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Radiation Mitigation for SRAM-Based FPGAs in the CBM
Experiment

Detectors of modern high-energy physics experiments generate huge data rates during
operation. The efficient read-out of this data from the front-end electronics is a sophisti-
cated task, the main challenges, however, may vary from experiment to experiment. The
Compressed Baryonic Matter (CBM) experiment that is currently under construction at the
Facility for Antiproton and Ion Research (FAIR) in Darmstadt/Germany foresees a novel ap-
proach for data acquisition. Unlike previous comparable experiments that organize data
read-out based on global, hierarchical trigger decisions, CBM is based on free-running
and self-triggered front-end electronics. Data is pushed to the next stage of the read-
out chain rather than pulled from the buffers of the previous stage. This new paradigm
requires a completely new development of read-out electronics.

As one part of this thesis, a firmware for a read-out controller to interface such a
free-running and self-triggered front-end ASIC, the GET4 chip, was implemented. The
firmware in question was developed to run on a Field Programmable Gate Array (FPGA).
An FPGA is an integrated circuit whose behavior can be reconfigured “in the field” which
offers a lot of flexibility, bugs can be fixed and also completely new features can be added,
even after the hardware has already been installed. Due to these general advantages, the
usage of FPGAs is desired for the final experiment. However, there is also a drawback
to the usage of FPGAs. The only affordable FPGAs today are based on either SRAM or
Flash technology and both cannot easily be operated in a radiation environment. SRAM-
based devices suffer severely from Single Event Upsets (SEUs) and Flash-based FPGAs
deteriorate too fast from Total Ionizing Dose (TID) effects.

Several radiation mitigation techniques exist for SRAM-based FPGAs, but careful eval-
uation for each use case is required. For CBM it is not clear if the higher resource con-
sumption of added redundancy, that more or less directly translates in to additional cost,
outweighs the advantaged of using FPGAs. In addition, it is even not clear if radiation
mitigation techniques (e.g. scrubbing) that were already successfully put into operation
in space applications also work as efficiently at the much higher particle rates expected
at CBM.

In this thesis, existing radiation mitigation techniques have been analyzed and eligi-
ble techniques have been implemented for the above-mentioned read-out controller. To
minimize additional costs, redundancy was only implemented for selected parts of the
design.

Finally, the radiation mitigated read-out controller was tested by mounting the device
directly into a particle beam at Forschungszentrum Jülich. The tests show that the radia-
tion mitigation effect of the implemented techniques remains sound, even at a very high
particle flux and with only part of the design protected by costly redundancy.

The promising results of the in-beam tests suggest to use FPGAs in the read-out chain
of the CBM-ToF detector.
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1. Introduction

When Galileo Galilei constructed his experiments to examine the laws of objects in free
fall he used a very simple setup of bodies of various materials rolling down ramps. Over
the years, experiments that were constructed to push the boundaries of science and tech-
nology have become more and more complex. Today, one person alone can hardly design
and construct an experiment that would be able to gain new knowledge about the laws
of nature. Most of today’s state-of-the-art experiments of this kind are designed and con-
structed within a collaboration of thousands of scientists and non-scientists.

This thesis is carried out in the context of such an experiment, the Compressed Baryonic
Matter (CBM) experiment. CBM is a high energy physics experiment that is - at time
of writing - under construction as part of the new particle accelerator facility Facility for
Antiproton and Ion Research (FAIR) in Darmstadt/Germany. The goal of CBM is to create
extremely dense matter and to analyze its characteristics. Therefore, heavy ion particles
are accelerated to a very high momentum and are then aimed at target material. The
impact of the heavy ions with the atomic nuclei of the target matter results in the creation
of many different particles that can be traced and characterized in several types of particle
detectors. The information from the detectors allows to draw conclusions concerning the
laws of physics of the very dense matter that existed during the collision of the heavy ion
and the atomic nucleus of the target material. Especially challenging is the vast amount
of data that is produced by the detectors. The detector data cannot be stored completely
but needs to be analyzed and reduced on-the-fly. Online analysis and preprocessing of
the data is required already in early steps of the detector read-out chain.

The particular topic that is addressed in this thesis deals with the operation of SRAM-
based Field Programmable Gate Arrays (FPGAs) close to the detector, an environment with
a significant level of ionizing radiation. SRAM-based FPGAs are very flexible devices
because they can be reprogrammed in the field, this means that their behavior can be
enhanced even after they have been installed. This makes them an ideal candidate to
execute such online data processing algorithms. The downside is that they are susceptible
to the ionizing radiation in the detector cave. Radiation can disturb the operation of
SRAM-based FPGAs. The usage of SRAM-based FPGAs in an environment such as the
CBM detector cave is only possible with appropriate radiation mitigation techniques.

The alternative would be to use specially designed microchips, known as Application
Specific Integrated Circuits (ASICs), for the read-out functionality. ASICs are much less
susceptible to ionizing radiation than SRAM-based FPGAs because their logic is hard-
wired for a specific task. However, ASICs require more development effort, as a whole
chip needs to be designed and produced, solely to interface the front-end electronics. In
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Introduction

addition, ASICs are not very flexible, their functionality cannot be altered after the chip
has been build.

For some areas of the CBM cave the radiation level is so high, that the operation of FP-
GAs is definitely not an option and the usage of ASICs is mandatory. Nevertheless, there
are some other areas with (comparably) modest radiation levels where SRAM-based FP-
GAs might be the better option to use. The CBM-ToF detector electronic is to be placed
in an environment where the expected radiation level is relatively low compared to envi-
ronments of other CBM detectors. Nevertheless, the expected radiation level is still con-
sidered to be tough for operation of FPGAs. If the operation of an SRAM-based FPGA is
not feasible in case of CBM-ToF front-end electronics, it is also not feasible for the other
CBM detectors.

1.1. Objectives and Contributions

The aim of this thesis is to evaluate the feasibility of using commercial off-the-shelf hard-
ware, in particular SRAM-based FPGAs, on or close to the CBM-ToF detector in a harsh
radiation environment. This would allow a flexible and cost efficient design of the CBM-
ToF read-out chain.

The focus of this thesis is not on the development of new radiation mitigation tech-
niques for SRAM-based FPGAs, but on the evaluation and implementation of established
techniques for the special use case at CBM. Most of the existing techniques were origi-
nally developed for space and military applications where the radiation level is much
smaller than it is expected for CBM. On the other hand, the demand for reliability is
much softer in the CBM use case. Since not all radiation mitigation techniques work
equally well in all situations, detailed evaluation of established techniques is necessary.

State of the art radiation mitigation techniques were evaluated and selected techniques
were applied to a complex detector read-out firmware. In some cases, state-of-the-art
techniques had to be modified to suit the CBM use case. Also some extra considerations
for higher abstraction levels of the system design had to be taken into account.

Finally, the efficiency of the applied radiation mitigation techniques was measured in
two in-beam experiments.

The main contributions of this thesis are listed below.

• Implementation of a CBM-ToF Read-Out Controller Firmware.

– The starting point for the work on radiation mitigation is a complex firmware
to read-out data from the CBM-ToF front-end electronics. The firmware reads
multiple front-end channels and multiplexes them to deliver the data to the
CBM data transport network on a single optical link. Important information,
such as channel numbers and extended time stamps, is added and the data is
arranged according to a defined data format.

– The firmware was not only used for this thesis, but also by the CBM-ToF group
to read-out detector prototypes in the laboratory and during in-beam tests.
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Maintenance (bug fixing) and improvements (implementation of additional
features) of the firmware design is also provided in the scope of this thesis.

• Evaluation and implementation of radiation mitigation techniques

– Two different techniques to implement redundancy for finite state machines,
TMR’ed FSMs and Hamming-coded FSMs, were analyzed using a technique
called fault injection. TMR’ed FSMs were chosen over Hamming-coded FSMs.

– Selected Module Redundancy was introduced as a new approach to attenuate the
TMR-overhead of fabric resource consumption to an acceptable level.

– An existing implementation of Scrubbing was reactivated in order to evaluate
its efficiency when applied on a complex detector read-out firmware that im-
plements the aforementioned Selected Module Redundancy instead of the cost
and resource intensive “full TMR”.

– Higher system levels (e.g. communication protocols) are designed to automat-
ically recover to an operational state after periods of erroneous system behav-
ior.

– Fault injection tests were used to identify and clean up issues in existing pro-
tocol implementations.

– The selected radiation mitigation techniques have been implemented for the
CBM-ToF read-out firmware.

• Verification of the implemented radiation mitigation techniques in two in-beam
tests at the Forschungszentrum Jülich/Germany.

– Design of an experimental setup to measure the efficiency of radiation mitiga-
tion techniques

– Simplification of beam diagnostics for blind scrubbing setups by counting
SEUs directly in parallel in a second device (SEU Counter Approach)

• Estimation of the impact of radiation effects on CBM read-out electronics

– The detector dead time due to radiation-caused electronics failure was esti-
mated based on the results of the in-beam tests.

1.2. Thesis Outline

First, in chapter 2, the reasoning that motivates this work is presented. A very brief
overview of the Compressed Baryonic Matter experiment is given and the problems with
electronics that are operated in radiation environments are explained.

The subsequent chapters 3, 4, 5, and 6 will then each be organized in three sections,
addressing the following three, not really independent, yet distinguishable tasks respec-
tively.
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• implementation and maintenance of the CBM-ToF read-out controller firmware for
interfacing the GET4 ASIC

• evaluation and implementation of radiation mitigation techniques, adapted for the
use case of the CBM-ToF read-out controller

• in-beam verification of the radiation mitigated design that was implemented

The first bullet in the list involves a lot of engineering work that, although it is a part of
the work for this thesis, shall not be emphasized too much. For that reason, many details
of the actual functionality of the GET4 read-out controller are not presented in the main
body of the thesis, instead they can be found in appendix B.

Chapter 3 summarizes previous work, known techniques, and existing implementa-
tions. The basic ideas behind the present work are then described in chapter 4 and imple-
mentation details are given in chapter 5. Results are presented in chapter 6 and discussed
in chapter 7.

Finally, a summary of the thesis and an outlook to possible future tasks is given in
chapter 8.
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2. Motivation

This chapter provides the reader with information that is required to understand the
motivation for this work.

First, section 2.1 gives some background concerning the CBM experiment, including
the scientific motivation and the basic detector setup. Later on, the focus shifts towards
the read-out chain for the CBM Time of Flight (ToF) system as this is the most relevant
application for this thesis.

Then, section 2.2 gives a brief overview of radiation effects in electronic devices. It
includes a basic introduction to the architecture of FPGAs.

The chapter concludes with section 2.4 where the specific problems that arise in the
special use case of CBM, when operating FPGAs in the radiation environment close to
the detector, are explained.

2.1. The CBM Experiment at FAIR

The Compressed Baryonic Matter (CBM) experiment is a high-energy physics experiment
that aims at the investigation of nuclear matter at very high baryon densities but still
modest temperatures. The experiment is an international collaboration of currently 57
institutes from 12 countries [FS13]. It is planned as part of the Facility for Antiproton
and Ion Research (FAIR) that is currently under construction in Darmstadt/Germany as
an extension to the already existing GSI facility. Figure 2.1 shows an overview of the
planned facility.

Detailed information about the CBM experiment and the underlying physical phenom-
ena can be found in the [FHK+11].

2.1.1. Scientific Motivation

The general goal of high energy physics experiments is to gain a better understanding of
the properties of matter under extreme conditions. Extreme conditions can for example
be very high temperatures explored at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). These facilities can reach very high temperatures due to their
very high collision energies. The CBM experiment is a fixed target experiment that cannot
reach the energies of today’s large collider experiments. Instead the focus of CBM is the
exploration of the QCD (quantum chromo dynamics) phase diagram at very high baryon
densities which is complementary to the investigations performed at RHIC and LHC.
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Figure 2.1.: Overview of the planned research project FAIR. The existing GSI facility is
shown in blue and the planned extension for FAIR is shown in red. The CBM exper-
iment will be located close to the two large accelerator rings. The illustration is taken
from [Aug06a].

The term “phase diagram” is already known from basic chemistry when referring to
the different states of matter (e.g. solid, fluid, or gaseous) depending on external con-
ditions, usually pressure and temperature. However, under more extreme external con-
ditions, further states of matter can be observed. Figure 2.2 shows QCD phase diagram
with the hadronic phase at lower temperatures and densities while at higher tempera-
tures, higher densities or both, the state known as quark-gluon plasma phase can be found.

The possible, but not yet experimentally observed, first-order phase transition between
the hadronic phase and quark-gluon plasma is of special interest. CBM aims at exploring
a region of the QCD phase diagram where such a phase transition can be expected.

2.1.2. The CBM Detector Setup

CBM is designed as a fixed target experiment to study the interaction of heavy ions that
are collided at high energies. Therefore, high-energy heavy ions are aimed at a stationary
target consisting of heavy ions as well. Different types of particles with various different
properties are created as a byproduct of such a collision. When the types of these particles
and their properties are known, it is possible to draw conclusions about the laws of nature
governing the subatomic world. The purpose of the CBM experiment is to measure the
type and properties of the particles created in such heavy ion collision events.

The full CBM experiment consists of several detectors that can be arranged in two
different configurations, one with electron detectors (figure 2.3(a)) and one with muon
detectors (figure 2.3(b)). Most relevant for this thesis is the Time of Flight (ToF) detector
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2.1. The CBM Experiment at FAIR

Figure 2.2.: Schematic illustration of the QCD phase diagram. The hadronic state can be
found in the region of lower temperatures and densities while at higher temperatures,
densities, or both the state known as quark-gluon plasma is expected. Of special interest
for CBM is the transition between these two states of matter. The illustration is taken
from [Aug06a].

that is present in both layouts.
The main task of the CBM-ToF detector is to very accurately measure the arrival time

of charged particles. CBM-ToF in conjunction with CBM-STS (Silicon Tracking System),
allows to identify charged hadrons1 i.e. tell if it was a proton, pion, kaon, etc..

The CBM-ToF system will be placed at a distance of about 10 m from the target and
stretches out over an area of approximately 12 x 9 m2. The conceptual design of the CBM-
ToF detector is presented in [DHA+14] and also in [TOF].

2.1.3. Self-Triggered and Time Stamped Paradigm

Since interesting events are also very rare events, CBM requires a very high event rate.
CBM data acquisition is designed for event rates of up to 10 MHz which corresponds
to a data rate of approximately 500 gigabyte per second (assuming a data volume of 50
kB per event), in some scenarios even a data rate of one terabyte per second is assumed
[Aug06b, page 18]. In any case, this data rate is way too high to be completely stored
in a realistic scenario. A realistic number would be in the order of one gigabyte per
second. In consequence, CBM requires an online data event selection mechanism that
rejects uninteresting background events to reduce the data rate by a factor of 500 or more.

1Hadrons are particles that consist of quarks, e.g. protons, neutrons, pions, but not electrons or muons.
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(a) The CBM experimental facility with the electron
detectors (RICH and TRD).

(b) The CBM experimental facility with the muon de-
tection system.

Figure 2.3.: The two configurations of the CBM experiment. Depending on the goal of
the measurement either the electron detectors (Ring Imaging Cherenkov Detector (RICH)
and Transition Radiation Detector (TRD) or the muon detector are included in the setup.
The images are taken from the CBM-ToF technical design report [TOF].

Since the event topologies and resulting signal signatures of interesting events are very
complex, no hierarchical trigger mechanism in the early hardware stages of the read-out
chain is planned. Instead, all front-end electronics generate data autonomously and tag
it with a time-stamp. The data is then pushed from the front-end electronics to a high-
performance computer farm where the online event selection then happens exclusively
in software [TOF, page 8]. This concept is different from the implementations in existing
high-energy physics experiments.

The advantage of such a concept is that very complex event selection algorithms that
cannot realistically be implemented as hardware triggers become possible with software.
In addition, the software algorithms, compared to hardware-based trigger algorithms,
are relatively easy to adapt to new criteria later. A further advantage compared to a
triggered system is that there is no detector dead-time due to buffer read-out. The dead-
time is reduced to the double-hit capability of the detector and front-end electronics.

On the other hand, new challenges emerge which are the high data volume that has
to be pushed from the front-end to the computing farm and the global time distribution
and time synchronization. Without global trigger, the event selector needs to be able to
correlate all data from all parts of the detector by their time-stamp. A common clock for
all front-end electronics of the whole detector is required and the global distribution of a
common clock is not an easy task. In addition, the time in all front-end electronics needs
to be synchronized to a common value.

Naturally, one has to deal with many possible pitfalls when implementing such a
conceptually new read-out chain for the first time. A first fully free-running and time-
stamped detector read-out chain was set up by Pierre-Alain Loizeau during his doctoral
thesis [Loi14]. One part that he used for this cutting-edge read-out chain prototype was
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the read-out firmware that is described here in sections 4.1 and 5.1 as well as in appendix
B.

2.1.4. CBM-ToF Read-Out Chain

A classic detector read-out chain consists of several steps, as illustrated in figure 2.4. After
the collision (figure 2.4(a)), a multitude of particles is generated that then pass through
the active areas of the various detectors (figure 2.4(b)). The different detectors exploit
different physical effects to gain the required information to characterize the particles. In
most cases an electric pulse is created and fed to front-end electronics for further pro-
cessing (figure 2.4(c)). There the analog pulse is amplified and the shape of the pulse is
optimized before it is finally digitized. The digital information is then read out from the
front-end electronics (figure 2.4(d)), converted to a global data format, and then trans-
ported to the global data processing stage. First pre-processing of the data can already
happen at this read-out stage. The major part of data processing is then executed on a
large computer cluster where the information from all detectors converges (figure 2.4(e)).

(a) Collision (b) Detector (c) Front-End Elec-
tronics

(d) Read-Out (e) Data Processing

Figure 2.4.: Stages of a classic high energy physics detector read-out chain. The work
of this thesis is centered around the read-out stage. Pictures: a) and b) from [FHK+11],
c) from [Sch07], d) from GSI2, and e) from CERN3.

In a triggered system, the front-end electronics and the read-out stage need to imple-
ment the referring trigger algorithms, however, CBM follows a trigger-less approach (see
section 2.1.3).

The CBM-ToF detector mostly follows this classic approach, the according stages are
explained in the following.

Multi-Gap Resistive Plate Chambers The main purpose of the Time-of-Flight wall is
the identification of charged hadrons. A main challenge is the coverage of the wide range
of particle rates. The simulated particle flux reaches some 104 s−1cm−2 at the center region
and drops almost exponentially with larger distance from the center. The particle rate at
the outer boundary of the wall is three orders of magnitude less than at center region. A

2https://cbm-wiki.gsi.de/foswiki/bin/view/Public/PublicNxyter
3http://cds.cern.ch/record/1103476
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further key requirement for CBM-ToF is the very fine time resolution of better than 80 ps,
including all contributions from start time, electronics, clock, cables, etc..

The CBM-ToF detector will be implemented with Multi-Gap Resistive Plate Chambers
(MRPCs) as they can satisfy the requirements in terms of time resolution and rate capa-
bility. The huge particle flux gradient is addressed by using three different modules with
different size and also different material depending on the expected particle flux.

A particle traversing the MRPC volume generates an avalanche of charged particles,
that can be detected as a small current peak in the read-out electrode.

A detailed explanation of the MRPCs to be used for CBM can be found in [Dep13],
[DHA+14], and [TOF].

PADI / GET4 / CLOSY The small signal of the read-out electrode is fed to an analog
preamplifier and discriminator circuit (PADI) [CHH+13] that enhances the signal before
it is digitized in the GSI Eventdriven TDC with 4 channels (GET4) ASIC [DF09]. About
25 000 GET4 ASICs will be assembled in the CBM-ToF detector. The GET4 ASIC performs
a time-to-digital conversion (TDC) on four independent input channels by detecting ris-
ing and falling edges of the input signal and then creating a hit message. The GET4 can
measure very precise hit time information of better than 15 ps [Har13], the double hit res-
olution is better than 5 ns. The digitized hit data is pushed to the next read-out stage via
a serial protocol over an LVDS link.

A very precise and low-jitter clock is mandatory for the GET4 to be able to achieve the
required precision. The chip is specified for a clock frequency of 156.25 MHz, which is
5/8 of 250 MHz. The appropriate low-jitter clock for the GET4 is provided by the CLOSY
clock distribution system, that also generates a sync signal for synchronization. More
details about the CLOSY system can be found in [Koc09].

In the CBM-ToF Technical Design Report [TOF], an alternative to the GET4 solution is
considered as well. This alternative solution is based on an FPGA-TDC implemented on
the TRB3 board [NAMH+13, UBKT12] and is currently planned as backup solution in
case the GET4 approach fails for unforeseen reasons.

ROC The Read-Out Controller (ROC) is a data aggregator, an early data processor, and
provides the controls interface to the front-end electronics. The currently planned system
assumes data aggregation from 80 GET4 ASICs.

Since the work of this thesis is centered around this stage of the read-out chain, more
detailed information about the functionality of the ROC is given later. The full docu-
mentation for the GET4-ROC can be found in appendix B and the underlying design ap-
proach is described in sections 4.1 and 5.1. The main topic of this thesis, however, is not
the functionality of the GET4-ROC but the radiation mitigation techniques required for
its implementation on an SRAM-based FPGA platform which are presented in sections
4.2 and 5.2.
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DPB The Data Processing Board (DPB) is a second, hardware based data combining
and data processing step foreseen in the CBM-DAQ. Sometimes the term Data Combiner
Board (DCB) is used as well, mostly when the board does not perform any mentionable
data processing but only acts as a channel combiner. The DPB will be operated in a non-
radiation environment and will be available in most of the subdetector read-out chains.
More complex data processing can be implemented here, for example the feature extrac-
tion for the SPADIC ASIC in read-out chain of the Transition Radiation Detector (TRD) (cf.
[Garss]).

In case of CBM-ToF, the planned DPB implementation is more a “combiner” than a
“processing” board, however, first evaluations for data processing in this stage have been
made as well [XHD+13].

The DPB also packs the data in micro slice containers, the global data format required by
the First Level Event Selector (FLES, see later).

ABB / FLIB The last hardware-based stage in the planned read-out chain is an FPGA
card with PCIexpress capability. It will be installed in the entry nodes of the computing
cluster where the software-based event selection is to be executed. The PCIexpress card
receives the data from the DPB layer via optical connection.

The prototype that was available from the beginning of the work on this thesis is the
Active Buffer Board (ABB) [GKW+09]. The ABB hardware is a commercial FPGA develop-
ment board that could be purchased from Avnet, listed as AES-XLX-V5LXT-PCIE110-G.
The firmware that received the data from its two optical connections, buffers it in on-
board SRAM, and delivers it to the computing node via PCIexpress was developed and
maintained by Wenxue Gao for his PhD thesis [Gao12].

The ABB also requires integration in the host operating system. The according Linux
kernel driver is written by Guillermo Marcus, as part of his PhD thesis [Mar11].

For all the work of this thesis, the ABB was used. At time of writing, however, the
PCIexpress board for receiving data at CBM is already the successor model to the ABB,
the FLES Interface Board (FLIB). The FLIB is again a commercially available hardware, a
combination of an FPGA development board from High Tech Global, listed as HTG-K7-
PCIE-325-2, and an add-on board from Faster Technology, listed as FM-S14/FM-S18/FM-
S28. The FLIB firmware and Kernel driver is developed and maintained by Dirk Hutter
for his PhD thesis [Hutss].

For the real CBM experiment another reimplementation is foreseen with details not yet
decided.

Computing Node / FLES At CBM, the first stage where data from all subdetectors is
available is the First Level Event Selector (FLES). This high-performance cluster executes
the software for online event reconstruction on the incoming streams data. The recon-
structed events are then analyzed (also online) and only interesting events are selected
for storage.
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In the field of high performance computing, technical progress develops very fast, it
cannot be foreseen today what technology will be available at the time the CBM experi-
ment starts. To be able to select the best technology available at the time when the exper-
iment starts, hardware and architecture of the FLES is not yet fully defined, only that it
will be a state-of-the-art high performance cluster internally connected with a high-speed
network.

For the experiments of this thesis (and also in other early prototype experiments), no
online physics event selection is necessary yet as only few data streams are generated
and hence the data rates are still modest. The incoming data stream can be fully stored, a
single computing node running Linux is sufficient.

The work of this thesis was carried out using the early available CBM-DAQ reference
software developed mainly by Sergey Linev at GSI and known by the name of roclib
and DABC [AMEKL10b]. This software is compatible with the ABB board. For better
compatibility with the future FLES design, a new implementation of the online event
selection software is currently under development.

2.2. Electronic Devices in Radiation Environments

Figure 2.5.: Example of a radiation caused elec-
tronics failure: a computer crash during an in-
beam test at COSY, Forschungszentrum Jülich.

Electronic devices that function flawlessly
under normal conditions can be severely
disturbed by radiation and they might fail
in a radiation environment. Figure 2.5
shows such a failure, a PC that crashed
because it was exposed to ionizing radi-
ation. Radiation can affect the operation
of electronic devices in different ways. In
case of the experiment PC, the operation
was disturbed only temporally and after a
reboot the PC was fully functional again.
However, some effects affect the physi-
cal structure of electronic devices which
might even result in permanent device
damage.

When particles traverse through matter
they can interact with it and thereby deposit energy in the material. The amount of energy
transferred into the silicon of an electronic device is a key parameter for the characteri-
zation of many radiation effects. The underlying effects can for example be ionization
effects, bremsstrahlung, coulomb scattering, or nuclear effects. Important for radiation
damage in electronic devices are ionization and nuclear effects.

Nuclear effects occur if a nucleus in the material is hit by the radiation particle. The
scattering of the radiation particle and the nucleus can lead to displacement, decay, or
excitation of the nucleus. Nuclear effects are not directly ionizing, but as a result particles
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can be created in the material and they can be ionizing.
Ionization effects are caused by charged particles that interact with the electrons of the

target material. The electrons are removed from their atoms, thereby electron hole pairs
are created. If an electric field is present, electrons and holes are separated, otherwise
they will recombine. The energy loss per distance of hadrons (protons, pions, ions) due
to ionization effects is given by the Bethe formula, as shown in equation 2.1. For electrons
the situation is slightly different. Due to their much smaller mass they also experience
energy loss from bremsstrahlung, see [Leo94, chapter 2.4] for details.

The Bethe formula is:

− dE
dx

=
4π

mec2 ·
z2

β2 ·
(

e2

4πε0

)2

· Z · ρ · NA

A ·Mu

[
ln
(

2mec2β2

I (1− β2)

)
− β2

]
(2.1)

with me the electron mass, c the speed of light, z the particle charge, β = v/c, v the particle
speed, e the electron charge, me the electron rest mass, ε0 the vacuum permittivity, Z the
atomic number of the material, ρ the density of the material, NA the Avogadro number,
A the relative atomic mass of the material, and Mu the Molar mass constant.

The relevant radiation effects on electronic devices can be characterized in the follow-
ing categories.

• Cumulative Effects (destructive)

– due to energy deposition, Total Ionizing Dose (TID)

– due to lattice displacement, Non-Ionizing Energy Loss (NIEL)

• Single Event Effects

– Destructive Effects or “Hard Errors”: Single Event Burn-Out (SEBO), Single
Event Gate Rupture (SEGR), Single Event Latchup (SEL)

– Non-Destructive Effects or “Soft Errors”: Single Event Transient (SET), Single
Event Upset (SEU)

The next subsections will give a very brief description for the different effects. More
detailed explanations can be found in corresponding literature, e.g. in [BSV11], [Leo94],
or [Bau05].

2.2.1. Cumulative effects

Cumulative effects are gradual effects, depending on factors that are integrated over the
time the device is exposed to radiation. A sensitive device will then fail after a device spe-
cific tolerance limit has been reached. The time of failure can be predicted if the tolerance
limits of the device is known.
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Total Ionizing Dose Ionizing particles, e.g. charged hadrons, electrons, gammas, or
neutrons, deposit energy in the material when they pass through it. Gammas and neu-
trons are not directly ionizing, however, they can still induce ionizing energy depositions.
The Total Ionizing Dose (TID) is the total amount of energy that has been deposited in
the material by ionizing radiation over time. It is given in the SI-unit Gray (Gy) or in the
out-dated unit rad which is still widely used (1 Gy = 100 rad).

Electron-hole pairs that are created in silicon dioxide do not quickly recombine and are
separated at presence of an electric field, e.g. at a transistor. Electrons are more mobile
than holes and can leave the oxide whereas holes can be trapped in defect centers. This
process also creates more defects at the interface between silicon and silicon dioxide.
Charge and defect buildup are the reasons for device degradation in terms of TID, that
can finally lead a broken device.

When a device is removed from the radiation environment, an opposing effect called
annealing takes place. Holes can be detrapped at thermal energy, an effect that depends
on temperature, type of semiconductor, process technology, etc.. Longer periods without
radiation and at higher temperature helps to increase the lifetime of a device (careful,
higher temperature during irradiation enhances the damage).

Displacement Damage Particles passing through matter, neutral or charged, can dis-
place single atoms from their position due to non-ionizing energy loss (NIEL). Lattice
structure and doping of semiconductor’s material is disturbed, altering its electrical be-
havior.

The relevant parameter to characterize the bulk damage is particle fluence. Since it dif-
fers amongst different particles and also varies with the particle energy, particle fluence
is commonly given normalized to the equivalence of 1 MeV-neutrons, neq/cm2.

2.2.2. Single Event Effects

Unlike cumulative effects, Single Event Effects are spontaneous effects that are caused by
a single particle and can happen at every moment. Their occurrence cannot be predicted,
only a probability can be given which is usually expressed in terms of cross section.

An ionizing particle traveling through matter creates a track of electron-hole pairs that
can cause various single event effects. In presence of an electric field, as in the depletion
region of doped semiconductor material, the charges are separated and a current pulse is
generated. Figure 2.6 illustrates the process.

Single Event Effects can be categorized as destructive (“hard error”) and non destruc-
tive (“soft error”). While destructive effects damage mostly power MOSFET devices,
non-destructive SEUs cause severe problems especially for SRAM-based devices.

Hard Errors Hard errors cause physical damage to the device. They are most often
caused by heavy ions which can deposit the required amount of energy in the device.
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Figure 2.6.: Generation of electron-hole pairs, charge collection and the resulting cur-
rent pulse. This figure is adopted from [Bau05, Figure 2].

• Single Event Burn-Out (SEBO) In power MOSFETs, heavy ions can cause a drain-
source voltage that is higher than the breakdown voltage of the element. The re-
sulting current causes high temperatures and may melt the device locally.

• Single Event Gate Rupture (SEGR) Heavy ions can also cause an electric field
strong enough to destroy the isolator of the gate oxide in a power MOSFET device.
This causes a current flow that eventually heats and melts the device locally.

• Single Event Latchup (SEL) A short circuit that is caused by improper configura-
tion of a semiconductor element is called latchup. Electrical latchups can be caused
by an improper power supply or by transients on input/output lines. An SEL is a
latchup induced by an ionizing particle.

Without protection measures, this effect can lead to thermal destruction of the cir-
cuit. Semiconductor manufacturer are aware of latchups caused by improper pow-
ering and transients on input/output elements and most devices are protected
against these effects. Latchups caused by ionizing radiation (SELs) are not a very
common scenario and therefore semiconductor manufacturers are less aware of
them, but still, modern devices are usually hardly sensitive to SELs. Xilinx even
claims their devices to be “immune to destruction by parasitic bipolar structure
latchup” [LDF+05].

Soft Errors Soft errors do not damage the device but they disturb their operation. Single
hadrons (protons, pions,...) cannot deposit enough energy to upset modern devices by
direct ionization, however, the recoil from an interaction of a single hadron with a nuclei
can [Fac99, p. 32]. The relevant parameter to estimate soft error rates is the flux of high-
energy hadrons (in 1/cm2/s). The following soft errors exist:

• Single Event Transient (SET) An ionizing particle can induce sufficient charge on a
transistor to change the voltage over or under the threshold limit. This generates an
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asynchronous glitch at the output of the transistor path which propagates through
the circuit. It is very short lived and readjusts quickly, in the order of picoseconds
to nanoseconds [BSV11, p. 46]. This is called a Single Event Transient (SET).

• Single Event Upset (SEU) If an SET reaches a latch or a flip-flop, or occurs at a
transistor that belongs to a latch or flip-flop, it can be sampled and become a static
error. In this case it is referred to as Single Event Upset (SEU), or simply upset, or
bit-flip. The term SEU is used in general when an ionizing particle changes the state
of a memory cell. It is a non-persistent error that can be remedied by rewriting the
correct value to the memory cell. In worst case, a power cycle is required.

In real-life, the components suffering most from SEUs are SRAM cells. SRAM cells
are relatively susceptible, widely used, and when they are used, usually a large
number of cells is present in the system. SEUs occur when enough energy is gen-
erated in the sensitive volume of the SRAM cell. Figure 2.7 shows the dependency
of the SEU probability of Virtex-4 devices when they are hit by protons of various
kinetic energies. The curve is different for other particles, it depends on how much
energy they deposit in the material, a value called “linear energy transfer” (LET).
The LET value depends on the kind of particle (proton, electron, heavy ion, ...) and
its kinetic energy.
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Figure 2.7.: The dependency of the SEU cross section for configuration bits of Xilinx
Virtex-4 devices from the energy of the protons. The line plot represents what is known
as the “Weibull curve”, the most widely used model to fit SEU cross section data (for-
mula and Virtex-4 fit parameters are taken from [EMWG06]). The values plotted in red
and blue refer to experimental data (extracted from [GKS+06, Figure 6]).
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2.3. FPGA Architecture

Before discussing the placement of SRAM-based FPGAs, it is important to understand the
basic concept of how FPGAs work. This section gives a very brief overview of principles
of an FPGA. The emphasis is thereby on SRAM-based structures in the FPGA as they are
important for this thesis.

a NAND b
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0 1    1
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(a) A NAND gate
and its repre-
sentation in a
2-input LUT.

(a NAND b) XOR (c NAND d)
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0 0    1

1
0
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(b) More complex logic can be im-
plemented with a combination of
LUTs.

(a NAND b) XOR (c NAND d)
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1 1 0 1    1
1 1 0 0    1
1 0 1 1    1
1 0 1 0    0
1 0 0 1    0
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0 1 0 1    0
0 1 0 0    0
0 0 1 1    1
0 0 1 0    0
0 0 0 1    0
0 0 0 0    0

1

0

1

1

1

(c) Modern FPGAs have LUTs with 4
or 6 inputs that allow for a bit more
complex logic in a single LUT.

Figure 2.8.: Illustration of the representation of combinational logic in look-up tables
(LUTs) as it is done in FPGAs.

Any Boolean function can be represented in a truth table and any combinational logic2

can be implemented by a combination of Boolean functions. The basic idea for modeling
combinational logic is to store the result of every possible combination of input values of
the underlying Boolean functions in look-up tables. Figure 2.8 illustrates this principle.

For the realization of sequential logic3, like a counter or a shift register, an additional
component called flip-flop (FF) is required to store interim values. A flip-flop stores its
current input value at time of a rising (or falling) edge of a clock signal and provides this
value at its output. Flip-flops allow to store the output of combinational logic for the next
clock cycle.

Very complex sequential logic can be implemented by cleverly connecting many look-
up tables and flip-flops. Since LUTs and FFs are implemented with SRAM cells, their
content can be arbitrarily configured. The interconnection of the components, however,

2Combinational logic is logic, where the output vector only depends on the current input vector, but not
on the history of the input vector.

3Sequential logic is logic where the output not only depends on the current input vector but also on the
history of the input vector. It requires the storage of interim values.
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also contributes to the full description of the logic. To be able to fully configure any
sequential logic, the interconnections between the components need to be configurable
as well.

PSM LUT FF
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MEMORY

(a) The main building blocks of an FPGA are Pro-
grammable Switch Matrices (PSMs), Look-Up
Tables (LUTs), and Flip-Flops (FFs), in most
cases there are also some on-chip memory
blocks available. LUTs are used to reflect the
combinational logic of a design, FFs and mem-
ory store the current state of the system, and
PSMs are used to interconnect everything.
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(b) To put in a nutshell, an FPGA is build from a
matrix of many of the units that are shown in
figure 2.9(a). The logic components are inter-
connected via the reconfigurable PSMs, they
determine the routing. Using several LUTs in
an hierarchical connection scheme allows for
describing more complex combinational logic
(see figure 2.8(b)).

Figure 2.9.: Very simplified illustration of the basic components of an FPGA. Not shown
are for example IO-buffers and special components like clock managers. The basic com-
ponents of an SRAM-based FPGA (PSMs, LUTs, FFs, and Memory) are implemented
using SRAM cells, and hence they are susceptible to single event upsets (SEUs). Impor-
tant to remember is, that the values stored in PSMs and LUTs are static (this means they
do not change during operation of the chip), while the values stored in FFs and on-chip
memory are dynamic (these values may change during operation).

In FPGAs the configuration of the interconnections is done by programmable switch
matrices (PSMs), which are usually also SRAM-based. The components are connected to
a large net of static wires. The trick is, that two wires that end in the same PSM can be
connected or disconnected depending on the configuration of the SRAM cells of the PSM.
This allows for very versatile interconnections of the various components of the FPGA.
Figure 2.9 shows a very simplified illustration of the basic architecture of an FPGA. An
FPGA is basically a matrix of LUTs, FFs, and PSMs, normally equipped with some on-
chip memory as well.

A clever usage of LUTs, FFs, and PSMs now allows to define any sequential logic as
long as enough fabric resources are available on the FPGA.

With SRAM-based FPGAs, all the reddish units in figure 2.9 are implemented with
SRAM cells, and hence, they are susceptible to single event upsets (SEUs). Important to
remember is, that the values stored in PSMs and LUTs are static (this means they do not
change during operation of the chip), while the values stored in FFs and on-chip memory
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are dynamic (these values may change during operation).

2.4. Expected Impact of Radiation on CBM DAQ

CBM is aiming at very high interaction rates, which entail a very harsh radiation level in
the detector cave. The radiation level, however, varies strongly with the location inside
the cave. Therefore, selection and placement of electronic components have to be com-
patible with the fast hadron flux as well as with the radiation dose they are exposed to
during the experiment.

The radiation level at the CBM silicon tracker system (STS) is so high, that even ASICs
have to be designed very carefully [Aug06b, chapter 10.1]. As other radiation tolerant
solutions did not fit into the limited space available for STS electronics, the HUB chip was
designed and first prototypes have been produced [Lem12]. 4

The most relaxed radiation requirements for the read-out electronics can be found at
the CBM-ToF detector. Also, ToF does not entail too complex data manipulations (in con-
trast to TRD for example [Gar14]) that further complicate the implementation of radiation
mitigation techniques. If usage of SRAM-based electronics is not feasible for ToF, it is not
an option for all the other detector systems as well.

At this point it might be noteworthy, that although this thesis focuses on radiation
mitigation for SRAM-based FPGAs, there are also other components that can have issues
when operated in a radiation environment, for example Flash-based technology, power
regulators, or the receiver diodes of optical connections. Such components also require
attention, but this is beyond the scope of this thesis.

2.4.1. Placement of SRAM-based FPGAs

The general advantage of FPGAs is their flexibility. FPGAs can be reconfigured which
allows to adept their behavior even after the full system is built. This means, that bugs in
the FPGA firmware that are discovered after commissioning of the detector can be fixed
and also that additional features can be implemented, allowing to adapt to new use cases.

The downside of FPGAs is that they cannot reach the compactness and the very high
clock frequencies of ASICs. In the CBM use case, an additional major problem is ra-
diation. FPGAs which are competitive in terms of size and speed are based on SRAM
technology. For that reason, they are susceptible to radiation, mostly to single event ef-
fects.

Single Event Effects Due to their large capacitive loading of single paths, single event
transients (SETs) do not constitute a severe problem for Xilinx FPGAs [LDF+05].

4Since more space for readout electronics became available with the new magnet design end of 2013, a
more mature project from CERN, the GBTx ASIC, could be adopted for CBM as a drop-in replacement for
the HUB chip [Mül14]. At time of writing, the GBTx ASIC is the prioritized technology choice for STS and
also for other detector systems.
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However, all SRAM-based FPGAs suffer severely from Single-Event Upsets (SEUs) that
change the storage value of an SRAM cell. Since so many parts of the internal structure of
an FPGA are implemented with SRAM technology, SEUs are the most critical radiation
effect for the operation of FPGAs on or close to the CBM detector.

The “static” SRAM cells of the FPGA (LUTs and PSMs) can be refreshed during run-
time without interrupting the operation of the device. This technique, which is known
as scrubbing is described in section 3.2.3. It is important to understand, that scrubbing is
not a universal remedy against SEUs. Scrubbing does not prevent SEUs, it only repairs
the induced error. Even with scrubbing enabled, SEUs can affect the static FPGA config-
uration for a short time until they are repaired. The dynamic FPGA memory (FFs and
Memory) are not SEU-mitigated at all by scrubbing.

Additional countermeasures for the protection of “dynamic SRAM cells” and to sus-
tain temporal occurrences of SEUs in “static SRAM cells” are required. This is usually
achieved by implementing the design with redundancy (see section 3.2.2). The problem
with redundancy is, that it only protects against single bit upsets but not against multi-bit
upsets. If SEUs are not repaired, SEUs will accumulate and multi-bit upsets will occur
eventually.

So, only the combination of both, “scrubbing” and a redundant system design can pro-
vide good protection against SEUs. Unfortunately, there are also limits to this approach.
“Scrubbing” does not instantaneously repair an SEU but usually takes some 10− 100 ms.
If the radiation level is high enough, so that multiple SEUs occur already during one
scrubbing cycle, the approach fails as well.

For a reasonably complex system, the implementation of full redundancy (including
critical components such as clock managers) cannot realistically be implemented anyway
and full reliability cannot be guaranteed.

Fortunately, full reliability is not required as the detector cannot provide 100% effi-
ciency anyway, see next section (2.4.2).

The decision how deep into the radiation zone SRAM-based FPGAs should be placed,
has to maintain the appropriate balance between reliability requirements and saving ca-
bles.

Cumulative Radiation Effects Cumulative radiation effects are not a severe problem
for SRAM-based FPGAs at CBM. Modern SRAM-based FPGAs can be operated until a
total dose of up to 300 krad / 3 000 Gy is accumulated [DFLH08]. And this does not take
into account several device annealing effects that happen at room temperature when the
particle beam is switched off. According to FLUKA simulations for CBM-ToF [Sen11,
pages 31/32], critical TID values are not reached during lifetime of CBM when operated
not too close to the beamline and operating SRAM-based FPGAs that close to the beam-
line is not possible anyways due to too severe single event upset effects.

Although cumulative effects can be neglected for SRAM-based FPGAs, they cannot
for Flash-based FPGAs. At time of writing, more and more Flash-based FPGAs become
available that come in sizes and achieve frequencies one might be tempted to consider
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as a viable option for read-out controllers. However, TID effects are a much more critical
problem for Flash-based devices than for SRAM-based FPGAs and this rules out such
Flash-based FPGAs as an option for CBM.

It should be noted, that some solutions for SRAM-based FPGAs systems entail Flash
technology as well. For example, the current solution for the radiation mitigation tech-
nique “scrubbing” (see section D.1) is based on an on-board Flash memory in conjunction
with a small Flash-based FPGA that acts as configuration controller for the main SRAM-
based FPGA. Due to the low TID tolerance of Flash technology, this can only be a pre-
liminary solution during research and development. Therefore, for the real experiment
a new scrubbing scheme is planned that exploits the internal scrubbing controllers that
became available with the Xilinx Series 7 FPGAs (see section 8.2.2).

2.4.2. Detector Dead Time

Detectors are built to be sensitive to certain kinds of particles passing through them, this
is the purpose of the detector. During operation of a particle detector, it is desired for
the detector to be sensitive to the according particles all the time. However, this is not
achievable for multiple possible reasons.

After a particle was detected, the detector can lose its sensitivity for a short time, e.g.
because the passing particle caused the discharge of an electric potential that then first
needs to recover before another particle can be detected. For the short time until the
potential is recovered the detector is called to be “blind” or “dead”.

Another reason affects detectors that measure the energy that a passing particle de-
posits in the detector’s material. If two particles pass in rapid succession, or even in
partially overlapping time frames, the resulting signal might not be separable into two
events but appear as only one event. This is is called a “pile-up”.

The analog read-out electronics can also be a reason for dead time. For example the
shape time or the digitizer can contribute to dead time.

Furthermore, in modern high energy physics experiments there are a lot of read-out
channels. For cost efficiency the read-out chain cannot be designed to transport and
process the worst case data rate for a long time. Even if shorter peaks with increased
data rate can be buffered, longer periods of too high data rate completely fill the buffers.
And such longer periods might be inevitable in some cases, hence, there is always the
chance of a lost data due to full buffers.

Full buffers are a particularly serious problem for self-triggered data acquisition sys-
tems. Without a global trigger it can easily happen that all the time part of the channels
drop data. A “full picture” of an event is then never recorded. In such a situation of
overload, it is desirable to drop data from all channels synchronously and thereby assure
that part of the time no data is lost due to full buffers. This requires intelligent throttling
mechanism.

Another cause for detector dead time is device failure. For example, if the configuration
of an FPGA gets corrupted (e.g. by an SEU) the device might no longer work properly
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and data is lost. The further up in the read-out chain hierarchy the failing device is
located, the more channels are affected, and hence the more dead time is generated. A
crash of the high performance cluster for online data analysis might cause a significant
down time of the whole experiment.

The bottom line is, that there is detector dead time anyway, for various reasons. So a
small contribution to detector dead time as a result of radiation caused electronics failure
can be accepted, as long as it does not significantly increase the overall detector dead
time.

2.4.3. Situation for CBM-ToF

The numbers of the following section are mostly taken from the ToF technical design
report (ToF-TDR) in the version as of October 2014 [TOF].

The CBM-ToF design foresees about 100 000 electronic read-out channels distributed
over an active area of about 120 m2. About 30 000 channels originate from the inner region
where the radiation level is significantly higher.

For a system with such a large amount of read-out channels, the price per channel is
a critical parameter, it cannot be too high. A channel combiner is required in the early
stage of the read-out chain in order to avoid the tremendous cost for cabling. Cost is not
the only reason for such a data combiner. Just physically building such a huge amount
of copper connections is not a very easy task, and on top of that, it would result in a
physical design that is hard to maintain. Furthermore, it would add a significant amount
of material to the detector which should be avoided if possible.

The GET4 ASIC already combines four analog input channels on one digital output
link, but this is not enough. The current plan is to connect 80 GET4s to one read-out
controller board that then combines the data and sends it over an optical link to the next
stage in the read-out chain.

The usage of a commercial off-the-shelf SRAM-based FPGA for this read-out controller
would bring along the huge benefit of flexibility at relatively low cost. It allows for flexi-
ble data processing at a very early stage in the read-out chain.

However, the FPGAs have to operate in an environment with a significant radiation
level. Single event upsets (SEUs) created by fast hadrons are expected to be the major
obstacle for operation of SRAM-based FPGAs in such an environment. According to
FLUKA simulations, the flux of fast Hadrons in the inner region is about ∼ 104 s−1cm−2,
and in the outer region ∼ 102 s−1cm−2 [Sen11].

Techniques are available to mitigate SEU effects in SRAM-based FPGAs, however, for
reasonably complex systems full reliability cannot be guaranteed. Since those techniques
also lead to increased cost, compromises might have to be made to trade off reliability for
cost efficiency.

As a requirement for CBM-ToF, the overall detector efficiency should be better than
95%, the contribution of electronic failures to this 5% accepted efficiency loss should not
be appreciable. On the other hand, additional detector dead time of a few per mille is
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indeed acceptable.
However, the question how high the expected contribution of SEU effects to detector

dead time actually remains. Without additional information, this contribution cannot be
predicted very accurately. The following points remain vague.

• How many FPGA resources are required for the implementation of a GET4 read-
out controller firmware? Especially, when radiation mitigation techniques have to
be implemented on top of the basic functionality.

• What is the average number of SEUs that a complex read-out firmware can sustain
until a functional failure occurs?

• How good can radiation mitigation techniques work when cost efficiency is also a
criterion?

• How long does it take to repair a device after a failure?

• Are there any show-stoppers hidden in the details of implementing such a radiation
mitigated system at reasonable cost?

Whether the usage of SRAM-based FPGAs in early stages of the CBM-ToF read-out
chain is viable or not cannot be decided without clarifying these points. The work of
this thesis was carried out to obtain the missing information. For that, a firmware to
read-out the GET4 ASIC was implemented, cost-efficient radiation mitigation techniques
were applied to that firmware, and finally the efficiency of the applied techniques was
experimentally evaluated.
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3. State of the Art

This chapter presents the state-of-the-art of science and technology at the time when the
work on this thesis began. It is organized in three sections that reflect the three topics
already mentioned in section 1.2.

Section 3.1 covers the situation of the CBM-ToF read-out controller. The subject con-
cerning radiation mitigation techniques for SRAM-based FPGAs is then presented in
section 3.2. Details are given for Triple Modular Redundancy (TMR) and Scrubbing, the
techniques that have been selected to be used in the present work. Finally, section 3.3
discusses very briefly the common procedure of using in-beam tests for verification and
efficiency evaluation of radiation mitigation techniques. This also induces a small sub-
section about SEU counting by configuration read-back which is relevant later for beam
diagnostics.

3.1. CBM-ToF Read-Out Controller

This section describes the status of the CBM-ToF read-out controller before the work of
this thesis was started. It consists of a comparison to other high-energy physics experi-
ments, an explanation of the specialties of CBM, and also sheds some light on the status
of similar implementations that already existed within the CBM community.

3.1.1. Read-Out at Other HEP Experiments

Every high energy physics (HEP) experiment is different. Their data read-out compo-
nents are highly integrated into the individual system and therefore are not easily com-
parable amongst each other. A comparison of CBM read-out electronics to the read-out
electronics of existing HEP experiments is even more difficult. The reason for that is
discussed now.

Present generation of major HEP experiments implement their data acquisition ar-
chitecture based on central triggers, the data rate is reduced for read-out in multiple
steps. The first step of the data acquisition chain has to decide on a very small time scale
whether the recorded data shows characteristics of an interesting event or not. This deci-
sion is called a trigger. Only if the event is classified as interesting it is transported to the
next step in the chain. In the next step the incoming data rate is already reduced since
data that does not qualify to a triggered event is discarded. Therefore, in each step more
time is available for the trigger decision, and hence a more precise decision can then be
made.
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The major challenge in implementing components for such triggered data acquisition
systems is the requirement for low latency [dC09]. The step needs to come to a decision
as fast as possible. For example, the ALICE DAQ (for Run 1, 2009-2012) restricts the
maximum latency of the level-0 trigger to 800 ns, the level-1 trigger to 6.5 µs, and the
level-2 trigger to 87.6 µs [Kir07, page 41]. Data has to be kept in the buffers until a trigger
decision is reached and no further data can be taken, this can cause detector dead time.

CBM data acquisition comes with the novel approach of a free-streaming, self-triggered
architecture. This is a completely new paradigm for the read-out electronics. Latency is
no longer a crucial parameter, the main problem for readout is now data throughput and
online data reduction. For that reason, a comparison to existing HEP data acquisition
systems based on central triggers is not practical.

At time of writing, none of the major HEP experiments already implement self-trig-
gered data acquisition. LHCb1 and PANDA2 plan to implement free-streaming read-out
architectures as well, LHCb for their next upgrade in 2018 [Ale13], PANDA for their start
version [KBD+12] that will be put into operation at FAIR, at the same time as CBM.

Today, at the end of 2014, LHCb is evaluating the usage of FPGAs in radiation environ-
ment, but did not come to a conclusion so far [FUW+14].

PANDA follows a similar approach as CBM, including an FPGA in radiation environ-
ment for online data reduction. However, their radiation level is lower (∼ 60 hits/cm2s)
and currently, they do not foresee any radiation mitigation techniques for their FPGAs
[KBD+12].

3.1.2. CBM Constraints

The CBM data acquisition system differs from those of previous high-energy physics ex-
periments as it is planned as a free-streaming, data-push architecture rather than a system
that is based on a hierarchical set of trigger decisions. This induces some constraints on
the CBM system architecture.

CBMNet

One of the most challenging tasks with the concept of a free-streaming detector read-out
is the common representation of time in all detector components. Unlike in triggered sys-
tems, there is no global decision to start the read-out of detector data. Every component
decides locally when to send out data. To later enable a correlation of data from different
components, all data needs to be tagged with an unambiguous time stamp. Since two
clocks derived from two different sources never run at the exact same frequency, they
drift apart over time. Therefore, either all the clocks that are used in all time critical com-
ponents are derived from the same clock source, or the clock drift of all clock sources is
known very precisely. In laboratory setups with only few components it is feasible to

1LHCb: Large Hadron Collider beauty experiment
2PANDA: Proton Antiproton Annihilations at Darmstadt
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record and log the drift of all clocks involved. However, this approach does not scale
to a big experiment like CBM with some hundreds or even thousands of independently
operating entities. Therefore, distribution of a common clock and the synchronization of
the front-end electronics is required.

CBMNet is a connection protocol designed at the Computer Architecture Group in Mann-
heim/Germany which provides the features required by CBM [Lem12]. It can be used
to

• distribute the clock,

• synchronize the time with special messages that travel through the network with
deterministic timing, so called deterministic latency messages (DLMs),

• transport control messages on a reliable channel,

• and transport data messages on a fast channel.

A project with comparable objectives is the GigaBit Transceiver (GBT) project devel-
oped at CERN [MMK07]. However, the present work is based on CBMNet.

Clock Distribution Clock distribution is one of the key features of CBMNet. CBMNet is
designed to use the recovered clock from one dedicated optical receiver as system clock
and also to use this recovered clock as reference clock for other optical connections, The
clock can thereby be further distributed to the next components in the read-out chain.
However, to be able to do so, the jitter of the recovered clock needs to be below 40 ps
RMS [Lem12, page 68]. Since each step that tempers with the clock also adds jitter to
the clock signal [Xil08, page 74], clock distribution over several hierarchy levels requires
a dedicated jitter cleaning device. This is the reason why such a the jitter cleaner being
present on the SysCore Board Version 3 (see section D.2.3).

Finally, with such a clock distribution, a clock from a single time master can be dis-
tributed down the tree of the read-out chain and all components will be clocked syn-
chronously without clock drift.

Time Synchronization Another key feature of CBMNet is the system-wide time syn-
chronization with so called “Deterministic Latency Message” (DLM). DLMs are 4 bit wide
messages which are transported through the CBMNet cores and over the optical fiber
with a deterministic delay. The delay might be different from connection to connection
because of different cable length, but it will not vary for two DLMs over the same connec-
tion. Since DLMs work in both directions, the delay can be measured easily via loopback.
Once the delays of all connections are known, DLMs can be used to start the time stamp
counters in all components coherently. A dedicated DLM for synchronization can be sent
periodically with a defined interval to allow for components to check if they are out of
sync.
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Time Encoding

The self-triggered and free-streaming approach of the CBM experiment requires a un-
ambiguous time encoding for the time span of a whole run. A run typically lasts from
several minutes to hours, or even days. Time precision, on the other hand, needs to be in
the order of nanoseconds, for CBM-ToF even in the order of tens of picoseconds. A lot of
bits are required to encode time with the required precision while still covering the full
run time. For example, already 48 bits are required to cover a 3 hours run at a precision
of 50 ps.

To transport all those bits for every hit in every component would result in an un-
necessary high utilization of bandwidth. “Unnecessary”, because the more significant
bits of different hits do not change very frequently and are therefore in most cases just a
repetition of the information of the previous hit.
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(a) Every hit carries the full time stamp.
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(b) Upper bits of the time stamp counter are communicated via Epoch markers, hits
messages only carry the lower bits.

Figure 3.1.: Both diagrams show the same hit sequence. Less bandwidth is required
when Epoch markers are used as for each hit message the number of bits can be signifi-
cantly reduced.

The repetitive sending of the more significant bits is avoided in CBM with the introduc-
tion of Epoch markers in the data stream. The bits of the time stamp counter are subdi-
vided into two groups, the “higher bits” vector and the “lower bits” vector. The “higher
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bits” only change when the “lower bits” counter overflows. Every time the “higher bits”
change, an Epoch marker is inserted in the data stream carrying the updated value of the
higher bits. Hit data is only tagged with the lower bits of the time stamp counter. Figure
3.1 illustrates this principle.

However, this concept also entails some challenges. The insertion and handling of
Epoch markers has to be implemented very accurately. It would result in a huge time
difference for a hit if it is sent out before or after an Epoch marker. In addition, merging
of multiple data streams becomes very complicated, especially if the preceding data path
contains buffers. In that case, hit data from different data streams is not correlated in time
and might belong to different epochs. Furthermore, a lost Epoch marker would corrupt
a lot of data.

At the time of writing, the implementations used for the CBM read-out chain are based
on Epoch markers. In case of the GET4, a hit message comprises 18 bit time information,
and an Epoch Message, which is inserted in the data stream every 26.2144 µs, comprises
32 bit.

3.1.3. Existing Implementations

At the beginning of the work for this thesis only one self-triggered and free-streaming
front-end ASIC was available in the CBM community: the nXYTER [Sch07]. The nXYTER
chip is the first prototype ASIC used for the CBM read-out chain. In contrast to the GET4
chip, for which the read-out controller (ROC) was developed in the scope of this thesis,
the nXYTER chip is only intended for research and development and not for the final
experiment, thus it does not implement measures countering radiation effects.

To read out data from the nXYTER, a SysCore Version 2 firmware was developed by
Norbert Abel [Abe07]. This read-out controller firmware was already based on the free-
streaming data acquisition paradigm of CBM. At first, the firmware was designed as one
monolithic piece of logic that receives the data from the nXYTER chip and then transports
it via Ethernet to a PC.

With the start of this thesis, the nXYTER firmware was redesigned with modularity
in mind as described later in section 4.1. With this approach, further nXYTER read-out
developments and initial GET4 read-out developments could both profit by sharing logic.

Ethernet Transport Prior to modularization of the firmware, Ethernet was used exclu-
sively for data transport to the DAQ PC. The Ethernet logic is implemented using the
Xilinx EDK platform and provides basic functionality. The data throughput is in the or-
der of 40 MB/s which is too slow for a bigger setup, but absolutely sufficient for the small
setups of the early development phase. Clock distribution and synchronization are not
implemented. However, for smaller setups a workaround was implemented (see the next
paragraph).

The advantage is that there is no special hardware required aside from the ROC. This
was especially important in the early R’n’D phase, where many different setups in many
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different laboratories were tested. It was not affordable to provide an expensive PCIe
board, which is required for optical read-out, to all of these laboratories.

However, the Ethernet transport logic was developed as a preliminary solution and is
missing some important features (high bandwidth, clock distribution and time synchro-
nization) which are required for the final experiment.

“Poor Man’s Synchronization” General purpose IO (GPIO) pins can be used as a work-
around to synchronize a few ROCs. This has become known in the collaboration as
the “poor man’s synchronization”. It was first developed for the nXYTER read-out as
a workaround until clock distribution and time synchronization via CBMNet became
available. The time stamp of one “master ROC” is periodically communicated via GPIO
pins to the other “slave ROCs”. Every time the slave receives such a synchronization
message from the master, it inserts it’s own local time stamp and also the received mas-
ter time stamp in the data stream. For smaller setups, this allows for reconstruction and
correction of the clock drifts in the analysis software on the DAQ-PC.

Configuration Controller Firmware

For executing the radiation mitigation technique scrubbing (see section 3.2.3), a configu-
ration controller is required. The SysCore Boards are equipped with an auxiliary Flash-
based FPGA for that purpose (see section D.1). This configuration controller also requires
a firmware.

With assistance of the author of this thesis and also with support from Heiko Engel, a
reimplementation of the configuration controller firmware was implemented by Andrei
Oancea for his diploma thesis [Oan13]. He combined the functionality of two existing
firmwares in one clean reimplementation and also provided the integration into the new
generation of the CBM read-out chain (see section 5.2.1).

A firmware that implements “blind scrubbing” has been described by Heiko Engel in
[Eng09]. A second firmware for the configuration controller exists that implements the
power-up configuration of the main FPGA, but not scrubbing. This firmware was written
by former student Stefan Müller-Klieser based on previous work of David Rohr. It is
supported by the main CBM software “roclib” and therefore used in CBM community.

The scrubbing engine used for this thesis follows the concepts of Heiko Engels imple-
mentation.

Software

The DAQ software used for this thesis was mostly developed by Sergey Linev and Jörn
Adamczewski-Musch at GSI. They provided the Data Acquisition Backbone Core (DABC)
[AEKL08] for data analysis, the GSI Object Oriented Online Offline system (Go4) [AMEL11]
for online monitoring, and also the software that goes by the name of “roclib” which
includes low level communication and drivers for the different data sources.
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3.1.4. The Read-Out Controller Hardware Platform

The hardware used primarily to carry out this thesis is the SysCore Board Version 2, an
implementation of the SysCore Architecture. Both, the specification of SysCore Architecture
and its implementations, the SysCore Boards, are described in appendix D.

3.2. Radiation Tolerance for FPGAs

As the CBM-ToF read-out controller is going to be operated in a radiation environment,
mitigation of harmful radiation effects is required. In this section, possible state-of-the art
radiation mitigation techniques for SRAM-based FPGAs are presented and reviewed for
application in CBM. The particular techniques that have been implemented are evaluated
more precisely. Finally, a comparison to the radiation mitigation approaches of other high
energy physics experiments is presented.

3.2.1. Hardware Approach

Radiation mitigation already starts with the choice of components and the overall con-
struction of the system. Those aspects are explained in the following.

Shielding

The first idea that usually comes to one’s mind is to protect the electronics by installing
additional material to shield it from the radiation. While this can work for “slow” parti-
cles in some situations, there are a couple of reasons why it is not applicable for electron-
ics of a HEP detector:

• Shielding would not only shield electronics but also the detectors located behind
the electronics. The results of those detectors would then be falsified.

• As the name “high energy physics” suggests, some radiation particles have high ki-
netic energy. The amount of material that is required to shield the electronics would
be either too expensive or would require to much space. In any case it would add
a significant amount of weight to the electronics which then would even require an
additional support structure.

• The additional matter also favors the production of secondary particles. The detec-
tors also respond to these secondaries, i.e. additional data is produced and detector
dead time increases.

• Backscattered particles (primary and secondary) can also affect the detectors in
front of the shield.

• Generally, additional material in the detector should be avoided. Interaction of
particles with material pollutes the particle signatures.
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Opting for compromise by putting in a too thin layer of shielding material that does not
fully absorb the particles might even be counter productive. Slower particles have higher
probability to interact with matter, and hence also electronics are more susceptible to
decelerated particles (this can be revealed when plotting equation 2.1).

Flash-Based FPGAs

While most FPGAs are SRAM-based, it is also possible to purchase Flash-based FPGAs.
Flash memory has two major advantages over SRAM memory. First, Flash is non-volatile.
The memory content is preserved even when power is cut off, while SRAM looses the
configuration without powering. Second, Flash-based devices are less susceptible to
SEUs than SRAM-based devices.

In the past, Flash-based FPGAs were not available in sizes that are comparable to
those of SRAM-based FPGAs. Recently, however, commercial Flash-based FPGA de-
vices became available as consumer products in sizes that can compete with SRAM-based
FPGAs, e.g. the MicroSemi Igloo 2 [Mic14].

However, the major problem with flash-based technology remains, such devices show
a rather low threshold in terms of TID (see section 2.2.1 for TID). For example the Radi-
ation-Tolerant ProASIC3 from Actel only sustains a total dose of 40 krad before it shows
degradation effects [Act10, page 12]. Even lower values have been reported. The ALICE
experiment foresees (Flash-based) MicroSemi SmartFusion 2 FPGAs for the consolidation
upgrade for Run2 [AAB+13]. “They found (...) that the FPGA can’t be re-programmed
after a dose of 2.5-2.5 krad. This rather low TID threshold was unexpected. That strongly
limits the range of places where these devices can be used.” 3

A second problem occurs when data is not only read from but also written to Flash
memory during irradiation. Then the chance for single event gate ruptures (SEGR) exist
due to the charge pumps used internally in Flash devices.

Flash-based FPGAs might be a considerable option for detector read-out electronics.
However, the opinions concerning the usage of Flash-based FPGAs is differ. There are
certainly some advantages (good SEU tolerance, non-volatile) but also some serious ar-
guments against Flash-based FPGAs (low TID, chance for SEGR).

For the final CBM experiment, a Flash-based solution is not foreseen. Nevertheless,
as an intermediate solution for research and development activity, the SysCore Boards are
equipped with an auxiliary Flash-based FPGA (see appendix D). This small Flash-based
FPGA acts as the configuration controller for the big SRAM-based FPGA, providing ini-
tial power-up configuration and also the scrubbing functionality. Fortunately, with the
new Xilinx Series 7 FPGAs, an on-chip scrubbing mechanism is introduced that allows
CBM to plan a flash-free scrubbing solution for the future (see section 8.2.2).

3Reported by Walter F. J. Müller at an internal CBM-DAQ meeting on July 9th, 2014.
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Military Grade FPGAs

Besides their main line of FPGAs, Xilinx also produces military and space grade FPGAs,
which are supposed to be radiation tolerant [Xil10a, Xil14c]. Those chips fall under US
export restrictions and cannot be simply ordered in Europe. In addition, those chips are
significantly more expensive than the main line of FPGAs. The cost factor alone is reason
enough for military and space grade FPGAs no to be considered for CBM.

Antifuse Devices

Antifuse devices come with a similar architecture as FPGAs, however, their static config-
uration memory is one-time programmable. After their initial programming, the static
configuration memory cannot be changed anymore. This almost completely removes the
flexibility advantage of an FPGA. Antifuse devices are not considered for this thesis.

FRAM Technology

FRAM is an emerging technology that combines the advantages of Flash-based devices
(non-volatile, not very susceptible to SEUs) with SRAM-based devices (fast). More de-
tails can be found in [Vog14, Kum12]. The technology looks very promising and might
be considered in future projects. However, the technology is very new and at time of
writing, no FRAM-based FPGAs are commercially available.

3.2.2. Redundancy

When an SRAM-based FPGA is operated in a radiation environment, errors in the con-
figuration memory of the FPGA cannot be prevented completely. Even if errors in the
configuration memory are repaired, they will be present in the system for a certain time
because error correction cannot happen instantaneously. Therefore, the design needs to
tolerate those errors for a flawless continuation of operation, at least until the error is
repaired. This is usually achieved by adding redundancy to the design.

Temporal Redundancy

An approach to further mitigate radiation effects in FPGAs is called Temporal Redundancy.
The idea is to sample the logic’s output at different points in time. A short glitch (SET) is
then only sampled once, and can be corrected by a majority voter.

Temporal Redundancy does not protect against SEUs but only against SETs. However,
SEUs are the main problem in FPGAs. TMR (see below) is easier to implement on an
FPGA where clocking resources are very limited and in addition, TMR protects against
both, SEUs and SETs. Therefore, TMR is preferred over Temporal Redundancy for FPGA
implementations. In fact no complex real life FPGA implementation of Temporal Redun-
dancy in known to the author of this thesis, Temporal Redundancy is not considered for
this work either.
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Triple Modular Redundancy

The canonical approach is known as Triple Modular Redundancy (TMR), sometimes also
called Triple-Module Redundancy [Car06]. The basic idea is to triplicate units of logic and
vote for majority on the outputs.

Figure 3.2 illustrates the principle. Even if one of the three parts fails, there is still a
majority of two correct outputs against one erroneous output (see figure 3.2(b)).

The remaining problem is that a single SEU in the logic of the voter can still result
in erroneous system behavior. This can be overcome by also triplicating the voter logic
(see figure 3.2(c)). This leads to three outputs instead of one, the three outputs can be
connected to the corresponding inputs of the next TMR’ed logic unit.

The units of logic on which triplication is applied ranges from a very fine-grain level
where every flip-flop is tripled and voted on to a very coarse level were the tripled unit
is the whole device. The advantage of a coarse implementation is the comparably small
overhead due to the voters. The smaller the tripled logic units are the more voters are
required, resulting more overhead. However, a problem with a coarse implementation
is the higher probability of two simultaneous errors in the TMR’ed logic. With simulta-
neous errors in two of the three logic units, the TMR approach fails. A second problem
of a coarse approach is that the more complex a unit becomes, the more complicated it
is to repair it. Especially if the state of the logic unit does not only depend on its inputs
but also on internal states. In some situations, a fine grain implementation might not be
possible at all, e.g when using a third party core that cannot be modified.

Problems with TMR TMR is neither perfect, nor does it come for free. Several issues
have to be considered.

• The most severe drawback is the additional resource consumption. Since the logic
is tripled and voters are added, more than three times the resources are required
compared to the original design. The actual overhead depends on the implementa-
tion, reports from different publications vary from below four to over six [BSV11,
page 191], [WRGC03b], [WRGC03a], [MMPW07], [Wir14, page 30].

• An airtight TMR implementation would utilize three times more input and output
pins of the device than the original logic. Majority voting in the fabric of the FPGA
would induce a single point of failure. Perfect TMR would therefore not only re-
quire more resources in terms of routing, look-up table and flip-flops, but also in
terms of IO pins. This dramatically reduces the connectivity of the FPGA which is
in many situations a critical parameter.

• With more routing and additional logic complexity, the maximum clock frequency
of the design decreases [WRGC03a], [Wir14, page 30].

• The approach with tripled voters does not work on clock domain crossings that
are common in complex designs (see also [Wir14, page 16]). When crossing a clock
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Clk

Inputs

Combinational
Logic Flip

Flop

(a) The original logic, consisting of an combinational
part and an sequential part (flip-flop). Depicted
here is also a feedback circuit, the output of the flip-
flop is used as input for the combinational logic.

Voter

(b) The logic is triplicated and a voter on the out-
puts decides for the correct result by select-
ing the majority of the three inputs. Either all
three outputs are the same (normal operation)
or, in case of an error in one path, the correct
result is still chosen by two against one. The
feedback path corrects potentially erroneous
values in the next clock cycle.

Voter

Voter

Voter

(c) The problem with an implementation as de-
picted in figure 3.2(b) is that a single error in
the voter can still result in an erroneous behav-
ior of the design. This can be avoided by also
triplicating the voters. The design then has
three outputs, that are connected to the cor-
responding input of the subsequent TMR’ed
logic unit.

Figure 3.2.: Illustration of the implementation of TMR.
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domain, it cannot be assured that all three paths are sampled in the same clock
cycle. Due to metastability, one path might be sampled one clock cycle too late
or too early compared to the other paths. Either a complicated synchronization
method is required or the clock domains are crossed using a single path only (the
variant depicted in figure 3.2(b)), inducing a single point of failure.

• TMR does not protect against multi-bit upsets (two simultaneous SEUs). In many
applications, this is not a problem because the probability for a multi-bit upset is so
low that it can be safely neglected. However, in some applications, e.g. when op-
erating in high radiation environments, the probability for multi-bit upset becomes
relevant.

• TMR is only effective for a certain run time. After that, the probability to fail is even
better without TMR (see subsection TMR Needs Repair below).

Automated TMR Tools On his way to a working implementation of TMR the devel-
oper has to avoid several pitfalls. Not only the implementation in the hardware descrip-
tion language needs to be correct, but also some default optimization routines of the
mapping and place-and-route tools need to be manually disabled. This requires a very
deep and precise knowledge of the used design tools.

Xilinx offers a tool called XTMR that automatically performs some of the required steps
towards a TMR’ed implementation [BCT08, page 5].

Using this tool helps in avoiding some pitfalls, however, it creates some additional
problems. First of all, it works on netlists and is a brute force approach, triplicating every
part of the logic in the netlist. It is therefore difficult to restrict TMR-implementation
on selected logic components. The additional resource consumption cannot be easily
reduced.

Second, XTMR is coupled to a specific version of the vendor tools suite. The developer
has to commit himself to stick to this specific version, e.g. Xilinx ISE version 9.2i. An
upgrade to a later version is not easily possible.

Third, the tool falls under US export restrictions. Xilinx states in the XTMR product
brief manual [Xil]: “The Xilinx TMRTool is an ITAR-controlled product and as such cer-
tain documents and declarations must be collected from the customer when an order
is placed.” As a consequence, Xilinx XTMR tool cannot be easily used, especially not
outside the United States.

Another automated tool called BYU-LANL TMR Tool exists [Con09] but is not further
considered here.

For the sake of flexibility, a manual approach was chosen for this thesis, see section
4.2.2.

Partial TMR Under certain circumstances, the resource consumption can be mitigated
by only applying TMR to selected logic components. Partial TMR is such an approach
[PCG+05]. The designer can trade off resource consumption with better reliability. The
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Partial TMR tool analyzes a specific bitfile for sensitive bits, and only triples the logic that
corresponds to these sensitive bits.

This thesis uses a slightly different approach that has been named Selective TMR. A
program like the Partial TMR tool that automatically identifies all sensitive bits in a design
can only detect whether an SEU in a certain SRAM cell causes an error or not, but it cannot
qualify the impact of the error to the surrounding setup.

Selective TMR is a manual approach that exploits the knowledge of the firmware de-
signer to qualify the severity of the error. It is presented in section 4.2.2.

TMR Needs Repair

After running for a certain time, TMR without repair mechanisms even worse than im-
plementing no redundancy at all.

Intuitively one expects TMR’ed logic to be more robust against SEUs than logic without
redundancy. Indeed, this is true until the first SEU affects the TMR’ed logic.

The TMR’ed logic is bigger than an equivalent logic without redundancy. For the ar-
gument we assume an idealized TMR design, only taking into account the triplication
of the logic and omitting additional overhead by voters and additional routing. Such an
idealized TMR design consumes (only) three times the resources of the non-redundant
design, in reality a factor of four to six is more realistic (see “Problems with TMR”, page
46).

TMR1

TMR2

TMR3

unused

Design

unused

TMR'ed Design Normal Design

(a) Without SEUs in the logic only the nor-
mal design is vulnerable.

TMR1

TMR2

TMR3

unused

Design

unused

TMR'ed Design Normal Design

(b) After the first SEU, the vulnerable area of
the TMR’ed logic unit is twice the area of
the non-redundant logic.

Figure 3.3.: Illustration of the vulnerability of a TMR’ed logic unit and a non-redundant
logic unit. Vulnerable parts are shown in orange, the parts of the TMR’ed logic unit
that can tolerate an SEU are shown in blue. The non-redundant logic unit is always
completely vulnerable, but it is also just 1/3 of the resources of the TMR’ed logic unit.

In reality, a fully TMR’ed design consists of many TMR’ed logic units. Depicted in
figure 3.3 is one such unit. In the following we pick out one logic unit and consider only
SEUs affecting this one logic unit.
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Only one in three SEUs that affect the TMR’ed logic would also affect the non-redun-
dant logic. If we only consider SEUs that affect the TMR’ed logic, the probabilities to
affect the design is the given by:

pSEU affects design =

{
1 TMR’ed design
1
3 non-redundant design

(3.1)

In case of the TMR’ed design, however, the first SEU that affects the logic does not
corrupt operation of the logic. This is the basic idea behind TMR in the first place. On the
other hand, in the non-redundant design, it immediately leads to an error. The probabil-
ity for erroneous behavior after the first SEU is therefore given by:

p(1)error =

{
0 TMR’ed design
1
3 non-redundant design

(3.2)

The probability to have a functional design after the first SEU is:

p(1)f unctional = 1− p(1)error =

{
1− 0 = 1 TMR’ed design

1− 1
3 = 2

3 non-redundant design
(3.3)

After the first SEU in the TMR’ed logic unit the operation is not disturbed, but one of
the three branches is corrupted.4 While the first SEU does not have an immediate effect
on the operation of the TMR’ed logic, it does change the probability for subsequent SEUs
to affect the logic. In case the error is not repaired, the next SEU in one of the other two
branches of the TMR’ed logic unit leads to an error. Hence, the probability for subsequent
SEUs in this logic unit causing an error is p(2)error = 2/3.

For the non-redundant logic the situation does not change, a subsequent SEU causes
an error with a probability of p(2)error = 1/3.

p(2)error =

{
2
3 TMR’ed design
1
3 non-redundant design

(3.4)

The probability to have a functional design after the second SEU is then:

p(2)f unctional =
(

1− p(1)error

)
·
(

1− p(2)error

)
=

{
(1− 0) ·

(
1− 2

3

)
= 1

3 TMR’ed design(
1− 1

3

)
·
(
1− 1

3

)
= 4

9 non-redundant design
(3.5)

4Here SEUs in the dynamic configuration memory (flip-flops) are neglected and only SEUs in static con-
figuration memory (look-up tables and routing) are considered. SEUs in static memory are much more
likely as there are much more static configuration bits than dynamic configuration bits contributing to the
design [Whi14, page 25]. An SEU in the dynamic part will indeed be repaired by TMR.
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We see, that already after the second SEU, the probability to be functional is higher for
the non-redundant logic unit (p = 4/9) than for the TMR’ed logic unit (p = 1/3).

The generalized equation for a number of n SEUs is:

p(n)f unctional =
n

∏
i=1

(
1− p(i)error

)
=

{( 1
3

)n−1
TMR’ed design( 2

3

)n non-redundant design
(3.6)
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Figure 3.4.: Comparison of (idealized) TMR’ed logic with non-redundant logic. The
dots refer to the probability of an error-free operation despite a discrete number of SEUs.
A plot of the equation 3.6 with continualized n connects the dots. The red plot shows
a plateau from 0 to 1 where it is protected against errors. Already for the second SEU
in the TMR’ed logic, it has a higher probability to fail than the non-redundant logic. If
SEUs are not repaired and more than one critical SEU is expected in one of the tripled
logic units during runtime of the system, it would even be better to do nothing than to
implement TMR.

A fully TMR’ed design usually consists of many tripled logic units. The number of
SEUs that the whole design can sustain until the probability to still have an operative
system becomes higher for the design without TMR, the so called “break even point”, is
higher than two SEUs. The actual value varies with the granularity of the TMR imple-
mentation.

However, the underlying principle described in this section is valid for each TMR’ed
logic unit independently and therefore also for the whole design. It is important to repair
SEUs before the number of SEUs in the design reaches the “break even point”, otherwise
TMR should be omitted.

The principle was presented before, e.g. in [Wir14].
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FSM Encoding

For the implementation of finite state machines (FSMs), an alternative to TMR can be
chosen. The state vector of the FSMs can be Hamming-coded [Ham50]. If the hamming
codes are chosen with hamming distance of three, this allows for online detection and
correction of corrupted states in case of single bit flips.

In [KZ04] Hamming-coded FSMs have been compared to FSMs implementing TMR.
Several sample FSM designs with varying complexity have been analyzed by imple-
menting TMR and Hamming-coding. Hamming-coded FSMs perform slightly better
than TMR’ed in terms of resource consumption, but TMR shows better results when it
comes to clock frequency penalties. Also the results vary very much depending on the
implementation.

Good results concerning SEU mitigation have been achieved with test designs imple-
menting Hamming-coded FSMs [Geb12]. However, other tests that compare Hamming-
coded FSMs to TMR’ed FSMs still show better results for TMR [Ber14].

Since the situation is ambiguous, an analysis with respect to SEU tolerance has been
conducted that compares Hamming-coded FSMs with FSMs implementing TMR. It is
presented in section 5.2.2.

3.2.3. Configuration Scrubbing

Since SEUs are not temporary errors, but remain in the configuration memory, they ac-
cumulate over time. As described in detail in section 3.2.2, this is a problem especially
for redundancy-based mitigation techniques such as TMR. As shown in figure 3.4, TMR
works when SEUs do not accumulate. Unfortunately, without countermeasures, they do
accumulate over time and TMR will fail eventually.

Therefore, TMR requires a technique to remove SEUs from the configuration memory.
This can be achieved by periodically refreshing the FPGA’s configuration. A full recon-
figuration, however, interrupts the operation of the FPGA until it is reprogrammed. On
top of that, all internal states are lost and the device then first needs to be resynchronized
into the running system.

Fortunately, Xilinx developed a technique called Dynamic Partial Reconfiguration (DPR)
which they first described for their Virtex FPGAs in 2000 [Xil00]. DPR allows to repro-
gram the FPGA configuration memory without interrupting the operation of the device.
Since the operation of the device continues, the internal states are of course preserved as
well. This technique allows to dynamically change the logic in the FPGA during runtime,
this enables for example to share fabric resources among tasks that do not run simultane-
ously. More information about DPR can be found in [Eto07], [Xil13], and in [Abe11].

The same technique can also be used to refresh the configuration memory in case of
SEUs. The idea to use DPR for refreshing the configuration memory was first described
in [CCS00] and by now it is state-of-the-art technology for SEU mitigation. The docu-
mentation for implementing scrubbing for Xilinx Virtex-4 FPGAs, the particular devices
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used for this thesis, is described in [CT09]. Scrubbing runs in the background, without
interrupting or disturbing the execution of the running firmware.

Several different approaches for the implement ion of scrubbing exist:

• One approach for scrubbing is to read-back the configuration memory and check
for SEUs. Only if an SEU is detected, the configuration memory is scrubbed. This
brings the advantage of providing valuable statistics like the number of SEUs that
are corrected. In low radiation environments, where the probability for suffering
from multi-bit upsets is relatively low, this is a valid option. This approach has
been followed for the ALICE RCU [RAF+11a].

• The faster approach is called “blind scrubbing”. The configuration controller con-
tinuously refreshes the configuration memory without checking for SEUs. As this
is the fastest method available for the Virtex-4 FPGA and a ready-to-use implemen-
tation was available in the working group (by Heiko Engel [Eng09]), it was chosen
for this thesis.

• With Xilinx Series 5 and 6 FPGAs, Xilinx introduced a feature based on the on-chip
calculation of CRC checksums from the configuration memory [Cha10]. It allows
for much faster SEU detection than read-back of the full configuration memory.
This feature was not available on the hardware used for this thesis.

• Xilinx Series 7 FPGAs are shipped with an integrated scrubbing engine that al-
lows to omit the external on-board configuration controller [Xil14a, chapter 8]. This
solves the problem with the low TID of Flash-based devices that have previously
been considered as the only viable choice to implement such configuration con-
trollers. Future SEU mitigation strategies for CBM will most likely exploit this fea-
ture, see section 8.2.2 for more details.

It should be noted that scrubbing only prevents the accumulation of SEUs in the static
part of the FPGA configuration memory, but not the occurrence of SEUs per se. Scrubbing
has to write the correct configuration into the chip and this takes some time. An SEU
remains in the logic until it is repaired and until then it can disturb the operation of the
design. This is especially problematic, when an SEU leads to corruption of the dynamic
part of the configuration memory, for example the state vector of a finite state machine
(FSM). This can happen directly when the a bit is flipped that is part of the dynamic
memory or indirectly when an erroneous output of corrupted logic from the static part
is latched in a memory cell of the dynamic part. Scrubbing does not refresh memory
cells that belong to the dynamic part of the chip’s configuration. This would overwrite
any internal states in the logic, sequential logic would therefore not be possible. An
additional technique, e.g. TMR, is required to sustain the SEU for this short time period
and to mitigate SEU effects in the dynamic part of the FPGA’s memory.

TMR and scrubbing work best together: TMR covers aspects that scrubbing leaves out
and TMR is not efficient without scrubbing.
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3.2.4. Fault Injection Tests

The technique used for scrubbing (see section 3.2.3) can also be used to emulate SEU
events in the laboratory [LCF+01, AMZE03, Eng09, and many more]. When scrubbing is
performed, the configuration memory of the FPGA is refreshed with correct values and
thereby potential configuration memory errors, e.g. caused by radiation, are corrected.
This procedure also works the other way around. Instead of writing correct values into
the configuration memory it is also possible to refresh with a bit pattern where one or
several bits are flipped. This results in a chip configuration with one or several flipped
bits, a similar situation as expected when radiation is causing bits to flip. Radiation in-
duced SEUs can be emulated and the behavior of the running firmware in such situations
can be evaluated without the need to actually expose the device to radiation. However,
not all of the possible SEUs can be emulated that way, e.g. SEUs in the dynamic configu-
ration memory (flip-flops) are not considered. Nevertheless, fault injection is a powerful
tool to analyze a design and to prepare for real in-beam tests.

Fault injection tests have been used in this thesis to evaluate the efficiency of Hamming-
coded finite state machines and triple modular redundancy to (section 5.2.2) and for
preparation tests preceding the in-beam tests (section 5.3.2).

3.2.5. Fault Tolerance in High Energy Physics

According to sales promotion of FPGA vendors, the main use case for FPGAs in radiation
environments are military applications and space flight missions. For military applica-
tions, not much information is available. For space missions there are many publications,
mostly describing the same techniques, triple modular redundancy in conjunction with
scrubbing. However, in space applications, the situation is slightly different, they require
very high reliability. A failing device might be mission critical and nobody can press a
reset button once the device is in space.

Yet more and more FPGAs are operated in radiation environments of high energy
physics (HEP) experiments. At the “Workshop on FPGAs in High Energy Physics” that
was held at CERN in March 2014, the conclusion at the end one talk was: “The new
hardware and error mitigation techniques allow HEP front-end electronics to follow the
general trend of replacing ASICs with FPGAs in areas with moderate radiation levels”
[HAB14]. Nowadays, most HEP experiments operate or plan to use FPGAs in radiation
environments:

• After using an SRAM-based Xilinx Virtex II device for Run1, ALICE plans to update
their Readout Control Units to a Flash-based SmartFusion 2 FPGA. For Run2, they
expect ∼ 45 SEUs/h. [JA14]

• ATLAS plans to mount SRAM-based Xilinx Kintex-7 devices in an environment
where they expect up to 10 SEUs per day. They mitigate by duplicating the devices
on the read-out board. [HAB14]
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• LHCb plans to operate an SRAM-based Altera FPGA in an environment where they
expect per single FPGA on average one error every 1.5 · 106 seconds [FUWL14], that
translates to only 19 SEUs per year.

• CMS plans to replace their existing Antifuse chip with a Flash-based MicroSemi
FPGA and use a tool for automatic TMR implementation. [Gra14]

There are also existing solutions that are based on FPGAs. ALICE has seen several
SEUs in their read-out electronics and decided to use scrubbing for mitigation [RAF+11b],
even at a much lower SEU rate (about one SEU every two hours) than what is expected
for CBM (one SEU every two seconds, see section 7.2).

There is reason enough to take SEU effects serious. As presented in [BCMS12], the
radiation induced failures for the LHC operation in 2011 summarize to about 70 beam
dumps, causing a downtime about 400 hours. This of course includes not only failures in
FPGAs but also in all other kinds of devices like optical fibers, or voltage regulators.

3.3. Verification Through In-Beam Tests

A common procedure to evaluate the susceptibility of electronics with respect to radia-
tion is to operate the electronics in a high-radiation environment and measure radiation
effects under controlled conditions [Eng09, Rø09, Mar04, Xil14b, and many more]. Radia-
tion environments are usually produced by either placing the device close to a radioactive
source or by mounting it directly in the beam line of an accelerated particle beam.

Not all classes of radiation cause the same effects in electronics. SEU effects, for ex-
ample, require a certain energy, and thus they are dominated by the level of high energy
hadrons5 (see section 2.2.2). The radiation environment has to be chosen according to the
effect that one wants to evaluate. For example: using a beam of accelerated electrons to
measure SEU effects would not work, because SEUs are hardly caused by electrons. The
in-beam tests carried out for this thesis evaluate SEU effects. The beam particles were
protons with a kinetic energy of about 2 GeV.

For classification of measured SEU effects one needs to know the number of SEUs that
occurred in the device under test. The number of SEUs in a device can be calculated from
the number of beam particles and the SEU cross section.

no. of SEUs = no. of particles × device cross section (3.7)

= no. of particles ×
︷ ︸︸ ︷
bit cross section × no. of bits in device (3.8)

Mature techniques exist for measuring beam particle rates, many details can be found
in literature, for example in [Kno00]. However, all of these techniques are hard to apply,
an expert on-site is required for this task.

5For this reason, FLUKA simulations for CBM give also the flux of high energy hadrons [Sen11]. This
allows for an estimation of SEU rates in the electronics.
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For the SEU cross section, the situation is different. The SEU cross section depends
on the particle type and on the energy of the particle. If the SEU cross section for the
specific particle type at the given energy is not known, it has to be measured in a separate
test. For such a test, it is very important to have precise knowledge about the internal
structure of the device which is not always available. Fortunately, Xilinx publishes device
specific bit cross sections for neutrons [Xil14b]. They give their results with the statement:
“Neutron cross sections are determined from LANSCE beam testing according to JESD89A/89-
3A”. According to JESD89A, LANSCE neutrons are high energy neutrons (E > 10 MeV)
[JED06, pages 33 & 81].

The SEU cross section for protons and neutrons at higher energies do not differ much
since only nucleus-nucleus collisions deposit enough energy in the silicon to induce
SEUs. Figure 2.7 (page 28) shows that protons at high energies show only small vari-
ations in their effective SEU cross section. For that reason the values published by Xilinx
can be used directly to estimate the number of SEUs from the beam particle rate.

However, to be able to compare measurements under different conditions (different
kind of particles, different spectrum of particle energies), normalization is required. A
common method is to normalize the particle rate to 1 MeVneq. 1 MeVneq is the equivalent
rate of neutrons with a kinetic energy of 1 MeV that would cause the same radiation
damage as the actual particle beam that was used for the test.

When testing electronics for radiation effects using a particle beam, it is standard pro-
cedure to measure the particle flux and then calculate the SEU rate from the device cross
section. Based on the SEU rate, the efficiency of radiation mitigation techniques can then
be evaluated (see figure 3.5(a)).
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(a) Traditional flow
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(b) SEU Counter flow

Figure 3.5.: Experiment flow to estimate failure rate of CBM detector (traditional and
SEU Counter approach). The complicated and error-prone task of particle rate measure-
ment is not needed when SEUs are directly counted.

3.3.1. SEU Counting

If only SEU effects are evaluated, the actual particle flux and the SEU cross section might
not be required for classification of SEU effects. In many devices, SEUs can directly be
counted by readback of the configuration memory. The number of SEUs sustained by
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the device until it fails can be directly measured instead of getting it from complicated
measurements and/or lengthy calculations. This has been done several times, see for
example: [HSPG+08], [HDFC+11],[RBK+12], [Geb12].

Figure 3.5 shows a comparison between a traditional flow and the SEU Counter flow.
Instead of first measuring the particle rate and then calculating the SEU rate from that,
which is a complicated and error-prone task, the SEU rate can be measured. With direct
SEU counting it is still possible to evaluate the efficiency of radiation mitigation tech-
niques.

Nevertheless, estimations based on device cross section and radiation environment are
still required for determination of the expected failure rate of the device in the experi-
ment, but this is a different task (see section 7.2).
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4. Approach

Before going into implementation details in chapter 5, this chapter describes the approach
for the implementation of a radiation mitigated CBM-ToF read-out controller and further-
more the basic setup for in-beam testing of the mitigation efficiency is presented. As the
previous chapter, this one is also organized in the three sections that represent the same
three topics.

First, section 4.1 presents the GET4 read-out controller that follows the modular design
approach of the CBM read-out controller family. The general advantages of this modular
design approach are discussed. Then, in section 4.2, the choice of radiation mitigation
techniques and the necessary adaptations for the techniques to fit for the CBM use case
are discussed. Section 4.3 finally describes the basic ideas to verify the efficiency of the
implemented techniques at in-beam tests.

4.1. Modular Firmware Concept for the CBM Read-Out
Controller

After digitization of the detector signals in the front-end ASICS the data is send to the
CBM read-out controller. The read-out controller receives the data, reformats it to the
CBM data format, and then pushs it to the computing node for further processing. A
working FPGA firmware for interfacing nXYTER ASICs already existed, the part of the
logic that handles the communication towards the computing node could be reused for
the GET4 ASIC. The modular approach allows for sharing logic between read-out con-
troller firmwares for different front-end ASICs. This idea is described in more detail in
this section, it was also presented at TWEPP conference in 2010 [MAGK10].

4.1.1. Motivation for Modularization

For a project at the scale of the CBM read-out controller firmware it is almost always a
good idea to implement the design in clean structure with several encapsulated entities
and clear interfaces. Especially if there is more than one designer working on the project.
In addition, another two strong motivations to divide the firmware of the read-out con-
troller in different “modules” are described in the following, one regarding the front-end
interfacing logic and one regarding the transport logic towards the DAQ.

Multiple Different Front-End Interfaces As depicted in figure 4.1, CBM consists of
multiple different subdetectors, each with individually designed front-end electronics.

59



Approach

Figure 4.1.: The CBM experiment at FAIR/GSI consists of several detector systems as
illustrated here in its muon configuration. Picture as published in [MAGK10].

The different front-end chips require different interfacing logic in the read-out controller
(ROC). With the SysCore Boards being very flexible regarding these kind of interfaces, the
goal is, of course, to support as many of the front-end electronics interfaces as possible.
The first chip that was read out by a SysCore Board was the nXYTER in 2007 [Abe07]. This
read-out firmware, developed by Norbert Abel, quickly became the standard solution
for nXYTER read-out and is still widely used in CBM community. With the work of
this thesis, the read-out of the first prototype of the GET4 followed in 2009. As of 2012,
further iterations of the GET4 with slightly different interfaces are supported. Later on,
the SysCore Board Version 3 was used to interface the SPADIC [Gar11] and the STS-XYTER
[Sch14].

Plans foresee to read out some of the front-end electronics with ASICs instead of FPGA-
based ROCs, e.g. in case of the STS. The reason is the extreme radiation level in those
regions. Nevertheless, even if the read-out of some of the detector front-ends is planned
to be accomplished by an ASIC in the final detector setup, the prototyping of those read-
out ASICs is still done on an FPGA.

In the end, several different firmwares for interfacing the different front-end electronics
are required. However, the different firmwares have very common requirements regard-
ing the interface towards the DAQ. The transport logic towards the DAQ can be the same,
and with a modular design and a clear interface, the same logic can easily be reused.

Different Requirements for Data Transport The SysCore Boards are designed to support
the research and development of the CBM read-out chain and also to providing a work-
ing data read-out solution for detector development. The challenge here is to develop
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towards an implementation that meets the full list of future requirements, while at the
same time permanently providing a working read-out solution for the smaller laboratory
setups.

Final experiment Laboratory

many ROCs involved ↔ few ROCs involved
synchronization of all the ROCs is
very complicated

↔ rather simple synchronization
method that does not scale to more
than a few ROCs is also acceptable

huge data bandwidth required ↔ significantly lower data bandwidth is
sufficient

data is processed on a high perfor-
mance cluster

↔ data is processed on a commodity PC

significant amount of radiation is af-
fecting the electronics

↔ no radiation issue

different detector ground levels re-
quire electrically isolated readout

↔ only one ground level

needs to be available at the end, when
the experiment is constructed

↔ needs to be available as early as possi-
ble, during R’n’D

Table 4.1.: The different requirements on the transport logic during the research and
development phase and for the final detector setup. Detector picture from [FHK+11]

The final experiment setup and the smaller laboratory setups are two different sce-
narios and both have different requirements. The requirements for the final experiment
setup are tighter than the requirements for laboratory setups. In the final experiment
many read-out boards will be operated in parallel, which requires a sophisticated time
distribution and synchronization scheme. Also a much higher data throughput has to
be handled than in small laboratory setups. The radiation level in the final experiment
will be high enough to cause serious trouble for the electronics. Implementing all these
features is a complex task that requires quite an amount of development time.

However, a working data read-out solution for laboratory setups needs to be available
as early as possible to allow detector developers to analyze their detector data. The fi-
nal experiment setup, on the other hand, is required much later, at the time when the
experiment is constructed. The two scenarios constitute different requirements on the
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transport logic. The final experiment setup requires a complex logic that supports all
specified features, and in the early days a subset of all features is sufficient.

Table 4.1 lists the different requirements on the transport logic in early R’n’D and for
the final detector setup.

The bottom line is that a lot of different firmwares are needed by different detector
groups, but the firmwares only differ in certain aspects and much of the logic can be
shared among those firmwares. A modular design of the firmware is the obvious ap-
proach.

In 2009, the first prototypes of the GET4 chips were available. At that time, the decision
was made to split the existing monolithic nXYTER read-out firmware in two modules,
one to interface the front-end electronics and one to handle data transport. The existing
logic for data transport via Ethernet could be used to quickly develop a firmware for
GET4 read-out. The read-out logic for the GET4 was urgently needed to test the first
GET4 prototype and push its integration in the CBM read-out chain.

At the same time, the development of the CBMNet transport protocol reached a state
mature enough to start the process of integration in the CBM read-out chain. While the
GET4 was put into operation, the Optics module for integration of the CBMNet transport
protocol could be developed in parallel. When the Optics module reached a mature state,
it could be used as transport logic for both, GET4 and nXYTER.

4.1.2. Interface Requirements

Once the decision for a modular approach is made, a specification of the interface be-
tween the modules is needed. Figure 4.2 illustrates the separation of the firmware into
transport and front-end modules and the interface between them. Naturally, such an in-
terface should meet the requirements of the CBM experiment. The CBM requirements
are:

• high data throughput

• reliable control

• precise time synchronization

• relaxed latency requirements

The interface clock is provided from the transport module to the front-end module.
This allows to use the recovered clock from the optical connection, which is the global
CBM clock that is distributed via CBMNet to all front-end electronics, as system clock.
Together with CBMNet’s deterministic latency interface this enables a precise time syn-
chronization over multiple ROCs.

If the Ethernet logic is used as transport module, the local board clock is used and
synchronization over multiple ROCs is not possible. This is not problematic as Ethernet
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Figure 4.2.: Basic illustration of the CBM read-out controller firmware design based on
two modules. The interface between the modules reflects the requirements of the CBM
experiment.

is not intended to be used in complex setups with more than a few ROCs, and they can
be synchronized as described in section 3.1.3 (“Poor Man’s Sync”, page 42).

A standard FIFO interface is chosen for the data path as it is easy to use, well known,
and it does provides a high data throughput. The latency induced by a FIFO buffer is
not relevant for CBM because the experiment is designed to operate without low-latency
triggers.

The controls interface is designed as a bus structure, derived from the OPB Bus [IBM01]
that was already in use in the early, Ethernet-based read-out logic for the nXYTER chip.
Every read and every write of a register in the design is acknowledged, providing a
robust controls channel.

The functionality of the different modules is briefly discussed in section 5.1.1, details
of the modules and the interface are given in appendix B.

4.1.3. Towards Radiation Tolerance

Radiation tolerance is not required for all use cases. Only the optical transport module
and for the GET4 read-out module are planned to finally be operated on SRAM technol-
ogy and in a radiation environment. Here, radiation mitigation techniques need to be
implemented. Everything that is not part of the GET4 read-out via optical fibers is either
for intermediate solutions, prototyping for ASIC solutions, or will be operated outside
the radiation environment in the final setup, and thus does not need to address radiation
effects.
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4.2. Choice of Radiation Mitigation Techniques

Due to the high radiation level expected for CBM-ToF, it is clear that FPGAs can only be
utilized when SEU countermeasures are implemented. Scrubbing is the obvious choice
for a radiation mitigation technique. As laid out in section 3.2.3, scrubbing does not cover
all aspects of radiation induced errors and requires additional design practices to protect
dynamic content in the FPGA’s memory.

This section summarizes the arguments for choosing or rejecting certain implementa-
tions for the various radiation mitigation techniques.

4.2.1. Blind Scrubbing

The choice of radiation mitigation techniques is restricted by the particular hardware for
which it has to be implemented. Some techniques require support from the hardware. In
case of the read-out controller for the GET4 ASIC, the hardware platform was the SysCore
Version 2 board, this board comes with a Xilinx Virtex-4 FPGA.

For the Virtex-4, two scrubbing strategies can be implemented (see section 3.2.3): blind
scrubbing and read-back based scrubbing.

Compared to blind scrubbing, read-back based scrubbing brings the advantage of pro-
viding valuable information, for example the number of SEUs and even the position of
the SEUs on the chip. However, it also comes with the drawback that one full scrubbing
cycle lasts twice the time of a full scrubbing cycle in case of blind scrubbing.

For this thesis, blind scrubbing has been chosen since high SEU rates are expected. It is
important to repair SEUs as quickly as possible to minimize the possibility for multi-bit
upsets. For lower SEU rates, read-back based scrubbing might be the better choice.

It should also be noted that for blind scrubbing there was already a ready-to-use im-
plementation available. A read-back based scrubbing implementation would have had
to be developed first.

4.2.2. Selective TMR

The most severe problem of the TMR approach is the massive overhead in resource con-
sumption (see section 3.2.2). Up to six times the resources of the original design are
required for a TMR’ed implementation of the same logic. An increase in resource con-
sumption translates directly to an increase in cost, either larger FPGAs or a higher num-
ber of FPGAs are required to connect the same amount of input channels. Luckily, a
characteristic feature in the requirements for CBM can be exploited such that a lot of the
overhead from TMR can be avoided.

As the efficiency of the detectors is not perfect anyways, some additional data cor-
ruption can be accepted as long as its contribution remains reasonably small. The data
related read-out logic does not need to operate 100% correctly at all times and errors can
be allowed in rare cases [Mül13, slide 23]. Of course, erroneous data needs to be de-
tected, but it is not required to correct the data. For data, a simple CRC checksum can
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be used to detect possible corruption. This is easy to implement and requires only few
resources. Only errors in the configuration logic and in the time-representing logic need
special protection and must be implemented as TMR’ed logic. The logic components can
be grouped into two categories:

• data path related→ only error detection required→ use CRC

• control related→ error correction required→ use TMR

Figure 4.3 shows the resource consumption of the data path logic and control logic in
the GET4 read-out design from a conceptional point of view. A lot of input channels are
connected, therefore, the data-related part of the read-out logic represents the major part
of the overall logic. Control logic constitutes only a small part of the design.

Data In

Buffer

C
om

bi
ne

Control

Data In

Data In

Data In

Figure 4.3.: Analysis of the GET4 read-out design. The combination of multiple input
channels consumes the major part of the resources, the contribution of control logic is
much less.

In the particular implementation for the GET4 read-out firmware control logic con-
tributes about 10% of the full design, based on the MAP report from the synthesis of the
not redundant design. Figure 4.4 shows an illustration of the given design with high-
lighted controls and data resources.

It is evident that avoiding costly TMR implementations in the data path saves the major
part of the overhead of a full TMR implementation. Automated tools do not allow for
fine-grain TMR replication and hence they are not used. For the critical logic parts, TMR
is implemented manually using VHDL (see section 5.2.2). Results are presented in section
6.2.2.

Hamming Coded FSMs For hardening of finite state machines (FSMs), it was consid-
ered to use hamming coded state vectors instead of using a TMR approach. As already
mentioned in paragraph FSM Encoding (page 52), contradictory statements about the per-
formance of hamming coded FSMs compared to TMR’ed FSMs can be found. To clarify
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Figure 4.4: Illustration of the resource con-
sumption for the GET4 read-out firmware
without redundancy, created with the Xil-
inx design tool PlanAhead. Resources that
belong to control and timing logic are high-
lighted in red, resources that are part of data
path logic are highlighted in green. It can be
seen, that critical resources (red) contribute
much less to the overall resource consump-
tion than uncritical (green) resources. Ac-
cording to the numbers in the map report,
the percentage of control and timing related
resources is only 10% of the total number of
utilized resources in this design. Only the
red resources need TMR protection.

the situation for the design in question, a test has been performed that evaluates the per-
formance of the two options. The test is described in section 5.2.2 and suggests that, also
in the case of FSM design, a TMR approach should be chosen.

4.2.3. Fault Tolerant Protocol

A decision for a soft radiation mitigation strategy that allows occasional failures can only
succeed when higher layers of the system design can tolerate an error in the lower levels.
This means that the impact of the radiation mitigation strategy is not restricted to compo-
nents in the radiation zone, but has also some implications for design decisions of parts
that are located outside the radiation zone.

An example is the protocol design for data transport. Given that the protocol design
supports retransmission and that the retransmission is not carefully designed, a data
word that gets corrupted in a buffer in the radiation zone can result in an infinite cycle
of retransmissions. By retransmitting this one corrupted word over and over again, the
data channel is completely blocked.

When communicating with unreliable components, such details have to be considered
at higher design levels. A clever use of timeouts and watchdog functionality is required
alongside an intelligent treatment of responses that are not compliant to the defined pro-
tocol.

Problems related to these higher levels only emerge when the higher levels are put into
operation. This means, that the whole system needs to be put together to see whether all
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possible design flaws are eliminated.

4.2.4. Fault Injection Tests

As already described in section 3.2.4, fault injection tests (also known as SEU injection
tests) can be used, albeit with some limitations, to emulate SEUs in a firmware design.
Fault injection tests use the same hardware and interfaces as scrubbing does. A XILINX
Platform Cable USB programmer and the Xilinx iMPACT software can be used to write the
configuration bitstream from the PC to the FPGA via a JTAG interface. Another possibil-
ity is to use the faster SelectMAP interface. The SysCore Version 2 connects the SelectMAP
interface to the Actel configuration controller that can read a configuration bitstream from
an on-board flash memory.

The SelectMAP interface has the advantage of being much faster than JTAG. However,
the JTAG solution is more versatile, the bitstream can be modified by software running
on the PC. Flexibility is important for SEU injection tests, therefore, the solution that was
chosen for the tests described later (in sections 5.2.2 and 5.3.2) utilizes the JTAG interface.

Weak Points The SEU injection method is a great helper for the evaluation of SEU ef-
fects as it emulates a real high-radiation situation very closely. However, some differences
remain.

The weak points for the particular SEU injection implementation for this thesis are:

• Only the static configuration memory is targeted for SEU injection. SEUs are not in-
jected to the “dynamic” memory like flip-flops and BRAMs although these memory
cells are also SRAM-based and will suffer from SEUs in the real experiment.

• The injection of an SEU via JTAG is rather slow, one injection run takes about seven
seconds. Recording a statistically significant set of samples requires a long time.
Therefore, the tests had to run over night. This could have been improved by re-
placing JTAG based injection with a hardware based injection using the on-board
configuration controller. However, it would also add new logic to the system. New
logic is always a likely candidate for new errors, and hence complicates debugging
of the overall system.

• For some tests with tight time schedule it was required to compensate the slow
recording of statistics. Then (e.g. in the test explained in section 5.3.2), not only one
SEU but 20 SEUs have been injected per iteration. This allows for multi-bit upsets,
and some radiation mitigation techniques might not perform optimal on multi bit
upsets (see paragraph TMR Needs Repair, page 49).

4.3. In-Beam Tests

The evaluation of electronics behavior in radiation environments is important, especially
when a new design approach is followed. In the presented case one aims for higher
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particle rates than usual, for CBM-ToF it is expected to expose SRAM-based electronics
to a fast hadron flux of up to 104 s−1cm−2. However, CBM-ToF does not require full
reliability but allows the system to fail in rare cases as long as it recovers quickly and not
too much data is lost.

This design verification cannot be carried out by fault injection tests alone as they do
not cover the full spectrum of SEU effects. Also with commercial off-the shelf electronics,
the internals are not known in full detail, evaluation under conditions that are as realistic
as possible are required to avoid unpleasant surprises later on.

4.3.1. Test Setups

For this thesis two in-beam tests were carried out in the JESSICA cave of the Cooler Syn-
chrotron (COSY) at Forschungszentrum Jülich/Germany. A first test in August 2012, and
a second test in July 2013.

In both tests the COSY beam consisted of high energy hadrons: protons with an energy
of about 2 GeV. Such a beam is well suited for SEU tests since high energy hadrons are
also the dominant contributor to the expected SEU rate at CBM (see section 3.3). The
particle rate can reach up to 107 s−1cm−2 which is sufficient for such tests (see section
5.3.2).

The basic concept of both tests is the same. Deterministic data is delivered by a data
generator that is running outside the radiation zone. The firmware under test is running
on a board that is mounted directly in the beam line. It receives the deterministic data,
executes the read-out algorithms and then delivers the processed data to the DAQ PC. On
the PC the data can then easily be analyzed for corruption because it is deterministic. The
main motivation is to evaluate the efficiency of the scrubbing method under the condition
that not all logic parts are TMR-protected. So quality of data taken when scrubbing is
enabled is compared to that of data that is taken when scrubbing is disabled.

Test Setup 2012 In 2012, only the GET4 module fully implemented the required radi-
ation mitigation methods. The Optics module was not ready for use at time of the 2012
in-beam test, mostly due to difficulties with the preparation of an external core that is
part of this module (see section 5.2.4).

For that reason, the optics module out was moved out of the beam line. Therefore, the
firmware was split into two firmwares. The GET4 module was operated in-beam, while
the Optics module was operated off-beam on a second board. Two dedicated modules
were implemented, one on each board, that tunnel the interface signals of the modules
between the two boards.

Figure 4.5(a) illustrates the 2012 test setup.

Test Setup 2013 The good results of 2012 motivated a second test in 2013 to verify that
the results are also valid when the full firmware, including the Optics module, is exposed
to beam particles. Figure 4.5(b) illustrates the 2013 test setup.
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(a) The test setup 2012. Because of trouble provided
by an external core in the Optics module, only
the GET4 module was mounted in-beam. The
Optics module ran on a second board along the
deterministic data generator outside the radia-
tion zone. Both boards are connected via dedi-
cated tunnel interface modules.
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(b) The test setup 2013. The full firmware logic is
operated in-beam, directly delivering data to the
DAQ PC. The second board is only required as
deterministic data generator.

Figure 4.5.: Illustration of the two setups for the in-beam tests in 2012 and 2013 re-
spectively. In 2012, only half of the design was ready for operation in a radiation en-
vironment, but the part that was ready performed very well (see section 6.3). In 2013
the promising results of 2012 could be repeated with the complete firmware exposed to
radiation

4.3.2. Beam Diagnostics

As already mentioned before, COSY at the Forschungszentrum Jülich is very well suited
for single event upsets experiments. However, there are some obstacles when it comes to
beam diagnostics.

There are two online status monitors on the COSY website, one showing the current
view of the oscilloscope used for measuring the number of particles in the storage ring,
and another one showing a history of about one day of the number of particles per bunch.
The information of those online monitors can be used for rough approximations (see
section 5.3.3), but it is not meant to be used for beam diagnostics. For example, they do
not take into account the loss of rate efficiency during extraction of the beam. Therefore,
particle rate measurement at the experiment area in JESSICA cave is not provided by
local staff. It is the responsibility of the experimenters to add proper beam diagnostics
system to the setup.

Standard Beam Diagnostics

Well-established methods for beam diagnostics exist, yet the task is not trivial (e.g. see
[Kno00]). A qualified expert on-site is required for getting a correct characterization of
the beam. This is especially problematic when the person carrying out the experiment is
not a physicist but a hardware designer.
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For particle rates up to 105s−1 it is common to use scintillation counters or fiber ho-
doscopes that are based on the same effect, but also give beam position information. For
higher particle rates ionization chambers are a good choice.

Sven Löchner carried out a parallel experiment during the in-beam tests 2012 [LGWH13]
and 2013 [LFG+14]. Part of his setup was an ionization chamber to measured the particle
rate. With the help of his setup an estimate of the particle rate was obtained as reference.

SEU Counter Approach

The SEU Counter approach comes with some advantages. First of all, and this point
should not be underrated, it is a rather easy exercise for a hardware designer compared
to particle rate measurement which is not trivial and requires an expert on-site.

Second, results based on SEU rates are (almost) directly comparable to results of fault
injection tests (see section 3.2.4) that can be carried out in the lab. If new effects that did
not occur during fault injection tests show up, they can be much easier identified as such.

Besides, the particle flux of the experiment specific particle beam does not represent
the real radiation environment in which the device is later to be operated. Many different
kinds of particles at a wide energy spectrum contribute to the radiation environment of
a high energy physics experiment. A particle beam, on the other hand, consists of only
one type of particle at a well defined and narrow energy range. To compare the effects
measured at accelerated beam tests with the effects of the expected radiation environ-
ment at the CBM experiment, both have to be normalized to a common denominator.
Often a calculated equivalent flux of 1 MeV neutrons (1 MeVneq) is used for normaliza-
tion. 1 MeVneq is the equivalent rate of neutrons with a kinetic energy of 1 MeV that
would cause the same radiation damage as the actual particle beam that was used for the
test. Since for a given device, 1 MeV neutron equivalent flux is proportional to the SEU
rate (see also figure 3.5 on page 56), it is also possible to normalize to SEU rate instead.

SEU counting comes with the advantage of being precise, and easy to implement. Un-
certainty comes mainly from normalization to 1 MeV neurons and the device cross section.
For that reason, the SEU counting method was used during the in-beam tests.

Problems with Blind Scrubbing At first sight, it seems problematic to apply the SEU
Counter approach on a setup in which the device under test is protected by blind scrub-
bing. Blind scrubbing corrects SEUs in the configuration memory without reporting their
occurrence (see section 3.2.3), hence, SEUs cannot be counted in the device under test. As
the in-beam tests that were carried out for this thesis use blind scrubbing, SEU count-
ing could not be implemented straightforward. However, a setup involving two boards
allows for SEU counting nevertheless (see section 5.3.3).

Reflipping Bits The situation that the same bit is flipped a second time, returning to its
original value, can be a problem if the total amount of accumulated SEUs are recorded.
However, if the number of configuration bits in the device is very high and the number
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of SEUs accumulation during a common test run is comparably modest, such double bit-
flips can be neglected. The Virtex-4 FX20 FPGA that was used in the tests for this thesis
comprises a configuration memory of ∼ 7 · 106 bits while the SEU rate was only in the
order of a few bit-flips per second. For that reason, double bit-flips can be neglected.
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5. Implementation

This chapter presents the details of the implementation of the radiation tolerant GET4
read-out controller and details concerning the setup to verify the efficiency of the radia-
tion mitigation techniques. As before, it is organized in three sections.

Section 5.1 presents the various modules for the modular CBM read-out controller that
have been implemented. It also addresses briefly the challenges that arise with the orga-
nization of the growing number of possible combinations of modules.

Section 5.2 presents the considerations for selecting and implementing radiation mit-
igation techniques. This includes an evaluation of two competing techniques to add re-
dundancy to finite state machines - Hamming coded FSM and TMR’ed FSMs.

Verification through in-beam tests is addressed in section 5.3. It includes the prepara-
tion work for the tests as well as the details of the final setup, including beam diagnostics
through SEU counting by using a second board.

5.1. Main FPGA Design

As described in section 4.1, the design of the firmware follows a modular approach.
The modules “Ethernet” and “nXYTER” were implemented by Norbert Abel (see section
3.1.3), for the sake of completeness they are also mentioned here. Only a brief overview
of the functionality of the modules presented since the functionality of the design itself
is not in focus of this thesis. However, to get a better idea about the complexity of the
firmware, the reader can find the documentation of the GET4 read-out firmware in ap-
pendix B.

5.1.1. The Modules

By now, five modules have been developed, two front-end modules and three transport
modules. The two front-end modules provide an interface to different front-end elec-
tronics, the nXYTER chip and the GET4 chip while the three transport modules reflect
the different requirements of the different operation scenarios.

Ethernet and USB modules are intended for usage in smaller setups and do not pro-
vide features for synchronization of several boards. The optics module is more complex
since it also features clock distribution and time synchronization mechanisms, which are
required for the final CBM experiment setup.

All front-end modules can be combined with all transport modules, figure 5.1 illus-
trates the principle.
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Figure 5.1.: The modular design of the CBM read-out controller firmware.

The combination of the five modules results in six firmwares: nXYTER-Ethernet /
nXYTER-USB / nXYTER-Optics / GET4-Ethernet / GET4-USB / GET4-Optics. Except
nXYTER-USB, all combinations have been implemented, but not every combination is
available on each hardware platform.

Transport Module: Ethernet

The Ethernet module was implemented by Norbert Abel in 2007/2008 as part of nXYTER
read-out logic. The motivation then was to provide an intermediate solution to transport
data from the ROC to the DAQ-PC. This was urgently needed since a CBMNet based so-
lution was not available at the time and an immediate solution was required by scientists
working on the detector design to be able to read out data from their detector proto-
types. The read-out chain was set up by only two people, Norbert Abel providing the
ROC firmware and Sergey Linev providing the corresponding software. The firmware
is a PowerPC based “System on Chip”, implemented with the Xilinx EDK suite. It can
be used with a commodity PC with a standard network interface card and does not re-
quire additional exotic hardware. Soon, many laboratory setups started to use this logic
because of its early availability.

However it lacks some features which are important for the final setup. The rather
poor throughput of only about 40 MB/s is not enough to interface a sufficient number of
chips, the copper cables prevent an operation on different electrical ground levels, it does
not provide an intrinsic clock distribution and synchronization method, and radiation
tolerance is not addressed at all.

Nevertheless, nowadays it is still widely used in smaller setups because of the relaxed
hardware requirements.

Transport Module: Optics

When ZITI/Mannheim released their first version of CBMNet in 2009, a difficult integra-
tion process started. A significant amount of glue logic was written in the process.

The CBMNet based setup is more complex than the Ethernet based setup, it requires
at least one extra FPGA board, the ABB, that receives the data from the optical links and
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then provides it to the DAQ-PC via PCIe.
Five developers worked in parallel on the setup for this read-out chain, again Sergey

Linev for the DAQ Software, Guillermo Markus provided the kernel driver for the ABB,
Wenxue Gao the firmware for the ABB, Frank Lemke was in charge of CBMNet, and the
author of this thesis provided the aforementioned integration into the ROC firmware.
The Optics module was first used in a beamtest in 2010.

With the CBMNet based Optics module a transport logic was developed that fulfills
the CBM requirements [LSB10]. A throughput of 220 MB/s per optical link is considered
to be fast enough for CBM, it provides clock distribution and time synchronization mech-
anism that scales to the range of the CBM experiment and grounding issues are avoided
by optical connections between the different elements of the read-out chain.

Later, in 2011, a second version of CBMNet was released and had to be integrated in the
the ROC firmware as well. Since the CBMNet version 2 logic is going to be operated in
an environment with harsh radiation, it was developed with the option to add radiation
mitigation techniques.

The logic of this module is part of the firmware that was tested for radiation toler-
ance in the tests described later. Several issues have been detected, reported, and been
resolved during the work for the radiation tolerance tests (see for example section 5.2.4).

Transport Module: USB

The Ethernet core as a the lightweight solution for small laboratory setups has proven
to be very useful for CBM community. However, the implementation of the Ethernet
module depends on an outdated version of the Xilinx development tools (ISE 8.2i and
EDK 8.2i) and cannot be build with an up-to-date tool chain. When the main devel-
opers, Norbert Abel and Sergey Linev, both left CBM collaboration the maintenance of
the Ethernet module was reduced to minimal support of legacy systems. The SysCore
Version 3 (details in section D.2.3) does not equip an Ethernet connector. Therefore, no
lightweight solution for small laboratory setups was available for the SysCore Version 3.
However, the SysCore Version 3 comes with an USB subsystem that allows for a compa-
rable lightweight-solution.

Walter F.J. Müller already implemented an USB-based transport logic for a different
project, but he was using the same Cypress USB chip that is also available on the SysCore
Version 3 board. This logic was extended by the author of this thesis to suit the CBM
requirements. No details are given here because this development is mainly engineering
work and does not significantly contribute to the results of this thesis. It performs very
stable and, at time of writing, no open issues are reported, although it is frequently used
in CBM community.

Front-End Module: nXYTER Read-Out

The self-triggered and data driven nXYTER chip became available in 2007 and was the
first front-end ASIC for the free-running CBM read-out chain [STS+07]. The chip has 128
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input channels and a mixed analog and digital interface towards the ROC. The nXYTER
read-out logic, developed by Norbert Abel, was the first read-out logic that was devel-
oped for CBM. At time of writing, the nXYTER chip is still widely used in the CBM
community, the same is also true for its read-out controller.

The read-out logic induced the 48 bit data format that has been adopted also for the
GET4 read-out. A the data format is presented in figure B.4.

Since the nXYTER chip is a prototype and not intended to be used in the final experi-
ment, the read-out logic for this chip will never be operated in a radiation environment.
Thus, no measures to mitigate radiation effects have been implemented for the nXYTER
read-out logic.

Front-End Module: GET4 Read-Out

The GSI Event-Driven TDC with 4 channels (GET4) [DF09] was developed especially for the
requirements of the CBM-ToF detector and is the second front-end chip supported by the
Modular ROC. As already indicated by its name, the chip has four input channels. The
focus lays on the resolution of its time to digital conversion (TDC). CBM-ToF has very tight
requirements regarding time measurements, therefore the chip provides a very good time
resolution of less than 15 ps, a double hit resolution of better than 5 ns [Har13]. A first
prototype of the chip was released in 2009 and in 2010 it was used the first time in a beam
test.

The front-end module for interfacing the GET4 chips provides all necessary function-
ality to connect to multiple GET4 ASICs.

• Control messages can be forwarded to the GET4 ASICs. A subset of ASICs can be
addressed by configuring a mask register.

• Data send from the GET4 ASICs is sampled and combined to a single data stream.
Stream multiplexing is implemented as round-robin algorithm.

• Data is reformatted to CBM-compliant 48 bit messages.

• Data is buffered on backpressure.

• Epoch Messages received from the GET4 ASICs are tested for correct synchroniza-
tion with the local clock. In case of mismatch, an error flag in the message is set.

• The 21 bit wide time field in the Epoch Messages from the GET4 ASICs is extended
to 32 bit.

• A System Message is inserted into the data stream on certain events, like a pulse on
a specific input pin, after a FIFO reset command, etc.

• In case of buffers filling up, hit data is discarded first so that high priority messages
(like System Messages or Epoch Messages) can still be send. All lost data events
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are recorded in the data stream. Lost hit events are distinguished from more critical
lost Epoch events.

• Data input lines from each GET4 ASICs can be masked to reduce noise in case of a
broken chip.
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Figure 5.2.: A schematic overview of the front-end module for the GET4 read-out.
Taken from the documentation for the read-out controller for the GET4 chips, see ap-
pendix B

Figure 5.2 illustrates the basic functional blocks of the module. More details about the
functionality of the read-out logic for the GET4 chip can be found in the documentation
for the firmware that is provided in appendix B.

Several prototypes of the GET4 chip, with different behavior, have been developed,
and all are supported by the read-out controller. In 2012, with the GET4 v1.0, a new
read-out interface was introduced. The new interface is based on 32 bit wide words on
both, data and control channel, hence called “32 bit”-interface. It allows for advanced
configuration features of the chip and provides much better diagnostics functionality
[Har13]. Fortunately, the old interface, based on 8 bit control words and 24 bit data words,
is still integrated for backwards compatibility. The work on this thesis is based on the old
interface, called “24 bit”-interface.

Nevertheless, to fully support the read-out of the GET4 ASIC, the existing firmware
for the 24 bit interface was ported to support the 32 bit-interface in the scope of a diploma
thesis [Leh13]. This was done by Johannes Lehrbach, a diploma student that was super-
vised by the author of this thesis.

All logic parts that were part of the efficiency tests, namely GET4 Read-Out Module
and the Optics Module, were implemented with respect to the requirement of radiation
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mitigation. The combination of those two blocks, the “GET4-Optics” firmware, was de-
veloped by the author of the thesis.1 The “GET4-Optics” firmware constitutes the foun-
dation for carrying out the efficiency tests of the radiation mitigation techniques that are
presented later.

5.1.2. Handling the Multiplicity of Firmwares

Due to the different demands within the various detector groups, support for many com-
binations of the two front-end modules, the three transport modules, and four different
hardware platforms was required. In total, 24 different firmwares are released.

Since a change in one module usually affects more than one firmware, it is not very
practical to use the standard tool flow suggested by the vendor. This would require to
maintain a separate project for each firmware that is managed within a graphical user
interface (GUI) by manual interaction, heavily based on using a computer mouse. While
this approach might be very convenient to initially set up a single project, it is not really
compatible with our modular firmware approach.

Fortunately, the vendor tool suite provides command line access to the underlying
build routines. This enables the implementation of a scripted build flow. To be able to
maintain the multiplicity of different firmware, a Makefile-based build flow was devel-
oped that can be executed from the command line. After a change in the source, a simple
make in the relevant project folder re-builds the project’s firmware. Such a command line-
based build flow enables automated builds and is much more convenient than GUI-based
building when dealing with multiple firmwares that share code.

The sources are maintained in a version control system, subversion in the early years
and git from 2012 on. Every night, a fresh copy of the latest sources is checked out from
the repository and all firmwares are build from scratch. This allows to maintain reposi-
tory’s integrity and it also helps in the search for bugs. Especially if a bug is not directly
detected but keeps lingering in the code base for a while, it still can be traced to commits
of a single day. The “Nightly Builds” system was installed and maintained by the author
of this thesis until 2014. Due to the general advantages of such an approach, the CBM col-
laboration decided in 2014 to install a central build server for all CBM-related firmwares
at GSI 2 . GET4-related “Nightly Builds” are now managed there as well.

The Makefile-based build flow automatically writes the repository revision number
and the time when the build was initiated into user-accessible firmware registers. This
allows to easily trace a certain firmware after its release to a specific build.

1A part of the Optics Module is the “CBMNet” core which was developed by Frank Lemke and Sven
Schatral at ZITI/Mannheim.

2The CBM build server can be found here: https://cbm-firmware.gsi.de
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5.2. Radiation Mitigation for the FPGA

Radiation mitigation for SRAM-based FPGAs requires, besides the implementation of
the according mitigation techniques (in our case Scrubbing and Selective TMR), also some
general design considerations, on multiple design levels. Implementation details and
crucial design considerations are now discussed in this section.

5.2.1. Scrubbing

A mature and ready-to use implementation for the SysCore Version 2 boards could be
adapted from a previous project by Heiko Engel [Eng09]. Both, the firmware for the
flash-based configuration controller (“Actel”) and the procedure for generating partial
bitfiles3 could be reused.

Adaptions required mainly spawned from the use case of a bigger FPGA in addition
to the already supported SysCore Version 2.0. Additionally, a number of bugs have been
fixed that happened to remain unnoticed before but became relevant for the in-beam test
setups.

Design Restrictions Although the setup is in principal ready to run Scrubbing, certain
design restrictions must be obeyed. There are some design restrictions for the actual
firmware that has to be protected by scrubbing. If the firmware does not respect the
following restrictions, it cannot be protected by scrubbing.

• The Virtex-4 FPGA comes with a feature to use look-up tables (LUTs) as shift regis-
ters or distributed memory. This feature must not be used. LUTs are refreshed by
scrubbing and this would corrupt any dynamic context stored there when scrub-
bing is enabled.

• The design tool xst has to be called with the options

– “-shift_extract no” and

– “-ram_style block”,

to not unintentionally infer the forbidden usage of LUTs for dynamic context infor-
mation.

• Bitgen has to be called with the parameters

– “-g DriveDone:Yes” and

– “-g Persist:Yes”

to keep the SelectMAP interface active after the initial configuration of the FPGA.

3A partial bitfile is the part of the firmware that represents the static configuration bits (look-up tables and
switch matrices). The dynamic configuration bits (flip-flops and memory) are stripped off.
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Figure 5.3: A schematic overview
of the configuration controller.
Power-up configuration and scrub-
bing is accomplished by reading
the configuration data from a Flash
memory. The Flash memory is
transparently mapped into the
address space of the CBM slow
control protocol. [FS13, page 89]

Configuration Controller Firmware Reimplementation (side note) It became clear, that
the existing scrubbing controller implementation is sufficient for in-beam tests but does
not meet all demands of the final CBM use case. In particular, it was missing compatibil-
ity with the controls protocol for integration in the CBM read-out chain environment.

To overcome the limitations of the existing solution for future projects, a reimplemen-
tation for the SysCore Version 3 board was carried out by Andrei Oancea in the scope of
his diploma thesis. The new implementation provides

• power-up configuration,

• a scrubbing engine that implements blind scrubbing,

• a watchdog functionality, to be able to recover even in the rare events when scrub-
bing fails,

• a transparent integration of the address space in the CBM configuration scheme.

Figure 5.3 illustrates the basic functionality, all details about the implementation can
be found in Andrei Oancea’s diploma thesis [Oan13].

The implementation by Andrei Oancea was carried out in close cooperation with Heiko
Engel and the author of this thesis. However, since this implementation is restricted to
the SysCore Version 3 board, it could not be used for the measurements in this thesis as
they are based on the SysCore Version 2 board.
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5.2.2. Redundancy

For some components, like the local timestamp counter, it was clear from the beginning
to use TMR as radiation mitigation technique. For the implementation of finite state
machines (FSMs), two competing techniques are available (see also paragraph FSM En-
coding, page 52) and the best technique had to be identified first.

The results of this selection process are presented first, followed by implementation
details of the selected TMR.

Hamming Coded versus TMR’ed State Machines

To compare the efficiency of hamming-coded FSMs with TMR’ed FSMs, an SEU-injection
test was performed. The logic used in the 2012 in-beam test was chosen as basis. Two ra-
diation mitigated firmwares were built, one that implements hamming-coded FSMs and
another one that implements TMR’ed FSMs. In addition a firmware without redundancy
was built for comparison.

The test has a very low probability to show an error for two reasons:

• To keep the test simple, the functionality of only one FSM in the logic was tested.
The FSM that was selected for the test is considered to be highly critical, however,
the probability for an injected SEU to actually affect this particular FSM is still rather
small.

• To avoid multi-bit upset effects, only one SEU was injected per iteration. A random
bit in the partial bitfile was flipped and this modified bitstream was then loaded on
the FPGA.

Due to that, the test had to run for a significant time, but this not a major obstacle, as the
test could be performed over weekends and during other times when the hardware was
not required for something else.

Figure 5.4 shows the results of the test. A positive SEU mitigation effect of hamming
coded FSMs cannot be seen, whereas TMR’ed FSMs show a significant mitigation effect.

It might be criticized that the Hamming coded FSMs protect the state vector which
is part of the “dynamic” memory and this is not affected by SEU injection tests at all.
Therefore, one can argue that it is no surprise that no effect in favor of Hamming coded
FSMs can be observed here. However, it has been shown that the reason for an SEU
induced failure is more likely an error in the static memory than in the dynamic memory,
simply because much more static memory contributes to the functionality of the design
[Whi14, page 25]. Even though the FSM’s state vector is not directly affected by SEU
injection tests, the FSM’s functionality is, and this is the relevant criterion to evaluate.
Actually, this is probably even the reason why Hamming coded FSMs do not improve
SEU resilience despite adding redundancy to the logic. Hamming codes only protect the
dynamic state vector at cost of blowing up the static part. TMR increases the overall
resource consumption but it mitigates both, static and dynamic part of the logic.
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Figure 5.4.: Comparing the SEU susceptibility of Hamming Coded FSMs, TMR’ed
FSMs, and FSMs without redundancy. Plotted is the percentage of all injected SEUs
that caused erroneous design behavior. The error bars refer to the square root of the
number of errors. TMR’ed FSMs show a clear improvement while Hamming Coded
FSMs do not.

Hamming coded FSMs might perform well on Flash-based FPGAs and Antifuse FP-
GAs where static logic is not susceptible to radiation but they do not perform well on
SRAM-based FPGAs.

For that reason, all critical FSMs that had to be protected in the scope of this thesis were
implemented with TMR.

Implementation of TMR

All critical parts of the design are implemented with TMR. The parts that are considered
to be critical are:

• the control logic (e.g. the state machines implementing the GET/PUT protocol)

• the logic that handles time and synchronization (e.g. the local timestamp counters)

The basic idea of TMR as well as important design considerations have already been
presented in section 3.2.2.

Figure 5.5 shows a VHDL example that implements a TMR’ed flip-flop, with syn-
chronous set, synchronous reset, clock enable and also the voters for the outputs. The
combinational logic that is the source for the inputs of such a flip-flop needs to be tripled
as well.

It is best practice to connect the three output signals of one TMR entity to the corre-
sponding three input signals of the next entity. In reality, this is not always possible, for
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Figure 5.5.: VHDL implementation of a TMR’ed flip-flop with synchronous set, syn-
chronous reset, and clock enable (ce) inputs and data outputs (Q_out). The data validity
on the outputs is hardened by majority voters. Not shown here is the triplication of the
combinational logic that sources the tripled inputs (D) of the TMR’ed flip-flop.

example when a communication between two different clock domains has to be imple-
mented. A situation that occurs frequently with Selective TMR is that the next entity is not
hardened by TMR and only accepts one input signal. In such situations, only one voter
was used. The voter as single point of failure is tolerated.

Design Restriction As previously with scrubbing, an additional design restriction has to
be taken into consideration in order to allow for a TMR’ed firmware implementation:

• The design tool xst has to be called with the options

– “-equivalent_register_removal no”

to not inadvertently remove the TMR feature in the optimization process.

Detection of Data Corruption with CRC Since the logic that handles data readout and
data transport (the green resources in figure 4.4) is not protected by TMR, data corrup-
tion is possible and cannot be neglected. To detect such corruption, a CRC checksum is
calculated at the very first input stage, in parallel to the deserialization of the signal re-
ceived from the GET4. CRC calculation can be implemented very efficiently in hardware,
figure 5.6 gives the complete source for calculating the 8 bit wide CRC checksum that is
used to detect data corruption. The checksum implementation is based on the generator
polynomial x8 + x2 + x + 1 (ITU-T conform CRC-8 [Int13]).
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Figure 5.6: VHDL implementation of
the CRC calculation that is used to de-
tect whether data was corrupted by
SEU effects. It implements the ITU-
T conform CRC-8, with the generator
polynomial x8 + x2 + x + 1. The 38
lines of code shown here represent a
full VHDL entity that is synthesizable.
The CRC calculation uses 8 flip-flops
and 2 LUTs per input channel. Al-
though one CRC entity has to be in-
stantiated for every input channel, it is
not much overhead to the overall de-
sign.

5.2.3. Fault Tolerance in Higher Design Levels

As also the higher levels in system design needs to sustain unexpected behavior of the
components in the radiation environment. On all levels, it is important to not rely on
correct behavior but to have contingency plans for cases out-of-specification.

• A watchdog functionality is implemented in the configuration controller for the
main FPGA. For the SysCore Version 3 configuration controller, this was developed
in [Oan13]. Such a hardware-based approach is intended for the final setup where
many components are utilized. For the in-beam tests, watchdog functionality was
implemented in software. The design of the test procedure for the in-beam tests im-
plements a mechanism to recover from permanent device failure based on periodic
sanity checks in software (see figure 5.9).

• The internal configuration bus is based on IBM’s On-Chip Peripheral Bus (OPB)
[IBM01]. Many features of the original specification are not implemented to keep
the design as simple as possible. Without radiation effects, timeout feature of the
OPB could have been omitted as well. However, radiation induced errors can lead
to incomplete bus transactions. The timeout feature ensures, that such situations
do not result in a stuck system. Instead, the error is reported after the timeout and
the system remains responsive. For that reason, the timeout feature of the OPB is
absolutely required and cannot omitted.

• The internal FSMs are designed in a way that they will not get stuck even on un-
expected behavior of the logic. In addition it is assured, that in the case one of the
three FSMs of a TMR-set gets disturbed, all FSMs will eventually resynchronize at
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some point. Depending on the underlying functionality of the FSMs, the measures
to assure continuation of operation and resynchronization are different. For exam-
ple, for the FSM implementing the controls bus master a timeout was implemented
to prevent to get stuck on a missing acknowledge response of a slave. Other FSMs
are designed to naturally return to the idle state.

• All FSMs are designed in a way that they subsequently transit into an error recovery
state upon entering an illegal state (due to an SEU). This error recovery state has to
be reachable from a legal state to not be removed by the synthesis tools during the
optimization process. This can be achieved by defining a “recovery state” as shown
in figure 5.7.

Figure 5.7.: VHDL code snippet showing how to declare the state attributes and define
one state as “recovery state” (here called st_error). This way, XST implements the
described FSM with recovery state functionality.

5.2.4. Identification of Critical Components

With SEU injection it is possible to test existing logic components for their behavior with
respect to SEUs. Since SEU injection only covers a subset of possible SEUs (those in static
configuration memory) it is still mandatory to carry out in-beam tests for a valid eval-
uation of the efficiency of the radiation mitigation techniques. Nevertheless, with help
of SEU injection tests, many problems can be identified and fixed prior to the in-beam
test. An exemplary case for identification and resolving of an SEU-critical component is
presented here.

For the 2013 in-beam test besides the self-written logic also an external core was part
of the main firmware design. The external core is developed and provided by another
group of the CBM collaboration. As the design that performed very well in the 2012 in-
beam test did not utilize this core, major implications were expected when adding the
core for the 2013 test. To evaluate the implications of adding the external core to the
design, SEU injection tests were performed prior to the in-beam test.

SEU injection tests showed that the design including the external core did not per-
form well compared to the design without it. However, the problem could also spawn
from new developments since the 2012 in-beam test and associated logic. To identify the
problem, further investigations were undertaken and a third design was implemented. It
consists of only the external core with minimal support logic to enable a successful oper-
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ation with the rest of the read-out chain. This design was then also tested using the SEU
injection method.

 0

 20

 40
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 80

 100

Without Ext. Core With Ext. Core Only Ext. Core

Correct Behavior in % of Total
Temporal Error in % of Total
Persistent Error in % of Total
Persistent Error in % of all Errors

Figure 5.8.: Evaluation of three designs with the SEU injection method. The bars in
green show the percentage of SEU injection cycles where no functional error was ob-
served. The orange bars refer to the cycles where a functional error was observed but
the design recovered after the injected SEUs are repaired with scrubbing. The red bar
represents errors that persisted even after the SEUs are repaired. The blue bars give the
percentage of SEU injection cycles with persistent errors, not taking into account cycles
without error. The blue bars are independent from the SEU cross section of a specific
design, and hence they are suitable for comparison of the three.

Figure 5.8 shows the result of the tests for all three designs, the one used in the 2012
in-beam test (without the external core), the one being prepared for being used in the
2013 in-beam test (with the external core), and the one consisting almost entirely of the
external core.

Due to different resource utilization, and hence different SEU cross sections of the three
designs, the measurements with respect to the total number of iterations (bars in red,
orange and green) cannot directly be compared. However, the blue bars represent the
fraction of error-cycles where errors are persistent, which is a value independent from
device SEU cross section. The results of these SEU injection test show that the external
core contributed significantly to the performance loss of the design.

Because of these SEU injection tests, a critical problem was identified prior to the in-
beam test. The particular implementation of data retransmission for the transport pro-
tocol could lead to an infinite loop when data in the send buffers is corrupted. Together
with the developers of the external core, the problem could then be identified and cor-
rected before the in-beam test started.

Without the SEU injection method, it would not have been possible to identify the
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problem beforehand, resulting in a high probability of the in-beam test to fail.

5.3. In-Beam Tests

An in-beam test has to be well prepared, the following points should be addressed before
the test starts: The test procedure has to be designed properly in order to exploit the
interesting features of the design under test. Furthermore, the expected failure rate need
to be known in advance to apply for a beam time were the particle rate appropriate.4

Another problem for in-beam tests is correct beam diagnostics. These issues will now be
addressed in this section.

5.3.1. The Experiment Setups

The efficiency of applied radiation mitigation techniques, that were implemented in the
course of this thesis, was evaluated through two in-beam tests at Cooler Synchrotron
(COSY) in Jülich/Germany, one in 2012 and one in 2013. The particle accelerator pro-
vided protons at ∼ 2 GeV and a maximum beam flux in the order of 107 s−1cm−2 in both
tests.

Both setups consisted of the device under test that was mounted in the beam line and
a support board was mounted out of the beam line. Data of 28 GET4s was generated
on the support board, emulating the GET4 message protocol. The generated data was
deterministic and therefore could easily be analyzed for corruption after processing on
the device under test. Using real GET4 ASICs as data source would have been possible
but it would also have unnecessarily increased the complexity of the setup and make
data analysis more difficult.

The firmware implementing the read-out and radiation mitigation techniques was run-
ning on a SysCore version 2 board. The on-board configuration controller was config-
urable to either execute blind scrubbing or to remain idle.

The test procedure illustrated in figure 5.9 is specially designed to evaluate the effi-
ciency of scrubbing. During the execution of the test procedure scrubbing was either
enabled, which means continuously refreshing the configuration memory of the FPGA,
or scrubbing was disabled, then SEUs can accumulate over time. The test procedure is
divided into the following steps:

• In the first step (Logfile Header) important information is recorded and stored in
the header of the logfile to help for subsequent analysis and archiving of the data.

• Step Init Readback is required to calibrate the board counting SEUs. The SEU
Counter board is explained later in section 5.3.3 in more detail.

4It is not uncommon to share beam time among several experimenters. This becomes problematic when
the setup of one group cannot sustain high particle rates but another group requires high particle rates.
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Set Testreg.

Record Data
(optional)

Check Testreg.

Test DUT

Test DUT againReprogram

Logfile Header

Log some parameter of  this run:
 - scrubbing on/off
 - with/without redundancy
 - data taking on/off
 - comment (set via command line
   argument) 

Init Readback
Readback reference measurement
for 3 minutes comparing SEU rate
of both devices in beam.

Set 128 32bit wide test registers, 
either with or without redundancy.

Optional! Record 3 seconds of data.

Check the test registers for errors.

DUT not ok

 DUT
  ok

DUT
 ok

DUT not ok

Run above test script again to see
if error is temporary or persistent.

Fully reprogram everything and 
continue.

Start

SEU counting Readback the configuration of the
reference board and check for SEUs.

Test if device under test streams
valid data.

Figure 5.9.: Illustration of the test procedure performed during the 2012 in-beam test
to evaluate the efficiency of the applied radiation mitigation techniques. If enabled,
scrubbing is running continuously in the background during all steps except Logfile
Header and Init Readback. The key aspect is to test twice for correct operation which
gives scrubbing time to repair the device. Without data taking, a regular loop lasts
about 8 seconds. If Test DUT again is reached and the device did recover, it lasts about
12 seconds. A cycle with full reprogramming takes 18 seconds. The same procedure
was also used in 2013 but without steps Set Testreg and Check Testreg.
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The procedure then enters the main loop. During the runs with scrubbing enabled,
the scrubbing engine is turned on at this point and continuously refreshes the FPGA
configuration memory in the background.

• Set Testreg and Check Testreg are only included in the 2012 test. Here, a set of
registers is tested for errors. Two firmware versions were created, one implement-
ing TMR for these registers and one without redundancy.

• In Record Data data is recorded to hard disk for three seconds (∼ 15MB) for subse-
quent offline analysis. This step is optional to not unnecessarily fill the hard disk,
e.g. during debugging or at reference runs without beam. The timescale of three
seconds is comparable to the time to recovery one can expect when board failures
are detected and reconfigured from an entity outside the radiation zone.

• In SEU counting the current number of accumulated SEUs is recorded.

• The key idea of the algorithm is to check twice for an operational device, in Test DUT
and in Test DUT again. The functional status is determined based on the online
analysis of 2 000 data samples. If not all data samples are valid the first time, the
test is repeated to allow for scrubbing to repair the device. A single test takes much
longer (2 s) than a full scrubbing cycle (80 ms).

• If the second test fails, the complete setup is fully reset (Reprogram).

The key aspect is to repeat Test DUT in case of an error, this gives scrubbing the oppor-
tunity to repair the device in the meantime. Only in case of two consecutive errors, the
device is considered to be “permanently” corrupted. If the first test fails but the second
test runs flawlessly, the error is counted as “temporary”.

It should be noted that the test procedure is mainly designed for the evaluation of the
effect of scrubbing on the recorded data. The decisive tests, Test DUT and Test DUT again,
operate on data only and leave aside any test of control register validity. For that reason,
the positive effect of Selective TMR is not directly visible in the results (see section 6.3).
With the steps Set Testreg and Check Testreg the redundancy effect is measured nev-
ertheless, but the exploited test registers are specially added for the sole purpose of this
test and are not part of the logic of the original GET4 read-out firmware.

Test Setup 2012 The experiment took place from the 6th to the 9th of August in 2012.
For the reasons described in section 4.3.1, only the GET4 module was installed in the
beam line. The Optics module was operated on a supporting board, the same board on
which also the GET4-data generator was running (see also figure 4.5).

The main tests for a functional device (Test DUT and Test DUT again) are based on data
consistency. With Selective TMR, however, the data path is not protected by TMR. A com-
parison of a firmware implementing Selective TMR to a plain firmware without redun-
dancy will not yield meaningful results. To nevertheless measure the redundancy effect,
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128 registers (32 bit wide) were integrated in the DUT firmware. Two DUT firmwares
were synthesized, one with TMR’ed test registers and one with non-redundant test reg-
isters.

The main intention for the test, however, is the offline analysis of the recorded data.

Test Setup 2013 The experiment took place from the 2nd to the 4th of July in 2013.
This time the full GET4 read-out controller firmware was exposed to the particle beam.

The supporting board was only required to execute the logic for deterministic generation
of GET4 data.

The registers for testing redundancy are not implemented for the 2013 firmware. As
they were implemented as part of the tunnel modules it would have been extra effort to
integrate them into the 2013 firmware and the only gain would be a replay of the 2012 test.
The main goal of the in-beam test is to operate a complete read-out controller firmware
in a very high radiation environment and not to repeat the TMR test of 2012. Therefore,
these registers are omitted in the 2013 test.

5.3.2. Preparation for In-Beam Tests

SEU injection tests already yielded valuable results during preparation for the in-beam
tests, the efficiency of Hamming coded FSMs was evaluated in section 5.2.2 and a critical
component could be identified in section 5.2.4.

In addition, such SEU injection tests also help to estimate the outcome of the in-beam
tests for given particle fluxes. Knowing the expected failure rate is crucial when planning
in-beam tests, e.g. when applying for particular particle fluxes.

For electronics SEU sustainability tests it is usually good to have a high particle flux
because this results in more SEUs. More SEUs result in a higher failure rate, and hence in
better statistics. However, there are upper limits for particle flux, either because the ac-
celerator facility cannot provide more or because equipment of other experiments would
be damaged. Knowledge of the functional failure rate is a key value when selecting an
accelerator facility and also when deciding weather it is reasonable to join other groups
for an in-beam test or not.

Since most FPGA configuration bits, especially routing resources, are unused within
particular implementations [Xil14b, page 27], an SEU does not necessarily cause a func-
tional failure. Functional failures of the design are also known by the term “SEFI”, an
abbreviation of Single Event Functional Interrupt).

Knowing the device cross section,5 it is straightforward to calculate the expected SEU
rate:

SEU rate
[

1
s

]
= part. flux

[
1

s cm2

]
· dev. cross sect.

[
cm2] (5.1)

5The device cross section depends on the particle type and energy, it does not vary much for high energy
hadrons (see figure 2.7).
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From equation 5.1 one can then estimate the SEFI rate by a multiplication with the
probability for an SEU resulting in a SEFI. In other words, one needs to know the average
relation between the number of SEFIs to the number of SEUs.

SEFI rate = SEU rate · no. of SEFIs
no. of SEUs

(5.2)

= particle flux · device cross section · no. of SEFIs
no. of SEUs

(5.3)

While the values required for device cross section are published by Xilinx ([Xil14b,
page 27]), the SEU-SEFI relation is not known. An educated guess can be used for this
value, but it might not be accurate. The value depends on design specific characteris-
tics, like fabric resource consumption and applied radiation mitigation techniques, and
therefore is not easily guessed. SEU injection tests allow for a more accurate SEU-SEFI es-
timate because the average number of SEUs required for a functional failure can directly
be measured on a design specific level.

Device Cross Section Calculation The average device cross section for a Xilinx Virtex-4
FX20 FPGA as used in the tests is calculated from the amount of memory and the cross
sections specific to the type of memory:

• The Virtex-4 FX20 has 7.20 · 106 configuration bits in total [Xil09, page 87/88] , 6.02 ·
106 bit of configuration memory and 1.18 · 106 bit of BRAM memory [Xil10b, page
2].

• The bit cross section of the configuration memory is published by Xilinx ([Xil14b,
page 27]). Configuration memory bits have a cross section of 1.55 · 10−14cm2 while
BRAM bits have a cross section of 2.74 · 10−14cm2

The average bit cross section is then:

1.55 · 10−14cm2 · 6.02
7.20

+ 2.74 · 10−14cm2 · 1.18
7.20

= 1.75 · 10−14cm2 (5.4)

The average device cross section is then:

device cross section = number of configuration bits · bit cross section (5.5)

= 7.20 · 106 bit · 1.75 · 10−14cm2/bit (5.6)

= 1.26 · 10−7cm2 (5.7)

Determination of SEU-SEFI Relation The missing factor in equation 5.3 is the SEU-
SEFI relation. It is estimated in a test employing the SEU injection method. A series of
SEU injections with 20 injected SEUs per cycle revealed a failure rate of approximately
one out of three cycles. From the cycles with errors, only one in 75 showed persistent
errors that could not be repaired by removing the SEUs with scrubbing.
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The SEU-SEFI ratio can now be estimated: About every 60th SEU causes a SEFI if scrub-
bing is not performed. If scrubbing is enabled, about every 60 · 75 = 4500th SEU causes a
SEFI. The SEU-SEFI relation is therefore:

no. of SEFIs
no. of SEUs

≈ 1
60

(without scrubbing) (5.8)

no. of SEFIs
no. of SEUs

≈ 1
4500

(with scrubbing) (5.9)

Note: As already mentioned, this is only an estimate. It does not take multi-bit up-
sets into account which are possible when 20 bits are injected simultaneously. Also the
estimate for the number of SEFIs when scrubbing is enabled is based on the loose and op-
timistic assumption that only “persistent” errors will show when scrubbing is enabled.
However, for this use case it is perfectly fine to not be very precise. The achieved values
are still more accurate than a general “educated guess”.

Knowing the device cross section and SEU-SEFI relation, time to failure can be esti-
mated:

Assumed Expected Time to Failure
Particle Flux Without Scrubbing With Scrubbing
105 1/s·cm2 4800 s ≈̂ 80 minutes 354 000 s ≈̂ 4 days
106 1/s·cm2 480 s ≈̂ 8 minutes 35 800 s ≈̂ 10 hours
107 1/s·cm2 48 s ≈̂ 1 minute 3 580 s ≈̂ 1 hour
108 1/s·cm2 4.8 s ≈̂ 5 seconds 358 s ≈̂ 6 minutes

It can be seen that, even at a particle flux of 106 1/s·cm2, several in-beam days are required
to measure reliable statistics with scrubbing enabled.

With these results it is possible to plan in-beam tests. It is evident that it makes no
sense to carry out these measurements as parasitic experiment during in-beam tests for
detector-prototype characterization, where high particle fluxes are not foreseen. A ded-
icated beam time for electronics tests over several days with particle fluxes of at least
106 1/s·cm2 is required instead. The maximum possible particle flux delivered at COSY
was in the order of 107 1/s·cm2 (see section 6.3).

5.3.3. Beam Diagnostics

In this section common methods for beam diagnostics and their qualification for COSY
beam tests are briefly discussed.

Scintillation Counter

A very common device to measure particle rates is the scintillating counter. A particle
passing through the active volume of the scintillator generates a small amount of light
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that can be converted to an electrical signal, amplified, and the resulting signal can then
be counted.

However, the following issues prevent the usage of scintillation counters for our single
event upset tests.

High Rates Scintillation counters cannot be used at particle rates of above 105 − 106

particles per second and per active area of the scintillator. At such high particle rates the
dead time of the scintillaton counter is longer than the time between two particles. The
scintillation counter then approaches saturation and the counting rate reaches a plateau.
The measured particle rate is then less than the real particle rate.

To be able to achieve enough statistics, we aim for rather high particle rates of not less
than 106 s−1cm−2 (see section 5.3.2). This is already in the area, or even slightly above,
where scintillators start to become unreliable.

Not only will they become unreliable, the scintillator will also show degradation effects
caused by the high particle rate. Eventually, the device will be damaged.

Pulsed Beam On top of the required high rates comes another effect that is considerably
vivid at COSY. Within one spill, the beam intensity is not constant but forms bunches.
Figure 5.10 shows the response of a scintillator mounted in COSY beam. The bunched
structure of the beam is clearly visible.

Figure 5.10.: Oscilloscope measuring the
response of an in-beam scintillator at COSY.
The bunched beam structure is clearly visi-
ble, the cycle time is about 6.5 ms.

During ∼ 5/6 of the time there is no beam,
and in consequence, during the remaining
∼ 1/6 the beam intensity is six times higher
than it would be with a constant intensity
beam. With such a temporal beam structure
it is impossible to use a scintillator, already at
much lower rates than we require for single
event upset tests. A scintillator would mea-
sure no beam for ∼ 5/6 of the time and operate
completely in saturation during the remaining
∼ 1/6 of the time period. This is especially del-
icate because the counting rate is usually inter-
preted as the average over a much longer time
period than the cycle time of the bunch struc-
ture. This misleadingly suggests that the scin-
tillator is not yet operated in saturation which would mean the measured particle rate is
reliable. In reality however, during the relevant time window when particles are actually
measured, the scintillator is operated completely in saturation, and the measurement is
not reliable at all.

In consequence, a scintillator as particle rate monitor is not an option for single event
upset tests at COSY.
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Self-Developing Dosimetry Film

A method for dosimetry, especially popular in biological and in medical science, is to
install self-developing dosimetry film [Int] in the radiation exposed environment. The
film darkens when exposed to radiation. The level of darkening can be used to determine
the amount of radiation it was exposed to. Knowing the time of exposition, the average
particle rate can be calculated.

Because there is no online information available and because it is cumbersome to deter-
mine the rate information from the darkening self-developing was not used for dosimetry
film for the purpose of rate measurement.

However, it was very useful to determine position, opening angle, and shape of the
beam by installing the film on the electronics in-beam. Figure 5.11 shows how self-devel-
oping film is used during the 2012 beam test at COSY. It proved to be a very straight-
forward, convenient and reliable method to “aim” the beam directly on the target and to
choose a distance from the exit window where the beam is wide enough to fully cover
the electronics to be tested, while it is still is focused enough to hit the target with high
intensity.

Figure 5.11.: Usage of self-developing dosimetry film during 2012 beam test. The pic-
ture on the left shows the exit window of the beam pipe in JESSICA cave. The picture
in the middle shows the film directly mounted on the electronics setup. The picture on
the right shows the widened beam at the end of the beam line.

Estimates from COSY Data

As already mentioned in section 4.3.2, COSY provides online information of the syn-
chrotron status on their homepage. Figure 5.12 shows exemplary screenshots of the two
relevant plots.

Figure 5.12(a) illustrates, in blue, the measured beam-current transformer signal and,
in red, the calculated number of particles per spill. Shown in figure 5.12(b) is the history
of approximately one day of “beam intensity”. “Beam intensity” means the number of
particles in the synchrotron, sampled once per spill. The trigger time is determined by
Beam Position Monitors (BPMs) [BBG+94].

Knowing the number of particles per spill and the duration of extraction, the particle
rate can easily be calculated:
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(a) The “Beam Current Transformer” (BCT)
signal in blue, and, derived from BCT and
synchrotron frequency, the number of par-
ticles in red. The green value at the top
refers to the sample value at position of
the green triangle on the red curve.

(b) One day history of “intensity” (particles in the
storage ring). The samples are taken from the
red curve in figure 5.12(a) at time the Beam Po-
sition Monitors (BPMs) [BBG+94] trigger, re-
sulting in one sample per spill.

Figure 5.12.: Information of beam characteristics provided by COSY on their home-
page: http://donald.cc.kfa-juelich.de/world. Figure 5.12(a) has been color-
inverted and slightly optimized for better readability in print.

particle rate [
1
s

] = number of particles / extraction time [s]

This approach is not very accurate because it only takes into account the particles in the
synchrotron and not the extracted particles reaching the experiment site. Potential par-
ticle loss during extraction procedure is completely neglected. During the in-beam tests
situations were observed that show signatures possibly related to particle loss during ex-
traction. The particle rate at our experiment (measured by the SEU Counter approach
described in section 3.3.1) continuously decreased over time while the measured number
of particles from BCT signals remained constant. This effect might also be caused by a
shift of the beam position.

However, COSY homepage information allows a valuable estimation of the particle
rate (upper bound). This is e.g. be used to check for plausibility of the values measured
by other beam diagnostics instruments.

In addition, the one-day-history of the intensity gives a very convenient overview of
beam condition during the experiment. Interruptions of the beam are common, e.g. to
grant access to the cave for adjusting the experimental setup.

Ionization Chamber

In higher radiation environments, a very common device for particle rate measurements
is the ionization chamber. Unlike with scintillators, not a single signal per particle is
detected but a flow of electric charge. A traversing particle ionizes the gas in the active
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volume of the detector, the created ions are collected by a condenser and the resulting
electric current is measured. The higher is the particle rate, the more ion pairs are created
and the higher is the measured current.

Sven Löchner from GSI electronics department brought an elaborate setup for beam
diagnostics to the COSY in-beam tests 2012 [LGWH13] and 2013 [LFG+14]. One amongst
several components is an ionization chamber.

In 2013, the ionization chamber measured particle fluxes between 6 · 107cm−2 · s−1 and
6 · 107cm−2 · s−1. Since the spill repetition rate is 22 seconds, but particles are extracted in
only 7 of the 22 seconds and the ionization chamber only takes the 7 seconds into account,
this translates to an average rate of ∼ (2− 3) · 107cm−2 · s−1.

SEU Counter Approach

As already mentioned in section 4.3.2, the SEU Counter approach was used for particle
rate measurements during the in-beam tests. A problem occurs when evaluating (blind)
scrubbing. Scrubbing corrects SEUs and thus the number of SEUs does not accumulate.
As a result, a test that is comparing the situation when scrubbing is enabled to the situa-
tion when scrubbing is disabled is not directly possible.

One solution is to perform a readback of the design before scrubbing the correct bits.
Thereby the number of SEUs can be counted. This has been done in [RBK+12]. The
drawback is that the scrubbing cycle time is thereby more or less doubled, because it can
be assumed that readback of the configuration lasts as long as writing the configuration.
For low SEU rates, this is not a problem. However, for high SEU rates, as expected (and
required) for in-beam tests, this becomes relevant. In section 5.3.2 a SEFI was estimated
every minute (for 107particles/s), according to equation 5.8 this means one SEU every sec-
ond. A scrubbing cycle is approximately 80 milliseconds, only one order of magnitude
faster as the SEU rate. When too many SEUs accumulate during a single scrubbing cycle,
the chance for multi-bit upsets increases. For that reason readback of the FPGA configu-
ration was not performed. Instead, blind scrubbing was used.

The setup for the in-beam test solves the problem of missing SEU counts by mounting
a second board with an identical FPGA into the beam line. The setup combines the ad-
vantages of fast scrubbing on the main board with precise measurement of SEUs on the
counter board. Figure 5.13 shows the two-board setup.

It has to be cross checked if both boards indeed show the same SEU rate. The SEU rates
on both boards may differ for the obvious reason that they might not be perfectly aligned
in the beam line, i.e. one board might not be hit by full beam intensity, and hence shows
less SEUs than the other.

There are also more complex reasons, like secondary particles that are created when
beam particles pass through the first board then contribute to the particle rate in the
second board. On the other hand, the material of the first board in the beam line might
scatter a significant amount of beam particles out of the beam line, this would reduce the
particle rate in the second board.
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Figure 5.13: Two board setup used for the
in-beam tests of section 6.3, here the 2012 in-
stallation. With this trick it is possible to per-
form SEU counting on one board while on
the other board (DUT) the efficiency of blind
scrubbing is evaluated. If executed on the
same board, blind scrubbing would interfere
with SEU counting.

Therefore, a comparison of SEU rates has been measured at the beginning of each run,
see step Init Readback in figure 5.9. Both boards were left exposed to the beam for three
minutes and the numbers of SEUs collected during this period in each board are recorded
in the logfile.

In the main loop of the test procedure, only the SEU Counter board collected SEUs
while the DUT board can safely execute scrubbing.
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6. Results

This chapter presents the results that are achieved within the scope of the thesis. For
the sake of continuity, it is also organized in three sections covering the same topics as
the chapters before, although the third section – results of the in-beam tests – is clearly
dominating this chapter.

First, in section 6.1, the modular approach for the implementation of the GET4 read-out
controller is presented briefly. Then, section 6.2 covers the results of the radiation miti-
gation efforts that were not obtained during the in-beam tests. A particularly important
achievement that is presented in this section is the very modest increase of resource con-
sumption due to Selective TMR. However, since most of the results concerning radiation
mitigation were achieved during in-beam tests, they are presented in section 6.3.

6.1. Modular ROC Usage

An important requirement for the Modular ROC firmware was the continuous support
in development and maintenance, keeping up with the constantly increasing complex-
ity of the read-out chain. Therefore, along with each important step in the development
of the CBM read-out chain, compatible ROC firmwares were provided in a timely man-
ner. Three generations of GET4 ASIC prototypes , two generations of optical transport
protocols , two different types of transport solutions for smaller setups , and also the in-
tegration in the roclib software was supported during the years since 2009. This thesis
does not focus on such achievements in engineering, nevertheless, they shall not remain
unmentioned.

Figure 6.1.: The modular design of the read-out controller firmware.

Figure 6.1 illustrates the modular design of the ROC firmware with its separation into
two modules, the front-end module and the transport module. The two modules are con-
nected by a well defined interface that meets the requirements of the CBM readout chain.
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For both use cases, the nXYTER read-out and the GET4 read-out, the same transport logic
can be used.

For smaller setups, the Ethernet transport module provides a very convenient solution
that was already available in early R’n’D phase. In bigger setups, that emerged in later
R’n’D phase, the Optics transport module provided the missing features.

At all times the compatibility with the DAQ software [AMEKL10a] was maintained.
For receiving data, and also for slow control, the main software can transparently use
one of the two plugins referring to the according transport module.

It could be argued that the design with only two modules and also the choice of the
interface in-between the modules is not the best choice. The approach with only two
modules was not granular enough to prevent reimplementation of logic in all cases and
the OPB/FIFO/DLM interface could seem to be an unnecessary re-specification of what
the CBMNet interface already provides. However, when considering the situation in
which the design decisions where taken it turns out to be a very successful approach that
allowed for continuously providing a working read-out solution while improving the
overall design in parallel.

During the time the radiation mitigation efficiency experiments have been prepared
and carried out, development on the GET4 read-out firmware has been continued. Nowa-
days the design is more granular, based on three modules instead of just two. However,
the design that was used for the in-beam tests, and hence on which the results of this
thesis are based upon, is the design with two modules and this one is therefore referred
to in this chapter.

6.1.1. Operative Firmware

The fixed schedule of several in-beam experiments induced sharp deadlines for provid-
ing operative firmwares.

Two of those in-beam experiments are described in detail later in this chapter because
their outcome is a major part of the results of this thesis (see section 6.3). In addition,
many in-beam experiments have been carried out by other CBM members to test their
detector prototypes.

For all in-beam experiments listed in table 6.1, a variant of the Modular ROC was used
for data read-out from the referring front-end electronics. For all in-beam tests, increas-
ingly complex firmwares were provided, always in time and always working as intended.
Although there have been bugs in the read-out chain, responsible for irrecoverably cor-
rupted data, not a single cause for significant data corruption was traced to a failure of
the Modular ROC firmware. The modular design of the firmware helped a lot in meeting
the deadlines while still providing reliable logic, especially in the early days (2010/2011)
when the optical transport was not in a very stable state yet.
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6.2. Radiation Mitigation Techniques

Beamtime Date Frontend Chip Data Transport
GSI/Darmstadt 2008, Sep. nXYTER Ethernet
GSI/Darmstadt 2009, Aug./Sep. nXYTER Ethernet
CERN (PS/T10)/Geneva 2010, Nov. nXYTER Ethernet
COSY/Jülich 2010, Nov. GET4 Optics/Ethernet
COSY/Jülich 2010, Dec. GET4/nXYTER Optics
COSY/Jülich 2011, Mar. GET4 Ethernet
CERN (PS/T9)/Geneva 2011, Oct. nXYTER Ethernet
COSY/Jülich 2011, Nov. GET4/nXYTER Optics
COSY/Jülich 2012, Jan, nXYTER Optics
COSY/Jülich 2012, Jul./Aug. GET4 Optics
GSI/Darmstadt 2012, Nov. GET4 Optics
CERN (PS/T9)/Geneva 2012, Oct./Nov. nXYTER Optics
COSY/Jülich 2013, Jun./Jul. GET4 Optics/Ethernet
COSY/Jülich 2013, Dec. nXYTER Optics
CERN (PS/T9)/Geneva 2014, Nov. nXYTER Optics
COSY/Jülich 2014, Dec. nXYTER Optics
CERN (SPS) 2015, Feb./Mar. GET4 Optics

Table 6.1.: A list of all in-beam tests where a Modular ROC firmware was used in at
least one sub-system to read out data from the front-end electronics.

6.1.2. Software Integration

In addition to firmware development, integration in the existing roclib software1 was
essential for a successful operation of the read-out chain. Without software integration,
the firmware cannot be interfaced from the CBM framework. The required procedures for
decoding GET4 data messages were integrated in the referring GSI software repository,
and the graphical user interface of the software was upgraded to provide an intuitive
interface to control the GET4 chip. A screenshot of the GUI is shown in figure 6.2.

6.2. Radiation Mitigation Techniques

This section remains short as the major part of the radiation mitigation results are pre-
sented in section 6.3. Nevertheless, the very modest increase of fabric resource consump-
tion of Selective TMR that is presented here is important as it is the reason for not imple-
menting “full TMR” in the first place.

6.2.1. Blind Scrubbing

The configuration of the FPGA was permanently refreshed in the background, while the
firmware executed its main task, the read-out of GET4 data, in parallel.

Scrubbing was implemented as blind scrubbing, the integrity of the FPGA configuration
was not monitored. To do so, read-back of the FPGA configuration would be required.

1The roclib software is organized in a subversion repository at https://subversion.gsi.de/cbm/ROC (GSI
Account required).
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Figure 6.2.: The roclib software comes with a graphical user interface called rocGui. This
figure shows the “tabs” that were added to the existing software as part of the work for
this thesis. Those “tabs” can be used to intuitively control the GET4 chip and provide a
well-arranged and color-highlighted view of the received data.

This is unnecessary (no harm is done when refreshing a valid configuration) and would
double the time to repair.

Blind scrubbing showed great results during in-beam tests that are described later, in
section 6.3.

6.2.2. Fabric Resource Consumption

The main reason to avoid automated tools for implementing the necessary redundancy
in the firmware is the enormous overhead in terms of fabric resource consumption that
such an approach entails (see section 3.2.2).

The additional usage of fabric resources required for implementing TMR’ed logic could
be significantly reduced with the introduction of Selective TMR (see section 4.2.2).

Selective TMR exploits the fortunate coincidence that the logic for the data path repre-
sents the major part of the whole firmware, and furthermore, corruption of a (very) small
fraction of the data is not a huge issue for a high energy physics experiment. Therefore,
we can omit costly redundancy for the whole data path related logic and use inexpensive
CRC checksums to detect data corruption. TMR is only required for the control logic
which makes just a small part of a typical FPGA design. In case of the GET4 Read-Out
Controller it contributes to the firmware with about 10%.

To determine the extend of resource usage overhead of Selective TMR, the GET4 read-
out firmware was synthesized with and without redundant logic. Figure 6.3 shows a
comparison of the resource usage as given by the Xilinx MAP reports.
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Figure 6.3.: Comparison of fabric resource consumption (Flip-Flops and Look-Up Ta-
bles), as reported in the Xilinx MAP report for the GET4 read-out firmware that was
used for the 2012 in-beam test. The boxes in red represent the numbers of the original
design, without redundant logic, and the boxes in green give the numbers of the de-
sign with Selective TMR. The gray boxes are estimates for the resource consumption of
traditional Triple Module Redundancy (TMR) and are added for comparison. As sug-
gested by literature, six times the numbers of the original design is used to estimate the
numbers for traditional TMR.

The resource usage of the design that implements Selective TMR grew only to about
150 % (FFs) / 200 % (LUTs) compared to the original design without redundancy. This is
fairly modest considering the ∼ 600 % that the overhead of full TMR entails according to
literature [WRGC03b], [WRGC03a], [MMPW07].

6.3. In-Beam Tests

As already mentioned in section 4.3.1, the firmware was tested in two in-beam tests. Due
to tight schedule for the in-beam tests in 2012, only parts of the firmware could be pre-
pared for the test in time. The complete front-end module for interfacing the GET4 ASIC
was extracted for stand-alone tests in-beam and showed big improvements in radiation
tolerance while keeping the overhead manageable. Finally, in 2013 the rest of the design
was ready as well and the promising results of 2012 could be repeated with the full design
in-beam. The two tests show the feasibility of operating complex detector read-out logic
in an FPGA in a high radiation environment if radiation mitigation is applied properly.

The results of both experiments are presented in the following.
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6.3.1. Test Setup 2012

The board that executed the logic under test was mounted in the beam line while data
generation and communication to the DAQ PC was implemented on an auxiliary board
out of the radiation zone. The accumulation of SEUs was monitored in parallel by a third
board that was also mounted in the beam line. The basic setup is explained in more detail
in section 4.3.1, the SEU Counter approach in section 5.3.3.

The test consisted of several runs, alternately testing the various combinations of scrub-
bing on/off and with/without Selective TMR.

Figure 6.4 shows the exemplary data recorded during the experiment. These plots
give a very direct impression of the behavior of the design when scrubbing is disabled
(figure 6.4(a)) and when scrubbing is enabled (figure 6.4(b)). Each of the diagrams shows
the results of a three hours run. The plotted data directly represents the values were
measured during the tests.

The red plot represents the number of SEUs that have accumulated in the SEU Counter
board since start of the run. Plotted in blue is the time since the setup had to be repro-
grammed the last time (step Reprogram in the test procedure, figure 5.9). Every return-
to-zero of the blue plot refers to a system reset.

From the blue plot one can see, that without scrubbing the design had to be reset within
about one minute (the blue plot crawls at the bottom of the diagram) while when scrub-
bing is enabled, the system can survive for a much longer time (the blue plot rises to
much higher values). This does not imply that no error occurred for several minutes
when scrubbing is enabled but only that if an error did occur the system could recover to
correct operation.

There are some time slots highlighted in green during which no beam was available.
At the time the beam was shut down because the neutron level in the synchrotron was
exceeding the safety threshold. During these time slots no SEUs are collected in the SEU
Counter board, the red plot forms a plateau. The blue plot shows that no system reset
was required during these times as well, which is especially visible in figure 6.4(a) where
scrubbing is disabled and system uptime is usually significantly lower.

The three hours runs (the data is shown in figure 6.4) delivered data for the firmware
without redundancy only, during the measurements with a firmware based on Selective
TMR the beam was interrupted for more than half of the time. No data could be stored
for offline analysis in both cases. As the particle beam showed to become more and
more unstable, the time of a single run was reduced from 3 hours to 30 minutes and the
synchrotron was set to a lower particle rate. The following analysis is therefore based
on data from the shorter runs, and at a slightly smaller SEU rate (2 SEUs/s instead of
3 SEUs/s). Nevertheless, all the runs (scrubbing on and off, firmwares with and without
redundancy) were operated under comparable conditions.

Statistical Analysis While figure 6.4 is provided to give a direct impression on the sys-
tem behavior during the experiment, figure 6.5 shows more details in a statistical anal-
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(a) Scrubbing is disabled. Full reset of the setup required in less than a minute. The setup is only stable
when beam turned off.
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(b) Scrubbing is enabled. The setup runs stably for several minutes.

Figure 6.4.: The red plot refers to the number of SEUs collected in the reference board
while the blue plot shows the time since the last full reset of the setup. Every return
to zero of the blue plot refers to an unrecoverable failure of the setup caused by radia-
tion. During the time slots highlighted in green, the beam was shut down for technical
reasons.

105



Results

ysis. It compares the results of four different runs. The four runs were recorded with
two different firmwares, one implementing Selective TMR and one without redundancy.
In both cases, the firmware was operated for one run with scrubbing disabled and for
another run with scrubbing enabled. The results of the firmware that was synthesized
without redundancy are shown in figure 6.5(b) and the results based on the firmware
that implements Selective TMR in figure 6.5(c).

The green bars refer to iterations in the test procedure where no error was detected in
step Test DUT (figure 5.9). The orange bars represent the iterations in which an error was
detected in step Test DUT, but the error was temporary and the system could recover so
that step Test DUT again showed a functional device. The iterations in which an error
was detected in both steps, in Test DUT and also in Test DUT again, are illustrated by the
red bars.

A first observation is that, within the statistical uncertainty, no difference can be deter-
mined between the design without redundancy and the design that implements Selective
TMR. This leads to the question why Selective TMR should be implemented at all, given
it shows no difference in the error counts. The reason for Selective TMR not showing any
effect is, that the validation of the device’s functionality is based only on data and not
on control registers. Selective TMR, however, adds redundancy only for control logic and
not on the data path. The cross section of the control logic is much smaller than the cross
section of the data path’ logic. The number of errors based on SEU effects in the control
logic is smaller than the uncertainty (or “noise”) of the number of errors based on SEU
effects in the data path logic. The mitigation effects of Selective TMR are therefore not vis-
ible here. Nevertheless, TMR effects are evaluated in a separate measurement that does
not take into account errors in the data path and is discussed later in figure 6.7.

The second observation is that with scrubbing enabled, the number of iterations with
persistent error (when Test DUT failed twice) drops significantly, by a factor of almost 50.
This means, that 98 % of the errors could be repaired by scrubbing.

Third, it can be observed that a few persistent errors remain, even with scrubbing en-
abled. This is due to the following reasons. An error is considered to be “persistent” if
two consecutive tests fail (see figure 5.9). However, the second test fails with the same
probability as the first one does. So, those two consecutive tests can both fail indepen-
dently, without causal relationship. The probability for both tests failing independently
is ptest 1 and 2 = ptest 1 · ptest 2 = p2

test1 which results in about 0.1 to 0.2 % false “persistent
errors” in case of figure 6.5, which is already within the error bars. An SEU in the clock
manager for the design could also lead to an “persistent error” and there is also the (un-
likely) possibility of an multi-bit upset in the controls logic.

As a fourth observation, it can be noted that even when scrubbing is disabled (and
SEUs are not repaired) a few temporary errors appear. This can happen, because the data
path is not protected by TMR. An SEU that does not change static FPGA configuration
(routing or LUT) but the dynamic part (flip-flop or BRAM) can corrupt a data word in a
buffer. After read-out of the faulty data word the error is no longer present in the device,
also in the case when scrubbing is disabled.
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Set Testreg.

Record Data
(optional)

Check Testreg.

Test DUT

Test DUT againReprogram

Logfile Header

Log some parameter of  this run:
 - scrubbing on/off
 - with/without redundancy
 - data taking on/off
 - comment (set via command line
   argument) 

Init Readback
Readback reference measurement
for 3 minutes comparing SEU rate
of both devices in beam.

Set 128 32bit wide test registers, 
either with or without redundancy.

Optional! Record 3 seconds of data.

Check the test registers for errors.

DUT not ok
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DUT not ok

Run above test script again to see
if error is temporary or persistent.

Fully reprogram everything and 
continue.
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(a) Relevant steps in test procedure (see figure 5.9, page 88).
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(c) Results of the design implementing Selective TMR.

Figure 6.5.: This plots shows the percentage of iterations without errors (green), itera-
tions that show errors once but recovered to correct behavior afterwards (orange), and
iterations that suffered from permanent errors (red). The data was recorded during the
2012 in-beam tests in four comparable runs (SEU rate: ∼ 2 s−1). Scrubbing significantly
improves the in-beam behavior of the design while no difference was measured for Se-
lective TMR (due to the nature of the test, see text). For TMR effects, see figure 6.7. The
error bars are calculated by assuming a Poisson distribution for the absolute values.
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Analysis of Recorded Data More important than the statistical analysis of the steps
Test DUT and Test DUT again is the offline analysis of the data that was recorded in step
Take Data. This gives an impression of the data quality, the actually important property
for the CBM experiment.

Figure 6.6 shows the results of the offline analysis of the obtained data. The bars rep-
resent the fraction of corrupted data with respect to all data that is recorded. For the
same reasons as above, there is no significant difference between the firmware without
redundancy and the firmware that implements Selective TMR.
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Figure 6.6.: Analysis of the quality of recorded data. Note the logarithmic scale on the
y-axis. During the same four runs that are presented in figure 6.5, data was recorded
for 3 seconds (∼ 15 MB) in every iteration. The bars show the percentage of corrupted
data in the recordings. In this scenario, scrubbing improved the system by two orders
of magnitude. Error bars are not given here for reasons explained in text.

Then again, the effect of scrubbing on data quality is enormous, the values differ by
two orders of magnitude. A logarithmic scale is required to compare data taken when
scrubbing is enabled with data taken when scrubbing is disabled in the same plot. Scrub-
bing could reduce the percentage of corrupted data by a factor of 200.

No error bars are given here since errors occur in bursts, the probability for a data mes-
sage to be corrupted is not independent from corruption of previous data messages. In
addition, there is a systematic dependency between the values measured without scrub-
bing and the time for which data is recorded. Without scrubbing, the device can only
recover at the end of the test procedure iteration. The longer data is taken during one
iteration, the higher is the percentage of corrupted data in the case of disabled scrub-
bing. When scrubbing is enabled, however, the percentage of corrupted data is mostly
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independent from this effect because scrubbing can repair most errors in the device on-
the-fly.

During the in-beam tests, data was recorded for 3 seconds per test procedure iteration.
This is comparable to the reaction latency one can expect when board failures are detected
and corrected from an external entity, as it is planned for the final CBM setup.

Test Register Measurements To exploit the effect of TMR, a set of 128 test registers
(32 bit wide) was implemented in the firmware and checked in steps Set Testreg and
Check Testreg of the test procedure. Figure 6.7 shows the results of the evaluation of the
test registers.
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Figure 6.7.: Analysis of TMR efficiency. As the main test does not exploit the effect of
TMR, an array of test registers was added to the design that was exposed to beam par-
ticles. This array does not serve any functional purpose, however, it provided enough
statistics to unveil the positive effect of TMR. It can also be seen, that scrubbing helps as
well.

Since these measurements are not overlaid by errors in the data path, the effect of TMR
unveils. In contrast to the data path centric tests presented in figures 6.5 and 6.6, here
a clear improvement can be seen when TMR is implemented. TMR alone reduces the
errors in the test registers by factor of about 5 to 7, in combination with scrubbing the
factor is around 20.

The fact that despite TMR and scrubbing still some errors are measured is probably
due to multi-bit upsets. The very high data rate during the experiment clearly favors
multi-bit upsets. For the operation scenario at CBM, a much more relaxed upset rate is
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expected while the time to repair remains the same. Hence, the probability for multi-bit
upsets is much lower.

6.3.2. Test Setup 2013

The 2012 test showed very promising results for the frontend logic interfacing the GET4
ASIC. However, a significant part (the transport logic connecting to the DAQ PC) was
operated out of the beam line for reasons described in section 4.3.1. Therefore the 2012
tests are not complete. So, in 2013 the tests have been repeated with the full GET4 read-
out firmware mounted in the beam line.

Contrary to 2012, no actions have been taken to synthesize a firmware without re-
dundancy. The 2012 tests already showed that the major measurements do not change
significantly without redundancy. Furthermore, the 2012 Test Register Measurements are
omitted. They are based on an additional piece of logic that is not part of the GET4 read-
out controller, repeating these tests would not gain any new results.
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(a) Scrubbing is disabled. Same behavior as 2012,
a full reset of the setup required in less than a
minute.
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(b) Scrubbing is enabled. The setup runs stably for
the whole run (one hour).

Figure 6.8.: The same plots as in figure 6.4, here based on data from the 2013 in-beam
test. For this test the full GET4 read-out logic was exposed to the beam particles. Further
differences to 2012 are that the two runs only lasted for one hour each (three hours in
2012), and the SEU rate is about 1/4 of the rate from 2012. However, the main result
could be repeated, scrubbing significantly improves the system uptime.

Figure 6.8 shows the same plots for the 2013 test as figure 6.4 does for 2012. The inten-
tion for these plots is to give a direct impression on the behavior of the system during the
experiment. The plotted values were directly recorded like that, no recalibration or other
calculation was made for the plots.

The proton rate (5 · 106 cm−2s−1) was less than 2012, so the upset rate was lower, re-
sulting in longer system runtimes also without scrubbing enabled. However, the basic
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observation is the same, scrubbing significantly improves the system uptime.

Statistical Analysis A more detailed statistical analysis of 2013 data is shown in figure
6.9 (as done for 2012 data in figure 6.5). Again, the basic conclusion is the same, the num-
ber of iterations with persistent error (when Test DUT failed twice) drops significantly.

 0

 20

 40

 60

 80

 100

Scrubbing Off Scrubbing On

%
 o

f 
T
o
ta

l

Without Error
Temp. Error
Pers. Error

83.4

1.79

14.8

99.3

0.5580.139

(a) Analyzed data.

Set Testreg.

Record Data
(optional)

Check Testreg.

Test DUT

Test DUT againReprogram

Logfile Header

Init Readback

DUT not ok

 DUT
  ok

DUT
 ok

DUT not ok

Start

SEU counting

(b) Relevant steps in test procedure.

Figure 6.9.: The same plot as in figure 6.5, here based on data from the 2013 in-beam test
with the whole design exposed to beam particles. The beam intensity was lower than
2012 (SEU rate: ∼ 0.6 s−1 compared to ∼ 2− 3 s−1 in 2012), however, the promising
results with respect to scrubbing could be repeated.

The gaining factor is better this time, about 100 which is better than the factor of ∼ 50
that was measured in 2012. The reason for this might be that in 2013 the synchrotron
could not deliver the same high intensity beam as 2012. The beam particle rate was lower
and hence less multi-bit upsets occurred.

However, it should also be mentioned, that the value of 0.139 % shown in figure 6.9(a)
is based on only one event. One event is not enough for a statement of statistical signifi-
cance, the factor of 100 should not be overrated.

Nevertheless, the improvement when enabling scrubbing is still clearly visible.

Analysis of Recorded Data Offline analysis of recorded 2013 data is presented in figure
6.10. As for the analysis of 2012 data (figure 6.6) again a logarithmic scale is chosen for
the plot. The effect of scrubbing is not as large as is was 2012, but it still differs by a factor
of ∼ 40, or about one and a half orders of magnitude in the chart.

One reason why the factor is lower than in 2012 is the missing step Set Testreg in the
test procedure of 2013. In 2012, this step was executed before the data was recorded and
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lasted approximately one second. Any SEU that causes a failure during this second also
corrupts the data that is recorded afterwards. In 2013, data was recorded right after the
device was reprogrammed. Without scrubbing, errors remain in the device and the prob-
ability to record corrupted data is higher the longer the system is already running. Data
that is recorded from second 2 to 4 (the 2012 case) shows more corruption than data that
is recorded from second 1 to 3 (the 2013 case). However, this is not true when scrubbing
is enabled. Most errors are repaired and the uptime of the system is less relevant.

It should also be mentioned that a direct comparison between the two measurements
(2012 and 2013) is not as straightforward as it seems. In 2013, the particle rate was lower
than 2012, but on the other hand, the cross section of the firmware was higher (“full
firmware” vs. “half of the firmware”). In addition, it should be noted again, that erro-
neous data occurs in bursts and the accuracy of the numbers should not be overrated.

However, the qualitative analysis of the measurement does not change, the mitigation
effect of scrubbing is very high.
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Figure 6.10.: The same plot as in figure 6.6, here based on data from the 2013 in-beam
test with the whole design exposed to beam particles. The beam intensity was lower
that 2012 (SEU rate: ∼ 0.6 s−1), however, the great results with respect to scrubbing
could be repeated. Note the logarithmic scale on the y-axis.

6.3.3. Beam Diagnostics

The approach of directly measuring SEUs instead of calculating them from an otherwise
measured particle rate has proven to be very comfortable. It is discussed here briefly.
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SEU Counter Approach

In the beginning of each run, in step Init Readback, SEUs were collected in both boards,
the SEU Counter and the device under test (DUT) (see section 5.3.3). Comparing the SEU
rates of the SEU Counter board and DUT shows, that indeed the SEU rates of the two
boards differ slightly. In 2012 the DUT was the first board in beam direction and the SEU
Counter board was mounted behind, in 2013 the setup was the other way around.

In 2012, the SEU rate in the DUT board was slightly lower (around 90%) than the SEU
rate in the SEU Counter board. In 2013, it was the same, despite the different order of the
boards. This time, the DUT showed an SEU rate significantly lower (around 70%) than
the one of SEU Counter board. This was probably due to a small misalignment, the two
boards might not have been perfectly aligned in the beam line. Anyway, when using the
measured SEU values, they have to be corrected for these factors.

From a qualitative viewpoint, the counting of SEUs during the experiment worked
very well, the red curves in figures 6.4 and 6.8 represent the number of SEUs accumulated
over time in the SEU Counter board. As expected, the number of SEUs continuously
grows showing a constant slope indicating stable beam conditions. The plateaus that
show in the plots refer to times during which the beam was stopped, either for technical
reasons, or because access to the cave was requested.

In 2013, the particle rate calculated from SEUs is significantly smaller than the particle
rate of ∼ (2− 3) · 107 cm−2 · s−1 that was measured by the ionization chamber described
in section 5.3.3. The SEU rate translates to a particle rate in the order of 5 · 106 cm−2 · s−1,
a factor four or five off.

Probably both boards were not centrally hit by the beam. Without SEU counting and
only relying on the values from the ionization chamber, this would be a severe problem.
The results would refer to a higher particle rate than the boards were actually exposed to,
and hence SEU induced failures appear to occur less often than they really do. However,
because of the SEU counting method was implemented, this is not a problem at all, the
number of SEUs are accurately recorded.
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7. Discussion

7.1. Applying Results on the CBM Use Case

Fast hadron flux is the relevant parameter for SEUs (see Soft Errors, page 27). It can be
assumed that effective SEU cross sections of hadrons above a certain energy do not differ
significantly. The expected flux of fast hadrons at CBM is known from FLUKA simula-
tions [Sen11]. Hence, simulated fast hadron flux can be used to give a rough estimate of
the expected SEU rate at CBM.

Beam particles at the in-beam tests were also fast hadrons (2 GeV protons) and the
SEU rate was measured. Nevertheless, the results from the in-beam tests do not directly
translate to the expected behavior of the electronics in the operation scenario at CBM for
the following reasons.

1. A much lower particle rate is expected for CBM. The fast hadron flux at the inner
part of the ToF wall1 is in the order of 104s−1cm−2 [Sen11]. This is a factor of 500
less than the particle rate during the in-beam tests.

2. The above effect is somehow counterbalanced by the fact that the number of ROCs
to be installed at CBM-ToF is around 300 to 400 (ToF-TDR assumes 336 [TOF, p. 59]),
a factor in the same order of magnitude.

In consequence, the SEU rate measured during the in-beam tests with only one board
more or less translates directly to the SEU rate expected for the whole CBM experiment
with several hundreds of boards. However, there is more to consider:

3. The FPGAs to be used in the final experiment are likely Xilinx Series 7 (or later)
devices. Due to smaller process technology, those devices have a slightly smaller
bit cross section (∼ 7 · 10−15 cm2) compared to the Virtex-4 FPGAs used for the in-
beam tests of this thesis (∼ 1 to 2 · 10−14 cm2). The numbers are from [Xil14b, page
27].

4. An SEU effect at CBM is not as severe concerning data quality as an SEU effect
during the in-beam test was. During the in-beam tests, only one board was used. If
data was corrupted this effected 100% of the boards (one out of one). The ToF-TDR
assumes 336 boards to be operated simultaneously [TOF, p. 59]. If an SEU causes

1The inner part is the area with the highest radiation level of ToF. Unfortunately also the density of read-out
channels is highest in this part of the detector, and hence cabling cost can be reduced best when read-out
controllers can operate as close as possible to the inner region.
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data corruption it will only affect one out of some hundred boards, the remaining
boards will still deliver valid data.

5. The very high beam particle rate caused a much higher SEU rate per device than
expected in the operation scenario of CBM. However, the time to repair the device
remains the same. In consequence, the probability for multi-bit upsets in the device
at CBM is much lower than it was during the in-beam tests.

While 1 and 2 more or less out balance each other, 3, 4, and 5 attenuate the expected
radiation effects. In the following, only 3 and 4 are taken into account and the attenuation
effect of 5 is reserved as safety margin.

7.2. Detector Dead Time Estimations Based on Parameters
Measured at In-Beam Tests

Based on these numbers the implications on electronics at the ToF wall can be estimated,
here for the inner region were the radiation level is highest.

Expected SEU Rate at CBM-ToF First the expected SEU rate at CBM-ToF is calculated,
it is given by the following relation:

SEU rate = device cross section · fast hadron flux (7.1)

SEU rate =
︷ ︸︸ ︷
No. of configuration bits · bit cross section · fast hadron flux (7.2)

The required parameters are all available:

• Number of configuration bits: With a current GET4 read-out implementation for a
Spartan-6 LX150T FPGA that is supporting 57 GET4 ASICs, the “number of occu-
pied slices” is reported to be 36% of all available slices. To reduce cost, the size
of the final ToF-ROC’s FPGA will most likely be chosen such that not much fabric
resources remain unused, 80% occupied slices should be a realistic value.

A Spartan-6 LX150T firmware used to “full capacity” (80 %) would therefore sup-
port: 57 GET4s · 80/36 ≈ 126 GET4s. The firmware for the Spartan-6 is about 4 MB
or 3.2 107 bit, this translates to 2.5 105 bit per GET4.

The ToF-TDR describes a detector layout with 26 592 GET4s connected to 336 ROCs
[TOF, p. 59], i.e. about 80 GET4s per ROC.

The number of configuration bits in the proposed design is therefore 2 · 107 bit per
ROC and 6.8 · 109 bit ≈ 7 · 109 bit for the whole experiment.

• Bit cross section: The bit cross section of Xilinx Series 7 devices is published in
[Xil14b, page 27]. The numbers are 6.99 · 10−15 cm2 (configuration memory) and
6.32 · 10−15 cm2 (BRAM memory), it should be safe to assume 7 · 10−15 cm2 for both.
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• Fast hadron flux: FLUKA simulations prefigure a fast hadron flux at the inner region
of the ToF wall of about 104 cm−2s−1 [Sen11].

With these numbers, the expected SEU rate at CBM-ToF can now be calculated according
to equation 7.2.

SEU rate(per ROC) = 2 · 107 · 7 · 10−15 cm2 · 104 s−1cm−2 = 0.0014 s−1 (7.3)

=⇒ every 12 minutes in a single ROC

SEU rate(whole ToF) = 7 · 109 · 7 · 10−15 cm2 · 104 s−1cm−2 = 0.49 s−1 (7.4)

=⇒ every 2 seconds in one of the ROCs of the detector

Expected Error Rate at CBM-ToF Not every SEU has an effect on the running hard-
ware. With the results from the in-beam tests we can now estimate the error rate.

It should be noted that such factors can also be achieved with fault injection test (see
e.g. section 5.3.2). However, the results of fault injection tests only cover SEUs in the
static part of the configuration memory (PSMs, LUTs) but not in the dynamic part (FFs,
Memory). Therefore, in-beam tests are mandatory to analyze the full spectrum of SEU
effects. This is especially true for commercial off-the-shelf electronics where the internals
are not known in full detail.

The 2012 in-beam test has better statistics since the test lasted longer and the particle
rate was higher. However, the problem with the 2012 test is that only a stripped down
version of the firmware was exposed to beam particles. For that reason the following
considerations are based on the numbers from the 2013 in-beam test despite its fewer
statistics. After all, the 2013 measurements are consistent with the results of 2012.

First we consider the case without scrubbing. We can see from figure 6.9, that with-
out scrubbing, the average number of test procedure iterations until a system error is
1/14.8% = 1/0.148 ≈ 6.8. One iteration takes about 7.5 seconds, the average lifetime can
therefore be estimated to 51 seconds. In 51 seconds and with 0.61 SEUs/s, 31 SEUs are
collected in the SEU Counter board. As described in section 6.3.3, the SEU rate in the
DUT was only 70% of the SEU rate in the SEU Counter board. This means that in 51
seconds 21 SEUs have accumulated in the DUT.

Without scrubbing, the expected error rate at CBM-ToF is therefore:

error rate(no scrubbing)
(per ROC) = SEU rate(per ROC)/21 = 6.7 · 10−5 s−1 (7.5)

=⇒ every 4 hours in a single ROC

error rate(no scrubbing)
(whole ToF) = SEU rate(whole ToF)/21 = 0.023 s−1 (7.6)

=⇒ every 43 seconds in one of the ROCs of the detector

When scrubbing is implemented, two error rates have to be distinguished, temporary
errors and permanent errors. Note that in case of scrubbing enabled, data from figure
6.9 cannot be used to determine the rate of temporary errors. Figure 6.9 does not show
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those errors that have already been fixed silently by scrubbing during early steps of the
test procedure before Test DUT is reached. However, it can safely be assumed that with
scrubbing enabled, temporary errors occur at the same probability as the error rate that
is calculated above for the case without scrubbing.

temporary-error rate(scrubbing)
(per ROC) = SEU rate(per ROC)/21 = 6.7 · 10−5 s−1 (7.7)

=⇒ every 4 hours in a single ROC

temporary-error rate(scrubbing)
(whole ToF) = SEU rate(whole ToF)/21 = 0.023 s−1 (7.8)

=⇒ every 43 seconds in one of the ROCs of the detector

Permanent errors, on the contrary, can be deduced from figure 6.9 as they are not re-
moved by scrubbing. With 0.139 % of the iterations showing permanent errors, the aver-
age number of of iterations until a permanent error occurs is about 720. This means the
DUT sustained an average of about 2300 SEUs until it failed. When scrubbing is enabled,
the expected rate of permanent errors at CBM-ToF is therefore:

permanent-error rate(scrubbing)
(per ROC) = SEU rate(per ROC)/2300 = 6.1 · 10−7 s−1 (7.9)

=⇒ every 19 days in a single ROC

permanent-error ratescrubbing)
(whole ToF) = SEU rate(whole ToF)/2300 = 2.1 · 10−4 s−1 (7.10)

=⇒ every 80 minutes in one of the ROCs of the detector

Unfortunately, the factor of 2300 is based on only one single event in the 2013 in-beam
test, when a permanent error was measured with scrubbing enabled. The uncertainty of
the factor is accordingly high.

Expected Radiation Induced Dead Time of CBM-ToF Electronics To determine the
fraction of time in which an error is disturbing the setup one needs to divide the time
required to repair an error by the average time between the occurrence of two errors. A
temporary error will exist only for a short time (in the order of 100 ms) until it is cor-
rected by scrubbing whereas a permanent error persists until the device is reset externally
(probably for a few seconds if an intelligent error detection mechanism is implemented).

dead time (without scrubbing) = 3 seconds every 43 seconds
=⇒ in total: 7 %

dead time (with scrubbing) = 100 milliseconds every 43 seconds and
3 seconds every 80 minutes

=⇒ in total: 0.3 %

These values are based on the assumption, that the whole detector is down when a
single error occurs. This is not the case as an error affects only one out of 336 boards
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(see point 4 in section 7.1). For physics cases that do not require a complete picture of
the detector these values can be further reduced by a factor of 336. Dead time without
scrubbing is then ∼ 0.02 % and dead time with scrubbing ∼ 0.0009 %.

Expected Radiation Induced Data Corruption at CBM-ToF The expected data quality
for CBM-ToF would be very much the same as shown in figure 6.10 because points 1 and
2 in section 7.1 counterbalance each other.

corrupted data (without scrubbing) = 3− 4 %
corrupted data (with scrubbing) = 0.1 %

As before, corrupted data from a single ROC does not necessarily render the data from
the other ROCs useless. Therefore, depending on the physics case, the expected percent-
age of corrupted data has to be further reduced by a factor of 336 (the number of installed
ROCs). This results in about 0.01 % of the data to be corrupted without scrubbing, and
only about 0.0003 % with scrubbing.

Impact on CBM-ToF Strategy The conceptual design for CBM-ToF consists of six dif-
ferent modules, organized in an “inner wall” (4.3 m× 3 m), modules M1 to M3) and an
“outer wall” (rest of the 12 m× 9 m wall, modules M4 to M6) [DHA+14]. The results look
promising and suggest to put FPGAs close to the inner region. The ToF-TDR foresees
SRAM-based read-out electronics directly on the modules of the “outer wall”. For the
read-out of the “inner wall”, however, SRAM-based electronic will be placed outside the
area of the “inner wall” [TOF, p. 18]. The results of this thesis already provided impor-
tant input to this decision. The ToF-TDR [TOF] references [Mül14] in this context, and the
information from [Mül14] is based on assessments from the present work. Using FPGAs
in such an harsh radiation environment would possibly have been rejected without this
research.

As a backup strategy, the radiation level can be lowered further by a factor of 10 when
moving the electronics one or two meters farther away [Sen11]. Of course, this would
come with the drawback of higher cost due to more cabling. However, given the results
of the present work, it seems unlikely that the backup strategy is required. One might
rather consider the usage of FPGAs in zones with even higher radiation levels instead.
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8. Conclusion

This chapter summarizes the achievements of this thesis and gives an outlook for future
work that remains to be done before an FPGA based CBM-ToF read-out chain can be put
into service.

8.1. Summary

The present work addresses three closely related topics that are now summarized indi-
vidually.

8.1.1. Implementation of the CBM-ToF Read-Out Controller Firmware

A read-out controller firmware for the GET4 ASIC was implemented at the beginning of
this thesis and was continuously enhanced throughout the years. Five different proto-
types of the GET4 ASIC with an increasingly complex feature set were successfully read
out. The read-out firmware was not a pure prove-of-concept implementation for a labo-
ratory setup but it was also operationally used by the ToF detector group during several
in-beam tests to characterize their detector prototypes.

8.1.2. Evaluation and Implementation of Radiation Mitigation Techniques

When evaluating existing radiation mitigation techniques, a compromise between flex-
ibility, reliability and expenses had to be found. After ruling out some strategies, such
as temporal redundancy or Hamming-coded finite state machines, and choosing TMR as
one of the main pillars for radiation mitigation, the major problem that remained was the
huge resource consumption of TMR.

The special circumstance that 100% reliability cannot be guaranteed due to very high
radiation levels but on the other hand 100% reliability is also not required (as long as
contributions to detector dead time are not significant) led to the idea of Selective TMR.
With Selective TMR, only the control logic is implemented with triple modular redun-
dancy (TMR). Logic for handling data, with comprises the major part of the firmware, is
not TMR protected but data integrity is protected by a CRC checksum instead. The huge
demand of fabric resources entailed by conventional full TMR can be attenuated very
well with this approach. The resource consumption of the radiation mitigated firmware
grew by a factor between 150 % and 200 % compared to the unmitigated firmware (de-
pending on the resources, LUTs or flip-flops) instead of a factor of ∼ 600 % that is found
in literature for full TMR.
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8.1.3. In-Beam Verification of the Implemented Radiation Mitigation
Techniques

It was not clear, if the implemented radiation mitigation techniques perform sufficiently
well, despite the abovementioned compromises in the implementation. Also challenging
are the complexity of the firmware and the expected high particle rate at CBM. The effi-
ciency of the implementation was therefore shown in two in-beam verified by mounting
the FPGA directly into a beam of accelerated protons.

The results of these tests provided valuable information to better estimate the failure
rate of SRAM-based FPGAs for the case that they are used in the early stage of the ToF
detector read-out chain. It can now be assumed, that the usage of SRAM-based FPGAs
without mitigation would increase detector dead time in the order of a few percent. This
is already a significant contribution to the detector dead time and cannot be tolerated.

Fortunately, the usage of scrubbing performs very well, even at a very high particle flux,
on a highly complex design, and with only part of the design is covered by TMR. In the
CBM-ToF use case, contributions of radiation caused electronics failure to detector dead
time can be reduced by more than one order of magnitude.

However, when expecting erroneous behavior, even if only in rare occasions, one must
not forget to design higher system levels (e.g. communication protocols) in a way that
they can tolerate temporal erroneous behavior of radiation-exposed devices.

In the end, if the firmware is designed carefully and scrubbing is used, the usage of
SRAM-based FPGAs at CBM-ToF is possible. Therefore, based on the assessments from
the present work, the current plans for CBM-ToF are foresee SRAM-based FPGAs in the
early stage of the read-out chain.

8.2. Outlook

The work on this thesis is based on a fully functional detector read-out chain. However,
the final setup that will be implemented at CBM eventually will look different than the
setup of today and even more different than the setup as it existed at the time the work
for this thesis started. This section gives an overview of tasks that have to be addressed
in future work.

8.2.1. Fault Tolerant Communication Module

The current work is based on CBMNet technology. However, with the redesign of the
CBM magnet, more space for STS electronics became available. This has an impact on
all CBM read-out electronics. CERN’s more mature GBT project [MMK07] will be used
as a drop-in replacement for CBMNet, future CBM read-out chains will be based on GBT
technology rather than on CBMNet technology. The transition from CBMNet to GBT
technology requires a lot of reimplementation of logic and even redefinition of protocols.
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8.2.2. SEU Mitigation in Xilinx Series 7 FPGAs

Because scrubbing is such a successful strategy, Xilinx recently introduced in their series
7 devices an on-chip scrubbing controller as a new feature [Xil14a]. If not more than one
SEU is present per frame1, it can be corrected automatically by the chip itself. As the
correction of a single bit error is based on error correction codes, no additional memory is
required for that task. External action is only required in case of a multi-bit error, the chip
then indicates the error and the referring frame number via a configuration interface and
waits for external reconfiguration of the corrupted frame. Only for correction of multi-bit
upsets, which are much less frequent than single bit errors, a memory device that stores
the original configuration is required.

In conjunction with the JTAG feature of the GBT-SCA technology, this allows to per-
form scrubbing on a much more elaborate level. As external action is only required for
the rare event of a multi-bit upset, the action can be executed from outside the radiation
zone. Without on-chip scrubbing, the performance of GBT-SCA JTAG would be too slow
for efficient scrubbing, it would then not be feasible to scrub over the long distance from
outside the CBM cave.

From CBM perspective, the major advantage of on-chip scrubbing is the missing re-
quirement for on-board Flash memory. The usage of Flash technology in the radiation
zone was one of the greatest concerns regarding the configuration system used to per-
form scrubbing so far. Flash memory is known to suffer severely from total ionizing dose
effects (see section 2.2.1 and paragraph “Cumulative Radiation Effects” in 2.4.1), they
will eventually stop working after they have been operated in a radiation environment
too long.

The Xilinx series 7 on-chip scrubbing feature solves this problem. External reconfigu-
ration is required very rarely and can now be executed from outside the CBM cave over
the GBT-SCA JTAG feature. In consequence, the memory holding the original FPGA
configuration is not exposed to radiation at all.

First efforts of putting on-chip scrubbing of a Xilinx series 7 device into service has
already been started by group member Andrei Oancea, and he will also continue his
work on this topic.

8.2.3. Resilience

Device failures are rare events but we cannot fully prevent them. Therefore it is important
to define the situations under which a full device reset is necessary. The test procedure
used during the in-beam tests includes a software based data integrity test (see figure 5.9).
If the test fails twice, the setup is reset. For the in-beam test setup, this was sufficient.
However, for the final CBM experiment with several hundreds of read-out controller
boards, data integrity checks cannot be done in software. For that purpose it is required
to have a monitor entity outside the radiation zone (e.g. in the DPB). This monitor entity

1The configuration memory of Xilinx FPGAs is logically organized in smaller units, called frames.
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decides whether a device is working properly or not. Therefore, it needs to analyze the
data quality, implement watchdog functionality, etc.

A further problem occurs when the design finally has been reset. It then needs to be
resynchronized to the global time value of the running system. The current concept that
is used by the CBM-ToF group for read-out of detector prototypes and that was used as
well for the in-beam tests in the present work depends on a global, simultaneous reset of
all time counters in all devices. This concept works sufficiently well for setups with few
boards, but it does not scale to several hundreds of boards. For the final setup at CBM,
we need a concept for re-synchronization of a single board into the running experiment
setup. Basic ideas have already been considered in the current system, the time stamp
counters in GET4 ASICS can be set via slow control to arbitrary values and will then start
counting upon reception of a signal that is synchronously and periodically distributed
on a global scale. For his diploma thesis Johannes Lehrbach has already implemented a
proof of concept design that automatically synchronizes the GET4 time to the ROC time
[Leh13]. Such a concept needs to be implemented for the ROC time stamp counters as
well. The global, synchronous signal can be implemented with so called “deterministic
latency messages” or DLMs (see section B.2.3) in case of CBMNet based setups. Similar
functionality is also available on GBT based systems where it goes by the name “Timing
Trigger and Control” or TTC [MMK07].
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Appendix B.

Documentation for the GET4 Read-Out
Controller

This chapter is part of the documentation for the GET4 read-out controller firmware that
was written during the development of the firmware. It describes some basic design
concepts and the functionality of the Modular-ROC firmware.

The firmwares that have been used during the in-beam experiments are derived from
an early version of the Modular-ROC firmware that is based on a two-modules concept.
Since the most important results of this thesis came out of those in-beam experiments
the documentation chosen to be shown here has been taken from this early Modular-ROC
firmware. As the development on the GET4 read-out controller continued, it is already
slightly outdated at time of writing. Today, a version that implements three modules is
used in the CBM community and for the future an even finer modularization is planned.

B.1. Introduction

The CBM experiment at FAIR requires the readout of multiple detector front end elec-
tronics. This is usually done with special readout controller (ROC) boards where each
detector assembles different frontend electronics, requiring different ROCs. However,
the interface in the other direction of the readout chain is usually quite the same. This
led to the idea of a modular ROC design, which separates the readout logic from the
transport logic. Much functionality can be reused and only the interface to the frontend
electronics needs to be exchanged. In addition, this modular approach allows an efficient
development of the firmware by more than one designer. The frontend and the transport
module can be developed separately by different developers.

This document is intended to describe the firmware of the ROCs. For a closer look at
the actual hardware please refer to http://cbm-wiki.gsi.de/cgi-bin/view/NXYTER/
SysCoreV2.

In chapter B.2 we will describe some basic design concepts of the ROC firmware and
functionality which is relevant for all combinations of the modules. Then in chapter B.3
the module-specific details are explained. Chapter C is intended as a reference work and
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Figure B.1.: Schematic overview of the modular approach for the ROC design.

provides an overview of all available slow control addresses, including a short explana-
tion for each address.

B.2. Basic Functionality

Some ROC functionality is crucial for the design of the CBM readout chain, this func-
tionality needs to be provided by all firmwares for the CBM-ROC. Most important, the
modules have to share a common interface.

The interface is separated in three different classes similar to the CBMNet traffic classes:
a bus interface to transport slow control commands, a FIFO interface for data transport
and a deterministic latency interface for synchronization using so-called DLM messages.

The common functionality that is important for all modules shall be described in this
chapter. The chapter is thereby structured according to the three different classes.

B.2.1. Slow Control

GET/PUT Commands and Multi Oper Lists

The ROC can be configured with GET and PUT commands, GET commands are 32 bit
wide, PUT commands consist of 64 bit. Those commands are part of what is known as
Multi-Oper-List protocol which defines seven commands in total:
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CMD Hex code Bin code Comment
NOP 0x00 00000000 (32 bit, not acked)
N 0x01 00000001 (32 bit, not acked)
PUT 0x02 00000010 (64 bit)
GET 0x04 00000100 (32 bit)
ACK-PUT 0x0A 00001010 (64 bit)
ACK-GET 0x0C 00001100 (64 bit)
NACK 0x10 00010000 (64 bit)

They are either 32 bit or 64 bit wide, the meaning of the bits is illustrated in figure B.2.
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Figure B.2.: Bit organization of the GET/PUT commands.

The multi oper lists are build by using these commands. The following rules apply:

• The first command of a multi oper list is N. N defines the number of commands
(GET/PUT/NOP) that will follow in the list.

• A multi oper list is always transmitted in one CBMNet packet and therefore, due to
the 64 byte limitation of CBMNet, a maximum of 7 commands per multi oper list is
possible.1

• Since CBMNet requires the granularity on the control path to be 64 bit, there is a
32-bit NOP padded at the end if necessary. Note that the NOP also counts for the
referring N command.

1Note that in software you can issue multi oper lists with more than 7 commands. But they will be split to
multiple multi oper lists by the ABBdaemon (the driver for the PCI express board). So if you need to ensure
that the commands in your multi oper list are executed within a very short time period, do not use more
than 7 commands or use the cmd-lists feature.
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• All commands of a multi oper list are executed and all the referring ACKs/NACKs
are send back in one packet.

• Since the number of expected ACKs/NACKs is known, the replying packet does
not contain the preceding N command.

• Since the ACKs/NACKs are all 64 bit, it does not contain a NOP either.

• A NOP will not cause a ACK or NACK.

• If one command fails, a NACK will be replied. All subsequent commands of the
multi oper list will not be executed and a NACK will be replied for them.

• A single GET or PUT command is just a multi oper list with N = 1.

Slow Control Addresses

The address space of the Modular ROC is divided in several address subspaces. One
subspace for each module and one subspace for common functionality (see section C for
all addresses).

The following address subspaces are defined:
0x0XXXXX: common functionality
0x1XXXXX: Ethernet specific functionality
0x2XXXXX: Optics specific functionality
0x3XXXXX: reserved
0x4XXXXX: nXYTER specific functionality
0x5XXXXX: FEET/GET4 specific functionality

Hardware Identification To identify which combination of frontend module and trans-
port module is present, address 0x 00 00 00 returns a 32 bit value. The upper 16 bit indi-
cate the type of frontend module and the lower 16 bit the type of transport module that
is used.

The following values are defined:

• Frontend Module:

– 0x0001: The nXYTER readout.

– 0x0002: The FEET readout (old GET4s). Support dropped.

– 0x0003: The GET4 v1.x readout.

• Transport Module:

– 0x0001: Transport via Optics

– 0x0002: Transport via Ethernet (for the Virtex4-FX20 FPGA)
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– 0x0003: Transport via Ethernet (for the Virtex4-FX40 FPGA)

– 0x0004: Transport via Ethernet (for the Virtex4-FX60 FPGA)

– 0x0005: Transport via USB

So, for example the firmware for the readout of the GET4 v1.x chips via Optics would
return: 0x0003 0001.

Hardware Versioning

The mostly independent development of different modules requires an independent ver-
sioning of the different modules. In each module, address 0x X0 00 00 must return it’s
hardware version. An exception is the address subspace of the common functionality
since here 0x 00 00 00 is already used to identify the combination of frontend module and
transport module. 0x 00 00 04 is used for the version of the interface between the two
modules.

Command Lists

Eight programmable Command Lists are available on the ROC. They can be used for com-
mand sequences that need to be repeated frequently, and for time critical command se-
quences. Time critical means that the commands in the list are executed within a few
clock cycles but also that execution of the lists can be started by DLMs, i.e. on multiple
ROCs simultaneously.
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Figure B.3.: CMD-Lists memory (2kB) is mapped into PUT/GET-address-space
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• There are 8 Lists available, each list provides a maximum of 32 commands

• Execution of a list can be issued by a PUT command, alternatively, DLMs 8-15 trig-
ger list 0-7 respectively.

• GET commands can also be programmed but are of limited use as ACKs/NACKs
of list-commands are not stored

• In case of GET, proceed with 64 bit alignment after the GET command.

• The last CMD has to be the command to deactivate list processing ...

• ... except if you want to chain lists (careful)

• Predefined list commands:

– List 0: Start DAQ, then deactivate list processing

– List 1: Stop DAQ, then deactivate list processing

– Lists 2-7: just deactivate list processing

Example
rocutil-command what happens

Example sequence (initialize a GET4 chip and send back a DLM):
put 0x501000 0x8 enable readout from port 4 (8="1000", 4th bit enables 4th port)
put 0x510000 0x0 Send command to GET4: activate dll and ro-rst
put 0x510000 0x10 Send command to GET4: enable GET4 readout
put 0x201000 0xA Generate a DLM with pattern "1010" (=0xA)

Commands to store the above sequence in CMD-List No. 5:
put 0x021500 0x02501000 Store CMD and ADR of 1st cmd
put 0x021504 0x8 Store DATA of 1st cmd
put 0x021508 0x02510000 Store CMD and ADR of 2nd cmd
put 0x02150C 0x0 Store DATA of 2nd cmd
put 0x021510 0x02510000 Store CMD and ADR of 3rd cmd
put 0x021514 0x10 Store DATA of 3rd cmd
put 0x021518 0x02201000 Store CMD and ADR of 4th cmd
put 0x02151C 0xA Store DATA of 4th cmd
put 0x021520 0x02020004 Store CMD and ADR of “deactivate list-processing”-cmd
put 0x021524 0x0 Store DATA of “deactivate list-processing”-cmd

Select list No. 5 and activate processing:
put 0x020000 0x5 Activate list No. 5
(An incoming DLM ("1101") will trigger the processing of list No. 5 as well.)
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B.2.2. Data Readout

Besides hit data, some other important messages are send over the 48 bit wide data
path. Those messages are Epoch Messages for bandwidth efficient time representation,
Sync/Aux Messages to merge external events like beam-on/beam-off in the data stream,
and System Messages to merge internal events like FIFO reset in the data stream.

Figure B.4 shows the bit arrangement of the different messages.

Hit Messages

The hit data coming from the front-end electronics is embedded in a 48 bit wide data
message. Those messages carry the timestamp of the hit, time over threshold, the chip
number and the channel number.

System Messages

Since the data acquisition at CBM is designed to be timestamped and free running (no
global trigger) the latency from data generation in the detector and data interpretation
in the computing node can be quite high. It is important to have a mechanism to insert
certain marker events in the data stream (e.g. when a FIFO was reset). Such marker
events are called System Messages. The following System Messages are defined:

SysMsg Type Name Comment
0x01 1 DAQ-START first message when DAQ is started
0x02 2 DAQ-STOP last message before DAQ is stopped
0x03 3 NX-PARITY nXYTER specific message
0x04 4 SYNC-PARITY legacy functionality
0x05 5 DAQ-RESUME legacy functionality
0x06 6 FIFO-RESET first message after a FIFO reset
0x07 7 USER / ADDSYSMSG can be inserted via slow control or

/ SW_DEF_SYSMSG DLM 4, the message carries a 32 bit
wide field that can be set via slow
control prior to insertion

0x09 8 PCTIME legacy functionality
0x09 9 ADC nXYTER specific message
0x0A 10 PACKETLOST legacy functionality
0x0B 11 GET4_EVENT control event from the GET4 chips
0x0C 12 CLOSYSYNC_ERROR inserted if the internal timestamp counter

is not conform to the sync strobe received
from CLOSY

0x0D 13 TS156_SYNC inserted if the internal timestamp counter
is reset
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Figure B.4.: Data path massages: bit correlation between firmware and PC (bit 0 is
always the LSB).
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B.2. Basic Functionality

Epochs

The time resolution of the detectors is in the order of nanoseconds or even picoseconds.
Transporting the full, unique timestamp of every hit would result in a unnecessary high
bandwidth. Therefore the data is organized in time intervals, so called epochs. The
timestamp information tagged to the hit data only gives the time that elapsed since the
beginning of the epoch. When a new epoch begins, an epoch marker is inserted in the
data stream.

Sync/Aux

The ROC comes with some GPIO pins (a.k.a. Sync/Aux pins). When a rising or falling
edge is detected at such a pin, a message - tagged with the 250 MHz timestamp - is in-
serted in the data stream. This allows to insert time critical information of external events
into the data stream.

B.2.3. Deterministic Latency Messages (DLMs)

The 4 bit wide deterministic latency messages (DLM) are implemented for the synchro-
nization of all the CBM-ROCs. Besides their deterministic latency they provide as well a
broadcast functionality, every DLM is received by all ROCs.

The following DLMs are defined:

DLM-No. Name Comment
0x00 0 DLM_PING reply with DLM 0, required for CBMNet

link initialization
0x01 1 DLM_SYNC reset timestamps
0x02 2 undef.
0x03 3 undef.
0x04 4 DLM_SW_DEF_SYSMSG insert system message into data stream
0x05 5 undef.
0x06 6 undef.
0x07 7 undef.
0x08 8 DLM_CMDLST_1 execute Start-DAQ sequence
0x09 9 DLM_CMDLST_2 execute Stop-DAQ sequence
0x0A 10 DLM_CMDLST_3
0x0B 11 DLM_CMDLST_4
0x0C 12 DLM_CMDLST_5
0x0D 13 DLM_CMDLST_6
0x0E 14 DLM_CMDLST_7
0x0F 15 DLM_CMDLST_8

Multiple ROCs can be synchronized by sending the DLM number 1 (DLM_SYNC).
This sets the local 250 MHz timestamp counter in the ROCs to zero.
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The DLMs number 8 to 15 trigger a configurable sequence of up to 32 PUT commands
stored in the ROC (see section B.2.1). Those lists can be predefined and then simulta-
neously triggered on all ROCs by the referring DLM. The convention is to use list 1 for
Start-DAQ sequence and list 2 for Stop-DAQ sequence.

B.3. The Modules

B.3.1. Frontend Readout: GET4

This module is designed to interface multiple GET4 chips. It gathers data from the differ-
ent GET4 chips and combines it into one data path and provides an interface to configure
the GET4 chips.
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Figure B.5.: A schematic overview of the front-end module for the GET4 read-out.

The important blocks for the GET4 read-out are shown in Figure B.5 and described in
the following list.

• Bus Control / DLM Control: Those blocks receive the slow control commands and
deterministic latency messages (DLMs) respectively and invoke the according ac-
tion.

• GPIO: The GPIO block generates the SYNC and AUX Messages mentioned in sec-
tion B.2.2. It is required to merge information from external events into the data
stream.

• System Messages: The System Messages block generates the System Messages de-
scribed in section B.2.2.
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B.3. The Modules

• Mask Registers: There are two different mask registers, one for masking the data
path from (Receive Mask) and one for masking the control path to (Transmit Mask)
the connected GET4 chips. The Receive Mask is needed to disable all unconnected
ports because otherwise those LVDS lines may produce ghost hits. It can also be
used to suppress data from a malfunctioning GET4.

The Transmit Mask is needed if a command is to be send to only a subset of the
connected GET4s.

• Receiver: Each GET4 chip transports its data via a serial protocol over an LVDS
data line.

Data sampling can be configured to happen at rising or at falling edge of the clock.
This enables to choose stable data signal.

Every data line is connected to a deserializer and a small FIFO buffer.

While receiving the data, a CRC checksum is calculated (generator polynomial:
x8 + x2 + x + 1) and padded to the data in case of a hit data.

• Channel Combining: Here the data from the different sources is combined into
a single data stream. A source can be data from one of the GET4s, a Sync/Aux
message, a System Message or an Epoch Message. It also arranges the data in a
way that it fits the 48 bit message format shown in figure B.4. The data from GET4s
is then read out round-robin.

When data has to be thrown away due to backpressure, a bit in the next epoch
message is set to indicate the data loss. Data is thrown away first, even if there is
still some little space left in the buffer FIFO. This ensures that epoch and system
messages are not lost when data acquisition is running (bandwidth should be high
enough to transport these rare messages). If an epoch message is lost due to back-
pressure (e.g. when data acquisition is stopped), a second flag is set in the next
epoch message.

The ROC can be configured to suppress the epoch messages if there was no hit
message transmitted since the last epoch message.

• Local Timestamps: There are two different timestamp counters in the ROC, one in
the 156.25 MHz and one in the 250 MHz clock domain. However those two clock
domains are phase locked.

The 250 MHz timestamp counter is needed for the GPIO block and to generate the
250 MHz epoch messages.

The 156.25 MHz timestamp counter is needed to tag the epoch number to the Epoch
Messages. In the future, this will be implemented directly on the GET4.

• The Data Generator: For debugging purpose, on the very beginning of the data
path (even before the deserializer and the mask register) data can be inserted by a
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data generator. Data is generated by a circular shift register shifted with the serial
clock. The LSB of this register is used as input instead of the real input pin. The
content of the shift register is configurable via slow control.

Synchronize ROC and GET4s

Two PUT commands are required to reset the timestamps on ROC and GET4. Both de-
vices will not immediately continue to count but wait for the next CLOSY sync pulse and
then both start synchronous to this pulse.

The two commands to reset the timestamps need to be issued within a very short time
frame. This can be achieved in two ways, by sending both PUT commands in one Multi-
Oper-List (see section B.2.1), or by programming a command list (see section B.2.1).

If more than one ROC is part of the setup, the command lists approach is mandatory
since only here DLMs are used.

B.3.2. Transport: Optics

The optics module basically consists of two parts, the CBMNet module and some glue
logic.

FIFO

FIFO
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ctrl2send_start
ctrl2send_end
ctrl2send_stop

ctrl_rec
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ctrl_rec_end
ctrl_rec_stop

data2send
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interface
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CBM Protocol
Module
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PC

PCIe

CBMNet Module

Front−End Module

The CBMNet Module is developed in Mannheim by Frank Lemke and Sven Schenk
under the supervision of Ulrich Brüning. It comes with a standardized interface, provid-
ing the three traffic classes (Control, Data, DLM). Each class comes with special function-
ality, like retransmission for Control or deterministic latency for DLM. The yellow LED
on the SysCore Board indicates an established optical connection. For more CBMNet de-
tails, contact Frank Lemke (lemke@uni-hd.de).
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The Glue Logic translates the CBMNet interface to the internal ROC-module interface
(OPB, FIFO, DLM). Additionally it provides some functionality needed for the CBM read-
out chain:

• registers for the ROCID and the hardware version

• Start-DAQ / Stop-DAQ functionality

• a data generator (see section B.3.2)

• the command lists as described in section B.2.1

• interpreting and executing the following DLMs: DML_PING and DLM_CMDLIST_<nr>
(DLMs are described in section B.2.3)

• a register holding the history of received DLMs

CBMNet Encapsulation

The CBMNet interface takes the data on the control path and the data path in 16 bit wide
words. However the width of the transported data units on these channels is wider than
16 bits. So these data units have to be split in multiple 16 bit words. In this chapter we
want to specify how we use the 16 bit wide CBMNet interface. To avoid confusion, the
following convention shall be used:

• A word is the 16 bit wide data that is sampled by CBMNet in one cycle.

• A message is the 48 bit wide data on the data path, representing a hit event, epoch
marker, system message, etc.

• A command is 32 or 64 bit wide data unit representing a GET, PUT, ACK, NACK
or NOP on the control path.

• A packet is a number of words that are consecutively send over the data or control
channel of CBMNet. By design, the minimum size of a packet is 4 words (8 byte),
the maximum is 32 words (64 byte).

Data Path: The data messages (hit-data, epoch markers, system messages, ...) are all 48
bit wide, so they are split in three 16 bit wide data words and send in three consecutive
clock cycles. For the bit organization of the 48 bit messages refer to figure B.4. The very
first word that is send over the data path is the 16 bit ROCID. Then the next three words
represent the first 48 bit message, beginning with the lower 16 bit (see figure B.6). If
enough data is available, the number of messages in one packet is ten, the maximum that
fits into a valid CBMNet packet. When there are less than ten messages available, they
are send after a short timeout in a shorter CBMNet packet. On the ABB side the 48 bit
messages are recovered and additionally the ROCID is padded to each message so that
they all become 64 bit wide.
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Clk

data2send

data2send_start

data2send_end

ROCID Data1(47:32)Data1(15:0) Data1(31:16) Data2(15:0) Data2(47:32)Data2(31:16)

Figure B.6.: A CBMNet data path packet with two messages.

Control Path: On the control path we implement a GET/PUT protocol based on so
called "multi oper lists" (see section B.2.1). The commands defined for the multi oper lists
protocol are either 32 bit or 64 bit wide and are therefore divided in two or four 16 bit
words. Contrary to data messages, control commands are send with the more significant
16 bit first (see figure B.7). The first two words received by the ROC over the control path
of CBMNet are by definition rocid and retid, in that order. The first two words of a
control packet that is send back by the ROC are the same rocid and retid but in the
reverse order. Since CBMNet requires an alignment to 64 bit, a NOP command is inserted
at the end when necessary.

Clk

ctrl_rec

ctrl_rec_start

ctrl_rec_end

ROCID RETID N(31:16) N(15:0) PUT(47:32)PUT(63:48) PUT(31:16) PUT(15:0) GET(15:0) NOP(15:0)NOP(31:16)GET(31:16) GET(31:16) GET(15:0)

(a) Receiving three PUT/GET commands (one PUT and two GETs) in one packet.

Clk

ctrl2send

ctrl2send_start

ctrl2send_end

RETID ROCID
ACK−PUT
(63:48)

ACK−PUT
(47:32)

ACK−PUT
(31:16)

ACK−PUT
(15:0)

ACK−GETACK−GET
(63:48) (47:32)

ACK−GET
(31:16)

ACK−GET
(15:0)

ACK−GETACK−GET
(63:48) (47:32)

ACK−GET
(31:16)

ACK−GET
(15:0)

(b) The control path reply for the above packet (figure B.7(a)).

Figure B.7.: The protocol on the CBMNet control path.

DLMs: DLMs cannot accept the delay induced by a handshaking protocol, they are
send and received using just a valid flag (see figure B.8).
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Clk

dlm_type

dlm_va

DLM

Figure B.8.: Data arrangement for the CBMNet DLMs.

The Optics Data Generator

The optics module includes a fake-data generator. The data generator is a 16-bit counter,
so the resulting data stream is a pattern of consecutive 16-bit values. If the values are
interpreted as 48 bit data messages they will show up as following:

0x 0701 0000 0000 (System Message: Start-DAQ)
0x 0003 0002 0001 (counting up from here on, no useful interpretation)
0x 0006 0005 0004
0x 0009 0008 0007
0x 000C 000B 000A
0x 000F 000E 000D
0x 0012 0011 0010
0x 0015 0014 0013
0x 0018 0017 0016
0x 001B 001A 0019
...
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Appendix C.

Registers in the GET4 Read-Out Controller

This chapter is part of the documentation for the GET4 Read-Out Controller firmware
that was written during the development of the firmware. It is intended as a reference
work and provides an overview of all available slow control addresses, including a short
explanation for each address.

The firmwares that have been used during the in-beam experiments are derived from
an early version of the Modular-ROC firmware. Since the most important results of this
thesis are based on those in-beam experiments the documentation chosen to be shown
here describes the early ROC-firmware, and hence is already slightly outdated at time of
writing.

C.1. Addresses in the Common Address Space (0x 00 00 00 -
0x 0F FF FC)

ROC_TYPE: 0x 00 00 00

32 bit, readonly. This address indicates which frontend module and which transport
module is available in the firmware. The higher 16 bit determine the frontend module,
the lower 16 bit determine the transport module. The following values are defined:

• Frontend Module:

– 0x0001: The nXYTER readout.

– 0x0002: Support dropped. The FEET readout (old GET4s).

– 0x0003: The GET4 v1.0 readout.

• Transport Module:

– 0x0001: Transport via Optics

– 0x0002: Transport via Ethernet (for the Virtex4-FX20 FPGA)

– 0x0003: Transport via Ethernet (for the Virtex4-FX40 FPGA)

– 0x0004: Transport via Ethernet (for the Virtex4-FX60 FPGA)

– 0x0005: Transport via USB
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So, for example the firmware for the readout of the GET4 chips via Optics would return:
0x0003 0001.

ROC_HWV: 0x 00 00 04

32 bit, readonly. This address returns the (hardware) version of the interface between
the frontend module and the transport module.

ROC_FPGA: 0x 00 00 08

8 bit, readonly. This address returns the FPGA-TARGET the firmware is synthesized
for as defined by the following list:

• 0x01: xc4vfx20-ff672-10 (SysCoreV2.0: Virtex-4 FX20, Speedgrade -10, Package ff672)

• 0x02: xc4vfx40-ff672-10 (SysCoreV2.2: Virtex-4 FX40, Speedbrade -10, Package ff672)

• 0x03: xc4vfx60-ff672-10 (SysCoreV2.1: Virtex-4 FX60, Speedgrade -10, Package ff672)

• 0x04: xc6slx45t-3-fgg484 (SP605: Spartan-6 LX45T, Speedgrade -3, Package fgg484)

• 0x05: xc6slx150t-3-fgg900 (SysCoreV3.x: Spartan-6 LX150T, Speedgrade -3, Package fgg900)

ROC_ROCID: 0x 00 00 10

16 bit, read/write. The ROCID register is intended to be the unique identifier of the
ROC. However, this register has to be set in the initialization phase. The messages on the
data path are tagged with the value from this register. In the final setup, it should be set
according to the routing of the optical network. Contact Frank Lemke (mailto:lemke@
uni-hd.de) or Sven Schatral (mailto:schatral@uni-hd.de) for details concerning the
routing of the optical network.

ROC_SVN_REVISION: 0x 00 00 14

16 bit, readonly. When synthesized from a clean subversion checkout and the Make-
flow is used for synthesis, this address returns the revision number of the subversion
repository. Otherwise it defaults to “0x0000”.

ROC_BUILD_TIME: 0x 00 00 18

32 bit, readonly. When using the Makeflow this address returns the time (number of
seconds since 1970-01-01 00:00h) the firmware was synthesized. The value is determined
by the command “date +%s” on the PC executing the Makefile, it can be converted to
human readable form by executing the command “date -d @VALUE”.
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C.1. Addresses in the Common Address Space (0x 00 00 00 - 0x 0F FF FC)

ROC_SYSTEM_RESET: 0x 00 01 00

1 bit, writeonly. When writing a 1 to this register, if the Actel is connected (ROC’s
CON41 and CON2 are set), the Actel will reconfigure the FPGA.

ROC_ADDSYSMSG: 0x 00 02 00

32 bit, writeonly. When writing to this address, a System Message carrying the writ-
ten 32 bit pattern is inserted in the data stream.

reserved: 0x 00 06 00

0 bit, undefined. This address is used as ROC_HARDWARE_VERSION in outdated
versions of the firmware. Those firmware versions (version 1.x.x.x) are incompatible to
the current address mapping (version 2.x.x.x). The software uses this address to check
which firmware version is in use. The address has to be undefined for 2.x.x.x versions.

ROC_GPIO_CONFIG: 0x 01 00 00

32 bit, read/write. This register configures the functionality of the GPIO pins.

ROC_SYNC1_BAUD_START / ROC_SYNC2_BAUD_START /
ROC_SYNC3_BAUD_START: 0x 01 01 00 / 0x 01 02 00 / 0x 01 03 00

8 bit, read/write. This register configures communication parameters for the poor
man’s synchronization (see chapter 3.1.3).

ROC_SYNC1_BAUD1 / ROC_SYNC2_BAUD1 / ROC_SYNC3_BAUD1:
0x 01 01 04 / 0x 01 02 04 / 0x 01 03 04

8 bit, read/write. This register configures communication parameters for the poor
man’s synchronization (see chapter 3.1.3).

ROC_SYNC1_BAUD2 / ROC_SYNC2_BAUD2 / ROC_SYNC3_BAUD2:
0x 01 01 08 / 0x 01 02 08 / 0x 01 03 08

8 bit, read/write. This register configures communication parameters for the poor
man’s synchronization (see chapter 3.1.3).

ROC_SYNC1_SCALEDOWN: 0x 01 01 0C (a.k.a.
ROC_SYNC1_M_DELAY)

8 bit, read/write. This register sets the time interval between two synchronization
events, in case of poor man’s synchronization (see chapter 3.1.3). These synchronization
events then happen every 2ˆROC_SYNC1_SCALEDOWN epochs.
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ROC_CMD_LST_NR: 0x 02 00 00

3 bit, writeonly. This will activate a command list. See chapter B.2.1 for details.

ROC_CMD_LST_ACTIVE: 0x 02 00 04

1 bit, writeonly. This will (de-)activate the command list processing. This is avail-
able for internal use, to deactivate the command list processing at the end of the list.
However one can also use it to activate list processing, then the previously processed list
is activated again. See chapter B.2.1 for details.

ROC_CMD_LST_MEM: 0x 02 10 00 - 0x 02 17 FC

32 bit words, 2k address space, read/write. This address space translates direct-
ly to the memory where the command lists are stored. Only 4-byte aligned addresses
(last two bits equal 0) are valid. See chapter B.2.1 for details.

C.2. Addresses in the Module: Optics (0x 20 00 00 -
0x 2F FF FC)

ROC_OPTICS_HWV: 0x 20 00 00

32 bit, readonly. This address returns the hardware version of the optics transport
module.

ROC_OPTICS_RADTOL: 0x 20 00 04

1 bit, readonly. This address returns “1” if the module is build with radiation mitiga-
tion techniques (redundancy) and “0” elsewise.

ROC_START_DAQ: 0x 20 01 00

1 bit, writeonly. Writing any value to this address will start the readout of data.
Before the first data packet a system message (SYS_MSG_DAQ_START) is send out.

ROC_STOP_DAQ: 0x 20 01 04

1 bit, writeonly. Writing any value to this address will stop the readout of data. If
sending of an CBMNet data packet currently in process it will not be interrupted. A
system message (SYS_MSG_DAQ_STOP) is send out as the last data packet. If there is
still data in the FIFO of the optical module, this data will reside there. However, no more
data will be read out from the frontend module when DAQ is stopped.
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C.3. Addresses in the Module: GET4 (0x 50 00 00 - 0x 5F FF FC)

ROC_OPTICS_DATAGEN: 0x 20 03 00

1 bit, writeonly. The optics module includes a fake-data generator. This data gener-
ator can be enabled by writing a 1 to this address and it can then be disabled again by
writing a 0. The data generator is a 16-bit counter, so the resulting data stream is a pattern
of consecutive 16-bit values.

ROC_OPTICS_DLMGEN: 0x 20 10 00

4 bit, writeonly. The lower 4 bit that are written to this address will be send as a
DLM to the ABB.

ROC_OPTICS_DLM_HISTORY: 0x 20 10 04

32 bit, readonly. This register stores the last 8 received DLMs. The four lowest bits
hold the value of the most recently received DLM.

C.3. Addresses in the Module: GET4 (0x 50 00 00 - 0x 5F FF FC)

ROC_GET4_HWV: 0x 50 00 00

32 bit, readonly. This address returns the hardware version of the GET4 frontend
module.

ROC_GET4_RADTOL: 0x 50 00 04

1 bit, readonly. This address returns “1” if the module is build with radiation mitiga-
tion techniques (redundancy) and “0” elsewise.

ROC_GET4_NR_OF_GET4S: 0x 50 00 08

8 bit, readonly. This address returns the number of ports available in the firmware
for connecting GET4 chips.

ROC_GET4_RESET: 0x 50 00 10

0 bit, writeonly. This will reset the control logic in the GET4 frontend module.

ROC_GET4_FIFO_RESET: 0x 50 00 14

1 bit, writeonly. This will reset the data path logic in the GET4 frontend module.
Note that there might be some FIFOs in the communication module that are not reset. A
clean FIFO reset requires the ROC to be in the state "DAQ-Stopped".
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ROC_GET4_TS_RESET: 0x 50 00 18

0 bit, writeonly. This will reset the time stamp counter (156 MHz and 250 MHz) in
the GET4 frontend module.

ROC_GET4_BURST1/ROC_GET4_BURST2/ROC_GET4_BURST3:
0x 50 01 00/0x 50 01 04/0x 50 01 08

32 bit, readonly. With this commands the 48 bit wide data FIFO can be read out over
the control path. The control path has only 32 bit wide data words. So for the readout of
two 48 bit words there are three read commands specified.

ROC_GET4_SAMPLE_FALLING_EDGE: 0x 50 02 00

32 bit, read/write. For each GET4 chip one can specify if the serial data will be sam-
pled on the rising edge or on the falling edge of the serial clock. The default is sampling
on the rising edge.

ROC_GET4_EPOCH250_EN: 0x 50 02 04

1 bit, read/write. If this bit is set, there are epoch markers derived from the 250 MHz
clock inserted in the datastream. This is important when synchronizing the GET4 data to
data from non-GET4-frontends. Per default this register is set.

ROC_GET4_SUPRESS_EPOCHS: 0x 50 02 08

32 bit, read/write. For each channel one can specify whether 156MHz epoch markers
should be withhold if no hit was detected during the corresponding epoch. Suppressing
markers of empty epochs might drastically reduce the data volume in low rate experi-
ments, however full epoch information might be useful for debugging and consistency
checks. By default epoch marker suppression is turned off on all channels.

ROC_GET4_RECEIVE_CLK_CFG: 0x 50 02 0C

2 bit, read/write. The 2 bit register is used to configure the incoming data rate. This
should match the configuration of the GET4s (see GET4 documentation). The following
values are available:

"11" 156.25 MHz
"10" 78.13 MHz
"01" 39.06 MHz
"00" 19.53 MHz (default)
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ROC_GET4_RECEIVE_MASK: 0x 50 10 00

32 bit, read/write. The 32 bit register is used to unmask incoming data from the
GET4 chips. If this register holds the value 0x 0000 0001, only data from the first GET4
will be sampled. A value of 0x FFFF FFFF will sample on every data port. One should
only activate ports with a connected GET4 chip since unconnected LVDS lines tend to
toggle unpredictably. The default is 0x 0000 0000, all ports are disabled.

ROC_GET4_TRANSMIT_MASK: 0x 50 10 04

32 bit, read/write. The 32 bit register is used to unmask outgoing control messages
to the GET4 chips. If this register holds the value 0x 0000 0001, the commands send
to ROC_GET4_CMD_TO_GET4 will only be passed to GET4 number 1. A value of
0x FFFF FFFF can be used to address to every connected GET4 simultaneously, this is
also the default.

ROC_GET4_DATAGEN_MASK: 0x 50 10 08

32 bit, read/write. The 32 bit register is used to unmask the outputs of the data
generator. If this register holds the value 0x 0000 0001, data will be available on date
generator output 0. A value of 0x FFFF FFFF can be used to generate data on all outputs.
If ROC_GET4_DATAGEN_EN is set, these outputs will be connected to the data receivers
instead of data from the GET4s.

ROC_GET4_DATAGEN_INIT: 0x 50 10 0C

32 bit, read/write. The 32 bit register can be used to shape the data that is generated
by the data generator. When the data generator is enabled, the register is shifted left
and the MSB is used as LSB (circular shift register). So every 32 serial data clock cycles
the pattern is repeated. The MSB is connected to the (unmasked) outputs of the data
generator.

ROC_GET4_DATAGEN_EN: 0x 50 10 10

1 bit, writeonly. This enables/disables the data generator. When the data generator
is enabled, ROC_GET4_DATAGEN_INIT and ROC_GET4_DATAGEN_MASK cannot be
updated but the old values are used until the data generator is disabled.

ROC_GET4_CMD_TO_GET4: 0x 51 00 00

32 bit, writeonly. The GET4 chip has a 32 bit wide control interface. The 32 bit that
are written to this address will be passed to the GET4s that are enabled according to the
ROC_GET4_TRANSMIT_MASK register. For a description of the available commands,
refer to the GET4 documentation or contact Holger Flemming (h.flemming@gsi.de).
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Appendix D.

The Read-Out Controller Hardware Platform

This chapter presents the hardware that was used for carrying out the work for this thesis,
the SysCore Boards. The first section explains the abstract set of rules which constitute
the theoretical basis for design and realization of the actual SysCore Boards. The second
section describes the three different generations of SysCore Boards that have been real-
ized so far. The third section gives an outlook on how the final ToF read-out board might
look like.

D.1. SysCore Architecture

The SysCore Architecture is a set of design rules for FPGA boards. The rules specify certain
features that are commonly required in multiple applications, particularly in (but not
limited to) high-energy physics detector read-out controllers [Keb09].

Figure D.1.: Illustration of the SysCore Architec-
ture, taken from [Got08]

The required features are:

• capable of running Linux

• various possibilities to configure the
FPGA

– from Flash memory

– via commodity USB cable

– via Xilinx-JTAG programmer

• configuration scrubbing to mitigate
radiation effects

• high speed communication to a PC

• maximize I/O flexibility

The list is a superset of the features re-
quired by the target applications, i.e. a single target application might not require the
full list of features, but the requirements of every target application should be covered
by the listed features. The configuration scrubber to mitigate radiation effects requires
FPGAs that are capable of Dynamic Partial Reconfiguration (DPR) (see section 3.2.3). At
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the time the SysCore Architecture was formulated, the only FPGAs allowing DPR were
FPGAs produced by Xilinx.

Based on this abstract formulation of the SysCore Architecture a series of boards was
implemented by the CBM community, namely the SysCore Boards from version 1 to 3.
Sometimes they are also referred to as ROC (Read-Out Controller) version 1 to 3. Since
the SysCore Architecture, amongst other features, also emphasizes flexibility, the SysCore
Boards could easily be used for different applications, e.g. read-out of different detector
front-end electronics, as Data Combiner Board, as prototyping platform for ASIC designs,
etc.

Configuration System The heart of the SysCore Architecture is an SRAM-based FPGA
which needs to be initially configured after every power cycle. Normally, this is done
by special on-board flash memories that are connected to the SelectMAP interface of the
FPGA [Xil09].

However, in a radiation environment, the SRAM cells of the main FPGA have a rela-
tively high probability to suffer from SEUs. Key element to mitigate SEU effects is the
configuration controller which supports configuration scrubbing to avoid build-up of bit
errors in the configuration memory of the SRAM-FPGA (see section 3.2.3). With very lit-
tle overhead, this controller can be used to perform the initial power-up configuration of
the SRAM-FPGA as well, an additional SelectMAP-capable flash memory is not required.

The configuration controller of the SysCore Boards is implemented in a Flash-based
FPGA and the configuration data is stored in commodity flash memory. Figure D.2 shows
a high-level overview of the configuration controller design on the SysCore Board Version
3.
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Figure D.2.: Overview of the SysCore Board Version 3 configuration system. Image from
the SysCore V3 specification document [AGK+11]

The flash memory can hold more than one set of SRAM-FPGA configuration data and
also some additional information, e.g which configuration set to use by default and if
scrubbing should be performed after initial configuration. Further functionality is pos-
sible as well, e.g. a watchdog that loads a failsafe configuration set in case it becomes
active. However, the main feature of this setup is the possibility to perform scrubbing.
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D.2. SysCore Boards

The three generations of SysCore boards realized so far are presented in this section. All
three boards implement the SysCore Architecture.

D.2.1. SysCore Board Version 1

Figure D.3.: The SysCore Board Version 1

The SysCore Board Version 1, as pictured in
figure D.3, is the pre-prototype of the CBM
Read-Out Controller (ROC). It is based
on an Xilinx Virtex-4 FX20 FPGA and its
development was the first step towards
a common read-out controller board for
CBM. It was used to develop a very
first read-out chain for the nXYTER chip,
the nXYTER Kludge Kit1. First research
projects regarding radiation mitigation, an
implementation of a fault tolerant Soft-
Core CPU, were also carried out on this platform [Eng09, page 61/62]. Being a pre-
prototype and the first implementation of its kind, the board naturally had some teething
problems. Therefore, only five boards were produced and it was quickly superseded by
the SysCore Board Version 2.

The SysCore Board Version 1 item list2:

• Xilinx Virtex-4 XC4VFX20, in Speedgrade -11 for boards with PCIe, and in Speed-
grade -10 for boards without PCIe

• Actel ProASIC3 Flash FPGA (type A3P125_FGG144) as on-board configuration con-
troller for power-on configuration for the Xilinx FPGA and also acting as radiation
mitigation engine

• Two 64 Mbit Flash memories (type Macronix MX29LV640B) to store the configura-
tion bits for the Xilinx FPGA

• FTDI FT2232C to externally configure the Xilinx FPGA and to communicate with a
PC (USB 1.1)

• Two 128 MByte DDR1 SDRAM with 16 bit interface to Xilinx FPGA

• 2.5 Gb optical link, via Virtex-4 MGTs and any SFP compatible transceiver

• 10/100 MBit Ethernet (Virtex-4 on-chip MAC, Intel LXT971ALC PHY, and HALO
HFJ11-2450E-L12 MAG)

1see https://cbm-wiki.gsi.de/foswiki/bin/view/DAQ/N-XYTER-KludgeKit
2for detailed technical specification, see https://cbm-wiki.gsi.de/foswiki/bin/view/DAQ/SysCoreV1
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• two 80 pin connectors, each with 31 LVDS capable pairs as main user IO interface

• 1-lane PCIexpress, only on two boards

• SD card connector, RS232, JTAG, ...

D.2.2. SysCore Boards Version 2.X

Figure D.4.: The SysCore Board Version 2.2

The SysCore Board Version 2.0 is the sec-
ond iteration of the CBM Read-Out Con-
troller prototype, based very closely on the
hardware and layout of it’s predecessor,
the SysCore Board Version 1. The problems
that could be identified with the SysCore
Board Version 1 were fixed, some minor
design optimizations were implemented
(e.g. different form factor for the user IO
connectors), and the focus was narrowed
on those features that were really signifi-

cant for CBM use cases at the time, i.e. support of PCIe was dropped.
In 2008, the board was used the first time as part of the nXYTER Starter Kit3. It soon

became a well established resource in CBM detector test experiments, especially when
nXYTER or GET4 chips were involved. One board could interface up to four nXYTER
and up to 16 GET4 chips, either be read out via Ethernet or via CBMNet (see chapter 4.1).

Soon the demand exceeded the number of available boards. To overcome this short-
coming, a new series of boards was ordered. Thereby, the opportunity was used to uti-
lize the new boards with a bigger FPGA and a pinout that is better optimized for the
nXYTER front-end boards. First, two boards were fabricated to test the changes in the
layout (SysCore Board Version 2.1). They were utilized with XC4VFX60 FPGAs that hap-
pened to be available in the collaboration at the time as left over of a different project.
Then the the major series with XC4VFX40 FPGAs were produced (SysCore Board Version
2.2) [DRC+13].

The SysCore Board Version 2.X item list reads as follows4:

• Xilinx Virtex-4, XC4VFX20 (Version 2.0), XC4VFX60 (Version 2.1), XC4VFX40 (Ver-
sion 2.2), all in Speedgrade -10

• Actel ProASIC3 Flash FPGA (type A3P125_FGG144) as on-board configuration con-
troller for power-on configuration for the Xilinx FPGA and also acting as radiation
mitigation engine

• Two 64 Mbit Flash memories (type Macronix MX29LV640B) to store the configura-
tion bits for the Xilinx FPGA

3see https://cbm-wiki.gsi.de/foswiki/bin/view/NXYTER/NXYTER-StarterKit
4for more details, see https://cbm-wiki.gsi.de/foswiki/bin/view/NXYTER/SysCoreV2
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• FTDI FT2232C to externally configure the Xilinx FPGA and to communicate with a
PC (USB 1.1)

• Two 128 MByte DDR1 SDRAM with 16 bit interface to Xilinx FPGA

• 2.5 Gb optical link, via Virtex-4 MGTs and any SFP compatible transceiver

• 10/100 MBit Ethernet (Virtex-4 on-chip MAC, Intel LXT971ALC PHY, and HALO
HFJ11-2450E-L12 MAG)

• Two 80 pin connectors, each with 32 LVDS capable pairs, as main user IO interface

• SD card connector, RS232, JTAG, ...

Most of firmware development and all in-beam tests described in this thesis are carried
out using these version 2.X boards.

D.2.3. SysCore Board Version 3

Figure D.5.: The SysCore Board Version 3

The SysCore Board Version 3 is a new imple-
mentation of the SysCore Architecture that
became available in 2013. Only some parts
of the layout of the SysCore Board Version
2, e.g. the Actel ProASIC based configu-
ration controller, were reused. The moti-
vation for this re-implementation is cost.
With the Series 6 FPGAs, Xilinx started
to equip also their low budget Spartan-
FPGAs with all required features for im-
plementing the SysCore Architecture, espe-
cially Dynamic Partial Reconfiguration for scrubbing and high speed interfaces for fast
data transport [AGM11].

The flexibility of the SysCore Board Version 3 allows for its usage as prototyping plat-
form in a number of subsystems. Of course, the use cases of the SysCore Board Version 2,
the read-out of the nXYTER and the GET4 chips, remain. Additional use cases are the
read-out of FEElink interface based ASICs, CBMNet HUB chip development, and DPB
development [GGMK13].

With a big Spartan FPGA, about five times more fabric resources are available com-
pared to the Virtex-4 FX-40, however, those resources are slower. High clock frequencies
of up to 250 MHz as used in the Virtex-4 are not realistic for Spartan-6 designs. There-
fore, the existing 250 MHz logic was adapted to 125 MHz clock frequency. On the other
hand, the bigger size of the Spartan-6 allowed to fully utilize the higher connectivity of
the SysCore Board Version 3. For example, the SysCore Board Version 3 based firmware for
the GET4 read-out can interface up to 57 GET4 chips, while the SysCore Board Version 2
firmware only supported 16 GET4 chips.
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The SysCore Board Version 3 item list5:

• Xilinx Spartan 6 LX150T in Speedgrade -3

• Actel ProASIC3 Flash FPGA (type A3P600_FGG144) as on-board configuration con-
troller for power-on configuration for the Xilinx FPGA and also acting as radiation
mitigation engine

• 512 MB Flash memory (type Micro MT29F4G16ABADAWP) to store the configura-
tion bits of the Xilinx FPGA

• Cypress CY7C68013A-56 to externally configure the Xilinx FPGA and to communi-
cate with a PC (USB 2.0)

• 128 MB DDR3 SDRAM (type MT41J64M16B-187E) with 16 bit interface to Xilinx
FPGA

• 3x 2.5 Gb optical link, via Virtex-4 MGTs and any SFP compatible transceiver

• National LMK03200 jitter cleaner

• two FMC-HPC connectors as main user IO interface

• SD card connector, PMOD connectors, JTAG, ...

D.3. Final CBM-ToF ROC Board

The results that could achieved with the SysCore Boards are very important for design de-
cisions of the final read-out chain. Especially the proof, that scrubbing can also efficiently
mitigate radiation effects for complex FPGA-designs that are only partially redundant.
However, the final read-out chain for CBM-ToF will be very different than those based
on the SysCore Boards, and this is due to two reasons, both unrelated to the work of this
thesis.

One reason is evolution of technology. New Xilinx FPGAs, as of series 7, come already
with an integrated in-chip configuration scrubber [Xil14a]. The proven to be efficient
technique of configuration scrubbing can be applied without Flash-based components
on-board, thereby avoiding the Flash-TID problem (see section 2.2.1). The other reason
is the massive change in the design of the read-out chain, mostly driven by the new
layout of the CBM magnet. With the new layout, additional space for CBM-STS read-out
electronics becomes available. This voids the need for a very dense data aggregator and
opto-coppler component, the main reason for developing the CBMNet based HUB-ASIC.
Without the space constraint, the HUB-ASIC can be replaced by more mature technology,
CERNs GBTx (see section 8.2.1).

5for detailed technical specification, see https://cbm-wiki.gsi.de/foswiki/bin/view/DAQ/SysCoreV3
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Nevertheless, also in the new read-out chain design, FPGAs are planned to be operated
on-detector. This decision is encouraged by the promising results of this thesis. Using
FPGAs so close to the detector would possibly have been rejected without this research.
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Anhang E.

German Summary – Deutsche
Zusammenfassung

Analyse, Umsetzung und Überprüfung der Leistungsfähigkeit von
Techniken zur Entschärfung von Strahlungseffekten in
SRAM-basierten FPGAs im Kontext des CBM Experiments

Einleitung und Motivation

Die Detektoren moderner Experimente im Bereich der Hochenergiephysik generieren
während des Betriebs enorme Datenraten. Die effiziente Auslese dieser Daten aus den
Puffern der vordersten Elektronikstufen (englisch: “front-end electronics”), die sich zu-
meist noch direkt am Detektor befinden, ist ein kompliziertes Unterfangen. Verschiedene
Experimente kämpfen dabei meistens mit unterschiedlichen Schwierigkeiten. Das Com-
pressed Baryonic Matter (CBM) Experiment, welches derzeit an der Facility for Antiproton
and Ion Research (FAIR) bei Darmstadt gebaut wird, sieht einen neuen Ansatz für die
Datenauslese vor. In Gegensatz zu bisherigen, vergleichbaren Experimenten, deren Da-
tenauslese auf globalen, hierarchischen Triggerentscheidungen beruhen, plant CBM frei-
laufende und selbstgetriggerte Elektronik einzusetzen. Die Daten werden in die nächste
Verarbeitungsstufe hineingeschrieben anstatt sie, wie bisher, aus den Puffern der vor-
angehenden Verarbeitungsstufe auszulesen. Dieses neue Paradigma erfordert eine kom-
plette Neuentwicklung der Ausleseelektronik.

Als Teil dieser Arbeit wurde eine Firmware für einen Auslesekontoller entwickelt, der
als Schnittstelle für einen solchen freilaufenden und selbsgetriggerten ASIC1, den GET4
Chip, dient. Der GET4 Chip ist im Time of Flight (ToF) System des CBM Experiments für
die Digitalisierung der analogen Signale aus dem Detektor vorgesehen. Seine Spezialität
liegt in seiner besonders genauen Zeitauflösung.

Die angesprochene Firmware zum Auslesen des GET4 Chips wurde auf einem so ge-
nannten Field Programmable Gate Array (FPGA) entwickelt. FPGAs sind Microchips deren
Verhalten nach Inbetriebnahme, also während des Einsatzes (englisch “in the field”, da-
her der Name) umprogrammiert werden kann. Dies bringt eine sehr hohe Flexibilität mit
sich, Fehler im Design können behoben werden, ja sogar neue Funktionalität kann hinzu-

1ASIC steht für Application Specific Integrated Circuit
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gefügt werden und das selbst nachdem die Hardware schon verbaut wurde. Der Einsatz
von FPGAs für die Elektronik des CBM Experiments ist daher wünschenswert.

Leider sind FPGAs nicht in jedem Fall bedingungslos einsetzbar. Die einzigen FPGAs,
die für das CBM Experiment in Betracht kommen sind kommerzielle Massenware, alle
anderen Lösungen sind zu teuer. Diese FPGAs basieren entweder auf SRAM- oder auf
Flash-Technologie und beide können nicht ohne weiteres in Umgebungen mit radioakti-
ver Strahlung eingesetzt werden. SRAM-basierte FPGAs werden durch so genannte Sin-
gle Event Upsets (SEUs) erheblich gestört, Flash-basierte FPGAs werden zu schnell durch
Total Ionizing Dose Effekte unbrauchbar.

Für SRAM-basierte FPGAs existiert eine Reihe an Techniken um Strahlungseffekte ab-
zuschwächen, allerdings müssen diese für jeden speziellen Einsatzzweck sorgfältig neu
analysiert werden.

Im Falle von CBM ist z.B. nicht klar, ob die höheren Kosten durch den zusätzlichen
Ressourcenverbrauch redundant ausgelegter Logik nicht schon die generellen Vorteile
des Einsatzes von FPGAs aufwiegen. Es ist nicht einmal klar, ob Techniken die schon
erfolgreich in Weltraummissionen angewandt wurden auch bei den viel höheren Strah-
lungsniveaus des CBM Experiments noch effektiv funktionieren. In der vorliegenden Ar-
beit wurden deshalb die existierenden Techniken analysiert, geeignete Techniken für den
oben angesprochenen Auslesekontoller ausgewählt und umgesetzt und schließlich deren
Wirksamkeit in Strahltests überprüft.

Stand der Technik

Es existieren verschiedene Ansätze um ungewollte Strahlungseffekte in Elektronik zu
unterdrücken. Der dominierende Störfaktor beim Betrieb von SRAM-basierten FPGAs
in einer Umgebung mit ionisierender Strahlung sind so genannte Single Event Upsets
(SEUs). SEUs treten auf, wenn ionisierende Strahlung auf SRAM Zellen trifft. Der in der
SRAM Zelle gespeicherte Wert kann dann durch die Strahlung verändert werden und
man spricht von einem SEU oder Bitflip. Die wichtigsten Gegenmaßnahmen für FPGAs,
die auch für den Einsatzzweck bei CBM in Betracht kommen sind Triple Modular Redund-
nacy (TMR) in Kombination mit Scrubbing. Beide Techniken sollten kombiniert werden
um einen relativ effektiven Schutz gegen SEUs zu erreichen.

Bei TMR wird die Logik dreifach instanziiert und die drei Ausgänge mit einer Mehr-
heitsentscheidung zusammengefasst. So kann einer der drei Logikteile beschädigt wer-
den und die Ausgänge werden immer noch mit einer Mehrheit von 2:1 richtig gewer-
tet. Der Nachteil liegt darin, dass die Schaltung mindestens um den Faktor drei größer
wird und damit mindestens dreimal so viele Ressourcen verbraucht. Realistsch ist al-
lerdings ein noch höherer Wert, in der Literatur wird oftmals der Faktor Sechs genannt
[WRGC03b], [WRGC03a], [MMPW07], [Wir14, Seite 30]. Dieses Problem beschränkt sich
nicht nur auf die Kosten für die zusätzlichen Ressourcen, sondern hat auch zur Konse-
quenz, dass TMR auf lange Sicht nicht ohne einen Mechanismus zur Reparatur von Feh-
lern funktioniert. Es kann sogar gezeigt werden, dass TMR ohne Reparaturmechanismus
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die Fehleranfälligkeit eines Designs auf lange Sicht verschlechtert [Wir14].
Um die Reparaturmechanismus zu verstehen muss zuerst der Aufbau eines FPGAs

verstanden sein. Die Funktionalität eines FPGAs wird zum großen Teil von Speicher-
zellen (SRAM) bestimmt, dabei sind dynamische und statische Speicherzellen zu unter-
scheiden. Dynamische Zellen speichern den derzeitigen Status der Logik, stellen also
Register und integrierten Arbeitsspeicher dar. Sie ändern ihren Zustand während des
Betriebs. Statische Zellen bestimmen die Funktionalität der kombinatorischen Logik, sie
bilden Logikgatter und deren Verschaltung ab. Sie ändern ihren Zustand während des
Betriebs nicht.

Die dynamischen Zellen können durch geschickte Rückkopplung der Resultate der er-
wähnten Mehrheitsentscheider korrigiert werden. Der Großteil der Speicherzellen eines
FPGAs ist allerdings statischer Natur. Der üblicherweise eingesetzte Reparaturmechanis-
mus für den statischen Teil der SRAM Zellen ist Scrubbing. Da die statischen Zellen ihren
Wert während des Betriebs nicht verändern, kann man diesen Wert periodisch aktuali-
sieren. Falls die Logik durch einen SEU beschädigt wurde, wird dieser wieder auf den
korrekten Wert zurückgesetzt.

Xilinx FPGAs waren die ersten FPGAs, die solch eine Aktualisierung der statischen
Speicherzellen im laufenden Betrieb erlauben. Das Ganze läuft im Hintergrund ab, ohne
dass dabei das Design angehalten werden muss. Dazu muss ein Konfigurationskontroller
entwickelt werden, der periodisch oder nach einem anderen Algorithmus, die statischen
SRAM Zellen aktualisiert, aber die dynamischen Zellen nicht anfasst. Solch ein Kontroller
war aus einem früheren Projekt der Arbeitsgruppe schon vorhanden [Eng09] und konnte
mit recht geringem Aufwand wiederverwendet werden.

Ansatz und Verwirklichung

Das größte Problem bei der Implementierung eines Strahlentoleranten Auslesekontrol-
lers für CBM ist die vollständige Umsetzung von TMR. Eine Versechsfachung der Res-
sourcenbedarfs ist schon aus ökonomischer Sicht nicht realisierbar. Hinzu kommt, dass
bei steigender Komplexität des Designs der Aufwand einer TMR Implementierung im-
mens zunimmt. Zum Beispiel ist eine einfache Signalweitergabe in einen Logikbereich
der mit einem anderen Takt betrieben wird nicht wirklich möglich wenn man TMR abso-
lut vollständig implementieren möchte.

Eine Tatsache die der Entwicklung entgegenkommt ist allerdings, dass bei CBM keine
absolut hundertprozentige Zuverlässigkeit erforderlich ist. Die Detektoren selbst arbei-
ten schon mit Effizienzen in der Größenordnung von nur etwa 95%, solange durch strah-
lungsbedingte Fehler in der Ausleseelektronik kein signifikanter Beitrag hinzukommt,
können einzelne Fehler geduldet werden.

Für den CBM Auslesekontroller wurde deshalb entschieden, nur die wichtigsten Teile
mit TMR zu schützen. Es wurde die Kontrollogik und ihre Statusregister mit TMR im-
plementiert, der gesamte Datenpfad, der etwa 90% des Designs ausmacht, wurde ohne
Redundanz implementiert. Dieser Ansatz wurde als Selective TMR bezeichnet. Zur Er-
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kennung von Fehlern wurden die Daten mit einer CRC Checksumme versehen, korrupte
Daten können also zwar nicht korrigiert, aber immerhin erkannt werden. Abbildung E.1
zeigt einen Vergleich des Ressourcenverbrauchs für ein Design ohne Redundanz, ein De-
sign das mit Selective TMR implementiert wurde und eine Hochrechnung für ein Design
mit vollständigem TMR.
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Abbildung E.1.: Ressourcenverbrauch (Flip-Flops und Look-Up Tables) der GET4 Aus-
lesefirmware in der Version wie sie während des Strahltests 2012 verwendet wurde.
Die Daten basieren auf den Zahlenwerten aus der Ausgabedatei des Xilinx Programms
MAP. Der rote Balken stellt die verbrauchten Ressourcen der ursprünglichen Firmware
ohne redundante Logik dar, die grünen Balken beziehen sich auf die Firmware deren
Logik mit Selective TMR versehen wurde. Zum besseren Vergleich wurde auch eine Ab-
schätzung des Verbrauchs bei Verwendung herkömmlicher TMR Lösungen als graue
Balken hinzugefügt. Nach eingehender Literaturrecherche wurde als Abschätzung für
die grauen Balken der sechsfache Ressourcenverbrauch der ursprünglichen Firmware
ohne redundante Logik verwendet.

Ohne weitere Maßnahmen kann es durch die fehlende Redundanz an manchen Stel-
len des Designs vorkommen, dass bestimmte Logikteile, z.B. solche die als endlicher
Zustandsautomat realisiert wurden, nicht mehr in ein korrektes Verhalten zurückfallen,
selbst wenn die ursprüngliche Fehlerquelle (der SEU) korrigiert wurde. Diese Tatsache
wurde schon während der Entwicklung berücksichtigt und die endlichen Zustandsau-
tomaten und vergleichbare Logik so konzipiert, dass sie aus jedem beliebigen Zustand
immer in ein korrektes Verhalten zurückfallen. Auch die höheren Designebenen wurden
so realisiert, dass keine Verklemmung auftritt. Zum Beispiel warten die Kommunikati-
onsprotokolle durch Einsatz von Timeout-Funktionalität, auch bei nicht konformem Ver-
halten der Gegenstelle, niemals unendlich lange auf eine korrekte Antwort.

Ergebnisse

Da nicht ganz klar war, wie effizient der Strahlenschutz noch ist, wenn nicht alle Teile
mit TMR implementiert wurden, wurde das Design am Forschungszentrum Jülich direkt
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(a) Scrubbing ist deaktiviert. Das Setup muss innerhalb weniger als einer Minute komplett neu gestartet
werden, nur innerhalb der Zeitfenster als kein Teilchenstrahl verfügbar war läuft es stabil.
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(b) Scrubbing ist aktiviert. Das Setup läuft über mehrere Minuten stabil.

Abbildung E.2.: Der rote Graph zeigt die Anzahl an SEUs, die seit Beginn des Testlaufs
im Referenzboard akkumuliert wurden, der blaue Graph repräsentiert die Zeit, die seit
dem letzten Neustart des Setups vergangen ist. Jedes mal wenn der blaue Graph auf die
Null zurückfällt wurde ein nicht behebbarer Fehler detektiert. Während den in grün un-
terlegten Zeitfenstern wurde vom Synchrotron aus technischen Gründen kein Teilchen-
strahl geliefert. Dieses Bild wurde schon in [MGO+13a] und [MGO+13b] veröffentlicht.
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in einen Protonenstrahl montiert und dort in Betrieb genommen. Die Ergebnisse sind in
Abbildung E.2 zu sehen.

Mit Hilfe der Ergebnisse dieser Strahltests konnte die Effizienz der Strahlenschutz-
Techniken überprüft werden. Es zeigte sich, dass die Totzeit des ToF-Detektors aufgrund
strahlungsbedingter Elektronikfehler um mehr als den Faktor 20 verbesssert werden
kann. Der Anteil an korrupten Daten kann von etwa 3-4% auf 0.1% verbessert werden.
Das bedeutet, das SRAM-basierte FPGAs bei CBM-ToF eingesetzt werden können, wenn
die entsprechenden Maßnahmen um Strahlungseffekten in Elektronik entgegenzuwirken
so implementiert werden wie sie in der Arbeit beschrieben wurden.
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