
FPGA-based Evaluation of
Cryptographic Algorithms

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Herr Bernhard Jungk

aus Ulm

Frankfurt 2015

(D 30)



vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe-Universität als Dissertation angenommen

Dekan: Prof. Dr. Uwe Brinkschulte

Gutachter:

Prof. Dr. Steffen Reith

Prof. Dr. Uwe Brinkschulte

Dr. Guido Bertoni

Datum der Disputation: 24.01.2016



Für Maike





i

Acknowledgements
I would like to thank all the people, without whom, I might not have finished

this thesis after all. Foremost, I would like to thank Steffen Reith for his support
during all the years since I started this project and for not giving up hope, that
I would finish eventually.

Furthermore, I would like to thank the people, with whom I had long or
short discussions on the technical or academical aspects of my thesis. This
long list of people includes Steffen Reith, Marc Stöttinger, Guido Bertoni,
Joan Daemen, Gilles van Assche, Jürgen Apfelbeck, Kris Gaj, Jens-Peter Kaps,
Marcin Rogawski, Ekawat ’Ice’ Homsirikamol, Christian Wenzel-Benner and
Axel Poschmann. I would also thank all the people, which I surely forgot – this
is due to my bad memory, not intentional.

A special thanks goes to Steffen Reith, Uwe Brinkschulte, and Guido Bertoni
for agreeing to review my thesis, which is – of course – a very important and
vital part of the process.

Last but not least, I have to thank all my friends and my family, who
supported me throughout all the years, but for whom I had too little time.



ii

Zusammenfassung
Effiziente kryptographische Algorithmen sind ein wichtiger Grundstein für viele
neue Anwendungen, wie zum Beispiel das Internet der Dinge (IoT), kooperati-
ve intelligente Transportsysteme (C-ITS) oder kontaktlose Zahlungssysteme.
Daher ist es wichtig, dass neue Algorithmen mit verbesserten Sicherheitseigen-
schaften oder speziellen Leistungseigenschaften entwickelt und auch gründlich
analysiert werden. Ein Beispiel ist der aktuelle Trend in der Krypto-Forschung
zu leichtgewichtigen Algorithmen. Die neuen Entwicklungen erleichtern die
Implementierung neuartiger Systeme und ermöglichen auch einen effektiven
Schutz von bestehenden Systemen durch eine Anpassung auf den neuesten
Stand der Technik. Neben der kryptologischen Analyse, ist die Bewertung von
Implementierungs-Aspekten sehr wichtig, damit eine realistische Einschätzung
der erzielbaren Leistung möglich ist.

Daher müssen für jeden neuen Algorithmus unterschiedliche Software- und
Hardwarearchitekturen entwickelt, implementiert und evaluiert werden. Die sys-
tematische Bewertung von Software-Implementierungen von kryptographischen
Algorithmen für unterschiedliche Hardware-Architekturen hat in den letzten
Jahren große Fortschritte gemacht, zum Beispiel durch den SHA-3 Wettbewerb.
Im Vergleich dazu ist die Evaluation für Hardware-Plattformen wie z.B. FPGAs
weiterhin sehr zeitaufwendig und fehleranfällig. Dies liegt an vielen Faktoren.
Beispielsweise benötigt man vergleichsweise viel Zeit, um die verschiedenen Mög-
lichkeiten auf zahlreichen Zieltechnologien umzusetzen. Auch aufgrund einer
Vielzahl an Optionen für die Synthese-Software der FPGA-Anbieter erhöht sich
der Aufwand für eine faire Analyse. Ein möglicher Verbesserungsansatz besteht
darin, die Bewertung mit einem abstrakteren und theoretischeren Ansatz zu
beginnen, um interessante Architekturen und Implementierungen anhand von
theoretischen Eigenschaften auszuwählen.

Der erste Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen abstrak-
ten Bewertungsmethodik, die auf einem theoretischen Modell von getakteten
integrierten Schaltungen basiert. Das Modell verbessert das Verständnis von
Grundeigenschaften dieser Schaltungen und erleichtert auch die abstrakte Mo-
dellierung von Architekturen für einen spezifischen Algorithmus. Wenn mehrere
verschiedene Architekturen für den gleichen Algorithmus ausgewertet werden,



iii

ist es auch möglich zu bestimmen, ob ein Algorithmus gut skaliert. Beispiels-
weise können Auswirkungen einer Verkleinerung des Datenpfades auf die Größe
des Speicherverbrauchs analysiert werden. Basierend auf der entwickelten Me-
thodik können einige wichtige Eigenschaften, wie der minimal Speicherbedarf,
die minimale Anzahl an Taktzyklen, die Pipeline-Tiefe und ein theoretischer
Durchsatz einer spezifischen Architektur systematisch bewertet werden. Damit
kann eine grobe Schätzung für die Effektivtät einer Implementierung einer
Architektur abgeleitet werden.

Die Performance-Schätzung wird auch durch ein theoretisches Konzept
der Optimalität der Anzahl an Taktzyklen theoretisch untermauert. Das
Optimalitäts-Kriterium wird in der vorliegenden Arbeit für eine Architek-
tur, die eine Kompressionsfunktion einer Hash-Funktion umsetzt, wie folgt
definiert:

Definition 1 Es sei f eine Kompressionsfunktion f = rn ◦ · · · ◦ r2 ◦ r1. Dann
ist eine Architektur für ri zur Implementierung von f optimal, wenn es keine
Pipeline-Stalls bei der Berechnung von f gibt.

Dieses Konzept kann man für runden-basierte Algorithmen weiter verfeinern,
wenn für die Berechnung von f mehrere quasi identische Runden ri verwendet
werden. Für eine solche Hash-Funktion ist die Anzahl an Taktzyklen einer
optimalen Architektur dann wie folgt beschränkt:

Lemma 2 Es sei b die Zustandsgröße, d die Datenpfadbreite, n die Anzahl der
Runden, s die Serialisierungs-Metrik einer Architektur und c eine Konstante.
Dann ist die Anzahl von Taktzyklen einer optimalen Architektur für f =

rn ◦ · · · ◦ r2 ◦ r1 wie folgt beschränkt:

s · b · n
d

≤ cycf (s, b, n, d) ≤ s · b · n
d

+ c,

wenn die Anzahl an Taktzyklen für eine Runde ri wie folgt beschränkt ist:

s · b
d
≤ cycri(s, b, d) ≤ s · b

d
+ c.

Darüber hinaus wird eine obere Schranke für die Konstanten c in einem Korollar
bewiesen. Die Beweise für das Lemma und das Korollar basieren auf der Beob-
achtung, dass die Datenabhängigkeiten zwischen den Runden eine maximale



iv

Anzahl an Taktzyklen pro Runde erlauben, da ansonsten die Berechnung der
Runden-Funktion nicht alle Ausgangs-Bits produziert hat, wenn diese für die
nächste Runde benötigt werden und somit würden Pipeline-Stalls entstehen.

Der zweite Beitrag der Dissertation nutzt die Analysemethodik für mehrere
Hash-Funktion. Es werden sechs Hash-Funktionen bewertet: BLAKE, Grøstl,
Keccak, JH, Skein und Photon. Die ersten fünf Hash-Funktionen sind die
Finalisten des SHA-3 Wettbewerb. Das Ziel des SHA-3 Wettbewerbs war es,
eine Hash-Funktion mit mindestens der gleichen Sicherheit wie SHA-2 zu
finden, die dazuhin eine ähnliche oder bessere Leistung aufweist. Daher haben
diese Hash-Funktionen eine hohe Sicherheit als oberstes Design-Ziel und in
zweiter Linie eine hohe Performance. Im Gegensatz dazu wurde Photon für
leichtgewichtige Anwendungen konzipiert, z.B. RFID-Tags. Dazu wurde auch
die Sicherheit reduziert. Photon ist in dieser Arbeit mit einbezogen, um zu
analysieren, ob kleinere Varianten des Gewinners des SHA-3 Wettbewerbs –
Keccak – auch mögliche Kandidaten für leichtgewichtige Anwendungen sind,
wenn die Sicherheit an die von Photon angeglichen wird.

Für jeden Algorithmus ist als erstes die Definition angegeben. Diese wird
im nächsten Schritt genutzt, um eine generische Schätzung für den minimalen
Speicherplatz abzuleiten, und auch um mögliche Organisationensformen des
Speichers zu entwickeln. Die Speicher-Organisation basiert vor allem auf der
Breite des Datenpfads, sowie auf einem zusätzlichen möglichen Serialisierung-
Faktor. Als nächstes wird die Anzahl von Taktzyklen auf der Grundlage der
generischen Speicherorganisation und des Serialisierung-Faktors ermittelt. Das
generelle Ziel dabei ist die Entwicklung von Architekturen mit einer optimalen
Anzahl von Taktzyklen. Dadurch ist die Ermittelung der nötigen Taktzy-
klen zumeist nur eine weitere Einschränkung der generischen Grenzen für die
Optimalität. Die Diskussion konzentriert sich als nächstes auf verschiedene
Möglichkeiten die Runden-Funktion der Hash-Funktion oder von Teilen davon
optimal umzusetzen. Auf Basis dieser Ergebnisse werden anschließend einige
interessante Architekturen ausgewählt und weiter untersucht.

Die Analyse der einzelnen Architekturen fängt mit einer detaillierten, aber
abstrakten Beschreibung einer möglichen Implementierung an. Es wird aber kei-
ne Implementierung auf der Registertransferebene entwickelt. Zusätzlich führt
die detaillierte Analyse manchmal zu einer Verfeinerung der unteren Grenze der



v

Speicherabschätzung. Für gewöhnlich bedeutet dies eine Verringerung der Leis-
tung für eine bestimmte Speicherorganisation. Die Ergebnisse der detaillierten
Analyse sind am Ende für jeden Algorithmus zusammengefaßt. Dies umfasst
mindestens die Schätzung der minimalen Speicheranforderung, die analysierte
Pipeline-Tiefe und den theoretischen Durchsatz für lange Nachrichten mit einer
festgelegten Taktfrequenz. Diese Ergebnisse lassen eine Einschätzung über die
mögliche Leistung der jeweiligen Architekturen zu.

Die Analyse der bewerteten Algorithmen kann wie folgt zusammengefasst
werden. Für BLAKE basieren die Architekturen auf zwei großen Design-
Paradigmen, Serialisierung von BLAKEs Rundenfunktion, sowie Serialisierung
von BLAKEs Gi Funktion. Der theoretische Durchsatz bei 100 MHz reicht von
57 bis zu 3657 MBits/s, mit einer Datenpfadsbreite von 32 bis zu 512 Bit. Der
minimale Speicherbedarf erhöht sich leicht für die 32 Bit und 64 Bit Varianten
um 64 Bit vom Ausgangswert 1344 Bit auf 1408 Bit. Für einige Varianten ist zu-
sätzlich Pipelining möglich. Dies erhöht den Speicherbedarf weiter, proportional
zur Anzahl der zusätzlichen Pipelinestufen.

Für Grøstl nutzen die Architekturen zwei Ansätze. Die beiden Permutationen
P und Q kann man entweder parallel oder serialisiert berechnen. Zusätzlich sind
die Permutationen P und Q leicht serialisierbar. Dabei kann die der Datenpfad
um Faktor 8 oder 64 reduziert werden. Dies führt zu einem theoretischen
Durchsatz bei 100 MHz zwischen 20 und 2560 MBits/s, wenn der Datenpfad
zwischen 8 und 1024 Bit breit ist. Eine minimale Anzahl von 1536 Bit werden als
Speicher benötigt. Der Bedarf steigt auf 1600 Bit für die Architektur mit einer
Datenpfadbreite von 8 Bit und 1648 Bits für die 16 Bit breite Variante. Ähnlich
wie bei BLAKE ist Pipelining für einige Architekturen möglich. Dadurch steigt
der Speicherplatzbedarf ebenfalls proportional zur Anzahl von zusätzlichen
Pipeline-Stufen.

JH hat eine einfache und flexible Möglichkeit zur Serialisierung der Runden-
Funktion. Diese ist das wichtigste Instrument zur Modellierung der analysierten
Architekturen. Jedoch können die Runden-Konstanten leicht berechnet werden,
wenn sie benötigt werden, anstatt sie direkt zu speichern. Da dies in der Regel
platzsparender ist, muss diese Berechnung ebenfalls berücksichtigt werden. Die
Runden-Konstanten können entweder parallel berechnet werden, oder es kann
die gleiche Logik verwendet werden wie für die normale Runden-Funktion. Die



vi

zweite Option verringert die Größe auf Kosten einer erhöhten Latenz. Der
theoretische Durchsatz bei 100 MHz ist 8 MBits/s für die kleinste Variante mit
Hilfe eines 8 Bit Datenpfads und erreicht 1280 für die parallele Version, mit
einer Datenpfadbreite von 1280 Bit. Die minimale Speicher-Anforderungen sind
1792 Bit. Diese untere Schranke gilt für alle Varianten, welche die Runden-
Konstanten parallel berechnen. Für alle Varianten, welche die Logik teilen
benötigen mehr Speicher. Genauer gesagt, erhöht sich der Speicherverbrauch
genau um die Anzahl der Bits der Datenpfadbreite, z.B. werden für einen 8 Bit
Datenpfad 1800 Bit benötigt. Pipelining ist auch bei JH für einige Architekturen
möglich, diese erhöhen die Speicheranforderungen weiter.

Für Keccak werden mehrere unterschiedliche Architekturen analysiert. Die
Analyse wird unabhängig von der tatsächlichen Parametrisierung von Keccak

durchgeführt, d.h. alle Ergebnisse hängen vor allem vom Parameter l ab. Dieser
Parameter beschreibt die Zustandsgröße b = 25× 2l. Die Sicherheitsparameter
können auch angepasst werden, d.h. die Rate r, die Kapazität f , sowie die
Größe des Hash-Digests n. Vor allem die beiden Parameter r und n haben
einen Einfluss auf den Durchsatz. Die analysierten Architekturen nutzen eine
dreidimensionale Interpretation des Keccak-Zustands. Dies ermöglicht viele
Serialisierungs-Möglichkeiten. Die erste Option ist eine parallele Architektur.
Alternativen sind Bit-, Lane-, Column-, Row-, Sheet-, Plane- und Slice-weise
Implementierungen. Für die (bald) standardisierte Version von Keccak mit
n = 256, sind die Parameter b = 25 × 26 = 1600 und r = 1088 festgelegt.
In dieser Einstellung befindet sich der theoretische Durchsatz im Bereich von
2, 72 bis zu 4352 MBits/s bei 100 MHz und der minimale Speicherbedarf ist im
Bereich von 1600 bis zu 4800 Bit. Die vielseitigste Architektur ist die Slice-
weise Variante. Sie kann entweder nur ein Slice pro Taktzyklus verarbeiten oder
eine in Zweierpotenzen steigende Anzahl von Slices, d.h. maximmal können 2l

Slices parallel verarbeitet werden. Die größte Variante ist jedeoch eine parallele
Architektur, die leicht durch bessere parallele Implementierungen geschlagen
wird.

Für Skein werden drei verschiedene Ansätze untersucht. Der erste ist eine
einfache parallele Implementierung. Diese Architektur kann zu einer ausge-
rollten Architektur verändert werden, welche möglicherweise den Durchsatz
verbessern kann, indem die Komplexität der Implementierung der Rundenfunk-



vii

tion reduziert wird. Als drittes wurden Möglichkeiten zur Serialisierung von
Skein untersucht. Der theoretische Durchsatz bei 100 MHz reicht von 89 bis
zu 2844 MBits/s. Die Datenpfadbreite wurde von 64 bis zu 512 Bit untersucht.
Die minimale Speicher-Voraussetzungen sind 1280 Bit, aber erhöhen sich leicht
für die kleinste Variante zu 1344 Bit. Weiterhin erhöht sich der Speicherbedarf
für Pipeline-Varianten, wobei der Speicher wie bei den anderen untersuchten
Hash-Funktionen proportional zur Anzahl der Pipeline-Stufen ansteigt.

Die Photon Hash-Funktion ist eine Familie von fünf ähnlichen Funktionen mit
unterschiedlichen Sicherheitsstufen. Allerdings kann die Architekturdiskussion
unabhängig von der exakten Funktion durchgeführt werden, ähnlich zu der
Analyse von Keccak. Photon kann auf zwei unterschiedlichen Wege serialisiert
werden. Bei der ersten wird die Berechnung der Rundenfunktion serialisiert,
indem die Datenpfadbreite reduziert wird. Außerdem kann die sogenannte
MixColumnsSerial Funktion auf eine spezielle Art und Weise serialisiert werden,
da die Funktion eine spezielle Struktur aufweist. Für die größte Variante von
Photon mit der höchsten Sicherheit ergibt die Analyse der vorgeschlagenen
Architekturen einen theoretischen Durchsatz der bei 100 MHz von 1, 23 bis
zu 266 MBits/s gefächert ist, wobei die Datenpfadbreite von 8 bis zu 288 Bit
reicht. Die minimalen Speicheranforderungen sind 288 Bit und erhöhen sich für
die kleineren Implementierungen auf Grund der Datenabhängigkeiten in der
Rundenfunktion.

Der dritte Beitrag der Arbeit besteht aus mehreren kleinen und mittleren
Implementierungs-Ergebnissen. Zunächst werden Ergebnisse für Architekturen
von den SHA-3 Finalisten BLAKE, Grøstl, JH, Keccak und Skein gezeigt.
Sie ergänzen den aktuellen Forschungsstand zur Implementierung dieser Algo-
rithmen. Von den fünf Algorithmen haben alle außer Skein eine relativ hohe
Performanz, während Skein weit abgeschlagen ist. Eine weitere Untersuchung
konzentriert sich auf kleine und mittlere Implementierungen des SHA-3 Sie-
gers Keccak. Dazu gehören auch nicht standardisierte Varianten mit einem
kleineren Zustand. Dies ermöglicht auch kleinere Implementierungen mit ei-
ner reduzierten Sicherheitsstufe. Diese kleineren Versionen werden mit ersten
FPGA-Ergebnissen für die Photon Hash-Funktion verglichen. Eine wesentli-
che Erkenntnis davon ist, dass Keccak auch für FPGA-Anwendungen mit
beschränktem Ressourcen-Bedarf prinzipiell sehr wettbewerbsfähig ist.



Schlüsselwörter. Kryptographie, Hash Funktionen, SHA-3, FPGAs, Leicht-
gewichtige Kryptographie

viii



ix

Contents

I Introduction and Motivation 1

1 Introduction 3

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . 3

1.1.1 Trade-Offs in Cryptography . . . . . . . . . . . . . . . 3

1.1.2 SHA-3 Competition . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Field-Programmable Gate Arrays . . . . . . . . . . . . 5

1.1.4 Evaluation Methodologies . . . . . . . . . . . . . . . . . 6

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Published Material . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II Foundations 11

2 Boolean Circuits with Memory 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Boolean Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Memory and Timing . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Modeling Random Access Memories . . . . . . . . . . . . . . . 23

2.5 Complexity Measures . . . . . . . . . . . . . . . . . . . . . . . 26

3 Hash Functions 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Security of Hash Functions . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Security Properties . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Generic Attacks . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . 37



x

3.3.4 Side-Channel Countermeasures . . . . . . . . . . . . . . 38

3.4 Domain Extender . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Iterated Hash Functions . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Merkle-Damgård . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Davies-Meyer . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Sponge Functions . . . . . . . . . . . . . . . . . . . . . 45

3.6 Tree-based Hash Functions . . . . . . . . . . . . . . . . . . . . 48

3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Hardware Design Aspects 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Register Transfer Level Synthesis . . . . . . . . . . . . . . . . . 52

4.3 Low-Level Optimizations . . . . . . . . . . . . . . . . . . . . . 54

4.4 High-Level Optimizations . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.4 Serialization . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.5 Algorithmic Specific Optimizations . . . . . . . . . . . 62

4.5 FPGA Hardware Aspects . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 General FPGA Architecture . . . . . . . . . . . . . . . 64

4.5.2 Xilinx FPGAs . . . . . . . . . . . . . . . . . . . . . . . 65

III FPGA-based Evaluation 71

5 A Systematic Design Approach 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Motivation and Previous Work . . . . . . . . . . . . . . . . . . 74

5.3 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Area Impact . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Throughput Impact . . . . . . . . . . . . . . . . . . . . 78

5.3.3 Performance Indicators . . . . . . . . . . . . . . . . . . 79

5.3.4 Data Dependencies . . . . . . . . . . . . . . . . . . . . 81

5.4 Cycle Optimal Architectures . . . . . . . . . . . . . . . . . . . 82



xi

5.5 Stall-Free Pipelining . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Round Function Memory Estimation . . . . . . . . . . . . . . . 86

6 Hash Function Evaluation 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Input and Output Bitstring Convention . . . . . . . . . . . . . 90
6.3 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 FSL-based Interface . . . . . . . . . . . . . . . . . . . . 91
6.3.2 GMU Interface . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 General Assumptions and Design Goals . . . . . . . . . . . . . 96
6.5 BLAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.2 Systematic Evaluation Overview . . . . . . . . . . . . . 102
6.5.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 109
6.5.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 113
6.5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Grøstl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.2 Systematic Evaluation Overview . . . . . . . . . . . . . 123
6.6.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 125
6.6.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 128
6.6.5 S-box Optimization . . . . . . . . . . . . . . . . . . . . 129
6.6.6 Implementation . . . . . . . . . . . . . . . . . . . . . . 130

6.7 JH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7.2 Systematic Evaluation Overview . . . . . . . . . . . . . 137
6.7.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 140
6.7.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 142
6.7.5 Manual LUT6_2 Instantiation . . . . . . . . . . . . . . . 143
6.7.6 Implementation . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Keccak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.8.2 Systematic Evaluation Overview . . . . . . . . . . . . . 151
6.8.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 157
6.8.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 164



xii

6.8.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 165

6.9 Skein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.9.2 Systematic Evaluation Overview . . . . . . . . . . . . . 170

6.9.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 172

6.9.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 173

6.9.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 174

6.10 Photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.10.2 Systematic Evaluation Overview . . . . . . . . . . . . . 180

6.10.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . 183

6.10.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . 184

6.10.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 184

6.11 Discussion and Further Work . . . . . . . . . . . . . . . . . . . 186

7 Implementation Evaluation 189

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3 Automated Optimization . . . . . . . . . . . . . . . . . . . . . 191

7.4 Implementation Results . . . . . . . . . . . . . . . . . . . . . . 192

7.4.1 SHA-3 Finalists with Padding . . . . . . . . . . . . . . 193

7.4.2 Heavyweight Keccak without Padding . . . . . . . . . 194

7.4.3 Lightweight Hash Functions without Padding . . . . . . 196

7.5 Third-Party Implementations . . . . . . . . . . . . . . . . . . . 200

7.6 Discussion and Further Work . . . . . . . . . . . . . . . . . . . 202

IV Appendix 205

A Finite Fields 207

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.3 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.4 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A.5 Composite Fields . . . . . . . . . . . . . . . . . . . . . . . . . 220



xiii

A.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.6.1 Basic Operations over F2n . . . . . . . . . . . . . . . . 225
A.6.2 Finding Irreducible Polynomials . . . . . . . . . . . . . 228
A.6.3 Root Finding Algorithm . . . . . . . . . . . . . . . . . 230
A.6.4 Basis Conversion Matrix . . . . . . . . . . . . . . . . . 231

A.7 Implementation Results AES S-box . . . . . . . . . . . . . . . 231

B Further Implementation Results 245

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
B.2 Spartan-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
B.3 Spartan-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
B.4 Virtex-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.5 Artix-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
B.6 Kintex-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.7 Virtex-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Bibliography 259



List of Figures

2.1 Adder for three two-bit natural numbers. . . . . . . . . . . . . 14

2.2 Adder for multiple two-bit natural numbers. . . . . . . . . . . 18

2.3 Modeling of a 4× 1 bit RAM from registers and Boolean circuits. 23

2.4 Boolean sub-circuit of the BCM depicted in Fig. 2.3. . . . . . 29

3.1 Merkle-Damgård domain extender. . . . . . . . . . . . . . . . 41

3.2 Davies-Meyer domain extender. . . . . . . . . . . . . . . . . . 44

3.3 Design of sponge functions. . . . . . . . . . . . . . . . . . . . . 46

4.1 Hardware Design Flows. . . . . . . . . . . . . . . . . . . . . . 52

4.2 Area minimized LUT-mapping. . . . . . . . . . . . . . . . . . 56

4.3 Algorithmic-level serialization and parallelism. . . . . . . . . . 58

4.4 Hardware duplication of a SHA-256 implementation. . . . . . . 58

4.5 Pipelining a circuit. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Unrolling a loop with three iterations. . . . . . . . . . . . . . . 60

4.7 Modern FPGA architecture. . . . . . . . . . . . . . . . . . . . 64

4.8 A simplified CLB architecture. . . . . . . . . . . . . . . . . . . 66

4.9 Area of distributed RAM in LUTs with different values for
depth and width, synthesized for Xilinx Virtex-5 FPGAs. . . . 67

5.1 Systematic Evaluation Methodology. . . . . . . . . . . . . . . 76

5.2 Example of a scheduling with maximum value for c. . . . . . . 83

5.3 Example scheduling without pipelining. . . . . . . . . . . . . . 84

5.4 Example scheduling with a depth 3 pipeline. . . . . . . . . . . 85

6.1 The Fast Simplex Link Interface. . . . . . . . . . . . . . . . . 92

6.2 Timing diagram for the Fast Simplex Link. . . . . . . . . . . . 93

6.3 Timing diagram for the FIFO buffer supporting the GMU
interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



xv

6.4 Example reading pattern for BLAKE-256 and k = 3. . . . . . 104

6.5 Grouping of the words hi for k = 2. . . . . . . . . . . . . . . . 104

6.6 Illustration of the BLAKE Gi function. . . . . . . . . . . . . . 107

6.7 Simplified timing for the Gi function (α = 4). . . . . . . . . . 108

6.8 Simplified timing for the Gi function (α = 8). . . . . . . . . . 109

6.9 Simplified timing for the pipelined Gi function (α = 2, β = 4). 110

6.10 Reordered scheduling of the Gi functions (α = 2, β = 4).
Transition from (G5, G6) to (G0, G1) . . . . . . . . . . . . . . . 110

6.11 Simplified timing for the pipelined Gi function (α = 2, β = 8). 111

6.12 BLAKE-256 architecture with α = 2, β = 8. . . . . . . . . . . 116

6.13 Simplified timing for the parallel interleaved implementation
of the Grøstl-256 compression function. . . . . . . . . . . . . . 126

6.14 Grøstl-256 serialized architecture with implicit ShiftBytes for P .127

6.15 Simplified timing for the byte-wise serialized implementation
of the Grøstl-256 compression function. . . . . . . . . . . . . . 128

6.16 Grøstl-256 serialized implementation. . . . . . . . . . . . . . . 130

6.17 Grøstl-256 pipelined serialized round function. . . . . . . . . . 132

6.18 Example organization of the state and read and write opera-
tions for the JH state and k = 2. . . . . . . . . . . . . . . . . . 138

6.19 Scheduling of the I/O for a pipelined implementation of JH
with k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.20 Scheduling of the I/O for an interleaved non-pipelined imple-
mentation of JH with k = 2. . . . . . . . . . . . . . . . . . . . 141

6.21 JH-256 serialized implementation with d = 8. . . . . . . . . . . 144

6.22 JH-256 serialized implementation with d = 320. . . . . . . . . 145

6.23 The different Keccak sub-permutations. . . . . . . . . . . . . 150

6.24 Parts of Keccak’s state. . . . . . . . . . . . . . . . . . . . . . 152

6.25 Partial fulfillment of the dependencies of Keccak’s θ in the
bit-wise architecture for x = z = 1. . . . . . . . . . . . . . . . 158

6.26 Reordering for the lane-wise Keccak architecture at work. . . 160

6.27 First Keccak fixed architecture. . . . . . . . . . . . . . . . . 165

6.28 Second generic Keccak architecture. . . . . . . . . . . . . . . 166

6.29 Illustration of an alternative implementation of ρ. . . . . . . . 166

6.30 The Skein key schedule memory architecture. . . . . . . . . . . 171



xvi

6.31 Skein implementation. . . . . . . . . . . . . . . . . . . . . . . 174
6.32 Implemented Skein pipeline. . . . . . . . . . . . . . . . . . . . 175
6.33 Read and write locations for the column-wise Photon architecture.180
6.34 Design for the MixColumnsSerial serialization for Photon. . . . 181
6.35 Architecture of the Photon implementation. . . . . . . . . . . 185

7.1 Area and throughput of the SHA-3 finalist implementations
(Virtex-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2 Area and throughput of Keccak with b ∈ {1600, 800} and
c = 512 for b = 1600 and c ∈ {512, 256} for b = 800 (Virtex-5). 195

7.3 Area and throughput of Keccak-f [400] and Photon (Virtex-5).197
7.4 Area and throughput of Keccak-f [200] and Photon (Virtex-5).198

A.1 Lattices of the subfields of a finite field. . . . . . . . . . . . . . 216
A.2 Multiplication table for F22 . . . . . . . . . . . . . . . . . . . . 219



List of Tables

1.1 Mathematical notations. . . . . . . . . . . . . . . . . . . . . . 9

4.1 Detailed area of distributed RAM in LUT-FF pairs with 256 Bit. 66

6.1 Implemented I/Os of the FSL Interface. . . . . . . . . . . . . . 92

6.2 Protocol Messages for the FSL Interface. . . . . . . . . . . . . 94

6.3 Protocol Messages for the GMU-Based Interface. . . . . . . . . 95

6.4 Protocol Messages for the Modified Lightweight Interface. . . . 95

6.5 BLAKE’s σr permutations. . . . . . . . . . . . . . . . . . . . . 99

6.6 Summary of BLAKE-256 analysis . . . . . . . . . . . . . . . . 114

6.7 Summary of Grøstl-256 analysis . . . . . . . . . . . . . . . . . 129

6.8 Summary of JH-256 analysis . . . . . . . . . . . . . . . . . . . 142

6.9 Instantiation of LUT6_2s for JH . . . . . . . . . . . . . . . . . 143

6.10 Sponge parameters for Keccak-f [b] . . . . . . . . . . . . . . 151

6.11 Rotation offsets for the ρ permutation of Keccak-[1600]. . . . 153

6.12 Summary of the theoretical analysis of Keccak . . . . . . . . 165

6.13 Summary of the theoretical analysis of Skein . . . . . . . . . . 173

6.14 The different Photon variants . . . . . . . . . . . . . . . . . . 176

6.15 The present S-box . . . . . . . . . . . . . . . . . . . . . . . 178

6.16 Summary of Photon analysis . . . . . . . . . . . . . . . . . . . 184

6.17 Long message throughput for parallel implementations. . . . . 186

7.1 Results for the 256 bits versions of the SHA-3 finalists (Virtex-5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2 Results for the heavyweight versions of Keccak (Virtex-5). . 196

7.3 Results for the lightweight versions of Keccak (Virtex-5). . . 199

7.4 Results for the Photon hash function family (Virtex-5). . . . . 200

7.5 Third-Party Results for the 256 bits versions of the SHA-3
finalists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xvii



xviii

A.1 Number of monic irreducible polynomials of degree 2. . . . . . 217
A.2 Number of different polynomial bases. . . . . . . . . . . . . . . 217
A.3 Results for the AES S-box composite field implementation

(Spartan-3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1 Results for the 256 bits versions of the SHA-3 finalists (Spartan-3).245
B.2 Results for the heavyweight versions of Keccak (Spartan-3). 246
B.3 Results for the lightweight versions of Keccak (Spartan-3). . 247
B.4 Results for the Photon hash function family (Spartan-3). . . . 247
B.5 Results for the 256 bits versions of the SHA-3 finalists (Spartan-6).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
B.6 Results for the heavyweight versions of Keccak (Spartan-6). 248
B.7 Results for the lightweight versions of Keccak (Spartan-6). . 249
B.8 Results for the Photon hash function family (Spartan-6). . . . 249
B.9 Results for the 256 bits versions of the SHA-3 finalists (Virtex-6).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.10 Results for the heavyweight versions of Keccak (Virtex-6). . 250
B.11 Results for the lightweight versions of Keccak (Virtex-6). . . 251
B.12 Results for the Photon hash function family (Virtex-6). . . . . 251
B.13 Results for the 256 bits versions of the SHA-3 finalists (Artix-7). 252
B.14 Results for the heavyweight versions of Keccak (Artix-7). . 252
B.15 Results for the lightweight versions of Keccak (Artix-7). . . 253
B.16 Results for the Photon hash function family (Artix-7). . . . . 253
B.17 Results for the 256 bits versions of the SHA-3 finalists (Kintex-7).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.18 Results for the heavyweight versions of Keccak (Kintex-7). . 254
B.19 Results for the lightweight versions of Keccak (Kintex-7). . 255
B.20 Results for the Photon hash function family (Kintex-7). . . . 255
B.21 Results for the 256 bits versions of the SHA-3 finalists (Virtex-7).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.22 Results for the heavyweight versions of Keccak (Virtex-7). . 256
B.23 Results for the lightweight versions of Keccak (Virtex-7). . . 257
B.24 Results for the Photon hash function family (Virtex-7). . . . . 257



List of Algorithms

3.1 Merkle-Damgård construction [Mer79] . . . . . . . . . . . . . . 41

3.2 Davies-Meyer construction [DP84] . . . . . . . . . . . . . . . . 44

3.3 Sponge construction [BDPA11b] . . . . . . . . . . . . . . . . . 46

6.1 BLAKE Gi function family [AHMP10] . . . . . . . . . . . . . 100

6.2 BLAKE round function [AHMP10] . . . . . . . . . . . . . . . 100

6.3 BLAKE compression function [AHMP10] . . . . . . . . . . . . 101

6.4 HAIFA iteration mode used by BLAKE [AHMP10] . . . . . . 102

6.5 BLAKE Gi function family with α = 2 . . . . . . . . . . . . . 107

6.6 Grøstl-256 P round function [GKM+10] . . . . . . . . . . . . 121

6.7 Grøstl-256 compression function [GKM+10] . . . . . . . . . . 122

6.8 Grøstl-256 iteration mode [GKM+10] . . . . . . . . . . . . . . 122

6.9 Shared Grøstl-256 round function [GKM+10] . . . . . . . . . . 125

6.10 JH S-box [Wu11] . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.11 JH linear transformation [Wu11] . . . . . . . . . . . . . . . . . 136

6.12 JH permutation layer [Wu11] . . . . . . . . . . . . . . . . . . . 136

6.13 JH compression function [Wu11] . . . . . . . . . . . . . . . . . 137

6.14 Keccak round function [BDPA11b]. . . . . . . . . . . . . . . 149

6.15 Threefish MIX function [FLS+10] . . . . . . . . . . . . . . . . 170

6.16 Threefish round function [FLS+10] . . . . . . . . . . . . . . . 171

6.17 Threefish encryption [FLS+10] . . . . . . . . . . . . . . . . . . 171

6.18 Photon round function [GPP11] . . . . . . . . . . . . . . . . . 179

A.1 Multiplication in finite fields . . . . . . . . . . . . . . . . . . . 219

A.2 Multiplication in finite fields over F2 using a normal basis. . . 220

A.3 Polynomial Division . . . . . . . . . . . . . . . . . . . . . . . . 226

A.4 Polynomial exponentiation . . . . . . . . . . . . . . . . . . . . 227

A.5 Polynomial extended Euclidean algorithm (extgcd(a, b)) . . . . 228

xix



xx

A.6 Ben-Or irreducibility test [Ben81] . . . . . . . . . . . . . . . . 229
A.7 Sunar’s factorization algorithm [Sun05]. . . . . . . . . . . . . . 230



Part I

Introduction and Motivation

1





Chapter 1

Introduction

1.1 Motivation and Background

In a world that depends more and more on electronic infrastructure and
computer networks, the importance of the security of these systems increases
almost every day. For example, in the near future, a growing number of vehicles
will have a wireless network connection, which is not just an integrated Internet
connection for cars. Many of such new wireless applications will require access
to the on-board network and thus, the safety of passengers will be at risk, if
a malicious attacker can get access through these external interfaces, e.g. the
car-2-car communication system [Con07].

Another prominent example is the advent of the so called Internet of Things
(IoT), which is a label for the continuing development, that an increasing
number of everyday devices is connected to the Internet [Ash09]. This idea goes
far beyond the usual Internet devices such as computers, tablets or smart phones
and a large part of of these devices will use wireless network technologies. Almost
all of these applications need to be protected by effective security mechanisms,
because many will have an influence of the privacy or the safety of people
[AIM10]. Many more such modern applications of networking technology exist
and a lot of them are in need of tailored security solutions.

1.1.1 Trade-Offs in Cryptography

Such security mechanisms are a major cost factor for many applications and
thus, a lot of the current research is focused on several areas in this field.

3



4

Of course, the top priority of a security protocol is a proper protection and
therefore, the correctness of such architectures and also of implementations has
to be verified. However, the security level has to be balanced with other factors
such as interoperability, power consumption and costs, and hence, the research
has a very broad focus. Interoperability for example is usually a problem if new
systems have to cooperate with an existing infrastructure. In this case, older
and sometimes less efficient protocols have to be implemented. This can be in
contradiction to the desirable security, cost or performance goals.

In this thesis the current state of the art is evolved by investigating several
efficient architectures of modern hash functions for midrange and lightweight
applications. Such implementations are often necessary, because there is a great
pressure on the cost and thus, it is necessary to find a compromise between the
performance and the costs and therefore, architectures which have a reasonable
throughput with a reduced area are also important beside the extreme cases of
high-throughput and ultra-lightweight architectures.

Many other research efforts also try to improve the state of the art for
new applications on a more general level. For example Bernstein developed a
more efficient elliptic curve representation and thus, the cost of asymmetric
cryptography can now be reduced for new systems [Ber06]. Further research
pushes this limit further. In [BKL+07] PRESENT, a new ultra-lightweight
block cipher has been proposed, or the Photon hash function has been developed
[GPP11]. The two latter algorithms are aiming at applications that require a
very low area footprint, such as RFID tags. Many more new algorithms and
architectures of existing algorithms were proposed in the last years and the
cryptographic research community is busy developing new ideas to further push
the limits.

1.1.2 SHA-3 Competition

As already mentioned, one of the top priorities is to achieve a sufficient level
of protection at minimum cost. Therefore, new systems and applications not
only drive the development of new cryptographic algorithms, but also the
advances in cryptanalysis. For example, recent attacks produced collisions in
MD5 [WFLY04], and also SHA-1 was broken in the sense, that there are known
attacks that are theoretically faster than brute force [WYY05]. These attacks



5

and concerns about possible weaknesses in SHA-2 triggered the start of the
SHA-3 competition [Kay07]. In parallel, some new improved attacks on reduced
versions of SHA-2 were published [SS08, IS09]. Yet, no substantial breakthrough
in the cryptanalysis of SHA-2 was made. The SHA-3 competition was concluded
at the end of 2012 with the announcement that Keccak will become the next
standardized hash function SHA-3.

The SHA-3 competition acted as a catalyst for the research in the area of hash
functions, most notably, the five finalists of the competition. An overview of the
research which was conducted during the competition can be found in [CPB+12].
The theoretical security was the most important aspect, closely followed by
the importance of the performance of the candidates. Therefore, a lot of effort
was invested into the performance evaluation for many target platforms from
low-end processors [WG10] to high-end hardware implementations [GSH+12].
For the midrange segment the performance is also very important, because
reducing the hardware area or the memory usage of software implementations
improves the cost effectiveness. The throughput-area trade-off for FPGAs was
for example investigated for the SHA-3 winner Keccak by the author of this
thesis in [JS13]. It is also one of the important aspects of the present thesis.

1.1.3 Field-Programmable Gate Arrays

The evaluation in this thesis is based on Field-Programmable Gate Arrays
(FPGAs), which are based on a somewhat hybrid technology. An FPGA can
be seen as an integrated circuit (IC), because such an FPGA works in many
ways like a classical IC. However, FPGAs also have aspects similar to software,
because they can be (re-)programmed in the field and thus, it is usually possible
to update and change the circuit without replacing the hardware, which is
usually impossible with application specific ICs (ASIC).

This has several advantages. First of all, FPGAs are a cheap development
and prototyping platform for the development of ICs. Hence, for hardware
implementations, one does not have to fabricate an ASIC right away, and yet
it is possible to test a prototype in a form that is closer to the final hardware
than many simulations. Furthermore, if the implementation is only used for
a low volume production, an FPGA may be cheaper than a similar ASIC
implementation, because of the high fixed cost to fabricate ASICs.



6

One other important advantage is, that it is possible to fix problems with
the implementation or to update the FPGA implementation to include new
functionality without actually replacing the hardware. For example, this has
important applications in the aerospace and avionics markets, where it is
sometimes expensive or impossible to replace the hardware and much cheaper
to do a software update.

1.1.4 Evaluation Methodologies

As it has been shown in the last sections, it is important to evaluate efficient
hardware architectures for cryptographic algorithms. Unfortunately, a fair
performance evaluation is difficult, because there are many possible pitfalls.
For example, there are a lot of implementation variants and an evaluation
between different implementations is usually multi-dimensional. For software
implementations, these dimensions are for example throughput, RAM and ROM
usage or the power consumption. However, using a fixed software interface
and platform, it possible to get a good and meaningful evaluation of different
implementations, using a systematic methodology [BL12].

This changes for hardware implementations considerably, because even more
variations are possible. Hence, an evaluation is tedious and error prone, because
of many factors [Dri09]. Among these are:

• The target technology varies. For FPGAs, it does not only include the
type of the FPGA, but evaluation results also change for the exact target
FPGA (e.g. two different Xilinx Virtex-5 FPGAs). It is also a huge
difference, if DSPs, BRAMs or other special hardware primitives are used.
All of these factors are often very different between two evaluations.

• The parameters used in synthesis, map and place and route have a
considerable impact on the results.

• The I/O interface has a high impact for lightweight implementations.

Another big difference between software and hardware implementations is,
that the evaluation times for hardware developments are usually much longer
and hence, it is more difficult to setup a common benchmarking system which
would standardize the evaluation. Furthermore, there are usually many possible



7

optimization strategies and optimization goals. Thus, even if an evaluation is
sound in itself, comparing results with another evaluation is almost always
slightly wrong. Therefore, a fair comparison between more than one architecture
of an algorithm should be based on a more abstract design approach to select
good candidate architectures before implementation.

A methodology which takes a step towards such a more abstract design
process was proposed by the author of this thesis in [JS13]. It analyzes theoretical
properties of a proposed architecture before the actual implementation. In this
thesis, this last methodology is used as a basis and an extended and revised
version is discussed in more detail and later applied to several cryptographic
hash algorithms. The extended version is based on an abstract circuit model,
and thus has stronger theoretical foundations than many other methodologies.

1.2 Thesis Organization

The thesis is organized in three parts. The first introductory part (Part I)
gives a motivation and background information on the topic of the thesis. In
the second part, theoretical foundations are provided. The third part contains
the bulk of the evaluation of the algorithms, including the theoretical and the
practical evaluation and a thorough evaluation of each.

The second part (Part. II) contains a treatment of a tailored Boolean circuits
model based on the standard model, commonly used in complexity theory
(Ch. 2). The main change to the model is the inclusion of memories, which
for example facilitates a formal reasoning about the memory consumption of
circuits. It is later used as the basis of the systematic methodology (Ch. 5).

The introduction to finite fields is followed by an introductory chapter about
hash functions (Ch. 3). It defines the basic notion of a hash function, security
properties and also some important iteration modes. The iteration modes play
a significant role, because the different constructions usually have a major
influence on the area consumption, e.g. the Davies-Meyer mode requires a
larger memory than a plain Merkle-Damgård design.

The last chapter in Part II discusses several aspects of hardware design
(Ch. 4). In particular, the RTL design methodology is described and later
low- and high-level optimization strategies are introduced. Additionally, some



8

aspects of FPGAs are described, which are important as several design decisions
in the evaluation are based on them.

In the third part, the main evaluation is described (Part. III). The first
chapter in this part describes the systematic evaluation methodology (Ch. 5),
which is used in the next chapter to evaluate six different hash functions based
on a theoretical treatment (Ch. 6). For each algorithm, several architectures
are investigated. For each architecture properties such as minimum memory
consumption, number of clock cycles and a theoretical throughput are shown.
Ch. 6 is concluded with a discussion of the theoretical results.

The last chapter in this part gives an evaluation of the concrete implemen-
tations, a comparison with third-party results and a discussion of the results
(Ch. 7).

The appendix contains additional material. The first appendix (Appx. A)
introduces the theory of finite fields and the composite fields approach. This
theory is used in the optimization of the area consumption of the AES S-box
used by both Grøstl and the largest variant of the Photon hash function. It is in
the later chapters investigated, if choosing a different representation compared
to the previous publications is more efficient for FPGAs, than the published
variants, which were focused on ASICs. Furthermore, the appendix contains
additional post place and route results of the implementations (Appx. B).

1.3 Published Material

Parts of this thesis are extension or refined versions of previous published
material of the author. In particular, the thesis contains results of the following
peer-reviewed papers:

• The revisited optimization of the AES S-box for was published in [JR10b]
together with an implementation of the second round version of Grøstl.

• The implementations of the SHA-3 finalists were gradually improved.
The first results were presented at the Ecrypt II Hash Workshop [Jun11],
followed by the paper [JA11], which presented implementation results
for all finalist. Furthermore, a refined version was published at the final
SHA-3 conference [Jun12].



9

• After the announcement of the winning algorithm Keccak, the imple-
mentations of this algorithm have been further optimized and the results
published in [JS13]. Additional improvements and also results for ASICs
have been published at the SHA-3 2014 workshop [JSH14].

• A comparison between Keccak, Photon and the hash function Spongent
has been presented at the ReConFig ’14 conference [JLH14]. However,
Spongent is not analyzed in the present thesis.

1.4 Notations

The following notations are used throughout the thesis. Some other notations,
that are only important in a local context are introduced in the text.

Table 1.1: Mathematical notations.

Notation Explanation

Z2 Representation of a bit, i.e. Z2 =def {0, 1} or a finite field
Z2 =def F2.

Zm2 Zm2 is the set of bit strings of length m, i.e. Zm2 =def {0, 1}m.
Z≥02 Z≥02 is the set of bit strings of arbitrary length, i.e. Z≥02 =def⋃

i≥0 Zi2.
bxcn If x ∈ Zm2 and m > n, then the value of bxcn consists of the n

least significant bits of x, i.e. bxcn ∈ Zn2 .
|x| The length of x ∈ Z, i.e. if x ∈ Z≥02 , then x ∈ Zi2 for some i and

|x| = i.

|x|n The length of x encoded in a binary encoding using n bits, i.e.
|x|n ∈ Zn2 .

a||b Concatenation of two elements. If a ∈ M and b ∈ N , then
a||b ∈M ×N and if M = Zm2 and N = Zn2 , then a||b ∈ Z(m+n)

2

and a||b = {a1, . . . , am, b1, . . . , bn}. Furthermore, if the binary
representations of a and b are interpreted as a, b ∈ N, then
a||b =def a× 2n + b.



10

xi If x consists of several concatenated elements, then xi refers to
the ith element. For example, if x = x1||x2 then x1 refers to
the first part of x and x2 to the second.

x[i] Equivalent to xi. The notation is sometimes used, when it is
more convenient, e.g. for indexing cells in a matrix.

~an1 The notation ~an1 is used to abbreviate enumerations, i.e. ~an1 =def

a1, . . . , an.



Part II

Foundations

11





Chapter 2

Boolean Circuits with Memory

2.1 Introduction

Throughout the following chapters, the argument will refer to the Boolean
circuits model, which is a general abstract model for integrated circuits. In the
literature, this model is mainly used in the field of complexity theory, where it is
for example applied to characterize the NC hierarchy [Coo79], which is believed
to capture the notion of efficient parallelizable algorithms. Additionally, many
complexity theorist believe, that no efficient parallel algorithms for P-complete
problems exist. This would be the case, if the still unproven assumptionNC 6= P

is true [GHR95].

The usefulness of the model comes from its abstract view on circuits, which
– in complexity theory – is readily exploited to get a better understanding of
algorithms and complexity classes [Vol99]. The model is also interesting to
analyze how to efficiently implement algorithms. Hence, this model is a good
starting point for a more formal analysis of cryptographic algorithms towards
efficient hardware implementations.

The usual model of Boolean circuits defines a circuit as an acyclic graph
without any memory elements, because simple models are usually easier to
analyze. In complexity theory this is particularly useful, because it is much
easier to reason about and thus to prove certain properties. However, for the
analysis in the following chapters this is inadequate, because the evaluation
goal is an estimate on the performance of concrete implementations for sev-
eral cryptographic algorithms. Therefore, the notion of Boolean Circuits with

13



14

Memory is introduced and tailored to the current use case. This new model is
defined in a two step approach. First, an adapted version of the original model
of Boolean circuits is introduced, and then it is extended in a second step to
use clocked memory primitives.

The remainder of this chapter is organized as follows. The new model is
introduced in several parts. First, a restricted version of the standard Boolean
circuits model will be defined in Sec. 2.2. Afterwards, the model will be extended
to Boolean circuits with memory (Sec. 2.3), followed by a possible modeling of
random access memories in Sec. 2.4. Finally several generally useful complexity
measures are defined (Sec. 2.5).

2.2 Boolean Circuits

The definition of Boolean circuits (Def. 2.3, Def. 2.5) used in the further sections
and chapters is based on the definition by Vollmer [Vol99]. In the literature,
several slightly different and sometimes less formal definitions may be found,
e.g. in [Sav97, AB09, Sip96]. The main difference from the herein defined model
to the reference definition is, that families of Boolean functions are not included
in the basis of a circuit, because these infinite objects are only needed to model
gates with unbounded fan-in [Vol99]. For a theoretical treatment, these gate
types are an important abstraction. However, in reality no such gates exist and
thus, for an abstract, yet practical evaluation of algorithms, they should not be
used in a more realistic setting.

An example of such a circuit is depicted in Fig. 2.1. The figure shows a small
adder for three natural numbers which have two bits each, i.e. x, y, z ∈ Z4 and

Figure 2.1: Adder for three two-bit natural numbers.



15

0 ≤ w ≤ 9. This adder is a variant of a carry save adder, which is an efficient
circuit for adding multiple values. Other efficient adders, which are suitable to
add only two natural numbers usually use a variation of a prefix adder circuit
[Kor01, Sav97].

One of the key ingredients for a Boolean circuit is a Boolean function. Such
functions are the nodes in an acyclic graph, which describes a circuit. Well
known Boolean functions are for example ∧ (AND), ∨ (OR), or ⊕ (XOR).

Definition 2.1 A Boolean function is a function f : Zn2 → Z2 for some n ∈ N.

Sometimes a set of Boolean functions is combined to form a vectorial Boolean
function:

Definition 2.2 A vectorial Boolean function is a function f : Zn2 → Zm2 for
some n,m ∈ N.

In complexity theory, it is interesting to limit the set of basic Boolean
functions which can be used to implement an algorithm. Then the influence of
this limited set of operations on various parts of complexity theory is examined.
This investigation leads to a lot of interesting theoretical results, e.g. to a
separation of the complexity classes AC0 and NC1 by proving that Parity is
not in AC0 but in NC1 [Sav97].

Additionally, Boolean functions may be used to model technology specific
gate types directly. Two examples are lookup-tables of modern FPGAs or ASIC
libraries. The lookup-tables of FPGAs usually may be used to implement any
Boolean function with a fixed number of input variables [Xil12c]. ASIC libraries
are similar but more restricted and usually support at least several two-input
Boolean functions as gate types efficiently [DNRH07]. Note, that the technology
always limits the number of possible Boolean functions to a finite set. The
general idea of such a finite set of Boolean functions is captured in the notion
of a basis which is defined in Def. 2.3.

Definition 2.3 (Def. 1.5 [Vol99]) A basis B is a finite set of Boolean func-
tions.

With such a basis, the syntactic structure of a Boolean circuit C is defined
inductively as an acyclic graph as follows:



16

Definition 2.4 (Def. 1.6 [Vol99]) Let B be a basis, then a Boolean circuit
with inputs ~xn1 and outputs ~ym1 is a tuple:

C = (B, V, E, α, β, γ),

where (V,E) is a finite directed acyclic graph, α : E → N is an injective
function, β : V → B ∪ {~xn1 }, and γ : V → {~ym1 } ∪ {∗} such that the following
conditions hold:

• If v ∈ V has in-degree 0, then β(v) ∈ {~xn1 } or β(v) is a 0-ary function
(constant) from B.

• If v ∈ V has in-degree k > 0, then β(v) ∈ B and β(v) : Zk2 → Z2. These
vertices are called computational gates.

• For every i, 1 ≤ i ≤ n, there is at most one node v ∈ V such that
β(v) = xi. Hence, each xi is an input gate.

• For every j, 1 ≤ j ≤ m, there is exactly one node v ∈ V such that
γ(v) = yj. Hence, each yj is an output gate. For every gate v ∈ V which
is not an output gate, i.e. γ(v) /∈ {~ym1 }, γ(v) = ∗ holds.

The function α enumerates the edges of the acyclic circuit graph. This
enumeration is used in the definition of the circuit evaluation to define the
order in which the outputs of predecessor gates are mapped to inputs of a
successor gate. Of course, this ordering is only relevant, if the Boolean function
f(v) ∈ B implemented by the respective gate v ∈ V is not commutative.

After the definition of the structure (syntax) of the circuit, the computation
(semantic) of the circuit has to be defined. In general, a circuit C computes a
function fC : Zn2 → Zm2 as defined in the following two definitions:

Definition 2.5 (Def. 1.7 [Vol99]) Let C = (B, V, E, α, β, γ) be a Boolean
circuit. Then for every v ∈ V a function valv : Zn2 → Z2 is defined, where n is
the number of arguments to the circuit. Let ~an1 be the input value functions to
the circuit, then:
Induction Basis:

• If v ∈ V has fan-in 0 and β(v) = xi for some i, 1 ≤ i ≤ n, then
valv(~a

n
1 ) =def ai.



17

• If v ∈ V has fan-in 0 and β(v) = b, for some b ∈ B, then b must be a
0-ary function (constant) and hence valv(~a

n
1 ) =def b.

Induction Step:

Let v ∈ V have fan-in k > 0 and let ~v k1 be the predecessor gates and the order
of the predecessors be α((v1, v)) < · · · < α((vk, v)), then

valv(~a
n
1 ) =def β(v)(valv1(~a

n
1 ), . . . , valvk(~an1 ))

Definition 2.6 For 1 ≤ i ≤ m, let yi ∈ V be the output gates, then the
function computed by the circuit C = (B, V, E, α, β, γ)

fC : Zn2 → Zm2

is for all ~an1 ∈ Z2 given by

fC(~an1 ) =def (valy1(~a
n
1 ), . . . , valym(~an1 )).

2.3 Memory and Timing

Adding the notion of memories to a Boolean circuit makes it necessary to
introduce a concept of time, because storage is obviously only useful, if the
computation advances with some notion of progress. There are basically two
ways to model this concept – synchronous and asynchronous circuits. However,
the theoretical simpler model is the synchronous approach, because the depth of
a combinational circuit is only a very poor approximation of the timing behavior
of an asynchronous circuit. Modeling the propagation delay in a more realistic
setting requires a sophisticated model and in turn, such a model is harder to
analyze. For example, glitches may pose a major problem for the correctness
of asynchronous designs [JNB99]. Glitches are a phenomenon were the output
of a gate toggles multiple times before reaching a stable and correct state and
usually only happens if the input signals to a gate do not arrive synchronously.
Therefore, the discussion of asynchronous circuits is not considered in this
thesis.

An example for a typical Boolean circuit with memory is depicted in Fig. 2.2.
The adder circuit in this figure is similar to the previous adder (Fig. 2.1).
However, there are two main differences. When implementing the first adder in



18

Figure 2.2: Adder for multiple two-bit natural numbers.

a real world circuit, all three values are added in one clock cycle. In the latter
case, adding three values takes three clock cycles and it is additionally possible
to add an infinite number of two bit numbers (addition is modulo 16 in this
case). Other important differences are the size and the longest critical path (or
depth) of both circuits.

Real world synchronous circuits usually use a clock signal to control the
storage of the current output signals of combinational circuits in the registers.
That means, that all registers operate time synchronously, i.e. on the rising
or falling edge of the clock signal. However, modern sub micron VLSI circuits
suffer from the propagation delay of the clock signal itself, i.e. the registers are
often not triggered strictly time synchronous. Such timing issues may have a
high influence on the performance. The overall impact depends on the routing
and distribution of the clock signal, because a synchronous circuit must still
synchronize on a global clock signal and therefore, the distribution of the clock
signal is one of the important major problems in modern VLSI design [Fri01].

A high level view which captures this idea of synchronous circuits is the
programming of circuits at the register transfer level (RTL), i.e. the programmer
specifies registers and the combinational circuits between these registers. This
model is very different to a classical sequential programming style, because
the computation of the combinational circuits is inherently fully parallel. The
Boolean circuits with Memory model used in this thesis is based on the RTL
methodology. Hardware design using this methodology is described in more
detail in Sec. 4.2.

The main reason to introduce the formal model of synchronous circuits in
this thesis is a step towards a more formal evaluation approach for hardware



19

implementations of cryptographic algorithms. FPGAs are the main target
platform and thus, the new theoretical model is defined to support features,
which are important to this technology. In particular, the memory architecture
of FPGAs is interesting, because there are two different kinds of synchronous
memories, which differ considerably in the area consumption on the one hand
and the usage on the other hand:

• Registers are usually implemented as flip-flops. Values stored in these
memories may be used as an input for any number of computational gates
in parallel. However, only the output of a single gate may be written into
each individual bit of a register in each clock cycle.

• RAMs are random access memories, which are divided into memory
cells of fixed depth and width. They are in principle similar to registers,
however, only a fixed number of these memory cells can be written or
read in each clock cycle. The implementation of a random access memory
cell usually differs considerably from a flip-flop implementing a register,
which saves a lot of hardware area for big memories.

The following definition captures the notion of a simple memory element,
storing exactly one bit. In the following, the term register and memory element
are often used interchangeable. From a more formal point of view, a memory
element is defined to be the storage for exactly one bit, whereas a register may
have a width of one or more bits.

RAMs are not included in the definition. Yet, they can be modeled using some
Boolean circuitry and several registers as will be shown in Sec. 2.4. Informally,
the value of a memory element at a point in time t is identical to the input
which was stored at the previous point in time t− 1 or the initial value 0 at
t = 0 or more formally:

Definition 2.7 If a : N← Z2 is the input function of the memory element r.
The initial output of the register r for t = 0 is defined as valr(0, a) =def 0 and
the other outputs for t ≥ 1 as valr(t, a) =def a(t− 1).

This definition of a memory element is in a theoretical sense sufficient,
because building larger memories, i.e. registers with more than one bit storage
capacity, does not impact any basic complexity measures. In reality, grouping



20

several registers or RAMs is often more efficient, because it is computationally
easier to place and route several identical primitives in close proximity in an
efficient way using a regular structure. Additionally, special RAM resources
usually use a different technology then registers, which is more efficient than
registers for storing many bits, with the disadvantage of removing the possibility
of parallel read and write accesses. For example, many FPGAs provide RAM
block resources, which may be more efficient for use cases, where a lot more
bits have to be stored compared to a typical register and the bits are accessed
sequentially.

However, for an abstract analysis, narrowing the definition of a memory
element to a single bit simplifies the model and thus, it is later easier to analyze
without restricting the computational power, because a user of the model may
create concrete instances of several elementary elements and then group these
logically into larger memories.

The circuit definition is very similar to the case without memory. The main
differences are the addition of memory and that the acyclic property of the
circuit graph has to be dropped, because otherwise the memories do not add a
lot of interesting theoretical properties to the model. However, from a more
practical point of view, memories are also interesting for clocked circuits in an
acyclic setting, because of possible higher clock frequencies using pipelining.

In the model such cycles are only allowed, if each cycle contains at least one
memory element. Again, this is an abstract and restricted model compared to
real world circuits, where arbitrary cycles are possible [Mal93]. Yet, the model
strives for simplicity and therefore disallows these kinds of cycles.

Definition 2.8 Let B be a basis, and r the gate type designating a memory
element, then a Boolean circuit with Memory (BCM) with inputs ~xn1 and
outputs ~ym1 is a tuple:

C = (B, r, V, E, α, β, γ),

where (V,E) is a finite directed graph, α : E → N is an injective function,
β : V → B ∪ {r} ∪ {~xn1 }, and γ : V → {~ym1 } ∪ {∗} such that the following
conditions hold:

• If v ∈ V has in-degree 0, then β(v) ∈ {~xn1 } or β(v) is a 0-ary function
(constant) from B.



21

• If v ∈ V has in-degree k > 0, then β(v) ∈ B or β(v) = r. These vertices
are called computational or memory elements, respectively.

• For every i, 1 ≤ i ≤ n, there is at most one node v ∈ V such that
β(v) = xi. Hence, each xi is an input gate.

• For every j, 1 ≤ j ≤ m, there is exactly one node v ∈ V such that
γ(v) = yj. Hence, each yj is an output gate. For every gate v ∈ V which
is not an output gate, i.e. γ(v) /∈ {~ym1 }, γ(v) = ∗ holds.

• For all subsets of nodes Vcyc ⊆ V with v1, . . . , vk ∈ Vcyc forming a cycle
(v1, . . . , vk, v1), at least for one node v ∈ Vcyc, β(v) = r holds.

The evaluation of a Boolean circuit with memories is also very similar to
the simpler case without memories. However, because of the concept of time
necessary to describe the step-wise advancing computation and the cyclic nature
of a circuit with memory, the evaluation is slightly different, i.e. the inductive
definition is over the graph and the time in parallel.

Definition 2.9 Let C = (B, r, V, E, α, β, γ) be a Boolean circuit with memory.
Then for every v ∈ V a function valv : N × {~an1 } is defined, where n is the
number of arguments to the circuit. Let ~an1 be the n input value functions
ai : N→ Z2, where ai(t) is an input to the circuit at time t ∈ N, then:
Induction Basis:

• If v ∈ V has fan-in 0 and β(v) = xi for some i, 1 ≤ i ≤ n, then for all
points in time t ∈ N, valv(t,~a

n
1 ) =def ai(t), i.e. in every clock cycle a new

set of inputs is applied to the input gates.

• If v ∈ V has fan-in 0 and β(v) = b, for some b ∈ B, then b must be a
0-ary function (constant) and hence, valv(t,~a

n
1 ) =def b for all t ∈ N. The

value of such a gate is always constant in all clock cycles.

• If v ∈ V , β(v) = r and t = 0, then valv(t,~a
n
1 ) =def 0. This is equivalent

to initializing memory elements to 0 at the beginning of the computation.
Induction Step:

Let v ∈ V have fan-in k > 0 and let ~v k1 be the predecessor gates and the order
of the predecessors be α((v1, v)) < · · · < α((vk, v)), then for the all points in
time t ∈ N:



22

• If v ∈ V and β(v) ∈ B, then

valv(t,~a
n
1 ) =def β(v)(valv1(t,~a

n
1 ), . . . , valvk(t,~an1 ))

This means, that the evaluation is completed in the same clock cycle.

• If v ∈ V and β(v) = r, then

valv(t,~a
n
1 ) =def β(v)(valv1(t− 1,~an1 , . . . , valvk(t− 1,~an1 ))

Hence, the output value of a memory element is the value that was the
input to the memory element in the previous clock cycle.

In each clock cycle t the circuit computes a tuple of outputs (y1(t), . . . , ym(t))

from previous inputs as follows:

Definition 2.10 For 1 ≤ i ≤ m, let yi ∈ V be the output gates, then the
function computed by the circuit C = (B, r, V, E, α, β, γ) at time t ∈ N

fC : N × {~an1 } → Zm2

is for all input value functions ai : N← Z2 given by

fC(t,~an1 ) =def (valy1(t,~a
n
1 ), . . . , valym(t,~an1 )).

Usually some vectorial Boolean function g : Z≥02 → Z≥02 is modeled as a
circuit. However, it is not obvious how to map the inputs of g to the inputs of
fC . The same applies for the outputs. This is important to be able to measure
the number of clock cycles a circuit needs to finish a computation. Therefore,
the function that a BCM computes is defined as follows:

Definition 2.11 Let C be a BCM with n input gates ~xn1 , m output gates ~ym1
and g : Z≥02 → Z≥02 the function computed by C, then:

• Let b ∈ Z≥02 be the input to the function g. Then the i-th input function
ai for the circuit C, with 1 ≤ i ≤ n is defined as ai(t) =def bi+t×n, if
|b| ≥ i+ t× n, and otherwise ai(t) =def 0.

• The output of the function g is defined as (~d l1) =def (fC(1,~an1 ), . . . , fC(l/m,~an1 )),
where m|l and l is the number of output bits that are generated for the
input b.



23

2.4 Modeling Random Access Memories

One key element of the discussion in the following Part III is the usage of
random access memory primitives provided by most FPGAs, because they save
a lot of area on these platforms. Yet, the previously defined model deliberately
skipped RAMs to simplify the definitions and thus to facilitate the later analysis.

However, it is easy to model a RAM of arbitrary depth and width. For
example a small 4 × 1 bit RAM may be modeled according to Fig. 2.3. In
general, a simple dual-port write first RAM as this one can be modeled in three
parts:

• A decoder of the write address.

• The memory itself including one two to one multiplexer per memory
element.

• A multiplexer to select the output bits according to the read address.

Figure 2.3: Modeling of a 4× 1 bit RAM from registers and Boolean circuits.

A more formal definition of the components is as follows, beginning with
the notion of a decoder. It is possible to build a decoder of any size which is a
power of two, i.e. for n = 2k, k ∈ N.

Definition 2.12 A n-decoder for some n = 2k, k ∈ N is defined as an injective
vectorial Boolean function fn : Zk2 → Zn2 . Each function fn has the inputs (~x k1 )

and is evaluated in two steps as follows:



24

1. A bijective function δ : Zk2 → {1, . . . , n} assigns each input vector a
natural number. This number then selects in the next step, which bit of
the output is set to 1.

2. Then fn(~x k1 ) = (~y n1 ), where yδ(~x k
1 ) = 1 and all other yi = 0.

Similarly, n-to-one multiplexers are defined as follows:

Definition 2.13 A n-to-one multiplexer for some n = 2k, k ∈ N, is a Boolean
function fn : Zn2 × Zk2 → Z2. Each function fn has the inputs (~xn1 , ~x

n+k
n+1 ) and is

evaluated as follows:

• A bijective function δ : Zk2 → {1, . . . , n} assigns a natural number to the
last k inputs ~xn+kn+1 .

• Then fn(~xn+k1 ) = xδ(~xn+k
n+1 ).

With the two Definitions 2.12 and 2.13, the components of a more generic
version of the previously mentioned simple dual-port write first RAM (Fig. 2.3)
can be defined formally:

Definition 2.14 Let a d×w bit RAM be a tuple R = (d, w, α, ~β d×w1 , ~γ w1 , ~r
d×w
1 ),

where the depth d = 2k, k ∈ N, the width w ∈ N and

• α is a decoder function α : Zk2 → Zd2, which decodes the write address.

• Each βi is a two-to-one multiplexers βi : Z2
2 × Z2 → Z2. For each of the

d× w registers one such multiplexer exists to control in which the new
input should be written.

• Each γj is a d-to-one multiplexer γj : Zd2 ×Zk2 → Z2 to control the output
of the RAM. There are w such multiplexers, one multiplexer for each
output bit.

• rk are the functions modeling d× w memory elements.

The evaluation of the d× w RAM is defined as follows:

Definition 2.15 Let R = (d, w,~r d×w1 , α, ~β d×w1 , ~γ w1 ) be a RAM with the input
functions (~aw1 ,

~b k1 ,~c
k
1 , where each ai(t) is a RAM input bit at time t, (~b k1 (t))

encodes a write address at time t and (~c k1 (t)) encodes a read address at the
same point in time. The evaluation of the circuit proceeds as follows:



25

• The decoder function α decodes the write address which uses a binary
encoding (~b k1 (t)) to a one hot encoding. More formally, it evaluates the
following function in each clock cycle t:

valα(t,~aw1 ,
~b k1 ,~c

k
1 ) = α(~b k1 (t))

• Each multiplexer βi switches between updating the register ri with the
new input or keeping the value from the previous clock cycle, depending
on the result of the decoding of the write address. Formally, for all i ∈
{1, . . . , d×w}, the multiplexers βi evaluate the following function in each
clock cycle t:

valβi(t,~a
w
1 ,
~b k1 ,~c

k
1 ) = βi(adi/de(t),valri(t,~a

w
1 ,
~b k1 ,~c

k
1 ),

valα(t,~aw1 ,
~b k1 ,~c

k
1 )[di/we])

• The last step is to produce the output of the RAM, i.e. to multiplex between
the different register outputs. More formally, for all j ∈ {1, . . . , w}, the
multiplexers γj evaluate in each clock cycle t the following function:

valγj(t,~a
w
1 ,
~b k1 ,~c

k
1 ) = γj(valr(1+((j−1)×d))

(t,~aw1 ,
~b k1 ,~c

k
1 ), . . .

valr(d+((j−1)×d))
(t,~aw1 ,

~b k1 ,~c
k
1 ),

~c k1 (t))

• Also the registers have to be defined, i.e. for all k ∈ {1, . . . , d× w}, the
register functions rk evaluate in each clock cycle t > 0:

valrk(t,~aw1 ,
~b k1 ,~c

k
1 ) = valβk(t− 1,~aw1 ,

~b k1 ,~c
k
1 )

and for t = 0:

valrk(t,~aw1 ,
~b k1 ,~c

k
1 ) = 0

The behavioral model of this generic RAM and of the RAM depicted in
Fig. 2.3 is dual-port write-first. However, there are several other behavioral
models available for memory primitives on most FPGAs. These are usually
variations or extensions of the already introduced RAM and not based on
totally different concepts. Note that DRAM, which is typically used as main



26

memory in modern computer systems has a quite different and in general
more complicated (timing) behavior, which is out of scope in this thesis. The
following options can usually be used:

• Single-port or dual-port RAMs, with one read/write port and optionally
one additional read port.

• Read-first or write-first RAMs.

• A write enable function may be used.

• A read enable function may be used.

The exact area consumption of these behavior models changes, depending
on the technology. However, the differences for FPGAs are usually quite small,
except for dual- or multi-port RAMs with two or more read ports. Therefore,
the model used in this thesis is limited to RAMs with up to one read and
one write port exclusively and disregards RAMs with more than one write or
read port. An abstraction on the area consumption of RAMs as a complexity
measure is discussed in the next section.

2.5 Complexity Measures

In complexity theory, there are two important complexity measures, time and
space [AB09, Sip96, Sav97]. For Boolean circuits, the space complexity measure
can be translated to the circuit size, i.e. the number of gates, whereas the time
measure can be roughly seen as the depth of a Boolean circuit [Vol99]. For the
modified model, which includes memory, these complexity measures, circuit
size and depth have to be reevaluated.

The case of size is rather easy, because the additional registers can be
interpreted as a special kind of gate. Therefore, the definition of the general
circuit size can be the same. However, the usual depth measure for Boolean
circuits is not usable anymore. First, it reflects the computation time very
poorly, because the computation takes multiple clock cycles, possibly using the
same paths multiple times and second, the circuit graph may contain cycles
and thus, the depth is not well defined anymore.



27

Therefore, the depth measure has to be replaced with the length of the
longest path between two registers,an input and a register, a register and
an output or an input and an output. Furthermore, a meaningful measure of
computation time can only be achieved, if the number of clock cycles to calculate
the output of an algorithm is considered in the complexity measure. Thus, the
total computation time of an implementation can be roughly approximated by
the longest path multiplied by the number of clock cycles. The number of clock
cycles determines the computation time to a large degree and the longest path
in a circuit limits the clock frequency in a real world implementation. Hence,
the combination of both ideas leads to a theoretically reasonable approximation
of the total computation time.

Definition 2.16 Let C = (B, r, V, E, α, β, γ) be a BCM. Then SIZE(C) =def

|{v ∈ V : β(v) ∈ B ∪ r}| is the number of computational and memory elements
of the circuit.

The longest path MAXPATH(C) is the length of the longest directed path
in the graph (V,E) from a memory element to another memory element, from
an input gate to a memory element, from a memory element to an output gate
or from an input gate to an output gate.

The computation time is defined as TIME(C) =def MAXPATH(C)× l/m. In
other words, it is defined as the multiple of the longest path and the number of
clock cycles, until the l output bits of the function g computed by the circuit C
are generated according to Def. 2.11.

In addition to the general complexity measures, it is helpful to define more
specialized measures to get a better idea which part of an implementation
is dominant in terms of area consumption or performance. For this goal, a
separation between the memory elements and the logic is useful. Additionally,
a partition between registers and RAMs for FPGA implementations, because
an algorithm which requires a lot of memory can be often implemented more
efficiently as a RAM-based version than a functionally equivalent solution using
registers.

The complexity measure for RAMs grows proportional to the depth and
the width of the RAM, i.e. if d ≥ 2 is the depth and w is the width of the
RAM, then the area grows with O(d × w). The restriction to d ≥ 2 is not



28

strictly necessary. However, if d = 1, then it is a simple group of registers
and thus it is equivalent to the number of registers. The rationale for this
approximation follows the modeling of the RAM according to Sec. 2.4. There
are three main parts, the decoder, which only grows in terms of the depth, the
input multiplexers and the registers which both grow proportionally of depth
d and width w. The last part, the output multiplexer also grows in terms of
d and w. In particular, in a concrete implementation (d− 1)× w. Therefore,
an abstract metric which grows proportionally to d × w describes the area
consumption of a RAM with a reasonable approximation.

Definition 2.17 Let C = (B, r, V, E, α, β, γ) be a BCM. Then the mem-
ory size is defined as the number of memory elements of the circuit C, i.e.
SIZEmem(C) =def |{v ∈ V : β(v) = r}|

If the circuit C has a set of RAM instances R with depth d ≥ 2. Then the
RAM size is defined as SIZERAM(C) =

∑
i∈R di×wi, where di is the depth and

wi is the width of the i-th RAM.

Another valuable complexity measure is the fan-out of a BCM or a Boolean
circuit. An interesting property is, that the fan-out of a Boolean circuit without
memory has a close connection to the memory requirements of a BCM.

Definition 2.18 Let C be a BCM or a Boolean circuit. Then the fan-out of
the circuit C is defined as FANOUT(C) = |{v ∈ V : γ(v) 6= ∗}|, i.e. the number
of output gates of the circuit.

A BCM has always a simple corresponding Boolean circuit, that only com-
putes one step of the computation. An example of this concept is shown in
Fig. 2.4. It is the corresponding Boolean circuit of the RAM depicted in Fig. 2.3.
This sub circuit may be constructed in general according to the following
definition.

Definition 2.19 Let C = (B, r, V, E, α, β, γ) be a BCM. Then a corresponding
Boolean circuit C ′ = (B, V, E, α, β, γ) may be constructed by replacing each
register, i.e. β(v) = r with a pair of input and output gates in C ′.

The following lemma can be derived from the definition, which introduces a
connection between the fanout of C ′ and the memory requirements of C.



29

Figure 2.4: Boolean sub-circuit of the BCM depicted in Fig. 2.3.

Lemma 2.20 Let C be a BCM and C ′ the corresponding Boolean circuit, then
SIZEmem(C) ≤ FANOUT(C ′) ≤ SIZEmem(C) + FANOUT(C).

Proof Every memory element of C is replaced by an input and an output
gate in C ′ according to Def. 2.19 and hence, SIZEmem(C) ≤ FANOUT(C ′).
Additionally, FANOUT(C ′) is bounded by the sum of the number of memory
elements and the number of output gates in C, because only memory elements
are replaced, and hence FANOUT(C ′) ≤ SIZEmem(C) + FANOUT(C). 2

For some special cases of circuits, Lemma 2.20 may be refined. The first
special case consists of circuits, where all output gates are implemented as
memory elements. This implementation strategy using so-called registered
outputs has a real world application, because in many applications, it helps to
solve timing problems with external components [Kil07]. In particular, most
FPGAs have special outputs for this purpose. For example, Xilinx devices
usually have so-called Input/Output Blocks (IOBs), which can be configured
to use a register in exactly this way [Xil12c].

Corollary 2.21 Let C be a BCM and C ′ the corresponding Boolean circuit.
Then FANOUT(C ′) = SIZEmem(C), iff for all v ∈ VCβ(v) = r, if γ(v) 6= ∗.

Proof "⇒": The number of output gates of C ′ is equal to the number of
memory elements of C. Therefore by Def. 2.19, all output gates of C have to
be memory elements.

"⇐": Similarly, if all output gates are memory elements, then by Def. 2.19



30

the number of output gates of the circuit C ′ is equal to the number of memory
elements of C. 2

It is similarly possible to derive another corollary in the other direction, if
none of the outputs are registers:

Corollary 2.22 Let C be BCM and C ′ the corresponding Boolean circuit. Then
FANOUT(C ′) = SIZEmem(C) + FANOUT(C), iff for all v ∈ VCβ(v) 6= r, if
γ(v) 6= ∗.

Proof "⇒": The number of output gates of C ′ is equal to the sum of the
number of memory gates of C and the number of output gates of C. Therefore
by Def. 2.19, no output gate of C is a memory element.

"⇐": Similarly, if none of the output gates are memory elements, then by
Def. 2.19 the number of output gates of the circuit C ′ is equal to the sum of
the number of memory elements of C and the number of output gates of C. 2

In addition to the two previous results, there is a connection between the
maximum path length MAXPATH(C) of a BCM C and the depth of a
corresponding Boolean circuit C ′. For this connection, the DEPTH measure
for Boolean circuits has to be formally introduced:

Definition 2.23 Let C be a Boolean circuit, then the depth of this circuit
DEPTH(C) is the length of the longest directed path in the circuit graph (V,E).

With this definition it is easy to see, that the following lemma is true:

Lemma 2.24 Let C be a BCM and C ′ the corresponding Boolean circuit. Then
MAXPATH(C) = DEPTH(C ′).

Proof The MAXPATH complexity measure can also be used for Boolean cir-
cuits as a special case of BCMs. Thus, because of the definitions of MAXPATH

and DEPTH, MAXPATH(C ′) = DEPTH(C ′). Furthermore, the procedure to
generate the corresponding Boolean circuit C ′ preserves the MAXPATH(C)

measure for C ′ and thus MAXPATH(C) = MAXPATH(C ′) = DEPTH(C ′). 2



Chapter 3

Hash Functions

3.1 Introduction

In this chapter, the notion of cryptographic hash functions will be introduced
and discussed. A hash function calculates a digest of fixed length from a message
of arbitrary length. This idea is readily exploited in many sub-disciplines of
computer science. For example, hash tables [Knu73] or cyclic redundancy checks
[PB61] are widely used and very important concepts built upon hash functions.

However, most of these concepts only work successfully in their particular
domain. Even then there may be problems. For example, an adversary may have
the ability to attack a system, because the algorithms process user-supplied
data, e.g. in a web application. A denial of service attack on hash tables is a
prominent case, because the performance may degrade significantly (from O(1)

to O(log n)), if the adversary may easily manipulate the input in such a way,
that the hash function output collides, i.e. the same digest is generated for two
or more input messages [CW03]. For example, this is a serious problem for large-
scale web applications. Cryptographic applications, e.g. message authentication
codes (MAC) or digital signatures are even more sensitive to this property.

Some groundbreaking work on the security of cryptographic hash functions
was published by Merkle [Mer79, Mer89] and Damgård [Dam89]. They both
independently proved the collision resistance property of the so-called Merkle-
Damgård construction, under the condition, that the underlying compression
function is also collision resistant. In the following years more important results
in the field of hash and one-way functions were published. Especially noteworthy,

31



32

in the context of the present thesis, are other hash function constructions, for
example the Davies-Meyer construction [DP84, Win84b, Win84a] and the
recently invented sponge functions [BDPA07, BDPA08]. These constructions
have a major influence on the area consumption of lightweight implementations.

Many other important advances on the theory of hash functions were pub-
lished, e.g. the PhD thesis of Preneel [Pre93]. Preneel systematically analyzed
the security of hash functions using two approaches based on information and
complexity theory, respectively, hence improving the state of the art at that
time. This theoretical approach was further improved, e.g. by Rogaway et al.
[RS04]. The present introduction to cryptographic hash functions will, however,
only provide a rough overview over the basic concepts and does not claim to
cover the details on the latest research on the theory of hash functions. Thus,
mostly topics relevant for this thesis are described and other references are only
provided as necessary.

The core of this thesis is a thorough performance evaluation of several al-
gorithms with the focus on lightweight and midrange applications (Part III).
Most of the evaluated algorithms were published during the SHA-3 competition,
which was initiated in 2007 by the National Institute of Standards and Tech-
nology (NIST) [Kay07]. The competition followed attacks on the well-known
hash functions MD5, RIPEMD [WFLY04] and SHA-1 [WYY05] and also slight
improvements of the cryptanalysis of the SHA-2 family [IS09, SS08]. The compe-
tition inspired a lot of further research into hash functions, in particular the five
finalist algorithms of the competition [AHMP10, BDPA11b, Wu11, FLS+10,
GKM+10]. An overview over most important research and results regarding the
SHA-3 finalists that were published during the competition is given in NIST’s
third round SHA-3 report [CPB+12]. The algorithms themselves are described
in Ch. 6.

The remainder of this chapter is organized as follows. First, the notion of
hash functions will be defined together with the general security properties
that a cryptographic hash function should fulfill to ensure the security of many
protocols (Sec. 3.2, Sec. 3.3). The definition about the security properties is
accompanied by a brief discussion about generic attacks on hash functions
(Sec. 3.3.2) and implementation attacks in the form of side channel analysis
(Sec. 3.3.3). Then the introduction is concluded by a description of commonly



33

employed iteration modes (Sec. 3.5), a short overview of tree modes (Sec. 3.6)
and a list of important applications of cryptographic hash functions (Sec. 3.7).

3.2 Hash Functions

Definition 3.1 A hash function hn is a function hn : Z≥02 → Zn2 .

A hash function can be seen as a function that generates fixed-length
fingerprints y ∈ Zn2 of messages x ∈ Z≥02 . This fingerprint is usually called a
hash value or message digest of the message x. All of these message digests
have the same fixed-length n, and hence, there are security related implications,
because infinitely many messages are mapped to the same fixed-length message
digest. This phenomenon, called a hash collision, may be defined as:

Definition 3.2 The hashes of two messages x, x′ ∈ Z≥02 and x 6= x′ collide, if
hn(x) = hn(x′), i.e. the message digests for both messages are equal. This is
said to be a hash collision.

In the following chapters and sections, the subscript of hn will be skipped, if
the value of n is not important or clear from the context.

3.3 Security of Hash Functions

Obviously, there are always collisions because of the mapping of an infinite
set of messages to a finite set of digests. Thus, a hash function has to be
designed carefully in such a way, that it ensures practical security [Mer79]. The
theoretical properties, which a cryptographic hash function has to fulfill are
defined in this section [Mer79, Mer89, Pre93]. Furthermore, generic attacks will
be outlined to understand the theoretical upper bounds.

Besides the theoretical generic attacks on hash functions, there are several
implementation attacks. These attacks do not break any theoretical security
claims of a hash algorithm. Instead, they attack weaknesses of the implementa-
tions to extract secret data. An attack of this kind is obviously only threatening
for hash functions, if the algorithm processes sensitive data, such as passwords
or secret keys, e.g. the HMAC algorithm [BCK96]. One of the most prominent



34

class of attacks of this kind are so-called side-channel attacks, which are briefly
discussed later in form of power analysis [KJJ99].

3.3.1 Security Properties

A hash function for cryptographic applications has to fulfill some important
properties. These are collision, preimage and second preimage resistance. How-
ever, depending on the application where a hash function is used, only one or
several of these properties must hold. This can be justified with the security
proofs of a particular application or protocol, which is most often a proof by
reduction and uses one or several properties of the underlying hash function.
This principle has been often reiterated and a classification of hash functions
can be developed, e.g. collision resistant hash functions or (weak) one-way hash
functions [Pre93]. It is also possible to define several more precise versions of
the following properties, which have subtle, but important differences [RS04].
However, for the current thesis, the simple general definitions are sufficient.

Collision Resistance All hash functions have collisions, which is a general
problem that has to be solved practically to make hash functions useful in
a cryptographic application. Therefore, the most basic security property is
collision resistance against random collisions of two messages [Mer89, Rog06,
Dam88]. The collision resistance of a hash function may be defined as follows,
similar to the definition by Preneel [Pre99]; however, the following definition is
less formal.

Definition 3.3 A hash function h is said to be collision-resistant, if the prob-
ability that a (computationally uniform) polynomial time adversary can find
two messages x, x′ ∈ Z≥02 and x 6= x′, such that h(x) = h(x′) is negligible.

It is important to note, that the adversary is set in a uniform computational
model. Otherwise, there would be always a trivial algorithm to find a collision.
This constant time algorithm would just print two messages x and x′ with
h(x) = h(x′). However, it should be infeasible to implement this algorithm
in polynomial time. This fundamental difference between the uniform and
non-uniform setting was pointed out by Rogaway [Rog06]. For the non-uniform



35

setting, an infinite family of hash functions has to be used in the previous
definition to get a meaningful definition of collision resistance.

However, while the definition states, that it should be next to impossible to
find a collision, it is still theoretically possible. Therefore, the question remains,
how long an adversary would need to find a collision in the generic case. The
upper bound may be derived from the birthday paradox. It leads to a generic
attack with O(2n/2) operations to have a probability which is higher than 1/2 to
find a collision [Yuv79].

Preimage Resistance The second important security property is the preim-
age resistance, i.e. it has to be difficult to find a message for a known hash
digest. This property is also called one-wayness [Mer79]. The definition is again
similar to, but less formal then the definition of preimage resistance by Preneel
[Pre99].

Definition 3.4 A hash function h is said to be preimage resistant, if the
probability that a (computationally uniform) polynomial time adversary A can
find a message x′ = A(h(x)) with x 6= x′, such that h(x′) = h(x) is negligible.

Again, the computational upper bound is particular interesting in a practical
setting. It turns out, that O(2n) is the best known generic upper bound, if no
quantum computer is assumed [Gro96, BHT98].

2nd Preimage Resistance The third important security property is the
second preimage resistance, i.e. it has to be difficult to find a second message
with the same hash digest than the original message [Mer79]. Similar to the
definition of preimage resistance, the definition is a less formal variant of the
definition by Preneel [Pre99].

Definition 3.5 A hash function h is said to be second preimage resistant, if
the probability that a (computationally uniform) polynomial time adversary A
can find a message x′ = A(x), such that h(x′) = h(x) and x 6= x′ is negligible.

From a practical perspective a brute force attack does not require significant
rethinking, therefore the same O(2n) bound does apply for the second preimage
resistance.



36

3.3.2 Generic Attacks

The security bounds for the definitions in the previous subsection may be
derived from the best known generic attacks on hash functions without using
quantum computation models. These attacks have been discovered quite early
at the beginning of the systematic research of hash functions [Yuv79, Mer89,
Mer79]. However, research on quantum computer improved some of the upper
bounds for the quantum computer setting [Gro96, BHT98].

Random Collisions For the case of random collisions, it is obvious that the
probability to find a collision is 1, if the attacker tests more than 2n messages
on collisions. However, the probability to find a message is already very high
with a lot less messages, to be more precise O(2n/2). This phenomenon has been
described quite early [Yuv79, Mer89].

The attack is based on a simple combinatorial argument, typically called the
birthday paradox. Checking if the message digests for two distinct messages
collide, involves the calculation of h(x) and h(x′) and an equality test h(x) =

h(x′). However, for k messages there are k×(k−1)
2

pairs of possible collisions and
not only k/2. Although these pairs are not all statistically independent, it is
plausible, that the probability to find a random collision is much higher.

The exact probability can be calculated as follows, where coll is a function
which tests k random messages out of 2n possible messages and outputs 1, if
one of the k messages collides with one of the other k − 1 messages [TW02]:

Pr[coll(k, 2n) = 1] = 1− 2n

2n
× 2n − 1

2n
× · · · × 2n − k + 1

2n
= 1−

k!
(
2n

k

)
2nk

Finding (2nd) Preimages The best known generic (second) preimage at-
tack on ideal cryptographic hash functions is a brute-force attack taking O(2n)

operations. This bound follows from the following argument. If the outputs
of the hash function are uniformly distributed, then the probability to find
a preimage for h(x) is Pr[h(A(h(x))) = h(x)] = 1 − [2

n−1
2n

]k, where k is the
number of messages that are tested by the adversary. Hence, the probability,
that the adversary finds a message is significantly higher then 1/2 for k = 2n.
And if the adversary tests only half of that number, i.e. k′ = 2n−1 messages,
the probability of a successful attack is significantly below 1/2.



37

Quantum computing may speed up a preimage attack considerably to O(2n/2)

using Grover’s algorithm [Gro96, BHT98]. However, even for classical computers,
there are sometimes possibilities to speed up the exhaustive search, e.g. by
using rainbow tables, where the attacker trades memory for a speed up in
attack time [Oec03].

3.3.3 Side-Channel Attacks

Every computation leaks a certain amount of information about the data it
currently processes. For example, the runtime may be different, the power
consumption varies, or the electromagnetic dissipation changes dependent on
the input. This type of attack is only relevant, if secrets are processed, e.g.
passwords. Otherwise, no private information and thus nothing of value to an
adversary is leaked, if the algorithm and the data to be hashed are both publicly
known. For succinctness, only simple power analysis (SPA) and differential
power analysis (DPA) will be discussed, because after their introduction, they
became quickly two of the most common attack methods in the field of side-
channel analysis [KJJ99]. A standard reference for power analysis has been
written by Mangard et al. [MOP07].

Simple Power Analysis For a successful power analysis, the attack has
to measure the power consumption while the computation is performed. Af-
terwards, the attacker interprets the power trace directly. For naïve imple-
mentations only one or very few power traces are necessary to extract the
secret. It is even possible that the attacker may be able to visually interpret
the results herself [MOP07]. More sophisticated attacks build templates of
known operations with known keys in advance. Then in the attack phase, the
adversary may match parts of the power trace to the operations and in turn
directly to (parts of) the key. The main drawback of template attacks is, that
the attacker has to have access to an equivalent device before the attack and
that the template building, depending on the granularity of the templates,
needs a lot of memory and time.

Differential Power Analysis Differential power analysis is more powerful
than SPA. However, the attacker usually has to measure many more traces.



38

According to Mangard et al. [MOP07], the basic attack consists of five steps:

1. Choose a suitable intermediate result of the algorithm. This result should
have two properties. It should be computed by a function f(d, k), where
f and d are known to the attacker and k is a part of the key or derived
from the key.

2. Measure and record the power consumption of the algorithm several times.
Most often each measurement is performed with a different set of known
inputs.

3. Calculate hypothetical intermediate values according to some idealized
model, e.g. the Hamming weight or Hamming distance model [BCO04].

4. Map the measured intermediate values to the modeled hypothetical power
consumption values.

5. Compare the hypothetical power consumption values to the power traces.
This last step should reveal the correct key.

Many variants of this basic DPA scheme were developed. One of the most
common variant uses the correlation coefficient to determine the correlation
between the hypothetical and the measured power traces in step five [BCO04].

3.3.4 Side-Channel Countermeasures

Countermeasures against side-channel analysis usually fall in one of two cate-
gories, hiding and masking [MOP07]. The goal of both is to reduce or break the
statistical connection between the secret values and the power consumption (or
the electromagnetic emission, computation time, and so on). For the leakage
reduction, the cause of the leakage has to be found first. An intuitively accessible
example is, that the registers in most integrated circuits have a different power
consumption, if they switch from a 0 to 1 or the other way, in contrast to
maintaining the same value between two clock cycles. These kinds of leakage
have to be removed or at least reduced, if an attack is to be inhibited.

In real-world implementations, several countermeasures are usually combined
to achieve a high resistance against different types of side-channel attacks.
However, the state of the art never completely removes the leakage and new



39

attacks are constantly developed. Thus, a permanent re-evaluation of attacks
and countermeasures is necessary.

Hiding Hiding tries to remove the dependency by breaking the connection
between processed values and the leakage. The algorithm itself is kept the same,
i.e. the intermediate values are identical to the unprotected version. However,
the implementer tries to reduce the leakage.

A lot of different hiding countermeasures were developed in the last years, for
example dual-rail precharge logic which tries to remove the leakage altogether by
changing the physical implementation [TV04], introducing dummy operations,
which makes it more difficult to correlate the power traces to the hypothetical
values [MOP07], or mutating data paths which reduce the link by shuffling the
operations of the algorithm in the time domain [Stö13].

Masking Masking uses a different approach to break the link between the
secret input values and the leakage by internally changing the processed data
in a (pseudo-)random fashion. Now, because a different randomized set of
data is used, the attacker should be unable to correlate the leakage and the
intermediate values.

Many possible masking schemes were proposed. For example Boolean masking
adds a random mask value to the intermediate values, which later has to be
removed to recover the correct value [CB08]. Another example are threshold
implementations, which use two random masks, similar to the Boolean masking
scheme [NRR06]. The countermeasure is based on Shamir’s secret sharing
scheme [Sha79] and it can be proven that much less random data is necessary
compared to the Boolean masking scheme.

3.4 Domain Extender

According to Definition 3.1, the input of a hash function can be of arbitrary
size. It is easy to see, how to construct such an algorithm in principle. However,
it is very difficult to proof security properties of an algorithm, such as collision
or preimage resistance in general. For example, it is still unknown if one-way
functions exist at all [TW06, AB09, Ko85] and therefore, it is also unknown if



40

hash functions exist.
Thankfully, security proofs based on some (reasonable) assumptions are still

possible. One of the most useful technique is to base a hash function on a small
component, often called the compression function. The compression function is
usually a function f : Zn2 × Zm2 → Zn2 , which takes a n bit initialization value
(or chaining value), a m bit message block, and produces a compressed n bit
output. Computations of this compression function may be repeated or chained,
therefore enabling the hash function designer to build a hash function which
processes arbitrary sized inputs. These constructions are often called domain
extenders, because they extend the fixed domain of a compression function to a
much larger, in general infinite domain [CDMP05].

The designer of a hash function may leverage this concept to proof that
the domain extender has a specific property (e.g. collision resistance), if the
compression function fulfills some assumptions. Usually these assumptions
are based on an idealized function such as a random oracle, a random block
cipher or a random permutation. In the next section, some important domain
extenders will be discussed together with a sketch on the security claims and
proofs.

3.5 Iterated Hash Functions

One of the earliest construction of cryptographic hash functions is the Merkle-
Damgård construction [Mer79, Mer89, Dam89]. It pioneered the concept of
so called iterated hash functions, which virtually all currently deployed hash
functions are based upon (e.g. SHA-1 or SHA-2). Iterated hash functions
process the message in several iterations. In each iteration a fixed number of
message bits are processed. The hash digest is the output of the last call to the
compression function, which is computed for the processing of the last message
bits. Optionally, this output is post-processed before generating the final hash
digest.

3.5.1 Merkle-Damgård

The Merkle-Damgård design was first proposed by Merkle [Mer79]. It has
been proved independently by Merkle [Mer89] and Damgård [Dam89], that if



41

the compression function is collision resistant, then the hash function is also
collision resistant.

Design The design of a Merkle-Damgård hash function is quite simple. In-
formally it can be illustrated as depicted in Fig. 3.1. More formally, the hash
function construction may be defined as follows [Mer79]:

Definition 3.6 Let n,m ∈ N be constant and k ∈ N variable, then a Merkle-
Damgård hash function hn consists of a compression function f : Zn2×Zm2 → Zn2 ,
a bijective padding function padm : Z≥02 →

⋃
k≥1 Z

k×m
2 and the initial value

iv ∈ Zn2 . The hash function hn is evaluated according to Algorithm 3.1.

Algorithm 3.1 Merkle-Damgård construction [Mer79]

Require: f : Zn2 × Zm2 → Zn2 , padm : Z≥02 →
⋃
k≥1 Z

k×m
2 , iv ∈ Zn2 and x ∈ Z≥02

Ensure: y ← hn(x)

p← padm(x)

y ← iv

for i = 1 to |p|/m do

y ← f(y, pi)

end for

return y

The padding function has several important purposes. The first is to ensure,
that the length of the processed message is a multiple of the message block
length m. Another more important purpose is to pad the message in a way,
that a simple length extension attack is impossible. Such an attack generates
– in its simplest instance – two messages x1, x2, where x1 is a prefix of x2,
h(x1) = h(x2) and |x1| 6= |x2|. Many hash functions using a Merkle-Damgård
construction append at least a number of zeros and the length of the original
message, such that the total length is a multiple of the message block length.

Figure 3.1: Merkle-Damgård domain extender.



42

Security Claims As already mentioned, the main security claim is, that if
the compression function f is collision resistant, then the hash function h is
also collision resistant. The proofs from Merkle [Mer89] and Damgård [Dam89]
may be easily adapted to the notation used in this thesis. First, it is necessary
to see, that the hash computation may be defined inductively:

Definition 3.7 Let p ∈
⋃
k≥1 Z

k×m
2 be an already padded message and let p1,

. . . , pk be k parts of the message with at least m bits each. Then an alternative
definition for the computation of the Merkle-Damgård construction is:
Induction Basis:

The first message block is processed using y1 = f(iv, p1).
Induction Step:

Each further message block pn+1, with 1 < n < k, is processed by computing
yn+1 = f(yn, pn+1).

The hash digest for a message x is defined to be h(x) = yk.

Then the security claim may be expressed in the following theorem. The
proof sketch follows the proof developed by Damgård; the slightly different proof
proposed by Merkle is by induction but uses in general the same argument.

Theorem 3.8 Let f be a compression function and let h be a hash function
built using the Merkle-Damgård construction. Then h is a collision resistant
hash function, if f is collision resistant.

Proof sketch For two different already padded messages x and x′, there are
two cases, |x| 6= |x′| and |x| = |x′|.

For the first case, it is easy to see that the last message blocks of x and x′

differ, because of the padding function which appends the message length to
the message and thus, there must also be a collision in f for the last message
blocks, if h(x) = h(x′).

For the second case, consider two message blocks xk 6= x′k. Since both
messages are of equal length, the last message block does not necessarily
collide in f . However, there must be at least one earlier collision f(yk−1, xk) =

f(y′k−1, x
′
k), which is then obviously a collision in f . 2

Modifications Despite the main security proof of collision resistance, the
basic design has several general weaknesses, which are demonstrated by the



43

following short and by no means comprehensive list:

• It is impossible to construct a simple secure message authentication
code (MAC) by prefixing the key k to the message x, i.e. MAC(k, x) =

h(k||x) is vulnerable to easy length extension attacks. In particular,
h(MAC(k, x), y) = MAC(pad(x)||y) [CDMP05].

• 2nd collisions are very easy to find, i.e. if a collision h(x) = h(x′) is found,
then all h(x||s) = h(x′||s) are also collisions for all s ∈ Z≥02 [Luc05].

• It is easier to find second preimages than the theoretical O(2n) bound for
(very) long messages. [KS05].

Therefore, several enhanced designs were proposed in the literature, which
fix a lot of these problem. Among the most important improvements is the wide-
pipe Merkle-Damgård construction, which uses a larger internal state. Lucks
proposed to choose an internal state with w > n bits in general and w = 2n in
particular, while the output of the hash function is still only n bit wide [Luc05].
In the latter case, the compression function can be replicated twice. A similar
idea was proposed by Coron et al. with chop-MD, where a number of bits are
removed from the last compression function output [CDMP05].

3.5.2 Davies-Meyer

The Davies-Meyer construction was first proposed by Davies et al. [DP84]
and was further investigated by Winternitz [Win84b, Win84a]. It is a slight
improvement to the earlier design proposed by Merkle, but is in several aspects
very similar.

Design The design of the Davies-Meyer hash function construction is very
similar to the Merkle-Damgård design (Fig. 3.2). Thus, it can be defined as
follows:

Definition 3.9 Let n,m ∈ N be constant and k ∈ N variable. Then a Davies-
Meyer hash function hn consists of a compression function f : Zn2 × Zm2 → Zn2 ,
a bijective padding function padm : Z≥02 →

⋃
k≥1 Z

k×m
2 and the initial value

iv ∈ Zn2 . The hash function hn is evaluated according to Alg. 3.2.



44

Algorithm 3.2 Davies-Meyer construction [DP84]

Require: f : Zn2 × Zm2 → Zn2 , padm : Z≥02 →
⋃
k≥1 Z

k×m
2 , iv ∈ Zn2 and x ∈ Z≥02

Ensure: y ← hn(x) with n ∈ N and y ∈ Zn2
p← padm(x)

y ← iv

for i = 1 to |p|/m do

y ← f(y, pi)⊕ y
end for

return y

The only difference between the Merkle-Damgård design and the Davies-
Meyer construction is the XOR operation after the call to the compression
function which combines the previous state with the new output of the com-
pression function. This additional operation makes it possible to prove the
preimage resistance. However, especially for hardware implementations, it adds
an additional cost factor. because the XOR operation forces the developer to
allocate more memory resources to store the previous state while computing
the compression function.

Security Claims For the Davies-Meyer construction, the previous result
of the Merkle-Damgård hash design also holds. This can be easily seen, by
integrating the XOR operation in f . Then the structure is the same as the
Merkle-Damgård design. However, there is an additional provable security
property; the improved construction is provably preimage resistant, if the
compression function is ideal [Win84a]. An ideal compression function is usually
considered to be a random oracle or a random block cipher[CDMP05]. However,
these primitives do not exist in practice [MRH04, CGH04]. This is a severe
limitation, but it is usually sufficient, if there are no known cryptanalytic results
on the underlying primitive in a concrete hash function, which are better than

Figure 3.2: Davies-Meyer domain extender.



45

the generic attacks.

Lemma 3.10 (Lemma 1 [Win84a]) Let d ∈ Zn2 be an internal state of the
hash function and f be an ideal compression function. Then the runtime to find
a pair (c, xi), such that f(c, xi)⊕ c = d is O(2n).

Proof sketch If the compression function f is ideal, the output distribution of
f is uniform. Then the success probability of finding such a pair by computing
j-times the compression function f is bounded by j/2n. This success probability
translates into the expected runtime of O(2n). 2

This lemma can be used to prove the following theorem:

Theorem 3.11 (Theorem 2 [Win84a]) Given a hash digest y ∈ Zn2 , finding
a message x ∈ Z≥02 with h(x) = y requires O(2n) computation steps.

Modifications Again, as it is the case for the Merkle-Damgård design, there
are some weaknesses for this design strategy, e.g. the attack from Kelsey et al.
holds also for the Davies-Meyer design [KS05]. Therefore, other variants were
proposed, e.g. the Matyas-Meyer-Oseas design, which is very similar to the
Davies-Meyer mode [MMO85] or the Miyaguchi-Preneel construction, which
was proposed independently by Preneel [Pre93] and Miyaguchi et al. [MOI90].

3.5.3 Sponge Functions

Sponge functions were introduced by Bertoni et al. [BDPA07, BDPA11c]. They
are modeled to resemble a random oracle [BDPA11c]. Random oracles are
(idealized) functions, which produce a random bitstring of infinite length from
an input bitstring of arbitrary but finite length. This concept does not exist
in the real world and therefore, random sponge functions differ from random
oracles in the effects of the finite internal state required to implement a sponge
function [BDPA11c].

Design Similar to the previously described Merkle-Damgård and Davies-
Meyer designs (Fig. 3.3), the sponge construction may be formally defined as
follows. Note, that the random permutation can also be replaced by a random
transformation.



46

Definition 3.12 Let r, c, b, n ∈ N be the rate r, the capacity c, the state size b,
and the message digest size n. Then a sponge function consists of a random
permutation f : Zb2 → Zb2, and a sponge-compliant padding function padr :

Z≥02 →
⋃
k≥1 Z

k×r
2 . A sponge function is evaluated according to Algorithm 3.3.

Algorithm 3.3 Sponge construction [BDPA11b]

Require: r < b, f : Zb2 → Zb2, padr : Z≥02 →
⋃
k≥1 Z

k×r
2

Ensure: z ← sponge(x, n) with x ∈ Z≥02 , n ∈ N and z ∈ Zn2
p← padr(m)

s← 0b

for i = 1 to |p|/m do

s← s⊕ (pi||0c)
s← f(s)

end for

z ← bscr
for i = 1 to dn/re do

s← f(s)

z ← z||bscr
end for

return bzcn

There are multiple possible sponge-compliant padding schemes. In [BDPA11c],
the multi-rate padding is proposed. This padding scheme appends a number of
bit to a message m according to the following rule. If l =def |m| is the length of
the message, then a string 10k1 is appended, where k = (r − l − 2) mod r).

The sponge construction is considerably different to both the Merkle-
Damgård and the Davies-Meyer designs. From a practical point of view, the
most important features of the sponge construction are the highly configurable

Figure 3.3: Design of sponge functions.



47

performance and security parameters r, c, b, and n. As usual n is the size of
the message digest. The other parameters describe the performance and the
security with b = r + c. The rate r is comparable with the message block
size m in the two other constructions and thus determines a large part of
the performance. However, balancing performance and security is a classical
trade-off between both parameters, because increasing r decreases the security
parameter c. On the other hand b may be increased and in turn increase both
the security and the throughput. This would influence another performance
parameter, the memory requirements, which are increased proportionally to b.

Security Claims Bertoni et al. proved several properties of the sponge
construction. One of the central theorems states, that so-called inner collisions
are the only source of non-uniformity [BDPA11c]. In particular, the output
of a sponge function is uniformly distributed, if a sequence of queries to the
sponge function does not have inner collisions.Inner collisions are collisions of
the inner state. This inner state consists of c bits, which are only changed by
the permutation and not by the message input of size r. This can be formalized
in the following theorem:

Theorem 3.13 (Theorem 5 [BDPA11c]) Let f be a random permutation
and pad a sponge-compliant padding function. Then the output bits of the sponge
function are distributed uniformly and independent for a sequence of queries, if
no inner collisions happen during the queries.

Proof sketch Let S ⊆ Zb2 be the set of all states and Ŝ ⊆ Zc2 the set of all
inner states which are traversed by all queries of the query sequence. If f is a
random permutation, then by construction of f and the sponge function, all
states in S are traversed exactly once (except the initial state 0r||0c), if all
inner states of Ŝ are traversed exactly once. Then for all s ∈ S and inputs
x ∈ Zr2, the first r output bits of f(s⊕ (x||0c)) are independent of all previously
traversed states, because each possible state is traversed at most once. Hence,
all possible values (and all individual bits) are equiprobable. 2

Additional results were proved, e.g. based on the indifferentiability framework
of Maurer et al. [BDPA11c, MRH04], which was first applied to hash functions
by Coron et al. [CDMP05]. These results translate to security properties which



48

are equal to the computational complexity of the generic attacks described
in Sec. 3.3.2, if c = 2n is chosen. The expected number of operations to find
collisions, preimages or second preimages is as follows:

• Collision resistance: O(min(2n/2, 2c/2))

• Preimage resistance: O(min(2n, 2c/2))

• Second preimage resistance: O(min(2n, 2c/2))

Modifications The security proofs, especially the proof about indifferentia-
bility from a random oracle, exclude virtually all of the weaknesses that the
Merkle-Damgård and the Davies-Meyer constructions have [BDPA11c]. Yet,
some modifications were developed. For example, Bertoni et al. proposed the
duplex construction which is similar to the sponge construction [BDPA12].
It differs from the sponge construction in that it combines absorption and
squeezing phases, i.e. it outputs r bits after each absorption of r bits and thus
enables interesting additional applications, such as authenticated encryption.
The security was proven to be fully inherited from the sponge construction
[BDPA12].

Furthermore, Guo et al. modified the sponge function to improve the preimage
resistance by using different rates for the absorption and the squeezing phases.
This is used in the construction of the Photon hash function, which has a low
capacity and thus would have a lower preimage resistance, or a lower throughput
than with the modification [GPP11].

3.6 Tree-based Hash Functions

Iterated hash functions are impossible to implement in a highly parallel fashion,
because of their inherent iterative nature, i.e. the message block xn+1 has to
be processed by the compression function after message block xn. Therefore,
increasing the throughput of an implementation is usually only possible by
improving the implementation of the compression function (or the internal
permutation).

Larger speedups can be achieved, if several calls to an underlying primitive
can be computed in parallel. This is were hash functions based on tree modes



49

have their merit, because several nodes of the tree may be processed in parallel.
However, designing a sufficiently performant and secure tree mode is non-trivial.
Current work on tree modes is reflected in articles recently published by Bertoni
et al. [BDPA09, BDPA13] and similar work by Dodis et al. [DRRS09].

The basic idea of tree modes is to change the iterative nature of conventional
hash functions to a tree-based approach. Then the message bits are distributed
over several nodes of the tree. The output of each node is connected to other
nodes in the tree closer to the final node. Hence, all nodes which do not
depend on the output of other nodes can be independently computed. While
the potential speedup is quite high, the theoretical speedup cannot be linear
in the number of parallel processing units, because of the need to consolidate
the outputs of all nodes into the final node. The major drawback is the much
higher memory demand, which make a tree-mode unattractive for most resource
constraint environments, such as RFID tags or other low-budget embedded
devices. Therefore, such hash functions are not investigated in the present
thesis.

3.7 Applications

There are many applications of hash functions. The first applications were
digital signatures [Mer79, DP84]. One important advantage for this application
is that a signature is only calculated over the relatively short digest instead of
calculating it over the whole message. This fundamental improvement made
the RSA signature scheme feasible in relatively short time. Consider that at
the time of the invention of RSA, one single RSA calculation with only a
few bits took a very long time. Even much later it still took up to several
seconds on a then modern Intel 80286 processor and thus, calculating RSA for a
long message was considered impractical [BR89]. Unfortunately, this very high
computation time is still true for many slow low-end microprocessors, without
special hardware support.

However, beside the improvements for digital signatures, there is a large
number of other important applications. Among these are the following appli-
cations. They are not necessarily tied to hash functions and may also often be
constructed without hash functions, e.g. using block ciphers or other algorithms.



50

• Message authentication codes (MAC) are similar to digital signatures,
e.g. the Keyed-Hash MAC (HMAC) construction [BCK96]. However, they
are used with a symmetric key (keyed hash function) and therefore, it
is impossible to tell, who actually generated the MAC, if the key was
distributed to more than two parties.

• Pseudo-random number generators (PRNG) are a very important building
block in modern cryptography. One of the most important properties of a
PRNG is the uniformity of the output and hence, a hash function may be
suitable to construct such a PRNG together with a true random number
generator (TRNG) to seed the PRNG, if its output is not biased. One of
many PRNGs based on this idea is described by Wang et al. [WZ10].

• Challenge-response protocols are used for authentication. If a proofer and
a verifier previously exchanged a secret, it is easy to construct such a
scheme using a hash function and a random number generator. The gist
is, that the verifier sends the proofer a random challenge. The proofer
combines this challenge with the previously exchanged secret, hashes
this combination and sends the verifier the digest. The verifier can now
check this result, without transferring the secret over the communication
channel. This authentication scheme is for example used in the CHAP
protocol [Sim96].

• Key derivation functions (KDF) are important for several cryptographic
infrastructures, especially for symmetric crypto systems. The key func-
tionality is to derive one or more (symmetric) keys from a common secret.
A good KDF ensures, that it is impossible or at least very unlikely, that
an attacker gets information about the common secret after she acquired
successfully one of the derived keys. For example, such a hash-based KDF
is described in [KE10].



Chapter 4

Hardware Design Aspects

4.1 Introduction

In this chapter, several aspects of hardware design and optimization will be
introduced with a special focus on Field Programmable Gate Arrays (FPGA).
Hardware and software design are significantly different from each other. While
common hardware description languages such as VHDL [VHDL08] or Verilog
[Ver05] offer the same computational power than for example the C program-
ming language [Tur36], there are several important distinguishing characteristics.
The model of Boolean circuits with memory defined in Ch. 2 already hints at
the most important differences. Instead of a strictly sequential computation
model, many operations can be computed in parallel in one clock cycle. This
is naturally expressed in hardware description languages using an approach
at the register transfer level (RTL) and can be only roughly approximated in
procedural languages. A short introduction to the RTL design will be given,
because all algorithm designs evaluated in this thesis were realized with the
RTL methodology.

Another topic are several important optimization problems, which the hard-
ware designer has to deal with. Some of these optimization problems can be
approached in terms of the Boolean circuits model introduced in Sec. 2.2.
Compared to software programming, there are again several differences, which
also lead to diverging approaches for the optimizations. Software programmers
usually try to minimize several important key characteristics of their programs,
e.g. the code size, the memory usage or the runtime of the software. Hardware

51



52

developers follow different best practices for the optimization of the circuits they
design. While some are comparable to software optimization strategies, others
are not accessible to software programmers. Usually, these techniques are specif-
ically tailored to a certain optimization goal, e.g. low-latency, high-throughput,
low-area or a combination of these. Furthermore, the target technology plays
an important role. For example, sometimes the mapping to an FPGA makes it
possible to use design strategies, which are not suitable to Application-Specific
Integrated Circuits (ASIC) and vice versa.

In the following sections, all of these topics are covered in more detail. First,
the register transfer level synthesis methodology is described in Sec. 4.2. This
is then used to explain the different optimization techniques in Sec. 4.3 and
Sec. 4.4. The last section in this chapter will cover the FPGA details (Sec. 4.5).
the architecture of a contemporary FPGA will be described, enhanced with
details for the Xilinx Virtex-5 architecture.

4.2 Register Transfer Level Synthesis

There are several different competing approaches for hardware developers to
implement algorithms, each on a different abstraction level. High-level synthesis
(HLS) starts with an abstract behavioral description of the algorithms in a high
level language, such as C or Matlab and then works in several steps towards an
implementation of the integrated circuit (Fig. 4.1) [MS09, CGMT09, Xil13b,

Figure 4.1: Hardware Design Flows.



53

Xil13a].

The high-level approach (left side in Fig. 4.1) adds several additional steps
to the RTL methodology (right side in Fig. 4.1), foremost the automation of the
allocation, scheduling, and binding tasks, i.e. the following tasks are automated
[Xil13b]:

• The necessary hardware resources are allocated.

• The operations are scheduled, i.e. the execution time of each operation is
fixed.

• The scheduled operations and the variables are bound to the allocated
resources.

The output of this automated process is usually an architecture on the RT-level,
which was already discussed, when the definition of Boolean circuits with
memory was developed in Sec. 2.3. This connection to the theoretical model
described in Ch. 2 is an important corner stone to the following evaluation part
of this thesis.

The RTL synthesis starts with such a description (right side in Fig. 4.1). An
engineer which develops at this level, has to solve the allocation, scheduling and
the binding manually. This often results in a smaller or faster implementation at
the expense of a usually longer development time compared to high-level synthe-
sis [MS09]. Thus, this methodology is particularly interesting for high-volume
products, because the unit cost will be lower. An RTL architecture consists of
registers and combinational circuits between these registers [TLW+90].

The combinational circuits are divided into two parts, the control logic and
the data path. Commonly, the control logic is built using a finite state machine
(FSM). This controller takes care of the scheduling of I/O interfaces and also
the data processing using counters and control signals, which are derived from
the current state of the FSM and the input signals. The data path implements
the processing of the input and intermediate data. Hence, the developer has to
design three parts: a finite state machine, a memory layout, and a data path.

From this point on, the RTL architecture is transformed into lower-level
descriptions. First, a netlist is synthesized from the RTL model which is
then optimized using several low-level optimizations, e.g. logic optimization or



54

register balancing. In the case of logic optimization, depth or area minimization
are typical goals. Register balancing moves the registers in the circuit to reduce
the latency between the register stages. The next step is the mapping to the
physical instances followed by the place and route process, which finally maps
the intermediate model to the physical implementation. The resulting layout
for FPGAs is then stored in a bit stream file, which may be used to configure
an FPGA.

While the design is gradually transformed, refined and optimized towards
a physical implementation, there is also the need to verify the correctness
of the results of each transformation and optimization. This may be either
proven formally [Coh89] or the developer uses simulations [HP75, BR02]. The
formal approach is the more rigorous process, but as the circuit grows, the
computational overhead gets unmanageable. Therefore, the simulation based
approach is commonly used, if a formal verification is not required.

4.3 Low-Level Optimizations

The low-level optimizations discussed in this section are targeted at the lower
levels of the general methodology, foremost the logic optimization taking place
during the RTL synthesis flow and at the place and route level (Fig. 4.1).

The low-level optimization of Boolean circuits is in general a computational
hard problem, even if only combinational circuits without memory are consid-
ered. There are several problems involved, which are believed to be difficult
or even proved to be NP-hard. Hence, it is often impossible to solve them
efficiently, if the assumption P 6= NP holds [GJ90]. Among these, the following
two are probably the most important problems, which were already studied
in classical complexity theory. Both problems are combinatorial optimization
problems and several variants were proved to be NP-complete or NP-hard
[Cou94].

• Minimization of the circuit size is a hard problem with many variations,
which was studied quite in depth [KC99, BU08, HW02]. For the practical
usage, several minimization algorithms were developed, e.g. [DAR85,
TNW96, MSBS93, Sas13].



55

• Minimization of the circuit depth is a problem which is not difficult in
the classical sense of NP-hardness without also bounding the circuit size,
because it is long known, that all Boolean formula can be represented
in several normal forms (e.g. CNF, DNF) and then translated to depth
two circuits using unbounded fan-in gates. These circuits can be realized
with circuits of depth O(logn), when no unbounded fan-in gates are
allowed. However, these circuits have exponential size in the worst case.
For example Parity /∈ AC0, because Parity has exponential size, if
implemented with bounded depth [Sav97]. Hence, the problem has to be
treated as size-depth minimization. Unbounded fan-in is also an unrealistic
assumption, because unbounded fan-in gates obviously do not exist in
practice as already mentioned in Ch. 2.

In the development of a real-world FPGA implementation, there are a lot of
additional problems which are hard and have to be approximated. However, for
many of these problems it is unknown, if there are approximation algorithms for
these problems, which would allow the developer of the optimization algorithms
to guarantee a minimum quality of the solution [ACK+02]. If such an approach
is impossible, there are still generic solutions (e.g. greedy algorithms) which in
many cases achieve results that are good enough for practical usages. Among
other problems the following challenges are encountered:

• The circuit depth describes the delay of an electrical signal along the
routing lines only on a very abstract level and in reality this model
is inadequate because of these routing delays. Minimization of routing
delays is likely to be an NP-hard problem, because it is a variation of
the minimum edge-cost flow problem ([ND32] [GJ90]).

• The technology mapping from an abstract Boolean circuit model to FPGA
primitives is NP-complete, if the optimization goal is area minimization.
There exists a polynomial-time algorithm to optimally map a Boolean
circuit to a LUT-based FPGA, if no parts of the circuit may be duplicated
[CD94, MBV06]. However, it is possible to generate a smaller FPGA
circuit by duplication of sub-circuits (Fig. 4.2). This problem is then
NP-complete [FS94].



56

(a) Area minimization

without duplication

(b) Area minimization with du-

plication

Figure 4.2: Area minimized LUT-mapping.

• The maximum latency that a signal may take between two registers
implies an upper bound on the clock frequency. This latency may be
reduced by moving the registers forward or backwards in the circuit.
However, moving a register reduces the latency of one sub-circuit, while
increasing the latency of a different sub-circuit at the same time. This
problem is also a variation of the minimum edge-cost flow problem [Gol97]
([ND32] [GJ90]).

• Register minimization is also an important problem. It is difficult because
the number of theoretically possible states grows exponentially with the
number of registers. A global minimization of registers is equivalent to
the minimization of a deterministic finite automaton, which is solvable in
polynomial time [HMU06]. However, if an implementation of an algorithm
uses for example 100 registers, there are 2100 theoretically possible states.
In most implementations only a subset of all states can be reached, but
it is often difficult to determine which states can actually be reached and
thus, the runtime of the polynomial time minimization algorithm is still
very high.

Fortunately, the circuit designer does not have to solve these problems man-
ually or to re-invent appropriate algorithms for every new design, because the
tool chains of the FPGA vendors already cover a large part of the optimization
process, e.g. the tool chain from Xilinx [Xil13c, Xil13a]. However, it is important
that the hardware developer is aware of the different optimization problems,
because a careful design may simplify the optimization tasks considerably
and hence, improve the quality of the resulting FPGA design [Kil07]. It is



57

also possible to manually improve a design by directly instantiating FPGA
primitives, if the developer is able to identify specific weaknesses of the tool
chains and the algorithms used [Ehl10].

4.4 High-Level Optimizations

Apart from the low-level techniques, there are other possible optimizations
on the algorithmic level. These are partially connected to the three high-level
steps allocation, scheduling and binding. If the developer writes code on the
RT-level and not in a more abstract language, this is usually a manual task.
Optimizations at this level often lead to better results than the automatic
counterparts which use a higher level representation of the algorithm [PAFL98,
PR09].

There are several types of optimizations. Which kind is used depends heavily
on the optimization target, such as high performance, low area or a compromise
between both. It is also important to distinguish between a more scientific
exploration and a requirements driven approach typical for industrial products.
The first usually tries to find the extreme cases and to classify these system-
atically, whereas the latter is more rigid and the developer has to meet the
previously specified timing and other requirements, which often are derived
from a previous research effort. In this thesis, the first approach is used to
explore parts of the design space of each studied hash function.

The algorithmic high-level optimizations which are discussed in this thesis
are parallelization, pipelining, unrolling, serialization, and algorithmic specific
optimizations. Most of the general optimization techniques are already studied
in detail in the literature, e.g. [HRG11, Kil07]. Yet, it is important to introduce
these techniques as a basis for the following systematic evaluation.

4.4.1 Parallelization

As the name of the optimization technique already suggests, parallelization
is about implementing an algorithm in parallel. However, there are several
general possibilities and thus, the right choice of parallelization is non-trivial.
The developer usually may choose one of the following possibilities or also a
combination of them:



58

• Algorithmic-level parallelism

• Hardware duplication

• Pipeline-level parallelism

Parallelization on the algorithmic level is a hard problem, because it is non-
trivial to optimally parallelize an algorithm which is described as a sequential
program. Furthermore, as described in Ch. 2, it is unknown, if all problems in
the complexity class P are efficiently parallelizable at all [GHR95]. Therefore,
a thorough investigation of the algorithm is necessary to find parallelization
possibilities. In particular, all functions that do not have data dependencies on
the output of other functions may be easily parallelized (Fig. 4.4). Fortunately,
for the case of cryptographic hash functions, it is usually possible to find the
most important variants in a reasonable amount of time, because most such
functions are based on a round function and this function may be usually
computed in a parallel way.

Another possible approach to parallelization is to implement the same
hardware multiple times, which is simple and effective to improve the throughput
(Fig. 4.4). However, this approach is often expensive and does not decrease the
latency of an implementation. The latency in this context is a measure to define
the time between arrival of the input until the completion of the computation
of the algorithm.

The last approach – pipeline parallelism – uses a pipeline, which can pro-
cess several data streams in parallel (Fig. 4.5c). This is a special case of the
pipelining which is described in the next section. Interestingly, many modern

Figure 4.3: Algorithmic-level serialization and parallelism.

Figure 4.4: Hardware duplication of a SHA-256 implementation.



59

microprocessor architectures combine both pipeline based parallelism, e.g. using
SMT [KST04] or Hyper Threading [KM03] and parallelism based on physical
replication of the same processing modules, which is also known as multi-core
architecture.

4.4.2 Pipelining

Pipelining and the timing of a circuit have a close relation. The general concept
is based on the observation that a new input can be supplied to a circuit not
only after the circuit evaluation is completed for the previous input, but much
earlier, if the second input does not depend on the output of the computation
with the first input. Keeping to the RTL methodology, the concept is translated
to introduce additional registers into the circuit to shorten the worst case delay
between two register stages (Fig. 4.5) [Kil07]. Then the second input may be
supplied to the circuit as soon as the now shorter worst case latency has elapsed.
However, the purely RTL-based approach is not the only possibility, because
the routing delays themselves may serve as storage elements in an abstract
sense [HE96].

As can be easily observed, the pipelining approach improves the clock
frequency. However, there is also a drawback, because the total latency for the
circuit evaluation does not decrease automatically, because data dependencies
may introduce pipeline stalls, when no new input can be supplied, e.g. because
the previous computation is not yet finished. This has to be carefully balanced,
because the area overhead for the additional registers may easily counter the
improved clock frequency, if there are too many pipeline stalls. The best case
is achieved, if the clock frequency increases without introducing pipeline stalls,
the performance scales linearly with the clock frequency.

(a) Standard circuit (b) Pipelined circuit (c) Pipeline parallelism

Figure 4.5: Pipelining a circuit.



60

Pipelining may also be used as an alternative method for parallelization as
already mentioned in Sec. 4.4.1. The basic principle is to increase the number
of pipeline stages by the number of parallel executable data sets. Then several
independent data sets are processed in an interleaved but parallel fashion, i.e.
in the first clock cycle the inputs to the circuit are taken from the first set, in
the second cycle from the second set and so on (Fig. 4.5c). For this technique,
the implementation is only extended by additional registers and a somewhat
more complicated state machine and the duplication of a whole processing unit
is avoided. This approach to parallelization is more complicated, but results in
a better area-throughput ratio, if the area required for the additional registers
and the more complicated state machine is smaller than using multiple identical
processing units [Vad04].

4.4.3 Unrolling

Unrolling an algorithm means that several iterations of a loop are calculated
in one clock cycle instead of iterating the same loop body over several clock
cycles (Fig. 4.6). This increases the critical path and the area consumption
of an implementation. For most algorithms, this leads to a reduction of the
throughput-area ratio.

However, it also may be advantageous, if the loop body is not identical for
each iteration and thus, a lot of multiplexers have to be used in the iterated
variant. In a standard parallel implementation, these multiplexers lead to a
long critical path. Unrolling potentially decreases the number of multiplexers
and therefore, in some cases the total delay in the unrolled version is shorter
than the summed up delay in the original version for the same number of loop
iterations. Consequently the throughput increases, while the area grows less.
Additionally, it is sometimes possible to efficiently use pipeline parallelism, and

Figure 4.6: Unrolling a loop with three iterations.



61

thus to reduce the delay of the critical path again.

4.4.4 Serialization

Efficient serialization of an algorithm is often more complicated than a straight-
forward high-throughput implementation. Although a developer could imple-
ment every algorithm with only a state machine encoding a sequential program,
one NAND (or NOR) gate, and a sufficient amount of registers1, this approach
would be very slow. Furthermore, it would also lead to the minimization prob-
lem of the sequential program, which is most likely a hard problem similar to
the minimization of Boolean formula [BU08].

The approach to serialization followed in this thesis is a different, more
algorithm driven approach. Most cryptographic algorithms, and especially all
of the investigated hash functions consist of two core components, a state
and a round function. The state translates directly into memory primitives,
whereas the round function is split into a finite state machine, which controls
the computation and the data path, which implements the internal operations
of the round function. The design space exploration for serialization follows the
following principle:

1. Identify parts of the round function which are similar enough to each
other, such that they can be implemented by a single component.

2. Split and implement the round function in one or several sub-functions
according to the analysis of (1).

3. Organize the state representation to satisfy the data dependencies of the
sub-functions in the appropriate clock cycles.

This approach may be applied repeatedly to evaluate different architectures
and different trade-offs. Of course, the first step is the probably hardest part
and the other actions follow from the choices made at the beginning of the
design phase. These choices lead to area savings in both implementation steps
(2) and (3). Step (2) decreases the area required for the implementation of the
combinational circuit and step (3) the size of the state memory. The latter

1Any Boolean formula can be represented using only NAND or NOR gates as has been
proved by Sheffer [She13] and with more details by many others [Pos41].



62

savings are unique to FPGAs and usually can be observed less for ASICs,
because all FPGA architectures under investigation have optimized hardware
primitives for RAMs [Xil12c].

The approach is similar to the folding proposed by Homsirikamol et al.
[HRG11]. In fact, all of the folding possibilities are also covered by the slightly
different approach used here. The terms vertical and horizontal folding can be
seen as instances of the proposed structured approach. Horizontal folding splits
the round function into two parts, but the data path width stays the same,
thus it mostly saves area in step (2). Vertical folding splits the round function
into two parts and additionally, the data path is narrowed. In the terms of this
thesis, the savings occur in step (2) and also step (3), because it reduces the
data path width and thus, the RAM implementing the state can be smaller.

4.4.5 Algorithmic Specific Optimizations

The previously discussed optimizations are all generally applicable to most
algorithms and implementations thereof. However, it is often possible to optimize
specific parts of an algorithm. For example, based on mathematical properties
of an algorithm, equivalent but smaller or faster circuits may be constructed,
e.g. [Can05a, Can05b, CO09, Mon85]. Another possibility is to instantiate
FPGA primitives for a part of an algorithm directly, e.g. [GGE09, JA11].

Such algorithm specific optimizations often lead to significant improvements,
because only a small subset of a more general optimization problem is consid-
ered and furthermore, the problem is approached with different, more specific
optimizations. The algorithms implemented by vendor tools usually also try
to divide the general problem into smaller subproblems. However, an optimal
division into subproblems is itself very difficult and thus, a manual intervention
with domain-specific knowledge may improve the results.

The most important example in this thesis for such algorithmic optimizations
is the AES S-box optimization using composite field representations, which was
previously investigated by many authors [Rij00, Can05a, Can05b, MS03]. It is
worth to reevaluate that approach for FPGAs, because the previous evaluations
aim at ASICs and the technological dependence of the optimization may yield
a different optimum for FPGAs [JR10a].



63

4.5 FPGA Hardware Aspects

FPGAs are significantly different from ASICs on the technological level. While
in principle they can both be used to implement RTL designs, the actual
technological mapping is quite different between both technologies. For ASICs
the RTL description is mapped to a gate level netlist first. Then in the further
design phases, this model is refined step by step to allow for fabrication at the
end. This approach has many degrees of freedom and neither the placement,
the routing nor the clock network is fixed in advance.

For FPGAs, this is considerably different. The layout of an FPGA is fixed,
i.e. the hardware primitives, the possible interconnects between these primitives
and the clock distribution network are fabricated in advanced. Hence, there
are less degrees of freedom. In the final stages of the development of an
FPGA implementation these primitives and interconnects are only configured
appropriately. Using this configuration capability, it is possible to implement
any algorithm in principle, if the capacity of the FPGA is sufficient.

Additionally, most FPGAs can be reconfigured either at startup or even
partially at runtime. Thus, they position themselves between the fixed, and
thus very efficient ASICs and flexible general purpose CPUs. However, in this
thesis, the reconfiguration possibility is not used, and hence, it will not be
further discussed.

Summarized, using FPGAs has several important advantages over ASICs or
software implementations [KR07, Sem12]:

• Fast prototyping of hardware implementations.

• Cheaper than ASICs for low volume products.

• Changeable hardware implementations for new or updated features.

• Inexpensive bug fixing in hardware, due to reconfiguration.

• Usually faster than software implementations.

However, there are also several disadvantages:

• Usually slower than ASIC implementations.

• More expensive than ASICs for high volume products.



64

• Higher development costs than software implementations.

• Less flexibility than software implementations.

• Can easily be manipulated without special cryptographic protection.

4.5.1 General FPGA Architecture

The architecture of a modern FPGA consists of fixed blocks and interconnects
between them (Fig. 4.7) [KTR08]. These blocks usually are one of the following
types: I/O ports, generic logic primitives or more specialized hardware, such as
larger blocks of RAMs or DSP units. Additionally, most FPGAs have specialized
hardware for the efficient clock generation and distribution.

The logic primitives can be programmed to compute a small fixed subset
of Boolean functions. For this functionality, each block consists of several
smaller primitives. In most modern FPGAs, these include at least look-up
tables (LUT), multiplexers (MUX) and flip-flops (FF). The routing channels
provide the capability to connect blocks with each other. Hence, using the
logic blocks and the interconnects, it is possible to build implementations of
arbitrary algorithms, as long as the capacity of the FPGA is sufficient.

Larger RAMs can be implemented with the specialized RAM blocks. The
major advantage is, that they are more efficient than the same implementation
using the FFs embedded in the logic blocks. Similarly, DSP blocks contain fast

Figure 4.7: Modern FPGA architecture.



65

prefabricated multiply and add components, which can be used to optimize
typical signal processing algorithms or other applications, which use a lot of
multiplications and additions (e.g. the RSA signature scheme [RSA78]).

4.5.2 Xilinx FPGAs

The Xilinx Virtex-5 is a modern FPGA architecture, which is used as an example
of a realization of the previously introduced ideas [Xil12c, Xil12d]. Most Xilinx
architectures – and also FPGAs of other hardware vendors – are similar to the
Xilinx Virtex-5 FPGA on an abstract level. Younger generations, such as the
Xilinx Virtex-6/-7, provide the user with more flexibility and a better routing
architecture. Additionally, they have a considerably higher maximum capacity
due to the shrinking of the fabrication technology. Therefore, the maximum
performance increases with each generation.

Another possibility is to look at older architectures such as the Xilinx
Spartan-3. These FPGAs are smaller and provide less flexibility for the in-
terconnect network. Hence, the performance is usually worse. Yet, the Xilinx
Spartan-3 is still a frequently used FPGA, because of its competitive pricing.
All those mentioned Xilinx FPGAs share the same abstract design principles
and thus, it is valid to provide only the details of one architecture.

As already mentioned in the previous subsection, an FPGA consists of
several different components. The parts of a Virtex-5 which are most significant
to the following evaluation of cryptographic algorithms will be described in
detail. However, a Virtex-5 FPGA contains additional resources, such as Phased
Locked Loops (PLL) and Digital Clock Managers (DCM) for clock generation,
specialized clock buffers (BUFG) to improve the clock distribution or I/O logic
blocks for fast I/O operations with the outside world (e.g. SERDES) [Xil12c].

Configurable Logic Blocks All current Xilinx FPGAs contain a large
number of so called Configurable Logic Block (CLB) slices. These slices make
up the bulk of a Xilinx FPGA together with the interconnects between the
slices. Each CLB slice contains several primitives, such as lookup-tables (LUT),
multiplexers (MUX), registers, dedicated XOR primitives and fast carry chains.
All of these primitives can be instantiated by the developer in a predefined way.

A simplified logical structure of a slice is presented in Fig. 4.8. Several



66

LUTs are contained in one slice, each followed by two registers, which may
optionally store the outputs of the LUT. For Xilinx FPGAs the LUT is based on
Static Random Access Memory (SRAM) and can be programmed to compute
any Boolean function with a fixed number of inputs. For the Xilinx Virtex-5
FPGAs, this number is fixed to six inputs and two outputs. This so called
LUT6_2 primitive consists of two separate LUTs with five shared inputs and one
output, and a multiplexer which switches one of the two outputs based on the
sixth input. Hence, it is possible to either implement a Boolean function with
six inputs or two Boolean functions, sharing the same five inputs.

Additionally, a CLB slice contains a fast carry chain, which makes it possible
to implement a fast ripple-carry adder. Actually, a ripple-carry adder imple-
mented using these specifically design carry chains is faster for most FPGAs
and common bit sizes than the theoretically better prefix adders, such as the
carry-lookahead adder [XY98, VK07].

Distributed RAM All modern Xilinx FPGAs contain two types of CLB
slices SLICEL and SLICEM [Xil05, Xil12c]. SLICEM slices extend the functionality
of the SLICEL slices, such that they are also usable as memory primitives. This
memory is called distributed RAM. This is realized by exporting the possibility

Figure 4.8: A simplified CLB architecture.

Table 4.1: Detailed area of distributed RAM in LUT-FF pairs with 256 Bit.

Dimensions 256× 1 128× 2 64× 4 32× 8 16× 16

LUT6_2-FF pair 16 15 11 12 16

Dimensions 8× 32 4× 64 2× 128 1× 256

LUT6_2-FF pair 24 46 89 256



67

0 500 1000 1500 2000
10

20
30

40
50

60

0
500
1000
1500
2000
2500
3000
3500

A
re
a
[L
U
Ts

]

Depth [Bit]

Width [Bit]

A
re
a
[L
U
Ts

]

0
500
1000
1500
2000
2500
3000
3500

Figure 4.9: Area of distributed RAM in LUTs with different values for depth
and width, synthesized for Xilinx Virtex-5 FPGAs.

to reprogram the LUT6_2 as a user function. Hence, each LUT6_2 in a SLICEM

may be used as a 32× 2 bit or 64× 1 bit single port RAM [Xil12c].

Larger distributed RAMs may be constructed out of several LUT6_2/SLICEM
slices. The total area depends on the width and the depth of the RAM, roughly
according to the complexity measure SIZERAM (Def. 2.17). However, the real
consumption does not grow strictly linearly with the depth and the width,
because of the mapping to the LUT based structure of FPGAs. For example,
implementing a 16 × 4 bit RAM needs two instead of one LUT6_2, because
the hardware primitive supports only two outputs. In general, the number of
LUT6_2 primitives grows slightly over-proportionately, because of this effect
(Tab. 4.1). Note that the variant 1× 256 bit is implemented using slice registers
instead of the LUT6_2 instances.

Another similar effect can be observed, if the depth increases above 64 bit. Up
to 64 bit, the output multiplexer is included in the LUT6_2 instance. However,
for larger depths, a cascade of additional multiplexers has to be instantiated
and thus, the area increases again (Tab. 4.1).

Therefore, it can be concluded, that the optimal area consumption for a



68

distributed RAM is achieved, if the depth d and width w do not diverge too
much. This can be experimentally tested using the Xilinx tool chain for a
Virtex-5 FPGA (Fig. 4.9).

Shift Registers Another possibility to store data inside an FPGA is the
usage of SLICEM slices to construct shift registers. The shift registers have the
same capacity as distributed RAM with the same number of SLICEM instances.
However, they reduce the area consumption, because the multiplexer tree for
the output can be much smaller in most cases. Shift registers do not provide
a random access possibility and thus, they can only be efficiently used for
straightforward linear access patterns. If random access is needed, then either
a random access logic has to be added, which leads to an area overhead similar
to the multiplexer trees for distributed RAM. Alternatively the shift register
can be cycled to the correct output. This leads to additional clock cycles to
access a specific memory cell.

Block RAM An alternative to distributed RAM is the Block RAM (BRAM)
[Xil12c]. In contrast to distributed RAM, the granularity in which memory
blocks can be configured is coarse. Each BRAM contains a maximum of 36, 864

bits configurable as 32768 × 1 bit, 16384 × 2 bit, 8192 × 4 bit, 4096 × 9 bit,
2048 × 18 bit, 1024 × 36 bit, 512 × 72 bit. It can be also configured as two
independent RAM blocks with half of the bits each, with the exception of the
512× 36 bit option, which does not exist.

If BRAMs are used, a fair comparison of different implementations is difficult,
because they can be used to implement many different state sizes at the
same cost, and worse for evaluations, BRAM can also implement parts of
the algorithmic logic, or the state machine. Hence, designs using BRAM are
not comparable to any other implementations, unless very strict evaluation
guidelines are used. Otherwise, a design with a high throughput-area ratio,
which typically only considers the number of slices as area, may seem to be very
efficient, while in reality it is not. Therefore, BRAM is not used for evaluation
purposes in this thesis.

Digital Signal Processing Blocks Similar to the BRAMs, there are hard
blocks for the computation of important operations for digital signal process-



69

ing (DSP48E) [Xil12d]. The most important functionality is the possibility to
combine a multiplication and addition in one fast operation, which enhances
the performance of many digital signal processing algorithms. In cryptography
the DSP slices may be used to improve the performance of algorithms such as
RSA [SKNI10]. Similar to the case of BRAM, the usage of DSP slices makes
comparisons between two implementations very difficult and thus DSP slices
are also not used in this thesis.



70



Part III

FPGA-based Evaluation

71





Chapter 5

A Systematic Design Approach

5.1 Introduction

In this chapter, a systematic design methodology is introduced, which is used in
Ch. 6 to evaluate the six hash functions BLAKE, Grøstl, JH, Keccak, Skein
and Photon. The core idea of this methodology is to analyze the algorithms
in an abstract fashion, such that it is possible to compare different design
approaches without implementing them all. Thus, in a sense, it is possible
to weed out (some of) the bad candidate architectures. It is also possible to
roughly estimate the throughput of an implementation, provided that the target
frequency is reachable.

To achieve these possibilities, several estimates on key performance indicators
are gathered, for example:

• The number of clock cycles to compute the compression function for one
message block.

• The number and size of registers and the size of RAMs

• The data path width, and the organization of the state memory.

Note, that these are only indicators and a lot of the actual implementation
performance depends on further implementation details, for example the maxi-
mum reachable clock frequency, or the size of the combinational parts of the
algorithm. Furthermore, especially for lightweight implementations the external
interface and the control logic plays an important role.

73



74

The remainder of this chapter is organized as follows. In Sec. 5.2 the moti-
vation for the new methodology is provided and substantiated with previous
work on the evaluation of FPGA implementations. In the next section the
generic methodology is described in detail (Sec. 5.3). Based on this methodology,
general properties of hardware architectures are derived, which follow from data
dependencies inherent to algorithms. First, it is shown that a scheduling of op-
erations without pipeline stalls implies a lower and upper bound on the number
of clock cycles for a fixed round function implementation (Sec. 5.4), followed
by a simple approach to design stall-free pipelined designs (Sec. 5.5). The last
section describes how to formally determine the size of additional memories
needed for the successful implementation of a round function (Sec. 5.6).

5.2 Motivation and Previous Work

The relevance of hardware implementations of cryptographic algorithms is
high since the advent of modern cryptography. First, specialized hardware was
necessary, because the general purpose hardware was too slow, e.g. the Data
Encryption Standard (DES) was very slow on older processors and thus, hard-
ware implementations were developed [HGD85]. Nowadays, microprocessors are
much faster, and hence, software implementations of cryptographic algorithms
are reasonable fast for most applications. Still, if the performance or the cost of
software implementations is a major factor, then hardware implementations are
needed, e.g. for network appliances [FPO05], or for the car-2-car communication
[Sch11]. Therefore, it is important to evaluate the hardware performance of
new algorithms.

Unfortunately, the evaluation of hardware implementations is tedious and
error prone, because of many factors [Dri09]. Among these are:

• The target technology varies, e.g. the exact target FPGA, or the usage
of DSPs, BRAMs and other special hardware primitives almost always
differs between two evaluations.

• The parameters used in synthesis, map and place and route have a
considerable impact on the results.

• The I/O interface has a high impact for lightweight implementations.



75

Another major problems is, that most evaluations are reporting results of
standalone implementations. In contrast to these reports, it is unlikely, that
a cryptographic algorithm is used in such a fashion and hence, it may be
problematic to transfer the evaluation results into real world applications. For
example, if the design relies on DSP slices, but other components integrated
on the same FPGA are also using DSP slices, there may be a resource conflict
and thus, a severe performance drop may be the result.

A typical evaluation based on implementation results can be enhanced and
therefore become more meaningful, if it is based on an abstract and systematic
methodology before the actual implementation. This can be very useful for
selecting a candidate architecture, because it is possible to roughly estimate
the area and the throughput of an architecture prior to implementation.

A step in this direction was made by Gaj et al. They identified different
architectures to implement cryptographic hash functions, such as folding, un-
rolling, pipelining and circuit replication [GHR+12a]. Their methodology first
finds possible architectures and then proceeds to implement those, and finally
evaluates the implementations based on the post place and route results of the
tool chain. While the approach is in principle sound, it has the drawback, that
it is very time consuming to implement all of the possible architectures for a
thorough evaluation.

Another methodology proposed by Jungk et al. takes this idea one step
further in a more abstract direction by analyzing theoretical properties of the
proposed architecture before starting to implement an architecture [JS13]. The
design strategy was used to evaluate different architectures for the Keccak

algorithm. It is particularly suitable to compare different architectures of the
same algorithm and is also applicable to compare several algorithms in a limited
fashion, because it evaluates the needed minimum memory size to implement
an architecture, which has a large impact on the area of an implementation. In
addition, the number of clock cycles is calculated explicitly up front and thus,
the throughput of an implementation is roughly known before implementation.

In this thesis, the basis is the last methodology. An extended and revised
version is discussed next in more detail and later applied to the cryptographic
hash algorithms under investigation in Ch. 6.



76

5.3 Methodology Overview

All cryptographic functions investigated in this thesis have a common structure.
From a high level engineering point of view, all designs can be seen as variations
of the Merkle-Damgård construction (Sec. 3.5.1). Hence, they all include the
concept of a compression function or a permutation. These internal functions
are all based on the concept of a round function, which is iterated for a fixed
number of rounds. Together with some pre- and post-processing of the input
and the output, respectively, this computation of the round function forms
the compression function and is thus central to the implementation of all
algorithms.

For such algorithms, the methodology can be used to evaluate different hard-
ware architectures. It consists of the following steps, which are also illustrated
in Fig. 5.1:

1. Design an appropriate high-level organization for the internal state.

2. Estimate the number of clock cycles per round and for the complete
compression function.

3. Develop an architecture for the round function to match the estimated
number of clock cycles with the chosen state organization.

4. Determine the size of the memory needed for the computation of the
round function.

As indicated in Fig. 5.1, this methodology can be repeated to analyze as many
possibilities as desirable. However, finding the best approach automatically

Figure 5.1: Systematic Evaluation Methodology.



77

this way is probably impossible. Yet, it can be of great help to identify an
architecture out of several candidates, which fits the requirements of a later
product development or the research goal, such as lightweight implementations.
Therefore, the main task of the developer shifts to finding good candidate
architectures. A step in this direction is to understand which parts of an
implementation influence the area or the throughput in what way.

5.3.1 Area Impact

The area consumption is mainly influenced by the following components:

• State size

• Round function

• Control logic

• External interface

The state size (in bits) of most cryptographic functions cannot be reduced,
because it is fixed by the specification of the algorithm. However, as discussed
in Sec. 4.5.2, it is possible to reduce the area consumption when using FPGAs
with distributed RAM.

The round function has also a high area impact, which cannot be disregarded.
In contrast to the state, the round function can be tuned to the performance
requirements, e.g. low-area or high-throughput using the optimizations discussed
in Sec. 4.4. However, there are limits how much the area can be reduced and
how much performance can be gained by using additional area. These limits
have to be explored.

For lightweight implementations, the area reductions are limited by two
factors. The first are data dependencies, which may force the developer to
add either wait cycles or additional memory resources (registers or distributed
RAM instances) and thus, further reducing the area becomes more and more
difficult. The second limiting factor is, if the round function consists of several
sub-functions which are hard to implement by shared logic. Then, it is next to
impossible to save area by further serialization.

For high-throughput implementations, there are other issues. Since most
algorithms have an inherent limit on the possible parallelism, using more area



78

does not necessarily lead to a higher throughput. For example, unrolling the
rounds does not always increase the throughput, because the depth of the circuit
increases and hence, the maximum clock frequency decreases (Sec. 4.4.3). One
possibility to counter this effect is pipeline parallelism (Sec. 4.4.2). However, if
pipeline parallelism is used with only one data stream, it is again necessary to
analyze the data dependencies between two or more rounds to verify that no
pipeline stalls are introduced.

The control logic also influences the area requirements. However, since all
implementations of all algorithms typically need a very similar control logic,
this influence can be neglected for an abstract high-level evaluation. Similar,
the external interface has a high impact on the area consumption, especially for
lightweight implementations. Again, this is similar for all implementations and
has a close connection to the control logic and hence, it can also be disregarded
in the theoretical analysis for the same reasons.

5.3.2 Throughput Impact

The throughput of an architecture is both determined by the number of clock
cycles to compute an algorithm and the maximum reachable clock frequency.
From both measures, the practical relevance of the number of clock cycles
is higher, because in many projects, the clock frequency is fixed by external
requirements and also depends heavily on the target platform. Therefore, an
abstract analysis should first focus on the number of clock cycles and only
afterwards examine the clock frequency.

The minimum number of clock cycles is usually fixed by the width of the
internal data path, because it defines how many bits can be read from the
state in each clock cycle. Additionally, depending on the structure of the
round function, there may be data dependencies, which force the developer to
introduce wait cycles or to repeatedly read parts of the state and thus, the
performance decreases. This can be observed when using a pipeline with too
many stages (Sec. 4.4.2); in this special case, the additional wait cycles are the
pipeline stalls.

Additional clock cycles are also necessary, if not enough temporary memory
is provided and the same data has to be loaded from the state RAM in multiple
clock cycles. This may for example happen, for a serialized implementation,



79

which requires to store intermediate values between parts of a single round.

5.3.3 Performance Indicators

Based on the previous discussion, several performance indicators can be identi-
fied, which are important to rate the quality of an architecture for a particular
algorithm:

• The number of clock cycles.

• The minimum memory size including its internal organization.

• The degree of serialization or unrolling.

The clock cycle count can be completely determined without transforming
the architecture to an RTL model. As will be discussed in Sec. 5.4, it is also
possible to evaluate, if an architecture is clock cycle optimal in some special
sense.

The minimum memory size has a high influence on the area consumption.
Hence, it is necessary to evaluate it and the memory organization. This may
happen in an abstract fashion according to the complexity measures for memory
introduced in Sec. 2.5. For the basic architecture, both the memory for the
state as well as memories introduced in the round computation have to be
evaluated to get to a meaningful performance indicator. In parts, this can be
reduced to analyzing data dependencies, as will be shown in Sec. 5.6.

The last indicator is based on the round function architecture. This includes
several slightly different things. For a serialized architecture, the first attribute
is the width of the data path, because a smaller data path usually implies an
area reduction in the implementation of the round function.

It is sometimes also possible to reduce the area of the round function without
reducing the data path width. This usually has the additional benefit, that
the maximum clock frequency increases, because the critical path delay in
the round function usually reduces. For both techniques, the area reduction
achieved for the round function is roughly proportional to the degree of serial-
ization. However, the total area reduction for the complete algorithm cannot be
proportional to this reduction, because the size of the state memory may only
be reduced to a small degree in an FPGA implementation using distributed



80

RAM instead of registers and secondly, because the control logic may increase
with a higher degree of serialization, e.g. a higher number of clock cycles leads
to larger counters.

In the other direction a round function may be unrolled (Sec. 4.4.3 and
the area consumption increases accordingly. However, as already mentioned it
does not directly imply a higher throughput, as the critical path delay usually
increases.

The degree of serialization which is independent of the data path width
reduction, can be expressed in one metric and will be called the serialization
metric s.1

Definition 5.1 Let b be the internal state size of an algorithm, d the data path
width of the architecture and s ∈ N. Then s is called the serialization metric,
if the number of clock cycles to compute the round function is proportional to
s×b/d.

It is important to point out, that a reduction of the data path width is
explicitly excluded from this serialization metric, based on the discussion in
Sec. 4.4.4. A reduction of the data path width directly forces a serialized
processing of the state. However, it is not necessary to reduce the data path
width to serialize the processing. A good example is the round based processing
of a compression function itself. It is possible to unroll the complete compression
function and thus to reduce the number of clock cycles, but it is also possible
to serialize the processing in such a way, that only one round is computed per
clock cycle. The data path width stays the same in both cases. Therefore, it is
convenient to analyze the serialization phenomenons separately.

This means, if s = 1, then the computation of the round function takes
exactly b/d clock cycles. If s > 1, then the algorithm was serialized and the round
function is computed in s×b/d cycles and if 0 < s < 1, then the architecture is
an unrolled implementation. Hence, the metric s is proportional to the number
of clock cycles that an architecture needs to compute an algorithm.

Based on these indicators, several candidate architectures can be partially
compared. For example, if the goal is a high throughput implementation, then
the cycle count is the most important indicator. Conversely, if area minimization

1Unrolling can be considered the inverse of serialization for this purpose.



81

is the optimization target, then the memory size and the serialization play an
important role. Unfortunately, it is difficult to directly compare two different
algorithms without knowing the approximate size of the round function and
thus, the comparison easily leads to misinterpretations.

5.3.4 Data Dependencies

As noted in Sec. 5.3 for both the area and the throughput impact, data
dependencies play an important role in the design of hardware architectures
for both the area and the throughput. Hence, the evaluation should be focused
on the data dependencies between the operations of the algorithm.

The main question behind the analysis of these dependencies is to find a
feasible scheduling of the operations of an algorithm which avoids (pipeline)
stalls. In general, this is a computationally hard problem, because it is a
variation of the no-wait flow-shop scheduling problem ([SS16] [GJ90]). However,
since the problem instances are small, it is usually possible to find an optimal
solution manually using exhaustive search.

Data dependencies are inherent to the design of an algorithm. In particular,
since all of the hash functions under investigation are based on a round function,
the analysis is based on the notions of intra-round and inter-round dependencies
as introduced in [JS13].

• If a round function r may be expressed in terms of sub-functions g1,
. . . , gm, i.e. r = gm ◦ · · · g2 ◦ g1 of m. Then intra-round dependencies are
dependencies between the different gi sub-functions. This may be a carry
bit of an addition operation, or the round function consists of several
different sub-functions which in parts depend on the output of other
sub-functions.

• The inter-round dependencies are similar, but on the next functional level.
If a compression function f can be expressed in an abstract fashion as
f = rn ◦ · · · ◦ r2 ◦ r1, where ri are the individual rounds. Then inter-round
dependencies are dependencies between two rounds ri and rj.



82

5.4 Cycle Optimal Architectures

If the operations are optimally scheduled, there are no pipeline stalls. This
may be expressed more formally as follows. Let b be the internal state size
of an algorithm, d the data path width of the architecture, n the number of
rounds of the algorithm, and s a constant which describes the serialization
metric according to Def. 5.1. Then an architecture implementing a compression
function f may take about

cycf (s, b, n, d) ≈ s · b · n
d

clock cycles. In particular, the total number of clock cycles is proportional to
the state size, the number of rounds and the degree of serialization and inverse
proportional to the data path width.

Many architectures need some additional clock cycles because of the data
dependencies and thus, they do not exactly meet the above estimated number of
clock cycles. For example, this is always the case for pipelined implementations.
This (small) overhead is considered optimal, if it is constant in terms of the
number of rounds, because then no pipeline stalls are occurring between each
round. This idea is formalized in the following definition:

Definition 5.2 Let f be a compression function f = rn ◦ · · · ◦ r2 ◦ r1. Then
an architecture for ri used to implement f is optimal, if there are no pipeline
stalls when f is computed.

An architecture fulfills this definition, if the following lemma holds:

Lemma 5.3 Let b be the state size, d the data path width, n the number of
rounds, s the serialization metric of an architecture, and c a constant. Then
the number of clock cycles of an optimal architecture for f = rn ◦ · · · ◦ r2 ◦ r1 is
bounded by

s · b · n
d

≤ cycf (s, b, n, d) ≤ s · b · n
d

+ c,

if the number of clock cycles to compute one round ri is bounded by

s · b
d
≤ cycri(s, b, d) ≤ s · b

d
+ c.



83

Proof By assumption, every round costs at most s·b
d

+ c clock cycles. Hence, a
first upper bound is cycf (s, b, n, d) ≤ ( s·b

d
+ c) · n = s·b·n

d
+ c · n.

However, after s·b
d

clock cycles, all inputs of round ri have been read (because
it is an optimal architecture) and now the inputs for round ri+1 are to be loaded
next, otherwise there would be a pipeline stall. Therefore, it is necessary to
interleave the computation of the rounds n and n+ 1 by c clock cycles, such
that the outputs of round n are available as inputs for round n+ 1. Because of
this interleaving, each round except one takes only s·b

d
cycles and one round (e.g.

the first or the last) needs s·b
d

+ c clock cycles. This proves the upper bound.

The lower bound for the compression function f follows from the lower
bound s·b

d
≤ cycri(s, b, d). 2

Furthermore, the constant c cannot exceed a certain amount of clock cycles,
because otherwise automatically inter-round dependencies will be violated and
thus, pipeline stalls will occur. In Fig. 5.2 a scheduling of the operations g0, g1, g2
with a maximum offset is shown, where ri = g2 ◦ g1 ◦ g0. The red line marks the
last rising edge of the clock signal after the fifth clock cycle (c = 2) in which the
output 3 is calculated. This idea can be formalized in the following corollary:

Corollary 5.4 Let b be the state size, d the data path width and s the serial-
ization metric of an optimal architecture. Then the constant overhead c of an
optimal architecture is bounded by

c <
s · b
d
,

Clock
Input . . . Load 0 Load 1 Load 2 Load 0 Load 1 Load 2 . . .

. . . Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 . . .

. . . g0(0) g0(0) . . .

. . . g1(1) g1(1)

. . . g2(2) g2(2)

Output . . . Store 0 Store 1 Store 2 Store 0

Figure 5.2: Example of a scheduling with maximum value for c.



84

if the number of clock cycles to compute one round ri is bounded by

cycri(s, b, d) ≤ s · b
d

+ c.

Proof Each computation of a round ri takes at most s·b/d + c clock cycles. For
each round ri, s·b/d inputs are scheduled. Hence, the last output of ri−1 has to
be stored at the latest after clock cycle 2s·b/d− 1 to be usable as an input for
the next round, i.e. the worst case for c is c ≤ s·b/d− 1.

Now, suppose that c ≥ s·b
d
, and that the last output of ri−1 is stored after

clock cycle s·b
d

+ c. Then s·b
d

+ c ≥ 2s·b
d

and at least one output bit of ri−1
is computed one clock cycle too late, because the result for this bit is not
knowng0(0), when it is needed to be loaded as an input bit for ri. Hence, the
pipeline stalls. This is clearly not optimal and thus c < s·b

d
. 2

Note, that it is still possible to design a hardware architecture for a com-
pression function without pipeline stalls, which violates this bound for the
constant c. Such a design for the round function takes a varying number of clock
cycles for the round function implementation and thus violates the assumption
of Lemma 5.3 and Corollary 5.4. This leads to more conditional branching
in the algorithm, which might increase the resource consumption for FPGA
implementations because of the additional multiplexers. Furthermore, such an
architecture would imply pipeline stalls between message blocks for designs
which are able to process long messages as streams. Therefore, such design
decisions should be avoided, if possible.

5.5 Stall-Free Pipelining

One side product of the methodology is an easy way to determine the maximum
pipeline depth which can be achieved without introducing pipeline stalls and

Clock
Inputs U 1 2 3 4 1 2 3 4 U

Instructions U g1 g2 g3 g4 g1 g2 g3 g4 U

Outputs U 2 1 4 3 2 1 4 3 U

Figure 5.3: Example scheduling without pipelining.



85

Clock
Inputs U 1 2 3 4 1 2 3 4 U

Pipeline U s1 s2 s3 s4 s1 s2 s3 s4 U

Instructions U t1 t2 t3 t4 t1 t2 t3 t4 U

U u1 u2 u3 u4 u1 u2 u3 u4 U

Outputs U 2 1 4 3 2 1 4 3 U

Figure 5.4: Example scheduling with a depth 3 pipeline.

without further changing the general architecture. For this goal, all outputs
of the round function r = gm ◦ · · · ◦ g1 have to be considered in the same
order. In particular, if y1, y2, . . . , ym are the outputs of g1, . . . , gm, then for
each output yi a delta of clock cycles ∆cycyi

can be calculated. This ∆cycyi
is

defined to be the number of clock cycle between the cycle in which an output
yi becomes available and the cycle when it is again an input for some function
gi. Then min(∆cycy1

, . . . ,∆cycym
) − 1 is the maximum number of additional

pipeline stages that can be added to an architecture, such that the pipelined
architecture has no stalls.

An example of this mechanism is given in Fig. 5.3 and Fig. 5.4. The first
figure (Fig. 5.3) represents the scheduling of the operations g1, . . . , g4 without
pipelining. The second figure (Fig. 5.4) shows the pipelined version of this
architecture, where gi = ui ◦ ti ◦ si. The critical dependencies which prevent an
even deeper optimal pipeline are marked in Fig. 5.4 with circles.

Despite that such a pipelined architecture is optimal in the sense of Def. 5.2,
it is always possible, that a different scheduling of the operations computing
the round r leads to a maximum pipeline depth of b/d pipeline stages with
a (possibly) non-regular structure. This strategy always works, because it is
possible to schedule the outputs of the round function in such a way, that all
outputs are exactly computed one clock cycle before they are again needed as
an input. However, for this construction, at least the complete state has to be
stored in the pipeline and furthermore, the architecture does not necessarily
have a regular structure anymore. Hence, the implementation efficiency is often
reduced.



86

5.6 Round Function Memory Estimation

For many architectures, it is necessary to include memory components in
the computation of the round function to store intermediate results. These
intermediate results have usually a close connection to the intra-round data
dependencies. In particular, if a round function is split into several sub-functions,
then it may happen, that one or more output bits of a sub-function are needed
as inputs for another operation, which is scheduled in another clock cycle. If
this is the case, than some additional memory primitive has to be included in
the circuit.

More formally, let gi be a sub-function that computes one part of the
round function r = gm ◦ · · · g2 ◦ g1 in one clock cycle, implemented as purely
combinational logic. Then this sub-function gi may be modeled as a Boolean
circuit Cgi . Note, that this is exactly a sub-circuit of the complete BCM for the
round function according to Def. 2.19, if each sub-function gi is implemented
using the same circuit. In the following, it is assumed for simplicity that all gi
sub-functions are identical and thus gi = g.

If this circuit Cg is treated as a sub-circuit of a larger BCM C ′g according to
Def. 2.19, then all outputs of the original circuit have to be either output gates
or registers in C ′g. However, all outputs of this circuit are either stored in the
state RAM – which is in the context of the round function a registered output
– or used as inputs of another computation of g. Therefore, all of these output
gates are registered outputs in C ′g and hence, all outputs of Cg are registers
according to Corollary 2.21.

Furthermore, the state RAM has a fixed width w and thus, cannot store
more than w bits per clock cycle. Hence, if FANOUT(Cg) > w, then at least
k = FANOUT(Cg)− w bits additional memory have to be provisioned in the
circuit C ′g implementing the sub-round function. This memory may of course
be modeled as a RAM according to Sec. 2.4 and can also be implemented as
distributed RAM or BRAM on the FPGA to be more efficient.

Note, that these k bits correspond exactly to the intra-round dependencies
between two or more (sub-)rounds, because only w new input bits will be read
from the state RAM and thus, the additional intra-round dependencies cannot
be fulfilled by the input bits supplied by the state RAM.



87

The situation does not change considerably for pipelined implementations.
For each pipeline stage at least d registers have to provided, where d is the data
path width. However, these registers are also covered by the approach, because
the number of outputs of the combinational part of the circuit increases by at
least d output gates for each pipeline stage and thus, the argument is still valid.

The same argument may be used to show, that for a maximum pipeline depth
implementation as described in the previous section (Sec. 5.5), it is possible to
reduce the memory requirements in abstract terms by b bits again. The first b/d
reads are performed without writing to the state RAM. Afterwards, all outputs
are directly used as inputs for the round function again. Therefore, it is not
necessary to write to the state RAM afterwards and hence, at least b− d bits
are stored in the pipeline. Since the output of the pipeline is directly fed back
into the pipeline, it is enough to reduce the minimum memory requirements
to b bits in total, instead of 2b− d bits. This means, that the state is always
completely stored in the pipeline registers.



88



Chapter 6

Hash Function Evaluation

6.1 Introduction

In this chapter, the main evaluation of the six hash functions will be developed.
For every analyzed hash function, the definition of the hash function will be
provided, followed by a theoretical analysis based on the systematic approach
introduced in Ch. 5. The main focus of the present evaluation are lightweight
and midrange implementations. Therefore, the architectural serialization of the
algorithms as discussed in Sec. 4.4.4 are analyzed in detail and high-performance
approaches are only briefly discussed (Sec. 4.4), mainly because other researchers
already conducted extensive evaluation of such high-performance implementa-
tions, e.g. Gaj et al. [GHR+12a, GHR+12b] investigated many variants of the
SHA-3 finalists.

For some of the evaluated algorithms, it is also possible to apply one or
more additional optimization techniques, such as the optimization based on
mathematical observations for the AES S-box used by Grøstl or the optimiza-
tions based on direct instantiation of LUT primitives for JH and Keccak.
The principles of both optimization techniques were previously described in
Sec. A.5 and Sec. 4.4.5.

Five of the six evaluated algorithms were submitted to the SHA-3 competition.
These algorithms were all part of the final round and hence, they received a lot
of previous analysis. Therefore, the present analysis bundles already published
ideas with several new ideas. The only algorithm under investigation that was
not part of the competition is Photon. This hash function has been designed

89



90

for lightweight applications such as RFID tags. The analysis is one of the first
for of FPGA-based implementations.

The analysis of Keccak is also special, because after the announcement
that Keccak was chosen as the new SHA-3 algorithm, the design has received
and will continue to receive increased attention. This is also reflected in the
evaluation of hardware implementations of the Keccak algorithm. Another
reason for the extended study of Keccak is its flexibility, which allows the
developer to easily tune the algorithm for lightweight implementations. In
particular, it will be shown, that a lightweight Keccak implementation with
a smaller state is also a good candidate for applications with a need for area-
reduced hash functions, where it competes with algorithms like Photon, which
are specially designed for lightweight applications. For the other algorithms
the target is a midrange performance, i.e. the designs were developed to be
small while still being efficient for a lot of applications. This is a reasonable
compromise, because all SHA-3 finalists are too area consuming for extreme
lightweight applications, since the state of all algorithms is quite large.

The remainder of this chapter is organized as follows. In Sec. 6.2, the bit
string convention is defined, which is used for the external interfaces for the
implementations. This definition is followed by a description of the external
interfaces used by the implementations (Sec. 6.3). In the following sections
(Sec. 6.5-6.10), the algorithms BLAKE, Grøstl, JH, Keccak, Skein and Photon
are systematically analyzed according to the systematic approach developed
in Ch. 5. This evaluation is organized for each algorithm as follows. First,
the definition of the algorithm is provided. Then the theoretical analysis is
developed, which is concluded with an evaluation. Afterwards, a description of
one or more concrete implementation(s) round up each study.

6.2 Input and Output Bitstring Convention

Correct implementations of a hash function have to follow some conventions.
Foremost the interpretation of input and output bit strings are to be defined.
If an algorithm defines a different interpretation, a mapping between the two
interpretations has to be provided. Throughout this thesis, the interpretation
of bit and byte ordering defined by the NIST is used [Kay07], if not otherwise



91

explicitly stated together with a mapping between the interpretations.

Definition 6.1 A bitstring x ∈ Z≥02 is interpreted in big-endian byte order, i.e.
if x1, . . . , xn ∈ Z8

2 are the n = |x|/8 bytes of the bitstring x, where x1 is the most
significant byte and xn the least significant byte, then

x =def

n∑
i=1

xi × 256n−i = x1|| · · · ||xn

Similarly, the bits xi,1, . . . , xi,8 in each byte xi are ordered, such that

xi =
8∑
j=1

xi,j × 28−j.

Intuitively, using a big-endian byte order means, that the most significant bits
and bytes of a bitstring in a binary or hexadecimal notation are the left-most
bits or bytes of the bitstring.

6.3 External Interfaces

The different hardware designs use three different, yet very similar I/O interfaces.
The first interface utilizes the Fast Simplex Link (FSL) which is used by the
MicroBlaze microprocessor from Xilinx [Xil12a, Xil12b]. The second one is
based on an interface designed at the George Mason University (GMU). A
slightly different variant of this interface was first used by Gaj et al. and then
updated to the version used in this thesis [GHR10]. The third variant is an
adapted version of the same interface to support the lightweight variants of the
Photon hash function with a 4 bit wide interface.

6.3.1 FSL-based Interface

This interface is compliant to the FSL specification [Xil12a]. The FSL is a
popular method to connect IP cores to the Xilinx Microblaze softcore processor
[Xil12b]. The FSL is a generic 32 bit wide unidirectional link with an optional
FIFO. Two synchronous links form the bidirectional interface. The subsets of
signals used by the interface are listed in Tab. 6.1 and also displayed in Fig. 6.1.

The FSL works with a hand-shake protocol between master and slave as
illustrated in Fig. 6.2 for the communication from master to slave [Xil12a]. For



92

Figure 6.1: The Fast Simplex Link Interface.

transferring data from the microprocessor to the hash function, the microproces-
sor is the master. For the other direction it is the hash function implementation.
In Fig. 6.2, the rising clock edges marked with a red line are writes to the FIFO
and blue lines mark the reads from the FIFO.

The data format for the message input is depicted in Tab. 6.2a. The bit
and byte order is implemented according to Def. 6.1. Each message block is
transfered individually. First, the length information for a block is transfered.
This length information is either the maximum block length, if the block has
the maximum length, or otherwise the remaining number of message bits.
Additionally, it is necessary for some algorithms to explicitly encode the end
of the data stream in the length information. This end of data information is
realized as a one bit prefix to the length, and since each algorithm has a fixed

Table 6.1: Implemented I/Os of the FSL Interface.

Signal Name I/O Description

FSL_Clk I FSL clock for synchronous FIFO mode
FSL_Rst I Peripheral reset

FSL_M_Data I Master input data (32 bits)
FSL_M_Write I Master writes data to the FIFO
FSL_M_Full O Master FIFO is full
FSL_S_Data O Slave output data (32 bits)
FSL_S_Read I Slave reads data from the FIFO

FSL_S_Exists O Data exists in the slave FIFO



93

width of the length information for one block, the position of this bit is also fix.
All bits are right aligned in the first 32 bit wide transfer, i.e. the information is
prefixed with zeros.

After the length information, the message block is transfered over the link
in 32 bit chunks. If the message block is shorter than the maximum block
length, it is padded with as many 0s as necessary to fill the message block. The
actual padding according to the hash function specification happens later in
the hardware implementation of the hash function. This principle simplifies the
design of the state machine, because it does not have to cope with a differing
number of transfers for message blocks of different length. As soon as a complete
message block has been transfered, all implementations start the computation
of the compression function automatically.

When the last block has been transfered, the hash function finishes the
computation and then transfers the digest back over another FSL instance.
This protocol is simpler, because the length of the digest is fixed. Thus, only
the necessary amount of 32 bit blocks is transfered. For the 256 bit variants,
this corresponds to eight transfers.

The implementations of the hash function using this interface and hence the
area and throughput results only include the control logic for the FSL. The
FIFO of the FSL implementation is not included, because it is configurable (e.g.
the size and implementation style of the FIFO) and thus, the implementation
details of the FSL link varies depending on the requirements of the application.

FSL_Clk
FSL_M_Data U 1 U 2 3 U 4 U

FSL_M_Write
FSL_M_Full
FSL_S_Data U 1 U 2 3 U 4 U

FSL_S_Read
FSL_S_Exists

Figure 6.2: Timing diagram for the Fast Simplex Link.



94

Table 6.2: Protocol Messages for the FSL Interface.

(a) Message Input.

31 0 · · · 0||eof||length 0

MSB message block

31 0

(b) Digest Output.

MSB hash digest

31 0

6.3.2 GMU Interface

The second interface is based on the interface defined by Gaj et al. [GHR10].
The basic principle is similar to the FSL interface, i.e. it uses a hand-shake
protocol between the two communication partners in a similar way (Fig. 6.3).
One difference is, that it uses an active low signal to notify that data can be
read from the pipeline. Furthermore, it supports a configurable link width.

The protocol part for transferring the message digest from the implemen-
tation to its user is identical to the FSL interface. However, the protocol to
transfer data to the hash function is considerably different. In principle, it
supports the transfer of already padded messages or unpadded messages to the
hash function. For the present evaluation, only the first version for externally
padded messages is used.

Two different ways of transferring parts of a message are supported (Tab. 6.3).
The first possibility sends first a 1 followed by the length after padding
(Tab. 6.3a). Then the length of the message before the padding is transfered

clk
din U 1 U 2 3 U 4 U

write
full
dout U 1 U 2 3 U 4 U

read
empty

Figure 6.3: Timing diagram for the FIFO buffer supporting the GMU interface.



95

Table 6.3: Protocol Messages for the GMU-Based Interface.

(a) Message Input Without Splitting.

w − 1 1||padded length 0

w − 1 unpadded length 0

MSB message

w − 1 0

(b) Message Input With Splitting.

w − 1 0||segment length 0

MSB message segment

w − 1 0

and finally the message itself. This may be used to transfer a message up to
2w−1 − 1 bits over the link.

The second possibility is to split the transfer into several segments, each
prefixed with the length of the segment that is to be transfered next (Tab. 6.3b).
To distinguish between the first and the second option a 0 is transferred first,
followed by the segment length. Then the data of the segment follows.

The last message block always has to be transfered with the first variant.
Otherwise, the hash function would not know the padded length and hence,
produce false hash digests. Therefore, the second option can be either used as
a way to hash messages that are larger than 2w−1 − 1 bits or when the exact
message length is not known it advance.

This interface can be scaled for many different applications. For example,

Table 6.4: Protocol Messages for the Modified Lightweight Interface.

(a) Message Input Without Splitting.

w − 1 1||high p. length 0

w − 1 low p. length 0

w − 1 high unp. length 0

w − 1 low unp. length 0

MSB message

w − 1 0

(b) Message Input With Splitting.

w − 1 0||high seg. length 0

w − 1 low seg. length 0

MSB message segment

w − 1 0



96

for high-throughput implementations, a wide interface with 32 or even 64 bit is
proposed by Gaj et al. [GHR10]. In contrast, for lightweight applications, it
is better to have a narrow interface [KYS+11]. For the message block sizes of
the five SHA-3 finalists, the smallest possible width is 16 bit. Using a smaller
interface with an eight bit wide link a message block implies a maximum length
of 27 − 1 = 127 bits. Yet, the message blocks have 512 bits, which makes it
impossible to transfer a message block over this link using this protocol. Only
for some lightweight variants of Keccak, an eight bit wide communication
link is possible, because the rate (message block size) is reduced below 127 bits.

Further shrinking the link width is impossible without changing the protocol,
because a four bit wide link only has three bit available to describe the message
length in the last transfer. Hence, it may only describe a seven bit long message
block. Therefore, the protocol was adapted for lightweight hash functions. The
only difference is, that the length fields use two consecutive transfers (Tab. 6.4).

6.4 General Assumptions and Design Goals

Beside the byte order and the interface, there are several additional assumptions
about the architectures and implementations:

• FPGA implementations are often used as application accelerators to
offload computational intensive tasks to a specially designed hardware,
e.g. [HV04]. Therefore, it is typically required for implementations to
reach a throughput target performance. Hence, while reducing the area
reduces the cost, a too narrow focus on the area consumption is an
unrealistic assumption for such accelerators, if the throughput suffers too
much. Therefore, none of the developed implementations is pushing the
limits of the area consumption.

• Each RAM has at most one read and one write port. This allows for two
architecture variants. Either one port which is both a read and write port
or two ports, where one port is exclusively a read port and the other
exclusively a write port. Other configurations are in principle possible,
such as using two read ports. However, the analysis would become more
complex.



97

• If a RAM is configured in a t× d fashion, then our optimal architectures
read d bits per clock cycle when processing the round function. The
last input is loaded for the clock cycle s×b×(nr+1)/d − 1, where s is the
serialization metric of the architecture, b is the state size, nr is the round
number and d is the data path width. Furthermore, after c clock cycles d
bits are written to the RAM until clock cycle s×b×(nr+1)/d + c.



98

6.5 BLAKE

The BLAKE hash function was a finalist in the SHA-3 competition, designed
by Aumasson et al. The latest specification of the algorithm was submitted
for the third round of the SHA-3 competition [AHMP10]. Compared to the
previous second round version, the number of rounds was increased from 10 to
14 for the smaller option and from 14 to 16 for the larger variant.

BLAKE is based on the stream cipher ChaCha [Ber08a] and the HAIFA
iteration mode [BD07]. BLAKE also uses a variation of the Davies-Meyer con-
struction in its compression function (Sec. 3.5.2). ChaCha itself is a strengthened
variant of the Salsa20 stream cipher [Ber08b], which is a profile 1 stream cipher
from the eSTREAM portfolio [BBV12]. Profile 1 ciphers are recommended for
software applications.

6.5.1 Definition

The following definition is a slightly rearranged version of the original defini-
tion [AHMP10]. The original specification defines four variants BLAKE-224,
BLAKE-256, BLAKE-384, and BLAKE-512. BLAKE-224 and BLAKE-256

differ only in the initial values, the padding rule, and the truncation of the
output to 224 instead of 256 bit.

The larger options BLAKE-384 and BLAKE-512 use a larger state and
a compression function adapted to process the larger state. The differences
between these two are similar to those between BLAKE-224 and BLAKE-256.
For the sake of clarity and because it is the variant analyzed in detail, only the
BLAKE-256 version will be defined explicitly.

Input and output mapping The byte order of the input messages and the
output digests are organized according to the NIST specification (Sec. 6.2). The
padded input for BLAKE-256 is split into 512 bit message blocks and further
into 32 bit words. According to the BLAKE specification, a message block m
in big-endian order consists of 16 words, i.e. m = m0||m1|| · · · ||m14||m15, where
each mi ∈ Z32

2 . The digest is organized as h = h0|| · · · ||h7, where each hi ∈ Z32
2 .



99

Padding For BLAKE-256 the padding function pad256(M) is defined as
follows. For M ∈ Z≥02 and k = (−|M | − 66) mod 512, let

pad256(M) =def M ||1||0k||1||(|M |64)

Initialization Values and Constants BLAKE uses several initialization
values, which differ for each variant. The BLAKE-256 initialization values are
the same as used by SHA-256 [FIPS 180-4]:

IV0 =def 6A09E667 IV1 =def BB67AE85

IV2 =def 3C6EF372 IV3 =def A54FF53A

IV4 =def 510E527F IV5 =def 9B05688C

IV6 =def 1F83D9AB IV7 =def 5BE0CD19

The constants for BLAKE-256 (and BLAKE-224) are the first digits of π:

c0 =def 243F6A88 c1 =def 85A308D3 c2 =def 13198A2E c3 =def 03707344

c4 =def A4093822 c5 =def 299F31D0 c6 =def 082EFA98 c7 =def EC4E6C89

c8 =def 452821E6 c9 =def 38D01377 c10 =def BE5466CF c11 =def 34E90C6C

c12 =def C0AC29B7 c13 =def C97C50DD c14 =def 3F84D5B5 c15 =def B5470917

Round Function The round function used by the compression function of
BLAKE is based on a family of Gi functions as defined in Alg. 6.1. In this
algorithm a, b, c, and d are four words of the internal BLAKE state, r is the
current round, σr is a permutation, which is different for each round (Tab. 6.5),
ci are the constants defined above and m is a message block.

Table 6.5: BLAKE’s σr permutations.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0



100

Algorithm 6.1 BLAKE Gi function family [AHMP10]
Require: a, b, c, d ∈ Z32

2 , r ∈ Z10, σr : Z16 → Z16 and m = m0|| · · · ||m15, with

mi ∈ Z32
2

Ensure: (a, b, c, d)← Gi(a, b, c, d, r,m)

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d← (d⊕ a)� 16

c← (c+ d)

b← (b⊕ c)� 12

a← a+ b+ (mσr(2i+1) ⊕ cσr(2i))
d← (d⊕ a)� 8

c← (c+ d)

b← (b⊕ c)� 7

return (a, b, c, d)

Each of the eight Gi functions differs slightly from the others, depending on
the σr permutations and the index i. The σr permutations control the injection
of message bits into the computation and the usage of constants. Another
interesting feature of the Gi functions is that each Gi function is a repetition of
two almost identical sub transformations, where the parameters to σr and the
rotation constants are different between the first and the second transformation.

The round function is computed according to Alg. 6.2. The input to the

Algorithm 6.2 BLAKE round function [AHMP10]
Require: m = m0|| · · · ||m15, h = v0|| · · · ||v15, with mi, vi ∈ Z32

2 , and r ∈ Z10.

Ensure: h← round(h, r,m)

(v0, v4, v8, v12) ← G0(v0, v4, v8, v12, r,m)

(v1, v5, v9, v13) ← G1(v1, v5, v9, v13, r,m)

(v2, v6, v10, v14)← G2(v2, v6, v10, v14, r,m)

(v3, v7, v11, v15)← G3(v3, v7, v11, v15, r,m)

(v0, v5, v10, v15)← G4(v0, v5, v10, v15, r,m)

(v1, v6, v11, v12)← G5(v1, v6, v11, v12, r,m)

(v2, v7, v8, v13) ← G6(v2, v7, v8, v13, r,m)

(v3, v4, v9, v14) ← G7(v3, v4, v9, v14, r,m)

return v0|| · · · ||v15



101

round function consists of the message block m, the internal state h and the
current round rmod 10. A property of the round function, which will be used in
the further analysis, is, that the inputs of G0, . . . , G3 are independent from each
other and thus, they can be computed in any order, or also in parallel. The same
applies to G4, . . . , G7. This is helpful for both lightweight and high-throughput
implementations of BLAKE.

Compression Function The compression function is defined according to
Alg. 6.3, where h is the previous chaining value, m is a message block, s is
a salt, t is a counter of the processed message length and round(h, r,m) is
computed as specified in Alg. 6.2. The compression function consists of three
different parts, the initialization, the computation of the 14 rounds, and the
finalization.

Algorithm 6.3 BLAKE compression function [AHMP10]
Require: h = h0|| · · · ||h7 with hi ∈ Z32

2 , m ∈ Z512
2 , s = s0||s1||s2||s3, with si ∈ Z32

2 ,

and t = t0||t1, with ti ∈ Z32
2

Ensure: h← compress(h,m, s, t)

-- Initialization
v0 ← h0, v1 ← h1, v2 ← h2, v3 ← h3

v4 ← h4, v5 ← h5, v6 ← h6, v7 ← h7

v8 ← s0 ⊕ c0, v9 ← s1 ⊕ c1, v10 ← s2 ⊕ c2, v11 ← s3 ⊕ c3

v12 = t0 ⊕ c4, v13 ← t0 ⊕ c5, v14 ← t1 ⊕ c6, v15 ← t1 ⊕ c7

-- Round Computation

for r = 0 to 13 do

v = round(v, (rmod 10),m)

end for

-- Finalization
h0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8, h1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10, h3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12, h5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14, h7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

return h0|| · · · ||h7



102

Algorithm 6.4 HAIFA iteration mode used by BLAKE [AHMP10]

Require: M ∈ Z≥02 , IV0, . . . , IV7 ∈ Z32
2 , and s = s0||s1||s2||s3, with s0, . . . , s3 ∈ Z32

2

Ensure: digest← BLAKE-256(M, s)

p← pad256(M)

t̄← |p|/512

t← 0

h← IV0|| · · · ||IV7

for i = 0 to t̄− 1 do

if i = t̄− 1 then

t← t+ 512

else

t← t+ |M |mod 512

end if

h← compress(h, pi, s, t)

end for

return h

Iteration Mode The HAIFA iteration mode used by BLAKE is defined
according to Alg. 6.4. The iteration mode has a message M and a salt s as
inputs. Furthermore, the eight initialization values IV0, . . . , IV7 are necessary to
initialize the internal state of BLAKE. The official submitted SHA-3 candidate
with hash size n = 256 does not use a salt, i.e. it is defined to be BLAKE-
256(M, 0).

6.5.2 Systematic Evaluation Overview

The systematic evaluation of BLAKE-256 has been conducted according to the
methodology introduced in Sec. 5.3. According to this methodology, the first
step is to choose an appropriate state representation. As will be shown, this is
possible in a generic way for many practicable architectures.

State and Memory Organization The state of BLAKE-256 consists of
512 bits organized in 16 words. Each word consists of 32 bits. This organization
leads to several architectures for the state memory of the form 2k × (512/2k)

bits with the data path width d = 512/2k = 29−k bit. However, only the values
0 ≤ k ≤ 4 are investigated here. It is more difficult for larger k to analyze



103

the round function, because of the additional intra-round dependencies of the
addition operation and the rotations and the benefits seem to be small.

Unfortunately, it is impossible to use a straightforward 2k× (512/2k) bit RAM
in most cases to achieve an optimal architecture according to Def. 5.2, because
the scheduling of the input variables to the Gi functions differs between the
first (0 ≤ i ≤ 3) and the second half (4 ≤ i ≤ 7) of the round function. Hence,
it would require a significant number of additional clock cycles or memory
resources to reorder the RAM content appropriately. For the discussed variants,
this argument leads to the following state organizations:

• For k = 0, the state organization (1×512 bits) is ideal for high-throughput
architectures and since the state is accessed fully in parallel, there is no
need to logically divide the memory into more than one part. Such designs
are called parallel architectures in the following discussion.

• For k = 1, two RAMs may be used to implement the 512 bit memory. Each
RAM is organized as a 2× 128 bits RAM. In this example architecture,
the first RAM contains the tuples (0, 1, 5, 12) in one memory location and
(2, 3, 7, 14) in the second. The remaining words are stored in the second
RAM, i.e. the tuples (4, 8, 9, 13) and (6, 10, 11, 15). This design is called
intermediate serialized architecture.

• For k ∈ {2, 3}, the 2k× (512/2k) bit memory can be organized with at most
16/2k different 2k× 32 bit RAMs. Such designs are also called intermediate
serialized architectures.

It is possible to group some of the RAMs in wider instances for some
special architectures and thus, to save some area. This process of merging
RAMs can also be achieved by the synthesis tool, if it can prove, that
the read and write addresses are identical in all cases.

However, one single RAM is in most cases insufficient, because of the
different read and write patterns of the first and the second half of the
round function. For example, Fig. 6.4 shows the different reading patterns
for a non-pipelined architecture with k = 3. In this figure, the words with
the grey background are loaded in the odd clock cycles and the words
with the white background in the even clock cycles.



104

Figure 6.4: Example reading pattern for BLAKE-256 and k = 3.

Similar, for k = 2, the different read and write patterns for the first half
of the round function and the second half remove the possibility to merge
any of the four individual words needed to compute each Gi function into
a RAM that is wider than a 32 bit word. Therefore, the words 0, 1, 2, 3

can only be stored in one RAM together, 4, 5, 6, 7 in the second RAM
and so on.

• For k = 4, the RAM organization is simply 16× (512/16) = 16× 32 and
thus, one single RAM can be used, because each word of the state can be
addressed individually. Architectures using this memory organization are
called fully serialized.

In addition to the state memory, every BLAKE implementation has to
provide memory to store the chaining value h, which is needed to correctly
compute BLAKE’s compression function. This amounts to additional 256 bits.
Similar to the previous three cases for the internal state, the memory for the
chaining value has several possible implementations:

• For k ∈ {0, 1}, a 1× 256 bit memory is necessary, because it is impossible
to find a scheduling of read and write operations for single-port RAMs
for k = 1 that achieves an optimal architecture according to Def. 5.2.

• For k = 2, two 2× 64 bit RAMs can be used. An example organization
groups the two pairs (h0, h2), (h1, h3) in two memory locations of one

Figure 6.5: Grouping of the words hi for k = 2.



105

RAM, and (h5, h7), (h4, h6) in the other (Fig. 6.5). This facilitates the
parallel computation of the new intermediate state h, i.e. in one clock
cycles the words h0, h2, h5, and h7 are updated and in another clock cycle
the other four words. With this organization, it is also possible to read
the input to the first round in two consecutive clock cycles, i.e. the pairs
(h0, h4), (h1, h5), and the other two pairs in the two following clock cycles.

• For k = 3, a similar approach as for k = 2 may be adapted with two
4 × 32 bit RAMs. This is for example possible, if h0, h1, h2, and h3 are
stored in the first RAM and h4, h5, h6, and h7 in the second.

• For k = 4, the memory may be organized as a 8× 32 bit RAM, because
at most one 32 bit word is accessed per clock cycle.

A third important memory consumer is the input message block of 512 bit.
This message block has to be stored until the computation of the compression
function is completed, because the message injection happens during the round
computation. In principle, the message may be stored in a RAM and accessed
depending on the round function architecture. Unfortunately, multiple read
ports are needed to use RAM resources, because the reading patterns for the
message injection are not regular. The usage of such RAMs is ruled out by
the earlier general design assumptions (Sec. 6.4), and hence, all architectures
except the fully serialized ones use registers to store the message.

Another memory consumer is the counter t, which needs 64 additional
bits and may be implemented either as a 64 bit register, or a 2 × 32 RAM.
Hence, for the complete BCM there is a lower bound for the memory size of
SIZEmem(C) ≥ 1344.

A practical implementation needs additional read-only memories (ROMs),
which store the constants (256 bit) and the initialization values (512 bit).
According to the definition of the SIZEmem(C) complexity measure, constants
are not part of the memory estimate. However, they would be of course part of
the total size complexity measure.

Clock Cycles Estimation Similar to the memory architectures, all inves-
tigated architectures for the round function are related to each other. Two
different aspects are important for serialized architectures:



106

• Serialization of the Gi function. The degree of serialization by this method
is expressed in the parameter α.

• Serialization of the round function, i.e. the scheduling of the different Gi

instances of the function family. The degree of serialization achieved this
way is expressed in the parameter β.

Both architectural aspects have cross-dependencies to the state organization,
especially to the total width of the state RAM. In particular, some combinations
are not efficiently implementable, i.e. the total width of the RAM has to
correspond to the data path width of the round function architecture to
be efficient. Hence, the serialization metric γ1 according to Def. 5.1, can be
calculated as follows for all discussed architectures, where d is the data path
width, b is the state size and α and β describe the serialization options from
above:

γ =
d

b
αβ

Using this serialization metric, the number of clock cycles to compute the round
function fulfills the bounds from Lemma 5.3 and Corollary 5.4 for all discussed
architectures. Hence, the number of clock cycles to compute the compression
function is calculated as follows, where γ is the serialization metric, and d is
the data path width. The state size is assumed to be 512 and the number of
rounds to be 14.

cyccompress(s, d) ≥ s× 512× 14

d
,

cyccompress(s, d) <
s× 512× (14 + 1)

d
.

Architectures for Gi The Gi function can be implemented in one clock
cycle (Fig. 6.6) or serialized in several steps. One or several parts of Gi are then
computed in a different clock cycle. The first option is to divide the computation
of the Gi function in two parts. The computation of the shared implementation
of the first and second part according to Alg. 6.5 uses the additional parameter

1Renamed from s to γ to avoid name clashes



107

Algorithm 6.5 BLAKE Gi function family with α = 2

Require: a, b, c, d ∈ Z32
2 , r ∈ Z10, σr : Z16 → Z16, m = m0|| · · · ||m15, with mi ∈ Z32

2 ,

and j ∈ Z2

Ensure: (a, b, c, d)← Gi(a, b, c, d, r,m, j)

if j = 0 then

sel0 ← 2i, sel1 ← 2i+ 1

rot0 ← 16, rot1 ← 12

else

sel0 ← 2i+ 1, sel1 ← 2i

rot0 ← 8, rot1 ← 7

end if

a← a+ b+ (mσr(sel0) ⊕ cσr(sel1))
d← (d⊕ a)� rot0

c← (c+ d)

b← (b⊕ c)� rot1

return (a, b, c, d)

j, such that it is possible to select between the rotation constants, and also the
inputs to the permutations σr.

Further serialization of the round function is also possible. In particular, the
serialization factors α ∈ {1, 2, 4, 8} can be implemented, i.e. the Gi function is
computed in one clock cycle (α = 1) or serialized in 2, 4, or 8 clock cycles.

The scheduling of the individual operations of each step in a Gi function
is more complicated for α ∈ {4, 8} compared to α ∈ {1, 2}. For example, a
possible, but simplified scheduling for α = 4 is depicted in Fig. 6.7. In this
architecture, the intra-round dependencies of the variable b force the developer
to add a minimum overhead of one clock cycle. Furthermore, at least two
additional 32 bit registers are needed to store the intermediate values of a in

Figure 6.6: Illustration of the BLAKE Gi function.



108

the first clock cycle and b and d in the second clock cycle (64 bit in total). The
register storing a in the first clock cycle may be reused in the second clock
cycle to store either b or d.

For α = 8, there is at least an overhead of one clock cycle, because of the
intra-round dependencies of b. Furthermore, the value of b has to be stored (32

bit memory) for three clock cycles and since the first addition operation may
not be computed before loading both a and b, one additional 32 bit register
is necessary to temporarily store a. This amounts to 64 extra memory bits
(Fig. 6.8).

Interestingly, it is possible for α = 8 to create a shared implementation
of the addition and the XOR operation in FPGA implementations for Xilinx
devices, by explicitly instantiating the multiplexers in the carry chains. This
makes it possible to deactivate the carry chain and thus to implement the XOR
operation with the same hardware resources as the addition [BOY10].

As already mentioned, the serialization of the Gi function has dependencies
with the state RAM width and the data path width, i.e. since not all inputs of
Gi are processed in parallel for α ∈ {4, 8}, the data path width shrinks and
thus, also the state RAM width has to be reduced for an efficient architecture
by a factor of two or four, respectively.

Round Function Architectures It is also possible to serialize BLAKE’s
round function by scheduling the individual Gi functions in different ways, e.g.
to compute all in one clock cycle or to divide the computation in several clock
cycles. This general principle can be repeatedly applied. Overall, there are four
options β ∈ {1, 2, 4, 8}, i.e. either all eight Gi functions are processed in one
clock cycle, or alternatively in two, four or eight clock cycles. Furthermore, it is

Clock
Input . . . Load a Load b,d Load c,a′ Load b′,d′ Load c′ . . .

. . . a← a+ b c← c+ d a′ ← a′ + b′ c′ ← c′ + d′ . . .

. . . d← a⊕ d b← b⊕ c d′ ← a′ ⊕ d′ b′ ← b′ ⊕ c′ . . .

. . . d← d� 16 b← b� 12 d′ ← d′ � 16 b′ ← b′ � 12 . . .

Output . . . Store a,d Store b,c Store a′,d′ Store b′,c′

Figure 6.7: Simplified timing for the Gi function (α = 4).



109

Clock
Input . . . Load a Load b Load d Load c . . .

Stage 1 . . . a← a+ b d← a⊕ d c← c+ d b← b⊕ c . . .

Stage 2 . . . d← d� 16 U b← b� 12 . . .

Output . . . Store a Store d Store c Store b

Figure 6.8: Simplified timing for the Gi function (α = 8).

sometimes necessary to change the order of the computation of the Gi functions
to facilitate more efficient pipeline architectures, e.g. for implementations with
a 32 bits wide data path [BOY10].

Similar to the serialization of the Gi function family, the scheduling of the
individual Gi instances has dependencies to the data path width and the state
RAM width. For example, it is impossible to compute all Gi functions in one
clock cycle, if the width of the state RAM is too narrow. If such a non-optimal
architecture is implemented, it is impossible to achieve a clock cycle optimal
implementation and thus, the resulting implementation would be inefficient.

6.5.3 Detailed Analysis

The following detailed analysis fits the previous analysis together for each
investigated variant. In particular, many variants are described, where the
memory organization works well together with the two serialization options
described in the previous subsection. However, the details may differ slightly
due to the analyzed pipelining depth.

Parallel Architecture (k = 0) An architecture with k = 0 reads the
complete state in parallel, i.e. d = 29−0. This leads to a computation where
at least the functions G0, . . . , G3 are computed in parallel. Furthermore, it is
possible to compute G4, . . . , G7 in the same clock cycle (β = 1) or in the next
clock cycle (β = 2).

The first option schedules all Gi functions in the same clock cycle (β = 1).
This design option may only be combined with α = 1, i.e. a fully parallel
implementation of each Gi function, because a serialization of Gi introduces
additional intra-round dependencies between the first four G0, . . . , G3 functions



110

Clock
Input . . . Load a,b,d Load a′,b′,c,d′ Load a,b,c′,d Load a′,b′,c,d′ Load c′ . . .

. . . a← a+ b a′ ← a′ + b′ a← a+ b a′ ← a′ + b′ . . .

Stage 1 . . . d← a⊕ d d′ ← a′ ⊕ d′ d← a⊕ d d′ ← a′ ⊕ d′ . . .

. . . d← d� 16 d′ ← d′ � 16 d← d� 8 d′ ← d′ � 8 . . .

. . . c← c+ d c′ ← c′ + d′ c← c+ d c′ ← c′ + d′ . . .

Stage 2 . . . b← b⊕ c b′ ← b′ ⊕ c′ b← b⊕ c b′ ← b′ ⊕ c′ . . .

. . . b← b� 12 b′ ← b′ � 12 b← b� 7 b′ ← b′ � 7 . . .

Output . . . Store a,d Store a′,b,c,d′ Store a,b′,c′,d Store a′,b,c,d′ Store b′,c′

Figure 6.9: Simplified timing for the pipelined Gi function (α = 2, β = 4).

and G4, . . . , G7. These dependencies cannot be fulfilled in the same clock cycle
with β = 1 and hence, the architecture cannot work.

For β = 2, the useful Gi serialization options are α ∈ {1, 2}, i.e. either
computing each Gi function in one clock cycle or splitting it in two clock cycles.
Both options together lead to a total serialization factor of s ∈ {1, 2, 4}, because
the data path is always 512 bit wide.

The minimum memory requirements apply for all BCMs C implementing
one of the discussed architectures. Therefore SIZEmem(C) ≥ 1344.

Intermediate Serialized Architecture 1 (k = 1) For k = 1, the data
path width is reduced from 512 bit to d = 29−1 = 256 bits. Therefore, only
one quarter of the round function can be computed in one clock cycle and at
least four clock cycles are necessary to compute the complete round function
(β = 4, α = 1). Other architectures need at least the double amount of clock

Clock
Input . . . Load v3,v4,v11,v14 Load v1,v6,v9,v12 Load v0,v4,v11,v12 Load v2,v6,v8,v14 . . .

. . . Load v0,v5,v8,v15 Load v2,v7,v10,v13 Load v1,v5,v8,v13 Load v3,v7,v9,v15 . . .

Output . . . Store v3,v6,v11,v14 Store v1,v4,v9,v12 Store v0,v6,v11,v12 Store v2,v4,v8,v14

. . . Store v0,v7,v8,v15 Store v2,v5,v10,v13 Store v1,v7,v8,v13 Store v3,v5,v9,v15

Figure 6.10: Reordered scheduling of the Gi functions (α = 2, β = 4). Transition
from (G5, G6) to (G0, G1)



111

cycles, because an architecture with β = 2 may only implement a Gi architecture
with α = 4 and the second possibility for β = 4 is α = 2. There are several
advantages of (β = 4, α = 2) over (β = 2, α = 4), therefore only the first of the
two options is investigated further. For example, it is easy to add a pipeline
step to the first architecture.

The best way to approach an efficient implementation is to implement two
Gi functions, i.e. β = 4. This architectural decision can be combined with an
implementation of the Gi function which takes one (α = 1 ) or two clock cycles
(α = 2). For α = 2, it is additionally possible to add a pipelining stage (Fig. 6.9)
and thus, this architecture is in most cases superior to its larger sibling.

Two minor change is required for the pipelined version. It needs a reordering
of the Gi functions to work without pipeline stalls. An example schedule
is (G0,G1),(G2,G3),(G7,G4), and (G5,G6), with interleaved computation of
(G0,G1),(G2,G3) and (G7,G4),(G5,G6), respectively. Fig. 6.10 exemplary depicts
the transition from (G5,G6) to (G0,G1). The other transition may be easily
checked in a similar way. Also the memory organization changes slightly for
the pipelined version compared to the one presented above.

The lower bound estimate for a BCM Cnon−pipelined on the memory size
of both non-pipelined versions is the same as for k = 0, i.e. SIZEmem(C) ≥
1344. The pipelined version Cpipelined adds the pipeline registers and thus
SIZEmem(Cpipelined) ≥ 1600.

Clock
Input . . . Load a0,b0 Load a1,b1,d0 Load a2,b2,c0,d1 Load a3,b3,c1,d2 Load c2, d3 Load c3 . . .

Stage 1 . . . a0 ← a0 + b0 a1 ← a1 + b1 a2 ← a2 + b2 a3 ← a3 + b3 . . .

Stage 2 . . . d0 ← a0 ⊕ d0 d1 ← a1 ⊕ d1 d2 ← a2 ⊕ d2 d3 ← a3 ⊕ d3 . . .

. . . d0 ← d0 � 16 d1 ← d1 � 16 d2 ← d2 � 16 d3 ← d3 � 16 . . .

Stage 3 . . . c0 ← c0 + d0 c1 ← c1 + d1 c2 ← c2 + d2 c3 ← c3 + d3 . . .

Stage 4 . . . b0 ← b0 ⊕ c0 b1 ← b1 ⊕ c1 b2 ← b2 ⊕ c2 . . .

. . . b0 ← b0 � 12 b1 ← b1 � 12 b2 ← b2 � 12 . . .

Output . . . Store a0 Store a1,d0 Store a2,c0,d1 Store a3,b0,c1,d2 Store b1,c2,d3 . . .

Figure 6.11: Simplified timing for the pipelined Gi function (α = 2, β = 8).



112

Intermediate Serialized Architecture 2 (k = 2) The next smaller archi-
tecture narrows the data path down to 128 bits. This leads in principle to
three general round function architectures, i.e. β ∈ {2, 4, 8}. Each architecture
corresponds to a limited number of options for the implementation of Gi. Using
β = 2 and α = 8 four identical serialized implementations of Gi are used in
parallel. In a similar fashion β = 4 and α = 4 leads to two identical instances
of Gi.

For the third choice (β = 8), there are two possibilities for the Gi implemen-
tation (α = 1 or α = 2). Both options are the most interesting choices and the
only ones that are further analyzed, because the other options have similar or
worse trade-offs compared to this case.

For both choices of α, the second option (α = 2) is often the better variant.
First, the clock frequency is higher due to the serialized Gi function and second,
an implementation is smaller. In addition a shallow pipeline may improve the
clock frequency further and hence, the throughput may be higher than for
α = 1 with less area consumption (Fig. 6.11). The pipelined architecture loads
four 32 bit inputs for three different Gi instances per clock cycle and produces
four outputs for four different Gi instances. Hence, the processing of a complete
Gi function stretches over four clock cycles.

Similar to the pipelining for k = 1, the Gi functions have to be reordered
for a stall free implementation (G0,G1,G2,G3,G7,G4,G5,G6). This change may
be checked to yield a scheduling without stalls similar to the previous case.

The memory requirement of the non-pipelined architecture is identical to
the previous cases, i.e. SIZEmem(Cnon−pipelined) ≥ 1344. The pipelined version
needs more memory. In particular, each additional pipeline stage adds 128

bits of registers. This amounts to SIZEmem(Cpipelined) ≥ 1600 for the described
pipelined implementation.

Intermediate Serialized Architecture 3 (k = 3) For k = 3, the data
path width is reduced to 64 bit. This data path width leads to only two possible
architectures, i.e. β = 4, α = 8 (two Gi function instances) and β = 8, α = 4

(one Gi function). Only the option with β = 8 and α = 4 is analyzed, because
it is possible to easily pipeline this architecture, which is in many cases a big
advantage. The general architecture for the Gi function follows Fig. 6.7.



113

One pipeline stage may be easily added, if the Gi functions are computed in
an interleaved fashion and are reordered. This means in this case swapping the
computation of G6 and G7. It is possible to check the correctness similar to
the reordering for the other architectures.

For the non-pipelined architecture, at least two 32 bit registers have to
be used in the round function according to the analysis in addition to the
minimum memory requirements. The first 32 bit register is used to buffer the
value of the input value for a and the second one to buffer the input value for
b (Fig. 6.7). In total, the BCM Cnon−pipelined to implement the non-pipelined
architecture has a memory lower bound of SIZEmem(Cnon−pipelined) ≥ 1408.
Each pipeline stage adds 64 bits, i.e. the described pipelined version takes
SIZEmem(Cpipelined) ≥ 1472.

Fully Serialized Architecture (k = 4) For k = 4, the only possible choice
is β = 8 and α = 8, because it is impossible to implement other variants without
pipeline stalls. The architecture follows Fig. 6.8 and thus, has a pipeline depth
of at least 2.

For this approach, one 32 bit register is necessary to cache the second
operand of each operation and a register to store the variable b temporarily for
3 clock cycles. This amounts to 64 bits of memory in addition to the minimum
requirements for all architectures. Therefore, the amount of memory for a BCM
C implementing this architecture has the lower bound SIZEmem(C) ≥ 1408.

6.5.4 Evaluation Summary

The analysis is summed up in Tab. 6.6. First the data path width is described
with the parameter d = 29−k, the next two columns present the interesting
architectures from the detailed discussion above in terms of α and β. The
serialization metric γ is in turn the metric measuring the serialization, which is
independent of the data path width reduction. This is especially interesting,
because it determines together with the data path width the number of clock
cycles necessary to compute the complete compression function.

The next column describes the minimum memory requirements for the
particular variant. Then the pipeline depth which was analyzed is shown.
Note that in the minimum memory requirements, pipeline registers are always



114

included. The following three columns describe key performance indicators for
the throughput, i.e. the number of clock cycles, the minimum overhead, which
is in all cases optimal according to Def. 5.2, and the theoretical throughput
for 100 MHz. The last information is particular relevant for architectures that
have to achieve a certain throughput at a fixed clock frequency. However, this
last indicator gives only a very rough estimate on the maximum throughput,
because usually serialized and pipelined architectures reach a higher clock
frequency than their parallel counterparts and thus, this comparison is only
valid, if the clock frequency is fixed. For BLAKE, the theoretical throughput of
the compression function does not differ considerably between short and long
messages.

There are a few more options, for example it would be possible to relax
the requirement, that in each clock cycle new data from the state RAM is
read. Then other configurations are possible, because one can read an input
value twice, e.g. the variable b in the Gi function or the message and constant
injection can be scheduled in a separate clock cycle. The latter idea leads to
architectures similar to the one proposed by Beuchat et al. which needs 80

clock cycles for the round function and thus 1120 clock cycles for the complete

Table 6.6: Summary of BLAKE-256 analysis

Data Path Analyzed Long Message
d = 29−k Memory ROM Pipeline Clock Throughput @

[Bits] α β γ [Bits] [Bits] Depth Cycles Overhead 100 MHz [MBits/s]

512 1 1 1 1344 768 1 14 0 3657

512 1 2 2 1344 768 1 28 0 1828

512 2 2 4 1344 768 1 56 0 914

256 1 4 2 1344 768 1 56 0 914

256 2 4 4 1344 768 1 112 0 457

256 2 4 4 1600 768 2 112 1 457

128 1 8 2 1344 768 1 112 0 457

128 2 8 4 1344 768 1 224 0 228

128 2 8 4 1600 768 4 224 3 228

64 4 8 4 1408 768 2 448 1 114

64 4 8 4 1472 768 3 448 2 114

32 8 8 4 1408 768 3 896 1 57



115

compression function plus some overhead [BOY10]. Note, that the original
architecture proposed by Beuchat et al. is based on an older BLAKE-256

specification with only 10 rounds and hence, takes only 800 clock cycles for the
compression function.

6.5.5 Implementation

Two architectures for BLAKE-256 were implemented and evaluated [Jun12].
From the previous discussion these are the architectures with the following
parameters:

• d = 256, α = 2, β = 4

• d = 128, α = 2, β = 8

Both implementations use the FSL-based interface described in Sec. 6.3.1.
Hence, a padding unit is included as specified.

As already mentioned, the first architecture uses two Gi instances, whereas
the latter uses only one copy of Gi. Each Gi function operates on 128 bit of
BLAKE’s 512 bit state. Both architectures are quite similar to each other,
therefore only the second architecture is described in detail.

The BLAKE-256 design uses some of the properties that were already ana-
lyzed in the previous section to achieve an area-efficient design with reasonable
throughput (Fig. 6.12):

• Implementing one half of a Gi-function as described above (The gray
dashed box).

• Pipelining of the Gi function, therefore adding the pipeline registers.

• Rescheduled order of the Gi functions to ensure, that the pipeline never
stalls.

All signals in Fig. 6.12 are 32 bit wide, except the signal from pad to t, which
is only 9 bit wide.

For most LUT-based FPGAs the additional registers do not require a lot
more area, because they can often be mapped together with the logic in the
same slice (Sec. 4.5.2). At the same time, the pipelined computation of the



116

Figure 6.12: BLAKE-256 architecture with α = 2, β = 8.

complete compression function only needs 4 additional clock cycles, while the
clock frequency will be higher. Thus, the throughput-area ratio increases.

Another important feature of the design is its usage of distributed RAMs
for the input message including double-buffering (m, 32× 32 bit), the round
constants (c, 16× 32 bit), the state (four 4× 32 bit RAMs) and the chaining
value used in by the finalization (8× 32 bit). The message length counter (t,
64 bit) is implemented with a 64 bit register.

The double-buffering of the message block is a possibility to improve the
throughput, by loading the next message block, while the current block is still
processed. Otherwise, the compression function would stall after the computa-
tion of one message block has finished, until the new message block has been
loaded.

The compression function in this implementation needs a moderate number
of clock cycles:

• In average, every Gi function evaluation takes 2 clock cycles and thus, to
compute a whole round 16 clock cycles are needed.

• The round function is executed 14 times.

• Continuing with the next execution of the compression function is only



117

possible 4 cycles later, due to the finalization after each compression
function invocation.

Thus, each computation of the compression function takes 228 clock cycles.
Despite the 4 cycles overhead for the finalization the implementation is still
within the theoretical optimal bounds for the compression function computation.

The second architecture (α = 2, β = 4) differs from the described implemen-
tation only in details:

• Two half Gi functions are used in parallel.

• The state and finalize RAMs have the duplicate number of outputs and
inputs. Therefore, the finalize RAM is implemented as a wide register as
discussed above.

• The finalization needs 3 clock cycles. Therefore, the overall amount of
clock cycles is 115.



118

6.6 Grøstl

The Grøstl hash function was developed by Gauravaram et al. and was one of
the five finalists of the SHA-3 competition [GKM+10]. For the third round of
the competition, there were some major changes to the algorithm, foremost, the
permutation Q was changed to differ substantially from P . Furthermore, the
constants added to the state in the AddRoundConstant function were changed.

The compression function of Grøstl is built from building blocks that are
very similar to the AES block cipher [DR99]. Furthermore, the hash function
uses a wide-pipe Merkle-Damgård construction as domain extender (Sec. 3.5.1).
The submission specifies two variants. The smaller one can be parameterized
to produce 224 or 256 bit hash digests, whereas the larger version may produce
384 or 512 bit digests. In the following sections, only the 256 bit option is
discussed. However, the differences are rather small beside the larger state.

6.6.1 Definition

The definite reference for Grøstl is its specification [GKM+10]. The presentation
of the definition in this thesis is slightly different to unify the style for all
discussed algorithms. It is also limited to the description of Grøstl-256, because
it is the only version analyzed in detail. However, the core ideas also apply to
the other versions.

Input and output mapping The byte order of the input messages and the
output digests are organized according to the NIST specification (Sec. 6.2). A
message M with |M | bits is thus defined as M =

∑|M|/8
i=1 Mi × 256|M |−i, where

each Mi ∈ Z8
2 is a byte. After the padding, the message is split into message

blocks of 64 bytes and since Grøstl’s state is usually represented as a 8 × 8

bytes matrix, the 64 bytes of a message block m ∈ (Z8
2)

64 are mapped to the
state h as follows:

h[i][j]← m[8i+ j]



119

The entries of h are defined to be interpreted as follows:

h =def



h[0][0] h[1][1] · · · h[6][1] h[7][1]

h[0][1] h[1][0] · · · h[6][0] h[7][0]

· · · · · · · · · · · · · · ·
h[0][6] h[1][6] · · · h[6][6] h[7][6]

h[0][7] h[1][7] · · · h[6][7] h[7][7]



Padding The input to the padding function pad is a message M ∈ Z≥02 . The
output is a padded message p with l|(|p|), i.e. the size |p| in bits is a multiple of
l bits. The submission of Grøstl-256 fixes l for the Grøstl-256 variant to l = 512.
Let k = (−|M | − 65) mod 512, then the padding function is defined as follows:

pad256(M) =def M ||1||0k|||M |64

Initialization Values For each variant, the specification fixes a set of initial
values. For the 256 bits variant, the initialization value is set to IV256 = 0503||1||08.
The state is initialized with this value before the first injection of a message
block.

Round Function The round function consists of two permutations P and
Q, which are computed independently. Each function consists of AddRound-
Constant, SubBytes, ShiftBytes and MixBytes. However, the constants added
in AddRoundConstant and the ShiftBytes permutation differ between P and
Q. For AddRoundConstant the constants for P are defined as follows, where i
is the current round number

CP (i) =def



00⊕ i 10⊕ i 20⊕ i 30⊕ i 40⊕ i 50⊕ i 60⊕ i 70⊕ i
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00





120

And for Q the constants are defined as follows:

CQ(i) =def



FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF⊕ i EF⊕ i DF⊕ i CF⊕ i BF⊕ i AF⊕ i 9F⊕ i 8F⊕ i


Beside the different constants, the AddRoundConstant transformation is just a
binary XOR of the constants CP (i), respectively CQ(i) with the state h ∈ Z512

2 :

AddRoundConstantP (h, i) : h← h⊕ CP (i)

AddRoundConstantQ(h, i) : h← h⊕ CQ(i)

The next transformation is SubBytes. It is based on the AES S-box, which
is defined as follows [DR99, RD02]. Let a ∈ F28 be an entry of the matrix
representation of the state hP or hQ, then the SubBytes transformation for a
is defined as follows:

SubBytes(a) :



a0

a1

a2

a3

a4

a5

a6

a7


←



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 1





a0

a1

a2

a3

a4

a5

a6

a7



−1

⊕



1

1

0

0

0

1

1

0


The subsequent ShiftBytes transformation rotates each row of the state matrix
by a different number of bytes. These rotation values differ between P and Q.
For P , ShiftBytes is defined as follows. Let h be a state matrix, i.e. h ∈ ((Z8

2)
8)8.

Then for all 0 ≤ i ≤ 7, and 0 ≤ j ≤ 7

ShiftBytesP (h) : h[i][j]← h[(i− j) mod 8][j]



121

For Q the transformation is defined for all 0 ≤ i ≤ 7, and 0 ≤ j ≤ 3:

ShiftBytesQ(h) :

h[i][j] ← h[(i− 2j − 1) mod 8][j]

h[i][j + 4] ← h[(i− 2j) mod 8][j]

The last transformation is MixBytes. This transformation performs a matrix
multiplication over the finite field F256 with the complete state.

MixBytes(h) : h←



02 02 03 04 05 03 05 07

07 02 02 03 04 05 03 05

05 07 02 02 03 04 05 03

03 05 07 02 02 03 04 05

05 03 05 07 02 02 03 04

04 05 03 05 07 02 02 03

03 04 05 03 05 07 02 02

02 03 04 05 03 05 07 02


× h.

The round permutations for P and Q are defined based on these four permuta-
tions. One round of P is computed according to Alg. 6.6. The round function
for Q is identical to the round function for P , except the usage of the Q variants
of AddRoundConstantQ and ShiftBytesQ.

Algorithm 6.6 Grøstl-256 P round function [GKM+10]
Require: h ∈ Z512

2 , i ∈ Z10

Ensure: h← roundP (h, i)

h← AddRoundConstantP (h, i)

h← SubBytes(h)

h← ShiftBytesP (h)

h← MixBytes(h)

return h

Compression Function The compression function uses both permutations
P and Q in parallel. However, the inputs to both permutations is different.
After processing ten rounds, the outputs of P and Q are combined. Let h be
the internal state m a message block, then the compression function is defined
according to Alg. 6.7.



122

Algorithm 6.7 Grøstl-256 compression function [GKM+10]
Require: h ∈ Z512

2 , m ∈ Z512
2

Ensure: h← compress(h,m)

-- Permutation P

hP ← h⊕m
for i = 0 to 9 do

hP ← roundP (hP , i)

end for

-- Permutation Q

hQ ← h

for i = 0 to 9 do

hQ ← roundQ(hQ, i)

end for

return hP ⊕ hQ ⊕ h

Iteration Mode The iteration mode is a modified wide-pipe Merkle-Damgård
design (Sec. 3.5.1). The final output is truncated from 512 to 256 bits for Grøstl-
256. Before the truncation, an additional output transformation Ω has to be
computed to thwart some length extension attacks. Thus, the iteration mode
of Grøstl is slightly different then the plain Merkle-Damgård design and hence,
it is separately described in Alg. 6.8.

Algorithm 6.8 Grøstl-256 iteration mode [GKM+10]

Require: M ∈ Z≥02

Ensure: h← Grøstl-256(M)

p← pad256(M)

h← IV256

for i = 0 to |p|/512− 1 do

h← compress(h, pi)

end for

-- Output transformation Ω

h′ ← h

for i = 0 to 9 do

h← roundP (h, i)

end for

return bh′ ⊕ hc256



123

6.6.2 Systematic Evaluation Overview

State and Memory Organization The total state of Grøstl-256 amounts
to 1024 bits, equally shared between P and Q. There are several possible
memory organizations. The following three variants may be used, if the P and
Q are computed in parallel:

• A parallel implementation needs a 1× 1024 bit memory organization.

• A 8 × 128 bit organization is suitable for a serialized implementation,
where two columns are loaded per clock cycle, one column from hP and
the other from hQ. However, because of the ShiftBytes permutation, the
RAM has to be split into sixteen smaller 8× 8 bit RAMs, i.e. one RAM
for each row of the both states hP and hQ.

• For a byte-wise implementation a 64× 16 bit RAM is sufficient, i.e. one
byte from hP and one byte from hQ is loaded every clock cycle. However,
this basic organization has also to be split into two 64× 8 RAMs, because
of the different ShiftBytes rotations.

These three variants may be adapted for architectures that interleave the
computation of P and Q. Such implementation use a shared implementation
of the round function to compute P and Q in alternating clock cycles. The
general memory organizations differ from the parallel version insofar that the
memory depth is doubled and the width is halved. The details also change for
the serialized versions to eight 16 × 8 bit RAMs and one 128 × 8 bit RAM,
respectively.

Additionally a memory for the chaining value h has to provisioned, which is
organized either as a 512 bit wide register, a RAM with 8× 64 bits, or 64× 8

bits depending on the architecture. Hence, the total memory size of a BCM C

implementing Grøstl-256 in this fashion is at least SIZEmem(C) ≥ 1536.

In contrast to many of the other analyzed algorithms, the Grøstl-256 round
constants do not need any additional ROM, because they can be easily derived
from the current round number and a couple of NOT gates.

State Read and Write Schedule The x and y coordinates of the data that
has to be read from the states hP and hQ are used to derive the read addresses.



124

The write addresses are also derived in this way. However, it is not always
possible to directly use the coordinates, because unprocessed data could be
overwritten.

• For the two parallel versions, the scheduling is trivial. For the permutation
P the full state hP is read and written. The same applies for Q and its
state hQ.

• For the two column-wise serialized versions, the scheduling has to be
carefully designed, such that no data is overwritten.

For non-pipelined architectures, the write addresses in clock cycle n+ 1

are always identical to the read addresses in the previous clock cycle
n. However, a stall-free architecture has to implement the ShiftBytes
permutation by adjusting the read or the write addresses. As discussed, the
write addresses are the same as the read addresses one clock cycle earlier,
and thus, a round counter is required, which is used to derive different
read addresses in each round according to the ShiftBytes permutation.

If a pipeline with ideal depth is used, then the complete state is read
before the first write. Therefore, the ShiftBytes permutation may be
implemented by calculating appropriate write addresses and no further
adjustment is necessary. However, the inter-round data dependencies only
allow a stall-free pipeline for the P/Q-interleaved versions.

• The byte-wise serialized architectures solves the scheduling in a very
similar way then their larger column-wise siblings.

Clock Cycles Estimation The number of clock cycles for Grøstl-256 is
completely determined by the data path width, if no unrolling is used. All six
variants lead to a clock cycle optimal implementation according to Lemma 5.3
and Corollary 5.4. Hence, the number of clock cycles to compute the compression
function is bounded as follows, where d is the data path width, the state size is
assumed to be 1024 and the number of rounds is assumed to be 10:

cyccompress(d) ≥ 1024× 10

d
,

cyccompress(d) <
1024× (10 + 1)

d
.



125

Basic Round Function Architectures The round functions of P and Q
may be either computed in parallel, or in several serialized variants. The
first serialization option splits the computation per column, leading to the
computation of four, two or one columns in parallel. Since the basic architecture
is very similar for all variants, only the version, which processes one column at
a time is further analyzed. The second serialization possibility further splits
the column into bytes.

The three basic architectures correspond to the choices for the state RAM
organization described above. Together with the interleaved computation of P
and Q, this leads to a total of six architectures for Grøstl-256 that are further
analyzed.

6.6.3 Detailed Analysis

Parallel Architecture A parallel architecture for Grøstl-256 is a straight-
forward implementation of the specification. This architecture needs exactly 10

clock cycles to compute the compression function and after the last message
block is absorbed, additional 10 clock cycles for the post processing step.

Algorithm 6.9 Shared Grøstl-256 round function [GKM+10]

Require: h ∈ Z512
2 , 0 ≤ i ≤ 9, j ∈ Z2

Ensure: h← roundP (h, i, j)

if j = 0 then

h← AddRoundConstantP (h, i)

else

h← AddRoundConstantQ(h, i)

end if

h← SubBytes(h)

if j = 0 then

h← ShiftBytesP (h)

else

h← ShiftBytesQ(h)

end if

h← MixBytes(h)

return h



126

Clock
Input . . . Load hP Load hQ Load hP Load hQ . . .

. . . hP ← round(hP , 0, 0) hQ ← round(hQ, 0, 1) hP ← round(hP , 1, 0) hQ ← round(hQ, 1, 1) . . .

Output . . . Store hP Store hQ Store hP Store hQ

Figure 6.13: Simplified timing for the parallel interleaved implementation of
the Grøstl-256 compression function.

A variation of this architecture is to interleave the computation of P and Q,
such that the implementation may be shared (Alg. 6.9, Fig. 6.13). However,
the differences of the AddRoundConstant and ShiftBytes permutations make
it necessary to add several multiplexers to switch between the P and the Q
permutation. Hence, the area consumption for the round function does not
decrease proportionally.

The interleaved version can be improved by a shallow pipeline. Since there
are no data dependencies between P and Q, it is possible to apply the abstract
stall-free pipelining method described in Sec. 5.5 to detect the number of
possible pipeline stages. In particular, analyzing the schedule depicted in
Fig. 6.13, leads to one additional pipeline stage. Hence, the clock frequency
can be increased significantly and the throughput-area ratio of the interleaved
architecture may be better than the P/Q-parallel version. It is possible to hide
the implementation cost of the pipeline stage by using distributed RAM for the
SubBytes permutation. Then the pipeline stage is hidden in the read address
registers of the RAMs.

The minimum memory requirements apply for any BCM Cnon−pipelined

implementing one of the discussed non-pipelined architectures. Therefore
SIZEmem(Cnon−pipelined) ≥ 1536. The pipelined P/Q-interleaved architecture
adds one pipeline stage and hence, a BCM Cpipelined implementing it requires
SIZEmem(Cpipelined) ≥ 2048.

Column-wise Architecture From the different serialization options, two
are investigated more thoroughly. The first is the column-wise serialization,
which computes only one column per clock cycle. The second is a byte-wise
serialization which is discussed afterwards.

The column-wise serialization can be implemented by cutting the parallel



127

Figure 6.14: Grøstl-256 serialized architecture with implicit ShiftBytes for P .

implementation in eight parts and by scheduling each of these parts in a different
clock cycle. It is important to take the ShiftBytes permutation implicitly into
account by reading the eight bytes according to the shuffling by this permutation
(Fig. 6.14). Then each processed column has no intra-round dependencies with
any other column and thus, may be processed in one clock cycle.

For the column-wise serialization, interleaving P and Q works similar to
the parallel architecture and produces the same benefit. Since there are no
dependencies between P and Q, the method from Sec. 5.5 can be easily applied
again. In this particular instance, the result of the analysis is, that a maximum
of eight pipeline stages are possible. Hence, the maximum throughput of the
architecture is greatly increased.

A BCM Cnon−pipelined implementing the column-wise architecture can also be
implemented using the minimummemory requirements, i.e. SIZEmem(Cnon−pipelined) ≥
1536. The maximum pipelined version needs 64 memory bits for each pipeline
stage, i.e. SIZEmem(Cpipelined) ≥ 1984.

Byte-Wise Architecture The byte-wise serialization option takes the ap-
proach one step further by serializing the computation on a byte by byte level.
However, the MixBytes permutation now exhibits intra-round dependencies
between the individual bytes of a column, which have to be resolved. Therefore,
an overhead of seven additional clock cycles is always necessary to compute the
round function (Fig. 6.15). Furthermore, several additional memories are needed
to store the intermediate values. This amounts to 128 bits to store the values for
all eight bytes for both permutations. A fast and small stall-free implementation
additionally needs 128 bits, otherwise the MixBytes permutation can only be



128

computed when a complete column is loaded. However, the 128 bits are not
required.

The pipelining options for the byte-wise architecture are similar to the
previously described architectures. The default architecture for a parallel im-
plementation of P and Q already has the maximum pipeline depth, because
the last output hP [7][7] is stored in the same clock cycle, when it has to be
loaded again into an input register.

This restriction is relaxed and a deeply pipelined architecture is possible for
the variant with interleaved P and Q, because the computation of Q delays
the scheduling of the inputs for P for 64 clock cycles and vice versa. Therefore,
it is easily possible to implement a pipeline with up to 64 pipeline stages.

This architecture cannot be implemented within the minimum require-
ments, because some temporary memory is always necessary. Hence, a BCM
C implementing the P/Q-parallel version has SIZEmem(C) ≥ 1648, for the
P/Q-interleaved version it is SIZEmem(C) ≥ 1600, and for the deeply pipelined
version SIZEmem(C) ≥ 2040.

6.6.4 Evaluation Summary

The theoretical estimates are summed up in Tab. 6.7. The first column describes
the data path width d, followed by two columns showing the minimum RAM
and ROM requirements. The next attributes in the table describe the analyzed
pipeline depth, the minimum number of clock cycle and the overhead in clock
cycles. The second last column estimates the theoretical throughput for long
messages at 100 MHz and the last column shows roughly the theoretical

Clock
Input . . . Load a← hP [0][0] Load a← hP [1][1] . . . Load a← hP [7][7] . . .

. . . a← ARCP (a) a← ARCP (a) . . . a← ARCP (a) . . .

. . . a← S(a) a← S(a) . . . a← S(a) . . .

. . . a← MC(a, 0) a← MC(a, 1) . . . a← MC(a, 7) . . .

Output . . . Store hP [0][0]← a Store hP [0][1]← a

Figure 6.15: Simplified timing for the byte-wise serialized implementation of
the Grøstl-256 compression function.



129

throughput for short messages. This throughput is exactly one half of the long
messages throughput because of the finalization, which includes a complete
computation of the permutation P and thus is a significant burden for hashing
short messages. Both estimates are only useful, if the clock frequency is fixed
by external requirements, because similar to the other hash functions, the
maximum clock frequency typically increases with the serialization.

Table 6.7: Summary of Grøstl-256 analysis

Overhead Long Message Short Message
Data Path Memory ROM Pipeline Clock [Clock Throughput @ Throughput @

d [Bits] [Bits] [Bits] Depth Cycles Cycles] 100 MHz [MBits/s] 100 MHz [MBits/s]

1024 1536 0 1 10 0 5120 2560

512 1536 0 1 20 0 2560 1780

512 2048 0 2 20 1 2560 1780

128 1536 0 1 80 0 640 320

64 1536 0 1 160 0 320 160

64 1984 0 8 160 7 320 160

16 1648 0 8 648 7 80 40

8 1600 0 8 1288 7 40 20

8 2040 0 64 1288 63 40 20

6.6.5 S-box Optimization

The optimization of the S-box uses the composite field approach, which is
described in detail in Sec. A.5. It would be possible to use the implementation
of Canright directly [Can05a]. However, because of the technological differences
between ASICs and FPGAs and the fact that Canright only investigated ASIC
implementations, it is possible that different representation are better for some
FPGAs.

Based on the reasoning of Canright, the same 432 different representations
were analyzed. A generic VHDL template for the formulas for squaring, multi-
plication and inversion for polynomial and normal bases was developed and
then later instantiated for the selected polynomials and bases. For the concrete
S-box not only the inverse in F256 has to be calculated, but additionally an
affine transformation. This can be easily solved by multiplying the matrix
from the affine transformation with the conversion matrix and by adding a



130

few NOT gates for the additive part of the affine transformation. Exemplary
implementation results for the Spartan-3 FPGAs are listed in Appendix A.7.

6.6.6 Implementation

Only one implementation of the latest specification of Grøstl-256 was realized
[Jun12], because the midrange performance was targeted in this thesis for all
algorithms except Keccak and PHOTON. In particular, the implementation
follows the column-wise architecture, with a data path width d = 64 and
eight pipeline steps [Jun12]. This implementation uses the FSL-based interface
described in Sec. 6.3.1. Hence, a padding unit is included as specified in the
Grøstl specification.

In this implementation, the computation of the permutations P and Q are
serialized according to the previous analysis and hence, only one eighth of the
original round function is implemented for the computation of the compression
function (Fig. 6.16).

The implementation is based on several core ideas. Some of them have
already been addressed in the previous analysis:

• Usage of distributed RAM

• An implicit ShiftBytes permutation

• Pipelining of the round permutation

• S-box based on composite fields

• Reusing the implementation of P for the output transformation

Figure 6.16: Grøstl-256 serialized implementation.



131

• Input streaming to increase the throughput

A 16 × 64 bit distributed RAM stores the state of both permutations P
and Q. The RAM is organized in eight individual 16 × 8 bit RAMs, each
one representation a row of hP or hQ. This organization facilitates an implicit
implementation of the ShiftBytes transformation, by calculating appropriate
read addresses.

Both states can be integrated into a single RAM, because the reads and
writes alternate between P and Q. In each clock cycle a column from either
hP or from hQ is read, i.e. one byte from each row. Furthermore, a 8× 64 bit
RAM is needed to store the chaining value h of the iteration mode, which is
also organized in a row-wise fashion.

The next important concept is the pipelining of Grøstl’s round transforma-
tion, to achieve a higher maximum clock frequency. The maximum depth of
eight pipeline stages is implemented, according to the previous analysis. Since
the pipeline registers are mostly integrated in the same slices as the logic, the
area does not significantly increase for FPGA implementations.

Using the maximum pipeline depth has another benefit beside the improve-
ment of the clock frequency. The eight pipeline stages store the complete state in
the pipeline while processing. Hence. it is possible to overwrite RAM locations,
without taking care of data that is still to be read, because the last input is
read in the clock cycle before the first output is written to the memory. A
shorter pipeline would require, that the architecture stores the output at the
same memory locations where they were originally read. This would require
additional bookkeeping in the form of a counter, which would be used to derive
read and write addresses.

The S-box implementation is based on the composite field approach discussed
in Sec. 6.6.5 and described in detail in Sec. A.5. It is used to calculate the
output of the SubBytes permutation on-the-fly instead of using a lookup table.
In addition to the area saved by this implementation style, it is possible to
insert the pipeline registers in this S-box implementation more easily than in a
design based on lookup tables (Fig. 6.17).

Another question is how to implement the output transformation. The
easiest way is to reuse the implementation of the compression function. Since
the compression function is defined as compress(h,m) = P (h⊕m)⊕Q(m)⊕h,



132

Figure 6.17: Grøstl-256 pipelined serialized round function.

it is possible to set m = 0512 and to ignore the output of Q. The result is then
Ω(h,m) = P (h)⊕ h.

The implementation uses an streaming approach to load new message blocks
to achieve a higher throughput, i.e. each new message block is loaded asyn-
chronously using the FSL-based interface. This may also be done while the
computation of the previous block is still ongoing. Hence, if the user of the
hash function is able to transfer the data fast enough, then the absorption of
new message blocks incurs no additional overhead.

The performance of this implementation is optimal in the sense of Lemma 5.3
and Corollary 5.4, because only 160 clock cycles are needed for a complete
computation of the compression function. In particular, eight clock cycles are
needed for each round of P and Q and an overall of ten rounds are calculated.
Therefore, the processing of the compression function is finished after 160 clock
cycles.



133

6.7 JH

The JH hash function was also one of the five finalist of the SHA-3 competition
[Wu11]. The version for the final round was slightly modified. The main change
increased the number of rounds from 35.5 to 42 rounds to increase the security
margin and to slightly improve the efficiency of the last round for hardware
implementations. In the original specification the last round was not completely
computed, because the linear permutation, as well as the shuffling of bits does
not add security in the last round.

The JH algorithm is based on a compression function which has a structure
that is similar to the AES block cipher. However, the compression function itself
is a new design independent of AES. The iteration mode of JH is a wide-pipe
Merkle-Damgård construction (Sec. 3.5.1), but JH can be also seen as a variant
of the Matyas-Meyer-Oseas mode [MMO85].

6.7.1 Definition

The original definition of JH is provided in its specification [Wu11]. The variant
provided here is changed to achieve a common style for all analyzed algorithms.
As the other SHA-3 candidates, the JH specification provides variations of
the basic algorithm for the four different hash sizes 224, 256, 384 and 512. The
algorithm of the compression function is identical for all four variants, only
the final output is truncated to the desired bit length. The domain separation
between these algorithms is achieved by different initial values for this variant
will be presented.

Input and output mapping The byte order of the input messages and the
output digests are organized according to the NIST specification (Sec. 6.2).
Hence, a message M with length |M | is organized as follows:

M =def

|M|/256∑
i=1

Mi × 256|M |−i−1.

The message digest is also interpreted using this byte order.

However, this general interpretation of a message is reorganized internally,
because JH processes the bits in a different order after the padding. This



134

so called grouping is defined as follows. A message m ∈ Z1024
2 is grouped as

m′ ∈ Z1024
2 , such that for all i ∈ Z128

2 :

m′0+8i ← mi m′1+8i ← mi+2d

m′2+8i ← mi+2×2d m′3+8i ← mi+3×2d

m′4+8i ← mi+2d−1 m′5+8i ← mi+2d−1+2d

m′6+8i ← mi+2d−1+2×2d m′7+8i ← mi+2d−1+3×2d

The degrouping is defined to be the inverse mapping. In a strict sense, the
degrouping should be performed after each execution of the compression func-
tion, i.e. to compute the chaining value and the final hash value. However, the
internal state and thus also the chaining value can be always stored in the
grouped representation.

Padding The input to the padding function pad is a message M ∈ Z≥02 . The
output is a padded message p, such that |p| ≡ 0 mod 512, i.e. the size |p| in bits
is a multiple of 512 bits. For JH, the padding function is defined as follows,
where k = 384− 1 + (−|M |mod 512).

pad(M) =def M ||1||0k||(|M |128)

The padding is important for the security of JH, because it eliminates length
extension attacks for some applications like MACs. Unfortunately, the padding
has a significant negative impact on the performance of JH for short messages,
because at least one additional message block is appended. Therefore, for short
messages, the theoretical throughput is halved.

Initialization Values and Constants The initialization value h0 for the
state of JH-256 is calculated by setting the 16 most significants bit of h−1 to
the hexadecimal value 0100 and then calculating h0 = compress(h−1).

Furthermore, JH uses round constants which are additional inputs to the
round function and are used as the fifth input to the 5-to-4 S-box. The round
constants are generated using a smaller version of the JH round function. In
this smaller version the round constants are all set to 0.

The initial constant c0 for round 0 and the following constants ci for all
other rounds 1 ≤ i ≤ 41 are set as follows:

c0 =def 6a09e667f3bcc908b2fb1366ea957d3e



135

3adec17512775099da2f590b0667322a

cr =def round6(cr−1, 0)

Round Function The function roundd consists of three different permuta-
tions Sd, Ld, and Pd. Sd consists of 2d parallel 5-to-4 bit S-boxes, Ld is an eight
bit linear permutation and Pd is a permutation that shuffles 4 bit blocks of
the state. The parameter d determines the size of the state and the round
function and thus also of the individual permutations. The size of the state hd
is calculated as |hd| = 4× 2d. According to the JH specification, the parameter
d is set to d = 8 for all instances that have been submitted to the SHA-3
competition. Setting d = 8 for JH-256 implies that a second round function
with d = 6 is used to generate the round constants.

The S-box is defined according to Alg. 6.10 and 2d of these 5-to-4 S-boxes
form the S-box layer Sd of JH. Each of these identical S-boxes has 5 inputs and
4 outputs. However, only four of the five inputs are from the state h. The fifth
input is part of the round constant. Therefore, the S-box can also be viewed as
two independent S-boxes and that the fifth bit selects between both S-boxes.
Then both S-boxes are permutations.

The linear permutation Ld implements a maximum distance separable (MDS)

Algorithm 6.10 JH S-box [Wu11]
Require: h = Z4

2, and cr ∈ Z2, 0 ≤ r ≤ 13

Ensure: h← S(h, c)

if c = 0 then

h3 ← 1⊕ h3 ⊕ h2 ⊕ h2h1 ⊕ h3h2h1 ⊕ h3h2h0 ⊕ h3h1h0 ⊕ h2h1h0
h2 ← h3h2 ⊕ h2h1 ⊕ h3h0 ⊕ h2h0 ⊕ h1h0 ⊕ h3h2h1 ⊕ h2h1h0
h1 ← h2 ⊕ h3h2 ⊕ h1 ⊕ h2h0 ⊕ h2h1h0
h0 ← 1⊕ h3 ⊕ h2 ⊕ h0 ⊕ h3h1 ⊕ h2h0 ⊕ h3h2h1 ⊕ h2h1h0

else

h3 ← 1⊕ h3 ⊕ h2 ⊕ h3h1 ⊕ h2h1 ⊕ h3h2h0 ⊕ h3h1h0 ⊕ h2h1h0
h2 ← 1⊕ h3 ⊕ h1 ⊕ h3h0 ⊕ h2h0 ⊕ h1h0 ⊕ h3h2h1 ⊕ h2h1h0
h1 ← h3 ⊕ h2 ⊕ h1 ⊕ h0 ⊕ h3h2 ⊕ h3h1 ⊕ h3h2h1 ⊕ h3h2h0
h0 ← h3 ⊕ h0 ⊕ h3h1 ⊕ h2h0 ⊕ h3h2h1 ⊕ h3h2h0 ⊕ h2h1h0

end if

return h



136

Algorithm 6.11 JH linear transformation [Wu11]

Require: h ∈ Z4×2d
2

Ensure: h← Ld(h)

for i = 0 to 2d−1 do

a0 ← h[8i], a1 ← h[8i+ 1], a2 ← h[8i+ 2], a3 ← h[8i+ 3]

b0 ← h[8i+ 4], b1 ← h[8i+ 5] b2 ← h[8i+ 6], b3 ← h[8i+ 7]

d0 ← b0 ⊕ a1, d1 ← b1 ⊕ a2, d2 ← b2 ⊕ a3 ⊕ a0, d3 ← b3 ⊕ a0
c0 ← a0 ⊕ d1, c1 ← a1 ⊕ d2, c2 ← a2 ⊕ d3 ⊕ d0, c3 ← a3 ⊕ d0

h[8i]← c0, h[8i+ 1]← c1, h[8i+ 2]← c2, h[8i+ 3]← c3

h[8i+ 4]← d0, h[8i+ 5]← d1 h[8i+ 6]← d2, h[8i+ 7]← d3

end for

return h

Algorithm 6.12 JH permutation layer [Wu11]
Require: h0, . . . , h2d−1 ∈ Z4

2, where h = h0|| · · · ||h2d−1
Ensure: h← Pd(h)

for i = 0 to 2(d−2) − 1 do

h4i+0 ← h4i+0, h4i+1 ← h4i+1, h4i+2 ← h4i+3, h4i+3 ← h4i+2

end for

for i = 0 to 2(d−1) − 1 do

hi ← h2i, hi+2d−1 ← h2i+1

end for

return h

code. The specified algorithm works with the state h ∈ Z4×2d
2 , which is split

into 2d−1 pairs (a, b), where a, b ∈ Z4
2. Each element can be interpreted as a

polynomial of degree 3, e.g. a = a0x
3 + a1x

2 + a2x+ a3, where a0, . . . , a3 are
bits. Then the algorithm to compute Ld is defined by Alg. 6.11.

The permutation Pd is defined according to Alg. 6.12. Its original definition
is split into two parts πd and P ′d. Both steps are fused in Alg. 6.12.

Compression Function The function compress used by the JH variants
submitted to the SHA-3 competition sets the parameter to d = 8 and thus,
the round function round8 is used. In total round8 is computed 14 times. The



137

compression function additionally contains the message absorption, which
happens in two steps. First, a message block m of size 21024 bits is XORed to
the first half of the JH state before the 14 round computations and second the
message is also XORed to the second half. The complete compression function
is specified in Alg. 6.13.

Algorithm 6.13 JH compression function [Wu11]
Require: m ∈ Z512

2 , h′0, h′1 ∈ Z512
2 , such that h′ = h′0||h′1

Ensure: h← f(m,h′)

h← (h′0 ⊕m)||h′1
for i = 0 to 41 do

h← round8(h)

end for

h← h0||(h1 ⊕m)

return h

Iteration Mode The iteration mode is a standard wide-pipe Merkle-Damgård
design (Sec. 3.5.1). Thus, the output of the compression function is truncated
after the absorption of the last block of a padded message. However, due to the
special message absorption in the compression function and the padding rule
which appends at least one additional message block, JH provides additional
security properties beyond the basic collision resistance [Wu11].

6.7.2 Systematic Evaluation Overview

State and Memory Organization The memory storing the 1024 bit state
can be organized in eight different RAM patterns in the general form of
2k × (1024/2k) bits, where 0 ≤ k ≤ 7 However, because of the permutation layer
of JH, the RAM has to be split as follows:

• For k = 0, the implementation is a 1024 bit wide register, which can be
accessed in parallel.

• For 1 ≤ k ≤ 7, the RAM has to be split into two parts each with half of
the width, i.e. two 2k × (512/2k) RAMs. This splitting to achieve a stall
free architecture for the permutation layer P8. The state is distributed in
an alternating pattern over the RAMs, as shown in Fig. 6.18 for k = 2.



138

In addition to the state, it is necessary to add a smaller RAM instance (256

bit) to the architecture, which stores the round constants. This RAM is just a
smaller version of the state memory and thus, the same properties apply with
the only difference, that k′ is limited to 0 ≤ k′ ≤ 5. In particular k′ = 0 for
k ∈ {0, 1} and k′ = k − 2 for k ≥ 2.

Furthermore a 512 bit memory is needed to store the message, based on
the structure of the JH compression function. Therefore, the memory size of a
BCM C implementing JH is estimated to be at least SIZEmem(C) ≥ 1792.

An implementation has also to store the same amount of bits for the ini-
tialization values of the state and of the round constants in a ROM. The
organization is similar but slightly easier then the RAM organization.

State Read and Write Schedule The read and write schedule is dependent
on the permutation layer Pd of JH. An efficient way to successfully schedule the
read and write operations for 1 ≤ k ≤ 6 follows the simplified method depicted
in Fig. 6.18. Two RAMs store blocks of 512/2k bits in an alternating fashion.

However, because of the permutation layer, this pattern is reversed for the
second half, i.e. the RAMs are used in the inverted order. Otherwise, it would
be impossible to store the second part of the output and still get an optimal
architecture, because two blocks with different addresses would have to be
written to the same RAM. In the example in Fig. 6.18 this would be equal to

Figure 6.18: Example organization of the state and read and write operations
for the JH state and k = 2.



139

try to store new values to RAM[0][0] and RAM[0][2] in one clock cycle, which
is impossible, if the memory is not implemented as a register or as a RAM with
two write ports. The main drawback of this scheduling is, that a number of
multiplexers is necessary to switch the outputs of the RAMs for the second
half of the round function.

Furthermore, the read and write addresses change for each round as also
depicted in Fig. 6.18, such that no data is overwritten, before it was read. This
means, that the read addresses are used as write addresses one clock cycle later
and therefore, the read addresses for the next round have to be adjusted. In the
example of Fig. 6.18, the first values to be read are RAM[0][0] and RAM[1][0],
whereas in the second round the values would be RAM[0][0] and RAM[1][1].

An easier architecture may be implemented for the smallest variant with
k = 7, because the state memory can be split into two RAMs with 4 bit width,
were the first RAM stores the 4 bit parts of the state with even addresses, and
the other with odd addresses. Since only 4 bits are stored in each memory cell,
the scheduling of read and write operations becomes easier.

Clock Cycles Estimation The number of clock cycles is determined by the
data path width. However, since it is cheaper to compute the round constants
on the fly compared to storing all round constants, it is convenient to view
both RAMs as the state of JH for the clock cycle estimation. Hence, the data
path width also includes the generation of the constants.

If this assumption is made for the analysis, the estimates are optimal accord-
ing to Lemma 5.3 and Corollary 5.4. Therefore, the compression function of
JH may be computed in cyccompress(d) clock cycles, which is defined as follows.
The data path width d is the only variable, the state size is assumed to be 1280

bit, including the RAM for the round constants and the number of rounds is
assumed to be 42:

cyccompress(d) ≥ 1280× 42

d
,

cyccompress(d) <
1280× (42 + 1)

d
.

Round Function Architectures The round function architecture consists
of only two S-boxes and the linear permutation layer, which is replicated d/8



140

times. The simple permutation layer is conveniently handled by the state RAM
read and write addresses.

The input scheduling for the round Function has two different possibilities.
The first is a parallel computation of both the round function for the state
and the computation. The other one is an interleaved processing of state and
constants. For the interleaved variant, in the first four clock cycles the state is
processed and in the fifth the round constants are updated.

6.7.3 Detailed Analysis

Architecture 1 The first architecture processes JH’s internal state and the
round constants in parallel. There are in total six different options, processing
4× 28−k + 28−k bits per clock cycle, with 0 ≤ k ≤ 5. Smaller data path widths
cannot be easily used for a parallel processing approach, because the input for
processing the round constants would be less than eight bits. Hence, intra-round
dependencies of the linear permutation L8 would imply a more complicated
implementation with additional registers.

• Using k = 0 leads to a fully parallel implementation of the JH round
function.

• All other versions use a variant of the read and write scheduling already
discussed in Sec. 6.7.2. In relation to the parallel version with k = 0, the
number of clock cycles increases by a factor of 2k.

It is also possible to add several pipelining steps for k ≥ 2. For example,
Fig. 6.19 shows an abstraction of the possible pipeline stages for k = 2. The
corresponding loads and stores for the constants are omitted in this figure. The
permutation layer of JH shuffles the bits in such a way, that for these variants,
exactly 2k−1 pipeline stages are possible. However, since the logic depth of the
round function is already shallow, a deep pipelining does not improve the clock
frequency significantly.

The basic memory estimate for a BCM C implementation on of the discussed
non-pipelined holds, i.e. SIZEmem(C) ≥ 1792. The pipelining adds 2k bits for
every additional pipeline stage.



141

Clock
Input . . . Load h0||h1 Load h2||h3 Load h4||h5 Load h6||h7 Load h0||h1 Load h2||h3

Output . . . Store h0||h5 Store h4||h1 Store h2||h7 Store h6||h3

Figure 6.19: Scheduling of the I/O for a pipelined implementation of JH with
k = 2.

Architecture 2 The second architecture implements an interleaved process-
ing of the state and the round constants. Assuming the same state organization
as for the first architecture in principle, it is possible to compute 4× 28−k bits
per clock cycle for 2 ≤ k ≤ 7. The same architecture does not work efficiently
for k = 0 and k = 1, because the width of the round constants would be smaller
than the data path width. Hence, the round function would be under-utilized
when processing the round constants.

The interleaved scheduling of the round constants and the state works
as shown in Fig. 6.20 for k = 2. Since the round constants are used in the
processing of the state, it is necessary to first load d bits from the constants
and to store them into registers. The first computation of the round function
computes d bits of the round constants for the next rounds. Afterwards, these
d bits are stored to the constants RAM and the four corresponding d bits parts
of the state are processed next, before the next part of the constants RAM is
loaded and processed again. The original round constants have to be saved in a
register. Therefore, the memory consumption of a BCM C implementing one of
the variants is estimated to be at least SIZEmem(C) ≥ 1792 + d memory bits.

As can be seen from Fig. 6.20, the scheduling of the I/O of the state RAM is
almost identical to the first architecture with the same k, with the exception of
loading and storing the round constants c. This additional operation facilitates

Clock
Input . . . Load c Load h0||h1 Load h2||h3 Load h4||h5 Load h6||h7 Load c

Output . . . Store c Store h0||h5 Store h4||h1 Store h2||h7 Store h6||h3

Figure 6.20: Scheduling of the I/O for an interleaved non-pipelined implemen-
tation of JH with k = 2.



142

a pipeline depth that is slightly deeper than for the first architecture. For k = 2

this leads to three pipeline stages instead of only two. For k ≥ 3, the number
of pipeline stages can be generically expressed with the formula 2k−1 + 2k−3.
Each pipeline stage adds d bits to the memory estimate above.

6.7.4 Evaluation Summary

The theoretical results of the analysis are shown in Tab. 6.8. The table shows the
data path width d, the number of RAM and ROM bits necessary to implement
JH. Furthermore, the information regarding the throughput performance is
comprised of the number of maximum pipeline steps, the number of clock cycles
for one round, the offset for an implementation, the throughput for long and
short messages.

Table 6.8: Summary of JH-256 analysis

Analyzed Long Message Short Message
Data Path Memory ROM Pipeline Clock Throughput @ Throughput @

d [Bits] [Bits] [Bits] Depth Cycles Overhead 100 MHz [MBits/s] 100 MHz [MBits/s]

1280 1792 1280 1 42 0 1219 609.5

640 1792 1280 1 84 0 609.5 304.7

320 1792 1280 1 168 0 304.7 152.3

320 2112 1280 2 168 1 152.3 76.19

256 2048 1280 1 210 0 243.8 121.9

256 2560 1280 3 210 2 243.8 121.9

160 1792 1280 1 336 0 152.3 76.19

160 2272 1280 4 336 3 152.3 76.19

128 1920 1280 1 420 0 121.9 60.95

128 2432 1280 5 420 4 121.9 60.95

80 1792 1280 1 672 0 76.19 38.09

80 2352 1280 8 672 7 76.19 38.09

64 1856 1280 1 840 0 60.95 30.47

64 2432 1280 10 840 9 60.95 30.47

40 1792 1280 1 1344 0 38.09 19.04

40 2392 1280 16 1344 15 38.09 19.04

32 1824 1280 1 1680 0 30.47 15.23

32 2432 1280 20 1680 19 30.47 15.23

16 1808 1280 1 3360 0 15.23 7.619

16 2432 1280 40 3360 39 15.23 7.619

8 1800 1280 1 6720 0 7.619 3.809

8 2432 1280 80 6720 79 7.619 3.809



143

One variant which was not discussed is the possibility of unrolling the round
function. This could prove to be beneficial, because the round function itself
is small compared to other algorithms and the depth of it is rather shallow
[GHR+12a, GHR+12b].

6.7.5 Manual LUT6_2 Instantiation

All architectures can be improved by manually instantiating LUT6_2 macros to
efficiently implement the inner transformation for Xilinx devices that support
these primitives. Overall, this leads to eight LUT6_2 instances eight input bits.
Two S-boxes are needed for eight bits. Each S-box has five inputs and four
outputs. A LUT6_2 can be configured using five inputs and two outputs. Hence,
four LUT6_2s are needed to implement the two S-boxes.

For the linear transformation layer also four LUT6_2 are needed. This trans-
formation layer can be reorganized as follows:

d0 ← b0 ⊕ a1
c3 ← a3 ⊕ b0 ⊕ a1
d1 ← b1 ⊕ a2
c0 ← a0 ⊕ b1 ⊕ a2
d2 ← b2 ⊕ a3 ⊕ a0
c1 ← a1 ⊕ b2 ⊕ a3 ⊕ a0
d3 ← b3 ⊕ a0
c2 ← a2 ⊕ b3 ⊕ a0 ⊕ b0 ⊕ a1

Table 6.9: Instantiation of LUT6_2s for JH

LUT6_2 function name INIT values

S-box 1 11f931d973259ec8

S-box 2 493eb8b4f18ac2b9

Linear transformation 1 000000960000003C

Linear transformation 2 966969963C3C3C3C

Linear transformation 3 000069960000C33C

Linear transformation 4 000000960000003C



144

Now, it is easy to see, that by duplicating the logic for d0, . . . , d3 the opera-
tions of the linear transformation can be also fitted into four LUT6_2 instances.
The concrete values for the generic parameter INIT of the LUT6_2 macros are
provided in Tab. 6.9.

6.7.6 Implementation

Two implementations were developed [Jun12]. The first implementation is a
very compact implementation, which explores the easy serialization possibility
of JH. The second version is aiming at the midrange target just like most of the
other implementations of the SHA-3 finalists. Both variants use the FSL-based
I/O interface.

The first design uses the smallest analyzed data path width with only eight
bits (Fig. 6.21). The logic in JH’s round function is very small and shallow, thus
pipelining does not increase the clock frequency very much and was not further
pursued. Unfortunately, the high number of rounds of JH is the bottleneck of
this implementation, which reaches a very low throughput.

The design uses distributed RAM for the input, the internal state and the
round constants. An additional RAM stores the message after the message
injection for the second XOR after the completion of the round function.
Therefore, a new message block may be loaded, while the old message block is
still processed.

Following the earlier theoretical analysis, the round constants are computed
using the same implementation of the round function as the normal processing

Figure 6.21: JH-256 serialized implementation with d = 8.



145

Figure 6.22: JH-256 serialized implementation with d = 320.

of the state. This shared core of the JH architecture consists of two S-boxes
and one linear transformation. The JH permutation layer is easily realized by
writing to the state RAM according to the specification of the permutation as
discussed earlier in Sec. 6.7.2.

Beside the implementation of the round function and the compression func-
tion, the grouping and de-grouping is problematic. The bits of the input and
output have to be reordered and the two representations cannot be imple-
mented efficiently without many additional clock cycles and a distributed RAM
organization, which is less than optimal. Both functions are covered by the
input and the output RAMs, which therefore are larger than necessary for the
required capacity.

The first design needs at least 6720 clock cycles to compute the compression
function. The 128 bytes of the state and the 32 bytes constants lead to 160

clock cycles per round. Hence, the computation of all 42 rounds needs 6720

clock cycles.
The second design uses the option from the theoretical analysis with a data

path of 320 bit (Fig. 6.22). Hence, the number of clock cycles per round is
reduced by a factor of 40. Yet, the design stays reasonably small. Compared to
the previous version, the following changes were applied:

• The round function has to implement more S-boxes and linear transfor-
mations.

• The grouping of the input and the buffering stays practically the same.
However, they have to be adapted to use the wider data path.



146

• The degrouping of the final hash value is no longer required, because in
each clock cycle of the last round the 32 bit which are part of the hash
digest are included.

• The S-Boxes and linear transformations are implemented by manually
instantiating LUT6_2 instances to achieve a reasonable area consumption.



147

6.8 Keccak

The Keccak hash function is the winner of the SHA-3 competition [BDPA11b,
BDPA11a, CPB+12]. For the last round it was slightly modified, i.e. the padding
function was simplified and a so called diversifier parameter has been removed
[BDPA11b, BDPA11a]. Keccak is based on the sponge construction which is a
new way to construct hash functions [BDPA11c] (Sec. 3.5.3). The permutation
used by Keccak is also a new design.

6.8.1 Definition

The following definition only describes the permutation used by Keccak, and
references the earlier description of the sponge construction in Sec. 3.5.3. Since
Keccak is the only SHA-3 finalist under investigation that is later implemented
and evaluated in non-standard modes for lightweight and midrange applications,
the generic specification is presented here. The original specification can be
found in [BDPA11b] and the instances which are subject to standardization
are specified in [BDPA11a].

State Size and Representation The state of Keccak has a size of b =

25× 2l. It can be interpreted in a three-dimensional representation, i.e. with
coordinates (x, y, z), where x, y ∈ Z5 and z ∈ Z2l (Fig. 6.24).

Input and Output Mapping The interpretation of input and output bit
strings used by Keccak differs from the ordering defined in Def. 6.1. In
particular the bits of a byte are interpreted in the opposite direction. For
hardware implementations this reordering is practically free of any cost, however
if the padding function is also implemented in hardware, this at least results in
one additional bit shift, if the last byte contains less than eight bits.

The following definition maps a message in the generic format to the internal
representation of Keccak. Let M ∈ Z≥02 be a message in the representation
according to Def. 6.1, then the message may be converted to the message M ′

as follows:

M ′ ←
b |M|8 c−1∑

i=0

7∑
j=0

M [8i+ (7− j)]× 2|M |−(8i+j)−1



148

+

|M |mod8∑
k=0

M [(|M |mod 8)− k]× 2k

Furthermore, a message block m ∈ Zb2 is mapped to the internal three-
dimensional representation a as follows:

a[x][y][z] =def m[2l(x+ 5y) + z]

The mapping of the state to the output is performed by the inverse mapping.

Padding The multi-rate padding used by Keccak appends a string 10∗1,
such that the length of the padded message is a multiple of r. Formally, for a
message M ∈ Z≥02 and k = (−|M | − 2) mod r, the padding function is defined
as:

pad256(M) =def M ||1||0k||1

Initialization Values and Constants The initial state s of Keccak is
initialized to 0, i.e. s← 0b, where b is the state size.

The round constants are defined as follows:

RC[ir][0][0][2j − 1] =def rc[j + 7ir]

where the individual bits of the round constant are calculated with a linear
feedback shift register (LFSR):

rc[t] = (xt modx8 + x6 + x5 + x4 + 1) modx

Hence, the constants (64 bits) for each round are defined to be as follows
in the representation defined above. To simplify the notation the x and y

coordinates are omitted:

RC[0] =def 8000000000000000 RC[1] =def 4101000000000000

RC[2] =def 5101000000000001 RC[3] =def 0001000100000001

RC[4] =def D101000000000000 RC[5] =def 8000000100000000

RC[6] =def 8101000100000001 RC[7] =def 9001000000000001

RC[8] =def 4100000000000000 RC[9] =def 1100000000000000

RC[10] =def 9001000100000000 RC[11] =def 4000000100000000



149

RC[12] =def D101000100000000 RC[13] =def D100000000000001

RC[14] =def 9101000000000001 RC[15] =def C001000000000001

RC[16] =def 4001000000000001 RC[17] =def 0100000000000001

RC[18] =def 5001000000000000 RC[19] =def 5000000100000001

RC[20] =def 8101000100000001 RC[21] =def 0101000000000001

RC[22] =def 8000000100000000 RC[23] =def 1001000100000001

For l < 6, the round constants are truncated to 2l bits, i.e. only the 2l least
significant bits (left most bits) are used.

Algorithm 6.14 Keccak round function [BDPA11b].

Require: a ∈ Z5×5×2l
2 , 0 ≤ ir ≤ 12 + 2l

Ensure: a← round(a, ir)

for x = 0 to 4 and y = 0 to 4 and z = 0 to 2l − 1 do

θ : a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1]

end for

for x = 0 to 4 and y = 0 to 4 and z = 0 to 2l − 1 do
ρ : a[x][y][z]← a[x][y][z − (t+ 1)(t+ 2)/2], with t satisfying

0 ≤ t < 24 and

(
0 1

2 3

)t(
1

0

)
=

(
x

y

)
in F2×2

5 ,

or t = −1 if x = y = 0
end for

for x = 0 to 4 and y = 0 to 4 do

π : a[x][y]← a[x′][y′], with

(
x

y

)
=

(
0 1

2 3

)(
x′

y′

)
end for

for x = 0 to 4 do
χ : a[x]← a[x] + (a[x+ 1] + 1)a[x+ 2]

end for
ι : a[0][0]← a[0][0] + RC[ir]

return a



150

Round Function and Keccak Permutation The round function of Kec-

cak consists of five different functions, θ, ρ, π, χ, and ι, which are computed
consecutively in each round according to Alg. 6.14.

The five permutations have significantly different properties. The first trans-
formation θ is a linear function (Fig. 6.23a). Each output bit depends on 11

input bits. The next two functions ρ (Fig. 6.23b) and π (Fig. 6.23d) only shuffle
the bits, therefore each output bit depends only on exactly one input bit. The χ
permutation is the only non-linear function (Fig. 6.23c). To generate one output
bit, at least three input bits are needed. The last function ι only adds the
round constants to the lane with x = y = 0 and because the round constants
are realized with a simple ⊕-operation, each output bit has only a dependency
on one round constant bit and a state bit (Fig. 6.23e).

This round function is computed for a number of rounds nr, defined in terms
of the parameter l, i.e. nr depends on the state size, in particular nr = 12 + 2l.

(a) θ permutation (b) ρ permutation (c) χ permutation

(d) π permutation (e) ι permutation

Figure 6.23: The different Keccak sub-permutations.



151

The iterative computation of all nr rounds forms the permutation that is used
to instantiate the sponge function Keccak-f [b].

Iteration Mode The iteration mode used by Keccak is the sponge con-
struction which was already discussed in detail in Sec. 3.5.3. In particular,
Alg. 3.3 applies. In general, a sponge function is split into the absorption and
the squeezing phases and therefore, allows very interesting options for both
high throughput and lightweight design goals. The absorption phase processes
the input message, whereas the squeezing phase produces the output of the
function of possibly infinite length.

As mentioned previously in Sec. 3.5.3, a sponge function can be parameterized
by choosing b, c and r, with b = c + r. The parameter b describes the size of
the internal state and r is the so-called rate, i.e. the size of a single message
block. Then c determines the security of the instance of the sponge function. In
case of Keccak, the sponge function Keccak-f [b] is parameterized with the
values in Tab. 6.10 for the implementations. However, the analysis is performed
in a generic way, independent of the chosen parameters.

Table 6.10: Sponge parameters for Keccak-f [b]

Message digest State Size Capacity Rate r Rounds
n [bit] b [bit] c [bit] [bit]

128 200 128 72 18
160 200 160 40 18
128 400 128 272 20
128 400 256 144 20
160 400 160 240 20
160 400 320 80 20
224 400 224 176 20
256 400 256 144 20
256 800 256 544 22
256 800 512 288 22
256 1600 512 1088 24

6.8.2 Systematic Evaluation Overview

State and Memory Organization According to the systematic methodol-
ogy from Ch. 5, the state organization is investigated first. The state memory



152

and the computation may be split according to the different parts of the state
shown in Fig. 6.24, i.e. a bit-, column-, row-, lane-, plane-, sheet-, or slice-wise
processing is possible in addition to a parallel design. Beside the state RAM,
no additional memory is needed in general to implement Keccak. Therefore
the memory size of a BCM C implementing Keccak is estimated to be at
least SIZEmem(C) ≥ 25× 2l = b.

For each case, the state memory has to be organized in a different fashion:

• A parallel implementation uses a wide register with b bits and is the
easiest design for the state memory. The data path width is thus d = b.

• A bit-wise design may be implemented using a b×1 bit RAM organization.
The RAM can be used directly in this organization and no further splitting
or other reorganization has to be made, provided that appropriate read
and write addresses are calculated. The data path has the minimum
possible width d = 1.

• The lane-wise architecture can be realized with a 25× 2l bit RAM, and
hence d = 2l. Similar to the bit-wise organization, only the correct read
and write addresses have to be computed.

• The row- and column-wise organizations need five 5(2l)× 1 RAMs, i.e.
for the row-wise design, each sheet is stored in a single RAM and for the
column-wise design, each plane. For both designs the data path width is
d = 5.

• The sheet- and the plane-wise organizations have to use five 5 × 2l

memories, because of the π permutation and hence d = 5(2l).

Figure 6.24: Parts of Keccak’s state.



153

• The slice-wise design has several variants, starting with the computation
of only one slice per clock cycle up to 2l slices. Hence, depending on the
number of slices in the state, the organization changes slightly. Let p be
the number of slices processed in parallel, then the RAM needs to be
organized in 25 smaller RAMs with 2l/p× p bits. However, this still does
not work, because of the ρ permutation. Therefore, each RAM has again
to be split to facilitate the lane rotations. The width of these RAMs is
dependent on p and the rotation constants of ρ (Tab. 6.11). For example,
for x = y = 2 and p = 8, the RAM is split into a 2l × 3 bit and a 2l × 5

bit RAM. For the case p = 1, this generic split leads to the a special
variant, where one of the two RAMs disappears with zero bits to store.

Table 6.11: Rotation offsets for the ρ permutation of Keccak-[1600].

y x [0] [1] [2] [3] [4]

[0] 0 1 62 28 27

[1] 36 44 6 55 20

[2] 3 10 43 25 39

[3] 41 45 15 21 8

[4] 18 2 61 56 14

In addition to the state RAM, the round constants are usually stored in an
extra ROM with (1 + l)× nr bits. It is in general possible to compute these
constants on the fly using an LFSR. However, since only seven bits per 64 bit
lane have to be generated, the book-keeping for an on demand computation of
the LFSR output bits is in most cases not worth the effort.

State Read and Write Schedule The scheduling of read and write ad-
dresses differs considerably between the variants. For the parallel version it
is trivial. For all other architectures it is assumed that the round function
is rescheduled. Otherwise, it is either necessary to add a lot more memory
to the round function implementation or to store intermediate results in the
state RAM and hence, to use many more clock cycles to compute the round
function. Both consequences are due to the data dependencies of the π and the
θ permutations.



154

The original round function ri is defined for all rounds 0 ≤ i ≤ 23 as follows:

ri =def ι ◦ χ ◦ π ◦ ρ ◦ θ.

The rescheduled version can be expressed as follows, where i is the current
round number:

ri =def


π ◦ ρ ◦ θ if i = 0

π ◦ ρ ◦ θ ◦ ι ◦ χ if 1 ≤ i ≤ 23

ι ◦ χ if i = 24

The important property of the rescheduled version is, that the two permutations
π and ρ may now directly be used to derive the read and write addresses for
the state RAM. For comparison, the original version shuffles the bits internally
in the middle of the round function and thus, the complete state has to be
reordered before computing χ.

The read and write addresses can be calculated for each variant beside the
parallel version as follows:

• For the bit-wise architecture, it is possible to use the x and y components
according to the π permutation as write addresses to implement π. The
z component of the bit coordinate in the three-dimensional state has to
be solved differently, because otherwise parts of the state would be over-
written before they have been processed. Therefore, the old z component
is used, because then it is guaranteed that the old bit has already been
processed. Then when reading the inputs for the next round, the read
address is manipulated to correct the offset implied by ρ.

• The lane-wise architecture can be seen as a z-parallel version of the
bit-wise variant. Therefore, the identical analysis applies for the π per-
mutation. The handling of ρ is different, because complete lanes are
processed per clock cycle. Hence, the rotation can be implemented as a
barrel shifter before storing the lane and no data dependencies must be
handled between clock cycles.

• The row-wise organization requires a more complicated read and write
pattern, because the π permutation reorders rows to columns (Fig. 6.23d).



155

Furthermore, it has to be ensured, that no unprocessed data is overwritten.
Therefore, the old RAM locations are reused to write to the RAM and
the read addresses are corrected for the next read. To do that, a round
counter has to keep track of the current round. A feasible schedule for
the read addresses in terms of the x and y components of the first row
would be:

– (0, 0), (1, 0), (2, 0), (3, 0), (4, 0) for the first round,

– (0, 0), (1, 1), (2, 2), (3, 3), (4, 4) for the second round,

– (0, 0), (1, 2), (2, 4), (3, 1), (4, 3) for the third round and so on.

The z coordinate may be handled the same way as it was for the bit-wise
implementation.

• A column-wise design is very similar to the row-wise version regarding
the state. Therefore, the feasible scheduling of the read addresses in terms
of the x and y components for the first column is also similar:

– (0, 0), (0, 1), (0, 2), (0, 3), (0, 4) for the first round,

– (0, 0), (3, 1), (1, 2), (4, 3), (2, 4) for the second round,

– (0, 0), (1, 1), (2, 2), (3, 3), (4, 4) for the third round and so on.

The z coordinate is handled in the same way as for the bit- and row-wise
variants.

• The plane-wise architecture can be interpreted as a parallel version of
the row-wise architecture. Thus, the address scheduling which facilitates
the π permutation may be used exactly as for the column-wise version
and because complete lanes are processed, no special treatment of the ρ
permutation is needed.

• The sheet-wise design can be seen as a parallel extension of the column-
wise architecture. Hence, the address changes which facilitate the π

permutation have to be used exactly as for the column-wise version.
However, since complete lanes are processed, the rotations for the ρ
permutation can be implemented before storing a lane.



156

• The slice-wise processing has a trivial solution for the π permutation,
because π shuffles the bits in one slice, it is just a fix reordering of the
bits.

In contrast, the ρ permutation needs special consideration. For example,
the state organization may be split like described above. Then, the first
memory contains the most significant parts of the slices computed in
parallel and in the second part the least significant bits are stored.

The rotation for a lane i is then achieved by reading from address j
of the two RAMs RAMi[0][j],RAMi[1][j] in the first clock cycle, but
afterwards writing the results to RAMi[1][j],RAMi[0][j + 1]. For the
rotation constants which are greater than p, an additional round counter
is necessary, which adjusts the read addresses for further rounds.

Clock Cycles Estimation The second step of the methodology is to estimate
the number of clock cycles to compute the round and the compression function.
For Keccak, it is possible for each state organization to design it in a way,
that the number of clock cycles to compute the round function depends only
on the data path width for each variant of Keccak. However, since different
instances of Keccak have a varying number of rounds, the measure varies for
the compression function in terms of the number of rounds.

Another detail which has to be kept in mind is the rescheduled version of
the compression function. This different schedule leads to the computation of
one additional round and hence at least b/d additional clock cycles. Hence, the
number of clock cycles to compute the compression function is bounded as
follows, where nr is the number of rounds, d is the data path width, and b is
the state size:

cyccompress(b, d, nr) ≥
b× nr
d

,

cyccompress(b, d, nr) <
b× (nr + 2)

d
.

The upper bound is not strictly adhering to Lemma 5.3 and Corollary 5.4,
if the original number of rounds is the reference. However, it can be reasoned,
that the rescheduled version is a version of Keccak, which takes one more
round than the standard variant and then, the new version is also optimal in a
slightly wider sense.



157

6.8.3 Detailed Analysis

In general, only the χ (Fig. 6.23c) and the θ (Fig. 6.23a) permutations have
significant intra-round dependencies. Hence, they influence the detailed archi-
tectures significantly. The ι permutation is in all cases trivial to implement,
because it only adds a fixed constant to some bits with XOR (Fig. 6.23e). The
other two permutations π and ρ are easily addressed for most architectures as
read and write addresses to the state memory as shown in the previous analysis
or even simpler by a fixed routing or a barrel shifter.

Parallel Architecture The parallel approach is easy to implement. In each
clock cycle, the complete state is loaded and the round function is processed in
one step. Therefore, the number of clock cycles is optimal, i.e. the number of
clock cycles is

cyccompress(b, d, nr) = nr.

Thus the total memory required is only the state, i.e. the memory requirements
of a BCM C implementing the architecture are estimated to be SIZEmem(C) ≥ b.

Bit-wise Architecture The bit-wise approach can be designed either using
the standard round function or with the rescheduled variant. However, the first
version needs a very high amount of additional memory (about b bits) because
of the ρ permutation to be clock cycle optimal. Therefore, only the latter version
with the rescheduled round and compression function is analyzed in detail. For
the rescheduled variant, it is enough to analyze the round functions r1, . . . , r23,
where all five sub-permutations are computed, because the derivation of the
first and the last round can be easily implemented using additional multiplexers
that deactivate the parts not needed for these rounds.

The first step of the proposed architecture loads the bits in a row-first fashion.
With this approach, the first output of χ may be computed after the first three
input bits have been loaded. However, four inputs bits of each row have to
be buffered, because each output bit with x ∈ Z5 depends on two bits with
x′ = (x + 1) mod 5 and x′′ = (x + 2) mod 5 (Fig. 6.23c). The fifth input may
replace the third input in the clock cycle, when the third output is generated.
Therefore, not five but only four registers are strictly necessary.



158

It is somewhat more difficult to find a good design for θ, because at least
eleven input bits from two different slices are necessary to produce one output
bit (Fig. 6.23a). Therefore, because of the row-first strategy used to compute
χ, at least the complete output for one slice has to be stored and additional 21

bits of the consecutive slice. Then the dependencies for the first four bits are
met with x = 1, 0 ≤ y ≤ 4. These four bits are the white bits of the slice with
z = 1 in Fig. 6.25. After the 46th output bit of χ is computed, one output bit
of θ can be generated in each clock cycle.

The last two permutations π and ρ are implemented using the read and
write addresses calculated according to the previous discussion about the I/O
scheduling of the RAM (Fig. 6.23d, Fig. 6.23b).

The resulting straightforward implementation takes 2 + 25 + 21 = 48 clock
cycles to produce the first output with x = 1, y = 0, and z = 1. Two clock
cycles are due to the χ function, in the first 25 clock cycles parts of θ for the
first slice can be computed and then additional 21 clock cycles are needed until
the first output of θ is available.

One problem remains, which is the case z = 0. The output of θ for z = 0

cannot be computed before the computation of χ for z = 2l. Therefore, either
25 additional clock cycles per round are needed, or a shortcut to store two bits
per clock cycle in the last round, i.e. an extra memory for 25 bits is needed. The
latter option removes 25 clock cycles of the overhead again, thus the overhead
reduces from 48 to 23 clock cycles.

Another alternative is to start the second round with a different value for z
instead of z = 0, for example z = 46 mod 2l, the third with z = (2× 46) mod 2l

and so on. It is possible to use several different values for z in this case, as

Figure 6.25: Partial fulfillment of the dependencies of Keccak’s θ in the
bit-wise architecture for x = z = 1.



159

long as inter-round dependencies introduced by the ρ permutation are fulfilled.
Since ρ rotates lanes, this is the case for all slices that do not depend on an
output bit of z = 0.

The storage requirements for this strategy are as follows. For each row, at
least four bits have to be provisioned to store the inputs for χ. Additionally, for
a slice z = i, at least five bits are necessary to store the intermediate results of
the slice with z = i− 1 mod 2l to compute θ. Furthermore, at least 20 bits are
needed, because they have to be buffered until the first result may be computed
in the 21th clock cycle, and for z = 0, 25 bits have to be stored, because of the
inter-round dependencies between the slices with z = 0 and z = 2l. Together
with the state, this amounts to SIZEmem(C) ≥ b + 4 + 5 + 20 + 25 = b + 54

bits for a BCM C implementing this architecture.

To meet the estimate on the number of clock cycles from above, the shortcut
or the moving starting slice per round are used. The last approach has the
additional benefit, that it is possible to implement a very high number of
pipelining steps. However, the exact value depends heavily on the parameter l
and the chosen value for z and thus, the pipelining is not analyzed in detail.

Lane-wise Architecture The lane-wise architecture can be in parts seen
as an extension of the bit-wise architecture, processing the bits of a lane in
parallel instead of individual bits.

Therefore, similar to the bit-wise architecture a row-first strategy for χ is
used. That means, if a clock cycle of the processing of the compression function
is denoted as t, then in each clock cycle t ∈ N a lane is read with the coordinates
x ∈ Z5, y ∈ Z5, fulfilling the equation x + 5y = t − 25bt/25c. In the first two
clock cycles χ may not produce an output. However, afterwards in each cycle
the output for one lane may be generated. This strategy for computing χ only
works, if four lanes (4×2lbits) are buffered in registers, identical to the bit-wise
case.

A schedule for the operations of θ is more difficult, because after 25 clock
cycles, the output for the complete lane with x = y = 0 has to be available.
An elegant solution calculates the correct output lane on demand in the clock
cycle before it is used as an input value. For which lane the output has to be
computed is determined by the π permutation, because π shuffles the lanes and



160

creates the only inter-round dependencies for this architecture. The following
steps help to understand the general idea:

1. Most outputs of χ are computed and stored before the computation of θ
may produce the first output lane.

2. Evaluate the θ function iteratively according to the addresses calculated
to implement the π permutation, to fulfill the inter-round dependencies.

Analyzing a naïve implementation of this strategy shows that, only in the 27th
clock cycle, the dependencies to compute θ for the lane x = y = 0 are fulfilled.
Hence, this strategy does not work in an optimal way.

However, it is possible to reorder the computation of the outputs of χ in
such a way that the output for this lane can be computed two clock cycles
earlier. In particular, computing the outputs of χ with the x component in
the order 0, 1, 4, 2, 3 instead of 0, 1, 2, 3, 4 facilitates the computation for the
lane with x = y = 0 two clock cycles earlier and thus in the 25th clock cycle,
when the last input of a round i is supplied to χ, the output for x = y = 0 is
computed (Fig. 6.26). Furthermore, it guarantees, that it is possible to generate
the output in the order 0, 6, 12, 18, 24 in terms of the inputs of the round i

to fulfill all dependencies of π (Fig. 6.23d). And hence, the total overhead
of 24 additional clock cycles for the computation of the complete Keccak

compression function is within the theoretical optimal bounds. The downside
is, that instead of only four input lanes, all five lanes of a sheet have to be
stored, increasing the memory footprint slightly.

The first and the last round of the rescheduled version are somewhat special.
For the first round, the input is not directly supplied by the computation of χ
and ι, but loaded from the state RAM. And in the last round instead of storing

Figure 6.26: Reordering for the lane-wise Keccak architecture at work.



161

the intermediate results to compute θ, the results are stored directly to the
state RAM.

The memory overhead for this strategy is higher than for the bit-wise version.
For the basic implementation of χ, a memory to store five lanes is necessary,
i.e. 5× 2l bits. The results of χ then have to be stored in a memory of b bits
for the on-the-fly calculation of the θ outputs. For a BCM C implementing the
strategy, this means SIZEmem(C) ≥ 2b+ 5× 2l = 55× 2l bits.

Column-wise Architecture The lane-wise architecture, is also a paral-
lelized extension of the bit-wise version. This time, instead of lanes, columns
are loaded as inputs. Hence, the only option to compute χ is to load the
columns with the row-first strategy. This strategy has an overhead of two clock
cycles for the computation of χ and it is necessary to store four columns in
an intermediate memory. A correct implementation must additionally buffer
the output for the first column of the next slice. Additionally, for z = 0 the
output of χ for the slice has to be stored completely, because of the intra-round
dependency with z = 2l.

The θ permutation is computed next. It is split in two parts. First, the five
columns are summed up and each sum is stored. For the next slice, the same
process happens and additionally, the outputs for θ are processed in parallel. If
the x coordinate is traversed in an ascending order, the first output column has
the coordinates (z = 1, x = 1), followed by (z = 1, x = 2), (z = 1, x = 3) and so
on. For θ, only 6 additional bits for the column sums have to be stored, because
if the outputs for z = i are computed, each intermediate bit of z′ = i− 1 is only
used once (Fig. 6.23a). The outputs of θ are stored according to the previous
discussion.

The special case for z = 0 can be solved in the same way as for the bit-wise
implementation. Again a shortcut or the version with an increasing starting
value for z are two elegant solutions. The latter one allows a deep pipeline.
However, the exact pipeline depth is again not easily determined in a general
way. Another disadvantage of the solution using the shortcut is, that it needs
additional 25 bits to store a copy of the z = 0 slice, because otherwise parts of
this memory would be overwritten. In any case, the overhead to compute the
round function for this design consists of two clock cycles for χ and six clock



162

cycles until the first output of θ is available and thus in total is eight clock
cycles.

Overall, the column-wise design needs 25 bits for the χ permutation buffer
and additional 25 bits to store the intermediate values for z = 0. Furthermore, 6

bits for the intermediate column-sums to compute θ are necessary. Summed up,
a BCM C implementing Keccak using this strategy has memory requirements
of at least SIZEmem(C) ≥ 25× 2l + 56.

Row-wise Architecture The row-wise design is very similar to the column-
wise architecture. The most interesting difference is, that the χ function can
now be computed without any offset and without any temporary memory
requirements.

However, because of the very same feature, the θ function needs ten clock
cycles to compute the first output for y = 0 and z = 1. This means, the
architecture has an overhead of nine clock cycles.

Therefore, for one slice with z = i, five bits are necessary to buffer the
intermediate results for θ. Five bits are also needed for each consecutive slice
z = i+ 1 and additionally this same slice, 20 memory bits have to be used as
a buffer for four rows of the slice. The slice with z = 0 has to be also saved.
Overall, this amounts to 5+5+20+25 = 55 bits of intermediate memory and in
total a BCM C needs at least SIZEmem(C) ≥ 25×2l+55. The possible solutions
for the z = 0 case are practically the same as for the column-wise version,
including a very similar pipelining option. The shortcut needs additional 25

bits to store a intermediate values of the z = 0 slice.

Sheet-wise Architecture The sheet-wise organization can be interpreted
as a parallelization of the lane-wise design. Since complete lanes and complete
columns are loaded, the χ permutation has to store the complete state in an
intermediate RAM. Therefore, the memory requirements are high.

The θ permutation works similar to the lane-wise version. After the first five
clock cycles, the first sheet is already scheduled as an input again. Hence, the
output has to be available after the fifth clock cycle. Therefore, the corresponding
output lanes have to be computed on the fly corresponding to the shuffling by
the π permutation using another intermediate copy of the complete state. For a



163

working implementation, the computation of χ has to be reordered in the same
way as the lane-wise architecture, hence the outputs are computed in the order
0, 1, 4, 2, 3. The overhead is four clock cycles, and the memory requirements
for the intermediate storage are very high with 2 × 25 × 2l bits and in total
SIZEmem(C) ≥ 75× 2l.

It is also possible to implement a trade-off between the serialization of χ and
memory requirements, by computing more outputs of χ in parallel on demand.
Then, the memory requirements reduce by 25×2l at the cost of a parallelization
of χ and a deeper circuit. However, this architecture is basically transforming
the sheet-wise architecture in a plane-wise variant, which is clearly inferior.
Therefore, this variant is not further discussed.

Plane-wise Architecture The plane-wise organization is almost identical to
the sheet-wise architecture. However, it is possible to compute the χ permutation
for each plane without storing a temporary copy of the state and thus, the
memory requirements are lower with only SIZEmem(C) ≥ 50× 2l, however the
offset of four clock cycles is identical.

Slice-wise Architecture The slice-wise design is the most flexible approach.
The smallest possible variant uses exactly one slice. For this variant, it is easy
to see, that the computation of χ is trivially implemented, because the data de-
pendencies of χ are always fulfilled. Also, the calculation of θ is straightforward.
One possible strategy first computes the column-sums in a clock cycle t for a
slice z, i.e. for all x ∈ Z5,

∑4
i=0 a[x][i][z] is evaluated and stored. In the next

clock cycle t+ 1, the process is repeated for z′ = z + 1 and furthermore, the
output for z′ is calculated in the same clock cycle. Therefore, the overhead is
exactly 1 clock cycle, because no output is available after the first clock cycle.

Again, the special case z = 0 has to be solved, by either using an exception, i.e.
the results for the slice with z = 0 are computed in parallel to the computation
of z = 2l − 1, or with the moving starting slice per round. If the special case
is correctly solved, all other inter-round dependencies are fulfilled. However,
the second option becomes more difficult for the variants processing multiple
slices in parallel, therefore the version using the shortcut is to be preferred for
a generic implementation.



164

The previously described basic strategy is called Slice-25, because it has a
data path width of 25 bits. This can be extended to Slice-d, with d ∈ {25·2k|1 ≤
k ≤ l}. The idea is to parallelize the computation of several slices in one clock
cycle. This is straightforward, because the basic scheme stays the same.

The number of intermediate values to be stored in the implementation of the
round function is the same for all Slice-d variants. This includes 5 bits for the
column-sums which are carried over to the next sub-round and 25 bits for the
results of χ for the z = 0 special case. Altogether 30 additional bits have to be
stored. Additional 25 bits are necessary for the version that uses the shortcut
to process the slice with z = 0, because some bits of the output for this slice are
read in several clock cycles, but the output for the next round would overwrite
the registers after the first clock cycle, except the bit with x = y = z = 0. In
total a BCM C implementing the architecture with the shortcut needs at least
SIZEmem(C) ≥ b+ 55 bits.

6.8.4 Evaluation Summary

The results of the detailed analysis (Tab. 6.12) show, that the slice-wise approach
is a very competitive and scalable architecture and the other serialization options
are all worse in one or more aspects. The sheet- and plane-wise variants need a
lot of memory and thus, it can be conjectured, that they do not scale well in
terms of the area consumption.

The bit-, column- and row-wise versions probably allow for smaller imple-
mentations than the slice-wise variant, because the data path width is reduced
and the memory requirements are similar. However, all three implementation
styles need slightly more intermediate memory and a lot more clock cycles per
round. Since the general design goal is not to push the area consumption to its
limit (Sec. 6.4), the slice-wise approach meets this goal better than the other
architectures.

The remaining option, the lane-wise implementation may have a better
trade-off between area consumption and throughput than the other six variants,
mainly because the number of clock cycles is less than for the other smaller
architectures and because the memory consumption is less than for the sheet-
and plane-wise variants. However, compared to the slice-wise design the memory
consumption is high and the general approach is also less scalable, because



165

Table 6.12: Summary of the theoretical analysis of Keccak

Data Analyzed Long Message Short Message
Path Memory ROM Pipeline Clock Throughput @ Throughput @

Variant d [Bits] [Bits] [Bits] Depth Cycles Overhead 100 MHz [MBits/s] 100 MHz [MBits/s]

Parallel b b (1 + l)× nr 1 nr 0 100×r
nr

100×r
nr

/dn
r
e

Bit 1 b+ 54 (1 + l)× nr 23 (nr + 1)× b 22 100×r
(nr+1)×b

100×r
(nr+1)×b/d

n
r
e

Lane 2l 55× 2l (1 + l)× nr 25 (nr + 1)× 25 24 100×r
(nr+1)×25

100×r
(nr+1)×25/d

n
r
e

Column 5 b+ 56 (1 + l)× nr 9 (nr + 1)× b
5

8 100×r×5
(nr+1)×b

100×r×5
(nr+1)×b/d

n
r
e

Row 5 b+ 55 (1 + l)× nr 10 (nr + 1)× b
5

9 100×r×5
(nr+1)×b

100×r×5
(nr+1)×b/d

n
r
e

Sheet 5× 2l 3b (1 + l)× nr 5 (nr + 1)× 5 4 100×r
(nr+1)×5

100×r
(nr+1)×5/d

n
r
e

Plane 5× 2l 2b (1 + l)× nr 5 (nr + 1)× 5 4 100×r
(nr+1)×5

100×r
(nr+1)×5/d

n
r
e

Slice-d d b+ 55 (1 + l)× nr 1 (nr + 1)× b
d

0 100×r×d
(nr+1)×b

100×r×d
(nr+1)×b/d

n
r
e

processing for example two lanes in parallel results in a more complicated
architecture, because the state is not organized with a number of lanes that is
divisible by two.

6.8.5 Implementation

The analysis of the different Keccak architectures shows, that the slice-wise
implementation has a very good trade-off between the additional memory
requirements and the number of clock cycles. Therefore, two slice-based imple-
mentations were developed [Jun12, JS13]. The first uses the FSL-based interface
and is fixed to process 8 slices in parallel and uses the 1600 bit state of the
SHA-3 candidate Keccak-f [1600] (Fig. 6.27). With this configuration, the
implementation is comparable to the other SHA-3 candidates. The number of
clock cycles per message block corresponds exactly to the analysis above, if the
FSL interface is saturated with enough user data.

The second version uses the GMU interface and can be parameterized to

Figure 6.27: First Keccak fixed architecture.



166

Figure 6.28: Second generic Keccak architecture.

change the data path width, the state size, the rate and the size of the message
digest. As depicted in Fig. 6.28, the proposed architecture stays the same
for all variants and only the data path width varies. For this version of the
implementation, the message absorption is separated and thus the number of
clock cycles per message block is higher for the same number of slices.

The main difference between the two implementations is the handling of
the message absorption phase, and the organization of the state RAM. The
first implementation uses a RAM to buffer message blocks and to change the
order of the input bits from the standard lane-wise to a slice-wise organization.
Additionally, the state RAM is using the double amount of the state size,
because then it is simpler to organize the read and write addresses than the
concept described in Sec. 6.8.2.

The state RAM is also organized in individual lanes. However, the permuta-
tion of ρ is achieved by using temporary registers. These registers are used to
store the part of the output, that cannot be written to the RAM just as yet,
because the rotation constant is not divisible by the number of slices processed
in parallel. Then, in the next cycle when the next output has to be written to

Figure 6.29: Illustration of an alternative implementation of ρ.



167

the RAM, this new output is again split into two parts, and the first part of
this output is concatenated with the register content and the second part is
again written to this register (Fig. 6.29).

The second implementation uses the state organization for slice-wise imple-
mentations as described in Sec. 6.8.2. Furthermore, it removes the buffer for
the input message to save area. Therefore, the message absorption phase has to
be implemented differently. The input data is split up into d/25 bit wide chunks
and each such part is absorbed in one clock cycle at its appropriate place in
the state RAM. For example if d = 25 and the interface is w = 16 bit wide,
then 16 clock cycles are needed for the absorption of these 16 bits, because
every bit is absorbed in a separate clock cycle.

The second architecture is also optimized by manually instantiating LUT6_2

primitives. In particular the χ and ι functions may be combined with the
multiplexer before θ. This idea works nicely, because for each output bit of χ
only three input bits are necessary, ι only influences one or zero bits per row
and the multiplexer selects only between the computation of χ and ι or route-
through. Therefore, the computation of four output bits can be packed into
two LUT6_2 instances with five input bits, i.e. four inputs and the multiplexer
bit. A third LUT6_2 instance is needed for the bit with x = 0 which has three
data inputs, the multiplexer bit and additionally the bit for ι. Overall, only
three LUT6_2 instances are needed per row.



168

6.9 Skein

The Skein hash function was originally submitted to the SHA-3 competition
by Ferguson et al. and was modified for the last round of the competition
[FLS+10]. However, only the key schedule constants were changed. The Skein
hash function is based on the block cipher Threefish and the iteration mode
UBI. Threefish is a ARX-based design, i.e. it uses addition, rotation and XOR
and is thus a relatively conservative design, because many older algorithms are
based on these operations [Riv92].

6.9.1 Definition

The original specification of Skein defines four variants for 224, 256, 384 and
512 bit hash digests [FLS+10]. As for most of the other SHA-3 finalists, only
the 256 bit variant is defined here.

Input and output mapping Skein uses a little endian byte order, which is
different from the big endian order defined in Sec. 6.2. Hence, the byte order
is exactly the opposite. A byte string x ∈ Z≥0256 with |x|/8 bytes is ordered as
follows:

x =def

|x|/8∑
i=0

xi × 256i.

Padding The padding for function of Skein is defined as follows. For a message
M ∈ Z≥02 and K = (−|M |) mod 512:

pad256(M) =

0512, if |M | = 0

M ||0K , if |M | > 0

Initialization Values and Constants The state h is initialized with the
following initialization values.

IV0 = CCD044A12FDB3E13, IV1 = E83590301A79A9EB,

IV2 = EC06025E74DD7683, IV3 = E7A436CDC4746251,

IV4 = 55AEA0614F816E6F, IV5 = C36FBAF9393AD185,

IV6 = 2A2767A4AE9B94DB, IV7 = 3EEDBA1833EDFC13



169

These values are the output of a computation of the Threefish block cipher,
which has an all-zero key and a configuration string as input.

Key Schedule Since Threefish is a typical block cipher, it has a key schedule.
In the hashing mode, the key k = (k0, . . . , k7) is the output of the previous
computation of the Threefish block cipher, or the initialization values. Another
input is the so-called tweak, consisting of two 64 bit words t0 and t1.

The key schedule for the currently discussed version uses nine 64 bit words,
where the ninth is generated as follows, where is defined to be C240 =def

1BD11BDAA9FC1A22. This constant has been chosen by Skein’s designers to
defend against some attacks on the key schedule [FLS+10].

k8 = C240 ⊕
7⊕
i=0

ki

Furthermore, another 64 bit word is used:

t2 = t0 ⊕ t1

The key schedule key uses these words as follows, where s is the current
sub-round and i is the index of the state word:

key(k, t, s, i) =



k(s+i)mod 9, for i = 0, . . . , 4

k(s+i)mod 9 + tsmod3, for i = 5

k(s+i)mod 9 + t(s+1)mod 3, for i = 6

k(s+i)mod 9 + s, for i = 7

Round Function The round function consists of key injection, MIX function
(Alg. 6.15) and permutation layer according to Alg. 6.16. This function is iterated
for 72 rounds. The values for the word permutation π are defined as follows:

π = (2, 1, 4, 7, 6, 5, 0, 3).

The MIXj,i(x0, x1) function is defined according to Alg. 6.15, where i ∈ Z4 is
an index to lookup the rotation constant and j ∈ Z72 is the current round. The
rotation constants Rj,i can be found in the Skein specification [FLS+10].



170

Iteration Mode The iteration mode UBI can be parameterized to yield
several different modes, e.g. a MAC, tree hashing or a simple iterated hash. The
last option is used in case of the SHA-3 candidate. The parameterization works
by specifying appropriate values for the tweak t = (t0, t1), where the length
is encoded together with several other bits that signal the first and the last
message block and if the currently processed message block contains padding
bits or not. The iteration mode itself is a variation of the Matyas-Meyer-Oseas
construction [MMO85].

6.9.2 Systematic Evaluation Overview

State and Memory Organization The state of the investigated Skein
variant is organized in eight 64 bit words. Therefore, it is natural to split the
state in the following ways:

• A parallel architecture reads and writes the complete state in one clock
cycle and uses a 1× 512 bits memory.

• The serialized versions use 2z × (512/2z) organizations, where 1 ≤ z ≤ 3.

The key schedule has a 576 bit state, which may be organized almost identical
to the state memory. However, the ninth 64 bit part of the state may be stored
in an additional register, such that no pipeline stalls are necessary to reorder
the key schedule (Fig. 6.30). Furthermore, 192 bits are necessary to store the
tweak and its generated third part and 512 bits for the message. Overall the
memory size of a BCM C takes at least SIZEmem(C) ≥ 1280.

In addition to the memory requirements, the initialization value has to be
stored in a ROM. Therefore, 512 bits are necessary as ROM.

Algorithm 6.15 Threefish MIX function [FLS+10]
Require: h0, h1 ∈ Z64, j ∈ Z72, i ∈ Z4

Ensure: h← MIXj,i(h0, h1)

h0 ← (h0 + h1) mod 264

h1 ← (h1 � R(jmod8),i)⊕ h0
return (h0, h1)



171

Algorithm 6.16 Threefish round function [FLS+10]
Require: h ∈ Z8

64, j ∈ Z72, t ∈ Z2
64, k ∈ Z8

64

Ensure: h← round(k, t, h, j)

for i = 0 to 7 do

hi ←

hi + key(k, t, j/4, i) if jmod 4 = 0

hi otherwise
end for

for i = 0 to 3 do

(h2i, h2i+1)← MIXj,i(h2i, h2i+1)

end for

for i = 0 to 7 do

hi ← hπ[i]

end for

return h

Algorithm 6.17 Threefish encryption [FLS+10]
Require: h ∈ Z8

64, t ∈ Z2
64, k ∈ Z8

64

Ensure: h← E(h, t, k)

for i = 0 to 71 do

h← round(k, t, h, i)

end for

for i = 0 to 7 do

hi ← hi + key(k, t, 72/4, i)

end for

return h

State Read and Write Schedule The state read and write schedule has
to be implemented according to the round permutation. For a none-pipelined
serialized version, the write addresses are identical to the previous read addresses.

Figure 6.30: The Skein key schedule memory architecture.



172

Therefore, the read addresses for the next round have to be adjusted using
a round counter. This procedure can be used for all serialized variants in a
similar fashion, and is unnecessary for the parallel version.

Clock Cycles Estimation The number of clock cycles is directly propor-
tional to the data path width d and the unrolling which is expressed in the
serialization metric s. However, it is not in the theoretical bounds described in
Sec. 5.4, because of the additional key injection after the 72nd round. Yet, it is
similar to the case of the rescheduled Keccak versions and thus, the last key
injection can be viewed as a modified 73rd round of Skein. In total the number
of clock cycles is bounded as follows, where the state size is assumed to be 512

bit, the number of rounds is 73, s is the serialization metric and d the data
path width.

cyccompress(d) ≥ 512× 73× s
d

,

cyccompress(d) <
512× (73 + 1)× s

d
.

6.9.3 Detailed Analysis

Parallel and Unrolled Architectures A parallel architecture of Skein is
based on a straightforward implementation of the key schedule and the round
function of the Threefish block cipher. Therefore, not a single clock cycle
overhead is needed and the memory corresponds exactly to the state memory,
the key schedule and the tweak.

It is also possible to unroll Skein to increase the throughput. This improve-
ment is possible, because the logic depth for the different rotations can be
decreased and hence, the length of the critical path does not grow proportional
to the unrolling factor. In the literature, unrolling of 2, 4 and 8 rounds is
reported [GHR10, ATM+13]. All of these basic architectures have the same
properties regarding the RAM consumption and the clock cycle overhead.

A BCM C implementing the architecture does not need any additional
memory and hence, SIZEmem(C) ≥ 1280.



173

Serialized Architectures Serialization of Skein works best according to the
data path width 512/2z bits according to the analysis of the state organization
above. Therefore, three basic variants can be implemented this way. The basic
architecture loads one or several locations of the memory and then writes them
back to the state RAM after one clock cycle. The read and write addresses are
calculated such that the inter-round dependencies from the the permutation
layer are fulfilled.

For the variant with a data path width of 64 bits, one clock cycle overhead
is produced, because no output can be computed after the first clock cycle.
Therefore, it is also necessary to have an additional 64 bit register for this
variant to store this intermediate value. A pipelined architecture is also possible,
with a combined depth of 6 for this variant [Jun12].

A BCM C implementing the architectures with a data path width greater
than 64 does not need additional memory and hence, for these variants the
same bound is valid SIZEmem(C) ≥ 1280. For the version with a data path
width of 64 at least one additional 64 bit register is necessary and hence, the
C64 implementing that architecture takes SIZEmem(C64) ≥ 1280. The pipelined
version then adds at least another 64 bits per pipeline stage.

6.9.4 Evaluation Summary

The evaluation of the Skein hash function shows, that it scales pretty well
in theory. In the one direction, unrolling improves the theoretical throughput

Table 6.13: Summary of the theoretical analysis of Skein

Analyzed Long Message
Data Path Serialization Memory ROM Pipeline Clock Minimum Throughput @

d [Bits] Metric [Bits] [Bits] Depth Cycles Overhead 100 MHz [MBits/s]

512 0.25 1280 576 1 19 0 2694

512 0.5 1280 576 1 37 0 1383

512 1 1280 576 1 73 0 701

256 1 1280 576 1 146 0 350

128 1 1280 576 1 292 0 175

64 1 1344 576 2 584 1 87

64 1 1664 576 6 584 5 87



174

linearly. However, this only helps, if the clock frequency does not significantly
decrease. Therefore, the throughput estimate is probably not that meaningful.

In the other direction towards lightweight implementations, the high area
consumption of fast 64 bit adders and the high number of rounds is a drawback,
that either leads to a pretty high number of clock cycles or a higher area
consumption.

For the implementation, an area reduced version with a good overall through-
put was the main evaluation goal. Therefore, the version with a 64 bit data
path width has been selected to be implemented. The decision was mainly
based on the reduction of the number of adders.

6.9.5 Implementation

The presented implementation was published in [Jun12]. The state for the
implementations can be stored in distributed RAM with 512 bits. However, the
implementation uses a 1024 bit state, where a single part is used as the input
to the round and the other part to save the output to simplify the read and
write address calculation. Furthermore, the input message block is buffered in a
wide RAM with also 1024 bit, which allows loading a new message block while
the computation of the current message block is in process. Additionally, the
key schedule uses a 9× 64 bits distributed RAM to store the different subkeys.
The architecture is depicted in Fig. 6.31.

Efficient implementations of Skein for FPGAs are quite a challenge, which
is mainly caused by the 64 bit adders and further complicated by the rotations
which impact the routing on an FPGA device and furthermore the necessary

Figure 6.31: Skein implementation.



175

Figure 6.32: Implemented Skein pipeline.

barrel shifter adds a lot of area. Together both features have a significant impact
on the maximum achievable clock frequency. Pipelining the round function is
the obvious countermeasure, but this is not as easy as for some other hash
functions.

The pipeline itself consists of two distinct parts, each using 64 bit as input
(Fig. 6.32). The three necessary 64 bit adders are split into 32 bit adders and
the computation is scheduled in such a way, that only three of them are needed.
The rotation and the last XOR are distributed over three clock cycles, which
makes it possible to reduce the cost of the rotations. The two parts have two
different depths, such that the pipeline never stalls. The reason for this pipeline
design is the permutation layer of Skein.

The performance of this design is dominated by the large number of rounds
required. Overall the architecture requires 584 clock cycles for one execution of
the compression function (72 rounds + 1 extra round for the last key injection
and 8 clock cycles for each round, thus 73× 8 = 584).



176

6.10 Photon

Photon is the only hash algorithm investigated in this thesis, that was not
part of the SHA-3 competition [GPP11]. The design goal of Photon is a low
area implementation, and hence, in this thesis it competes only with the
low-area variants of Keccak. The algorithm uses the sponge construction
developed by Bertoni et al. [BDPA07] and borrows the structure of its internal
round permutation from AES. However, the four sub-permutations are slightly
different than the AES ones to allow for a less area consuming implementation.

6.10.1 Definition

The Photon hash function is specified in [GPP11] and is adapted here to the
common structure. The specification defines five variants with different area
consumption and security levels. It furthermore extends the sponge construction
to use different input and output rates to improve the preimage resistance. Five
different configurations are defined, which are shown in Tab. 6.14.

State Size and Representation The state of Photon can be interpreted in
a two-dimensional way, similar to Grøstl. The size t of Photon’s state depends
on the parameters d and s. The parameter d defines the number of cells in the
two-dimensional representation (d2 cells), and s ∈ {4, 8} defines the number of
bits per cell and thus t = sd2.

Input and output mapping The output mapping corresponds to the bit-
string convention defined in Sec. 6.2. A message block m is mapped to the

Table 6.14: The different Photon variants

Variant Hash digest n State size b Input rate r Output rate r′ Capacity c
[Bits] [Bits] [Bits] [Bits] [Bits]

Photon-80/20/16 80 100 20 16 80

Photon-128/16/16 128 144 16 16 128

Photon-160/36/36 160 196 36 36 160

Photon-224/32/32 224 256 32 32 224

Photon-256/32/32 256 288 32 32 256



177

d× d× s matrix representation of the state h as follows, where m is interpreted
bit-wise.

h[i][j][k]← m[sdi+ sj + k]

Padding The padding used by Photon appends a string 10∗, such that
the length of the padded message is a multiple of r. Formally, for a message
M ∈ Z≥02 and k = (−|M | − 1) mod r, the padding function is defined as:

pad256(M) =def M ||1||0k

Initialization Values and Constants The state is initialized to the follow-
ing value, where t is the state size, n is the size of the hash digest, r is the
input rate and r′ is the output rate:

IV =def 0t−24||n/4||r||r′

Furthermore, Photon uses a number of round constants, which are defined as
follows:

RC =def (1, 3, 7, E, D, B, 6, C, 9, 2, 5, A)

Additionally, some so called internal constants ICd are defined for each variant,
dependent on the parameter d:

IC5 =def (0, 1, 3, 6, 4)

IC6 =def (0, 1, 3, 7, 6, 4)

IC7 =def (0, 1, 2, 5, 3, 6, 4)

IC8 =def (0, 1, 3, 7, F, E, C, 8)

Round Function and Photon Permutation The round function of Pho-
ton has a structure very similar to AES (Alg. 6.18). However, the internal
details are changed. The first function is AddConstants, which adds a constant
to the state as follows, where i ∈ Z12 and j, k ∈ Zd:

AddConstantsd : h[j][k]←

h[j][k]⊕ RC[i]⊕ ICd[k] if j = 0

h[j][k] if j ≥ 1



178

Table 6.15: The present S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

SPRE(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The next function is SubCells. For the Photon variants using s = 4 bit cells,
than the S-box SPRE defined by present is used [ISO 29192-2, BKL+07]. For
the other variant with s = 8, the AES S-box SAES is used as already defined in
Sec. 6.6.1 [DR99, RD02]. The present S-box SPRE is shown in Tab. 6.15.

Then, depending on the parameter s, SubCells is defined as follows for
i, j ∈ Zd:

SubCellss : h[i][j]←

SPRE(h[i][j]), if s = 4

SAES(h[i][j]), if s = 8

The ShiftRows function is mostly identical to the AES ShiftRows transfor-
mation and can be defined formally as follows:

ShiftRowd : h[i][j]← h[(i− j) mod d][j]

The MixColumnsSerial is a matrix multiplication using a maximum distance
separable (MDS) matrix, i.e. the diffusion property of the linear permutation
is maximized. This property is shared with the AES MixColumns permutation.
However, for Photon the design is focused on minimum area consumption.
In particular, the MixColumnsSerial permutation is designed to be efficiently
computable by a serialized implementation computing 4 or 8 bits per clock
cycle without intermediate memories. It is in general defined as follows:

MixColumnsSerialt,d(h) : h← Ad
t × h

The field used for the matrix multiplication is Fs. For s = 4, the irreducible
polynomial x4+x+1 is used and for s = 8, the AES polynomial x8+x4+x3+x+1.



179

The matrix At is defined depending on the state size t, as follows:

At =def



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

Z1 Z2 Z3 · · · Zd−3 Zd−2 Zd−1


And the coefficients Z are defined as follows:

Z =def



(1, 2, 9, 9, 2), for t = 100

(1, 2, 8, 5, 8, 2), for t = 144

(1, 4, 6, 1, 1, 6, 1), for t = 196

(2, 4, 2, B, 2, 8, 5, 6), for t = 256

(2, 3, 1, 2, 1, 4), for t = 288

Algorithm 6.18 Photon round function [GPP11]
Require: h ∈ Zt2, i ∈ Z10

Ensure: h← round(h, i)

h← AddConstantsd(h, i)

h← SubCellss(h)

h← ShiftRowsd(h)

h← MixColumnsSerialt,d(h)

return h

The permutation used to instantiate the sponge function for Photon is a
simple repeated execution of the round function (Alg. 6.18) for nr = 12 times.

Iteration Mode The iteration mode is the sponge function as defined in
Sec. 3.5.3. However, for Photon-80/20/16, the sponge function is slightly adapted
to use a different output rate r′, i.e. the squeezing phase uses a rate that is
different from the input rate used by the absorption phase. This improves the
preimage resistance [GPP11].



180

Figure 6.33: Read and write locations for the column-wise Photon architecture.

6.10.2 Systematic Evaluation Overview

State and Memory Organization Similar to Grøstl, Photon’s state can
be organized in three different patterns:

• The parallel design reads and writes the complete data in each clock cycle.
Hence, a 1× t bit implementation is used. Thus, the data path width d
is t bits.

• A column-wise architecture reads and writes one or more column per
clock cycle. The simplest one reads exactly one column per clock cycle.
Therefore, the memory organization is d× ds bits. Hence, the data path
width is d = ds bits. However, the ShiftRows transformation makes it
necessary to split the memory into d smaller RAMs, each d× s bits, such
that a stall free implementation can read the reordered column in exactly
one clock cycle.

• A cell-wise organization uses a d2 × s bits memory. This means reading
and writing of a single cell per clock cycle and hence, d = s.

Since Photon uses a sponge construction as iteration mode, no additional
memory is needed and thus a BCM C implementing Photon has SIZEmem(C) ≥
d2s = t.

In addition to the RAM, the constants have to be saved in a ROM, in total
these need d× 4 bits for the internal constants and 12× 4 bits for the round
constants, i.e. overall (12 + d)× 4 bits.

State Read and Write Schedule The scheduling of read and write op-
erations is almost identical to the case of Grøstl. However, there are some
differences compared to Grøstl. First, it is not possible to add the stall free



181

Figure 6.34: Design for the MixColumnsSerial serialization for Photon.

pipelining that enabled the Grøstl architecture to use the x and y coordinates
directly. Second, if the MixColumnsSerial permutation is implemented in a
serialized fashion, the adjustment for the read addresses has to be changed in
the clock cycles when only the MixColumnsSerial permutation is computed.

Beside these changes, the computation of the read and write addresses are
very similar. For the parallel version it is trivial for all cases. For the column-
wise and cell-wise architectures, the read addresses have to be adapted to the
ShiftRows permutation, for all clock cycles when ShiftRows is computed. This
means, that the first read is adjusted as shown in Fig. 6.33. However, since no
effective pipelining can be used to hide the inter-round data dependencies, a
round counter is necessary to adjust the read addresses for the further rounds.
For the cell-wise implementation, the same approach has to be used in principle.

For a cell-wise implementation, it may be worthwhile to investigate the
serialization possibility for MixColumnsSerial. Because of the special structure
of At, only one cell changes per column per matrix multiplication with At.
Therefore, after reading d cells from the memory, only one cell has to be changed
and the other entries are shifted one row up. This process may be implemented
as depicted in Fig. 6.34, i.e. the entry read in the first clock cycle (0) is processed
according to the matrix multiplication with At and this result written to a
temporary register. The next clock cycle loads the value in the cell marked
with (1). This value is also processed according to At, added to the register
and written back to the previous location of (0) and so on. After the value (4)

has been loaded, the intermediate value stored in the register is written to the
location marked with (5′) and the process continues with the second column.

Note that this procedure is a lot less efficient in terms of clock cycles
than the one proposed in the original Photon publication [GPP11]. However,
using distributed RAM in FPGAs makes it very difficult to use the proposed



182

architecture, which is much better suited for ASICs.

Clock Cycle Estimation The number of clock cycles can be estimated
roughly in the following way. First, the state organization and thus the data
path width d has a major influence on the number of clock cycles. However,
the Photon design also allows an implementation of the MixColumnsSerial
permutation in a serialized way, that is independent of the data path width.
For this, the most efficient serialization metric s = d. Thus the number of clock
cycles can be bounded according to the generalized formula defined in 5.4:

cyccompress(s, t, nr, d) ≥ s · t · nr
d

cyccompress(s, t, nr, d) <
s · t · (nr + 1)

d

Basic Round Function Architectures There are three basic round func-
tion architectures which are dictated by the data path width. The basic archi-
tectures are as follows:

• The parallel computation uses a straightforward implementation of the
round function.

• The column-wise approach splits the computation into d parts. The
ShiftRows architecture is implemented by adjusting the read and write
addresses as depicted in Fig. 6.33 and described above.

• The cell-wise procedure further splits the computation into d2 steps.
However, a straightforward implementation of the MixColumnsSerial
permutation causes an constant overhead in terms of clock cycles, because
of the intra-round dependencies between different cells.

In addition to the described designs, it is also possible to serialize the com-
putation of MixColumnsSerial independent of the reduction of the data path
width. However, this approach is only worthwhile for the cell-wise implemen-
tation, because reducing the data path increases the number of clock cycles
by the same number, but the state RAM may be implemented more efficiently.
Thus, the overall performance of the basic versions are probably better.



183

6.10.3 Detailed Analysis

Parallel Architecture The parallel architecture is very simple. It computes
one round in one clock cycle. Therefore only the t bits of memory are needed,
no stall-free pipelining is possible, but also no overhead in terms of clock
cycles is produced. Also no memory overhead is needed. Hence, for a BCM C,
SIZEmem(C) ≥ t.

Serialized Architecture 1 The second architecture analyzed in detail is
the column-wise architecture. This design is also straightforward to implement.
If the ShiftRows permutation is implemented using the adjusted read and
write addresses, smaller versions of the round computation can be re-used from
the parallel version, i.e. the AddConstants, SubCells and MixColumnsSerial
implementations are implemented only for one column instead of d columns.
Therefore, the properties memory consumption, pipelining and overhead in
terms of clock cycles are identical to the parallel architecture, i.e., for a BCM
C, SIZEmem(C) ≥ t.

Serialized Architecture 2 Further serialization leads to a cell-wise archi-
tecture. This variant processes only single cells and hence, the AddConstants
and SubCells permutations can be again reduced to process only one cell
per clock cycle. However, the MixColumnsSerial implementation has to be
changed, because it is not possible to further split the computation in the same
straightforward way than from the parallel to the column-wise architecture.

In particular, d registers of s bits are necessary to store the intermediate
results of the matrix multiplication for one column. In each clock cycle the
intermediate results are stored in these registers. After d clock cycles, the first
result is produced. This phenomenon also requires another d registers, because
only s bits at a time are written to the state RAM. Hence, the new intermediate
values have to be written to another memory.

Thus, because of the MixColumnsSerial architecture, 2ds bits of intermediate
memory are needed and d− 1 additional clock cycles are needed as overhead.
Hence, a BCM C takes at least SIZEmem(C) ≥ t+ 2ds.



184

Serialized Architecture 3 As mentioned above, the cell-wise implementa-
tion strategy may be further serialized independent of the data path width
reduction. This is possible, because of the specially constructed matrices At.
The serialization metric is now s = d. The main benefit of this approach is the
reduction of the intermediate memory from 2ds bits to only s bits. The number
of clock cycles per round increases by an additional factor of d, but the total
overhead stays the same.

A pipeline depth of d2 can be implemented, because the serialization of
MixColumnsSerial stretches the inter-round dependencies over d2 clock cycles,
i.e. the input with x = y = 0 is only needed d2 clock cycles after the same cell
was an input to the previous sub-round.

6.10.4 Evaluation Summary

The evaluation summary shows the same values as for the other algorithms. A
few interesting observations can be made. Compared to all other algorithms,
the throughput for a midrange implementation is bad, even compared to the
smallest Keccak-200 implementation. This follows from the low input rate for
all Photon variants. For short messages, it is even worse, because the Photon
permutation has to be performed multiple times in the squeezing phase. For
example, a short message which fits into the r bits after padding leads to

⌈
n
r′

⌉
computations of the permutation.

Table 6.16: Summary of Photon analysis

Analyzed Long Message Short Message
Data Path Serial. Memory ROM Pipeline Clock Minimum Throughput @ Throughput @

d [Bits] s [Bits] [Bits] Depth Cycles Overhead 100 MHz [MBits/s] 100 MHz [MBits/s]

t 1 t (12 + d)× 4 1 12 0 100×r
12

100×r
12

/d n
r′
e

t/d 1 t (12 + d)× 4 1 12× d 0 100×r
12d

100×r
12d

/d n
r′
e

t/d2 1 t+ 2ds (12 + d)× 4 d 12× d2 d− 1 100×r
12d2

100×r
12d2

/d n
r′
e

t/d2 d t+ s (12 + d)× 4 d 12× d3 d− 1 100×r
12d3

100×r
12d3

/d n
r′
e

t/d2 d 2t+ s (12 + d)× 4 d2 12× d3 d2 − 1 100×r
12d3

100×r
12d3

/d n
r′
e

6.10.5 Implementation

This new implementation of Photon is pretty simple and straightforward. The
design closely follows the analysis of the cell-wise architecture. It consists of



185

the state RAM and the round function (Fig. 6.35). The control logic switches
between three modes, the first is the absorption mode, which is used for the
absorption of a new message block. The second is the computation of the round
function and the third is the generation of the output message.

Figure 6.35: Architecture of the Photon implementation.



186

6.11 Discussion and Further Work

The theoretical results between the different hash functions can also be com-
pared. Interesting is in particular the comparison of parallel implementations
as depicted in Tab. 6.17. The table shows the long message throughput of all
evaluated hash functions. As can be seen, Grøstl and Keccak have a significant
performance advantage for the straight forward implementation strategy, if
only 100 MHz are assumed.

Table 6.17: Long message throughput for parallel implementations.

Long Message
Throughput @

Algorithm 100 MHz [MBits/s]

BLAKE-256 3657

Grøstl-256 5120

JH-256 1219

Keccak-256 4533

Skein-256 701

Photon-256 266

These results are also roughly reflected in several implementation evaluation
results, e.g. [GHR+12b]. For most FPGAs, this is natural, because it is usually
possible to reach a frequency above 100 MHz, but because of the limited maxi-
mum frequency of FPGAs, it is difficult to reach a clock frequency significantly
over 350− 400 MHz. Therefore, other techniques such as pipelining combined
with parallelization have to be used to increase the throughput, which also
increases the area footprint of implementations.

For lightweight implementations, a similar comparison can be made. For
these implementations, the data path width plays an important role. However,
comparing several architectures from different algorithms with a similar data
path width is not meaningful, because the size of the round function imple-
mentation becomes the dominant factor. Instead, an evaluator should select
architectures with roughly the same throughput.

In the current evaluation one important factor was not analyzed, which



187

additionally influence the maximum throughput of a design in a major way.
These include the maximum delay of the implementation strategies, which could
be expressed using the theoretical MAXPATH complexity measure. However,
this complexity measure is in reality influenced by a lot of factors. First, it
is difficult to find a circuit of minimal depth. Second, the real world clock
frequency depends a lot more on the actual technology, because the basis
of a corresponding theoretical Boolean circuit model changes. This could be
abstracted using the big-O notation. However, this notation is too coarse to be
of much use in this application domain. Therefore, another alternative notation
should be developed, which is less abstract than the big-O notation.



188



Chapter 7

Implementation Evaluation

7.1 Introduction

In the evaluation, key performance metrics of the implemented and compiled
designs are compared. For this goal, all earlier described implementations
were optimized using the Xilinx ISE tool chain. This consists of running the
synthesis (XST), mapping (MAP) and place-and-route (PAR) tools. Since the
implementations use no special primitives, such as BRAM or DSP slices, the
results can be compared in a relatively fair manner.

The core metrics used in this evaluation are the area, the throughput and the
throughput-area ratio. All three metrics are important for different application
areas. The area aspect is most important for lightweight implementations.
However, the smallest FPGAs are rather large and expensive compared to
many ASIC such as RFID tags, and hence the area plays a minor role compared
to other measures, especially the throughput-area ratio.

Reaching the throughput required for an application is one of the key
requirements. For example, a high-speed router has to process data in the order
of 1GiB/s [FPO05], other applications like Car-2-X only need the capability to
process little over 1MiB/s [SGI+11]. Nevertheless, if an architecture is fast enough
for a particular application, shrinking the area improves the cost effectiveness
of the total implementation, if it is possible to use a smaller FPGA for the
same use case. Therefore, again the throughput-area ratio is very important.

Beside the comparison of the metrics between two or more implementations,
it is interesting to see how scalable an architecture is. For example, it is possible,

189



190

that a parallel implementation of one algorithm has a higher throughput and
throughput-area ratio compared to another algorithm and that the situation
changes for serialized implementations. However, only for Keccak more than
one implementation was developed, the scalability argument is not investigated
in detail.

The remainder of the evaluation chapter is organized as follows. First the
criteria of the evaluation are described in more detail in Sec. 7.2. Then the
automated optimization approach is introduced in Sec. 7.3. Afterwards, the
results for the implementations presented in this thesis are discussed for Virtex-
5 FPGAs (Sec. 7.4) followed by currently known third party results for the
same FPGA (Sec. 7.5). Further results for other Xilinx FPGAs can be found
in Appendix B.

7.2 Criteria

Several criteria are interesting for the evaluation of FPGA implementations,
foremost the area, the throughput and the throughput-are ratio. Another
interesting criteria is the power consumption. However, this metric is not
evaluated in this thesis. In this section, the measures that are used to score the
evaluations are detailed and a short rationale is provided for each choice.

• The area of FPGA implementations is usually measured in the total num-
ber of slices required for an implementation. This criterion is sometimes
not that useful, e.g. because of the usage of BRAM or DSP slices. The
main problem with the usage of special circuitry of an FPGA is, that
they hide a lot of the complexity of an algorithm. For example, BRAM
may not only implement memory, but also parts of the logic.

Therefore, the results generated for the developed algorithms these special
primitives are not used and only slices of the Xilinx FPGAs are used.

• The throughput is measured in MBit/s. For hash functions, the throughput
changes with the message length. For most hash functions longer messages
lead to a higher throughput and short messages to a lower throughput.

This has two root causes. The first is the padding, which fills at least one
message block completely. Hence, if the message is shorter, a lot of padding



191

bits are processed and less message bits. Therefore, the throughput
is reduced. Furthermore, many hash functions have a post processing
transformation. For example, the sponge construction requires additional
computations of the permutation in the squeezing phase, if the rate r is
smaller than the message digest length n.

Thus, for the current evaluation, the throughput is evaluated in two parts.
The first part evaluates the throughput for very long messages. There, the
number of clock cycles to process the compression function once for each
message block is the dominating influence on the throughput. The second
part evaluates the throughput for short messages that have a length of
exactly one message block.

• The throughput-area is a measure derived from the area and the through-
put. Therefore, this measure is also split into two values. One for long
messages and another one for short messages.

7.3 Automated Optimization

Depending on the exact parameters used with the tool chain, the synthesis
results vary in throughput, and area consumption. Therefore, for a fair evalua-
tion, it is necessary to try a lot of different options to achieve the best result.
The (simplified) process of the Xilinx ISE 14.5 tool chain is as follows:

1. Synthesis with XST.

2. Mapping with MAP.

3. Place and Route with PAR.

The first two steps have a lot of parameters and because many different
choices may be combined, the set of possible options grows exponentially.
Fortunately, there are only a few options that have a significant influence on
the results. However, for each FPGA architecture this changes slightly.

The optimization follows a similar concept to the one developed in ATHENa
developed by the GMU [GKA+10]. However, it uses a slightly different strategy.
First a set of parameters to iterate over is selected. After this selection for a
specific FPGA architecture, the optimization commences as follows:



192

1. The implementation process is run for the all possible combinations from
the chosen set, e.g. for the Virtex-5 platform 384 possibilities are used.

2. The best eight candidates for each category area, throughput and throughput-
area are selected.

3. For each selected parameter choice the automatic timing result is the
starting point for a timing exploration, i.e. the timing of the performance
evaluation mode is used as a timing constraint for a new synthesis run.
This results in a new timing estimation, which can be used again as a
new constraint. This process continues until the timing constraint is too
tight and PAR is unable to route a design.

4. The next step is to try all 100 possible seeds for the best candidates for
the same categories area, throughput and throughput-area, because the
probability is high, that PAR may be able to route the design using the
tight timing constraint with a different seed.

5. After completion of the run for the final seed, the best parameter sets for
the three categories are determined.

7.4 Implementation Results

The implementation results are split in three parts, depending on the parameters
and the hardware interface.

• The first presents the results for the SHA-3 finalists only by comparing
the implementations that use the FSL-based interface (Sec. 6.3.1) and
include the padding unit.

• The second part presents alternative implementations of Keccak-f [1600]

and also Keccak-f [800]. These implementations use the GMU-based
interface (Sec. 6.3.2) and do not include the padding in hardware.

• The last part displays the results for the lightweight variants of Kec-

cak, i.e. Keccak-f [400] and Keccak-f [200] and also of Photon. The
Keccak variants use the GMU interface (Sec. 6.3.2) and the Photon
implementations the adapted version for lightweight hashing (Tab. 6.4).



193

Table 7.1: Results for the 256 bits versions of the SHA-3 finalists (Virtex-5).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 261 205 228 512 460 1.76 460 1.76
BLAKE-2 388 154 115 512 684 1.76 684 1.76
Grøstl 352 298 160 512 954 2.71 477 1.36
JH 190 315 6720 512 24 0.13 12 0.07
JH-2 388 270 168 512 823 2.12 411 1.06
Keccak 380 168 200 1088 916 2.41 916 2.41
Skein 502 283 584 512 248 0.49 124 0.25

7.4.1 SHA-3 Finalists with Padding

The implementations of the SHA-3 finalists that were implemented, can be
grouped into four sets (Fig. 7.1,Tab. 7.1).

10

100

1000

101001000

A
re
a
[S
lic
es
]

Throughput [MBit/s]

4.0
MBit/s
Slice

2.0
MBit/s
Slice

1.0
MBit/s
Slice

0.5
MBit/s
Slice

0.25
MBit/s
Slice

faster

sm
al
le
r

BLAKE
BLAKE-2

Grøstl
JH

JH-2
Keccak

Skein

Figure 7.1: Area and throughput of the SHA-3 finalist implementations (Virtex-
5).



194

• For all algorithms, except Skein, there is an implementation, with very
similar throughput and area properties. The best algorithm in this cluster
in terms of throughput, area and throughput area ratio is Grøstl. However,
all other algorithms are close.

• The first BLAKE implementation has practically the same throughput-
area ratio compared to its larger sibling, while consuming only approxi-
mately 2/3 of its area.

• Skein is the candidate which trails behind the other candidates. Neither
the throughput, nor the area is competitive.

• The smallest JH implementation is considerably smaller than all other im-
plementations and serves as an extreme reference point. It consumes only
about 50% of the larger JH implementation. However, the implementation
is also the slowest.

Skein is slow, because of the very high number of rounds compared to all
other algorithms. To keep up with the other algorithms, a complicated pipelined
design is used and the serialization is not very effective. Therefore, Skein is also
quite large.

The situation changes slightly for short messages (Tab. 7.1), because the
number of clock cycles doubles per message block for some algorithms, if only
one message block is processed. Therefore, the throughput is halved for Grøstl,
JH and Skein, whereas for BLAKE and Keccak the throughput does not drop
for small messages in such a significant way. Hence, the best algorithm for small
messages is now Keccak and Grøstl falls back on place three.

7.4.2 Heavyweight Keccak without Padding

All of the analyzed heavyweight versions of Keccak produce a hash digest with
256 bits. However, for Keccak-f [800] two variants with different capacities
and hence different security levels are analyzed. Note additionally, that for
these Keccak variants, the throughput for short messages is not significantly
lower than for long messages, because the rate is always greater than the digest
size. Therefore, the additional discussion of this aspect is dropped here.



195

The implementations of the fast and heavyweight versions scale practically
in the same way for the different variants and thus show, that the slice-oriented
architecture for Keccak is a very flexible and scalable architecture for mid-
range and small implementation (Fig. 7.2, Tab. 7.2). For example, for the
official SHA-3 variant of Keccak, the smallest design needs only 11% of the
area compared to the fully parallel version with the same basic strategy.

The scalability can be analyzed further:

• The architecture does not scale in a linear fashion in terms of area, because
at least the state has to be stored and the control logic is roughly the
same for all implementations with the same state size and capacity.

• The clock frequency is higher for the largest version than for most of the
serialized variants. This phenomenon can be explained by the different
implementation strategy for the state RAM. In the serialized implementa-

10

100

1000

101001000

A
re
a
[S
lic
es
]

Throughput [MBit/s]

4.0
MBit/s
Slice

2.0
MBit/s
Slice

1.0
MBit/s
Slice

0.5
MBit/s
Slice

0.25
MBit/s
Slice

faster

sm
al
le
r

Keccak-f [1600], c = 512
Keccak-f [800], c = 512
Keccak-f [800], c = 256

Figure 7.2: Area and throughput of Keccak with b ∈ {1600, 800} and c = 512

for b = 1600 and c ∈ {512, 256} for b = 800 (Virtex-5).



196

Table 7.2: Results for the heavyweight versions of Keccak (Virtex-5).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 140 200 2688 1088 81 0.58

2 161 186 1344 1088 151 0.93
4 196 173 672 1088 280 1.43
8 272 166 336 1088 539 1.98
16 455 158 168 1088 1024 2.25
32 854 151 84 1088 1959 2.29
64 1215 195 42 1088 5055 4.16

Keccak-f [800] 512 1 114 220 1024 288 62 0.54
2 137 184 512 288 103 0.75
4 168 182 256 288 205 1.22
8 249 163 128 288 367 1.47
16 415 160 64 288 719 1.73
32 524 209 32 288 1880 3.59

256 1 120 228 1280 544 97 0.81
2 143 182 640 544 155 1.08
4 183 182 320 544 310 1.69
8 266 153 160 544 522 1.96
16 430 165 80 544 1121 2.61
32 591 205 40 544 2785 4.71

tions, the state is always stored in distributed RAM, whereas the parallel
version uses registers. The access to registers has a shorter critical path,
because less logic is involved and hence, the clock frequency can be higher
(Sec. 2.4).

• The maximum clock frequencies increase for the versions processing less
slices in parallel, because the overall area consumption is less and therefore,
the Xilinx tool chain can better optimize the design. Hence, the critical
path typically becomes shorter.

7.4.3 Lightweight Hash Functions without Padding

In this thesis, several lightweight variants of Keccak are compared with an
implementation of the Photon hash function. For both algorithms not the most
compact implementation possibilities are taken into consideration, because
typical usages of FPGAs are not area limited such as ASIC applications such as



197

RFID tags. Therefore, FPGA implementations may often trade area savings for
additional throughput, if the area does not increase significantly. Furthermore,
many optimizations that are valid for ASICs may also be counter-productive
for FPGAs because it is well known, that replicating parts of a circuit may
even reduce the area for FPGAs [FS94, MBV06] (Sec. 4.3).

To facilitate a roughly fair comparisons between different variants of Kec-

cak-f [400] and Photon, similar security parameters are used. In particular,
Photon specifies five variants with 256, 224, 160, 128, and 80 bit message digests.
The security parameter c is equal to the size of the message digest for each
variant. Except for n = c = 80, the same values for the parameters n, and c are

10

100

1000

101001000

A
re
a
[S
lic
es
]

Throughput [MBit/s]

4.0
MBit/s
Slice

2.0
MBit/s
Slice

1.0
MBit/s
Slice

0.5
MBit/s
Slice

0.25
MBit/s
Slice

faster

sm
al
le
r

Photon-80/20/16
Photon-128/16/16
Photon-160/36/36
Photon-224/32/32
Photon-256/32/32

Keccak-f [400], n = 128, c = 256
Keccak-f [400], n = 128, c = 128
Keccak-f [400], n = 160, c = 160
Keccak-f [400], n = 160, c = 320
Keccak-f [400], n = 224, c = 224
Keccak-f [400], n = 256, c = 256

Figure 7.3: Area and throughput of Keccak-f [400] and Photon (Virtex-5).



198

used for Keccak-f [400] in addition to variants with higher pre-image security
for n ∈ {160, 128}. For Keccak-f [200], only the variants with n = c = 128

and n = c = 160 can be implemented.

The results in Tab. 7.3, and Tab. 7.4 as well as Fig. 7.3 and Fig. 7.4 show,
that except for the variant with 256 bit message digest, all Photon variants are
smaller compared to any of the Keccak-f [400] implementations. This changes
for Keccak-f [200], where the smallest variants are direct competitors to the
Photon variants with the same security parameters. In contrast to the area
results, the throughput of Keccak is much higher than for Photon, which is
extremely slow. This can be explained with the very low input rate of Photon

10

100

1000

101001000

A
re
a
[S
lic
es
]

Throughput [MBit/s]

4.0
MBit/s
Slice

2.0
MBit/s
Slice

1.0
MBit/s
Slice

0.5
MBit/s
Slice

0.25
MBit/s
Slice

faster

sm
al
le
r

Photon-80/20/16
Photon-128/16/16
Photon-160/36/36
Photon-224/32/32
Photon-256/32/32

Keccak-f [200], c = 128
Keccak-f [200], c = 160

Figure 7.4: Area and throughput of Keccak-f [200] and Photon (Virtex-5).



199

Table 7.3: Results for the lightweight versions of Keccak (Virtex-5).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 102 194 480 144 58 0.57 58 0.57

2 127 197 240 144 118 0.93 118 0.93
4 158 171 120 144 205 1.30 205 1.30
8 236 181 60 144 436 1.85 436 1.85
16 273 267 30 144 1280 4.69 1280 4.69

128 128 1 108 195 608 272 87 0.81 87 0.81
2 129 187 304 272 167 1.30 167 1.30
4 179 160 152 272 286 1.60 286 1.60
8 251 177 76 272 632 2.52 632 2.52
16 300 262 38 272 1877 6.26 1877 6.26

160 160 1 104 189 576 240 79 0.76 79 0.76
2 132 191 288 240 159 1.21 159 1.21
4 171 176 144 240 294 1.72 294 1.72
8 247 170 72 240 568 2.30 568 2.30
16 293 312 36 240 2077 7.09 2077 7.09

160 320 1 115 218 416 80 42 0.36 21 0.18
2 106 216 208 80 83 0.79 42 0.39
4 153 179 104 80 137 0.90 69 0.45
8 237 202 52 80 311 1.31 155 0.66
16 240 283 26 80 869 3.62 435 1.81

224 224 1 108 184 512 176 63 0.58 32 0.29
2 123 182 256 176 125 1.02 63 0.51
4 163 163 128 176 224 1.38 112 0.69
8 239 160 64 176 439 1.84 220 0.92
16 254 209 32 176 1149 4.52 574 2.26

256 256 1 108 228 480 144 68 0.63 34 0.32
2 115 182 240 144 109 0.95 55 0.48
4 160 182 120 144 219 1.37 109 0.68
8 239 153 60 144 368 1.54 184 0.77
16 250 165 30 144 791 3.17 396 1.58

Keccak-f [200] 128 128 1 82 190 224 72 61 0.74 31 0.37
2 118 179 112 72 115 0.98 58 0.49
4 144 191 56 72 246 1.71 123 0.85
8 150 333 28 72 857 5.71 429 2.86

160 160 1 85 211 192 40 44 0.52 11 0.13
2 107 214 96 40 89 0.83 22 0.21
4 134 190 48 40 159 1.18 40 0.30
8 146 333 24 40 556 3.81 139 0.95

and furthermore, the high number of clock cycles.

The Keccak-f [400] and Keccak-f [200] results scale very well, again,
similar to the previous heavyweight evaluation. However, since the control logic
and the state dominates the area for almost all designs, the area reduction
from the fastest to the smallest version is less significant than for the SHA-3
candidate version.

The Photon results are almost as expected. However for Photon-224/32/32,



200

Table 7.4: Results for the Photon hash function family (Virtex-5).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 71 220 245 20 18 0.25 3.60 0.051
Photon-128/10/16 78 196 436 16 7 0.09 0.90 0.012
Photon-160/36/36 99 219 597 36 13 0.13 2.65 0.027
Photon-224/32/32 81 214 776 32 9 0.11 1.26 0.016
Photon-256/32/32 158 126 436 32 9 0.06 1.15 0.007

the area usage is significantly below Photon-160/36/36. This can be explained
with the parameter d of Photon, because for Photon-224/32/32 d = 8 is used
and thus, the management of counters becomes much easier, because it is a
power of 2. Hence, the Xilinx tool chain is able to better optimize some parts
of the design and the area decreases.

7.5 Third-Party Implementations

For the comparisons with third-party results, only results for implementations of
the third round specifications are used. This is fair, because for some algorithms,
changes were made that influence the performance in a significant way. For
example the throughput of BLAKE reduces, because of an increased number
of rounds. The third round version of JH suffers the same fate. Furthermore,
Grøstl tweaked the round function considerably and therefore, the performance
also changes. The decision to exclude all other results is sometimes unfortunate,
because otherwise excellent compact implementations like the one from Beuchat
et al. [BOY10] are also not shown.

From the many different possibilities, three comparative studies highlight the
relation of the results of this thesis and the results in the literature [KDV+11,
GHR+12b, KYS+11] (Tab. 7.5). Note that the results of [KDV+11] are only
provided as a reference point in this table, because they only presented results
for Virtex-6 FPGAs. The chosen results highlight the high end implementations
in terms of the throughput-area ratio and the lightweight end with small
implementations.

The comparison shows mixed results. For the high-throughput variants
Keccak excels all other candidates, followed by JH and Grøstl and then Skein.



201

Table 7.5: Third-Party Results for the 256 bits versions of the SHA-3 finalists.

Name Reference FPGA Area Frequency Clock Input size Long TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
BLAKE This work Virtex-5 261 205 228 512 460 1.76

[KDV+11] Virtex-6 117 274 1182 512 105 0.90
Virtex-6 175 347 1182 512 132 0.75

[GHR+12b] Virtex-5 231 - - 512 389 1.69
Virtex-5 3495 - - 512 7547 2.16

[KYS+11] Virtex-5 271 253 290 512 448 1.65

Grøstl This work Virtex-5 352 298 160 512 954 2.71
[KDV+11] Virtex-6 260 280 176 512 815 3.13

Virtex-6 293 330 176 512 960 3.27
[GHR+12b] Virtex-5 981 - - 512 951 0.97

Virtex-5 4177 - - 512 16353 3.91
[KYS+11] Virtex-5 313 317 547 512 417 1.33

JH This work Virtex-5 388 270 168 512 823 2.12
[KDV+11] Virtex-6 240 288 688 512 214 0.89

Virtex-6 304 299 688 512 222 0.73
[GHR+12b] Virtex-5 306 - - 512 138 0.45

Virtex-5 982 - - 512 4955 5.05
[KYS+11] Virtex-5 271 250 800 512 160 0.88

Keccak This work Virtex-5 380 168 200 1088 916 2.41
This work Virtex-5 272 166 336 1088 539 1.98
This work Virtex-5 161 186 1344 1088 151 0.93
This work Virtex-5 140 200 2688 1088 81 0.58
[KDV+11] Virtex-6 144 250 2137 1088 128 0.89

Virtex-6 188 285 2137 1088 145 0.77
[GHR+12b] Virtex-5 354 - - 1088 855 2.41

Virtex-5 1369 - - 1088 13337 9.74
[KYS+11] Virtex-5 275 259 2396 1088 118 0.43

Skein This work Virtex-5 502 283 584 512 248 0.49
[KDV+11] Virtex-6 240 160 230 256 179 0.75

Virtex-6 291 200 230 256 223 0.77
[GHR+12b] Virtex-5 1025 - - 512 1179 1.15

Virtex-5 1858 - - 512 5338 3.87
[KYS+11] Virtex-5 246 176 2398 512 37 0.15

However, for midrange and lightweight implementations this picture changes
considerably. The winner is now Grøstl, which scales very good. The overall
area consumption is still pretty high. The next three candidates are Keccak,



202

JH, and BLAKE, for a similar area consumption and Skein is the loser, which
trails far behind.

The results presented in this thesis are based on the studies presented in
[JA11, Jun12] and the recent paper [JS13]. At that time, the results on Keccak

and JH were improving the state of the art significantly by providing reason-
ably small implementations with much better throughput for both algorithms.
Especially for Keccak it was believed, that it is impossible to implement a
midrange implementation with a high throughput for FPGAs. Another improve-
ment for lightweight to midrange implementations was developed in [JS13],
scaling the previously developed architecture in both directions lightweight and
high-throughput.

7.6 Discussion and Further Work

From the practical as well as the previous theoretical evaluation, it can be seen,
that the specification of the Keccak hash function is a very versatile hash
function for hardware implementations. It is possible to choose parameters
for high-throughput applications as well as for very lightweight applications.
Extending the specifications of the other SHA-3 finalists to be more scalable
towards lightweight applications seems to be in theory feasible. However, the
security of such variants would have to be analyzed in detail first.

The Photon hash function is specially designed for low-area implementations.
Thus, the designers did not emphasize the possibility of high-throughput
implementations. This can be seen in the theoretical evaluation in the previous
chapter as well as in the implementation results. It would be possible to extend
the Photon hash function to use a larger state and thus, to be able to use a
higher rate. Again, the security of such constructions would have to be analyzed
in detail, before they are used.

In further work, a stronger connection between the theoretical and the
practical evaluations could be developed. A first step would be to study the
effects of the serialization and the static resource consumption of the state
and the control logic, e.g. the correlation between the theoretical and the
practical results can be analyzed. Furthermore, the theoretical approach could
be extended to estimate the clock frequency, as already mentioned in the



203

discussion in Ch. 6 and additionally, a better estimate on the area consumption
could be developed. A starting point for this extension and further improvement
of the theoretical tools for the performance modeling would be to implement
more of the discussed architectures and then to analyze the results and to
correlate them to the theoretical evaluation results.

From a practical point of view, it is also possible to extend the evaluation
methodology for other cryptographic functions. For example, the approach
could help to better understand the architectural properties of the authenticated
encryption algorithms proposed for the CAESAR competition [Ber14].



204



Part IV

Appendix

205





Appendix A

Finite Fields

A.1 Introduction

In this chapter, an introduction to the theory of finite fields is provided. It is
limited to the essentials which are relevant for the discussion of the optimizations
of the AES S-box in Sec. 6.6.5. The theory is also helpful to better understand
several aspects of the evaluated hash algorithms, because they are in parts
defined using finite fields. The standard reference for finite fields used in this
thesis is [LN96]. Additional references for the theory of finite fields are for
example [KM09, How06]. References to the individual definitions, lemmas,
theorems and corollaries are given, if applicable. References to publications
describing algorithms are also provided as necessary.

This introduction covers the necessary theoretical tools to build so called
composite field representations [Paa94, Can05a, Can05b]. These composite
field representations are based upon the concept of extension fields and are
used to construct efficient implementations for expensive computations from
several smaller and simpler parts. This different representation often leads to
hardware implementations with less area consumption. The decomposition into
smaller subproblems may also be accompanied by changing the basis of the
finite field representation. This can be useful, because for finite fields different
bases may lead to different trade-offs in terms of implementation efficiency. For
example, squaring using a normal basis representation is almost free of any
cost, because it is just a bit-wise rotation. Hence, in hardware it is very efficient
to implement.

207



208

The chapter is organized as follows. First, the definitions of rings, commuta-
tive rings and finally finite fields are introduced (Sec. A.2). These definitions
are then used to present core results of finite field theory (Sec. A.3), followed by
the definition of polynomial and normal bases and the corresponding arithmetic
operations addition and multiplication (Sec. A.4). Afterwards, the composite
field approach is explained in Sec. A.5. It is accompanied by the definitions of
all algorithms needed to construct the evaluated representations and to convert
elements from one representation to another (Sec. A.6).

A.2 Basic Definitions

Definition A.1 (Def. 1.28 [LN96]) A ring with identity is a triple R =

(R,⊕,⊗), where R is a non-empty set of elements, ⊕ and ⊗ are the operations,
usually called addition and multiplication. The following properties hold, for
a, b, c, 0, 1 ∈ R:

1. Associativity for addition:

(a⊕ b)⊕ c = a⊕ (b⊕ c)

2. Commutativity for addition:

a⊕ b = b⊕ a

3. Existence of 0:
a⊕ 0 = a

4. Existence of additive inverse (negative):

a⊕ (−a) = 0

5. Associativity for multiplication:

(a⊗ b)⊗ c = a⊗ (b⊗ c)

6. Distributivity:
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

(a⊗ b)⊕ c = (a⊕ c)⊗ (b⊕ c)



209

7. Existence of 1:

(a⊗ 1) = (1⊗ a) = a

Note that in the previous definition the last property is not mandatory for
the definition of a ring. However, since it is not important for the present work
to distinguish between the two cases of a ring with identity and without, only
the first case is defined.

Definition A.2 (Def. 1.29 [LN96]) A commutative ring is a ring R =

(R,⊕,⊗) with the following additional property, for a, b ∈ R:

8. Commutativity for multiplication:

a⊗ b = b⊗ a

Definition A.3 (Def. 1.29 [LN96]) A (finite) field is a commutative ring
F = (F,⊕,⊗), where F is a (finite) non-empty set and the following additional
property holds, for a ∈ F \ {0}.

9. Existence of multiplicative inverse:

(a⊗ a−1) = 1

A.3 Basic Results

Examples of commutative rings are the well known algebras Z,Q, R and Q.
They are obviously not finite fields. However, any number of finite fields can be
easily constructed. A first step to these finite fields are residue class rings over
Z. In these rings, denoted as Zn1, the arithmetic is performed modulo some
n ∈ N.

Definition A.4 (Def. 1.36 [LN96]) An algebra (Zn,⊕,⊗) with Zn =def {[a]≡n :

0 ≤ a < n} is called residue class ring. Its elements are residue classes, which
are defined as equivalence classes modulo n, i.e. the residue class [a]≡n is defined
as [a]≡n =def {x ∈ Z : a ≡ x mod n}.

1In the present work the Zn notation is preferred over the alternative more verbose Z/nZ.
Both notations are otherwise describing the same algebraic structure.



210

An algebra Zn inherits some of its basic properties from Z, which is useful
to prove that for all n > 1, Zn is indeed a commutative ring:

Theorem A.5 (Ex. 1.37 [LN96]) Let n ∈ N, n > 1, then the algebra (Zn,⊕,⊗)

is a commutative ring.

Proof For two residue classes [a]≡n and [b]≡n , addition and multiplication can be
defined by the homomorphisms [a+b]≡n = [a]≡n⊕[b]≡n and [ab]≡n = [a]≡n⊗[b]≡n .
Thus, the above defined properties 1 to 8 are inherited from Z for all n ∈ Z. 2

A special case is a residue class ring Zp, when p is prime. This is formalized
in the following theorem.

Theorem A.6 (Thm. 1.38 [LN96]) A residue class ring Zp is a finite field
iff p is prime.

Proof By Thm. A.5, it is sufficient to show, that property 9 from Def. A.3
holds (Existence of a multiplicative inverse).

Let a, b be two arbitrary elements a, b ∈ Zp \ {[0]≡p}. Then ab = [0]≡p

if and only if p|ab. However, since p is prime p|ab if and only if p|a or p|b
and thus, a = [0]≡p or b = [0]≡p which is a contradiction to the assumption
a, b ∈ Zp \ {[0]≡p}. Hence, Zp has no zero divisors, i.e. for any a ∈ Zp \ {[0]≡p},
there is no b ∈ Zp \ {[0]≡p} such that ab = [0]≡p .

Furthermore, let a0, . . . , ap−1 ∈ Zp be the elements of Zp and a ∈ Zp\{[0]≡p}.
Then, for two elements ai, aj ∈ Zp, one has aai = aaj , if a(ai − aj) = [0]≡p and
because Zp contains no zero divisors, one has ai = aj. Therefore, all elements
of the form aai ∈ Zp are distinct.

In particular, for all a ∈ Zp \{[0]≡p}, there exists an element b ∈ Zp \{[0]≡p},
such that ab = [1]≡p , i.e. b is the multiplicative inverse of a. 2

The finite field Z2 has a special importance, because many cryptographic
algorithms are defined over this field for efficiency reasons. In particular Z2 is
interesting because the field operations correspond directly to binary Boolean
gates (⊕ = XOR, ⊗ = AND) and thus, the operations can be efficiently
implemented in hardware. It is isomorphic to the finite field F2, which is often
also denoted as GF (2), where GF is an abbreviation for Galois field, named
after Évariste Galois, who pioneered the field of Galois theory. In the following



211

chapters the F2 notation will be used in cases, where properties of the finite
fields are important.

The importance of F2 is generalized in finite fields of characteristic 2. The
characteristic of a ring in the general case is defined as follows:

Definition A.7 (Def. 1.43 [LN96]) Let R be a ring and c > 0 such that for
every r ∈ R, cr = 0 is true. Then, the least such c is called the characteristic
of the ring R. If no such c > 0 exists, then c = 0.

For finite fields, this definition results in the following theorem:

Theorem A.8 (Cor. 1.45 [LN96]) The characteristic of a finite field F is
always prime.

Proof Let 0, 1 ∈ F. Then the finite field F has a positive characteristic c ≥ 0,
because it has only finitely many elements and thus, there are always two
natural numbers 1 ≤ k < l such that k ·1 = l ·1 or (l−k) ·1 = 0. Thus, because
k 6= l one has c = l − k > 0.

Furthermore, the characteristic c is prime, because if c is not prime, then
for two natural numbers m,n < c, it is possible to write c · 1 = mn · 1 =

(m · 1)(n · 1) = 0 and thus, one has also (m · 1) = 0 or (n · 1) = 0. This is a
contradiction to Def. A.7 and hence, c is prime. 2

Example A.9 F2 is easily seen to be of characteristic 2. If 0, 1 ∈ F2, then
2 · 1 = 1⊕ 1 = 0.

An extension to the concept of rings of the form Zn (or finite fields Zp)
are polynomial rings, which lead to the concept of extension fields. These
extension fields are later used to construct the composite field representations
and corresponding algorithms using operations in subfields of the finite field.

Definition A.10 (Def. 1.48 [LN96]) Let F be a finite field. Then F[x] is a
polynomial ring with elements of the form a0 + a1x+ a2x

2 + · · ·+ anx
n, with

coefficients ai ∈ F. F is called the ground field of F[x]2.

The arithmetic in polynomial rings is defined as follows. Addition is computed
by adding the coefficients ai from both summands using the addition operator

2The ground field F is also often called coefficient field.



212

of the ground field F. Multiplication is more complicated. In particular, the
multiplication of two polynomials a =

∑n
i=0 aix

i and b =
∑m

j=0 bjx
j is defined

as c =
∑n

i=0

∑m
j=0 aibjx

i+j , e.g. (a2x
2 +a3x

3)⊗ (b1x+ b3x
3) = a2b1x

3 +a3b1x
4 +

a2b3x
5 + a3b3x

6. Analog to addition, the coefficients are multiplied using the
multiplication from the ground field F.

The concept of residue class rings over Zcan be extended for polynomial rings.
Instead of the arithmetic modulo a natural number, a polynomial f ∈ F[x] is
used as modulus. The following theorem follows directly from Thm. A.5 and
Def. A.10.

Theorem A.11 Let F[x] be a polynomial ring and f ∈ F[x]. Then F[x]/〈f〉 is
a residue class ring modulo f .

This concept is further studied in the notion of a finite extension, which
is basically a polynomial residue class ring modulo a polynomial f . In the
notation F[x]/〈f〉, 〈f〉 is called an ideal. The notation is usually used to denote
such extensions, however, because ideals are not further needed in the present
thesis, they are not discussed here.

If the polynomial f is irreducible, the residue class ring modulo f F[x]/〈f〉 is
a finite field extension or simply a finite field. This is an extension of Thm. A.6
and Thm. A.11, because irreducible polynomials are similar to prime numbers
in N, i.e. a polynomial with degree k cannot be factored into polynomials with
a smaller degree 0 < l < k.

Theorem A.12 (Thm. 1.61 [LN96]) Let F be a finite field. Then the ring
F[x]/〈f〉 is a finite field iff f is an irreducible polynomial over F.

Definition A.13 Let F be a finite field and f(x) an irreducible polynomial in
F[x], then K = F[x]/〈f〉 is called a finite field extension K/F.

It is obvious from the definition of the addition in polynomial rings, that
the characteristic of the newly constructed extension fields is also prime and
thus, the following corollary holds.

Corollary A.14 Let Fp be a finite field with characteristic p. Then all finite
extensions Fpn/Fp also have characteristic p.



213

An important concept is the degree of an extension. The degree is easily
described using the observation that every finite extension can be interpreted
as a vector space L over the field K. The dimension of that vector space is the
degree of the extension L/K, which is equal to the degree of the irreducible
polynomial f .

Definition A.15 (Def. 1.83 [LN96]) Let K/M be a finite extension. Then
the degree of the extension K/M is the dimension of the vector space K over
M . The notation is [K : M ].

A finite field extension of a finite field is itself a finite field. Thus, it is
possible to further extend such a finite field extension. The degree of these
repeated extensions can be calculated according to Thm. A.16.

Theorem A.16 (Thm. 1.84 [LN96]) Let K/L and L/M be two finite field
extensions. Then K/M is a finite field extension with the degree [K : M ] = [K :

L][L : M ].

To show that the theorem is true, one has to prove that the combination of a
basis of K/L and a basis of L/M is linearly independent [LN96].

Furthermore, the number of elements contained in a finite field is connected
to the degree of a finite extension as follows:

Lemma A.17 (Lemma 2.1 [LN96]) Let M = Fq be a finite field and K/M
a finite field extension. Then, the field K/M has |K/M | = q[K:M ] elements.

Proof First, suppose that q is prime, then because of Thm. A.6 |M | = q.
Furthermore, every element of K can be represented using a basis {α1, . . . ,

α[K:M ]} ⊆ Fq. The elements of the basis have to be linearly independent.
An element b ∈ K is thus represented as b1α1 + · · ·+ b[K:M ]α[K:M ]. Each bi

can have q values and thus, there are q[K:M ] possible values for b, because the
basis elements are linearly independent. The same reasoning can be applied
inductively for the case when q is not prime. 2

The most important result for the further work is the uniqueness of finite
fields, i.e. there is exactly one finite field up to isomorphism with q = pn

elements, p prime. However, to prove this theorem, a little bit more finite field
theory has to be introduced:



214

Lemma A.18 (Lemma 2.3 [LN96]) Let Fq be a finite field with |Fq| = q.
Then aq = a for all a ∈ F.

Proof Fq \ {0} forms a group under multiplication. Hence, by Lagrange’s
theorem aq−1 = 1 and therefore aq = a. 2

The following lemma is usually used in a more general form for commutative
rings (the Frobenius endomorphism), but the more restricted version for finite
fields is sufficient for the following purposes.

Lemma A.19 (Thm 1.46 [LN96]) Let Fq be a finite field with q = pn. Then
for two elements a, b ∈ Fq, (a+ b)q = aq + bq and (a− b)q = aq − bq.

Proof The following property is
(
p
i

)
≡ 0 mod p true for all 0 < i < p and

thus (a + b)p = ap +
(
p
1

)
ap−1b + · · · +

(
p
p−1

)
abp−1 + bp = ap + bp. This result

can be extended to q = pn by induction, because (a+ b)(p
n) = (a+ b)p(p

n−1) =

(ap + bp)(p
n−1). A similar argument with alternating signs of the summands

holds for the second case. 2

An extension can be alternatively defined by adjoining the elements of a
set M ⊆ F to a subfield K ⊆ F , denoted as K(M), or if M = {α1, . . . , αn},
simply K(α1, . . . , αn) (Def. 1.79 [LN96]). The extension is then the smallest
subfield of F which contains both K and M . This is used in the next definition.

Definition A.20 (Def. 1.89 [LN96]) Let K be a finite field, F be an exten-
sion field of K and f ∈ K[x]. Then F splits f , if f can be factored into linear
factors in F [x], i.e. there are elements α1, . . . , αn ∈ F , such that

f(x) = a(x− α1)(x− α2) · · · (x− αn),

where a is the leading coefficient of f . The field F is said to be the splitting
field of f over K if f splits in F and if F = K(α1, . . . , αn).

Because of the last condition F = K(α1, . . . , αn), the splitting field is the
smallest field which contains all the roots α1, . . . , αn. This idea leads to the result
that a splitting field f over K always exists and is unique up to isomorphism
(Thm. 1.91 [LN96]).

The next theorem states the central result, that all finite fields with the
same cardinality (i.e. the same number of elements) are isomorphic. This result



215

makes it possible for a developer to choose a representation of a finite field to
improve the efficiency of an implementation in terms of circuit size, depth or
another metric such as power consumption.

Theorem A.21 (Thm. 2.5 [LN96]) There exists exactly one finite field Fq
up to isomorphism, with q = pn, p prime and n ≥ 1. This finite field has exactly
|Fq| = q = pn elements and is isomorphic to the splitting field of xq − x over
Fp.

Proof (Existence) Let f(x) = xq − x be a polynomial in Fp[x] and let F be
the splitting field of f over Fp. Then f has q distinct roots, because it has no
common roots with the derivative f ′(x) = qxq−1 − 1 = q − 1 = −1 and by
Thm. 1.68. [LN96].

Let S = {a ∈ F : aq = a} be the subfield of F that contains only the roots of
xq − x, then S is a subfield of F , because for all elements a, b ∈ F (by applying
Lem. A.18 and Lem. A.19):

• 0, 1 ∈ S,

• (a− b)q = aq − bq = a− b ∈ S.

• and for b 6= 0, (ab−1)q = aqb−q = ab−1 ∈ S

Furthermore, S must split xq−x, because S contains all its roots, and therefore
S = F , because the splitting field F is the smallest field that splits xq − x.

(Uniqueness) Let F be a finite field with q = pn elements, then F contains
Fp and furthermore it splits xq−x ∈ Fp[x], because aq−a = 0 for all q elements
a ∈ F (Lemma A.18). Therefore, because of the uniqueness of splitting fields,
the result follows. 2

Each finite field contains a number of subfields. For a finite field Fpn the
subfields are defined by the divisibility relation. In particular, for an extension
Fpn/Fpm with degree n, each subfield has a degree m, such that m|n.

This may also be expressed by the lattice of subfields of finite fields. Two
examples are depicted in Fig. A.1. The lattice for the subfields of the finite
field F28 is very simple (Fig. A.1b). This is important, because it plays a major
role in the further optimization approach, especially in the optimization of the
AES S-box used by the Grøstl and the Photon hash functions.



216

(a) F212 (b) F28

Figure A.1: Lattices of the subfields of a finite field.

A.4 Representations

A finite field element has many possible representations. First of all, many
isomorphic finite fields Fpn can be constructed using repeated finite extensions,
if there exists one or more m with 2 ≤ m < n and m|n. For example, the
finite field Fp6 may be constructed using the extension Fp6/Fp or in two steps
– first Fp2/Fp and then Fp6/Fp2 . Because of Thm. A.21 both finite fields are
isomorphic. However, the representation of the elements differs for the first and
the second method to construct the same finite field.

Furthermore, even using the same method to construct a finite field may lead
to different representations of field elements, because there are many possible
bases and for most extension fields, there are several irreducible polynomials.
Both choices have a major impact on the number of ground field operations.
Therefore, it is necessary to understand the different representations. The
number of possible bases is rather large, i.e. if Fqm is an extension field over Fq,
then the number of unique bases is (qm − 1)(qm − q)(qm − q2) · · · (qm − qm−1)
(Ex. 2.37 [LN96]). Fortunately, there are only several types of bases that are
interesting for the composite field approach.

The probably easiest to grasp basis is the polynomial basis. Furthermore it
is relatively easy to implement the multiplication algorithm for a polynomial
basis representation in software implementations.

Definition A.22 A polynomial basis of Fqn over Fq is a basis of the form



217

{1, α, α2, . . . , αn−1} for some primitive root α ∈ Fqn.

Example A.23 An element in a polynomial basis is represented as a0 + a1α+

a2α
2 + · · ·+ an−1α

n−1, where all ai ∈ Fq.

For a thorough evaluation of all possibilities, the number of different polyno-
mial bases is interesting. This number has a close connection to the number of
irreducible polynomials.

Definition A.24 ([Möb32, Mer74]) Let m ∈ N , then the Möbius function
µ(m) is defined as follows:

µ(m) =


1, if m = 1

0, if m is divisible by the square of a prime

(−1)k, if m is the product of k distinct primes

Theorem A.25 (Thm. 3.25 [LN96]) Let Fq[x] be a polynomial ring over
Fq, then the number of monic irreducible polynomials of degree n is exactly:

Nq(n) =
1

n

∑
d|n

µ(
n

d
)qd =

1

n

∑
d|n

µ(d)q
n/d.

Since every irreducible polynomial of degree n has n distinct primitive roots,
the number of polynomial bases is exactly

∑
d|n µ(d)qn/d. For example, the

number of monic irreducible polynomials of degree 2 over F2, F22 and F42 are
displayed in Tab. A.1. The corresponding number of polynomial bases is shown
in Tab. A.2.

Table A.1: Number of monic irreducible polynomials of degree 2.

polynomial ring F2[x] F22 [x] F42 [x]

number of polynomials 1 2 8

Table A.2: Number of different polynomial bases.

finite field F22/F2 F42/F4 F162/F16

number of polynomial bases 2 4 16



218

For hardware implementations, using a normal basis sometimes results in a
better resource utilisation [OM86].

Definition A.26 (Def. 2.32 [LN96]) A normal basis of Fqn over Fq is a
basis of the form {α, αq, . . . , αqn−1} for some primitive root α ∈ Fqn.

Compared to the case of polynomial bases, there are less possible normal
bases. The reasoning will become apparent with the following theorem:

Theorem A.27 (Thm. 2.14 [LN96]) Let f be an irreducible polynomial of
degree n in Fq[x]. Then all roots are in Fqn and for one root α ∈ Fqm, all roots
are α, αq, αq2 , . . . , αqn−1.

The key observation is, that the roots of an irreducible polynomial f(x)

correspond exactly to the elements of a normal basis. Thus, the number of
normal bases and the number of irreducible polynomials coincides. This is also
the reason for the efficient squaring operation over an extension field of F2,
which is in fact a simple bit rotate operation.

The most important difference between these representations for the following
optimizations is the complexity of arithmetic operations, i.e. the number of
operations over the ground field Fq. The most fundamental operations are
addition and multiplication. The addition of two polynomials a, b ∈ Fq[x] each
of degree n is very easy and never changes depending on the representation:

s = a⊕ b =
n∑
i=0

(ai ⊕ bi)xi

In contrast, the multiplication differs considerably between polynomial and
normal bases. The multiplication can be generally expressed as a multiplication
table independent of the basis. For example, Fig. A.2 presents the multiplication
table for the finite field F22 using a polynomial basis (Fig. A.2a) and a normal
basis (Fig. A.2b).

According to Thm. A.21, all finite field representations of the same order are
isomorphic to each other. Therefore, the general structure of such multiplication
tables is the same, only the names (or symbols) are changed. The main drawback
of the multiplication tables is the exponential growth with the number of
bits of the binary representation of finite field elements. Hence, for practical



219

Algorithm A.1 Multiplication in finite fields
Require: a, b ∈ Fq[x]/〈f〉 in polynomial basis representation
Ensure: c← a⊗b, c ∈ Fq[x]/〈f〉
c←

∑n
i=0

∑m
j=0 aibjx

i+j

c← c mod f(x)

return c

(a) Polynomial Basis (b) Normal Basis

Figure A.2: Multiplication table for F22 .

implementations, often a polynomial multiplication algorithm is used with a
polynomial basis representations, followed by modular reduction (Alg. A.1).

Depending on the finite field, there exists a variety of possible algorithms. For
small fields, the naïve textbook implementations of polynomial multiplication
and division is often sufficient and very easy to implement. For larger finite
fields, especially for fields with a high characteristic, it is possible to use the
Karatsuba multiplication [WP06, KO62] and some variation on the Barrett
reduction [Bar87] or the Montgomery multiplication [Mon85].

The multiplication algorithm for normal basis representations is in its general
form more complicated and only the special case of squaring is very efficient.
There are basically two possibilities. The first is to convert the normal basis
representation to a polynomial basis and then use the multiplication algorithm
for polynomial bases and later convert it back. The second is to use a special-
ized normal basis multiplier, which usually implies the precomputation of a
multiplication matrix M . This matrix for finite fields over F2 can be calculated
for example using Alg. A.6.3 described in IEEE Std. 1363-2000 [Yin00]. The
multiplication is then computed according to Alg. A.2. In this work the first
approach was used, because all the internal calculations are implemented using
a polynomial basis and thus, it is easier to do the conversion to a normal basis
representation once as a post processing operation instead of implementing all



220

Algorithm A.2 Multiplication in finite fields over F2 using a normal basis.
Require: M ∈ Fm×m2 , a, b ∈ F2m in normal basis representation
Ensure: c← ab

x← a

y ← b

for i = 0 to m− 1 do

ci ← aMbT

x← RotateLeft(x, 1)

y ← RotateLeft(y, 1)

end for

return c

necessary algorithms for a normal basis representation.

Note, that even though polynomial basis multiplication is usually faster in
software, both described algorithms have a roughly quadratic runtime in terms
of the number of bits per finite field element. However, if the parameters of the
finite field are fixed for an application, such as the basis and the irreducible
polynomial, it is often possible to optimize the implementation and hence, to
achieve a significant speedup.

A.5 Composite Fields

One of the more expensive problems over finite fields is the computation of
the inverse of an element a in a finite field. Several standard algorithms can
be used, e.g. the extended Euclidean algorithm [Knu69]. Another possibility is
to use a square and multiply algorithm, because according to Lem. A.18 the
inverse of a field element a ∈ Fq can be calculated as a−1 = aq−2. For example,
let a ∈ F28 , then the inverse of a is a−1 = a254. The main advantage of the
latter approach is, that no general algorithm for modular computation has to
be implemented; a modular reduction with the irreducible polynomial is still
necessary, but this modular reduction can be implemented more efficiently than
a general algorithm.

Both ideas are quite inefficient for hardware implementations – the extended
Euclidean algorithm requires a polynomial division algorithm, the square and



221

multiply approach takes a lot of time to compute. A different observation leads
to a more area-efficient implementation. Every algorithm over a finite field
may also be expressed in terms of simpler operations over a subfield of the
original finite field. For example, the inversion in F28 can be expressed in terms
of simpler operations in F24 and these operations may in turn be implemented
using operations in F22 and F2.

In this section, this decomposition approach is demonstrated exemplary
using the finite field F28 . However, the methodology can be easily adapted to
larger finite fields, if needed.

Each element of the finite field F28 can be expressed as polynomial a of
degree 7 of the following form:

a = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7,

where each coefficient ai ∈ F2. Instead of this polynomial representation, we can
express the same element in an isomorphic finite field F162/F16, by a polynomial

a′ = a′0 + a′1x
′

with coefficients a′0, a′1 in F16 = F24 . This isomorphic conversion can be contin-
ued with F24 , at the end yielding a nested representation using the subfields
F2,F22/F2, F(22)2/F22 and F((22)2)2/F(22)2 .

For this conversion, three irreducible polynomials of degree two are necessary:

f(x) = t+ sx+ x2

g(y) = v + uy + y2

h(z) = 1 + z + z2,

where f(x) is an irreducible polynomial over F16, i.e. f(x) ∈ F16[x], g(y) ∈ F4[y]

and h(z) ∈ F2[z]. There is only one irreducible polynomial h(z) of degree 2,
therefore no search for such a polynomial is necessary.

The exact values for s,t,u and v may have several different values, and
thus, different polynomials can be constructed. Several irreducible polynomials
have to be investigated, because for each irreducible polynomial, the area
consumption of the hardware implementation differs. The choice of basis for
each subfield adds additional variety, because it also influences the gate count.



222

Thus, at first only a general formula for both inversion and multiplication
in each subfield is developed, independent of the exact irreducible polynomial.
This decomposition was originally developed in the papers by Canright [Can05a,
Can05b]). Let a, b ∈ F162 and b be the inverse element of a. Then the inverse
may be calculated as follows.

ab = (a0 + a1x)(b0 + b1x) mod (t+ sx+ x2)

= (a0b0) + (a0b1 + a1b0)x+ (a1b1)x
2 mod (t+ sx+ x2)

= (a0b0) + (a0b1 + a1b0)x+ (a1b1)x
2 + a1b1(t+ sx+ x2)

= (a0b0 + a1b1t) + (a0b1 + a1b0 + a1b1s)x

1 = 1 + 0x

The next step is to solve the two equations:

1 = a0b0 + a1b1t

0 = a0b1 + a1b0 + a1b1s

a1 = a0a1b0 + a21b1t

0 = a20b1 + a0a1b0 + a0a1b1s

a1 = b1(a
2
1t+ a20 + a0a1s)

a1b0 = (a0 + a1s)b1

b1 = (a21t+ a20 + a0a1s)
−1a1

b0 = (a21t+ a20 + a0a1s)
−1(a0 + a1s)

The coefficients a0, a1, b0, b1, s and t are all elements in F16. Hence, the cal-
culation of the inverse uses several operations in F16, in particular several
multiplications, additions and one inversion.

The inversion in F16 = F42/F4 is very similar. For the elements c, d ∈ F42 ,
where d is the inverse of c, the following equation describes the process of
inversion:

cd = (c0d0 + c1d1v) + (c0d1 + c1d0 + c1d1u)y



223

Solving the two equations similar to the previous case yields:

d1 = (c21v + c20 + c0c1u)−1c1

d0 = (c21v + c20 + c0c1u)−1(c0 + c1u)

The computation of the inverse in F22 is simpler, because the coefficients of
the irreducible polynomial are fixed to one. For two elements e, f ∈ F22 , where
f is the inverse of e, solving the similar equations leads to:

f1 = (e21 + e20 + e0e1)
−1e1

f0 = (e21 + e20 + e0e1)
−1(e0 + e1)

The coefficients e0, e1, f0 and f1 are all elements of F2. In F2, squaring and
inversion is the same as identity, therefore these equations can be simplified
further:

f1 = (e21 + e20 + e0e1)
−1e1

= (e1 + e0e1 + e0e1)

= e1

f0 = (e21 + e20 + e0e1)
−1(e0 + e1)

= (e1 + e0 + e0e1)(e0 + e1)

= (e0e1 + e0 + e0e1 + e1 + e0e1 + e0e1)

= e0 + e1

A general formulation for multiplication in F162/F16 is calculated as follows:

ab = (a0 + a1x)(b0 + b1x) mod (t+ sx+ x2)

= (a0b0) + (a0b1 + a1b0)x+ (a1b1)x
2 mod (t+ sx+ x2)

= (a0b0) + (a0b1 + a1b0)x+ (a1b1)x
2 + a1b1(t+ sx+ x2)

= (a0b0 + a1b1t) + (a0b1 + a1b0 + a1b1s)x

Essentially the same result holds for the multiplication in F42/F4:

cd = (c0d0 + c1d1v) + (c0d1 + c1d0 + c1d1u)y



224

In contrast to inversion in F22 , multiplication is not much easier than in F162

and F42 :

ef = (e0f0 + e1f1) + (e0f1 + e1f0 + e1f1)z

Very similar calculations can be done for normal basis representations. The
results were also presented by Canright in [Can05a].

The representation of the newly constructed finite field is different to the
original one. Therefore, it is necessary to convert between the two isomorphic
representations. A relevant result of Sunar [Sun05] is the following theorem.
However, Sunar did only provide an informal proof sketch why this works.

Theorem A.28 Let Fq[x]/〈f〉 be a finite field with the normal or polynomial
basis B = {α1, . . . , αn} and let Gr[y]/〈g〉 be a finite field isomorphic to Fq[x]/〈f〉
with the normal or polynomial basis B′ = {β1, . . . , βm}, then

1. Finding an isomorphism between Fq[x]/〈f〉 and Gr[y]/〈g〉 is reducible to
finding a primitive root of the defining irreducible polynomial f(x) in
terms of Gr[y]/〈g〉.

2. Finding a primitive root of an irreducible polynomial is reducible to
factoring the polynomial f(x) over the splitting field Gr[y]/〈g〉.

Proof It is well known from linear algebra, that the change of basis matrix
M , to convert elements in terms of the basis B to elements in terms of the
basis B′, may be expressed in terms of the basis vectors α1, . . . , αm, if they are
converted to representations in B′ (Ch. 2 Thm. 7 [HK71]). The columns of M
are the vectors α1, . . . , αn converted to the representation in B′.

Since each polynomial and normal basis is defined using a single primitive
root of the irreducible polynomial f(x), it is enough to find the representation
of one primitive root in terms of the basis B′. This is equivalent to finding a
root α of the irreducible polynomial f(x) over the splitting field of Gr[y]/〈g〉,
because it is isomorphic to the splitting field over Fq[x]/〈f〉 (Thm. A.21).

Finding a primitive root is reducible to factoring the irreducible polynomial
in its linear factors, because a primitive root γ of f(x) results in f(γ) = 0. Since
all factorizations are of the form f(x) = (x− γ1)(x− γ2) · · · (x− γn), factoring
the polynomial f(x) in its linear polynomials yields all primitive roots of the
polynomial. 2



225

Example A.29 A root of the irreducible polynomial f(X ) of degree 8 in F2[x] is
an element α ∈ F28. This element can be alternatively interpreted as qi ∈ F((22)2)2

with 1 ≤ i ≤ 8, such that:

f(qi(x, y, z)) = 0

This is identical to factoring f(X ) into its linear factors over the splitting field
F((22)2)2:

f(X ) = (X − q1(x, y, z))(X − q2(x, y, z)) · · · (X − q8(x, y, z))

Each qi(x, y, z) is a root of f(X ) in terms of the composite field F((22)2)2.

A.6 Algorithms

In this thesis, several straightforward finite field algorithms were used in software
to generate the irreducible polynomials, the polynomial basis and normal basis
representations and also the matrices to convert to and from each representation.
In this section, the following algorithms implemented in software are described:

• Addition, multiplication, division, exponentiation, and extended Euclidean
algorithm

• Irreducibility test

• Root finding

• Basis transformation

As most of these algorithms are well known [MOV97] and the implementa-
tions were not specifically optimized, the algorithms will not be described in
depth.

A.6.1 Basic Operations over F2n

Addition Addition in finite fields with characteristic 2 is very easy, because
it is just a bitwise exclusive-or. Therefore addition is easier than in many other
algebras, e.g. the ring Z.



226

Algorithm A.3 Polynomial Division
Require: a,m ∈ F2n [x], m 6= 0

Ensure: a← qm⊕r, such that r < m.
msc← mdeg(m) -- Save the most significant coefficient of m.

m← msc−1 ⊗m -- Normalize m, i.e. make m a monic polynomial.

a← msc−1⊗ a -- Adjust a to be able to revert the normalization of

m after division.

for i = deg(a) downto deg(m) do

if ai 6= 0 then

qi ← ai

for j = deg(m)− 1 downto 1 do

ai+j−deg(m) ← ai+j−deg(m) ⊕ (ai ⊗mj)

end for

ai ← 0

end if

end for

r ← msc⊗ a -- Revert the normalization.

return (q, r)

Polynomial Multiplication Multiplication is a little bit more complex but
is also very easy to implement. The implementation uses a variant from a
textbook algorithm according to the already presented Alg. A.1.

Polynomial Division The algorithm for polynomial division is more com-
plicated than addition and multiplication. The easiest case of division is for
extension fields over F2, because all polynomials are always monic.

For the general polynomial division algorithm (Alg. A.3), first, the divisor
and the dividend have to be normalized before performing the division. Thus,
before returning the result, the remainder has to be denormalized again. For
the normalization, the multiplicative inverse of the most significant coefficient
of the divisor has to be calculated. Furthermore, the original most significant
coefficient of the divisor has to be stored, to be able to denormalize the result.



227

Polynomial Exponentiation The polynomial exponentiation is implemented
using a repeated square-and-multiply algorithm (Alg. A.4).

Note, that in the general case of polynomial rings, the result grows exponen-
tially. However, for the case of finite fields, this problem does not exist, because
the temporary result of each multiplication is performed modulo the irreducible
polynomial.

Algorithm A.4 Polynomial exponentiation

Require: a ∈ F2n [x], e ∈ N, with the binary representation e =
∑k

i=1 ei2
i

Ensure: b← ae

b← 1

for i = k downto 1 do

if ei = 1 then

b← b2 ⊗ a
else

b← b2

end if

end for

return b

Extended Euclidean Algorithm The greatest common divisor and the
multiplicative inverse of a finite field element are both calculated using the
extended Euclidean algorithm (Alg. A.5). In the description of the algorithm,
d is the greatest common divisor, s is the multiplicative inverse of a modulo b,
and t is the multiplicative inverse of b modulo a.

For the computation of the multiplicative inverse, it is necessary to normalize
the result from the extended Euclidean algorithm for the polynomial version,
i.e. if d 6= 1, it is necessary to calculate s′ = s × d−1 and t′ = t × d−1. This
follows from the definition of co-prime polynomials, i.e. two polynomials are
co-prime, if they do not have a common divisor with degree ≥ 1 and thus,
d 6= 1 is possible. The definition of the multiplicative inverse does not have this
relaxed property (Def. A.3), but requires that aa−1 = 1, which would not be
the case without the additional normalization.



228

Algorithm A.5 Polynomial extended Euclidean algorithm (extgcd(a, b))
Require: a, b ∈ F2n [x]

Ensure: d ← gcd(a, b) and as ⊕ bt = d, such that as = dmod b and bt =

dmod a.
s2 ← 1, s1 ← 0, t2 ← 0, t1 ← 1

while h 6= 0 do

q ← g div h

r ← g mod h

s← s2 − qs1
t← t2 − qt1
g ← h

h← r

s2 ← s1, s1 ← s

t2 ← t1, t1 ← t

end while

d← g, s← s2, t← t2

return (d, s, t)

A.6.2 Finding Irreducible Polynomials

As already mentioned, different irreducible polynomials result in different
representations of the same finite field elements. Each representation may be
more or less efficient. Thus, it is important to find and to evaluate all irreducible
polynomials for each subfield.

The irreducibility test implemented was first published by Ben-Or [Ben81].
Instead of finding only one monic irreducible polynomial, all such polynomials
have to be found for the evaluation. In the present case performance was not
the most important aspect, therefore a brute force search over all polynomials
of interest was implemented. For example, testing all polynomials of degree at
most 2 over F16 results in a feasible number of 4096 different tests.

Nonetheless, the search space may be pruned easily, with two observations:

1. Only monic polynomials are interesting, therefore less polynomials have
to be tested.

2. Every polynomial with lesser degree than desired may be omitted.



229

If non-monic polynomials would be used to construct the composite fields,
testing for these polynomials would be completely unnecessary anyway. This
is a result of the fact, that two irreducible polynomials f, g do not require to
have gcd(f, g) = 1. Instead gcd(f, g) = c for some c ∈ F is sufficient, where F
is the ground field. This means that non-monic irreducible polynomials can
be easily constructed by multiplying a monic polynomial with some constant
c. Another observation reduces the number of irreducibility tests, because
the search may be aborted, if all monic irreducible polynomials were found
(Sec. A.4, Thm. A.25).

The test for irreducibility of a polynomial itself is relatively straightforward
[Ben81, GP97] (Alg. A.6). The following Thm. A.30 is central to the idea of
the algorithm, which is given here without proof.

Theorem A.30 (Thm 3.20 [LN96]) Let Fq[x] be a polynomial ring, then
for every n ∈ N, xqn − x is the product of all monic irreducible polynomials
over Fq, whose degrees divide n.

The algorithm tests for all possible monic irreducible factors of f(x) with
low degree using the greatest common divisor algorithm. In fact, if and only if
f(x) has no common factor with xqk − x, where k < n, then f(x) is irreducible.
However, it is enough for the algorithm to test for k ≤ n/2, because if f(x) has
a factor with a degree greater than n/2, the polynomial will always also have a
factor with a degree less than n/2.

Algorithm A.6 Ben-Or irreducibility test [Ben81]
Require: f(x) ∈ F2m [x], n = deg(f)

Ensure: true iff f(x) is irreducible
for i = 1 to bn

2
c do

if gcd(f(x), xq
i − xmod f(x)) 6= 1 then

return false

end if

end for

return true



230

A.6.3 Root Finding Algorithm

For the present use case it is enough to investigate the problem to find the
roots of an irreducible polynomial f(x) ∈ F2[x], because the AES polynomial
is f(x) = x8 + x4 + x3 + x+ 1. However, the principle can be easily adapted to
other irreducible polynomials over field with binary characteristic. The idea to
find the roots of such an irreducible polynomial works as follows. Since f is
irreducible in F2[x], the same polynomial is reinterpreted as a polynomial over
another field, where f is guaranteed to have only linear factors. This happens, if
each linear factor (z−α) leads to a root α of f(z), where α ∈ Fq and q = 2deg(f).
Therefore, the polynomial f(z) ∈ Fq[z] can be factored into linear factors using
any factorization algorithm.

The factorization algorithm implemented is an adapted version of an equal
degree factorization algorithm proposed for this purpose by Sunar [Sun05]. The
original version of the algorithm was published by Ben-Or [Ben81], which is
itself a modification of an algorithm developed by Rabin [Rab80]. However,
it is also possible to use other factorization algorithms to find a root of an
irreducible polynomial, e.g. [Ber67, Sho91].

Algorithm A.7 Sunar’s factorization algorithm [Sun05].
Require: f(z) ∈ Fq[z], n = deg(f)

Ensure: g(z) ∈ Fq[z] with degree 1.
g(z)← f(z)

while deg(g(z)) > 1 do

α(z)← random(Fq[z]/〈f〉)
β(z)← α + α2 + α22 + · · ·+ α2n−1

h(z)← gcd(g(z), β(z))

if deg(h(z)) > 0 then

g(z)← h(z)

end if

end while

return g(z)

This algorithm works in probabilistic polynomial time, because Ben-Or
proved in his paper that the degree of f decreases with each iteration with the
probability 1/2n−1. Therefore, after a polynomially bounded number of compu-



231

tation steps, the algorithm returns with a linear polynomial [Sun05, Ben81].
After normalization of g(z), the constant part of this linear polynomial is a root
of the original irreducible polynomial f(x). Note, that it is enough to find one
root α, because according to Thm. A.27, the roots of an irreducible polynomial
of degree n are exactly α, α2, . . . , α2n−1 . Furthermore, if the representation of
Fq is chosen appropriately, the root will already be in the target representation
for constructing the basis conversion matrix.

A.6.4 Basis Conversion Matrix

The basis conversion matrix Mpoly may be constructed with a root computed
using Alg. A.7. Let B be a polynomial basis of a finite field and B′ another
polynomial basis of the same field. Then the conversion matrix Mpoly to convert
from basis B to B′ is defined asMpoly =def (α0 α1 . . . αn−1), if α is a root of the
irreducible polynomial f in terms of the basis B′. This means the columns of
the matrix Mpoly correspond exactly to the polynomial basis in a representation
using basis B′ [HK71]. The inverse matrix M−1

poly may be easily computed using
standard linear algebra techniques.

The conversion matrix M ′
normal to convert from the polynomial basis to a

normal basis may be constructed in a similar way as M ′ =def (α, αq, . . . , αq
n−1

).

A.7 Implementation Results AES S-box

As mentioned in Sec. 6.6.5, 432 different representations are evaluated. In theory
there are more irreducible polynomials f(x) and g(y) which can be used to
construct many more isomorphic representations in a similar way, but choosing
s = u = 1 simplifies the arithmetic as previously discussed by Canright in
[Can05a]. In Tab. A.3 all post place and route results for Spartan-3 FPGAs
are presented.

In Tab. A.3, the values for u and v to form the irreducible polynomial
g(y) are displayed in a hexadecimal representation. Similar s and t for f(x).
Furthermore, the basis types for F4, F16 and F256 are displayed. The computed
roots are not shown, because for each extension, only two roots α and α2 are
relevant to form the three bases {1, α} and {1, α2}, and {α, α2}. The smallest



232

results are displayed in boldface. Interestingly, the representation from [Can05a]
is not among the smallest ones.

Table A.3: Results for the AES S-box composite field implementation (Spartan-
3).

u v s t F4 basis F16 basis F256 basis Spartan-3
[Slices]

1 2 1 8 {1, α} {1, β} {1, γ} 38
1 2 1 8 {1, α} {1, β} {1, γ2} 33
1 2 1 8 {1, α} {1, β} {γ, γ2} 36
1 2 1 8 {1, α} {1, β2} {1, γ} 39
1 2 1 8 {1, α} {1, β2} {1, γ2} 37
1 2 1 8 {1, α} {1, β2} {γ, γ2} 39
1 2 1 8 {1, α} {β, β2} {1, γ} 43
1 2 1 8 {1, α} {β, β2} {1, γ2} 34
1 2 1 8 {1, α} {β, β2} {γ, γ2} 36
1 2 1 8 {1, α2} {1, β} {1, γ} 35
1 2 1 8 {1, α2} {1, β} {1, γ2} 43
1 2 1 8 {1, α2} {1, β} {γ, γ2} 45
1 2 1 8 {1, α2} {1, β2} {1, γ} 35
1 2 1 8 {1, α2} {1, β2} {1, γ2} 38
1 2 1 8 {1, α2} {1, β2} {γ, γ2} 42
1 2 1 8 {1, α2} {β, β2} {1, γ} 39
1 2 1 8 {1, α2} {β, β2} {1, γ2} 38
1 2 1 8 {1, α2} {β, β2} {γ, γ2} 40
1 2 1 8 {α, α2} {1, β} {1, γ} 35
1 2 1 8 {α, α2} {1, β} {1, γ2} 41
1 2 1 8 {α, α2} {1, β} {γ, γ2} 44
1 2 1 8 {α, α2} {1, β2} {1, γ} 35
1 2 1 8 {α, α2} {1, β2} {1, γ2} 39
1 2 1 8 {α, α2} {1, β2} {γ, γ2} 40
1 2 1 8 {α, α2} {β, β2} {1, γ} 36
1 2 1 8 {α, α2} {β, β2} {1, γ2} 36
1 2 1 8 {α, α2} {β, β2} {γ, γ2} 40



233

1 2 1 9 {1, α} {1, β} {1, γ} 33
1 2 1 9 {1, α} {1, β} {1, γ2} 41
1 2 1 9 {1, α} {1, β} {γ, γ2} 39
1 2 1 9 {1, α} {1, β2} {1, γ} 36
1 2 1 9 {1, α} {1, β2} {1, γ2} 37
1 2 1 9 {1, α} {1, β2} {γ, γ2} 40
1 2 1 9 {1, α} {β, β2} {1, γ} 35
1 2 1 9 {1, α} {β, β2} {1, γ2} 42
1 2 1 9 {1, α} {β, β2} {γ, γ2} 38
1 2 1 9 {1, α2} {1, β} {1, γ} 40
1 2 1 9 {1, α2} {1, β} {1, γ2} 43
1 2 1 9 {1, α2} {1, β} {γ, γ2} 46
1 2 1 9 {1, α2} {1, β2} {1, γ} 39
1 2 1 9 {1, α2} {1, β2} {1, γ2} 35
1 2 1 9 {1, α2} {1, β2} {γ, γ2} 40
1 2 1 9 {1, α2} {β, β2} {1, γ} 36
1 2 1 9 {1, α2} {β, β2} {1, γ2} 39
1 2 1 9 {1, α2} {β, β2} {γ, γ2} 43
1 2 1 9 {α, α2} {1, β} {1, γ} 35
1 2 1 9 {α, α2} {1, β} {1, γ2} 42
1 2 1 9 {α, α2} {1, β} {γ, γ2} 44
1 2 1 9 {α, α2} {1, β2} {1, γ} 35
1 2 1 9 {α, α2} {1, β2} {1, γ2} 36
1 2 1 9 {α, α2} {1, β2} {γ, γ2} 38
1 2 1 9 {α, α2} {β, β2} {1, γ} 37
1 2 1 9 {α, α2} {β, β2} {1, γ2} 42
1 2 1 9 {α, α2} {β, β2} {γ, γ2} 40
1 2 1 A {1, α} {1, β} {1, γ} 36
1 2 1 A {1, α} {1, β} {1, γ2} 35
1 2 1 A {1, α} {1, β} {γ, γ2} 37
1 2 1 A {1, α} {1, β2} {1, γ} 43
1 2 1 A {1, α} {1, β2} {1, γ2} 39
1 2 1 A {1, α} {1, β2} {γ, γ2} 35
1 2 1 A {1, α} {β, β2} {1, γ} 42



234

1 2 1 A {1, α} {β, β2} {1, γ2} 36
1 2 1 A {1, α} {β, β2} {γ, γ2} 38
1 2 1 A {1, α2} {1, β} {1, γ} 37
1 2 1 A {1, α2} {1, β} {1, γ2} 47
1 2 1 A {1, α2} {1, β} {γ, γ2} 51
1 2 1 A {1, α2} {1, β2} {1, γ} 34
1 2 1 A {1, α2} {1, β2} {1, γ2} 45
1 2 1 A {1, α2} {1, β2} {γ, γ2} 38
1 2 1 A {1, α2} {β, β2} {1, γ} 33
1 2 1 A {1, α2} {β, β2} {1, γ2} 38
1 2 1 A {1, α2} {β, β2} {γ, γ2} 41
1 2 1 A {α, α2} {1, β} {1, γ} 35
1 2 1 A {α, α2} {1, β} {1, γ2} 38
1 2 1 A {α, α2} {1, β} {γ, γ2} 43
1 2 1 A {α, α2} {1, β2} {1, γ} 34
1 2 1 A {α, α2} {1, β2} {1, γ2} 38
1 2 1 A {α, α2} {1, β2} {γ, γ2} 39
1 2 1 A {α, α2} {β, β2} {1, γ} 37
1 2 1 A {α, α2} {β, β2} {1, γ2} 40
1 2 1 A {α, α2} {β, β2} {γ, γ2} 42
1 2 1 B {1, α} {1, β} {1, γ} 38
1 2 1 B {1, α} {1, β} {1, γ2} 40
1 2 1 B {1, α} {1, β} {γ, γ2} 37
1 2 1 B {1, α} {1, β2} {1, γ} 37
1 2 1 B {1, α} {1, β2} {1, γ2} 40
1 2 1 B {1, α} {1, β2} {γ, γ2} 40
1 2 1 B {1, α} {β, β2} {1, γ} 30
1 2 1 B {1, α} {β, β2} {1, γ2} 40
1 2 1 B {1, α} {β, β2} {γ, γ2} 44
1 2 1 B {1, α2} {1, β} {1, γ} 35
1 2 1 B {1, α2} {1, β} {1, γ2} 45
1 2 1 B {1, α2} {1, β} {γ, γ2} 47
1 2 1 B {1, α2} {1, β2} {1, γ} 36
1 2 1 B {1, α2} {1, β2} {1, γ2} 41



235

1 2 1 B {1, α2} {1, β2} {γ, γ2} 41
1 2 1 B {1, α2} {β, β2} {1, γ} 38
1 2 1 B {1, α2} {β, β2} {1, γ2} 36
1 2 1 B {1, α2} {β, β2} {γ, γ2} 36
1 2 1 B {α, α2} {1, β} {1, γ} 35
1 2 1 B {α, α2} {1, β} {1, γ2} 40
1 2 1 B {α, α2} {1, β} {γ, γ2} 40
1 2 1 B {α, α2} {1, β2} {1, γ} 37
1 2 1 B {α, α2} {1, β2} {1, γ2} 39
1 2 1 B {α, α2} {1, β2} {γ, γ2} 38
1 2 1 B {α, α2} {β, β2} {1, γ} 39
1 2 1 B {α, α2} {β, β2} {1, γ2} 38
1 2 1 B {α, α2} {β, β2} {γ, γ2} 35
1 2 1 C {1, α} {1, β} {1, γ} 33
1 2 1 C {1, α} {1, β} {1, γ2} 40
1 2 1 C {1, α} {1, β} {γ, γ2} 37
1 2 1 C {1, α} {1, β2} {1, γ} 42
1 2 1 C {1, α} {1, β2} {1, γ2} 39
1 2 1 C {1, α} {1, β2} {γ, γ2} 36
1 2 1 C {1, α} {β, β2} {1, γ} 31
1 2 1 C {1, α} {β, β2} {1, γ2} 36
1 2 1 C {1, α} {β, β2} {γ, γ2} 38
1 2 1 C {1, α2} {1, β} {1, γ} 36
1 2 1 C {1, α2} {1, β} {1, γ2} 46
1 2 1 C {1, α2} {1, β} {γ, γ2} 40
1 2 1 C {1, α2} {1, β2} {1, γ} 36
1 2 1 C {1, α2} {1, β2} {1, γ2} 42
1 2 1 C {1, α2} {1, β2} {γ, γ2} 41
1 2 1 C {1, α2} {β, β2} {1, γ} 32
1 2 1 C {1, α2} {β, β2} {1, γ2} 38
1 2 1 C {1, α2} {β, β2} {γ, γ2} 39
1 2 1 C {α, α2} {1, β} {1, γ} 34
1 2 1 C {α, α2} {1, β} {1, γ2} 38
1 2 1 C {α, α2} {1, β} {γ, γ2} 41



236

1 2 1 C {α, α2} {1, β2} {1, γ} 32
1 2 1 C {α, α2} {1, β2} {1, γ2} 36
1 2 1 C {α, α2} {1, β2} {γ, γ2} 40
1 2 1 C {α, α2} {β, β2} {1, γ} 33
1 2 1 C {α, α2} {β, β2} {1, γ2} 38
1 2 1 C {α, α2} {β, β2} {γ, γ2} 38
1 2 1 D {1, α} {1, β} {1, γ} 40
1 2 1 D {1, α} {1, β} {1, γ2} 34
1 2 1 D {1, α} {1, β} {γ, γ2} 38
1 2 1 D {1, α} {1, β2} {1, γ} 37
1 2 1 D {1, α} {1, β2} {1, γ2} 36
1 2 1 D {1, α} {1, β2} {γ, γ2} 37
1 2 1 D {1, α} {β, β2} {1, γ} 43
1 2 1 D {1, α} {β, β2} {1, γ2} 41
1 2 1 D {1, α} {β, β2} {γ, γ2} 42
1 2 1 D {1, α2} {1, β} {1, γ} 38
1 2 1 D {1, α2} {1, β} {1, γ2} 43
1 2 1 D {1, α2} {1, β} {γ, γ2} 45
1 2 1 D {1, α2} {1, β2} {1, γ} 32
1 2 1 D {1, α2} {1, β2} {1, γ2} 43
1 2 1 D {1, α2} {1, β2} {γ, γ2} 36
1 2 1 D {1, α2} {β, β2} {1, γ} 37
1 2 1 D {1, α2} {β, β2} {1, γ2} 40
1 2 1 D {1, α2} {β, β2} {γ, γ2} 42
1 2 1 D {α, α2} {1, β} {1, γ} 34
1 2 1 D {α, α2} {1, β} {1, γ2} 41
1 2 1 D {α, α2} {1, β} {γ, γ2} 41
1 2 1 D {α, α2} {1, β2} {1, γ} 39
1 2 1 D {α, α2} {1, β2} {1, γ2} 40
1 2 1 D {α, α2} {1, β2} {γ, γ2} 40
1 2 1 D {α, α2} {β, β2} {1, γ} 35
1 2 1 D {α, α2} {β, β2} {1, γ2} 37
1 2 1 D {α, α2} {β, β2} {γ, γ2} 35
1 2 1 E {1, α} {1, β} {1, γ} 34



237

1 2 1 E {1, α} {1, β} {1, γ2} 37
1 2 1 E {1, α} {1, β} {γ, γ2} 37
1 2 1 E {1, α} {1, β2} {1, γ} 41
1 2 1 E {1, α} {1, β2} {1, γ2} 35
1 2 1 E {1, α} {1, β2} {γ, γ2} 42
1 2 1 E {1, α} {β, β2} {1, γ} 39
1 2 1 E {1, α} {β, β2} {1, γ2} 36
1 2 1 E {1, α} {β, β2} {γ, γ2} 40
1 2 1 E {1, α2} {1, β} {1, γ} 32
1 2 1 E {1, α2} {1, β} {1, γ2} 42
1 2 1 E {1, α2} {1, β} {γ, γ2} 43
1 2 1 E {1, α2} {1, β2} {1, γ} 33
1 2 1 E {1, α2} {1, β2} {1, γ2} 37
1 2 1 E {1, α2} {1, β2} {γ, γ2} 42
1 2 1 E {1, α2} {β, β2} {1, γ} 35
1 2 1 E {1, α2} {β, β2} {1, γ2} 38
1 2 1 E {1, α2} {β, β2} {γ, γ2} 41
1 2 1 E {α, α2} {1, β} {1, γ} 33
1 2 1 E {α, α2} {1, β} {1, γ2} 45
1 2 1 E {α, α2} {1, β} {γ, γ2} 41
1 2 1 E {α, α2} {1, β2} {1, γ} 33
1 2 1 E {α, α2} {1, β2} {1, γ2} 36
1 2 1 E {α, α2} {1, β2} {γ, γ2} 35
1 2 1 E {α, α2} {β, β2} {1, γ} 38
1 2 1 E {α, α2} {β, β2} {1, γ2} 41
1 2 1 E {α, α2} {β, β2} {γ, γ2} 42
1 2 1 F {1, α} {1, β} {1, γ} 32
1 2 1 F {1, α} {1, β} {1, γ2} 38
1 2 1 F {1, α} {1, β} {γ, γ2} 37
1 2 1 F {1, α} {1, β2} {1, γ} 30
1 2 1 F {1, α} {1, β2} {1, γ2} 35
1 2 1 F {1, α} {1, β2} {γ, γ2} 37
1 2 1 F {1, α} {β, β2} {1, γ} 39
1 2 1 F {1, α} {β, β2} {1, γ2} 37



238

1 2 1 F {1, α} {β, β2} {γ, γ2} 35
1 2 1 F {1, α2} {1, β} {1, γ} 37
1 2 1 F {1, α2} {1, β} {1, γ2} 46
1 2 1 F {1, α2} {1, β} {γ, γ2} 44
1 2 1 F {1, α2} {1, β2} {1, γ} 36
1 2 1 F {1, α2} {1, β2} {1, γ2} 40
1 2 1 F {1, α2} {1, β2} {γ, γ2} 38
1 2 1 F {1, α2} {β, β2} {1, γ} 31
1 2 1 F {1, α2} {β, β2} {1, γ2} 41
1 2 1 F {1, α2} {β, β2} {γ, γ2} 38
1 2 1 F {α, α2} {1, β} {1, γ} 32
1 2 1 F {α, α2} {1, β} {1, γ2} 42
1 2 1 F {α, α2} {1, β} {γ, γ2} 38
1 2 1 F {α, α2} {1, β2} {1, γ} 37
1 2 1 F {α, α2} {1, β2} {1, γ2} 38
1 2 1 F {α, α2} {1, β2} {γ, γ2} 35
1 2 1 F {α, α2} {β, β2} {1, γ} 32
1 2 1 F {α, α2} {β, β2} {1, γ2} 39
1 2 1 F {α, α2} {β, β2} {γ, γ2} 37
1 3 1 8 {1, α} {1, β} {1, γ} 34
1 3 1 8 {1, α} {1, β} {1, γ2} 35
1 3 1 8 {1, α} {1, β} {γ, γ2} 40
1 3 1 8 {1, α} {1, β2} {1, γ} 35
1 3 1 8 {1, α} {1, β2} {1, γ2} 37
1 3 1 8 {1, α} {1, β2} {γ, γ2} 36
1 3 1 8 {1, α} {β, β2} {1, γ} 36
1 3 1 8 {1, α} {β, β2} {1, γ2} 39
1 3 1 8 {1, α} {β, β2} {γ, γ2} 36
1 3 1 8 {1, α2} {1, β} {1, γ} 35
1 3 1 8 {1, α2} {1, β} {1, γ2} 41
1 3 1 8 {1, α2} {1, β} {γ, γ2} 38
1 3 1 8 {1, α2} {1, β2} {1, γ} 33
1 3 1 8 {1, α2} {1, β2} {1, γ2} 40
1 3 1 8 {1, α2} {1, β2} {γ, γ2} 36



239

1 3 1 8 {1, α2} {β, β2} {1, γ} 31
1 3 1 8 {1, α2} {β, β2} {1, γ2} 38
1 3 1 8 {1, α2} {β, β2} {γ, γ2} 38
1 3 1 8 {α, α2} {1, β} {1, γ} 40
1 3 1 8 {α, α2} {1, β} {1, γ2} 42
1 3 1 8 {α, α2} {1, β} {γ, γ2} 46
1 3 1 8 {α, α2} {1, β2} {1, γ} 35
1 3 1 8 {α, α2} {1, β2} {1, γ2} 41
1 3 1 8 {α, α2} {1, β2} {γ, γ2} 42
1 3 1 8 {α, α2} {β, β2} {1, γ} 33
1 3 1 8 {α, α2} {β, β2} {1, γ2} 39
1 3 1 8 {α, α2} {β, β2} {γ, γ2} 39
1 3 1 9 {1, α} {1, β} {1, γ} 38
1 3 1 9 {1, α} {1, β} {1, γ2} 34
1 3 1 9 {1, α} {1, β} {γ, γ2} 35
1 3 1 9 {1, α} {1, β2} {1, γ} 36
1 3 1 9 {1, α} {1, β2} {1, γ2} 40
1 3 1 9 {1, α} {1, β2} {γ, γ2} 39
1 3 1 9 {1, α} {β, β2} {1, γ} 42
1 3 1 9 {1, α} {β, β2} {1, γ2} 35
1 3 1 9 {1, α} {β, β2} {γ, γ2} 36
1 3 1 9 {1, α2} {1, β} {1, γ} 34
1 3 1 9 {1, α2} {1, β} {1, γ2} 41
1 3 1 9 {1, α2} {1, β} {γ, γ2} 41
1 3 1 9 {1, α2} {1, β2} {1, γ} 39
1 3 1 9 {1, α2} {1, β2} {1, γ2} 40
1 3 1 9 {1, α2} {1, β2} {γ, γ2} 40
1 3 1 9 {1, α2} {β, β2} {1, γ} 35
1 3 1 9 {1, α2} {β, β2} {1, γ2} 37
1 3 1 9 {1, α2} {β, β2} {γ, γ2} 35
1 3 1 9 {α, α2} {1, β} {1, γ} 38
1 3 1 9 {α, α2} {1, β} {1, γ2} 43
1 3 1 9 {α, α2} {1, β} {γ, γ2} 45
1 3 1 9 {α, α2} {1, β2} {1, γ} 32



240

1 3 1 9 {α, α2} {1, β2} {1, γ2} 43
1 3 1 9 {α, α2} {1, β2} {γ, γ2} 36
1 3 1 9 {α, α2} {β, β2} {1, γ} 37
1 3 1 9 {α, α2} {β, β2} {1, γ2} 40
1 3 1 9 {α, α2} {β, β2} {γ, γ2} 42
1 3 1 A {1, α} {1, β} {1, γ} 30
1 3 1 A {1, α} {1, β} {1, γ2} 35
1 3 1 A {1, α} {1, β} {γ, γ2} 35
1 3 1 A {1, α} {1, β2} {1, γ} 29
1 3 1 A {1, α} {1, β2} {1, γ2} 36
1 3 1 A {1, α} {1, β2} {γ, γ2} 35
1 3 1 A {1, α} {β, β2} {1, γ} 34
1 3 1 A {1, α} {β, β2} {1, γ2} 35
1 3 1 A {1, α} {β, β2} {γ, γ2} 33
1 3 1 A {1, α2} {1, β} {1, γ} 34
1 3 1 A {1, α2} {1, β} {1, γ2} 38
1 3 1 A {1, α2} {1, β} {γ, γ2} 42
1 3 1 A {1, α2} {1, β2} {1, γ} 36
1 3 1 A {1, α2} {1, β2} {1, γ2} 35
1 3 1 A {1, α2} {1, β2} {γ, γ2} 38
1 3 1 A {1, α2} {β, β2} {1, γ} 29
1 3 1 A {1, α2} {β, β2} {1, γ2} 37
1 3 1 A {1, α2} {β, β2} {γ, γ2} 39
1 3 1 A {α, α2} {1, β} {1, γ} 39
1 3 1 A {α, α2} {1, β} {1, γ2} 44
1 3 1 A {α, α2} {1, β} {γ, γ2} 46
1 3 1 A {α, α2} {1, β2} {1, γ} 34
1 3 1 A {α, α2} {1, β2} {1, γ2} 38
1 3 1 A {α, α2} {1, β2} {γ, γ2} 40
1 3 1 A {α, α2} {β, β2} {1, γ} 32
1 3 1 A {α, α2} {β, β2} {1, γ2} 38
1 3 1 A {α, α2} {β, β2} {γ, γ2} 41
1 3 1 B {1, α} {1, β} {1, γ} 41
1 3 1 B {1, α} {1, β} {1, γ2} 35



241

1 3 1 B {1, α} {1, β} {γ, γ2} 36
1 3 1 B {1, α} {1, β2} {1, γ} 38
1 3 1 B {1, α} {1, β2} {1, γ2} 38
1 3 1 B {1, α} {1, β2} {γ, γ2} 37
1 3 1 B {1, α} {β, β2} {1, γ} 40
1 3 1 B {1, α} {β, β2} {1, γ2} 37
1 3 1 B {1, α} {β, β2} {γ, γ2} 37
1 3 1 B {1, α2} {1, β} {1, γ} 33
1 3 1 B {1, α2} {1, β} {1, γ2} 45
1 3 1 B {1, α2} {1, β} {γ, γ2} 41
1 3 1 B {1, α2} {1, β2} {1, γ} 33
1 3 1 B {1, α2} {1, β2} {1, γ2} 35
1 3 1 B {1, α2} {1, β2} {γ, γ2} 37
1 3 1 B {1, α2} {β, β2} {1, γ} 38
1 3 1 B {1, α2} {β, β2} {1, γ2} 41
1 3 1 B {1, α2} {β, β2} {γ, γ2} 42
1 3 1 B {α, α2} {1, β} {1, γ} 32
1 3 1 B {α, α2} {1, β} {1, γ2} 43
1 3 1 B {α, α2} {1, β} {γ, γ2} 43
1 3 1 B {α, α2} {1, β2} {1, γ} 33
1 3 1 B {α, α2} {1, β2} {1, γ2} 37
1 3 1 B {α, α2} {1, β2} {γ, γ2} 42
1 3 1 B {α, α2} {β, β2} {1, γ} 35
1 3 1 B {α, α2} {β, β2} {1, γ2} 38
1 3 1 B {α, α2} {β, β2} {γ, γ2} 41
1 3 1 C {1, α} {1, β} {1, γ} 41
1 3 1 C {1, α} {1, β} {1, γ2} 35
1 3 1 C {1, α} {1, β} {γ, γ2} 34
1 3 1 C {1, α} {1, β2} {1, γ} 34
1 3 1 C {1, α} {1, β2} {1, γ2} 35
1 3 1 C {1, α} {1, β2} {γ, γ2} 35
1 3 1 C {1, α} {β, β2} {1, γ} 32
1 3 1 C {1, α} {β, β2} {1, γ2} 39
1 3 1 C {1, α} {β, β2} {γ, γ2} 37



242

1 3 1 C {1, α2} {1, β} {1, γ} 36
1 3 1 C {1, α2} {1, β} {1, γ2} 44
1 3 1 C {1, α2} {1, β} {γ, γ2} 41
1 3 1 C {1, α2} {1, β2} {1, γ} 33
1 3 1 C {1, α2} {1, β2} {1, γ2} 40
1 3 1 C {1, α2} {1, β2} {γ, γ2} 39
1 3 1 C {1, α2} {β, β2} {1, γ} 36
1 3 1 C {1, α2} {β, β2} {1, γ2} 36
1 3 1 C {1, α2} {β, β2} {γ, γ2} 36
1 3 1 C {α, α2} {1, β} {1, γ} 38
1 3 1 C {α, α2} {1, β} {1, γ2} 45
1 3 1 C {α, α2} {1, β} {γ, γ2} 43
1 3 1 C {α, α2} {1, β2} {1, γ} 34
1 3 1 C {α, α2} {1, β2} {1, γ2} 42
1 3 1 C {α, α2} {1, β2} {γ, γ2} 38
1 3 1 C {α, α2} {β, β2} {1, γ} 33
1 3 1 C {α, α2} {β, β2} {1, γ2} 40
1 3 1 C {α, α2} {β, β2} {γ, γ2} 38
1 3 1 D {1, α} {1, β} {1, γ} 35
1 3 1 D {1, α} {1, β} {1, γ2} 38
1 3 1 D {1, α} {1, β} {γ, γ2} 34
1 3 1 D {1, α} {1, β2} {1, γ} 31
1 3 1 D {1, α} {1, β2} {1, γ2} 40
1 3 1 D {1, α} {1, β2} {γ, γ2} 36
1 3 1 D {1, α} {β, β2} {1, γ} 35
1 3 1 D {1, α} {β, β2} {1, γ2} 41
1 3 1 D {1, α} {β, β2} {γ, γ2} 37
1 3 1 D {1, α2} {1, β} {1, γ} 35
1 3 1 D {1, α2} {1, β} {1, γ2} 42
1 3 1 D {1, α2} {1, β} {γ, γ2} 44
1 3 1 D {1, α2} {1, β2} {1, γ} 35
1 3 1 D {1, α2} {1, β2} {1, γ2} 36
1 3 1 D {1, α2} {1, β2} {γ, γ2} 38
1 3 1 D {1, α2} {β, β2} {1, γ} 37



243

1 3 1 D {1, α2} {β, β2} {1, γ2} 37
1 3 1 D {1, α2} {β, β2} {γ, γ2} 40
1 3 1 D {α, α2} {1, β} {1, γ} 40
1 3 1 D {α, α2} {1, β} {1, γ2} 43
1 3 1 D {α, α2} {1, β} {γ, γ2} 46
1 3 1 D {α, α2} {1, β2} {1, γ} 39
1 3 1 D {α, α2} {1, β2} {1, γ2} 35
1 3 1 D {α, α2} {1, β2} {γ, γ2} 40
1 3 1 D {α, α2} {β, β2} {1, γ} 36
1 3 1 D {α, α2} {β, β2} {1, γ2} 39
1 3 1 D {α, α2} {β, β2} {γ, γ2} 43
1 3 1 E {1, α} {1, β} {1, γ} 34
1 3 1 E {1, α} {1, β} {1, γ2} 39
1 3 1 E {1, α} {1, β} {γ, γ2} 36
1 3 1 E {1, α} {1, β2} {1, γ} 31
1 3 1 E {1, α} {1, β2} {1, γ2} 41
1 3 1 E {1, α} {1, β2} {γ, γ2} 35
1 3 1 E {1, α} {β, β2} {1, γ} 36
1 3 1 E {1, α} {β, β2} {1, γ2} 37
1 3 1 E {1, α} {β, β2} {γ, γ2} 37
1 3 1 E {1, α2} {1, β} {1, γ} 34
1 3 1 E {1, α2} {1, β} {1, γ2} 40
1 3 1 E {1, α2} {1, β} {γ, γ2} 40
1 3 1 E {1, α2} {1, β2} {1, γ} 40
1 3 1 E {1, α2} {1, β2} {1, γ2} 38
1 3 1 E {1, α2} {1, β2} {γ, γ2} 39
1 3 1 E {1, α2} {β, β2} {1, γ} 37
1 3 1 E {1, α2} {β, β2} {1, γ2} 35
1 3 1 E {1, α2} {β, β2} {γ, γ2} 38
1 3 1 E {α, α2} {1, β} {1, γ} 41
1 3 1 E {α, α2} {1, β} {1, γ2} 47
1 3 1 E {α, α2} {1, β} {γ, γ2} 44
1 3 1 E {α, α2} {1, β2} {1, γ} 37
1 3 1 E {α, α2} {1, β2} {1, γ2} 41



244

1 3 1 E {α, α2} {1, β2} {γ, γ2} 41
1 3 1 E {α, α2} {β, β2} {1, γ} 45
1 3 1 E {α, α2} {β, β2} {1, γ2} 36
1 3 1 E {α, α2} {β, β2} {γ, γ2} 36
1 3 1 F {1, α} {1, β} {1, γ} 41
1 3 1 F {1, α} {1, β} {1, γ2} 39
1 3 1 F {1, α} {1, β} {γ, γ2} 34
1 3 1 F {1, α} {1, β2} {1, γ} 33
1 3 1 F {1, α} {1, β2} {1, γ2} 37
1 3 1 F {1, α} {1, β2} {γ, γ2} 34
1 3 1 F {1, α} {β, β2} {1, γ} 31
1 3 1 F {1, α} {β, β2} {1, γ2} 39
1 3 1 F {1, α} {β, β2} {γ, γ2} 35
1 3 1 F {1, α2} {1, β} {1, γ} 35
1 3 1 F {1, α2} {1, β} {1, γ2} 38
1 3 1 F {1, α2} {1, β} {γ, γ2} 43
1 3 1 F {1, α2} {1, β2} {1, γ} 34
1 3 1 F {1, α2} {1, β2} {1, γ2} 38
1 3 1 F {1, α2} {1, β2} {γ, γ2} 39
1 3 1 F {1, α2} {β, β2} {1, γ} 37
1 3 1 F {1, α2} {β, β2} {1, γ2} 40
1 3 1 F {1, α2} {β, β2} {γ, γ2} 42
1 3 1 F {α, α2} {1, β} {1, γ} 37
1 3 1 F {α, α2} {1, β} {1, γ2} 47
1 3 1 F {α, α2} {1, β} {γ, γ2} 51
1 3 1 F {α, α2} {1, β2} {1, γ} 34
1 3 1 F {α, α2} {1, β2} {1, γ2} 45
1 3 1 F {α, α2} {1, β2} {γ, γ2} 38
1 3 1 F {α, α2} {β, β2} {1, γ} 33
1 3 1 F {α, α2} {β, β2} {1, γ2} 37
1 3 1 F {α, α2} {β, β2} {γ, γ2} 41



Appendix B

Further Implementation Results

B.1 Introduction

In the following sections, further implementation results are provided for ref-
erence. For some all evaluated Xilinx devices, the results are similar and do
not significantly change the overall picture. As expected, the low-end devices
(Spartan-3, Spartan-6, and Artix-7) have a significantly lower maximum through-
put and thus, the throughput-area ratio is also reduced. Furthermore, the large
technological difference between the Spartan-3 and all other devices leads to a
higher slice count for this series.

B.2 Spartan-3

Table B.1: Results for the 256 bits versions of the SHA-3 finalists (Spartan-3).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 1753 78 115 512 347 0.20 347 0.20
BLAKE-2 974 94 228 512 212 0.22 212 0.22
Grøstl 1240 167 160 512 534 0.43 267 0.22
JH 2111 116 168 512 354 0.17 177 0.08
JH-2 829 140 6720 512 11 0.01 5 0.01
Keccak 1696 76 200 1088 413 0.24 413 0.24
Skein 1407 128 584 512 112 0.08 56 0.04

245



246

Table B.2: Results for the heavyweight versions of Keccak (Spartan-3).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 583 78 2688 1088 31 0.05

2 633 77 1344 1088 62 0.10
4 638 76 672 1088 123 0.19
8 990 72 336 1088 234 0.24
16 1608 67 168 1088 436 0.27
32 2967 59 84 1088 770 0.26
64 4226 74 42 1088 1916 0.45

Keccak-f [800] 512 1 439 79 1024 288 22 0.05
2 463 80 512 288 45 0.10
4 583 76 256 288 85 0.15
8 916 69 128 288 155 0.17
16 1518 64 64 288 289 0.19
32 2180 87 32 288 779 0.36

256 1 460 84 1280 544 36 0.08
2 466 82 640 544 70 0.15
4 569 78 320 544 133 0.23
8 930 70 160 544 238 0.26
16 1584 66 80 544 451 0.28
32 2139 84 40 544 1147 0.54



247

Table B.3: Results for the lightweight versions of Keccak (Spartan-3).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 321 86 480 144 26 0.08 26 0.08

2 394 81 240 144 49 0.12 49 0.12
4 567 76 120 144 91 0.16 91 0.16
8 881 71 60 144 169 0.19 169 0.19
16 1051 91 30 144 437 0.42 437 0.42

128 128 1 375 99 608 272 44 0.12 44 0.12
2 386 84 304 272 75 0.19 75 0.19
4 553 76 152 272 136 0.25 136 0.25
8 907 71 76 272 256 0.28 256 0.28
16 1107 100 38 272 715 0.65 715 0.65

160 160 1 310 84 576 240 35 0.11 35 0.11
2 381 82 288 240 68 0.18 68 0.18
4 541 74 144 240 123 0.23 123 0.23
8 864 69 72 240 230 0.27 230 0.27
16 1045 99 36 240 663 0.63 663 0.63

160 320 1 327 88 416 80 17 0.052 8 0.026
2 373 75 208 80 29 0.078 14 0.039
4 555 73 104 80 56 0.101 28 0.051
8 889 70 52 80 108 0.122 54 0.061
16 1001 96 26 80 296 0.295 148 0.148

224 224 1 335 80 512 176 27 0.097 14 0.041
2 408 76 256 176 52 0.146 26 0.064
4 574 69 128 176 95 0.169 47 0.083
8 889 64 64 176 177 0.190 88 0.099
16 1141 87 32 176 476 0.357 238 0.209

256 256 1 327 84 480 144 25 0.077 13 0.038
2 407 82 240 144 49 0.149 25 0.060
4 560 78 120 144 94 0.234 47 0.084
8 889 70 60 144 168 0.256 84 0.094
16 1132 66 30 144 318 0.285 159 0.141

Keccak-f [200] 128 128 1 255 83 224 72 27 0.105 13 0.052
2 375 80 112 72 51 0.137 26 0.068
4 499 74 56 72 95 0.191 48 0.096
8 534 92 28 72 237 0.444 118 0.222

160 160 1 251 85 192 40 18 0.071 4 0.018
2 353 77 96 40 32 0.091 8 0.023
4 492 76 48 40 63 0.129 16 0.032
8 533 91 24 40 152 0.285 38 0.071

Table B.4: Results for the Photon hash function family (Spartan-3).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 295 80 245 20 6.57 0.0223 1.31 0.0045
Photon-128/10/16 343 84 436 16 3.10 0.0090 0.39 0.0011
Photon-160/36/36 331 66 597 36 3.97 0.0120 0.89 0.0027
Photon-224/32/32 308 90 776 32 3.71 0.0120 0.53 0.0017
Photon-256/32/32 524 49 436 32 3.57 0.0068 0.45 0.0009



248

B.3 Spartan-6

Table B.5: Results for the 256 bits versions of the SHA-3 finalists (Spartan-6).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 412 115 115 512 511 1.24 511 1.24
BLAKE-2 239 145 228 512 326 1.36 326 1.36
Grøstl 333 238 160 512 763 2.29 381 1.15
JH 478 161 168 512 489 1.02 245 0.51
JH-2 170 240 6720 512 18 0.11 9 0.05
Keccak 417 117 200 1088 636 1.52 636 1.52
Skein 503 226 584 512 198 0.39 99 0.20

Table B.6: Results for the heavyweight versions of Keccak (Spartan-6).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 160 144 2688 1088 58 0.36

2 194 131 1344 1088 106 0.55
4 221 129 672 1088 209 0.94
8 288 120 336 1088 390 1.35
16 526 134 168 1088 870 1.65
32 909 124 84 1088 1610 1.77
64 1378 122 42 1088 3155 2.29

Keccak-f [800] 512 1 150 141 1024 288 40 0.26
2 150 132 512 288 74 0.50
4 183 126 256 288 142 0.78
8 263 117 128 288 264 1.00
16 426 113 64 288 509 1.19
32 743 184 32 288 1658 2.23

256 1 153 153 1280 544 65 0.42
2 165 148 640 544 125 0.76
4 194 128 320 544 218 1.12
8 327 142 160 544 482 1.47
16 462 122 80 544 826 1.79
32 727 169 40 544 2292 3.15



249

Table B.7: Results for the lightweight versions of Keccak (Spartan-6).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 118 159 480 144 48 0.41 48 0.41

2 159 164 240 144 98 0.62 98 0.62
4 190 128 120 144 154 0.81 154 0.81
8 251 125 60 144 301 1.20 301 1.20
16 311 169 30 144 809 2.60 809 2.60

128 128 1 124 158 608 272 71 0.57 71 0.57
2 150 138 304 272 123 0.82 123 0.82
4 205 136 152 272 244 1.19 244 1.19
8 264 130 76 272 467 1.77 467 1.77
16 345 176 38 272 1258 3.65 1258 3.65

160 160 1 124 159 576 240 66 0.54 66 0.54
2 148 142 288 240 118 0.80 118 0.80
4 198 136 144 240 227 1.14 227 1.14
8 263 131 72 240 437 1.66 437 1.66
16 347 213 36 240 1420 4.09 1420 4.09

160 320 1 115 158 416 80 30 0.265 15 0.132
2 130 135 208 80 52 0.399 26 0.200
4 188 125 104 80 96 0.512 48 0.256
8 245 124 52 80 191 0.778 95 0.389
16 348 226 26 80 696 1.999 348 1.000

224 224 1 124 132 512 176 45 0.496 23 0.183
2 141 126 256 176 87 0.777 43 0.308
4 201 117 128 176 161 1.005 81 0.402
8 256 113 64 176 311 1.194 155 0.607
16 329 184 32 176 1013 2.231 507 1.540

256 256 1 123 153 480 144 46 0.425 23 0.186
2 135 148 240 144 89 0.760 44 0.328
4 196 128 120 144 154 1.121 77 0.392
8 252 142 60 144 340 1.475 170 0.675
16 328 122 30 144 583 1.788 292 0.889

Keccak-f [200] 128 128 1 103 161 224 72 52 0.502 26 0.251
2 137 140 112 72 90 0.657 45 0.329
4 166 131 56 72 168 1.011 84 0.505
8 173 176 28 72 452 2.613 226 1.307

160 160 1 91 152 192 40 32 0.348 8 0.087
2 120 130 96 40 54 0.452 14 0.113
4 164 128 48 40 107 0.651 27 0.163
8 171 194 24 40 323 1.886 81 0.472

Table B.8: Results for the Photon hash function family (Spartan-6).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 73 110 245 20 8.98 0.1230 1.80 0.0246
Photon-128/10/16 89 146 436 16 5.34 0.0601 0.67 0.0075
Photon-160/36/36 102 122 597 36 7.37 0.0722 1.47 0.0144
Photon-224/32/32 96 146 776 32 6.03 0.0628 0.86 0.0090
Photon-256/32/32 159 78 436 32 5.71 0.0359 0.71 0.0045



250

B.4 Virtex-6

Table B.9: Results for the 256 bits versions of the SHA-3 finalists (Virtex-6).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 414 210 115 512 749 1.81 749 1.81
BLAKE-2 278 245 228 512 609 2.19 609 2.19
Grøstl 355 383 160 512 1211 3.41 606 1.71
JH 498 354 168 512 898 1.80 449 0.90
JH-2 220 419 6720 512 32 0.15 16 0.07
Keccak 435 252 200 1088 1004 2.31 1004 2.31
Skein 464 356 584 512 288 0.62 144 0.31

Table B.10: Results for the heavyweight versions of Keccak (Virtex-6).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 164 257 2688 1088 104 0.64

2 193 206 1344 1088 167 0.87
4 194 190 672 1088 308 1.59
8 263 187 336 1088 606 2.30
16 457 165 168 1088 1068 2.34
32 961 185 84 1088 2390 2.49
64 1360 201 42 1088 5195 3.82

Keccak-f [800] 512 1 156 251 1024 288 71 0.45
2 159 252 512 288 142 0.89
4 164 202 256 288 227 1.38
8 308 233 128 288 524 1.70
16 496 227 64 288 1023 2.06
32 641 221 32 288 1992 3.11

256 1 148 255 1280 544 108 0.73
2 204 271 640 544 230 1.13
4 178 192 320 544 326 1.83
8 290 228 160 544 776 2.68
16 421 187 80 544 1274 3.03
32 664 210 40 544 2853 4.30



251

Table B.11: Results for the lightweight versions of Keccak (Virtex-6).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 110 216 480 144 65 0.59 65 0.59

2 123 213 240 144 128 1.04 128 1.04
4 207 253 120 144 303 1.47 303 1.47
8 261 242 60 144 582 2.23 582 2.23
16 324 243 30 144 1166 3.60 1166 3.60

128 128 1 120 258 608 272 115 0.96 115 0.96
2 156 260 304 272 233 1.49 233 1.49
4 195 222 152 272 398 2.04 398 2.04
8 277 244 76 272 875 3.16 875 3.16
16 343 247 38 272 1770 5.16 1770 5.16

160 160 1 112 212 576 240 89 0.79 89 0.79
2 152 262 288 240 218 1.43 218 1.43
4 200 252 144 240 420 2.10 420 2.10
8 244 198 72 240 661 2.71 661 2.71
16 322 237 36 240 1581 4.91 1581 4.91

160 320 1 317 264 416 80 51 0.16 25 0.08
2 128 252 208 80 97 0.76 48 0.38
4 137 256 104 80 197 1.44 99 0.72
8 202 255 52 80 392 1.94 196 0.97
16 227 206 26 80 635 2.80 317 1.40

224 224 1 126 252 512 176 87 0.69 43 0.34
2 143 202 256 176 139 0.97 69 0.48
4 203 233 128 176 320 1.58 160 0.79
8 316 227 64 176 625 1.98 313 0.99
16 369 221 32 176 1217 3.30 609 1.65

256 256 1 123 255 480 144 76 0.62 38 0.31
2 159 271 240 144 162 1.02 81 0.51
4 196 192 120 144 230 1.18 115 0.59
8 227 228 60 144 548 2.41 274 1.21
16 385 187 30 144 899 2.34 450 1.17

Keccak-f [200] 128 128 1 98 260 224 72 84 0.85 42 0.43
2 138 265 112 72 170 1.23 85 0.62
4 162 224 56 72 288 1.78 144 0.89
8 172 343 28 72 883 5.13 441 2.57

160 160 1 93 263 192 40 55 0.59 14 0.15
2 125 251 96 40 105 0.84 26 0.21
4 171 266 48 40 222 1.30 55 0.32
8 187 357 24 40 596 3.19 149 0.80

Table B.12: Results for the Photon hash function family (Virtex-6).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 89 250 245 20 20 0.23 4.08 0.046
Photon-128/10/16 86 230 436 16 8 0.10 1.06 0.012
Photon-160/36/36 122 233 597 36 14 0.12 2.82 0.023
Photon-224/32/32 101 255 776 32 11 0.10 1.50 0.015
Photon-256/32/32 179 150 436 32 11 0.06 1.37 0.008



252

B.5 Artix-7

Table B.13: Results for the 256 bits versions of the SHA-3 finalists (Artix-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 443 143 115 512 637 1.44 637 1.44
BLAKE-2 261 174 228 512 390 1.50 390 1.50
Grøstl 395 282 160 512 901 2.28 451 1.14
JH 514 234 168 512 713 1.39 356 0.69
JH-2 186 311 6720 512 24 0.13 12 0.06
Keccak 482 180 200 1088 980 2.03 980 2.03
Skein 469 226 584 512 198 0.42 99 0.21

Table B.14: Results for the heavyweight versions of Keccak (Artix-7).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 172 179 2688 1088 73 0.42

2 207 159 1344 1088 129 0.62
4 247 182 672 1088 294 1.19
8 293 145 336 1088 471 1.61
16 463 150 168 1088 970 2.09
32 900 138 84 1088 1792 1.99
64 1359 143 42 1088 3694 2.72

Keccak-f [800] 512 1 159 187 1024 288 53 0.33
2 158 163 512 288 92 0.58
4 220 191 256 288 215 0.98
8 259 148 128 288 334 1.29
16 409 146 64 288 656 1.60
32 633 191 32 288 1717 2.71

256 1 165 191 1280 544 81 0.49
2 188 197 640 544 167 0.89
4 192 154 320 544 263 1.37
8 276 155 160 544 526 1.91
16 443 143 80 544 970 2.19
32 699 216 40 544 2935 4.20



253

Table B.15: Results for the lightweight versions of Keccak (Artix-7).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 129 189 480 144 57 0.44 57 0.44

2 165 204 240 144 122 0.74 122 0.74
4 185 161 120 144 193 1.04 193 1.04
8 243 152 60 144 365 1.50 365 1.50
16 322 220 30 144 1056 3.28 1056 3.28

128 128 1 141 193 608 272 86 0.61 86 0.61
2 144 160 304 272 143 1.00 143 1.00
4 201 156 152 272 279 1.39 279 1.39
8 264 156 76 272 558 2.11 558 2.11
16 343 218 38 272 1561 4.55 1561 4.55

160 160 1 129 193 576 240 80 0.62 80 0.62
2 141 157 288 240 131 0.93 131 0.93
4 189 162 144 240 270 1.43 270 1.43
8 249 150 72 240 500 2.01 500 2.01
16 326 217 36 240 1447 4.44 1447 4.44

160 320 1 139 199 416 80 38 0.27 19 0.14
2 159 199 208 80 77 0.48 38 0.24
4 182 164 104 80 126 0.69 63 0.35
8 239 157 52 80 241 1.01 121 0.50
16 320 219 26 80 675 2.11 337 1.05

224 224 1 130 163 512 176 56 0.58 28 0.22
2 168 191 256 176 131 0.98 66 0.39
4 192 148 128 176 204 1.29 102 0.53
8 252 146 64 176 401 1.60 200 0.80
16 328 191 32 176 1049 2.71 525 1.60

256 256 1 131 191 480 144 57 0.49 29 0.22
2 132 197 240 144 118 0.89 59 0.45
4 184 154 120 144 185 1.37 93 0.50
8 248 155 60 144 372 1.91 186 0.75
16 349 143 30 144 685 2.19 343 302 0.98

Keccak-f [200] 128 128 1 99 173 224 72 56 0.56 28 0.28
2 127 177 112 72 114 0.90 57 0.45
4 164 171 56 72 220 1.34 110 0.67
8 173 272 28 72 700 4.04 350 2.02

160 160 1 103 193 192 40 40 0.39 10 0.10
2 119 177 96 40 74 0.62 18 0.16
4 158 172 48 40 143 0.91 36 0.23
8 167 240 24 40 400 2.40 100 0.60

Table B.16: Results for the Photon hash function family (Artix-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 98 184 245 20 15.04 0.15 3.01 0.031
Photon-128/16/16 96 173 436 16 6.35 0.07 0.79 0.008
Photon-160/36/36 123 160 597 36 9.65 0.08 1.93 0.016
Photon-224/32/32 111 193 776 32 7.98 0.07 1.14 0.010
Photon-256/32/32 187 90 436 32 6.59 0.04 0.82 0.004



254

B.6 Kintex-7

Table B.17: Results for the 256 bits versions of the SHA-3 finalists (Kintex-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 444 201 115 512 897 2.02 897 2.02
BLAKE-2 267 248 228 512 557 2.09 557 2.09
Grøstl 400 417 160 512 1335 3.34 668 1.67
JH 536 336 168 512 1025 1.91 513 0.96
JH-2 191 429 6720 512 33 0.17 16 0.09
Keccak 475 216 200 1088 1177 2.48 1177 2.48
Skein 467 362 584 512 317 0.68 159 0.34

Table B.18: Results for the heavyweight versions of Keccak (Kintex-7).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 171 248 2688 1088 100 0.59

2 211 257 1344 1088 208 0.99
4 221 207 672 1088 335 1.51
8 294 193 336 1088 625 2.13
16 568 227 168 1088 1471 2.59
32 896 179 84 1088 2320 2.59
64 1433 262 42 1088 6783 4.73

Keccak-f [800] 512 1 147 253 1024 288 71 0.48
2 176 284 512 288 160 0.91
4 228 283 256 288 318 1.40
8 262 209 128 288 471 1.80
16 410 185 64 288 835 2.04
32 637 295 32 288 2652 4.16

256 1 152 259 1280 544 110 0.72
2 192 283 640 544 241 1.25
4 244 275 320 544 467 1.92
8 277 213 160 544 726 2.62
16 443 178 80 544 1209 2.73
32 668 292 40 544 3973 5.95



255

Table B.19: Results for the lightweight versions of Keccak (Kintex-7).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 130 230 480 144 69 0.53 69 0.53

2 161 291 240 144 175 1.08 175 1.08
4 231 284 120 144 340 1.47 340 1.47
8 246 206 60 144 494 2.01 494 2.01
16 322 329 30 144 1579 4.91 1579 4.91

128 128 1 134 284 608 272 127 0.95 127 0.95
2 178 284 304 272 254 1.43 254 1.43
4 246 282 152 272 505 2.05 505 2.05
8 264 213 76 272 761 2.88 761 2.88
16 344 334 38 272 2388 6.94 2388 6.94

160 160 1 130 284 576 240 118 0.91 118 0.91
2 172 289 288 240 241 1.40 241 1.40
4 190 235 144 240 391 2.06 391 2.06
8 252 209 72 240 695 2.76 695 2.76
16 325 323 36 240 2153 6.63 2153 6.63

160 320 1 129 233 416 80 45 0.35 22 0.17
2 163 292 208 80 112 0.69 56 0.34
4 187 235 104 80 181 0.97 90 0.48
8 240 214 52 80 329 1.37 164 0.69
16 317 320 26 80 986 3.11 493 1.55

224 224 1 129 284 512 176 98 0.76 49 0.38
2 141 283 256 176 194 1.38 97 0.69
4 235 209 128 176 288 1.23 144 0.61
8 253 185 64 176 510 2.02 255 1.01
16 334 295 32 176 1621 4.85 810 2.43

256 256 1 130 259 480 144 78 0.60 39 0.30
2 168 283 240 144 170 1.01 85 0.51
4 233 275 120 144 330 1.42 165 0.71
8 253 213 60 144 512 2.02 256 1.01
16 332 178 30 144 854 2.57 427 1.29

Keccak-f [200] 128 128 1 105 276 224 72 89 0.85 44 0.42
2 128 266 112 72 171 1.34 85 0.67
4 162 241 56 72 310 1.91 155 0.96
8 175 393 28 72 1011 5.78 505 2.89

160 160 1 101 271 192 40 56 0.56 14 0.14
2 126 269 96 40 112 0.89 28 0.22
4 158 243 48 40 203 1.28 51 0.32
8 169 357 24 40 595 3.52 149 0.88

Table B.20: Results for the Photon hash function family (Kintex-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 89 248 245 20 20 0.23 4.05 0.045
Photon-128/16/16 95 245 436 16 9 0.09 1.13 0.012
Photon-160/36/36 125 241 597 36 15 0.12 2.90 0.023
Photon-224/32/32 104 281 776 32 12 0.11 1.66 0.016
Photon-256/32/32 243 171 436 32 13 0.05 1.57 0.006



256

B.7 Virtex-7

Table B.21: Results for the 256 bits versions of the SHA-3 finalists (Virtex-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
BLAKE 448 210 115 512 935 2.09 935 2.09
BLAKE-2 261 245 228 512 551 2.11 551 2.11
Grøstl 390 383 160 512 1227 3.14 613 1.57
JH 539 354 168 512 1079 2.00 540 1.00
JH-2 186 419 6720 512 32 0.17 16 0.09
Keccak 549 252 200 1088 1370 2.50 1370 2.50
Skein 474 356 584 512 312 0.66 156 0.33

Table B.22: Results for the heavyweight versions of Keccak (Virtex-7).

Name Capacity Parallel Area Frequency Clock Input size Long TP TP-area

[Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
Keccak-f [1600] 512 1 170 254 2688 1088 103 0.60

2 224 279 1344 1088 226 1.01
4 226 215 672 1088 349 1.54
8 296 206 336 1088 667 2.25
16 468 198 168 1088 1282 2.74
32 903 189 84 1088 2452 2.72
64 1444 276 42 1088 7150 4.95

Keccak-f [800] 512 1 163 274 1024 288 77 0.47
2 177 294 512 288 165 0.93
4 188 213 256 288 240 1.27
8 339 267 128 288 601 1.77
16 411 193 64 288 871 2.12
32 635 290 32 288 2612 4.11

256 1 164 270 1280 544 115 0.70
2 193 290 640 544 246 1.28
4 194 215 320 544 366 1.89
8 280 207 160 544 703 2.51
16 451 198 80 544 1346 2.98
32 692 310 40 544 4220 6.10



257

Table B.23: Results for the lightweight versions of Keccak (Virtex-7).

Name Digest Capacity Parallel Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Bits] [Bits] Slices [Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Keccak-f [400] 128 256 1 134 295 480 144 89 0.66 89 0.66

2 164 295 240 144 177 1.08 177 1.08
4 187 230 120 144 276 1.47 276 1.47
8 250 212 60 144 509 2.03 509 2.03
16 326 333 30 144 1598 4.90 1598 4.90

128 128 1 134 283 608 272 127 0.94 127 0.94
2 155 220 304 272 197 1.27 197 1.27
4 203 226 152 272 404 1.99 404 1.99
8 270 213 76 272 763 2.82 763 2.82
16 344 341 38 272 2440 7.09 2440 7.09

160 160 1 130 234 576 240 98 0.75 98 0.75
2 175 288 288 240 240 1.37 240 1.37
4 196 225 144 240 375 1.91 375 1.91
8 260 214 72 240 714 2.75 714 2.75
16 326 326 36 240 2177 6.68 2177 6.68

160 320 1 130 278 416 80 53 0.41 27 0.21
2 164 291 208 80 112 0.68 56 0.34
4 188 232 104 80 179 0.95 89 0.48
8 238 215 52 80 330 1.39 165 0.69
16 320 332 26 80 1022 3.19 511 1.60

224 224 1 128 294 512 176 101 0.93 51 0.40
2 171 213 256 176 146 1.27 73 0.43
4 197 267 128 176 367 1.77 184 0.93
8 258 193 64 176 532 2.12 266 1.03
16 333 290 32 176 1597 4.11 798 2.40

256 256 1 129 270 480 144 81 0.70 40 0.31
2 140 290 240 144 174 1.28 87 0.62
4 189 215 120 144 258 1.89 129 0.68
8 253 207 60 144 496 2.51 248 0.98
16 335 198 30 144 950 2.98 475 1.42

Keccak-f [200] 128 128 1 108 285 224 72 92 0.85 46 0.42
2 132 271 112 72 174 1.32 87 0.66
4 161 234 56 72 301 1.87 151 0.94
8 175 397 28 72 1020 5.83 510 2.92

160 160 1 102 282 192 40 59 0.58 15 0.14
2 127 270 96 40 112 0.88 28 0.22
4 194 301 48 40 251 1.30 63 0.32
8 169 357 24 40 595 3.52 149 0.88

Table B.24: Results for the Photon hash function family (Virtex-7).

Name Area Frequency Clock Input size Long TP TP-area Short TP TP-area

[Slices] [MHz] Cycles [Bits] [MBits/s]
[

MBits/s
Slice

]
[MBits/s]

[
MBits/s
Slice

]
Photon-80/20/16 89 249 245 20 20 0.23 4.07 0.046
Photon-128/10/16 95 253 436 16 9 0.10 1.16 0.012
Photon-160/36/36 129 250 597 36 15 0.12 3.01 0.023
Photon-224/32/32 107 286 776 32 12 0.11 1.69 0.016
Photon-256/32/32 198 131 436 32 10 0.05 1.20 0.006



258



Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[ACK+02] G. Ausiello, P. Crescenzi, V. Kann, A. Marchetti-Spaccalmela,
and M. Protasi. Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties.
Springer-Verlag, 2002.

[AHMP10] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan.
SHA-3 proposal BLAKE. Submission to NIST. 2010. url: http:
//www.131002.net/blake/blake.pdf.

[AIM10] L. Atzori, A. Iera, and G. Morabito. „The Internet of Things:
A Survey“. In: vol. 54. 15. Elsevier, 2010, pp. 2787–2805.

[Ash09] K. Ashton. „That ’Internet of Things’ Thing“. In: RFiD Journal
22 (2009), pp. 97–114.

[ATM+13] G. S. Athanasiou, E. Tsingkas, H. E. Michail, G. Theodor-
idis, and C. E. Goutis. „Throughput/Area Trade-Offs of Loop-
Unrolling, Functional, and Structural Pipeline for Skein Hash
Function“. In: Computer Science & Engineering 3.1 (2013).

[Bar87] P. Barrett. „Implementing the Rivest Shamir and Adleman
Public Key Encryption Algorithm on a Standard Digital Signal
Processor“. In: Advances in Cryptology - CRYPTO ’86. Springer-
Verlag, 1987, pp. 311–323.

[BBV12] S. Babbage, J. Borghoff, and V. Velichkov. The eSTREAM
Portfolio in 2012. Tech. rep. ECRYPT II, 2012. url: http:
//www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf.

259

http://www.131002.net/blake/blake.pdf
http://www.131002.net/blake/blake.pdf
http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf


260 BIBLIOGRAPHY

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. „Message Authenti-
cation using Hash Functions – the HMAC Construction“. In:
RSA Laboratories, 1996.

[BCO04] E. Brier, C. Clavier, and F. Olivier. „Correlation Power Anal-
ysis with a Leakage Model“. In: Cryptographic Hardware and
Embedded Systems. Springer-Verlag, 2004, pp. 16–29.

[BD07] E. Biham and O. Dunkelman. A Framework for Iterative
Hash Functions - HAIFA. Cryptology ePrint Archive, Report
2007/278. http://eprint.iacr.org/2007/278. 2007.

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. „Sponge
functions“. In: Ecrypt Hash Workshop. 2007.

[BDPA08] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. „On the
Indifferentiability of the Sponge Construction“. In: Advances
in Cryptology - EUROCRYPT ’08. Vol. 4965. Lecture Notes in
Computer Science. Springer-Verlag, 2008, pp. 181–197.

[BDPA09] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. Suffi-
cient conditions for sound tree and sequential hashing modes.
Cryptology ePrint Archive, Report 2009/210. http://eprint.
iacr.org/2009/210. 2009.

[BDPA11a] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. The
Keccak reference. Submission to NIST. 2011. url: http://
keccak.noekeon.org/Keccak-reference-3.0.pdf.

[BDPA11b] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. The
Keccak SHA-3 submission. Submission to NIST. 2011. url:
http://keccak.noekeon.org/Keccak-submission-3.pdf.

[BDPA11c] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. Cryp-
tographic Sponge Functions. 2011. url: http : / / sponge .

noekeon.org/CSF-0.1.pdf.

[BDPA12] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. „Duplex-
ing the sponge: single-pass authenticated encryption and other
applications“. In: Selected Areas in Cryptography. Springer-
Verlag. 2012, pp. 320–337.

http://eprint.iacr.org/2007/278
http://eprint.iacr.org/2009/210
http://eprint.iacr.org/2009/210
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf


BIBLIOGRAPHY 261

[BDPA13] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. Sakura:
a flexible coding for tree hashing. Cryptology ePrint Archive,
Report 2013/231. http://eprint.iacr.org/2013/231. 2013.

[Ben81] M. Ben-Or. „Probabilistic Algorithms in Finite Fields“. In:
Proceedings of the 22nd Annual Symposium on Foundations of
Computer Science. IEEE, 1981, pp. 394–398.

[Ber06] D. J. Bernstein. „Curve25519: new Diffie-Hellman Speed
Records“. In: Public Key Cryptography - PKC ’06. Springer-
Verlag, 2006, pp. 207–228.

[Ber08a] D. J. Bernstein. „ChaCha, a Variant of Salsa20“. In: Workshop
Record of SASC. 2008.

[Ber08b] D. J. Bernstein. „The Salsa20 Family of Stream Ciphers“. In:
New Stream Cipher Designs. Vol. 4986. Lecture Notes in Com-
puter Science. Springer-Verlag, 2008, pp. 84–97.

[Ber14] D. J. Bernstein. CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness. http : / /

competitions.cr.yp.to. 2014.

[Ber67] E. R. Berlekamp. „Factoring Polynomials Over Finite Fields“.
In: Bell System Technical Journal 46 (1967), pp. 1853–1859.

[BHT98] G. Brassard, P. Høyer, and A. Tapp. „Quantum Cryptanalysis
of Hash and Claw-Free Functions“. In: LATIN’98: Theoretical
Informatics. Vol. 1380. Lecture Notes in Computer Science.
Springer-Verlag, 1998, pp. 163–169.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Posch-
mann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. „PRE-
SENT: An Ultra-Lightweight Block Cipher“. In: Cryptographic
Hardware and Embedded Systems - CHES ’07. Vol. 4727. Lec-
ture Notes in Computer Science. Springer-Verlag, 2007, pp. 450–
466.

[BL12] D. J. Bernstein and T. Lange. The new SHA-3 software shootout.
Cryptology ePrint Archive, Report 2012/004. http://eprint.
iacr.org/2012/004. 2012.

http://eprint.iacr.org/2013/231
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://eprint.iacr.org/2012/004
http://eprint.iacr.org/2012/004


262 BIBLIOGRAPHY

[BOY10] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. „Compact Im-
plementations of BLAKE-32 and BLAKE-64 on FPGA“. In:
International Conference on Field-Programmable Technology.
2010, pp. 170–177.

[BR02] L. M. Burgun and A. Raynaud. „Method and Apparatus for
Gate-Level Simulation of Synthesized Register Transfer Level
Design with Source-Level Debugging“. US Patent 6,336,087.
2002.

[BR89] D. Bong and C. Ruland. „Optimized Software Implementations
of the Modular Exponentiation on General Purpose Micropro-
cessors“. In: Computers & Security 8.7 (1989), pp. 621–630.

[BU08] D. Buchfuhrer and C. Umans. „The Complexity of Boolean
Formula Minimization“. In: Automata, Languages and Program-
ming. Vol. 5125. Lecture Notes in Computer Science. Springer-
Verlag, 2008, pp. 24–35.

[Can05a] D. Canright. A Very Compact Rijndael S-Box. 2005.

[Can05b] D. Canright. „A Very Compact S-Box for AES“. In: Crypto-
graphic Hardware and Embedded Systems - CHES ’05. Vol. 3659.
Lecture Notes in Computer Science. Springer-Verlag, 2005,
pp. 441–455.

[CB08] D. Canright and L. Batina. „A Cery Compact "Perfectly
Masked" S-box for AES“. In: Proceedings of the 6th Inter-
national Conference on Applied Cryptography and Network
Security. ACNS’08. Springer-Verlag, 2008, pp. 446–459.

[CD94] J. Cong and Y. Ding. „On Area/Depth Trade-Off in LUT-based
FPGA Technology Mapping“. In: vol. 2. 2. IEEE, 1994, pp. 137–
148.

[CDMP05] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. „Merkle-
Damgård Revisited: How to Construct a Hash Function“. In:
Advances in Cryptology - CRYPTO ’05. Vol. 3621. Lecture
Notes in Computer Science. Springer-Verlag. 2005, pp. 430–
448.



BIBLIOGRAPHY 263

[CGH04] R. Canetti, O. Goldreich, and S. Halevi. „The Random Oracle
Methodology, Revisited“. In: vol. 51. 4. ACM, 2004, pp. 557–
594.

[CGMT09] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. „An
Introduction to High-Level Synthesis“. In: vol. 26. 4. IEEE,
2009, pp. 8–17.

[CO09] D. Canright and D. A. Osvik. „A More Compact AES“. In:
Selected Areas in Cryptography. Vol. 5867. Lecture Notes in
Computer Science. Springer-Verlag, 2009, pp. 157–169.

[Coh89] A. Cohn. „The Notion of Proof in Hardware Verification“. In:
vol. 5. 2. Kluwer Academic Publishers, 1989, pp. 127–139.

[Con07] C.-C. C. Consortium. C2C-CC Manifesto, Version 1.1. Aug.
2007.

[Coo79] S. A. Cook. „Deterministic CFL’s are accepted simultaneously
in polynomial time and log squared space“. In: Proceedings of
the 11th Annual ACM Symposium on Theory of Computing.
STOC ’79. ACM, 1979, pp. 338–345.

[Cou94] O. Coudert. „Two-level logic minimization: an overview“. In:
Integration, the {VLSI} Journal 17.2 (1994), pp. 97–140.

[CPB+12] S. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey,
S. Paul, and L. E. Bassham. Third-Round Report of the SHA-3
Cryptographic Hash Algorithm Competition. National Institute
of Standards and Technology (NIST). 2012. url: http://
nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf.

[CW03] S. A. Crosby and D. S. Wallach. „Denial of Service via Algorith-
mic Complexity Attacks“. In: Proceedings of the 12th USENIX
Security Symposium. 2003, pp. 29–44.

[Dam88] I. B. Damgård. „Collision Free Hash Functions and Public
Key Signature Schemes“. In: Advances in Cryptology - EURO-
CRYPT ’87. Springer-Verlag. 1988, pp. 203–216.

http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf


264 BIBLIOGRAPHY

[Dam89] I. B. Damgård. „A Design Principle for Hash Functions“. In:
Advances in Cryptology - CRYPTO ’89. Springer-Verlag, 1989,
pp. 416–427.

[DAR85] M. R. Dagenais, V. K. Agarwal, and N. C. Rumin. „The Mc-
BOOLE Logic Minimizer“. In: 22nd Design Automation Con-
ference. IEEE, 1985, pp. 667–673.

[DNRH07] J. D. Djigbenou, T. V. Nguyen, C. W. Ren, and D. S. Ha.
„Development of TSMC 0.25µm Standard Cell Library“. In:
Proceedings of SoutheastCon. IEEE. 2007, pp. 566–568.

[DP84] D. W. Davies and W. L. Price. „Digital signatures: An update“.
In: 5th International Confercerence on Computer Communica-
tion. 1984, pp. 845–849.

[DR99] J. Daemen and V. Rijmen. AES Proposal: Rijndael. Submission
to NIST. 1999. url: http://csrc.nist.gov/archive/aes/
rijndael/Rijndael-ammended.pdf.

[Dri09] S. Drimer. „Security for volatile FPGAs“. In: University of
Cambridge, 2009.

[DRRS09] Y. Dodis, L. Reyzin, R. L. Rivest, and E. Shen. „Indifferentia-
bility of Permutation-Based Compression Functions and Tree-
Based Modes of Operation, with Applications to MD6“. In: Fast
Software Encryption. Vol. 5665. Lecture Notes in Computer
Science. Springer-Verlag, 2009, pp. 104–121.

[Ehl10] A. Ehliar. „Optimizing Xilinx designs through primitive in-
stantiation“. In: Proceedings of the 7th FPGAworld Conference.
ACM, 2010, pp. 20–27.

[FIPS 180-4] Secure Hash Standard (SHS). National Institute of Standards
and Technology (NIST), 2012.

[FLS+10] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare,
T. Kohno, J. Callas, and J. Walker. The Skein Hash Function
Family. Submission to NIST. 2010. url: http://www.skein-
hash.info/sites/default/files/skein1.3.pdf.

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf


BIBLIOGRAPHY 265

[FPO05] A. Ferrante, V. Piuri, and J. Owen. „IPSec Hardware Resource
Requirements Evaluation“. In: Next Generation Internet Net-
works. 2005, pp. 240–246.

[Fri01] E. G. Friedman. „Clock Distribution Networks in Synchronous
Digital Integrated Circuits“. In: vol. 89. 5. IEEE, 2001, pp. 665–
692.

[FS94] A. H. Farrahi and M. Sarrafzadeh. „Complexity of the Lookup-
Table Minimization Problem for FPGA Technology Mapping“.
In: vol. 13. 11. IEEE, 1994, pp. 1319–1332.

[GGE09] S. Ghaznavi, C. Gebotys, and R. Elbaz. „Efficient Technique for
the FPGA Implementation of the AES MixColumns Transfor-
mation“. In: International Conference on Reconfigurable Com-
puting and FPGAs - ReConFig ’09. 2009, pp. 219–224.

[GHR+12a] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U.
Sharif. Comprehensive Evaluation of High-Speed and Medium-
Speed Implementations of Five SHA-3 Finalists Using Xilinx
and Altera FPGAs. Third SHA-3 Candidate Conference. 2012.
url: http://csrc.nist.gov/groups/ST/hash/sha- 3/
Round3/March2012/documents/papers/GAJ_paper.pdf.

[GHR+12b] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U.
Sharif. Comprehensive Evaluation of High-Speed and Medium-
Speed Implementations of Five SHA-3 Finalists Using Xil-
inx and Altera FPGAs. Cryptology ePrint Archive, Report
2012/368. http://eprint.iacr.org/2012/368. 2012.

[GHR10] K. Gaj, E. Homsirikamol, and M. Rogawski. „Fair and Com-
prehensive Methodology for Comparing Hardware Performance
of Fourteen Round Two SHA-3 Candidates Using FPGAs“. In:
Cryptographic Hardware and Embedded Systems - CHES ’10.
Vol. 6225. Lecture Notes in Computer Science. Springer-Verlag,
2010, pp. 264–278.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory. Oxford University Press,
1995.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/GAJ_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/GAJ_paper.pdf
http://eprint.iacr.org/2012/368


266 BIBLIOGRAPHY

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., 1990.

[GKA+10] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Hom-
sirikamol, and B. Y. Brewster. „ATHENa - Automated Tool
for Hardware EvaluatioN: Toward Fair and Comprehensive
Benchmarking of Cryptographic Hardware Using FPGAs“. In:
20th International Conference on Field Programmable Logic
and Applications. IEEE, 2010, pp. 414–421.

[GKM+10] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schläffer, and S. S. Thomsen. Grøstl – a
SHA-3 candidate. Submission to NIST. 2010. url: http://
groestl.info/Groestl.pdf.

[Gol97] A. V. Goldberg. „An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm“. In: Journal of Algorithms
22.1 (1997), pp. 1–29.

[GP97] S. Gao and D. Panario. „Tests and Constructions of Irreducible
Polynomials over Finite Fields“. In: In Foundations of Compu-
tational Mathematics. Springer-Verlag, 1997, pp. 346–361.

[GPP11] J. Guo, T. Peyrin, and A. Poschmann. „The PHOTON Family
of Lightweight Hash Functions“. In: Advances in Cryptology -
CRYPTO ’11. Vol. 6841. Lecture Notes in Computer Science.
Springer-Verlag, 2011, pp. 222–239.

[Gro96] L. K. Grover. „A fast quantum mechanical algorithm for
database search“. In: Proceedings of the 28th Annual ACM
Symposium on Theory of Computing. ACM. 1996, pp. 212–219.

[GSH+12] X. Guo, M. Srivastav, S. Huang, D. Ganta, M. B. Henry, L.
Nazhandali, and P. Schaumont. „ASIC implementations of five
SHA-3 finalists“. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2012, pp. 1006–1011.

http://groestl.info/Groestl.pdf
http://groestl.info/Groestl.pdf


BIBLIOGRAPHY 267

[HE96] S. Hassoun and C. Ebeling. „Architectural Retiming: Pipelining
Latency-Constrained Circuits“. In: 33rd Design Automation
Conference. ACM, 1996, pp. 708–713.

[HGD85] F. Hoornaert, J. Goubert, and Y. Desmedt. „Efficient Hardware
Implementation of the DES“. In: Advances in Cryptology -
CRYPTO ’85. Vol. 196. Lecture Notes in Computer Science.
Springer-Verlag, 1985, pp. 147–173.

[HK71] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, 1971.

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison
Wesley, 2006.

[How06] J. M. Howie. Fields and Galois Theory. Springer-Verlag, 2006.

[HP75] H. Hoehne and R. Piloty. „Design Verification at the Register
Transfer Language Level“. In: vol. 24. 9. IEEE, 1975, pp. 861–
867.

[HRG11] E. Homsirikamol, M. Rogawski, and K. Gaj. „Throughput vs.
Area Trade-offs in High-Speed Architectures of Five Round 3
SHA-3 Candidates Implemented Using Xilinx and Altera FP-
GAs“. In: Workshop on Cryptographic Hardward and Embedded
Systems. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 491–506.

[HV04] A. Hodjat and I. Verbauwhede. „Interfacing a High Speed
Crypto Accelerator to an Embedded CPU“. In: Conference
Record of the Thirty-Eighth Asilomar Conference on Signals,
Systems and Computers. Vol. 1. IEEE. 2004, pp. 488–492.

[HW02] E. Hemaspaandra and G. Wechsung. „The Mminimization
Problem for Boolean Formulas“. In: vol. 31. 6. SIAM, 2002,
pp. 1948–1958.

[IS09] T. Isobe and K. Shibutani. „Preimage attacks on reduced Tiger
and SHA-2“. In: Fast Software Encryption. Vol. 5665. Lecture
Notes in Computer Science. Springer-Verlag, 2009.



268 BIBLIOGRAPHY

[ISO 29192-2] ISO/IEC 29192-2:2012 Information technology – Security tech-
niques – Lightweight cryptography – Part 2: Block ciphers. In-
ternational Organization for Standardization, 2012.

[JA11] B. Jungk and J. Apfelbeck. „Area-Efficient FPGA Implementa-
tions of the SHA-3 Finalists“. In: International Conference on
Reconfigurable Computing and FPGAs - ReConFig ’11. IEEE,
2011, pp. 235–241.

[JLH14] B. Jungk, L. R. Lima, and M. Hiller. „A Systematic Study of
Lightweight Hash Functions on FPGAs“. In: International Con-
ference on Reconfigurable Computing and FPGAs - ReConFig
’14. IEEE, 2014.

[JNB99] M. B. Josephs, S. M. Nowick, and C. H. V. Berkel. „Modeling
and Design of Asynchronous Circuits“. In: vol. 87. 2. IEEE,
1999, pp. 234–242.

[JR10a] B. Jungk and S. Reith. On FPGA-based implementations of
Grøstl. Cryptology ePrint Archive, Report 2010/260. http:
//eprint.iacr.org/2010/260. 2010.

[JR10b] B. Jungk and S. Reith. „On FPGA-Based Implementations of
the SHA-3 Candidate Grøstl“. In: International Conference on
Reconfigurable Computing and FPGAs - ReConFig ’10. IEEE,
2010, pp. 316–321.

[JS13] B. Jungk and M. Stöttinger. „Among Slow Dwarfs and Fast
Giants: A Systematic Design Space Exploration of Keccak“.
In: International Workshop on Reconfigurable Communication-
centric Systems-on-Chip - ReCoSoC ’13. IEEE, 2013.

[JSH14] B. Jungk, M. Stöttinger, and M. Harter. Shrinking KECCAK
Hardware Implementations. SHA-3 2014 Workshop. 2014.

[Jun11] B. Jungk. Compact Implementations of Grøstl, JH and Skein
for FPGAs. Ecrypt II Hash Workshop. 2011.

http://eprint.iacr.org/2010/260
http://eprint.iacr.org/2010/260


BIBLIOGRAPHY 269

[Jun12] B. Jungk. Evaluation Of Compact FPGA Implementations For
All SHA-3 Finalists. Third SHA-3 Candidate Conference. 2012.
url: http://csrc.nist.gov/groups/ST/hash/sha- 3/
Round3/March2012/documents/papers/JUNGK_paper.pdf.

[Kay07] R. F. Kayser. „Announcing Request for Candidate Algorithm
Nominations for a New Cryptographic Hash Algorithm (SHA-
3) Family“. In: Federal Register. Vol. 72. National Institute of
Standards and Technology (NIST), 2007, pp. 62212–62220.

[KC99] V. Kabanets and J.-Y. Cai. Circuit Minimization Problem.
Tech. rep. Electronic Colloquium on Computational Complex-
ity, 1999.

[KDV+11] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. M. de Dormale, and F.-X. Standaert. „Compact FPGA
Implementations of the Five SHA-3 Finalists“. In: 10th Smart
Card Research and Advanced Application Conference. Vol. 7079.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, pp. 217–233.

[KE10] H. Krawczyk and P. Eronen. „HMAC-based Extract-and-
Expand Key Derivation Function (HKDF)“. In: IETF, 2010.

[Kil07] S. Kilts. Advanced FPGA Design: Architecture, Implementation,
and Optimization. John Wiley & Sons, 2007.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. „Differential Power Analysis“.
In: Advances in Cryptology - CRYPTO ’99. Vol. 1666. Lecture
Notes in Computer Science. Springer-Verlag, 1999, pp. 388–397.

[KM03] D. Koufaty and D. T. Marr. „Hyperthreading Technology in
the Netburst Microarchitecture“. In: IEEE Micro 23.2 (2003),
pp. 56–65.

[KM09] C. Karpfinger and K. Meyberg. Algebra Gruppen - Ringe -
Körper. Spektrum Akademischer Verlag, 2009.

[Knu69] D. E. Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms. Addison-Wesley, 1969.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/JUNGK_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/JUNGK_paper.pdf


270 BIBLIOGRAPHY

[Knu73] D. E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

[KO62] A. Karatsuba and Y. Ofman. „Multiplication of Many-Digital
Numbers by Automatic Computers“. In: Proceedings of the
USSR Academy of Sciences. Vol. 145. 1962, pp. 293–294.

[Ko85] K.-I. Ko. „On some Natural Complete Operators“. In: Theoret-
ical Computer Science 37 (1985), pp. 1–30.

[Kor01] I. Koren. Computer Arithmetic Algorithms. 2nd. A. K. Peters,
Ltd., 2001.

[KR07] I. Kuon and J. Rose. „Measuring the Gap Between FPGAs and
ASICs“. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 26.2 (2007), pp. 203–215.

[KS05] J. Kelsey and B. Schneier. „Second Preimages on n-Bit Hash
Functions for Much Less than 2n Work“. In: Advances in Cryp-
tology - EUROCRYPT ’05. Vol. 3494. Lecture Notes in Com-
puter Science. Springer-Verlag, 2005, pp. 474–490.

[KST04] R. Kalla, B. Sinharoy, and J. M. Tendler. „IBM POWER5
Chip: a Dual-Core Multithreaded Processor“. In: IEEE Micro
24.2 (2004), pp. 40–47.

[KTR08] I. Kuon, R. Tessier, and J. Rose. „FPGA Architecture: Sur-
vey and Challenges“. In: vol. 2. 2. Now Publishers Inc., 2008,
pp. 135–253.

[KYS+11] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi,
S. Gurung, and J. Pham. Lightweight Implementations of SHA-
3 Finalists on FPGAs. Submission to NIST (Round 3). 2011.
url: http://csrc.nist.gov/groups/ST/hash/sha- 3/
Round3/March2012/documents/papers/KAPS_paper.pdf.

[LN96] R. Lidl and H. Niederreiter. Finite Fields (Encyclopedia of
Mathematics and its Applications). Cambridge University Press,
1996.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/KAPS_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/KAPS_paper.pdf


BIBLIOGRAPHY 271

[Luc05] S. Lucks. „A Failure-Friendly Design Principle for Hash Func-
tions“. In: Advances in Cryptology - ASIACRYPT ’05. Vol. 3788.
Lecture Notes in Computer Science. Springer-Verlag, 2005,
pp. 474–494.

[Mal93] S. Malik. „Analysis of Cyclic Combinational Circuits“. In: 1993
IEEE/ACM International Conference on Computer-Aided De-
sign. Digest of Technical Papers. 1993, pp. 618–625.

[MBV06] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. „Heuris-
tics for Area Minimization in LUT-Based FPGA Technology
Mapping“. In: vol. 25. 11. IEEE, 2006, pp. 2331–2340.

[Mer74] F. Mertens. „Über einige asymptotische Gesetze der Zahlenthe-
orie“. In: Journal für die reine und angewandte Mathematik 77
(1874), pp. 289–338.

[Mer79] R. C. Merkle. „Secrecy, Authentication, and Public Key Sys-
tems“. PhD thesis. Stanford University, 1979.

[Mer89] R. C. Merkle. „A Certified Digital Signature“. In: Advances in
Cryptology - CRYPTO ’89. Springer-Verlag, 1989, pp. 218–238.

[MMO85] S. M. Matyas, C. H. Meyer, and J. Oseas. „Generating strong
one-way functions with cryptographic algorithm“. In: IBM,
1985.

[Möb32] A. F. Möbius. „Über eine besondere Art von Umkehrung der
Reihen“. In: Journal für die reine und angewandte Mathematik
9 (1832), pp. 105–123.

[MOI90] S. Miyaguchi, K. Ohta, and M. Iwata. „128-bit hash function
(N-hash)“. In: NTT review 2.6 (1990), pp. 128–132.

[Mon85] P. L. Montgomery. „Modular Multiplication Without Trial Divi-
sion“. In: Mathematics of Computation 44.170 (1985), pp. 519–
521.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer-Verlag, 2007.

[MOV97] A. Menezes, P. van Ooorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.



272 BIBLIOGRAPHY

[MRH04] U. Maurer, R. Renner, and C. Holenstein. „Indifferentiability,
Impossibility Results on Reductions, and Applications to the
Random Oracle Methodology“. In: Theory of Cryptography.
Vol. 2951. Lecture Notes in Computer Science. Springer-Verlag,
2004, pp. 21–39.

[MS03] S. Morioka and A. Satoh. „An Optimized S-Box Circuit Archi-
tecture for Low Power AES Design“. In: Cryptographic Hardware
and Embedded Systems - CHES ’02. Vol. 2523. Lecture Notes
in Computer Science. Springer-Verlag, 2003, pp. 172–186.

[MS09] G. Martin and G. Smith. „High-Level Synthesis: Past, Present,
and Future“. In: vol. 26. 4. IEEE, 2009, pp. 18–25.

[MSBS93] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and A. L.
Sangiovanni-Vicentelli. „ESPRESSO-SIGNATURE: A New Ex-
act Minimizer for Logic Functions“. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 1.4 (1993),
pp. 432–440.

[NRR06] S. Nikova, C. Rechberger, and V. Rijmen. „Threshold Imple-
mentations against Side-Channel Attacks and Glitches“. In:
Information and Communications Security. Springer-Verlag,
2006, pp. 529–545.

[Oec03] P. Oechslin. „Making a Faster Cryptanalytic Time-Memory
Trade-Off“. In: Advances in Cryptology - CRYPTO ’03.
Springer-Verlag, 2003, pp. 617–630.

[OM86] J. K. Omura and J. L. Massey. Computational method and
apparatus for finite field arithmetic. U.S. patent #4,587,627.
1986.

[Paa94] C. Paar. „Efficient VLSI Architectures for Bit-Parallel Compu-
tation in Galois Fields“. PhD thesis. Rhur-Universität Bochum,
1994.

[PAFL98] A. Postula, D. Abramson, Z. Fang, and P. Logathetis. „A
Comparison of High Level Synthesis and Register Transfer
Level Design Techniques for Custom Computing Machines“.



BIBLIOGRAPHY 273

In: Proceedings of the 31st Hawaii International Conference on
System Sciences. Vol. 7. IEEE. 1998, pp. 207–214.

[PB61] W. W. Peterson and D. T. Brown. „Cyclic Codes for Error
Detection“. In: Proceedings of the IRE 49.1 (1961), pp. 228–235.

[Pos41] E. L. Post. The Two-Valued Iterative Systems Of Mathematical
Logic. 5. Princeton University Press, 1941.

[PR09] L. Piga and S. Rigo. „Comparing RTL and High-Level Synthesis
Methodologies in the Design of a Theora Video Decoder IP
Core“. In: 5th Southern Conference on Programmable Logic.
IEEE. 2009, pp. 135–140.

[Pre93] B. Preneel. „Analysis and Design of Cryptographic Hash Func-
tions“. PhD thesis. Katholieke Universiteit te Leuven, 1993.

[Pre99] B. Preneel. „The State of Cryptographic Hash Functions“. In:
Lectures on Data Security. Springer-Verlage, 1999, pp. 158–182.

[Rab80] M. O. Rabin. „Probabilistic Algorithms in Finite Fields“. In:
vol. 9. 2. SIAM, 1980, pp. 273–280.

[RD02] V. Rijmen and J. Daemen. The Design of Rijndael. Springer-
Verlag, 2002.

[Rij00] V. Rijmen. Efficient implementation of the Rijndael S-Box.
Tech. rep. Katholieke Universiteit Leuven, 2000.

[Riv92] R. Rivest. „The MD4 Message-Digest Algorithm“. In: IETF,
1992.

[Rog06] P. Rogaway. „Formalizing Human Ignorance: Collision-Resistant
Hashung without the Keys“. In: Progress in Cryptology - VI-
ETCRYPT ’06. Springer-Verlag, 2006, pp. 211–228.

[RS04] P. Rogaway and T. Shrimpton. „Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage
Resistance, Second-Preimage Resistance, and Collision Resis-
tance“. In: Fast Software Encryption. Vol. 3017. Lecture Notes
in Computer Science. Springer-Verlag, 2004, pp. 371–388.



274 BIBLIOGRAPHY

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. „A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems“.
In: vol. 21. 2. ACM, 1978, pp. 120–126.

[Sas13] T. Sasao. „Four Decades of Multi-Valued Logic: Lists of Highly
Cited Papers“. In: 43rd International Symposium on Multiple-
Valued Logic. 2013, pp. 198–202.

[Sav97] J. E. Savage. Models of Computation: Exploring the Power of
Computing. Addison-Wesley, 1997.

[Sch11] T. Schütze. „Automotive Security: Cryptography for Car2X
Communication“. In: Embedded World Conference. 2011.

[Sem12] How an FPGA Approach to Complex System Design Can Im-
prove Profitability: Real Case Studies. SEMICO Research Cor-
poration, 2012.

[SGI+11] H. Schweppe, T. Gendrullis, M.-S. Idrees, Y. Roudier, B. Weyl,
and M. Wolf. „Securing Car2X Applications with effective
Hardware-Software Co-Design for Vehicular On-Board Net-
works“. In: VDI Automotive Security 27 (2011).

[Sha79] A. Shamir. „How to Share a Secret“. In: vol. 22. 11. ACM, 1979,
pp. 612–613.

[She13] H. M. Sheffer. „A set of five independent postulates for Boolean
algebras, with application to logical constants“. In: vol. 14. 4.
JSTOR, 1913, pp. 481–488.

[Sho91] V. Shoup. „A Fast Deterministic Algorithm for Factoring Poly-
nomials over Finite Fields of Small Characteristic“. In: Proceed-
ings of the International Symposium on Symbolic and Algebraic
Computation ’91. ACM. 1991, pp. 14–21.

[Sim96] W. A. Simpson. „PPP Challenge Handshake Authentication
Protocol (CHAP)“. In: IETF, 1996.

[Sip96] M. Sipser. Introduction to the Theory of Computation. Interna-
tional Thomson Publishing, 1996.



BIBLIOGRAPHY 275

[SKNI10] B. Song, K. Kawakami, K. Nakano, and Y. Ito. „An RSA
Encryption Hardware Algorithm Using a Single DSP Block
and a Single Block RAM on the FPGA“. In: 1st International
Conference on Networking and Computing (ICNC). IEEE. 2010,
pp. 140–147.

[SS08] S. K. Sanadhya and P. Sarkar. „New collision attacks against up
to 24-step SHA-2“. In: Progress in Cryptology - INDOCRYPT
’08. Vol. 5365. Lecture Notes in Computer Science. Springer-
Verlag, 2008.

[Stö13] M. S. P. Stöttinger. „Mutating Runtime Architectures as a
Countermeasure Against Power Analysis Attacks“. PhD thesis.
TU Darmstadt, 2013.

[Sun05] B. Sunar. „An Efficient Basis Conversion Algorithm for Com-
posite Fields with Given Representations“. In: vol. 54. 8. IEEE,
2005, pp. 992–997.

[TLW+90] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor,
J. V. Rajan, and R. L. Blackburn. Algorithmic and Register-
Transfer Level Synthesis: The System Architect’s Workbench.
The Springer International Series in Engineering and Computer
Science. Springer-Verlag, 1990.

[TNW96] M. Theobald, S. M. Nowick, and T. Wu. „Espresso-hf: A heuris-
tic hazard-free minimizer for two-level logic“. In: 33rd Design
Automation Conference. ACM, 1996, pp. 71–76.

[Tur36] A. M. Turing. „On Computable Numbers, with an Application
to the Entscheidungsproblem“. In: Proceedings of the London
Mathematical Society 42 (1936), pp. 230–265.

[TV04] K. Tiri and I. Verbauwhede. „A Logic Level Design Methodology
for a Secure DPA Resistant ASIC or FPGA Implementation“.
In: Proceedings of Design, Automation and Test in Europe
Conference and Exhibition. Vol. 1. IEEE, 2004, pp. 246–251.

[TW02] W. Trappe and L. C. Washington. Introduction to Cryptography:
with Coding Theory. Prentice Hall, 2002.



276 BIBLIOGRAPHY

[TW06] J. Talbot and D. Welsh. Complexity and Cryptography – An
Introduction. Cambridge University Press, 2006.

[Vad04] S. Vadlamani. „The Synchronized Pipelined Parallelism Model“.
MA thesis. University of California, Irvine, 2004.

[Ver05] IEEE Std 1364-2005. IEEE Standard for Verilog Hardware
Description Language.

[VHDL08] IEEE Std 1076-2008. IEEE Standard VHDL Language Refer-
ence Manual.

[VK07] K. Vitoroulis and A. J. Al-Khalili. „Performance of Paral-
lel Prefix Adders Implemented with FPGA Technology“. In:
IEEE Northeast Workshop on Circuits and Systems – ’07. 2007,
pp. 498–501.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform
Approach. Springer-Verlag, 1999.

[WFLY04] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology
ePrint Archive, Report 2004/199. http://eprint.iacr.org/
2004/199. 2004.

[WG10] C. Wenzel-Benner and J. Gräf. „XBX: eXternal Benchmarking
eXtension for the SUPERCOP Crypto Benchmarking Frame-
work“. In: Cryptographic Hardware and Embedded Systems
- CHES ’10. Vol. 6225. Lecture Notes in Computer Science.
Springer-Verlag, 2010, pp. 294–305.

[Win84a] R. S. Winternitz. „A Secure One-Way Hash Function Built from
DES.“ In: IEEE Symposium on Security and Privacy. 1984,
pp. 88–90.

[Win84b] R. S. Winternitz. „Producing a One-Way Hash Function from
DES“. In: Advances in Cryptology - CRYPTO ’83. Vol. 1440.
Springer-Verlag, 1984, pp. 203–207.

http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2004/199


BIBLIOGRAPHY 277

[WP06] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba
Algorithm for Efficient Implementations. Cryptology ePrint
Archive, Report 2006/224. http://eprint.iacr.org/2006/
224. 2006.

[Wu11] H. Wu. The Hash Function JH. Submission to NIST. 2011.
url: http://www3.ntu.edu.sg/home/wuhj/research/jh/
jh_round3.pdf.

[WYY05] X. Wang, Y. L. Yin, and H. Yu. „Finding Collisions in the Full
SHA-1“. In: Advances in Cryptology - CRYPTO ’05. Vol. 3621.
Lecture Notes in Computer Science. Springer-Verlag, 2005,
pp. 17–36.

[WZ10] H. Wang and H. Zhang. „A fast pseudorandom number gen-
erator with BLAKE hash function“. In: vol. 15. 5. Wuhan
University, 2010, pp. 393–397.

[Xil05] Xilinx. Using Look-Up Tables as Distributed RAM in Spartan-3
Generation FPGAs. 2005. url: http://www.xilinx.com/
support / documentation / application _ notes / xapp464 .

pdf.

[Xil12a] Xilinx. LogiCORE IP Fast Simplex Link (FSL) V20 Bus
(v2.11f). 2012. url: http://www.xilinx.com/support/
documentation/ip_documentation/fsl_v20/v2_11_f/fsl_

v20.pdf.

[Xil12b] Xilinx. LogiCORE IP MicroBlaze Micro Controller Sys-
tem (v1.1). 2012. url: http : / / www . xilinx . com /

support/documentation/sw_manuals/xilinx14_1/ds865_

microblaze_mcs.pdf.

[Xil12c] Xilinx. Virtex-5 FPGA User Guide. 2012. url: http://www.
xilinx.com/support/documentation/user_guides/ug190.

pdf.

[Xil12d] Xilinx. Virtex-5 FPGA XtremeDSP Design Considerations.
2012. url: http : / / www . xilinx . com / support /

documentation/user_guides/ug193.pdf.

http://eprint.iacr.org/2006/224
http://eprint.iacr.org/2006/224
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp464.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp464.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp464.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_f/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_f/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_f/fsl_v20.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf


278 BIBLIOGRAPHY

[Xil13a] Xilinx. Command Line Tools User Guide. 2013. url: http:
//www.xilinx.com/support/documentation/sw_manuals/

xilinx14_5/devref.pdf.

[Xil13b] Xilinx. Vivado Design Suite User Guide – High-Level Syn-
thesis. 2013. url: http : / / www . xilinx . com / support /

documentation/sw_manuals/xilinx2013_4/ug902-vivado-

high-level-synthesis.pdf.

[Xil13c] Xilinx. XST User Guide. 2013. url: http://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_5/xst.

pdf.

[XY98] S. Xing and W. W. h. Yu. „FPGA Adders: Performance Eval-
uation and Optimal Design“. In: vol. 15. IEEE, 1998, pp. 24–
29.

[Yin00] „IEEE Standard Specifications for Public-Key Cryptography“.
In: IEEE Std 1363-2000 (2000). Ed. by Y. L. Yin.

[Yuv79] G. Yuval. „How to swindle Rabin“. In: Cryptologia 3.3 (1979),
pp. 187–191.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf


Author’s Previous Publications

[HJR13] A. Himmighofen, B. Jungk, and S. Reith. „On a FPGA-based
Method for Authentication using Edwards Curves“. In: Inter-
national Workshop on Reconfigurable Communication-centric
Systems-on-Chip - ReCoSoC ’13. IEEE, 2013.

[JA11] B. Jungk and J. Apfelbeck. „Area-Efficient FPGA Implementa-
tions of the SHA-3 Finalists“. In: International Conference on
Reconfigurable Computing and FPGAs - ReConFig ’11. IEEE,
2011, pp. 235–241.

[JLH14] B. Jungk, L. R. Lima, and M. Hiller. „A Systematic Study of
Lightweight Hash Functions on FPGAs“. In: International Con-
ference on Reconfigurable Computing and FPGAs - ReConFig
’14. IEEE, 2014.

[JR10a] B. Jungk and S. Reith. On FPGA-based implementations of
Grøstl. Cryptology ePrint Archive, Report 2010/260. http:
//eprint.iacr.org/2010/260. 2010.

[JR10b] B. Jungk and S. Reith. „On FPGA-Based Implementations of
the SHA-3 Candidate Grøstl“. In: International Conference on
Reconfigurable Computing and FPGAs - ReConFig ’10. IEEE,
2010, pp. 316–321.

[JRA09] B. Jungk, S. Reith, and J. Apfelbeck. On Optimized FPGA
Implementations of the SHA-3 Candidate Grøstl. Cryptology
ePrint Archive, Report 2009/206. http://eprint.iacr.org/
2009/206. 2009.

279

http://eprint.iacr.org/2010/260
http://eprint.iacr.org/2010/260
http://eprint.iacr.org/2009/206
http://eprint.iacr.org/2009/206


280 AUTHOR’S PREVIOUS PUBLICATIONS

[JS13] B. Jungk and M. Stöttinger. „Among Slow Dwarfs and Fast
Giants: A Systematic Design Space Exploration of Keccak“.
In: International Workshop on Reconfigurable Communication-
centric Systems-on-Chip - ReCoSoC ’13. IEEE, 2013.

[JSG+12] B. Jungk, M. Stöttinger, J. Gampe, S. Reith, and S. A. Huss.
„Side-channel Resistant AES Architecture Utilizing Randomized
Composite Field Representations“. In: International Conference
on Field Programmable Technology. IEEE, 2012, pp. 125–128.

[JSH14] B. Jungk, M. Stöttinger, and M. Harter. Shrinking KECCAK
Hardware Implementations. SHA-3 2014 Workshop. 2014.

[Jun09] B. Jungk. „Selbstorganisierendes Service Level Management
basierend auf Mechanismus-Design“. In: ECEASST 17 (2009).

[Jun11] B. Jungk. Compact Implementations of Grøstl, JH and Skein
for FPGAs. Ecrypt II Hash Workshop. 2011.

[Jun12] B. Jungk. Evaluation Of Compact FPGA Implementations For
All SHA-3 Finalists. Third SHA-3 Candidate Conference. 2012.
url: http://csrc.nist.gov/groups/ST/hash/sha- 3/
Round3/March2012/documents/papers/JUNGK_paper.pdf.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/JUNGK_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/JUNGK_paper.pdf

	I Introduction and Motivation
	Introduction
	Motivation and Background
	Trade-Offs in Cryptography
	SHA-3 Competition
	Field-Programmable Gate Arrays
	Evaluation Methodologies

	Thesis Organization
	Published Material
	Notations


	II Foundations
	Boolean Circuits with Memory
	Introduction
	Boolean Circuits
	Memory and Timing
	Modeling Random Access Memories
	Complexity Measures

	Hash Functions
	Introduction
	Hash Functions
	Security of Hash Functions
	Security Properties
	Generic Attacks
	Side-Channel Attacks
	Side-Channel Countermeasures

	Domain Extender
	Iterated Hash Functions
	Merkle-Damgård
	Davies-Meyer
	Sponge Functions

	Tree-based Hash Functions
	Applications

	Hardware Design Aspects
	Introduction
	Register Transfer Level Synthesis
	Low-Level Optimizations
	High-Level Optimizations
	Parallelization
	Pipelining
	Unrolling
	Serialization
	Algorithmic Specific Optimizations

	FPGA Hardware Aspects
	General FPGA Architecture
	Xilinx FPGAs



	III FPGA-based Evaluation
	A Systematic Design Approach
	Introduction
	Motivation and Previous Work
	Methodology Overview
	Area Impact
	Throughput Impact
	Performance Indicators
	Data Dependencies

	Cycle Optimal Architectures
	Stall-Free Pipelining
	Round Function Memory Estimation

	Hash Function Evaluation
	Introduction
	Input and Output Bitstring Convention
	External Interfaces
	FSL-based Interface
	GMU Interface

	General Assumptions and Design Goals
	BLAKE
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	Implementation

	Grøstl
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	S-box Optimization
	Implementation

	JH
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	Manual LUT6_2 Instantiation
	Implementation

	Keccak
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	Implementation

	Skein
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	Implementation

	Photon
	Definition
	Systematic Evaluation Overview
	Detailed Analysis
	Evaluation Summary
	Implementation

	Discussion and Further Work

	Implementation Evaluation
	Introduction
	Criteria
	Automated Optimization
	Implementation Results
	SHA-3 Finalists with Padding
	Heavyweight Keccak without Padding
	Lightweight Hash Functions without Padding

	Third-Party Implementations
	Discussion and Further Work


	IV Appendix
	Finite Fields
	Introduction
	Basic Definitions
	Basic Results
	Representations
	Composite Fields
	Algorithms
	Basic Operations over F2n
	Finding Irreducible Polynomials
	Root Finding Algorithm
	Basis Conversion Matrix

	Implementation Results AES S-box

	Further Implementation Results
	Introduction
	Spartan-3
	Spartan-6
	Virtex-6
	Artix-7
	Kintex-7
	Virtex-7

	Bibliography


