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ABSTRACT

Chen and Zadrozny (1998) developed the linear extended Yule-Walker (XYW)
method for determining the parameters of a vector autoregressive (VAR) model
with available covariances of mixed-frequency observations on the variables
of the model. If the parameters are determined uniquely for available
population covariances, then, the VAR model is identified. The present paper
extends the original XYW method to an extended XYW method for determining all
ARMA parameters of a vector autoregressive moving-average (VARMA) model with
available covariances of single- or mixed-frequency observations on the
variables of the model. The ©paper proves that under conditions of
stationarity, regularity, miniphaseness, controllability, observability, and
diagonalizability on the parameters of the model, the parameters are
determined wuniquely with available population covariances of single- or
mixed-frequency observations on the variables of the model, so that the VARMA
model is identified with the single- or mixed-frequency covariances.’
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(CFS), Goethe University, Frankfurt, Germany, and with the Center for
Economic Studies and Ifo Institute for Economic Research (CESifo), Munich,
Germany. The paper has benefitted from comments by Manfred Deistler, Eric
Ghysels, Roderick McCrorie, Tucker McElroy, and anonymous referees.



1. Introduction.

Estimation of vector autoregressive moving-average (VARMA) models using
mixed-frequency data (MFD) was considered first using nonlinear maximum
likelihood estimation (MLE), which is effective only if good starting values
can be found for the parameters to be estimated and the estimation iterations
converge, which is difficult to achieve unless there are relatively few
variables and parameters (Zadrozny 1988, 1990a,b). In response, Chen and
Zadrozny (1998) developed the linear extended Yule-Walker (XYW) method for
determining the parameters of a VAR model, which uses available covariances
of MFD and has the computational simplicity of least squares, and illustrated
XYW's accuracy relative to MLE. The XYW method overcomes the computational
problem of not being able to evaluate standard Yule-Walker equations because
autocovariances at high-frequency lags of <variables observed at low
frequencies are unavailable. Although VAR models now dominate linear
multivariate models used for modelling and analyzing economic time series,
including an MA term in a model often allows it to fit data more accurately
and parsimoniously (Box and Jenkins, 1976).

XYW can be thought of not just as an AR-parameter estimation method,
but more generally as a method that takes data covariances presumed to be
generated by a VAR model as inputs and determines the AR parameters as
outputs. If the covariance inputs are true population covariances and the
outputs are unique, then, the outputs are the true model parameters and the
VAR model 1is identified; if the covariance inputs are consistent sample
estimates and the outputs are unique, then, the outputs are consistent
parameter estimates. Chen and Zadrozny (1998) introduced XYW as an estimation
method with sample covariances but did not prove, under certain conditions,
that XYW is feasible (computationally implementable) or that XYW determines
unique AR parameter outputs for true-population or consistent-sample
covariance inputs. Anderson et al. (2012) proved this for a general VAR model
and a particular MFD case, but only for a "generic" set of parameters.

The present paper makes two contributions. First, the paper extends the
original XYW method to an extended XYW method which determines all ARMA
parameters of a VARMA model with available covariances of 1its variables
observed with single-frequency data (SFD) or with MFD. Second, the paper
proves that 1if the parameters of the model satisfy conditions I-VI of
stationarity, regularity, miniphaseness, controllability, observability, and

diagonalizability, then, the extended XYW method produces unique ARMA



parameter values and the VARMA model is identified (not Jjust "generically")
with population covariances of its wvariables. Models estimated with
stationary data typically satisfy these six conditions. Although the paper is
not directly concerned with parameter estimation, the extended XYW method
becomes a consistent method for estimating VARMA parameters simply by
replacing population covariances with consistent sample covariances. However,
experience with the XYW method (Chen and Zadrozny, 1998) suggests that such a
consistent estimation method is unlikely to be accurate in small samples but
that a generalized method of moments (GMM) extension of the method could be
accurate in small samples. However, a GMM extension of the extended XYW
method is beyond the scope of this paper and is left for the future.

The extended XYW method solves one linear system to determine the AR
parameters and solves two linear systems and does one matrix spectral
factorization to determine the MA parameters. Spectral factorization is a
linear operation except for an initial step of computing eigenvalues, which
can be done reliably, accurately, and quickly wusing the QR algorithm
(Zadrozny, 1998). The key to the proof in the paper is exploiting the block-
Vandermonde structure of eigenvectors of a Dblock-companion-form state-
transition matrix of a state-space representation of a VARMA model.

Identification can be local or global. By definition, different sets of
parameters of a model that generate identical covariances of wvariables of the
model are observationally equivalent. If a point of a set of observationally
equivalent parameters 1is isolated in the set, then, the model is 1locally
identified at that point; if the set of observationally equivalent parameters
is a single point, then, the model is globally identified. The paper assumes
that global identification problems have been resolved by other assumptions
and proves that, if the model satisfies conditions I-VI, then, the model's
parameters are locally (and globally) identified with population covariances
of variables of the model observed with SFD or MFD.

The result is first proved for SFD and is, then, adapted to MFD. The
adaptation 1s straightforward, Dbecause it requires only reducing derived
equations and requires no additional derivations. In the paper, SFD means
that all wvariables of a model are observed at the same discrete-time
frequency at which the model operates and MFD means that some of the
variables are observed at the same discrete-time frequency at which the model
operates and others are observed at one or more lower frequencies. Although

the paper considers only the above definition of SFD, SFD could also mean



that all variables are observed at the same discrete-time frequency which is
lower than the frequency at which the model operates.

For the second definition of SFD or for MFD, in the 1limit as its
operating frequency goes to infinity, a discrete-time model approaches a
continuous-time model observed with discrete-time data (Zadrozny, 1988). Both
discrete- and continuous-time models can be locally identified Dbut not
globally identified due to aliasing. Although aliasing has been considered
mostly for continuous-time models observed with discrete-time data (Phillips,
1973; Hansen and Sargent, 1983), aliasing can also occur in discrete-time
models observed with discrete-time data. Aliasing occurs when state-
transition matrices of different but observationally equivalent models have
different eigenvalues.

One general resolution of aliasing 1s to choose the least-noisy
observationally-equivalent model, with the least spectral power at high
frequencies. For example, 1in Anderson et al.'s (2012) model, ass 1s a
parameter whose absolute value but not sign is identified, hence, is locally
identified but not globally identified when disturbances are uncorrelated.
Because ag; is also an eigenvalue of a state-transition matrix of the model,
the global unidentification is also an aliasing unidentification. Because
positive ags contributes spectral power at the zero frequency and negative agg
contributes spectral power at the Nyquist frequency, choosing ass to be
positive results in the least noisy and globally identified model. Of course,
an application's subject matter could offer a more compelling reason for
resolving unidentification, including aliasing. Henceforth in the paper, any

global wunidentification 1is assumed to have Dbeen resolved with additional

assumptions, so that "identification" means both local and global
identification.
Priestley (1981, rp. 800-804) reviewed the literature on

identification of a VARMA model with population covariances of its variables
observed with (first-definition) SFD and attributed results principally to
Hannan (1969, 1970, 1976, 1979) and secondarily to Akaike (1974). See also
Hannan and Deistler (1986). Like here, Hannan assumed that the parameters of
the model satisfy conditions I-IV of stationarity, regularity, miniphaseness,
and controllability. Hannan didn't and didn't need to assume observability
condition V, because, as explained in section 2, observability holds for any
VARMA model observed with SFD. Hannan proved that, under these conditions, a
VARMA model is identified with population covariances of 1ts variables

observed with SFD. Hannan's proof is different from the present one: whereas



Hannan used mathematical analysis, we use only linear algebra. Hannan didn't
state and wuse some version of diagonalizability condition VI, which is
necessary in the proof here. Using the same conditions I-IV and essentially
the same argument as here, Akaike (1974) proved that the AR parameters of a
VARMA model are identified by population covariances of 1its variables
observed with SFD and asserted, but didn't prove, that the MA parameters of
the model are identified by unique spectral factorization. The present paper
contributes to this literature by being the first one to prove that, under
conditions I-VI of stationarity, regularity, miniphaseness, controllability,
observability, and diagonalizability, a VARMA model is identified (without
the qualification "generically") by population covariances of its wvariables
observed with MFD. Although the conditions are individually necessary for
identification in different parts of the proof, the paper proves only that
the conditions as a whole are sufficient for identification. The question of
necessity of the conditions for identification is discussed further in
concluding section 5.

The paper continues as follows. Section 2 states the general VARMA
model in original and state-space form and states conditions I-VI assumed for
the model. Section 3 derives backward Yule-Walker equations (BYWE) for a
model observed with SFD, proves that under conditions I-V the BYWE can be
solved for unique values of the AR parameters of the model, and adapts the
BYWE and their solution to MFD. Section 4 derives forward Yule-Walker
equations (FYWE) for a model observed with SFD, proves that under conditions
I-VI the FYWE can be solved for unique values of the MA parameters of the
model, and adapts the FYWE and their solution to MFD. Concluding section 5
contains a summary discussion, a numerical illustration of conditions I-VI,
and a discussion of how to extend the results of the paper to identification
of structural models, including dynamic stochastic general equilbrium (DSGE)

models, now widely used in macroeconomic analysis (Smets and Wouters, 2003).

2. Statement of VARMA model and assumptions on it.

We write a general VARMA(r,qg) model in VARMA (p,p-1) form as

(2.1) Ve = Aqyear oo+ Apyep + Boge + Biger + ...+ + Boi€ipn

and define its components as follows: y. denotes an nxl vector of observed

variables; r and g denote any assumed nonnegative integers, such that at



least one of r or q is positive; p = max(r,g+l); A; (1 = 1, ..., p) denote nxn

matrices of AR parameters, A, # Opwn (O denotes the jxk zero matrix), and

Ixk
intermediate (i = 1, ..., 1r-1) and trailing (i = 1zr+1, ..., p) A
respectively, may be and are zero; B; (j = 0, ..., p-1) denote nxn matrices of
MA parameters, By # Onxn, and intermediate (j =1, ..., g-1) and trailing (j =
gtl, ..., p-1l) By, respectively, may be and are zero; e. denotes an nxl vector
of unobserved disturbances ~ IID(0,,I,), where I, denotes the nxn identity
matrix. All quantities in the paper are real valued except possibly
eigenvalues, eigenvectors, latent roots, and latent vectors, which may be
complex valued.

We assume that the model satisfies conditions I-III of stationarity,

regularity, and miniphaseness:

Condition I: VARMA model (2.1) 1is stationary, i.e., 1if A 1is a real- or
complex-valued scalar root of the AR characteristic equation |A(A)| = |I,A° -
AAMY - .. - A, = 0, then, |A < 1, where |-| denotes a determinant or an

absolute value (modulus);

Condition II: VARMA model (2.1) is regular, i.e., By is lower triangular and

nonsingular;

Condition III: VARMA model (2.1) is miniphase, i.e., if A is a real- or

complex-valued scalar root of the MA characteristic equation [B(A)| = |BoA? +

B,A™' + ... + Byl = 0, then, [A] < 1.

Miniphaseness extends invertibility to allow MA roots on the unit
circle. An estimated VARMA model almost never has MA roots on the unit circle

unless restrictions on it imply them. For example, suppose that n variables
in ¥, = (., ¥..)' (superscript T denotes vector or matrix transposition) are
generated by an wunrestricted (except for conditions I-VI) VARMA model
estimated using data in which the first n; variables are observed directly as
Vit = V,. and the last n, variables are observed temporally aggregated as y,. =
Voo * oo+ §Ltﬂn’ for m 2 1. Then, to be estimated with the partly aggregated
data, the model must be extended to a VARMA (r,gt+m) model with the same AR

part and an MA part with characteristic equation B(A)D(A), where D(A) = I, A" +



nq xXn On Xn
DA™t + ... + D, and D; :{Ol ! £ 2}, for i = 1, ..., m. D(A) adds mn MA

npxnj ny
roots, mn; zero roots and mn, roots on the unit circle.

VARMA (p,p-1) form (2.1) has the following state-space representation

comprising observation equation
(2.2) ye = Hxe, H = [I,, Omns .-, Onxn] = nxnp,

where x. denotes the npxl state vector, and state equation

A1 In Onxn BO
Onxn :
(2.3) X, = Fx,, + Ge,, F = : I = npxnp, G = = npxn.
Ap Onxn Onxn Bpfl
For K=1, 2, ..., define
(2.4) Cx(F,G) = [G, ..., F¥!'G] = npxnK.
For K = np, Cy(F,G) 1is called the controllability matrix. By the Cayley-

Hamilton theorem, which says that every square matrix satisfies its own
characteristic equation, C¢(F,G) has maximum rank when K = np, so that Ckx(F,G)
has full rank np for some K if and only if (iff) rank[C,(F,G)] = np.

A VARMA model is said to be controllable iff its controllability matrix

has full rank, i.e., rank [Cy, (F,G) ] = np. Hautus (1969) proved that
rank[C,(F,G)] = np iff, for any real- or complex-valued scalar A,
(2.5) rank[F - I, A, G] = np.

Controllability is often more easily proved by checking condition (2.5) than
by checking rank[C,(F,G)] = np directly. Kailath (1980, p. 135) called
condition (2.5) the "PBH test," although Lancaster and Rodman (1995, p. 88)
state that it was first proved by Hautus (1969).

The block-Vandermonde form (4.4) of the left (row) eigenvectors of the
block-companion state-transition matrix F implies that condition (2.5) is

equivalent to condition



(2.6) (Ng) T OETB(Ay) # Ouns

for i = 1, ..., np, where A; is an eigenvalue of F, ¢§&; is a nonzero left
latent (row) vector of A(A) = I, A" - AAN!' - ... - A, which satisfies & A(XA;)
= 0ixn, and B(A) = BeA® + ... + By. The derivation of equation (6.2) in the

appendix implies that conditions (2.5) and (2.6) are equivalent. Therefore,
the conditions rank[C.,,(F,G)] = np, (2.5), and (2.6) are equivalent.

We assume that the model satisfies condition IV of controllability:

Condition IV: VARMA model (2.1) is controllable.

If r £ g, then, n(g-r+l) zero eigenvalues of F are not AR roots that
satisfy |A(A)| = 0 and (A;)™*= L9 = 1 in condition (2.6) for all zero and
nonzero AR roots. If r 2 g+l1l, then, all eigenvalues of F are AR roots and
must be nonzero for controllability to hold. In both cases, when AR roots are
nonzero, their being distinct from MA roots is sufficient, but unnecessary,
for condition (2.6) to hold. Controllability holds in most applications
because AR roots are distinct from MA roots.

We have called ¢§&; "latent" according to the theory of matrix
polynomials. In this theory, the AR characteristic polynomial A(A) is called
a lambda matrix. A root A; of the characteristic equation |[A(A)| = 0 is called
a latent root. Just as an eigenvalue of a square matrix has a matching

nonzero left (row) eigenvector, a latent root A; of A(A) has a matching
nonzero left (row) latent vector ¢; that satisfies ifA(Ai) = 0i4n. Because F

has the block-companion form (2.3), every latent root of A(A) 1s also an
eigenvalue A; of F and vice versa if r 2 g+l; and, every left eigenvector z;
of F has the block-Vandermonde form (4.4), where &; is a left latent vector of
A(A;) . See Dennis et al. (1976).

Analogous to controllability, for L =1, 2, ..., we define

(2.7) O.(F,H) = [HY, ..., (FH)™H"]" = nLxnp.

For L = np, O (F,H) 1is called the observability matrix. By the Cayley-
Hamilton theorem, Oy (F,H) has maximum rank when L = np, so that Oy (F,H) has
full rank np, for some L, 1iff rank[O,(F,H)] = np. A VARMA model is said to be
observable iff the observability matrix has full rank, hence, iff rank[F® -

I.,A, H'] = np. Because F is asymmetric, it generally has different left and



right eigenvectors for each eigenvalue, so there 1is generally no direct
analogue of condition (2.6) for observability, obtained by replacing F and G
with F' and H' in equation (2.5).

Controllability and observability come from dynamic system theory
(Kwakernaak and Sivan, 1972; Anderson and Moore, 1979; Kailath, 1980).
Controllability generally depends on all ARMA parameters, regardless how the
model's variables are observed. Observability generally depends only on AR
parameters and on how the model's wvariables are observed. For SFD, every
VARMA model 1is observable, regardless of its AR parameter values, Dbecause
O, (F,H) is unit lower triangular for L = p. Thus, it is unnecessary to assume
that VARMA model (2.1) is observable for SFD, but is generally necessary to
assume that the model is observable for MFD.

Different |ower bounds have been stated for L. In each case, the |ower
bound is a necessary but not necessarily a sufficient condition for an
observability condition to hold. However, because L has no upper limt in
identification, we may henceforth nore sinply state that "L is sufficiently
large". O course, in estimation, L is limted by sanple size.

We assune that the nodel satisfies condition V of observability when its
vari abl es are observed with MD

Condition V: VARVA nodel (2.1) is observable for a sufficiently large L, for
t he MFD bei ng consi dered.

Define the block-companion-form matrix

B, I, 0,un
= Onxn .
(2.8) B = . . . I = ngxndg,
Bq Oan Onxn
where, for i =1, ..., q, Ei = - ngl. We assume that the model satisfies

condition VI of diagonalizability:

Condition VI: B is diagonalizable, i.e., has a linearly independent set of
ei genvectors.




Distinct MA roots, equivalently distinct eigenvalues of ﬁr, imply that B has
a full set of ng linearly independent eigenvectors. For this reason,

diagonalizability should hold in most applications.

3. Identification of AR parameters with backward Yule-Walker equations.

Let C, = Eytyak, for k = 0, 1, 2, ..., denote the k-th population
covariance matrix of vy and y..x generated by VARMA model (2.1), where E
denotes unconditional expectation. Cy exists because the model is stationary

. . . T
and is skew symmetric, i.e., Cy = C.,.

To obtain the backward Yule-Walker equations (BYWE) for SFED,
postmultiply VARMA model (2.1) by "backward in time" yak, for k = 0, ., L 2

2p-1, take unconditional expectations, and obtain

p-1 T

: AT .

T
Coos C, - CoL||F ¥,B' |

(3.1) T = c cl : + 0 P ,

P 0 p-1 T nxn

: : : A .

L CE i _Cifp Cifl L Onxn |

where ¥; = HF'G denotes the i-th coefficient matrix of the Wold infinite MA
representation of the model. We want to solve BYWE (3.1) for unique values of
the AR parameters, A;, ..., A,. To do this, we skip the first p blocks (k = 0,

., p-1l) with MA terms and consider only further blocks (k = p, ..., L)
without MA terms,

Cy Coos [ 2] Co
(3.2) : : e
T T T T
CL—p CL—l Al CL
Consider equation (3.2) as DX = E. The equation can be solved for

unique AR parameter values in X iff, for sufficiently large L, D has full
(column) rank. A proof of this result goes as follows. State-space
representation (2.2)-(2.3) implies that, for k = 0, 1,

-7

(3.3) Cx = HF*VHT = nxn,



10

where, because the model is stationary, V = Extxi exists and satisfies V =

> FGGTE™) or, equivalently,

(3.4) V =[Cup(F,G), ... 1[Cwp(F,G), ... 17 = npxnp.

V is symmetric positive semidefinite by its structure. Equation (3.4) and the
Cayley-Hamilton theorem imply that V is positive definite iff the VARMA model
is controllable, which has been assumed.

Because V 1s positive definite, it has the Cholesky factorization V =
RR", where R is npxnp, lower triangular, nonsingular, and unique. Using F =
RIFR, H = HR, and equation (3.3), system matrix D of equation (3.2) can be

expressed as

HVH® co HV(ET)PIHT HE" e HET)PTIHT
(3.5) D = : : = : :
avE")  PE" ... BVED"'H" AHE")PHE" ... HE"H"H"
H
ﬁﬁT T TIIT ST \p-177T =T 17 = T
= : [H F'H E") H] Oppi1 (F', H)Op (F, H)" = n(L-p+1) xnp.
I':I(ﬁT)pr

~q ~

D has full rank np, for sufficiently large L, 1iff Oy, (F ,H) =
R'Cpps1 (F,VH")" and Op(f,fi) = O, (F,H)R do. Because R 1is nonsingular,
Okwq(ﬁT,ﬁ) has full rank np, for sufficiently large L, iff Ckpﬂ(F,VHT) does.

Op(ﬁ,i§) has full rank np, because R 1is nonsingular and because Oy (F,H) has
full rank np for any VARMA model and SFD. The appendix proves that CW(F,VHU
has full rank np under conditions I-IV, so that C}pH(F,VHT) has full rank np,

for sufficiently large L. Thus, for sufficiently large 1L, OLT+1(§T,H),

Op(ﬁ, ﬁ), and D have full rank np and equation (3.2) can be solved for unique

AR parameter values as

(3.6) X = (D'D) 'D'E = npxn.
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By virtue of the structure of D and E and the Cayley-Hamilton theorem,
solution (3.6) satisfies equation (3.2) exactly, because, once D achieves
full rank for sufficiently large L, the columns of E are in the space spanned
by the columns of D.

The key step in the original XYW method for MFD is deleting Yule-Walker
equations with missing high-frequency autocovariances of low-frequency
variables. Anderson et al. (2012) pointed out that the deletions can be
implemented by deleting from H rows mapping into unobserved variables (in
their notation, deleting columns of G to obtain K). Describing such deletions
for general MFD would be difficult and is not attempted here. However, this
is practically unnecessary because most MFD cases can be handled as in the
simplest MFD case in which some variables are observed at the high frequency
every period and remaining variables are observed at the low frequency every

other period. Both Chen and Zadrozny (1998) and Anderson et al. (2012) used

this simplest case to analyze, respectively, XYW estimation and
identification of Dbivariate VAR models. By studying generalizations of
equation (13) in Chen and Zadrozny (1998), one can see that the two-part
partition H = [Iﬁ, Hg] covers most MFD cases, except unusual ones in which

some intermediate AR and MA coefficient matrices are restricted to zero.
Similarly describing three or more observation frequencies doesn't change
this structure and only complicates notation.

Therefore, consider a VARMA model of n = n; + n, variables, whose first
n; variables are high-frequency variables observed in every period and whose
last n, variables are low-frequency variables observed every certain number of

T T 1T
]

periods, so that H = [H], H;] Tt =

, where H, = [e], ..., e = nyxnp, H, =

N e’1" = nyxnp, and, for i =1, ..., n, e = (0, ..., 0, 1, 0, ...,

[en1+1’ RN n

0)T denotes the npxl vector with one in position i and zeros elsewhere. Then,

the deletion of unusable Yule-Walker equations with missing high-frequency

autocovariances of low-frequency variables can be implemented simply by

replacing H everywhere with H;. Thus, in most circumstances, adapting solution

equation (3.6) from SFD to MFD amounts to replacing D with D; =
=T T

Oppir (F', H )0, (F, H, )" and replacing E with E; = Oy, (F", H, ) F)°H], where H,

H;R, so that equation (3.6) becomes

T T

(3.7) X = (D/D,)'DIE, = npxn.
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The adaptation works 1iff rank[D;] = np, which requires two things.
First, the reduction of sample information from removing Yule-Walker
equations must be compensated for by increasing L, although this by itself is
generally insufficient to maintain rank[Dq] = np, because for MFD
observability generally also depends on the AR parameters, as illustrated in
section 5.2. Because controllability of a model does not depend on how its
variables are observed, controllability is unaffected by moving from SFD to
MED.

This section has proved that the AR parameters of VARMA model (2.1) are
identified with SFD or typical MFD under conditions I-V of stationarity,

regularity, miniphaseness, controllability, and observability.

4. Identification of MA parameters with forward Yule-Walker equations.

The effective disturbance covariance matrix of the model is B.B;,
parameterized in the elements of lower-triangular By. Treating the disturbance
covariance matrix as a part of the MA part of a model, even if the model is a
pure VAR model with g = 0 and putting the first (k = 0) Dblock in both
backward equations (3.1) and forward equations (4.1) simplifies derivations.

To obtain the forward Yule-Walker equations (FYWE) for SFD,

postmultiply VARMA model (2.1) by "forward in time" §f+k, for k =0, ..., L 2

p-1, take unconditional expectations, and obtain

(4.1) cy - X" aclh, = >V BY

i=1 ik nxn,

which, using ¥; = HF'G, can be written as

(4.2) [Bo, --+7r Bp1lCp(F,G)"0u (F,H)" = T, = nxn(L+l),

where T, = [Ty, ..., Tyl and Ty, = C; - Zp

i=1

T
i+k *

A.C Because Op; (F,H) has full

column rank for L 2 p-1 and SFD, equation (4.2) can be rewritten as

(4.3) P BB, ..., BL,1(EN = T,0u(F, H) [Ou (F, H) "0 (F,H) 17" = nxnp.

p-1

The first np BYWE with MA terms in equation (3.1) could be used
together with FYWE (4.3) to determine the MA parameters but are not. Not
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using the first np BYWE equations for identification makes no difference,
because relevant full-rank conditions based on population covariances hold
regardless whether the additional equations are used. However, using the
additional equations for estimation when population covariances are replaced
by sample covariances should result in more accurate estimates because more
sample information would be used.

Assume temporarily that F is diagonalizable as F' = ZAZ™'. Because F has
the block-companion form (2.3), its left (row) eigenvectors have the block-

Vandermonde form

(4.4) z; = (AT, ..., &E)T = npxl,

i

where, for i =1, ..., np, A; is an eigenvalue of F. Then, the npxnp matrix 2

of right (column) eigenvectors of F' has the block-Vandermonde form

Z,AST - 2 AT
(4.5) 7 = : : = npxnp,
Z, Z,
where, for (¢ = 1, ..., p, 2, = [&,ipmer +++r &y yusnl = nxn, A, =
diag (A 1ype1r =o+r Ay_yynen) = nxn, A = diag(ly, ..., DNy) = npxnp, and, for i =
1, ..., np, A, 1s a latent root of A(A) and &, 1is a matching nonzero left

latent vector of A(A). See Dennis et al. (1976) and Zadrozny (1998).
Let M denote the right side of equation (4.3). Use F' = ZAZ™', multiply
out ZA' and MZ at the level of detail of equation (4.5), and, for ¢ =1, ...,

p, write equation (4.3) as

p-1 p-1 ~1+i—]
(4.6) o j:OBiB;.fZéAE; 1413 _ N, = nxn,
where N, = zﬁlekZNVTk, M= [M, ..., MJJ = nxnp, and My denotes the k-th nxn
block of M.
Also assume temporarily that F 1is nonsingular, so that A 1is
nonsingular. For ¢ = 1, ..., p, postmultiply equation (4.6) by <Af”1, apply

the vectorization rule vec(ABC) = [CT ® A]vec(B), where vec(-) denotes the
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left-to-right column vectorization of a matrix (Magnus and Neudecker, 1999,

p. 30), and write the resulting equation as

(4.7) Z; ® I, wec(Y" BB + D [(AZ] ®I,)+ (A2 ®I,)Plvecd” B, B))

3=0 3773 =0 i+373

- (A7 ® 1, )vec(n,),

for ¢ = 1, ..., p, where, for any nxn matrix X, P denotes the n’xn?
permutation matrix defined by vec(X") = Pvec (X).
Write equation (4.7) more concisely as Ax = {3, where
A'ZT @1, - 70 ®T, A2 ® 1P -+ (2] ® I, )P
(4.8) A= : : + : : = n’pxn’p,
p-1-T T -p+1-T T
A2 @I, - Zp ®I APz, @I P - (Z) ®I)P
x = (x.,, , %x5)% = npx1,
-1-i .
x = vec(Q. B, B]) =n’x1l (i =p-1, ..., 1),
Xy = vec(Zéto1 B,Bj)/2,

B: ( 1;/ ’ B;)T = npxll

B, = (AP ®1, vecN,) = n?x1 (£ = 1, , P,
and P can postmultiply Z, ® I, for / =1, ..., p, in the last block column of
the second part of A because zj;ﬁ%Bf is symmetric.

To simplify Ax = [ in order to verify that it can be solved for a
unique value of x, first, write A as
-1 —-p+1
Ali ZI Zf Z;F Alp Z;F

(4.9) A = : P ®1, + : : 0®I, (T, ®P),

p-15T T T -p+lT
Ap Zp e 7 7 Ap Zp
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where Q denotes the npxnp permutation matrix that permutes Dblocks of n
columns of AP"7T and P is the same permutation matrix as in equations (4.7)-

(4.8). Use equation (4.5), premultiply equation (4.9) by (Z "A**' ®1I,), and

obtain
(4.10) @A ®I)A = FPT®I) + S,

where S = @2@2&)@p ®Iﬂ is an n°pxnp permutation matrix. Similarly,

B, (A @1, Jvec(n,)]  [(AP" ®1,)¥"  (A*27 @ 1, Jvec(y,)
(4.11) B =1|:1 = : = :
B, (A" @1, )vec(n,) (A7 @137 (A2 @1, Jvec(m,)
A'ZT @1, - 7] ® I, || vec,)
- (A o1, : : 2 - (A @1, )vec ) .
APZD @I, - Zy ® I, ||vec(M,)

Premultiply equation (4.11) by (Z"A°' ®I,), compare the result with equation

(4.10), and obtain equation (4.7) as

(4.12) [(FPF' ® I,) + Slx = vec(M).

Because equation (4.12) is wvalid whether F 1is diagonalizable and
nonsingular or not, having derived the equation, we no longer need these
assumptions and, therefore, can and do withdraw them. Thus, in the end, these
assumptions are unnecessary and serve only to reveal the derivation of
equation (4.12) from equation (4.3). Figuring out how to do this without

allowing F to be diagonalizable and nonsingular would be difficult.

There are two cases to consider in solving equation (4.12) for x: p =1
and p 2 2.
If p = max(r,gtl) = 1, then, r = 1, g = 0, equation (4.12) is

unnecessary and equation (4.3) reduces to

(4.13) B,B;, = I,Op.i(F,H) [Ou. (F,H) Oy (F, H) ] 7'H".
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Because B, is nonsingular, B,B, is positive definite and B, can be determined
uniquely from B, B, by Cholesky factorization.

If p 2 2, then, (F°' ® I,) + S must be nonsingular in order to solve
equation (4.12) uniquely for x. Because all eigenvalues of F have moduli less
than one (because the model 1is stationary) and all eigenvalues of S have
moduli equal to one (because S is a permutation matrix that maps vectors on
the wunit hypersphere back to the unit hypersphere), theorem 5.1.1 of
Lancaster and Rodman (1995, p. 98) implies that (FP' ® I,) + S has nonzero
eigenvalues and 1is nonsingular. Thus, we can solve equation (4.12) for a
unique value of x 1in terms of covariances of the model's variables and

previously determined AR parameters, as

(4.14) x = [(F°" ® TI,) + S] ‘vec{I,Ou (F,H) [Op (F,H) 0py (F,H) ] ).

We now describe the final steps for determining the MA parameters from

x. We already have the nxn MA characteristic polynomial
(4.15) B(A) = BoA® + BAT + ... + By + By
and now also define the nxn characteristic polynomial

(4.16) X(A) = XAT + o0+ XN+ 2K+ XA+ L.+ XN,

where, for i = 0, ..., g, upper-case X; are unique nxn unvectorizations of the
n’x1 lower-case x; defined by equations (4.8) and A is a complex-valued
scalar. If p-1 2 g+1, then, X; = 0., for i = g+l1, ..., p-1, equation (4.12)
could be reduced by deleting the first p-g-1 columns of (F°' ® I,) + S and
the first p-g-1 elements of x, and solving equation (4.12) in the manner of
equations (3.6)-(3.7).

Multiplying out B(A™')B(A)T and comparing the resulting coefficients of A

with those of X (A) verifies that the factorization
(4.17) X(A) = B(AH)B(A)T

exists. The factorization exists because X(A) has been derived Dbased on

covariances of variables which are assumed to be generated by VARMA model
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(2.1). If X(A) is divided by 2n and A is restriced to e®, where i = Jt??
and -2n < o £ 27w, then, X(A) becomes the spectral density of the MA part of
VARMA model (2.1).

Zadrozny (1998) described an eigenvalue method of undetermined
coefficients for solving a linear rational expectations model. The first step
of doing this is computing the factorization C(A) = K(A)®(A), such that @(A)
contains the smallest np roots of C(A), usually the stationary roots inside
the unit circle. Because B(A)T in X(A) = B(A')B(A)T corresponds to ®(A) in
C(AN) = K(QA)®(A), it can be also be computed using the eigenvalue method of
undetermined coefficients. In fact, the method applies without modification
to computing B(A), because ensuring that B(A) is miniphase is the same as
ensuring that ®(A) contains the np smallest roots of C(A). Here, skew
symmetry of X(A) implies that X(A) has 2ng roots in ng reciprocal pairs. If a
pair of roots is off the unit circle, then, the root inside the unit circle
is chosen for the MA solution. If a pair of roots is on the unit circle,
then, additional assumptions must be introduced to decide which root and
associated latent vector (for repeated roots) should be chosen for the MA
solution, akin to introducing additional assumptions for resolving global

unidentification, as discussed in section 1.

Let B'U = UQ denote the right (column) eigenvalue decomposition of ET,

where Q 1is an ngxng diagonal matrix of eigenvalues and U is an ngxng matrix

of right eigenvectors. Because B has the block-companion form of F in
equation (2.3), the columns of U have the block-Vandermonde form of the left

(row) eigenvectors of F in equation (4.4). Then, following Zadrozny (1998,

pp. 1358-1359), the upper nxng part of B'U = UQ is

U,QF " U,Q3"
(4.18) [B/, ..., B,1U = [UQ}, ..., UQI], U= : : ,
U, U,
where, for 1 =1, ..., g, U; and Q; are defined analogously to Z; and 17; in
equation (4.5).
Equation (4.18) can be solved for Eﬁ, for i = 1, ..., d, Dbecause

diagonalizability condition VI means that U is nonsingular. Because U and Q

are intermediate, not given, values, it might seem that the B, could be

i

nonunique. We now prove that the B, are unique. First, Q is unique because
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its ng diagonal elements are chosen from the 2ng eigenvalues of B by a
determinate rule, such as that the chosen eigenvalues have minimal moduli.
Second, i1f the eigenvalues in Q are distinct, then, U is unique (Wilkinson,

1965, p. 5). Third, if some eigenvalues 1in Q are repeated, then, right

eigenvectors of B in U of repeated eigenvalues are nonunique. Let U denote

another matrix of right eigenvectors of B'. For given U and U, there is an

ngxng nonsingular matrix M such that U = UM, because U and U are nonsingular

by diagonalizability. Because B' = UQU" = UMOM'U! = UQU!, because B' has

the same eigenvalues for any eigenvalue decomposition, it follows that B.,

i

for i = 1, ..., g, that satisfy equation (4.18) are unique, whether or not

eigenvalues in Q are distinct.

It remains to determine unique wvalues of B;, for i = 0, .y g.
Factorization (4.17) can be restated as X(A) = B ')BB(BA)', where BA) = I, A% +
B,A*" + ... + B,_,N + B,. Suppose that Xy is not a root of B(), so that

IEQ@)I # 0. Then, Bﬁﬁ can be determined as

(4.19) BBy = B(Ay) X(A)BR,) ",

where superscript -T denotes inversion and transposition. Because By 1is

nonsingular, a unique value of By can be determined from positive definite

BOBg by Cholesky factorization, whereupon unique values of B; = —§;BO, for i =
1, ..., g, are determined.

Therefore, unique values of B;, for i = 0, ..., g, are determined for
given x from equation (4.13) or from equations (4.14)-(4.19).

We adapt the above solution for the MA parameters from SFD to MFD in

essentially the same way as we adapted the solution for the AR parameters

from SFD to MFD at the end of section 3. Consider the same partition H = [HT

17

Hg] as in section 3. Similarly, replace H with H; in O, (F,H)T on the left

side of equation (4.2), correspondingly reduce columns of fL on the right

side of the equation, and proceed as in the SFD case, from equations (4.13)-
(4.14) to equation (4.19). The adaptation to MFD works iff rank[Op. (F,H;)] =
np, which, as in the AR case, generally also requires increasing L and
imposing additional restrictions on AR parameters.

This section has proved that the MA parameters of VARMA model (2.1) are

identified with SFD or MFD under conditions I-VI of stationarity, regularity,
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miniphaseness, controllability, observability, and diagonalizability,

conditional on the AR parameters having been identified.
5. Concluding discussion.
5.1. Summary discussion.

All ARMA parameters of VARMA model (2.1) have been proved to be
identified when the model satisfies conditions I-VI and its wvariables are
observed with single-frequency data (SFD) according to the first definition
in section 1 or with mixed-frequency data (MFD). First, the AR parameters
were proved to be identified with the backward Yule-Walker equations (BYWE).
Then, conditional on the AR parameters being identified, the MA parameters
were proved to be identified with the forward Yule-Walker equations (FYWE).
Because the AR parameters were proved to be identified independently of the
MA parameters, all ARMA parameters were proved to be identified.

Nevertheless, has redundancy between the AR and MA parameters has been
precluded in the sense that the AR and MA characteristic equations have no
common left factors? Hannan (1969) emphasized the absence of this condition
as a condition for identifying AR and MA parameters. In fact, controllability
implies that the AR and MA characteristic equations cannot have common left
factors. In particular, controllability condition (2.6) precludes a model
from having common AR and MA roots and common corresponding latent vectors.
Therefore, controllability implies nonredundant, hence, separately identified
AR and MA parts of a model.

The paper proved that conditions I-VI are sufficient to identify the
parameters of a VARMA model, but did not prove that the conditions as a whole
are necessary for identification. Each condition 1is necessary or appears to
be necessary in some part of the present proof. Stationarity is necessary for
otherwise the identification problem is not well defined. Regularity appears

to be necessary for identifying the MA parameters, although Zadrozny (1998)

defined an analogue of B that doesn't require regularity, which suggests
that regularity may be unnecessary. Controllability appears to be necessary
for separately identifying the AR and MA parameters. Observability appears to
be necessary for identifying the AR parameters. Miniphaseness 1is necessary
for otherwise some MA parameters with roots on the unit circle are ruled out
and cannot be identified. Diagonalizability appears to be necessary for

identifying the MA parameters. Whether the conditions as a whole are
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necessary for identifying the parameters of VARMA model (2.1) must be proved
independently of any particular method for determining the parameters from

data covariances.
5.2. Numerical illustration.

We now numerically illustrate identification conditions I-VI with the
estimated monthly bivariate ARMA(1l,1) model in Zadrozny (1990a,b), in which
the first variable is monthly employment and second varable is quarterly GNP,
both in standardized percentage-growth form. The estimated AR and MA

coefficient matrices of the model are

A .799 417 R 2.37 0.00 R - .615 —-.697
(5.1) A, = ’ B, = ’ B, = ’
.203 .353 .634 1.34 1.72 —-.613

which indicate that the AR roots are .942 and .209 and the MA roots are .289

+ .643+4-1, with modulus .705. Therefore, the model is stationary (I),

because the AR roots have moduli less than one; the model is regular (II),

because B, is nonsingular; the model is miniphase (III), because the MA roots

have moduli less than one; the model is controllable (IV), because the AR

roots are nonzero and are distinct from the MA roots; the model is observable

(V), because element (1,2) of Al is nonzero (a,, = .417); and, the model is

diagonalizable (VI), Dbecause the MA roots are distinct. This verifies
numerically that the parameters of model (5.1) are identified, although this
was also done before by checking numerically that the Hessian matrix of
second-partial derivatives of the 1likelihood function with respect to the
parameters, evaluated at the maximum likelihood estimate, 1is negative

definite.
5.3. Identification of structural models.

VARMA models are reduced forms of structural dynamic models, such as
dynamic stochastic general equililbrium (DSGE) models now widely used in
macroeconomic analysis (Smets and Wouters, 2003). DSGE models can be linear
or nonlinear 1in variables. Linear models or linear approximations of
nonlinear models that have VARMA reduced forms can be written in state-space

form. Recently, Komunjer and Ng (2011) and Kociecki and Kolasa (2013)
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discussed some, but not all, necessary conditions for identifying reduced
forms of linear or linear-approximate DSGE models in state-space form.

Suppose that structural parameters of a DSGE model in vector © map into
reduced-form-VARMA parameters in vector ¢ according to differentiable mapping
¢ = f£(6), which restricts 6 in terms of ¢. Let g(p) denote a twice-
differentiable unrestricted likelihood function defined in terms of ¢ and let
g(f(®)) denote the restricted likelihood function defined in terms of 6.
Suppose that we estimate the structural parameters with SFD or MFD by

maximizing g(f(6)) with respect to 6 and that this results in successfully

finding the unique global maximum of g(f(8)) at 6. Let Vzg«m denote the
Hessian matrix of second-partial derivatives of g(-) evaluated at ¢ and let
V£®) denote the Jacobian matrix of first-partial derivatives of f£(-)

evaluated at 6. Successful estimation means that the model is identified,

hence, that the restricted Hessian matrix Vf@fjvzgﬁ&»)Vf@) of g (f(8))

evaluated at 6 is negative definite.

If the model is identified, then, Vf&b must have full column rank,
although Vzmé) could be either nonsingular and negative definite or singular
and negative semidefinite. In the first case, if an unrestricted VARMA model
with identity mapping f(-) is identified at ¢, then, unrestricted V’g(®) must

be negative definite. In the second case, 1if a sufficiently restricted

structural model is identified, then, restricted Vf@fwv2gﬁdb)Vf@) is negative

definite even if unrestricted qu@) is singular. The second case can occur,
for example, if some variables in a structural model are never observed, such
as expectations of inflation (Zadrozny, 1997) or production capital and
technology (Chen and Zadrozny, 2009, 2013). The present paper has in effect
established conditions on VARMA model (2.1) under which unrestricted V’g(®) is

negative definite.
6. Appendix.

The appendix proves that, under conditions 1-IV of stationarity,
regularity, mniphaseness, and controllability, Qm(F,VHS has full rank np,
whi ch contributes to the proof in the text below equation (3.5) that matrix D
in equations (3.5) and (3.6) has full rank np

For i =1, ..., np, consider
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B, B, B,
(6.1) 2IC(F O = (A el, .., e || i oLE i |, B
Bp—l Bp—l Bp—l
_ gl p-1 p-1-3 p-1 p-3 p-1 np+p-2-j
S eI Y BA, Ye T, L, Yl 1,

where z, is a left eigenvector of F and A, is its matching eigenval ue.
There are two cases: r 2 g+l and r < g. If r 2 g+l, then, p =

max (r,g+l) = r and, because By = 0., for j 2 gt+l,
(6.2) 2ICy(F, O = ()™ " [EIB(1,), EB(A)A, , ..., EB(X)AF"],

where B( A,) = Z?:O BAY. If r < g, then, p = g+l and equation (6.2) continues
to hold with the understanding that (A,)™"*"” = 1 for any zero or nonzero

A.. Then, equations (3.4) and (6.2) inply that

i

(6.3) zIVH = (A)™C L elB(A,), .., EIB(A) AT, .. ] : H

_ ( 7\/]-_ ) max(r-g-1,0) é’lf B( ;\‘l) GTZ:C:O (leT)j HT _ ( 7\/]-_ ) max(r-g-1,0) iz B( ;\‘l) GT[ | - 7\/]-_ FT] -1HT’

where stationarity implies that Zio(kiFT)j exists and equals [l -AF']", so
that the last equality in equation (6.3) holds. Thus, because controllability

implies that (A,)™" " PE'B(A,) # Oy, it follows that z,VH # 0., if, but not

~

necessarily only if, M = H[I - A, F] 'G is nonsingular.

To prove that M is nonsingular, consider observation equation (2.2),
state equation (2.3) modified hypothetically as xy = A;Fxi.; + Gegy, where F and
G are unchanged from equation (2.3); for i = 1, ..., np, A, continues to
denote an eigenvalue of F; and, the state vector is partitioned into nx1

T ToyT

subvectors as x, = (Rycr weer Xy The modified state equation may be

written out as
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(6.4) X1,¢ = ANAIXy ¢ + ANiXp, o1+ Bogy,
prl,t = )\iApflxl,tfl + }\ixp,tfl + Bp*2€tl
Xp, t = )\iApXLt,l + Bpflst .

Replace X1 on the right side of the next-to-last equation in (6.4)
for xp-1,¢ with the right side of the last equation in (6.4) for x,,: lagged one
period; then, replace X,,.-1 on the right side of the next-to-next-to-last
equation for xy.,, with the right side of the just obtained equation for X, .,
lagged one period; continue like this; after using observation equation (2.2)

to replace xi;,: with y¢, obtain

(6.5) Ye = )\iAlyt—l + ...+ ;\.PJ-)_Apyt_p + Bost + )\iBlst_l + ...+ ;\.i_pr_lst_erl.

Consider equation (6.5) at the steady-state output y for any constant

input €. There are two cases: A; = 0 and A; # 0. If A, = 0, then, the steady

state of equation (6.5) 1is Yy = Ne, where N = B,, so that regularity
condition II implies that N is nonsingular. If A, # 0, then, because A; = Op
for j 2 r+l and By = 0., for k 2 g+l, the steady state of equation (6.5) 1is
A(AM)Y = ATTB(A)E, where A(A) = I, A7 - A AT - ... - A, and B(A]) =
BoA® + BiAYT + ... + By. Because stationarity condition I implies that A (A7)
is nonsingular, y = NE, where N = Xq‘;rA(Xf)’lB(Wf). Miniphase condition III

implies that B(?Cil) is nonsingular, so that N is nonsingular. Because state-

space representation (2.2) and (6.4) implies that y = Mg, where M = N, it
follows that M is nonsingular. Therefore, for any A, M is nonsingular and

C.(F, VH) has full rank np, as was to be shown.
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