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Abstract

Time series of observed monthly mean temperatures of European stations and at

grid points are decomposed into different kinds of trend (linear, progressive, degres-
sive), constant or significantly changing annual cycle,episodic and harmonic compo-
nents, extreme events and noise. A stepwiseregression is used to test whether the
components are significant. Specialemphasis is given to extreme events which we dis-
tinguish from extreme values.While extreme values may likely occur by chance, it is
very unlikelythat extreme events would be in accordance with the features of the time
series. On one hand, extreme events alter the estimates (and test results)of trends
and other components. On the other hand, such components have to beknown to
recognize extreme events. To deal with this problem, an iterativeprocedure is intro-
duced that converges fast to robust estimates of all thecomponents.
Applying this procedure to European temperatures of the last 100 years can reveal
that the phase of the annual cycle is shifted backward inthe year in western Europe
but foreward in the eastern part. In thelatter region, the amplitude of the annual
cycle has also increasedsignificantly. Most of the trend components found in the
time series arepositive and linear. Nearly all detected extreme events are cold events
whichoccured in winter. Their number has significantly grown. Significant harmon-
iccomponents with a period of 92.3 months (about 7.7 years) are found mainly inthe
northern and western part of Europe.

1 Introduction

One of the most important tasks of modern climatology is to understand climate vari-
ability. The effect of a particular natural or anthropogenic forcing canbe valued only if
climate variablity is understood. Thus, great effort isbeing given to the analysis of system-
atic climate variations as they areobserved at numerous meteorological stations worldwide
(Nicholls et al.,1996). In particular temperature data are prefered because they seem to be
the most reliable observations. In order to understand the variability of temperature time
series, many different strategies have been applied. Some authors searched only for trends
and thus assumed the time series to be the sum of a certain (mainly linear) trend plus
stationary noise (Schonwiese and Rapp, 1997). Other authors tried to explain temperature
variations as a result of instationary noise processes (Gordon, 1991; Koscielny-Bunde et
al., 1998; Tsonis et al., 1998). However, authors, who tested both of these possibilities
alternatively, showed that the observed trends could mostlikely not be explained by noise
processes alone (Bloomfield and Nychka,1992; Bloomfield 1992; Zheng and Basher, 1998).
This corresponds to theresults obtained from coupled general circulation models (Gates et
al.,1996; Kattenberg et al., 1996). These models suggest a trend in temperaturecaused by
enhanced greenhouse gas concentrations.

However, a trend can be seen as a smooth change in the mean value of a stochastic vari-
able. Moreover a time series must not only be the sum of atrend and noise, but may be
comprised of many other components which may alsoindicate a climate change. Thus some



authors prefer to decompose a timeseries by singular spectrum analysis(SSA; Vautard and
Ghil, 1989) into orthogonal components (Ghil and Vautard,1991; Mann and Park, 1994;
Schlesinger and Ramankutty, 1994; Plaut et al.,1995; Moron et al.,1998). The problem
with this approach is that theseorthogonal components must neither show obvious tem-
poral structures nor bephysically explicable (Elsner and Tsonis, 1991; Allen et al., 1992;
Tsonisand Elsner, 1992; Elsner and Tsonis, 1994, Schlesinger and Ramankutty, 1994).
We suggest to apply a generalized additive model (GAM, see e.g. Vislocky and Fritsch,
1995) consisting of the following components:

e trend (linear, progressive or degressive),

e annual cycle (constant or significantly changing),
e episodic component,

e harmonic components (other than annual),

e extrem events, and

e noise (stationary or nonstationary).

Together with according significance tests the decomposition into such components is of
particular interest for solving the following questions:

a Is there a significant trend in the observed records?

b If there is a trend in the observations, is it a linear, a progressive or a degressive
trend?

¢ Has the annual cycle significantly changed and if so, how has it changed?
d Is there a significant episodic structure in the record?
e Are there significant harmonic components?

f Are there extreme values in the record which are not explainable by the statistical
features of the record and thus have to be viewed as specialextreme events?

g If all the significant structures of the record are removed may the residuum be a
realization of a stationary process?

Dealing with all these questions within one strategy may allow a complete decomposition
of a time series and the evaluationof robust estimates of each component in the presence
of the other components which are in fact only asymptotic orthogonal. However, such a
decomposition strategy does not need to be successful for any kind of time series. Only a
posteriori, if a time series is decomposed and the residuals do notdiffer significantly from



stationary noise, the results may be reliable.

A method is needed for each of the components to test if it is part of the time series. Fur-
thermore estimates of the components are required. To meet these requirements a flexible
strategy has to be used that stepwise takes into account the most important component
of the time series. We therefore use astepwise regression (see section 3 or von Storch and
Zwiers, 1999).

Special emphasis is placed on extreme events as distinguished from extremes. Every time
series has n largest and smallest values, which may be called extremes. In addition to that,
extreme events, as we define them here are extreme values that are very unlikely to occur
only by chance in the presence of the other time series components.

However, one encounters a dilemma in the decomposition process. If there are extreme
events which are not homogeniously distributed within the timeseries, they alter the es-
timates of a trend or in a worst case suggest atrend where is in fact no trend (or vice
versa). Thus extreme events have tobe extracted before trends can be estimated correctly.
On theother hand, one has to know the trend and other components in order to detect
and extract extreme events. We use an iterative approach to deal with this problem. It is
introduced and described in section 3.4.

Applying the time series decomposition to observations from different sites, one obtains a
spatial discrimination in areas where a component is and is not visible.

We have restricted our analysis on the variations of observed European monthly mean tem-
perature data. Doing this, we use two sets of time series: stationtime series and grid-point
time series. In the following section, the datasetsare introduced. The details of the method
of analysis are explained insection 3. The results are presented in section 4 and discussed
in section 5.

2 Data

In order to investigate long-term climate variations, we prefer climate time series which
cover a period of 100 years. To eliminate the pronounced, but partly chaotic weather
phenomena we use only monthly averages. Two types of temperatures are analyzed. First,
we use times series from a station network which are most likely not inhomogeneous (Rapp
and Schonwiese, 1997). They cover the period from 1891 to 1990. The 41 stations from
which these time series are taken are presented in Figure la. The stations are not uniformly
distributred and thus spatial gaps occur, especially over the Iberian peninsula and in the
eastern part of Europe. However, these data are raw station data and thus reveal a wealth
of local information. Additionally, a grid-point data set (5° x 5°) of 52 time series (Parker
et al., 1994, updated) covering the period from 1899 to 1998 is analyzed. The locations of
the grid points are shown in Figure 1b. Moreover, these records are temperature anomalies,
i.e. the mean annual cycle is substracted. However, this will not influence the results since
temporal changes in the annual cycleare not affected by the averaging procedure.
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Figure 1: Location of stations (a) with analyzed temperature records (1891-1990) and grid
points (b) of analyzed temperature time series (1899-1998).

3 Method of Analysis

To decompose temperature time series, we regard them as the following sum of components:

z(t) = m+t.(t) + s(t) + g(t) + h(t) + e(t) + €(?) (1)

x(t) = original time series,
m = mean,

t.(t)= trends,

s(t) = annual cycle,

g(t) = episodic component,
h(t) = harmonic components,
e(t) = extreme events and

= noise.

A flexible strategy is necessary to deal with all these components. We proceed as follows:
After the mean is substracted, we search for trends and seasonal variations. Stepwise regres-
sion allows the components to compete with one another. Only components which explain
a significant amount of the time series variance are extracted. These are the first-guess
estimates of the components.

The episodic component is comprised of low-frequency variations. It is subject of the sec-
ond step in the analysis, because we often found them superposed on trends claiming only
a small percentage of variance. Nevertheless, significant structures are eliminated.
Usually, remaining residuals of temperature time series are considered to be the sum of
noise and extreme events. These single values, which are not in accordance with the a
priori supposed Gaussian noise, are substituted by a normally distributed random vari-
able with the mean and variance of the particular month. Subsequently, we restart the



decomposition procedure with the modified time series. Using ordinary least squares, this
iterative procedure is absolutely necessary because it is sensitive to extreme events. Thus,
components retained in the second run differ more or less from the first-guess components.
The iterative procedure stops if no further extreme events can be found. Fortunately, the
strategy converges fast to robust estimates. Consequently, we needed 3 runs at the most.
Decomposition succeeded if the residuals could not be distinguished from a realization of
a normally distributed random variable. In this way the, a priori assumed residual distri-
bution is tested after the decomposition. To detect harmonic oscillations, the residuals are
also subject to a spectral variance analysis (power spectrum).

The following sections show which functions we use to approximate the various components
and describe their detection strategy in more detail.

3.1 Trend

We offer trends up to the order 5 as potential regressors to the temperature time series
under consideration:
tr,i =a; + bz -t with 7 = 1, 2, ...0. (2)

Thus, we are able to detect linear, progressive and degressive trends. But, only functions
which can explain a significant amount of variance are taken into account. If only the
function of order 1 meets the requirementdefined above, a linear trend is extracted. Trends
of higher order describe aprogressive temperature development. Detection of degressive
shaped trendscan be realized by superposition of linear and progressive trends, bothex-
plaining a significant amount of variance.

3.2 Annual cycle

Besides fixed annual cycles, changes in amplitude and phase of seasonal variations are
possible. The equation

Sjk = Cjk+ dj,k;tk CcoS (27r1]—2t) + ej,ktk sin (27r1]—2t) (3)

with wave number j=1,2,...6 per year and k=0,1,2 allows amplitudes with fixed, linear
and quadratic time dependancy. Obviously, one time series maysignificantly contain two
or three harmonics of the annual cycle with thesame wavenumber j but different time
dependency k of the amplitude.Superposition yields

5;(t) = A;(t) cos (zw% =) (@)

with amplitude




and phase
12 <2i:0 dj,kt’“>

t:(t) = —arcta 6
j(0) = o aretan { SEA (6

In the case of 6 wavenumbers, equation 3 represents a pool of 33 potential regressors,
which enable us to detect linear, progressive and degressive shaped changes in phase and
amplitude of the annual cycle. To be sure that we detect all significant structures and that
alternatively unsiginificant structures are neglected, detection of trends and annual cycle
is performed simultaneously. To decide which of the 5 trend components and 33seasonal
components explain a significant amount of the time series variance,the Pearson correlation
coefficient between the considered time series andeach potential regressor is computed.
The regressor with the largest significant correlation coefficient is extracted from the time
series. As with the original time series, the Pearson correlation coefficients between the
potential regressors and the resulting residuals are calculated. When the largest correlation
coefficient is significant, another winner is found which joins in a multiple regression with
the original time series. Again, we offer the 5 trend and 33 seasonal components to the
received residuals. In case of a further winner, a third regressor is joined to the multiple
regression. The procedure is terminated if all significant regressors are found.

3.3 Episodic component

For the detection of relatively low-frequency variations, we fit polynomial equations up to
the order 5: z

g(t) =a,+ Y ait' withl=1,2,..5. (7)

i=1

The polynomial equation of the highest order I, which makes a significantly greater con-
tribution of variance than the polynomial equation of order [ — 1 is chosen for regression.
In this way, a maximum of two warm and two comparatively cold periods can be detected
and eliminated.

3.4 Extreme events

As already mentioned, at this stage of the analysis only a small number of rare extreme
values may let the residuum differ from Gaussian noise. They are likely not in accordance
with the features of the time series. Suchunexpected values may be observation errors,
unlikely events which may occurby chance or special, unlikely events which did not happen
by chance. Thelatter are called extreme events in this paper. We regard the value with the
greatest distance to the mean as potential extreme event. Subsequently, the probability
for the accidental occurence of values is computed. With a small probability the potential
extreme event is likely to be not in accordance with the distribution of the time series. That
means, that the value is probably considered to be an extreme event. The computation of
this probability is shown in the following. The detection criterion is based on the hypothesis
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that the residuals, considered without extreme events, are normally distributed. Starting
with the probability density function of a normally distributed time series with mean u=0
and variance 0% = 1, we yield the event probability of a value z<Z:

p(z < Z) = \/_/ exp( IQ)dz 8)

Using the symmetry of the probability density function and the error function the proba-
bility for a value between -Z and Z can be expressedas

p(—ZSzSZ)=2p(Z§Z)—1:€Tf<%)- 9)

Thus, 1-p(-Z< z<Z) denotes the probability to meet by chance an absolute value greater
than Z. Preceding equations refer to a single drawing from a normally distributed random
variable. Within the scope of this work, we analyse monthly temperature records of the
last 100 years. We furthermore assume that these rare extreme events areindependent. In
this case the probability p for drawing k times a value ocurring with the event probability
1-p(-Z< z<Z) within N (=1200) realizations follows the binomial distribution. For N> 100
and 1-p(-Z< z<Z) < 0.05 the binomial distribution can be approximated by the Poisson

distribution

exp A \F

k!
In the case of k=0, we retain the probability that we meet by chance no value of the
considered amount in a time series compassing N values. Ifp < 0.1, the largest or smallest
value is with a probability of atleast 90% not expected and detected as extreme event. The
detection procedure works as follows:

First the value found at the greatest distance of the actual mean is selected as potential
extreme event. Subsequently we compute the mean and the variance of the remaining
residuals. The reduced series is subject to theKolmogorov-Smirnov test (Press et al., 1992)
to examine if it differs significantly from Gaussian noise. With the aid of equation (10) we
decide whether the potential extreme event is expected in the time series or not. If not,
the detected extreme event is extracted and replaced by a normally distributed random
value taken from a Gaussian variable with mean and variance of the related month. If the
time series involves several extreme events, the described procedure can be repeated to
eliminate them successively. Usually, elimination of extreme events reduces the rejection
probability of normal distribution. Sometimes initially rejected residuals conform with the
normal distribution only if all extreme events are extracted.

p(k,N,p) = with A=N(1—-p(—Z <2< 7). (10)

3.5 Residuals

If the examined temperature time series can be described as a superposition of the con-
sidered components, the residuum represents random noise. Using again the Kolmogorov-
Smirnov test, we determine whether the decomposition is reliable or not. If the residual



record shows also stationarity of mean,variance and autocorrelation, it can be taken as
consequence of manyunimportant influences. Testing the hypothesis of stationarity, the
samplingtime is divided into two subintervals, and we estimate mean, variance and auto-
correlation up to lag 18 for both. For examination into significant differences between the
respective two quantities, a t-test is used for the mean and a F-test for the variance. A
Fisher transformation makes the differences between the correlation coefficients converge
faster to normal distribution. Subsequently, the latter can be used to test for significant
differences (see again Press et al., 1992). With these tests we can find instationarities. How-
ever, if we do not find a significant instationarity in either of the features, the residuum
cannot be regarded as a realization of a stationary noise process. Still, it does not contradict
to this hypothesis.

3.6 Harmonic component

To detect harmonic oscillations (in addition to the annual cycle), we calculate the peri-
odogramm (Press et al., 1992), i.e. the spectral densities at certaindefined frequencies. The
spectral portion of variance is given by

N 2 N 2
S(f) =N ((i " (a0 — ) cos (2 ft)) + <i S (2, — 7)sin (2n ft)) ) (1)
Ni= NiH
where f denotes the Fourier frequency, T the mean, N the length and t the time index
of the time series. With the aid of the periodogramm, harmonic oscillations embedded in
Gaussian white noise can easily be detected. However, both the Anderson-Darling and the
Kolmogorov-Smirnov test (see again Press et al., 1992) reject the hypothesis of white noise
on a high level for all the time series investigated. This reflects the inertia of the climate.
The testing of peaks in the periodogram becomes more difficult in this case. Nevertheless,
it is not necessary to test the significance of the largest peak in each of the periodograms.
Instead, we draw significant results from the number of time series which have their largest
peak in the periodogramm at the same period. In this approach, it is not necessary that
either of the largest peaks may be significant.

4 Results

In the folowing subsections, the different results are presented and discussed. Since all
significance tests are performed with anerror-probability of 10%, a feature that is only
found in a small fraction ofcases may not be significant within the ensemble, i.e. it can
be expected tofind 4 cases of the 41 records that pass the significance test although the
searched for feature is found only by chance. Since this is the problem of Bernoulli trials,
we can easily find the fraction of the ensembles which must show a feature to be significant
on a given level. For both the ensembles under investigation the results are given in Table
1.



Table 1: Number n of time-series which have to show a feature on the 90%-significance
level to be a significant fraction of the ensemble on a given probability level.
Number of records || n(90%) n(95%) n(99%) n(99.99%)
41 stations 8 8 10 13
52 grid points 9 10 12 15

Table 2: Number of trends detected in temperature time series. The abbreviations are as
follows: p = progressive, 1 = linear, d = degressive.

negative | none | positive
data kind ||[p 1 d d I p
stations 1 6 2 29 3
grid points || 5 3 4 24 14

4.1 Trends

The distribution of trends of different kind are given in Table 2. Only one of 41 time-series
of station temperatures (the station De Bilt in The Netherlands) shows a negative trend.
In contrast to this, 34 stations show a positive trend. 29 of them are linear.

The grid-point data set structurally shows the same features. There are 5 significant neg-
ative trends which seem to be randomly distributed across Europe (see Figure 2), but the
overwhelming majority of 42 grid points shows a positive trend.

Thus, on the basis of both the data sets used, it can be concluded that the temperature
trend over Europe is positive and mainly linear.
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Figure 2: Spatial distribution of trend types in grid-point data of temperature in Europe.
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4.2 Annual Cycle

In Table 3, the number of time series with significant changed amplitudes and phase
angles of the annual cycle are listed. From that, it can be seen that a significant amount
of stations and grid points show changes in the annual cycle. Changes in the amplitudes
of the one cycle per year harmonic and the other harmonics are found, indicating a change
in the shape of the annual cycle. Significant changes in phase angle are found only in the
case of the station data and forthe fundamental frequency.

To get more insight, the number of time series with positive and with negative changes
in amplitude and phase angle of the fundamental frequency are subdivided and given in
Table 4. It can be seen that a significant part of 9 station records show positive phase
angles and exactly the same significant number of stations reveal negative ones. Figure 3b
shows the spatial distribution of the sign of the change in phase angle of the fundamental
frequency. It can be seen that significant positive changes occur mainly in western Europe
whereas negative ones appear mainly in the eastern part (exept for the station Kiew).
From Figure 3a it can be seen that 6 of 7 stations with a positive change in amplitude of
the one cycle per year harmonic are found in the north and north-west of Europe. The
significant amount of stations (see Table 4) where the amplitude of the annual cycle is
decreasing is found in central and eastern Europe.

75.-& .00 -5,00 0.00 5.00 10.00 15.00 ZP,OO 25.00 30.00 35.00 40.00 45,00 50 9&00 75»—& .00 -5,00 0.00 5.00 10,00 15,00 2'0.00 25,00 30,00 35,00 40,00 45.00 50 98.00

70.00 70.00 7000 70.00

65.00 65.00 65.00| 65.00

60.00 60.00 60.00| 60.00

55.00 55.00 55.00] 55.00

50.00 50.00 50.00| 50.00

45.00 45.00 45.00 45.00

40.00 40.00 40.00| 40.00
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Figure 3: Changes in the annual cycle of temperatures at 41 European stations. a) Changes
in the Amplitude of the fundamental period. b) Changes in the phase angle of the funda-
mental period. Upward showing triangles = positive changes, downward showing triangles
= negaitve changes and black spots = no significant changes.

Regarding Figure 4a, a significant number of grid points with increasing amplitudes is
also found in eastern Europe. At this point, the results for the gridded data contradict
the results for the station data. These contradictions remain when comparing observations
with results from general circulation models. Thomson (1995) found the logs of theat-
mospheric COy levels to be connected with changes in the seasonl cycle.But results from
general circulation models are equivocal. Mann (1996) usedthe estimates Northern Hemi-
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sphere average monthly temperature series of Joneset al. with intact seasonl cycle to com-
pare its changes in the seasonal cyclewith responses of the Geophysical Fluid Dynamics
Lab (GFDL) coupledocean-atmosphere model and the NCAR Community Climate Model
(CCM) general circulation / slap ocean model to increased COy concentrations. Observa-
tion and model response are similar concerning the decreased amplitude of the annual cycle,
but the phase advance found in the observation contradicts thesignificant phase delays in
the simulations.

Figure 4: Changes in the annual cycle of temperatures at 52 European grid points. a)
Changes in the Amplitude of the fundamental period. b) Changes in the phase angle of the
fundamental period. Light grey = positive changes, dark grey = negative, medium grey =
no significant changes, and white bores = lag of data.

Table 3: Number of temperature time series with changed amplitudes A and with changed
phase angles ¢ of the annual cycle. Fraction of records in which the amplitude A and the
phase angle ¢ of the fundamental frequency have changed as well as the fraction of records
with changed phase angle and amplitude of at least one harmonics. Heavy numbers indicate
that the 90% significance level is exceeded.

Total | Fundamental | Harmonics
A ¢ | A © A %

41 stations 29 19 |18 18 24 3
52 grid points || 30 9 | 24 8 10 2

4.3 Episodic Component
The order of the polynomials which are fitted as an approximation of the episodic compo-

nent of the time series are given in Table 5. Innearly all time-series, episodic components
are found which explain only aminor fraction of variance. However, to extract extreme

12



Table 4: Number of temperature time series with different kinds of changes in the funda-
mental frequency of the annual cycle. Heavy numbers indicate that the 90% significance
level is exceeded.

Changes in amplitude | Changes in phase

positive negative positive negative
41 stations 7 11 9 9

52 grid points 24 0 1 7

events, it isimportant to separate this component as part of thedecomposition strategy. As
an example of the spatial homogeneity of thiscomponent, Figure 5 shows the 22 episodic
components of the orderb found in the station data. Although they are found at differ-
ent locations,they are all very similar especially in the recent part of the interval withone
exception at the station of Athens.

Table 5: Number of temperature time series with episodic components of different order
and its explained part of variance.

Order |0 2 3 4 5 | explained variance [%]
41 stations |1 2 2 14 22 1.2
52 grid points |3 0 12 23 14 2.5

1.5

1.0 o

0.5 o

0.0 -

Episodic Companent [K]

0.5 4

-1.0
i880 1900 1920 1940 1960 1980 2000
Time

Figure 5: Polynomials of the order 5 as they reflect the episodic component of 22 station
records of temperature over Europe. Only 1 station (Athens) shows a pronounced difference
in the recent years.

4.4 Extreme Events

The number of detected extreme events (total, cold events and warm events) in both the
data sets are presented in Table 6 for all seasons and subdivided into the first and second
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half of the records. The strategy applied to detect extreme events shows that 207 out of
49,200 values in the station data set and 228 out of 62,400 values in the grid-point data set
areextreme events. These extreme events are not arbitrarily distributed. On thecontrary,
from Table 6 it can be seen that a tremendous majorityof extreme events (194 of 207 in
case of station data and 158 of 228 in caseof grid-point data) are cold winter events. The 8
warm events within thestation data are not enough to supply any meaningfull information.
Thenumber of cold events within the station data has substantially increasedfrom 71 in
the period 1891 — 1940 to 123 in the period 1941 — 1990.

Although the grid-point data show also a majority of winter cold events, there are two im-
portant differences compared to the station data. First, nearly one fifth (41 of 228) of the
extreme events are warm events, and second, there are considerably more extreme events
detected in the first half as compared to the second one.

This is in contrast to the results of the station data set and may be due to the averaging
procedure. In the recent half of the time series, there are more station data available to for-
mulate the grid-point data set. Thus, on the one hand, more regional extremes are smoothed
out by the procedure and become invisible. On the other hand, the larger variability at the
beginning of theaveraged time series leads to some values that are too warm compared to
theoverall standard deviation. Thus, these values are detected as warm eventswhich may
mainly be a result of the availability of data and the averagingprocedure.

Table 6: Number and kind of extreme events within first and second half of the different
data sets. If the difference between both the halves is significant, the numbers are given in
bold. Cold = cold events, Warm = warm events.

Total Period First Half Second Half
41 Stations Total Warm Cold | Total Warm Cold | Total Warm Cold
Spring 4 2 2 2 2 0 2 0 2
Summer 1 0 1 1 0 1 0 0 0
Autumn 4 2 2 2 1 1 2 1 1
Winter 198 4 194 71 0 71 127 4 123
year 207 8 199 76 3 73 131 5 126
52 Grid points || Total Warm Cold | Total Warm Cold | Total Warm Cold
Spring 18 6 12 16 5 11 2 1 1
Summer 7 6 1 5 4 1 2 2 0
Autumn 21 5 16 13 5 8 8 0 8
Winter 182 24 158 | 112 18 94 70 6 64
year 228 41 187 | 146 32 114 82 9 73

To illustrate the necessity to separate extreme events from the usual values, Figure 6 shows
the frequency distributions of the temperature records of Munich with the original data
including the annual cycle, the eliminated trend and annual cycle, and after the separation
of the extreme events. While the first case of the observed distribution is a convolution
of the U-shaped distribution from the annual cycle, the rectangular distribution of the
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linear trend, and the distribution of the residuum and the extreme events, the distribution
is more like a Gaussian one after the elimination of trend and annual cycle. However, it
also differs considerably from the Gaussian distribution because of some extreme events.
After the elimination of these events, the residual distribution is not discernible from the
Gaussian distribution.
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Figure 6: Frequency distribution of the temperature record of Munich (1891- 1990). a)
Original observations, b) after elimination of first estimates of trend and annual cycle and
c) after supplementary elimination of extreme events. All plots are given in a logarithmic
scale to let the extreme events become more visible. For comparison the best-fit Gaussian
distributions are plotted, too.

As Figure 7 shows the extreme cold winter events are not randomly distributed over Europe.
On the contrary, most cold events are found at and south of the Baltic Sea. Since this region
marks a transition between thecold continental and the mild maritime winter conditions,
it reflects the factthat in some winters continental conditions also dominate in the central
partof Europe.

4.5 Residuals

The results from searching for instationarities and deviations from a Gaussian distribution
are given in Table 7. For comparison this part of the analysis is also applied to the original
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Figure 7: Number of extreme cold events in Europe (1896 — 1995).
records.

Since the 41 records from the temperature stations contain their pronounced annual cycle,
all of them differ from the Gaussian distribution and nosignificant instationarity is visible.
After eliminating all the significant components no significant amount of stations differ
from the assumption of Gaussian distribution and only instationarities in the estimated
autocorrelation are found.

The analysis of the 52 records of the gridded data reveals significant instationarities. A
significant amount of the original records show an increase in mean and a decrease in
variance. The latter is also visible after the elimination of the significant components. The
increasing means in the gridded data are detected because the gridded data are anomalies
without the annual cycle. Thus, a small shift in the means easily visible than in the station
records. After the decomposition, the increases in means vanishes. However, the decrease
in the standard deviations and the instationarities in the autocorrelations remain.

We conclude that both these effects result from the averaging procedure used by Parker et
al. (1994) who have taken more stations into account for the recent time than about 100
years before. Thus, the variance of the average time series has to decrease, and autocovari-
ance should be affected.

4.6 Harmonic Components

Each of the periodograms of the records consists of 600 spectral densities at 600 Fourier
periods between 2 and 600 months. Thus, it is a highly significant result that 18 of 41
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Table 7: Statistical features of the time series before (a) and after (b) elimination of tem-
poral structures. n, is the number of records differing significantly from the Gaussian
distribution. p, o2, and v mark mean, variance and autocorrelation, respectively. inc =
number of records with a increasing feature, dec = number of records with a decreasing
feature, and const = no significant difference between first and second half detected. inst

= instationarity. Heavy numbers indicate that the 90% significance level is exceeded.
2

ng 7 o y
inc const dec |inc const dec | inst
. 411 39 12 39 0] 0

41 (2)
Stations 43 1 5 0 41 0 |1 36 4| 9
. 2334 15 3 |4 16 32| 19

5 (a)
52Gridpoints )y g 50 0 |3 18 31|17

periodograms of the station data show their largest peak at a period of 92.31 months or
to 7.69 years. With 52 grid points, 16 periodograms have their largest peak at exactly
the same period. It must be concluded that a periodic component of about 7.7 years is
within the data field. The same cyclic component is also found in index records of the
North-Atlantic Oscillation (Werner, 1999).

5 Summary and Discussion

We start with the assumption that the European temperature time series can be decom-
posed into a sum of trend, annual cycle, episodic and harmonic components, extreme events,
and noise. A strategy is introduced toobtain robust estimates of all these components. The
strategy is applied totwo different kinds of time series: station records and grid-point data.
While the decomposition of the station data led to a complete decomposition of the tem-
poral structures plus noise, the decomposition of the grid-point data led to residuals which
differ considerably from the assumption of stationary noise. This may be a result of the
averaging procedure, which takes more stations for the recent part of the time interval into
account. This should affect all the components which are altered by the averaging pro-
cedure and thus at least the standard deviation, autocorrelation and number of extreme
events. From this point of view, it follows that station data and grid-point data contain
different information. This should be kept in mind while analyzing and interpreting time
series.

However, the station records and the grid-point data have some features in common. It
could be shown that the temperature trends over Europe are mainly positive and linear.
This result proves that the temperature trends can be viewed as linear, an assumption
often used while investigating linear trends alone.

Furthermore, we found significant changes in the annual cycle which are partly in accor-
dance with the results of Thomson (1995). However, with the approach given in this paper,
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a more detailed analysis is possible, which ledto additional results. So, we see positive phase
shifts in western and negative ones in eastern Europe. An increase of the amplitudes of the
fundamental frequency is mainly seen over eastern Europe.

The strategy also reveals some warmer and some colder episodes, each of which lasted for
several decades. Although these components are significant, they explain only a minor part
of the overall variance. Nevertheless, small changes in mean value may lead to large changes
in the probability of exceeding some threshold values and thus may affect the probability
of extreme events.

The search for extreme events as extreme values that are not in accordance with the fea-
tures of the time-series led to a significant number of extreme cold winter events. Despite
of the positive temperature trend, the number of the extreme cold winter events is rising.
From this result, it follows that it is important to distinguish between normal winters with
rising temperatures and winters with extreme events. Only the distinction between them
leads to reliable estimates of both.

The residuals show an harmonic component of about 7.7 years which is also seen in the
North-Atlantic Oscillation (Werner, 1999).

All these significant components and the features of the residual noise may now be subject
of further research aimed at explaining them. As an example, general circulation models
may explain the temperature trend by anthropogenic greenhouse gas emissions.
Additionally, time-series of other variables and other regions should be subject to de-
composition in order to identify the temporalstructures and the type contained in these
time-series.
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