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Summary

The climate system can be regarded as a dynamic nonlinear system. Thus, traditional linear

statistical methods fail to model the nonlinearities of such a system which renders it necessary to

�nd alternative statistical techniques. Since arti�cial neural network models (NNM) represent such a

nonlinear statistical method their use in analyzing the climate system has been studied for a couple of

years now. Most authors use the standard Backpropagation Network (BPN) for their investigations,

although this speci�c model architecture buries a certain risk of over-/under�tting. Here we use the

socalled Cauchy Machine (CM) with an implemented Fast Simulated Annealing schedule (FSA)[SZU,

1986] for the purpose of attributing and detecting anthropogenic climate change instead. Under

certain conditions the CM-FSA guarantees to �nd the global minimum of a yet unde�ned cost

function [GEMAN and GEMAN, 1986].
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Beside potential anthropogenic in
uences on climate (greenhouse gases (GHG), sulphur dioxide (SO2))

natural in
uences on near surface air temperature (variations of solar activity, explosive volcanism and

the El Ni~no/Southern Oscillation phenomenon) serve as model inputs. The simulations are carried out

on di�erent spatial scales: global and area weighted averages. In addition, a multiple linear regression

analysis serves as a linear reference. It is shown that the adaptive nonlinear CM-FSA algorithm

captures the dynamics of the climate system to a great extent. However, free parameters of this speci�c

network architecture have to be optimized subjectively. The quality of the simulations obtained by the

CM-FSA algorithm exceeds the results of a multiple linear regression model; the simulation quality

on the global scale amounts up to 81% explained variance. Furthermore the combined anthropogenic

e�ect corresponds to the observed increase in temperature [JONES et al., 1994], updated by [JONES,

1999a], for the examined period 1856 - 1998 on all investigated scales. In accordance to recent �ndings

of physical climate models, the CM-FSA succeeds with the detection of anthropogenic induced climate

change on a high signi�cance level. Thus, the CM-FSA algorithm can be regarded as a suitable

nonlinear statistical tool for modeling and diagnosing the climate system.

1 Introduction

Modern climatology is facing the question if an anthropogenic induced climate change is already

observable in climatic variables, e.g. near-surface air temperature. Because the climate system can

be regarded as a nonlinear system [HOUGHTON et al., 2001], traditional linear statistical models

are not capable at describing the climate system in its full complexitiy and thus fail to answer this

question.

Since nonlinear Neural Network Models (NNM) provide a statistical solution to this problem their

application towards analyzing the climate system has been studied for a couple of years, see for

example [GRIEGER and LATIF, 1993], [HSU et al., 1997], [HSIEH and TANG, 1998] and [WALTER

et al., 1998]. For their investigations most authors use the standard NNM, the Backpropagation

Network (BPN) [RUMELHART et al., 1986], although the BPN algorithm has one big disadvantage:

it can not guarantee to reach the global minimum of a yet unde�ned cost function and thus carries a

certain risk of over-/under�tting.
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In an earlier work [SCH�ONWIESE et al., 1997], where we used the BPN architecture too, we

obtained a GHG-signal of 0:8Æ-1:3ÆC and a combined GHG+SU signal of 0:5ÆC- 0:8ÆC for the period

1866 to 1994. Here we will present a updated simulation (1856-1998) and furthermore use a more

sophisticated simulation technique the so-called Cauchy Machine (CM) for the purpose of simulating,

attributing and detecting anthropogenic climate change signals in observed variations of near-surface

air temperature. In contrast to the BPN the CM and its implemented Fast Simulated Annnealing

(FSA) learning algorithm [METROPOLIS et al., 1953], [SZU, 1986], see section 3.1, guarantee under

certain conditions to reach the global minimum of any given cost function [GEMAN and GEMAN,

1986]. Thus, in this work the CM-FSA architecture is applied for the attribution and detection of

anthropogenic climate change.

The data used for this approach is described in section 2, whereas section explains the basic concepts

of neural network models , with an emphasis on the CM-FSA in section 3.1. Section 4 deals with the

crucial issue of statistical isolation of climatological cause-e�ect relations. The preprocessing of the

data is brie
y outlined in section 5. The results of our approach are presented in section 6 and the

paper ends with some conclusions drawn from our results in section 7.

2 Climatic fundamentals and Data

A change in average net radiation at the top of the atmosphere, because of a change in either solar or

infrared radiation, is called a radiative forcing.

Such a radiative forcing perturbes the balance between incoming and outgoing radiation. Over time

climate responds to this pertubation to re-establish a radiative balance. Thus, a positive radiative

forcing tends to warm the surface and vice versa. For example an increase in atmospheric CO2

concentration leads to a reduction in outgoing infrared radiation and a positive radiative forcing.

Therefore the global mean surface temperature change due to a change in a speci�c radiative forcing

can be written as

�Ts = �F � �; (1)
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where �F is the change in the forcing and � is the nearly invariant1 climate sensitivity parameter.

The invariance of � has made the radiative forcing concept a convenient measure to estimate the

global annual mean temperature response (�Ts) to a certain forcing mechanism.

The radiative e�ects of the major GHGs beside CO2 (e.g. Methane (CH4), Nitrous Oxide (N2O),

Halocarbons (mainly CFC-11) and Ozone (O3)) are often represented by an equivalent CO2

concentration which is the CO2 concentration that gives a radiative forcing equal to the sum of the

forcings for the individual GHG. We used a representation of anthropogenic GHG forcing in terms of

CO2 equivalents also used by [HOUGHTON et al., 2001].

Anthropogenic aerosols scatter and absorb short-wave and long-wave radiation thereby perturbing

the energy budget of the atmosphere and exerting a direct radiative forcing (direct e�ect). In

addition, aerosols serve as cloud condensation and ice nuclei thereby modi�ng the radiative properties

and lifetime of clouds (diÆcult to estimate indirect e�ect). Because anthropogenic sulfate aerosols

have only a atmospheric lifetime of a few days this forcing may be directly proportional to the

corresponding SO2 emissions and is therefore believed to be strongest over industrialized regions of

the northern hemisphere. We used the updated SO2 emission data from [CHARLSON et al., 1992],

the obtained signals are referred to as SU. Other than sulphate aerosols, e.g. black carbon aerosol,

organic carbon aerosol, have not been considered in this work.

Radiative forcing may lead to climate variations but climate variations can also be initialized from

internal interactions between components of the climate system. Therefore a distinction between

externally and internally induced natural climate variability has to be made. Thus, a certain

knowledge about natural climate variability is necessary for the isolation of anthropogenic cause-e�ect

relations, see section 4 for statistical details.

Variations in the solar output are a source for externally induced natural climate variability. However,

1Typically about 0:5K=Wm�2 [RAMANATHAN et al., 1985].
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only since the late 1970s variations of solar irradiance have been measured directly and therefore it is

necessary to use other proxy data, e.g. sunspot numbers [STEVENS and NORTH, 1996], of the solar

activity to deduce variations at earlier dates. In the simplest type of reconstruction a proxy measure

is calibrated against recent measurements and extrapolated backwards using a linear relationship.

The time series used here to describe solar forcing is from [LEAN et al., 1995], [LEAN and RIND,

1999] respectively and shows clearly the well known 11-year solar cycle imposed by a longer modulation.

Episodic, explosive volcanic eruptions lead to a signi�cant enhancement of the aerosol concentration in

the stratosphere. The most dramatic recent volcanic event was the eruption of Mt. Pinatubo in 1991

which reached a peak forcing of about �3W=m�2 in late 1991 [HANSEN et al., 1998], thus tending

to cool the earth's surface. Stratospheric aerosol levels have meanwhile fallen well below the peak

values of 1991 to 1993 and are comparable to the low levels seen in 1979 [HOUGHTON et al., 2001].

Explosive volcanism whose ejecta reach the stratosphere and form climate relevant sulfate aerosols

is considered here in terms of heating anomalies as provided by [GRIESER and SCH�ONWIESE, 1998].

Furthermore we used a reconstructed time series of the El Ni~no/Southern Oscillation (ENSO)

phenomenon provided by [STAEGER, 1998] based on [JONES, 1999b]. The linear correlation

between these two series for the time period 1866 - 1998 amounts to 0:96. ENSO is the primary

natural climate variability factor in the 2 - 7 year domain. El Ni~no is de�ned by anomalies of sea

surface temperatures (SST) in the eastern tropical Paci�c, while the Southern Oscillation Index (SOI)

is a measure of the atmospheric circulation response in the Paci�c-Indian-Ocean region.

ENSO is generated by ocean-atmosphere interactions in the tropical Paci�c but a�ects climate

globally. Beside having fundamental consequences on local climate ENSO seems to have a global

in
uence: during and following El Ni~no, the global mean surface temperature increases as the ocean

transfers heat to the atmosphere [SUN and TRENBERTH, 1998]. The shift of rainfall locations in the

tropics due to an ENSO event alters the heating patterns of the atmosphere which forces large scale

waves in the atmosphere. These establish meridional teleconnections, that extend to mid-latitudes
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altering the winds and changing the jet stream and storm tracks [TRENBERTH et al., 1998] which

may lead to modi�ed weather patterns in mid- latitudes as well.

Annual time series of observed surface temperature variations were used in our simulations for the

period 1856-1998, 1892-1995 for the area weighted averages respectively. A high quality data set of

mean global and mean hemispheric surface air temperature provided by [JONES et al., 1994] and

updated regulary by [JONES, 1999a] served as the target function in our modeling approach. The

area weighted time series used were derived from [JONES et al., 1994], [JONES, 1999a] respectively,

the area design is according to [HANSEN and LEBEDEFF, 1987].

A schematic model con�guration is shown in Fig.1, whereas global surface temperatures anomalies for

the time period 1856 - 1998 (target function) are shown in Fig.2. The forcing time series considered

above (model inputs) are shown in Fig.3.

3 Neural Network Models

The spirit of neural network modeling is to use fully nonlinear functions and use a large number of

terms so that model mismatch errors are not a concern. Instead of matching the architecture of the

model to a problem, a model is used that can describe almost anything, and careful training of the

model is used to constrain it to describe the data.

NNM have their biological foundations in studying the learning mechanisms of the brain [ADRIAN,

1926], [ROSENBLATT, 1958] and [GROSSBERG, 1982] and attempt to transfer these learning

capabilities into the language of Neurocomputing [ANDERSON and ROSENFELD, 1986]. NNM learn

inherent data features using a data subset as training data and test these learned features using a

unknown veri�cation subset. This technique is called cross-validation [STONE, 1974].

The standard NNM is still the Backpropagation Network (BPN) [RUMELHART et al., 1986]. The
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BPN is based on a supervised learning algorithm to �nd the global minimum of a yet unde�ned cost

function. There exists no objective criteria to adjust free parameters (e.g. learning constant, number

of processing units) of the model properly [FREEMAN and SKAPURA, 1992], and thus the BPN

carries a certain risk of being stuck in local minima of the cost function which might lead to false

simulation results.

The CM, see section 3.1 for details, uses a stochastic learning law instead, which -under certain

conditions- guarantees to reach the global minimum of a cost function [GEMAN and GEMAN, 1986]

and thus reduces the risk of over�tting.

The input to a typical NNM is a vector of elements (xk), here the choosen climate forcings, see section

2, therefore the NNM used in this application consits of �ve input neurons (potential forcings) and

one output (surface temperature) neuron, see again Fig.1 for a schematic illustration of the model

con�guration used.

One big disadvantage of non-linear statistical models is that their behavior for non-stationary

processes is not well understood. The inputs in our model (GHG, SU, solar activity, volcanism

and ENSO, see Fig 3.) as well as our target function (mean global surface air temperature,

see Fig.2) all reveal some characteristic time sturctures. For example the GHG forcing shows a

progressive trend, whereas the SU forcing shows a more unsteady behaviour. Even in mean global

surface air temperature series a linear trend of roughly 0:6ÆC for the period 1856-1998 is obvious.

Trendy series are non-stationary. To ensure that our model captured all characteristics of the data

anyhow, we had to make sure that the whole range of amplitudes of the time series considered is

covered during the training process of the CM-FSA. Otherwise the model would fail to simulate a

reasonable cause-e�ect relation for e.g. a high GHG forcing value if such a high value never occured

during training. This can be done by selecting the values for training and validation so that the

model is given the ability to learn the cause-e�ect relations associated with extreme values. We

used 75% of the data for training and the remainder for validation. Using this approach the prob-
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lems of modeling non-stationary time series with a non-linear model can be avoided for the better part.

3.1 Simulated Annealing and the Cauchy Machine

The BPN relies on the minimization of the mean square error �2

�2 =
1

2

X
n

[y(xk)� Y (xk)] (2)

between the networks output (Y ) and the given test data (y), which in the case considered here is

observed surface temperature variations. xk are the k = 5 dimensional input forcings introduced

in section 2 and n is the length of the record. The BPN then tries to reduce �2 by means of

gradient descent down an error surface with a topology that is not well understood [FREEMAN and

SKAPURA, 1992]. This carries the risk of being caught in local minima of the �2-hyperplane because

only downward steps were allowed.

If caught in a local minimum the e�ect is that the network appears to stop learning and the error does

not decrease any further with additional training.

In this section a method for reducing the possibility of falling into local minima is presented. This

method is called Simulated Annealing (SA) because of its strong analogy to the physical annealing

process done to metals and other substances. A statistical method analogue to the one used in the

physical annealing process was introduced by Metropolis et al. [METROPOLIS et al., 1953].

With this now so-called Metropolis algortihm the �rst analogy between a physical thermodynamical

system and mathematical function minimization has been introduced into statistics. Prior to the

introduction of the Metropolis algorithm all other algortihms converged to the nearby solution as

quick as possible. The Metropolis algortihm on the other hand is able to get out of local minima of

the function to be minimized. Thus, with this algorithm the famous traveling salesman problem of

�nding the shortest cyclical itenirary for a traveling salesman who must visit each of N cities in turn

has been e�ectively 'solved'.
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To perform a simulated annealing process with a neural network we have to postulate that it is

possible to extend the analogy between information theory and statistical mechanics to allow us to

place our NNM in contact with some heat reservoir at some yet unde�ned, temperature. If so, during

the simulated annealing process we can gradually lower the system temperature while processing

takes place in the network in the hopes of avoiding local minima on the energy landscape, i.e. the

�2-hyperplane.

To perform this process, we have to simulate the e�ects of temperature on our model. In a physical

system, molecules have an average kinetic energy proportional to the temperature of the system.

Thereby individual molecules may have more or less kinetic energy than the average and random

collisions may cause a molecule to gain or lose energy. This behaviour can be simulated in a NNM

by adding a stochastic element to the processing. Instead of a deterministic procedure the system is

heated to a certain temperature T and the output of each neuron is determined stochastically according

to the Boltzmann distribution

P�
P�

= exp�(E��E�)=T ; (3)

where P� is the probability of being in the �th global state and E� is the energy of this state.

If only binary outputs are allowed to describe the state of the network, than for a single neuron, yk,

with the network energy Ea for yk = 1 and Eb when yk = 0, regardless of the previous state of yk, we

can set yk = 1 with a propability of

pk(yk � 1) =
1

1 + exp��Ek=T
; (4)

where �Ek = Eb � Ea. Eq.4 ensures that, every so often, a neuron will update so as to increase the

energy of the system, thus helping the system to get out of loacal minima by moving upward on the

�2-hyperplane. Because of the fact that a change of a single units output will change the state of the

whole model this algortihm can be regarded as a local decision rule.

As processing continues, the control parameter T is reduced gradually. In the end, there will be a

high probability that the system is in a global energy minimum which is corresponding to a global
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minimum of �2.

The system energy of such a network can be computed from

E = �1

2

nX
i=1

nX
j=1j 6=i

wijyiyj ; (5)

where wij is the weight between neuron i and neuron j, yi and yj are the outputs of neuron i and j,

respectively, and n is the total number of processing neurons in the network.

The function to be minimized when using a CM is not the least square error (Eq.2), but the information

theoretic quantity G, known as information gain or relative entropy [ACKLEY et al., 1986]

G =

qX
i=1

P1i log2
P1i
P2i

=

qX
i=1

P1i log2 P1i �
qX

i=1

P1i log2 P2i: (6)

Here P1i and P2i are two symbol probabilities of two sources S1 and S2 each containing q symbols.

The second term of the right side of Eq.6 is not the entropy of a source. The log2 P2i terms are

weighted by the S1 probabilities, P1i, rather than by the S2 probabilities P2i. Thus, G can be thought

of as a measure of the distance, in bits, from source S2 to source S1. The term P2i in Eq.6 is dependant

on the networks weights wij , so that G can be altered by altering these weights. The learning law of

a CM can thus be written as

@G

@wij
= � 1

T
(p�ij � p+ij); (7)

where p�ij and p
+
ij are the socalled co-occurence probabilities which compute the frequency that neurons

i and j both are active, i.e. an output value of 1, if averaged over all possible combinations of patterns.

The weight updates are then calculated according to

�wij = �(p+ij � p�ij); (8)

where � is a learning constant which has to be carefully chosen ([0 < � << 1]). From Eq.8 it is obvi-

ous that the weights will continue to change as long as the two co-occurence probabilities di�er. For

a more complete derivation of Eq.7 the reader is refered to [RUMELHART and Mc CLELLAND, 1986].
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As a suitable annealing schedule we used

T (tn) =
T0

1 + tn
(9)

given in [SZU, 1986], where T0 is the initial temperature of the system and tn is a discrete time variable

corresponding to the n-th training step. In contrast to the annealing schedule given in [GEMAN and

GEMAN, 1986] Eq.9 is called fast simulated annealing (FSA) [SZU, 1986].

The training algorithm of a CM can thus be described as follows:

1. one training vector is clamped to the visible units of the network.

2. annealing of the network according to the annealing schedule (Eq. 9) until equilibrium is reached

at a desired maximum temperature.

3. The network is run for several more processing cycles, after each cycle the pairs of neurons with

yk = 1 (on) are simultaneously determined.

4. The co-occurence results from step 3 are averaged.

5. Steps 1 to 4 are repeated for all training vectors. To get an estimate of p+ij the co-occurence

results for each pair of connected units are averaged.

6. The visible units are unclamped and the network is annealed until equilibrium is reached at a

desired minimum temperature.

7. The network is run for several more processing cycles. After each cycle the pairs of connected

units with simultanous values yk = 1 (on) are determined.

8. The co-occurence results from step 7. are averaged.

9. Steps 6 through 8 are repeated as often as in step 5. The co-occurence results are again averaged

to get an estimate of p�ij for each connected pair of units.

10. The appropriate weight change is computed using Eq.7

11. Steps 1 through 10 are repeated until p+ij and p�ij are suÆciently small.

Beside the analysis of near-surface air temperature variations this work is aimed at the attribution

and detection of anthropogenic climate change. Therefore, in a �rst step, the isolation of cause-e�ect
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relations is performed using the CM-FSA. After the successful statistical isolation of these relations

detection studies based on a test of one-sided Gaussian distribution are performed.

4 Statistical isolation of cause-e�ect relations and detection

strategy

This study is aimed at the statistical assessment of climatic cause-e�ect relations, especially the

estimation of the anthropogenic in
uence on surface temperature. Thus, the results will reveal

a characteristic time-structure and magnitude (in Kelvin [K]). In this text we will refer to this

speci�c structure as a signal, e.g. GHG-signal. The presence of natural climate variability implies

that this statistical isolation of relevant cause-e�ect relations is basically a signal-in-noise problem.

Furthermore the signals have to be estimated reliably to obtain a meaningful detection variable in

the second step.

Despite the fact that the CM has no linear components, such an estimation can be obtained by

driving the CM in its �nal con�guration, i.e. frozen weights, with one forcing time-series at a time,

thus setting all other inputs to their mean.

The term detection in this context refers to the process of demonstrating that a simulated climate

change is signi�cantly di�erent than can be explained by natural cilmate variability alone. To get a

realistic estimation of this natural climate variability it is necessary to consider all potential natural

and anthropogenic climate forcing mechanisms in the simulation at the same time. The unexplained

parts of the simulations (residuals) are added to these statistically extracted causes of climate

variability so that a potential signal is tested on a certain signi�cance level against all other extracted

signals plus residuals. This way we obtain what we call climate noise.

If the ratio between an anthropogenic greenhouse forcing signal at a given location x and time t

Santhr(x; t) and the standard deviation of climate noise snoise(x) is denoted by a detection variable
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d(x; t), it is possible to compute the space-time related probability of climate change on a certain

signi�cance level a(Si)

Santhr(x; t) > a(Si) � snoise(x) (10)

which leads to the de�nition of the detection variable d(x; t)

d(x; t) � Santhr
snoise

; (11)

which is based on the signal-to-noise ratio [VON STORCH and ZWIERS, 1999].

The probability P of an anthropogenic climate change, i.e. the signi�cance level, can thus be computed

using

P (z � jd(x; t)j) = erf

�
d(x; t)p

2

�
; (12)

where

erf(x) =
2p
�

Z x

0

exp(�u2)du (13)

is the error function which can be treated with numerical methods [PRESS et al., 1992]. Eq.12

can be applied here because snoise is suÆcientely Gaussian distributed which was tested using a

Kolmogorv-Smirno� test [PRESS et al., 1992].

5 Preprocessing of the data

Due to the fact that with the exception of global or hemispheric mean temperature all spatial data

sets represent variations in time and space a preanalysis using empirical orhogonal functions (EOF)

[PREISENDORFER, 1988] was performed for the area weighted time series of near surface air temper-

ature. In this way we obtain 72 time-related principal components ranked according to their explained

variance instead of 72 climate variable time series at 72 di�erent areas. This transformation can be

written as

z(x; t) =
mX
j=1

�jEOFj(x)PCj (t); (14)

where z(x; t) is the original space-time related data �eld transformed into m time-related principal

components PCj(t) and a series of space-related principal components called empirical orthogonal
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functions EOFj(x). The factor �j is the eigenvalue and quanti�es the amount of variance of the

related principal component existent in the original data. The EOFj provides the information about

the weight of the corresponding PC existent at the related point of space. The PCj(t) serve further on

as the target function of the analysis on the area weighted scale. In default of a objective criterion for

how many PCj(t)'s to use here the �rst four principal components, which explain well over 50% of the

total variance of the original data �eld, have been selected as target functions for the investigations

on the area weighted scale, see Fig.4.

The dominant EOF 1 in Fig.4 holds 32% of the total variance and represents approximately the global

mean temperature series shown in Fig.2 whereas EOF 2 roughly refers to internal climate variability

which is likely to be caused by ENSO [STAEGER, 1998]. Higher EOFs can not be identi�ed that

easy with processes in the climate system.

6 Results and interpretation

Fig.5 shows the simulation and the corresponding anthropogenic signals obtained using the CM-FSA

algortihm described in section 3.1. The simulation as well as the plotted signals are the average sig-

nals of thirty model runs to reduce the (low) probalitiy of falling into local minima on the cost function.

The simulation quality amounts to 81% explained variance (0:9 correlation). A similar Multiple

Linear Regression Model (MLR) driven by the same forcing time-series ends up with an explained

variance of 75% on the global scale [WALTER, 2001], results not shown. An identical simulation

using a BPN lead us to an explained variance of 84% [WALTER and SCH�ONWIESE, 2002]. Thus,

if all parameters of the CM-FSA as well as the BPN have been chosen correctly, it can be concluded

that at least for global surface temperature, there is only little nonlinearity e�ective. If the CM-FSA

algorithm found the global minimum of the cost function it can furthermore be concluded that the

BPN results mentioned su�ered from a slight over�tting.

The signal amplitudes shown in Fig.5 amount to 0:90K for the GHG forcing, �0:28K for the

SU forcing and 0:66K for the combined anthropogenic forcing (GHG and SU). The combined
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anthropogenic signal re
ects the observed trend of 0:60K [JONES, 1999a] for the analyzed time

period rather well. Recent simulations by General Circulation Models (GCM), came up with similar

results. [JOHNS et al., 2003] used a coupled Atmosphere-Ocean GCM which included a representation

of the anthropogenic sulfur cycle and both direct and indirect forcings from sulfate aerosols. For the

historical period 1860 to present they obtain a GHG-signal of roughly 1:0K which is very similar

to our �ndings. Similar results were obtained by [ROECKNER et al., 1999] also using a coupled

AOGCM. For the period 1860 to 2000 they obtained a GHG-signal of 0:9K. In the case of an

absent SU forcing their simulated temperature increase evolves too fast compared to the observational

record. Beside this we �nd in accordance with the results of [ROECKNER et al., 1999] and [STOTT

et al., 2000] a more pronounced warming due to anthropogenic GHG emissions over land than over

ocean. [STOTT et al., 2000] give a range of about 0:2K=decade warming for recent decades, which

is close to our results. Furthermore the recent IPCC report [HOUGHTON et al., 2001] gives similar

signal amplitudes for the above forcing mechanisms.

We obtained the largest model-data discrepancy in the period 1900 to 1920, see Fig.5. Two factors

which could be responsible for this model-data di�erence in this period are (i) mid-latitude land

clearance may have increased the albedo and caused slightly greater cooling than simulated [BONAN

et al., 1992], and (ii) warming may be underestimated in the early stage of the instrumental record

because of sparse data coverage [JONES et al., 1999].

A remarkable feature of the SU signal carried out is its time structure: a moderate cooling due to

anthropogenic emissons of Sulfurdioxide until the 1940's, followed by a rather pronounced colling e�ect

for the time period 1940 to 1970 and a rather weakend colling from there on. This time structure is

consistent with federal environmental legislation for most industrialized nations.

Realistic simulations and signal amplitudes in a physical sense have been carried out for the northern

and southern hemisphere as well [WALTER, 2001], results not shown.

On the area related scale the CM-FSA simulated a maximal anthropogenic (GHG + SU) e�ect over

northern America (1:13K) and over Central Asia (1:17K), [WALTER, 2001], results not shown.
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These results are reasonable in a physical sense because of the enhanced heat capacity of these regions.

In the northern Atlantic region a rather weak warming (0:11ÆK) is simulated by the CM-FSA. This

e�ect is due to an enhanced downwelling of surface water [SMETHIE, 1993] and is shown by physical

models as well, see again [HOUGHTON et al., 2001].

To ensure that the CM has captured all relevant mechanisms, the residuals of the simulations have to be

tested. This is usually done with testing for Gaussian distribution of the residuals e.g. Kolmogorov-

Smirnov test [PRESS et al., 1992]. In case of a nonlinear model the residuals undergo nonlinear

transformations during the training of the network, therefore the residuals do not have to be Gaussian

distributed. An alternative statistical method for testing this kind of resiudal is the autocorrelation

function [VON STORCH and ZWIERS, 1999]. Because the elements of a white noise process are

independant it follows that their autocorrelation function �(�) is

�(�) =

8>><
>>:

1 : � = 0

0 : � 6= 0

; (15)

where � is the lag.

The autocorrelation function of the residual for the global scale is shown in Fig.6, also shown is

the 95% con�dence interval. For � = 1; 2 there is a slight autocorrelation obvious. This is due

to the inertia of the climate system. Within the climate system most temperature informtation is

stored via the oceans SST, thus it is possible to model global near surface air temperature evolution

as an autoregressive process. For lags greater than 2 the autocorrelation coeÆcient shows no

signi�cant de
ection from zero. Thus it can be concluded that the CM-FSA captured all relevant time

structures and that the remaining residual can be treated as noise. On the area weighted scale the

autocorrelation function of the residuals show the same properties [WALTER, 2001], results not shown.

To obtain a useful detection variable one has to look for a statisitcal relationship between the PCj(t)'s

introduced in section 5 and the forcings of interest. The observed spatio-temporal variations of the
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near surface temperature can be written as

z(x; t) = Santhr + Snat + "; (16)

where z(x; t) is the original data �eld, Santhr is the combined (GHG + SU) anthropogenic signal,

Snat are the natural signal, i.e. e�ects due to volcanims, ENSO and solar variations, and " is the

unexplained residual. By testing the proportion between Santhr against Snat + " one obtains an

assessment of the signal-to-noise ratio, and in consequence of the con�dence level of the detection of

an anthropogenic induced climate change.

In Fig.7 the results for such a detection approach on the global scale are shown. Here the solid

line represents the residual of the global CM-FSA simulation plus the natural signals (solar,

volcanism and ENSO) obtained. This combination of unexplained variabilty and natural climate

variations is what we call climate noise, see section 4. The dotted lines represent the 95%, 99%

and 99.9% signi�cance levels, which can be computed using Eq.10. The obtained anthropogenic

signals (GHG-signal: dashed, SU-signal: dashed-dotted and combined anthropogenic GHG + SU:

thick solid) do not agree with the assumption of a undisturbed climate system. The GHG-signal

as well as the combined anthropogenic signal are detectable with a probality of > 99:9%. The

GHG-signal exceeds this signi�cance level in 1961. Because of the cooling e�ect of SO2-emmission

the combined anthropogenic signal exceeds this level exceeds this level not until 1983. The SU-signal

comes short of exceeding the 99% signi�cance level and thus can only be detected with a probality

of > 95%. From these results it can be concluded, that it is virtually certain that an increase in

global near surface air temperature because of the anthropogenic emissions of GHGs has already

happened. Furthermore it is very likely that in the analyzed time period SO2 emissions contributed

a substantial cooling e�ect to the global near surface air temperature evolution. Thus, it is again

virtually certain, that for the time period 1856 - 1998 at least the low frequent trend in the obser-

vations of global near surface air temperature is caused by anthropogenic emissions of GHGs and SO2.

Fig.8 shows the results from the detection approach introduced in section 4 for a probability p > 90%

that an anthropogenic (GHG & SU) climate change has happened. Because of the fact that not
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only the signal but the signal-to-noise ratio determines the detection of the anthropogenic signal the

detection strategy introduced above succeeds at a high con�dence level where the overall standard

deviation of climate noise, i.e. natural signals plus residual, is rather small, see Fig.9. Because of a

reduced year-to-year variability this is mainly the case for the tropics and oceanic regions due to their

large heat capacity and missing orographic e�ects on the atmospheric circulation.

However, the detection succeeds on a high con�dence level for the mid-latitudes of the northern and

southern hemisphere as well; this time because of enhanced signal amplitudes compared to those in

the tropical regions. A linear MLR did not come up with similar results [WALTER, 2001], results

not shown, which is mainly due to the enhanced simulation quality of the CM and thus, a reduced

standard deviation of the remaining climate noise. Thus, regions with a low standard deviation

correspond to regions with a high probability of an anthropogenic climate change. In 36 out of 72

considered areas this probability exceeds 90%.

It is worth mentioning that a similar approach using the standard BPN yielded better results in terms

of the explained variance [WALTER and SCH�ONWIESE, 2002], but as mentioned above this e�ect

may be due to over�tting which the CM-FSA tries to prevent.

7 Conclusions

In this work the possibilities of NNM, especially the CM-FSA, for the purpose of attributing and

detecting anthropogenic climate change have been studied. An NNM simulation represents nothing

less than a nonlinear optimal �t. Therefore the results are highly sensitive to the choice of internal

free parameters of the network architecture, i.e. learning constant � in Eq.8 and cooling schedule

Eq.9 respectively. However, if one carefully selects these parameters, the CM-FSA algorithm

provides a strong nonlinear statistical tool for climatological data analysis with a minimized risk of

over-/under�tting.
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The results we obtained show a signi�cant anthropogenic climate change for most regions of the

globe, see Fig.5, Fig.7 and Fig.8 respectivley. On the global scale the best estimate of the e�ect of

anthropogenic GHG and SO2 emissions into the atmosphere amounts to 0:66K warming for the time

period 1854 to 1998, which is close to the observed trend [JONES et al., 1994], [JONES, 1999a].

Thus, in accordance with GCM results, e.g. [ROECKNER et al., 1999], [STOTT et al., 2000], we have

to conclude that a signi�cant anthropogenic climate change is virtually certain and already visible in

the global near surface air temperature record.
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Figure captions

Fig.1 Schematic illustration of the modell con�guration used. Weights within the input layer drawn

solid, within the processing layer dashed and weights from processing to output layer drawn

dotted. The number of processing units shown does not re
ect the number of processing units

for our simulations.

Fig.2 Global tempertaure anomalies 1856 - 1998 [JONES et al., 1994], updated by [JONES, 1999a].

Fig.3 Forcing mechanisms used in our simulations. Units are: GHG forcing , CO2equivalent concen-

trations [ppm] = parts per million by volume [HOUGHTON et al., 2001]; SO2 forcing data from

[CHARLSON et al., 1992] [mg=m2]; ENSO forcing, normalized pressure anomalies [hPa] data

from [STAEGER, 1998] based on [JONES, 1999b]; heating rate anomalies [W=m2] due to ex-

plosive volcanism provided by [GRIESER and SCH�ONWIESE, 1998] and solar forcing [W=m2]

[LEAN et al., 1995], [LEAN and RIND, 1999].

Fig.4 Relative explained variance vs. PC number. The explained variance 
attens after PC4. The

�rst four PC's explain well over 50% total variance of the original data �eld.

Fig.5 Results of the global CM simulation (dashed) and the corresponding GHG-signal (short-dashed),

SU-signal (dashed-dotted) and the combined anthropogenic signal (dotted). Also shown are

observed global temperature anomailes (solid) provided by [JONES et al., 1994], [JONES, 1999a]

respectively.

Fig.6 Autocorrelation function (solid) with corresponding 95% con�dence interval (dashed) of the

residuals.

Fig.7 Residual and obtained natural signal of the global CM-FSA siumlation (solid), GHG-

signal(dashed), SU-signal (dashed-dotted) and combined anthropogenic signal GHG+SU (thick

solid). Also shown are the 95%, 99% and 99:9% signi�cance levels (dotted).

Fig.8 Probability P � 90% for an anthropogenic induced climate change.

Fig.9 Standard deviation of the residuals on the area-related scale.
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