the
set A. The point on the ABC curve where the profit gain JABC equals a value of 1 is called the
“BreakEven” point B(B,,B,). Usually A, < B, holds in practice. However, this cannot be
guaranteed for all possible distributions. In the case of A, > B, the points A and B exchange
their role in ABC analysis. This procedure assures CONDI for all distributions, i.e., for x; < A,
the “profit gain” is > 1.

From this derivations the set limit between sets A and B, t4p, is given as min(A,, B,). Set A is
defined as A = {x; | x; < icdf(X, tap*100)} where icdf(X,p) for X = {x,, . . ., x,,.} is the x; corre-
sponding to the p™ percentile. Set A contains the largest values of x; down to a point where the
ABC curve is closest to the ideal situation of zero effort and complete yield, as long as the Prof-
itGain is larger than 1. For the Uniform distribution set A contains the largest 41% of all values
(Fig 2, red star). A geometric interpretation of the set limit between A and B is the point on the
ABC curve that has the smallest distance from the ideal point (0,1; black line to the red star in
Fig 2).

Derivation of the limit between sets B and C. According to the characteristics of an ABC
analysis, the profit gain in set C should be substantially less than 1 (COND3). At an ideal point
B, = 1, called the BreakEven point, all yield would be gained. The point on the ABC curve at a
minimum distance from this ideal point (B,,1) is called SubMarginal point (Cy,C,). For all
points to the right of C,, i.e., x; > C,, the profit gain is substantially less than 1 as required by
COND3. From this derivations the set limit between sets B and C is given by tzc = C, and set C
is C = {x; | x; > icdf(X, tpc *100))}. For the Uniform distribution, set C contains the smallest
38% of the values (Fig 2 blue star). The remaining values of x;, neither associated to set A nor
to set C, have to belong to set B. This set contains the values “around” a profit gain of 1
(COND2). For the uniform distribution these profit gains are in the range of 0.78 to 1.18. A
geometric interpretation of the set limit between B and C is determined by the point at the
smallest distance to the ideal point (B,,I; black line to the blue star in Fig 2).

Results

The programs used to calculate the following ABC curves, which also perform the described
precise ABC analysis and draw ABC plots, are part of the R package “ABCanalysis” (M. Thrun,
Marburg, Germany) published on CRAN at http://cran.r-project.org/web/packages/
ABCanalysis/index.html.

ABC analyses of known distributions

A commonly met distribution of data or derived statistical parameters is the chi-squared distri-
bution with one degree of freedom, 7 (Fig 3). This distribution is unequal to a large extent. Its
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Fig 3. The probability density function (pdf) of the Chi square (y %) distribution (top panel) and its
cumulative density function (cdf, bottom panel). This probability distribution is a typical example of a right
skewed inequality distribution. The magenta lines indicate the location of the median (0.47) of the distribution
(see also Fig 1 for comparison with less skewed distributions).

doi:10.1371/journal.pone.0129767.g003

median takes a value of 0.47, which means that 50% of randomly drawn data from this distri-
bution are below 0.47 while the remaining 50% are right skewed distributed within the range of
0.47 and 8. Thus, half of the data concentrate within approximately 20% of the range across the
other half of the data is distributed. Relative to the ABC curve of uniform distributions, the
ABC curve of the y7 distribution is located toward the upper left corner of the plot (Fig 1),
which clearly shows that it is more right-skewed than the uniform distribution. For the y? dis-
tribution the BreakEven point is at approximately 32%. In set A, which contains approximately
24% of the data, the profit gain is more than 115%. In set C that contains more than 44% of the
data the profit gain is less than 68%.

Further standard distributions can also be described with the present analysis (Fig 4). First-
ly, among the distributions with most inequality is the LogNormal distribution family LN(m,s).
For LogNormal distributions the ABC curves depends only on the scale parameter s. As an ex-
ample, Fig 4 shows in the upper left part the ABC plot for LN(m,3). Less than 8% of the data be-
long to set A while approximately 90% belong to set C. If s is increased, the ABC curve passes
very close to the ABCideal point of (0,1). Secondly, the ABC curve of the family of exponential
distributions with a cuamulative distribution function cdf = 1 — ¢** has the form ABC(p) = p-In
(p) (Table 1) and is independent from A. It shows less inequality than LN(m,3) (upper right
panel of Fig 4), however, it is more unequal than the uniform distribution. Thirdly, for the Pa-
reto distribution family with a cumulative distribution function cdf = 1 — (*2)", the form pa-
rameter o, can be adjusted such that the ABC curve passes through the Pareto, or better Juran
point ([2], see discussion), of effort = 20% and yield = 80% (lower left panel of Fig 4). Set B en-
compasses this point. Finally, Gaussians N(m,s) are among the most frequently used distribu-
tions. However, these distributions are not inequality distributions. In particular, if s is small as
compared to m, then the data drawn from such distributions will resemble more an identical
distribution with ¢ = m and a few small deviations. In ABC plots, this is reflected by an inequal-
ity between the uniform distribution (Fig 4, lower right panel, green line) and the identity dis-
tribution (Fig 4, lower right panel, magenta line). For example, the BreakEven point for a
Gaussian distribution of N(5,1) is located at B, = 50% and with 47% of the data set A is larger
than in other example distributions.

ABC analysis of biomedical sample data

The following example from biomedical research shows the utility of the present analysis for
providing a statistically valid rationale selection of components for principal components anal-
ysis. Specifically, empirical data often consist of a high dimensional set of observed variables.
For example, we have previously analyzed the sources of variance of pain thresholds to six dif-
ferent nociceptive stimuli, i.e., thermal (heat or cold), electrical or mechanical (blunt or punc-
tate pressure) pain stimuli [3]. Some of these variables showed a (linear) correlation with
others. For dimensionality reduction without losing too much information and a conversion of
the possibly correlated variables into a set of values of linearly uncorrelated variables, a princi-
pal component analysis (PCA) was used. This resulted in eight variance components (Table 2).
Setting the limit of the number of principal components, PCs, (Fig 5) at the traditionally ad-
vised Kaiser-Guttman criterion of an eigenvalue > 1 of the covariance matrix [11,12] resulted
in three major sources of variance that could be used to interpret the most important sources
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Fig 4. ABC plots for selected common distributions. For comparison, the ABC plots for the uniform distribution, U = Uniform [0,m], where the data points
x are drawn with uniform probability ﬁ within the interval from 0 to a maximum of m, and for the identity distribution i.e., all x; have the same value x; = c, are
shown as green and magenta lines, respectively. Left upper panel: ABC plot of the Lognormal distribution LN(m,s) with s = 3. The ABC curve for LN(m,s) is
independent of m. Upper right panel: ABC plot of the family of exponential distributions with caf = 1 —e*. The ABC curve for these distributions depends on
the value of A. Lower left panel: ABC plot of a Pareto distribution with = 1 — (%)“C For a=1.18 the ABC curve passes through the “Pareto” point (see last
paragraph of the discussion) at 20/80%). Lower right panel: ABC plot of a Gaussian distribution N(5,7). This distribution shows lower inequality than the
uniform distribution (green line) and comes close to the identity distribution (magenta line).

doi:10.1371/journal.pone.0129767.9004

of variance of human pain thresholds. A similar selection of PCs also results when applying the
“elbow criterion” in a so-called scree plot of the absolute values of the eigenvalues sorted for de-
creasing size (Fig 5 top left, red curve). The elbow criterion is estimated as the point where the
steep slope to the left of the scree plot levels to a flat slope [13]. The PCs thus identified by
these classical criteria as results of this analysis carried high loadings from all pain stimuli (PC
#1), from electrical, blunt pressure and thermal pain stimuli (PC #2) or from punctate pressure
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Table 2. Component loadings for a previously reported real-life example of a principal component analysis performed on the intercorrelation ma-
trix among eight pain threshold measurements ([3]; for comparison, see Table 2 in that publication).
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PC1 48 3.834 0.76 0.58 0.8 0.72 0.59 0.58 0.75 0.73
PC2 14 1.142 0.06 0.01 -0.49 -0.58 0.52 0.52 0.13 0.08
PC3 13 1.061 -0.1 0.43 0.14 0.23 0.4 0.21 -0.56 -0.53
PC4 9 0.740 0.29 0.6 -0.24 -0.19 -0.05 -0.45 0.04 0.03
PC5 6 0.491 -0.53 0.32 0.03 -0.03 -0.13 0.13 0.05 0.26
PC6 5 0.432 0.2 0.13 0.01 -0.09 -0.45 0.36 0.02 -0.18
PC7 3 0.208 -0.11 0.03 0.07 -0.04 0.05 -0.05 0.33 -0.28
PC8 1 0.092 -0.01 0 -0.22 0.2 -0.02 0.03 0.05 -0.02

The relevant four principal components (PCs) are given in bold font. Without the present method, only PCs #1 - #3 with eigenvalues > 1 [11,12] could be
validly retained. The set of three principal allowed to show that all different pain measures shared an important common source of variance (PC1) pain
evoked by cold stimuli, with or without sensitization by topical menthol application, by blunt pressure or by electrical stimuli (5 Hz sine waves) shared a
common source of variance (PC2), and a further common source of variance e was shared by pain evoked by heat stimuli, with or without sensitization by
topical capsaicin application, or by punctate mechanical pressure. However, with applying the here reported method, PC4 can now be also be retained,
which singles out heat pain corresponding to the different pathophysiology underlying heat perception.

doi:10.1371/journal.pone.0129767.t002

pain stimuli (PC #3). However, these PCs failed to translate the distinction between thresholds
despite the involvement of different receptors in their perception [14].

The present ABC analysis can provide a better alternative to the rather subjective Kaiser-
Guttman or Elbow criteria. Specifically, following calculation of precise limits for the obtained
eigenvalues, set A contained the largest eigenvalue while set B contained three further eigenval-
ues (Fig 5). Thus, when disregarding set C with the four smallest eigenvalues, the present analy-
sis provides support to take four eigenvalues into account, instead of three eigenvalues when
applying classical limits. The attritional PC, with an eigenvalue of 0.74 that had to be dropped
from the results in the classical analyses, carried loadings from Heat + capsaicin pain threshold
(see Table 2 in [3]). This better reflects the different molecular biology involved in the percep-
tion of heat pain, mediated via ion channels such as TRPV1 and TRPV4 [15], from the percep-
tion of pain evoked by other stimuli. Thus, the present ABC analysis substantially improved
the identification of the important few among the variance components of pain thresholds.
The curvatures of the ABC curve for the eigenvalues correspond to a multimodal probability
density function of the data [16]. Moreover, the modified results were not only biologically
more meaningful; they also included a larger part of the information contained in the pain
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Fig 5. ABC analysis for a rationale selection of components for principal components analysis. Left panel: sample data showing the original results of
a principal component analysis (PCA) of the covariance matrix among six different measurements of pain thresholds [3]. For classical selection of the set of
relevant (largest) eigenvalues, either the Kaiser-Guttman criterion (eigenvalue > 1, left top panel, magenta line) [11,12] or the “elbow criterion” [13] in a so-
called scree plot of the absolute values of eigenvalues sorted by descending size (left top panel, red curve) can be used. According to the PCA results, the
sources of variance of pain thresholds to different nociceptive stimuli comprise eight variance components (see Table 2 in [3]). The left bottom panel shows
the cumulative fraction of the variance explained by the principal components, with indication of the variance explained by the components that could be
selected based on the classical criteria. It can also be seen that the inclusion of a further principal component would have provided a better coverage of the
total variance. Right panel: ABC plot of the same data. The ABC curve (blue line) shows from bottom to top the increasing faction of the total sum of all
eigenvalues and from left to right the increasing fraction of the total number of variance components which contribute these eigenvalues. The goal of the
analysis is to identify the number of variance components (abscissa) that is associated with a satisfactorily high coverage (ordinate) of the total sum of
available eigenvalues. Set A contains the largest data points, corresponding to the largest proportion of yield. For this particular distribution the set limit for A
is obtained by the point with slope of the ABC curve of 1 (green star) resulting in the two largest eigenvalues. The set B consist of the next two eigenvalues
including the Pareto point, i.e., the point closest to (0,1) (red star). In the present example the cumulative variance of component #1, 2and 3 contributed 75%
to the total variance. The inclusion of component #4 results in a cumulative explained variance of 84%. On the other end, set C contains 50% of the
eigenvalues, which share only 16% of the variance and are obviously of minor importance.

doi:10.1371/journal.pone.0129767.9005

thresholds data set. That is, while the Kaiser-Guttman criterion [11,12], requesting an
eigenvalue > 1 for a PC to be considered, explained only 75% of the total variance in the pain
thresholds, the ABC analysis resulting in n = 4 PCs provided 84% of the total variance ex-
plained, to which set A of n = 1 PCs contributed 48% (Fig 5 bottom left).

Discussion

In the analysis of multivariate biomedical data the usually peremptory application of tradition-
al statistical limits is sometimes perceived as leading to a loss of information that could have

been validly drawn from a data set. Without a theoretical basis, however, crossing classical lim-
its cannot be advised. We therefore suggest a method to identify the “important few” from sets

PLOS ONE | DOI:10.1371/journal.pone.0129767 June 10,2015 11/15



@’PLOS ‘ ONE

Computed ABC Analysis: Rationally Selecting Most Informative Variables

of items that show a clear inequality in their distribution and provide a calculation of precise
set limits based on mathematical properties of the distribution of the analyze items. The pres-
ent method is based on a calculated ABC analysis, replacing the traditional subjective estima-
tions of ABC set limits by algorithmically determined optimal limits. The innovation of the
present method consists of using minimization of the effort and of the unrealized yield, togeth-
er with optimization of the slope of the ABC curve to precisely calculate these limits as a basis
for a valid selection criterion for items from a set of data or parameters.

ABC analyses have their roots in economic thinking. That is, the success of a business de-
pends on efficiency in the sense that returns are always regarded with respect to the efforts or
costs required to obtain them. Therefore a large application domain of ABC analysis is business
administration or material management. However, its application into the biomedical domain
relates to effect sizes, which are ubiquitously addressed in this field. For example, the modest
predictive value of common genetic variants in human traits can be attributed, despite statisti-
cally significant effects, to the mostly small effect sizes conferred by these variants [17]. The
present ABC approach directly addresses this issue by selecting the “important few”, i.e., those
items that confer the relatively largest effect sizes. In this respect, it completely fits with con-
temporary statistical data analysis approaches and is meant to be used there as the example of
pain threshold variance components emphasizes.

Indeed, when exemplary joining genetics and pain thresholds, common functional variants
exert small effect sizes [18] but when combined, they are able to predict particular pain pheno-
types at an accuracy of 80% [19]. When applying ABC analysis to that data, the variants that
have previously been included in the predictive combined genotype were identified as those
lying in ABC set A (details not shown). A further example of the utility of the present method
in biomedicine is the applicability of the effort versus gain problem to common medical screen-
ing test problems. A common desire of physicians in practice is the availability of short and
easily applicable tests. This has led to various efforts to create abbreviated tests from compre-
hensive test batteries, such as a three-item test for olfactory diagnosis derived from a compre-
hensive 48-item test [20]. The development of this test is, retrospectively, a candidate for an
ABC analysis, which could provide the important few olfactory tests items on a statistically
valid level rather than the intuitive selection that had been applied when developing the test.

An advantage of the present method is its applicability to small data sets such as the present
example of pain threshold data containing only eight data points (the eight eigenvalues ob-
tained by means of PCA). For small numbers of points the ABC analysis relied on the quadratic
spline interpolation of the ABC curve. This interpolation has been established as optimal for
generating valid Lorenz curves [7], therefore, via the above-explained relation of ABC curves to
Lorenz cures this is also valid for ABC curves. Importantly, data preprocessing, typically con-
sisting of adjustments of the data range and or variance, must take into account that ABC
curves are invariant to scaling, i.e., multiplication by some constant but not to location, i.e., the
addition/subtraction of a constant to the data. In particular ABC curves are only defined for
non-negative data points x; > 0. So a standardization of the data should be restricted to a map-
ping of the data to unit variance.

However, the method is neither restricted to biomedical data nor to small data sets. Another
example where it can be applied is taken from demographic analyses. The “SwissInhabitants”
data set was obtained from an official statistics source [21] and consists of the number of in-
habitants in the 2896 villages and cities in Switzerland in the year 1900. Such data can be ex-
plored by the present method to describe the population structure of a country. Applying the
present ABC analysis to this data set showed that 69% of the Swiss population lived in only 639
places (22%) in 1900(Fig 6). Nearly 80% of the villages were populated the remaining approxi-
mately 30% of the population. A reanalysis of the distribution for the year 1970 shows a
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Fig 6. Example analysis of the “SwissInhabitants” data set was taken from an official statistics
source. The data consists of the number of inhabitants in the 2896 villages and cities in Switzerland in the
year 1900. The analysis shows that 69% of the population lives in 22% of the locations. The ABC curve (blue
line) is a plot of Y;, here the cumulative fraction of the Swiss population in 1900, versus E;, here the number of
locations (villages or towns in Switzerland). The distribution shows higher inequality than the uniform (green
line) and the identity (magenta line) distributions. The red star marks the so called Pareto point A(A,,A,), i.e.,
the point at the smallest distance (left oblique black line) to the ideal point at, xy, E=0and Y = 1. The green
star marks the point on the ABC curve where its slope, dY/dE, equals 1. At this point, the profit gain dABC
equals 1, therefore it is called the BreakEven point B(Bx,By). The freely available data set on which this
analysis was done is also included as an example data set within the above-mentioned “ABCanalysis” R
package published on CRAN at http://cran.r-project.org/web/packages/ABCanalysis/index.html.

doi:10.1371/journal.pone.0129767.9g006

concentration effect such that set A now contains only 19% of the cities in which 76% of the
Swiss population lives. This somehow resembles the 80/20 rule. The “SwissInhabitants” data
set was analyzed in detail in elsewhere [22] and is this freely available data set is also included
as an example data set within the above-mentioned “ABCanalysis” R package published on
CRAN at http://cran.r-project.org/web/packages/ ABCanalysis/index.html.

Working solutions of ABC curve analyses [23] include typical minimum limits for the effort
in set A between 0.1 and 0.2, whereas typical maximum limits for the yield in set A are chosen
between 0.66 and 0.8 [9,24]. For empirical distributions results of an ABC analysis may usually
be consistent with above limits. However, in a y 2 distribution, which includes many small val-
ues and only a few large values (Fig 3 left), these definitions would hardly allow defining set A
since the values of yield in the effort range of 0.1 to 0.2 are below 0.5, hence, requiring precise
calculation of these limits. Indeed, scree plots and the elbow criterion are also often used to
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select an appropriate number of clusters in a cluster analysis [25] and the present method re-
places the subjectivity of these approaches.

Finally, the relation of ABC curves to the so-called “Pareto 80/20 Rule”, mentioned above
because of its broad recognition, needs clarification. There is no such thing as a “Pareto 80/
20-Rule”. Juran has clarified [2] that he mistakenly attributed the 80/20 rule of “roughly 80% of
the yield comes from 20% of the effects” to Vilfredo Pareto (1848-1923), who, however, has
never published an “80/20-rule”. It should rather be called “Juran 80/20 Rule”. A family of
probability distributions, which depend on a parameter o, are called Pareto distributions [26].
For a special value of o = 1.16 the ABC curve of this particular Pareto distribution passes
through the point P = (0.2, 0.8). The, so called “80/20 rule” is just the observation that the ABC
curve passes in many empirical situations close the point P. If there is a physical law, that sys-
tems tend to show ABC curves with the 80/20 rule, it is still unknown [27].

Conclusions

In this work mathematically defined unique and precise limits for an ABC analysis have been
derived. The limits implement the aim of any ABC analysis, i.e., comparing the increase in
yield to the required additional effort. In particular, the limit for set A, the “important few”, is
optimized in a way that both, the effort and the yield for the other sets (B and C), are mini-
mized. As a typical example from biomedical research, the feasibility of the ABC analysis as an
objective replacement for classical subjective limits to select highly relevant variance compo-
nents of pain thresholds is presented. The method is applicable to many further biomedical
problems including the creation of diagnostic complex biomarkers or short screening tests
from comprehensive test batteries. Thus, the ABC analysis can be proposed as a mathematical-
ly valid replacement for traditional limits to maximize the information obtained from multi-
variate research data.
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