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Chapter 1

Introduction

Brownian motion is a rapid oscillatory motion of microscopic particles. It
is named after the Scottish botanist Robert Brown, who first gave precise
description of this phenomenon while he was observing pollen grains in water
in 1827 [82]. The phenomenon caught great interest of scientists for decades
and Einstein explained that the Brownian motion can be obtained as the
result of the motion of molecules in a liquid in 1905 [33]|. Smoluchowski also
formulated Brownian motion and he estimated that Brownian motion can be
described from the expectation of 10%° per second times collisions between
the particle and water molecules in 1906 [23].

Before the formulation by Einstein and Smoluchowski, Bachelier observed
similar movement in stock market and independently developed mathemat-
ical model of a stock variation with such fluctuations in 1900 [11]. In his
model, the coefficient functions were supposed to be dependent only on time,
i.e., homogeneous in space. The model was later reintroduced by Kolmogorov
in 1931 [71].

Mathematical formulations of Brownian motion were attempted by many
mathematicians. In 1908, Langevin wrote down the motion of particles ac-
cording to Newton’s laws and it was given by

d%x(t) dx(t)
dt? dt

where m is a mass of a particle, —(dz(t)/dt is a systematic force, which
describes a dynamical friction experienced by the particle, and F(t) is a
force from molecular collisions in the liquid and gives random fluctuations
to the particles [4, 24]. The equation (1.1) has a form of ordinary differential
equation (ODE), however, F'(t) is considered to be Gaussian white noise and
there is a difficulty in analyzing its properties.

Kolmogorov circumvented the problem and introduced parabolic partial
differential equations (PDEs) which describe the transition probability of
Markov process. The PDEs are called as the first and the second PDEs in
[71] and later the forward and backward Kolmogorov equations [22, 84, 104].

=~

+ F(t), (1.1)

9



10 CHAPTER 1. INTRODUCTION

Since then, the theory of PDEs, the potential theory and semi-group theory

started to be applied in the field of probability theory while only measure

theory and Fourier analysis were the main analytical tools at that time.
According to the Kolmogorov’s theory, a continuous Markov process

{X(t)} satisfies

E(X(t+ A — XWO|X(1) =2) = a(t, £)Ar + o(Ay) .
V(X(E+ A) — XX =) = b(t,2)A + o(A) '

where A; is a small time interval, and this was the starting point of It6’s
stochastic differential equations (SDEs). Based on (1.2), Itd derived an SDE
in the form:

dX (1) = a(t, X (1)) dt + /b(t, X (1)) dW (1), (1.3)

and he tried to find a sample path of continuous Markov process [53].
First of all, It6 wrote (1.3) in the integral form:

t

X(t) :X(to)—i—/ a(s,X(s))ds—i—/ o(s,X(s))dW (s), (1.4)

to to

where o = v/b. The first integral on the right hand side of (1.4) is pathwise
a Riemann-Stieltjes integral. On the other hand, a sample path of Brownian
motion {W(t)} does not have a bounded variation and the second integral
cannot be defined in the same manner. Itd6 defined a stochastic integral

Ji Y (s)dW (s) as

n

/t V(s AW(s) = lim 37V (s0) (W () = W),

fortg =s9 < 81 < ...< 8, =t and |A] = max(s; — s;—1) for nonanticipative
process Y (), i.e., independent of the future increments of the Wiener process.

When o = 0, the equation (1.4) turns to be deterministic and it can be
solved by Picard’s approximation method. Itd applied this idea to the case
o # 0 and showed the existence and uniqueness of the solution of (1.4) when
the coefficient functions a(t,x) and o(t,x) satisfy global or local Lipschitz
conditions (which is briefly introduced in subsection 2.2). Moreover, the
solution is Markov process and satisfies Kolmogorov’s conditions (1.2).

[t6’s theory was developed to understand and describe Markov processes,
but now we can find its applications in various kinds of fields such as biology,
medicine, physics and finance [2, 35, 85]. In particular, in financial mathe-
matics, the theory of stochastic processes is a fundamental tool to describe
the concepts and ideas now [39|.
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1.1 Random ordinary differential equations

Another modeling approach to include noise terms in differential equations is
random ordinary differential equations (RODEs). RODEs are ODEs which
have a stochastic process in their vector field functions and can be inves-
tigated pathwise as deterministic ODEs. They have been used in a wide
range of applications such as biology, medicine, population dynamics and
engineering [15, 70, 81, 90, 92| and play an important role in the theory of
random dynamical systems (see Arnold [5]), however, they have been long
overshadowed by SDEs.

A simple example of a RODE is given by

d
d—‘f = —z+sinY(t), (1.5)

where Y () is a stochastic process [57|. This equation looks similar to the
Langevin equation (1.1), in which F(¢) is assumed to be Gaussian white
noise. The use of Gaussian noise is supported by the Central Limit Theo-
rem and it fits well with various kinds of mathematical models. However,
such noise process is sometimes not realistic in applications because it is not
bounded [31]|. For example, the parameter values are often strictly positive
in biology and medicine and models with unbounded noise may lead unde-
sirable results such as negative values or excessively large values. In order to
avoid such problems, mathematical models with bounded noise are recently
introduced and they are now applied in physics, biology and engineering.
In general, RODEs can be written in the form:

L=y ), (1.6
where Y'(t) is a stochastic process. Here we assume regular noise rather than
Gaussian noise and typically we consider continuous noise processes which
satisfy Holder condition, such as Brownian motion or fractional Brownian
motion (fBm), but also the noise processes with jumps, e.g., Poisson process
or compound Poisson process, can be included in RODEs.

In addition to the property of the noise, sometimes it is much easier to
develop models with noise by RODEs than SDEs. Allen built mathematical
models with SDEs by including all possible changes within and among com-
partments [2, 3]. Interactions among compartments can be included in the
system and such a method has an advantage in model building especially for
small systems, however, it becomes too complicated for large ones.

RODEs may have more advantages from these points and I decide to
reinvestigate mathematical modeling with RODEs and the numerical meth-

ods for RODEs.
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When the noise is regular noise, there is, in fact, a close connection
between RODEs and SDEs.

Suppose that a stochastic process Y (¢) in (1.5) satisfies an 1t6 stochastic
ordinary differential equation (SODE), i.e.,

dY (t) = a(Y (£)) dt + b(Y (£)) dW (¢), (1.7)

with W (t) a scalar Wiener process. Then, the RODE (1.5) can be trans-
formed into the 2-dimensional SODEs:

. (X(t)) _ <f(X(7f)7Y(t))> di + < 0 ) AW (t), (1.8)
a0 a(Y (t)) bY ()

here f(X(¢),Y(t)) = —X(t) +sinY(¢) for (1.5). When ¢ = 0 and b = 1,
then (1.7) reduces to a Wiener process, i.e., Y (t) = W(t).

On the other hand, Doss and Sussmann proved that any finite dimen-
sional SDE with commutative noise can be transformed to a RODE and
it was later generalized to all SDEs by Imkeller, Schmalfuff and Lederer.
Suppose that a scalar SDE with additive noise is given as

dX(t) = f(X(t))dt + dW(t). (1.9)
An example of Ornstein-Uhlenbeck (OU) processes O(t) is given by
dO(t) = —O(t) dt + dW (t). (1.10)

By subtracting integral forms of (1.10) from (1.9) and defining z(¢) := X (t)—
O(t), the corresponding RODE is now obtained:

dz

pri f(z+0(t)) + O(t).

Through the Doss-Sussmann transformation and its generalizations, it was
shown that RODEs and the corresponding SDEs have the same (trans-
formed) solutions [32, 49, 51, 93].

1.2 Numerical approximation

Most deterministic differential equations cannot be solved explicitly, so they
must be simulated in order to visualize the behavior and trajectories of the
systems. Numerical methods for deterministic ODEs have long history and
arbitrary higher order schemes can be derived by using Taylor expansions.
In addition to the Taylor schemes, Runge-Kutta schemes and linear multi-
step methods (LMMs) were developed and widely used in applications [18,
36, 41, 42, 61]. Stiff systems are often observed in practice, however, explicit
schemes are not suitable for such systems because of the stability problem. In
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such cases, implicit schemes have important advantages and various implicit
schemes were introduced and their stability regions were also investigated
[18, 61].

Similar to the deterministic calculus, most of the SDEs and random dif-
ferential equations (RDEs) do not have explicit analytical solutions and nu-
merical methods are important tools to investigate the systems.

In the case of SDEs, such numerical methods for deterministic calculus
are inconsistent or the traditional orders of convergence are not attained
even if they are applicable. It is necessary to derive new types of numerical
schemes and they were developed by applying stochastic [t6-Taylor expan-
sions iteratively. Typical examples are Euler-Maruyama scheme, which is
the stochastic Euler scheme, and Milstein scheme and they satisfy 0.5- and
1.0-order convergence respectively. Stochastic Runge-Kutta schemes and
LMMs have also been constructed based on the stochastic It6-Taylor expan-
sions [16, 66, 76]. Recently Buckwar & Winkler derived stochastic LMMs
(SLMMs) with higher order when the diffusion term is small [13, 14] and the
third paper |9] is written based on the idea. The stochastic It6-Taylor expan-
sions are important backbone in this thesis and the details are introduced in
chapter 2.

On the other hand, we can apply deterministic calculus pathwise to
RODE. Typically the driving stochastic process Y (¢) in a RODE (1.6) has
at most Holder continuous sample paths. The resulting vector field (¢, x) —
f(x,y(t)) is, thus, at most Holder continuous in time, no matter how smooth
the vector field is in its original variables, so the sample paths of the solu-
tion of (1.6) are certainly continuously differentiable, but their derivatives
are at most Holder continuous in time. Consequently, although the classical
numerical schemes for ODEs can be applied pathwise to RODEs, they do
not achieve their traditional orders.

Recently Griine & Kloeden derived explicit averaged Euler scheme (EAES)
by taking the average of the noise within the vector field [37]. In addition,
new forms of higher order Taylor-like schemes for RODEs were derived sys-
tematically in [56, 64], see also section 2.3. However, it is still important to
build higher order numerical schemes and computationally less expensive as
well as numerically stable schemes and this is the motivation of this thesis.
The schemes in [56, 64] are very general, so RODEs with special structure,
i.e., RODEs with Itd noise and RODESs with affine structure, are focused and
numerical schemes which exploit these special structures are investigated.

1.3 Outline

This thesis is based on the following four published papers |7, 8, 9, 10].

[7] Asai Y., Herrmann E. and Kloeden P.E., Stable integration of stiff
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random ordinary differential equations, Stochastic Analysis and Appli-
cations, 31 (2013) 293-313.

The paper [7] was based on a note by A. Jentzen and P.E. Kloeden and the
schemes, the implicit averaged Euler scheme (IAES) and the implicit aver-
aged midpoint scheme (IAMS), are natural extensions of the EAES intro-
duced in [38|. Since the paper was based on unpublished notes by Jentzen
and Kloeden, the details of the paper are not discussed here, but will be
briefly introduced in preliminaries and stability sections.

[8] Asai Y. and Kloeden P.E., Numerical schemes for random ODEs via
stochastic differential equations, Communications in Applied Analysis,
(2013) 17 no.3 & 4, 511-528.

The second one [8] is about the derivation of arbitrary higher order Ito-
Taylor schemes via RODE-SODE transformation, which we saw in (1.8).
When we discuss the convergence order, the coefficient functions and their
partial derivatives are assumed to be uniformly bounded. This assumption
excludes many interesting examples and we showed the pathwise convergence
of the schemes under weaker conditions in this paper.

[9] Asai Y. and Kloeden P.E., Multi-step methods for random ODEs
driven by Itd diffusions, Journal of Computational and Applied Math-
ematics, 294 (2016) 210-224.

SLMMs for the coupled RODE-SODE system are discussed in the third pa-
per |9]. Arbitrary higher order SLMMs are constructed via RODE-SODE
transformation and the corresponding consistency conditions are obtained.
In addition, the pathwise convergence as well as a nonlinear numerical sta-
bility property, specifically B-stability, are investigated in the paper.

[10] Asai Y. and Kloeden P.E., Numerical schemes for random ODEs with
affine noise, Numerical Algorithms, (2016) 72:155-171.

It6 noise is assumed in the second and third paper [8, 9], but general noise
and RODEs with affine structure are assumed in the fourth paper [10]. The
discussion here is closely related to the numerics of control theory given in
[37] and Taylor schemes, derivative free schemes and LMMs are introduced
here.

In addition, two examples presented in chapter 7 are taken from the
poster:

e Asai Y. and Herrmann E., Mathematical modeling by random ordinary
differential equations and their numerical methods (poster), Population
Approach Group in Europe 2015, 03-05/06/2015, Crete, Greece.
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1.3.1 The structure of the thesis

The thesis is structured as follows.

In chapter 2, Taylor expansion for deterministic ODEs are introduced
in order to recapture the idea of building numerical schemes and evaluat-
ing their convergence order. The stochastic It6-Taylor expansions are basic
backbone to build numerical methods for SDEs and they are given in the
following section 2.2. After Taylor-like expansions for RODEs [56] are briefly
discussed in 2.3.1, the averaged schemes, namely the EAES, the IAES and
the TAMS, are introduced in section 2.3.2. In addition, the notations ap-
pearing in this thesis are introduced in 2.4.

The numerical methods for RODEs with Itd noise process are derived for
the coupled RODE-SODE in chapter 3. In section 3.1, It6-Taylor schemes
for RODE part in a coupled RODE-SODE are derived using the stochastic
[t6-Taylor expansions. Those schemes have derivative terms in general and
derivative free schemes are given by replacing the derivatives by finite differ-
ences. The pathwise convergence of Ité-Taylor schemes of arbitrary higher
order is also discussed in this section.

Based on the stochastic It6-Taylor expansions, SLMMs are derived in
section 3.2. Derivation of the consistency conditions up to order 2.0 are
illustrated and the general form of arbitrary higher order SLMMs with cor-
responding consistency conditions are given here. Moreover, the pathwise
convergence of SLMMs is shown.

In chapter 4, RODEs with more general noise, but a more specific struc-
ture, are considered. Here we assume that the RODEs have an affine struc-
ture in the noise. The numerical methods are built using the hierarchical set
notation given in chapter 2. Affine-RODE-Taylor schemes, derivative-free
schemes and LMMs are derived in this chapter.

Stiff equations are often observed in practice and stability is a big issue
in numerical simulations. After showing the solvabilities and convergence of
the TAES and the TAMS, their B-stability are discussed in chapter 5. Then
B-stability of 1.5-order SLMM is shown as an illustrative example and the
argument is applied to arbitrary higher order SLMMs in the end.

Multiple stochastic integrals appear in the numerical methods when we
derive higher order schemes. The integration and approximation of stochas-
tic processes are discussed in chapter 6. Wiener process and OU process are
approximated by using probability distribution and exact integration is given
for compound Poisson process. In addition, fBm and the Riemann integral
of fBm are generated by Cholesky decomposition and the combination of
Cholesky decomposition or the fast Fourier transformation (FFT) with the
random midpoint displacement (RMD) method. Their calculation costs are
compared with different step sizes and number of simulation times.

To illustrate their widespread application and to compare their compu-
tational performance, the derived numerical schemes are applied to various
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kinds of models in biology and medicine in chapter 7. Different kinds of
noisy scenario are assumed in practice and bounded noisy parameters driven
by It6 diffusion processes are illustrated here. The error and step size as well
as computational costs are compared among previously and newly developed
numerical schemes with different step sizes.



Chapter 2

Preliminaries and notation

Most mathematical models are very complicated and we often cannot obtain
explicit analytical expressions for their solutions. In such cases, numerical
approximations play very important role and they give us insights of the
behavior of the solutions. However, the approximations are done in discrete
steps in time while the models themselves are continuous in time. In or-
der to have good approximations, i.e. approximations with small numerical
errors, it is necessary to choose or develop appropriate numerical methods.
Moreover, the accuracy is highly dependent on the step sizes for the simula-
tion and the numerical errors get smaller as the step sizes become smaller.
However, the computational costs get larger for such small step sizes and we
need to choose suitable step size for each method.

Taylor expansions are the backbone of developing numerical methods.
Firstly the deterministic Taylor expansions as well as the derivation of the
corresponding Taylor schemes are illustrated in section 2.1 in order to re-
capture the basic idea of numerical approximation [61]. Such schemes are,
in fact, rarely used in practice, but they are used as a tool to derive other
numerical methods such as Runge-Kutta schemes and LMMs as well as to
estimate the numerical errors and the convergence orders of other schemes.

Similar to the deterministic Taylor expansions, the stochastic It6-Taylor
expansions are the fundamental tools in the derivation of numerical methods
for SDEs. As we saw in section 1.1, RODEs with It6 noise can be written in
the RODE-SODE form and the stochastic It6-Taylor expansions are applied
in order to build numerical schemes. After a brief introduction of It6 calculus
and standard assumptions, Itd6-Taylor expansions for SDEs are given in sec-
tion 2.2. The existence and uniqueness theorem for SDEs and the necessary
conditions as well as two kinds of convergence, namely strong convergence
and pathwise convergence, are also introduced here. Different from deter-
ministic calculus, we often have more derivative terms in stochastic calculus.
The useful notations to describe the set of derivatives were introduced in [66]
and the hierarchical set notations and the notations for multiple integrals are

17
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given in this section.

In addition, Jentzen and Kloeden recently introduced Taylor-like expan-
sions for RODEs [56] and developed a new class of numerical methods for
RODESs. Some of their schemes are applied to numerical simulations in chap-
ter 7 and the Taylor-like expansions are given in subsection 2.3.1.

The EAES was built by Griine & Kloeden by averaging the noise terms
in the vector fields [37] and later Asai, Herrmann & Kloeden introduced
the TAES and the TAMS 7], which were based on the unpublished notes by
Jentzen and Kloeden. These averaged schemes are also given in section 2.3.2.

Some more notations, such as the combination of the stochastic integrals
and the reduced hierarchical sets, are introduced in the last section and the
corresponding examples are illustrated.

Throughout this thesis, we assume that the solution exists on the given
time interval [tp, 7. In addition, we assume the cases with d = 1 throughout
this chapter.

2.1 Taylor expansions for deterministic ODEs

Consider the initial value problem (IVP) of ODEs given by

d
dfstc = f(t,x), z(to) = xo,
with solution x(t) = x(t,tg,x0). Now we suppose that the solution z(t) :
[to, T] — R is p+ 1 times continuously differentiable. Then z(¢) has a Taylor
expansion around ¢, € [ty,T] and it is given by
1 dPx
ﬁ@(tn—l)Aﬁ
1 drflz
_{_77
(p+ 1)! dirtl

x(tn) = x(tn_1)+d—x

dt (tn—l)An +eee

(6.-)ALT, (2.1)

where A,, = t,, — t,—1 and an intermediate value 0,,_1 € [t,—1,t,] C [to, T
Now introduce a differential operator D:

_ 9 99
Dg(t,i‘) T 8t (t,l‘) + f(tv ZE) 815 (t,ZL‘).
Applying the chain rule to the function g(t, z) gives
dg _ 99 9 _
%91 a0 = % t,2(0) + 21,000 11, 2(0)) = Dy(t,2(0)),

since dx/dt = f(t,x(t)). With the help of the operator D, the derivatives of
x(t) can be written as

Iz

CoB) =D (a),  j=120 (2.2)
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for sufficiently smooth f. Replacing the derivative terms in (2.1) by (2.2)
gives the p-order Taylor expansions:

p
o(t) = altad) + 3D (b (b)) A
=17

+ DPf(0p_1,2(0p_1))APTL.

(7 +1)!
By disregarding the last term, the p-order Taylor scheme can be derived:
P11 . ,
Tn=Tn-1+ Y ﬁDﬂ—lf(tn,l,mn,l)Ag, (2.3)
j=17"

where x,, is an approximated value of x(t) at t = t,. A typical example of
the Taylor scheme is Euler scheme and it has a form:

Tp = Tp—1 + f(tn—la xn—l)An- (24)

In order to estimate the numerical error, define the local discretization
error L,, given by

LTL = |§L'(tn,tn_1,$(tn_1)) - xn‘ (25)

This is the term disregarded when (2.3) was developed and

1

L, <
" (1)

APFDP (01, 2(0n-1, ta1, 2(tn-1)))| ~ O(ALT).

In general, the coefficients D7~ f(t,_1,x(t,_1)) in (2.3) is too compli-
cated to be estimated and such Taylor schemes are rarely implemented in
practice, but used to establish the convergence order and error of other
schemes.

2.1.1 One-step schemes
When we can describe the schemes in the form:
Tp = Tp—1+ (I)(Am tn—1,Tn-1, xn)>

for some increment function ®, the schemes are called one-step schemes. The
Euler scheme (2.4) is an example of a one-step scheme and ® is given by

q)(Anyt7x7y) = f(ta l’)
When ®(A,,t,x,y) = f(t + An,y), ie.,

Tp = Tp—1+ f(tna xn)Anv (26)
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the scheme is called the implicit Euler scheme. z,, is on the right hand side of
(2.6) and because of this structure, we need to solve an algebraic equation at
each time step. However, such implicit schemes have important advantages
such as numerical stability and are often applied to stiff systems.

In addition to the explicit and implicit Euler schemes, there are many of
the one-step schemes derived in the literature [18, 41, 42, 61]:

the trapezoidal scheme:

(Bt ,) = 3 (F(1,) + £+ Auy),
the Heun scheme:
(B to,9) = 3 (F(6) + f(E+ Anw b F(E0)A),  (27)

the p-order Taylor scheme:

"1
(An,tamy :Zi 1'

b

The above Heun scheme is a simple example of Runge-Kutta schemes, which
is the class of derivative free one-step schemes. As we can see from the form
of the increment function ® given by (2.7), the function f is evaluated at
several intermediate points within the discretization subinterval. When we
evaluate the function at s intermediate points, we call the scheme s stages
Runge-Kutta scheme. Obviously, the Heun scheme is a Runge-Kutta scheme
with 2 stages.
In general, Runge-Kutta scheme with s stages has a form:

Tn = T+ An Y bk,
=1

kz(n_l) = fltho1+cln, 1+ A, Zazjk(n 2 s 1=1,---,s,
Jj=1

where 0 < ¢y <ecg < -+ <eg < 1.

2.1.2 Multi-step methods

Different from one-step schemes, multi-step methods use the information
from the past, i.e., they evaluate the value at t, with the information at
current time ¢,,_1 as well as the values of z,,_9, -+, x,,_s from the previous
time points t,_92, -+, th_s.

For example, the family of s-step LMMs have a general form:

Zajwn —-Jj = At26]fn —J» (2.8)

7=0
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where the coefficients a; and (; satisfy consistency conditions and f,_; is
the approximated value of f at ¢,_;. In addition, the equidistant step size
Ay is assumed on the given interval.

The a; and f; in (2.8) are obtained by evaluating the local error (2.5)
at t = t,. As an illustrative example, we derive them for s = 2 here.

The local discretization error L,, is

L, = |zx(tn,tn—1,2(tn—1)) — Zy|
2 2
= [ aaltng) =AY Bif(tnj x(tny))l- (2.9)
§=0 J=0

The Taylor expansions of z(t) and f(¢,z(t)) at t,, and ¢, around t,,_o are
given by

#(tn) = 2ltn-2) + F(tn-2,2(0n2))(2A0) + 3 DF On-1,0(00-1)) 241,

x(tn—1) = x(tn—2) + f(tn—2, x(tn—2))A¢ + %Df(@n_z, z(0,_2))AZ,
f@tn,2(tn)) = f(tn—2,2(tn—2)) + Df(On—1,2(0n-1))(24¢),
f(tn—lax(tn—l)) = f(tn—27 x(tn—2)) + Df(en—27$(0n—2))At7

for some 6,9 € [tp—2,tn—1] and 0,1 € [tn—2,t,]. Now substituting the
corresponding terms in (2.9) yields

L, < |(ao+ a1+ az)x(th—2)
+ (200 + a1 — (Bo + B1 + B2)) f(tn—2, x(tn—2))A¢ + |R|,

where R is a remainder term given by

R = {anDf(Gn_l,x(Hn_l))+%Df(0n_2,x(9n_2)) (2.10)
(280D (801, 2(0n 1)) + BiDf (B2, 2(6n2)) ) } A2

Obviously, the remainder term R ~ O(A?) and if o; and §; satisfy the
following consistency conditions:

ap + a; + ag =0, 200 + a1 = Bo + p1 + B2, (2.11)

L, < CA? for some constant C' > 0. This means the 2-step LMMs (2.8)
show 1-order convergence.
Typical examples of 2-step LMMs are Adams-Bashford scheme:

1
Tn = Tp—1+ 5 (3fn—1 - fn—2) Ay, (2-12)
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and Adams-Moulton scheme:
1
Tp = Tp—1+ E (5fn + 8fn71 - fan) Atv (213)

which are explicit and implicit schemes, respectively.

The remainder terms are evaluated by Taylor expansions iteratively and
higher order LMMs or LMMs with more steps can be generated in the same
manner.

2.2 Taylor expansions for SODESs

Stochastic calculus is not as robust as deterministic calculus, so it is better
in this case to start with Taylor expansions and Taylor schemes to ensure
that we get a consistent schemes. Consider 1-dimensional scalar 1t6 SODEs
given by

dX(t) = f(t, X (t))dt + g(t, X (t)) dW (1), (2.14)

where the drift and diffusion coefficients f, g : [to, 7] x R — R and W (¢) is
a standard Wiener process. This differential form is rather symbolical and
it can be written in the integral form:

X(t) = X(tog) + t f(s,X(s))ds + /tg(s,X(s)) dW (s). (2.15)

to to

As we saw in chapter 1, the first integral is pathwise a Riemann integral and
the second an It6 stochastic integral.

The existence and uniqueness theorem for the SDEs (2.15) can be ob-
tained under so-called standard assumptions by applying Picard type itera-
tion [35, 78, 85].

Assumption 1. (Global-Lipschitz and linear growth conditions.)
The coefficients f and g are said to satisfy global Lipschitz condition and
linear growth condition when the following inequalities hold respectively

F(t,X) — f(t, X +|g(t, X) — g(t, X)| < K|X = X'|,  (2.16)
F(t,X)1” +1g(t, X)? < K*(1+|X[), (2.17)

where t € [to,T] and X, X' € R, for some constant K.

Theorem 1. (Existence and uniqueness theorem.)

Suppose that f, g : [to,T] x R — R are continuous in both variables and
satisfy (2.16) and (2.17) for all X, X' € R and all t € [to, T]. In addition,
suppose that the initial condition Xg s non-anticipative with respect to the
Wiener process W (t) with E(X3) < oc.
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Then, there exists a solution X (t) of (2.15) defined on [to, T| which is contin-
uous with probability 1 and sup,,<,<7 E(X (t)?) < co. Moreover, a property
of pathwise uniqueness holds, i.e.,

IP( sup |X(t) — X'(t)] :o) =1,
to<t<T

for two solutions X = {X (t),t € [to, T} and X' = {X'(t),t € [to,T]}.

Now let U : [ty,T] x R — R be a two times continuously differentiable
function and X (¢) be a solution of (2.15). Then the following integral equa-
tion, which is known as the It6 formula, is obtained:

U(t, X (¢)) :U(tO,X(to))+/tLOU(s,X(s))ds+/tL1U(s,X(s))dW(s)

to to
(2.18)
with the differential operators:
oU ou 1 ,0°U oUu
U= "+f—+ ¢~ LU = g—. 2.19
o o T2 952 (2.19)

Taking U = f and U = g in (2.18) and putting them into (2.15) yield

X(1) :X(to)+f(to,X(tg))/tds+g(t0,X(t0))/tdW(s)+R, (2.20)

to to

where the last term R is

t S1 ¢ 51
R = /to /to Lof(527X(32))d52d81+/t0 /to L' f(s2, X (s2)) dW (s2)dsy
[ L0 (0, X (s2)) disadW (51) (2.21)

+/t0 /t() L 9(827 2 2 1 .

n / / L' g3, X (52)) dW (s2)dWV (s1).

Discarding the remainder term R given as (2.21) leads Euler-Maruyama ap-
proximation:

t t
X~ Xo+ f(to,Xo)/ ds +9(t0,X0)/ dW (s).

to to

This leads Euler-Maruyama scheme:

Xn = Ap—1+ f(tn—la Xn—l)An + g(tn—la Xn—l)AWn’ (222)
where
tn in
A, =t, —th_1 = / ds, AW, = dW (s). (2.23)
tn—1 tn—1
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Applying the chain rule again to U = L!g in (2.20) and omitting the remain-
der terms yield

t t
X, ~ Xo+ flto, Xo) / ds + g(to, Xo) / W (s)

to to
s1

t
+Lig(to, XO)/ dW (s2)dW (s1),
to

which is called Milstein approximation [66, 76] and the corresponding scheme
is given by

Xn — anl + f(tnfla anl)An + g(tnfla anl)AWn

+LYg(tn-1, Xn_l)% (AW,)? = A,), (2.24)

because

/to / dW (s9)dW (s1) = ((AWn)2 —A).

By iterating the same argument, the arbitrary higher order stochastic It6-
Taylor expansions and the corresponding It6-Taylor schemes are obtained.
Moreover, similar to the numerical methods for deterministic ODEs, Runge-
Kutta schemes and LMMs have been developed based on the stochastic It6-
Taylor expansions and their numerical errors are evaluated.

Different from convergence in deterministic sense, there are different
kinds of convergence in SDEs, such as weak convergence or strong conver-
gence, and numerical methods often show different orders of convergence in
the different contexts. In this thesis, mainly strong and pathwise approxi-
mations are discussed and they are introduced in the following subsections.

2.2.1 Strong convergence

Now consider a partition tyg < ¢ < --- < t, = T of the interval [ty,T]
with step sizes A; = t; — t;—1 and maximum step size A := max;—i.... , A;.
Suppose that X; is an approximation by some numerical scheme of X (¢ ( ;) for
a solution of X (¢) of the SDE (2.14). Then the numerical scheme is said to
converge strongly of order ~y if

1/p
E sup [X(t;) — Xif? < K,rA7, (2.25)
=0, ,n
for some constant K, 7.
By applying the stochastic [t6-Taylor expansions in the discarded terms
and including necessary ones, arbitrary higher order strong It6-Taylor schemes
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are obtained [66]. In general, y-order strong It6-Taylor schemes can be writ-
ten in the form:
Xp= Y L%dx(to, Xo)Iate.: (2.26)

a€h

where A, is the hierarchical set of multi-indices given by

1
A, = {a € My, l(a) +n(a) <2y or l(a)=n(a)=7v+ 5}, (2.27)
where n(«) is the number of components of o that are equal to 0 and I(«)
is the length of a. In addition, M,, is given as

./\/lm:{a:(jl,---,jl)€{0,1,2,~--,m}l:leN}U{Q},

with () being the empty index of length {(#) = 0. Moreover, for a multi-
index o = (ji1,- -, /1) with [ > 1, the multiple integrals I, 4, and iterated
operators L are defined by

t 52 . . . .
oot := / [ AW (s1) - dW(sy), L% =L LY,
to to

with Iy, = 1 and LY = id.

The hierarchical sets for the Euler-Maruyama scheme (2.22) and Mil-
stein scheme (2.24) are given by {0, (0), (1)} and {0, (0),(1),(1,1)}. Obvi-
ously they satisfy 0.5-order and 1.0-order strong convergence, respectively,
although the Euler scheme (2.4) has order 1.0.

2.2.2 Pathwise convergence

Under the same assumption given in 2.2.1, the numerical scheme is said to
converge pathwise if

sup | X (ti,w) — Xi(w)| — 0 as A—0 (2.28)

1=0,---,n

for almost all w € €2, where ) is the sample space of a given probability
space (92, F,P).

Pathwise convergence has not been much discussed until recently, how-
ever, in general, the numerical approximation is carried out path by path and
the calculation is done for a fixed w € 2. Moreover, the theory of random
dynamical systems is of pathwise nature.

Gyongy showed that the explicit Euler-Maruyama scheme with equidis-
tant step size 1/n satisfies (0.5 — €)-order pathwise convergence for arbitrary
e > 0 [40]. Using an idea in his proof, Kloeden & Neuenkirch showed that
[t6-Taylor schemes with arbitrary higher order pathwise convergence can be
developed [65].
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Their result is the backbone for the proof given in subsection 3.2.2. The
lemma, which connects the convergence in p-th mean and pathwise conver-
gence, and the theorem are recalled here.

Lemma 1. Let « > 0 and K(p) € [0,00) for p > 1. In addition, let Z,, n
€ N, be a sequence of random variables such that

(E|Z,|")/? < K(p) -n~®

forallp > 1 and alln € N. Then for all € > 0 there exists a random variable
Ne such that
| Zn| < e -m™OF€ almost surely

for all n € N. Moreover, E|n.|P < oo for allp > 1.

Theorem 2. (Pathwise convergence of the strong Ito-Taylor schemes.)
Under the standard assumptions, the ~v-order strong Ité-Taylor scheme con-
verges pathwise with order (y — €) for all e > 0, i.e.,

sup X (t,w) = Xi(w)] < KO (w)AT™

=0, \n
for almost all w € €.

This result is not restricted to the Ité6-Taylor schemes and they applied
the same argument to the stochastic Adams-Moulton method and the Euler-
Maruyama scheme for stochastic delay equations and determined the rates
of their pathwise convergence.

2.3 Numerical schemes for RODEs

2.3.1 Taylor-like expansions for RODEs

Now consider a RODE written in the form:

dx
— = Y (¢
dt f(x7 ( ))7
where Y'(t) is the driving stochastic process. Suppose that the function f is
infinitely often continuously differentiable in its variables. Then, the IVP:

W fe v (), alte) =z, (2.29)

dt
has a unique solution on some finite interval [tg, T'].
The driving sample process Y () has at most Holder continuous sample
paths and the sample paths of solutions are continuously differentiable, but
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their derivatives are at most Holder continuous in time. This means that
the classical Taylor expansion cannot be applied to the solution x(¢) of the
IVP (2.29). Nevertheless, due to the special structure of a RODE and the
smoothness of f in both variables, Jentzen & Kloeden developed implicit
Taylor-like expansions and introduced arbitrary higher order RODE-Taylor
schemes [56, 57, 64].
Define
Axg = x(s) — &, AY;:=Y(s)-Y,
where
g:=x), Y :=Y(@),

for an arbitrary ¢ € [tg,T). Taylor expansion of f with respect to z and Y’
is given by

| 9 o\t .
f(z(s),Y(s)) = ;i!@%ax*AYSay) f(2,Y) + R (s)
= 3T O V) (A (AY) 4 Riga(s),

| <k

for some k € Ny where Ny is a set of non-negative integers. Here, a multi-
index a = (a1, 9) € N2 and

laf == a1 + ag, al:=ajlag!, 0% :=(01)*(02)?,
with (%0 f = f and (0,0)! = 1. In addition, the remainder term Ry1(s) is
given by

1 R
Ripi(s) = Y —0°f(@ + GA, Y + EAY) (Ay) ™ (AY,)™,
|a|=k+1 )

for some & € [0, 1].
The IVP (2.29) can be written in the integral form as

x(t) ::i"—i—/i f(x(s),Y(s))ds.

Then Axy; = x(t) — & is given by

1 W ITIRY ! a a !
A=Y Lo f(a:,Y)/f (Azy)™ (AY,) st—i—/f Repa(s)ds.  (2.30)

<k

The right hand side of the equation (2.30) contains Az, term and it is
implicit and thus not a standard Taylor expansion. Nevertheless, this Taylor-
like expansion can be used as a basis for deriving new classes of numerical
schemes for RODEs.
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Similar to the Taylor schemes and Ito-Taylor schemes, RODE-Taylor
schemes can be obtained by discarding the remainder term. When k& = 0,
(2.30) reduces to

ot t
x(t) =&+ f(i,Y)/t ds +/g Ry (s)ds,

and this gives
Xp=Xp 1+ f(XTL—].a Yn—l)Aru (231)

which is the Euler scheme (2.4).

For k > 1, Az remains inside the integral (2.30) and we need to evaluate
this term with appropriate numerical schemes of lower order than that of the
scheme to be derived. The higher order RODE-Taylor schemes can be built
by iterating the procedure enough times. In general, the resulting K-RODE-
Taylor scheme has a form

K,Ap, K,Ap
XA = X 00 43 NE (b, 1, X,00), (2.32)
Ak
with the step size A, = t, — t,—1 and Ak is a set of multi-indices of the
form:
Ax = {a = (a1,a2) €NZ| |alg = a1 + 0oz < K},

where K € Ry, a set of non-negative real numbers, and 6 € (0, 1] is the noise
process specific value. Here,

~ t+An R a
NE (G 4+ AL 7) = %aa £(&,7) / (Ax(f*'“'”(t, :z)) " (AY,)2 ds,

E S
with Ay = s — ¢ and
Az = ST NE(i 4 A, 2),

n

with Az} = 0.

Schemes of arbitrary higher order can be derived in this way (see [55,
56, 64]). In this thesis we investigate RODEs with a special structure, i.e.,
with It6 noise or affine noise, and take advantage of the structure to derive
simpler schemes.

2.3.2 Averaged schemes

In subsection 2.3.1, the Euler scheme for RODEs is given by (2.31) on equidis-
tant discretization subintervals [t,—1,t,]. The order of convergence depends
on the Holder exponents of the stochastic process Y (¢) which is given by 6
€ (0, 1] and satisfies

1Y (t,w) = Y (s,w)|| < Ow) |t — 5|, weQ, (2.33)
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for a random variable ©(w) : @ — [0,00) and s, ¢ € [0,T]. Here || - || is
arbitrary, but fixed norm on R™.

A special case of the RODE with affine structure was considered by Griine
& Kloeden [38], i.e., of the form:

dx
i )+ =) Y (#) (2.34)

and they showed for the affine RODE that the min(26, 1)-order convergence
is attained by the averaged explicit Euler scheme

Xn — anl + (fO(anl) + fl(anl)Infl) An7

where the integral

I
In_l(w) :

= A Y(s,w)ds

tn—1

provides more information about the noise process within the discretization
interval.

The counterpart of the scheme for a general RODE would require us to
average the entire vector field, i.e., to use the integral

I
— f(Xn—1,Y(s,w)) ds.
An tn—1

This is computationally expensive even for low dimensional systems. An
alternative idea, suggested in [59], is to use the averaged noise within the
vector field, which leads to the EAES:

Xn=Xn1+ f(Xn-1,In—1)A,. (2.35)
Similarly, we can derive the TAES:
X =Xn-1+ f(Xn, In-1) Ay, (2.36)
and the IAMS:
X = Xo1 4+ f <;(Xn_1 + X, In_1> An. (2.37)
The following theorems generalize analogous results for deterministic

ODEs satisfying a one-sided Lipschitz condition:

Assumption 2. (One-sided Lipschitz condition.)
There exists a constant L € R such that

<f(a:,w)—f(:£',w),x—x’> SLHx—x’HZ, (2.38)

for all z, 2’ € R and w € R™. When L < 0, this condition is called
dissipative one-sided Lipschitz condition.
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It follows from Assumption 2 that

%Hw(t)—w’(t)\! = 2(a(t) —2'(t), f(x(t), Y (1)) — f(2' (1), Y (1))

< 2Lz (t) - o' ()],
for any two solution of the RODE (2.29), so
lz(t) — 2’ (t)|* < exp(2Lt) [|(0) — 2'(0)[.

In particular, when L < 0, the solutions converge to each other pathwise
in time. In fact, in this case all solutions converge pathwise to a unique
stochastic stationary solution (see e.g., [20]).

Theorem 3. (Solvability, convergence and B-stability of the IAES.)
The TAES (2.36) is uniquely solvable when L < 0 without restriction on the
step size, whereas it is uniquely solvable for step sizes Ay € (0, L™1) when L
> 0.

Moreover, the IAES converges pathwise with order min(26, 1) in the fol-
lowing sense: when L < 0,

~ sup Hx(tz) — XzH <TCg - A;nin(2971)
1=U,1,---n
holds pathwise for all Ay < 1, and when L > 0,
c LT .
sup la(ti) — Xi|| < “Efexp (-2 ) —1 ,Aimﬂ(%,l)
i=0,1,n L 1 — o

for all Ay < min(1,«L™Y) and each (arbitrary) o € (0,1).
Furthermore, the IAES is B-stable when L < 0.

Theorem 4. (Solvability, convergence and B-stability of the IAMS.)
The TAMS (2.37) is uniquely solvable for all step sizes when L < 0 and for
step sizes Ay € (0,4L71) when L > 0.
Moreover, the IAMS converges pathwise with order 20 with the following
bounds: when L < 0,
sup  [a(ti) — X < TCyy - AY

=01, ,n

holds pathwise for all Ay < 1, and when L > 0,

aLlT CM 20
N X < _ M.
z‘:OS,lil,P~ ., llx(t;) — X5 < <exp (1 — a> 1) (aL> A7

for all Ay < min(1,aL™"Y) and each (arbitrary) o € (0,1).
Furthermore, the IAMS is B-stable when L < 0.

The proofs of the above theorems are given in section 5.1.
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2.4 Additional notations

In addition to the notations appeared in the previous sections, some more
notations are introduced here.
The multiple stochastic integrals I, ,[f(-)] is given by

tn S1—1 ) )
Ty /O] = / / Flsp) AW (sy) - dWt(sy). (2.39)

In the special case with f = 1, we denote In 4, ,[1] = Ins, ., which appeared
in section 2.2.

A combination of stochastic integrals jé::tn—k is define by the combination
of stochastic integrals I, between the time points ¢,,_; and ¢,. For exam-
ple, when o = (1,1,0) and k& = 3, the corresponding stochastic integrals

j(t?,1,0),tn,3[f(')] is given by
f(til,o)in_:;[f(-)] = Tanoa O+ Tama s O s + Tors)
+ Ty tn s FOIT 1,000 T L1)t0—0L(0) 1 T (1,040 1)
+ 0000 O+ Ty [FON )00
It o O 0y 601 + L0000, [FO))- (2.40)

The reduced hierarchical set A?Y is a subset of A, and it is given by

A?Y ={a€eAy:a=0 or I(o) >1 with the last component j; = 0}.
(2.41)
The remainder set of A, is given as

BAy) ={ae M\ A, :—a e}, (2.42)

where —a denotes the multi-index in M obtained by deleting the first compo-
nent of a. For example, when v = 3/2, the hierarchical set A, the remainder
set B(A,), the reduced hierarchical set A9 and its remainder set B(AY) are
given by

Az, = {0,(1),(0),(1,1),(0,1),(1,0),(0,0),(1,1,1)},
B(A3/2) = {(0,1,1),(1,0,1),(0,0,1),(1,1,0),(0,1,0),(1,0,0),(0,0,0),
(1,1,1,1),(0,1,1,1)},
and
AS,, = {0,(0),(1,0),(0,0)},

B(A3,) = {(1),(1,1,0),(0,1,0),(1,0,0),(0,0,0)}.
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Chapter 3

RODEs with Itd6 noise

In this chapter, numerical schemes for RODEs driven by an It6 diffusion,
i.e., the solution of an It6 SODE, are investigated. As we saw in section 1.1,
RODESs with an It6 noise process can be written in the coupled RODE-SODE
form (1.8):

d(X(t)) ) <f<X<t>,Y<t>>> e < 0 ) -
Y(t) a(Y (1)) b(Y (1))

This means that the numerical schemes for SODEs can be applied to the
coupled system. In particular, when the noise process Y (t) is Wiener process
or OU process, they can be generated by using probability distribution, so
we need to solve only the RODE part in the coupled system.

The diffusion term of X (¢) is zero. Because of this special structure,
Ito-Taylor schemes for SODEs can be reduced to simpler forms. Moreover,
the schemes often attain higher order convergence when they are applied to
the RODE part.

Buckwar & Winkler considered SODEs with small diffusion terms and
developed SLMMs with higher order convergence [13, 14]. Similar approach
can be applied to the X-component of the RODE-SODE pair, but without
restricting the intensity of the noise.

Under standard assumptions, specifically, the uniform boundedness of
all partial derivatives, the order ~ strong Taylor schemes for SODEs are
known to converge pathwise with order (v — €) for arbitrarily small € >
0. The corresponding scheme applied to X-component thus also converges
pathwise with order (7 —€). Using a localization argument, this is extended
to RODES for which the vector field functions do not have uniformly bounded
derivatives in the solution variable. Modifications of the It6-Taylor schemes
to derivative-free, implicit and multi-step methods are also considered.

33
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3.1 Taylor schemes

3.1.1 Derivation of strong Taylor schemes
Scalar case

First of all, we consider a scalar case. The scalar RODE driven by a scalar
It6 diffusion Y (¢):

dr
& = Hw Y () .

dY (t) = a(Y (£)) dt + b(Y (£)) dW (1),

where W (t) is scalar Wiener process, can be written in a system of Ito

SODEs:
p (X(t)> _ (f(X(t),Y(t))> it ( 0 ) gy
Y (t) a(Y'(t)) b(Y ()

or, in vector notation:

dX(t) = F(X(t)) dt + G(X(t)) dW (¢), (3.2)

e ([ f(=y) (0
< (). woo- (7). - ().

In this case the differential operators L and L' reduce to

with

oU ouU oUu 1 0*U

LU = — — — + 50’55
oU
LU = b(y)—.
(v) 3y

Now X! = z and X? =y, so
LY%dx: = f(z,y), L%dxe2 =a(y), L'idgi =0, L'idxz = b(y).

Since the Y (t) equation is an SODE in its own right, its order v strong Taylor
scheme is just a scalar version of the usual one, namely,

Yo=Y L%dx2(Yn-1)Iog,_, (3.4)
a€ch,

which is equivalent to (2.26).
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For the X-component, the strong Taylor scheme can be simplified. The
integral form of X-component is given by

X(1) = X(t0) + | F(X(s).¥ () ds +/t 0dW (s). (3.5)
Taking U = f in (2.18) and substituting f(X(s),Y(s)) yields
X (t) = X(to) + f(X(to),Y (to)) /tt ds + Ry, (3.6)

where R; is a remainder term and it is given by

/tt /tsl LOf(X(s2),Y (s2)) dsadsy
/t / L f 32) Y(SQ))dW(SQ)dSl. (3.7)

Discarding the remainder term R; in (3.6) gives Euler-Maruyama approxi-
mation which now has a form:

t
X = Xy + f(Xios Vi) / ds,
to

and thus the Euler-Maruyama scheme:
Xn - Xn—l + f(Xn—la Yn—l)A'm (38)

with A, = t, —t,—1 = [," ds. This is the same form as (2.4) which is
derived for deterministic ODEs. In order to build higher order schemes, we
need to deal with the remainder term R;. Now we consider the cases U =
L°f, U = L'f and U = L'L'f. Then, the corresponding Ité formula are
given as

PFOK0), ¥ 1) + [ IPE(X(5) V(5 ds

to

LOF(X (1), Y (1))

t
+/ LY f(X(5),Y (s)) dW (s)

to

L'f(X(t),Y () = Llf(X(to),Y(to))+/tL0L1f(X(S),Y(8))dS

to

+/ LY f(X(5),Y (s)) dW (s)

to
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Substituting LOf(X (¢),Y (t)) and L' f(X(t),Y(t)) in Ry as well as
L'LYf(X (1), Y () in LEF(X(t),Y(t)) leads

X(1) = X(to) + F(X(to), Y (1)) /tds+L0f<X<to>,Y<to>> / / " dsadsy

t

+L1f(X(t0)7Y(to)) /tt /:31 dW(SQ)dSl (39)

t S1 592
+L1L1f(X(tg),Y(to))/t/t /t dW (s3)dW (s2)ds1 + Ry.s,

where Rj 5 is

Ris — /t: /: /:LOLOf(X(53),Y(53))d33d32dsl
N /t: /t /t LYLOF(X (53), Y (s5)) dW (s3)dsads:
+ /t: /: /: LOLY (X (s3),Y (s3)) dssdW (s2)dsy
N /t: /: /j /: LOLYLY F(X (54), Y (54)) dsad WV (s3)dW (s)ds1

N /t: /: /: /:’ LML F(X (50), Y (s0)) AW (s2)dW (s3)dW (so)ds1.

Discarding the remainder term R; 5 in (3.9) yields 1.5-order strong It6-Taylor
approximation:

Xe = Xio+ f(Xto: Yio) L 0)00 + L f (Xto: Yio ) (0,0) 10,1 (3.10)

+L' f( Xy, Yio) I (1,0),t0,t + L'L' f(Xy,, Yio ) I(1,1,0) 0,
with the multiple stochastic integrals notation introduced in section 2.4.
Since L'idx: = 0, for any index o with j; = 1,
L%dyx1 = L Litidx: = L% L'idx: = L*70 = 0.

Here a— denotes the multi-index in M obtained by deleting the last com-
ponent of a. On the other hand, terms like

0
LM 0%y = L' f(a,y) = b(y)é(x, )

do not vanish automatically. This gives the general form of the strong Taylor
scheme for the X-component:

Xn =Y L%dx1(Xn-1,Yn-1) Iat, (3.11)

acAy
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for the reduced hierarchical set given as (2.41).

Vector case
Consider the general vector case with X € R4, Y € R%, ie., a RODE on
R

dzx

i f(z,Y(t)), (3.12)

where Y (t) is the solution of an It6 SODE in R%:

dy (t) = ) dt + Z b; (Y (t)) AW (t) (3.13)

with m independent scalar Wiener processes W(t), ---, W™(t). This forms
a system of SODE in R1+d2;

X(t) f(X(1),Y (1) A
d - dt AW (t). 3.14
(Y(t)) ( a(Y(t)) ) i Z ( j ) W (314

Denote X = (z,y)” € R, where d = dy + da. Now (3.14) can be written as

dX(t) = )) dt + Z G, (X (1)) dW(t), (3.15)

with coefficient functions:

f(z,y) 0
F(X) = . Gi(X)= .
%) (a@)) 30 (bj<y>>

Then, the order ~ strong Taylor scheme is

= Z L%dx (Xp1) o, (3.16)
a€cl,

with the hierarchical set Ay C M,,, X,, = (X, Y,,)T and differential opera-
tors:

ou &
LU — k
U 8t+;f(w —4—2 0yk
di+ds m 2
0°U
£33
k=1 j=1 6yk8yl
d2
4 oU
LU = v (y)=—, i=1,...,m,
) ](y)ayk J
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for smooth enough functions U : [0,7] x R% x R% — R. The k-th X-
component of the order ~ strong Taylor scheme gives the order v strong
RODE-Taylor scheme in componentwise form:

=Y L%dxe(Xp-1,Yn-)op,,,  k=1,....di, (3.17)
acA?

where Ag C A, is defined as (2.41) as a subset of M,

Examples

Some examples of the RODE-Taylor schemes for the scalar system (3.2) with
di = do = 1 and m = 1 are illustrated here. For notational compactness
partial derivatives are denoted by subscripts.

If v = 1/2, the hierarchical set A/, and the reduced set A? /o ATe given

by {0, (0), (1)} and {0, (0)}, respectively. The corresponding RODE-Taylor
scheme is the Euler-Maruyama scheme which reduces to

Xp=Xp 1+ f(anI,Ynfl)Ana (318)

where A, = t, —t,—1 = I(g)4,_,- Obviously this is equivalent to (3.8). This
is also the RODE-Taylor scheme obtainable from the Milstein scheme with
v = 1since Ay = {0,(0), (1), (1,1)} and A = {0, (0)}.

For v = 3/2, the situation is more complicated. Here

A3/2 - {®7 (0)7 (1)7 (17 l)a (07 1)7 (17 0)7 (0? 0)7 (17 L, 1)}

and Ag/Q = {0,(0),(1,0),(0,0)}, so the order 1.5 RODE-Taylor scheme is
given by

Xn = Xpo1+ f(Xn-1,Yn1)An +0(Yo-1)fyy (Xny, Y1) L(1,0)t.,

+<f(Xn—17Yn—l)fa;(Xn—hYn—l) (319)

( n— l)fy( n— 17 n— 1)+ b( n— 1) fyy( n— I,Yn_l)) %A%

This scheme includes the multiple stochastic integral

tn S1
I(I,O),tn,1 = /; /t\ dW(SQ)dSl,
n—1 n—1

which is correlated to the simple integral AW, = Iy j; dW (s1).

They can be generated using two independent N (O 1) dlstrlbuted random
variables (see section 6.1, |7, 66]) G and G as

-/ _ L 1
I(l)ytn—1 - AnGla I(l,o),tn_l = 2An (Gl + \/§G2).
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Similarly, for v = 2,
Ay = A3 U{(1,1,0),(1,0,1),(0,1,1),(1,1,1,1)}

and AY = {0,(0),(1,0),(0,0),(1,1,0)}, which gives the order 2.0 RODE-
Taylor scheme

Xn = anl + f(anla Ynfl)An + b(Ynfl)fy(anly Ynfl) I(l,O),tn,1

+ (f(anly Ynfl)fw(anla Ynfl) + a(Ynfl)fy(anla Ynfl)
1 1
50012 (X1, Yar) ) 542 (3.20)
+ (B 1)by (V1) fy (X1, Y1)
+b(Yn—1)2fyy(Xn—17Yn—1)) I(1,1,0) 01

This scheme now includes coefficients of the SODE of the driving noise as
well as an additional multiple stochastic integral.

3.1.2 Implicit Taylor scheme

Stiff differential equations arise frequently in practice and explicit schemes
often perform poorly, while implicit schemes offer better numerical stability
properties. The order 1.0 implicit strong Taylor scheme in Kloeden & Platen
[67] is a drift-implicit version of the Milstein scheme. For the vector SODE
(3.15) with single Wiener process it is

n

XE = Xhoy o+ (0FF(X,) + (1= 0)F (X,-1)) A, (3.21)

+C"k(}(nfl)AVVYn + Lle(anl) I(l,l) k=1,... ’d7

tn—1

where the parameter 6 € [0, 1] characterizes the degree of implicitness. When
6 = 0, the equation (3.21) reduces to usual explicit Milstein scheme.

For the scalar SODE (3.2) its X-component gives the order 1.0 implicit
strong RODE-Taylor scheme

Xp = Xpo1 + (0f (X, Vi) + (1 — ) f(Xp_1,Yn_1)) Ap, (3.22)

which is often called the #-scheme [44]. It is essentially the Euler scheme.
Similarly, the family of 1.5-order implicit strong Taylor scheme in [67] is,
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componentwise,

Xk = Xk 4 (91Fk(xn) +(1- el)Fk(Xn,l)) A,

+ G - 91> (022°F(X,) + (1 = 62) LF*(X,,1) ) A2

+L'FY (X)L 10) 0, — O1AWLA,)

+Gk(Xn_1)AWn + LOGk(Xn_l)I(OJ)

7tn—1

+L1Gk(Xn—1)I(1,1),tn,1 + LlLlGk(Xn—l)I(l,Ll),tn,l7
where the parameters 0y, 05 € [0, 1] indicate the extent of implicitness. The
corresponding implicit RODE-Taylor scheme is

Xn — anl + (Qlf(Xna Yn) + (1 - Hl)f(anla Ynfl)) An
+ (; — 91> (02L° (X, Vo) + (1 — 02) L f(Xp—1, Yyo1)) A2

+L f(Xn—1, Yoo1) (Ia,0)0n 0 — 1AWRA,) (3.23)

3.1.3 Derivative-free scheme

The order v strong Taylor schemes involve derivatives of the coefficient func-
tions of the SODE (3.15), that may be difficult to determine in higher di-
mensional examples. The derivative-free explicit strong schemes in Kloeden
& Platen [67] are Runge-Kutta-like schemes that replace such derivatives
by appropriate finite difference quotients to ensure the same order - strong
convergence.

For a single Wiener process, i.e., m = 1, the k-th component of the
explicit order 1.0 strong scheme for SODEs has the form:

Xk = XF 4+ FNX,)A, 4+ GF(X, 1) AW,

1
2VA,

with the support function:

+

(G* (K1) = GEX) ) (AWR)2 = A),

anl =Xp-1+ F(anl)An + G(anl) V An

The corresponding RODE scheme is given by (3.18), which does not contain
derivative terms, and is the same as for the Euler-Maruyama and Milstein
schemes.
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Similarly, the order 1.5 explicit strong scheme for SODEs is, componen-
twise,
1
2/ A,

(FE(X ) = 2F5(X1) + FHX)) Loy,

Xk = Xk 4 FNX,_ A, F

n

(F*X) = F* X)) Ty

1

oA,

1
2V A,

+GF(X, 1) AW, + (GHX4) = GHX)) Ty,

1 ~ ~ ~ -~
+2A (Gk(i)—i—) N Gk((I)_) o Gk<X+) + Gk(X_)> I(Ll,l),tn—p

where

X: = Xpo1+F(Xn1)A, + G(Xpo1) VA,

. = X, +GX)VA,.

G! = 0 for k = 1 and the X-component gives the RODE-Taylor scheme:

Xn = Xn + f(Xn—17 Yn—l)An

1 < g ~ ~
+2x/A7 <f(X’Y+) B f(X’Y*)> 11,0) b0 (3.24)
+i (f(f(,f@) —2f(Xp—1,Yn1) + f(jgy_)> A,

with

= Xp—1+ f(Xn—1,Yn-1)An,
Vi = Yeoi+a(Yno1)An £b(Yn_1)vV/An,
since X = X4 here and L0,0),tnr = %AZ

Derivative-free implicit RODE-Taylor schemes can be built in the same
manner. When #; = 1/2, the implicit RODE-Taylor scheme (3.23) reduces

to

Xn = Xn—l + % (f(XTLy Yn) + f(Xn—h Yn—l)) An

1
+L1f(Xn_1, Yi-1) <I(1,O),tn_1 — QAWnAn> . (3.25)
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Replacing the derivative L'f(X, _1,Y,_1) in (3.25) by a finite difference
quotient gives the derivative-free implicit scheme with v = 1.5:

Xo = Xar g (X Ya) + F(Xno, Yarr) A, (3.26)

1 v . 1
SVA (f(X,Y+) - f(X,Y,)) (1(170)%1 _ QAWnAn)

+

with

- anl + f(anla Ynfl)Ana

Y, = Y, 1+ (Z(Ynfl)An + b(Ynfl)\/ A,

3.1.4 Pathwise convergence

Kloeden & Neuenkirch showed the pathwise convergence of [t6-Taylor schemes
under standard assumptions (Theorem 2 in section 2.2.2 and [65]). The as-
sumptions here are, in fact, too strong just for the pathwise convergence
of the RODE-Taylor scheme (3.11) and for many applications. They en-
sure the strong convergence of the full Taylor scheme (3.4) and (3.11), but
the X-component scheme (3.11) can still converge pathwise even when the
full scheme does not converge in the strong sense, provided the noise is ap-
proximated to the required order. This is possible directly or through the
Y-component scheme (3.4) when the noise is a simple process such as a
Wiener process or an OU process.

We are interested in the situation where the X-derivatives of the vector
field f of the RODE are not uniformly bounded on R? but are uniformly
bounded in the Y-variable. This corresponds to the noise acting boundedly
in the RODE (although the inputed noise Y (¢) need not itself be bounded).

Assume now that the coefficients a, b1, ..., by, satisfy the standard as-
sumptions, i.e., a, by, ..., by € C§7+1, but f € C?'*! does not. Since the
Y-SODE does not depend on X (t) and satisfies the standard assumptions,
the strong order v Taylor scheme applied to it converges strongly with order
~ and pathwise with order (v — €). However, these schemes applied to the
system (3.15) need not converge in strong sense when the standard assump-
tions do not hold [47, 48|, although they may still converge in the pathwise
sense.

Based on these ideas, we prove the following theorem:

Theorem 5. (Pathwise convergence of RODE-Taylor scheme.)
Suppose that a, by, ..., by, f(X,:) € C'gwrl and f(-,Y) € C**L. Then
the solution (X,,Yy) of the order ~ strong Taylor scheme (3.11) converges
pathwise to the solution (X (t),Y (t)) of (3.15) with order (v —¢€) on [0,T].
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The proof is based on a localization argument similar to that of Theorem
1in [58] in a different context, which in turn uses ideas from [40]. It does not
depend on the specific structure of the strong Taylor schemes, just the fact
that they converge pathwise under the standard assumptions, which follows
by a Borel-Cantelli argument as in Lemma 1 of section 2.2.2 when all of the
error moments converge with the same order . This moment property was
established in [65] for the order « strong Taylor schemes as well as for the
two-step Adams-Moulton scheme.

Proof. Let N be some sufficiently large number and define the stopping
times:

TM(w) = inf{t>0:|X(t,w)] > N}A2T,
P Mw) = f{t>0:|X,(t,w)| > N} A2T,

(The interval [0, 27 is used here to handle stopping times and other technical
issues, but the result will be restricted later to the smaller interval [0,77).
Fix a function ¢ € C°(R% [0, 1]) such that

1 for |X| <N,
PN (X) =
0 for |[X|>N+1

and define the truncated function f,, € Cgvﬂ by the product f,(X,Y) =
f(X,Y) - pn(X). Then consider the truncated SODE:

dXEN (1) = f,. (X(‘PN)(t), Y(t)) dt +0dW (t),

which we couple with the driving SODE (3.13) for Y (¢) to form the modified
system of SODEs in R4+

(on) (oN)
] (X @ (t)) _ <fsoN (X (t)aY(t))> it < 0 ) AW (1). (3.27)
Y(t) a(Y (1)) b(Y(1))

Clearly
TM(w) = inf{t>0:X,(t,w) > N} A2T
= inf {t >0 XM (tw) > N} A 2T
and, as shown in the appendix of [58],
X(tA T(N))I{T(N)>0} = X(wN)(t A T(N))l{T(N)>0}
fort > 0, so

TM(w) = inf{t>0:|X(t,w)|>N}A2T

IN

inf {t >0 }XWN)(t,w)‘ > N} A2T.
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The coefficients of the modified system of SODEs (3.27) satisfy the stan-
dard assumptions, so by Proposition 2 on the pathwise convergence rates
of the Itd-Taylor scheme in [58], the interpolated (as above) order v strong

Taylor scheme (X#N)(t),Yn(t)) applied to (3.27) converges strongly with
order v and pathwise with order (y — €) to its solution (X(S"N)(t), Y (t)) on
the time interval. Thus, for every € > 0, there exists a finite non-negative
random variable CE(];% such that

sup ’X(SDN)(t,w) - XT(LS"N)(t,w)’ < Ce(g%(w) nTTE as. (3.28)
t€[0,27] ’
for all n € N.
Since

Xem) (¢ A (M) Xt A7) t€10,2T], a.s.,

Losgy = Loy

and
X(EATNLosgy = XEEATINL (vy0gy, tE[0,2T],  as,

it follows that X, (t) converges pathwise to X (¢) with order (y — €) on

[O,ﬂsN) AT e,

sup X (tw) = Xa(t,w) < (hw) 0 (3.29)
tE[O,TT(LN)/\T(N>)
for all n € N.
Similarly

FM(w) = inf{t>0:|Xu(t,w)] > N}A2T
— inf {t >0 )X&’N)(t,w)‘ > N} A2T
and

X (t AT

X7(L<PN)(LL A 7—-7(1N))1 S te [0, QT], a.s.

F=M>0y — =0y

Applying the same argument as above gives

sup [ X (tw) — X (t,w)] < () (w) T (3.30)
te[0,r M A7)

From equations (3.29) and (3.30),

sup |X(t,W) - Xn(t7w)| + sup X(t,W) - X?S,@N)(tvw)
tE[O,T(N>/\T7(LN>) tG[O,T<N)/\'FT<LN))

< 2 w) e
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and hence

sup | X (tw) — XVt w)| < 2¢0) (w) - noHe (3.31)
te[0,77) ’

for all n € N, where 7/ = 7(N) A 77(LN) A 7"7SN). This means that the approxi-
mation of the original SODE by original strong Taylor scheme and that for
the modified SODE coincide.

Inequality (3.28) implies that

lim sup | XV (t,w)— XN (t,w)| =0
00 110,27

for almost all w € €2, which means that

liminf 7V) > inf{t > 0: | XN ()| > N} A2T  as.

n—oo

As
TM(W) <inf{t > 0: | XN (t,w)| > N}A2T as.,
we obtain
lini)inf 7N >N g (3.32)
By (3.31) and (3.32),
lim sup sup n’ N X (tw) — X(tw)| < Ce(gf%(w)

n—00  ¢c[0,7(N)(w)—T/2]

for almost all w € Q2.
Finally, we restrict ourselves to the sample paths with

weQyr ={we : | X(t,w)| <N, te]l0,27]}

for appropriate N and 7. Then, for such w, the numerical scheme converges
pathwise with order (v — €) to the solution of the original SODE on the
interval [0, 7. O

Remark 1. Note that under the standard assumptions the Fuler-Maruyama
scheme for additive noise has, in fact, strong order 1.0 and hence order (1—¢)
pathwise convergence. If the Y process above can be approzimated to strong
order 1.0 (e.g., through the Milstein scheme), then the Euler-Maruyama
scheme for the X-component above will have strong order 1.0 and hence
converge pathwise with order (1 — €).
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3.2 Linear multi-step methods

3.2.1 Derivation of linear multi-step methods

For simplicity, set diy = do = 1 and m = 1 and the equidistant step size
A; is assumed on the given time interval in what follows. In addition, it is
assumed initially that the stochastic process Y (¢) can be generated exactly
and its value at ¢, is given by Y(¢,,). Consider the coupled RODE-SODE in
R2:

dX(t) = F(X(t)) dt + G(X(t)) dW(¢), (3.33)

x=(;). r0=(00) e=(,0))

An Euler-Maruyama type linear s-step method for (3.33) is given by

s s
ZO&anfj :AtZBjF( n—j +Z’7] 1) tn—j>
j=0 Jj=0

where X,,_; is an approximated value at ¢,,_;. Since G! =0 its X-component
reduces to

with

Zaj n—j _At25j Xn— ]7 [ ])) (334)

The local error of (3.34) will now be analyzed in order to develop higher
order schemes. When s = 2, the local error L,, of (3.34) is given by

2

2
Ly = > ajX(tnj) = A Y Bif (X (tny), Y (ta—j))] - (3.35)

=0 =0

The hierarchical and remainder sets for v = 1 are A} = {(), (0)} and B(AY) =
{(1),(0,0),(1,0)}. The corresponding stochastic Ito-Taylor expansions are

X(tn) = X(tn—l) + f(X(tn—1)7Y(tn—l))I(O),tn_l + Z Ia,tnq [Laid%(]
aEB(A(l))

X(tn-1) = X(tn-2) + fF(X(ta2), Y (tn-2)(0)tns + D Tatn_o[L%id].
a€B(AY)

Since the f terms in the local error are already multiplied by A, they need
only be expanded to a lower order, i.e., for the hierarchical and remainder

sets Ag = {0} and B(Ag) = {(0), (1)}, so
f(X(tn)aY(tn)) = f(X(tn—l) tn 1 Z Iatn 1 L f

aGB(Ao)

f(X(tn—l>7Y(tn—l>) = f(X(tn—Q) Z Iatn 2 L f

a€B(Ao)
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In order to simplify the notation in later expressions, this is the same as

f(X (), Y(tn) = f(X(tn-1),Y (tn-1) Z Iy Laldx]

a€B(AY)

f(X(tn-1), Y (tn-1)) = [(X(tn-2),Y (tn—2) Z I Laldx]
a€B(AY)

where aqy) is the first component of «, since the Llid%( is zero, so the term
for « = (1) vanishes.

Substitution of X (¢,), X (tn—1), f(X(tn), Y (tn)) and f(X (tn-1),Y (tn-1))
n (3.35) gives

L, = |(ap+ a1+ a2)X(tn—2)
+ (2a0 + a1 — (Bo + B1 + B2)) Aef (X (tn—2), Y (tn—2)) + Rl
where the remainder term Ry is
= > (ool (L] + anlay, [L%id]
a€B(AY)
(Bl 4L [Li] + Bilagy o [L7idK])).
where fé’jtn_Q is a combination of stochastic integrals given in section 2.4.

When
ag+a; +a2 =0, 200+ a3 — (Bo+ P1+ P2) =0, (3.36)

the local error L, < C’A?/z for some constant C' > 0 and the SLMMs (3.34)
with the consistency conditions (3.36) satisfy 1.0-order convergence. Typical
examples are the Adams-Bashforth scheme:

Xn =Xp1+ 3 (an 1— fn72)Ata (337)
and Adams-Moulton scheme:
1
X Xn 1 + (5fn + 8fn 1— fn Q)At7 (338)

which satisfy 1.0-order convergence and coincide with their deterministic
counterparts (2.12) and (2.13).

Order 1.5 scheme

In order to achieve the same order as the 1.5-order strong [té-Taylor scheme,
one has to deal with the remainder term R;. In this case B(AY) \ {(1)} =
{(1,0),(0,0)} and L'f and L°f terms appear in R.
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Consider the SLMMs in the following form:
2
Y X, = Zﬁj Xn—js Y (tn—j)) (3.39)
j=0
+ Z LU (X, Y (tn—j)) (ij(l,o),tn_j +75 1) b At)

+ZL°f w3 ¥ () (50000 + 531010, M)

Then, the local error L,, of (3.39) is given by

2 2
S X () = 80 D0 B (X ), Y () (3.40)
§=0

=0

2
= L (X (tag), Y (tay)) (%I(l,o),tn_j + V;I(l)ﬁn—jAt)
=1

2
= D LX), Y () (500000 + 8 000, |

The hierarchical set for v = 1.5 is now given by Ag/2 = {0,(0),(1,0),(0,0)}
and the corresponding stochastic Ito-Taylor expansions are

Z Laid%((X(tn—l)a Y<tn—1))la,tn—1] + Z Lot [Laid%(]

a€Ay a€B(AS ,)\{(1)}
= > L%dx(X(tn-2), Y (o) a2+ 9, Lot o[L%idk]
a€Ay, a€B(AS,,)\{ (1)}

and with Ay ;5 = {0, (0), (1)}, so B (A;2) = {(0,0),(1,0),(0,1),(1,1)},
FX (), Y (t0)) = [(X(ta1), Y (tn—1)) + L F(X (tnm1), Y (bam)) 1) 1,
FALOF (X (1), Y (b)) 0y 0y + > oty [Lf]

aEB(Al/g)

f(X(tn1),Y (tn-1))
= f(X(tn-2), Y (tn-2)) + L' (X (tn-2), Y (tn-2))L(1) 1,

FALOf(X (tn2), Y (b2 0y + O Taty_o[LS]
OAGB(AI/Q)
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as well as
LU(X (1) Y (ta1)) = LF(X(tno2), Y (ta-2))
10y 4 S L' LY ) + Ty 4, o[LOL f]

LOF(X(tne1), Y (ta=1)) = LOf(X(tu2),Y (tn—2))
(1) 4, o [L' L0 f] 4 Toy 1, [LOLO f].

The expansions X (t,), X (tn—1), f(X(tn), Y (tn)), fF(X(tn-1),Y (tn-1)),
L'f(X(th-1),Y (tn—1)) and LYf(X (tn—1),Y (tn—1)) in (3.40) are replaced by

these expansions. The local error is
Lo = |(@o+a1+0a2)X(ta-2)
+ (20 + a1 — (Bo + B1 + B2)) Aef (X (tn—2), Y (tn—2))

+(Oéofff0)7t ol o)., Boft A= By g, At — 1 L0)8, 0
2 L(1.0) 0 = W11 1 Dt — fy;fm,tn_gAt)L1f<X(tn_2), Y (tn-2))
+(04012(t&0)7t ot alo0), s 50 ()0t = B1L(0)1,_ At = 011(0,0) 1,
—021(0,0),tn—2 — 01 L(0), 101 Dt — 551(0),tn_2At) L f(X (tn-2),Y (tn-2))
+Ry5|.

The remainder term Rp 5 can be written as

Ris = Y. {aofg’jt%Q[Laid%(]+a1]a,tn72[Laid§]
a€B(AG )\ (1))

BO a[1,2]tn—2 [Laid%(]At - 51104[1,2],137172 [Laid%(]At
Vot (LX) gy 5 t0 1 = N lapy s [LY9AX Loy -1 At

—011q 1]5tn— 2[L ZdX] o2 3tn—1 T 61701[1]7%—2[Laid%(]la[g],tn—lAt}v

where oy 9] consists of the first and second components of a and ap 3 are
the second and third components of «, since

B(Aija) = {a + (a,0) € BA )\ {(1)} }

and L("’O)id%( = L“Loid%( = L®f while Llid%( = 0. In addition, the terms ~;
and ] appear when a = (1,1,0) or (0,1,0) and ¢; and 67 when a = (1,0,0)
or (0,0,0).
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The coefficients of L' f(X (t,_2),Y (t,_2)) can be transformed into

(0 + a1 = 72)L1,0),t0_0 + (@0 = Y1) L(1,0),t0_1
+(ao — Bo — B — v3) (1)t At — (Bo + V1) (1), At

Similarly the coefficients of LY f(X (t,_2),Y (t,—2)) can be written as

(o + a1 — 62)1(0,0) o + (@0 = 01)L(0,0),t, 1
(a0 — Bo — B1 = 63)L(0),t,_o At — (Bo + 1)L (0)1,,_, At

If the following consistency conditions:

M =01 =qag, 72=10=ay+ai,
(3.41)

Y =061 =B, 3 =1095=a9— Po— P,

are satisfied, the SLMMs (3.39) satisfy 1.5-order convergence since both of
the coefficients terms of L' f(X (t,_2),Y (tn—2)) and LYf(X (tn—2),Y (tn_2))
are 0.

Order 2.0 scheme

Similarly, A9 = {0, (0), (1,0), (0,0), (1,1,0)} and a 2-step SLMM of 2.0-order
is given by

2
YoaiXn—j = DY Bif(Xaj, Y (taj)) (3.42)
=0 ‘
2
+ Z Llf(Xn—j, Y (tn—j)) (f)/j[(l,o),tnfj + V;I(l)vtnfj At)
j=1
2
+ Z Lof(Xn_j, Y(tn_j)) (5]‘[(070)7%7], + (5;1(0)7,5”7]. At>
j=1
2
+ Z L'L' (X, Y (tny)) (6j1(1,1,0),tn,j + € 111)0,; At) :
j=1
It requires the additional consistency conditions:

€1 = g, €2 =qp+ Qp,
(3.43)

€ = —Po, € =ag—Bo— P
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3-step scheme

SLMMs with more steps can be generated in the same manner. Now we
consider 3-step SLMMs in the following form:

3
> X = AtZ@ Xn—jis ¥ (tn—j)) (3.44)
=0

+ZL1f(Xn—jaY(tn—j)> (’YJI(l 0ty TV L1t aAt>

3
+ > L0 f( X, Y (tny)) (5j1(0 0),tn—s + 05 L(0) JAt)

Then the local error of (3.44) is given by

3
\Z% (tng) = D¢ D B f(X (tny), Y (tn-7)) (3.45)

Jj=0

—ZL FX ()Y (b)) (100t + 75 T000, 1)

_ZLO (tn— —j Y(tn,j)) (5]'1(0 0)tn_j + 07 I(o) b JAt) ‘

The terms X (t5,), X (tn-1), X(tn—2), f(X(tn), Y (tn)), f(X(tn-1),Y (tn-1)),
f(X(tnf2)7 Y(tan))v Llf(X(tnfl)v Y(tnfl))» Llf(X(tan)a Y(tn72))v
LOf(X (tn-1),Y (tn-1)) and LYf(X (tn—2),Y (tn—2)) in (3.45) are replaced by
the corresponding stochastic It6-Taylor expansions. The local error is

L, = ’(Ozo + a1 + ag + ag)X(tn_g)

+ (Bag + 2a1 + a2 — (Bo + B1 + B2 + B3)) At f (X (tn-3), Y (tn—3))
Tty 7tn
( I(l 0),tn—3 + al](l 0)1 tn—3 + 0621(170)7'5’”*3
50-7(1),5 Ay — Blfal)jtlnigAt = Bal(1) 4,5 At

=1 L(1,0),tn1 — Y2L(1,0),t02 — V3L(1,0),tn_3

L) At = 3L (1) 4, At — 7§I(1),tn,3At) L' f(X (tn-3),Y (tn-3))
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rtn—1

+(O‘°I(0 Oitns T L 00) 1o T @2L(0,0), 405
_Boj(tg)vtnfsAt - ﬁljfg)Ttln,gAt — B2l (o)1, _5 At
—014(0,0),tn—1 — 924(0,0),tn—2 — 931(0,0),t,
0701 Dt = 83101, 2 D4 = 510,51 ) LOF (X (tn3), Y (tns)
+Ri 5|

The remainder term R 5 here can be written as
Ris = Y {aofg"tn% (L%idk] + an I [L%idk] + aolay, [L%id]
a€B(A] )\ {(1)}
. . Aty .
—6013[1’2]7tn73[Lazd%(]At - Bl g [ Lidx ] A

—[2 Ia[12 stn— S[L ZdX]A

Flp— a
’yl_[ ! [L ZdX]IOC[23 tn—1 72104[1] tn— 3[L de]‘[ [2,3]» tn—2

tn3

L LA oy oy At = V3 Loy s [LYd% Loy 4,0 A

1 o],tn—3

Ftn—1 ay gl
_51104[1],%1,3[[1 de]la[273]7tn71 _52104 tn— S[L ZdX] a2, 3] n—2

51 tn ; [Laid%(]loé[z]ytn—lAt - 55104[1],%—3[Laid%(]la[z],tn—QAt}'

1);tn—3
The coefficients of L' f(X (t,—3),Y (tn—3)) can be transformed into
(o + a1+ a2 —v3) 10yt 5 + (@0 + a1 —72)10)4, s
(a0 = 1)L (1,0)0, 1 + (200 + a1 — fo — B1 — Bo — ¥3) 1)1, o At
+(ao = Bo = Br =) 1) oAt — (Bo + 1) L(1),1,1 At
Similarly, the coefficient of L°f(X (t,_3),Y (tn_3)) can be written as
(ap+ o1 + ag — (53)1(0,0),tn_3 + (oo + 0 — 52)1(0,0),tn_2
(a0 — 01)1(0,0),t,1 + (200 + a1 — fo — B1 — B2 — 63) L (0) 1,5 A
+(ao — Bo — B1 = 65)L(0) 4o At — (Bo + 1) L(0)t,,_, At-
If the following consistency conditions:
N=06=0ay Ye=0=ata, Y3=0=a)+a+a
V=01 =—bo, v =095 =ao—fo— P, (3.46)
75 =05 =200 + o — o — S — Bo,
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are satisfied, the SLMMs (3.44) satisfy 1.5-order convergence since the coeffi-
cient of L' f(X (tn—3),Y (tn—3)) and L°f(X (ts—3), Y (tn—3)) terms are both 0.

Similarly, A = {0, (0), (1,0), (0,0),(1,1,0)} and a 3-step SLMM of 2.0-
order is given by

3

3
S aiXag = A BiF (X, Y (tay)) (3.47)
§=0

Jj=0

3
+> L (X, Y (tny)) <’ij(1,0),tn_j + V;I(l),tn_jAt)
j=1
3
30 L0 (X Y (i) (8500000, + 65 L0y, )
=1

3
+ZL1L1f(anjaY(tnfj)) <€jl(l,1,0),tn_j + 6?1(1,1),%_]-&) ,
j=1

which requires the additional consistency conditions:
€1 =0Qp, € =00 +a, € =0q)ta+a

€ =—0Fo, e&=oy—Po—pP1, € =2a0+ar—Lo— P — .

General form

Higher order SLMMs or methods with more steps can be generated in the
same manner. In general, the v-order s-step SLMM, written with the help
of the reduced hierarchical set Ag, has the form:

ZCMXH—J’ = Atzc(o),jf(Xn—j,Yn—j) (3.49)
J=0 §=0

+3° > L¥idk (Xn—j, Ya) (Cagla,_, + Cijlae i, A)
=1 acA\{0,(0)}
where the consistency conditions are given as
ijo C@,j =0, ijo(s - j)CV),j = Zj’:o C(O),j,
Coi = Z;;B Cy; for i=1,...,s, (3.50)
C;,i = Z;;B ((Z —-1- ]')CQ)J‘ - 0(0)7]‘) for = 1, .o, S,

for a € Ag \ {0,(0)}. Y,_; here is an approximation of Y (t) at ¢,_; by
enough higher order schemes or Y (¢,—;) itself when Y'(¢) can be generated
exactly.
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The method reduces to an explicit scheme when C(g) o =0 (by the order
conditions this happens when, e.g., the C% | = 0 for all € A9\{(, (0)}).
Note that these methods now involve partial derivatives of the vector field
function.

3.2.2 Pathwise convergence

The pathwise convergence result for X-component of the RODE-SODE pair
also holds for the SLMMs derived in subsection 3.2.1. The SLMMs were
derived assuming that the process Y (t) can be generated exactly, however,
the following theorem is shown also for Y;,, the approximated value by enough
higher order schemes.

Theorem 6. (Pathwise convergence of SLMMs.)

Suppose that ~y-order s-step SLMM (3.49) is consistent and that the initial
condition Xq is given and the second initial conditions X; for 1 =1, ...,
s — 1 are provided by a 1-step scheme of the same order. In addition, it is
supposed that the stochastic process Y (t) can be generated exactly or obtained
by v'-order schemes.

Then, under the standard assumptions, the approrimation X; converges path-
wise with order (v —€) for alle > 0 and v > v—1, i.e.,

sup [ X (t;, w) — Xi(w)| < CO(w)A] ™
i=0,+ ,n

for almost all w € €.

Proof. First of all, assume that the stochastic process Y () can be generated
exactly, i.e., Y,,—; = Y(t,—;). In addition, we denote X (t,) = X (t,,w) and
X, = X, (w) in what follows.

The error of the vy-order s-step SLMM is given by

L, = |X(tn)_Xn|

= \Zc@,jxum Atzc i (X (ta), Y (tay) (3.51)

S S LUK (K () Y (b)) (Cosla, + ol )|
J=1 acA\{0,(0)}

Applying the Ito-Taylor expansions to X (t,—;) and f(X (t,—;),Y (t,—;)) for
§=0,...,8—1and L%d% (X (tn—j),Y (tn—;)) for j =1, ..., s — 1 yields
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‘zs:C@’jX th—s
(ZS_]C(DJ ZC )Atf ( )Y(tn—s))
7=0

1

(]

tnj § tn]
Cv.] [0 25N C ».7 Olftne t_

S
+<
J

Mmg

(Caylat,_; +Co ila—t,_ ]At)> L%y (X (tn—s),Y (tn_s))
1

J

+R |

where the term R is

R = ) (ZC@] L] [L%idx]) - ZC(O)g It (Lo f1A

a€BAN{(1)}\ 5=0

o Z Z IZTl]jt" s Lald%(} (Ca/mjlfart”*j + C;lvjliaii’ﬂ*j At) ) ’

J=1 /e AS\{0,(0)}

where —a— is a without the first and the last element.
The consistency conditions are taken to satisfy, e.g.,

S

Y Coy=0, D> (s—i)Co;= Zcom
=0

7=0

which correspond to the 1-order consistency conditions, and the coefficients
of X(tn-s), f(X(tn-s),Y (tn-s)), ... Ld% (X (tn—s),Y (tn—s)) are all 0. It
means that the local error depends only on the remainder term R.

Define
C’Laid%( = sup |Laid%((X(ti),Y(ti))}.

1=0,...,n

Then, the multiple stochastic integrals appearing in R can be evaluated as

jtn—i

ytn—s a,tn—s

It [Leidy]| < CLaidl,

| U, 1O Loidk])|

+|TGa5s, 2, (L L]
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fori =0,...,5s—1. « € B(AY) and f;”,;t’_s is at least AZH/Q order. In
addition,
a2, [0moik]| < ATt

s o 1
’I(D Lo, L'L Zd%{ﬂ‘ < 1AM,

for some Cj, C7 > 0. Hence,

Qtn—s

n—i a; gl 'Y+1/2
‘I L de]‘ S CL"id%( At .
The other terms in R can be evaluated in the same manner and, for instance,

ptp—i
Ia_vtnfs

Pty —i
IO(

_7tn s

L1 < Cpong

A+ | gy B, (2015 FIA

tTLS

| 2L A

< CLO‘ia@(Aty—H/Q'
Now R can be estimated as
R < CrCpaia AT,
for some Cr > 0. This leads

sup |X(t) — Xi| = sup |R| < CCpan AT, (3.52)

1=0,...,n 1=0,...,n

where the constant C' depends on the sample paths (and the time interval)
under consideration.

Suppose now that the driving stochastic process Y () is approximated by
~'-order scheme. Then the local error L, is given by

Z Co ;X (tn—j) — Ay Z Croy i f (X (tn—j), Yn—j) (3.53)
=0

J=0

> Ldx (X (tn), Vi) (Cayilata_, + Coijlae i, |.
J=1 a€AI\{0,(0)}

The value Y,,_; is obtained by 7/-order scheme and
¥ (tag) = Yooyl < CATH2,
for some constant C' > 0. Choose the constant C' = C_'n_j to satisfy

Vooj = Y(tnej) + CoyA] /2 (3.54)
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Replacing Y,_; in (3.53) by (3.54) gives

> Cui Xt &ZCJM Y (tg) + Cog ]2

—Z 3 L%dx( )Y (tai) + Cr jN“/Z)

J=1 acA\{0,(0)}

(Cajla, + % Ay) |

tn— J —tn— J

By the Lipschitz condition,

Laid%( (X(tn—j)v Y(tn—j) + C_'n—jAz —H/Q) - Laid%((X(tn—j)7 Y@n—j))‘

S Kc_vn_]A;}/"rl/Z’
for some K > 0. Choose K = K, ,—; to satisfy
L%dk (X (tas), Y (t-5) + Cay ] T72)
= L%d% (X (tn—i), Y (tn—j)) + Kam_iCri AT T2,

This leads the following estimate of L,,:

X(ta-y) &chftw)@m» (3.55)

_Z Z La’LdX tn j) (tnfj))

J=1 acA9\{0,(0)}

(Ca,jfa,t +Coila—t,_ JAt) + |R],

where the term R is given by

+ Z Z (Ca,jla,tn,j + C;’jlaf,t At) a,n— ]Cn jA7 +1/2
i=1 aeA\{0,(0)}
The first term of the right hand side of (3.55) is the same with L, and it
can be evaluated as (3.52). If R is AZH/Q—order, L, is also the same order.

Obviously (v + 3/2) is the lowest power with respect to A in R and

y 354 L
Ty =TTy
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ie,y >~v—1,s0
Lp < (CCpaa + CR)ATH,

for v/ > v —1 and some constant Cpr > 0. This means that the inequality
(3.52) holds also for Y;,_; obtained by 7' > ~ — 1 order schemes.
O



Chapter 4

RODEs with affine structure

In chapter 3, we investigate RODE with It6 diffusion and their numerical
schemes are developed via RODE-SODE transformation. In this chapter,
we include more general noise, but now RODEs with affine structure are
considered.

A d-dimensional RODE with m-dimensional affine noise has the form:

dx 0 " J
E:f (tal‘)+jzlf](tam)<tv (41)
where = (x!,...,2%) € R? and the noise process ¢; = (¢},..., ") takes

values in R”. The sample paths of (; are assumed to be at least Lebesgue
measurable and almost surely bounded, so the differential equation must
be interpreted in the sense of Carathéodory. Typical noise processes are
Wiener processes and fBms, which have Holder continuous sample paths, and
compound Poisson processes, which have piecewise constant sample paths.

Numerical schemes for RODEs with affine structure can be constructed
with a similar approach that used by Griine & Kloeden [37| to systemati-
cally derive higher order numerical schemes for deterministic affine control
systems. These are based on stochastic Stratonovich-Taylor expansion and
the hierarchical sets in section 2.4 and [66], which is possible since the chain
rules of deterministic and Stratonovich calculi are analogous. After a brief
introduction of affine-RODE-Taylor expansions in section 4.1, affine-RODE-
Taylor schemes, derivative-free schemes and schemes for affine-RODEs with
additive and commutative noises as well as LMMs are developed in sections
4.2 and 4.3, respectively.

59
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4.1 Affine-RODE-Taylor expansions

The RODE (4.1) can be written equivalently in the integral form:

x(t) = z(to) + tfo (s,z(s))ds + Z fj (s,2(s)) ¢ ds. (4.2)

to

The chain rule:

Ut 2(t)) = Ulto, 2(to)) + /LOU(sx ds+Z/ LiU(s, () ¢ ds

(4.3)
for any continuously differentiable function U : [tg,T] x R? — R can be
applied to each function under integral in (4.2). The idea is similar to the
derivation of Stratonovich-Taylor expansions that for Stratonovich SDEs in
[66], which was later applied to deterministic affine-control systems in [37].

Here the partial differential operators L° and L7 are given by

d d

0 ok O ; . 0 ‘
- g [Al Q— LJ: DR _—_ :1 44
8t+k:1f Oz’ E,f ’ J ooy (44)

where f7F is the k-th component of the vector valued function f7 for k =1,
,dand j =1, ..., m.
Assume that the coefficients f and f7 in (4.1) are sufficiently smooth
real-valued functions. We apply the chain rule (4.3) to the functions U = f°
and U = f7 in (4.2), respectively.

xz(t) = xz(to) + /t <f0(tg,:c(tg)) + /S LOfO(s1, x(s1)) dsy (4.5)

to to

+Z/ L7 f9(s1,2z(s1)) gl dsl) ds
j=1"%0

+Z/t (fj(toﬂf(to)) +/S LOf7(s1,(s1)) ds1

j=1 to to

+ Z / L' (s, 2(s1)) ¢! dsl) ¢l ds

Ji=1

t
= x(to) + f°(to, z(to) /ds+2fj to, z(to)) t (Jds+ Ry (4.6)

to
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where R; is the remainder term given by

' 1 i t S1 . .
Rl = / / LOfO(SQ;:E(SQ)) d82d51 + Z/ / L]f0(82’1:(52)) g2 d32d51
to Jto o to Jto
m t S1 ) .
+Z/ / Lof](SQ)x(SQ)) Cﬁl dSQdS]_ (47)
j=1 to Jto

m t S1 ) ] ' '
+ Z /t/t L% f7' (s9, x(s2)) ggggll dsydsy.
0 0

Ji,j2=1
Applying the chain rule again to, e.g., L72 /1 in Ry yields

x(t) = x(to) + f (o, z(to)) /t ds+_ f(to, x(to)) /t ¢l ds
j= to

to 1
m L t ops1
+ Z Lszjl(tO,x(to))// 22¢)1 dsodsy + Ry,
J1,J2=1 to Jito

where the remainder term is now

' o Ui t S1 . .
R2 - / / L0f0(827 x(SQ)) dSQdSl =+ Z/ / Lij(SQ,.'I}(SQ)) gQ d82d31
to Jto = to Jto

m t 51 . .
+ E / / L0 fI (s, 2(s2)) (2, dsadsy
j=1 to Jto

m t 51 . . . .
+ g / / L7? f71 (59, x(s2)) gggg} dsodsy (4.8)
to Jto

J1,j2=1

m t 51 52 . . . .
+ E / / / LOL7 f71 (89, 2(s2)) (2¢) dsgdsadsy
to Jto to

J1,2=1
+ Z // / L3172 f71 (53, 2(83)) (22CI2 (1L dszdsads:.
J1.g2,4s=1"t0 JtoJto

By iterating the same argument, affine-RODE-Taylor expansions of arbi-
trary higher order can be obtained. This is greatly facilitated by the notation
of multi-indices and hierarchical sets.

Define a hierarchical set Ay and the remainder set B(Ay) as

Ay = {aeM, : (o) <N},
B(Ay) = {ae My, \ Ay : —a € An},
where

My ={a=(j1,..,jm) €{0,1,2,...,m}' : 1€ N}uU{0}.
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Now for the hierarchical set Ay with remainder set B(Ay) and a sufficiently
smooth function F : [tg, T] xR — R, the Ay-affine-RODE-Taylor expansion
of F(t,z(t)) for a solution z(t) of the RODE (4.1) is written compactly in
the form

F(t,z(t)) = > LF(to,x(to)ams+ Y latodlL°F(,2(-)], (4.9)

a€AN aeB(AN)

where the coefficient functions F, is given by

F =0
LYF := ‘
LML~ *F :1>1,

with the differential operator L7t defined by (4.4). Moreover, the following
theorem holds.

Theorem 7. (Affine-RODE-expansion.)

Let F : RT xR? = R and let Ay € My, be a hierarchical set with remainder
set B(An). Then the affine-RODE-Taylor expansion corresponding to the
hierarchical set An given by (4.9) holds, provided all of the derivatives of
F, fO fY ..., f™ and all of the multiple integrals of stochastic processes
appearing here exist.

The proof follows that of the stochastic It6-Taylor expansion for SODE [66]
(Theorem 5.5.1).

Proof. The theorem is proved by mathematical induction.

For N = 0, the hierarchical set Ay = {0} and the equation (4.9) is
directly derived from the chain rule (4.3). In addition, the corresponding
affine-RODE-Taylor expansion is given by (4.2).

Suppose that (4.9) holds for some k, i.e.,

F(t,x(t)) = Z LYF(to, z(to)) It + Z Totot[LYF(-,2(-))] (4.10)
a€Ay a€B(Ag)

for the hierarchical set A, = {a € M, : l(a) < k}. Applying the chain
rule (4.3) to the second term on the right hand side of (4.10) yields

Y Lo LOF (- x()] (4.11)

aGB(.Ak)

= Z LaF(to,x(to))Ia,tO,t + Z Ia,tg,t[LaF('vx('))]

aeB(Ag) a€B(B(Ay))

= Y LoF(to.x(to)ages + D Tapodl L°F( ()],

a€Ak 1\ A a€B(Agk+1)
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since B(.Ak) = Ak+1 \.Ak and B(B(-Ak)) = B(Ak+1 \Ak) = B(.Ak+1). Now
substitute (4.11) in (4.10) and we have

F(t,a(t) = Y LF(to,x(to)awe+ Y Lot LF ().

a€AL 1 a€B(Ak+1)

This means that the equation (4.9) holds for N = k 4 1 and the Theorem
holds for all N. ]

4.2 Taylor schemes

4.2.1 Derivation of affine-RODE-Taylor schemes

Affine-RODE-Taylor expansions (4.9) are used with the identity function
F(t,x) = z, i.e., F = id, to construct numerical schemes for RODEs with

an affine structure such as (4.1). Thus, componentwise, k = 1, ..., d,
2() = Y L%id* (to, w(to) ages + Y Totoe[LYd (-, x(-))]. (4.12)
acAn OcEB(AN)
Note that

Loidk(t7$) = fOVk(ta l‘), Ljidk(t,l') = fj7k(t>$)7

for j = 1, ..., m, componentwise with k = 1, ..., d.

Higher order affine-RODE-Taylor schemes can be constructed systemati-
cally using the affine-RODE-Taylor expansions (4.12) on a finite subintervals
[tn—1,tn] of [to,T], renaming and deleting the remainder term of the right
hand side of the equation (4.12). In general, the k-th component of the
affine-RODE-Taylor scheme of order N for (4.1) has a form:

XF=Xy o+ ) L%d(ty 1, Xn1)ap, (4.13)
acAn\{0}

where X, is an approximated value at t,. This scheme is indeed of order N
if the noise sample paths are continuous or essentially bounded on bounded
time intervals.

Theorem 8. (Pathwise convergence.)

Suppose that noise sample paths are continuous or essentially bounded on
bounded time intervals. Then, under the assumptions in Theorem 7, the
affine-RODE-Taylor scheme (4.13) has pathwise order of convergence N .

Proof. The pathwise local discretization error of order N of the affine-RODE-
Taylor scheme is given by

Lyi=| 3 oy |[L9d"(,a(w))
aEB(.AN)
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Under the standard assumptions, the RODE (4.1) has a unique solution
on a finite time interval [to,T]. Since the sample paths of its solution are
continuous, there is a finite R(T,w) such that |z(¢,w)| < R(T,w) for all t €
[to, T').

Since the sample paths of the stochastic process (; are assumed to be
almost everywhere bounded,

C(Oé, T, OJ) = ess Supte[to,T]‘Ctj(w)’ < o0,

SO
Hat,| < C(a’T7w)l(a)—n(a)Afl(a)’

where n(a) is the number of zero elements in «, I(«) is the length of o and
A, = t, — tn—1. Define

Creid(T,w) = sup Lo‘idk(t,:n(t,w))‘ < 0.
telty,T)
|2 (t,w)|[<R(T'w)

Then the pathwise local discretization error Ly can be estimated as

Ly = Y |t L% (a())]
|o|=N+1
S Z CLo‘id(Taw) ’Ia,tn_1’
|a|=N+1
< Y Crew(T,w)C(a, T,w)N @ AT
|o|=N+1

since all a € B(Ay) have length I(o) = N + 1. Obviously Ly ~ O (A} 1),
which means that the affine-RODE-Taylor scheme (4.13) has global order of
convergence N. O

The Euler approximation is the simplest affine-RODE-Taylor scheme and
it has order N = 1 pathwise convergence. The corresponding hierarchical
set Ay is {0, (0), ()} and its k-th component is given by

Xh=XF 4 O o, X ) A+ PR 1, X)) Gy (414)
j=1

where
tn

tn '
An - I(O),tn—l - / ds and I(j),tn_l = Cg ds.

tn—1 th—1

The 2-order affine-RODE-Taylor scheme has k-th component given by

Xrlf = X]rf—l + fo’k(tn—lv Xn—l)An + Z fj’k(tn—la Xn—l)I(j),tn_1 (4-15)

j=1
1 moo
+§L0f0’k(tn—1,Xn—1)Ai + > LR 1, X )Gy o)t
J1,92=0

J1+i2#0
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while the 3-order affine-RODE-Taylor has k-th component given by

m
Xrlj = Xﬁ—l + f07k(tn71a anl)An + Z fJVk(tnfla anl)I(j)ﬂfn,l

j=1
1 LN
LN X R4 35D X s
J1,J2=0
J1+J27#0
1
+6L0L0f07k(tn717 anl)A?z
Y DLty X )Gy et (4.16)
J1,32,73=0
Jj1+32+33#0

since

tn
1(0,0).tn 1 / / dsadst = A?L,
tn—1
tn
I(OOO / / / d83d82d81 *A3.
tn—1 Jtn—1 Jtn—1

4.2.2 Derivative-free schemes

The above affine-RODE-Taylor schemes involve partial derivatives of the
coefficients functions, which may be inconvenient, especially in high dimen-
sions. It is possible to derive derivative-free schemes from them as in section
3.1.3 and [7, 8, 37, 66] by approximating the partial derivatives by suitable
finite difference quotients. To illustrate this, consider the scalar RODE with
a single noise integral, i.e., d = m = 1, and the affine-RODE is given by

d

=)+ ()

dt

for which the affine-RODE-Taylor scheme of order 2 is

Xn = Xn—l + fO(Xn—l)An + fl(tn—ly Xn—l)I(l),tn,l

1
1 .
+§Lof0(tn,1,Xn,1)Ai + E L f72 (tnflaanl)l(jhjé),tnﬂ'

J1,32=0
142720
The Taylor approximation yields
0f%(t, z)

leij(t,x) — fjl(t’x)

= & (Pt (o)A - () + O(A,)

ox



66 CHAPTER 4. RODES WITH AFFINE STRUCTURE

and the corresponding error introduced in the scheme has order A3, which
can be included in the local discretization error without reducing the con-
vergence order of the scheme. This gives the 2-order derivative-free scheme:

Xp = Xpa+ fo(tnfla anl)An + fl(tnfla anl)I(l),tnfl (417>

1
+§ (fo(tn—la Xn—l + fo(tn—laXn—l)An) - fo(tn—h Xn—l)) Ai

Z (fJZ n— 17 n— 1+fj1(tn—17Xn—1)An)

J1,32=0
J1+J2¢0

_fj2 (tnfl’ anl))l(jhjz),tnfl

4.2.3 Affine-RODEs with special structure

Affine-RODE-Taylor schemes introduced above can be simplified when the
coefficients in (4.13) have special structures such as additive noise or com-
mutative noise.

Additive noise

The noise in a RODE is said to be additive when the noise coefficients f1,
f%, ..., f™ are constants or functions of ¢t only, so their derivatives in z
are identically zero. Then, all of the “spatial’ derivatives of these noise
coefficients as well as corresponding higher order terms in the affine-RODE-
Taylor schemes vanish. For example, the affine-RODE-Taylor scheme of
order 2 (4.15) with additive noise reduces to

Xﬁ = 1+f0k(n 1, nlA +ij’ nl,Xn 1)]()n1
7=1
+ 3L O (1, X)) 0y
7=0

Commutative noise

A noise process is said to be commutative if the drift and noise coeflicients
satisfy
Llfj’k(t,x) = L]f”k(t,a?) for all ¢,7=0,1,...,m

This then allows
L' Pt 1, 2 (b)) i)ty L)

= L' f7* (tn1, 2 (tn) i )ty + L7 (ot 2 (b)) ity
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by the integration by parts, i.e.,

Iy tni L)t = L) tns T LGy tny  for 4,5 =0,1,...,m.

This allows stochastic integrals with lower multiplicity to be used instead
of higher ones. In fact, the order 2 affine-RODE-Taylor scheme (4.15) then
reduces to

Xrli = Xrlf—l + fo’k(tn—la Xn—l)An + Z fj’k(tn—h Xn—l)I(j),tn_1
=1
+5 LOfOk(n 1, Xn-1)AZ + Zszjk n—1> Xn—1) L)t L) sty -

0<i<j<m

It contains no multiple stochastic integrals.

4.3 Linear multi-step methods

LMMs were derived for RODESs driven by an Itdé diffusion, i.e., solution of an
Ito6 SODE, in section 3.2 and [9], using the stochastic It6-Taylor expansions.
Since the driving noise needs not be an It6 diffusion, a similar approach, but
now using affine-RODE-Taylor approximations will be outlined here. The
resulting multi-step methods are then, in particular, directly applicable to
the affine-RODE (4.1). For notational simplicity, denote I;y ;. [L7 f(-, z(-))]
by I(j . [L7 f] in this section. In addition, we assume the equldlbtant step
size A; in this section.

Euler-type s-step LMMs for the RODE (4.1) with m-dimensional affine
noise have the general form, componentwise,

Zaan Z—Zﬁlf(]k n—l> Xn— zAt+Zwa]’ = Xn—0) (),

(4.18)
for k =1, ..., d. The coefficients in (4.18) need to satisfy certain consistency
conditions for the LMMs (4.18) to have order 1. First of all, we derive the
consistency conditions for the case s = 2.

The pathwise local discretization error L, of the LMMs (4.18) is given
by

2 2
| @t (tad) = D2 B e 2t ) A
=0 =0
Z ijk n—t> &(tn—1)) () 1, |- (4.19)
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The affine-RODE-Taylor expansions:

xk(tn) = xk(tn—l) + fo’k(tn—lv z(tn-1))1(0),t,_,

) Pt 2t ) Gy T D Loyt [ ]
7j=1

J1,52=0

(1) = 2F(tp_o) + fo’k(tn—%$(tn—2))f(o),tn_2

m m
A Pt w2 e+ O Tgrga)tno L 1)
j=1 J1,52=0

and classical chain rule expansions:

m

PP 2(tn) = Pt 2(tnr) + D Ty e, L O]
=0

v, 2(tn1)) = Pz, 2(tn2)) + D T4, (L O]
=0

f(tnryw(tam)) = M (tnn, 2(tn=2)) + Y T o[ f7]
Jj1=0

are substituted into the local discretization error (4.19) to yield
Lo = |(a0+ a1 +a2)eb(tn-2)

+ (200 + a1 — (Bo + B1 + B2)) FOF (tn—a, x(tn—2)) Ay

+ Z (aOI(j)vtn—l + (040 + al)I(j)vtn—Q
Jj=1

VL)t — ’Yzf(j),tn_z) FPE (g, x(tn_2)) + R1’,

where R; is a remainder term given by

Ry = (aoft’f [le fj27k] + alI(ijQ),tn—z [le fj27k]>

(91,d2)stn—2
0

Ji.J

V)
Il

NE

J

I
=)

m m

=2 2 oL PP Gy,

J1=0j2=1
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Now Rj is Af-order and when the coefficients of the LMMs (4.18) satisfy
the following consistency conditions:

ag+ar+as=0
Bo+ B1+ P2 =2a0 + a1 (4.20)

Y1 =g, Y2 =+ al,

the LMMs (4.18) have 1.0-order convergence.

In order to construct higher order schemes, the integrands in the remain-
der term R; are expanded in the same manner. Its terms with constant
coefficients are now included in the numerical scheme and a new remain-
der term Ry with threefold noise integrals is obtained. The corresponding
LMMs, which now contain terms with the derivatives LOf0* L7 f0k [0 fik
and L7! f72¥ have the form, componentwise,

2
S axh, = Z/Bzf[)k n—1, Xn— lAtJrZ’anJ’ n—ts Xn—0)1() t_y
1=0

2 m
+D 0> LR i, X ) (g, D (4.21)
I=1 j=0
+Zﬁl Z lefjm (tn—1, Xn—1)1, (J1,52)tn—17
= J17j2 =0
for k =1, ..., d. The corresponding local discretization error is given by

2
‘Zalazk(tn ! Zﬂszk n—1> T(tn—1)) Ay
=0

2

_Z’Ylijkt—la n=)() s
Jj=

2

_ZélZLij’k(tnflg (TL l))I(J) tn— lAt

2 m

_Zel Z lefj% tn—1; ("—l))l(jw'z),tnfz?

= J1,j2=0

and this reduces to
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Ln = ‘ > <aoj€;1,jz),tn72[lef]é’k] +al[(jl,jz),tn_z[lefh’kD
J1,J2=0
=3 (Bolfy, LI TOM) o+ By, £4]) A
7=0

m m o
- Z Z ’71[(]'1)7157172[[’]1 f]27k]l(j2)7tnfl (4'22)

J1=0ja2=1
2 m )

_Z5lZL]f0’k(tnfl7 () (5), 1,1 A
=1 j=0
2

*Zel ZLJlfp’ (tn—t, z(ty ))I(Jlm)
= J1,j2=0

from the consistency conditions of order 1. Applying Taylor expansions and
chain rules yields

m
‘ Z ( 0 (]1’]2 +a1[(j17j2)7tn—2> th]%k(tn—an(tn—Q))

J1,j2=0

i( s BL) AL (s, ()

Jj=0

2 Z 1I(Jl)tn 2I(j2)tn 1L]1f32’ (tn—2,2(th—2))

J1=0j2

= OudGy s + 620 (5 1 )V fOF (b g, 3 (tn2))
J:

m

Z 61](]1 J2)5tn—1 +€2I(]1,]2) - 2)L]1f92’ (th—2, 2(th—2)) + Ra|,
J1,52=0

where Ry is the remainder term given by

m
Iy = Z (aolfjldzdzs) tn—2 [leLJQf]&k] + Oéll(jl,jz,JB),tnfz[LJILJ2 fjg,k])
J1,J2,J3=0
m . .
- Z (BO t;mz) Ly Q[leL]2f0 k] + 51[]1 332)5tn— 2[LJ1L]2fO7k]> A

J1,j2=0
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Z Z 71[(]17]2 tn 2 LJlLJQf]37 ] tn 1

J1,J2=0 jz=1

m
DIDRIR AWy 20 VAV PR
J1,J2=0
m

— D el WL NGy ) g

J1,32,33=0
Now ag = =1 from the 1.0-order consistency conditions (4.20),

m

D oy o Lia)tn L 2 (b, 2(tn—2))

J1,92=0

D TGt Lay s D P (g, 2(tn2))

71=0j2=1

=Y a0l o L0t L SO (b, 2t 2)).
j1=0

The formula (4.21) has 2.0-order convergence if the following consistency
conditions:

01 =—PBo, d2=0a9— PBo— P,

(4.23)
€1 =Qp, €2 =0+ oy,
are satisfied.
3-step schemes
When s = 3, the local error L,, of the scheme (4.18) is given by
3 3
‘ Z alxk(tnfl) - Z Blfmk(tnflv x<tnfl))At (424)
1=0

—ZWZP’ = (1)) () 1, |

=1 j=1

In addition to the the affine-RODE-Taylor expansions and classical chain
rules for s = 2, we have to include terms up to t,_3, i.e.,

2 (tnea) = 2"(tns) + fOF (tns, (tn—3)) (01, s

+Zf]k ln—3,T (tn 3))1( ) stn— ;+ ZI(jl,jQ )ytn— 3[Lj1f]27 ]

j=1 J1,52=0
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Rtz 2(tn-2)) = fOF(tns, 2(tas) Z Yotn_s| [L7 fO]
7=0

fj’k(tanax(tan)) = fj7k(tnf3a (tn*3 + Z I(j1)7tn73[le ijk]'
j1=0

The corresponding terms in the local error (4.24) are substituted. It is given
by

L, = ‘(Oé() + o1+ o+ a3)wk(tn_3)

+ (3ag 4 201 4+ aa — (Bo + B + B2 + 03) fOF (s, x(tn—3)) Ay
+ (Oéof(j),tn,1 + (a0 + 1)y, + (0 + 1+ a2) )4, _,
j=1

=YLty — V2L ()t — 73I(j),tn,3)fj7k(tn73am(tnf?;)) + Ry|,

where the remainder term R; is now

m

Ry =Y (aolly i, U PR a0 R

| (]l:]?):t
J1,j2=0

+a2[(j1 J2)tn—3 [lefj%k])

Z (ﬁol 0 Ljf0 M+ 51It;) o [Ljfo’k] + ﬁ2f(j),tn_3[Ljf0’k]) Ay

Jj=0

o Z Z <71]tn ; lesz, ]I(Jz) tn—1 +72[(J1)tn 3[lefj27 ] )tn— 2)’

Jj1=0j2=1

Ry is A?-order and when the coefficients of the LMMs (4.18) satisfy the
following consistency conditions:

oo+ ap + o +az =0,
Bo + B1 + P2 + B3 = 3ap + 201 + ag,

71 =0Qp, Ye=p+ a1, 7Y3=0oa+ a1+ oy,

the LMMs (4.18) have 1.0-order convergence.
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Order 2.0 schemes

Similar to s = 2 case, a general form of 2.0-order LMMs is given by

Zaan | = ZﬁlfOk n—1y Xn— lAt+Z'Ylijk n—ts Xn—0) 1) e,

=1 7j=1

3 m
A0 L R (i, X)) Iy A

=1 j=0

+Z€l ZLJI,]CJQ7 n— l7 n— Z)I(J1».72) tn—1”

=1 j1,j2=0

and the local discretization error is defined by

3
’Zalxk(tn 1 Z,Blf()k n—1, T [ l))A
=0

3 m

—ZVZZJ”’ tn)) ()t
3 m

=20 L Oty w(tn) L, A
=1 j=0
3

_Zel ZLJlf]27 t n—1is L ( ))I(jljz)tn !
=1 j1,j2=0

The same argument with s = 2 yields
_ £t -
Ln = ‘ Z (aOI(th)tn—s +a1[(j17;2),tn_3 (4.25)
21, gyt ) I g, 2(tns)

=3 (Bolly oy + B+ ol ) AL (s, ()

Z Z (71 (31)tn o LG2) st

=0j2=1

<.
=
|

2Lt L) ) B P2 (s, w(t0—s))
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Z 01y iy + 021 () 40y + 03105 4 )AL fOF (t—g, 2 (tn—3))
Jj=

m

Z 61-’(31 go)tno1 T 621(]1 J2)itn—2 t 631(]142) tn— 3)

J1.J2=

le fj%k(tnf?n J:(tnf?))) + R2 )

where Ry is a remainder term. The equation (4.25) yields the following
consistency conditions of order 2:

=—Bo, da=opg—Bo—P1, 03=2ap+a1—Bo— B — P

€1 =qQqp, € =0a)+ a1, €3=0a)+a+ Q.

General form

Higher order LMMs as well as LMMs with more steps for the affine-RODEs
(4.1) can be generated systematically in the same manner. In general, an
s-step LMM for an affine-RODE (4.1) with order N has the form:

> CopXpy = ZC 2O (b, X)) Ay (4.26)
—0

*ZZC 7 (bt X)Lt

=1 j=1

+Z Z C*lLa fOk(n b Xn-t)a—t, At

=1 aeAR\{(0)}

s
+ Z Z Ca,lLaidk (tn—la Xn—l)Ia,tn,p

=1 a€AN\{0,(0),(4)}
where A%, is given by
A% = {a € Ay : the last component j; = 0}

and the coefficients C.; satisfy consistency conditions up to N-order.



Chapter 5

Stability

We often encounter stiff systems in practice and the stability property of
numerical schemes is a crucial issue when we solve such systems numerically.
It is well known from the theory of classical Runge-Kutta schemes for ODEs
that an implicit scheme is required for the stable integration of a stiff ODE.

In case of RODES, we need to take into account of the effects of nonlin-
earity in the equations, which play a much more significant role in RODEs
than deterministic ones. It is also not clear in RODEs or SODEs what class
of linear test functions is suitable. In addition, even a simple linear RODE
contains a noise term in its matrix and it makes the system pathwise nonau-
tonomous, so it is not easy to generalize the Dahlquist theory since it involves
Lyapunov exponents instead of eigenvalues and they are very hard to calcu-
late. In order to circumvent these problems, we focus on the B-stability.

In fact, implicit schemes which are B-stable are even better [28, 42|,
i.e., preserve the non-expansive structure of trajectories of ODEs with a
dissipative one-sided Lipschitz condition, i.e.,

1 = Xil < (1 X1 = X7l

fori =1, 2, ..., n where X; and X/ are two solutions of the scheme. Recall
that no explicit or linear implicit Runge-Kutta scheme is ever B-stable. Since
RODEs are generalizations of ODEs, this applies equally well to RODEs.

5.1 B-stability of averaged schemes

Before showing the B-stability of the IAES (2.36) and IAMS (2.37), we
prove the solvability and convergence in the Theorems 3 and 4 introduced
in subsection 2.3.2.

5.1.1 Solvability of the averaged schemes

The TAES (2.36) and IAMS (2.37) are implicit schemes involving an algebraic
equation that needs to be solved for each iterative step. Each one has a

75
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unique solution when the step size A; is small enough when L > 0 and
arbitrary otherwise.

The proof is based on that of Theorem 6.54 in [28]. Suppose that X,
is known.

Solvability of the IAES

We start with the IAES (2.36) and consider the mapping ¢ : R — RY defined
by

Y= Xn-1+ f(y, In-1) Ar —y.
It follows from the one-sided Lipschitz condition (2.38) for the vector field f
that g satisfies

(9(a) = g(b),a=b) = A¢(f(a,In-1(w)) = f(b, In1(w));a —b) — a—b|*
< LA la—b]* —lla = blf* = (LA, — 1) [la — b]J*,

for all a, b € R?, which is a one-sided Lipschitz condition with constant
LA;—1. By assumption we have LA;—1 < 0, so we can apply the Contractive
Dynamics Theorem in [91] to the mapping g to conclude that g has a unique
zero, which we denote by X,,. Hence, X,, is the unique fixed point in R of
the equation:

y=Xn1+ f(y,In1) Ay, y € RY,

which proves the unique solvability of the IAES (2.36).

Solvability of the IAMS

A similar argument holds for the IAMS (2.37). We now consider the mapping
g : RY — R? defined by

1
Y= Xn—l + f <2 (Xn—l + y) 7In—1> At - Y.

From the one-sided Lipschitz condition (2.38) for the vector field f, it follows
that

{9(a) = g(b),a =)

1

= a7 (3@ + 0 L)

1 (5 Xaa@) 48 @) ca = b) = = blP

2

(X 1(@) +0) = = (X 1(@) +B)|| — fla—b]?

2 2

IN

(LA)

1 1
— L0 o=~ 0P = (20~ 1) Ja = .
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for all a, b € R%, i.e., the mapping g satisfies a one-sided Lipschitz condition
with constant LA;/4 — 1. Since LA;/4 —1 < 0, we can also apply Theorem
2.8.4 of |91] to g to conclude that g has a unique zero, which we denote by
X,,. Thus, X, is the unique fixed point in R? of the equation:

1
y=Xn-1+/f <2 (Xn—1+y) aInl) Ay, y €RY,
which proves the unique solvability for the IAMS (2.37).

5.1.2 Convergence of the averaged schemes
Convergence of the TAES
We show by induction over n for the IAES (2.36) that

CE(TLAt) : L S 0
min(26,1
lo(ta) = Xull < APRERD S AN\ o, OV
— | ex — :
L P 11—«
holds for every n = 0, 1, ..., N, which implies the assertion. (We recall that

a € (0,1) is arbitrary, but fixed here).

For n = 0 the assertion is clear. Therefore, suppose that the inequality
(5.1) is true for n € {0,1,..., N — 1}. We will show that it is then true for
n + 1. From subsection 5.1.1, the equation

z=a(tn) + f(2,In) Ay

has a unique solution, which we denote by Z. Then, by the one-sided Lips-
chitz condition (2.38) for f and the Cauchy-Schwarz inequality, we obtain

| Xnt1 — ZH2 = (Xnt1 = Z, Xn — 2(tn))
+At <Xn+1 - 27 f(Xn+1a In) - f(Z, In)>
< N Xngr = Z| - 11X = 2(tn) ]| + LA [ X1 — Z|%,

from which it follows that

1
X = 21 < (=5 ) I = (0l (52)

We also have

‘/:Hf(x(S),Y(S))ds—/t:nHf(x(tnﬂ),y(s))ds

(5.3)

Si( sup ||fx<z<u>,Y<s>>f<x<u>,Y<u>>H) A%

0<s,u<T
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By the Mean Value Theorem,

and

tni1
[ (@), Y () ds = [(x(tnsn), Y (1)) A (5.5)
tn+1 1
+ / / fy @), Y (1) + 1 (Y(5) = Y (8a)) - (Y (5) = Y(t)) duds.

Hence, by (5.4) and (5.5), we obtain

|ttt 1 20 - / F((tnsa), Y (s) ds

<, s 10

lw|| <Y ||oo
0<s<T
tn+1 1 tn+1
71 _ . .

x/tn /OuAt /tn (Y(v) =Y (tn)) dv— (Y(s) Y(tn))H

1Y (s) =Y (tn)|l duds

<3 (sl Go]) e o, (5.6)
ANTE
0<s<T

where O is the random variable in the Holder estimate (2.33).
Equations (5.3) and (5.6) give

< CE ) A;—i—min(QG,l)

|t ) 20 / F(a(s), Y (5)) ds

and we thus obtain
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2(tnt1) — Z|
= (@(tnt1) — Z,2(tnt1) — (@(tn) + f(Z,1n)) D)

- <x<tn+1> =3 Fa(s). Y (s)) ds — (2.1,) At>
= (sttan) - 2 / e, ¥ (6))ds — a(tren). 1) A0
+At<x<tn+1> 2. altws) 1) = F(2.1,) )

< loltri) = 2 | / " Fals), Y (5))ds — f i), 1) A

+LA; [|l2(trsr) — Z|

¢ min
< ||z(tn+1) — Z|| - <1 — fAJ ‘A%Jr (260,1)

by the one-sided Lipschitz condition (2.38) and the Cauchy-Schwarz inequal-
ity. This and equation (5.2) then imply that

Je(trs) = Xporll < Naeltss) = Z] + 12 = X

Cg 1+min(26,1) 1
< AW + Xn —x(tn)]| -
(1_LAt> 1— LA | z(tn)l

Finally, the induction assumption (5.1) gives

||$(tn+l) o Xn+1|| < CEA§+min(29,l) + CE . nAt . A;nin@@,l)

<(Cg- A;nin(ZG,l) (At + nAt) =Cg- (n + 1)At Amm(29 1)
in the case L < 0 and

[ (tns1) = Xntal

Cg 14min(26,1) 1
< ) - .
- <1a> A s 11—« LA ) | Xn — z(tn)
< < Cg ) At1+min(26',1)
l-«
+(1+ L A e(ﬁnit) 1 Cp . AmIn(20.1)
1—a)™" L t

C min nie 1
S< E )At (20,1) (AtﬁL(lﬁL,ﬁAt)(e))

l—a
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Cg mln(2€ 1)

BA: + (14 BAY) (eﬁmf — 1))

(7 25) a5 (
()
()

(66(n+1)At - 1) A:ﬂin(gg,l)

Ck L("“ Ai min(26,1
(F) (55 —1) e

in the case L > 0 with 8 = L/(1 — «). Here we used the inequality

1 1
<1 —_— .
TR +<1_a>r, r e [0,a]

Convergence of the IAMS

Q

BA + P18 — 14 BACPA — BA,)

Ck

l—a

IN

We now show by induction over n for the IAMS (2.37) that

— | exp —1 :L>0
L 11—«

holds for every n =0, 1, ..., N.

This is obvious for n = 0. We suppose that inequality (5.7) is true for
n € {0,1,..., N — 1} and show that it is then true for n + 1. Let Z denote
the unique solution of the equation

—a(t) + f (; (@(t) + 2) ,In> A,

which we know exists from subsection 5.1.1.
Now, we have

(X1 —2) — (Xn —z(tn))

=Ep41 =:F,
1 1
= <f (2 (Xn + Xn+1) 7In> - f (2 (x(tn> + Z) 7In>) At
=:A
or
En+1 = En + AAt
Define ) .
e = 5 (En + En+1) = En + §AAt
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Then

2
[ Engal]

Now

= || En+ AA
= || Eul? + 2 (En, AA) + | AA|?

1
= ||E.?+2 <e - QAA,AAt> + | AA?
= [|Ea|I” + 24 (e, A)

1 1
= B2 + 24, <2 (X Xo) = 1 (alt) + 2) ,A>

2

1 1
< | En|® +2LA §(Xn+Xn+1)—§(x(tn)+Z)

= || Eall?® +2LA, [le]*.

1
lef? = (e} + (e 340)

1 2
< el [ Enll + S LA el

which implies that

1
< | ——1|IExn|-
ell < (1_;%) Bl

When L > 0, we obtain

S8LA;

Finally, in both cases,

E,ill? < |IE.I? + ————||E,||?
[Enall® < B (2—LA,5)2H |
(2 — LA)? + 8LA
- ( 2 t)\Ean
(2 — LA)?
(2+ LA)? B
(2- LA
2+ LA
LAt cL>0
1 Xps1 = Z|| < | Xn — 2(tn)| - § 2~ LA (5.8)

1 : L <O0.
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We also have
tn+1
[ o). v ) as
tn

:/th f(:z(tn%Y(S))dSJr/th tsf‘v(m(“)vY(S))f(ﬂf(U),Y(u))duds

n

1
= :A, /0 o (2ta) + % (@ltni) — 2(t2)) ) du- (a(tor) — (1)),

|

from which we obtain

tni1
Hf (; ((tns1) — 2(ty)) At7[n> - / f(z(s),Y(s))ds| < Cy AL,
tn
Therefore,
|2 (tns1) — Z||

Stnsr) = Z, 2(twsn) — a(tn) — f (; (2(tn) + Z) ,In> At>

<
= (attw =2 [ et Y s 1 (G0t + 2.1, ) &)
(attwn =2 [ £t ¥ s = 1 (G oltn) + i) 1) &)
+a{altrin) = 2.1 (5 (0 +altri) T ) = £ (a(t) + 2). 1))

< [loftan) - 2] -

| e 6 ds = (G (et + o) 1) A

1
FSLAa(tns) - 2]

C
< llaftnr) = 21| (1 — At) A,
2

where we have used the one-sided Lipschitz condition (2.38) and the Cauchy-
Schwarz inequality.
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The last estimate, the estimate (5.2) and the induction assumption (5.1)
imply that

IN

[2(tni1) = 21 + 12 = Xniall
Cu A + | X — a(tn)|

lz(tns1) — Xnall

IN

IN

Cu AT 4 Oy A%

IN

Car A2 (A +nAy) = Cor - (n+1)A, A
in the case L < 0 and

2 (tnt1) = Xnpa

< l(tntr) = ZI+ 112 = Xnpall

- 2_C’M A2y QJ_FLAt 1 X,
2C v 1420
§<2—a>At —a) Lo ) 1%n = (il
< <QCM > AF_% ( ( )LAt> < 2Ln§t> — 1) <CM> A?e
2—« - -
20 e -
§<2:z>A9<AV%1+BAt( )>
2C A?Q pni
(228 o ()
20
< <2 —Afy> B > AL

_ (CLM> <€(2L("+;)At> B 1) Afe

in the case L > 0 with 8 = 2L /(2 — «), where we have used the inequality

24r 2
<1 .
5, = +<2a>r, r € [0,q]
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5.1.3 B-stability of the averaged schemes
B-stability of the TAES
We consider two solutions X,, and X, of the TAES (2.36) and denote

D= f(Xny1,In) At — f ( 7/1-1-1>In) Ay

Then, we have
(X1 = Xl) = (X = X) + D

and hence
X1 = Xal* = [[(X0 = X3) + D
= || X0 = Xp|* + 2 (Xn - X;,, D) + | D
= || X0~ X)|° +2((Xns1 — Xpyy — D). D)+ |D|
= [[X0 = X |* +2(Xns1 — X}11, D) — DI
< || X0 — X417 + 2 (Xp41 — XLy1, D).
Now,

(Xni1— X}, D) < LA Xng1 — Xp ]P0

n

by the one-sided Lipschitz condition (2.38) and the assumption that L < 0,
so we obtain

X1 = X0l < (1% - X3,
which proves the B-stability of the TAES (2.36).

B-stability of the TAMS
For the IAMS (2.37) we also have

(Xnt1 = Xn41) = (X — X3) + D,
but now with
1 1, ,
D = f §(X7L+Xn+1)>]-n Ay —f 5 (Xn+Xn+1) ,n At,
which is equivalent to

1 1 1
B (Xn + Xng1) — B (X5 + X5p1) = (X — X3) + §D'
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Hence,
X1 — X0 )
= || (xn = x7) + D|
= |12 = X3 + 2(X0 - X,, D) + |1 DI

1 1 1
X = X022 <2 (X4 Xo) — & (Yot Xl) 2D,D> - ID)?
1

. _ 1|2
= ||, — X1 +2<2

1
(Xn-i-l + Xn) - 5 (X7/1+1 + X7/7,) 7D> .
Finally, by the one-sided Lipschitz condition (2.38) on f and the assumption
that L < 0, we obtain
X1 = X0 |I* < (1% — X201,

which means that the IAMS (2.37) is B-stable.

5.2 B-stability of linear multi-step methods

5.2.1 [Illustrative example

The essential idea of the proof of B-stability is clear when applied to the
1.5-order implicit SLMM:

1 1
Xn = §Xn_1 + an—2

1 _ _ _
+§At (f(Xm Yn) + f(anla Ynfl) + f(an% Yan))
- 1
+L (X1, Y1) <I(1,0),tn1 - 21(1),tn1At> (5.9)
0 — 1
HLOf (Xn-1, Yo1) (L0001 = 5L(0) 60 1At

1 _ 1 _
+§L1f(Xn_2, Yo-2)I(1,0)t,_0 + iLof(Xn—m Yn-2)110,0),t_o-

The difference of two solutions X,, and X/, is given by

1 1
Xn — quz = i(anl - ’:1—1) + i(anQ - r/L—Q)

+%At{(f(XmYn) - f(X;zv Yn)) + (f(Xn—hYn—l) - f(X7/1—17 Yn—l))

+(f()(an, Yn72) - f(X:z—% Yan))}
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3 T0000ms ) (B (X1, Vo) = LX) 1, Vo)

+ (I(I,O),tn_l -
1 _
+§I(1,0),tn72 (Llf(Xn727Y ) L f( n—2» TL 2))
1 _
+ <I(o,o),tn1 - 21(0),tn1At) (L°f(Xn-1, Y1) — LOF(X), 1. Y1)

1 _
+§I(0,o),tn_2(L0f(Xn—2,Y 2) — LY f(X],_5, Yno2)).

Multiplying both sides by X,, — X/, yields

1 _ _
HXTL - Xr,LHQ - §At <f(Xm Yn) - f(X;w Yn)an - X7/1>
1 /
—1—5 <Xn_1 - X! 1, X, - X >
1 _
+§At<f(anl,Ynfl)*f( 7,1 17Y X X,>

1
+ <I(1,O),tn1 - 2Atl(1)7tn1>

<Lf(n17 ) Lf(nl? )X X/>

1
+ (I(O,O),tn_l - 2Atl(0),tn_1>
<L f( n—1,Y ) Lof(Xn 17Y )X X,>

+o (X2 — X0, Xp — X))

1
2
1 : o ,
+2At <f(Xn—27 Yn—2) - f(Xn—27 Yn—2); Xn - Xn>

1 _
+§I(1,0),tn_2 <L1f(Xn—27 Y ) Llf( n—=2» Y X X/>

1 _
+5700) 0z (L' (X, Yna) = LOF(Xp, Vi2), X = X7,

Lipschitz condition ||L%d% (X,Y) — L%d% (X', Y)| < K|| X — X'|| and the
one-sided Lipschitz condition (2.38) give

1
(1 528) 1%, - X P

1 1
Xt = Xyl X = X+ 5 KA Xt = Xy 1% — X5
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1
o)t — 5B 0) 4| K [ Xn-1— X5 [l 1 X0 — X5, |l

K || Xn-1 = X5 [l [ X5 — X0

1
1 0.0)t01 — 5810)0 1

1 1

3 1 %2 = X oll 1Xn = Xl + 5K AN X3 = Xl [ X — X4
1

31040 al B Xz = X[ 1% = X5

1
+510.0)0 2 K[| X2 = Xy ol [ X = X0

Thus,
1
X, — X< ———— (K1 | X1 — X, ||+ Kp—a|| X2 — X! ,
H n”— (].*%LAt) ( 1” 1 n 1” 2” 2 n 2”)
(5.10)
where
1
Kn—l = 5(1 + KAt)
1 1
+K |I(170)7tn71‘ + §At|l(1)»tnfl| + I(O,O),tn,1 + §At'[(0)’tnfl
1
~ S EA) + 04}
1 1 1
K, o = 5(1 + KA+ K §|I(1,0),tn_2| + 51(0,0),tn_2

1

(KA + UG}

Subtracting || X,—2 — X/ _o| from both sides of equation (5.10) then yields

1
X0 = X\ || = | Xoo — X, o] < | (K11 X1 = X

1 /
—(1-— §AtL — K, HXn—Q - Xn—2||>7

hence,

10 — X0 = 1 Xn—2 — X, s

anl

< —2 (| Xpo1 — X! — | Xp—2 — X!
< T ray (P = Xl = 1Xos = X o)
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when K1 < 1— LA, — K,_5. It follows that
1 Xn = X5 [ < [ Xn-1 — X5l

when L < —2K + O(Atl/Q). The SLMM (5.9) is thus B-stable for all step
sizes Ay > 0, provided the dissipativity (given by L) is large enough for the
nonlinearities (given by K).

5.2.2 General case

The above argument can be applied to arbitrary higher order s-step SLMMs.
For simplicity, take Cpy = 1. Then, the difference of two solutions of the
v-order s-step SLMMs (3.49) is

Xn — X1/1 - C(o),OAt(f(Xm Yn) - f(X;w Yn))

+ Z {Cm,j(Xn—j - lem—j) + C(O),jAt(f(Xn—ja Yn—j) - f(X;L—ju Yn—j))
j=1
+ Y (Caglaty; + ChijIa s, ;A
aeA9\{0,(0)}
(L%dx (Xn-j, Yn-j) — L%dx (Xp_j, Vo)) }

This can be estimated in the same manner as above to yield

1 S
X, — X/ < Ky il Xn_i — X A1
Tz PO L ST

where

Knj=Cyj+Clo i KA+ Y K(Cajllag, ;| + Chjllat,_;|1A0).
acAI\{0,(0)}

Now subtracting > 7_, [[X5—; — Xj,_;|| from both sides of (5.11) yields
S
X0 = X0 = D 11 Xn—j — X5
j=2

< 1
(1= Coy,0LA)

(Kn—lan—l - X, 4l

S
Y (1= Cloyo LA = K )| Xnj — Xv’z—j”)

=2

]<n—1 / - /
< X, +—X _ E X, . X' .
(1 C(O),OLAt) (H " ! j=2 I ! n_]H ’



5.2. B-STABILITY OF LINEAR MULTI-STEP METHODS 89

provided Kn—l S 1-— C(O),OLAt — Kn—j-
This gives
X0 = Xpll < ([ Xn-1 = X5l

that is, the B-stability of the vy-order s-step SLMM (3.49) when the constant
L satisfies

(11— Kp_q — Kn,j)At . K
Clo),0 Clo)0

L <

1
+ O(A7).

Remark 2. The constants L and K may depend on the sample path as well
as the length of the time interval under consideration. The global nature
of the one-sided Lipschitz condition and the standard assumptions are not
essential for the proof, just convenient.
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Chapter 6

Integrals of stochastic processes

The numerical schemes derived in the previous chapters require the simula-
tion of noise process (; and their integral:

tn Si-1 ,
. . — ce Ji..o N ce
I(]lv---»]l)vtn—l / / 5 Csl ds; dsy
tn—1 tn—1

on each discretized subinterval [t,_1,t,]. The components Qj of the driving
noise process are assumed to be at least Lebesgue integrable in time, in
particular with essentially bounded sample paths.

In general, for processes with continuous or piecewise continuous sample
paths, the integrals can be calculated using Riemann sums on much finer
partition of the discretization subinterval so that the error is dominated by
local discretization error of the scheme itself. For example, the averaged
numerical schemes discussed in subsection 2.3.2 require the averaged noise
integral:

I
I (w) = a (s(w)ds
n n—1

on each discretization subinterval [t,_1,t,] with step size A,,.

On the other hand, some integrals can be simulated directly if the dis-
tributions of ¢; are known. For example, if the noise process (; is a Wiener
process or an OU process, then sample paths of the integrals can be calcu-
lated directly.

In this chapter, four kinds of noise processes, namely a Wiener process,
an OU process, a compound Poisson process and an fBm, are introduced
and the processes and their integrals are evaluated.

91
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6.1 Wiener process

Denote a Wiener process by W (t) and define the sample path of the integral

as
ln

L, (W)= W (s)ds.

tn—1

For notational clarity the integral will be derived for the time interval [0, A]
in this section and define AW = Wa — W

The integral I;, , (W) is an N (O, %A%)—distributed random variable, so
the integral I, = Ain[t%l (W) in the averaged numerical schemes for RODEs
can be simulated directly as

I, = \[A}/?G (6.1)

where G is an N (0, 1)-distributed random variable.

The integral I;, (W) arises in the order v = 1.5 strong Taylor scheme
for Ito stochastic differential equations (see Chapter 10 in [66]). Essentially,
= fo s)ds and AW are correlated Gaussian random variables

Wlth dlstrlbutlons and correlation:

AW ~N(0,A), I(W)~N <0, ;A?’) , EI(W)AW) = %AQ.

The proof follows from the It6 formula to give the identity:
d{AW(t)) =tdW(t) + W (t)dt

and the fact that the [t6 integral fOA tdW (s)is N (0, $A3)-distributed, since

E(/(]AtdW(t)> =0, E </0AtdW(t)>2 Z/OAtZdt: éA?’

by basic properties of the Itd integral.

Common sample paths of I(W) and AW can be simulated using two
independent N (0, 1)-distributed random variables G; and Gy via the linear
relationship:

1 1
AW = AYV2@,  I(W) = §A3/2 <G1 + \/gc;z) .

This is useful for comparing the numerical schemes with the averaged integral
simulated directly or approximated as a Riemann sum.
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6.2 Ornstein-Uhlenbeck process

Denote an OU process by O(t) and define the sample path of the integral as

tn
I, ,(0):= O(s) ds.

tn—1

We assume again that the integral will be derived for the time interval [0, A]
and define AO := Oa — Oyg.

The integral I;, ,(O) is an N(0, s%)-distributed random variable, where
the variance s? is given by

2 02 —vA
5 Z:$(27An—1+6 ”),

where v is a parameter of OU process. The desired integral I,, = Ainlt%l (O)
in the averaged numerical schemes for RODESs can thus be simulated directly
as

S
I, = — 2
n 2nG (6.2)

using an N (0, 1)-distributed random variable G.
To see this, first note that the OU stochastic stationary process O(t) with
positive parameters v and o, is a solution of the scalar It6 SODE:

dX(t) = —7X(t) dt + o dW (1), (6.3)

which has the explicit solution:
t
X(t) = Xoe " + ae_vt/ e’¥ dW (s). (6.4)
0
Moreover, by (6.4),
A
AZ = O0p — Ope 72 = 067A/ e’ dW (s),
0

is Gaussian distributed with mean E(AZ) = 0 and, by the Ito isometry,
variance:
2

E(AZ)® = E(ae’yA /0 Afﬂde(s),>

2 —2vA Azs o? —2vA
oce 77 e'YdS:—(l—e 7).
0 2y

Furthermore, by the generalized It6 isometry,

E(AZ-AW) = E<ae—“YA /OA e dW(s),/OA dW(s),)

A
= ae'm/ e’ ds = (1 — ef"YA) .
0

o
v
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On the other hand, integrating the SODE (6.3) directly for the solution
O(t) over the interval [0, A] gives

1(0) == /OA Os)ds — i@/f dW(s)—/OA dO(s))

1
= ZAW — = (0a — Oq)
Y Y
g 1 1 —~A
= AW - —AZ+ — (1—¢72) 0y,
Y Y Y

so 1(0) is Gaussian distributed with mean E (I(O)) = 0.
Now it is known that, O(t) is given explicitly by

t
O(t) = Je_7t/ e’*dW (s),

which requires W (t) to be a two-sided Wiener process, i.e., defined for all ¢
€ R, see [5, 20|. Hence

0
Oy = cr/ €7 dW (s),
—0o0

is N(0,0%/(27))-distributed by the properties of the Itd integral, in partic-
ular by the It6 isometry,

E(Oy) = oF (/0 e”’de(s))zo

0 2 0 0_2
E(0p)" = o’ </ e dW(8)> N 02/ e ds = .

Since Ogy depends on the Wiener process only up to time ¢ = 0, it is clearly
independent of AW and AZ. Hence the variance of 1(O) is given by

E(1(0)*) = 712[021@ (AW)? — 20E (AW, AZ) + E (AZ)?

+(1—-e2)’E (00)2]

a’A 202 _ o? _ o2 AN 2
:?—?(1—6 7A)+ﬁ(1—e QVA)—I-T’ﬁ(l—e 7A)
2
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6.3 Compound Poisson process

A representative example of a noise process with piecewise continuous sample
path is the Poisson process, and, more generally, the compound Poisson
process, see [25, 43]. A Poisson process X (t) counts the number of events,
which are independent of each other, that occur during a given time interval
[0,t]. It has the probabilities

e~ At

k!’

P{X(t) = k} = (\t)* k=0,1,2,..., (6.5)

where A is a positive real number.
Let 71 be the time when the first event occurs and let N(¢) the number
of events occurred until time ¢t. The distribution function of 77 is

e—)\t

k!

At

Fi(t)=P{T} <t} =P{N(t) > 1} = i()\t)k =1—e M

=1

which is continuous and monotonically increasing, hence invertible. Thus 7T}
can be simulated as Ty = Fy ' (t) = log(1 — U)/\ = log(V')/\, where U and
V =1—U are uniformly distributed on [0, 1].

The compound Poisson process is a Poisson process with jumps of random
magnitude, which satisfy a distribution function f, for example uniformly
distributed on some bounded interval. It is defined by

. Nt
d=>v, (6.6)
=1

where Y; is the jump magnitude at i-th jump. When the jump magnitude
Y; = 1 for all 4, the compound Poisson process is just a Poisson process.

Typical trajectories of the compound Poisson processes are shown in
Figure 6.1.

The compound Poisson process (6.6) is a left-continuous step function.
Let ¢ = S/ for T; <t < Tj11. If there is no jump in the interval [t,_1,t,),
then the integration of (6.6) can be given as direct integration gives

tn tn . .
I in s = Ids = Slds = SIA,,.

tn—l tn—l

On the other hand if t,_1 < T; < t, and there are no other jumps in this
interval, then

tn T; ) tn
a= [ @ = [ s [t
n—1 n—1 i

= S]_1(Ti — ta-1) + 57 (ta — ).
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w0 - e—
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a ® 4 ..-.- _
£ p—
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] . —
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o | =
l I l l I
0 1 2 3 4

Time

Figure 6.1: Typical trajectories of the compound Poisson processes with A
= 5 and jumps uniformly distributed on [0, 0.5].

In case there are more jumps on [t,—1,1,), the given interval is divided into
an appropriate number of subintervals and the result summed.

Higher order integrals can be derived in the same manner. Assume that
two independent compound Poisson processes (7' and ¢/* have jumps (only)
at T;; and T;, on [t,—_1,t,) and their values at the i;-th and is-th jumps are
given by 5’2]11 and Sg;, respectively. For simplicity, suppose that t,_1 < Tj,
< T;, <tp. Then

tn
L1 o) s = / / d82d31
tn—1 Jitn-1

T;
= / / S,lel 1 12 1 dsodsy + / ’ / ShSZQ 1 dsodsy
tn—1 Jtn—1 Til T
t’ﬂ . .
/ / Sfll Sl]j d82d81

2
= Szjll 15322 (Tiy = tn1) + 5315322 (T, = Tiy)
o )
_‘_5513115522 (tn - Tzz) .
On the other hand, if Cg ' is a stochastic process with continuous sample

paths such as a Wiener process W (t) and ({* is an independent compound
Poisson process P(t) which has a single jump at time T;, on [t,_1,t,) with
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value S;,, then

tn S1
L1 ga)tnr = /t ) W (s1)P(s2) dsadsy
n—1 n—1

T; tn
= Oiy—1 W(81>(81 — tn—l) ds1 + SZ‘Q W(sl)(sl — Tm) dsy.
tn—1 T;

6.4 Fractional Brownian motion

A self-similar process with long range dependence appears in a wide range of
applications such as hydrology, geophysics, biology and economy [26]. The
idea of such process was first suggested by Kolmogorov and later Mandelbrot
& Van Ness introduced the fBm, a family of Gaussian random functions
defined by

Bu(t) = 1(/0 (1= "2 — (~)" 2] aB(s)  (67)

T(H+1/2)\ )
t
_ H-1/24B(4
+ [t= 9 Ran(),

where H is a Hurst parameter satisfying 0 < H < 1 and I represents the
Gamma function, i.e., I'(e) := [;¥ 2% ' exp(—a)dz [74]. The integrator B
is an ordinary Brownian motion and the fBm (6.7) reduces to B when H =
1/2.

The fBm is a Gaussian process. It has stationary increments satisfying
E[By(t) — By(s)] = 0 and the variance is given as E[(Bg(t) — Byu(s))?] =
|t — s|*# 02, where we take ¢ = 1 in what follows. In addition, from the
self-similar property, the covariance function is given as

E[By(t) Bu(s)] = %(RH 4 s2H | oM.

In literature, a couple of exact and approximate methods have been used
to generate fBm [26, 29, 102]. Among them, the Cholesky method, the FFT
method and the RMD method [83] are introduced in this section. After
generating random Gaussian increments by the above three methods, By (t)
is obtained by summing up the increments appropriately.

The Riemann integral of the fBm is defined as

ti

I, (By) = Br(s)ds, (6.8)

ti—1

and we can approximate (6.8) by the Riemann sums as

m

Ii,_,(Bu) = Ar Z By (ti-1 + kAy), (6.9)
=1



98 CHAPTER 6. INTEGRALS OF STOCHASTIC PROCESSES

where A; = A;/m for Ay = t; — t;—1 and m sufficiently large to achieve the
desired accuracy.

For example, in order to achieve A?-order convergence, the difference
between I;, ,(By) and the Riemann sum should be A}-order, i.e.,

t; m
/ BH(S)dS—A[ZBH(ti71+k‘A[) SCA?, (6.10)

tiz1 k=1

for some constant C' > 0. By Hélder condition, the left hand side of the
equation (6.10) can be evaluated as follows:

t; m
/ BH(S)dS—A[ZBH(ti—l‘FkA])
ti—1

k=1
m i— 1+kAI
< Z/ |Br(s) — By (ti—1 + kAp)| ds
k=1 7. 1+(k I)AI
m i— 1+kAI
< Z/ Cels — (tiy + kAT ds
k=1 _1+(k—1)Ar
_ Ce = EA Ht1-—eqtioi+kA;
__HJrleZ[((ti_l—i_ I)_S) ]tz 1+H(k—1)Af
k=1
CG % H+1—€
T Hr1—e Z ((tic1 + kAL — (tioa + (K= 1)Af))
k=1
_ C€ % H+1—e __ C H—e __ C H— e
_H+1—ekzlAf = 1 MANALT = Ay

where C¢ > 0 is a random variable depending only on e¢. This means that
the AZ-order convergence can be attained if the following inequality holds

Ce

HE<
H—i—l—eA CA

i.e., the condition A¥~¢ < C'(H 41 — €)A?, where ' = C)/C,, is necessary
for A2-order convergence (see also [38, 64, 94, 95]).

We can generate By (t) with very small step size in order to have I(Bp)
= fo By (s)ds with the desired order, however, solving large covariance
matrlx is tlme consuming, e.g., Cholesky decomposition requires n>-order
time for n x n matrix and it becomes (10 x n)3-order if we take m = 10
n (6.9). To avoid this large calculation, we generate first By(t) by the
above three methods and then generate intermediate points on each interval
[ti—1,t;] by the RMD method.
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There is a different approach to avoid the calculation of the Riemann
sums, i.e., (6.9). The idea is that we estimate the covariance matrix of fBm
and its integral and calculate the square root of it. Then we generate By (t)
and its Riemann integral I(Bpy) simultaneously.

6.4.1 Covariance matrix of By(t)

In order to generate By (t), firstly we generate the covariance matrix:

G = (E[X; X;])i;, (6.11)
where
(Xi, Xj) = (Bu(ti) — Bu(ti-1), Bu(t;) — Bu(tj-1)) ,
fori, 7 = 1, ..., n. For simplicity, we assume an equidistant partition on a
given interval [to,t,] and Ay = ¢; —t;—q fori =1, ..., n.

(1) G = (E[X; X;])

0,

E[(Bu(ti) — Br(ti-1)) (Bu(t;) — Bu(tj-1))]
= E[Bu(ti)Bu(tj) — Bu(t;)Bu(tj-1) — Bu(ti-1)Bu(t;)
+Bp(ti-1)Br(tj-1)]

1
= (B + 87—t — ) — (B 4+ B2, — [t — 1y

—& + T — i — P+ (@ + 2T =t — tj—lle)>

1
=S a4 o = G = [ = ). (612)

a b c d

(i) Case t; = t;

The two terms a and d in (6.12) are canceled out and we have

(6.12) = (t; — t;1)* = A2, (6.13)
(ii) Case t; > t;
1
(6.12) = —5 ((t = t5)*" = (tia — ) = (ti — ;1) + (tia — t-1)*"")
1
— §A§H (2K + (k — 1)*" + (k +1)*1), (6.14)

where t; — t; = kA,
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(ili) Case t; < t;

(6.12) = —% ((tj - ti)2H — (tjfl - ti)2H - (tj - tl;l)QH + (tjfl - t171)2H)

1
- iAfH (=2k* + (K — 1)*7 + (b + 1)*H7), (6.15)

where t; —t; = KA.

The equations (6.13), (6.14) and (6.15) give the covariance matrix G1;
as

Qg aq &%) o Qp—1
aq o7y} aq T Qp—2
Gii=| @ a1 Qo Op-3 | (6.16)
Op—1 Op—2 0Op-3 - (&%)

where g is given by (6.13), a; by (6.14).

The Cholesky method

The matrix (6.16) is always positive definite due to the local non-determinism
of fBm [103|. Then it has a Cholesky decomposition and it is given as

Gy = LALT = (LVA) (VALT) = (LVA) (LVA)T = L L7,

where L is a lower triangular matrix and A is a matrix of eigenvalues, i.e.,
A = diag(Xo, - .., Ap—1) with eigenvalues \; for i =0, ..., n —1 [61].
Suppose that the matrix L is given by

i O - 0
- l2,1 l2,2 s 0
L= . .
ln,l ln,2 ln,n
Prepare a vector n = (n1,ng, ..., n,) which has independent and identically

distributed (iid) A/(0,1) components. The product of L and n”":

lip 0O -+ 0 li1ma X1

log la2 -+ 0O . 2 long Xo
(n17 n27 ,’I’Ln) = =

ln,l ln,2 T ln,n Z?:l ln,ini Xn

gives the increments of fBm, i.e., By (t;) — By(ti—1) fori =1, ..., n.
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Now we take B (tg) = 0 and

Bu(t1) — Bu(to)) = Xu
BH(tl) = X;.

Similarly

BH(tQ)—BH(tl) = X

Bu(ty) = Xa+By(t) =) X;.

This means

Bp(tm) = Y _X;. (6.17)

The fast Fourier transformation

The idea of using the FFT was firstly introduced by Davies & Harte [27] and
later it was generalized by Dietrich & Newsam [30] and Wood & Chan [102].
Similar to Cholesky decomposition, the method estimate the square root of
the covariance matrix G711, however, it can be applied only to matrices of
size 2% x 2% where s € N. When n < 2° for some s € N, we need to embed
G171 firstly in a Toeplitz matrix G7; of size 2° x 2°. Then G7; is embedded
in a circulant matrix C;; of size 25F1.

For simplicity, we assume that n = 2° for some s € N, i.e., we do not
have to consider about embedding G1; in G7;. The circulant matrix C1; of
size 2n = 25F! can be obtained in the following manner:

o aq ay o apr 0 ap1 a2 -
o1 Qg ar o a2 ap1 P a0 an
fa%) aq ag o Qpe3 ap2 ap1 P - a3
Oy = | =1 On—2 Onoz Qo a fa%) ag - D
- b
¢ ap1 ap2 - m Qg a1 Qg Qg
a1 ap1 o a2 o ag ap o Q2
ap—2 ap1 P - a3 Qo o ag vt Qo3
aq (o%) ag - D apq o ap2 ap3 - Qp
(6.18)

where ® is arbitrary. Then we generate a random vector X ~ N (0,G1;) as
follows (see details in |26, 29]).

Define Y = QAY2Q*Z where A2 = diag{)\(l)/Q, e )\;7/12_1} and Z =
(Zo, ..., Zan—1)T is a vector of independent N'(0, 1) random variables. Then
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Y ~ N(0,C11) because @ is unitary. If we take a subvector X = (Yo, ..., Y,_1),
X has the desired property, i.e., X ~ N(0,G11).

Step 1.
The fast Fourier transform is performed to the elements of the first row of
the matrix Cy1 in order to determine the eigenvalues A:

2n—1

2mijk
A = —
K e (252

fork=0,---,2n—1.

Step 2.
Generate random numbers Z ~ N(0,1) and determine W = AY/2Q*Z. Q*Z
can be generated in the following manner:

e Generate two standard normal random variables for Q*Zy and Q*Z,,,
the first and n-th elements.

e For 1 < j < n, generate two independent standard normal random
variables Vj(l) and Vj(2) and calculate

Q*Z;, = 1 v L@
7 ﬁ( 1+ iv)?)
*7 _ 1 (1) _ s/
Q" Zon—j = ﬂ(v] —ZV]-

Step 3.
Generate Y by the fast Fourier transform and X can be obtained by picking
up n elements from the top of Y:

fork=0,...,n—1.

We sum up the generated Gaussian noise as we did in Cholesky decom-
position case and the fBm at time t,, can be obtained as (6.17).

The random midpoint displacement method

The RMD method was first introduced by Fournier et al. as a method to
generate fractal terrains [34]. The base idea of the RMD method is bisection
and interpolation and it generates intermediate points keeping the original
property of fBm on a given interval. The Figure 6.2 illustrates the first two
steps of RMD method [86].
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RMD method

By(t)
06 08 1.0 1.2
|

04

Figure 6.2: The first two steps of the RMD method.

Assume that A and B are points at ¢ = 0 and 1 and denote their values
by X (0) and X (1), respectively. The process is fBm and the increment has
mean 0 and variance:

VX (t2) — X (t1)] = |ta — t1/* 02, (6.19)

for some 0 < t; < t9 < 1.

The point C'is a midpoint between A and B and ¢ = 0.5. X (0.25) is then
given as the sum of the average of X (0) and X (1) and a Gaussian random
offset Dy with mean 0 and variance A?, i.e.,

X(0.5) = %(X(l) + X(0) + D1 (6.20)

Now we subtract X (0) from both sides of the equation (6.20) and take the
variance:

VIX(0.5) — X(0)] = V B(X(n — X(0)) +D1] - %MA%. (6.21)

By the equation (6.19), the left hand side of the equation (6.21) is (1/2)2 o2

and this gives
N1
A2 = — —

The points D and F are midpoints between A and C' and C' and B and
t = 0.25 and 0.75, respectively. X (0.25) and X (0.75) are then given in the
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same manner as

X(0.25) = %(X(OB) +X(0) 4 Day X(0.75) = %(X(l) + X(0.5)) + Ds,

(6.22)
where Dy is a Gaussian random offset with mean 0 and variance A3. Sub-
tracting X (0) from the both sides of the first equation in (6.22) and taking
variance give

2H
V[X(0.25) — X(0)] = V [1()((0.5) — X(0) + Dg} _1 <1) o2 + AL

2 2
(6.23)
The left hand side of the equation (6.23) is (1/4)*#¢? and

()" 6)")

This argument yields the variance of the midpoint displacement D,, at n-step
as

(1 - 22172) 2,

After generating By (t) by the Cholesky decomposition or the FFT,
we generate enough intermediate points on each subinterval by the RMD
method to have the desired resolution. In general, the RMD method re-
quires n-order computational costs when n points are needed and combining
Cholesky decomposition or the FFT with the RMD method is much faster
than estimating the square root of the large covariance matrix and calcu-
lating the Riemann sums although the RMD method is not exact while the
Cholesky decomposition and the FFT are.

6.4.2 Bpy(t) and I(By) by the Cholesky method

In order to generate fBm, By (t), and the Riemann integral of fBm, I(Bp),
simultaneously, firstly we generate the full covariance matrix:

o (Gn G12> _ ((E[Xin])i,j (E[Xl}/}])zj>7 (6.24)
Ga1 Gao (E[Y: X5])iy  (E[YiYj))ij

where
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(Xi, X5) = (Bu(t) — Bu(ti-1), Bu(t;) — Bu(tj-1))
2
(Xi,Y;) = (BH(t,-) —BH(ti—l),/ (Bu(t) —BH(tj—l))dt> ,
tj,1
t;
(Y, X;) = / (Bu(t) — Bu(ti-1))dt, Bu(t;) — Bu(tj-1) | ,
ti—1
t; t;
0¥ = [ Bt~ Bultoa)at [ (Bult) - Bult-0)it ).
ti—1 ti—1
fori, 7 =1, ---, n. Then we estimate each covariance matrix and sum them
up. For simplicity, we assume again an equidistant partition on a given
interval [to,t,] and Ay = t; —t;—1 fori =1, ..., n.

(1) Gu = (E[X; Xj])i,j

As we see in subsection 6.4.1, the covariance matrix Gy, is given as (6.16).

(2) Ga1 = (E[Y; Xj])i,j

| ElBu) - Butti1)) (Bulty) - Bult-)d:

B / E[Br (t)Ba(t;) — B (t) B (tj-1) = Bu(ti-1) B (t;)

—l—BH(ti_l)BH(tj_l)]dt

t;
5 [ (@ B e P — B 8 e P

ti—1
(B B — by — ) (4 BT~ (g — 4P )at
1

t;
=5 / (=t =P+ |t =t 7 + [ty — 4527 = [ty — tPT)dt.

ti—1 ~~

e f g h
(6.25)

Compute terms e, f, g and h separately again.

(i) Case t; = tj 1t e [ti—hti] gives t — tj <0,t— tj_l >0, t;_1— tj <
0 and tifl - tj,1 = 0.
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Term e:
1 [t " 1 [t "
5| Cle-upPha = <5 [ -
ti—1 ti—1
1 2H+1
= - t; —ti—
2(2H+1)(Z i-1)
Term f:
l/ti |t . 1‘2Hdt _ 1/“ (t _ 4 1)2Hdt _ #(t —t 1)2H—|—1
2 )i, 7 2 /i, - 22H +1)" " '
Term g:
1t 21 I 21 1 2H+1
5 |ti_1 — tj‘ dt = 5 (ti — ti—l) dt = §(tz — ti—l) .
ti—1 ti—1
Substituting e, f and g in (6.25) yields
1 1
(6:29) = 5 (t: - t;q)2H T = §A§H+1. (6.26)

(ii) Case t; > tj 1t e [ti—hti] gives t — tj >0,t— tj_l >0, ti_1 — tj >
0 and t;_1 — tj—1 > 0.

Term e:
1 b 2H 1 b 2H
5| Cle-nPha = =5 [T - t)ar
ti—1 ti—1
1
= ~sam o (= ) = (i = )" ).
Term f:
1 t; 1 ti
/ it —t; 1 PHdt = / (t —t;_1)*dt
2 ti—1 2 ti—1
1
— m ((tz o tj_1)2H+1 . (ti—l . tj_1)2H+1) )
Term g:

t; 1
/ (ki1 = 1) dt = (i — i) (tin — 1)

ti—1

1 [t ol 1
2/ [ti1 =7 dt = 5

ti—1
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Term h:

1 b 2H 1 i 2H
/ (=[tiy —tja[)dt = —2/ (ticx —tj-1)"" dt

2 ti—1 ti—1

1
= _Q(ti —tio1)(tio1 — tj—1)*H.

Substituting e, f, g and h in (6.25) gives

(6.25) = _1{ ! ((tz — ) (g — )P

202H +1
_(ti _ tj,1)2H+1 + (tifl _ tj,1)2H+1)

—(ti — tiz1) (i1 — tj)QH + (ti —tim1)(tim1 — tj71)2H}

= _%A?H+1<2H1+ : (2K2HH (] — )20+ () 4 1))

(k=12 4 ), (6.27)

where tz‘ — tj = kAt.

(iii) Case t; < tj: t € [ti—1,ti] givest —t; <0, t—tj_1 <0, t;-1 —t; <
0 and t;_1 — tjfl < 0.

The equation (6.25) can be estimated in the same manner with the case
t; > tj and

(6.25) — { 1 ((tj _ ti)QHH . (tj—l . ti)2H+1

1
22H +1

—(ty — ti) P (4 — ti_1)2H+1>
+(ti —tic1)(tj — ti—1>2H — (ti —tic)(tj—1 — ti—1)2H}

1

1
_ 7A2H+1(
! 2H +1

(k4 1)2H sz), (6.28)
where t; — t; = kA;.

(3) G12 = (E[X;Yj])

(]

The argument for Gi9; can be applied to G2 = (E[X; YJ])”
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/t 7 E(Bu(ts) — Bu(tis)) (Bu(s) — Bu(t,_1)lds

-1
tj
— [ EBu(t)Bu(5) - Bult)Bulti-) - Balti)Bu(s)
t
+Bu(ti-1)Bu(tj-1)]ds
tj
| 2 ) (7 4 80— =1y
— (71 + 52 — [t — )+ (87 + 5 — [ty — tj_lyQH)>ds

1 [l
= 2/ (— |ti — S|2H + ’ti — tj_1|2H + ‘tz’_l — S‘QH — |ti_1 — tj_l‘QH)dS.

ti—1

i j k l
(6.29)

(i) Case t; = t;

Obviously

1 1
(6:29) = o (ti — b)) M+ = §A§H+1. (6.30)

(ii) Case t; > t;

The equation (6.29) can be estimated in the same manner with (6.25)
and

1
{ <(ti — )2 (4 — ¢)2H A

6.29) =
( ) 2H +1

1
2

(5 — i) (i — tj—1) ' = (8 — tjoa) (tim1 — tj—l)QH}

1

2H+ : (2k2H+1 . (k . 1>2H+1 o (k + 1)2H+1)

1
= 3

H(k+1)2H — k2H>, (6.31)

where t; —t; = kA;.

(ili) Case t; < t;

Similarly
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629) = — oot ()P — (1o — 1)

where t; —t; = KA.
(4) G2 = (E[Y; Y}])

)

t; t;
/ / E[(Br(t) - Brr(ti1)) (Bir(s) — Brr(t;1))|dsdt
ti—1 Jtj—1
t; t;
- / / E[Bi(t)Bu(s) — Bu(t)Bu(t;1) — Bu(ti1)Bu(s)
ti—1 Jt;—1
—l—BH(ti_l)BH(tj_l)]det
1 t; t;
o [ (R e Py (2 e P
2 ti—1 Jtj—1
— (7 + 52 — [t = s + (8 + 5T =ty — tj_lyZH)>dsdt

1 [t [l
= 2/ / (= [t = st — b0 P iy — s — |ty — tj—1 2T )dsdL.
ti—1 Jtj—1 —

m n o P

(6.33)

Compute m, n, o and p separately.

(i) Case t; =t : t, s € [ti—1,t;] givest —t;_1 > 0and t;_1 —s < 0. In
addition, ti—l - tj—l =0.

Term m:

1 t; t; 1 t; t;
/ / (|t — s|2M)dsdt = —/ / it — s|2H dsdt
2 ti—1 Jtj—1 2 ti—1 Jti—1
ti t ti
/ (/ (t8)2Hds+/ (st)2Hds> dt
ti—1 ti—1 t

| =
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- —sprrn ), (€

1—1

_ 8)2H+1]t + (s — t)2H+1]iz‘) dt

ti—1

t;
— 1/ ((t . ti—1)2H+1 + (ti . 25)2H—i-1) dt
t

2(2H +1)

1—1

- _ 1 [(t _ ti_1)2H+2 _ (ti _ t)2H+2]

2(2H + 1)(2H + 2)
1

t;
ti—1

— (ti o ti_1)2H+2.

(2H + 1)(2H + 2)

Term n:

1 t; t;
2/ / [t —t; 1> dsdt
ti—1 Jtj1

Term o:

1 t; t;
2/ / |ti_1 — S|2Hd8dt
ti—1 Jtj—1

Substituting terms m, n and o i

(6.33) = — ! (t;
(2H+ 1)(2H +2)

1 2H+2
‘_t‘i
2H+2(Z i-1)

— 1 A2H+2
2H +2°t

(ii) Case t; > tj : t € [ti—1,t;]

1 t; t;
= / / (t —ti_1)*Hdsdt
2 ti—1 Jti—1

1 ti
= i(ti — tz‘—l)/ (t — ti—1)*dt

ti—1
1

- = (t—t 2H+2.
2(2H+1)(z 1)

1 t; ti
- / / (s —ti—1)*Hdsat
2 ti—1 Jti—1
t;

I 1 9H+1
- = b — dt
2/“_12H+1(1 =)
1 2H+2
pr— —ti
2(2H+1)(z i-1)

(6.34)

and s € [tj_l,tj] yield t—s > 0, t— tj_l

>0,t;_1—s>0and t;_1 — tj—1 > 0.
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Term m:

1 [t t 1 [t t;
- (—|t — s]*H)dsdt = —= (t — s)*dsdt
2 2
ti—1 Jtj1 ti—1 Jtj
1 [t 1 €
=-3 - t—s)2 T dt
2/ti_1[ a1t

tj—l

= 1) /:i ((t B tj)QH-H (- tj_1)2H+1) dt

2(2H + 1

= 1 . N2HA+2 ) N2H+2
T 2(2H + 1)(2H +2) (=) (timr = t5)

—(ti —tj 1) 4 (tia — tj—1)2H+2)-

Term n:

1 [t (i 1 [t ptin
/ / it —t;|*dsdt = / / (t —t;)*P dsdt
2 t; tj 2 t; tj

1 tit1 -
= 5=t [ =t

1

- m(tﬁl — 1) (i1 — )2 — (t; — )21

Term o:

1 t; tj 1 t; tj
= |ti_1 - S|2Hd5dt = = (ti—l - S)QHdet
2 2

ti—1 Jtj—1 tic1 Jtj—1

1 [b 1
= / — ((ti—l — tj)2H+1 — (ti—1 — tjfl)QH—H) dt
ti—1

2 2H +1

1
= ~gam )t ) (i = )P =t = )T

Term p:

1 t; tj 1 t; t;
/ / (=|ti1 — tj1*)dsdt = —/ / (tioy —tj-1)*"dsdt
2 ti—1 Jtj—1 2 ti—1 Jtj—1

1
= —§(t,- —tim1)(tj — tj—1)(tic1 — tj—1)*".
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Substituting terms m, n, o and p in (6.33) gives

(6.33) = S2H + 1;(2H ) ((ti — tj)2H+2 —(tii1 — tj)2H+2

—(t — tj_1)2H+2 ¥ (i — tj_1)2H+2>

1
+m(tj —tj1) (b =t 1) = (i — t50)*7H)
1
_m(ti - ti—l) ((ti_1 — tj)2H+1 . (ti—l . tj_1)2H+1)
1
—5 (= i)t — 1) (i1 — t_1)2H.

Suppose that t; —t; = kA;. Thent;_1 —t; = (k—1)Ayand t; —tj_1 =
(k +1)A; and

(6.33) = ;A5H+2(2H1+ 1 ((k + 12H+ _ (f — 1)2H+1) _ R (6.35)
+(2H - 1)1(2}] 5 (2K2HH2  (k — 1)2H+2 (4 1)2+2) >

(iii) Case t; < tj 1t e [tl;l,tl'] and s € [tjfl,tj] givet—s<0,t— tjfl
<0,t;_1—s<0andt;_1— tj_l < 0.

The terms m, n, o and p can be estimated in the same manner and

(6.33) = S2H + 1:;(2H ey ((tj — )22 () —ty)2H 2

—(t; — ti1) 22 4 (1 — ti_1)2H+2>

1
+m(ti i) () — )P (o — fg)2H
1
_m(t]’ - tj71) ((tj,1 _ ti)QH—l—l _ (tjfl _ ti71)2H+1)
1

—§(ti —tio1)(t; — tj—1) (-1 — tim1) .

Suppose that t; —t; = kA;. Then t;_; —t; = (k—1)Asand t; —t;—1 =
(k+1)A; and

(6.33) = %Af’”?( ((k+ 1)1 — (& — 1)) — 21 (6.36)

2H +1
1
2H +1)(2H + 2)

+( (2k2H+2 ~ (k- 1)2H¥2 (4 1)2H+2) )7
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which is equal to (6.35).

For simplicity, denote

&%) aq &)
(e73] (&7} aq
G = a2 ai Qg

Qp_-1 OQp—2 0Onp_3

Bo b1 B2
T Bo P
G12 = 72 71 /BO

Tn—1 TYn—-1 TYn-3
Bo m

b B m
Goy=| B2 B Bo

ﬁn.—l /Bn.—Q 57;—3

0o 01 02
01 9o 01

Goy=| 02 01 o

57171 5n72 5n73

where «q is given by (6.13), a; by (6.14), Bo
(6.32), dp by (6.34) and ¢; by (6.35) for i =

113

do
by (6.30), B; by (6.31), v by
1, ---, n— 1. Obviously the

covariance matrix G given by (6.24) is a symmetric matrix which elements

are real numbers.

The same argument in subsubsection 6.4.

1 gives the covariance matrix

G has a Cholesky decomposition and it is given as G = L LT. Suppose that

the matrix L is given by

l1’1 0
. lon 22
L= ) .

lon1 long2

l2n,2n

Similarly prepare a vector n = (ny,ng, ..., ng,) which has iid A (0,1) com-
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ponents. Then,

11,1 0 e 0 l1,1n1
12,1 12,2 e 0 T Z?:l lg,mi X
. . . (n17n27"'7n2n) = : = (Y) )
long lonz ... lopon 22221 lon,in;
where X and Y are given by

X1 liing Y; Zi;ﬁl lnt1,imi
Xo S22 laing Y S 0y

X = . = . ’ Y = . = . ’
Xn > iey lnjimi Yo S Do

which correspond to the increments of fBm By (t;) — By(ti—1) and the inte-
gral ftil_l(BH(s) — By (ti—1)) ds.
Now we take By (tp) = 0 and

By (ti) — Bu(to) = Xi
BH(tl) = Xl.

Similarly
By (t2) — Bu(ti) = Xo

Bp(ta) = X2+BH(751)=ZXZ'.

This means

Bi(tm) = _ Xi.
i=1
The m-th element of Y is given by
tm tm tm
Y, / (Bu(s) — Bi(bm1))ds = | Bu(s)ds — Bi(tm_1) / ds
tm—1 tm—1 tm—1

and we obtain

/ " By(s)ds = Y + Bir(tm 1)y, (6.37)

tm—1



6.4. FRACTIONAL BROWNIAN MOTION 115

The equation (6.37) gives the Riemann integral of By (t) on [tg, ] as

tm t1 tm
By(s)ds = BH(s)ds+---+/ Br(s)ds

to to tm—1

= (Yl + BH(tO)At) +--+ (Ym + BH(tm—l)At)

= Y (Yi+Bu(tis)Ay).

=1

6.4.3 Comparison of computational costs

Here we compare the computational costs to generate By (t) and I(By) on
[0, 1] interval by the following methods:

1. Solving the full covariance matrix G by Cholesky decomposition and
generating By (t) and I(By) simultaneously.

2. Solving G171 by Cholesky decomposition, generating intermediate points
by the RMD method and taking the Riemann sums for I(Bp).

3. Solving G171 by the FFT, generating intermediate points by the RMD
method and taking the Riemann sums for I(Bp).

4. Generating By (t) with small step size by the RMD method and taking
the Riemann sums for I(Bp).

The step size for By (t) are Ay = 274, 276,278 and 2719 and the step size
for I(Bg) for the methods 2-4 are set to Ay = 278 2712 2716 a4 2720,
ie., A = AZ

Computational costs to generate 1 sample path as well as 1000 paths by
the above four methods with different step sizes A; are listed on Tables 6.1
and 6.2 and also illustrated in Figure 6.3. We consider the simulation on
the [0, 1] interval and the number of subintervals in each column is given by

1/A:.

oA, [ 2 26 28 2-10

Method 1 [| 0.007063 | 0.020983 | 0.514968 | 23.830383
Method 2 || 0.004789 | 0.025458 | 0.225578 | 12.767898
Method 3 || 0.004829 | 0.009526 | 0.068878 | 0.851457
Method 4 || 0.004082 | 0.010707 | 0.034688 | 0.740504

Table 6.1: Computational costs to generate 1 sample path.
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A | 2 2-6 28 2-10
Method 1 || 1.149970 | 2.806160 | 18.66572 | 170.5010
Method 2 || 2.882757 | 9.091249 | 52.02268 | 693.3296
Method 3 || 3.587168 | 9.020846 | 51.34058 | 679.4948
Method 4 || 3.930499 | 10.310124 | 51.16574 | 655.2259

Table 6.2: Computational costs to generate 1000 sample path.

Computational cost

[+
(=]
T
@
- 2
g 2
o
[
12}
£
3 2
E 2 1 Number of
; intervals Method
— ¥ —— Cholesky
@ — — 25— Cholesky+RMD
S | e+ 2 —— FFT+RMD
2 -—- o RMD
T T T T T T
0 200 400 600 800 1000

Number of sample paths

Figure 6.3: Comparison of computational costs to generate Bp(t) and
I(Bp).

In general, the FFT and the RMD method require O(nlog(n)) and O(n)
computational costs, respectively, while Cholesky decomposition does O(n?)
[60, 61, 86]. In fact, Table 6.1 shows the FFT and the RMD method have
a big advantage from computational point and they generate sample paths
much faser than Cholesky decomposition. However, it is necessary to repeat
the whole process by these two methods while in case of Cholesky decompo-
sition, we can reuse the obtained square root of the covariance matrix and
generate new sample paths by multiplying newly generated random num-
bers. We generate many sample paths in practice and if the number of
sample paths to be generated is quite big, the total computational costs by
Cholesky decomposition (the method 2) are almost the same with the FFT
(the method 3) and the RMD method (method 4).

The computational costs to generate one sample path by the method 1
gets very large especially when the step size A; gets smaller, i.e., the number
of intervals gets larger. However, we can reuse the estimated square root of
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the covariance matrix in the method 1 and Table 6.2 and Figure 6.3 show
that it requires the least computational cost when the number of sample
paths are big.

fractional Brownian motion Integral of fBm

o wn

S S

—— Cholesky =) —— Cholesky
— Cholesky+RMD — Cholesky+RMD

< (=]

S S
=}
o | 3

£ o T 9 7
T [24] [=}

@ =

[=]
(=] (=]

o 7| =
[=]
o g

u g
it <

T \ T T \ T \ T \ \ T \
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time

Figure 6.4: Sample paths by the method 1 and the method 2 with H = 0.6,
A; =27%and A; = A2,

Figure 6.4 illustrates the sample paths of By (t) and I(Bp) generated by
the method 1 and the method 2.
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Chapter 7

Numerical examples

Analytical solutions are rarely obtained in practice and numerical simulation
can give us useful information of the behavior of the systems. In addition,
it can yield valuable insights into the problem of identifying which variables
have big impacts on the systems and we can see their change in behavior
under different conditions.

As we saw in previous chapters, we can control calculation error by step
sizes, i.e., the approximation with small calculation error will be obtained
for small step sizes. On the other hand, the computational costs get higher
for such small step sizes and it is quite important to choose appropriate
differential equation solvers and suitable step sizes. In particular, when the
system is stiff, explicit schemes do not perform well and implicit schemes
should be used because they are more stable.

Figure 7.1 is the simulation result of hepatitis C virus (HCV) kinetic
model [6].

250000

Infectious Virus
Noninfectious Virus
150000

0 50000

0e+00 1e+06 2e+06 3e+06 4e+06

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Figure 7.1 continued.

119



120 CHAPTER 7. NUMERICAL EXAMPLES

- (=]
5 g |
+ =}
] &
i ] - ]
> 2
[&] g 8 o
= -
o T T 2
R 2 2
E s &
- n
(=1
+ [=]
@ (=1
o~ (=1
S 4
T T T T T T T S T T T T T T T
o™
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time Time

Figure 7.1: Simulation results of HCV model by different solvers.

The black line is approximated by explicit Euler scheme (3.18) and the
blue and red lines by lsoda [46], an LMM which detects stiffness of the
system and switches automatically between stiff and nonstiff methods. The
step sizes are set to 0.25 for the black line, 0.5 for the blue line and 0.01 for
the red line. The black line describes completely different trajectory even
though its step size is smaller than the blue line, while the blue line coincides
well with the red line, the "exact” solution.

There are various kinds of noisy scenario in practice and three different
kinds of noise processes are introduced in section 7.1. Then, the numeri-
cal schemes derived in the previous chapters are applied to biological and
medical models. Systems of RODEs are transformed into RODE-SODE pair
in section 7.2 to section 7.5 and RODE parts of the systems are solved by
the numerical schemes introduced in chapter 3. Only numerical schemes for
RODEs are developed in previous chapters, but in general, many systems
are much more complicated and they depend not only on time, but also on
space, i.e., we need to solve random partial differential equations (RPDEs).
One approach is method of lines. RPDEs are discretized by method of lines
with respect to spatial parameter and they are transformed into a system of
RODESs so that the derived schemes can be applied to the system. In sec-
tion 7.6 and section 7.7, RPDEs are discretized in space and RODE-Taylor
schemes as well as SLMMs are applied to the systems. A model with affine
structure is introduced in section 7.8 and the affine-RODE schemes in chap-
ter 4 are used. In the last section, 7.9, a simple system of RODEs with
different kinds of noisy scenario are investigated and their trajectories are
compared here.

In order to see the performance of the numerical schemes, trajectories of
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solutions and computational costs are illustrated in section 7.2, section 7.3
and section 7.9 and the error vs step sizes as well as their computational
costs are compared among them in the rest of the sections.

7.1 Noise process

Biological systems such as human body can be considered as random envi-
ronment. They vary randomly with respect to time, but they are assumed
to be continuous and essentially bounded.

One simple example to obtain bounded noise processes is implementing
a Wiener process Y (t) in cosine function, i.e.,

c(Y(t) :=co(1 —2vcos(Y(t))), (7.1)

where v is a positive parameter. A typical example of sample paths and the
histogram of the values are illustrated in Figure 7.2. The process ¢(Y (t))
has values on the interval [co — v, ¢o + v], especially more values near its
boundaries ¢g — v and ¢g + v.

Switching effect Histogram of c{Y(t))

08
1
S —
40
|

30
I

(Y (1)
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I
Freguency
20
1
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10

T T T T T T T T T T 1
0 50 100 150 200 250 0.3 0.4 0.5 06 07

03
1
0
L

Time

Figure 7.2: An example of the switching noise (7.1). The parameter is set
tocg = 0.5 and v = 0.2.

Second example also gives noisy switching effect. Here a positive param-
eter k is replaced by the stochastic process

Y ()
EY(t) =ko(1—-2v—7= 7.2
o) = (1-200 105 ). (7.2
where ko and v are positive constants with v € (0,1]. The noise process
E(Y(t)) tends to peak around ko(1 £ v), and is thus suitable for a noisy
switching scenario.
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Predatory rate Histogram of k(Yt)
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Figure 7.3: An example of the switching noise (7.2). A Wiener process is
implemented in this example and the parameters are set to kg = 0.2 and v
= 0.2.

In the last example, a positive parameter § will be replaced by the
stochastic process

SV () = b <1 _ arctanY(t)) , (7.3)

™

where dp and v are positive constants with v € (0,1]. This process takes
values in the interval dp(1 £ v) and is centered on dy.

Loss rate Histogram of 5(Y(t))
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Figure 7.4: An example of (7.3). An OU process is implemented in this
example and the parameters are set to dg = 0.2 and v = 0.15.
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7.2 Tumor growth model

As an example of non-stiff system, we consider the cancer model from Wodarz
& Komarova [100], page 154, in which angiogenesis inhibition prevents tumor
cell division, namely

dc<t>_< rC(t) >( P(t) >_5c<t>,

dt eC(t)+1) \I(t)+1
‘“;Et) — apC(t) — bpP(t),
d;it) =(+a;C(t) — brl(t),

where C' is the population of cancer cells, P promoters of cancer cell growth
and [ inhibitors. The parameters are all positive except the inhibitor input
¢ which may be zero. Note that the coefficient functions and their partial
derivatives satisfy global Lipschitz bounds on the biologically relevant region
R3.

Replacing ¢ by the bounded random process ((Y (t)):

<(Y(t>) = Co <1 - 2”%) )

we obtain a system of RODEs:

do(t) ( rO(t) ) ( P(t) ) —8C(t),

dt eC(t)+1 I(t)+1
dflit) = apC(t) - pr(t),
PO _ (v )+ wcw) ~ i),
or the equivalent vector 1t6 SODE, i.e., a RODE-SODE pair:
ct) (<) () - e 0
P(t — 0
M apC(t) = bpP(1) dt + AW (). (7.4)
1(t) C(Y (t)) + asC(t) — brI(t) 0
Y (#) 0 1

In the following simulation example, the step size is fixed to A, = 0.2
for the EAES (2.35) and A; = A2 for other schemes. The parameters are
settor =1,0 = 0.1, ap = 4.5, bp = 0.11, a; = 0.2, by = 0.01, ¢ = 0.34,
(o = 4 and the initial population of cancer cells Cy = 35. The other initial
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values are obtained by the quasistationary approach and the initial value of
promoters Py and one of inhibitors Iy are given by Py = ap/bp Cy and Iy =
(o + arCy)/bs. Moreover, the spread of the noise v is fixed to 1.

Solutions of the system (7.4) are approximated by the explicit Euler
scheme (3.18), the derivative-free explicit 1.5 order scheme (3.24), the Adams-
Bashforth scheme (3.37) and the EAES (2.35).

Figures 7.5 and 7.6 illustrate a typical sample path. The black line, the
red line and the light green line are the population of the cancer cells, the
promoters and the inhibitors, respectively. The black line, the dark blue
line, the red line and the light green line on the left figure of Figure 7.7 are
the solutions by the explicit Euler scheme (3.18), the derivative-free explicit
1.5 order scheme (3.24), the Adams-Bashforth scheme (3.37) and the EAES
(2.35). The histogram shows the sum of 100 times simulation time by each
scheme.

All solution curves look very similar, however, the computational cost for
the EAES (2.35) is much smaller than the ones by other three schemes.

explicit Euler scheme Derivative-free explicit 1.5 order scheme
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Figure 7.5: The approximation by the explicit Euler scheme (3.18) and the
derivative-free explicit 1.5-order scheme (3.24). The step sizes are A, = 0.2
for the EAES (2.35) and A; = A2 for the other schemes. The parameters
are set tor = 1, 6 = 0.1, ap = 4.5, bp = 0.11, a;y = 0.2, by = 0.01,
e = 0.34 and (p = 4 with initial value Cy = 35, Py = ap/bp Cy and [y =
(Co + a;Cy)/br. The black line: the population of the cancer cells, the red
line: the population of the promoters and the light green line: the population
of the inhibitors.



7.3. HCV KINETIC MODEL 125
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Figure 7.6: The approximation by the Adams-Bashforth scheme (3.37) and
the EAES (2.35). The step sizes are A, = 0.2 for the EAES (2.35) and A
= AZ for the other schemes. The parameter values and the line colors are
the same with Figure 7.5.
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Figure 7.7: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the derivative-free explicit 1.5-order scheme
(3.24), Adams-Bashforth scheme (3.37) and the EAES (2.35). The parameter
values and the line colors are the same with Figure 7.5.

7.3 HCYV kinetic model

As an example of stiff system, we consider the epidemiological model in |7].
The three compartment HCV kinetics model given by

d‘;gt) — (1= pI(t) — eV (D),
U0 srove o (1- 910 10 g1,

dT(t) T(t) + I(t)
0o T2t

max
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where V' is a compartment for viruses, I for infected cells and T for target
cells. The parameters of the model are the effect of interferon €, the produc-
tion rate of new virus p, the clearance rate of virus ¢, the de-novo infection
rate 3, the proliferation rate of infected cells py, the death rate of infected
cells 9, the regeneration rate of target cells v and the maximum number of
cells Thaw-

We replace the parameter 0 by the bounded noise process §(Y (t)) given
as (7.3) to obtain a stiff system of RODEs:

d‘git) — (1= OpI(t) — eV (),
d;i“ = BTV (t) + pr (1 - W) I(t) = oy (),

dt

max

dT(t)_fy<1_T(t)+I(t)>.

This can be reformulated as a vector It6 SODE or a RODE-SODE pair:

(1 —e)pl(t) —cV(t)

V(t)
ARCEE BTV () + {pr (1 - D) —5(v (1) }1(1) .
T(t) v (1 TQH0)
Y (t) 01— 02Y (1)
0
| o | e, (7.5)
03

where, to be specific, we have taken Y'(¢) to be an OU process solution of
the Ito SODE:
dY (t) = (61 — 62Y (1)) dt + 03 dW (¢), (7.6)

with 61 non-negative and 62, 03 positive. This has the explicit solution
91 o 02t 2 (t—s)
Y(t) = N Yo — — + 03 dW (s).
2

In this simulation example, the step size is fixed to A, = 0.1 for the
TAES (2.36) and A; = A2 for other schemes. The parameters are set to € =
0.3,c =6, pr =0.2,0p = 0.42, v = 1 x 10°, T}z = 3 x 10° and the initial
population of the viruses ¥y = 1 x 107, the infected cells Iy = 1.9 x 105 and
the target cells Ty = 1.1 x 10%. p and B are given by p = c¢Vy/Ip and 3 =
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dolo/(Th Vp) from the quasistationary approach. The spread of the noise v
is fixed to 1 in this model.

Solutions of the system (7.5) will be approximated by the implicit Eu-
ler scheme (3.22), the derivative-free implicit 1.5-order scheme (3.26), the
Adams-Moulton scheme (3.38) and the IAES (2.36).

An example of sample paths is given on Figures 7.8 and 7.9. Here the
black line, the red line and the light green line are the population of the
viruses, the infected cells and the target cells, respectively. The black line,
the dark blue line, the red line and the light green line on the left figure
of Figure 7.10 are the solutions by the implicit Euler scheme (3.22), the
derivative-free implicit 1.5 order scheme (3.26), the Adams-Moulton scheme
(3.38) and the IAES (2.36). The histogram shows the sum of 100 times
simulation time by each scheme.

All schemes are implicit schemes and the trajectories on Figure 7.10
coincide well. The step size is set to A, = 0.1 for the IAES (2.36) and A; =
A2 = (.01 for the other schemes and the difference in the calculation time
is quite obvious.

implicit Euler scheme Derivative-free implicit 1.5 order scheme
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Cells
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E= o
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<
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0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time

Figure 7.8: The approximation by the implicit Euler scheme (3.22) and the
derivative-free implicit 1.5-order scheme (3.26). The step sizes are A, = 0.1
for the TAES (2.36) and A; = A2 for the other schemes. The parameters are
set to e =0.3, c =6, pr = 0.2, 6o = 0.42, 7 = 1 x 10°, Thez = 3 x 10% and
the initial values Vo = 1 x 107, Iy = 1.9 x 10% and Tj = 1.1 x 10%. The black
line: the virus compartment, the red line: the infected cells compartment
and the light green line: the target cells compartment.
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Adams-Moulton scheme IAES
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Figure 7.9: The approximation by the Adams-Moulton scheme (3.38) and
the TAES (2.36). The step sizes are A, = 0.1 for the IAES (2.36) and A; =
A2 for the other schemes. The parameter values and the line colors are the
same with Figure 7.8.
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Figure 7.10: The comparison of the trajectories and the calculation costs by
the implicit Euler scheme (3.22), the derivative-free implicit 1.5-order scheme
(3.26), Adams-Moulton scheme (3.38) and the TAES (2.36). The parameter
values and the line colors are the same with Figure 7.8.

7.4 Population dynamics

The next example is a non-stiff nonlinear scalar RODE originating in popu-
lation dynamics [45] and given by
dX(t)

— = rX(0)(k = X (1) cos(Y (1), (7.7)
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where Y (t) is an OU process satisfying (7.6).

The 1.0, 1.5 and 2.0-order RODE-Taylor schemes (3.18), (3.19) and (3.20)
are applied here. In addition, explicit SLMMs of order 1.0, 1.5 and 2.0 to be
applied are as follows

1
(EXlO) X, = X1+ iAt (fnfl + fn72) 5 (78)
(Ex1.5) X,, = Xp-1+Aifn—a+ Llfn—lf(l,o),tn_l + Llfn—2I(1),tn—2At

+L° faci 0,0y, 1 + L fa—2l(0) 4, 2Dt (7.9)

1 1 1
(Ex2.0) X,, = §Xn_1 + an_g + Ay (fn_1 + an_2> (7.10)

1
+L1fn—1f(1,0),tn,1 + §L1fn*21(170),tn72
0 1o
+L" frn—110,0),t,_1 + §L Tn—21(0,0),tn o

1
+L'LY frua D110y 000 + §L1L1fn—21(1,1,0),tn_27

as well as the Adams-Bashforth scheme (3.37), which has order 1.0 conver-
gence.

In the following simulations, the initial condition and the parameters are
fixedto Xg=0.5,r=5, K =3,0; =0, 82 =4 and 63 = 0.1. For comparison,
the solution of the 2.0-order It6-Taylor scheme (3.20) with the step size Ay
= 2712 i5 used as the "exact” solution and compared to the other schemes
with step sizes A, = 2710, 279 278 277 976 ypd 275,

The step size versus mean error and the computational costs for 100 times
simulation are shown on Figure 7.11. The solid thick lines on the first figure
are the error by 1-step schemes and the dashed lines by multi-step schemes.
The solid thin lines are for reference and they have slopes of orders 1.0, 1.5
and 2.0.

The error by 1.5-order Itoé-Taylor scheme (3.19) (solid cyan) coincides
closely with the 2.0-order Ito-Taylor scheme (3.20) (solid dark red) and is
not visible here. The Adams-Bashforth scheme (3.37) (dashed gray) has
order 1.0 convergence, but its consistency conditions satisfy C’;’j = ( for «
= (1,0) and (0,0). Moreover, Y (¢) oscillates around 0, which gives L' f ~ 0
and the remainder term of 1.0-order convergence schemes is also close to 0, so
the Adams-Bashforth scheme (3.37) in fact shows higher order convergence,
while the other 1.0-order SLMM (7.8) (dashed light brown) does not.

No big difference in computational costs can be observed here.
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Figure 7.11: The comparison of accuracy and calculation time for (7.7)

7.5 Lotka-Volterra model

Multi-species Lotka-Volterra model in [96] has a form:

df;‘lf) = (e — kaC(1)) AD),
dféﬂ = (en— kpC(1)) B(D),
d(z’h@ = (—eo+ kaA(t) + kpB(8) C(1),

where A, B and C are the population of two kinds of preys and predators,
respectively, k4 and kp the predatory rates of A and B, €4 and ep the birth
rate of A and B and ec the death rate of C.

In [96], a switching scenario was considered and the predatory rates k4
and kp were replaced by suitable functions:

a b
k A,B = =7 k AaB = T A D\
A4 B) =17 (B/A) B4, B) =17 (A/B)
for some constants a and b.

Instead of using three compartment model, a switching noise process is
implemented in two compartment model, i.e., one predator species and one
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prey species, and the corresponding RODE-SODE pair is given by

A*(t) (ear — k(Y'(¢)C™(t)) A*(2) 0
dl @) | = | (cec- k(YN A ) C*@) |dt+]| o | aw(e),
Y (%) 01 — 0o (1) 0

(7.11)
where A* and C* are prey and predator compartments, €4« the birth rate
of A* and ec- the death rate of C*. The predatory rate k(Y (¢)) is given by
the equation (7.2) with Y (¢) an OU process.

Explicit SLMMs of order 1.0, 1.5 and 2.0 to be applied are as follows

(EX]-O) Xn = Xn—l + %At (fn—l + fn—2) ) (712)
(BxL5) Xn = Xo1t A (a4 fa2) (7.13)

1

+L1fn—1[(1,0),tn_1 + §L1fn—21(1),tn_2At

0 1 0
L a0 tnos T 5L Fn2l0) 4,2 Bt

1
(EXQO) Xy = Xpa+ iAt (fnfl + fn72) (714)

1 1 1
+L" 111,00, + §L Tn—2L(1),t,_o At

0 1 0
L 1 (0,0) 601 + 517 fn—21(0) 42 Bt

1

+L'LY fra 110y, 0 5LlL1 Fa2I(11) 4 -

In addition, the EAES (2.35), 1.0, 1.5 and 2.0-order It6-Taylor schemes
(3.18), (3.19) and (3.20) are applied.

The initial conditions and the parameters are fixed to A§ = 100, C§ = 10,
ko =02, e4+ =1, €0+ =1.2,0, =0, 85 =5 and 3 = 0.1. For comparison,
the solution of the 2.0-order It6-Taylor scheme (3.20) with the step size Ay
= 2712 is used as the "exact” solution and compared to the other schemes
with step sizes Ay = 271 2710 979 9-853nd 277,

Figure 7.12 shows the results of 100 times simulation. The EAES (2.35)
shows 1.0-order convergence while the accuracy is relatively low comparing
to higher order schemes. L'L! f term in the 2.0-order schemes are very small
and 1.5-order schemes show 2.0-order decay. No big difference in computa-
tional cost is observed between It6-Taylor schemes and SLMMs.
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Figure 7.12: The comparison of accuracy and calculation time for (7.11).

7.6 Pattern formation

Consider a system of RPDEs:

da(t,x)  (a(t,x)? 0%al(t, )
5 =5 < b(t.2) + bq rea(t,x) + Dy IS
(7.15)
ob(t, z) 0?b(t, x)
at — sa(t, 33)2 — Tbb(t, SU) + wa + bb,

on a spatial domain given by the bounded interval 0 < x < 2y with Neumann
boundary conditions. This system describes an interaction between the ac-
tivator a(t, z) and the inhibitor b(¢, z) in pattern formation of sea shells [75].
Here D, and D, are the diffusion coefficients, r, and r, the decay rates of
a and b, b, and by the basic activator and inhibitor production and s is the
ability of the cells to perform the autocatalysis. The parameter s is given
by random fluctuations around r, through the noise process (7.3), where
v =0.01 and Y (¢) a Wiener process.

The system of RPDEs (7.15) is discretized with respect to space by the
method of lines [89] using a uniform partition of the interval [0, z¢] with grid
size Ay = xy/M. In particular, the second order derivatives in (7.15) are
approximated by central finite difference quotients:

D*a(t,xj)  alt,zjr1) —2a(t,z;) +alt,xj_1)

o = A +O(A2),

82138(;’21']-) _ b(t,zj1) — Qb(i,;j) +0(t,xj-1) n O(Ai),
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where a(t,z;) and b(t,x;) are the values of a and b at j-th grid in space.
Then a(t,x;) and b(t, z;) are replaced by aj(t) and bj(¢) for i =0,1,--- | M
and the local discretization error is discarded. This results in a 2(M + 1)-
dimensional system of RODEs for which the core blocks are

da*(t) a*?(t) at, (t) —2a%(t) + a’_,(t)
J _ J _ * J+1 J J—1
db(t) . . b1 (t) — 2b%(t) + b5_1(t)
B = SO0 () + Dy
with initial conditions:
aj(t=0) = a(t=0,2=uxy),

bi(t=0) = b(t=0,z=uz),

for j =0,1,..., M. The boundary blocks need to be modified to take into
account the Neumann boundary conditions:

da*(t,x=0)  Oa*(t,x=uxf) 0
Ox B Ox -
ob*(t,x=0)  Ob*(t,x==x5) "
Ox B oz -

The system is stiff, so the IAES (2.36), 1.0 and 1.5-order implicit Ito-
Taylor schemes (3.22) and (3.23) as well as implicit SLMMs:

1
(ImplO) Xn = Xn—l + ZAt (2fn + fn—l + fn—2) 5 (716)
1
(Imp15) Xn = Xpa+ EAt (5fn +8fn-1— fan) (717)
L' fo 11 S [t 1 Ay L T A
+L fo-1l1,0) 0y — 1 Tn—1L(1) 4, At — 3 Tn—21(1),1,_» D¢

9 1
AL fro1I(0,0),tn 1 — ELofn—lj(O),t"_lAt - ELofn—2I(0),tn_2At7

are applied to the model. The first implicit SLMM (7.16) has order 1.0
convergence and the second (7.17) order 1.5.

In the simulation, the parameters are set to D, = 0.01, D, = 0.4, r,
= 0.05, 7, = 0.08, b, = 0.05 and b, = 0 [75] with the initial values ay =
0.2 and by = 0.1. Moreover, 9 = 0 and zy = 5 with A, = 272 which
gives a 42-dimensional system of RODEs. The "exact” solution is obtained
by 1.5-order implicit It6-Taylor scheme (3.23) with the step size Ay = 2711
and compare with approximations by 1.0 and 1.5-order implicit It6-Taylor
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schemes (3.22) and (3.23), the implicit SLMMs (7.16) and (7.17) and the
IAES (2.36) with different step sizes A; = 279,278 277 276 and 27°. For
the latter initial conditions at time ¢; were calculated using 1-step schemes
of the same orders.

Figures 7.13 and 7.14 illustrate the step size versus mean error and com-
putational costs for 25 times simulation by the above schemes. The solid
thick lines are the error by 1-step schemes and the dashed lines by multi-
step schemes. The solid thin lines are for reference and have slopes of order
1.0, 1.5 and 2.0.
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Figure 7.13: The comparison of accuracy for (7.15)

The difference between the 1.5-order and 2.0-order schemes comes from
L'L'f terms and it depends deeply on the value of @ in the inhibitor com-
partment. In particular a is small when time is small and this makes the
1.5-order schemes show roughly 2.0-order convergence decay.

The system is now of relatively high dimension and a difference in com-
putational costs, especially between 1.5-order It6-Taylor scheme (3.23) and
the SLMM (7.17), is quite apparent.
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Figure 7.14: The comparison of calculation time for (7.15)

7.7 HBYV with spatial dependence

Hepatitis B virus (HBV) with spatial dependence model can be given by

oT(t,z)

—a = s—=pT(t,z)V(t,x) —mT(t, z),

8[5;, %) _ o1 o)V (t,2) — S1(t ), (7.18)
avg;x) — dAV(t,2) + pI(t,2) — V (1, 2),

where T', I and V' are the compartments of target cells, infected cells and free
viruses, respectively [98]. The parameters here are the production rate of the
target cells s, the de-novo infection rate (3, the loss rate of the target cells
m, the loss rate of infected cells §, the diffusion coefficient d, the production
rate of the new virus p and the loss rate of the virus ¢. A in V' compartment
is Laplacian and it is given by AV = Y"1, 9*V/dz}, n =1, 2 or 3.

We investigate the model when n = 2, i.e., R? spatial domain in this
section. Similar to the pattern formation example in section 7.6, firstly the
RPDEs (7.18) are discretized with respect to space by method of lines. We
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assume an equidistant partition in space and denote the spatial interval by
A, and we set A, = 1 for simplicity. Suppose that the system is given on
the spatial domain [0,20] x [0, 20].

The second order derivative 212:1 9*V )9z} are

82V(t, xivj) T 82V(t, :ZJZ'J‘)

AV (t,z; ;) =
(£ 1) 023 942
_ V(t, xi—l—l,j) — QV(t, ﬂ?i,j) + V(t, xi—l,j)
= A%
LYV zig) - 2V(Z;?z‘,j) V21 | a2,

where V(t,z; ;) is a value of V' in 4-th and j-th grid with respect to z; and
T9 respectively.

Now ignore the local discretization error O(A2) and replace V (¢, x; ;) by
Vi (t). Denote T7;(t) and I};(t) as the values of T and I in i-th and j-th
grid respectively. ¢ is replace by (7.3) with Y'(¢) a Wiener process and the
core blocks of the corresponding system of RODEs are obtained:

dT7(t) . \
# = 55— BV50)T7 ;1) — mT7 (1),
dl};(t) . . .
o = BT ;(O)Vis(t) —o(Y ()17 ;(1),
dvi(t) d (. ; ;
o = 2 (Vs =250 + ,,0)
F (Vi () = 2V35(8) + Vioa(8)) + pE (1) — Vi (8),
for i, j = 1, ..., 19. The initial conditions are given as
Efj(t = 0) = T(t = O,J,‘ = QZZ'J'),
I;j(t = 0) = I(t = 0,$ = l‘i,j),
‘/l-:kj(t = 0) = V(t = 0,3; = xm),
for i, j = 0, 1, ..., 20 and the boundary blocks are now modified to take

into account the Neumann boundary conditions:

8T*(t,x = .Z'Z"j) N 8]*(t,x = 1’2'7]') o GV*(t,x = .’BZ'J') -0
Ox N Ox N Ox Y

for i, 7 = 0 or 20.
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The system is stiff, so the IAES (2.36), 1.0 and 1.5-order implicit Ito-
Taylor schemes (3.22) and (3.23) as well as implicit SLMMs:

1
(ImplO) Xn = Xn—l + ZAt (2fn + fn—l + fn—2) 5 (719)

1
(Imp15) Xn = Xpa+ EAt (5fn +8fn-1— fan) (720)

kl
12

1

L o l(0)ny — 5 L a1y A — ELlfn—QI(l),tn_QAt

9 1
AL fr1I(0,0),80 1 — ELofn—lf(o),tn,lﬂt - ELOfn—zf(o),tn,ZAu

are applied to the model.

The parameters are set to s;; = 1 x 107/(21 x 21), 3 =5 x 10719 m =
0.1, d = 0.002, p = 15 and ¢ = 5. The initial values are randomly assigned
in [0, 20] x [0, 20] grids in each simulation, but the their sums are fixed to Tp
=2x10%, Iy = 1x10° and Vy = 1 x 10°. In addition, 6y = 0.1 and v = 0.1
for §(Y'(t)). The "exact” solution is obtained by 1.5-order implicit It6-Taylor
scheme (3.23) with the step size Ay = 277 and compare with approximations
by the IAES (2.36), 1.0 and 1.5-order implicit It6-Taylor schemes (3.22) and
(3.23) and the implicit SLMMs (7.19) and (7.20) with different step sizes A;
=276 9275 9274 and 273. For the latter initial conditions at time t; were
calculated using 1-step schemes of the same orders.
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Figure 7.15: The comparison of calculation time for (7.18).

Figure 7.15 illustrates the 25 times simulation of HBV kinetic model.
Each compartment was discretized into 21 x 21 grids, i.e. 4, 7 =0, 1, ..., 20.
L'L'f term in the 2.0-order schemes are very small and 1.5-order schemes
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show 2.0-order decay. Now the system is of high dimension due to the spatial
discretization and the difference in computational costs, especially between
1.5-order It6-Taylor scheme (3.23) and the SLMM (7.20), is quite apparent.

7.8 Toggle-switch model

A simple toggle switch model with time-dependent parameters appeared in
[97] is investigated in this section. The authors consider two interacting genes
X and Y and the concentrations of the corresponding protein products are
labeled z and y. Then the model is formulated as

0 (o220 ) e

where parameters o, and «a, represent the external activation on genes X
and Y, a and ¢ determine auto-activation thresholds, b and d thresholds for
mutual repression and A\, and A, protein decay rates. For the simulations
here we assume o and oy are given by two compound Poisson processes

(6.6).

First to third order affine-RODE-Taylor schemes (4.14), (4.15) and (4.16)
and LMM:

(7.21)

1, ok k N ik
(Ex1.0) Xrlf = Xrlfq + §(f2L1 + fSLQ)At + Z fTJLLJ(j),tn,l, (7.22)
=1
1 m
(Bx2.0) Xy = Xy +5GR5 + L) A+ D 8T G e, (7.23)
j=1

m m
T SR T TR b 2t TN
J1,42=0 j=1
J1+7270
as well as 1- and 2-order RODE-Taylor schemes [57, 64] are applied to the
model.
In the simulation, the parameters are set toa = ¢ =0.25, b =d = 0.4 and
Az = Ay = 1.25 with the initial values xg = yo = 10. The jump magnitudes
of two compound Poisson processes follow a uniform distribution on [0, 0.5]
and the parameter A for (6.5) is fixed to 5 in both cases. The “exact” solution
is obtained by 3-order affine-RODE-Taylor scheme (4.16) with the step size
A; = 279 and compare with approximations by (4.14), (4.15), (4.16), (7.22),
(7.23), 1-order and 2-order RODE-Taylor schemes with different step sizes
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Figure 7.16: Plots for error vs step sizes for (7.21).
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Figure 7.17: The histogram for the computational costs for (7.21).

Ay =278,277 276 975 9-4 93 9=2 9=1 The values at time ¢; for LMMs
were calculated by the same order affine-RODE-Taylor schemes.
The step size versus mean error and the computational costs for 100

times simulations are shown on Figures 7.16 and 7.17. The solid thick lines
on Figure 7.16 are the errors by affine-RODE-Taylor schemes, the dashed
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lines by LMMs and the dashed and dotted lines by RODE-Taylor schemes.
The solid thin lines are for reference and have 1-, 2- and 3-order slopes.

Both of the 1- and 2-order RODE-Taylor schemes (dashed and dotted
lines) coincide closely with the 1- and 2-order affine-RODE-Taylor schemes
(4.14) and (4.15) (solid lines), respectively. No big difference in computa-
tional costs can be observed among the affine-RODE-Taylor schemes, LMMs
and RODE-Taylor schemes.

7.9 Virus kinetic model

One of the simplest models for human immunodeficiency virus (HIV) or HCV
kinetics with three compartments is given by

C”ét(t) _ s— BHO)V(t) — dH(t),
art)

—= = BH®V() - oI(),
C”legt) = (1—e€)pl(t) —cV(t),

where H is the compartment for the healthy cells, I for the infected cells
and V for the free viruses [80, 87]. This already displays some of the com-
plications that arise in higher dimensional models, in particular different
interaction rates and time scales [1, 79]. The parameters here are the pro-
duction rate of the healthy cells s, the de-novo infection rate 3, the loss rate
of the healthy cells d, the loss rate of infected cells §, the production rate of
the new virus p, the loss rate of the virus ¢ and the effect of treatment e.

The parameter § has a strong impact on the outcome. Here, it will be
considered to vary randomly, but to remain bounded, so § is replaced by
(7.3), where Y (t) is a Wiener process. This gives the RODE:

‘”Z;ft) — s~ BH(H)V(t) — dH(?),
d{iit) _ BH(t)V(t) — & (1 - l/% arctan Y(t)> I(t), (7'24)
‘“;Et) = (1 —¢)pI(t) — V().

The time step size is set to A; = A2 for the explicit Euler scheme (3.18) and
A, for the averaged schemes. The other parameters are fixed to ¢ = 8, §p =
0.4, s =1.3x105 d = 0.5 and € = 0.1 with initial values Hy = 1.6 x 10%, I,
= 1.2 x 105 and Vj = 1 x 107. Moreover, p and 3 are given by p = Vo /Iy
and 3 = do Io/(Ho Vo).



7.9. VIRUS KINETIC MODEL 141

Solutions of the system (7.24) are approximated by the explicit Euler
scheme (3.18), the EAES (2.35), the IAES (2.36) and the IAMS (2.37).

Typical sample paths are illustrated on Figures 7.18 to 7.26. The black
line, the blue line and the red line on the first four graphs for each step size
are the virus, the infected cell and the healthy cell values, respectively. The
black line, the blue line, the red line and the green line on the graph for
comparison are the solutions for the explicit Euler scheme (3.18), the EAES
(2.35), the TAES (2.36) and the TAMS (2.37), respectively. The spread of
the noise v is fixed to 1 in these examples. The histograms show the sum of
100 times simulation time by each scheme. In Figure 7.18, with step size A,
= 0.2, the solution of the EAES (2.35) oscillates unstably, which makes this
scheme unsuitable with such step size. A difference between the solutions of
the explicit Euler scheme (3.18) and the EAES (2.35) is still apparent for step
size A, = 0.1 (Figure 7.21), while all solution curves look very similar when
the step size A, is 0.05 (Figure 7.26). The implicit schemes return a good
approximation even for large step sizes such as A, = 0.2 (Figure 7.19). At
the same time, the computational costs by these schemes are mostly smaller
than one by the explicit Euler scheme (3.18), in particular for small step
sizes (Figure 7.26).

Figures 7.27-7.35 are simulation results under different amplitude v. The
step size is fixed to 0.1 and v is changed from 0.3 to 0.8. The results by both
implicit schemes are similar to ones by the explicit Euler scheme (3.18) even
for large v (Figure 7.35).
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Figure 7.18: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.2 for the averaged schemes and A,
= A2 for the explicit Euler scheme (3.18). The parameters are set to ¢ = 8,
8o =0.4,s=1.3%x10% d = 0.5 and € = 0.1 with initial values Hy = 1.6 x 106,
Io = 1.2 x 10% and V; = 1 x 10”°. The black line: the virus compartment,
the blue line: the infected cells compartment and the red line: the healthy
cells compartment.
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Figure 7.19: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are A, = 0.2 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.
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Figure 7.20: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.2 for the averaged schemes and A,
= A2 for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.
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Figure 7.21: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.1 for the averaged schemes and A,
= A2 for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.
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Figure 7.22: The approximation by the TAES (2.36) and the IAMS (2.37).
The step sizes are A, = 0.1 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.
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Figure 7.23: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.1 for the averaged schemes and A,
= A2 for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.
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Figure 7.24: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.05 for the averaged schemes and
A; = A2 for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.
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Figure 7.25: The approximation by the TAES (2.36) and the TAMS (2.37).
The step sizes are A, = 0.05 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.
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Figure 7.26: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.05 for the averaged schemes and
A; = A2 for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.
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Figure 7.27: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.1 for the averaged schemes and
A; = A2 for the explicit Euler scheme (3.18) and v = 0.3. The parameter
values and the line colors are the same with Figure 7.18.
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Figure 7.28: The approximation by the TAES (2.36) and the IAMS (2.37).
The step sizes are A, = 0.1 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18) and v = 0.3. The parameter values and the line
colors are the same with Figure 7.18.

Comparison Calculation time
2
ol e 15
=
&
o 4
o
a
23 7 =
8= §1.0 -
z o
T E
T8 =
o
2
@ 05 4
(=]
o
o
g
© T T T 0 - T
1050000 1100000 1150000 1200000 Euler EAES IAES IAMS
Infected Cells Scheme

Figure 7.29: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.1 for the averaged schemes and A,
= AZ for the explicit Euler scheme (3.18) and v = 0.3. The parameter values
and the line colors are the same with Figure 7.18.
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Figure 7.30: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.1 for the averaged schemes and
A; = A2 for the explicit Euler scheme (3.18) and v = 0.5. The parameter
values and the line colors are the same with Figure 7.18.
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Figure 7.31: The approximation by the TAES (2.36) and the TAMS (2.37).
The step sizes are A, = 0.1 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18) and v = 0.5. The parameter values and the line
colors are the same with Figure 7.18.
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Figure 7.32: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.1 for the averaged schemes and A,
= AZ for the explicit Euler scheme (3.18) and v = 0.5. The parameter values
and the line colors are the same with Figure 7.18.
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Figure 7.33: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are A, = 0.1 for the averaged schemes and
A; = A2 for the explicit Euler scheme (3.18) and v = 0.8. The parameter
values and the line colors are the same with Figure 7.18.
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Figure 7.34: The approximation by the TAES (2.36) and the IAMS (2.37).
The step sizes are A, = 0.1 for the averaged schemes and A; = A2 for the
explicit Euler scheme (3.18) and v = 0.8. The parameter values and the line
colors are the same with Figure 7.18.
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Figure 7.35: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the TAES (2.36) and the
TAMS (2.37). The step sizes are A, = 0.1 for the averaged schemes and A,
= AZ for the explicit Euler scheme (3.18) and v = 0.8. The parameter values
and the line colors are the same with Figure 7.18.
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Deutsche Zusammenfassung

Zufallige gewohnliche Differentialgleichungen (englisch: Random Ordinary
Differential Equations, Akronym: RODESs) sind gewo6hnliche Differential-
gleichungen (englisch: Ordinary Differential Equations, Akronym: ODEs),
die einen stochastischen Prozess in ihrer Vektorfeld-Funktion haben. RODEs
werden in einer Vielzahl von Anwendungen, z.B. in der Biologie, Medizin,
Populationsdynamik und der Technik eingesetzt [15, 70, 81, 90, 92| und spie-
len eine wichtige Rolle in der Theorie der zufilligen dynamischen Systeme
[5]. Lange jedoch standen sie im Schatten von stochastischen Differential-
gleichungen (englisch: Stochastic Differential Equations, Akronym: SDEs).
Allgemein werden RODEs auf R in der Form:

L= fay ), (1)
geschrieben, wobei Y (¢) ein stochastischer Prozess [57] ist. Typischerweise
hat der Antriebsstochastische Prozess Y (¢) hochstens Holder-stetige Pfade.
Das resultierende Vektorfeld (¢,x) — f(x,y(t)) ist somit hochstens Holder-
stetig in der Zeit, egal wie glatt die Vektorfunktion in der Originalvariablen
ist, so dass die Pfade der Losung von (1) sicherlich stetig differenzierbar,
aber ihre Ableitungen zumindest Holder-stetig in der Zeit sind. Somit koén-
nen die klassischen numerischen Verfahren fiir ODEs pfadweise als RODEs
angewendet werden, aber ihre traditionellen Ordnungen werden dabei nicht
erreicht werden koénnen.

Neuerdings haben Griine & Kloeden dabei explizite gemittelte Euler-
Verfahren abgeleitet, indem sie den Mittelwert des Rauschens innerhalb
des Vektorfeldes verwendet haben. Dariiber hinaus wurden von Jentzen
& Kloeden fiir RODEs neue Formen Taylor-artiger Verfahren systematisch
abgeleitet. Trotzdem ist es wichtig, numerische Verfahren héherer Ordnung
weniger rechnenintensiv und numerisch stabil zu konstruieren. Das ist die
Motivation dieser Arbeit. Die Verfahren in [56, 64| sind sehr allgemein
gehalten. Hier werden RODEs mit spezieller Struktur, d.h. RODEs mit
It6-Rauschen und RODEs mit affiner Struktur fokussiert und es werden
numerische Verfahren genutzt, die diese speziellen Strukturen untersuchen.

Taylor-Entwicklungen

Taylor-Entwicklungen sind das Riickgrat der Entwicklung von numerischen
Verfahren fiir die deterministischen ODEs und Taylor-Verfahren beliebig ho-
her Ordnung kénnen durch vernachléssigen der entsprechende Restglieder
erhalten werden. Zusétzlich zu den Taylor-Verfahren werden verschiedene
Klassen von numerischen Methoden wie das Runge-Kutta-Verfahren und das
lineare Mehrschrittverfahren (englisch: Linear Multi-step Methods, Akro-
nym: LMMSs) entwickelt und auf verschiedene Arten von Problemen angewen-
det [18, 36, 41, 42, 61].
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Ahnlich zu der deterministischen Numerik, sind die It6-Taylor-Entwick-
lungen die wichtigsten Werkzeuge, um numerische Verfahren fiir SDEs abzu-
leiten. Nehmen wir an, Y (¢) sei ein It6 stochastisches ODE (englisch: Stochas-
tic ODE, Akronym: SODE) auf R%, d.h.

dY (t) = dt+2b )) AW (t), (2)

mit m unabhingigen skalaren Wiener Prozessen W(t), W2(t), ..., W™(t).
Dann wird die k-te Komponente von Y (¢) durch ein starkes Ito-Taylor-
Verfahren der Ordnung ~ approximiert als

Yy = Z Lid% (tn-1, Yn-1) Tat, (3)
OéEA'y

mit einem linearen Differentialoperator L:

d2 d2
0 ; 0
L= a” bib, Li=Y b —
S N Y e
k= kl 13 k-1
und einer hierarchischen Menge von Multiindizes A:
1
A, = {ae./\/lm:l(a)+n(a) <2y oder I(a)=n(«a) _7+2}’

n(a) sei die Menge von Komponenten von « gleich 0 ist und /(«) die Lange
« ist. Zusétzlich notieren wir die Menge aller Multiindizes M,,, als

Mm:{a:(jl,...,jl)6{071,2,...,m}l:ZEN}U{@},

wobei () die leere Menge ist mit der Linge I(«) = 0. Aukerdem gilt fiir die
Multiindizes o = (j1,...,J;) mit [ > 1, dass die multiplen Integrale Iy, ,
und die iterierten Operatoren L% definiert werden als

tn S2
Int, \ = / / del(Sl) ... del(sl), L '”le’
lp—1 ln—1
wobei Iy, , =1 und L? = id.
Die stochastischen Runge-Kutta-Verfahren und die stochastischen LMMs
(englisch: Stochastic LMMs, Akronym: SLMMs) sind ebenfalls systematisch
aufgebaut und ihre Konvergenz, sowie ihre starke, schwache und pfadweise

Konvergenz und ihre Stabilitatseigenschaften sind in der Literatur [35, 45,
54, 57, 63, 65, 66, 76, 88| ausfiihrlich diskutiert.

Gekoppeltes RODE-SODE System
Wenn das Rauschen regelméfig ist, so gibt es in der Tat eine enge Verbindung
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zwischen RODEs und SDEs. Dabei kénnen RODESs in der Form von SODEs
und umgekehrt geschrieben werden.

Angenommen, der Rauschprozess Y (t) ist wie in (2) beschrieben gegeben.
Dann kann ein gekoppeltes RODE-SODE System fiir das RODE aus (1)
durch die folgende Gleichung gegeben werden:

X(t) FIX(#),Y(t)) m 0 j
d <Y(t)> ) < aY (1)) > de; (@(Y@)) dwi(t). (4)

Der Diffusionskoeffizient aus RODE Teil (4), d.h. die Komponente X, ist
0 und wegen dieser speziellen Struktur konnen die Verfahren aus (3) als
RODE-Taylor-Darstellung in komponentenweiser Form reduziert werden:

Xh= " L%d%(Xn-1,Yn 1) Iog,_,, k=1,....d. (5)

a€cAl
Dabei ist Ag eine Teilmenge von A:
A9/ ={a€Ay:a=0 oder I(a) > 1 mit letzte Komponent j; = 0} .

Es ist bekannt, dass die starken It6-Taylor-Approximationen der Ord-
nung -y eine starke Konvergenz der Ordnung v zeigen, falls die Koeffizienten
den Standardannahmen [67, 76| geniigen, d.h. die Koeffizientenfunktionen
gehoren zu dem Raum vaﬂ der (2v+ 1)-mal stetig differenzierbaren Funk-
tionen mit gleichméfig beschrinkten partiellen Ableitungen. Daraus folgt,
durch ein Ergebnis der Arbeit von Kloeden & Neuenkirch [65], dass die Ver-
fahren pfadweise Konvergenz der Ordnung (v — €) und die entsprechenden
Verfahren fiir RODEs auch eine pfadweise Konvergenz der Ordnung (7 — €)
haben.

Andererseits ist die Bedingung, in der Tat, zu stark fiir die pfadweise
Konvergenz der RODE-Taylor-Verfahren (5), da sie viele interessante An-
wendungen ausschlieft. In dieser Arbeit wird gezeigt, dass das Ergebnis
der pfadweisen Konvergenz auch fiir f € C?7*! gilt, wobei die partiellen
Ableitungen von f in der z-Variable nicht gleichméfsig beschrankt werden
muss, obwohl sie es in den y-Variablen sind. Der Beweis basiert auf einem
Lokalisierungs-Argument dhnlich dem von Satz 1 in [56], der wiederum, in
einem anderen Kontext, Ideen von [40] nutzt. Es kommt nicht auf die spezi-
fische Struktur von starken It6-Taylor-Verfahrenen an, nur auf die Tatsache,
dass sie pfadweise konvergieren unter der Standardannahme, die durch ein
Borel-Cantelli Argument folgt, wenn alle Fehler Momente gegen die gleiche
Ordnung v konvergieren.

Die RODE-Taylor-Verfahren (5) der Ordnung  enthalten die Ableitun-
gen der Koeffizientenfunktionen. Sie sind schwer in hoherdimensionalen
Beispielen zu bestimmen. Durch den Austausch solcher Ableitungen mit
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geeigneten Finite-Differenzen-Quotienten kénnen die ableitungfreien Verfah-
ren entwickelt werden. LMMs haben grofte Vorteile im Rechenaufwand und
es konnen willkiirliche SLMMs hoherer Ordnung abgeleitet werden:

Z Cpj Xn—j = Ay Z Cooyjf (Xn—j, Yu_j) (6)
=0 j=0

S
+> > L¥idx(Xn—j, Yo j) (Calat_; + Ch jla A1)
7=1 acA\{0,(0)}

wobei s die Anzahl der Schritte ist, A; die Schrittgréfe, a— die Komponen-
ten des a ohne das letzte Element und C' sind die Konstanten die die korre-
spondierenden Konsistenzbedingungen erfiillen. Yn_j ist der Rauschanteil,
der genau erzeugt oder unabhéngig angenshert wird durch numerische Ver-
fahren ausreichend héherer Ordnung. Das Verfahren reduziert sich auf ein
explizites Verfahren, wenn C(g) o = 0 gilt. Im Folgenden wird die pfadweise
Konvergenz von SLMMs untersucht.

RODESs mit affiner Struktur
Ein d-dimensionales RODE mit m-dimensionalen affinen Rauschen hat die
Form:

m
B P+ Y P,

j=1
wobei x = (2!,...,2%) € R? und der Rauschprozess ¢; = (¢}, ..., (") Werte
in R™ ausnimmt. Fiir die Probenpfade von (; wird angenommen, dass sie
mindestens Lebesgue-messbar und fast sicher begrenzt sind, so dass die Dif-
ferentialgleichung im Sinne von Carathéodory ausgelegt werden kann.

Die numerischen Verfahren fiir RODEs mit einer affinen Struktur sind
mit einem &hnlichen Ansatz aufgebaut wie Griine & Kloeden benutzt haben,
um numerische Verfahren systematisch héherer Ordnung fiir deterministische
affine Steuerungssysteme zu entwickeln [37]. Sie basieren auf Stratonovich-
Taylor-Entwicklungen und der hierarchischen Menge in [66], da hier die de-
terministischen Ketten-Regeln und die Stratonovich-Kalkiile analog sind.

Nach der Herleitung der Taylor-Entwicklung fiir affine-RODEs werden
nun affine-RODE-Taylor-Verfahren und LMMs auf deren Basis entwickelt.

B-Stabilitét
Es gibt oft steife Systeme in der Praxis und die Stabilitétseigenschaften der
numerischen Verfahren sind dabei ein wichtiges Thema, sobald wir solche
Systeme numerisch 16sen wollen. Es ist aus der Theorie der klassischen
Runge-Kutta-Verfahren bekannt, dass implizite Verfahren erforderlich sind
fiir die stabile Integration von einem steifen ODE.

Im Falle der RODEs miissen wir in Betracht ziehen, dass die Effekte
von Nichtlinearitdt in den Gleichungen eine viel grofere Rolle in RODEs
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spielen als im deterministischen Fall. Es ist auch nicht klar, welche Klasse
von linearen Testfunktionen fiir RODE oder SODE geeignet ist. Zusétzlich
enthélt eine einfache lineare RODE ein Rauschterm in der Matrix, und es
macht das System pfadweise nichtautonom. Daher kann man nicht einfach
die Dahlquist-Theorie verallgemeinern, da es Lyapunov-Exponenten anstelle
von Eigenwerten enthélt und diese sind sehr schwer zu berechnen. Um diese
Probleme zu umgehen wird in der Dissertation die B-Stabilitdt fokussiert.

In der Tat sind B-stabile implizite Verfahren noch besser [28, 42], d.h.
die Erhaltung der nicht-expansiven Struktur von Trajektorien von ODEs mit
einer dissipativen einseitigen Lipschitz-Bedingung, d.h.

[ Xi — Xl < | X1 — X7 4],

firi=1,2,..., n, wobei X; und X zwei Losungen sind.

B-Stabilitdt der gemittelten Verfahren, ndmlich das implizit gemittelte
Euler-Verfahren und das implizit gemittelte Mittelpunktverfahren, sowie die
B-Stabilitat der impliziten SLMMs (6) beliebig hoherer Ordnung werden im
Folgenden gezeigt und ihre entsprechenden Bedingungen fiir die Dissipativi-
tatskonstante und die Schrittweite entwickelt.

Integrale von stochastischen Prozessen
Die numerischen Verfahren dieser Dissertation setzen die Simulation von
Rauschprozessen (; und folgende Integrale voraus:

tn S1—1 . .
: . = N Ji. .. /1 .
L(,ji) st _/ / o Cay dsp - dsy,
tn—1 tn—1

auf jedem diskreten Teilintervall [t,—1,t,].

In der Regel kénnen fiir Prozesse mit stetigen oder stiickweise stetigen
Pfaden die Integrale mit Riemann-Summen fiir viel feinere Teilungen der
Diskretisierung in Teilintervallen berechnet werden, so dass der Fehler durch
die lokale Diskretisierungsfehler der Verfahren selbst dominiert wird.

Auf der anderen Seite konnen wir einige Integrale direkt simulieren, wenn
die Verteilungen von Ctj bekannt sind. Zum Beispiel, wenn der Rauschprozess
(¢ ein Wiener-Prozess oder ein Ornstein-Uhlenbeck (OU)-Prozess ist, konnen
die Integrale von Probenpfaden direkt berechnet werden.

Vier Arten von Rauschprozessen, d.h. ein Wiener-Prozess, ein OU-
Prozess, ein zusammengesetzte Poisson-Prozess und eine gebrochene Brown-
sche Bewegung, werden vorgestellt und die zugehdrigen Prozesse sowie deren
Riemann-Integrale ausgewertet.

Numerische Beispiele
Biologische Modelle z.B. menschliche Kérper kénnen als zufillige Umgebung
beriicksichtigt werden. Sie unterscheiden sich nach dem Zufallsprinzip in
Bezug auf die Zeit, wobei angenommen wird, dass sie stetig und wesentlich
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beschrankt ist. Es gibt verschiedene Arten von noisy-Szenarien. Das gleich-
mafig verteilte beschrankte Rauschen und das Schaltrauschen werden zunéchst
eingefiihrt.

Dann werden die entwickelten numerischen Verfahren auf mehrere mathe-
matische Modelle in der Biologie und Medizin angewendet. In der Disser-
tation werden lediglich numerische Verfahren fiir RODEs konstruiert. Im
Allgemeinen gibt es aber viele komplizierte Systeme, die nicht nur von der
Zeit, sondern auch vom Raum abhéngen, d.h. dazu miissen wir mit zufalli-
gen partiellen Differentialgleichungen (englisch: Random Partial Differential
Equations, Akronym: RPDEs) umgehen. Eine Idee dazu ist die Linien-
methode [89], bei der RPDEs durch die Linienmethode auf raumliche Para-
meter diskretisiert werden. D.h. sie werden in einem System von RODEs
transformiert, so dass die abgeleitete Verfahren auf das System angewendet
werden kénnen.

Um die Leistungsfidhigkeit der numerischen Verfahren zu untersuchen,
sind Trajektorien von Losungen dargestellt. Zuséatzlich werden die Fehler
versus der Schrittgréfen sowie der Rechnenaufwand bei den neu entwickelten
Verfahren und den Methoden in der Literatur verglichen (38, 56, 57].
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Summary

Random ordinary differential equations (RODEs) are ordinary differen-
tial equations (ODEs) which have a stochastic process in their vector field
functions. RODESs have been used in a wide range of applications such as bi-
ology, medicine, population dynamics and engineering 15, 70, 81, 90, 92] and
play an important role in the theory of random dynamical systems [5], how-
ever, they have been long overshadowed by stochastic differential equations

(SDEs).
In general, RODEs on R% can be written in the form:
dx
— = Y (¢ 1
W fa (), 1)

where Y'(t) is a stochastic process [57]. Typically, the driving stochastic
process Y (t) has at most Holder continuous sample paths and the resulting
vector field (t,z) — f(x,y(t)) is, thus, at most Holder continuous in time,
no matter how smooth the vector function is in its original variables, so the
sample paths of the solution of (1) are certainly continuously differentiable,
but their derivatives are at most Holder continuous in time. Consequently,
although the classical numerical schemes for ODEs can be applied pathwise
to RODESs, they do not achieve their traditional orders.

Recently, Griine & Kloeden derived the explicit averaged Euler scheme
by taking the average of the noise within the vector field [38]. In addition,
new forms of higher order Taylor-like schemes for RODEs are derived sys-
tematically by Jentzen & Kloeden [56, 64]. However, it is still important
to build higher order numerical schemes and computationally less expensive
schemes as well as numerically stable schemes and this is the motivation of
this thesis. The schemes in [56, 64] are very general, so RODEs with spe-
cial structure, i.e., RODEs with Itd noise and RODEs with affine structure,
are focused and numerical schemes which exploit these special structures are
investigated.

Taylor expansions
Taylor expansions are the backbone of developing numerical schemes for
the deterministic ODEs and arbitrary higher order Taylor schemes can be
obtained by discarding the respective remainder terms appropriately. In
addition to the Taylor schemes, different classes of numerical methods such
as Runge-Kutta schemes and linear multi-step methods (LMMs) have been
developed and applied to various kinds of problems [18, 36, 41, 42, 61].

Similar to the deterministic numerics, the stochastic It6-Taylor expan-
sions are the fundamental tools in the derivation of numerical methods for

SDEs. When Y (t) satisfies an Ito stochastic ODE (SODE) on R%, i.e.,

dY (t) = a(Y (£))dt + > b (Y(t)) dW (1), (2)
j=1
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with m independent scalar Wiener processes W(t), W2(t), ..., W™(t), the
k-th component of Y () is approximated by ~-order strong It6-Taylor scheme
as
YT{C = Z Laidl{((tn—lv Yn—l) IOé,tn—lv (3)
acl,

where L is the differential operator given by

g Lo 1z Gz Lo
=243 ¢ 2y 2 bhb =S
ot ; Oy~ 2 kg_:ljz; " Oy, kz—l ! Oy

and A, is the hierarchical set of multi-indices given by

1
A, = {aGMm l(a) +n(a) <2y or Il(a)=n(a) :7—1—2},
with n(a) is the number of components of « that are equal to 0 and I(«) is
the length of «. In addition, M,, is given as

Mm:{a:(jl,...,jl)6{0,1,2,...,m}l:lEN}U{(Z)},

with () being the empty index of length I(«) = 0. Moreover, for a multi-
index o = (j1,..., 1) with [ > 1, the multiple integrals I, ., , and iterated
operators L are defined by

Loty = / / AW (s1) -+ dW(s;), L% =L L,
tn—1 tn—1

with Iy, , =1 and L? = id.

The stochastic Runge-Kutta schemes and the stochastic LMMs (SLMMs)
have been also constructed systematically and their convergence such as
strong, weak and pathwise convergence as well as their stability properties
have been discussed in literature [35, 45, 54, 57, 63, 65, 66, 76, 88|.

Coupled RODE-SODE system
When the noise is regular noise, there is, in fact, a close connection between
RODEs and SDEs and RODEs can be written in the form of SODEs and
vice versa.

Suppose that the noise process Y (¢) is given as (2). Then, a coupled
RODE-SODE system for the RODE (1) can be given as

X(t) FX(1),Y (1)) S 0 »
d — d dW(t). 4
(y(t)> ( a(Y (1)) ) r ; <bj(Y(t))> i ()

The diffusion coefficient in RODE part of (4), i.e., the X-component, is 0 and
because of this special structure, the numerical scheme (3) can be reduced
to RODE-Taylor scheme in componentwise form:

Xh=>" LYd%(Xn-1,Yn 1) I

acA?

k=1,....d, (5)

7tn—1 )
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with Ag, a subset of A, given by
Ag ={a€A,:a=0 or (o) > 1 with last component j; = 0} .

It is well-known that the order ~ strong It6-Taylor scheme has order
~ strong convergence if the coefficients satisfy the standard assumptions
[67, 76], i.e., the coefficient functions belong to the space CI?PYH of (2y+1)
time continuously differentiable functions with uniformly bounded partial
derivatives. It follows by a result of Kloeden & Neuenkirch [65] that the
scheme has order (y—¢) pathwise convergence and the corresponding scheme
for RODE also has order (v — €) pathwise convergence.

On the other hand, the assumptions are, in fact, too strong just for the
pathwise convergence of the RODE-Taylor scheme (5) and it excludes many
interesting applications. In this thesis, it is shown that the result of pathwise
convergence also holds in case f € C?'*!, where the partial derivatives of
f in the z-variable need not be uniformly bounded, although those in the
y-variables are. The proof is based on a localization argument similar to that
of Theorem 1 in [56] in a different context, which in turn uses ideas from [40].
It does not depend on the specific structure of the strong It6-Taylor schemes,
just the fact that they converge pathwise under the standard assumptions,
which follows by a Borel-Cantelli argument when all of the error moments
converge with the same order ~

The order v RODE-Taylor schemes (5) contain derivatives of the coeffi-
cients functions and they may be difficult to determine in higher dimensional
examples. By replacing such derivatives with appropriate finite difference
quotients, the derivative-free schemes can be developed. LMMs have big ad-
vantages in computational costs and arbitrary higher order SLMMs are also
derived:

D CpiXnj =7 > Cloyif (Xnjs Ynoj) (6)
7=0

=0

+Z Z LaZdX n— J’Yn J) (Ca,ant" J +C* I a—stn— JAt)
J=1 acA\{0,(0)}

where s is the number of steps, A; is the step size, a— is the components
of o without the last element and C's are the constants satisfying the cor-
responding consistency conditions. Yn_j is the noise term, which is exactly
generated or independently approximated by enough higher order numeri-
cal schemes. The method reduces to an explicit scheme when Cip) o = 0.
Furthermore, the pathwise convergence of SLMMs are investigated.

RODEs with affine structure
A d-dimensional RODE with m-dimensional affine noise has the form:

W P+ Y P d,

j=1
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where z = (z',...,2%) € R? and the noise process ¢; = ((}, ..., (") takes

values in R™. The sample paths of (; are assumed to be at least Lebesgue
measurable and almost surely bounded, so the differential equation can be
interpreted in the sense of Carathéodory.

The numerical schemes for RODEs with an affine structure are con-
structed with a similar approach that were used by Griine & Kloeden [37] to
systematically derive higher order numerical schemes for deterministic affine
control systems. These are based on stochastic Stratonovich-Taylor expan-
sion and the hierarchical sets in [66], which is possible since the chain rules
of deterministic and Stratonovich stochastic calculi are analogous.

After deriving the Taylor expansions for affine-RODES, both of the affine-
RODE-Taylor schemes and LMMs are developed based on them.

B-stability
We often encounter stiff systems in practice and the stability property of
numerical schemes is a crucial issue when we solve such systems numerically.
It is known from the theory of classical Runge-Kutta schemes for ODEs that
an implicit scheme is required for the stable integration of a stiff ODE.

In case of RODESs, we need to take into account of the effects of nonlin-
earlity in the equations, which play a much more significant role in RODEs
than deterministic ones. It is also not clear in RODE or SODE what class
of linear test functions is suitable. In addition, even a simple linear RODE
contains a noise term in its matrix and it makes the system pathwise nonau-
tonomous, so it is not easy to generalize the Dahlquist theory since it involves
Lyapunov exponents instead of eigenvalues and they are very hard to cal-
culate. In order to circumvent these problems, B-stability is focused in the
thesis.

In fact, B-stable implicit schemes are even better [28, 42|, i.e., preserve
the non-expansive structure of trajectories of ODEs with a dissipative one-
sided Lipschitz condition, i.e.,

1 = Xil < (1 X1 = X7,

fori =1, 2, ..., n, where X; and X/ are two solutions of the scheme.
B-stability of the averaged schemes, namely the implicit averaged Euler
scheme and the implicit averaged midpoint scheme, as well as B-stability
of the arbitrary higher order implicit SLMMs (6) are shown and the corre-
sponding conditions for dissipativity constant and the step size are obtained.

Integrals of stochastic processes
The numerical schemes derived in this thesis require the simulation of noise
process (; and their integral

tn S1-1 .
. . — - J... N R
I(]lz"~7]l)7tn—l _/ / S Csl dSl dsl;
ln—1 tn—1
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on each discretized subinterval [t,_1,t,].

In general, for processes with continuous or piecewise continuous sample
paths, the integrals can be calculated using Riemann sums on much finer
partition of the discretization subinterval so that the error is dominated by
the local discretization error of the scheme itself.

On the other hand, some integrals can be simulated directly if the dis-
tributions of ¢/ are known. For example, if the noise process (; is a Wiener
process or an Ornstein-Uhlenbeck (OU) process, the sample paths of the
integrals can be calculated directly.

Four kinds of noise processes, i.e., a Wiener process, an OU process, a
compound Poisson process and a fractional Brownian motion, are introduced
and the processes as well as their Riemann integrals are evaluated.

Numerical examples
Biological models such as human body can be considered as random envi-
ronment. They vary randomly with respect to time, but they are assumed
to be continuous and essentially bounded. There are various kinds of noisy
scenario and uniformly distributed bounded noise and switching noise are
firstly introduced here.

Then the developed numerical schemes are applied to several mathemat-
ical models in biology and medicine. Only numerical schemes for RODEs
are constructed in the thesis, however, in general, many systems are much
more complicated and they depend not only on time, but also on space, i.e.,
we need to deal with random partial differential equations (RPDEs). One
idea is method of lines [89] and RPDEs are discretized by method of lines
with respect to spatial parameter and they are transformed into a system of
RODESs so that the derived schemes can be applied to the system.

In order to see the performance of the numerical schemes,; trajectories of
solutions are illustrated. In addition, the error vs. step sizes as well as the
computational costs are compared among newly developed schemes and the
schemes in literature [38, 56, 57].



170 SUMMARY



SUMMARY 171

g

0000000000 (Random Ordinary Differential EquationsO O
OORODEs) 000000000000 O0DDOOODOOO0OOOOOOO
00 (Ordinary Differential Equations0 0 O OODEs) 0 O 0 ORODEs O O
0000000000000 00O0oO0Oooo0oooo (15,70, 81, 90, 92
gboobooboooooboboboboooobobobobooon
0000 [5|000000000000 (Stochastic Differential EquationsO
O00SDEs) 0000000000000

O00O0R"O000O00RODEsDO

By, 1)
O000000000000000000Y(¢x) 00000000 Br)ooo
O00000Y(#)OOOOOHldeeOODOOOOODOOOODOOODOO
00000000 (f2) — flz,y(t)0000000000000000
obobobobobobobob0obob0ob HederDODOOOOO
o000()ooooooooOooooooooooooooooooo
00000000 HoldeeDOOOOOODOOOOODEsODOOOOOO
O0O00D0O0OO0O0RODEsOOOODOOOOODOOOOOOOOODOOD
gooonf

OO0OGrined Kloeden 0O OOO0O00O00OO0O0O0O0OOO0OOCO
000000000 Eder00000O0O [38]. OOODOOODOOODODOO
Taylor 0000000 Jentzen 0 Kloeden 000000000 [56, 64|0
ooooobooooooooooobobooooooboboooooooooboon
gbooobodobooboooboboobobooboboobobooobono
ooo0obDO00d00Jentzen U Kloeden DOOO0OD0 RODEsODOOODODO
oooooooooboOoDbbOOoDOOO SbEsoooDoOoooooon
RODEsO00000000O0O0 RODEsOOOOOOOOOOOOOO
RODEsOOUOO0OOOOOOODODObOObObOObObObUObDOD

Taylor O O
Taylor OO0OOO0OOCOOOCO ODEsODOOODOOOOOODOODOO
oobooooboooobioUod Taylor U0 OooboooboOoOg
O000O00TaylorD0O0O0OOORunge-Kutta OO OO O OO0 (Linear
Multi-step MethodsO OO OLMMs) 0000000000 O0O0O0OOO
O0000000000000000 (18, 36, 41, 42, 61|0

OO000o000O0o0oDoOobOO00O0O0Od-TaylorDOO SDEsO OO
000000D00000000000000000000Y(#)0 R%20



172 SUMMARY
000000000 (Stochastic Ordinary Differential EquationsO O O O
SODEs:)

dY (t) = ) dt + Z bi(Y () dW (1), (2)
DDDDDDDDDDDDDDWl(t), W), ..., W) DOmOOO

000000 WienerOOOOOOOOODOY () D KOOODODOOON-
OoobDO-Taylor DO QOO0

Yf = Z Lal’d]{((tn—l,ynfl)la,tn—u (3)
OZEA'Y

gbobobobobobobob Lo

da
k kil i kO
Z Z Zb]bjf)ykf)yl L’ _kz_:bjayk7

8yk kl 17

A,00000000000000

1
sz{aeMm:l(a)+n(a)§27DDDD l(oz):n(oz):’erQ},
O000000On(e)0 0000 0000000000()0 «O0OO
ooooooooMm,,O

Mm:{a:(jl,...,jl)6{0,1,2,...,m}l:ZEN}U{(Z)},

000000000000 00 (o) =000000000000OO0O0OO1
>10000000 a= (ji1,...,5) 00000000 Iy, 00000
ooo Lo

tn 2 . . . .
Loty 1 = / / dW7(s1) - --dW'(sy), L% := L7t L7,
tn—1 tn—1

ooooooooooOl,,, ,=1000 L =id0000

SDEs 0 0 0 O Runge-Kutta O 0 LMMs (Stochastic LMMsO O O O
SLMMs)0OOOO000000000000000000000 (pathwise
convergence) 00 0000000000000 O0O0OOOOOOOOO
000 [35, 45, 54, 57, 63, 65, 66, 76, 880

RODE-SODE OO 00O
OOob0O000ob0OoO00obOO0O0OD0ORODEsO SDEsOODOOOOOO00OO
OOORODEsO SODEsUOO0O0OO0O0O0O0OOOO0OOOO0OOOoOOoon
oboobooon



SUMMARY 173

0000 Y(#) 0O (2)000000000000000()00000
RODE-SODE 00000

X(t) FX (), Y(t) = 0 :
d - dt + AWi(t), (4
(Y(t)> ( a(Y (1)) ) ]Z_; <bj(Y(t>)> o

00000000 RODEOOOOOO XOODOOOODOoOoOooOOO
0000000000(3) 00000 RODE-Taylor O

Xy =" L% (Xn-1,Yn-1)Iop,,, k=1,....d, (5)

acAf
00000000000A0 A, 000000
A)={aeA,:a=0 0000 (o) >1000000 5 =0},

oooodooo

0000000 (standard assumptions) [67, 76]0 000000000
(2y+1)000000000000000000000000000¢C27*!
OO000000~00000-TaylordOO0~-00000000C00000O
0000000000Kloeden O Neuenkirch D OO [65|0 000000
00000 (y—e)-00O0O0OD0O0DODDOO0OOODOOOOOOOOOODOOO
0 RODE-Taylor 00000 (y—¢e)-000000000O00O00OOO
goo

O000000000O000ORODE-TaylorO (5)0000000000O0
ooboobooboobooboooboobbooboooobooobogn
00000000000 feC»fl00000000O0O0DOOOyOOO
gboooboobobe0O0000000Db00O0O0Db0ObO0ObOO0DO
00000000000000000D000000k6)|b0000000
gogboboobbuooobobooobboobobooboboobboooon
O00oM4oj000000000O0000O0O000000O0000-Taylor
ooooobooooobobooobobooooobobooooooo
~ODOOODOODOBorel-Cantelli OO0 ODOODOOODOOODOOODOOO
goboobooobobooboonobooboon

7-00 RODE-Taylor O (5)0 0000000000000 0OOOO0O
gboooobooboooboooboboboobobobooobono
gboboooboobobobooboboboboobobobonoog
booooboooooboooooboooboooLMMsOOOODOOOO
gogooooobooooobobobooooooobooooboooooan



174 SUMMARY

SLMMs
Z CpjXn—j = Ay Z Coyjf(Xn—j, Yoj) (6)
5=0 j=0

S
+> > L¥idx(Xn—j, Vo) (Cailatn; + Ci jla— b, D) -
7=1 aeA%\{0,(0)}

OO00Oo00oO0O00sOC000000D0DOA: 000000000 «
0000000000000 0O00ooO0oO cooogOdg (consistency
conditions)DDDDDDDDDDYn_jDDDDDDDDDDDDDDD
goboooboboooboooboooobooboboboboooooobooboobobo
0D000000(6)0 Cpy=0000000000000000000
Oo0()oooo0oooooooooooood

0000000000 RODEs
m-0000000000000d-00 RODEOOOOO
dx 0 " j
= =1t) +> ) d,
j=1
00000000000z = (2Y,...,29) eRIOO0OOO0000 & =
(¢,....,¢y0R"00000000000¢ 00000000000
Lebesgue 01000 0000000000000 D0O00O0DOOOOOOO
00 Carathéodory 00000000000
D000D000000RODEsODDOODODOOOOODOOODOOOO
0000DD0000000000000GrineD Kloeden 0000000
000000000000 00000000000000000000O0
00000 Stratonovich 000 0000000000000 DOOOOO
000000000000 Stratonovich-Taylor 000 [66] 000000
ooooooo
00 000affine-RODEs 0000 Taylor 0000000000000
000 affine-RODE-Taylor U000 LMMs OO OOODO

B-stability
0000000000000 0000000o0oo000o00oooooo
00000o0oo0o0oooo0oooo0oooooooooooon
O00OD0ODEsO0DO0U0ODON Runge-KuttaDO D OO DOOODOUODOO
00000000 0o0o00ooooooooooooooooon

RODEs 000000 0OODOODOOODOODOOODODODOODODO
00bo0obo00bo0uobboou0oboo0ob0 U0 bRODED SODE
0000000000000 0o0ooo000ooooooooooooo



SUMMARY 175

oboboboboboobooboboobo RODEODODOOOODOOOOO
gogoboobboooobbbooooooobboooobobobooon
000000 LyapunovO O0OOO0OO0O0O00O0DOOD0OOO0DODOOOO
Dahlquist DO 0000000000000 000DO0bO0OO00O00oOd
O00DO0OD0O0OD B-stabilityDOOOoo4ood
U0O0B-stableDODO0OD0OOO0OOOO0OOOO0OOOODODOOOOOO Lip-
schitzOOOODO ODEsODOOOOOO0OOOODOOO |28,42]0000
0X;0X/00000000000¢=1,2,...,n0000

1 = Xill < (1 X1 = X7 4]

gooooo

U0000 Euer000000000O0D00O0 B-stabilityDOOOOO
000000 SLMMs (6) 0 B-stability 000 000000000000
gopbooboobooobooooo

ubooogoo
000000000000000O0O0O00000 [te-1,t,)000000
oo uounog

tn Si—1 | .
. . = - JuLLL e ..
I(le---a]l)vtnfl _/ / S; CSI dSl dsl;
tn—1 tn—1

0000000

000000000000 000000000000000B0O0OO0OO
O0o00000oo0ODO0O0O0000000 RiemannO0000DO0O0OO0OO
O000ooO0o0oO0O00O0booOoOoOOO0OO0O0bOOO0b0O00O00
0o000000ooooooo

o0000ooo CgDDDDDDDDDDDDDDDDDDDDDD
00000000000¢G 0 Wiener 000 Ornstein-Uhlenbeck (O 00O
ov)0ooooO0o000O0oooooOoO0oO0o0oOoOooooooOoOo0On

O0000O0WienerDODOOUODODODOO PoissonDO0O0OO0D00OO
BrownOOOOOODODOOOOOOOCOOOOOOOODOD Riemann O
ooo00o0oo0o

goooo
goboogooboogobooboobooboooooobooboobooo
gbooobobobooobobooboboouoooooooooooo
gobooooboobobooboboooboooboooboooboboon
gboooboobooboobgoooboobobboobooobon
goo



176 SUMMARY

o0obo0ooo0oO0o0o0oO0o0oOo0ooO0o0O0obO0o0oOoO0bo0Oon
O000O000ORODEsOOOOOOOOOCOOOOOOOOCODOCODOO
O0o00o00000000000000O00O00000O0000O0000
O000000000000000000000000000O000 (Random
Partial Differential Equationsd D O ORPDEs) 00000000000
0000D00000000000000000 (method of lines) [89] O
O00000O0000ORPDEsOOO0O0O0O00O0O0O0O0O0OOCOORPDEs
O RODEsOOO0O0O0O0O0O0COOOOOCOOOOOOOCOOOOOOD
000000

o0o00boO0o000oO0o00000o0o0boO0o0O00ooo0obooo
00000000000000 (38,56,570000000000000
O000000000000O0O000C000O0O00000O0



Curiculumn Vitae

177

Name: Yusuke Asai
Birthday: 07/02/1978
Place of birth: Tokyo, Japan

School:
04/1984 ~ 03/1986
04/1986 ~ 03/1990
04/1990 ~ 03/1993
04/1993 ~ 03/1996

University:

04/1996 ~ 03 /2000

04,/2000 ~ 03/2002

04/2009 ~ 03/2012

10/2012 ~ present

Visiting experience:

10/2001 ~ 09/2003

12/2014
09/2015 ~ 10/2015

Yokokawa Primary School, Hachioji, Tokyo

Kunitachi Daisan Primary School, Kunitachi, Tokyo
Kunitachi Daiichi Junior High School, Kunitachi, Tokyo
Waseda University Senior High School, Tokyo

Department of Mathematical Sciences,

School of Science and Engineering,

Waseda University, Tokyo, Japan

(Bachelor in Mathematical Sciences, Prof. Dr. Y. Shibata)

Department of Mathematics,

Graduate School of Science and Engineering,
Waseda University, Tokyo, Japan

(Master in Mathematics, Prof. Dr. Y. Shibata)

Department of Physics (Computational Science Program),
Johann Wolfgang Goethe-Universitéat
(Master in Computational Science, Prof. Dr. E. Herrmann)

Institut fiir Mathematik,
Johann Wolfgang Goethe-Universitét
(Ph.D. study, Prof. Dr. P.E. Kloeden)

Institute of Applied Mathematics,
Department of Mathematics, Informatics and Mechanics,
Warsaw University, Warsaw, Poland

Department of Global Health Policy,
Graduate School of Medicine,
The University of Tokyo, Tokyo, Japan



178

03/2015 ~ 04/2015

09,/2015

Working experience:

04,/2004 ~ 07/2008

12/2008 ~ 09,/2009
01/2010 ~ 12/2013
10/2014 ~ 09/2015
04/2009 ~ 03,/2010

05/2010 ~ 09,/2010

10/2010 ~ 12/2011
04/2012 ~ 03,/2016

10/2012, 2013, 2014

04/2016 ~ present

Awards:
10/2001 ~ 09/2003

10/2010 ~ 12/2011

South African Centre for Epidemiological Modelling
and Analysis (SACEMA), Stellenbosch, South Africa

Institute of Mathematics,
Huazhong University of Science and Technology,
Wuhan, China

Clinical Development Department,
Terumo Corporation, Japan

Clinical and Medical Development Department,
Terumo Europe N.V., Leuven, Belgium

Japanisches Institut Frankfurt am Main
(Japanese Primary and Junior High School in Frankfurt)

Institut fiir Biostatistik und Mathematische Modellierung,
Klinikum und Fachbereich Medizin,

Johann Wolfgang Goethe-Universitit

(Studentische Hilfskraft)

Institut fiir Biostatistik und Mathematische Modellierung,
Klinikum und Fachbereich Medizin,

Johann Wolfgang Goethe-Universitéit

(Research assistant)

Institut fiir Mathematik,
Johann Wolfgang Goethe-Universitéit
(Teaching assistant)

Department of Hygiene,
Graduate School of Medicine,
Hokkaido University, Japan
(Assistant professor)

Scholarship from Polish Government
(Stypendium rzadu polskiego)

Scholarship from German Research Foundation
(Deutsche Forschungsgemeinschaft)



