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Chapter 1

Introduction and Motivation

Die Physik erklärt die Geheimnisse der
Natur nicht, sie führt sie auf tieferliegende
Geheimnisse zurück.

Carl Friedrich von Weizsäcker

The topic of this thesis is the investigation of the chiral phase transition of nuclear matter,

andnon-equilibrium efects within this transition and the search for its potential signatures. Most

of the questions are explored with the linear σ-model which is theoretical and efective model,

implemented in a numerical simulation.

Chiral symmetry is a conjectured symmetry within quantum chromodynamics (QCD), a funda-

mental theory of nuclear matter and elementary particles. QCD is part of a bigger theory, called

the standard model of physics. It describes all known elementary particles, their properties and

interactions between them, covering three of four fundamental forces of nature: electromagnetism,

the force of electromagnetic interactions, the weak nuclear force, responsible for radioactive

decay and the strong nuclear force, responsible for the stability of all known matter around us.

Quantum chromodynamics covers the part of the strong nuclear force in the standard model. It

describes six diferent quarks which make up all known compound matter in the universe. Their

gauge bosons which are responsible for the interactions between the quarks are called gluons.

The theoretical prediction of sub-atomic particles inside the proton and other ŞelementaryŤ

particles was already given in 1964 by Gell-Mann [1] and Zweig [2]. They introduced these

sub-atomic particle to describe the known Şparticle-zooŤ with several dozen particles at time

by using a set of fewer and underlying quantum numbers. The predicted quarks have been

discovered in 1968 at the Stanford Linear Accelerator Center (SLAC), in which deep elastic

scattering experiments have showed signatures of point-like particles inside the proton [3, 4]. The
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Chapter 1 Introduction and Motivation

Lagrangian of QCD reads [5Ű7]

LQCD = ψ̄i
(

i (γµDµ)ij −mδij
)

ψj − 1
4
GaµνG

µν
a , (1.1)

with the the gauge invariant gluon Ąeld strength tensor Gaµν

Gaµν = ∂µAa
ν − ∂νAa

µ + gfabcAb
µAc

ν . (1.2)

It describes six diferent elementary quarks with a quantum spinor ψi and eight gauge bosons

with their color Ąeld Aa. Quarks carry a quantum number called color, which is an intrinsic

property of QCD elementary particles. It is of course not a real color but a name for three

possible quantum states: red, green and blue. Gluons can carry color by swapping the color

between two interacting quarks.

QCD is a complicated theory and many of their properties are only conjectured or can only

be derived vaguely from approximations. The mathematical proof of several properties is in

active research and even subject to the Millennium problems, worth a million dollar for the

one who Ąnds an analytic solution of QCD [8]. Exploring QCD from the theoretical side is

challenging because of a mathematical fact of the theory, which also has an important physical

meaning. In other theories elementary forces can exchange particles not interact with each other.

An example is the electro-magnetism where photons can not interact with other photons. In

QCD, interactions between quarks and gluons are described by the Ąeld strength tensor Gaµν .

A self-coupling between gluons is possible and described by fabcAb
µAc

ν . These self-interactions,

which are generated by the non-Abelian Lie groups, increase the complexity of interactions

between quarks and gluons enormously. Another problem arises here, because interaction of QCD

are very strong, meaning the coupling strength of interactions is of order 1. Multiple scattering

between gluons is as likely as a single interaction. This implies that a color exchange between

two quarks by a single gluon can lead to potentially inĄnite interactions with other gluons by this

single gluon. At high temperatures the interaction coupling becomes weaker and perturbation

quantum thermodynamic (pQCD) can be used to expand interactions by the number of their

intermediate interactions, introducing a cutof at some order. This approach is an approximation

and is able to describe several phenomena but does not cover many non-perturbative phenomena

like chiral phase transition.

Beside the approach of Ąnding a direct solution for QCD, its general properties can be explored

with the help of symmetries. Symmetries are a very powerful tool in quantum Ąeld theory (QTF)

as they conĄne basis properties and possible interactions within a theory. I will restrict the

discussion of QCD to the topics important for this thesis, especially the chiral symmetry.

Chiral symmetry is a fundamental symmetry of the QCD Lagrangian. The total six quarks of

QCD can be grouped into light and heavy Ćavor quarks by regarding their masses. Heavy quarks

2



Chapter 1 Introduction and Motivation

have a mass several orders of magnitudes higher than light quarks. The masses of light quarks

can be approximated with

mu = md = ms ≈ 0 , (1.3)

which is called the chiral limit. The already introduced QCD Lagrangian (1.1) is reformulated

for massless quarks

LQCD =
∑

i=u,d,s

ψ̄iγµD
µψi − 1

2
Trc

(

GaµνG
µν
a

)

. (1.4)

Left- and right-handed quark projectors are introduced by

qR/L =
1
2

(1 ± γ5)ψ (1.5)

and can be used to decompose the above Lagrangian in a left- and right-handed part

LQCD =
∑

i=u,d,s

(

ψ̄i,LγµD
µψi,L + ψ̄i,RγµD

µψi,R
)

− 1
2

Trc
(

GaµνG
µν
a

)

. (1.6)

Both transformations ψL → LψL and ψR → RψR build a new symmetry SU(2)L × SU(2)R. For

the chiral symmetry an order parameter can be introduced, the chiral condensate. In case of an

established chiral symmetry, this parameter becomes zero

⟨ψ̄ψ⟩ = ⟨0♣ψ̄RψL + ψ̄LψR♣0⟩ = 0 (1.7)

and no vacuum expectation value for a bound state between left and right handed quarks exists.

In fact, the chiral symmetry is not perfectly realized in QCD, it is broken in two ways. The

quark masses are not exactly zero in the Lagrangian, so (1.3) is not given. The reason are

contributions from the weak interaction by the Higgs mechanism, giving the quarks a small mass

and breaking the symmetry explicitly. This explicit is quite small which justiĄes the symmetry

as an approximated symmetry. Yet, the system Ąnd its stable vacuum state in a very asymmetric

conĄguration, breaking the symmetry additionaly. The second mechanism is called spontaneous

symmetry breaking. Figure 1.1 shows a sketch of this mechanism.

Nambu [9] and Goldstone [10] discovered that the spontaneous breakdown of a global continuous

symmetry leads to massless bosonic particles, called Goldstone particles. Nambu received the

Nobel-price in 2008 for his work. These Goldstone bosons can be identiĄed in detector experiments

as the three pions π+, π− and π0. Their mass is not zero but approximately mπ = 135 MeV,

being still very light in comparison to other hadrons (the proton is seven times heavier). In QCD

the chiral symmetry is explicitly broken by the quark mass in (1.1), which is the reason for the

non-zero mass of the Goldstone bosons.

The high mass of the hadrons is another phenomenon which is originated in the spontaneous

breaking of the chiral symmetry. Hadrons like the proton consist of three quarks. The symmetry

3



Chapter 1 Introduction and Motivation

Figure 1.1: Examples of chiral potentials. Both potentials are symmetric around
the center of the potential. The potential on the left has its stable expectation value
at ⟨φ⟩ = 0. The right potential is still symmetric around φ = 0 but has its stable
expectation value at ⟨φ⟩ = ±E0. The system will spontaneously fall into one of the
two possible states +E0 or −E0 and break the symmetry of the system.

breaking leads to the fascinating phenomena that the protonŠs mass is much higher than the

mass of its single constituent quarks with

mq ≈ 5 MeV mP (qd, qu, qu) ≈ 938 MeV . (1.8)

In fact, only 1.5% of the protons mass is created by the three quarks. The remaining 98.5% of

the mass is created in a dynamical, non-linear interaction between the quarks and virtual quarks

and gluons given by vacuum Ćuctuations inside the proton. Due to the broken chiral symmetry,

the chiral condensate inside protons becomes a quite large value with an estimation of [11]

⟨ψ̄aRψbL⟩ = νδab ≈ −
(

250 MeV3
)

δab . (1.9)

Exploring the questions of nuclear physics is a big challenge for theoretical physics. Nevertheless

the experimental side sees challenges of the same diiculty. Quarks and gluons can only be

observed indirectly inside compound objects, the hadrons. All particles carrying a color-charge

have to be caged inside a bound hadron which has to be color neutral, carrying all three colors or a

color and its anti-color. This phenomena is called color-conĄnement [12] and creates a color-string

between quarks. The binding energy of this string increases proportional to the distance between

two quarks. If two quarks are separated, the string energy raises until there is enough to create

a new particle-anti-particle pair of quarks, creating two separate and again conĄned hadrons.

Therefore no free quarks should be able to exist in principle. However, Hagedorn [13] derived in

his statistical model a limiting temperature. Hadrons above this temperature could melt into

a plasma of quarks and gluons [14]. A similar argumentation is given by the MIT bag model

[15], hadrons are described as Ąnite region bags, containing massless quarks. Inside the bag a

critical energy density an pressure can be derived which keeps the bag stable and prevents it from

collapsing. Beyond this critical pressure, some change of the system state should be expected.

4



Chapter 1 Introduction and Motivation

To study such potential of nuclear matter at hot temperatures or high densities, experiments

with particle accelerators are an excellent tool. Heavy-ions like lead 207
82Pb are collided at the

LHC with an enormous amount of energy. Within the collision, the nuclei break up and create

a new type of matter which decays into a vast amount of newly created elementary particles.

Studying the traces of these particles gives information about the processes at and after the

collision.

The experimental challenge, beside the great technical diiculties of such a collider facility, lies

in the very short lifespan of the newly created type of matter. A typically half-life of instable

elementary particles and the probable quark gluon plasma lies in the order of magnitude of

10−15s, making a direct observation impossible.

Therefore several indirect probes have been proposed to indirectly observe any change of state.

In 1986 it was proposed to observe the suppression of J/Ψ particles [16] as a signature of a

colored plasma. This plasma should screen color charges and would inhibit color-attracting

forces between charm and anti-charm quarks, decreasing the production of J/Ψ. Jet-quenching is

another observable given by the energy loss of a high-energy particle propagating and interacting

with a surrounding medium [17].

Such a medium would consist of quasi-free quarks and gluons, which move in a plasma of color

charges. This qualitatively very unique state of nuclear matter must go through a transition from

a hot and unbound state to a cold and bound state. From the theoretical side, there are two

aspects of this phase transition. In QCD this transition can be split into two completely diferent

transitions. The Ąrst transition is the conĄnement transition, from which the color-conĄned

matter evolves into a state of quasi-conĄnement, the underlying process is the spontaneous

breaking of the Z(3) center symmetry of QCD [18]. The second transition is the chiral phase

transition. The exact relation between these two transitions is still not completely clear, e.g.

if they occur at the same temperature. One can create a phase diagram for these transition

phenomena in QCD, describing the diferent stability regions of QCD matter and their properties.

Figure 1.2 shows the sketch of such a phase diagram, dividing the phases in the T − µ plane.

T declares the temperature, the chemical potential µ describes the equilibrium ratio between

quarks and anti-quarks. For T = 0 can µ be translated to an efective quark-density.

The exploration of such a phase diagram raises diferent questions: In which temperature and

density region exists which phase? What are the properties of the diferent phases? Where are

the boundaries between the phases and how can the transition be described? In terms of classical

theories a phase transition can be characterized by diferent types of orders. Possible orders are

Ąrst-order, second-order or a crossover. They characterize if the phases are separated by a sharp

transition at a given point, like the transition from hot water to steam, or by a smooth crossover

where a real transition point can not be deĄned.
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Figure 1.2: A sketch of the QCD phase diagram [19]. At low temperatures and
baryon chemical potential it shows a phase of stable hadronic matter. Above a
temperature and chemical potential threshold the bound matter dissociates into a
plasma of quasi-free quarks and gluons.

Experiments at the SPS at CERN indicated the existence of a QGP plasma [20] but energies

were too low for a consistent observation. The later Relativistic Heavy Ion Collider (RHIC)

at Brookhaven National LaboratoryŠs with energies around 200 GeV center of mass energy per

nucleon was a breakthrough in search for the Quark Gluon Plasma. Within the collision a new

type of medium was created, showing efects of strong collective Ćow and very large energy-

densities [21Ű23]. The ATLAS, CMS and ALICE experiments at CERN conĄrmed these Ąndings

at even higher energies, solidifying the picture of a perfect liquid in the high-temperature phase

of the transition.

What remains is the questions on the phase transition itself. To tackle this problems, diferent

theoretical approaches have been made. Trying to solve the QCD with as little approximations

as possible, the lattice quantum chromodynamics (LQCD) gained a lot of momentum in the last

years. By discretizing space-time and solving the QCD action-integrals on a numerical lattice,

non-perturbative observables can be calculated. However, this technique has its own diiculties,

like the sign-problem at Ąnite chemical potential [24], but for µ = 0 reliable calculations can be

made. These calculations can be related to high-energy collisions at the LHC at which a low µ

can be assumed. For µ = 0 the results show a crossover transition [25] at the quark gluon plasma.

Any calculations for µ > 0 are very vague and only valid for very small chemical potentials or

rely on other numerical extrapolations. From the lattice QCD point of view, its is still unclear if

6



Chapter 1 Introduction and Motivation

the crossover transition changes to some Ąrst- order second-order phase transition at some point

and if these transistors end in a critical point. Some calculations even show Ąndings against such

a critical point [26].

Recent lattice calculations give an estimation for the chiral transition temperature of Tc =

(150 − 170) MeV [27] or Tc = (154 ± 9) MeV [28]. However, the exact results depend on the type

of chosen order-parameter observable. Another disadvantage of lattice QCD is its constrain to

static systems in the thermodynamical limit. Dynamical properties like Ćuctuations can only be

derived from thermal susceptibilities, non-equilibrium or dynamical efects can not be addressed

at all.

To answer such questions other approaches have to be used. Efective models have shown to be

a very efective tool. Efective models have similar symmetries like QCD but have an overall

more simple structure, allowing analytic solutions or eicient numerical implementations. Many

ideas have been developed at such models to Ąnd other possible observables and indicators for

the chiral phase transition. If the phase diagram has a critical point, the mediumŠs Ćuctuations

could change there, leading to an visible correlation pattern in the experimental data [29]. Such

a change of Ćuctuations is driven by a change of the correlation length ζ in the thermal medium.

Observables could be Ćuctuations in the multiplicity of soft pions [30], non-Gaussian Ćuctuations

[31] or critical slowing down of diferent modes. The authors of [30, 31] derived a microscopic

relation for Ćuctuations in the pion-occupation numbers np and nkand the mean square deviations

from the average occupation number v2
p, driven by interactions between π and σ-Ąelds

⟨δnpδnk⟩ = ⟨np⟩(1 + ⟨np⟩)δpk +
1
m2
σ

G2

T

v2
pv

2
k

ωpωk
. (1.10)

The interesting aspect of this relation is the divergence of the correlation length at the point

where the mass of the σ goes to zero m2
σ → 0 which can occur at the chiral point of the chiral

phase transition. Critical slowing down of equilibration processes are also discussed [32], resulting

in a relation describing the dynamics of the order parameterŠs mass mσ and itŠs correlation length

ξeq within a 3D Ising model

d
dt
mσ(t) = −Γ(mσ(t))

(

mσ(t) − 1
ξeq(t)

)

. (1.11)

This study shows a possible weakening of the critical efects at the phase transition because of

slowing down of critical modes which result in slower creation of Ćuctuations in systems with

short time scales.

In experiments, several approaches have been taken to measure Ćuctuations of physical observables.

NA49 and the still ongoing NA61 are measuring multiplicity and chemical Ćuctuations in heavy-

ion collisions at the CERN Super Proton Synchrotron (SPS) [33Ű35]. First results are shown in

7
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Figure 1.3: Event-by-event Ćuctuations of mean transverse momentum in comparison
to Tchem (system size) and and µB (collision energy) for charged hadron, measured
by NA49/NA61 [36] (preliminary data). Solid and dashed lines indicate estimated
according to diferent correlation lengths.

Figure 1.3 which looks promising but still much more statistic has to be collected.

The next step in the research of the QCD phase diagram will be seen in the FAIR facility at GSI.

The CBM (Compressed Baryonic Matter) experiment will have a focus on heavy-ion collisions

at very high densities and therefore high chemical potential µ [37Ű39]. While experiments at

the LHC probably create a quark-gluon plasma in the crossover region of the phase transition,

experiments at GSI will try to create a plasma in the region where a phase transition of Ąrst- or

second order with a critical point is assumed.

In this thesis, the linear σ-model is used to address some of the discussed questions. The model is

introduced and explained in Section 2.1 and has been used widely in literature under the names

σ-model or quark-meson model [40Ű52]. A numerical simulation is developed, employing the

equations of motion of the linear σ-model. Scope of this development was the simulation of a full

three-dimensional system with arbitrary initial conditions, allowing the study of non-equilibrium

system evolution which could resemble the conditions within a heavy-ion collision. By comparing

both equilibrium calculations and diferent stages of non-equilibrium systems, diferent efects

and signatures of non-equilibrium efects can be studied. Beside the physical questions, several

mathematical and numerical aspects are addressed in this thesis. Within the development of a

new type of simulation, several questions and problems concerning the simulation of interactions

between particles and classical Ąelds were found. A large part of this thesis takes care of these

questions and a novel framework for numerical simulations of these physical and mathematical

problems is developed and is discussed.

This thesis is structured as follows: Chapter 2 introduces the linear σ-model and its basic physical

properties, the numerical implementation is given in Section 2.2. In Chapter 3 equilibrium and

equilibration calculations are presented within the numerical model. Thermal and chemical non-

equilibrium efects and their impact are discussed in Chapater 4. This and the previous chapter

include discussions on possible problems with a simple mean-Ąeld approximation of the model.

In chapter 5 extensions of the numerical σ-model with chemical processes between Ąelds and

8
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particles are introduced and discussed. Using these extensions, calculations with non-equilibrium

scenarios are presented in chapter 6, including calculations for the rapid expansion of a hot

Ąreball. To implement interactions between particles and Ąeld in the model, new numerical

methods had to be developed. These methods, their derivation and mathematical properties are

discussed in Chapter 7, including example calculations to demonstrate these techniques. Chapter

8 gives detailed information about the implementation of the numerical model. A summary and

conclusion is given in Chapter 9.
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Chapter 2

Introduction of the Model

Begrife aber gewinnen in der
Wissenschaft einen scharfen Sinn erst im
Rahmen eines umfassenden Wissens,
letztlich einer Theorie.

Carl Friedrich von Weizsäcker

In this chapter, the physics of the linear σ-model and its properties is introduced. Additionally,

the employed approximations for a numerical simulation are discussed.

2.1 The Linear σ-Model

The linear σ-model was Ąrst introduced by Gell-Mann and Lévy as an efective model for low

energy pion-nucleon interactions [53]. For Nf = 2 Ćavors, the symmetry in QCD can be studied

quite extensively because the SU(2)L ×SU(2)R symmetry is isomorphic to O(4) / = (N) models,

like the σ-model [47, 54].

In this work the linear σ-model with constituent quarks is used, it describes a system of quarks,

anti-quarks and chiral Ąelds. Quarks ψ and anti-quarks ψ̄ are deĄned in two light Ćavors ψ = (u, d)

and have no intrinsic mass in this model. All particles couple to the mesonic Ąeld ϕ which is

decomposed in a scalar meson Ąeld σ and three pseudo-scalar mesonic Ąelds π. This decomposing

is done due the chiral symmetry breaking feature of the model, the chiral Ąeld ϕ is expanded

to a scalar component σ with a non-vanishing vacuum expectation value ⟨σ⟩ ≠ 0 and three

pseudoscalar Ąelds π, which are typically set to zero in this work with ⟨π⟩ = 0

11



Chapter 2 Introduction of the Model

The Lagrangian with the expanded Ąeld σ and π reads

L = ψ̄
[

i/∂ − g (σ + iγ5π · τ )
]

ψ +
1
2

(∂µσ∂µσ + ∂µπ∂µπ) − U (σ,π) . (2.1)

The potential of the chiral Ąelds is given by

Uϕ (σ,π) =
λ2

4

(

σ2 + π2 − ν2
)2

− fπm
2
πσ − U0 (2.2)

and describes the interactions between the diferent Ąelds. The potential can be split into the part

of spontaneous symmetry breaking
(

σ2 + π2 − ν2
)2 and explicit symmetry breaking

(

−fπm2
πσ
)

,

the later term is given by the PCAC relation [55].

The expectation values can be calculated from the potential

∂U(σ,π)
∂σ

≡ 0 = −λ2
(

σ2 − ν2
)

σ + fπm
2
π + g

˜

ψ̄ψ
˜

(2.3)

The scalar density
˜

ψ̄ψ
˜

is given at one-loop level as

ρσ ≡
˜

ψ̄ψ
˜

∼ σ

∫

d3p

(2π)3

nψ + nψ̄
E(p)

(2.4)

and is discussed in Section 2.3 in more detail. In the limit T → 0 the scalar density approaches
˜

ψ̄ψ
˜

→ 0 for µB = 0and can be neglected in (2.3) for the calculation of the vacuum expectation

value.

The chiral symmetry breaking term is deĄned as ν2 = f2
π − m2

π

λ2 , with some algebra we arrive at

fπm
2
π = σ

(

λ2σ2 − λ2f2
π −m2

π

)

. (2.5)

Beside two negative solutions, the physical solution of this equation is the vacuum expectation

value or the pion decay constant fπ
⟨σ⟩ = fπ . (2.6)

The vacuum mass of the scalar Ąeld is given by

m0
σ = 2λ2f2

π +m2
π . (2.7)

Without the explicit symmetry breaking, the pion mass would be a massless Goldstone boson.

In case of the explicitly broken model the mass of the pion is given by the parameter mπ.

We use the following deĄnitions within the linear σ-model:

12



Chapter 2 Introduction of the Model

Model Parameter

λ2 = 20 Self-coupling parameter

g = 3.3 to 5.5 Quark-sigma coupling

U0 = m4
π/
(

4λ2
)

− f2
πm

2
π Ground state

fπ = 93 MeV Pion decay constant

/ Sigma vacuum expectation value

mπ = 138 MeV Pion mass

ν2 = f2
π −m2

π/λ
2 Field shift term

A coupling of λ2 = 20 results in a sigma mass of about mσ ≈ 600 MeV which is a reasonable

value for the resonance particle f0(600) according to the data available at the time this thesis was

startet [56]. In the current PDG review [57] the σ-resonance is now labeled f0(500) and has an

estimated Breit-Wigner mass of 400-550 MeV and a width of 400-700 MeV. The dominant decay

channel is σ → ππ. However, the f0(500) state indeed seems to be a very broad and unstable

resonance without a real particle description in terms of a naive Breit-Wigner parameterization.

The quark masses in the linear σ-model are given by the Yukawa-like coupling with the chiral

Ąelds

m2
q = g2

(

σ2 + π2
)

. (2.8)

In case of the vacuum system state π = 0 and σ = ⟨σ0⟩ the quark masses become

mq ≈

⎧

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⋃

310 MeV for g = 3.3

338 MeV for g = 3.63

512 MeV for g = 5.5

(2.9)

which is consistent with constituent-quark masses for a proton, given by the particle data book

mconstituent
q ≈ mp

3
=

1007.4 MeV
3

≈ 335.8 MeV . (2.10)

The current-quark masses are given as [57]

mu = 2.3+0.7
−0.5 MeV

md = 4.8+0.5
−0.3 MeV

(2.11)

which is consistent with the assumption of massless quarks in the linear σ-model.
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Figure 2.1: Plot of diferent chiral potentials for the linear sigma model. The ϕ4

potential shows no symmetry breaking and has its only extremum at ϕ = 0. The
spontaneously broken potential, known as the famous Mexican hat potential, has still
an extremum for ϕ = 0 but its stable vacuum states are at ϕ = ±ν. Symmetric and
spontaneous broken potentials create massless Goldstone bosons. The potential with
both spontaneously and explicit symmetry breaking is almost symmetrical but has
its global minimum at ϕ = fπ. The explicit symmetry breaking leads to a small but
non-vanishing mass for the pions.

2.1.1 Thermal Properties

In this section the mean Ąeld dynamics of the linear sigma model is investigated.

The general grand-potential partition function for the system with the chemical potential µ reads

in terms of path integrals

Z =
∫

Dψ̄DψDσDπ⃗ exp
(∫

d4x L + µψ̄γ0ψ

)

(2.12)

with the Lagrangian given in (2.1). For further calculations the thermodynamical potential is

an useful quantity. By assuming the existence of a system temperature T , a volume V and the

mean-Ąeld approximation for the chiral Ąeld potential U(σ, π⃗) we derive

Ω(T, µ) = −T

V
lnZ = U(σ, π⃗) + Ωψ̄ψ . (2.13)

The quark potential Ωψ̄ψ can be derived from the Fermi distribution with

Ωψ̄ψ = −dn
∫

d3p

(2π)3

(

E + T ln
(

1 + e−β(−µ−E)
)

+ T ln
(

1 + eβ(µ−E)
))

(2.14)

14



Chapter 2 Introduction of the Model

and the assumption of spin, color and Ćavor degeneracy dn = 2NfNc = 12. The energy of the

quarks is given by the dispersion relation with the efective quark mass

E2 = p2 +m2 = p2 + g2
(

σ2 + π⃗2
)

. (2.15)

The thermodynamical expectation values are calculated by deriving Ω,

∂Ω
∂σ

= λ2σ
(

σ2 + π⃗2 − ν2
)

− fπm
2
π + gρσ ≡ 0 , (2.16)

∂Ω
∂π⃗

= λ2π⃗
(

σ2 + π⃗2 − ν2
)

+ gρπ⃗ ≡ 0 , (2.17)

The one-loop scalar density ρσ or pseudo-scalar density ρπ⃗ is calculated at mean-Ąeld level with

ρσ = ⟨ψ̄ψ⟩ = gdnσ

∫

d3p

(2π)3

f(T, µ) + f̄(T, µ)
E(p)

. (2.18)

The distribution function for quarks f and anti-quarks is given by the Fermi distribution

f(T, µ) =
(

1 + e(E−µ)/T
)−1

, (2.19)

f̄(T, µ) = f(T,−µ) , (2.20)

m2
σ =

∂2Ω
∂σ2

\

\

\

\

\

σ=⟨σ⟩

. (2.21)

This relation uses a mean-Ąeld approach for the mass, derived from the modelŠs potential. Using

renormalized techniques in a variational approach, similar but slightly diferent values are obtained

[58].

2.1.2 Phase Diagram of the Linear σ-Model

To derive the phase diagram, (2.16) has to be solved self-consistently. The mean-Ąeld value ⟨σ⟩
can be deĄned as an order parameter for the chiral-phase transition of the linear sigma-model.

By plotting the temperature dependence for the order parameter ⟨σ⟩(T ), a phase diagram of the

model can be created, results are shown in Figure 2.2. The phase diagram is plotted for diferent

Ąeld-quark coupling strengths with g = 3.3, g = 3.63 and g = 5.5. In all three couplings the

system can be separated in a chiral broken phase with ⟨σ⟩ ≠ 0 at low temperatures and a chiral

restored phase with ⟨σ⟩ ≈ 0 at high temperatures. Depending on the coupling parameter, the

phase transition is from a diferent type or order. For g = 3.3 the phase diagram shows a smooth

crossover transition between the broken and restored phase. A phase transition temperature can

not directly be deĄned, but by choosing the temperate of the phase transition as the point of the

inĆection in the phase diagram, Tc = 148 MeV can be deĄned. For g = 3.63 the dependence of
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Figure 2.2: Phase-diagram of the order-parameter ⟨σ⟩ of the linear σ-model for
diferent coupling strengths g. The temperature of the phase transition and its order
is altered by changing the value of the coupling parameter. The asymptotic behavior
of the order parameter for T → 0 and T → ∞ is independent of the coupling.

the σ mean-Ąeld shows a second-order phase transition at Tc = 140 MeV, at this point the slope

of the order-parameter grows to inĄnity, resulting in a discontinuity in the Ąrst derivative of the

order parameter. For the highest coupling g = 5.5 the phase diagram shows a Ąrst-order phase

transition, as indicated by the discontinuity of the order parameter. The transition temperature

is Tc = 127 MeV. In all cases these temperatures are too low in comparison of the suggested

transition temperatures in QCD. The reason is the lack of of color-conĄnement in the linear

σ-model. This issue can be challenged by extending the model with a Polyakov-loop mechanism

[59Ű64]. Nevertheless, this approach only introduces a statistical conĄnement, Ątted to lattice

data, which is not directly applicable to test-particles used in this work.

Another interesting quantity is the mass of the sigma mσ, which is deĄned by (2.21) and is shown

in Figure 2.3 for the diferent couplings. The mass of the sigma is important for the whole system

dynamics as it inĆuences the interactions between quarks and the Ąeld, as shown in Chapter 5.

In thermal models the mass is directly related to thermal Ćuctuations of the σ-Ąeld, for Gaussian

Ćuctuations around an equilibrium value σeq one Ąnds

Pr (σ − σeq) ∼ exp

(

T (σ − σeq)2

V m2
σ

)

. (2.22)
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Figure 2.3: Mass of the σ-mesons in the linear σ-model in dependence to the system
temperature. For the crossover transition, the mass is always deĄned and shows a
minimum at the phase transition of the order parameter. For the second-order phase
transition, the mass goes to zero at the phase transition. For the Ąrst-order transition,
the mass jumps with a discontinuity.

2.2 DSLAM - Numerical Implementation of the Linear σ-Model

Thermal and equilibrium studies on the linear σ-model can be done with the Ąelds thermodynamic

potential (2.2) and thermal functions for the quark energy distributions. To investigate any

non-equilibrium situations and efects, numerical models like transport simulations have to be

employed. In this section the transport model DSLAM (Dynamical Simulation of a Linear

SigmA Model) is introduced. It can solve the equations of motion for particles and chiral

Ąelds which are derived from the linear σ-model and can be employed to simulate diferent

kinds of non-equilibrium situations, both thermal and chemically, to study equilibration efects,

Ćuctuations and the dynamical behavior at and near the phase transition.

2.2.1 Physical Approximations

In principle a numerical simulation should implement the complete systemŠs dynamics given

by the Lagrange density (2.1), describing the full quantum dynamics of the equations up to all

orders. A direct approach to this problem is the use of lattice Ąeld theory on a numerical grid

[65Ű67], but this is out of scope of this work and not very suitable for non-equilibrium real-time

dynamics.
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In this thesis, several approximations are employed to reduce the full physical model. The

quantum Ąelds ϕ are expanded to the scalar sigma Ąeld σ and the three pion-Ąelds π. These

Ąelds are approximated in two steps. The Ąrst is to reduce the complex quantum Ąelds with

inĄnite many orders to its lowest order, the mean Ąeld. This sounds like a crude approximation

but mean Ąeld approximations are a successful approach in quantum Ąeld theory [68, 69].

σ(x, t) → ⟨σ(x, t)⟩ ,
π(x, t) → ⟨π(x, t)⟩ .

(2.23)

In a second approach these mean Ąelds are represented as classical, scalar Ąelds

⟨σ(x, t)⟩ → σc(x, t) ,

⟨π(x, t)⟩ → πc(x, t) .
(2.24)

which is not always the same as the mean Ąeld representation, because the mean Ąeld can still

include quantum self-energy corrections. These scalar, classical Ąelds are represented as numbers

on a numerical grid. In the following the subscript c will be dropped, and all numerical Ąelds

will be assumed to be the classical mean Ąeld representation of their quantum pendants. In

quantum Ąeld theory the mean Ąeld represents the average Ąeld excitation, given by the coherent

state of the system. Higher-order Ćuctuations can be interpreted as Ćuctuations or additional

particle-like excitations in the quantum Ąelds. In the DSLAM model the Ćuctuations will be

represented by kinetic energy Ćuctuations of the classical mean Ąeld.

In the linear σ-model quarks are represented as Dirac spinors ψ and ψ̄ within a quantum

description and spin 1/2. In this thesis quarks are represented within several approximations.

From all six quark Ćavors only the two light quarks up and down are implemented. The model is

used for temperatures T < 200 MeV, in this region the more massive quarks are barely excited

and can be neglected. Up and down quarks are assumed to have no intrinsic mass, so their

quantum numbers are assumed to be degenerated. Additionally the quantum spin is neglected

and only used as a degeneracy factor in the distribution function. In a last approximation, quarks

and anti-quarks are represented by uncorrelated particles, so their thermal state can be described

by the Fermi-Dirac distribution

fF
ψ,ψ̄

(p, T ) =
1

exp
(

E∓µ
kBT

)

+ 1
. (2.25)

In all simulation scenarios with strongly interacting particles, the quarksŠ distribution function is

approximated with the Maxwell-Boltzmann-distribution, which is valid for high temperatures

and low densities

fB
ψ,ψ̄

(p, T ) = exp
(

−E ∓ µ

kBT

)

. (2.26)
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Employing these approximations, particles can be described within a test-particle ansatz [70, 71]

in which the phase-space dimensional distribution functions are represented by a Ąnite sum of

Dirac-delta distributions

f(r,p, t0) =
1

Ntest

N
∑

i

δ3(r − ri(t0))δ3(p − pi(t0)) , (2.27)

quarks are thereby approximated to be on-shell at any moment.

An global approximation both for Ąelds and particles is the Markov-approximation, in which all

memory terms are neglected and the evolution of the systemŠs dynamics relies only on a ŚcurrentŠ

state of the system. In general a quantum system has a complex dependency on its own history

df(r,p, t)
dt

=
∫ t

−∞
k(t′)I (f(r,p, t),L, t) dt′ , (2.28)

where k(t′) is the memory kernel of the system and I an interaction kernel describing the change

of the distribution function given by interactions. In the case the system evolution depends only

on its current state with k(t′) = δ(t− t′), the history of the distribution function can be neglected

f(r,p, t) → f(r,p, t0) , (2.29)

and the distribution function is reduced to a 6-dimensional object instead of the 6+1 dimensions

for a full memory history.

In most of the calculations, the chemical potential is set to zero µ = 0, leading to a balanced

number of particles and anti-particles, although the numerical implementation is generic for all

µ. µB = 0 was chosen as a Ąrst starting point for general investigations. The pionic Ąelds π were

also generically implemented, but in most of the simulation runs they were set to zero π = 0

to have stable and time-invariant equilibrium states. In case of π ̸= 0 the system has no stable

state and the chiral Ąelds σ and π oscillate non-linearly around a meta-stable state.

2.3 Equations of Motion

The equations of motion of the Ąelds are derived by employing the derivative of the chiral

potential (2.3), here for the σ-Ąeld

∂U(σ,π)
∂σ

≡ 0 = −λ2
(

σ2 − ν2
)

σ + fπm
2
π + g

˜

ψ̄ψ
˜

σ
, (2.30)
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resulting in the equation of motion for the mean Ąeld

(

∂2

∂t2
− ∇2

x

)

σ(x, t) = −
[

∂U(σ,π)
∂σ

+ g
˜

ψ̄ψ
˜

σ

⎢

σ(x, t) + fπm
2
π (2.31)

with the scalar density

ρσ ≡
˜

ψ̄ψ
˜

σ
= g · dq · σ(x)

∫

d3p

(2π)3

fq(x,p, T, µ) + fq̄(x,p, T, µ)
E(x,p, σ,π)

, (2.32)

with the coupling constant g, the quark degeneracy factor dq = 2 · 2 · 3 (spin, Ćavor and color), the

quark distribution function fq, the anti-quark distribution function fq̄ and the particlesŠ energy

E(x,p, σ,π) =
√

p2 +m =
√

p2 + g2 (σ2 + π2) . (2.33)

For the pion Ąelds the equation of motion is derived from its chiral potential

∂U(σ,π)
∂π

≡ 0 = −λ2
(

σ2 − ν2
)

π + +g
˜

ψ̄iγ5ψ
˜

π
, (2.34)

resulting in
(

∂2

∂t2
− ∇2

x

)

π(x, t) = −
[

∂U(σ,π)
∂π

+ g
˜

ψ̄iγ5τψ
˜

π

⎢

π(x, t) . (2.35)

The one-loop pseudo-scalar density is deĄned as

ρπ ≡
˜

ψ̄iγ5τψ
˜

π
= g · dq · π(x)

∫

d3p

(2π)3

fq(x,p, T, µ) + fq̄(x,p, T, µ)
E(x,p, σ,π)

(2.36)

which uses the assumption for isospin saturation here. Equation (2.35) describes the three pionic

Ąelds π =
(

π+, π0, π−
)

, but by using isospin saturation, the three Ąelds are assumed to be evenly

excited and can be approximated by a single efective Ąeld

π(x) = nπ · π(x) = 3 · π(x) . (2.37)

Quarks and anti-quarks are represented by their distribution functions using the test-particle

ansatz (2.27). To derive equations of motion, the Vlasov-equation is employed [72]. A discussion

on the Vlasov-equation can be found in Subsection 7.2.1 the of the particle-Ąeld method in

Section 7.2.1.
[

∂t +
x

E(x,p, t)
· ∇r − ∇x E(x,p, t0)∇p

⎢

f(x,p, t0) = 0 (2.38)

The time t0 is the time of the current system state, the equations of motion do not contain any

global memory kernels depending on t. The quarksŠ energies are deĄned in (2.33). Employing

the test-particle ansatz, the particles can be easily propagated with (2.38). The details on the

numerical implementation are given in section 8.2.2.
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Chapter 3

Equilibrium and Equilibration

Calculations

There exists everywhere a medium in
things, determined by equilibrium.

Dmitri Iwanowitsch Mendelejew

This part of the thesis covers the physical calculations using the DSLAM model with a focus on

thermal equilibrium and equilibration processes. Section 3.1 will contain calculations with the

model in perfect thermal and chemical equilibrium to test its stability and consistency compared to

existing thermal calculations. Section 3.2 covers a scenario in which a non-equilibrium distribution

of quarks will thermalize via elastic collisions. In Section 3.3 two scenarios in which the system

temperature is changed by a sudden quench and by an external heat-bath are investigated.

3.1 Equilibrium Calculations / Test Calculations

The Ąrst and absolutely mandatory test for a numerical model is an equilibrium calculation.

Besides the test for numerical stability, checking for conserved quantities like energy is fundamental

for later calculations.

The model is tested against thermal equilibrium initial conditions. The system is initialized at a

given temperature and started, the simulation must stay at the stable, thermal-equilibrium point.

Initial conditions are set up by choosing a temperature TEq and setting all physical quantities

consistent to that value.
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In thermal and chemical equilibrium, the equations of motion for the chiral Ąelds do not depend

on time and space and are therefore

(

∂2

∂t2
− ∇2x

)

σEq(x, t) ≡ 0 , (3.1)

and

π(x, t) = 0 . (3.2)

Stable solutions only exist for π = 0, otherwise the pion Ąelds would slowly oscillate around a

non-periodic state.

The equilibrium value of the mean-Ąeld σeq has to be derived self-consistently with the equations of

motion and the equilibrium distribution for the quarks, which is given by the thermal Fermi-Dirac

distribution:

fψ(x,p, t) =
2NcNf

(2π)3

(

1 + exp

(

E − µ

TEq

))−1

(3.3)

with the number of colors Nc = 3, the number of Ćavors Nf = 2 and the chemical potential µ.

σEq is found by solving the equations of motion with the equilibrium condition (3.1)

[

λ2
(

σ2
Eq − ν2

)

+ g2
∫

d3p
fψ(x,p, t) + f̃ψ(x,p, t)

E(x,p, t)

]

σEq − fπm
2
π = 0 . (3.4)

Equation (3.4) has to be solved with a numerical root Ąnder as the Ąeld and particles are coupled

self-consistent. A change in σ changes the quark mass, which changes the particle number in fπ
which changes σ again. After Ąnding σ2

Eq, the quark density can be calculated with the dispersion

relation:

Efψ =
√

p2 +m2
eff =

√

p2 + g2σ2
Eq . (3.5)

The particles are sampled isotropically in space, the momentum is sampled according to the

Fermi distribution and the direction of the momenta are isotropic, as well.

Figure 3.1a to 3.1f show the result of the equilibrium calculation. The system is initialized

in thermal equilibrium and stays unchanged over time. Figure 3.1c and 3.1d show the very

small spatial variance of the σ-Ąeld and the scalar density ⟨ψ̄⟩ which is induced by local density

Ćuctuations of the particles. The system parameters are: temperature T = 110 MeV, system

size V = 1 fm3, test-particle multiplication Ntest = 1 · 106, chiral coupling g = 3.63, simulation

run time trun = 10 fm/c, size of time step ∆t = 0.002 fm/c, grid size NGrid = 1283. Small global

Ćuctuations in the σ-Ąeld are related with discretization efects of the test particle number, see

Figure 3.1a. . The higher the number of test particles, the more accurate equation (3.4) can be

solved.
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Figure 3.1: Calculation for a box in thermal and chemical equilibrium.
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Figures 3.1a to 3.1f show calculations for the chiral coupling g = 3.63, but for any other coupling

the result show the same stable equilibrium behavior.

3.2 Thermalization of the Quark Distribution

Within the simulation, quarks and anti-quarks can collide via binary, elastic interactions. This

allows the system to evolve an arbitrary distribution function to an equilibrium distribution. For

massive and massless particles, this equilibrium distribution function is the Boltzmann-distribution

f(E) = exp
(

−E

T

)

. (3.6)

To test this behavior, a simulation is initialized in a thermal non-equilibrium scenario. The

chosen initial-distribution is a distribution with a delta-peak in momentum space,

f(E) ∼ δ(E − E0) , (3.7)

with an arbitrary E0 > m. In the test-particle ansatz, this becomes:

f(E,x) =
N
∑

i=1

δ(Ei − E0) =
N
∑

i=1

δ

(

√

p2 + g2σ2 − E0

)

. (3.8)

The direction of the momentum and the position of the particles is sampled uniformly in all

directions. The interaction cross-section σ22 was chosen to be 15 mbarn. Figure 3.2 and 3.3 show

the distribution function of the thermalization process at diferent time snapshots. The initial

distribution is sharply peaked at E0.

3.2.1 Particle Thermalization with a Virtual Heat Bath

In this section particles are initialized as described in the previous section with the diference

that the particles are thermalized with a canonical heat bath. The particles are coupled to a

reservoir of virtual particles which are treated as potential interaction partners sampled from a

thermal distribution. This method can be imaged as a heat bath of virtual particles, the details

are discussed in Section 8.3.1. The system can dynamically gain or lose thermal energy from

or to the heat bath. In this test the interactions between the ŞrealŤ quarks are switched of

and particles only interact with the heat bath. This leads to the same thermal distribution

with a slightly diferent equilibration behavior. In binary collisions, the equilibration process

takes more time because the thermal background of particles has to be generated from the

initial delta-distribution. In the heat bath scenario, particles with the initial momentum-peak

can collide with already thermalized particles. This reduces the required number of collisions
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Figure 3.2: Thermalization of a delta-distribution in momentum space. The system
is initialized in the chiral broken phase with a Ąnite quark rest-mass. g = 3.63,
T = 120 MeV, Ntest = 2 · 106 and σ22 = 15 mbarn. The distribution functions are
rescaled for a better optical rendering, with t = 2 fm/c having the smallest norm and
t = 25 fm/c having the largest norm.
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Figure 3.3: Thermalization of a delta-distribution in momentum space. The system
is initialized in the chiral restored phase with a very small quark rest-mass. g = 3.63,
T = 150 MeV, Ntest = 2 · 106 and σ22 = 15 mbarn. The distribution functions are
rescaled for a better optical rendering, with t = 2 fm/c having the smallest norm and
t = 20 fm/c having the largest norm.
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Figure 3.4: Energy distributions of the quarks at diferent times showing the
thermalization with a virtual heat bath. Particles have been initialized with a delta
distribution f(E) = δ(E−E0). Particles can interact with a virtual heat bath, leading
to a thermalization which is more eicient than binary scatterings because particles
collide with an already thermal background. The following parameter were chosen
g = 3.63, T = 120 MeV, Ntest = 1 · 105 and σ22 = 15 mbarn and a total number of
93000 particles. The distribution functions are rescaled for a better optical rendering,
with t = 2 fm/c having the smallest norm and t = 25 fm/c having the largest norm.

per particle until a thermal distribution is reached. The overall time, until all particles have

scattered at least once, is the same for the same interaction cross-section, but the number of

needed collisions per particle is lower.

Intermediate Summary

The presented calculations show the numerical and physical stability of the DSLAM model.

Initialized in equilibrium, the model shows no deviations from this state and stays stable over

the run time. Particle distributions which are initialized with non-equilibrium conditions can be

efectively thermalized by both binary inter-particle collisions and by interactions with a thermal

heat bath.

3.3 Thermal Quench and Temperature Change

In this section two calculations will be done to investigate the behavior of the model at the

chiral phase-transition. The Ąrst calculation will be a thermal quench in which the system is

initialized at diferent temperatures for the Ąelds and the particles. The second scenario will be a
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Figure 3.5: The same calculation as in Figure 3.4 but with a high temperature in
the chiral restored phase as initial condition. The following parameter were chosen:
g = 3.63, T = 150 MeV, Ntest = 1 · 105 and σ22 = 15 mbarn and a total number of
29000 particles The distribution functions are rescaled for a better optical rendering,
with t = 2 fm/c having the smallest norm and t = 12 fm/c having the largest norm.

temperature shift with a heat bath. In both cases the system starts in the hot, chiral-restored

phase and the quarks will be cooled. From equilibrium calculations in Section 3.1 it is expected

to see a phase transition for the chiral order-parameter ⟨σ⟩ from the chiral-restored back to the

chiral-broken phase.

3.3.1 Temperature Quench

In the temperature-quench scenario both Ąelds and particles are initialized with equilibrium

conditions for a given initial temperature Ti. After initialization, the particles are resampled at a

new, lower temperature Tq while keeping the Ąelds unchanged. The result is a non-equilibrium

state between the Ąelds and particles. Efectively this leads to the situation

˜

ψ̄ψ
˜

i
̸=
˜

ψ̄ψ
˜

q
, (3.9)

in which the overall potential of the σ-Ąeld changes and induces a mean-Ąeld force on the Ąelds

and the Ąeld moves away from its initial value σi.

Figure 3.6 shows results of such a calculation. The system was initialized with the following

parameters:
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Figure 3.6: Results for calculation with the quenched-scenario. Particles
and Ąeld are initialized at diferent temperatures, leading to a non-equilibrium
situation.
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Parameter System Value

Tσ 150 MeV

Tq̄q 80 MeV

Vsystem 1 fm3

coupling g 3.63

Ntest 106

∆t 0.002 fm/c

elastic collisions none

heat bath disabled

From the equations of motion of the σ-Ąeld, the Ąeld expected to deviate from its initial

distribution. SubĄgure 3.6a shows the time evolution of the order parameter ⟨σ⟩, which shows an

oscillation. The Ąelds and particles have diferent temperatures and are expected to equilibrate

at some point. However, the σ-Ąeld starts a non-linear oscillation which does not seem to be

damped even though a mean-Ąeld coupling with the particles should lead to an equilibrated

system at some point. Even at large time scales for t → 300 fm/c the system is not damped and

thus does not equilibrate. The explanation for this behavior can be found in the kind of initial

conditions and the coupling itself. The quarks are initialized in thermal equilibrium, so the quark

spatial distribution shows very little anisotropy. This ŞĆatŤ distribution does not induce any

gradients in the Ąelds and leads to an isotropic spatial distribution of the Ąelds itself. With both

the Ąelds and particle having an isotropic distribution, the system dynamics can be approximated

by a single equation of motion

∂2σ(t)
∂t2

= − − σ(t)
∂U(σ)
∂σ

+ g · σ(t) ·
˜

ψ̄ψ
˜

σ
(t) + fπm

2
π , (3.10)

which describes an anharmonic oscillator without damping.

The energy-distribution function of the quarks in SubĄgure 3.6f show a periodic oscillation of the

rest mass which is given by the oscillating mean Ąeld

m2
q(t) = g2σ2(t) . (3.11)

The overall temperature of the particles however does not change and stays at the initial

temperature of 80 MeV.

Another important physical efect does not occur, either. By changing the overall temperature,

the system is expected to change its phase. While the quarks have the temperature of the

chiral-broken phase with Tq ≪ Tc (with Tc = 140 MeV ), the order-parameter oscillates between

the chiral broken and chiral restored phase but this efect should not be seen as a phase transition

because it does not develop a stable phase.
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The coupling constant for this system was chosen to be g = 3.63, which corresponds to a

second-order phase transition. However, for the other couplings (g = 3.3 and g = 5.5) the system

qualitatively behaves not any diferent. No equilibration or damping of the Ąeld can be observed

and no phase transition takes place.

In summary a phase transition can not be achieved within this scenario. A temperature quench

leads to a system with a global and coherent oscillation of the mean-Ąelds. No phase transition

can be observed and neither the Ąelds nor the quarks develop towards chemical or thermal

equilibrium. The reason lies in the lack of collisions or other processes which could equilibrate

the system between particles and Ąelds. A propagation of particles via a Vlasov equation with

mean-Ąeld interactions does not generate any entropy, the systemŠs equations of motion remain

time-reversible.

In the next section a diferent approach with a heat bath will be tested.

3.3.2 Temperature Shift with an External Heat Bath

In the previous scenario the system was initialized in a quenched state which changed the energy

of the particles instantaneously at the start of the time evolution, afterwards the total energy

was conserved. This initial hard change induced a global oscillation in the mean-Ąeld.

Employing a diferent approach in this section, the system is initialized in global thermal and

chemical equilibrium in the chiral restored phase. The total energy is reduced slowly and

smoothly by cooling the quarks via the coupling to an external heat bath with a time dependent

temperature

Theatbath(t) = TI

(

1 − t

τT

)

, (3.12)

where 1/τT is the change rate of the heat bath temperature, cooling the heat bath over the run

time of the simulation. The time dependence in (3.12) is an arbitrarily chosen ansatz.

In the beginning the heat bath and the particles have the same temperature. Within the time

evolution the heat bath cools down and reduces the particle temperature as well. This slow

and smooth change should minimize oscillations of the σ-Ąeld as this leads to a slow change

of the chiral potential and a slow shift of the chiral Ąeld. Therefore strong oscillations as in

the previous chapter are not expected and a damping of the kinetic energy of the Ąeld is not

necessary. Without the undamped oscillation the system might change its chiral phase.

The following initial conditions have been chosen:
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Parameter System Value

TI 150 MeV

Simulation run time 25 fm/c

Vsystem 1 fm3

coupling g 3.63

Ntest 106

∆t 0.002 fm/c

elastic collisions 15 mbarn

heat bath 15 mbarn

τT 35 fm/c

The cross sections of the elastic interactions and the interactions between quarks and the heat

bath have been chosen to a large value to guarantee a fast thermalization and temperature

change of the quark-medium. All other parameters have been chosen to be the same as in the

thermal-quench scenario.

Results of this calculation are shown in Figure 3.7. Figure 3.7f shows the temperature change

of the quarks. The initial temperature starts at T = 150 MeV and changes smoothly with the

simulation time. The heat bath reaches a Ąnal temperature of Tf = 80 MeV at the end of the

simulation, at this time the quarks have thermalized at 87 MeV. A slight delay between the heat

bath and the quark temperature can be observed. The particles and the heat bath exchange

energy by collisions, therefore the system gets a kind of relaxation-time scale between particles

and the virtual heat bath.

With the quarks cooled below the phase-transition temperature, the system is expected to change

its chiral phase. This would be indicated by the order parameter ⟨σ⟩ which should be in the

order of the vacuum expectation value of 93 MeV. Figure 3.7a shows the time evolution of the

order parameter. Surprisingly, the order parameter shows the diametrical behavior and decreases,

instead of increasing. Even though the temperature is decreased, the order-parameter evolves

further towards the chiral-restored regime which is expected for even hotter media. This behavior

is contra-intuitive at Ąrst thought as Figure 3.7b shows a monotonic decrease of the total energy.

Although the σ-Ąeld shows only very little Ćuctuations and seems to be in a stable phase, it is

far from the expected thermodynamical state.

Comparing the quenched scenario from Section 3.3.1 with the heat bath scenario, two diferences

come to mind. The scalar density
˜

ψ̄ψ
˜

oscillates between 0.3 GeV and 0.9 GeV in the quenched

scenario, while it decreases from 1 GeV to 0.75 GeV in the heat bath scenario. The second

diference is the particle number, which is about threefold smaller in the quenched scenario. In

the heat bath scenario only the quark temperature is changed while in the quenched scenario

both the temperature and the quark density are changed.
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The explanation why the order-parameter does not show a phase-transition can be found in the

particle density. If the system can not change the quark-density upon a temperature change, it

will not be able to change its chiral phase.

The next section will investigate the efects of the particle density on the chiral-phase transition.
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Figure 3.7: Results for the calculation with the heat bath cooling-scenario. The
system is initialized in thermal and chemical equilibrium. The quarks are slowly
cooled with an external heat bath leading to a decrease of the total system energy.
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Chapter 4

Non-Equilibrium Effects

Ignoramus et ignorabimus

Emil Heinrich Du Bois-Reymond

In this chapter various non-equilibrium efects are discussed. The behavior of the linear σ-model

is well understood in equilibrium and the basic properties were discussed in chapter 3.1.

The DSLAM model is a numerical implementation of the linear σ-model with the scope of general

physical situations, allowing to simulate both systems in or near thermal and chemical equilibrium

as well as systems which are far from equilibrium.

The term Śthermal equilibriumŠ relates to the system state in which the particlesŠ thermal

distribution can be described by a single-particle distribution function like the Boltzmann- or

Fermi-distribution with a global temperature. For Ąelds, thermal means a stable conĄguration in

which the overall excitation state does not change and all modes are excited according to the

equipartition theorem.

Chemical equilibrium describes the state in which the particle density corresponds to the one

given by the equilibrium density

neq =
∫

d3p

(2π)3
f(E,m, T ) . (4.1)

The system is in total equilibrium if both the particles are in thermal and chemical equilibrium

and the Ąelds are in a conĄguration in which

∂ Ωeq

(

σ,
˜

ψ̄ψ
˜)

∂σ
≡ 0 (4.2)
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and the overall system-state becomes time independent.

Non-equilibrium efects occur if the system deviates thermally or chemically from its stable state.

In both situations, the system dynamics will difer from the discussed equilibrium properties.

In Section 4.1 efects of thermal non-equilibrium will be discussed, in Section 4.2 efects of

chemical non-equilibrium will be discussed.

Some non-equilibrium efects have already been discussed in the calculations with a quenched

scenario in section 3.3 or with an external heat bath in section 3.3.2. The Ąrst implementation

of the DSLAM model is lacking chemical processes. As a result the system can not equilibrate

efectively. The later chapter 5 describes the extensions of the DSLAM model to allow an efective

chemical and thermal equilibration.

4.1 Thermal Non-Equilibrium Effects

Efects of thermal deviation are discussed in this section. In other efective models like hydrody-

namics, the medium is assumed to be in or near local thermal equilibrium. This is a assumption

which works well in many cases. However, in this section the impact and efect of any deviations

of the medium from thermal equilibrium is discussed. To be precise, a comparison between

media which can be described by an equilibrium distribution function and media with a diferent,

non-equilibrium distribution function is done.

To calculate the equilibrium behavior of the linear σ-model, the potential Ω for the order

parameter ⟨σ⟩ has to be solved self-consistently for its equilibrium value. One important part

of the thermodynamic potential of the σ-Ąeld is the one-loop scalar density, which couples the

quark density to the Ąeld

ρσ ≡
˜

ψ̄ψ
˜

≡ gσ(r)
∫

d3p
f (r,p) + f̃ (r,p)

E (r,p)
. (4.3)

By employing a test-particle ansatz with a single-particle distribution for the quarks and a zero

chemical potential µ → 0, the scalar density can be factorized in a particle density expectation

value and an inverse energy expectation value

f (r,p) =
∑

δ (ri − r) δ (pi − p) , (4.4)

˜

ψ̄ψ
˜

µ=0−−−−→
f→feq

gσ(r) ⟨n (r, T )⟩
⎬

1
E (r, T )

⟩

. (4.5)
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For the chiral restored phase at T > Tc we can approximate the particle density n(T ) and the

average energy E(T ) with the analytical relations for a massless Fermi gas:

⟨n (r, T )⟩ = dq
3ζ(3)
4π2

T 3 , (4.6)

⎬

1
E (r, T )

⟩

= dq
π2

18ζ(3)
T−1 . (4.7)

Both the particle density (4.6) and the inverse energy distribution (4.7) can deviate from

equilibrium. Therefore formally they can be described by two diferent temperatures Ttherm and

Tchem. Combining (4.6) and (4.7) results in

⟨n (r, Tchem)⟩ ·
⎬

1
E (r, Ttherm)

⟩

=
1
24

T 3
chem

Ttherm
. (4.8)

In this notation we can discuss the behavior of the scalar density
˜

ψ̄ψ
˜

if the temperature is

changed with a constant particle density or the other way around.

The result of (4.8) is quite interesting because it shows that the particle density has a much

stronger impact on the scalar density
˜

ψ̄ψ
˜

than on the thermal distribution. For full thermal

equilibrium with Ttherm = Tchem relation (4.8) becomes

⎬

n (r, T )
E (r, T )

⟩

=
T 2

24
(4.9)

In Section 3.3.2 a scenario was calculated in which the system was initialized in the hot and

chiral-restored phase. The particles were cooled down via coupling to a heat bath and even

though the systemŠs total energy was largely reduced, the order parameter ⟨σ⟩ did not show

the expected phase transition to the cold, chiral broken phase. The chiral Ąeld moved even

further to the chiral restored phase ⟨σ⟩ → 0 which would be expected for increase of the system

temperature.

Equations (4.8) and (4.9) can explain this behavior. In a full equilibrium,
˜

ψ̄ψ
˜

would scale with

T 2. Even though the particles showed a thermal distribution over the whole simulation time, the

overall system was not in full equilibrium because the particle density could not change. The lack

of particle-number changing processes leads to a constant particle number. In terms of equation

(4.8) the chemical temperature Tchem did not change, so the overall scalar density scaled with

˜

ψ̄ψ
˜

∼ 1
T

̸= T 2 , (4.10)

leading to an decrease instead of an increase. This inverse behavior of the scalar density is a

non-equilibrium efect and explains why the order parameter moves in the Şwrong directionŤ. In

contrast the same inverse behavior can be observed if the system is initialized in the cold and
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initially chiral broken phase and is heated up by an external heat-bath. If the particle number is

constant the chiral Ąeld will move towards the direction of the vacuum-expectation value because

of the same reason as the chiral density scales diferently.

Note that all arguments using the analytic relations (4.8) and (4.9) hold for temperatures above

the chiral phase transition, in which the quarks mass can be neglected. The exact scaling of the

particle density and the inverse energy can be obtained from numerical calculations, as presented

in Figure 4.1 and 4.2.

Both calculations show the efect of the chiral phase transition, in which the change of the quark

mass directly leads to a change in the quark density and energies because the chiral Ąelds and

quarks are coupled self-consistently. This rapid change of the quark density is crucial for the

phase transition, as discussed before.

However, such calculations are not always suicient to derive the behavior of dynamical systems.

Equilibrium calculations show the thermal behavior of a system in comparison to its system

temperature if such a system is suiciently large and has arbitrary large time scales to equilibrate.

In such a case discontinuity in the temperature scaling can be observed. For dynamical systems,

e.g. quickly expanding Ąreballs, such an instant change in the particle number, like at the

Ąrst-order phase transition, is not possible as the annihilation of particles needs time. Such

efects will be considered in Section 4.2.

Additionally, the correlation length can diverge at the phase transition [32], increasing the

equilibration time arbitrarily. This critical slowing down can prevent the system from equilibrating

in short time scales.

Impact of the Thermal Distribution on the Scalar Density

In the previous section the scalar density
˜

ψ̄ψ
˜

was decomposed for an equilibrium one-particle

distribution function. We will now investigate the efects of a non-thermal distribution function

with their time dependence in an equilibration process. The system is therefore initialized in a

thermal non-equilibrium situation and can relax back to thermal equilibrium by elastic quark

interaction. The level of equilibration is compared to the value of the one loop scalar density
˜

ψ̄ψ
˜

for full equilibrium.

For this calculation, the linear-σ model is initialized with a non-equilibrium distribution function

for the quarks momenta, the Dirac-delta function

f (r,p) =
N(T )
∑

i

δ(Ei − E0(T )) . (4.11)
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Figure 4.1: Thermal dependency of the inverse energy of quarks ⟨1/E⟩(T ), which
is an important part in the one-loop scalar density

⟨

ψ̄ψ
/

. The quarks behave like
massless particles for high temperatures and the inverse energy rises towards the phase
transition. The mass changes rapidly at the phase transition, leading to a change
of the particle number and the inverse energy. Depending on the order of the phase
transition, the change occurs in a jump or in a smooth crossover. At low temperatures
the energy is dominated by the rest-mass of the particles, leading to a quasi-constant
scaling of the inverse energy.

The energy E0 is chosen to match the average energy of the system for the thermal Boltzmann

distribution, to which the system equilibrates

E0(T ) = A0

∫ ∞

M
E
√

E2 −M2 e−E/TdE , (4.12)

A0 =
(∫ ∞

M
E
√

E2 −M2 e−E/TdE
)−1

. (4.13)

In this calculation the quark-particles equilibrate by elastic interactions. For a quantitative

description of the equilibration, a χ-squared test is used, also refereed to as χ2-test, which

compares a distribution function via its frequencies to the expected ones [73]. The χ2 statistic is

given by comparing the observed frequencies Oi with the expected reference frequencies Ri

χ2 =
N
∑

i

(Oi −Ri)
2

Ri
, (4.14)
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Figure 4.2: Temperature dependence of the average quark density. For high
temperatures all three coupling-scenarios approach the analytic solution for massless
particles n ∼ T 3. For low temperatures all three curves approximate the vacuum
solution with diferent masses. In between does the density changes rapidly at the phase
transition. The Ąrst-order phase transition has a discontinuity in the density function,
both second-order transition and crossover show a smooth transition. Furthermore,
these curves show the temperature dependence in full equilibrium. Any dynamical
simulation will show such a scaling only on very long and slow time scales if the system
changes adiabatically.

with total sample size N . For the equilibration test we will choose the Boltzmann distribution

for Ri
Ri(Ei) = Ei

√

E2
i −M2 eEi/T . (4.15)

For χ2 to converge, we have to satisfy both the existence of R as a non-zero number and the

physical mass limit

Ri(Ei) ∈ R>0 : ∀Ei (Ei > M) . (4.16)

The χ2 distribution becomes large if the distribution function and the reference function have no

overlap at all. If both functions match perfectly, the χ2 value will reach zero. This value is a

gauge for equilibration in this calculation, its absolute values are not important. The system is

considered equilibrated if χ2 ≪ 1 and does not change anymore.

Figures 4.3a and 4.3b show the results of these thermalization calculations. Both systems are

initialized with the Dirac-δ distribution. Quarks can interact via constant and isotropic cross

sections. The interaction rate is chosen to allow a thermalization for both systems within 30 fm/c.
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Figure 4.3a shows the calculation in the chiral restored phase at T = 150 MeV, Figure 4.3b shows

the same calculation in the chiral broken phase at T = 100 MeV. The coupling constant was

chosen to be g = 3.63. In both Ągures the scalar density
˜

ψ̄ψ
˜

changes within the thermalization

process. The particle number, the total energy and the system volume stays constant, only

the change of the total distribution function leads to a change in
˜

ψ̄ψ
˜

. Quantitatively, the

value
˜

ψ̄ψ
˜

t=0
for the initial Dirac-δ distribution is lower compared to an initial feq and

˜

ψ̄ψ
˜

raises with the level of thermalization. The behavior is very similar for calculations in the chiral

restored phase in comparison to calculations in the chiral broken phase:

˜

ψ̄ψ
˜

f=fδ
= 0.65 for Ti = 100 MeV ,

˜

ψ̄ψ
˜

f=fδ
= 0.7 for Ti = 150 MeV .

(4.17)

In summary the scalar density changes by a factor (1/0.65 − 1/0.7 ≈ 1.4 − 1.5) just by the change

of the thermal distribution while keeping the particle number constant. The overall impact of

the thermal distribution on the scalar density is not as big as a change in temperature or particle

number but it is not negligible in dynamical situations in which the distribution function can

deviate from equilibrium.

Figure 4.4 shows the phase diagram of the linear σ-model in which the equilibrium quark-

distribution is replaced by the Dirac-δ distribution. The particle density is chosen to be the same

density as for the Fermi distribution but the momenta of the particles are chosen according to

the peaked Dirac distribution. The rest of the calculation is kept the same as in the usual linear

σ-model. The temperature dependence in Figure 4.4 difers remarkably from the equilibrium

phase diagram (see Figure 2.2). The temperatures of the phase transition are shifted to higher

temperatures by about 20 MeV. However the strongest efect is the change of the transition type.

The Ąrst-order phase transition with g = 5.5 is still of Ąrst-order, the other two cases g = 3.63

and g = 3.3 show both a crossover transition with very shallow slopes. The second-order phase

transition for g = 3.63 is completely lost, and one has to expect that this kind of phase transition

is very sensitive to the distribution function and in general will not be visible for non-equilibrium

scenarios like quickly expanding systems.

4.2 Chemical Non-Equilibrium Effects

In the previous section the impact of a deviation from thermal equilibrium on the scalar density
˜

ψ̄ψ
˜

and the phase diagram of the linear σ-model was examined. The scope of this section will

be to investigate deviations from chemical equilibrium, or i.e. deviations from the equilibrium

particle density for a given temperature.
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(a) Calculation for a system in the chiral restored phase with T = 150 MeV, 530000
particles and g = 3.63.
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(b) Calculation for a system in the chiral restored phase with T = 190 MeV, 230000
particles and g = 3.63.

Figure 4.3: Equilibration of two systems initialized with a non-equilibrium distri-
bution, the Dirac distribution δ (E − E0). By employing elastic collision the system
can equilibrate towards the thermal Boltzmann distribution. The plots show the
degree of thermalization with the help of the χ2 value (left scale), which is χ2 → 0 for
equilibrated systems. The right scale shows the scalar density

⟨

ψ̄ψ
/

which is normed
to the equilibrium value for this system. Therefore

⟨

ψ̄ψ
/

→ 1 in thermal equilibrium.
The total particle number is conserved.
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Figure 4.4: Phase-diagram for the linear σ-model with a Dirac-distribution as the
thermal distribution functions for the quarks. The particle density is chosen to be the
same as for the Fermi-distribution. The change of the thermal distribution leads to a
quantitative change in the phase transitions. All critical temperatures are shifted up to
higher temperatures and the order of the phase transition is changed. The Ąrst-order
transition is not changed, but the second order phase transition becomes a crossover
and the slope of the crossover transition with g = 3.3 becomes even more Ćat.

In a fully equilibrated medium, both thermally and chemically, a single temperature T and the

chemical potential µ describe the entire system characteristics for the energy, momentum, mass

and density distributions.

The particle density for a massless gas is given by

n(T ) =
∫ ∞

0
dE E2e−E/T = 2T 3Nd , (4.18)

with the degeneracy factor Nd. For massless fermions, the equilibrium density difers by a factor

n(T ) =
3
2
T 3Ndζ(3) . (4.19)

For massive particles one Ąnds

n(T ) =
∫ ∞

m
d
(

E E ·
√

E2 −m2
)

e−E/T = Nd ·m2 · T ·K2

(

m

T

)

, (4.20)

with the modiĄed Bessel-function of second kind K2.

The numerical solution of the particle density with temperature dependent masses is shown in

Figure 4.2.
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In Section 4.1 the efect of a constant particle density has already been discussed. A simple

model is now used to discuss the impact of a non-equilibrium particle density. The idea is to

simulate a system which expands slowly and adiabatically. The current state of the model does

not include chemical processes, therefore an efective cooling by expansion is not possible. As a

workaround, a simple relation between the system volume and temperature is assumed. This

model assumption will not exactly reproduce the quantitative behavior of the linear σ-model,

but will allow an efective and qualitative statement about the system behavior.

The total particle number is constant without particle production and annihilation, leading to

the density to volume scaling relation

n(t) · V (t) = n0 · V0 (4.21)

An adiabatic expansion is simulated, so the used thermodynamic relation is

T (t)V (t)γ−1 = T0V
γ−1

0 . (4.22)

For the adiabatic exponent the relation for an ideal gas is assumed,

γ = 5/3 , (4.23)

which is a very strong assumption but does not compromise the idea of the calculation. The

overall scaling relation for the particle density in comparison to the system temperature becomes

n(T ) = n0

(

T

T0

)3/2

. (4.24)

To compare the system behavior with the equilibrium model, the simulation is set up at a given

temperature and initialized in full equilibrium. At this given temperature the simulated system

behaves exactly as the equilibrium model. Employing the density scaling (4.24), the system

behavior is calculated for diferent temperatures by expanding or compressing the box.

For the coupling g = 3.3 with a crossover phase transition this initial temperature is set to

Ti = 155 MeV, for g = 3.63 with a the second-order phase transition Ti = 150 MeV and for

g = 5.5 with the Ąrst-order phase transition the initial temperature is Ti = 135 MeV.

Figure 4.5a and 4.5b show the results of these calculations. In the previous calculations a phase

transition could not be observed if the particle temperature was changed in a box calculation in

which the particle number and density was kept constant. In this scenario the particle number

is still constant but the particle density is changed by a volume change. Figure 4.5a shows a

comparison between the equilibrium model and the expansion scenario. Despite the constant

particle number, the order parameter shows a phase transition and even the type of phase
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transition (Ąrst-order, second-order or crossover) is preserved. Surprisingly, the temperature of

the phase transition is shifted in all three scenarios to about 20 MeV lower temperatures. The

exact amount of this shift depends heavily on the density scaling (4.24) and the initial condition.

The interesting point in this scenario is the seeming restoration of the phase transition behavior.

Seemingly, because this kind of phase transition is not a proper phase transition in terms of

equilibrium physics. The total particle number is kept constant due to the lack of chemical

processes. Figure 4.2 shows the equilibrium behavior of the particle density at the chiral phase

transition. A rapid change of the density can be observed at and near Tc. This change is a result

of the self-consistent coupling between particles and the chiral Ąelds which is not given in this

scenario. The efect of this phase transition-like behavior could be called pseudo phase transition

and is a non-equilibrium efect caused by the non-thermal particle density.

The scenario in this section is not directly applicable to a heavy-ion collision because the system

in this scenario performed an adiabatic expansion and could thermally equilibrate and the mean

Ąeld σ-value was able to relax to a stable value. However, this scenario still gives important

hints for an expanding system like a Ąreball in a heavy-ion collision. A rapid expansion will

at some point leads to a decoupling of chemical processes, causing an efective freeze-out of

chemical processes. Additionally, the timescale for chemical equilibration is typically very large

τch ∼ 200 fm/c [74, 75] and therefore larger than the scale of the Ąreball in a heavy-ion collision.

From a theoretical point of view a rough estimation can be derived for the collision rate in the

system. The collision rate within a particle-cell is proportional to the number of possible collision

partners

Rcoll ∼ Ncell (Ncell − 1) ≈ N2
cell . (4.25)

For a linear expanding system the following scaling for the number of particle per cell can be

estimated by

Ncell = Vcell · ρcell = Vcell
N0

Vsystem
=

Vcell ·N0

(L0 + ∆L · t)3 . (4.26)

Combing the two equations leads to a scaling of the collision rate

Rcoll ∼ 1

1 + L0

∆L t
. (4.27)

The collision rate within a system with an initial radius of 1 fm and the same expansion rate

would drop to 1.5% of the initial rate after 1 fm/c.

These circumstances indicate that a fast expanding system will run out of chemical equilibrium at

some point in time, stopping chemical processes and leading to a particle density diferent to the

systemŠs temperature. Any kind of phase transition seen at that or a later point in the evolution

will probably show efects of these deviation from chemical equilibrium, changing properties

like the temperature or the order of the chiral phase transition. This is important because the
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latent energy of the phase transition will lead to a reheating of the medium [52, 76], such an

efect depends on the properties of the phase transition. Furthermore, if Tc depends on the

expansion and the density of the system, parameter like the initial system size and density are

also important for the Tc in such a non-equilibrium expansion scenario.

4.3 Summary

In this part the dynamics and efects of non-equilibrium deviations have been discussed. Non-

equilibrium is a broad concept and in this chapter the deviations from thermal and chemical

equilibrium of the particles in the linear σ-model have been investigated.

Non-equilibrium deviations occur if a thermal system undergoes a rapid change of state, for

example in a rapid expansion or in presence of an external Ąeld, or if the system evolution already

starts in a situation far from equilibrium, for example in a heavy-ion collision.

Thermal of-equilibrium occurs if the particleŠs distribution function f(p) difers from the

Boltzmann or Fermi-distribution. Efects for thermal deviations have been discussed in Section 4.1.

Any deviation from the equilibrium distribution lowers the scalar density
˜

ψ̄ψ
˜

, as shown in Figure

4.3a and 4.3b, leading to diferent stability points in the equations of motion. Overall, thermal

deviations do not only change the temperature of the phase transition to higher temperatures,

but can also change the order of the phase transition, as shown in the phase diagram of the order

parameter for a non-equilibrium particle distribution function in Figure 4.4.

In Section 4.2 efects of deviations from chemical equilibrium have been discussed. The focus was

on deviations from the equilibrium particle density, which always occurs if the system evolves

out of an equilibrium conĄguration and the particle number is kept constant. This can happen if

these processes are suppressed or the particle production time scales are larger than the evolution

timescales. In such a case the system can evolve through a pseudo-phase transition in which the

temperatures of the phase transition are shifted to lower temperatures, as shown in Figure 4.5a

and 4.5b.

It has been shown that properties of the chiral phase transition of the linear σ-model can be

understood in terms of equilibrium calculations. Nevertheless, any deviations from equilibrium

can drastically change the dynamics of this phase transition and systems far from equilibrium can

be compared hardly to the phase-diagram for thermal and chemical equilibrium. Interestingly,

deviations can both increase or decrease the temperature and change the order of the phase

transition. Such Ąndings complicate the discrimination of the type of phase transition in a highly

dynamic system like in a heavy-ion collision.

All discussed scenarios in this section are ŞartiĄcialŤ setups, explicit forbidding reactions or

adiabatic expansions. Chemical or thermal equilibrium can not be reached in these scenarios

46



Chapter 4 Non-Equilibrium Effects

 Sigma Meson Density
S

ig
m

a
 D

e
n
s
it

y
 [

G
e
V

]

0

0,02

0,04

0,06

0,08

0,1

0

0,02

0,04

0,06

0,08

0,1

T [MeV]

80 100 120 140 160 180

0,08 0,1 0,12 0,14 0,16 0,18

Equilibrium
 g = 3.30
 g = 3.63
 g = 5.50

Expanding medium:
 g = 3.30
 g = 3.63
 g = 5.50

(a) Temperature dependence of the order parameter ⟨σ⟩.

1 Loop Scalar Density

S
c
a
la

r 
D

e
n
s
it

y
 [

G
e
V

3
]

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.002

0.003

0.004

0.005

0.006

0.007

0.008

T [MeV]
80 100 120 140 160 180

0.08 0.1 0.12 0.14 0.16 0.18

Equilibrium

 g = 3.30

 g = 3.63

 g = 5.50

Expanding medium:

 g = 3.30

 g = 3.63

 g = 5.50

(b) Temperature dependence of the one-loop scalar density
⟨

ψ̄ψ
/

.

Figure 4.5: Comparison of the temperature behavior of the linear σ-model for a
simulation in full thermal and chemical equilibrium (solid line) and for a simulation
in which the particle density deviates from equilibrium (dashed line). The total
particle number is constant in this non-equilibrium scenario, the density changes by an
expansion of the system. The order of the phase transition for the diferent couplings
g are the same in comparison to the equilibrium scenario but the temperature Tc of
the phase transition is shifted to lower temperatures.
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which do not allow a full and reliable discussion of non-equilibrium reactions. Therefore the

DSLAM model will be extended with chemical processes in the next chapter to allow a more

realistic simulation for fully dynamic systems.
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Extension of the DSLAM Model

Wir müssen wissen und wir werden
wissen!

David Hilbert

The DSLAM model (Dynamical Simulation of a Linear sigmA Model) has been introduced in

Chapter 2.2. All interactions are restricted to elastic interactions between particles, potential

interactions between Ąelds and a mean Ąeld Yukawa-like coupling between particles and Ąelds.

Chemical processes are not implemented, leading to a constant particle number, independent of

the systemŠs initial conditions.

Ignoring particle-number changing processes can prevent global thermalization, as shown in

Section 3.3 or change the system dynamics, as discussed in Section 4.2.

The model is extended in this section with annihilation and pair-production processes, allowing

both chemical and thermal equilibration between Ąelds and particles.

Particle production and annihilation is motivated by the coupling term between the chiral Ąelds

and fermionic quarks in the interaction-part of the linear σ-modelŠs Lagrangian

Lint = −ψ̄ [g (σ + iγ5π · τ )]ψ , (5.1)

which describes a Yukawa-like interaction. In terms of Feynman diagrams this coupling can be

interpreted as inelastic processes, which are
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particle annihilation

q

q̄

σ

and particle pair production

q

q̄

σ

The annihilation of a quark and an anti-quark generates an unstable σ particle, which can decay

again to a quark-anti-quark pair.

Such kind of interaction terms for particle production are widely used in efective theories [77Ű79].

In case of the DSLAM model, particles and Ąelds are approximated to classical, spinless particles

and scalar Ąelds, which changes the type of involved Ąelds in the interaction Lagrangian to

Lint = gσϕ∗ϕ , (5.2)

while the physical motivation stays the same. The idea of the interaction between Ąelds and

particles is discussed in Chapter 7, introducing the particle-Ąeld method which is used to

numerically implement the interactions between quarks and the sigma Ąeld. This chapter

discusses the physical properties of these kind of interactions.

Particle annihilation is implemented similarly to the numeric of elastic scattering. For an

annihilation process a quark q and an anti-quark q̄ have to be in the same cell with volume ∆V .

The interaction probability is given by employing a constant and isotropic cross section

Pr (q̄q → σ) = σ̂q̄q→σ vrel
∆t

∆V Ntest
, (5.3)

with

vrel =
s

2E1E2
s =

(

p1
µ + p2

µ

)2
. (5.4)

The annihilation process is the inverse of the decay process σ → q̄q which describes the decay of

an unstable σ-particle. The cross section σ̂q̄q→σ is therefore chosen to be the Breit-Wigner cross

section [80, 81] which depends on the production threshold of the σ-particle, its mass mσ and

the width Γ of this particle [80]

σ̂q̄q→σ(s) =
Γ2

(
√
s−mσ)2 +

(

1
2Γ
)2 , (5.5)
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with

Γ =
g2

8πmσ

√

1 −
(

2mq

mσ

)2

. (5.6)

The decay width of an unstable scalar particle can be derived from the interaction Lagrangian

(5.2) and can be found in Appendix D.4.

The quark mass is given by

m2
q = g2

(

σ2 + π2
)

. (5.7)

The mass of the sigma meson, mσ, can be calculated in equilibrium from the thermodynamic

potential via

m2
σ =

∂2Ω
∂σ2

(5.8)

with σ at its equilibrium value. The DSLAM model is a dynamic simulation with scope on

non-equilibrium calculations. A global temperature does not always exist in non-equilibrium

situations, which would be needed to derive the equilibrium mass of the sigma. Nevertheless

the mean Ąeld value of ⟨σ⟩ is always given and can be used to derive a mass. Therefore the

thermodynamic relation in (5.8) T → mσ is changed by using ⟨σ⟩ → mσ. This is done by

inverting the calculation

⟨σ⟩(T ) from
∂Ω(T )
∂σ

≡ 0 to Tσ(⟨σ⟩) . (5.9)

This temperature Tσ can be seen as a local, coarse grained, efective temperature, which is derived

from the mean Ąeld of the system. Overall, this step is a model assumption, because an efective

temperature could be derived in other ways, as well. An alternative would be the derivation

from local thermal modes on the Ąeld. An advantage of this method is that Tσ is in principle

completely independent from the quark temperature and can be calculated for every numerical

cell. Figure 5.1 shows the calculation for the relation ⟨σ⟩ → Tσ and the employed numerical

parameterization of this plot. The details of the parameterization can be found in the chapter on

the numerical implementation in Section 8.8.

By using the relation Tσ (⟨σ⟩), a relation for mσ (⟨σ⟩) can be numerically calculated. Before this

is done, the dynamics of mσ should be considered. For the coupling g = 3.3 and g = 3.63 the

order parameter is always deĄned; for g = 5.5 the thermal behavior of the order parameter shows

a discontinuity. Furthermore, this implies that mσ is bijective for σ ∈ [0, 93 MeV] for g = 3.3 and

g = 3.63 but not for g = 5.5. To get a feeling for the behavior of the σ-mass, the mass can be

calculated in the complete T − σ plane and not only at σ = σeq. Figure 5.2a shows the behavior

of the mass in the crossover scenario, the equilibrium mass is always positive deĄned. Figure 5.2b

shows the same calculation for the second-order phase transition scenario. The mass becomes 0

at the phase transition and the equilibrium line touches the red-colored region which indicates

a tachyonic conĄguration, however the mass is always mσ ≥ 0. A diferent situation occurs
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Figure 5.1: The inverse phase-diagram of the mean Ąeld ⟨σ⟩ (colored lines), which is
used to dynamically derive a temperature from the current value of the mean Ąeld. A
numerical implementation has been done with a parameterized version of this plot,
which is indicated by the blue, dotted lines. The phase-diagram with the Ąrst-order
phase transition has a discontinuity at Tc = 126 MeV, leading to a region of constant
temperature over a wide range for ⟨σ⟩.

in the Ąrst-order phase transition, as shown in Figure 5.2c. In this case the mass mσ (T, ⟨σ⟩)
becomes a piece-wise deĄned function which is divided by a region of negative, tachyonic mass

with m2
σ < 0. There is no conĄguration in which the mass stays positive at the phase transition.

So the non-physical region can not be avoided. This is a problem when a parameterization for

mσ(⟨σ⟩) should be calculated.

Figure 5.3 shows the parameterization for the mass at a given σ-value. This parameterization is

used to derive mσ in a non-equilibrium conĄguration in which the ĄeldsŠ and particlesŠ temperature

diverge. Such a numerical calculation can easily be performed for the crossover and second-order

phase transition. For the Ąrst-order phase transition the tachyonic parts have to be considered.

Within the regions which are deĄned by the equilibrium phase-diagram, there is mσ > 0 for all

⟨σ⟩. In contrast, σ-conĄgurations between the phases are not deĄned. This range is given for

g = 5.5 by

σnon−therm =
(

σ
(

T−
c

)

, σ
(

T+
c

))

≈ (7.5 MeV, 75 MeV) . (5.10)

Values within this region are not given by the phase-diagram and are indicated by the line of

constant temperature in Figure 5.1. Furthermore, the squared mass becomes negative in this

region m2
σ < 0. It is not clear how this scenario should be treated in the linear σ-model at this
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(a) Crossover transition with g = 3.3 (b) Second-order transition with g = 3.63

(c) First-order transition with g = 5.5.

Figure 5.2: m2
σ for diferent coupling strengths, temperatures and mean Ąeld con-

Ągurations. Blue regions indicate m2
σ > 0, red colored regions indicate negative and

tachyonic mass conĄgurations with m2
σ < 0. Black lines indicate the equilibrium

conĄgurations in the linear σ-model.

level. Tachyonic particles are a known phenomena in scalar theories [82]. In the DSLAM model

one assumes mσ ≡ 0 in this region, leading to an efective suppression of q̄q ↔ σ interactions.

Employing a Breit-Wigner cross section and the decay-width for the sigma mesons (see (7.90)),

the annihilation probability for quark-anti-quark production in a cell can be calculated. This

probability is sampled using Monte-Carlo techniques and in case of an interaction the energy
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Figure 5.3: Calculation for the relationship ⟨σ⟩ → m2
σ. The mass is always positive

deĄned for the crossover transition. For the second-order phase transition the mass
shorty reaches zero at the phase transition. In case of the Ąrst-order phase transition
the physical region is very small (blue line). The mass-parameterization can be
extended by deriving m2

σ with the temperature of the phase transition (Tc ≈ 126 MeV)
and by using an analytic continuation for σ (instead of the equilibrium σeq). As a
result the mass-relation shows a kink at the region where the σ−T combination difers
from the equilibrium conĄguration.

and momentum of the particle pair will be transferred to the sigma Ąeld using the particle-Ąeld

method as described in Section 7.4.4.

To implement the decay process σ → q̄q, some additional physical modeling has to be done. The

DSLAM model does not directly implement σ-particles, but instead a scalar classical Ąeld is

used to describe the Ąeld-conĄguration. Such a Ąeld has a single value at every point on the grid

and does not have any particle-like properties. However a particle density has to be derived to

sample discrete decay-events which can generate quark pairs.

The basic idea is to derive a particle distribution function fσ(x,p) for σ particles at every grid point.

This is done by assuming thermal local equilibrium at every grid point and sampling particles

from fσ which then can be used to calculate decay probabilities. As an equilibrium distribution,

the massive, isotropic Boltzmann distribution has been chosen for fσ. The distribution function

can now be fully described by its temperature T and its mass. The sigma particles should be

allowed to have a diferent occupation number in comparison to its temperature, allowing a

diferent nσ than given by the equilibrium distribution. Therefore the following ansatz has been

chosen: The temperature of the distribution is given by the inverse phase diagram for ⟨σ⟩ → T .
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The same is done for the mass ⟨σ⟩ → mσ. For the particle density a second value is used, the

energy density of the Ąeld. This ansatz allows to derive both a temperature and particle density

from the scalar Ąelds properties σ and σ̇. Depending on the temperature of the Ąeld, diferent

cases have to be discussed.

fσ is chosen to be the massive Boltzmann distribution

fσ(p) = dg4πE · ♣p♣ e−E/T . (5.11)

The equilibrium density is given by

nσ = dg ·m2 · T ·K2

(

m

T

)

, (5.12)

with the modiĄed Bessel function of the second kind K2. Therefore equilibrium energy density

becomes:

⟨ϵ⟩ =
∫

dE E2 · ♣p♣ e−E/T = m2 · T [mK1(m/T ) + 3TK2 (m/T )] (5.13)

with the known relation 6T 4 = 3nT in the limit for m → 0 .The energy density (5.13) is plugged

into (5.12) to derive a local equilibrium particle density for a given energy density n(ϵ(T )).

Equation (5.13) is rewritten

(

⟨ϵ⟩ −m3 · T ·K1 (m/T )
)

3m2 T 2
= K2(m/T ) , (5.14)

which is plugged into (5.12)

nσ(⟨ϵ⟩) =
⟨ϵ⟩ −m3 T K1(m/T )

3T
(5.15)

with ⟨ϵ⟩/3T in the limit for m → 0.

A special case is the vacuum Tσ → 0, or in case of non-equilibrium system-conĄgurations for

σ ≥ σvac = 93 MeV, in which the σ-particles are assumed to have no thermal energy and only

have rest-mass only. In this case the particle density becomes

nσ → ⟨ϵ⟩
mσ

for T → 0 . (5.16)

With these parameterization and approximations the local distribution function fσ can be

determined for every grid cell of the σ mean Ąeld. Using T and mσ, a single particle can be

sampled from fσ and its decay probability (5.6) can be calculated. Instead of performing a

Monte-Carlo sampling of the decay probability with many potential decay-particles, only one

particle is sampled per cell and time-step and its decay probability is weighted with the local

density nσ
P (σ → q̄q) ∼ Γ · nσ . (5.17)
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Figure 5.4: Width of the σ-meson, which is used in the Breit-Wigner cross section.
The width is calculated from the scalar σ decay-channel (5.6). Below the phase
transition in the chiral broken phase, the σ can not decay anymore to quarks because
the energy is below the production threshold mσ < 2mq.

This is a valid approximation for the exponential decay probability if P (σ → q̄q) · ∆t ≪ 1.

Thermalization Processes and Implementation Considerations

In this paragraph, the DSLAM model was extended with chemical processes between particles

and the mean Ąeld σ ↔ q̄q. The scope of this extension is to implement an efective mechanism

which allows both damping of Ąeld-excitations and the generation of dynamic Ćuctuations on the

Ąeld. Additionally, both particles and Ąelds should be able to equilibrate with this mechanism,

leading to the same temperature of the Ąelds and the particles as well as the equilibrium particle

density. This implies for an equilibrium state equal rates for both processes

⟨Rσ→q̄q⟩eq = ⟨Rq̄q→σ⟩eq, (5.18)

keeping the particle number constant on average and the same average energy transfer per process

⟨Eσ→q̄q⟩eq = ⟨Eq̄q→σ⟩eq, (5.19)
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Figure 5.5: Relative reaction rates for the Breit-Wigner cross section, including
relativistic efects of the changing mσ. The rates are normed to the highest rate, which
is given by g = 5.5.

which keeps the temperature constant for both systems. From the physical point of view, this is

guaranteed by using a self-consistent coupling between particles and Ąelds with the decay-width

(5.6) and annihilation cross section (5.5), leading to microscopic detailed balance.

From the numerical point of view, this point is very critical because it means a high demand of

precision for the parameterization ⟨σ⟩ → Tσ and ⟨σ⟩ → mσ and an accurate sampling of fσ.

An imbalance of reaction rates would force the system to run out of chemical equilibrium. The

same is true if the average energy transfers per process are not correct, because the particle density

is derived from the σ-ĄeldŠs energy density. An artiĄcial lowering of the energy density directly

implies a lower particle density nσ, leading again to a runaway from the chemical equilibrium.

The importance of global energy conservation can not be stressed enough at this point.

The performance of this method for equilibrium systems is shown in the Section 7.4.4 of the

particle Ąeld method, in which a thermal box is initialized with the annihilation and decay

processes described in these Sections.

The DSLAM model is now extended with chemical processes, allowing an efective thermalization

of both Ąelds and particles. This method is now applied to several calculations in the next

chapters.
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Chapter 6

Calculations with Chemical

Processes

Let us calculate, without further ado, to
see who is right. Calculemus!

Gottfried Wilhelm Leibniz

6.1 Thermal Quench with Chemical Processes

In Section 3.3 calculations for a thermal quench are shown. A system is initialized in thermal

and chemical equilibrium for the Ąelds and quarks. In a second step, the quarks are reinitialized

at a diferent temperature, leading to a diferent energy distribution and density of the quarks

which induced a global non-equilibrium situations. The results in Section 3.3 showed that the

system can not evolve to an equilibrium state if no particle production and annihilation processes

are included in the model.

In Chapter 5 the extension of the DSLAM simulation with chemical processes was discussed.

This chapter performs the same calculation with a quench of the particles, the equilibration

behavior and the impact of the production and annihilation processes is investigated. Due to the

implementation of the processes σ ↔ ψ̄ψ the system should be able to equilibrate both locally

and globally.

Two scenarios are shown in this section. The Ąrst is a scenario, in which only a small temperature

quench in the chiral restored phase is performed, keeping the total system in the chiral restored

phase. In the second scenario a stronger temperature quench is performed which drives the

system through the chiral phase transition.

59



Chapter 6 Calculations with Chemical Processes

6.1.1 Small Temperature Quench

The system is initialized in an isotropic and periodic box. Quarks are sampled at an initial

temperature of T = 140 MeV, the σ-Ąeld was initialized at a temperature of T = 180 MeV. This

kind of quench should result in a Ąnal system state in which the system stays in the chiral-restored

phase after thermalization.

Figure 6.1 shows the results of the calculation. The system was initialized with the following

parameters:

Parameter System Value

Tσ 180 MeV

Tq̄q 140 MeV

Vsystem 1 fm3

coupling g 3.3

Ntest 2 · 106

∆t 0.002fm/c

σelastic 15 mbarn

σinelastic → Breit-Wigner

heat bath disabled

The calculation was performed with the coupling for a crossover phase transition g = 3.3,

however no qualitative diference between the diferent coupling strength was observed. The pair

production and annihilation processes drive the system to thermal and chemical equilibrium. The

initial temperature of the σ-Ąeld and the quarks difered by 40 MeV, after 20 fm/c the system

shows a thermal phase in which the quarks and the Ąelds have the same temperature, as displayed

in Figure 6.1c and 6.1e. The total quark number drops rapidly after the simulation starts in

Chapter 6.1a because the Ąeld was initiated without thermal Ćuctuations. Figure 6.1b shows

how the rates for annihilation and pair production converge after 10 fm/c and start to Ćuctuate

around the same mean value. Figure 6.1d illustrates the shift of energy between quarks and

Ąelds. The energy of the quarks drops because of the initial particle annihilation but increases

again after the potential energy of the Ąeld is transformed to new particles after equilibration.

The ĄeldŠs energy raises initially by the added energy from the quark-annihilation but relaxes

after equilibration. Figure 6.1d shows the direct correlation between the energy of the σ-Ąeld and

the quarks. Overall, the total verys well conserved, see Figure 6.1f . Figure 6.1e show the quarks

distribution functions. The transformation of the ĄeldŠs potential energy leads to an increase in

the particles temperature. This temperature increase of about 3 MeV is not very large because

the ĄeldŠs potential energy is much smaller compared to the energy of the particles. However,

both Ąelds and particles are not exactly in equilibrium, because the particle number does not

correspond to the equilibrium value for the Ąnal temperature. In Figure 6.1a one can see that
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Figure 6.1: Results for a calculation with the quenched-scenario. Particles and
Ąelds can interact and their interaction rates converge after some time, leading
the same global temperature. The temperature of the quarks is given by the
Boltzmann-distribution, the temperature Ąeld is given by the distribution of the
Ąeld modes, see eq. (7.80).

61



Chapter 6 Calculations with Chemical Processes

the particle number is still rising slowly and the mean-value of the σ-Ąeld is not exactly at the

equilibrium position known from the phase diagram. This Ąnal approach takes a long time in

this example because the diference in the sigma potential is very tiny at those temperatures,

leading to a very weak driving force on the Ąeld.

Overall, the system shows a global equilibration. The process ψ̄ψ → σ creates local and thermal

Ćuctuations on the σ-Ąeld. The decay process σ → ψ̄ψ leads to an efective damping of these

Ćuctuations. Both processes together can drive the system to equilibrium.

6.1.2 Large Temperature Quench

The setup of this calculation is the same as the previous one, with the diference that the

temperature of the quarks is far below the temperature of the chiral phase transition, which will

drive the initially hot σ-Ąeld through the phase-transition, as well.

Figure 6.2f shows results of the calculation. The system was initialized with the following

parameters:

Parameter System Value

Tσ 180 MeV

Tq̄q 80 MeV

Vsystem 1 fm3

coupling g 3.3

Ntest 2 · 106

∆t 0.002fm/c

σelastic 15 mbarn

σinelastic → Breit-Wigner

heat bath disabled

Figure 6.2a to 6.2f display individual observables of the simulation. Figure 6.2e shows the

evolution of the σ-mean Ąeld. The Ąeld starts in the chiral restored phase around ⟨σ⟩ ≈ 10 MeV

and slowly moves to higher values, which is expected by lower quark density. While moving,

the Ąeld produces quark anti-quark pairs and gets damped in this process. Figure 6.2b shows

the increasing production rate, which rises up to the chiral phase transition, as expected by

the Breit-Wigner cross section (see Figures 5.4 and 5.5). The particle number in Figure 6.2a

rises as the Ąeld moves towards the phase transition. Near and at the transition the process

σ ↔ q̄q becomes suppressed and the production and annihilation rates drop because of the sigma

mass being below the decay threshold mσ < 2mq. The Ąeld becomes undamped, moves faster

and oscillates around a new average value. No change in the system behavior can be seen after

10 fm/c, the Ąeld shows thermal spatial Ćuctuations (Fig. 6.2c) but its global value still oscillates

undamped as already observed in the Ąrst calculations for a simple quench in Section 3.3.
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Figure 6.2: Results for a calculation with the quenched-scenario from the initially
hot phase to the cold and chiral broken phase. Fields and particles can interact
above Tc and the global shift of the σ-Ąeld is damped by particle production. At
and below Tc Ąeld and particles decouple because the σ-particle can not decay
anymore. The system becomes undamped and falls in a coherent oscillation.
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6.2 Expansion of a Hot Matter Droplet

Previous calculations have been done with model systems in thermal and periodic boxes, which

simulate a very large and isotropic system. Such calculations are useful to investigate the basic

properties of a model like its thermal and equilibration behavior.

For the next calculations a more complex example is chosen: the expansion of a droplet of hot

matter. Such a scenario can be seen as a simple model for a heavy-ion collision, in which two

colliding nuclei form a Ąreball of hot, ŞexplodingŤ matter.

As an initial condition for this example, the simulation is initialized with a spatial dependent

temperature proĄle for both the quarks and the Ąeld. The temperature proĄle is motivated by a

Wood-Saxon like distribution function [83]

T (x) = T0

(

1 + exp
( ♣x♣ −R0

α

))−1

, (6.1)

with the radius parameter R0 = 0.45 fm and the surface thickness α = 0.1 fm. Such a

parameterization will result in an efective thickness of around 0.9 fm, however a larger coupling

g will increase the efective radius because the chiral phase transition takes place at lower

temperatures which are located at the outer region of the blob.

The total system size was chosen to be 5 fm for all dimensions.

All previous simulations were set up to have periodic boundary conditions, simulating an efective

microcanonical ensemble. In this case, the system should not be isotropic or periodic in space,

the matter droplet should sit in the middle of an ŞemptyŤ space and should be able to expand

arbitrarily. Therefore new boundary conditions are implemented.

Quarks which reach a certain distance from the center of the initial droplet are removed from

the system. The distance cutof is chosen to be rc = 2.75 fm from the center.

The boundary conditions for the Ąelds are a bit tricky, because a simple cutof is not possible.

The best solution would be the implementation of the so-called absorbing boundary conditions

(ABC), which perfectly absorb every wave traveling through the boundary, efectively absorbing

all its energy [84]. Unfortunately, such boundary conditions are very hard to implement and

are computational expensive, especially in three dimensions and to have a good performance

their formulation needs to be non-local in time [85]. Still, they have been successfully applied for

physical systems like the 3D Schrödinger equation [86].

To keep computational cost reasonable, the boundary conditions are therefore kept periodic, but

the outer region of the box are additionally damped with a dissipative term. The σ-Ąeld feels
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an efective friction ∼ σ̇ for any wave passing the cutof radius ♣x♣ > rc = 2.75 fm, leading to a

strong damping of the waves.

The total energy in this system is not conserved any more and any energy passing the boundary

will be damped or removed from the system, preventing an interference with the rest of the

system.

In Subsection 6.2.1 calculations with this scenario without the chemical processes σ ↔ q̄q and

only mean-Ąeld interactions have been performed with the DSLAM model. In Subsection 6.2.2

the same calculations are performed with the full DSLAM model employing chemical processes

and isotropic and elastic interactions between quarks. For all three couplings a calculation has

been performed. For a consistent comparison between all calculations, the same initial conditions

have been chosen for all cases:

for all simulations

Parameter System Value

Tinitial 175 MeV

Vsystem (6 fm)3

coupling g 3.3, 3.63, 5.5

Ntest 1 · 105

∆t 0.002 fm/c

rquarks 0.05 fm

trun 20 fm/c

with chemical processes

Parameter System Value

σelastic 10 mbarn

σinelastic Breit-Wigner

Vinteraction 0.1 fm3

Graphical plots of the initial conditions for the σ-Ąeld and the quarks for the diferent couplings

g are shown in Figure 6.3. The qualitative shape of the σ-Ąeld shows a chiral-restored phase in

the middle of the box with a sharp crossover to cooler, outer regions. The quark-distribution

shows a smooth shape with a sharp peak in the chiral-restored region. This peak is explained by

the smaller mass of the quarks in this region, strongly increasing the quark-density.

6.2.1 Expansion Scenario without Chemical Processes

Calculations of hot, exploding matter droplets within chiral models have already been performed

in previous studies. They have found the induction and ampliĄcation of oscillations in the chiral

Ąelds for rapid expansion processes [87] or the formation of shell-like structures [88] which can

be explained by kinematic efects [89].

Figure 6.4 shows the time evolution for a system with a crossover transition for g = 3.3, Figure

6.5 the evolution for a system with second-order phase transition for g = 3.63 and in Figure 6.6

the same calculation is shown for a system with a Ąrst-order phase transition. Figure 6.7 and 6.8
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(a) Initial σ-Ąeld for g = 3.3
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(b) Initial quark distribution for g = 3.3
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(c) Initial σ-Ąeld for g = 3.63
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(d) Initial quark distribution for g = 3.63
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(e) Initial σ-Ąeld for g = 5.5

-2.2
-1.1

0.0
1.1

2.2 -2.2
-1.1

0.0
1.1
2.2

0.00
0.02
0.04
0.06
0.08

0.10

0.12

0.14

t=0.0 fm/c

(f) Initial quark distribution for g = 5.5

Figure 6.3: Initial conditions of the hot matter-droplet scenario for diferent coupling
strengths. The x- and y-axis show the spatial distance from the origin in fm/c. The
z-axis of the σ-plots show the deviation from the vacuum expectation value ⟨σ⟩ − σ0

in MeV. The quark densities are given in 1/fm3.
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.4: Time evolution of the hot matter-droplet scenario for g = 3.3 with a
crossover phase transition and no chemical interactions. Left: Deviation of the σ-Ąeld
from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is the same
as in Figure 6.3.
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.5: Time evolution of the hot matter-droplet scenario for g = 3.63 with a
second-order phase transition and no chemical interactions. Left: Deviation of the
σ-Ąeld from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is
the same as in Figure 6.3.
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.6: Time evolution of the hot matter-droplet scenario for g = 5.5 with
a Ąrst-order phase transition and no chemical interactions. Left: Deviation of the
σ-Ąeld from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is
the same as in Figure 6.3.
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Figure 6.7: Spatial distribution of the σ-Ąeld for the simulation time t = 1.5 fm/c.
The formation of shell-like structures is already observable.
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Figure 6.8: Spatial distribution of the quark density in the matter-droplet after
a simulation time of t = 1.5 fm/c. The density distribution correlates with the
distribution of the Ąeld because the quarks are accelerated by the ĄeldŠs gradient
∇xσ(x).
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Figure 6.9: Mean Ąeld σ value of the grid-cell in the center of the matter droplet.
The simulation with g = 3.3 evolves towards a vacuum solution, but the mean Ąeld
keeps on oscillating. For g = 3.63 and g = 5.5 the system evolves to a meta-stable
state. Strong gradients drive the Ąeld to a very fast oscillation in the beginning.

display the radial value of the σ-Ąeld and the total quark density at the time t = 1.5 fm/c. All

three scenarios show the formation of shell-like structures in which the quarks are transported out

of the system. The time evolution of the system for all three couplings are quite similar, the Ąeld

starts a fast oscillation in the center of the matter-droplet and with time the Ąeld radiates energy

via long wavelength oscillations which run out of the system. The higher the coupling, the higher

the Ćuctuations and oscillations. Figure 6.9 shows the value of the numerical σ grid-cell at the

center of the matter droplet. The initial oscillations are very strong and become damped after a

few fm/c. Furthermore, another interesting observation can be made. For g = 3.3 the system

evolves and Ąnally oscillates around its vacuum expectation value. The quark density goes to

zero as all quarks have left the system. In contrast, for g = 3.63 and g = 5.5 the mean-Ąeld stays

in an intermediate state between the chiral restored and chiral broken state, the quark densities

show the formation of a stable blob of quark matter, which stays stable for a very long time. In

our simulation these drops were stable with lifespans > 50 fm/c. These quark-drops persist of

relative cold quarks which can not escape the chiral potential because their kinetic energy is

lower than their vacuum mass, implying a bound state in the chiral potential and therefore an

efective condensation of quark-matter.

An investigation of the particle number and the quark distribution function in the stable-matter

droplet is given in the next sub-section.
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6.2.2 Expansion Scenario with Chemical Processes

In the previous section the calculations for the rapid expansion of the hot matter droplet are

discussed. The σ-Ąeld shows a rapid oscillation in the beginning of the expansion and loses energy

mainly by radiating long wavelength oscillations which propagate out of the system. Without

any interaction processes the system stays nearly isotropic, only small spatial Ćuctuations of the

quark-density lead to small deviations in the symmetry.

Additionally, for larger couplings the system can fall into a meta-stable state in which cold quarks

are trapped in a potential-well of the chiral Ąeld which has a long lifetime.

In this section the same calculations are performed, employing the same initial conditions but

with the extension of chemical processes σ ↔ q̄q from the full DSLAM model. These processes

should lead to additional particle production whenever the σ-Ąeld shows strong Ćuctuation and

particle annihilation in areas of high quark density, inducing additional Ćuctuations on the Ąeld.

Figure 6.10, 6.11 and 6.12 show the time evolution of the σ-Ąeld and the total quark density

for the hot-blob scenario with chemical interactions and diferent couplings. All calculations

are in analogy to the calculations in the previous Subection 6.2.1 and can be compared directly.

There are a couple of qualitative diferences between the calculations with and without chemical

processes. For all three diferent couplings the types of Ćuctuations are very diferent. The systems

without chemical processes showed strong global Ćuctuations, leading to shell-like structures with

a fast oscillation of the chiral Ąeld at the origin of the matter droplet. The Ćuctuations are much

less present in the calculations with chemical processes. The decay process σ → q̄q damps such

strong Ćuctuations by removing kinetic energy from the Ąeld. In contrast, the process q̄q → σ

creates strong local Ćuctuations on the Ąeld, increasing with a stronger coupling constant g.

Additionally, all calculations without chemical processes stayed quasi symmetric through their

time evolution while the calculations with chemical processes show a breaking of this symmetry

after a very short time. This symmetry is broken by strong and spatial dependent Ćuctuations

of the quark density and the Ąeld-distribution and by a collective drift of both particles and

the Ąeld disturbance. Such a drift is surprising but is explained by the conservation of energy

and momenta in the interactions between Ąelds and particles. The σ-Ąeld can emit particles,

generating a momentum-kick in the opposite direction of the particles, leading to a random-walk

phenomena of the droplet. These outcomes are remarkable because no direct random processes

are involved in the numerical simulation, which would create these Ćuctuations. All stochastic

and Ćuctuating processes are the result of microscopic interaction kernels and cross-sections

which are sampled via Monte-Carlo methods.

By comparing the calculations with chemical processes with diferent couplings g, qualitative

diferences are visible, as well. The Ćuctuations in the Ąeld and particle density increase for

stronger couplings. For a coupling of g = 5.5 the quark density forms small regions with higher
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.10: Time evolution of the hot matter-droplet scenario for g = 3.3 with a
crossover transition and chemical processes q̄q ↔ σ. Left: Deviation of the σ-Ąeld
from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is the same
as in Figure 6.3.
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.11: Time evolution of the hot matter-droplet scenario for g = 3.63 with a
second-order phase transition and chemical processes q̄q ↔ σ. Left: Deviation of the
σ-Ąeld from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is
the same as in Figure 6.3.
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t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(a) Spatial distribution of the σ-Ąeld, cut in
the center of the z-plane.

t=1.5 fm/c

t=2.0 fm/c

t=4.0 fm/c

t=11.0 fm/c

(b) Spatial distribution of the quark density,
cut in the center of the z-plane.

Figure 6.12: Time evolution of the hot matter-droplet scenario for g = 5.5 with a
Ąrst-order phase transition and chemical processes q̄q ↔ σ. Left: Deviation of the
σ-Ąeld from its vacuum value ⟨σvac⟩ − ⟨σ⟩. Right: Total quark density. The scale is
the same as in Figure 6.3.
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Figure 6.13: Mean Ąeld σ value of the grid-cell in the center of the matter droplet.
For all couplings the system tends to the vacuum equilibrium value, a lower couplings
show lower Ćuctuations.
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Figure 6.14: Spatial distribution of the σ-Ąeld for the simulation time t = 1.5 fm/c.
Even though the Ąeld can show strong local Ćuctuations from the interactions with
the quarks, the overall spatial distribution shows a much smoother transition as in the
simulation without chemical processes. Due to the damping by the σ → q̄q process
shows less global oscillations.
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Figure 6.15: Spatial distribution of the quark density in the matter-droplet after a
simulation time of t = 1.5 fm/c. The simulation without chemical processes showed a
strong shell-like structure, which is smoothed out in the simulations with chemical
processes because σ-decay processes damp strong oscillations of the Ąeld.

Figure 6.16: Total quark number on the matter-droplet scenario. Solid lines show
the simulation runs with chemical processes, the dashed line the simulations without
the σ ↔ q̄q process. Tn the scenario without chemical processes the droplet radiates
most of the quarks in shell-like structures, as reĆected in the quark-number plateaus
which drop suddenly. Due do condensation processes can the system form meta-stable
states in which cold quarks are trapped in a chiral potential-well, which can be observed
in the stable, non-zero quark number for g = 5.5 over long times. The behavior is
completely diferent in case of the calculation which chemical processes, in with the
systems lose quarks in a steady and continuous process, the formation of quark-number
plateaus is washed out.
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Figure 6.17: Energy distribution functions of the quarks in the simulation for the
matter-droplet scenario with g = 5.5 and chemical processes. After 10 fm/c most of
the initial particles have left the system and the remaining particles have formed a
condensed drop of cold quarks, which are trapped in a chiral-potential well. One can
see a non-thermal distribution function in the beginning, which slowly thermalized due
to elastic interactions. However, mainly high-energy quarks can leave the potential
well, leading to both a slow evaporation of the drop and to an efective cooling of the
remaining particles.

densities, which merge with time. These observations are consistent with calculations of the

linear σ-model with a hydrodynamic background [51, 52, 64], in which the authors Ąnd the

strongest Ćuctuations for a medium with a Ąrst-order phase transition. Classical theories of phase

transitions predict the strongest Ćuctuations at and near the phase transition for second-order

transitions. Calculations presented in this section have the strongest Ćuctuations for the coupling

with the Ąrst-order phase transition. At Ąrst, this scenario can not be directly compared to

a phase transition. A phase transition is a phenomena described by equilibrium physics for

very large systems which evolve in the adiabatic limit on large time scales. Fluctuations are

a phenomena which needs time and is created by interactions of the thermal medium. Most

important, the correlation length is often largely enhanced at the phase transition, which is no

problem for systems which are much larger than this correlation length. The scenario of the

hot-matter droplet is quite the opposite. The system size is in the order of the interaction length

and therefore its correlation length. The quark matter expands rapidly and its dynamic creates

strong non-equilibrium distributions and the total lifespan of the system is at most in the order

of the equilibration timescale. Additionally, a rapid expansion leads to a highly non-isotropic

system with gradients and parts of the system separates to regions with very diferent densities

and temperatures. All these circumstances do not allow a consistent description of the system in

terms of an equilibrium phase transition, especially not if the quarks are described by particles
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Figure 6.18: Volumetric 3D rendering of the quark density for the hot matter droplet
scenario with a coupling of g = 5.5, a Ąrst-order transition and chemical processes.
The time progresses for 1 fm/c for every image. Regions with high particle densities
are colored red, the scale is constant over all images. Visualization was created using
the yt-toolkit [90].
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with non-equilibrium distributions and not by a fast equilibrating medium. Any deviation from

equilibrium descriptions have a strong impact on the thermal properties of the medium, as shown

in Section 4.1.

Considering the systems dynamics in terms of its transport properties would be a more adequate

approach to the characteristics of the systems behavior. The strong Ćuctuations only occur if the

chemical processes σ ↔ q̄q are present, their microscopic interaction kernels are derived from

a Breit-Wigner cross-section. Calculations in Chapter 5 (see Figure 5.4 and 5.5) have shown a

direct relation between the average cross-section and the coupling g, which in Ąrst order scales

with ∼ g2, leading to a higher interaction rate between Ąelds and particles. This already implies

more Ćuctuations for the calculations with the coupling g = 5.5 and quite similar Ćuctuations for

g = 3.3 and g = 3.63, even though these diferent couplings would show very diferent kind of

phase transitions in a thermal system. Furthermore, two other aspects play an important role

in the comparison of the diferent calculations. The coupling has a direct impact on the mass

of the quarks. A higher coupling leads to a larger vacuum mass and a lower mass in the chiral

restored phase. This implies both a larger particle number at the same temperature for a higher

coupling and a larger potential energy for the chiral Ąelds. The second aspect has its origin in

the phase diagram. Higher couplings lead to a lower Tc in the linear σ-model, which strongly

changes the dynamics of the chemical interactions as they are only possible above the mass

threshold, meaning above Tc. For lower Tc, in comparison to other couplings, the quarks and the

Ąelds have more time to stay in the chiral restored phase, more time to interact with each other

and therefore more time to build up Ćuctuations via these interactions. This already implies

stronger Ćuctuations, regardless of the type of phase transition, which would be given by the

corresponding coupling. A fair comparison between the scenarios is not given by comparing the

system at diferent temperatures. Better approaches could be a comparison with same energies

or same particle number.

The impact of the stronger coupling on the quark dynamics has already been show in the previous

section. Formations of meta-stable drops of quarks could be observed, especially g = 5.5. This

behavior can be seen in this calculations, too. For g = 5.5 with chemical reactions the system

even shows something like bubble formation. Figure 6.18 shows a volumetric 3D rendering of the

quark density which projects the full three dimensional density, while Figure 6.12 is only a 2D cut

of the grid. The 3D Ągure shows strong density Ćuctuations and visualizes how small areas of high

quark-density start to merge into larger areas, having some similarity to the condensation of water

drops in steam. The mechanism of this condensation is the energetic favorable conĄguration for

the σ-Ąeld. Interestingly, the condensation progresses and the σ-Ąeld looses energy by radiating

wave excitations. The process seems to stop after 10 fm/c by forming a stable drop. In diference

to the calculations in the previous section this drop is not stable at all. Figure 6.16 shows the

total quark number of the system, showing a steady decrease of quarks in the system, indicating

some kind of particle evaporation from the drop. This evaporation seems to be quite slow and
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calculations have shown a lifespan up to 50 fm/c before the drop bursts. Figure 6.17 displays the

distribution function of the quarks with their time dependence after a condensation drop has

been formed. The Ągure shows a decline of the quark number with time and mainly particles

with high energies leave the system. This is reasonable because high energetic particles can leave

the potential well, leading to a collective cooling of the remaining medium.

The calculations in this section have shown the very interesting complexity of such a simple

initial condition like an expanding matter droplet. The chemical reactions between particles have

a very strong impact on the system behavior and dramatically change both Ćuctuations and

medium propagation within the expansion. However, a characteristic signature which allows a

event-by-event discrimination between the diferent kind of couplings and phase transitions in

this scenario has not been found, at least not for calculations with the crossover coupling g = 3.3

and the second-order transition coupling g = 3.63. Such a discrimination could be possible in

a statistical investigation of the angular distribution of the quarks which are emitted from the

Ćuctuating chiral Ąeld.

6.3 Large Scale Systems

All calculations in this chapter up to Figure 6.18 are done for systems with a Ąreball which has

an initial diameter of roughly d ≈ 1 fm. In comparison to a heavy-ion such a system is very small.

Both lead and gold nuclei have a diameter of around dau ≈ 14 fm, resulting in a volume two

orders of magnitude larger than in this scenario. Therefore quantiĄed predictions for a heavy-ion

collision can not be derived from these calculations. Both the number of involved quarks and

the energy density in the system could lead to diferent phenomena. Additionally, a much larger

spatial and time scale could change the behavior at the phase transition because the system has

potentially more time to evolve and form structures in the particle densities.

However, a fully realistic simulation of a heavy-ion collision was not the scope of this chapter

but to show how interactions between Ąelds and particles lead to a qualitatively very diferent

behavior. Additionally, as these types of calculations are new, this chapter should be seen

as a proof-of concept and a basic investigation to understand the properties and interaction

phenomena.

The choice of system-size was not motivated by the numerical capabilities of the DSLAM model

which is able to handle larger scales. Nevertheless, one has to keep in mind that larger systems

are harder to control numerically and to start with small, not so violent systems is a good idea.

Several calcualtions are still work-in-progress while this was written and will be presented in a

later publication. These calculations show the same scenario as in this chapter but with much

larger system sizes. As an outlook, Ąrst results are presented here. The system volume was
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chosen V = (36 fm)3 and the hot matter droplet has an initial diameter of d ≈ 14 fm, roughly

corresponding to a gold nuclei. The temperature was again chosen to be T = 175 MeV and the

couplings remain at g = 3.3, g = 3.63 and g = 5.5. To increase the numerical precision and to avoid

numerical problems the grid-size was increased to Ngrid = 1923 and the time step was reduced to

∆t = 0.001fm/c. The interaction volume was slightly increased to Vinteraction = (0.4 fm)3. The

total particle number was around 5 million particles with a test-particle multiplicator of 200. All

other parameters have been kept unaltered.

Figure 6.19 and 6.20 show the result for a calculation with a large expanding matter droplet.

Both Ągures compare the same calculations with and without chemical interactions and diferent

couplings, g = 3.3 with a cross-over transition in Figure 6.19 and g = 5.5 in Figure 6.20.

The calculations without chemical interactions do not change very much in comparison to the

smaller systems. The overall symmetry of the system stays efectively intact and known structures

like the shell-structures and cold quark droplets are still present.

The picture changes a bit for calculations with chemical interactions, especially for larger couplings

like g = 5.5. After a short expansion phase the matter droplet starts to form strong and non-

isotropic structures in the quark density due to the annihilation and creation process. In Figure

6.19 Ąrst structures are already present at t ≈ 1fm/c. These structures blur while the matter

expands.

In Figure 6.20 these structures are much stronger and much Ąner. The reason is the strong

coupling between the Ąeld and particles, leading to fast annihilation and strong damping of the

Ąeld by σ-decay. While expanding, the Ćuctuations on the σ-Ąeld become stronger. Around

t = 5fm/c the annihilation-rate of the quarks is negligible because of the low particle density due

to expansion. The σ-decay becomes the dominating efect, leading to a strong damping of the

Ąeld and to a quasi-freeze out of the Ąeld leading to some kind of local bubble-formation. The

resulting Ąeld distribution stays stable for several 10fm/c local bubbles converge slowly to a big

drop. This Ąnal drop contains the already known cold quarks which were not able to escape the

kinetic potential.

In the calculations for larger system a qualitatively diference between the couplings can be seen

in the time evolution. While calculations for g = 3.3 and g = 3.63 behave similar, calculations

for g = 5.5 show a very diferent behavior: the quark matter forms bubbles and freezes out

in a relative long-living structure. One of the remaining questions is if this formation can be

observed in experiment. A possible approach will be an investigation of the angular distribution

of the emitted particles, which could be mapped to an angular distribution of measured particle

multiplicity. This is subject to an upcoming publication.
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Figure 6.19: Evolution of the quark density for a large hot matter droplet scenario
with g = 3.3. The initial size of the droplet has an diameter of around d ≈ 14 fm which
corresponds to the size of a gold nuclei, the total size of the system is V = (36 fm)3.
Left: Simulation without chemical interactions Right: simulation with chemical
interactions. Chemical interactions lead to formation of non-isotropic structures but
the overall expansion of the system is not strongly altered.
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Figure 6.20: Quark density for a large hot matter droplet scenario with g = 5.5. The
initial size of the droplet has an diameter of around d ≈ 14 fm which corresponds to
the size of a gold nuclei, the total size of the system is V = (36 fm)3. Left: Simulation
without chemical interactions Right: simulation with chemical interactions. Chemical
interactions lead to a generation of strong and detailed structures. After 5fm/c the
expansion of the system is stopped by the strong damping of the Ąeld, leading to the
formation of local bubbles.
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Chapter 7

Particle-Wave Interaction Method

Creativity is intelligence having fun.

Albert Einstein

This chapter discusses a new method which allows a numerical treatment of noncontinuous

interactions between Ąelds and particles, called the particle-Ąeld method. The chapter starts with

a historical introduction of the wave-particle duality, which gave the basic idea for the particle-

Ąeld method. In Section 7.2 existing approaches for interaction between Ąelds and particles

and their drawbacks are discussed. This discussion includes the Vlasov-equation, interactions in

Fourier-space and the Langevin-equation. Section 7.3 introduces the ideas and concepts of the

particle-Ąeld method. In Section 7.4 several examples and simple scenarios are presented which

implement the particle-Ąeld method with increasing levels of complexity and demonstrate the

possible applications of this method. The last Section 7.5 considers several general properties of

the method.

7.1 Wave-Particle Duality

The wave-particle duality is one of the fundamental aspects of modern quantum physics. The

discussion about waves and particles has not been started with quantum physics, but already

with the Ąrst attempts to Ąnd a physical and mathematical theory for light.

Christiaan Huygens, one of the pioneer founders of the optical theory, investigated and advocated

the wave theory of light. Light is described by propagating wave fronts, light sources emit

spherical waves. In contrast, Isaac Newton proposed 1704 in his ŚOpticksŠ the corpuscular theory

of light in which light is described by particles. ReĆection of light is the simple scattering of

particles on the surface of objects.
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In 1801 Thomas Young started experiments with light interference, a phenomena which could only

be explained with a wave theory of light. The later very famous double-slit experiment became

one of the standard experiments in quantum physics. Other physical experiments and phenomena

like difraction, polarization, medium dependent propagation velocities and the discovery of

electromagnetic waves made the wave theory of light popular.

In the beginning of the 20th century Max Planck discovered his famous radiation law, which

solved the problem of the correct description of energy density of black-body radiation. He

introduced a discrete factor, the Planck constant h, in which energy is quantized in a system.

Albert Einstein published his work on the photoelectric efect in 1905. While most physical

efects of light are described by a wave theory, the energy of light shows a discrete property. In

the described experiment, electrons can be emitted from a metal plate by a beam of light. The

wave theory postulated the rate of emitted electrons to be a product of the wave frequency and

amplitude. However, the experiment showed a threshold for the lightŠs frequency. Frequencies

lower than this threshold do not tear out electrons, independent of the waveŠs amplitude. Einstein

postulated the quantum nature of light, coming in energy packets proportional to its frequency.

Additionally to its wave-properties, light consists of a Ąnite and integer number of energy quanta,

which explain the discrete energy portions observed in the experiments. This dual description of

light was later summarized under the name photon. Both works of Planck and Einstein were

honored with a Nobel price.

15 years later Louis de Broglie postulated a wave nature for massive particles, like electrons. This

hypothesis was Ąrst heavily discussed in the community but three years later in 1927 Clinton

Davisson and Lester Germer showed the difraction of electrons in crystals. The Ąnal and most

important experiment was the double-slit experiment with electron in 1961 by Claus Jönsson.

The experiment showed the interference of single electrons with themselves, its explanation is the

wave nature of microscopic particles by interactions on scales of the de-Broglie wavelength. This

relation holds even for mesoscopic objects like atoms or even carbon molecules like C60 fullerenes

[91].

The wave-particle duality has lead to a long discussion concerning the interpretation of this not

intuitive principle. Today, quantum particles are accepted to have both a wave-like and particle-

like nature at the same time. Their actual behavior depends on the physical context. Systems

which classically have wave-like phenomena can show quantized and particle-like behavior, as

well.

7.2 Physical Motivation

The objective of this part of this work is to develop a method which allows the interaction

between particles and Ąelds. The original motivation for this approach was given by the DSLAM
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model, in which the chiral σ-Ąeld must be able to exchange energy and momentum with a particle

ensemble to equilibrate chemically and thermally on an intermediate timescale of a few fm/c.

This exchange has to be noncontinuous to allow an efective interpretation in terms of particle

creation and annihilation. In the following sections diferent approaches and existing techniques

for interactions between particles and Ąelds are discussed. Possible drawbacks are explained and

the need for an alternative method is given.

7.2.1 Vlasov-Equation Approach

The classical Boltzmann-equation is used to describe the transport and interactions of particles

in the dilute-gas limit [92]. The description is given by a continuous distribution function. Their

time dependence is propagated by a set of integro-diferential equations

v · ∂f
∂x

+
F

m
· ∂f
∂v

+
∂f

∂t
= IColl . (7.1)

The Ąrst term in (7.1) describes the general propagation of a particle, which moves along in space

with its velocity. The second term describes the change of momentum by an external force. The

term ∂t considers the time dependence of the system. The collision integral IColl describes the

change of the distribution function by interactions between the particles

IColl =
∫

v1

∫

Ω

(

f ′f ′
1 − ff1

)

σ (Ω) ♣v1 − v2♣ dΩ d3v1 . (7.2)

with the phase-space distribution Ω and σ (Ω) is the diferential cross section. Equation (7.2) is a

non-linear integro-diferential equation and has in general no analytic solutions. Usual approaches

to solve the Boltzmann equations use a stochastic approach with Monte-Carlo methods, like

BAMPS with test-particles [93], or simpliĄed models with a linearization of the equation [94].

To describe charged particles in a plasma, Anatoly Vlasov used the collisionless Boltzmann

equation with IColl = 0 and coupled the particles to Ąeld potentials [72, 95, 96], resulting in the

famous (relativistic) Vlasov-equation:

∂f

∂t
+

p

E
· ∂f
∂x

+ F(x,p, t) · ∂f
∂p

= 0 (7.3)

with the on-shell dispersion relation, E =
√

m2 + p2.

In case of the linear σ-model with constituent quarks, particles and Ąelds are coupled via the

Yukawa interaction σψ̄ψ. The implementation in the DSLAM model is realized by employing

a mean-Ąeld approximation for the σ and and the efective mass for the particles m2
eff ∼ Φ2,
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leading to an efective Ąeld-dependent dispersion relation

E (x) =
√

p2 + g2Φ2 . (7.4)

E (x) can be seen as a potential and with

F (x) = −∇xU (x) (7.5)

the Ąeld and the particle phase-space distribution function f(x,p, t) become coupled. With

a test-particle ansatz, which generates a distribution function from a sum of classical point

particles,

f (x,p, t) →
∑

n

δ (x − xn(t)) δ (p − pn(t)) , (7.6)

every particle feels a force induced by the gradient of the mean Ąeld in the efective mass

ṗn(t) = −∇xE (xn(t),pn(t), t) . (7.7)

Such a mean-Ąeld coupling accelerates particles along the Ąeld-gradients. In the σ-model the Ąeld

is coupled to the particles with the chiral density ⟨ψ̄ψ⟩, giving a feedback from the particles to the

Ąeld. However, particles at the same point in space feel the same force in (7.7). In an isotropic

system, particle momenta can not be thermalize on a short time scale. For Ąeld modes, such a

mean-Ąeld coupling cannot thermalized the system either, as it leads to reversible dynamics. It

can thermalize when employing interactions by higher-order loops [97, 98] or by coupling the

mean-Ąeld to particles with collision kernels. Still, such a coupling would thermalize only on

large time scales much larger than the interaction timescale of the particles. Additionally, the

interactions within the Vlasov equations are very soft and do not include inelastic processes

like particle production and annihilation. Nevertheless these processes play an important role

in the linear σ-model, leading to a shift in thermodynamic properties without particle number

changing processes, and in dynamical calculations the chiral phase transition is lost if the Ąeld

can not dissipate energy by particle production upon a temperature change. The problem has

been discussed in Chapter 4.

7.2.2 Interactions in Fourier Space

One of the big challenges of statistical physics is the vast amount of degrees of freedom. To

describe a volume of gas with classical mechanics, one has to solve 6N degrees of freedom with the

total number of gas particles N . If these particles can interact, the number of coupled equations

raises exponentially. The Boltzmann equation, which can be regarded as an approximation

reduces the degrees of freedom to an analytic distribution function with 3 spatial, 3 momentum

and a time dimension. A collision-less Boltzmann equation can be solved quite easily. However,
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even only for two-particle interactions in a dense gas, the calculation complexity rises again

dramatically. To solve a Boltzmann collision integral, at least 6 dimensions have to be solved (3+3

in the momentum space). If spatial dependency is taken into account often 9 dimensions have to

be integrated numerically. Numerical computational complexity and memory consumption raise

with the dimensional discretization Ng with complexity N9
g . Even for modern computers this is

far from practical use. The full representation of a single-particle distribution in three spatial,

three momentum and and a single time step (which corresponds to the Markov approximation)

with a quite coarse discretization of Ng = 64 already consumes 512 Gigabytes, which is 64 times

more than the typical memory of a current desktop computer.

A common approach to approximate quantum Ąeld systems is to assume spatial isotropy and

reduce the phase-space distribution of the physical problem to functions in momentum space.

This ansatz has been very successful and answered many questions regarding non-equilibrium

phenomena and thermalization [99Ű101]. In case of spatial symmetry, calculations can be

performed in Fourier space. This holds if the calculation is within small volume cells in which

spatial symmetry can be assumed.

Additionally, in quantum Ąeld theory interactions and their propagators are well deĄned in

momentum space, leading to transition probabilities for single Fourier modes in terms of scattering-

matrix elements,

Sfi =
⟨

p′
1p′

2 . . . ♣S♣ p1p2 . . .
/

. (7.8)

These probabilities can be treated perturbatively, like in quantum electrodynamics (QED). In

numerical simulations, such dynamics can be applied to a classical Ąeld, and the impact on the

system by changing single Fourier modes is easily calculated through the sum of the modesŠ

energies. This method works well for systems in momentum space with the assumption of spatial

isotropy. In the case of spatial anisotropy or if the system propagation is done in position

space and only the interactions are performed in momentum space, then this method implies

a violation of causality. The change of a single mode in momentum space changes the Ąeld

distribution instantaneously in position space over the whole volume, which is illustrated in Figure

7.1, resulting in superluminal signal propagation. Additionally, the system will show strong

long-range correlations. These physical artifacts render this method unsuitable for simulations

which rely on position-space calculations.

7.2.3 Langevin Method

The Langevin or Ito-Langevin equation [102] is a stochastic diferential equation, used to describe

systems with two diferent scales. The ŞmacroscopicŤ long-range and slow-timescale part is

described by deterministic equations of motion. Additionally, it is coupled to the ŞmicroscopicŤ

small scales, which are described by short-ranged fast random processes. Originally, this equation
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(a) Initial Ąeld distribution (b) Initial Fourier spectrum

(c) ModiĄed Ąeld distribution (d) ModiĄed Fourier spectrum.

Figure 7.1: Change of an given Ąeld distribution by changing a single Fourier-mode
within an interaction process. The diference between the two Fourier spectrums in Fig
7.1b and Fig. 7.1d is the mode with k = (2, 1) which set to zero in this example. The
change of a single mode in momentum space leads to a change of the Ąeld distribution
over the whole system volume.
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was developed to describe the stochastic drift of a heavy particle in an inĄnite heat bath of light,

thermal particles. The original Langevin equation reads

mẍ(t) = −γẋ(t) + Fext(x, t) + ξ(t) (7.9)

with an external force Fext, the linear damping coeicient γ, and a stochastic force ξ. The random

noise of this Ćuctuating force is often assumed and simply characterized by Gaussian white noise

and leads to an average energy Ćux from and into the bulk system, while the damping is the

dissipative average part with the back reaction of the medium to the energy-momentum exchange

neglected.

The development was inspired by Brown, who observed pollen under a microscope, drifting by

the noise of the water bath. Later on, this equation was applied to statistical physics, solid state

physics, electro-technical systems, complex systems with many degrees of freedom and complex

quantum systems. Another approach is even used in the modeling of wind turbulences for wind

turbines [103] or in Ąnance to model stock market Ćuctuations [104].

In nuclear physics, the Langevin Equation has been applied on top of the Boltzmann equation to

include Ćuctuations in the system [105Ű108]. By dividing dynamics of a scalar quantum Ąeld in

a hard and a soft part, a stochastic description of the system can be employed which resembles

a Langevin equation [109]. The Langevin equation can be used to investigate Ćuctuations in

the linear σ-model [110] or with similar methods to investigate disoriented chiral condensates

[111]. Using the inĆuence formalism, classical equations for the O(N) modeled at presence of a

heat-bath can be derived, when a stochastic interpretation is employed [112]. In [51, 52, 64] the

Langevin equation has then been employed to phenomenologically model a stochastic coupling of

a hydrodynamic particle bath and a classical Ąeld within a linear σ-model. This coupling allows

an efective thermalization of the mean Ąeld. However, a Markovian and Gaussian approximation

of the Langevin-equation can lead to problems if simple dissipation within the Langevin equation

is interpreted in terms of particle production [113].

The Langevin equation has some drawbacks, however. The dissipation of the equation (7.9)

due to the friction term, γ dϕ(t)/dt is a continuous process. This is a natural assumption for

continuous systems like Ąelds or waves and a reasonable approximation for systems with a clear

separation of scales, like in the classical example of a heavy particle in a bath of light ones.

However, many processes are discrete and occur as single events. The same problem holds for the

random force, ξ, which acts continuously and changes its value with every time step in numerical

implementations. Because of the random nature of this process, the exact amount of exchanged

energy can only be controlled in a statistical manner, and the back reaction at the bulk medium

is neglected. In most implementations, the random force ξ(t) is modeled by Gaussian white noise

without a memory kernel,

⟨ξ(t)⟩ = 0 , (7.10)
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⟨ξ(t) ξ(t′)⟩ = κδ(t− t′) . (7.11)

Using a more sophisticated ansatz with memory kernel, the random force can be extended to a

non-Markovian stochastic process with colored noise [114].

Before we discuss the relation between momentum and energy dissipation within a Langevin

equation, we have to deĄne them for a Ąeld ϕ. For a general Klein-Gordon equation,

∂µ∂
µϕ+m2ϕ+

∂U

∂ϕ
= 0 , (7.12)

the following conserved quantities can be deĄned [115, 116]:

E =
∫

V
d3x ϵ(x)

=
∫

V
d3x

[

1
2
ϕ̇2 +

1
2

(

∇⃗ϕ
)2

+ U(ϕ)
⎢

,
(7.13)

P =
∫

V
d3xΠ(x) =

∫

V
d3x ϕ̇∇⃗ϕ, (7.14)

A =
∫

V
d3x

[

x

(

1
2
ϕ̇2 +

1
2

∇⃗ϕ2 + U(ϕ)ϕ̇
)

+ tϕ̇∇⃗ϕ
⎢

(7.15)

where E denotes the total Ąeld energy, P is the total momentum and A the angular momentum.

For any positive-deĄnite potential U , the following relation holds

♣P♣ ≤ E. (7.16)

The dissipative part of the Langevin equation for the Ąeld γ∂tϕ damps both the energy (7.13)

and the momentum (7.14). For a potential-free wave equation with damping,

∂2
t ϕ(t, x) + γϕ̇(t, x) = ∇2ϕ(t, x) , (7.17)

the ratio of P (t)/E(t) is non-linear in time (see Fig. 7.2), because both quantities are non-linear

operators while ϕ̇ is linear. This results in diferent damping rates for E and P . This behavior

complicates any attempt to couple particles and Ąelds through inelastic interactions within an

efective model.

Another problem arises with the continuous nature of the dissipative term in the Langevin

equation. For a continuous process quantities like energy transfer can be calculated by integrating

over a time interval but an amount of interaction by counting events cannot be deĄned. In

contrast, singular events like particle pair-production can be counted, and rates are deĄned in a

statistical manner. This becomes a problem when one tries to couple a scalar Ąeld theory to an

ensemble of particles with interactions given by pair production and annihilation. Energy loss

of the scalar Ąeld leads to energy gain in the particle ensemble and vice versa. Such an ansatz
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is used in the famous and successful cosmological inĆation model [117], in which particles are

created by the energy loss of the oscillating scalar Ąeld, Φ. Particle production is described by

rate equations, which are derived from the Ąeld equations of motion. Trying to simulate such

a process with Ąnite ensembles of particles leads to diferent problems. The energy loss within

a time step ∆t can be calculated from the Ąelds and mapped to a certain number of created

particles. The minimum amount of needed energy is always the rest mass of the particles

min
[

E
(

ψ̄ψ
)]

= 2mψ (7.18)

The energy of a discrete number of created particles will however never match exactly with the

continuous loss rate. Additionally, the physical process of pair production will depend on the

simulation time-step size, and for ∆t → 0 a mapping between the continuous dissipation and the

non-continuous particle creation will not be possible anymore. Another problem is the fact that

the random force ξ(t) changes its value at every point in time, both for white and colored noise.

Trying to couple this behavior to pair production and annihilation leads to the same problem as

the microscopic processes will depend on the time step.

In summary, the Langevin equation is a very good choice for an efective description of a system

with two interacting scales. However, a microscopic modeling of the interaction processes is

complicated by the continuous nature of the Langevin process. In the next section we will present

how to potentially solve these problems by a non-continuous approach.

7.3 Particle-Field Interaction

In the previous section, the current methods for interactions between scalar Ąelds and particles

have been discussed. In this section, a new approach is discussed, which allows discrete interactions

between Ąelds and particle. This methods splits up in two sub-methods. The Ąrst is a numerical

technique which changes the shape and the properties of a scalar Ąeld in a way, in which it looks

like a discrete interaction has taken place. In summary this method changes the energy and

momentum density of a small sub-volume of a Ąeld. These energy and momentum change can

have arbitrary values wihtin physical limits.

The second part of the method describes how this discrete change of energy and momentum can

be physically derived and described by microscopic interactions. A probability distribution for

interactions will be discussed, which allows a simulation with Monte-Carlo methods.

Several examples and consistency checks will be given and the mathematical properties of this

theory are discussed. This includes calculations for a harmonic oscillator, which is damped by

discrete dissipation. Two other calculations cover the discrete Langevin equation in a harmonic

oscillator and a one-dimensional scalar Ąeld. The last calculation is already the predecessor of

93



Chapter 7 Particle-Wave Interaction Method

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x [a.u.]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fi
el

d 
[a

.u
.]

t=0.01 [a.u.]
t=1.0 [a.u.]
t=3.0 [a.u.]
t=6.0 [a.u.]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

Ar
bi

tr
ar

y 
Un

its

time [a.u.]

Max(Field)
Momentum/Energy

Energy

Figure 7.2: Top: Simulation of a 1D damped wave equation with a traveling Gaussian
wave packet. Bottom: Relative plots of the maximal amplitude, the systems total
energy, and the ratio of total momentum to total energy. Both energy and momentum
are damped but with diferent rates, resulting in a non-linear relation even though the
damping term ϕ̇ is linear. The non-linearity rises due the non-linear relation of the
energy.
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the DSLAM model, in which a three-dimensional scalar Ąeld is coupled to a particle ensemble.

Both parts of the system can exchange energy by inelastic interactions like particle production

and annihilation.

7.3.1 Discrete energy and momentum transfers from and to a field

Particles and Ąelds are described in a very diferent manner. While scalar Ąelds deĄne a single

quantity as function of time and position in continuous space (or discrete space on a grid),

particles are characterized by their position and momentum. For particles, this sums up to three

position coordinates, the energy and three-momentum values at every point in time. Fields are

described by continuous functions or N3 values on a three-dimensional N -sized grid for the Ąeld

ϕ(x, t) and its time derivative, ϕ̇(x, t).

To allow consistent interactions between particles and Ąelds, the following features have to be

fulĄlled and are discussed in the following. Interactions have to be

• discrete in time, their time of impact must be given by a physical process

• take place at a given spatial point, the point of the physical interaction

• take place in a spatially limited volume

• energy and momentum transfer should be exactly deĄnable

• both damping and excitations should be possible

• time and strength of the interaction should be derivable from physical processes

Discrete in time. For this point, a weak assumption is made: The interactions acting on the

Ąeld ϕ can be seen as perturbations which keep the original equations of motion of the Ąeld

intact. This can be motivated from the Boltzmann equation for particles as well as from the

Langevin equation. Both approaches describe the physical propagation by a set of diferential

equations and interactions are given by interaction kernels.

v · ∂f
∂x

+
F

m
· ∂f
∂v

+
∂f

∂t
= IColl (7.19)

The left handed side of equation (7.19) describe the propagation of particles given by their

momenta and external forces. The collision term IColl describes the interaction between particles.

E.g. in the parton cascade BAMPS [93] the collision term is interpreted stochastically. Particles

are propagated via the interaction-free equations of motion most of the time and at some tint
they scatter. The only constraint is the mean free path being larger than the typical numerical

size of an interaction cell [118].
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The same interpretation will be taken here, a Ąeld ϕ is propagated via its undisturbed equations

of motion EOM0

ϕ(t) EOM0−−−−→ ϕ(t+ ∆t). (7.20)

At some interaction time ti the Ąeld changes additionally by an interaction term,

ϕ(ti) = ϕ0(ti) + δϕ . (7.21)

Afterwards, the disturbed Ąeld is propagated with the general equation of motion. Overall

interactions are interpreted as short events in time, neither do they occur continuously nor are

they stretched over a longer time interval.

Interaction point and limited volume. As particle interactions take place at a deĄned

position, the same should apply to the Ąeld interactions. However the interaction can not be

constrained to a single interaction point in space for numerical and mathematical reasons if the

interaction should be discrete. In fact, the interaction by the Langevin noise term ξ is point like

in space but it acts as a point like force, not as a point like change in the Ąeld. A point like

change of the Ąeld lead to a discontinuity which would break both numerical implementations

as well as the equations of motion. Additionally, the term ∇xϕ becomes undeĄned in such a

case. Therefore the interaction must be located in a small volume around an interaction point.

Nevertheless, an interaction volume implies a small break of Lorentz-invariance, so this volume

should be small and be motivated as a smearing in space-time. A limited volume is also needed

to quantize a well-deĄned amount of energy.

Exact energy and momentum transfer. If an interaction is derived from particle creation

and annihilation, we have an exact amount of energy and momentum that is transferred between

particles and Ąelds, which is given by the particles energy and momentum

E =
√

(p1 + p2)2 , (7.22)

P =
(

p1 + p2
)

. (7.23)

To obey energy-momentum conservation, this energy transfer must be exact at every interaction

to keep the sum of the Ąeld- and particle energy constant at all times.

Derivation from physical processes By modeling the interaction with discrete events, two

quantities are characteristic for such an interaction event have to be deĄned: when does the

interaction take place and how strong it is? In case of the Langevin equation, these two quantities

collapsed to a single transfer rate. In the discrete case, these two quantities have to be derived

somehow. We will see that this can be accomplished by describing the interaction process by

a physical model. In case of particle creation and annihilation, it is deĄned by a microscopic
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cross-section. An example is given in the implementation of the DSLAM model, which uses a

Yukawa-like interaction between quarks and an unstable scalar particle, see Chapter 5.

To link the very diferent description of particles and Ąelds, common mathematical and physical

properties have to be found. The most simple approach is to use energy and momentum. For

particles, energy and momentum are directly given by their momentum four-vector. For a Ąeld

we can employ the already discussed relations (7.13) and (7.14):

E =
∫

V
d3x ϵ(x)

=
∫

V
d3x

[

1
2
ϕ̇2 +

1
2

(

∇⃗ϕ
)2

+ U(ϕ)
⎢

,

P =
∫

V
d3xΠ(x) =

∫

V
d3x ϕ̇∇⃗ϕ,

A discrete interaction now maps to a discrete change of energy and momentum at a given position

x and time tk. The Ąeld ϕ(x, tk) is propagated with its undisturbed equations of motion and

changed due to an interaction by a kick δϕ(x, tk) which changes the energy and momentum by

the desired amount ∆E and ∆P. This leads to relations of four coupled non-linear equations,

∆E(tk) = E [ϕ(x, tk) + δϕ(x, tk)] − E [ϕ(x, tk)] , (7.24)

∆P(tk) = P [ϕ(x, tk) + δϕ(x, tk)] − P [ϕ(x, tk)] . (7.25)

For ∆E > 0 energy will be added to the Ąeld around x, for ∆E < 0 energy will be dissipated

from the Ąeld. In general no unique and analytic solution exists for (7.24) and (7.25). In the

next section a possible approach to solve these two equations is discussed.

7.3.2 Parameterization of interactions

Without further constraints, equation (7.24) and (7.25) have either no solutions or inĄnitely

many. The problem is the fact that (7.24) and (7.25) reduce equations with many degrees of

freedom to four scalar values, E and P. A classical Ąeld on a numerical grid has as many degrees

of freedom as it has grid points, in general ∼ Nd, in the continuous case the number of degrees

are continuous and non-countable. Even if the system rests in a box and has a high-frequency

cutof, the general statement is

NDOF

(

ϕ, ϕ̇
)

≫ 4 (7.26)

The Ąrst approach to this problem was an algorithm, which assumes an initial random perturbation

and evolves dynamically by progressively minimize the energy and momentum diference in the

equations with the constrain to minimize the needed strength of the disturbance, as well. For Ćat

Ąelds or Ąelds with weak waves on it, the algorithm showed nice Şinteraction bumpsŤ. In general
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however, it was not numerically stable, had no guaranteed convergence and had problems with

strongly asymmetric Ąelds. Additionally, this solution was not very elegant as it left no control

over the interaction space and lacked of a physical motivation.

To tackle these problems, the degrees of freedom of the numerical problem have to be reduced

to a controllable system. The trick is to introduce an interaction parameterization which has a

smooth spatially proĄle, is spatial limited and has exact four parameters, which can be mapped

to momentum and energy properties.

In Appendix A diferent possible parameterization are discussed. To summarize this appendix

chapter, the numerical parametrization for δϕ(x, tk) has to be as smooth as possible. A natural

choice would be the use of a single point like excitation on the grid. This is inefective for two

reasons: point like excitations are unsteady points on a numerical grid and lead to numerical

artifacts like the Gibbs-phenomena, artiĄcial exciting high frequencies and violating energy

conservation.

A useful and robust parametrization is a three dimensional, moving Gaussian wave packet,

δϕ(x,v) = A0

3
∏

i

exp

[

−(xi − vit̃)2

2σ2
i

]\

\

\

\

\

t̃→0

. (7.27)

The variables v deĄne the direction and velocity of the Gaussian wave packet and A0 the strength

of the interaction. The three position arguments xi are Ąxed by the interaction position. The

time-parameter t̃ is needed to deĄne and calculate the derivatives for the energy and momentum

in (7.13) and (7.14),

∂tδϕ
t→0= −A0

3
∏

i

[(

cvixi
σ2
i

)

exp

(

(xi)2

2σ2
i

)]

(7.28)

∂xiδϕ
t→0= −A0

xi
σ2
i

3
∏

i

[

exp

(

(xi)2

2σ2
i

)]

(7.29)

The three widths of the Gaussian σi are free parameters, and can be Ąxed to a single spherical

radius by σx = σy = σz = σ. It determines the interaction volume and should be chosen to Ąt

the system scale. It has an impact on the minimal scale of possible modes in the system, as we

will see in Section 7.4.3.

With this parametrization, a wave packet is added to the Ąeld after an interaction. Figure 7.3

shows an example of a Ąeld kick, which is parameterized with this Gaussian parametrization.

The Ąeld gets a small ŞbumpŤ at the interaction point.

To Ąnd A0 and v in the parameterization (7.27), which solve (7.24) and (7.25) for a given ∆E

and ∆P, the four coupled and non-linear equations have to be solved with a numerical equation

solver. ∆E and ∆P are given by the physical interaction, the derivation of these quantities will
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Figure 7.3: Visualization of the interaction principle, as described in (7.27). The
energy of the initial Ąeld ϕ(t) is changed by a parameterized Ąeld variation δϕ. The
resulting Ąeld ϕ(t) + δϕ is increased by a given energy ∆E and momentum ∆P. The
traveling direction of the Gaussian is depending on the momentum.

be explained in various examples in the next chapters. A simple visualization of this principle is

given in Figure 7.3, which shows the local modiĄcation of the Ąeld by a Gaussian.

An important implementation issue for Ąnding A0 and v is the energy dependence of the Ąeld

and which part of the energy-contributions are dominating. The general deĄnition of the energy

(7.13) is again

E =
∫

V
d3x ϵ(x) =

∫

V
d3x

[

1
2
ϕ̇2 +

1
2

(

∇⃗ϕ
)2

+ U(ϕ)
⎢

, (7.30)

Depending on the system dynamics, the dominant part of the equation can difer. In case of a

damped harmonic oscillator, the potential energy U(ϕ) is as import as the kinetic energy of the

systemŠs energy; therefore it is favorable to change the potential energy in case of an interaction.

In case of the linear σ-model, the change of the potential energy is quite weak in comparison to

chagne of the kinetic parts of the Ąeld for a small disturbance. If the σ Ąeld is equilibrated and

shows thermal noise, most of the energy is stored in the kinetic parts of the energy:

1
2

(ϕ̇)2 +
1
2

(∇ϕ)2 ≫ U(ϕ) . (7.31)

In such a case a more appropriate interaction-parametrization would change mainly the kinetic

energy of the system and not the potential energy. This becomes even more important if the
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interaction should also remove energy from the system. If the parametrization would change

the potential energy, adding of energy would always be possible. In contrast, removing energy

would be impossible in most of the time, if the Ąeld holds most of its energy as kinetic energy,

not potential energy.

A possible Gaussian parametrization in three dimensions, which changes mainly the kinetic

energy of the system could have exactly the same form as (7.27) but keeps ϕ untouched and

adds all its energy to ϕ̇. This has a very nice side efect: adding of energy does not generates

an immediate Gaussian wave packet, which appears Şout of the blueŤ on the Ąeld, but rather

creates a kick which evolves the interaction bump with time. In this case, the wave equation

stays continuous in space and additionally in time.

Removing of energy works according to the same principle, just the other way around. Energy is

taken from the Ąeld by reducing the kinetic part of the Ąeld ϕ̇ by damping it with the Gaussian

ansatz.

Finally, the parameterization (7.27) should be seen as a classical approximation which is valid

for small velocities. The parameterization is not Lorentz invariant, resulting in spatial extent

which does not depend on the velocity. This has an interesting efect, in case of a 3D system, the

maximal momentum to energy ratio which can be generated with (7.27) is max
{

P
E

}

= 1/2. The

parameterization can be extended with a Lorentz boost, for example along the x-direction for

v = (vx, 0, 0)

δϕ(x, t) =A0 exp

(

−γ2 (x− vxt)
2

2σ2

)

× exp

(

−y2 + z2

2σ2

) (7.32)

The Lorentz-boost leads to a disc shaped deformation of the initially spherical Gaussian. With

the boost, the momentum to energy ratio of (7.32) has the correct relativistic limit

lim
v→1

⎭

P

E

}

= 1 . (7.33)

At v = 0.3 both solutions difer by a factor of about 18%, for small velocities they are nearly the

same, and (7.27) can be used as a safe approximation.

Calculations for the momentum to energy ratio of the two parameterizations (7.27) and (7.32)

are given in Appendix A.
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7.3.3 Modeling of energy transfers

In the previous section, the mathematical framework for energy and momentum transfer has

been discussed. To apply this method to physical systems, additional modeling has to be done.

The above method describes how to transfer a given amount of energy ∆E and momentum

∆P to or from a scalar Ąeld at a given interaction point x and time ti. To realize this method

in a numerical simulation like a transport or Monte-Carlo simulation, appropriate values for

∆E, ∆P, x and ti have to be deĄned. Motivated by the stochastic interpretation of interaction

cross-sections, a probability distribution for energy and momentum exchanges which has to be

derived according to the physical problem can be deĄned

P (∆E,∆P,∆t) . (7.34)

In Section 7.4 we will give various examples, calculations and results for such a modeling. In

general the probability distribution (7.34) can have a memory kernel and can depend on the

whole history with P (∆E,∆P, t), but we will use the Markov approximation in which only the

current system state is important for future events, and (7.34) depends on the time-step size, ∆t,

only.

7.4 Examples And Model Calculations

The particle-Ąeld interaction method described in the previous sections is a general and abstract

method to transfer energy and momentum from and to a system. This framework is not suicient

to fully describe the interactions of a system. As discussed in section 7.3.3, physical derivations

for ∆E and ∆P have to be found in terms of a probability distribution function P (∆E,∆P,∆t).

In the next section, several examples will be given and their properties are investigated. These

examples are well known and understood systems like the harmonic oscillator with diferent

couplings or the Langevin equation. Classical approaches will be compared to interactions given

by the particle-Ąeld method and should give an insight and feeling about the principles of the

method and its capabilities.

7.4.1 Discretely damped 0-D harmonic oscillator

As the most simple test system, we choose the classical one-dimensional oscillator with damping,

d2x

dt2
+ γω0

dx
dt

+ ω2
0x = 0 (7.35)
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The frictional part γ dx
dt dissipates energy from the system in a continuous process. We want

to model the same system to have a discrete, noncontinuous damping and within an ensemble

average both systems should behave the same.

Casting eq. 7.35 to an Hamilton equation leads to an equation with an explicit time dependence:

H =
p2

2m
e−γt +

1
2
mω2

0x
2 e−γt (7.36)

Typically there are three types of solutions to equation (7.35), under-damped, critical-damped

and over-damped. All three solutions show their dissipation via an exponential damping function

∼ exp(−γeff · t) with γeff = γeff(ω0, γ) as an efective damping parameter.

Motivation for a noncontinuous damping In classical mechanics, the harmonic oscillator

is continuous both in space and momentum. Its energy levels are on a continuum and so are

any dissipative processes. Quantum mechanics changed this behavior fundamentally with the

introduction of quantization. The quantum energy levels became discrete with a lower limit:

En = ℏω (n+ 1/2) , (7.37)

n =
En
ℏω

− 1
2
, (7.38)

so for n ≫ 1:

n ∼ E . (7.39)

Within this ansatz the damping of a quantum oscillator becomes highly non-trivial, because the

energy can now only jump between the energy niveaus En − En+1 = ∆E. In theory this has

been a long unsolved problem and was most of the time solved by coupling quantum oscillators

to heat-baths or stochastic-classical systems which absorbs the exchanged energy [119Ű122]. The

idea of discrete energy jumps in the oscillator was the motivation for this Ąrst example calculation.

Energy of a classical harmonic oscillator In the following the properties of a classical,

damped harmonic oscillator are discussed. The equation of motion is

dx(t)2

dt2
+ ω2

0 x(t) + 2γ
dx(t)

dt
= 0 . (7.40)

Depending on the damping coeicient γ, the following solutions exist:
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γ > ω0, over-damping : x(t) = C0 exp(γ+t) + C1 exp(γ−t) , (7.41)

γ = ω0, critical-damping :x(t) = (C0 + tC1) exp(−ω0t) , (7.42)

γ < ω0, under-damping : x(t) = exp(−γt)C sin (wdt+ φ) , (7.43)

wd = w0

√

1 − γ2 . (7.44)

To compare against the quantum oscillator, the energy for the classical oscillator is calculated.

The over-damped and critically damped oscillators both show an exponential decay when higher

order terms are ignored:

E
(γ>ω0)
kin ≈ Ē0 e−γ̄t , (7.45)

E
(γ=ω0)
kin ≈ Ē0 e−ω0t . (7.46)

A more interesting case is the under-damped one

E
(γ<ω0)
kin =

C2

2
e−2γt [ωd cos (ωdt+ φ) − γ sin (ωdt+ φ)]2 . (7.47)

The energy of the under-damped oscillator shows an exponential decay with cosine and sine

terms. These terms lead to a modulation of the dissipation because the oscillator only looses

energy when it is moving. However, on average, on long timescales or for weak coupling, the

energy loss scales roughly as an exponential:

E
(γ<1)
kin ≈ Ē0e−γω0t (7.48)

In all three cases of the damping, the energy loss of a harmonic oscillator can be approximated

by a simple exponential decay.

Modeling Of The Discrete Energy Loss

In Section 7.3.3 the description of the interaction was discussed in terms of a probability

distribution function P (∆E,∆P,∆t). In this section the energy loss distribution function for

the discrete damped oscillator will be derived.

To model a discrete damping for the harmonic oscillator with linear damping γẋ, a deterministic

formalism which removes a given quantum of energy at Ąxed times out of the system could be

introduced. However a more natural choice is a probabilistic ansatz, which models the systemŠs

initial total energy E0 as a sum of small energy quanta ∆E:

E0 = N0 · ∆E . (7.49)
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N0 is the initial number of energy quanta and can also be called ŞsteppinessŤ because it deĄnes

in which energy steps the system can be damped. The energy of the system can be damped by

changing the energy quanta N(t)

E(t) = N(t) · ∆E . (7.50)

This change of N(t) has to be modeled and mapped to the equations of motion. We now explain

how to Ąnd an interaction probability function like (7.34) for this system. In this example, we

can assume a two-state interaction: for a given ∆t, the oscillator can lose a quantum of energy

∆E, or it can be left undisturbed. For ∆t ≪ 1 we can neglect multiple decays; additionally we

assume a Markov process, so the oscillator only depends on its current state and has no ŚmemoryŠ.

Using these constraints, the interaction probability function P (∆E,∆t) without memory-kernel

can be described as:

P (∆E,∆t) = Pr
loss

(∆t)δ(∆E − ∆E) + Pr
0

(∆t)δ(∆E) (7.51)

with Prloss being the probability to lose an energy quantum ∆E in the time interval ∆t. Pr0 is

the probability for the system to stay unchanged. Both probabilities are related by the norm of

the probability distribution
∫

P (∆E,∆t) d∆E = Pr
loss

(∆t) + Pr
0

(∆t) = 1 (7.52)

To Ąnd the probability for the oscillator to lose a certain amount of energy, we assume that every

energy quantum ∆E can decay independently. The deĄnition for the exponential decay is

dN(t)
dt

= −γN(t) (7.53)

with each decay event having a constant and independent decay probability in a time step dt of

Pr = γdt. With dt → ∆t and ∆t ≪ 1 we can write

∆N(t) = −γ∆tN(t) (7.54)

However, we want to calculate the probability of a single energy quantum to decay. The number

of energy quanta is given by (7.50)

N(t) = E(t)/∆E (7.55)

which increases the number of energy quanta if ∆E decreased.

The total probability of a decay of a single quantum in a system of many quanta is in Ąrst-order

approximation the sum of all single-probabilities

Pr
loss

(∆E) = γ · ∆t ·N(t) = γ · ∆t
E(t)

∆E
. (7.56)
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For N0 → ∞ or ∆E → 0 this is the deĄnition of the exponential decay law, while a Ąnite N0

will give a discrete exponential decay for a Ąnite ensemble. For the total probability distribution

function P (∆E,∆t) we obtain

P (∆E,∆t) = δ(∆E − ∆E)
(

γ · ∆t
E(t)

∆E

)

,

+ δ(∆E)
(

1 − γ · ∆t
E(t)

∆E

)

.

(7.57)

Simulating P (∆E,∆t) will give the same average energy loss scaling for E(t) as the original

harmonic oscillator with continuous damping.

In a numerical realization, the oscillator is propagated with the free equation of motion,

d2x

dt2
+ ω2

0x = 0. (7.58)

This equation of motion conserves the total energy. To simulate damping, at every time step the

decay probability density P (∆E) is sampled using Monte-Carlo techniques. In case of a decay,

the oscillator will lose the given amount ∆E by employing the method described in Section 7.3.1.

In case of a oscillator, only the energy equation (7.24) has to be solved. The change δx on x(t)

becomes a simple shift of the oscillator,

xt → xt + δx. (7.59)

For a harmonic potential, this can be done analytically by solving

∆E = E(xt+1) − E(xt)

=
1
2

[

ω2
0x

2
t+1 + ẋ2

t+1 − ω2
0x

2
t − ẋ2

t

]

.
(7.60)

The derivatives are approximated by the Ąrst-order diference discretization and with dt → ∆t:

ẋt+1 =
xt+1 − xt

∆t
, (7.61)

∆E =
1

2∆t2
(xt+1 − xn)2 − 1

2
ẋ2
t − 1

2
ω2

0x
2
t +

1
2
ω2

0x
2
t+1 . (7.62)

Solving (7.60) for xt+1 results in

xt ± ∆t
√

2∆E + 2∆E∆t2ω2
0 +

(

∆t2ω2
0 + 1

)

ẋ2
t + ∆t2ω4x2

t

1 + ∆t2ω2
0

. (7.63)

By neglecting higher order terms of order O
(

ω2∆t2
)

and higher results in the simple Ąrst-order

approximation

xt+1 = xt ± ∆t
√

2∆E + ẋ2
t (7.64)
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Figure 7.4: Simulation of discrete damped harmonic oscillators. The number of
simulated particles / energy excitations is N = 150. With every decay of a particle,
the oscillator loses a bit of energy, leading to damping of its motion. The discrete
and continuous version have the same ensemble average. In a single run statistical
deviation occurs.

This can be seen as an addition to the undisturbed equations of motion. With ∆E → 0

equation (7.64) becomes the usual, Ąrst order Euler propagation for a diferential equation:

xt+1 = xt + ∆t · ẋt. The additional term ∆E is the change of the system given by the interaction-

kick, changing the total systemŠs energy with exactly this amount of energy. The sign ± in front

of the square root is determined by the direction of ẋt, a kick with ∆E > 0 should always point

in the direction of the current velocity ẋt. Note that ∆E can always be positive while it can only

be negative if

ẋ2
t ≥ 2

\

\

\∆E
\

\

\ (7.65)

to have a real solution for the propagation equation. Even if there would be enough potential

energy to fulĄll this equation, a larger change of xt+1 would induce a larger kinetic energy than

it should be dissipated from the system.

With these equations, a simple harmonic oscillator with discrete damping can be implemented.

Two example calculations are shown in Figure 7.4, where a oscillator is simulated with 150

possible energy steps ∆E/E0 = 150. Every time such an energy mode decays, the energy is taken

out of the system. In the limit of ∆E → 0, the the oscillator is damped continuously, again. On

average, the continuously damped and the discretely damped oscillator have the same ensemble

average. However, due to statistical Ćuctuations, both the amplitude and the phase can difer

from time to time. In terms of Monte-Carlo simulations, this is highly intentionally.
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7.4.2 Oscillator coupled to Langevin Equation

In the previous section, a harmonic oscillator was dynamically damped by a discrete dissipation.

In a second benchmark, we extend the damped harmonic oscillator by a coupling to a heat bath

via a Langevin equation, similar to [120]. The Langevin equation is a stochastic equation, which

was motivated to describe a heavy particle in a thermal path of very small particles. By many,

random kicks, the particle performs a random walk in the medium, later called Brownian motion

(after the botanist Robert Brown). This calculation is done for a scalar oscillator as well as for a

one-dimensional harmonic Ąeld. For the classical and zero-dimensional case, the equations of

motion reads [92, 123]
d2

dt2
x(t) + γ

d
dt
x(t) + x(t) = κξ(t) , (7.66)

where ξ(t) is deĄned as Gaussian white noise with ⟨ξ(t)ξ(t′)⟩ = δ(t− t′). Using the equipartition

theorem and the Ćuctuation-dissipation theorem [124], we can Ąx the strength of the stochastic

force in the equilibrium case as

κ =
√

2γT . (7.67)

This relation is also known from EinsteinŠs work on Brownian motion, connecting the stochastic

drift of particles with the kinetic properties [125].

The equation of motion (7.66) describes a damped harmonic oscillator, driven by a Gaussian-

distributed random force ξ(t), which can increase or decrease the energy of the system by ŚkickingŠ

the oscillator. On average, the oscillator will show a Gaussian position distribution and by using

the Fokker-Planck equation one can derive the equilibrium distribution for the energy, which is a

Boltzmann distribution

f(E) ∝ exp(−E/T ). (7.68)

To simulate the oscillator with the Langevin dynamics within our proposed method, we propagate

the system with the interaction-free equation of motion,

d2

dt2
x(t) + x(t) = 0, (7.69)

and model the discrete interactions again as small kicks to have the same statistical averages as

the initial equation of motion (7.66). A representation for the stochastic force κξ(t) in terms of

energy changes can be found by using the relation

dE

dt
= ẋ(t) · F (t) = ẋ(t) · κ · ξ(t) , (7.70)

which becomes in the discrete case with dt → ∆t and t → tn

∆E = ẋ(t) · ∆t · κ · ξ̃(tn). (7.71)
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The stochastic force ξ̃(t) is still a Gaussian white noise with a normally distributed random

number ξn in each time step tn

ξ̃(tn) =
ξn√
∆t

. (7.72)

The factor
√

∆t
−1

is needed to Ąx the norm of the uncorrelated white noise via

⟨ξnξm⟩ =
δmn
∆t

. (7.73)

The total interaction probability distribution function P (∆E,∆t) is now composed of four single

probabilities: the probability of no interaction in a time interval Pr0, the damping of the oscillator

by the process γẋ(t) with the probability Prloss, as discussed in the previous section, and the

two cases where the energy of the system is changed by the stochastic force ξ̃(t): we can see in

(7.71) that depending on the signs of ξ and ẋ(t) a random kick can add energy to a system or

dissipate energy from it. Both processes are symmetric in general and from this symmetry one

gets ⟨∆E⟩ = 0 in equilibrium. However ⟨∆E2⟩ > 0 always holds.

The probability Prloss has already been discussed in the previous section 7.4.1 and follows the

same systeamics here. The loss and gain terms induced by the stochastic force are given by

(7.71), due to their symmetry they are both subsumed in a single probability density term. The

sum of all terms for the interaction probability distribution is

P (∆E,∆t) = δ (∆E − ẋ(t) · ∆t · κ · ξ(t))

+δ(∆E − ∆E)
(

γ · ∆t

∆E
E(t)

)

+ Pr
0
δ(∆E).

(7.74)

The no-interaction probability Pr0 is again found by normalizing with
∫

P (∆E,∆t)d∆E ≡ 1.

Equation (7.74) looks quite complicated, but the single terms can be easily interpreted and

simulated. The last term is the contribution for no interaction to happen at all. The second

last term describes the probability for a system to lose a given amount of energy ∆E due to the

friction, just like in our Ąrst example. The Ąrst term describes the process of gaining energy from

the stochastic force. To sample the gain- and loss-terms by the random kicks in the probability

density, one can simply sample a random kick ξn and calculate the given energy diference from

(7.71) which is propagated back to the system. As we simulate a single degree of freedom, the

already known relation for changing the energy (7.64) can be used.

In this example we describe the dissipative process with discrete decay steps while the energy

Ćuctuations given by ξ(t) can have continuous values. Even though this seems contradictory, it

has two reasons: we wanted to stay as close as possible to the original system, the Langevin

equation, which has continuous interactions. The second reason is we wanted to introduce

continuous values for ∆E at this point because in the last example of this Section particles and

Ąelds exchange energy by discrete particle annihilation and creation processes. The motivation is
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Figure 7.5: Simulation of a harmonic oscillator, coupled to a heat bath via a Langevin
equation. The random force and the damping is implemented with the non-continuous
energy-transfer method. The plot shows the distribution function of the energy, the
position distribution and the velocity distribution for a temperature of T = 0.5 a.u.
and 108 calculation steps and a corresponding energy-step size. Both plots coincide
with the expected analytical result, which is exp (−E/T ) for the energy distribution

(left) and 1/
(√

2πT
)

exp
(

−mω2
0x

2/2T
)

for the spatial distribution (right).

the DSLAM model in which chemical processes between quarks and the σ-Ąeld are discrete in

time, their energy and momentum spectrum is continuous.

Figure 7.5 shows the position and velocity distribution of the harmonic oscillator, which is

a Gaussian. The width of the distribution depends on the temperature in the Ćuctuation-

dissipation relation (7.67) and scales with
√
T . The energy distribution shows an exponential

tail exp(−E/T )with the same temperature. The numerical calculation was performed with our

method, which works diferently than the usual Langevin equation, however all results are in

good agreement due to the consistent description of the energy exchange rates.

7.4.3 One-Dimensional Scalar Field coupled to Langevin Equation

The previous calculations have been employed with a single degree of freedom. In the next

example, the 0D system (7.35) is extended to a 1 + 1-dimensional Ąeld. The single degree of

freedom x(t) is now replaced by a scalar Ąeld ϕ(x, t) with the equation of motion of a potential-free

wave equation with a stochastic force and damping:

(

∂2

∂t2
− ∂2

∂x2

)

ϕ(x, t) + γ
∂

∂t
ϕ(x, t) + ϕ(x, t) = κξ(x, t) . (7.75)

The stochastic force is the (1 + 1)-dimensional extension of the Gaussian white noise

⟨ξ(x, t)ξ(x′, t′)⟩ = δ(x− x′)δ(t− t′) . (7.76)
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The stochastic process (7.75) is simulated as a reference system. In comparison, in our simulation

the Ąeld ϕ(x, t) is propagated with the disturbance free equations of motion. The stochastic

force and damping are simulated analogously to in the (0 + 1)-dimensional example. Because of

the additional dimension of the system, we could model a momentum exchange ∆P , as given in

(7.34). We neglect this term because the original Langevin-equation does not model this term

either. However, the last example in this chapter will address this issue.

Since this system is one-dimensional, the simple analytic relation (7.64) can not be used anymore

because the interaction point becomes an interaction volume with a Ąnite spatial extent. We

have used a one-dimensional form of the Gaussian parameterization (7.27). For each point of the

system an interaction probability is sampled with (7.74). In case of an interaction, the center of

the Gaussian interaction parameterization is located at the interaction point and the change of

the Ąeld ϕ(x, t) + δϕ(x) is solved by using equation (7.24) with the help of a numerical solver.

For every interaction at some point x the neighbor cells of the interaction point are changed as

well. The reason is the spatial extension of the Gaussian parameterization leading to a smeared

interaction region or volume. This holds both for adding energy as well as removing energy from

the system.

As shown in Figure 7.3, this will result in a Ąeld given by a superposition of small interaction

bumps. In the equilibrium state, the Ąeld distribution will show spatial Ćuctuations, distributed

among the ĄeldŠs modes. Overall the equilibrium state behaves very similar to the oscillator case

but with a spatial extent in one-dimension and therefore more dynamics. The same holds true

for the interaction probability distribution density which is the spatial extended version of (7.74):

P (x,∆E,∆t) = δ
(

∆E − ϕ̇(x, t) · ∆t · κ · ξ(x, t)
)

+δ(∆E − ∆E)
(

γ · ∆t

∆E
E(x, t)

)

+ Pr
0
δ(∆E) .

(7.77)

A very interesting observable is the power spectrum of the Ąeld

S(k) = lim
t→∞

1
2t

∫ t

−t
dt ♣F [ϕ(x, t)](k)♣2 (7.78)

with the spatial Fourier transformation F

F [f(x)](k) =
∫ ∞

−∞
f(x) · eix·kd3x . (7.79)

In case of the classical Langevin equation, the expected distribution of the power spectrum can be

calculated. A damped Ąeld coupled to a white-noise process is expected to show Brownian noise,

as it efectively integrates the white noise over time [126]. The resulting Ąeld has an average
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spectrum in form of a power with the temperature as the mode amplitude [124, 127]

S(k) =
T

k2
. (7.80)

Figure 7.6 shows the expected spatial spectrum for the classical Langevin equation (7.75) and for

the simulation with our proposed method. For large and small momenta k, deviations occur due

to Ąnite-system efects, in the intermediate region the spectrum shows a very good agreement

with (7.80). At some point the small wavelengths with large k are suddenly strongly suppressed.

The explanation for this behavior is the fact that we use a Ąnite-volume excitation in the

parameterization (7.27). In a classical Langevin equation, the point-like stochastic force ξ has a

constant spectrum Sξ(k) ∼ c, allowing to excite any modes. Within our method, the energy is

changed in a small but Ąnite-size sub-volume. The smallest excitable mode in the system has

therefore the same scale as the interaction volume. Employing the Gaussian parameterization

(7.27), this scale is the width σ. The resulting mode cutof can be calculated evaluating the

spectrum of the parameterization (7.27), here for our 1-dimensional example:

♣F [δϕ(x, t)](k)♣2 ∼ exp
(

−k2 · σ2/2
)

≈

⎧

⨄

⋃

1 for k ≪ σ

0 for k ≫ σ
(7.81)

At the scale k2σ2 ≈ 1 the Gaussian shape leads to a soft cutof which suppresses all higher modes.

We therefore deĄne a soft-cutof scale at

kCutoff ≡
√

2
σ

. (7.82)

These results show that our method is capable of simulating a thermal system with Langevin

dynamics with controlled systematic numerical errors.

7.4.4 Particle Ensemble coupled to Scalar Field

In this section we use the proposed method to couple an ensemble of particles to a scalar Ąeld in

a (3+1)-dimensional simulation. The simulated system is a microcanonical box with a scalar

Ąeld, particles and anti-particles. Particles can perform two-body elastic collisions, the Ąeld is

propagated via a wave equation, like in the sections before. Additionally, Ąeld and particles can

interact by microscopic particle annihilation and creation processes. This system is motivated

by the DSLAM model. However, the calculations can be seen from a generic view in which an

anharmonic Ąeld theory is coupled to a particle ensemble to give a more complex example system.
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Figure 7.6: Time averaged power-spectrum of the one-dimensional wave equation
ϕ(x, t). The spectrum is calculated according to (7.78). The system is a one-dimensional
harmonic oscillator, coupled to a Langevin equation with a continuous and a non-
continuous ansatz. The dashed, blue line shows the theoretical solution of the system
T/k2, the red circles the non-continuous approach and the green diamonds show the
classical Langevin equation as a reference. All three curves are in very good agreement
in the intermediate region and show the same system temperature, which was chosen
to T = 0.5 a.u. Both Fourier plots are averaged over 100 snapshots of the same run.
Simulated was a grid with 1024 points. At large wavelengths, both systems deviate
due to Ąnite system size efects. At small wavelengths the non-continuous methods
has an interesting cut-of due to the Ąnite-size of the interaction region in comparison
to the point-like interactions of the classical Langevin method.

The equations of motion for the σ Ąeld are

(

∂2

∂t2
− ∇2

x

)

σ(x, t) = −λ2
(

σ2(x, t) − ν2
)

σ(x, t) + fπm
2
π + gσ(x, t) ·

˜

ψ̄ψ
˜

(x, t) . (7.83)

with the couplings strengths for the chiral potential λ2 = 20, the explicit symmetry breaking term

fπm
2
π and a mean-Ąeld potential between the Ąeld and the particles with the coupling g. Besides

the mean Ąeld and potential interactions, a particle q and an anti-particle q̄ can annihilate to a

Ąeld quantum. The underlying process is the Yukawa coupling

Lint = gσ̄ϕ∗ϕ (7.84)

which can create a sigma particle by pair annihilation,

q̄ + q → σ, (7.85)

112



Chapter 7 Particle-Wave Interaction Method

or destroy it in the inverse decay process,

σ → q̄ + q . (7.86)

Feynman diagrams of both processes are

q

q̄

σ

q

q̄

σ

A complete discussion of the linear σ-model is given in Chapter 2.

Interaction between particles and the Ąeld is modeled in several steps. The quark annihilation

process is calculated with a microscopic cross section, the generated particle is treated as an

unstable particle resonance, the σ particle. The created sigma particle is not propagated or

added to the system as a real particle but its energy and momentum is transferred to the scalar

Ąeld, keeping the systemŠs total energy and momentum conserved. In the inverse process, Ąeld

excitations in the scalar Ąeld are treated as energy excitations. These excitations are modeled as

unstable particles which can decay and create an particle-anti-particle pair again.

In the following the details of this modeling and the algorithm are explained in detail. We start

with the implementation of the particle-annihilation process.

The interaction probability of the two incoming particles for the process q̄q → σ is calculated

microscopically. In our simulation it is modeled with a constant, isotropic cross-section σ̂q̄q→σ re-

specting all kinematic constraints. For Monte-Carlo sampling, we use the stochastic interpretation

of the cross section [93] for a set of particles in a cell

Pr (q̄q → σ) = σ̂q̄q→σ vrel
∆t

∆V Ntest
, (7.87)

with

vrel =
s

2E1E2
, (7.88)

and the Mandelstam variable s

s =
(

p1
µ + p2

µ

)2
. (7.89)

We have chosen the Breit-Wigner cross section [80, 81]

σq̄q→σ(s) =
σ̄ Γ2

(
√
s−mσ)2 +

(

1
2Γ
)2 (7.90)
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with a constant factor σ̄ and the mass of the created unstable particle mσ. The Breit-Wigner

cross section is discussed in Chapter 5.

When an interaction occurs, the net-energy and -momentum transfer is calculated with

∆E =
√
s ∆P = (p1 + p2) . (7.91)

At the particlesŠ interaction point the particles are removed from the ensemble and their net-

energy and -momentum is transferred to the Ąeld ϕ at this point, keeping the total energy and the

total momentum conserved. This transfer is done by changing the Ąeld energy and momentum

at the interaction point of the particles using our proposed method. The energy and momentum

diference equations (7.24) and (7.25) are solved for the interaction-time step with a numerical

solver. The Ąeld ϕ(x, t) is changed by employing the 3D Gaussian parameterization δϕ(x) (7.27).

By changing the amplitude as well as the direction of motion of the Gaussian, both the energy

and momentum can be changed within the interaction volume such that the numerical solver can

transfer ∆E and ∆P to the Ąeld. Figure 7.3 shows a simpliĄed version of this process in which

small Gaussian blobs over a small volume generate small energy excitations on the Ąeld ϕ

To obtain thermal and chemical equilibration, the inverse process has to be implemented according

to the principle of detailed balance. In kinetic theory detailed balance is described by reversing a

process in time and having the same probability for it. For example the s-channel scattering of

two particles of species A to particles of species B

A1 +A2 → B1 +B2 (7.92)

should have the same probability as the inverse process B going to A. In terms of quantum-Ąeld

theory the scattering matrix elements must be symmetrical

♣MAB♣2 ≡ ♣MBA♣2 . (7.93)

Note that this does not include kinematic limits which can always forbid various processes and

channels. In terms of Ąeld theory, detailed balance can be guaranteed if all self-energies and

polarization functions are generated from a given set of so called closed or vacuum diagrams by

using a formalism like the 2PI generating functionals [37] and by the unitary of the S-matrix

[128].

We have already discussed the method for particle annihilation. The inverse process, particle

production, has to be derived diferently, because the Ąeld has no initial particles which we

could use for Monte-Carlo sampling. Instead, we only have the scalar Ąeld ϕ and its properties

like energy and momentum from which we have to derive particle-like properties. This step is

again subject to the underlying physical model. For every point at the Ąeld, we assume the Ąeld

excitations to consist of unstable particles which can decay to stable particles with σ → q̄q. In
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case of a decay, the Ąeld ϕ loses the amount of energy at the interaction point, leading to an

efective damping of the Ąeld. This decay process is modeled in two steps. First we have to

assume a distribution function fσ(x,p, t) for σ particles at every possible interaction point. The

properties of fσ(x,p, t) have to be derived from the Ąeld properties at every point in space which

is done by assuming local equilibrium via coarse graining within a Ąeld cell. To be consistent

with detailed balance, the equilibrium distribution for fσ must have the same temperature as

the particleŠs distributions, fq and fq̄. In the linear σ model, the potential and therefore the

equilibrium-mean Ąeld has a thermodynamical temperature dependence, which maps a mean-Ąeld

value for every temperature T → ⟨ϕ⟩(T ). By inverting this relation ⟨ϕ⟩(T ) → T , we can calculate

the efective temperature of the Ąeld at every point of the Ąeld.

The next needed quantity is the particle density

nσ (x, t) =
∫

d3p

(2π)3
fσ (x,p, t) . (7.94)

Depending on the underlying distribution function fσ a relation between the particle and energy

density has to be found

nσ (x, t) → nσ (x, t, ϵ (x)) . (7.95)

The energy density ϵ is Ąxed by assuming the same energy density for the distribution function

and the Ąeld

ϵ = T 00 =
∫

d3p

(2π)3
E fσ(x,p, t) ≡ E (σ(x), σ̇(x)) . (7.96)

The chosen distribution function and particle density has to be consistent with the annihilation

process. Additionally, usually the local cell is not at rest. So we boost the distribution function

fσ relativistically with the boost-velocity v = p/E. The Ąeld energy E and p contained in the

cell around x are determined according to (7.13).

In our calculations we have used the Boltzmann distribution for the particles q, anti-particles q̄

and the σ-particles

f(p, v⃗) = exp
(

− 1
T

u · p

)

= exp
(

− γ

T
(E − v⃗ · p)

)

, (7.97)

but the local energy-relation (7.96) can easily be extended to other distributions like the Bose-

Einstein distribution. After calculating a distribution function, σ particles are sampled from fσ

with Monte-Carlo methods. For every sampled particle the decay probability is calculated. In

the center of of momentum frame of the particle, the decay probability is given by

Γσ =
g2

8πmσ

√

1 −
4m2

q

m2
σ

, (7.98)
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with Γσ consistent to (7.90). Note that Γσ is valid only in the rest frame of the decaying particle.

To calculate Γ in the laboratory-frame it has to be boosted

Γboosted =
Γ
γ

= Γ
m

E
= Γ

√

1 − p2

E2
. (7.99)

This boost has to be applied in (7.90), too. In case of the linear σ-model, the particleŠs mass m

can have a temperature dependence m(T ) which suppresses interactions at the phase transition,

as seen in Figure 5.4 and 5.5.

If a σ-particle decays, the energy and momentum of the particle is calculated as

∆E = Eσ, ∆P = Pσ . (7.100)

The resulting amount of energy and momentum is removed again from the Ąeld around the

interaction point with the help of the four energy and momentum diference equations (7.24) and

(7.25) and the Gaussian parameterization (7.27). Again, this parameterization leads to a small

interaction volume from which the energy is dissipated.

To come back to our notation of an interaction probability distribution, we use the above discussed

concepts to formulate an interaction probability density per numerical cell

P (∆E,∆P,∆t) =
Ncell
∑

i,j

δ
(

∆E −
√
s
)

δ (∆P − (pi + pj))
σ̂q̄q→σvrel(s)∆t

∆V Ntest

+ δ (∆E − Eσ) δ (∆P − Pσ)
Γσ(mσ) nσ(ϕ(x), t)∆t

∆V
+ Pr

0
δ (∆E) δ (∆P)

(7.101)

with the sum over all particles Ncell in a cell.

By implementing this algorithm, one has to be careful to really fulĄll the discussed implications

given by detailed balance. Besides the correct physical implementation, the numerical implemen-

tation has to be stable and very precise. First, the average interaction rates of particle creation

and annihilation has to be the same for any temperature, leading to no change of net-particle

number.

Rq̄q→σ = Rσ→q̄q , (7.102)

Secondly, the average energy exchange per process has to be the same for both processes

⟨Eq̄q→σ⟩ = ⟨Eσ→q̄q⟩ . (7.103)

Finally, the spectra of both processes have to be the same.
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Violating one of these conditions would lead to an unstable system. While the transition rates

can Ćuctuate and difer at a given time, their average has to be the same, otherwise the particle

number would drift out of equilibrium If the transaction rates are the same but the average

energy transfer for both processes difer, the system will as well run out of equilibrium. Obviously,

the energy equipartition theorem is violated, if net-energy is constantly transferred from one

system part (for example the Ąelds) to another part (the particles). Additionally, with the

proposed method for the particle density (7.95) a lower energy density in the Ąelds leads to a

lower calculated particle density, which again results in lower particle decay, which ampliĄes the

problem.

7.4.4.1 Numerical Calculations

To test the described method for numerical stability and physical correctness, several numerical

calculations have been performed. The main goal is the test of energy, momentum and particle

number conservation, as well as numerical and physical stability, which is done by simulating

a microcanonical ensemble. The setup was a Ąnite-size and cubic box with periodic boundary

condition, to simulate a large thermal system. Periodic boundary conditions conserve momentum

and energy at the system boundaries. The used model is already the DSLAM implementa-

tion linear σ-model, however the results discussion is general for other Ąeld theories and the

numerical and mathematical properties of the particle-Ąeld method can be extended to other

three-dimensional simulations. The linear σ-model has a temperature dependent mass, but in

the scenario of thermal and chemical equilibrium this feature of the σ-model can be neglected

because the mass stays constant over the simulation run time. As initial conditions, all particles

and Ąelds have been initialized at a given temperature (numerical details are given in Section

8.5.1). Without the particle-Ąeld interactions, the results would be the same as the equilibrium

calculations in Chapter 3 and the system would stay more or less constant. All units of time,

rates, system size and temperature will be kept in arbitrary unis (a.u.) instead of physical unity

(like fm, GeV, ...). Furthermore, the exact physical unity and properties of the system are not

necessary to discuss energy conservation and stability of the system and simulation.

The number of test-particles is set to approximate Ntest = 3 · 106, the numerical time steps are

set to ∆t = 0.002 a.u., the numerical grid-size of the Ąelds is Nσ = 1283 with ∆V =
(

6 fm
128

)3
, the

simulation run time is 300 a.u., which corresponds to 150000 time steps. The interaction volume

of the Gaussian parametrization is 323 grid points, which is about 1.5% of the system volume.

7.4.4.2 Results

Figures 7.7 to 7.14 and show the results of the described simulation. Over the whole simulation

time, the total energy and momentum stays constant, while the particle number and the scalar
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mean Ąeld show thermal Ćuctuations around a stable mean value. Figures 7.8 shows the total

particle number, Figure 7.7 the mean Ąeld. Field and particles are coupled via the chemical

processes (7.85) and (7.86) and exchange energy and momentum, leading to Ćuctuations in both

local energy densities and their total energy. Figure 7.9 represents the scalar Ąeld distribution,

showing a stable Gaussian distribution. For a thermal Ąeld this is the expected result, similar to

the Langevin result (7.67). The width of the Gaussian shows small thermal Ćuctuations over

time, and the mean value drifts according to (7.7).

This is a remarkable result, because our scalar Ąeld shows the distribution of a thermal Ąeld which

is in general produced by coupling the Ąeld to a Langevin like process. A classical Ąeld, coupled

to a Gaussian noise, would show an equipartition of energy of kBT for every mode. However,

integrating over all modes leads to the famous classical ultraviolet catastrophe. In our case, the

Ąeld shows a slightly diferent distribution of energy on the modes as shown in Figure 7.11. For

large wavelengths, the modes have an equipartition of energy, for small wavelengths the modes

are strongly suppressed by the soft cutof. This cutof is due to the same mechanism as discussed

in (7.82) and (7.81). The Ąnite size of the interaction volume leads to a smeared distribution of

energy which is transferred to diferent modes. However, no modes which are much smaller than

the interaction volume can be excited. The shape of the interaction parameterization (7.27) is

directly reĆected in the spectrum of the kinetic energy, as can be seen by the analytic line in the

Figure. The efective width of the interaction σeff in Figure 7.11 is given by

σeff =
√

σ2
x + σ2

y + σ2
z . (7.104)

This soft cutof is the Ąrst interesting feature of the proposed method. The second aspect is

that while classical Langevin models need a stochastic force for thermalization, the proposed

method does not need a non-deterministic random source. We use the particle bath and physically

motivated, microscopic interactions while having full control over the interaction rate as well as the

energy and momentum exchange. See Figure 7.10 for a plot, showing an initially vanishing scalar

Ąeld with some Ąeld excitations generated by particle interactions. These particle-annihilation

processes increase the ĄeldŠs energy, and large Ąeld modes are created. After some time, these

modes overlap and the Ąeld will start to shows a random, Gaussian distribution. Figure 7.9

shows the expected Gaussian distribution [129] after the Ąeld has thermalized. The distribution

function of the particles show a thermal Boltzmann distribution fq(E) ∼ exp (−E/T ) as seen

in Figure 7.12. The temperature of the particles is the same as the one of the thermal Ąeld

Ćuctuations.

The maximal observed deviation of the total energy was in the order of magnitude of about 10−3.

A discussion of the numerical errors is given in Subsection 7.5.5. Source for numerical errors

is the partial diferential equations solver and the particle-Ąeld method, which employs a large
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Figure 7.7: Plot of the volume-averaged value of the scalar Ąeld. Kinetic excitations
on the Ąeld can decay to particles and particles can annihilate to excitations of the
Ąeld leading to both local and global Ćuctuations of the scalar Ąeld and the particle
densities.

 486000

 487000

 488000

 489000

 490000

 491000

 492000

 493000

 494000

 0  50  100  150  200  250

T
o
ta

l 
P
a
rt

ic
le

 N
u
m

b
e
r

Time [a.u.]

Total Particles

Figure 7.8: Total particle number in the thermal-box simulation. Particles can
annihilate, their momentum and energy is transferred to the scalar Ąeld in form of
scalar-Ąeld excitations. Because of the dynamic nature of this process, the total particle
number Ćuctuates around the average thermal value.

amount of calculations on the Ąeld, each generating an unavoidable numerical error. The same

holds true for the momentum conservation.

Figure 7.15 is not part of the equilibrium-box calculation but shows a sketch of a single interaction,

both for adding and removing energy from the Ąeld. The center of all images is the interaction

point with the Gaussian distributed interaction volume around it. In case of an interaction with

only energy transfer and no momentum transfer, the energy distribution in the interaction volume

becomes spherically symmetric. With a net-momentum transfer, the distribution is asymmetric

and peaked in the moving direction of the momentum.
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Figure 7.9: Distribution of the scalar Ąeld values. The Ąeld shows the expected
thermal Gaussian noise/Ćuctuations. The mean of the Gaussian can drift slowly with
time as plotted in Figure 7.7. Particle annihilation increases the local Ćuctuations of
the scalar Ąeld, and particle production damps them by dissipating energy from the
interaction region.

Figure 7.10: Plot of the scalar Ąeld in an x− y plane cut at diferent times in the
simulation. The simulation starts with a uniform scalar Ąeld without any excited modes.
Due to particle creation and annihilation, Ąeld Ćuctuations are created dynamically
within the simulation. The color coding shows the value of the scalar Ąeld. Left:
Some particles have annihilated and have created small, local excitations of the scalar
Ąeld in form of moving, Gaussian shaped blobs. Right: The same simulation after the
creation and annihilation rate have equalized. The Ąeld shows Gaussian Ćuctuations
due to the overlap of many modes, which have been generated by particle annihilation.
Particle-Ąeld interactions induce mode excitations of the scalar Ąelds, leading to local
Ćuctuations. The spatial width of the Ćuctuations scales with the interaction volume
given by the width of the Gaussian parameterization (7.27) and the height and strength
of the Ćuctuation scales with the system temperature T .
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Figure 7.11: Spectrum of the ĄeldŠs kinetic energy σ̇2/2. While the thermal spectrum
of a classical Ąeld has an average energy of kT for every mode due to the equipartition
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mode only for large wavelengths, like in the classical case. For small wavelengths, the
spectrum is suppressed by a soft cut-of. This cut-of is deĄned by the spatial extent of
the interactions on the Ąeld. The deviation from the analytical result at higher modes
can be explained by the non-linear potential in the Ąeld equations of motion.
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Figure 7.13: Volume integrated rates for the processes σ → ψ̄ψ (pair production)
and ψ̄ψ → σ (pair annihilation). Both processes are independent of each other but due
to detailed balance both rates are equal on average. Chemical equilibrium is therefore
guaranteed. To keep thermal equilibrium, the average energy distribution of both
processes has to be the same (not shown in this plot).
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Figure 7.14: Energy Ćuctuations of the scalar Ąeld and the particles, E(t) − ⟨E⟩.
Field and particles exchange energy by particle production and annihilation processes.
While the total energy of the system is conserved and shows only numerical Ćuctuations,
the energy of the components show thermal Ćuctuations, which are anti-correlated due
to total-energy conservation. The relative Ćuctuations of the ĄeldŠs energy is ∼ 10−2,
of the quarks ∼ 10−3. The total energy Ćuctuates on a scale of ♣∆E♣/⟨E⟩ ≲ 5 · 10−5.
A more in depth discussion of numerical errors can be found in Section 7.5.5.
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Figure 7.15: Energy and momentum transfer from particles to a scalar Ąeld. The
pictures on the top show the energy density in the x−y plane, the images at the bottom
show the momentum in the x− y plane. Left: The Gaussian has a strong momentum
pointing in upwards direction. Right: The Gaussian has no net-momentum and only
adds energy to the scalar Ąled. In both pictures, the added Gaussian to the scalar Ąeld
has a spherically symmetric shape (not shown in the pictures), the resulting energy
and momentum density is only symmetric if no momentum is transferred. In case of a
net momentum, the energy and momentum density show a peak in the direction of
motion.
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7.5 Additional properties of the field-particle method

The particle Ąeld method is a general method to exchange energy between diferent systems, for

example particles and Ąelds. The exact implementation of the interaction properties is given

by the underlying physical models. However some general physical properties are given by the

mathematical structures of the framework. Additional information about the numerical properties

of diferent interaction parameterizations are given in Appendix A.

7.5.1 Field Self-Interactions

In the previous sections, the discrete interaction between scalar Ąelds and a heat bath or particles

have been discussed. These interactions were interpreted as energy and momentum exchanges,

leading to discrete perturbations in addition to the Ąeld equations of motion. Thereby the Ąeld

was treated to behave like a local ensemble of particles, for example fσ(x,p, t) in case of the

σ-Ąeld. These particles were used to calculate interaction probabilities between external particles,

like quarks, and the σ-Ąeld

q̄q ↔ σ . (7.105)

A possible next step would be the extension to describe elastic and inelastic interactions within

the same particle species, like in the σ-Ąeld, for example

σ1 + σ2 → σ3 + σ4 or σ1 + σ2 → σ3 + σ4 + σ5 . (7.106)

However, such a process, even if it would exist in perturbation theory, can not be employed with

the particle-Ąeld method. The reason is energy and momentum conservation within an interaction

cell. The particle-Ąeld method interprets interaction in terms of energy and momentum diferences

∆E and ∆P. For any interaction between the same particle species at a local interaction point,

both the total energy and total momentum is unchanged:

∆E = Eti+∆t − Eti = 0 (7.107)

∆P =
∑

i

pi = 0 (7.108)

This result is perfectly Ąne with the interpretation of a scalar Ąeld being a sum of coherent and

strongly correlated particles. Any interaction between the particles of the same species should be

described by the equation of motion.
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7.5.2 Field-Field Interaction

The particle-Ąeld method was motivated and introduced with the scope of interactions between a

Ąeld and an ensemble of particles. The implementation for the damping process σ → q̄q can be

used to extend this method for interactions between diferent Ąelds. In case of the linear σ-model,

the interaction between the σ-Ąeld and the pionic Ąeld π are given by the interaction potential

Lσ,π =
λ2

2
σ2π2 . (7.109)

The general equation of motion describe this interaction in the mean-Ąeld approach. Additional,

interactions in terms of discrete interaction processes like

σ ↔ ππ (7.110)

can be described and implemented with the particle-Ąeld method to implement additional

processes which generate non-deterministic Ąeld distributions and additional thermal modes

on the Ąelds. The implementation would be the same as described in Section 7.4.4. Particle

distributions fσ and fπ are derived at a possible interaction point from the local ĄeldŠs properties.

These distribution function are used to calculate microscopic interaction probabilities, realizations

of these interactions are calculated using Monte-Carlo techniques. For every interaction, the

energy and momentum exchange is calculated and is fed back to the Ąelds using the described

methods. An interaction is then described by a discrete energy and momentum transfer from

one Ąeld to another Ąeld while the total energy and momentum stays constant.

7.5.3 Influence of Test-Particles and the Interaction Volume

The test-particle ansatz was used in this work to solve the Vlasov- and Boltzmann-equation. An

analytic distribution function is discretized by a Ąnite number of test-particles which represent a

statistical ensemble of the original distribution function. Additionally, by rescaling the particle

number with an artiĄcial multiplier Ntest, which linearly scales the number of particles. The total

energy of the system is independent of the test-particles, which rescales the energy per particle

with this factor. Every particle is propagated with its physical mass, energy and momentum m,

E and P, however energy and momentum are rescaled within collisions and energy-momentum

exchanges:

Êi =
Ei
Ntest

(7.111)

A higher Ntest leads to a lower exchanged energy for two particles in a collision. The same

holds for particle creation and annihilation. For physical particles, the needed energy for pair

production q̄q is at least

min (Eq̄q) = 2mq (7.112)
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With test particles, this energy threshold is rescaled:

min (Eq̄q) =
2mq

Ntest
(7.113)

In the particle-Ąeld method, this test-particle scaling has a notable impact. Both the total energy

and momentum of every particle is scaled with Ntest, see (7.111). This changes the absolute

values for the energy and momentum transferred from and to the Ąeld. The ratio of the energy

to momentum stays constant
Êi

P̂i
=
Ei
Pi

, (7.114)

which leads to a relative scaling of the Gaussian parametrization, but its shape and movement is

not altered.

However, the minimal pair-production threshold has an impact on the system dynamics. With

(7.113) being the smallest energy the wave equation can dissipate, Ntest has a direct impact as

a cut of energy dissipation. A small number of the test-particle multiplier could lead to a loss

of damping of a Ąeld if the Ćuctuations and energy density on the Ąeld is too weak to create a

particle pair. On the other hand, a very large number in the test-particle multiplier repatriates

the system back to a continuous damping, like in the Langevin-equation.

The second important parameter for the particle production threshold is the interaction volume

which is given by the width of the Gaussian parametrization σx. A larger width leads to a larger

interaction volume and therefore includes a larger volume of the Ąeld in the interaction. The

larger this volume the more energy can be dissipated from the Ąeld. The maximum amount of

energy which can be dissipated in a single interaction is given by

max (∆E) =
∫

V
dx ϵ(x)

∏

i

exp

[

−(x − xint)
2

2σ2
i

]

. (7.115)

With the simple approximation of a constant energy density ϵ(x) = ϵ and for a spherical Gaussian

σi = σ, equation (7.115) becomes

max (∆E) = 4πϵ
∫

V
dr r2 exp

(

− r2

2σ

)

= (2π)3/2 ϵ σ3 .

(7.116)

The maximal possible energy which can be dissipated by an interaction scales linearly with the

volume. By comparing (7.113) with (7.116) the threshold energy density ϵmin, at which the Ąeld

has enough energy to create particle-pairs, can be derived as

ϵmin =
1√

2 π3/2

mq

σ3Ntest
. (7.117)
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A higher test-particle number and a larger interaction volume decreases the lowest energy density

at which the Ąeld starts to be damped and dissipated. This behavior is not a numerical artifact

but consistent with the test-particle ansatz and the discrete damping. The more massive and

energetic the particle pairs become, the more energy is needed to create them. This leads to a

more ŞsteplikeŤ damping, as it was shown in the example of the discretely damped harmonic

oscillator.

7.5.4 No-Momentum-Approximation

The particle-Ąeld method allows to transfer arbitrary amounts of energy and momentum to

and from Ąelds, described by the four parameters ∆E and ∆P. The numerical implementation

leads to a system of four coupled, non-linear equations which have to be solved consistently. As

an approximation to reduce the numerical complexity, the energy-momentum transfer can be

approximated to have zero momentum exchange

∆E = ∆E ∆P = 0 . (7.118)

The full problem for the energy-momentum equations (7.24) and (7.25) reduces to the single

scalar and non-linear equation for the energy (7.24). This reduces the computational costs

dramatically because a completely diferent set of solvers can be used, the number of equations to

solve reduce and some additional numerical optimizations can be used. A numerical optimization,

which can be employed with this approximation is discussed in the Section 8.7.

This zero-momentum approximation is applicable, in cases where a net-momentum transfer is

not important for the system dynamics or the dynamics is described by a large superposition

with a zero net-transfer of momentum. Typical examples are the simulation of a Langevin-like

equation, in which momentum transfers are not considered or a thermal medium in rest.

However, this approximation still allows full controllable and discrete interactions with energy

conservation.

7.5.5 Numerical Errors

Interactions between particles and Ąelds employ a relative large number of numerical operations

on the Ąelds. In this subsection a rough estimation of the numerical errors is given.

Modern computer systems represent Ćoating point numbers by using the IEEE Standard for

Floating-Point Arithmetic (IEEE 754). Employing double-precision 64-bit precision, all numbers

are represented in the form

x = m · 2e (7.119)
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with a 11 bit precision for the exponent e and a 52 bit precision for the mantissa m. While

a double-precision number is deĄned over a very large range (from 2.23 · 10−308 to 1.8 · 10308),

the precision within numerical operations is much smaller than implied by the precision of the

exponent. For typical arithmetic operations like ± and ×, the expected error per operation due

round of efects is in the order of magnitude

ϵ = 2−53 ≈ 5.7 · 10−16 . (7.120)

An interaction between a particle pair and the scalar Ąeld afects a grid region of N = 403 = 64·103

grid points, leading to a numerical error of about 6 ·10−12. This numerical error is still four orders

of magnitude smaller than the error given by the non-linear solver, which Ąnds its solution with

a precision of about ≈ 10−8. The presented test-calculations simulated roughly 107 collisions,

corresponding to 20 times the number of particles. For a rough estimation, we assume the

numerical errors in each simulation run to have a random total and maximal error of

ϵmax = 10−8 ·
√

404 · 107 ≈ 10−3 (7.121)

Numerical calculations have shown a relative precision of about 10−5, see for example Figure

7.14.

Note that beside the errors given through round-of efects, the partial diferential equation

solver can generate numerical noise when employing strong gradients, difering from the exact

solution of the equations of motion. These mathematical errors can exceed the numerical errors

in non-equilibrium scenarios. The used solving scheme in DSLAM is the Leap-Frog solver, whose

properties are explained in Section 8.3.2. This solving scheme conserves energy over a period of

several time steps and has a numerical solving precision of ∆t2. A more detailed discussion on

numerical errors can be found in [130, 131].
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Numerical Implementation-Details of

the DSLAM Model

Essentially, all models are wrong, but
some are useful.

George Edward Pelham Box

This chapter describes the numerical realization and implementation of the DSLAM model

(Dynamical Simulation of a Linear SigmA Model). The main focus does not lie on the physical

properties of the underlying linear σ-model but on the numerical methods and algorithms which

have been employed as well the used programming techniques and software packages.

This chapter is organized as follows: Section 8.1 explains the basic architecture and used software

libraries. Numerical details on the single components of the simulation are described in Section

8.2.

8.1 Software Architecture and Programming Techniques

The DSLAM model was written with help of diferent programming languages and employs

several external libraries.

Python was chosen as the primary developing language https://www.python.org/ because

of its clean syntax and very fast developing cycles. It is an interpreted language, which is in

general not as performant as a compiled language like C, but employing the correct techniques,

it can be used for eicient numerical calculations. Many recent projects within high performance

computing (HPC) are realized using Python [132, 133]
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For numerical processing within Python, the Numpy library [134] was used, which ofers a set

of highly eicient data arrays for real and complex numbers and ofers optimized numerical

operations on them like matrix and statistical operations.

Special mathematical functions, non-linear equation solvers and root Ąnder have been used from

the SciPy library [135]. These have been used for solving the self-consistent initial conditions of

the linear σ-model.

Most of the code for initialization, interfacing, analysis and memory management was written in

Python, however some performance critical parts have been written in plain C with OpenMP

extensions. Such parts included particle propagation, particle interactions and particle-Ąeld

interactions and calculations of Ąeld gradients. Interfacing between C-Code and Python was

established with the Cython library [136], code written in C was compiled with the GNU compiler

collection (GCC).

For spatial Gaussian Ąltering of the quark density Fourier transformations are heavily used in

DSLAM. The highly optimized Fast-Fourier library FFTW3 and PyFFTW3 libraries [137] and

its Python interface was used for calculating transformations and inverse-transformations.

The C part of the code uses the GNU ScientiĄc Library (GSL) [138] for fast access to numer-

ical methods like the root solving and optimization routines in the routines for Ąeld-particle

interactions. Non-linear equation solving was done with the Powell Hybrid algorithm [139].

Monte-Carlo simulations need a large number of high quality random numbers. This includes

a long period, uniformly distributed, lack of correlation, high dimensionality and should pass

statistical tests. A robust and well suited random number generator is the Mersenne twister [140]

with a period of (219937 − 1). The actual implementation was the SIMD optimized version [141]

with a much higher throughput on modern CPUs. However, for a new project I would choose

the newer WELL generators [142] because of their smaller CPU cache footprint, faster code and

its preferable statistical properties.

Online and oline data plots are generated with the Matplotlib library [143]. Plots found in

publications of this thesis are generated mainly by Gnuplot [144].

8.2 Numerical Implementation Details

8.2.1 High-Level View

The DSLAM model is a numerical simulation which solves the equations of motion of an ensemble

of quarks q, anti-quarks q̄, the σ-Ąeld and a π-Ąeld. The model has no memory, only the current
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state of the system is saved, which are the physical properties of the particles, the Ąelds and their

Ąrst derivatives.

Particles are represented as test particles. All particles have nine arguments: three position and

three momentum coordinates, mass and their particle/antiparticle properties. Other quantities

like the energy is calculated dynamically from the nine given properties. The particle masses are

not constant but are dynamically determined from the mean Ąeld ⟨σ⟩. These dynamic masses

are recalculated in every time step.

Fields are characterized by their scalar value represented on a grid. Typically the grid was chosen

to be cubic with grid sizes of N = 128, N = 192 or N = 256. Most calculations have been done

with grid sizes less than 2003 because of the memory foot-print of large grids. A multiple of 2 for

N has been chosen for numerical reasons, mainly because of the eiciency of the Fast-Fourier

transform for such conĄgurations. Every Ąeld is represented by two three-dimensional grids,

one holding the current scalar value at every grid-edge and one Ąeld for representing the Ąeld

derivative.

At every time step, particles are propagated with their collision free equations of motion including

forces and gradients given by the scalar Ąelds. Particles are therefore softly accelerated in this

calculation step.

In a second step the Ąelds are propagated according to their equations of motion. The mean

Ąeld interactions given by the potentials are included as well as the potential given by the quark

scalar densities.

After performing the mean Ąeld interactions, the quarks are scattered according to their elastic

collision routines and their interactions with a heat bath. Then particles can annihilate and

create Ąeld excitations, and in the last step Ąeld excitations can generate new particles by

energy-momentum dissipation. Destroyed particles are cleaned up, newly created particles are

added to the system.

In a last step the particle masses given by the Yukawa interaction and the quark scalar density is

recalculated.

Diferent analysis steps are done on demand after the last process of a single calculation step.

8.2.2 Particle Representation and Propagation

The DSLAM model treats both Ąelds and particles. In the linear σ-model, particles are represented

by fermionic spinors ϕ̄ and ϕ. In a classical ansatz, these spinors are approximated by single-state

distribution functions

ψ, ψ̄ → fq(x,p, t), fq̄(x,p, t) , (8.1)
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which describes the whole system as a sum of independent particle states, ignoring Pauli-blocking

or other quantum mechanical properties. Another approximation is the negligence of memory-

kernels. This so called Markov approximation reduces the distribution to a Şcurrent stateŤ by

neglecting all memory efects in the system evolution. In general, a quantum system has a

complex dependency on its own history

df(x,p, t)
dt

=
∫ t

−∞
k(t′)I

(

f(x,p, t′),L, t′
)

dt′ , (8.2)

where k(t′) is the memory kernel of the system and I a general interaction kernel which deĄnes

the system dynamics and interaction. In the case the system evolution depends only on its

current state with k(t′) = δ(t− t′), the history of the distribution function can be neglected

f(x,p, t) → f(x,p) , (8.3)

and the distribution function is reduced to a 6-dimensional object.

The numerical representation of the distribution function is done with the test particle method

[70, 71], where the continuous distribution function is represented by a large but Ąnite number of

δ-distributions. Every set of δ-distributions carries the physical properties of a classical particle

with an on-shell dispersion-relation

f(x,p) =
1

Ntest

Ntest
∑

i

δ3(x − xi)δ3(p − pi) . (8.4)

To propagate the distribution function, the Vlasov equation is employed. It was originally

proposed to describe charged particles in plasmas

[

∂t +
p

E(x,p)
· ∇x − ∇xE(x,p)∇p

⎢

f(x,p) = 0 (8.5)

which describes the time evolution of the particle distribution function. All calculations are done

with given initial conditions, these systems are consistent propagated according to their equations

of motion. No explicit time dependence is given, for example by time-dependent potentials or

other external efects. An explicit time dependence of external potentials are not treated in the

DSLAM model. Any time dependence of the Boltzmann-Vlasov equation is only given by the

systems internal interactions and propagation. Later on, the right hand side of (8.5) will get an

extra interaction term I(t), which describes the hard interactions between quarks and Ąelds and

with an external heat bath.

The second term of (8.5) describes the trivial particles propagation given by their momentum,

without any further interactions this term propagates the particle on straight lines according to
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their velocity. The last term changes the particle momenta due to their mean-Ąeld forces.

(−∇xE(x,p)∇p) f(x,p) . (8.6)

Formally these forces are given by the gradients of the particles energy ∇xE which is puzzling in

the Ąrst moment. All particles are coupled via the Yukawa-interaction term in the Lagrangian

(2.1),

Lint = ψ̄ (−g (σ + iγ5τ · π))ψ , (8.7)

This coupling leads to a dispersion relation by a space-dependent efective mass which is dependent

on the mean-Ąeld

m2
iψ = g2

(

σ2(xi) + π2(xi)
)

(8.8)

, and the efective energy reads

Ei =
√

p2
i + g2 (σ2(xi) + π2(xi)) . (8.9)

Any gradients in σ and π induce a local mean Ąeld force on the particles, given by

F = −∇x U = −∇xE(σ,π) . (8.10)

In the DSLAM model, particles are represented by the quadruple pi = (px, py, pz,mi). Their

position is updated via the Ąrst-order Euler propagation, which can be derived by plugging the

test-particle ansatz (8.3) in the Vlasov-equation (8.5), leading to the known relations

ẋi =
pi
Ei

, ṗi = F(xi) = −∇⃗E(xi) (8.11)

which becomes in Ąrst-order approximation

xi(t+ ∆t) = xi(t) + ∆t · pi(t)
Ei

, (8.12)

pi(t+ ∆t) = pi(t) − ∆t∇xE(xi)

= pi(t) − g2∆t
∇x (σ(xi) + π(xi))

E(xi)
.

(8.13)

g is the coupling strength of the Yukawa interaction. After each complete propagation step of

the Ąelds and particles, the particle mass is recalculated with (8.8).

8.3 Particle Interactions

In the original Vlasov equation (8.5), particles do not scatter on each other. They are only

inĆuenced by the mean Ąeld forces of the σ and π Ąelds. In the DSLAM model additional
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dynamics is added by including binary collisions between the particles. The collision integral in

the Boltzmann equation for binary collisions is

∂f

∂t

\

\

\

\

coll
=
∫

v1

∫

Ω′

(

f ′f ′
1 − ff ′

1

)

vrel σ(Ω′) dΩ′ d3v1 (8.14)

with the a cross section σ(Ω′). In the DSLAM model, the cross section is approximated with an

isotropic and constant cross section
∂σ(Ω′)
∂Ω′

= 0 . (8.15)

To simulate particle interactions, the volume of the simulation is divided in an even spaced, cubic

grid with cell size ∆V . Within every grid cell, all particles can interact with each other. The

size ∆V has to be consistent with the mean-free path of the particle and their interactions. The

mean-free path scales with the density and cross section via

λmfp =
1
nσ

, (8.16)

the cell size has to be smaller than the mean-free path to avoid artifacts by the particle-in-cell

method [145]

λmfp ≫ 3
√

∆V . (8.17)

Within a cell, every particle pair can interact with the stochastic interaction probability [93]

P = vrel
σ

Ntest

∆t
∆V

, (8.18)

where vrel is a kinematic factor. The derivation and explanation can be found in Appendix D.1.

Interaction probabilities given by (8.18) are sampled using Monte-Carlo techniques. In case of an

interaction event, particles are collided head-on-head in the center of momentum frame. The

boost β is given by the two colliding particles

β =
p1 + p2

E1 + E2
. (8.19)

In this system the total momentum vanishes:

p′
1 + p′

2 = 0 . (8.20)
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In case of an isotropic and constant cross section, the interaction is sampled uniformly on a

sphere, the scattered momenta p′
3 and p′

4 are rotated and calculated in spherical coordinates:

α ∈ [0 . . . 2π]

cos θ = [−1 . . . 1]

sin θ =
√

1 − cos2 θ

(8.21)

p′
3 =

\

\p′
1

\

\

⎛

ˆ

ˆ

∐

sin θ cosα

sin θ sinα

cos θ

⎞

ˆ

ˆ

ˆ

p′
4 = −p′

3 , (8.22)

E′
1 =

√

p′2
1 +m1 ,

E′
2 =

√

p′2
1 +m2 .

(8.23)

After calculating p′
3 and p′

4, the momenta are boosted back to the lab frame and are used in the

further simulation.

8.3.1 Virtual Heat Bath Method

The DSLAM model is a microcanonical simulation of a particle and Ąeld ensemble. All equations of

motion, mean Ąeld interactions, elastic particle collisions and particle production and annihilation

processes conserve energy and momentum. To simulate a thermal box which can change its

temperature, the simulation has to be extended to allow canonical simulations, thus allowing a

thermal exchange of energy while conserving the particle number in this canonical process. In

total however, the particle number can change due to internal annihilation and pair-production

processes. A canonical process can be implemented with a heat reservoir.

The most simple ansatz would be the implementation of reservoir walls. Whenever particles reach

the wall, they are replaced by thermal particles from the reservoir. This ansatz has some major

drawbacks. The rate of energy exchange is directly proportional to the particle density and the

number of particles touching the wall. Additionally, in a coupled medium artiĄcial correlations

will be generated. This can be visualized by a temperature change of the system. The system will

cool down near the walls and will build up a temperature gradient, see Ągure 8.1. Conversely, if

the medium has physical correlation through interactions, these correlations get suddenly washed

out near the reservoir walls because of the newly generated, uncorrelated particles.

A workaround is a heat bath, which is implemented by virtual particles. This kind of heat bath

can be described as a second, inĄnitely large particle reservoir which exists in addition to the

physical particles. These two particle species can interact via microscopic interactions. However,

the second particle species is not directly simulated but thermal particles are sampled according

135



Chapter 8 Numerical Implementation-Details of the DSLAM Model

Figure 8.1: Visualization of a small system embedded in a thermal heat bath, which
is realized by reservoir walls which emit thermal particles back into the system when
a physical particle leaves the system through the walls. This type of heat bath creates
inhomogeneities and artiĄcial correlations by building up a temperature gradient for a
system with a strongly coupled medium.

to an equilibrium Boltzmann distribution function on demand if energy should be exchanged

with the heat bath, therefore the name virtual heat bath.

For every particle in a cell, a potential interaction partner is sampled from an equilibrium-

distribution function f(p, T )bath. The temperature of the distribution function is a parameter

of the heat bath. Employing a microscopic collision kernel, the interaction probability can be

calculated. If an interaction happens, the particle and the virtual heat bath particle interact and

exchange energy and momentum. The amount of exchange energy can be positive or negative

and depends on the collision kinematics. After some time the distribution function of the system

will align with the thermal distribution function.

In case of the DSLAM model, the thermal heat bath distribution function was chosen to be

the Boltzmann distribution, which is the thermal equilibrium distribution for the quarks if the

system can equilibrate via elastic interactions

f(p, T )bath = exp
(

−E

T

)

. (8.24)
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Figure 8.2: Visualization of the virtual heat bath method. Physical particles (yellow)
can interact with virtual particles of the heat bath (blue). Virtual particles are not
propagated but are according to a thermal distribution function for every possible
interaction partner. Interaction probabilities are calculated using microscopic cross
sections. In case of an interaction, particles and virtual particles exchange energy
and momentum. Within the time evolution the distribution function of the physical
particles will converge to the equilibrium distribution of the heat bath.

The total particle density of the heat bath particles scales with the third power of the temperature,

increasing the efective reaction rate with the heath bath
∫

dE f(p, T )bath = nbath . (8.25)

For every particle in a cell, a virtual partner particle is sampled from (8.24) and for every pair

the interaction probability is calculated. For an isotropic cross section σbath is analogous to the

one of elastic scatterings (8.18) and reads

Pbath =
s · σbath(T )
E1Ebath

∆t
∆3x

(8.26)

where E1 is the energy of the physical particle, Ebath the energy of the thermal particle and s as

the Mandelstam variable.

With a constant cross section σbath(T ) = σbath the interaction rate between the heat bath and

the physical particles scales with the particle number and the density of the heat bath nbath,

which itself depends on the bath temperature.

In case the temperature of the heat bath should change within a simulation but the interaction

rates should be kept constant, the cross section should be chosen temperature dependent as well.

For

σbath(T ) =
σ̂bath

2T 3
(8.27)

the interaction rate stays with the heat bath and the particles independent of the temperature.
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Figure 8.2 shows a visualization of the principle of the virtual heat bath. The method of a

virtual-particle bath mimics a canonical heat bath. By sampling virtual particles from the

heat bath, the exchanged amount energy between particles and ŞrealŤ particles has a stochastic

character. This method has several advantages. Spatial anisotropies are not generated, any

energy exchange between particles and the heat bath is distributed evenly across all particles.

Additionally, a Ąne grained control over the heat bath is given by the two parameters temperature

T and the heat bath cross section σbath. The ratio of the system- and heat bath temperature

measures the hardness of the interactions

rbath =
Tbath

Tmedium
(8.28)

and gives the average energy exchange between the two reservoirs. The cross section σbath

determines the time in which the system equilibrates because it is proportional to the reaction

rate between the particles and the heat bath while. The heat bath method is used in the DSLAM

model to control the temperature of a thermal box. It is both used to keep the system at a

constant temperature and to change the system temperature, for example to drive the system

from a hot phase through the chiral-phase transition to a cold phase. All energy which is released

in the phase transition can be absorbed by the heat bath. Calculations with the virtual heat

bath method are used in Section 3.2.1 in which a particle ensemble thermalizes with the heat

bath, see Figure 3.4 and 3.5.

8.3.2 Fields

in the DSLAM model all Ąelds are described by scalar Ąelds. Both the σ-Ąeld and the φ-Ąelds are

characterized by three-dimensional representations on a cubic numerical grid. Every grid point

represents the mean Ąeld value in the given cell ⟨σ (x, t)⟩, the same applies to their Ąst-order

derivatives ⟨σ̇ (x, t)⟩. These representations include the physical mean Ąeld approximation of the

quantum-Ąelds

σ(x, t) → ⟨σ(x, t)⟩ , π(x, t)i → ⟨π(x, t)i⟩ (8.29)

and the spin-saturation approximation;

π(x, t) → nπ⟨π(x, t)⟩ (8.30)

which treat the three pion-Ąelds as a single evenly distributed Ąeld ensemble.

Within these approximations, all Ąelds are treated and propagated like classical Ąelds, higher-

order loop corrections and self-energies are neglected in the equations of motion. The mean Ąeld
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equations of motion are

(

∂2

∂t2
− ∇2

x

)

σ(x, t) = −
[

∂U(σ, π⃗)
∂σ

+ g⟨ψ̄ψ⟩
⎢

σ(x, t) + fπm
2
π ,

(

∂2

∂t2
− ∇2

x

)

π(x, t) = −
[

∂U(σ, π⃗)
∂π

+ g⟨ψ̄iγ5ψ⟩
⎢

π(x, t) .

(8.31)

Equations (8.31) are partial-diferential equations (PDE) which have to be solved numerically.

This can be done with potentially any PDE-solver. Robust choices for a broad range of numerical

problems are the Runge-Kutta method and the leap-frog method. The Runge-Kutta method

is a class of numerical solvers for diferential equations but the most applied method is the

classical Runge-Kutta method which uses an explicit fourth-order solving system for arbitrary

diferential equations [146]. This method can be used for implicit solving schemes as well [147].

The Runge-Kutta is a high-precision solver with small numerical error but as a drawback it

does not guarantee systematic energy conservation and has a relatively high implementation

complexity.

In numerical studies with the Klein-Gordon equation, solving schemes which conserve energy

seem to be favorable in comparison to systems with smaller solving error but energy conservation-

violation [148, 149]. While the integration error may change the actual system propagation,

energy conservation seems to keep overall system dynamics stable.

An algorithm which conserves energy with carefully chosen approximations of derivatives by Ąnite

diferences is the leapfrog algorithm [150] and has a propagation error scaling with ϵ ∼ O
(

∆t2
)

and a global energy conservation within a given bound for equations of motion with a conservative

potential.

The leap-frog algorithm is derived by Taylor-expanding an integration step

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

d2x(t)
dt2

∆t2

2!
+

d3x(t)
dt3

∆t3

3!
+ O

(

∆t4
)

. (8.32)

Using ẋ = v and Newtons law to express the second derivative with a Force, the above equation

can be written in a physical form

x(t+ ∆t) = x(t) + v(t)∆t+
a(t)

2
∆t2 +

d3x(t)
dt3

∆t3

3!
+ O

(

∆t3
)

. (8.33)

Summing x(t+ ∆t) with the same expression for x(t− ∆t) and solving for x(t+ ∆t), the ∆t3

term cancels and one gets the Leap-frog propagation equation

x(t+ ∆t) = 2 x(t) − x(t− ∆t) +
a(t)

2
∆t2 + O

(

∆t4
)

. (8.34)
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Equation (8.34) can already be used for the propagation of the wave equations, the propagation

error is of order O
(

∆t2
)

, and the total energy is conserved.

However for an implementation within the DSLAM model this equation is not directly applicable

because the particle-Ąeld method would violate energy and momentum conservation. The leap-

frog method conserves energy by interleaving multiple time steps within the physical context.

In the particle-Ąeld method the Ąeld is locally changed to simulate the energy and momentum

transfer between particles and Ąelds. A direct local change of ϕ(x, t) and ϕ(x, t− ∆t) induces a

numerical error proportional to δϕ(x, t) and violates energy conservation. A solution would be

to change the explicit solving mechanism of the Leap-Frog algorithm with the explicit method of

the energy-momentum-change of the particle-Ąeld method to a combined implicit method, in

which both ϕ(x, t+ ∆t), ϕ(x, t) and ∆E and ∆P is changed at the same time.

Another and more simplistic approach is to expand (8.34) to include the velocity, which then can

be changed by interactions. Equation (8.34) can be expanded to include velocities by using the

relation

ϕ(t+ ∆t) − ϕ(t) = ϕ̇

(

t+
1
2

∆t
)

∆t . (8.35)

By interweaving the diferent time steps again, the following relation is an equivalent solving

method to (8.34):

ϕ(t+ ∆t) = ϕ(t) + ϕ̇(t)∆t+ a(t)
∆t2

2
,

ϕ̇(t+ ∆t) = ϕ̇(t) +
∆t
2

[a(t) + a(t+ ∆t)] .
(8.36)

This is the leap-frog method which is implemented in the DSLAM model. Interesting is the

propagation of the velocity, which is a linear combination of the current and future time step.

For computation it can be favorable to reverse the calculation order of ϕ and ϕ̇. This can be

done by the transformation (t+ ∆t) → t and t → (t− ∆t) and calculating the velocity before

the new Ąeld conĄguration. However in this approach the Euler propagation has to be used for

the Ąrst and initial time step of the system

ϕt+1 = ϕt + F (ϕt)∆t . (8.37)

Overall the velocity-based Leap-frog algorithm conserves the total energy for all potential and

spatial-derivative based forces of the Ąeld. For all interactions between particles and Ąelds

the energy violation is of the order O
(

∆t2
)

. On average, these errors can cancel. In case the

Euler-method is used, the overall numerical energy conservation violation would scale with

O (∆t).
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All forces acting on the Ąelds are summarized in F (ϕt), they are given by the potential terms in

(8.31). fπm2
π is a constant source term which has no spatial dependencies. The potential term

∂U(σ, π⃗)
∂σ

= λ2σ(x, t)
(

σ2(x, t) + π2(x, t) − ν2
)

(8.38)

is space dependent but carries no gradient terms. The spatial derivative in (8.31) are approximated

by second order Ąnite diferences on the numerical grid with grid-size ∆x,

∇2
xσ(x, t) ≈ σ(x + ∆x · ex, t) − σ(x − ∆x · ex, t)

2∆x
. (8.39)

The last undiscussed term in (8.31) is the one-loop quark scalar (and pseudo-scalar) density

ρσ ≡
˜

ψ̄ψ
˜

σ
(x) ≡ gσ(x)

∫

dE
f(x,p) + f̃(x,p)

E (x)
(8.40)

and the pseudo-scalar density

ρπ ≡
˜

ψ̄ψ
˜

π
(x) ≡ gπ(x)

∫

dE
f(x,p) + f̃(x,p)

E (x)
. (8.41)

f(x,p) is represented with test particles, so the scalar density becomes

˜

ψ̄ψ
˜

σ
(x) ≡ gσ(x)

N
∑

i

δ(pi − p)δ(xi − i)
√

p2
i + g2(σ2 + π2)

, (8.42)

˜

ψ̄ψ
˜

π
(x) ≡ gπ(x)

N
∑

i

δ(pi − p)δ(xi − i)
√

p2
i + g2(σ2 + π2)

. (8.43)

In (8.43) spin saturation was assumed π⃗ → 3⟨π⟩. These densities act like a potential for the σ

and π Ąelds in the equations of motion. In fact, they are an essential part for the chiral phase

transition. By representing the quark distribution function f(x,p) with test particles, the scalar

densities can be rewritten in terms of a sum over delta-distributions:

˜

ψ̄ψ
˜

σ
(x) = gσ(x)

N
∑

i

δ(xi − x)
√

p2
i + g2(σ2 + π2)

(8.44)

˜

ψ̄ψ
˜

π
(x) = gπ(x)

N
∑

i

δ(xi − x)
√

p2
i + g2(σ2 + π2)

(8.45)

Equations (8.43) and (8.45) could be implemented numerically but would lead to numerical

instabilities in the partial diferential equation solvers because their spatial distribution has a

Dirac-delta character and would lead to point like sources in the chiral Ąeld potentials. Even in

thermal and chemical equilibrium, the system would become unstable due to numerical noise. To
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avoid this problem, the scalar and pseudo-scalar density must by smoothed. This can be done by

a convolution with a Gaussian kernel

˜˜

ψ̄ψ
˜

(x)
˜

=
N0√

2π
3
σxσyσz

∫

V
du3

˜

ψ̄ψ
˜

(x − u) exp

(

− u2
x

2σ2
x

−
u2
y

2σ2
y

− u2
z

2σ2
z

)

. (8.46)

Beside the positive efect on the numerics, this smearing can be interpreted as the uncertainty

principle of the quarks. The delta-functions in (8.42) and (8.43) represents the center of the

position distribution, the exact position of the particle is smeared out. The width of this smearing

can be either set as a free parameter or can be motivated by physical properties like estimated

quark-radii given by the uncertainty principle within the proton.

Equation (8.46) smears the scalar density over a small volume deĄned by σx, σy and σz. For a

numerical implementation of (8.46), the volume of the 3D Gaussian has to be smaller than the

system volume
∏3
i σi ≪ V to avoid artifacts. N0 takes into account cut-of efects of the Gaussian

if some parts of the convolution are cut of due the Ąnite system volume. For suiciently large

systems N0 ≈ 1, for smaller systems one has to chose N0 > 1 because (8.46) must preserve the

integral measure of (8.42)

∫

V
dx3

˜˜

ψ̄ψ
˜

(x)
˜

=
∫

V
dx3

(˜˜

ψ̄ψ
˜

(x)
˜

∗G(u)
)

. (8.47)

In (8.46) a parameter N0 was introduced. In general, this parameter has to be N0 = 1 to fulĄll

(8.46). However, this is only guaranteed if the width of the Gaussian kernel is much smaller than

the size of the system σi ≪ Li or

G(r = L) ≈ 0 (8.48)

for the size of the system L. If this is not the case, N0 must be chosen to correct for any cut-of

efects which occur through the convolution and by the numerical restriction of Lsystem < ∞:

1
N0

=
∫

Vsystem

dx3 G(x)
√

2πσ2
3 . (8.49)

For suiciently large systems this correction factor equals unity N0 ≈ 1, for smaller systems this

factor will difer from unity.

The Gaussian smearing has to be calculated in every time step, therefore an eicient imple-

mentation should be chosen. A possibility is to replace the convolution in position space with

a multiplication in Fourier-space and by Fourier transforming F both functions, multiply and

applying the inverse transformation F−1 afterwards:
∫

V
du3f(x − u) · g (u) = F−1 ¶F ¶f♢ · F ¶g♢♢ (8.50)
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An implementation in 3D position space would have a calculation complexity of O
(

N6
)

, a

general implementation in Fourier-space reduces the complexity to O
(

N2
)

and if a Fast-Fourier-

Transform (FFT) is used, it is reduced down to O (N logN). For further optimization, the

Gaussian convolution kernel can be pre-calculated in Fourier space F ¶G(u)♢ because it stays

constant over whole simulation. The largest computational complexity of the Gaussian kernel

is not the Fourier transform but the actual calculation of the kernel because the calculation of

exponential values is very CPU intensive.

By pre-calculating the Gaussian kernel, one has to take care of the kernelŠs symmetries

G(ui) = G(−ui) for ui = ¶ux, uy, uz♢ . (8.51)

8.4 Particle-Field Interactions

In this section the numerical implementation of the numerical particle-Ąeld interactions is

explained.

As discussed in Section 7.4.4, interactions between particles and Ąelds can be described by

microscopic processes. In this section the implementation of the DSLAM model within the scope

of the linear σ-model is discussed. The physical description and derivation of the processes are

done in Chapter 5, references are given whenever a physical variable is used.

For both particle annihilation and pair-production, energy and momentum transfer-probabilities

have been derived

∆E(σ(x,p), f(x,p),∆t)

∆P(σ(x,p), f(x,p),∆t)
(8.52)

In this section the actual numerical implementation is discussed if such a ∆E and ∆P has to be

applied to the system.

8.4.1 Particle Annihilation

Quarks and anti-quarks can annihilate by an interaction cross section like the Breit-Wigner cross

section, see equations (5.5) and (5.6). In case of an annihilation process, the net energy and

momentum transfer is calculated for the pair of test-particles

∆E =
(

√

m2
1 + p2

1 +
√

m2
2 + p2

2

)

, ∆P =
3
∑

i

p1,i + p2,i

Ntest
. (8.53)
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The position of the interaction is given by that of the two particles

xint =
x1 + x2

2
, (8.54)

the arithmetic can be seen as an simple approximation for the interaction point but is needed to

deĄne an exact interaction point on the numerical grid if the grid-spacing of the Ąelds is smaller

than the particlesŠ collision-cell-spacing. The particlesŠ interaction point is interpolated to the

nearest position on the Ąeld-grid and within the interaction region the same amount of energy

and momentum from (8.53) should be deposited by the interaction region. For this calculation

the initial energy of the undisturbed Ąeld is needed with

E0 = E(ϕ(x, t)) =
1
2

(

ϕ̇2(x, t) + (∇xϕ(x, t))2
)

+ U (ϕ(x, t)) , (8.55)

the time derivative is approximated with a Ąrst order Ąnite diference, the spatial diference is

approximated with the Ąrst order central step method

∇xϕ(x) ≈ ϕ(x + ∆x) − ϕ(x − ∆x)
2∆x

. (8.56)

In a Ąrst step only the energy diference equation is solved with a numerical solver

∆E(tk) = E [ϕ(x, tk) + δϕ(x, tk)] − E [ϕ(x, tk)] , (8.57)

the velocity of the Gaussian parametrization is set to zero v ≡ 0. This intermediate step is not

needed but leads to a better and more robust numerical convergence.

∆E (A0) = E(ϕ(x, t) + sgn(ξ) · δϕ(A0,v = 0,x, t)) − E0 . (8.58)

δϕ is described by a Gaussian parametrization

δϕ(x,v) = A0

3
∏

i

exp

(

−(xi − vit̃)2

2σ2
i

)\

\

\

\

\

t̃→0

v→0−−−→ A0

3
∏

i

exp

(

− x2
i

2σ2
i

)

, (8.59)

the random number sgn(ξ) is either positive +1 or negative −1 and is used to randomly chose a

direction in which the energy excitation should be placed on the Ąeld. If the parametrization

would only add energy to a positive direction, the Ąeld would get an average kick, leading to an

global oscillation of the Ąeld. In terms of Fourier-transformation sgn(ξ) randomly changes the

phase of Fourier modes in the positive or negative direction.
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After Ąnding a solution for (8.58), both energy and momentum equations are solved simultaneously

with

∆E(tk) = E [ϕ(x, tk) + δϕ(x, A0,v, tk)] − E [ϕ(x, tk)] , (8.60)

∆P(tk) = P [ϕ(x, tk) + δϕ(x, A0,v, tk)] − P [ϕ(x, tk)] . (8.61)

The equations are solved with respect to A0 and v for the given ∆E and ∆P and the Ąnal

parametrization is added to the Ąeld

ϕ(x, tint + ∆t) = ϕ(x, t) + δϕ(A,v,x) . (8.62)

After a successful transfer of energy and momentum to the Ąeld, the annihilated particle pair is

removed from the system.

In case the numerical solving algorithm can not Ąnd a solution for the annihilation process or it

does not converge in a given number of iterations, the single annihilation process is canceled and

the particles are left unchanged. This should happen only in rare cases and can be reduced by

regarding the mathematical limits for ∆E/♣∆P♣. These limits are discussed in the Appendix A.4

and A.5.

8.4.2 Pair Production

The probability for a particle-pair annihilation process is given by a microscopic cross-section

and the properties of the involved particlesŠ. Such a process removes particles from the particle

ensemble and adds that amount of energy and momentum to the Ąeld, creating excitations

and Ćuctuations on the Ąelds. In the inverse process, the pair production, removes energy and

momentum from the Ąeld which efectively damps its Ćuctuations and creates new particles in the

particle reservoir. The probability of this process can not be derived directly from the particlesŠ

properties because scalar Ąelds have no particle-like properties.

In Chapter 5 and Section 7.4.4 the motivation and basic steps have been discussed. In the

numerical implementation of the DSLAM model, the employed calculation steps are discussed

now for the decay process of σ-Ąeld excitations

σ → q̄q . (8.63)

For every point on the numerical ĄeldŠs ϕ-grid

(nx, ny, nz) (8.64)
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the mean Ąeld value of the Ąeld, its derivative, its energy and momentum has to be calculated

⟨ϕ (nx, ny, nz)⟩ ,
⟨ϕ̇ (nx, ny, nz)⟩ ,

E
(

nx, ny, nz, ϕ, ϕ̇
)

,

P
(

nx, ny, nz, ϕ, ϕ̇
)

.

(8.65)

The energy and momentum are calculated accordingly to equation (7.13) and (7.14). The Ąeld

values can be taken directly from the numerical grid values with

⟨ϕ (nx, ny, nz)⟩ = ϕ (nx, ny, nz) (8.66)

or the mean Ąeld values can be extracted by a Gaussian convolution of the actual numerical values

in analogy to the Gaussian smearing of the quark density in (8.46). In case of an interaction the

Ąeld ϕ is not only changed at the interaction point p (nx, ny, nz) but also at its neighbor points

due the Gaussian parametrization (see eq. (7.27)). Because an interaction changes a sub-volume

of the system, this same volume can be used to calculate an average energy, momentum and

mean Ąeld within this sub-volume. Both method turned out to work equally well, they only difer

if the Ąeld ϕ has many excitations which are smaller than the size of the interaction volume.

In this case the non-convoluted algorithm will show a slightly larger pair-production rate until

the high-frequency excitations are damped. In the case of thermal Ćuctuations, both methods

behave equally.

After calculating ⟨ϕ⟩, ⟨ϕ̇⟩, E and p for a Ąeld-cell, a distribution function has to be derived from

this quantities. By assuming a boosted Boltzmann equation as a thermal distribution

fσ(p) = exp
(

−u · p

T

)

, (8.67)

with the cell-velocity v is given by the cells energy and momentum:

v⃗ =
p⃗

E
and u = γ

(

1
v⃗

)

. (8.68)

All free parameter of this distribution function are given by the temperature T and the collective

velocity given by the cell u. By integrating the distribution function over all momenta, the

particle density of the system is given. However, in the DSLAM model the system should be able

to deviate from thermal and chemical equilibrium. For every grid cell local thermal equilibrium

has to be assumed, otherwise a local Ąt with a distribution function would not be possible. Still,

the temperature can very strongly over the system volume for a small numerical grid.
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In the DSLAM model, the mean Ąeld value ⟨σ⟩ is used to derive the temperature by inverting

the thermodynamic relation for the thermal equilibrium value of σ

⟨σ(T )⟩ → T (⟨σ⟩) . (8.69)

This is done by numerically calculating the thermodynamic relation and creating an inverse

lookup interpolation, details are given in Section 8.8. The same method is used to derive the

temperature dependent mass of the sigma quanta mσ with

mσ = mσ (⟨σ⟩) . (8.70)

To calculate a decay probability for Ąeld excitations, a sigma-particle density nσ has to be derived.

To allow a deviation between the local ensemble temperature and the local particle density, the

density is not derived from the coarse-grained temperature but from the local energy density.

nσ(T ) =
∫

d3p fσ(p, T ) , (8.71)

the energy density is given by

ϵσ(T ) =
∫

d3p ϵ(p) fσ(p, T ) . (8.72)

For a system with massless particles, these relations would have the form

n(T ) = 2T 3 , (8.73)

ϵ(T ) = 3T 4 , (8.74)

which leads to

n(ϵ) =
2ϵ

3Tσ
. (8.75)

For massive particles this relation is

n(ϵ) =
ϵ

3Tσ
−m2

σTσK1(mσ/Tσ) , (8.76)

with the modiĄed Bessel function of the second kind Kn.

After the parameter T , mσ, nσ and v are determined, a σ particle is sampled from fσ(p, T ).

The particle-decay probability is given by the already in Chapter 5 and Section 7.4.4 discussed

Breit-Wigner cross section

σq̄q→σ(s) =
σ̄ Γ2

(
√
s−mσ)2 +

(

1
2Γ
)2 . (8.77)
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The decay event of this particle is sampled with Monte-Carlo techniques

decay if Γ
∆t

Ntest∆V
> ξ with ξ ∈ [0, 1] . (8.78)

In case of a decay, the energy and momentum

E =
√

m2
σ + p2

σ ,

P = pσ
(8.79)

are removed from the Ąeld. This is done in analogy to the already discussed method in Section

8.4.1. At the interaction point of the Ąeld-excitation decay, the energy density and momentum

density has to be reduced accordingly to the values given by (8.79).

Removing energy and momentum from a Ąeld can be described in two steps. First, the kinetic

energy of the Ąeld at the interaction point is reduced. This changes both the energy and

momentum. To get the correct energy and momentum at the same time, an additional Gaussian

wave packet is added in the second step to the Ąeld to correct for the missing or excessive

momentum. The Gaussian parametrization for energy removing is therefore

δϕ(x,v) = ♣v♣ · exp

(

− x2

2σ2

)

, (8.80)

δϕ̇(x,v) = κϕ̇(x) exp

(

− x2

2σ2

)

+ ♣v♣ exp

(

−(x − ∆t v)2

2σ2

)

.

(8.81)

with the width σ of the Gaussian parametrization and the damping coeicient κ. For κ = 0

the complete energy is removed from the Ąeld, for κ = 1 none of the energy is removed. Note

that in (8.81) the parametrization of the Gaussian wave packet is slightly diferent than in the

parametrization for adding energy to a Ąeld. In (8.81) κ damps the Ąeld and v is the direction

and strength of the ŞcorrectionŤ wave packet which is added to the system.

ṽ =
v

♣v♣ (8.82)

However the actual velocity of the wave packet is normed to 1. This has a practical reason: the

ŞcorrectionŤ wave packet which adds missing momentum removed by κ should interfere with

the least possible impact. A wave packet with the maximal physical velocity needs the least

packet-ŞheightŤ to add momentum to the system. In this case v is not directly associated with

the amount of momentum which should be removed from the system but as a correction part in

combination with κ.
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The four non-linear equations are solved with respect to κ and v. In case of Ąnding a solution, the

energy and momentum is removed from the system and the σ-particle is decayed to a particle-pair

which is added to the particle-ensemble at the interaction point.

In the rest frame of the σ-particle the particles are created and their momentum is set to

p⃗1 = −p⃗2 . (8.83)

The spatial orientation is sampled isotropically and their momenta are boosted back into the

laboratory-frame. More details of the decay kinematics can be found in Appendix D.

8.4.3 Sampling of a boosted Boltzmann equation

The Boltzmann equation describes a gas of relativistic particles within a rest frame, implying the

average velocity is zero
N
∑

i

pi(x) = 0 . (8.84)

Sampling such a distribution is straight forward as described in Appendix B.2. However, if the

reference frame has a non-vanishing boost, sampling becomes more complicated.

Sampling a boosted system could be done in two ways: sampling the system at rest and boosting

every sampled particle afterwards, or sampling a boosted distribution. The Ąrst method gives

wrong results [151] because it ignores the boost of the phase space. The sampling of a boosted

distribution is based on the method presented in [152] and will be explained in the following. In

this work such a boosted distribution is needed to sample particles from a scalar Ąeld for the

Ąeld-particle interactions, see Section 7.4.4 for a example system. The numerical details on these

kind of interaction are explained in Section 8.4.

We assume a boosted velocity in z-direction

v = γ

⎛

ˆ

ˆ

ˆ

ˆ

ˆ

∐

1

0

0

vz

⎞

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

, γ =
1

√

1 −
(

v
c

)2
. (8.85)

The Boltzmann equation is introduced:

f(p) = exp
(

− 1
T

u · p

)

= exp
(

− γ

T
(E − vzpz)

)

= exp
(

− γ

T
(E − vz cos(θ)♣p♣)

)

, (8.86)

f(p) = e−γE/T exp
(

γvz
T

cos(θ)♣p♣
)

. (8.87)
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The last equation is integrated over
∫ 1

−1 d cos θ, and we arrive at the Ąnal formula:

f(p, vz, T ) =
4πT ♣p♣
vzγ

e−γE/T sinh
(

γvz♣p♣
T

)

(8.88)

Equation (8.88) is used to sample an energy for a particle with a given temperature and boost-

velocity. After the energy is sampled, a direction θ can be sampled with the above relation

f(θ) =
1
N0

exp
(

−γvz
T

♣p♣ cos(θ)
)

, (8.89)

with the norm

N0 =
2T sinh

(

Pvzγ
T

)

♣p♣vzγ
. (8.90)

Sampling in ϕ is done uniformly as it is not afected by the boost. After sampling the particle,

the reference frame should be rotated to the direction the original velocity of the particle, which

is done straight forward by a rotation matrix.

Two things are interesting in Equation (8.88): The Lorentz γ changes the temperature of the

system by T ∗ = T/γ and the phase space for θ is narrowed by the boost. Figure 8.3 shows

three examples of such an boosted distribution. In the limit v → 0 the unboosted Boltzmann

distribution is obtained, which is isotropic in θ. For non-vanishing velocities, the distribution

starts to peak in forward direction θ → −1 and more and more particles move in the same

direction, which is expected from kinetic considerations.

8.5 Initial Conditions

Several diferent types of initial conditions are used in the DSLAM model and are used depending

on the physical context. Most of the initial conditions are some type of thermal distribution with

or without a spatial dependence. Every type is discussed in its own subsection in the following.

8.5.1 Thermal initial conditions

For calculation of physical systems diferent types of initial conditions have been used. The most

simple initial condition was thermal equilibrium with a isotropic σ-mean Ąeld. This type of

initial conditions solves the thermal initial conditions with a time-independent system state. The

equations of motion for the σ-Ąeld is

(

∂2

∂t2
− ∇2

r)

)

σ (x, t) =
[

∂U(σ,π)
∂σ

+ g
˜

ψ̄ψ
˜

⎢

σ(x, t) + fπ +m2
π . (8.91)
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For
(

∂2

∂t2
− ∇2

r)

)

σ0 (x, t) ≡ σ0 ≡ 0 and π ≡ 0 . (8.92)

stable solutions can be found by solving the self-consistent equation

[

λ2(σ0 − ν2) + g2
∫

d3p
f(x,p, t) + f̃(x,p, t)

E(x,p, t)

]

σ0 − fπm
2
π = 0 (8.93)

For π ≠ 0 no stable solutions can be found and the system would behave like two coupled,

non-linear oscillators which constantly transfers energy from the σ-Ąeld to the π-Ąelds and reverse.

Equation (8.93) has to be solved numerically. Depending on the position in the phase diagram

the minimum of U(σ) can be very wide and Ćat, especially near the phase transition, so a slow

but exact converging method is favorable here. To Ąnd a self-consistent σ0, the quark-distribution

is important. For thermal calculations they are described with the Fermi-Dirac distribution

f(x,p, µ, t = 0) =
2NcNf

(2π)3

1

1 + exp(E−µ
T )

. (8.94)

For calculations with particle-interactions and scatterings, the relativistic Boltzmann distribution

f(x,p, µ, t = 0) =
2NcNf

(2π)3
exp

(

−E − µ

T

)

(8.95)

was chosen because is describes the thermalized state in the DSLAM model. Quark interactions

in the DSLAM model do not include Pauli-blocking terms in the microscopic collision integrals.

In most of the calculations the chemical potential was set to zero, µ = 0, leading to a balanced

number of particles and anti-particles. The energy of the particles is given by the dynamical

mass given by the σ-Ąeld

Eψ(x,p) =
√

p2 + g2σ2(x) . (8.96)

After Ąnding a thermal σ0, the particle Nq and anti-particle number Nq̄ can be sampled

Nq = Ntest

∫

dV
∫

d3p f(x,p, µ, t) ,

Nq̄ = Ntest

∫

dV
∫

d3p f(x,p,−µ, t) .
(8.97)

The energy of each particle is sampled according to the employed distribution function using the

accept-reject method for the Boltzmann distribution or the Metropolis-Hasting method for the

Fermi-distribution function. The position of the particles is sampled isotropically

f(x) =

⎧

⎪

⨄

⎪

⋃

1
V if 0 ≤ x ≤

(

Lx Ly Lz

)

0 otherwise .
(8.98)
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The same is done for the spatial direction of the particlesŠ momenta in spherical coordinates φ

and θ

f(φ) =

⎧

⨄

⋃

1
2π if 0 ≤ φ ≤ 2π

0 otherwise
, (8.99)

f(θ) =

⎧

⨄

⋃

1
π if − 1 ≤ cos(θ) ≤ 1

0 otherwise
. (8.100)

To fulĄll (8.92), the initial movement of the mean Ąeld is set to zero

σ̇ = 0 . (8.101)

8.5.2 Initial conditions with a off-equilibrium particle distribution

To examine the behavior of particle thermalization, the system has to be initialized with a

non-equilibrium distribution. For the thermalization calculations in Section 3.1 or the discussion

of non-equilibrium efects in Section 4.1, a Dirac-delta distribution has been chosen

f(x,p, t) =
2NcNf

(2π)3
n0 · δ(E − E0) . (8.102)

All particles have the same energy E0 but the direction of their momenta is chosen randomly. In

this scenario, the particles have a very strong deviation from thermal equilibrium. In the linear

σ-model this has an impact on the one-loop scalar density
˜

ψ̄ψ
˜

, which changes the equilibrium

mean Ąeld value σ0.

The initialization process is the same as described in subsection 8.5.1 with the diference that

the distribution function in (8.93) has to be chosen to be the Dirac-distribution. In practice a

numerical integration of Dirac-δ distributions is not recommended, so the one-loop scalar density

should be integrated by hand

∫

d3p
f + f̃

E(x,p, t)
=

2NcNf

(2π)3

n̄0 + n0

E0
. (8.103)

The constant n0 is the density for quarks, n̄0 the density for anti-quarks, which is added to deĄne

a physical total particle density for the Dirac-distribution. It can be chosen to Ąt a physical

distribution, like the Boltzmann distribution

n0 ≡
∫

d3p exp
(

−E − µ

T

)

, (8.104)

n̄0 ≡
∫

d3p exp
(

−E + µ

T

)

. (8.105)
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8.5.3 Temperature Quench

Thermal equilibration between Ąelds and particles can be tested with a temperature quench. Fields

and particles are initialized consistently at a given initial temperature T1 using the techniques in

subsection 8.5.1. In a second step the particles are re-sampled with a new temperature T2 while

leaving the Ąeld properties unchanged. Both the particle density and momenta are resampled

with (8.95) and (8.97). The ĄeldŠs and particleŠs subsystems are in thermal equilibrium, the

whole system is in non-equilibrium both thermally and chemically.

8.5.4 Woods-Saxon distribution

As a simple model for a nuclear collision, a thermal Woods-Saxon-like temperature distribution

can be employed. The initial state will be a hot ŞblobŤ with a temperature gradient starting

at some temperature T0 at the center of the distribution and drops exponentially to vacuum

temperature. For every numerical particle- and Ąeld-cell at local-thermal distribution is sampled

according to the spatial dependent Woods-Saxon temperature. The original Woods-Saxon

potential is [83]

V (r) =
V + iW

1 + exp
( r−r0

a

) . (8.106)

Using this motivation, a space dependent and radially symmetric temperature can be formulated

T (x) = T0

⎛

∐

1 + exp
(

−R0

α

)

1 + exp
(

♣x♣−R0

α

)

⎞

ˆ , (8.107)

with R0 as the width of the distribution and the slope strength α. Typical choices in DSLAM

were R0 = 0.5 fm and α = 0.1 fm. The constant upper part of the fraction is a correction term

to have T (0) = T0.

Every particle-grid cell is initialized with its own T (xcell). Every Ąeld-grid cell is initialized with

its respective ⟨ϕ⟩(T (xcell)). In case the Ąelds should be initialized with thermal Ćuctuations,

the kinetic part ϕ̇ is initialized globally with Ti and is then cell-wise multiplied with the spatial

dependent temperature

ϕ̇(x) = ϕ̇0 · T (x) . (8.108)

8.6 Thermal fluctuations of the fields

In the previous sections we have discussed how to employ diferent kinds of thermal initial

conditions, for example for the mean Ąeld value ⟨ϕ⟩. Fluctuations and thermal excitations,
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however, are given by the Ćuctuation-dissipation theorem, which has been discussed in Section

7.4.4. The spectrum of Ćuctuations in Fourier mode is given by

S
\

\

\ϕ̇(k)
\

\

\ =
kBT

2
exp

(

−1
2

k2σ2
)

. (8.109)

A numerical algorithm to sample the kinetic part of a Ąeld with a power spectrum according to

(8.109) is given in the Appendix E.

Equation (8.109) is deĄned in Fourier space and therefore for an isotropic and large system. It

is not clear how to sample a Ąeld which has a space dependent temperature gradient because

the temperature in (8.109) is constant for the system. One could use small sub-volumes and

sample these volumes with an average temperature, but as (8.109) is not scale-invariant, this

method does not work very well and would create artifacts at the boundaries of these cells. As

an intermediate solution, the method as in equation (8.108) can be used. The Ąeld is sampled

with a global, initial temperature T0, the kinetic Ćuctuations in position space are then ŞdampedŤ

with an space dependent temperature distribution T (x)/T0

8.7 Numerical optimizations

Diferent numerical optimizations are used within the DSLAM model to increase the overall

performance. General optimizations like compiler Ćags, numerical libraries, memory access

patterns or cache optimizations are very efective techniques but are of a general scope and are

not discussed here. Nevertheless, several very model speciĄc optimizations are employed in the

DSLAM model.

Sub-volume calculations Interactions between particles and Ąelds are modeled by a Gaussian

parametrization leading to an efective limited interaction volume. Typically, these interaction

volumes much smaller than the total volume of the system. To Ąnd solutions for the energy- and

momentum-manipulation equations (7.24) and (7.25), the parametrization has to be solved in

the numerical grid. The Gaussian parametrization is restricted to an efective volume, so the

numerical solver can work on this restricted sub-volume. By copying the numerical interaction to

a sub-memory and solving the equations on this much smaller system, a strong performance gain

can be accomplished. This is most efective of the sub-volume can be stored in the CPUŠs cache.

Precalculated parameterizations, exponential functions and convolution kernels Many

calculations within the simulation are performed every time step and some parts of these calcu-

lations stay constant. An example is the Gaussian convolution kernel for the smearing of the

quark densities. This kernel and its Fourier transformation can be precalculated and stored in
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memory once at the initialization phase of the simulation. The same technique can be used

for the Gaussian parametrization of the particle-wave method. In the Ąrst step of the particle-

annihilation process, only the energy diference for the Ąeld manipulation is calculated. The

parametrization stays constant and is only scaled by the factor A0. Instead of recalculating the

parametrization in every solver iteration, this static parametrization should be precalculated

once. For the momentum changing part of the interaction, this is not possible because the shape

of the Gaussian changes by varying the velocity of the wave packet. An optimization for this

case is discussed n the next paragraph.

Approximation of the exponential function Finding a suitable conĄguration of the scalar

Ąeld within a particle-Ąeld interaction, many numerical solver iterations are performed. In every

step, a new Gaussian parametrization is calculated, resulting in a huge amount of calls to the

exponential function. This function call is very computing intensive and modern CPUs do not

have an optimized instruction set for that call. A numerical trick is to optimize the exponential

function itself. One has to keep in mind that it is suicient for the particle-Ąeld method to have

a parametrization for the Ąeld disturbance, which is similar to a Gaussian function, but it is not

needed exactly satisfy the Gaussian shape. The only important benchmark is the correctness of

the total energy and momentum which the solver tries to Ąnd. Therefor a simple approximation

of the exponential function can be employed, motivated by the inĄnite sum deĄnition

ex = lim
n→∞

(

1 +
x

n

)n

. (8.110)

In practice such a method is never used to obtain an exact result, but can be used for small x

with a truncation for n = 1024 and x1024 =
(

x512
)2 =

(

(

x256
)2
)2

= ... Within the particle Ąeld

method, all calculations are done in a scale of GeV with numerical values around 10−3 ≪ 1, we

can therefore expand the exponential function around 0 with a limited n

exp(x) ≈ (1 + x/1024)1024 . (8.111)

In an eicient numerical implementation of this equation the 10th power would be replaced by

an iterative multiplication loop instead of a power function or by an compiler (in case not a

special math-compiler is used). Eventhough this approach looks rather tedious, it can speed up

the overall simulation by a factor 2-3 without impact on precision.

8.8 Temperature Parametrization

For the particle-Ąeld method in the DSLAM model, the temperature of the Ąeld has to be derived

from the mean Ąeld value ⟨σ⟩ → T . Mathematically this is the inverse function of the mean
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Ąeld thermodynamic relation T → ⟨σ⟩. For every grid-cell, such a temperature derivation has to

been performed. The calculation of ⟨σ⟩(T ) is already quite computational intensive, the inverse

function is even worse. Therefore a lookup table or parametrization is favorable.

From the mathematical side the function if ⟨σ⟩(T ) injective and surjective for the following

domains

T ∈ [0 . . .∞] ,

⟨σ⟩ ∈ (0, 93 MeV] .
(8.112)

The mean Ąeld value to temperature calculation is a very crucial and important part in the

DSLAM model because it is a major component in the physical dynamics of the model. It

is very important to chose a precise and consistent parametrization for the inverse function

because it is crucial to the thermodynamical system stability. If the lookup σ → T does not

give the correct values, thermal and chemical equilibration can not be guaranteed because the

system dynamics can become inconsistent. Additionally, if the inverse function is not strictly

monotonic, the system will become unstable as well. In case of a non-monotonic parametrization,

the heat-capacity can become negative at that point, leading to a temperature drift between

Ąelds an particles.

In the DSLAM model, a parametrization of the temperature dependence has been chosen with

the following functional expansion

T (σ) =
4
∑

n=0

[an(σ − x0)n] +
b

σ
+ e1 exp(−σ/e2) + c1 log(c2σ + c3) , (8.113)

which was found phenomenologically. The exponential and logarithmic terms have been introduced

to take into account the asymptotic behavior for σ → 0 and σ → 93 MeV. For all parametrization

x0 was a good choice.

For all parameterizations, the following boundary conditions are assumed

T (σ) =

⎧

⨄

⋃

0 if σ > 92.6 MeV

10 GeV if σ < 0
(8.114)

because there is no thermodynamical equivalent for σ outside of the deĄnitions. For high

temperatures σ slowly approaches σ → 0. However, this happens very slowly and in the DSLAM

model with particle creation and annihilation processes, the σ-Ąeld becomes strongly damped

due particle decay-processes before it can reach physically not deĄned regions. It is therefore safe

to assume a temperature cut-of with T → 10 GeV for σ → 0. The same holds for the vacuum

case with T → 0.

A plot of the temperature dependence parametrization is given in Figure 8.4.
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For diferent coupling constants g of the linear σ-model, the diferent parameter have been Ątted:

Parametrization for g = 3.3 (Cross-Over Transition)

a0 0.140371 ±0.0015 (1%)

a1 0.0797545 ±0.042 (52%)

a2 −0.830246 ±0.76 (91%)

a3 −289.383 ±14.8 (5%)

a4 1082.8 ±590 (55%)

b 7.30668 · 10−05 ±2.6 · 10−05 (36%)

e1 0.109632 ±0.01 (9.4%)

e1 0.003943 ±9.5 · 10−05 (2.4%)

c1 0.00141628 ±0.0022 (154%)

c2 −9.80346 ±5.6 (57%)

c3 0.88392 ±0.52 (65%)

Parametrization for g = 3.63 (Second-Order Transition)

a0 0.130497 ±0.0007 (0.5%)

a1 0.295938 ±0.036 (12.3%)

a2 −1.71026 ±0.33 (18.9%)

a3 −297.958 ±9.9 (3.3%)

a4 1089.32 ±413.4 (38%)

b 0.000148013 ±8 · 10−6 (5.5%)

e1 0.074768 ±0.004 (5.4%)

e2 0.00338549 ±6.5 · 10−6 (1.9%)

c1 0.00118907 ±0.0017 (146%)

c2 −22.6742 ±12 (53%)

c3 2.06127 ±1.1 (60%)

Parametrization for g = 5.5 (First-Order Transition)
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a0 0.0995044 ±0.0005 (0.5%)

a1 1.51053 ±0.015 (1%)

a2 12.0974 ±0.72 (6%)

b 8.43777 · 10−5 ±1.9 · 10−7 (0.2%)

a3 −758.905 ±5.9 (0.8%)

a4 5596.65 ±313 (5.6%)

e1 0.08084 ±0.0004 (0.3%)

e1 0.00143467 ±6.1 · 10−6 (0.4%)

c1 0.0151211 ±0.0004 (2.9%)

c2 −22.1402 ±0.03 (0.14%)

c3 2.06474 ±0.004 (0.19%)

Additionally, at the Ąrst-order phase transition the mean Ąeld value ⟨σ⟩ jumps from the chiral

broken phase into the chiral restored phase with a discontinue jump. In the inverse parametrization,

this is covered by setting

T = 0.126875 for 0.0056676381 ≤ σ ≤ 0.08079643 (8.115)
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Figure 8.3: Examples of boosted Boltzmann distributions. While the non-boosted
distribution (a) is completely uniform in θ and ϕ and only shows the typical E2e−E/T

dependency, the boosted distributions in (b) and (c) are strongly peaked in forward
direction of θ.
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discontinuity, so a constant temperature is assumed.
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Chapter 9

Summary and Conclusions

Wer aufhört, besser zu werden, hat
aufgehört, gut zu sein.

Philip Rosenthal

The scope of this thesis was the investigation of non-equilibrium efects at and near the chiral

phase transition of QCD matter. A direct approach to quantum chromodynamics is not possible,

so an efective model with similar properties and symmetries has been chosen to study thermal

and non-thermal properties and to derive qualitative equivalent predictions. The chosen model

was the linear σ-model with constituent quarks. This model consists of chiral Ąelds and particles

and has no color-conĄnement but a chiral phase transition with diferent kinds of phase transitions,

depending on the model parameter. To extend existing calculations with thermal approaches, a

numerical implementation for the σ-model has been developed in this thesis, the DSLAM model,

which employs test particles in a Vlasov equation and classical approximations on a 3D grid for

the Ąelds. The resulting model is capable of simulating various types of initial conditions and

non-equilibrium efects as no equilibration assumptions are implied on the medium.

The equilibrium properties of the chiral phase transition are already well understood for the

linear σ-model and fair for the theory of quantum chromodynamics. The question of the type

of phase transition in QCD and its transition temperature is still open. An efective model like

the linear σ-model can not fully address these issues as it is still a diferent model with diferent

properties. However, it can help to clarify the question on possible observables and indicators

which allow to derive properties of the chiral phase transition upon signatures in the detectors of

modern heavy-ion experiments.
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Several aspects of non-equilibrium efects have been examined in this work. A more static

approach was the analysis of efects caused by thermal deviation from equilibrium in the quark-

distribution function or by deviations from the equilibrium density. In the DSLAM model

the quark can acquire arbitrary momenta, resulting in a distribution function diferent from a

equilibrium one like the Fermi distribution. A medium temperature can not be deĄned in such a

case but such deviations change the energy density at which the phase transition would take

place in comparison to a fully equilibrated medium. The same can be shown for the order of the

phase transition in such a static analysis. Deviations in the distribution function can change the

behavior and potential of the σ-Ąeld, leading to a diferent order of the phase transition. An

even stronger efect has the density of the quarks, which is given by the total particle number

and the scalar chiral density in the model. Any deviations from the equilibrium density have

a dramatic efect on the critical temperature of the phase transition. These Ąndings make it

hard to derive valid signatures for the σ-model which allow conclusions from observations like

Ąnal state energies or density distributions as the system reacts very sensitively to initial state

deviations and also to any deviations from equilibrium through the whole evolution.

The second approach to non-equilibrium efects was attempted by dynamical simulations with

explicit non-equilibrium initial conditions like quenched or rapidly expanding media. These

model systems showed the importance of chemical processes, which are needed for an efective

thermalization of both thermal modes and even more importantly the particle number. Equili-

bration time scales heavily depend on the interaction-time scales. Additionally, simulations with

expanding matter drops showed that the type and strength of Ćuctuations mainly depend on the

coupling between particles and the Ąeld and their reaction rate, and not on the type of phase

transition the model shows in an adiabatic equilibrium phase transition. This is a real surprise

as a rapid expansion and cooling is something very diferent from an adiabatic phase transition.

Phenomena like critical slowing down was observed indirectly because the reaction rates of the

process σ ↔ ψ̄ψ dropped near and at the phase transition. A reduction of the reaction rates

increased the correlation length and correlation time-scales. In a calculation of an expanding

matter droplet, this Şfreeze-outŤ of interactions has only a minor efect because the system does

not stay long enough in this region to gain signiĄcant efects from it. Another possible approach

to observe critical slowing down would be to regard a large and thermal system which is slowly

driven near the phase transition by a heat bath. The damping of chemical reactions could lead

to a kind of kinetic freeze-out of the Ćuctuations which increases the correlation and Ćuctuation

lengths of the system.

However, some other interesting aspects have been found with the DSLAM model in the rapid

expansion scenarios. The formation of bubbles and strong, local Ćuctuations have been observed

for simulations with a strong coupling between Ąelds and particles. These Ćuctuations and

bubbles would not be visible in a heavy-ion experiment, but their impact on angular distributions

of conserved charges could be a possible observable and are subject to further investigations.
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Chapter 9 Summary and Conclusions

In summary, the physical calculations and investigations in this work indicate that non-equilibrium

efects have a very strong impact on the properties of the matter in the linear σ-model. Standard

thermal approaches and views on the phase diagram of the σ-model are only valid for systems

which are very close to thermal and chemical equilibrium. Highly dynamical systems can show a

very diferent behavior to a usual phase transition. However, the importance of the chemical

processes σ ↔ q̄q in the σ-model open a possible new approach to this topic as signatures for

dynamical systems could relate strongly to the microscopic properties of these interactions.

Upcoming experiments with the CBM detector at the Facility for Antiproton and Ion Research

(FAIR) will include extensive studies on the deconĄnement and chiral phase transitions. By

probing nuclear matter with heavy-ion collision, quark-gluon matter of high energy and very

high densities is created. Varying these parameter and observing event-by-event Ćuctuations will

make the CBM experiment a powerful tool in the exploration of the QCD phase diagram.

The used model and implementation includes some strong approximations, and quantum efects

have been mainly ignored in this work. The cross-sections for the processes should be extended

using quantum calculations, especially for strong couplings at the phase transition, in which the

ĄeldŠs mass mσ becomes tachyonic. A better treatment of the pion sector could increase the

realism of the model at low temperatures, as well.

In the process of modeling and implementing the numerics of the σ-model, another interesting

topic crystallized in this thesis, the particle-Ąeld method. One of the Ąrst problems with the

model was the lack of interactions between Ąelds and particles, which became a real challenge as

there was no general method which allowed collision-like interactions between a classical particle

and a classical, multidimensional Ąeld.

A good description for both Ąelds and particles turned out to be energy and momentum and

after some careful numerical testing it turned out that interactions could be described by the

noncontinuous exchange of energy and momentum, borrowing some old ideas from the wave-

particle duality of matter. The resulting method was the Ąrst which allowed arbitrary interactions

at arbitrary timescales between Ąelds and particles, conserving both energy and momentum

all the time. Several simple and complex model-systems have been developed and used to test

the robustness of the method, and a large part of this thesis was used to investigate this newly

developed method. I hope this method is applied to other topics and areas in research in which

this generic problem is occurring.
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Appendix A

Numerical Properties of Different

Interaction Parameterizations

To hold a pen is to be at war.

François-Marie Arouet (Voltaire)

This section is dedicated to the momentum to energy ratio of a particle-wave excitation on a

wave equation. The underlying system is a free wave equation

∂2u

∂t2
= c2∇2u . (A.1)

For simplicity, the wave equation has no potential V (u) = 0. This is reasonable for weak potentials

or small, energetic excitations which keep most of their energy in the kinetic parts u̇ or ∇u.

The energy, the momentum and the ratio of both is calculated for several wave excitations.

Because of numerical reasons, all excitations will behave diferently and are more or less useful in

a numerical implementation.

If the wave equation would have a non-negative potential, all calculations in this chapter are

still valid, however they have to be seen as upper limits. For a given energy, a potential lowers

the possible momentum of a wave packet. This efect can be approximated with the following

equation
P

Efree
>

P

Efree + V (ϕ)
. (A.2)
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Figure A.1: One-point stencil on a discrete, numerical grid. The excitations moves
from left to right.

ϕ 0 0 h 0 0
∇ϕ 0 0 h/∆x −h/∆x 0
ϕ̇ 0 −hv/∆t hv/∆t 0 0

∇ϕ · ϕ̇ 0 0 h2v/ (∆x ∆t) 0 0
Table A.1: Numerical representation of the one-point stencil and its spatial and time
like diferences as seen in Ągure A.1. Both the Ąrst order spatial and time diference
scheme has been applied. The stencil is normed to a height of 1.

A.1 Energy-Momentum Transfer Ratio for a One-Point Stencil

in One Dimension

The maximum momentum to energy ratio for a one-point stencil on a numerical xi grid is

calculated. A one-point stencil can be described as the numerical pendant to the Kronecker-δ.

We assume a moving, single grid point excitation, which is moving in one direction with the

velocity v. For simplicity a one dimensional system is assumed

f(x) = hδ(x− xi − v · t) . (A.3)

The stencil describes a excitation within the wave equation, the velocity v is an initial velocity

which deĄnes the momenta of the excitation. The actual movement velocity is determined by the

dispersion relation of the wave equation.

The energy and the momentum of the moving one-point stencil are calculated by employing Ąnite

diferences for the derivatives

∇ϕ(x) → f(x+ ∆x) − f(x)
∆x

, (A.4)

and
dϕ(x)

dt
→ f(t+ ∆t) − f(t)

∆t
. (A.5)
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Figure A.2: 3-point stencil on a discrete, numerical grid. The excitations moves
from left to right.

The energy and momentum for a one-point stencil is the sum over the energy contributions for

every grid point. The single contributions are given in Table A.1. The total energy is

E =
∑

i

1
2

(

ϕ(xi, t)2 + (∇ϕ(xi, t))2 + ϕ̇(xi, t)2
)

=
1
2

(

h2 +
2h2

∆x2
+

2h2v2

∆t2

)

, (A.6)

and the total momentum

P =
∑

i

∇ϕ(xi, t)ϕ̇(xi, t) =
h2v

∆t∆x
. (A.7)

Their ratio of momentum to energy is

P

E
=

2h2

∆x2
(

2h2v2

∆x2 + 2h2

∆x2 + h2
) . (A.8)

For a general wave equation with velocity v = c = 1, we can assume with no loss of generality

∆x = ∆t:
P

E
∆x=∆t−−−−→
v=1

2
∆t2 + 4

∆t≪1≈ 1
2

(A.9)

For a one point stencil on a numerical grid, the maximum momentum to energy ratio can not be

come larger than 1/2.

A.2 Energy-Momentum Transfer Ratio for a Three-Point Sten-

cil In One Dimension

In this section the maximum momentum to energy ratio is calculated for a three-point stencil.

Like in the previous section, the maximum energy to momentum ratio of a three point stencil is

calculated. The three-point stencil has two additional, smaller steps on the grid and Table A.2

with all energy and momentum contributions becomes more complex.
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ϕ 0 h/2 h h/2 0
∇ϕ 0 h/2∆x h/2∆x −h/2∆x −h/2∆x
ϕ̇ −hv/2∆t −hv/2∆t hv/2∆t h/2∆t 0

∇ϕ · ϕ̇ 0 h2v/ (4∆x ∆t) h2v/ (4∆x ∆t) h2v/ (4∆x ∆t) 0
Table A.2: Numerical representation of the 3-point stencil and its spatial and time
like diferences as seen in Ągure A.2. Both the Ąrst-order spatial and time diference
scheme has been applied. The stencil is normed to a height of 1.

The energy and the momentum of the moving 3-point stencil are

E =
1
2

∑

i

1
∆x

(

ϕ(xi)2 + (∇ϕ(xi))2 + ϕ̇(xi)2
)

=
1
2

(

3h2

2
+

h2

∆x2
+

2h2v2

∆t2

)

, (A.10)

and

P =
∑

i

∇ϕ(xi)ϕ̇(xi) =
3h2v

4∆t∆x
. (A.11)

Their ratio is:

P

E
=

3h2

2∆x2
(

2h2

∆x2 + 3h2

2

) (A.12)

For a general wave equation with velocity v = c = 1, we can assume without loss of generality

∆x = ∆t:
P

E
∆x=∆t−−−−→
v=1

3
3∆t2 + 4

∆t≪1≈ 3
4

(A.13)

As we can see, the three-point stencil has a maximal ratio of 0.75, while the one point-stencil

had a ratio of 0.5

The more points the stencil has, the more ŞsmoothŤ it behaves on the grid. A more smooth

function will have its maximal momentum to energy ratio more in the region of 1.

Impact of the finite-difference definition

In the above calculations, the backwards deĄnition of the spatial Ąnite diference has been used

∇xf(x) ≈ f(x) − f(x− ∆x)
∆x

. (A.14)

If the forward deĄnition would have been used

∇xf(x) ≈ f(x+ ∆x) − f(x)
∆x

, (A.15)
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the P/E-ratio for the one-point stencil would become exactly 1. However, if the stencil would

then travel in the opposite direction, the ratio would drop again to 1/2. Furthermore, if the

center-diference deĄnition would have been used

∇xf(x) ≈ f(x+ ∆x) − f(x− ∆x)
2∆x

(A.16)

the ratio would be even worse.

However, the general statement still holds: the more smooth the stencil and the more spatial

distributed points exist, the better the momentum-to-energy ratio will become, independently of

the Ąnite-diference deĄnition.

Numerical artifacts In the above sections, the use of point like excitations on the grid was

discussed. It turned out, that these excitations have a poor momentum-to-energy ratio. This

problem becomes even worse, if numerical errors are taken into account. If a non-continuous

excitation happens on a numerical grid, most wave equation solvers will generate numerical

artifacts. This happens typically if the size of the excitations are in the order of the grid-

resolution. The result are unphysical oscillations (Gibbs phenomenon) and high-frequency

problems (Nyquist error). Figure A.3 shows two examples of those numerical artifacts. The

artifacts are strongly suppressed for smooth excitations, in general they are suppressed with the

order of their diferentiability, similar to the convergence theorem of Fourier series.

The numerical noise, like in Ągure A.3, turns the one-point and 3-point stencil method useless

for practical applications. The noise increases heavily the derivative terms, which increases the

energy. In contrast, the momentum is canceled and the momentum to energy ratio is driven close

to zero. So even if an initial excitation can be added very precisely to the numerical grid, it will

evolve to noise after some time. F Therefore in the next section a very smooth function will be

investigated, the Gaussian function.

A.3 Energy-Momentum Transfer Ratio for a One-Dimensional

Gaussian

For simplicity, we assume a vanishing potential

V (ϕ) = 0 . (A.17)
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Figure A.3: Comparison of point-like excitations on the numerical grid. Left:
the grid was excited on a single grid point (one-point stencil). Right: the grid was
excited on three grid points (3-point stencils). Both excitations create numerical
artifacts, however the disturbance with the single grid point is much stronger than the
three-point excitation. The smoother the initial excitation, the less numerical artifacts
are generated by the partial diferential equation solver.

This is a reasonable approximation for small excitations or fast moving excitations where

∇ϕ2 ≫ ϕ2 or ϕ̇2 ≫ ϕ2.

ϕ(x, t) = exp

(

− (x− vt)2

2σ2

)

(A.18)

E =
1
2

∫

dx
[

ϕ̇2(x, t = 0) + (∇ϕ(x))2
]

(A.19)

P =
∫

dx
[

ϕ̇(x, t = 0) · ∇iϕ(x)
]

(A.20)

For v → 1, the momentum ratio is exactly 1 at every point in space:

P (x)
E(x)

= 1 (A.21)

For a 1D Gaussian, the wave packet can be directly interpreted as a particle excitation with the

properties:

P ≤ E (A.22)
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Because of the smoothness of the Gaussian, we have no discretization efects. For a Gaussian on

a discrete grid, a small amount of discretization errors will occur, if the number of Ąeld elements

is too small.

A.4 Energy-Momentum Transfer Ratio for a Non-Relativistic

3D Gaussian

In the previous section, the transfer for a moving Gaussian in one dimension was calculated. This

is a reasonable approximation for a fast wave, a weak potential or a small but string excitation,

which kinetic energy is dominant. max(P/E) was 1. This calculation is extended to three

dimensions now.

ϕ(x, t) = exp

(

− (x− vxt)
2

2σ2
x

)

exp

(

− (y − vyt)
2

2σ2
y

)

exp

(

− (z − vzt)
2

2σ2
z

)

(A.23)

ϕ̇(x) = ∂tϕ(x, t)♣t→0 (A.24)

∇iϕ(x) = ∂tϕ(x, t)♣t→0 (A.25)

E =
∫

V
dx3 1

2

⎛

∐ϕ̇2(x) +

[

3
∑

i

∇iϕ(x)

]2
⎞

ˆ (A.26)

Pi =
∫

V
dx3 (ϕ(x) · ∇iϕ(x)) (A.27)

For simplicity, the velocity is assumed along the x-axis

v⃗ = vx · e⃗x . (A.28)

For σ2
i > 0

P

E
=

2vxσ2
yσ

2
z

(1 + v2
x)σ2

yσ
2
z + σ2

x

(

σ2
y + σ2

z

) . (A.29)

Equation (A.29) gives the momentum to energy ratio for a three dimensional Gaussian wave

packet with a given velocity vx. However, this will not be the Ąnal equation because we already

know that wave excitations travel with ♣v♣ = 1. Let us check for the maximum of equation A.29

with respect to the velocity.

We assume a spherical wave packet

σx ≡ σy ≡ σz ≡ 1 . (A.30)
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Equation (A.29) becomes
2vx

3 + v2
x

. (A.31)
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Figure A.4: Ratio of the momentum to energy transfer of a 3D spherical Gaussian
for a given velocity.

Figure A.4 shows equation (A.30) with respect to the velocity. The ratio seems to have a

maximum at ±
√

2 of ≈ 0.7. However, this is a numerical artifact. An excitation with v > 1 would

generate two Gaussian waves, one in forward direction with v = 1 and another in backwards

direction with v = −1. For a physical wave equation, the following limit is obtained

max
(

P

E

)

v→1=
1
2
. (A.32)

This is an interesting result. For any spherical Gaussian wave packet (and in fact for any other

spherical object), only 50% of the transferred energy can be in form of momentum. This seems

puzzling but can be easily explained by the fact that ϕ̇,∇xϕ,∇yϕ and ∇zϕ contribute to the

energy but only ϕ̇ and ∇xϕ contribute to the momentum.

Let us now take a look at an elliptical Gaussian by starting with equation (A.29) and deĄning

σy = σz ≡ aσx . (A.33)

P

E
=

2a2vxσ
2
x

2aσ2
x + a2(1 + v2

x)σ2
x

v→1=
a

1 + a
(A.34)

For a → 0 the energy to momentum ratio lowers to zero P/E → 0. For a → ∞ the momentum

to energy transfer asymptotically grows to 1. This is no surprise as for a → ∞ the 3D Gaussian
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becomes spatially homogeneous in y- and z-direction, which is the same as an one dimensional

system. Additionally we will see in the next section that this transformation is the same as a

Lorentz boost for high velocities in which the spherical Gaussian will be boosted to a slim disk.

A.5 Energy-Momentum Transfer Ratio for a Relativistic 3D

Gaussian

In the last section the momentum over energy ratio for a spherical Gaussian in three dimensions

was calculated. This calculation neglected any relativistic efects, resulting in a upper momentum

to energy ratio of 1/2. Furthermore momentum and energy of any relativistic object would grow

to inĄnity for β → 1, which is not the case for the non-relativistic calculation in the last section.

To address this issue, we will boost the Gaussian along the velocity direction. For simplicity we

assume the velocity to be in line with our coordination-system in x-direction

v =

⎛

ˆ

ˆ

∐

v

0

0

⎞

ˆ

ˆ

ˆ

. (A.35)

The non-relativistic form of the spherically symmetric 3D Gaussian becomes

ϕ(x, t) = A0 exp

(

− (x− vt)2

2σ2
x

)

exp

(

−y2 − z2

2σ2
yz

)

. (A.36)

Both the space and time are boosted in x-direction:

x′ = γx , (A.37)

t′ = γt , (A.38)

1/γ =
√

1 − β , (A.39)

β =
v2

c2
= v2 . (A.40)

Boosting (A.36) leads to

ϕ(x, t) = A0 exp

(

−γ2 (x− vt)2

2σ2

)

exp

(

−y2 − z2

2σ2

)

. (A.41)
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Performing the same calculations for the energy and momentum as in the previous section, we

arrive at the energy to momentum ratio with

P

E
=

2v
3 − v2

=
−2

√
β

3 − β
. (A.42)

We have performed a Lorentz boost on the Gaussian, still equation (A.42) looks very similar

to (A.31) with the diference of the minus sign. However, for v → 1 we now get the correct

relativistic limit

max
(

P

E

)

v→1= 1 . (A.43)

Figure A.5 shows the ratio P/E in dependence to the relativistic velocity. Additionally, the
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Figure A.5: Ratio of the momentum to energy transfer of a 3D spherical Gaussian
with a Lorentz-boost.

energy and momentum of the Gaussian are now boosted and can reach arbitrary large values for

v → 1. In equation (A.41) x and t were boosted. This boost, which introduced an additional γ2

in the equation could be absorbed in a boosted σ̃x:

σ̃x =
σ

γ
(A.44)

This boost in x-direction can be reinterpreted in a smaller Gaussian width in x-direction,

compressing the spherical Gaussian to a thin disk for high velocities v → 1. In a numerical

simulation the Lorentz-boost has to be employed in all three dimensions, extending (A.23) with
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the general Lorentz-transformation

ϕ(x, t) = A0

3
∏

i

exp

⋃

⨄− 1
2σ2

i

(

4
∑

µ

Λµνxν
)2
⋂

⎦ . (A.45)

However, for small velocities or small momentum to energy ratios, the non-boosted version can

be used as an approximation. For P/E < 0.3 the error is about 18.6%. Additionally, one has to

be careful with the numerics for high velocities. For v → 1 the Gaussian becomes a slim disk

which can lead to discretization artifacts if the efective σ̃ becomes of the order of magnitude of

the grid size.
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Numerical Sampling

Maybe life is random, but I doubt it.

Steven Tyler

Numerical Sampling Methods

In physics many systems are deĄned and described by distribution functions. Prominent distribu-

tion functions are the Gaussian distribution, the exponential distribution as well as Boltzmann,

Fermi- or Bose-distributions.

Distribution functions are handy in statistical physics and many models deĄne evolution equations

for distribution functions. The Boltzmann function is a typical example for such a theory. Other

models are the Fokker-Planck equation [153], the master equation or the Black-Scholes equation

for stock-option pricing [154] and many more. For a given distribution function, one can derive

time-evolution equations within these theories.

In general, distribution functions are continuous objects with a statistical interpretation. Most of

the time, they are deĄned as probability density functions f(x) with the following properties:

Boundedness :
∫

dx f(x) = c , (B.1)

with c = 1 in case of a probability-density function or with a physical value for c, for example

the particle number in case of the Boltzmann distribution.

For a probability distribution function, the expectation value for an observable A(x) is deĄned as

⟨A⟩ =
∫

A(x)f(x)dx . (B.2)
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This comes handy for analytic calculations, for numerical computations a discrete realization of

a distribution function is needed. The process of generating a Ąnite number of elements with

properties which follow a given distribution function is called sampling

f(x)
Sampling−−−−−→ 1

N

N
∑

i=1

δ(x− xi), (B.3)

which reasembles the distribution function again in the continuous limit:

lim
N→∞

1
N

N
∑

i

δ(x− xi) = f(x) (B.4)

There is no single method for sampling, in fact it is an own discipline in numerical mathematics

and various methods exist, depending on the properties of the functions to sample. All methods,

which have been used in this thesis is listed in the following. The common point of all functions

are the need for good random numbers.

Random-Number Generation

Sampling is directly related to random-number generation. In theory, a distribution function

could be sampled with a deterministic pattern over the sampling range. However, for Monte-Carlo

simulations one is interested in exploring the physical phase space of a model with probability

methods. Therefore it is of interest to generate slightly diferent versions of a calculation, even

though the initial conditions are the same. In general, the initial conditions are given by a

distribution function and because of the too high numerical complexity of propagating the

exact solution, the initial conditions are sampled and the subset of Monte-Carlo realizations are

evaluated. Multiple runs with diferent sampling realizations lead to diferent results in the end

which can be used for statistical analysis.

In all cases, Monte-Carlo calculations make heavy use of random numbers. For simulations, the

generated random numbers should have a high statistical quality with a long period and for

practical use should be fast in generation. In contrast to cryptographic applications, Monte Carlo

simulations do not need an unpredictable stream of numbers.

A good choice for a general-purpose generator is the patent free Mersenne-Twister MT19937

[140]. It is based on a linear recurrence matrix on a Ąnite Ąeld and has a period of 2219937 − 1.

The chosen implementation implementation is the SSE2 optimized dSFMT implementation [155]

which generated Ćoating-point numbers in the interval [0, 1).
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B.1 Inversion Method

The inversion method is a straight forward, numerically stable and fast method for the exact

sampling of a distribution function. Its drawback is its limitation to distribution functions which

have an invertible cumulative distribution function.

The cumulative distribution function for a random variable with X ∈ R with F (x) = P (X ≤ x)

can be calculated from the probability distribution function f(x) via an integration

FX(x) =
∫ x

−∞
f(τ) dτ . (B.5)

Per deĄnition, FX(x) ∈ [0, 1].

For any random number ξ, the generated number Xf follows the distribution f if

Xf := F−1(ξ) ¶ξ ∈ [0, 1]♢ , (B.6)

with ξ as an uniformly distributed random number. The following shows the sampling of an

exponential function with the probability distribution function

f(x) = exp (−γx) for x ∈ R
+ , (B.7)

and the normed cumulative distribution function

F (x) =
∫ x

0
dx′ f(x′) =

1
γ

[1 − exp (−γx)] . (B.8)

By inverting and substituting ξ = 1 − ξ′ the following generating function is deĄned

x = F−1(ξ) = − ln(ξ)
γ

¶ξ ∈ (0, 1]♢ . (B.9)

A sample of multiple x will follow an exponential distribution.

B.2 Accept-Reject Method

The Accept-Reject Method, or rejection-sampling [156] can be used to sample functions which

can not directly be sampled with the inversion method. An example for such a function is the

Boltzmann distribution

f(E) = E2e−E/T , (B.10)
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which can be integrated but not inverted. The accept-reject method can be applied if an arbitrary

distribution function f(x) has an envelope function g(x) and a constant k which fulĄll

∀x ∈ R : f(x) ≤ k · g(x) . (B.11)

The sampling is done in two steps, a random variable xg is sampled according to g(x), which

acts as an candidate for the actual function f(x). This candidate is accepted with the following

probability

p =
f(xg)
k · g(xg)

. (B.12)

In case of the Boltzmann distribution function (B.10), a typical choice for the envelope function

would be

g(x) = 2T 2e−x/2T , (B.13)

g(x) can be sampled with the inversion method.

B.3 Metropolis-Hastings Sampling

Metropolis-Hastings sampling is a generic method for sampling distribution functions which can

not be sampled with the above methods. It is based on Markov chains (Markov chain Monte

Carlo method, MCMC) and beside the sampling of distribution functions, it can be used to

sample time-like distribution as well [157]. Interestingly, it was originally proposed for numerical

equation of state calculation with canonical ensembles [158].

The idea of the algorithm is to perform a random walk on the distribution function. The

probability of jumping from a position xi to a possible candidate position xc is weighted by the

ratio of the probabilities given by the ratio of the distribution function

p =
f(xc)
f(xi)

. (B.14)

The jump from xi to xc can be modeled in multiple ways, either by sampling xc completely

random, or by walking in Gaussian steps:

xc = xi +
1

2
√
σπ

exp

(

− ξ2

2σ2

)

(B.15)

Evaluation of a new candidate xi is done a predeĄned number of rounds and has to be chosen

as a trade of between sampling accuracy and calculation time. The following listing shows the

algorithm in pseudo code:
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1 E = initialGuess()

2 for round in range(NumberOfRounds):

3 randomJump = randomGaussian()

4 candidate = E + randomJump

5 if randomUniform() > pdf(candidate)/pdf(E):

6 E = candidate

In this thesis, the Metropolis-Hastings algorithm is used to sample particles according to the

Boson- and Fermi-distributions.

B.4 Sampling of Gaussians

Random numbers which are Gaussian distributed are vastly needed for the simulation of noisy

processes, like the Langevin-equation or for initial conditions. The Metropolis-Hastings algorithm

needs a Gaussian random number for every iteration step. A suitable sampling method is the

Box-Muller transform [159], however this makes heavy use of trigonometric functions. With some

minor modiĄcations, this method can be derived to the Marsaglia polar method [160], which is

numerically more eicient and is used in this thesis. It generates two Gaussian random numbers

at a single calculation step.

Two random variables are chosen with the condition

ξ′ = ξ2
x + ξ2

y ≤ 1 ¶ξx, ξy ∈ [−1, 1]♢ . (B.16)

The resulting independent random numbers are:

Xx = ξx ·
√

−2 ln(ξ′)
s

, Xy = ξy ·
√

−2 ln(ξ′)
s

. (B.17)
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Discrete Exponential Decay

Wife walks in on husband, a string
theorist, in bed with another woman. He
shouts, ŞI can explain everything!Ť

In this section the mathematical properties and the numerical implementation of a discrete

exponential decay are discussed.

The exponential decay is deĄned via the well known diferential equation

ẏ =
dy
dt

= −λy (C.1)

and has the solution

y(t) = Ce−λt . (C.2)

The exponential function is a smooth and arbitrary derivable function. Being fully deterministic,

the exponential function has no statistical variance and the function itself matches its ensemble

average

Ce−λt = ⟨⟨Ce−λt⟩⟩ . (C.3)

In numerical simulations, especially in Monte-Carlo simulations, a statistical variance or some kind

of random process desirable. Therefore the simulation and properties of a discrete, exponential

like decay function are investigated in this section.

The discrete decay function ŷ(ti) should have the following properties:

• ŷ should have a discrete update rule: ŷi+1 = yi − ∆y if a reaction happens, otherwise

ŷn+1 = yn
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• the ensemble average should be the one of an exponential function ⟨⟨ŷt⟩⟩ = C exp(−γt)

It should be clear, that a closed form for ŷ can not be found, nevertheless we can deĄne its

statistical properties and how to simulate it.

Let us deĄne the discrete exponential-like decay: We want to simualte a system with N0 particles,

so

ŷ(0) = N0 . (C.4)

A particle decay removes a ∆N from the system which can be seen as the pendant of a single

particle leaving the system

ŷi+1 → ŷi − ∆N . (C.5)

The probability for a particle to decay with a time interval ∆t is derived from the exponential

law:

1 − exp(−γ∆t) =

(

γ∆t− γ2∆t2

2!
+
γ3∆t3

3!
+ ...

)

∆t≪1≈ γ∆t . (C.6)

Each particle has the same, independent decay probability γ, so the decay probability for a single

reaction scales linearly

pt = γNt∆t , (C.7)

with Nt as the number (or density) of particles present at time t. To simulate a discrete

exponential decay with such a probability, ∆t has to be small enough. Concretely we have to

make sure that pt ≪ 1 and to neglect double decays in one time step p2
t ≪ pt and p2

t ≪ 1. A

typically order of magnitude could be 10−2 > pt

Proof: ⟨⟨ŷ(t)⟩⟩ = exp(t)

We can think about ŷ as a Ąnite number of particles which can decay independently from each

other. First, a single, isolated particle is regarded. The decay probability of this particle should

not vary in time

pdecay(t) = p . (C.8)

We deĄne P (t) the probability to survive a given amount t without decaying. The particle is

alive in the beginning, so we can state P (0) = 1. The probability to survive a given amount of

time ∆t is given in Ąrst order by

probability to survive between t and t+ ∆t = γ∆t (C.9)

and is valid for ∆t ≪ 1 and exact for ∆t → dt.
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Given the survive probability for a time step ∆t and the start probability P (t), we can derive

P (t+ ∆t) = P (t)(1 − p0∆t)

≈ P (t) +
∆P (t)

∆t
∆t = P (t) − P (t)p0∆t ,

1
P (t)

∆P (t)
∆t

= −p0

(C.10)

⇒ P (t) ≈ C0 e−p0t . (C.11)

For ∆t → dt, equation (C.10) recovers to the exponential law. Simulating equation (C.10) with

∆t ≪ 1 we get a decent approximation.

For a single particle we have shown that Ŷ has the ensemble average as an exponential function.

We now look at the ensemble average for multiple particles.

The decay of a single particle is statistically independent from all other particles, so we can solve

the decay function for every particle independently: Ŷ → Ŷi.

Ŷ (t) =
N
∑

i=1

Ŷi(t) (C.12)

If Ŷi is statistically independent of Ŷj , their ensemble average is also independent of each other:

˜˜

Ŷ (t)
˜˜

=

⨀⨀

N
∑

i

Ŷi(t)

⨁⨁

=
∑

∆Nie−pit . (C.13)

All particles should be identical, so equation (C.13) can be simpliĄed:

pi = p0, ∆Ni=1 = ∆N (C.14)

˜˜

Ŷ (t)
˜˜

=
N
∑

i

∆Ne−p0t = N e−p0t (C.15)

(C.16)

Under these assumptions, our discrete decay function shows the same ensemble average as the

analytic exponential function, no matter how many particles we choose to simulate. We only

have to make sure our numerical implementation properly simulates one particle decays.

Numerical Simulation

The numerical simulation of a discrete decay is straight forward:
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1 # simple simulation of a discrete decay function

2 import random

3 t, dt, tStop = 0., 0.001, 300.

4 N = N0 = 100 # number of particles

5 deltaN = 1 # impact of one particle

6 gamma = 0.025 # decay rate

7 while t < tStop:

8 prob = N * gamma * dt # single event decay probability

9 if prob > random.random(): # monte carlo sampling

10 N -= 1

11 t += dt

Figure C.1 shows some examples for diferent initial particle number N0. Note how the decaying

function ŷ(t) approaches the smooth exponential for N ≫ 1.
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Figure C.1: simulation of a discrete, exponential like decay for diferent particle
ensembles. For Npart → ∞ the discrete decays recovers to an exponential decay.
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Kinematics, Interactions and Decays

The First Rule of Tautology Club is the
Ąrst rule of Tautology Club.

Tautology Club

This chapter will shortly discuss the kinematics of particle interactions and decays. A more

detailed view of this discussion can be found in [161] or in the very good lecture notes [162].

D.1 Relativistic Kinematics

Some notation from special relativity:

Lorentz metric tensor gµν = diag (1,−1,−1,−1) , (D.1)

spatial four vector xµ = (t, x⃗) , (D.2)

proper time dτ = dt/γ , (D.3)

Lorentz boost γ−1 =
√

1 − (v/c)2 =
m

E
, (D.4)

four velocity uν = γ (1, v⃗) , (D.5)

four momentum pµ = muµ =
(

p0 − E, p⃗
)

, (D.6)

energy momentum relation p2 = pµpµ = E2 − p⃗2 = m2 . (D.7)

189



Appendix D Kinematics, Interactions and Decays

D.2 Two-Particle Elastic Interactions

Elastic collisions are deĄned by several constraints: The particle number conservation, momentum

conservation and mass conservation

∑

j

p2
j =

∑

j

m2
j = const , (D.8)

∑

j

p⃗j = const . (D.9)

The case for two particles is discussed in the following. The incoming particles are labeled 1

and 2, the outgoing 3 and 4. We assume that an interaction does not change the mass of the

incoming particles

m1 = m3, m2 = m4 . (D.10)

Therefore energy-momentum conservation states

p1 + p2 = p3 + p4 . (D.11)

In many kinematic calculations, the Mandelstam variables are very helpful

s = (p1 + p2)2 , (D.12)

t = (p1 − p3)2 , (D.13)

u = (p1 − p4)2 . (D.14)

The Lorentz invariant s variable is very handy as it deĄnes square of the center-of-momentum

energy:

s = (p1 + p2)2 = (E∗
1 + E∗

2)2 = (E1 + E2)2 − (p⃗1 + p⃗2)2 . (D.15)

with the particles energies in the center-of-momentum frame E∗
1,2. In the center-of-momentum

frame where

p1 + p2 = 0 = p3 + p4 , (D.16)

interactions become trivial in case of elastic scattering

E∗
1 = E∗

3 , E∗
2 = E∗

4 . (D.17)

We deĄne a relative velocity

v12 =
\

\

\

\

p⃗∗
1

E∗
1

− p⃗∗
2

E∗
2

\

\

\

\

=
\

\

\

\

p⃗∗
1

E∗
1

− −p⃗∗
1

E∗
2

\

\

\

\

=
♣p⃗∗

1♣
E∗

1E
∗
2

(E∗
1 + E∗

2) . (D.18)
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which is needed fort the important Møller Ćux factor v12E
∗
1E

∗
2 . It is part of the particle Ćux

within the cross section and a frame independent quantity.

D.3 Cross Section

The general diferential cross section for two incoming particles and Nf particles in the Ąnal state

is [11]

dσ =
1
v12

(2π)2δ(4)

⎛

∐

Nf
∑

f

pf − p1 − p2

⎞

ˆ ♣Mfi♣2
1

2E1

1
2E2

∏

j=f

d3pj
2Ej(2π)3

. (D.19)

In case of elastic scattering with two particles in the Ąnal state this equation can be simpliĄed by

evaluating some parts of the integrals in the center-of-momentum frame

dσ∗ =
1

2E1E2v12

♣p1♣
(2π)24

√
s

♣M (p1, p2 → p3, p4)♣2 dΩ∗ . (D.20)

Having equals particles in all four states, we can simplify even further

(

dσ
dΩ

)

com
=

♣M ♣2
64π2E2

∗

. (D.21)

Equation (D.21) is heavily used in the numerical model DSLAM. Employing a constant, isotropic

cross section, (D.21) can be integrated to a total cross section. Using this total cross section,

the interaction probability for two particles can be examined. Their outgoing momenta can be

sampled isotropically in the center-of-momentum frame after the collision.

D.4 One Particle Decay

An unstable particle can decay into two or more outgoing particles. In our case, we think of the

following process

σ → ψ̄ψ . (D.22)

Particle decay can not be interpreted in terms of collision probabilities or geometric aspects, but

rather in a diferential rate for the decay to happen spontaneously. The decay rate for a unstable

particle with momentum pi and mass m =
√
s into multiple particles can be derived from (D.19)

dΓ =
(2π)4δ(4)

(

∑Nf pf − pi
)

2Ei
♣Mfi♣2

∏

j=f

d3pj
2Ej(2π)3

dΩ . (D.23)
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Again, in case of two particles in the Ąnal state, we can simplify this to

dΓ =
♣p♣

32π2m2
♣Mfi♣2 dΩ . (D.24)

Assuming an unporalized decay, the integration over phase space can be done

Γ =
♣p♣

8π2m2
♣Mfi♣2 . (D.25)

Equation (D.25) is again very useful for the calculations in the DSLAM model. However, the

decay rate calculates the decay probability for a particle at rest. A fast moving particle has a

boosted proper time, leading to an increase of itŠs life time. This boost has to calculated with

Γ/γ = Γm/E or by using the velocity v = p/E.

The energy of the Ąnal state particles is easily derived from kinematic limits. For a better

readability, the mass of the unstable particle is denoted as M and the mass of the Ąnal particles

m1 and m2

E1 =
1

2M

(

M2 +m1 −m2

)

, (D.26)

p⃗2
1 = E2

1 −m2
1 =

1
4M2

(

M4 − 2M2(m2
1 +m2

2) + (m2
1 −m2

2)2
)

. (D.27)

For identical particles m1 = m2, we can simplify to

E1 = E2 =
M

2
, (D.28)

p⃗2
1 = p⃗2

2 =
M2

4
−m2 . (D.29)

The kinematic limit 2m < M has to be respected.
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Generation of Correlated Random

Fields

Have i gone mad? IŠm afraid so, but let
me tell you something, the best people
usualy are.

Alice in Wonderland

For all numerical simulations a system must be properly initialized. These initial conditions

are given by physical constraints or are motivated mathematically. In case of scalar Ąelds, the

initial conditions are not always trivial and can be complex models like temperature dependent

Woods-Saxon potentials or in case of thermal nosy Ąelds random distributions. In this section

the initialization of scalar Ąelds with Gaussian noise, Brownian noise, fractal noise and a thermal

distribution like in the particle-Ąeld method are discussed. All distributions have a initial spatial

correlation, not a time-like.

A spatial correlation of a scalar, three-dimensional Ąeld ϕ (x) with noisy excitations can be

characterized by its power spectral density in Fourier space

S (k) = ♣F [ϕ(x)] (k)♣2 =
\

\

\

\

∫ ∞

−∞
ϕ(k) · eix·k d3x

\

\

\

\

2

. (E.1)

A wide range of noises are characterized by assuming a power function for the power-spectral

density

S(k) ≈ S0 · ♣k♣−α . (E.2)

The so called color of noise is described by the parameter α. For α = 0 the noise becomes

uncorrelated and is called white or Gaussian noise, with a Ćat and constant S(k) = S0. For
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α = 2 the noise is strongly correlated and is called Brownian noise, many physical processes can

be described by such a noise distribution. For α ≈ 1 the distribution is called pink noise. Such

distributions can be found in cloud formation, voice modeling or the simulation of planetary

landscapes. Noises with negative α are also known but are very rare processes. All random

distributions which can be characterized by (E.2) are scale-invariant. They have the same

appearance, independent of the system size or the observation scale.

To generate correlated noise, the process of the Fourier analysis can be inverted. By generating a

distribution in Fourier-space ϕ(k) with the intentional characteristic α and inverting the Fourier

transformation, a randomly but correlated Ąeld is generated. The modes k can be shaped with

the relation (E.2), while the phases of the modes in Fourier space can be selected randomly.

The output distribution ϕ(x) is purely real, therefore the Fourier amplitudes have to be consistent

with the symmetry of the frequencies ϕ(k) = ϕ(−k).

The following listing shows a possible algorithm in pseudo-code for colored noises:
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1 GridSize = 512

2 alpha = 1.

3

4 def shapeSpecturm(k):

5 # function which generates a random Fourier modes

6 # according to the desired color of noise

7 amplitude = power(k, -alpha)

8 phase = I * random() * 2. * Pi

9 return amplitude * exp(phase)

10

11 # generate an empty complex field in Fourier space

12 fieldFourierSpace = newField((GridSize, GridSize), dtype=complex128)

13

14 # This parameter includes the frequency of the fild

15 # for the given mode in Fourier space

16 Frequencies = fftfreq(GridSize, d=1./GridSize)

17

18 # loop over all fourier modes for spectral shaping

19 for nx in range(0, GridSize):

20 # only the positive frequencies are used here

21 # because a real output is assumed

22 for ny in range(0, GridSize/2):

23 # calculate the Euclidean distance

24 k = sqrt( power(Frequencies[nx], 2) + power(Frequencies[ny], 2))

25 fieldFFT[nx][ny] = shapeSpecturm(k)

26 # inverse fourier transformation with the assumption of a real output

27 realField = realInverseFourier(fieldFFT)

Listing 1: Algorithm for generating a random initial condition for a given power
spectrum in Fourier space

The function ŞshapeSpecturmŤ is the part in which the Fourier-modes are sampled according to

their color of noise.

In case of the particle-Ąeld method, the thermal equilibrium distribution of the Ąeld is not a

colored noise. Its Ąeld kinetic distribution ϕ̇2 is given by the Gaussian

1
2

F
\

\

\ϕ̇2(x)
\

\

\ (k) =
kBT

2
exp

(

−k2σ2

2

)

, (E.3)
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In general it problematic to generate a Ąeld distribution ϕ(x) for a given kinetic energy distribution

for ϕ̇2 because the square in position space is a non-trivial function convolution in momentum

space

F
\

\

\ϕ̇2(x)
\

\

\ (k) = ϕ(k) ∗ ϕ(k) =
∫

ϕ(k′) · ϕ(k′ − k) dk′ (E.4)

Luckily, the Gaussian shape in (E.3) can be trivially convoluted

√

π

2

(

exp
(

−k2σ2
)

∗ exp
(

−k2σ2
))

= exp

(

−k2σ2

2

)

(E.5)

This result can directly be used to shape the Fourier modes for an initial random distribution

with a given temperature and Gaussian width. Note that in diference to the colored noise

distribution the Gaussian distribution has a length scale, given by σ.

1 def shapeSpecturmPhysical(k):

2 # function which generates the Fourier modes

3 # according to the thermal spectrum of the

4 # particle-field’s equilibrium distrubtion.

5 # The amplitudes are given by the temperature

6 # and the Gaussian shape of the interactions.

7 T = 0.15

8 sigma = 0.25 # given by the parameterization

9 amplitude = T / 2 * exp(- power(k * sigmaEff, 2) / 2 )

10 phase = random() * 2. * PI

11 return amplitude * exp(phase)

Listing 2: Sampling of Fourier modes for the particle-Ąeld method to initialize a
thermal and noisy Ąeld distribution.

Figure E.1 shows four examples for random initial conditions, both for colored noise and for the

thermal initial Ąeld conĄguration in the case of the particle-Ąeld method.
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(a) White / Gaussian noise, α = 0 (b) Pink / fractal noise, α = 1

(c) Brownian noise, α = 2 (d) Thermal spectrum given by the particle-Ąeld
method. The distribution of the kinetic energy is a
Gaussian in Fourier space.

Figure E.1: Examples of diferent noisy initial distributions. All Ąeld conĄgurations
have been generated by the method described in this section or by the code in Listing
1.
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Deutsche Zusammenfassung

E.1 Einleitung

Das Gebiet der modernen Kernphysik beschäftigt sich mit dem Aufbau, der Struktur und

Dynamik von Kernmaterie. Der Begrif Kernmaterie beinhaltet nicht nur die bekannten Teilchen

wie Protonen und Neutronen, aus der sich die um uns herum stabile Materie zusammensetzt,

sondern auch exotische Materie und Elementarteilchen, die sich nur in Forschungseinrichtungen bei

großen Energien erzeugen lässt. Eine typische Frage- und Aufgabenstellung ist die Untersuchung

der Eigenschaften sowohl dieser einzelnen Teilchen als auch deren Wechselwirkungen im Kollektiv

und in gebundenen Zuständen. Die Werkzeuge in der Kernphysik können in experimentelle

und theoretische Methoden unterschieden werden, beide liefern mit völlig unterschiedlichen

Ansätzen und Ideen Antworten und Daten zu denselben physikalischen Fragen und Phänomenen.

Experimentell sind Beschleuniger-Experimente sehr erfolgreich um in das Innere der Materie zu

ŞblickenŤ. Forschungsbeschleuniger wie der Large Hadron Collider LHC am CERN in Genf oder der

Relativistic Heavy Ion Collider RHIC in Brookhaven beschleunigen Schwerionen, wie einzelne Blei-

oder Gold-Ionen, auf nahezu Lichtgeschwindigkeit und bringen diese anschließend zur Kollision.

Bei steigenden Geschwindigkeit steigt die Energie, die bei einem Zusammenstoß zweier Kerne

frei wird. Die geringe Größe dieser Systeme führt zu einer extrem hohen Energiedichte. Aktuelle

Beschleuniger erzeugen damit eine efektive Temperatur der Kernmaterie von über einer Billionen

Grad Celsius und stellen Bedingungen wie kurz nach dem kosmischen Urknall da. Bei solchen

Temperaturen und Energien wird die Energie durch Erzeugung neuer Elementarteilchen mit

unterschiedlichen Massen und Impulsen umgesetzt. Je höher die Energiedichte, umso mehr und

schwerere Teilchen können erzeugt werden. Die dabei entstehenden Elementarteilchen, gebundene

Zustände oder Resonanzen können allerdings selten direkt beobachtet werden, da sie instabil und

damit kurzlebig sind. Sie zerfallen in einer Kaskade von weiteren Teilchen, pro Kollision können so

über tausend weitere Elementarteilchen entstehen. Komplexe Detektoren beobachten die Spuren

dieser Übergänge, aufwendige Analysen in Rechencluster erlauben einen Rückschluss auf den

genauen Hergang einer solchen Kollision und Zerfallskaskade. Untersucht man systematisch viele

dieser Kollisionen mit statistischen Mitteln, lassen sich Aussagen über die entstandenen Teilchen

und deren Wechselwirkungen untereinander ableiten.
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Solche Untersuchungen lassen sich allerdings nicht rein aus dem Experiment heraus gestalten, da

für die Auswertung der rohen Detektordaten immer ein gewisses theoretisches Verständnis zur Ab-

leitung mathematischer Beschreibungen benötigt wird. Der theoretische Ansatz zur Untersuchung

von Kernmaterie ist die Formulierung einer Theorie zur Beschreibung aller Elementarteilchen.

Diese einheitliche Theorie wird das Standard Modell der Kernphysik genannt und beschreibt die

Bausteine der Materie und die Wechselwirkungsteilchen der elementaren Naturkräften. Insgesamt

kennen wir vier Elementarkräfte: die Gravitation, die elektromagnetische Kraft, die schwache

Kernkraft und die starke Kernkraft. Das Standardmodell fasst die drei letzten Kräfte in einer

Theorie zusammen, wobei jede Kraft von einer eigenen Untertheorie beschrieben wird.

Diese Arbeit ist von theoretischer Natur und befasst sich mit der starken Kernkraft, die dazuge-

hörige Theorie wird Quanten Chromodynamik (QCD) genannt. Die starke Kernkraft ist unter

anderem verantwortlich für die Stabilität von Atomkernen. Atomkerne bestehen aus Protonen und

Neutronen, diese wiederum bestehen aus weiteren Elementarteilchen, den Quarks. Sie existieren

in sechs verschiedenen Familien mit den Namen up, down, strange, charm, beauty und top.

Quarks existieren niemals als frei Teilchen, sie können nur in neutralen, gebundenen Objekten

vorkommen. Der verantwortliche Mechanismus wird Farbeinschluss (Color-ConĄnement) genannt.

Mathematisch hat jedes Quark einen von drei möglichen Zuständen, der in der QCD Farbe

genannt wird (rot, grün, blau). Alle gebundenen Objekte müssen Farbneutral sein, also aus

allen drei Farben (wie bei beispielsweise Protonen) oder aus einer Farbe und deren Antifarbe

bestehen. Gebunden werden solche Objekte von den Trägern der starken Kraft, den Gluonen.

Diese Austauschteilchen ändern die Farbzustände zwischen den Quarks und sorgen somit für eine

efektive Anziehung der Teilchen. Die Wechselwirkung lässt sich in einer Lagrange-Gleichung

innerhalb der Quantenfeldtheorie formulieren, ist mathematisch aber so komplex, dass diese

Gleichung seit 40 Jahren der aktiven Forschung unterliegt und bis heute große Rätsel aufwirft.

Eines dieser Rätsel ist die Masse von gebundener Kernmaterie. Die Masse eines Protons ist seit

langem bekannt und sehr genau vermessen. Mit Teilchenbeschleuniger lies sich nachweisen, dass

Protonen selbst aus drei gebundenen Quarks bestehen. Erstaunlicherweise weicht die Masse der

einzelnen Quarks stark von der zu erwartenden Masse an und beträgt lediglich 1.5% der Masse

des Protons, obwohl genau diese drei Quarks das Proton deĄnieren. Theoretisch sollten sogar alle

Elementarteilchen masselos sein, die Grundmasse der Quarks wird durch den Higgs-Mechanismus

erklärt, die restlichen 98,5% entstehen in einem dynamischen Prozess zwischen Quarks und

Gluonen.

Erklärt werden kann dieses Verhalten mit dem Mechanismus der spontanen Brechung der chiralen

Symmetrie. Diese Symmetrie ist eine fundamentale Eigenschaft der QCD und beschreibt die

mathematische Relation von links- und rechtshändigen Wellenfunktionen von Teilchen und Anti-

Teilchen. Bei bestehender Symmetrie können beide Arten von Wellenfunktionen mathematisch

separat beschrieben werden, eine Mischung der Arten ist nicht möglich und damit auch keine

Bindung untereinander. In der QCD besteht diese Symmetrie allerdings nicht vollständig. Sie
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ist bereits schwach, aber explizit, durch den Higgs-Mechanismus gebrochen, zusätzlich kann

sie spontan brechen. Eine spontane Brechung liegt vor, wenn die mathematischen Gleichungen

die Symmetrie vorweisen, das gesamte System aber in einen asymmetrischen Zustand fällt

und dadurch die Symmetrie gebrochen wird. Dies kann geschehen, wenn der asymmetrische

Zustand energetisch günstiger ist. Genau dies geschieht in der QCD. Bei hohen Temperaturen ist

die chirale Symmetrie gegeben, ab einer kritischen Temperatur durchläuft Kernmaterie einen

Phasenübergang von der restaurierten zur gebrochenen Symmetrie, dabei erhält die Materie

ihre bekannte Masse. Ein zweiter Aspekt ist bei hohen Temperaturen interessant, da neben dem

chiralen Phasenübergang auch ein Übergang bei dem sogenannten Farbeinschluss stattĄndet. Die

sonst gebundenen Quarks und Gluonen können bei sehr hohen Temperaturen aufbrechen und

sich in einem Plasma aus Farbladungen quasi-frei bewegen. Dieser Zustand wird Quark-Gluon-

Plasma (QGP) genannt und kann als eigener Aggregatzustand von Materie aufgefasst werden.

Die Untersuchung dieses Zustandes ist Gegenstand aktueller Forschung.

E.2 Untersuchung des dynamischen linearen-σ-Modells

Diese Arbeit untersucht das Phänomen dieses chiralen Symmetriebruch. Ziel war es den Übergang

zwischen den beiden Symmetriephasen dynamisch nachzustellen und dabei dessen Eigenschaften

zu untersuchen. Der Übergang zwischen den beiden Phasen lässt sich mit klassischen thermody-

namischen Mitteln und Theorien zu Phasenübergängen beschreiben. Eine Kernfrage ist dabei,

mit welcher Ordnung sich der Übergang beschreiben lässt. Ein Übergang erster Ordnung ähnelt

dabei den Eigenschaften des Übergangs von Wasser zur Gasphase. Beide Phasen können dabei

nebeneinander in lokalen Blasen existieren, der Übergang selbst Ąndet bei einer genau deĄnier-

baren Temperatur statt. Bei einem Übergang zweiter Ordnung gibt es keine Phasenkoexistenz,

stattdessen zeigt das System skaleninvarianz, Fluktuationen und Korrelationenlängen zeigen

divergentes Verhalten am Phasenübergang. Auch möglich ist die Existenz eines kritischen Punk-

tes im Phasendiagramm, an dem die erste Ordnung Phasenübergangslinie enden und in einen

Übergang zweiter Ordnung übergeht. Die Untersuchung der Ordnung eines Phasenübergangs

ist insofern interessant, dass sich durch diese makroskopischen Beschreibungen mikroskopische

Eigenschaften der Materie und des Quark-Gluonen Plasmas ableiten lassen.

Eine Behandlung der vollen QCD Theorie ist in diesem Kontext leider nicht möglich, da sie sich

aus mathematischen Gründen nicht lösen lässt. Umgangen wurde dieses Problem, indem nicht

die QCD, sondern eine verwandte, efektiven Theorie untersucht wurde. Eine efektive Theorie

stellt einige grundlegenden Eigenschaften wie die chirale Symmetrie nach und reduziert dabei

die Komplexität durch mehrere Vereinfachungen. Ein solches Modell ist das lineare σ-Modell,

das lediglich zwei gleichartige Quark-arten und keine Gluonen oder Farbladungen beinhaltet.

Die chirale Symmetrie wird durch ein skalares Feld, das sowohl als Ordnungsparameter des

Phasenübergangs als auch Masse erzeugendes Wechselwirkungsfeld dient. Dieses Modell wurde
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vereinfacht und numerisch in einer eigenen Transport-Simulation realisiert. Alle Quantenfelder

wurden dabei als klassische Felder, Quarks als klassische Teilchen beschrieben. Das Ergebnis ist

das 3+1 dimensionale DSLAM Modell. Die Felder werden durch partielle Diferentialgleichungen

propagiert, Teilchen können elastisch miteinander stoßen und wechselwirken außerdem über

langwellige und ortsabhängige Potentiale mit den Feldern.

In ersten Rechnungen wurden die thermodynamischen Eigenschaften des Modells mit denen des

linearen σ-Modell verglichen und Tests auf numerische Stabilität durchgeführt. Um das Verhalten

am chiralen Phasenübergang zu untersuchen, wurden verschiedene Rechnungen mit Temperatur-

änderung oder -Sprüngen durchgeführt. Das Medium in der heißen, chiral restaurierten Phase

wurde schlagartig abgekühlt, was das chirale σ-Feld in die chiral gebrochene Phase überführen

sollte. Hierbei zeigten sich zwei unerwartete Phänomene. Eine reine Temperaturänderung der

Quarks ohne Änderung der Teilchenzahl treibt das chirale Feld noch mehr in die Richtung der

chiral restaurierten Phase, was genau gegenteilig dem erwarteten Verhalten ist. Bei Rechnungen

mit einem Temperatursprung, in dem sich auch die Quarkdichte änderte, wurde das σ-Feld

in Richtung chiral gebrochener Phase getrieben. Allerdings wurde das Gesamtsystem in eine

kohärente Schwingung versetzt, in der chirale Feld stark gegen die chirale Dichte der Quarks

schwingt. Diese globale Schwingung des Systems kann nicht mit den implementierten Gleichungen

des mittleren Feld des Modells gedämpft werden.

Beide Beobachtungen lassen sich durch das fehlen chemischer Prozesse erklären. Ein solcher

Prozess wäre der Zerfall eines skalaren σ-Teilchens in ein Quark- und Antiquark Paar σ → ψ̄ψ, das

Gleiche gilt für den inversen Prozess der Quark Annihilation ψ̄ψ → σ. Diese Prozesse verändern

die Teilchendichte und damit die Anzahl der Quarks im System, außerdem können sie Energie

von den Quarks zu den σ-Teilchen transferieren und umgedreht.

Weitere Untersuchungen in dieser Arbeit haben gezeigt, welche quantitativen Auswirkungen

die thermische und chemische Verteilung auf die Gleichgewichts Eigenschaften des Gesamtsys-

tems haben. Abweichungen dieser beiden Komponenten von den Gleichgewichtsverteilungen

können sowohl die Temperatur der Phasenübergangs als auch dessen Ordnung ändern. Solche

Nichtgleichgewichts-Abweichungen sind typischerweise zu erwarten, wenn das Quark-Gluon Plas-

ma schnell expandiert und dabei thermische und chemische Prozesse unterschiedlich schnell

ablaufen. Außerdem ist noch nicht völlig klar, wie schnell das Quark-Gluon Plasma thermalisiert,

nachdem es durch eine Schwerionen Kollision erzeugt worden ist. Der Materiezustand kurz nach

einer solchen Kollision wird als hochgradig nicht-thermisch angenommen.

Um das Problem chemischer und thermischer zu Untersuchen, wurde die erste Version des DSLAM

Modells mit Quarkpaar Erzeugung- und Vernichtungsprozessen erweitert. Je ein Quark und

Antiquark können ein skalares σ erzeugen, und umgedreht. Mit dem erweiterten Modell wurden

die Rechnungen mit variabler Temperatur erneut durchgeführt. Hierbei zeigte sich eine efektive

Equilibrierung des Systems, außerdem konnte die dynamische Entstehung von Fluktuationen
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beobachtet werden. Diese bauen sich rein durch die mikroskopischen Wechselwirkungen zwischen

den Quarkteilchen und dem skalaren σ-Feld auf.

Das letzte betrachtete System stellt ein einfaches Modell für das Quark-Gluonen Plasma kurz

nach einer Schwerionenkollision da. Heiße Quarkmaterie beĄndet sich ein einer kugelähnlichen

Verteilung und kann frei in den Raum expandieren. Untersucht wird dabei die zeitliche und

räumliche Entwicklung der Teilchen- und Feldverteilung, sowie dessen Endzustände. Dabei

werden auch Rechnungen mit und ohne chemische Wechselwirkungen zwischen Feld und Teilchen

verglichen. Es zeigt sich, dass sich in allen Szenarien starke Nichtgleichgewichtsverteilungen

einstellen und sich der chirale Ordnungsparameter nicht verhält wie in thermischen Rechnungen.

Der Grund liegt in der raschen Expansion, in der das System keine Zeit hat sich adiabatisch der

Temperatur und Volumenänderung anzupassen. Ein Unterschied zwischen den verschiedenen

Ordnungen des Phasenübergangs lassen sich kaum feststellen. Wiederholt man die Rechnungen

allerdings mit chemischen Prozessen, lässt sich ein starker qualitativer Unterschied im Vergleich zu

den Rechnungen ohne chemische Prozesse feststellen. Durch diese Prozesse stellen sich viel stärkere

räumliche und zeitliche Fluktuationen in den Verteilungen ein. Die Stärke der Fluktuationen steigt

mit stärke der Wechselwirkungen zwischen Teilchen und Felder, dabei zeigen sich die stärksten

Fluktuationen bei Systemen, die im thermischen Verhalten einen Phasenübergang erster Ordnung

zeigen, statt wie klassisch angenommen mit zweiter Ordnung. Ein weiteres Phänomen war die

Bildung von lokalen Blasen, in denen kalte Quarks kondensierten und über lange Zeiträume

stabil gefangen blieben.

In dieser Arbeit konnte die Wirkung von Nichtsgleichgewichtsefekte auf das Verhalten des

linearen σ-Modells und dessen chiralen Phasenübergang untersucht werden. Diese Efekte sind

allerdings so stark, dass sich in hochdynamischen Systemen wie die Expansion eines Feuerballs

keine eindeutigen Signaturen für die Unterscheidung zwischen den verschiedenen möglichen

Ordnungen im chiralen Phasenübergangs Ąnden ließen.

E.3 Das Teilchen-Welle Verfahren

Neben den physikalischen Fragestellung zum chiralen Phasenübergang hat sich diese Arbeit auch

mit einem numerischen Fragen beschäftigt. Um Wechselwirkungen zwischen Quarks und den

chiralen Feldern in der Simulation zu behandeln, musste dafür eion neues numerisches Verfahren

entwickelt werden. Teilchen und Wellen haben eine unterschiedliche mathematische Beschreibung,

die eine direkte Zuordnung deren Eigenschaften nicht möglich machen, eine Wechselwirkung

muss daher immer zusätzlich mathematisch und physikalisch modelliert werden. Bekannte

Verfahren wie die Vlasov-Gleichung koppeln Felder und Teilchen über kontinuierliche Potentiale,

die Langevin-Gleichung nutzt dagegen eine stochastische und kontinuierliche Beschreibung.
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Innerhalb dieser Arbeit war es aber nötig ein Verfahren zu Ąnden, mit dem ein Quarkpaar zerstören

und dessen Erhaltungsgrößen auf ein klassisches Feld in Form eines diskreten Quants übertragen

lassen, Gleiches gilt für den inversen Prozess. Ein solcher Prozess ist ein diskretes Ereignis und

lässt sich schwer mit kontinuierlichen Prozessen darstellen, wenn man keine statistische Mittelung

über viele gleichzeitige Ereignisse durchführen möchte.

Die Lösung dieses Problems ergab sich aus der Kombination zweier einzelner Verfahren, beide

sind durch den Welle-Teilchen Dualismus motiviert. Das erste Verfahren erlaubt es mit Hilfe von

Gaußschen Wellenpaketen die Energie- und Impulsdichte eines Feldes beliebig zu ändern. Dabei

kann sowohl eine exakte Menge an Energie und Impuls hinzugefügt oder auch entfernt werden.

Diese Feldmanipulation geschieht dabei in einer räumlich beschränkten Region auf dem Feld,

motiviert durch die räumlich beschränkte Reichweite einer diskreten Wechselwirkung. Interessan-

terweise ergeben in diesem Verfahren automatische physikalisch-mathematische Schranken, z.B.

darf der übertragene Impuls nicht größer als die Übertragene Energie sein. Dieses erste Verfahren

erlaubt es also Wechselwirkungen durch Energie- und Impulsänderungen darzustellen.

Das zweite Verfahren werden die möglichen Wechselwirkungen zwischen Teilchen und Feldern

physikalisch motiviert und modelliert. Dabei werden aus dem Feld lokale Energie- und Impuls-

dichten abgeleitet, aus diesen kann eine lokale Verteilungsfunktion angenommen werden. Diese

Verteilungsfunktion wird genutzt um einzelne, virtuelle Teilchen zu würfeln, die zerfallen oder

wechselwirken können. Hierbei können mikroskopische Wirkungsquerschnitte genutzt werden,

um Wechselwirkungswahrscheinlichkeiten zu berechnen. Im Falle einer Wechselwirkung wird der

Energie- und Impulsübertrag berechnet und mit der ersten Methode auf das Feld transferiert

oder entfernt.

Diese Teilchen-Welle Methode ist so generisch, dass sie nicht nur für diese Arbeit, sondern für

viele mögliche numerische Simulationen angewendet werden kann.
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