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Chapter 1

Introduction

Brownian motion is a rapid oscillatory motion of microscopic particles. It
is named after the Scottish botanist Robert Brown, who first gave precise
description of this phenomenon while he was observing pollen grains in water
in 1827 [82]. The phenomenon caught great interest of scientists for decades
and Einstein explained that the Brownian motion can be obtained as the
result of the motion of molecules in a liquid in 1905 [33]. Smoluchowski also
formulated Brownian motion and he estimated that Brownian motion can be
described from the expectation of 1020 per second times collisions between
the particle and water molecules in 1906 [23].

Before the formulation by Einstein and Smoluchowski, Bachelier observed
similar movement in stock market and independently developed mathemat-
ical model of a stock variation with such fluctuations in 1900 [11]. In his
model, the coefficient functions were supposed to be dependent only on time,
i.e., homogeneous in space. The model was later reintroduced by Kolmogorov
in 1931 [71].

Mathematical formulations of Brownian motion were attempted by many
mathematicians. In 1908, Langevin wrote down the motion of particles ac-
cording to Newton’s laws and it was given by

m
d2x(t)

dt2
= −ζ dx(t)

dt
+ F (t), (1.1)

where m is a mass of a particle, −ζdx(t)/dt is a systematic force, which
describes a dynamical friction experienced by the particle, and F (t) is a
force from molecular collisions in the liquid and gives random fluctuations
to the particles [4, 24]. The equation (1.1) has a form of ordinary differential
equation (ODE), however, F (t) is considered to be Gaussian white noise and
there is a difficulty in analyzing its properties.

Kolmogorov circumvented the problem and introduced parabolic partial
differential equations (PDEs) which describe the transition probability of
Markov process. The PDEs are called as the first and the second PDEs in
[71] and later the forward and backward Kolmogorov equations [22, 84, 104].

9
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Since then, the theory of PDEs, the potential theory and semi-group theory
started to be applied in the field of probability theory while only measure
theory and Fourier analysis were the main analytical tools at that time.

According to the Kolmogorov’s theory, a continuous Markov process
{X(t)} satisfiesE(X(t+ ∆t)−X(t)|X(t) = x) = a(t, x)∆t + o(∆t)

V(X(t+ ∆t)−X(t)|X(t) = x) = b(t, x)∆t + o(∆t)
, (1.2)

where ∆t is a small time interval, and this was the starting point of Itô’s
stochastic differential equations (SDEs). Based on (1.2), Itô derived an SDE
in the form:

dX(t) = a(t,X(t)) dt+
√
b(t,X(t)) dW (t), (1.3)

and he tried to find a sample path of continuous Markov process [53].
First of all, Itô wrote (1.3) in the integral form:

X(t) = X(t0) +

∫ t

t0

a(s,X(s)) ds+

∫ t

t0

σ(s,X(s)) dW (s), (1.4)

where σ =
√
b. The first integral on the right hand side of (1.4) is pathwise

a Riemann-Stieltjes integral. On the other hand, a sample path of Brownian
motion {W (t)} does not have a bounded variation and the second integral
cannot be defined in the same manner. Itô defined a stochastic integral∫ t
t0
Y (s)dW (s) as

∫ t

t0

Y (s) dW (s) = lim
|∆|→0

n∑
i=1

Y (si−1)(W (si)−W (si−1)),

for t0 = s0 < s1 < . . . < sn = t and |∆| = max(si− si−1) for nonanticipative
process Y (t), i.e., independent of the future increments of the Wiener process.

When σ ≡ 0, the equation (1.4) turns to be deterministic and it can be
solved by Picard’s approximation method. Itô applied this idea to the case
σ 6= 0 and showed the existence and uniqueness of the solution of (1.4) when
the coefficient functions a(t, x) and σ(t, x) satisfy global or local Lipschitz
conditions (which is briefly introduced in subsection 2.2). Moreover, the
solution is Markov process and satisfies Kolmogorov’s conditions (1.2).

Itô’s theory was developed to understand and describe Markov processes,
but now we can find its applications in various kinds of fields such as biology,
medicine, physics and finance [2, 35, 85]. In particular, in financial mathe-
matics, the theory of stochastic processes is a fundamental tool to describe
the concepts and ideas now [39].
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1.1 Random ordinary differential equations

Another modeling approach to include noise terms in differential equations is
random ordinary differential equations (RODEs). RODEs are ODEs which
have a stochastic process in their vector field functions and can be inves-
tigated pathwise as deterministic ODEs. They have been used in a wide
range of applications such as biology, medicine, population dynamics and
engineering [15, 70, 81, 90, 92] and play an important role in the theory of
random dynamical systems (see Arnold [5]), however, they have been long
overshadowed by SDEs.

A simple example of a RODE is given by

dx

dt
= −x+ sinY (t), (1.5)

where Y (t) is a stochastic process [57]. This equation looks similar to the
Langevin equation (1.1), in which F (t) is assumed to be Gaussian white
noise. The use of Gaussian noise is supported by the Central Limit Theo-
rem and it fits well with various kinds of mathematical models. However,
such noise process is sometimes not realistic in applications because it is not
bounded [31]. For example, the parameter values are often strictly positive
in biology and medicine and models with unbounded noise may lead unde-
sirable results such as negative values or excessively large values. In order to
avoid such problems, mathematical models with bounded noise are recently
introduced and they are now applied in physics, biology and engineering.

In general, RODEs can be written in the form:

dx

dt
= f(x, Y (t)), (1.6)

where Y (t) is a stochastic process. Here we assume regular noise rather than
Gaussian noise and typically we consider continuous noise processes which
satisfy Hölder condition, such as Brownian motion or fractional Brownian
motion (fBm), but also the noise processes with jumps, e.g., Poisson process
or compound Poisson process, can be included in RODEs.

In addition to the property of the noise, sometimes it is much easier to
develop models with noise by RODEs than SDEs. Allen built mathematical
models with SDEs by including all possible changes within and among com-
partments [2, 3]. Interactions among compartments can be included in the
system and such a method has an advantage in model building especially for
small systems, however, it becomes too complicated for large ones.

RODEs may have more advantages from these points and I decide to
reinvestigate mathematical modeling with RODEs and the numerical meth-
ods for RODEs.
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When the noise is regular noise, there is, in fact, a close connection
between RODEs and SDEs.

Suppose that a stochastic process Y (t) in (1.5) satisfies an Itô stochastic
ordinary differential equation (SODE), i.e.,

dY (t) = a(Y (t)) dt+ b(Y (t)) dW (t), (1.7)

with W (t) a scalar Wiener process. Then, the RODE (1.5) can be trans-
formed into the 2-dimensional SODEs:

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

(
0

b(Y (t))

)
dW (t), (1.8)

here f(X(t), Y (t)) = −X(t) + sinY (t) for (1.5). When a ≡ 0 and b ≡ 1,
then (1.7) reduces to a Wiener process, i.e., Y (t) = W (t).

On the other hand, Doss and Sussmann proved that any finite dimen-
sional SDE with commutative noise can be transformed to a RODE and
it was later generalized to all SDEs by Imkeller, Schmalfuß and Lederer.
Suppose that a scalar SDE with additive noise is given as

dX(t) = f(X(t)) dt+ dW (t). (1.9)

An example of Ornstein-Uhlenbeck (OU) processes O(t) is given by

dO(t) = −O(t) dt+ dW (t). (1.10)

By subtracting integral forms of (1.10) from (1.9) and defining z(t) := X(t)−
O(t), the corresponding RODE is now obtained:

dz

dt
= f(z +O(t)) +O(t).

Through the Doss-Sussmann transformation and its generalizations, it was
shown that RODEs and the corresponding SDEs have the same (trans-
formed) solutions [32, 49, 51, 93].

1.2 Numerical approximation

Most deterministic differential equations cannot be solved explicitly, so they
must be simulated in order to visualize the behavior and trajectories of the
systems. Numerical methods for deterministic ODEs have long history and
arbitrary higher order schemes can be derived by using Taylor expansions.
In addition to the Taylor schemes, Runge-Kutta schemes and linear multi-
step methods (LMMs) were developed and widely used in applications [18,
36, 41, 42, 61]. Stiff systems are often observed in practice, however, explicit
schemes are not suitable for such systems because of the stability problem. In
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such cases, implicit schemes have important advantages and various implicit
schemes were introduced and their stability regions were also investigated
[18, 61].

Similar to the deterministic calculus, most of the SDEs and random dif-
ferential equations (RDEs) do not have explicit analytical solutions and nu-
merical methods are important tools to investigate the systems.

In the case of SDEs, such numerical methods for deterministic calculus
are inconsistent or the traditional orders of convergence are not attained
even if they are applicable. It is necessary to derive new types of numerical
schemes and they were developed by applying stochastic Itô-Taylor expan-
sions iteratively. Typical examples are Euler-Maruyama scheme, which is
the stochastic Euler scheme, and Milstein scheme and they satisfy 0.5- and
1.0-order convergence respectively. Stochastic Runge-Kutta schemes and
LMMs have also been constructed based on the stochastic Itô-Taylor expan-
sions [16, 66, 76]. Recently Buckwar & Winkler derived stochastic LMMs
(SLMMs) with higher order when the diffusion term is small [13, 14] and the
third paper [9] is written based on the idea. The stochastic Itô-Taylor expan-
sions are important backbone in this thesis and the details are introduced in
chapter 2.

On the other hand, we can apply deterministic calculus pathwise to
RODE. Typically the driving stochastic process Y (t) in a RODE (1.6) has
at most Hölder continuous sample paths. The resulting vector field (t, x) 7→
f(x, y(t)) is, thus, at most Hölder continuous in time, no matter how smooth
the vector field is in its original variables, so the sample paths of the solu-
tion of (1.6) are certainly continuously differentiable, but their derivatives
are at most Hölder continuous in time. Consequently, although the classical
numerical schemes for ODEs can be applied pathwise to RODEs, they do
not achieve their traditional orders.

Recently Grüne & Kloeden derived explicit averaged Euler scheme (EAES)
by taking the average of the noise within the vector field [37]. In addition,
new forms of higher order Taylor-like schemes for RODEs were derived sys-
tematically in [56, 64], see also section 2.3. However, it is still important to
build higher order numerical schemes and computationally less expensive as
well as numerically stable schemes and this is the motivation of this thesis.
The schemes in [56, 64] are very general, so RODEs with special structure,
i.e., RODEs with Itô noise and RODEs with affine structure, are focused and
numerical schemes which exploit these special structures are investigated.

1.3 Outline

This thesis is based on the following four published papers [7, 8, 9, 10].

[7] Asai Y., Herrmann E. and Kloeden P.E., Stable integration of stiff
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random ordinary differential equations, Stochastic Analysis and Appli-
cations, 31 (2013) 293–313.

The paper [7] was based on a note by A. Jentzen and P.E. Kloeden and the
schemes, the implicit averaged Euler scheme (IAES) and the implicit aver-
aged midpoint scheme (IAMS), are natural extensions of the EAES intro-
duced in [38]. Since the paper was based on unpublished notes by Jentzen
and Kloeden, the details of the paper are not discussed here, but will be
briefly introduced in preliminaries and stability sections.

[8] Asai Y. and Kloeden P.E., Numerical schemes for random ODEs via
stochastic differential equations, Communications in Applied Analysis,
(2013) 17 no.3 & 4, 511–528.

The second one [8] is about the derivation of arbitrary higher order Itô-
Taylor schemes via RODE-SODE transformation, which we saw in (1.8).
When we discuss the convergence order, the coefficient functions and their
partial derivatives are assumed to be uniformly bounded. This assumption
excludes many interesting examples and we showed the pathwise convergence
of the schemes under weaker conditions in this paper.

[9] Asai Y. and Kloeden P.E., Multi-step methods for random ODEs
driven by Itô diffusions, Journal of Computational and Applied Math-
ematics, 294 (2016) 210–224.

SLMMs for the coupled RODE-SODE system are discussed in the third pa-
per [9]. Arbitrary higher order SLMMs are constructed via RODE-SODE
transformation and the corresponding consistency conditions are obtained.
In addition, the pathwise convergence as well as a nonlinear numerical sta-
bility property, specifically B-stability, are investigated in the paper.

[10] Asai Y. and Kloeden P.E., Numerical schemes for random ODEs with
affine noise, Numerical Algorithms, (2016) 72:155–171.

Itô noise is assumed in the second and third paper [8, 9], but general noise
and RODEs with affine structure are assumed in the fourth paper [10]. The
discussion here is closely related to the numerics of control theory given in
[37] and Taylor schemes, derivative free schemes and LMMs are introduced
here.

In addition, two examples presented in chapter 7 are taken from the
poster:

• Asai Y. and Herrmann E., Mathematical modeling by random ordinary
differential equations and their numerical methods (poster), Population
Approach Group in Europe 2015, 03-05/06/2015, Crete, Greece.
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1.3.1 The structure of the thesis

The thesis is structured as follows.
In chapter 2, Taylor expansion for deterministic ODEs are introduced

in order to recapture the idea of building numerical schemes and evaluat-
ing their convergence order. The stochastic Itô-Taylor expansions are basic
backbone to build numerical methods for SDEs and they are given in the
following section 2.2. After Taylor-like expansions for RODEs [56] are briefly
discussed in 2.3.1, the averaged schemes, namely the EAES, the IAES and
the IAMS, are introduced in section 2.3.2. In addition, the notations ap-
pearing in this thesis are introduced in 2.4.

The numerical methods for RODEs with Itô noise process are derived for
the coupled RODE-SODE in chapter 3. In section 3.1, Itô-Taylor schemes
for RODE part in a coupled RODE-SODE are derived using the stochastic
Itô-Taylor expansions. Those schemes have derivative terms in general and
derivative free schemes are given by replacing the derivatives by finite differ-
ences. The pathwise convergence of Itô-Taylor schemes of arbitrary higher
order is also discussed in this section.

Based on the stochastic Itô-Taylor expansions, SLMMs are derived in
section 3.2. Derivation of the consistency conditions up to order 2.0 are
illustrated and the general form of arbitrary higher order SLMMs with cor-
responding consistency conditions are given here. Moreover, the pathwise
convergence of SLMMs is shown.

In chapter 4, RODEs with more general noise, but a more specific struc-
ture, are considered. Here we assume that the RODEs have an affine struc-
ture in the noise. The numerical methods are built using the hierarchical set
notation given in chapter 2. Affine-RODE-Taylor schemes, derivative-free
schemes and LMMs are derived in this chapter.

Stiff equations are often observed in practice and stability is a big issue
in numerical simulations. After showing the solvabilities and convergence of
the IAES and the IAMS, their B-stability are discussed in chapter 5. Then
B-stability of 1.5-order SLMM is shown as an illustrative example and the
argument is applied to arbitrary higher order SLMMs in the end.

Multiple stochastic integrals appear in the numerical methods when we
derive higher order schemes. The integration and approximation of stochas-
tic processes are discussed in chapter 6. Wiener process and OU process are
approximated by using probability distribution and exact integration is given
for compound Poisson process. In addition, fBm and the Riemann integral
of fBm are generated by Cholesky decomposition and the combination of
Cholesky decomposition or the fast Fourier transformation (FFT) with the
random midpoint displacement (RMD) method. Their calculation costs are
compared with different step sizes and number of simulation times.

To illustrate their widespread application and to compare their compu-
tational performance, the derived numerical schemes are applied to various
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kinds of models in biology and medicine in chapter 7. Different kinds of
noisy scenario are assumed in practice and bounded noisy parameters driven
by Itô diffusion processes are illustrated here. The error and step size as well
as computational costs are compared among previously and newly developed
numerical schemes with different step sizes.



Chapter 2

Preliminaries and notation

Most mathematical models are very complicated and we often cannot obtain
explicit analytical expressions for their solutions. In such cases, numerical
approximations play very important role and they give us insights of the
behavior of the solutions. However, the approximations are done in discrete
steps in time while the models themselves are continuous in time. In or-
der to have good approximations, i.e. approximations with small numerical
errors, it is necessary to choose or develop appropriate numerical methods.
Moreover, the accuracy is highly dependent on the step sizes for the simula-
tion and the numerical errors get smaller as the step sizes become smaller.
However, the computational costs get larger for such small step sizes and we
need to choose suitable step size for each method.

Taylor expansions are the backbone of developing numerical methods.
Firstly the deterministic Taylor expansions as well as the derivation of the
corresponding Taylor schemes are illustrated in section 2.1 in order to re-
capture the basic idea of numerical approximation [61]. Such schemes are,
in fact, rarely used in practice, but they are used as a tool to derive other
numerical methods such as Runge-Kutta schemes and LMMs as well as to
estimate the numerical errors and the convergence orders of other schemes.

Similar to the deterministic Taylor expansions, the stochastic Itô-Taylor
expansions are the fundamental tools in the derivation of numerical methods
for SDEs. As we saw in section 1.1, RODEs with Itô noise can be written in
the RODE-SODE form and the stochastic Itô-Taylor expansions are applied
in order to build numerical schemes. After a brief introduction of Itô calculus
and standard assumptions, Itô-Taylor expansions for SDEs are given in sec-
tion 2.2. The existence and uniqueness theorem for SDEs and the necessary
conditions as well as two kinds of convergence, namely strong convergence
and pathwise convergence, are also introduced here. Different from deter-
ministic calculus, we often have more derivative terms in stochastic calculus.
The useful notations to describe the set of derivatives were introduced in [66]
and the hierarchical set notations and the notations for multiple integrals are

17
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given in this section.
In addition, Jentzen and Kloeden recently introduced Taylor-like expan-

sions for RODEs [56] and developed a new class of numerical methods for
RODEs. Some of their schemes are applied to numerical simulations in chap-
ter 7 and the Taylor-like expansions are given in subsection 2.3.1.

The EAES was built by Grüne & Kloeden by averaging the noise terms
in the vector fields [37] and later Asai, Herrmann & Kloeden introduced
the IAES and the IAMS [7], which were based on the unpublished notes by
Jentzen and Kloeden. These averaged schemes are also given in section 2.3.2.

Some more notations, such as the combination of the stochastic integrals
and the reduced hierarchical sets, are introduced in the last section and the
corresponding examples are illustrated.

Throughout this thesis, we assume that the solution exists on the given
time interval [t0, T ]. In addition, we assume the cases with d = 1 throughout
this chapter.

2.1 Taylor expansions for deterministic ODEs

Consider the initial value problem (IVP) of ODEs given by

dx

dt
= f(t, x), x(t0) = x0,

with solution x(t) = x(t, t0, x0). Now we suppose that the solution x(t) :
[t0, T ]→ R is p+1 times continuously differentiable. Then x(t) has a Taylor
expansion around tn ∈ [t0, T ] and it is given by

x(tn) = x(tn−1) +
dx

dt
(tn−1)∆n + · · ·+ 1

p!

dpx

dtp
(tn−1)∆p

n

+
1

(p+ 1)!

dp+1x

dtp+1
(θn−1)∆p+1

n , (2.1)

where ∆n = tn − tn−1 and an intermediate value θn−1 ∈ [tn−1, tn] ⊂ [t0, T ].
Now introduce a differential operator D:

Dg(t, x) :=
∂g

∂t
(t, x) + f(t, x)

∂g

∂t
(t, x).

Applying the chain rule to the function g(t, x) gives

dg

dt
(t, x(t)) =

∂g

∂t
(t, x(t)) +

∂g

∂x
(t, x(t))f(t, x(t)) = Dg(t, x(t)),

since dx/dt = f(t, x(t)). With the help of the operator D, the derivatives of
x(t) can be written as

djx

dtj
(t) = Dj−1f(t, x(t)), j = 1, 2, · · · , (2.2)
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for sufficiently smooth f . Replacing the derivative terms in (2.1) by (2.2)
gives the p-order Taylor expansions:

x(tn) = x(tn−1) +

p∑
j=1

1

j!
Dj−1f(tn−1, x(tn−1))∆j

n

+
1

(j + 1)!
Dpf(θn−1, x(θn−1))∆p+1

n .

By disregarding the last term, the p-order Taylor scheme can be derived:

xn = xn−1 +

p∑
j=1

1

j!
Dj−1f(tn−1, xn−1)∆j

n, (2.3)

where xn is an approximated value of x(t) at t = tn. A typical example of
the Taylor scheme is Euler scheme and it has a form:

xn = xn−1 + f(tn−1, xn−1)∆n. (2.4)

In order to estimate the numerical error, define the local discretization
error Ln given by

Ln := |x(tn, tn−1, x(tn−1))− xn|. (2.5)

This is the term disregarded when (2.3) was developed and

Ln ≤
1

(j + 1)!
∆p+1
n |Dpf(θn−1, x(θn−1, tn−1, x(tn−1)))| ∼ O(∆p+1

n ).

In general, the coefficients Dj−1f(tn−1, x(tn−1)) in (2.3) is too compli-
cated to be estimated and such Taylor schemes are rarely implemented in
practice, but used to establish the convergence order and error of other
schemes.

2.1.1 One-step schemes

When we can describe the schemes in the form:

xn = xn−1 + Φ(∆n, tn−1, xn−1, xn),

for some increment function Φ, the schemes are called one-step schemes. The
Euler scheme (2.4) is an example of a one-step scheme and Φ is given by

Φ(∆n, t, x, y) = f(t, x).

When Φ(∆n, t, x, y) = f(t+ ∆n, y), i.e.,

xn = xn−1 + f(tn, xn)∆n, (2.6)
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the scheme is called the implicit Euler scheme. xn is on the right hand side of
(2.6) and because of this structure, we need to solve an algebraic equation at
each time step. However, such implicit schemes have important advantages
such as numerical stability and are often applied to stiff systems.

In addition to the explicit and implicit Euler schemes, there are many of
the one-step schemes derived in the literature [18, 41, 42, 61]:

the trapezoidal scheme:

Φ(∆n, t, x, y) =
1

2
(f(t, x) + f(t+ ∆n, y)) ,

the Heun scheme:

Φ(∆n, t, x, y) =
1

2
(f(t, x) + f(t+ ∆n, x+ f(t, x)∆n)) , (2.7)

the p-order Taylor scheme:

Φ(∆n, t, x, y) =

p∑
j=1

1

j!
f(t, x)∆j−1

n .

The above Heun scheme is a simple example of Runge-Kutta schemes, which
is the class of derivative free one-step schemes. As we can see from the form
of the increment function Φ given by (2.7), the function f is evaluated at
several intermediate points within the discretization subinterval. When we
evaluate the function at s intermediate points, we call the scheme s stages
Runge-Kutta scheme. Obviously, the Heun scheme is a Runge-Kutta scheme
with 2 stages.

In general, Runge-Kutta scheme with s stages has a form:

xn = xn−1 + ∆n

s∑
i=1

bik
(n−1)
i ,

k
(n−1)
i = f

tn−1 + ci∆n, xn−1 + ∆n

s∑
j=1

ai,jk
(n−1)
j

 , i = 1, · · · , s,

where 0 ≤ c1 < c2 < · · · < cs ≤ 1.

2.1.2 Multi-step methods

Different from one-step schemes, multi-step methods use the information
from the past, i.e., they evaluate the value at tn with the information at
current time tn−1 as well as the values of xn−2, · · · , xn−s from the previous
time points tn−2, · · · , tn−s.

For example, the family of s-step LMMs have a general form:
s∑
j=0

αjxn−j = ∆t

s∑
j=0

βjfn−j , (2.8)
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where the coefficients αj and βj satisfy consistency conditions and fn−j is
the approximated value of f at tn−j . In addition, the equidistant step size
∆t is assumed on the given interval.

The αj and βj in (2.8) are obtained by evaluating the local error (2.5)
at t = tn. As an illustrative example, we derive them for s = 2 here.

The local discretization error Ln is

Ln = |x(tn, tn−1, x(tn−1))− xn|

= |
2∑
j=0

αjx(tn−j)−∆t

2∑
j=0

βjf(tn−j , x(tn−j))|. (2.9)

The Taylor expansions of x(t) and f(t, x(t)) at tn and tn−1 around tn−2 are
given by

x(tn) = x(tn−2) + f(tn−2, x(tn−2))(2∆t) +
1

2
Df(θn−1, x(θn−1))(2∆t)

2,

x(tn−1) = x(tn−2) + f(tn−2, x(tn−2))∆t +
1

2
Df(θn−2, x(θn−2))∆2

t ,

f(tn, x(tn)) = f(tn−2, x(tn−2)) +Df(θn−1, x(θn−1))(2∆t),

f(tn−1, x(tn−1)) = f(tn−2, x(tn−2)) +Df(θn−2, x(θn−2))∆t,

for some θn−2 ∈ [tn−2, tn−1] and θn−1 ∈ [tn−2, tn]. Now substituting the
corresponding terms in (2.9) yields

Ln ≤ |(α0 + α1 + α2)x(tn−2)

+ (2α0 + α1 − (β0 + β1 + β2)) f(tn−2, x(tn−2))∆t|+ |R|,

where R is a remainder term given by

R =
{

2α0Df(θn−1, x(θn−1)) +
1

2
Df(θn−2, x(θn−2)) (2.10)

−
(

2β0Df(θn−1, x(θn−1)) + β1Df(θn−2, x(θn−2))
)}

∆2
t .

Obviously, the remainder term R ∼ O(∆2
t ) and if αj and βj satisfy the

following consistency conditions:

α0 + α1 + α2 = 0, 2α0 + α1 = β0 + β1 + β2, (2.11)

Ln ≤ C∆2
t for some constant C > 0. This means the 2-step LMMs (2.8)

show 1-order convergence.
Typical examples of 2-step LMMs are Adams-Bashford scheme:

xn = xn−1 +
1

2
(3fn−1 − fn−2) ∆t, (2.12)
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and Adams-Moulton scheme:

xn = xn−1 +
1

12
(5fn + 8fn−1 − fn−2) ∆t, (2.13)

which are explicit and implicit schemes, respectively.
The remainder terms are evaluated by Taylor expansions iteratively and

higher order LMMs or LMMs with more steps can be generated in the same
manner.

2.2 Taylor expansions for SODEs

Stochastic calculus is not as robust as deterministic calculus, so it is better
in this case to start with Taylor expansions and Taylor schemes to ensure
that we get a consistent schemes. Consider 1-dimensional scalar Itô SODEs
given by

dX(t) = f(t,X(t)) dt+ g(t,X(t)) dW (t), (2.14)

where the drift and diffusion coefficients f , g : [t0, T ]× R → R and W (t) is
a standard Wiener process. This differential form is rather symbolical and
it can be written in the integral form:

X(t) = X(t0) +

∫ t

t0

f(s,X(s)) ds+

∫ t

t0

g(s,X(s)) dW (s). (2.15)

As we saw in chapter 1, the first integral is pathwise a Riemann integral and
the second an Itô stochastic integral.

The existence and uniqueness theorem for the SDEs (2.15) can be ob-
tained under so-called standard assumptions by applying Picard type itera-
tion [35, 78, 85].

Assumption 1. (Global-Lipschitz and linear growth conditions.)
The coefficients f and g are said to satisfy global Lipschitz condition and
linear growth condition when the following inequalities hold respectively

|f(t,X)− f(t,X ′)|+ |g(t,X)− g(t,X ′)| ≤ K|X −X ′|, (2.16)

|f(t,X)|2 + |g(t,X)|2 ≤ K2(1 + |X|2), (2.17)

where t ∈ [t0, T ] and X, X ′ ∈ R, for some constant K.

Theorem 1. (Existence and uniqueness theorem.)
Suppose that f , g : [t0, T ] × R → R are continuous in both variables and
satisfy (2.16) and (2.17) for all X, X ′ ∈ R and all t ∈ [t0, T ]. In addition,
suppose that the initial condition X2

0 is non-anticipative with respect to the
Wiener process W (t) with E(X2

0 ) < ∞.
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Then, there exists a solution X(t) of (2.15) defined on [t0, T ] which is contin-
uous with probability 1 and supt0≤t≤T E(X(t)2) < ∞. Moreover, a property
of pathwise uniqueness holds, i.e.,

P
(

sup
t0≤t≤T

|X(t)−X ′(t)| = 0
)

= 1,

for two solutions X = {X(t), t ∈ [t0, T ]} and X ′ = {X ′(t), t ∈ [t0, T ]}.

Now let U : [t0, T ] × R → R be a two times continuously differentiable
function and X(t) be a solution of (2.15). Then the following integral equa-
tion, which is known as the Itô formula, is obtained:

U(t,X(t)) = U(t0, X(t0)) +

∫ t

t0

L0U(s,X(s)) ds+

∫ t

t0

L1U(s,X(s)) dW (s)

(2.18)
with the differential operators:

L0U =
∂U

∂t
+ f

∂U

∂x
+

1

2
g2∂

2U

∂x2
, L1U = g

∂U

∂x
. (2.19)

Taking U = f and U = g in (2.18) and putting them into (2.15) yield

X(t) = X(t0) + f(t0, X(t0))

∫ t

t0

ds+ g(t0, X(t0))

∫ t

t0

dW (s) +R, (2.20)

where the last term R is

R =

∫ t

t0

∫ s1

t0

L0f(s2, X(s2)) ds2ds1 +

∫ t

t0

∫ s1

t0

L1f(s2, X(s2)) dW (s2)ds1

+

∫ t

t0

∫ s1

t0

L0g(s2, X(s2)) ds2dW (s1) (2.21)

+

∫ t

t0

∫ s1

t0

L1g(s2, X(s2)) dW (s2)dW (s1).

Discarding the remainder term R given as (2.21) leads Euler-Maruyama ap-
proximation:

Xt ≈ X0 + f(t0, X0)

∫ t

t0

ds+ g(t0, X0)

∫ t

t0

dW (s).

This leads Euler-Maruyama scheme:

Xn = Xn−1 + f(tn−1, Xn−1)∆n + g(tn−1, Xn−1)∆Wn, (2.22)

where

∆n = tn − tn−1 =

∫ tn

tn−1

ds, ∆Wn =

∫ tn

tn−1

dW (s). (2.23)
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Applying the chain rule again to U = L1g in (2.20) and omitting the remain-
der terms yield

Xt ≈ X0 + f(t0, X0)

∫ t

t0

ds+ g(t0, X0)

∫ t

t0

dW (s)

+L1g(t0, X0)

∫ t

t0

∫ s1

t0

dW (s2)dW (s1),

which is called Milstein approximation [66, 76] and the corresponding scheme
is given by

Xn = Xn−1 + f(tn−1, Xn−1)∆n + g(tn−1, Xn−1)∆Wn

+L1g(tn−1, Xn−1)
1

2

(
(∆Wn)2 −∆n

)
, (2.24)

because ∫ t

t0

∫ s1

t0

dW (s2)dW (s1) =
1

2

(
(∆Wn)2 −∆n

)
.

By iterating the same argument, the arbitrary higher order stochastic Itô-
Taylor expansions and the corresponding Itô-Taylor schemes are obtained.
Moreover, similar to the numerical methods for deterministic ODEs, Runge-
Kutta schemes and LMMs have been developed based on the stochastic Itô-
Taylor expansions and their numerical errors are evaluated.

Different from convergence in deterministic sense, there are different
kinds of convergence in SDEs, such as weak convergence or strong conver-
gence, and numerical methods often show different orders of convergence in
the different contexts. In this thesis, mainly strong and pathwise approxi-
mations are discussed and they are introduced in the following subsections.

2.2.1 Strong convergence

Now consider a partition t0 < t1 < · · · < tn = T of the interval [t0, T ]
with step sizes ∆i = ti − ti−1 and maximum step size ∆ := maxi=1,··· ,n ∆i.
Suppose that Xi is an approximation by some numerical scheme of X(ti) for
a solution of X(t) of the SDE (2.14). Then the numerical scheme is said to
converge strongly of order γ if(

E sup
i=0,··· ,n

|X(ti)−Xi|p
)1/p

≤ Kp,T∆γ , (2.25)

for some constant Kp,T .
By applying the stochastic Itô-Taylor expansions in the discarded terms

and including necessary ones, arbitrary higher order strong Itô-Taylor schemes
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are obtained [66]. In general, γ-order strong Itô-Taylor schemes can be writ-
ten in the form:

Xt =
∑
α∈Λγ

LαidX(t0, X0)Iα,t0,t, (2.26)

where Λγ is the hierarchical set of multi-indices given by

Λγ =
{
α ∈Mm : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ +

1

2

}
, (2.27)

where n(α) is the number of components of α that are equal to 0 and l(α)
is the length of α. In addition,Mm is given as

Mm =
{
α = (j1, · · · , jl) ∈ {0, 1, 2, · · · ,m}l : l ∈ N

}
∪ {∅},

with ∅ being the empty index of length l(∅) = 0. Moreover, for a multi-
index α = (j1, · · · , jl) with l ≥ 1, the multiple integrals Iα,t0,t and iterated
operators Lα are defined by

Iα,t0,t :=

∫ t

t0

. . .

∫ s2

t0

dW j1(s1) · · · dW jl(sl), Lα := Lj1 · · ·Ljl ,

with I∅,t0,t = 1 and L∅ = id.
The hierarchical sets for the Euler-Maruyama scheme (2.22) and Mil-

stein scheme (2.24) are given by {∅, (0), (1)} and {∅, (0), (1), (1, 1)}. Obvi-
ously they satisfy 0.5-order and 1.0-order strong convergence, respectively,
although the Euler scheme (2.4) has order 1.0.

2.2.2 Pathwise convergence

Under the same assumption given in 2.2.1, the numerical scheme is said to
converge pathwise if

sup
i=0,··· ,n

|X(ti, ω)−Xi(ω)| → 0 as ∆→ 0 (2.28)

for almost all ω ∈ Ω, where Ω is the sample space of a given probability
space (Ω,F ,P).

Pathwise convergence has not been much discussed until recently, how-
ever, in general, the numerical approximation is carried out path by path and
the calculation is done for a fixed ω ∈ Ω. Moreover, the theory of random
dynamical systems is of pathwise nature.

Gyöngy showed that the explicit Euler-Maruyama scheme with equidis-
tant step size 1/n satisfies (0.5− ε)-order pathwise convergence for arbitrary
ε > 0 [40]. Using an idea in his proof, Kloeden & Neuenkirch showed that
Itô-Taylor schemes with arbitrary higher order pathwise convergence can be
developed [65].
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Their result is the backbone for the proof given in subsection 3.2.2. The
lemma, which connects the convergence in p-th mean and pathwise conver-
gence, and the theorem are recalled here.

Lemma 1. Let α > 0 and K(p) ∈ [0,∞) for p ≥ 1. In addition, let Zn, n
∈ N, be a sequence of random variables such that

(E|Zn|p)1/p ≤ K(p) · n−α

for all p ≥ 1 and all n ∈ N. Then for all ε > 0 there exists a random variable
ηε such that

|Zn| ≤ ηε · n−α+ε almost surely

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p ≥ 1.

Theorem 2. (Pathwise convergence of the strong Itô-Taylor schemes.)
Under the standard assumptions, the γ-order strong Itô-Taylor scheme con-
verges pathwise with order (γ − ε) for all ε > 0, i.e.,

sup
i=0,··· ,n

|X(ti, ω)−Xi(ω)| ≤ K(γ)
ε (ω)∆γ−ε

for almost all ω ∈ Ω.

This result is not restricted to the Itô-Taylor schemes and they applied
the same argument to the stochastic Adams-Moulton method and the Euler-
Maruyama scheme for stochastic delay equations and determined the rates
of their pathwise convergence.

2.3 Numerical schemes for RODEs

2.3.1 Taylor-like expansions for RODEs

Now consider a RODE written in the form:

dx

dt
= f(x, Y (t)),

where Y (t) is the driving stochastic process. Suppose that the function f is
infinitely often continuously differentiable in its variables. Then, the IVP:

dx

dt
= f(x, Y (t)), x(t0) = x0, (2.29)

has a unique solution on some finite interval [t0, T ].
The driving sample process Y (t) has at most Hölder continuous sample

paths and the sample paths of solutions are continuously differentiable, but
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their derivatives are at most Hölder continuous in time. This means that
the classical Taylor expansion cannot be applied to the solution x(t) of the
IVP (2.29). Nevertheless, due to the special structure of a RODE and the
smoothness of f in both variables, Jentzen & Kloeden developed implicit
Taylor-like expansions and introduced arbitrary higher order RODE-Taylor
schemes [56, 57, 64].

Define
∆xs := x(s)− x̂, ∆Ys := Y (s)− Ŷ ,

where
x̂ := x(t̂), Ŷ := Y (t̂),

for an arbitrary t̂ ∈ [t0, T ). Taylor expansion of f with respect to x and Y
is given by

f(x(s), Y (s)) =

k∑
i=0

1

i!

(
∆xs

∂

∂x
+ ∆Ys

∂

∂y

)i
f(x̂, Ŷ ) +Rk+1(s)

=
∑
|α|≤k

1

α!
∂αf(x̂, Ŷ )(∆xs)

α1(∆Ys)
α2 +Rk+1(s),

for some k ∈ N0 where N0 is a set of non-negative integers. Here, a multi-
index α = (α1, α2) ∈ N2

0 and

|α| := α1 + α2, α! := α1!α2!, ∂α := (∂1)α1(∂2)α2 ,

with ∂(0,0)f = f and (0, 0)! = 1. In addition, the remainder term Rk+1(s) is
given by

Rk+1(s) =
∑
|α|=k+1

1

α!
∂αf(x̂+ ξs∆xs, Ŷ + ξs∆Ys)(∆xs)

α1(∆Ys)
α2 ,

for some ξs ∈ [0, 1].
The IVP (2.29) can be written in the integral form as

x(t) = x̂+

∫ t

t̂
f(x(s), Y (s)) ds.

Then ∆xt = x(t)− x̂ is given by

∆xt =
∑
|α|≤k

1

α!
∂αf(x̂, Ŷ )

∫ t

t̂
(∆xs)

α1(∆Ys)
α2 ds+

∫ t

t̂
Rk+1(s) ds. (2.30)

The right hand side of the equation (2.30) contains ∆xs term and it is
implicit and thus not a standard Taylor expansion. Nevertheless, this Taylor-
like expansion can be used as a basis for deriving new classes of numerical
schemes for RODEs.



28 CHAPTER 2. PRELIMINARIES AND NOTATION

Similar to the Taylor schemes and Itô-Taylor schemes, RODE-Taylor
schemes can be obtained by discarding the remainder term. When k = 0,
(2.30) reduces to

x(t) = x̂+ f(x̂, Ŷ )

∫ t

t̂
ds+

∫ t

t̂
R1(s) ds,

and this gives
Xn = Xn−1 + f(Xn−1, Yn−1)∆n, (2.31)

which is the Euler scheme (2.4).
For k ≥ 1, ∆xs remains inside the integral (2.30) and we need to evaluate

this term with appropriate numerical schemes of lower order than that of the
scheme to be derived. The higher order RODE-Taylor schemes can be built
by iterating the procedure enough times. In general, the resulting K-RODE-
Taylor scheme has a form

XK,∆n
n = XK,∆n

n−1 +
∑
AK

NK
α (tn, tn−1, X

K,∆n
n−1 ), (2.32)

with the step size ∆n = tn − tn−1 and AK is a set of multi-indices of the
form:

AK := {α = (α1, α2) ∈ N2
0| |α|θ = α1 + θα2 < K},

where K ∈ R0, a set of non-negative real numbers, and θ ∈ (0, 1] is the noise
process specific value. Here,

N (K)
α (t̂+ ∆n, t̂, x̂) :=

1

α!
∂αf(x̂, Ŷ )

∫ t̂+∆n

t̂

(
∆x

(K−|α|θ)
∆s

(t̂, x̂)
)α1

(∆Ys)
α2 ds,

with ∆s = s− t̂ and

∆x
(K)
∆n

:=
∑
|α|θ<K

N (K)
α (t̂+ ∆n, t̂, x̂),

with ∆x
(0)
∆n

= 0.
Schemes of arbitrary higher order can be derived in this way (see [55,

56, 64]). In this thesis we investigate RODEs with a special structure, i.e.,
with Itô noise or affine noise, and take advantage of the structure to derive
simpler schemes.

2.3.2 Averaged schemes

In subsection 2.3.1, the Euler scheme for RODEs is given by (2.31) on equidis-
tant discretization subintervals [tn−1, tn]. The order of convergence depends
on the Hölder exponents of the stochastic process Y (t) which is given by θ
∈ (0, 1] and satisfies

‖Y (t, ω)− Y (s, ω)‖ ≤ Θ(ω) |t− s|θ, ω ∈ Ω, (2.33)
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for a random variable Θ(ω) : Ω → [0,∞) and s, t ∈ [0, T ]. Here ‖ · ‖ is
arbitrary, but fixed norm on Rm.

A special case of the RODE with affine structure was considered by Grüne
& Kloeden [38], i.e., of the form:

dx

dt
= f0(x) + f1(x)Y (t) (2.34)

and they showed for the affine RODE that the min(2θ, 1)-order convergence
is attained by the averaged explicit Euler scheme

Xn = Xn−1 +
(
f0(Xn−1) + f1(Xn−1)In−1

)
∆n,

where the integral

In−1(ω) :=
1

∆n

∫ tn

tn−1

Y (s, ω) ds

provides more information about the noise process within the discretization
interval.

The counterpart of the scheme for a general RODE would require us to
average the entire vector field, i.e., to use the integral

1

∆n

∫ tn

tn−1

f(Xn−1, Y (s, ω)) ds.

This is computationally expensive even for low dimensional systems. An
alternative idea, suggested in [59], is to use the averaged noise within the
vector field, which leads to the EAES:

Xn = Xn−1 + f(Xn−1, In−1)∆n. (2.35)

Similarly, we can derive the IAES:

Xn = Xn−1 + f(Xn, In−1)∆n, (2.36)

and the IAMS:

Xn = Xn−1 + f

(
1

2
(Xn−1 +Xn), In−1

)
∆n. (2.37)

The following theorems generalize analogous results for deterministic
ODEs satisfying a one-sided Lipschitz condition:

Assumption 2. (One-sided Lipschitz condition.)
There exists a constant L ∈ R such that〈

f(x, ω)− f(x′, ω), x− x′
〉
≤ L ‖x− x′‖2, (2.38)

for all x, x′ ∈ Rd and ω ∈ Rm. When L < 0, this condition is called
dissipative one-sided Lipschitz condition.
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It follows from Assumption 2 that

d

dt
‖x(t)− x′(t)‖ = 2

〈
x(t)− x′(t), f(x(t), Y (t))− f(x′(t), Y (t))

〉
≤ 2L ‖x(t)− x′(t)‖2,

for any two solution of the RODE (2.29), so

‖x(t)− x′(t)‖2 ≤ exp(2Lt) ‖x(0)− x′(0)‖2.

In particular, when L < 0, the solutions converge to each other pathwise
in time. In fact, in this case all solutions converge pathwise to a unique
stochastic stationary solution (see e.g., [20]).

Theorem 3. (Solvability, convergence and B-stability of the IAES.)
The IAES (2.36) is uniquely solvable when L < 0 without restriction on the
step size, whereas it is uniquely solvable for step sizes ∆t ∈ (0, L−1) when L
> 0.

Moreover, the IAES converges pathwise with order min(2θ, 1) in the fol-
lowing sense: when L ≤ 0,

sup
i=0,1,··· ,n

‖x(ti)−Xi‖ ≤ TCE ·∆min(2θ,1)
t

holds pathwise for all ∆t ≤ 1, and when L > 0,

sup
i=0,1,··· ,n

‖x(ti)−Xi‖ ≤
CE
L

(
exp

(
LT

1− α

)
− 1

)
·∆min(2θ,1)

t

for all ∆t ≤ min(1, αL−1) and each (arbitrary) α ∈ (0, 1).
Furthermore, the IAES is B-stable when L ≤ 0.

Theorem 4. (Solvability, convergence and B-stability of the IAMS.)
The IAMS (2.37) is uniquely solvable for all step sizes when L ≤ 0 and for
step sizes ∆t ∈ (0, 4L−1) when L > 0.

Moreover, the IAMS converges pathwise with order 2θ with the following
bounds: when L ≤ 0,

sup
i=0,1,··· ,n

‖x(ti)−Xi‖ ≤ TCM ·∆2θ
t

holds pathwise for all ∆t ≤ 1, and when L > 0,

sup
i=0,1,··· ,n

‖x(ti)−Xi‖ ≤
(

exp

(
αLT

1− α

)
− 1

)(
CM
αL

)
·∆2θ

t

for all ∆t ≤ min(1, αL−1) and each (arbitrary) α ∈ (0, 1).
Furthermore, the IAMS is B-stable when L ≤ 0.

The proofs of the above theorems are given in section 5.1.
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2.4 Additional notations

In addition to the notations appeared in the previous sections, some more
notations are introduced here.

The multiple stochastic integrals Iα,tn−1 [f(·)] is given by

Iα,tn−1 [f(·)] =

∫ tn

tn−1

· · ·
∫ sl−1

tn−1

f(sl) dW
jl(sl) · · · dW j1(s1). (2.39)

In the special case with f ≡ 1, we denote Iα,tn−1 [1] = Iα,tn−1 , which appeared
in section 2.2.
A combination of stochastic integrals Îtnα,tn−k is define by the combination
of stochastic integrals Iα between the time points tn−k and tn. For exam-
ple, when α = (1, 1, 0) and k = 3, the corresponding stochastic integrals
Îtn(1,1,0),tn−3

[f(·)] is given by

Îtn(1,1,0),tn−3
[f(·)] = I(1,1,0),tn−3

[f(·)] + I(1,1),tn−3
[f(·)](I(0),tn−2

+ I(0),tn−1
)

+ I(1),tn−3
[f(·)](I(1,0),tn−2

+ I(1),tn−2
I(0),tn−1

+ I(1,0),tn−1
)

+ I(1,1,0),tn−2
[f(·)] + I(1,1),tn−2

[f(·)]I(0),tn−1

+ I(1),tn−2
[f(·)]I(1,0),tn−1

+ I(1,1,0),tn−1
[f(·)]. (2.40)

The reduced hierarchical set Λ0
γ is a subset of Λγ and it is given by

Λ0
γ = {α ∈ Λγ : α = ∅ or l(α) ≥ 1 with the last component jl = 0}.

(2.41)
The remainder set of Λγ is given as

B(Λγ) = {α ∈M \ Λγ : −α ∈ Λγ}, (2.42)

where−α denotes the multi-index inM obtained by deleting the first compo-
nent of α. For example, when γ = 3/2, the hierarchical set Λγ , the remainder
set B(Λγ), the reduced hierarchical set Λ0

γ and its remainder set B(Λ0
γ) are

given by

Λ3/2 = {∅, (1), (0), (1, 1), (0, 1), (1, 0), (0, 0), (1, 1, 1)},

B(Λ3/2) = {(0, 1, 1), (1, 0, 1), (0, 0, 1), (1, 1, 0), (0, 1, 0), (1, 0, 0), (0, 0, 0),

(1, 1, 1, 1), (0, 1, 1, 1)},

and

Λ0
3/2 = {∅, (0), (1, 0), (0, 0)},

B(Λ0
3/2) = {(1), (1, 1, 0), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.
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Chapter 3

RODEs with Itô noise

In this chapter, numerical schemes for RODEs driven by an Itô diffusion,
i.e., the solution of an Itô SODE, are investigated. As we saw in section 1.1,
RODEs with an Itô noise process can be written in the coupled RODE-SODE
form (1.8):

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

(
0

b(Y (t))

)
dW (t).

This means that the numerical schemes for SODEs can be applied to the
coupled system. In particular, when the noise process Y (t) is Wiener process
or OU process, they can be generated by using probability distribution, so
we need to solve only the RODE part in the coupled system.

The diffusion term of X(t) is zero. Because of this special structure,
Itô-Taylor schemes for SODEs can be reduced to simpler forms. Moreover,
the schemes often attain higher order convergence when they are applied to
the RODE part.

Buckwar & Winkler considered SODEs with small diffusion terms and
developed SLMMs with higher order convergence [13, 14]. Similar approach
can be applied to the X-component of the RODE-SODE pair, but without
restricting the intensity of the noise.

Under standard assumptions, specifically, the uniform boundedness of
all partial derivatives, the order γ strong Taylor schemes for SODEs are
known to converge pathwise with order (γ − ε) for arbitrarily small ε >
0. The corresponding scheme applied to X-component thus also converges
pathwise with order (γ − ε). Using a localization argument, this is extended
to RODEs for which the vector field functions do not have uniformly bounded
derivatives in the solution variable. Modifications of the Itô-Taylor schemes
to derivative-free, implicit and multi-step methods are also considered.

33
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3.1 Taylor schemes

3.1.1 Derivation of strong Taylor schemes

Scalar case

First of all, we consider a scalar case. The scalar RODE driven by a scalar
Itô diffusion Y (t):

dx

dt
= f(x, Y (t))

dY (t) = a(Y (t)) dt+ b(Y (t)) dW (t),

(3.1)

where W (t) is scalar Wiener process, can be written in a system of Itô
SODEs:

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

(
0

b(Y (t))

)
dW (t),

or, in vector notation:

dX(t) = F(X(t)) dt+ G(X(t)) dW (t), (3.2)

with

X =

(
x

y

)
, F(X) =

(
f(x, y)

a(y)

)
, G(X) =

(
0

b(y)

)
. (3.3)

In this case the differential operators L0 and L1 reduce to

L0U =
∂U

∂t
+ f(x, y)

∂U

∂x
+ a(y)

∂U

∂y
+

1

2
b(y)2∂

2U

∂y2
,

L1U = b(y)
∂U

∂y
.

Now X1 = x and X2 = y, so

L0idX1 = f(x, y), L0idX2 = a(y), L1idX1 = 0, L1idX2 = b(y).

Since the Y (t) equation is an SODE in its own right, its order γ strong Taylor
scheme is just a scalar version of the usual one, namely,

Yn =
∑
α∈Λγ

LαidX2(Yn−1) Iα,tn−1 , (3.4)

which is equivalent to (2.26).
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For the X-component, the strong Taylor scheme can be simplified. The
integral form of X-component is given by

X(t) = X(t0) +

∫ t

t0

f(X(s), Y (s)) ds+

∫ t

t0

0 dW (s). (3.5)

Taking U = f in (2.18) and substituting f(X(s), Y (s)) yields

X(t) = X(t0) + f(X(t0), Y (t0))

∫ t

t0

ds+R1, (3.6)

where R1 is a remainder term and it is given by

R1 =

∫ t

t0

∫ s1

t0

L0f(X(s2), Y (s2)) ds2ds1

+

∫ t

t0

∫ s1

t0

L1f(X(s2), Y (s2)) dW (s2)ds1. (3.7)

Discarding the remainder term R1 in (3.6) gives Euler-Maruyama approxi-
mation which now has a form:

Xt = Xt0 + f(Xt0 , Yt0)

∫ t

t0

ds,

and thus the Euler-Maruyama scheme:

Xn = Xn−1 + f(Xn−1, Yn−1)∆n, (3.8)

with ∆n = tn − tn−1 =
∫ tn
tn−1

ds. This is the same form as (2.4) which is
derived for deterministic ODEs. In order to build higher order schemes, we
need to deal with the remainder term R1. Now we consider the cases U =
L0f , U = L1f and U = L1L1f . Then, the corresponding Itô formula are
given as

L0f(X(t), Y (t)) = L0f(X(t0), Y (t0)) +

∫ t

t0

L0L0f(X(s), Y (s)) ds

+

∫ t

t0

L1L0f(X(s), Y (s)) dW (s)

L1f(X(t), Y (t)) = L1f(X(t0), Y (t0)) +

∫ t

t0

L0L1f(X(s), Y (s)) ds

+

∫ t

t0

L1L1f(X(s), Y (s)) dW (s)

L1L1f(X(t), Y (t)) = L1L1f(X(t0), Y (t0))

+

∫ t

t0

L0L1L1f(X(s), Y (s)) ds+

∫ t

t0

L1L1L1f(X(s), Y (s)) dW (s).
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Substituting L0f(X(t), Y (t)) and L1f(X(t), Y (t)) in R1 as well as
L1L1f(X(t), Y (t)) in L1f(X(t), Y (t)) leads

X(t) = X(t0) + f(X(t0), Y (t0))

∫ t

t0

ds+ L0f(X(t0), Y (t0))

∫ t

t0

∫ s1

t0

ds2ds1

+L1f(X(t0), Y (t0))

∫ t

t0

∫ s1

t0

dW (s2)ds1 (3.9)

+L1L1f(X(t0), Y (t0))

∫ t

t0

∫ s1

t0

∫ s2

t0

dW (s3)dW (s2)ds1 +R1.5,

where R1.5 is

R1.5 =

∫ t

t0

∫ s1

t0

∫ s2

t0

L0L0f(X(s3), Y (s3)) ds3ds2ds1

+

∫ t

t0

∫ s1

t0

∫ s2

t0

L1L0f(X(s3), Y (s3)) dW (s3)ds2ds1

+

∫ t

t0

∫ s1

t0

∫ s2

t0

L0L1f(X(s3), Y (s3)) ds3dW (s2)ds1

+

∫ t

t0

∫ s1

t0

∫ s2

t0

∫ s3

t0

L0L1L1f(X(s4), Y (s4)) ds4dW (s3)dW (s2)ds1

+

∫ t

t0

∫ s1

t0

∫ s2

t0

∫ s3

t0

L1L1L1f(X(s4), Y (s4)) dW (s4)dW (s3)dW (s2)ds1.

Discarding the remainder term R1.5 in (3.9) yields 1.5-order strong Itô-Taylor
approximation:

Xt = Xt0 + f(Xt0 , Yt0)I(0),t0,t + L0f(Xt0 , Yt0)I(0,0),t0,t (3.10)

+L1f(Xt0 , Yt0)I(1,0),t0,t + L1L1f(Xt0 , Yt0)I(1,1,0),t0,t,

with the multiple stochastic integrals notation introduced in section 2.4.
Since L1idX1 ≡ 0, for any index α with jl = 1,

LαidX1 = Lα−LjlidX1 = Lα−L1idX1 = Lα−0 ≡ 0.

Here α− denotes the multi-index in M obtained by deleting the last com-
ponent of α. On the other hand, terms like

L1L0idX1 = L1f(x, y) = b(y)
∂f

∂y
(x, y)

do not vanish automatically. This gives the general form of the strong Taylor
scheme for the X-component:

Xn =
∑
α∈Λ0

γ

LαidX1(Xn−1, Yn−1) Iα,tn−1 , (3.11)
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for the reduced hierarchical set given as (2.41).

Vector case

Consider the general vector case with X ∈ Rd1 , Y ∈ Rd2 , i.e., a RODE on
Rd1 :

dx

dt
= f(x, Y (t)), (3.12)

where Y (t) is the solution of an Itô SODE in Rd2 :

dY (t) = a(Y (t)) dt+
m∑
j=1

bj(Y (t)) dW j(t) (3.13)

with m independent scalar Wiener processes W 1(t), · · · , Wm(t). This forms
a system of SODE in Rd1+d2 :

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

m∑
j=1

(
0

bj(Y (t))

)
dW j(t). (3.14)

Denote X = (x, y)T ∈ Rd, where d = d1 + d2. Now (3.14) can be written as

dX(t) = F(X(t)) dt+

m∑
j=1

Gj(X(t)) dW j(t), (3.15)

with coefficient functions:

F(X) =

(
f(x, y)

a(y)

)
, Gj(X) =

(
0

bj(y)

)
.

Then, the order γ strong Taylor scheme is

Xn =
∑
α∈Λγ

LαidX(Xn−1)Iα,tn−1 , (3.16)

with the hierarchical set Λγ ⊂ Mm, Xn = (Xn, Yn)T and differential opera-
tors:

L0U =
∂U

∂t
+

d1∑
k=1

fk(x, y)
∂U

∂xk
+

d2∑
k=1

ak(y)
∂U

∂yk

+

d1+d2∑
k,l=1

m∑
j=1

1

2
bkj (y)blj(y)

∂2U

∂yk∂yl
,

LjU =

d2∑
k=1

bkj (y)
∂U

∂yk
, j = 1, . . . ,m,
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for smooth enough functions U : [0, T ] × Rd1 × Rd2 → R. The k-th X-
component of the order γ strong Taylor scheme gives the order γ strong
RODE-Taylor scheme in componentwise form:

Xk
n =

∑
α∈Λ0

γ

LαidXk(Xn−1, Yn−1)Iα,tn−1 , k = 1, . . . , d1, (3.17)

where Λ0
γ ⊂ Λγ is defined as (2.41) as a subset ofMm.

Examples

Some examples of the RODE-Taylor schemes for the scalar system (3.2) with
d1 = d2 = 1 and m = 1 are illustrated here. For notational compactness
partial derivatives are denoted by subscripts.

If γ = 1/2, the hierarchical set Λ1/2 and the reduced set Λ0
1/2 are given

by {∅, (0), (1)} and {∅, (0)}, respectively. The corresponding RODE-Taylor
scheme is the Euler-Maruyama scheme which reduces to

Xn = Xn−1 + f(Xn−1, Yn−1)∆n, (3.18)

where ∆n = tn− tn−1 = I(0),tn−1
. Obviously this is equivalent to (3.8). This

is also the RODE-Taylor scheme obtainable from the Milstein scheme with
γ = 1 since Λ1 = {∅, (0), (1), (1, 1)} and Λ0

1 = {∅, (0)}.
For γ = 3/2, the situation is more complicated. Here

Λ3/2 = {∅, (0), (1), (1, 1), (0, 1), (1, 0), (0, 0), (1, 1, 1)}

and Λ0
3/2 = {∅, (0), (1, 0), (0, 0)}, so the order 1.5 RODE-Taylor scheme is

given by

Xn = Xn−1 + f(Xn−1, Yn−1)∆n + b(Yn−1)fy(Xn1 , Yn−1) I(1,0),tn−1

+
(
f(Xn−1, Yn−1)fx(Xn−1, Yn−1) (3.19)

+a(Yn−1)fy(Xn−1, Yn−1) +
1

2
b(Yn−1)2fyy(Xn−1, Yn−1)

) 1

2
∆2
n.

This scheme includes the multiple stochastic integral

I(1,0),tn−1
=

∫ tn

tn−1

∫ s1

tn−1

dW (s2)ds1,

which is correlated to the simple integral ∆Wn = I(1),tn−1
=
∫ tn
tn−1

dW (s1).
They can be generated using two independent N(0, 1)-distributed random
variables (see section 6.1, [7, 66]) G1 and G2 as

I(1),tn−1
=
√

∆nG1, I(1,0),tn−1
=

1

2
∆3/2
n

(
G1 +

1√
3
G2

)
.
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Similarly, for γ = 2,

Λ2 = Λ3/2 ∪ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1, 1)}

and Λ0
2 = {∅, (0), (1, 0), (0, 0), (1, 1, 0)}, which gives the order 2.0 RODE-

Taylor scheme

Xn = Xn−1 + f(Xn−1, Yn−1)∆n + b(Yn−1)fy(Xn−1, Yn−1) I(1,0),tn−1

+
(
f(Xn−1, Yn−1)fx(Xn−1, Yn−1) + a(Yn−1)fy(Xn−1, Yn−1)

+
1

2
b(Yn−1)2fyy(Xn−1, Yn−1)

) 1

2
∆2
n (3.20)

+
(
b(Yn−1)by(Yn−1)fy(Xn−1, Yn−1)

+b(Yn−1)2fyy(Xn−1, Yn−1)
)
I(1,1,0),tn−1

.

This scheme now includes coefficients of the SODE of the driving noise as
well as an additional multiple stochastic integral.

3.1.2 Implicit Taylor scheme

Stiff differential equations arise frequently in practice and explicit schemes
often perform poorly, while implicit schemes offer better numerical stability
properties. The order 1.0 implicit strong Taylor scheme in Kloeden & Platen
[67] is a drift-implicit version of the Milstein scheme. For the vector SODE
(3.15) with single Wiener process it is

Xk
n = Xk

n−1 +
(
θFk(Xn) + (1− θ)Fk(Xn−1)

)
∆n (3.21)

+Gk(Xn−1)∆Wn + L1Gk(Xn−1) I(1,1),tn−1
, k = 1, . . . , d,

where the parameter θ ∈ [0, 1] characterizes the degree of implicitness. When
θ = 0, the equation (3.21) reduces to usual explicit Milstein scheme.

For the scalar SODE (3.2) its X-component gives the order 1.0 implicit
strong RODE-Taylor scheme

Xn = Xn−1 + (θf(Xn, Yn) + (1− θ)f(Xn−1, Yn−1)) ∆n, (3.22)

which is often called the θ-scheme [44]. It is essentially the Euler scheme.
Similarly, the family of 1.5-order implicit strong Taylor scheme in [67] is,
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componentwise,

Xk
n = Xk

n−1 +
(
θ1F

k(Xn) + (1− θ1)Fk(Xn−1)
)

∆n

+

(
1

2
− θ1

)(
θ2L

0Fk(Xn) + (1− θ2)L0Fk(Xn−1)
)

∆2
n

+L1Fk
(
Xn−1)(I(1,0),tn−1

− θ1∆Wn∆n

)
+Gk(Xn−1)∆Wn + L0Gk(Xn−1)I(0,1),tn−1

+L1Gk(Xn−1)I(1,1),tn−1
+ L1L1Gk(Xn−1)I(1,1,1),tn−1

,

where the parameters θ1, θ2 ∈ [0, 1] indicate the extent of implicitness. The
corresponding implicit RODE-Taylor scheme is

Xn = Xn−1 + (θ1f(Xn, Yn) + (1− θ1)f(Xn−1, Yn−1)) ∆n

+

(
1

2
− θ1

)(
θ2L

0f(Xn, Yn) + (1− θ2)L0f(Xn−1, Yn−1)
)

∆2
n

+L1f(Xn−1, Yn−1)
(
I(1,0),tn−1

− θ1∆Wn∆n

)
. (3.23)

3.1.3 Derivative-free scheme

The order γ strong Taylor schemes involve derivatives of the coefficient func-
tions of the SODE (3.15), that may be difficult to determine in higher di-
mensional examples. The derivative-free explicit strong schemes in Kloeden
& Platen [67] are Runge-Kutta-like schemes that replace such derivatives
by appropriate finite difference quotients to ensure the same order γ strong
convergence.

For a single Wiener process, i.e., m = 1, the k-th component of the
explicit order 1.0 strong scheme for SODEs has the form:

Xk
n = Xk

n−1 + Fk(Xn−1)∆n + Gk(Xn−1)∆Wn

+
1

2
√

∆n

(
Gk(X̃n−1)−Gk(Xn−1)

) (
(∆Wn)2 −∆n

)
,

with the support function:

X̃n−1 = Xn−1 + F(Xn−1)∆n + G(Xn−1)
√

∆n.

The corresponding RODE scheme is given by (3.18), which does not contain
derivative terms, and is the same as for the Euler-Maruyama and Milstein
schemes.
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Similarly, the order 1.5 explicit strong scheme for SODEs is, componen-
twise,

Xk
n = Xk

n−1 + Fk(Xn−1)∆n +
1

2
√

∆n

(
Fk(X̃+)− Fk(X̃−)

)
I(1,0),tn−1

+
1

2∆n

(
Fk(X̃+)− 2Fk(Xn−1) + Fk(X̃−)

)
I(0,0),tn−1

+Gk(Xn−1)∆Wn +
1

2
√

∆n

(
Gk(X̃+)−Gk(X̃−)

)
I(1,1),tn−1

+
1

2∆n

(
Gk(X̃+)− 2Gk(Xn−1) + Gk(X̃−)

)
I(0,1),tn−1

+
1

2∆n

(
Gk(Φ̃+)−Gk(Φ̃−)−Gk(X̃+) + Gk(X̃−)

)
I(1,1,1),tn−1

,

where

X̃± = Xn−1 + F(Xn−1)∆n ±G(Xn−1)
√

∆n,

Φ̃± = X̃+ ±G(X̃+)
√

∆n.

G1 ≡ 0 for k = 1 and the X-component gives the RODE-Taylor scheme:

Xn = Xn + f(Xn−1, Yn−1)∆n

+
1

2
√

∆n

(
f(X̃, Ỹ+)− f(X̃, Ỹ−)

)
I(1,0),tn−1

(3.24)

+
1

4

(
f(X̃, Ỹ+)− 2f(Xn−1, Yn−1) + f(X̃, Ỹ−)

)
∆n

with

X̃ = Xn−1 + f(Xn−1, Yn−1)∆n,

Ỹ± = Yn−1 + a(Yn−1)∆n ± b(Yn−1)
√

∆n,

since X̃ = X̃± here and I(0,0),tn−1
= 1

2∆2
n.

Derivative-free implicit RODE-Taylor schemes can be built in the same
manner. When θ1 = 1/2, the implicit RODE-Taylor scheme (3.23) reduces
to

Xn = Xn−1 +
1

2
(f(Xn, Yn) + f(Xn−1, Yn−1)) ∆n

+L1f(Xn−1, Yn−1)

(
I(1,0),tn−1

− 1

2
∆Wn∆n

)
. (3.25)
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Replacing the derivative L1f(Xn−1, Yn−1) in (3.25) by a finite difference
quotient gives the derivative-free implicit scheme with γ = 1.5:

Xn = Xn−1 +
1

2
(f(Xn, Yn) + f(Xn−1, Yn−1)) ∆n (3.26)

+
1

2
√

∆n

(
f(X̃, Ỹ+)− f(X̃, Ỹ−)

)(
I(1,0),tn−1

− 1

2
∆Wn∆n

)
with

X̃ = Xn−1 + f(Xn−1, Yn−1)∆n,

Ỹ± = Yn−1 + a(Yn−1)∆n ± b(Yn−1)
√

∆n.

3.1.4 Pathwise convergence

Kloeden & Neuenkirch showed the pathwise convergence of Itô-Taylor schemes
under standard assumptions (Theorem 2 in section 2.2.2 and [65]). The as-
sumptions here are, in fact, too strong just for the pathwise convergence
of the RODE-Taylor scheme (3.11) and for many applications. They en-
sure the strong convergence of the full Taylor scheme (3.4) and (3.11), but
the X-component scheme (3.11) can still converge pathwise even when the
full scheme does not converge in the strong sense, provided the noise is ap-
proximated to the required order. This is possible directly or through the
Y -component scheme (3.4) when the noise is a simple process such as a
Wiener process or an OU process.

We are interested in the situation where the X-derivatives of the vector
field f of the RODE are not uniformly bounded on Rd, but are uniformly
bounded in the Y -variable. This corresponds to the noise acting boundedly
in the RODE (although the inputed noise Y (t) need not itself be bounded).

Assume now that the coefficients a, b1, . . . , bm satisfy the standard as-
sumptions, i.e., a, b1, . . . , bm ∈ C2γ+1

b , but f ∈ C2γ+1 does not. Since the
Y -SODE does not depend on X(t) and satisfies the standard assumptions,
the strong order γ Taylor scheme applied to it converges strongly with order
γ and pathwise with order (γ − ε). However, these schemes applied to the
system (3.15) need not converge in strong sense when the standard assump-
tions do not hold [47, 48], although they may still converge in the pathwise
sense.

Based on these ideas, we prove the following theorem:

Theorem 5. (Pathwise convergence of RODE-Taylor scheme.)
Suppose that a, b1, . . . , bm, f(X, ·) ∈ C2γ+1

b and f(·, Y ) ∈ C2γ+1. Then
the solution (Xn, Yn) of the order γ strong Taylor scheme (3.11) converges
pathwise to the solution (X(t), Y (t)) of (3.15) with order (γ − ε) on [0, T ].
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The proof is based on a localization argument similar to that of Theorem
1 in [58] in a different context, which in turn uses ideas from [40]. It does not
depend on the specific structure of the strong Taylor schemes, just the fact
that they converge pathwise under the standard assumptions, which follows
by a Borel-Cantelli argument as in Lemma 1 of section 2.2.2 when all of the
error moments converge with the same order γ. This moment property was
established in [65] for the order γ strong Taylor schemes as well as for the
two-step Adams-Moulton scheme.

Proof. Let N be some sufficiently large number and define the stopping
times:

τ (N)(ω) = inf {t ≥ 0 : |X(t, ω)| > N} ∧ 2T,

τ (N)
n (ω) = inf {t ≥ 0 : |Xn(t, ω)| > N} ∧ 2T.

(The interval [0, 2T ] is used here to handle stopping times and other technical
issues, but the result will be restricted later to the smaller interval [0, T ]).

Fix a function ϕN ∈ C∞b (Rd; [0, 1]) such that

ϕN (X) =

1 for |X| ≤ N,

0 for |X| > N + 1

and define the truncated function fϕN ∈ C
2γ+1
b by the product fϕ(X,Y ) =

f(X,Y ) · ϕN (X). Then consider the truncated SODE:

dX(ϕN )(t) = fϕN

(
X(ϕN )(t), Y (t)

)
dt+ 0 dW (t),

which we couple with the driving SODE (3.13) for Y (t) to form the modified
system of SODEs in Rd+m:

d

(
X(ϕN )(t)

Y (t)

)
=

(
fϕN

(
X(ϕN )(t), Y (t)

)
a(Y (t))

)
dt+

(
0

b(Y (t))

)
dW (t). (3.27)

Clearly

τ (N)
n (ω) = inf {t ≥ 0 : Xn(t, ω) > N} ∧ 2T

= inf
{
t ≥ 0 : X(ϕN )

n (t, ω) > N
}
∧ 2T

and, as shown in the appendix of [58],

X(t ∧ τ (N))1{τ (N)>0} = X(ϕN )(t ∧ τ (N))1{τ (N)>0}

for t ≥ 0, so

τ (N)(ω) = inf {t ≥ 0 : |X(t, ω)| > N} ∧ 2T

≤ inf
{
t ≥ 0 :

∣∣∣X(ϕN )(t, ω)
∣∣∣ > N

}
∧ 2T.
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The coefficients of the modified system of SODEs (3.27) satisfy the stan-
dard assumptions, so by Proposition 2 on the pathwise convergence rates
of the Itô-Taylor scheme in [58], the interpolated (as above) order γ strong
Taylor scheme

(
X

(ϕN )
n (t), Yn(t)

)
applied to (3.27) converges strongly with

order γ and pathwise with order (γ − ε) to its solution
(
X(ϕN )(t), Y (t)

)
on

the time interval. Thus, for every ε > 0, there exists a finite non-negative
random variable ζ(N)

ε,2T such that

sup
t∈[0,2T ]

∣∣∣X(ϕN )(t, ω)−X(ϕN )
n (t, ω)

∣∣∣ ≤ ζ(N)
ε,2T (ω) · n−γ+ε, a.s. (3.28)

for all n ∈ N.
Since

X(ϕN )
n (t ∧ τ (N)

n )1{τ (N)
n >0} = Xn(t ∧ τ (N)

n )1{τ (N)
n >0}, t ∈ [0, 2T ], a.s.,

and

X(t ∧ τ (N))1{τ (N)>0} = X(ϕN )(t ∧ τ (N))1{τ (N)>0}, t ∈ [0, 2T ], a.s.,

it follows that Xn(t) converges pathwise to X(t) with order (γ − ε) on
[0, τ

(N)
n ∧ τ (N)), i.e.,

sup
t∈[0,τ

(N)
n ∧τ (N))

|X(t, ω)−Xn(t, ω)| ≤ ζ(N)
ε,2T (ω) · n−γ+ε (3.29)

for all n ∈ N.
Similarly

τ̄ (N)
n (ω) = inf {t ≥ 0 : |Xn(t, ω)| > N} ∧ 2T

= inf
{
t ≥ 0 :

∣∣∣X(ϕN )
n (t, ω)

∣∣∣ > N
}
∧ 2T

and

X(ϕN )
n (t ∧ τ̄ (N)

n )1{τ̄ (N)
n >0} = Xn(t ∧ τ̄ (N)

n )1{τ̄ (N)
n >0}, t ∈ [0, 2T ], a.s.

Applying the same argument as above gives

sup
t∈[0,τ (N)∧τ̄ (N)

n )

|X(t, ω)−X(ϕN )
n (t, ω)| ≤ ζ(N)

ε,2T (ω) · n−γ+ε. (3.30)

From equations (3.29) and (3.30),

sup
t∈[0,τ (N)∧τ (N)

n )

|X(t, ω)−Xn(t, ω)| + sup
t∈[0,τ (N)∧τ̄ (N)

n )

∣∣∣X(t, ω)−X(ϕN )
n (t, ω)

∣∣∣
≤ 2 ζ

(N)
ε,2T (ω) · n−γ+ε
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and hence

sup
t∈[0,τ ′)

∣∣∣Xn(t, ω)−X(ϕN )
n (t, ω)

∣∣∣ ≤ 2 ζ
(N)
ε,2T (ω) · n−γ+ε (3.31)

for all n ∈ N, where τ ′ = τ (N) ∧ τ (N)
n ∧ τ̄ (N)

n . This means that the approxi-
mation of the original SODE by original strong Taylor scheme and that for
the modified SODE coincide.

Inequality (3.28) implies that

lim
n→∞

sup
t∈[0,2T ]

|X(ϕN )(t, ω)−X(ϕN )
n (t, ω)| = 0

for almost all ω ∈ Ω, which means that

lim inf
n→∞

τ (N)
n ≥ inf{t ≥ 0 : |X(ϕN )(t)| > N} ∧ 2T a.s.

As
τ (N)(ω) ≤ inf{t ≥ 0 : |X(ϕN )(t, ω)| > N} ∧ 2T a.s.,

we obtain
lim inf
n→∞

τ (N)
n ≥ τ (N) a.s. (3.32)

By (3.31) and (3.32),

lim sup
n→∞

sup
t∈[0,τ (N)(ω)−T/2]

nγ−ε |Xn(t, ω)−X(t, ω)| ≤ ζ(N)
ε,2T (ω)

for almost all ω ∈ Ω.
Finally, we restrict ourselves to the sample paths with

ω ∈ ΩN,T := {ω ∈ Ω : |X(t, ω)| ≤ N, t ∈ [0, 2T ]}

for appropriate N and T . Then, for such ω, the numerical scheme converges
pathwise with order (γ − ε) to the solution of the original SODE on the
interval [0, T ].

Remark 1. Note that under the standard assumptions the Euler-Maruyama
scheme for additive noise has, in fact, strong order 1.0 and hence order (1−ε)
pathwise convergence. If the Y process above can be approximated to strong
order 1.0 (e.g., through the Milstein scheme), then the Euler-Maruyama
scheme for the X-component above will have strong order 1.0 and hence
converge pathwise with order (1− ε).
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3.2 Linear multi-step methods

3.2.1 Derivation of linear multi-step methods

For simplicity, set d1 = d2 = 1 and m = 1 and the equidistant step size
∆t is assumed on the given time interval in what follows. In addition, it is
assumed initially that the stochastic process Y (t) can be generated exactly
and its value at tn is given by Y (tn). Consider the coupled RODE-SODE in
R2:

dX(t) = F(X(t)) dt+ G(X(t)) dW (t), (3.33)

with

X =

(
x
y

)
, F(X) =

(
f(x, y)
a(y)

)
, G(X) =

(
0
b(y)

)
.

An Euler-Maruyama type linear s-step method for (3.33) is given by
s∑
j=0

αjXn−j = ∆t

s∑
j=0

βjF(Xn−j) +

s∑
j=1

γjG(Xn−j)I(1),tn−j ,

where Xn−j is an approximated value at tn−j . Since G1 ≡ 0 itsX-component
reduces to

s∑
j=0

αjXn−j = ∆t

s∑
j=0

βjf(Xn−j , Y (tn−j)). (3.34)

The local error of (3.34) will now be analyzed in order to develop higher
order schemes. When s = 2, the local error Ln of (3.34) is given by

Ln :=

∣∣∣∣∣∣
2∑
j=0

αjX(tn−j)−∆t

2∑
j=0

βjf(X(tn−j), Y (tn−j))

∣∣∣∣∣∣ . (3.35)

The hierarchical and remainder sets for γ = 1 are Λ0
1 = {∅, (0)} and B(Λ0

1) =
{(1), (0, 0), (1, 0)}. The corresponding stochastic Itô-Taylor expansions are

X(tn) = X(tn−1) + f(X(tn−1), Y (tn−1))I(0),tn−1
+

∑
α∈B(Λ0

1)

Iα,tn−1 [Lαid1
X]

X(tn−1) = X(tn−2) + f(X(tn−2), Y (tn−2))I(0),tn−2
+

∑
α∈B(Λ0

1)

Iα,tn−2 [Lαid1
X].

Since the f terms in the local error are already multiplied by ∆t, they need
only be expanded to a lower order, i.e., for the hierarchical and remainder
sets Λ0 = {∅} and B(Λ0) = {(0), (1)}, so

f(X(tn), Y (tn)) = f(X(tn−1), Y (tn−1)) +
∑

α∈B(Λ0)

Iα,tn−1 [Lαf ]

f(X(tn−1), Y (tn−1)) = f(X(tn−2), Y (tn−2)) +
∑

α∈B(Λ0)

Iα,tn−2 [Lαf ].
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In order to simplify the notation in later expressions, this is the same as

f(X(tn), Y (tn)) = f(X(tn−1), Y (tn−1)) +
∑

α∈B(Λ0
1)

Iα[1],tn−1 [Lαid1
X]

f(X(tn−1), Y (tn−1)) = f(X(tn−2), Y (tn−2)) +
∑

α∈B(Λ0
1)

Iα[1],tn−2 [Lαid1
X],

where α[1] is the first component of α, since the L1id1
X is zero, so the term

for α = (1) vanishes.
Substitution ofX(tn),X(tn−1), f(X(tn), Y (tn)) and f(X(tn−1), Y (tn−1))

in (3.35) gives

Ln = |(α0 + α1 + α2)X(tn−2)

+ (2α0 + α1 − (β0 + β1 + β2)) ∆tf(X(tn−2), Y (tn−2)) +R1|,

where the remainder term R1 is

R1 =
∑

α∈B(Λ0
1)

(
α0Î

tn
α,tn−2

[Lαid1
X] + α1Iα,tn−2 [Lαid1

X]

−∆t(β0Î
tn
α[1],tn−2

[Lαid1
X] + β1Iα[1],tn−2 [Lαid1

X])
)
,

where Îtnα,tn−2
is a combination of stochastic integrals given in section 2.4.

When
α0 + α1 + α2 = 0, 2α0 + α1 − (β0 + β1 + β2) = 0, (3.36)

the local error Ln ≤ C∆
3/2
t for some constant C > 0 and the SLMMs (3.34)

with the consistency conditions (3.36) satisfy 1.0-order convergence. Typical
examples are the Adams-Bashforth scheme:

Xn = Xn−1 +
1

2
(3fn−1 − fn−2)∆t, (3.37)

and Adams-Moulton scheme:

Xn = Xn−1 +
1

12
(5fn + 8fn−1 − fn−2)∆t, (3.38)

which satisfy 1.0-order convergence and coincide with their deterministic
counterparts (2.12) and (2.13).

Order 1.5 scheme

In order to achieve the same order as the 1.5-order strong Itô-Taylor scheme,
one has to deal with the remainder term R1. In this case B(Λ0

1) \ {(1)} =
{(1, 0), (0, 0)} and L1f and L0f terms appear in R1.
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Consider the SLMMs in the following form:

2∑
j=0

αjXn−j = ∆t

2∑
j=0

βjf(Xn−j , Y (tn−j)) (3.39)

+

2∑
j=1

L1f(Xn−j , Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

+
2∑
j=1

L0f(Xn−j , Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

)
.

Then, the local error Ln of (3.39) is given by

Ln :=
∣∣∣ 2∑
j=0

αjX(tn−j)−∆t

2∑
j=0

βjf(X(tn−j), Y (tn−j)) (3.40)

−
2∑
j=1

L1f(X(tn−j), Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

−
2∑
j=1

L0f(X(tn−j), Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

) ∣∣∣.
The hierarchical set for γ = 1.5 is now given by Λ0

3/2 = {∅, (0), (1, 0), (0, 0)}
and the corresponding stochastic Itô-Taylor expansions are

X(tn) =
∑

α∈Λ0
3/2

Lαid1
X(X(tn−1), Y (tn−1))Iα,tn−1 ] +

∑
α∈B(Λ0

3/2
)\{(1)}

Iα,tn−1 [Lαid1
X]

X(tn−1) =
∑

α∈Λ0
3/2

Lαid1
X(X(tn−2), Y (tn−2))Iα,tn−2 +

∑
α∈B(Λ0

3/2
)\{(1)}

Iα,tn−2 [Lαid1
X]

and with Λ1/2 = {∅, (0), (1)}, so B
(
Λ1/2

)
= {(0, 0), (1, 0), (0, 1), (1, 1)},

f(X(tn), Y (tn)) = f(X(tn−1), Y (tn−1)) + L1f(X(tn−1), Y (tn−1))I(1),tn−1

+L0f(X(tn−1), Y (tn−1))I(0),tn−1
+

∑
α∈B(Λ1/2)

Iα,tn−1 [Lαf ]

f(X(tn−1), Y (tn−1))

= f(X(tn−2), Y (tn−2)) + L1f(X(tn−2), Y (tn−2))I(1),tn−2

+L0f(X(tn−2), Y (tn−2))I(0),tn−2
+

∑
α∈B(Λ1/2)

Iα,tn−2 [Lαf ]
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as well as

L1f(X(tn−1), Y (tn−1)) = L1f(X(tn−2), Y (tn−2))

+I(1),tn−2
[L1L1f ] + I(0),tn−2

[L0L1f ]

L0f(X(tn−1), Y (tn−1)) = L0f(X(tn−2), Y (tn−2))

+I(1),tn−2
[L1L0f ] + I(0),tn−2

[L0L0f ].

The expansions X(tn), X(tn−1), f(X(tn), Y (tn)), f(X(tn−1), Y (tn−1)),
L1f(X(tn−1), Y (tn−1)) and L0f(X(tn−1), Y (tn−1)) in (3.40) are replaced by
these expansions. The local error is

Ln =
∣∣∣(α0 + α1 + α2)X(tn−2)

+ (2α0 + α1 − (β0 + β1 + β2)) ∆tf(X(tn−2), Y (tn−2))

+
(
α0Î

tn
(1,0),tn−2

+ α1I(1,0),tn−2
− β0Î

tn
(1),tn−2

∆t − β1I(1),tn−2
∆t − γ1I(1,0),tn−1

−γ2I(1,0),tn−2
− γ∗1I(1),tn−1

∆t − γ∗2I(1),tn−2
∆t

)
L1f(X(tn−2), Y (tn−2))

+
(
α0Î

tn
(0,0),tn−2

+ α1I(0,0),tn−2
− β0Î

tn
(0),tn−2

∆t − β1I(0),tn−2
∆t − δ1I(0,0),tn−1

−δ2I(0,0),tn−2
− δ∗1I(0),tn−1

∆t − δ∗2I(0),tn−2
∆t

)
L0f(X(tn−2), Y (tn−2))

+R1.5

∣∣∣.
The remainder term R1.5 can be written as

R1.5 =
∑

α∈B(Λ0
3/2

)\{(1)}

{
α0Î

tn
α,tn−2

[Lαid1
X] + α1Iα,tn−2 [Lαid1

X]

−β0Î
tn
α[1,2],tn−2

[Lαid1
X]∆t − β1Iα[1,2],tn−2 [Lαid1

X]∆t

−γ1Iα[1],tn−2 [Lαid1
X]Iα[2,3],tn−1 − γ∗1Iα[1],tn−2 [Lαid1

X]Iα[2],tn−1∆t

−δ1Iα[1],tn−2 [Lαid1
X]Iα[2,3],tn−1 − δ∗1Iα[1],tn−2 [Lαid1

X]Iα[2],tn−1∆t

}
,

where α[1,2] consists of the first and second components of α and α[2,3] are
the second and third components of α, since

B(Λ1/2) =
{
α : (α, 0) ∈ B(Λ0

3/2) \ {(1)}
}

and L(α,0)id1
X = LαL0id1

X = Lαf while L1id1
X = 0. In addition, the terms γ1

and γ∗1 appear when α = (1, 1, 0) or (0, 1, 0) and δ1 and δ∗1 when α = (1, 0, 0)
or (0, 0, 0).



50 CHAPTER 3. RODES WITH ITÔ NOISE

The coefficients of L1f(X(tn−2), Y (tn−2)) can be transformed into

(α0 + α1 − γ2)I(1,0),tn−2
+ (α0 − γ1)I(1,0),tn−1

+(α0 − β0 − β1 − γ∗2)I(1),tn−2
∆t − (β0 + γ∗1)I(1),tn−1

∆t.

Similarly the coefficients of L0f(X(tn−2), Y (tn−2)) can be written as

(α0 + α1 − δ2)I(0,0),tn−2
+ (α0 − δ1)I(0,0),tn−1

+(α0 − β0 − β1 − δ∗2)I(0),tn−2
∆t − (β0 + δ∗1)I(0),tn−1

∆t.

If the following consistency conditions:γ1 = δ1 = α0, γ2 = δ2 = α0 + α1,

γ∗1 = δ∗1 = −β0, γ∗2 = δ∗2 = α0 − β0 − β1,
(3.41)

are satisfied, the SLMMs (3.39) satisfy 1.5-order convergence since both of
the coefficients terms of L1f(X(tn−2), Y (tn−2)) and L0f(X(tn−2), Y (tn−2))
are 0.

Order 2.0 scheme

Similarly, Λ0
2 = {∅, (0), (1, 0), (0, 0), (1, 1, 0)} and a 2-step SLMM of 2.0-order

is given by

2∑
j=0

αjXn−j = ∆t

2∑
j=0

βjf(Xn−j , Y (tn−j)) (3.42)

+

2∑
j=1

L1f(Xn−j , Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

+
2∑
j=1

L0f(Xn−j , Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

)

+

2∑
j=1

L1L1f(Xn−j , Y (tn−j))
(
εjI(1,1,0),tn−j + ε∗jI(1,1),tn−j∆t

)
.

It requires the additional consistency conditions:ε1 = α0, ε2 = α0 + α1,

ε∗1 = −β0, ε∗2 = α0 − β0 − β1.
(3.43)
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3-step scheme

SLMMs with more steps can be generated in the same manner. Now we
consider 3-step SLMMs in the following form:

3∑
j=0

αjXn−j = ∆t

3∑
j=0

βjf(Xn−j , Y (tn−j)) (3.44)

+
3∑
j=1

L1f(Xn−j , Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

+

3∑
j=1

L0f(Xn−j , Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

)
.

Then the local error of (3.44) is given by

Ln :=
∣∣∣ 3∑
j=0

αjX(tn−j)−∆t

3∑
j=0

βjf(X(tn−j), Y (tn−j)) (3.45)

−
3∑
j=1

L1f(X(tn−j), Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

−
3∑
j=1

L0f(X(tn−j), Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

) ∣∣∣.
The terms X(tn), X(tn−1), X(tn−2), f(X(tn), Y (tn)), f(X(tn−1), Y (tn−1)),
f(X(tn−2), Y (tn−2)), L1f(X(tn−1), Y (tn−1)), L1f(X(tn−2), Y (tn−2)),
L0f(X(tn−1), Y (tn−1)) and L0f(X(tn−2), Y (tn−2)) in (3.45) are replaced by
the corresponding stochastic Itô-Taylor expansions. The local error is

Ln =
∣∣∣(α0 + α1 + α2 + α3)X(tn−3)

+ (3α0 + 2α1 + α2 − (β0 + β1 + β2 + β3)) ∆tf(X(tn−3), Y (tn−3))

+
(
α0Î

tn
(1,0),tn−3

+ α1Î
tn−1

(1,0),tn−3
+ α2I(1,0),tn−3

−β0Î
tn
(1),tn−3

∆t − β1Î
tn−1

(1),tn−3
∆t − β2I(1),tn−3

∆t

−γ1I(1,0),tn−1
− γ2I(1,0),tn−2

− γ3I(1,0),tn−3

−γ∗1I(1),tn−1
∆t − γ∗2I(1),tn−2

∆t − γ∗3I(1),tn−3
∆t

)
L1f(X(tn−3), Y (tn−3))
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+
(
α0Î

tn
(0,0),tn−3

+ α1Î
tn−1

(0,0),tn−3
+ α2I(0,0),tn−3

−β0Î
tn
(0),tn−3

∆t − β1Î
tn−1

(0),tn−3
∆t − β2I(0),tn−3

∆t

−δ1I(0,0),tn−1
− δ2I(0,0),tn−2

− δ3I(0,0),tn−3

−δ∗1I(0),tn−1
∆t − δ∗2I(0),tn−2

∆t − δ∗3I(0),tn−3
∆t

)
L0f(X(tn−3), Y (tn−3))

+R1.5

∣∣∣.
The remainder term R1.5 here can be written as

R1.5 =
∑

α∈B(Λ0
3/2

)\{(1)}

{
α0Î

tn
α,tn−3

[Lαid1
X] + α1Î

tn−1

α,tn−3
[Lαid1

X] + α2Iα,tn−3 [Lαid1
X]

−β0Î
tn
α[1,2],tn−3

[Lαid1
X]∆t − β1Î

tn−1

α[1,2],tn−3
[Lαid1

X]∆t

−β2Iα[1,2],tn−3 [Lαid1
X]∆t

−γ1Î
tn−1

α[1],tn−3
[Lαid1

X]Iα[2,3],tn−1 − γ2Iα[1],tn−3 [Lαid1
X]Iα[2,3],tn−2

−γ∗1 Î
tn−1

α[1],tn−3
[Lαid1

X]Iα[2],tn−1∆t − γ∗2Iα[1],tn−3 [Lαid1
X]Iα[2],tn−2∆t

−δ1Î
tn−1

α[1],tn−3
[Lαid1

X]Iα[2,3],tn−1 − δ2Iα[1],tn−3 [Lαid1
X]Iα[2,3],tn−2

−δ∗1 Î
tn−1

α[1],tn−3
[Lαid1

X]Iα[2],tn−1∆t − δ∗2Iα[1],tn−3 [Lαid1
X]Iα[2],tn−2∆t

}
.

The coefficients of L1f(X(tn−3), Y (tn−3)) can be transformed into

(α0 + α1 + α2 − γ3)I(1,0),tn−3
+ (α0 + α1 − γ2)I(1,0),tn−2

+(α0 − γ1)I(1,0),tn−1
+ (2α0 + α1 − β0 − β1 − β2 − γ∗3)I(1),tn−3

∆t

+(α0 − β0 − β1 − γ∗2)I(1),tn−2
∆t − (β0 + γ∗1)I(1),tn−1

∆t.

Similarly, the coefficient of L0f(X(tn−3), Y (tn−3)) can be written as

(α0 + α1 + α2 − δ3)I(0,0),tn−3
+ (α0 + α1 − δ2)I(0,0),tn−2

+(α0 − δ1)I(0,0),tn−1
+ (2α0 + α1 − β0 − β1 − β2 − δ∗3)I(0),tn−3

∆t

+(α0 − β0 − β1 − δ∗2)I(0),tn−2
∆t − (β0 + δ∗1)I(0),tn−1

∆t.

If the following consistency conditions:
γ1 = δ1 = α0, γ2 = δ2 = α0 + α1, γ3 = δ3 = α0 + α1 + α2

γ∗1 = δ∗1 = −β0, γ∗2 = δ∗2 = α0 − β0 − β1,

γ∗3 = δ∗3 = 2α0 + α1 − β0 − β1 − β2,

(3.46)
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are satisfied, the SLMMs (3.44) satisfy 1.5-order convergence since the coeffi-
cient of L1f(X(tn−3), Y (tn−3)) and L0f(X(tn−3), Y (tn−3)) terms are both 0.

Similarly, Λ0
2 = {∅, (0), (1, 0), (0, 0), (1, 1, 0)} and a 3-step SLMM of 2.0-

order is given by
3∑
j=0

αjXn−j = ∆t

3∑
j=0

βjf(Xn−j , Y (tn−j)) (3.47)

+
3∑
j=1

L1f(Xn−j , Y (tn−j))
(
γjI(1,0),tn−j + γ∗j I(1),tn−j∆t

)

+

3∑
j=1

L0f(Xn−j , Y (tn−j))
(
δjI(0,0),tn−j + δ∗j I(0),tn−j∆t

)

+
3∑
j=1

L1L1f(Xn−j , Y (tn−j))
(
εjI(1,1,0),tn−j + ε∗jI(1,1),tn−j∆t

)
,

which requires the additional consistency conditions:
ε1 = α0, ε2 = α0 + α1, ε3 = α0 + α1 + α2

ε∗1 = −β0, ε∗2 = α0 − β0 − β1, ε∗3 = 2α0 + α1 − β0 − β1 − β2.
(3.48)

General form

Higher order SLMMs or methods with more steps can be generated in the
same manner. In general, the γ-order s-step SLMM, written with the help
of the reduced hierarchical set Λ0

γ , has the form:
s∑
j=0

C∅,jXn−j = ∆t

s∑
j=0

C(0),jf(Xn−j , Ȳn−j) (3.49)

+

s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(Xn−j , Ȳn−j)

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

)
,

where the consistency conditions are given as
∑s

j=0C∅,j = 0,
∑s

j=0(s− j)C∅,j =
∑s

j=0C(0),j ,

Cα,i =
∑i−1

j=0C∅,j for i = 1, . . . , s,

C∗α,i =
∑i−1

j=0

(
(i− 1− j)C∅,j − C(0),j

)
for i = 1, . . . , s,

(3.50)

for α ∈ Λ0
γ \ {∅, (0)}. Ȳn−j here is an approximation of Y (t) at tn−j by

enough higher order schemes or Y (tn−j) itself when Y (t) can be generated
exactly.
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The method reduces to an explicit scheme when C(0),0 = 0 (by the order
conditions this happens when, e.g., the C∗α,1 = 0 for all α ∈ Λ0

γ\{∅, (0)}).
Note that these methods now involve partial derivatives of the vector field
function.

3.2.2 Pathwise convergence

The pathwise convergence result for X-component of the RODE-SODE pair
also holds for the SLMMs derived in subsection 3.2.1. The SLMMs were
derived assuming that the process Y (t) can be generated exactly, however,
the following theorem is shown also for Yn, the approximated value by enough
higher order schemes.

Theorem 6. (Pathwise convergence of SLMMs.)
Suppose that γ-order s-step SLMM (3.49) is consistent and that the initial
condition X0 is given and the second initial conditions Xl for l = 1, . . . ,
s − 1 are provided by a 1-step scheme of the same order. In addition, it is
supposed that the stochastic process Y (t) can be generated exactly or obtained
by γ′-order schemes.
Then, under the standard assumptions, the approximation Xi converges path-
wise with order (γ − ε) for all ε > 0 and γ′ ≥ γ − 1, i.e.,

sup
i=0,··· ,n

|X(ti, ω)−Xi(ω)| ≤ C(γ)
ε (ω)∆γ−ε

t

for almost all ω ∈ Ω.

Proof. First of all, assume that the stochastic process Y (t) can be generated
exactly, i.e., Ȳn−j = Y (tn−j). In addition, we denote X(tn) = X(tn, ω) and
Xn = Xn(ω) in what follows.
The error of the γ-order s-step SLMM is given by

Ln = |X(tn)−Xn|

=
∣∣∣ s∑
j=0

C∅,jX(tn−j)−∆t

s∑
j=0

C(0),jf(X(tn−j), Y (tn−j)) (3.51)

−
s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(X(tn−j), Y (tn−j))

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

) ∣∣∣.
Applying the Itô-Taylor expansions to X(tn−j) and f(X(tn−j), Y (tn−j)) for
j = 0, . . . , s− 1 and Lαid1

X(X(tn−j), Y (tn−j)) for j = 1, . . . , s− 1 yields
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Ln =
∣∣∣ s∑
j=0

C∅,jX(tn−s)

+

(
s∑
j=0

(s− j)C∅,j −
s∑
j=0

C(0),j

)
∆t f(X(tn−s), Y (tn−s))

...

+

(
s−1∑
j=0

C∅,j Î
tn−j
α,tn−s −

s−1∑
j=0

C(0),j Î
tn−j
α−,tn−s∆t − . . .

· · · −
s∑
j=1

(Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t)

)
Lαid1

X(X(tn−s), Y (tn−s))

+R
∣∣∣,

where the term R is

R =
∑

α∈B(Λ0
γ)\{(1)}

(
s−1∑
j=0

C∅,j Î
tn−j
α,tn−s [L

αid1
X]−

s−1∑
j=0

C(0),j Î
tn−j
α−,tn−s [L

α−f ]∆t

−
s−1∑
j=1

∑
α′∈Λ0

γ\{∅,(0)}

Î
tn−j
α[1],tn−s

[Lαid1
X]
(
Cα′,jI−α,tn−j + C∗α′,jI−α−,tn−j∆t

))
,

where −α− is α without the first and the last element.
The consistency conditions are taken to satisfy, e.g.,

s∑
j=0

C∅,j = 0,

s∑
j=0

(s− j)C∅,j =

s∑
j=0

C(0),j ,

which correspond to the 1-order consistency conditions, and the coefficients
of X(tn−s), f(X(tn−s), Y (tn−s)), . . . Lαid1

X(X(tn−s), Y (tn−s)) are all 0. It
means that the local error depends only on the remainder term R.

Define
CLαid1

X
:= sup

i=0,...,n

∣∣Lαid1
X(X(ti), Y (ti))

∣∣ .
Then, the multiple stochastic integrals appearing in R can be evaluated as∣∣∣Îtn−iα,tn−s [L

αid1
X]
∣∣∣ ≤ CLαid1

X

∣∣∣Îtn−iα,tn−s

∣∣∣+
∣∣∣Îtn−i(0),tn−s

[Îs1α,tn−s [L
0Lαid1

X]]
∣∣∣

+
∣∣∣Îtn−i(1),tn−s

[Îs1α,tn−s [L
1Lαid1

X]]
∣∣∣
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for i = 0, . . . , s − 1. α ∈ B(Λ0
γ) and Î

tn−i
α,tn−s is at least ∆

γ+1/2
t order. In

addition, ∣∣∣Îtn−i(0),tn−s
[Îs1α,tn−s [L

0Lαid1
X]]
∣∣∣ ≤ C0∆

γ+3/2
t∣∣∣Îtn−i(1),tn−s

[Îs1α,tn−s [L
1Lαid1

X]]
∣∣∣ ≤ C1∆γ+1

t ,

for some C0, C1 ≥ 0. Hence,∣∣∣Îtn−iα,tn−s [L
αid1

X]
∣∣∣ ≤ CLαid1

X
∆
γ+1/2
t .

The other terms in R can be evaluated in the same manner and, for instance,∣∣∣Îtn−iα−,tn−s [L
α−f ]∆t

∣∣∣ ≤ CLαid1
X

∣∣∣Îtn−iα−,tn−s∆t

∣∣∣+
∣∣∣Îtn−i(0),tn−s

[Îs1α−,tn−s [L
0Lα−f ]]∆t

∣∣∣
+
∣∣∣Îtn−i(1),tn−s

[Îs1α−,tn−s [L
1Lα−f ]]∆t

∣∣∣
≤ CLαid1

X
∆
γ+1/2
t .

Now R can be estimated as

R ≤ CRCLαid1
X

∆
γ+1/2
t ,

for some CR > 0. This leads

sup
i=0,...,n

|X(ti)−Xi| = sup
i=0,...,n

|R| ≤ CCLαid1
X

∆
γ+1/2
t , (3.52)

where the constant C depends on the sample paths (and the time interval)
under consideration.

Suppose now that the driving stochastic process Y (t) is approximated by
γ′-order scheme. Then the local error L̄n is given by

L̄n =

∣∣∣∣∣
s∑
j=0

C∅,jX(tn−j)−∆t

s∑
j=0

C(0),jf(X(tn−j), Ȳn−j) (3.53)

−
s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(X(tn−j), Ȳn−j)

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

) ∣∣∣∣∣.
The value Ȳn−j is obtained by γ′-order scheme and

|Y (tn−j)− Ȳn−j | ≤ C̄∆
γ′+1/2
t ,

for some constant C̄ > 0. Choose the constant C̄ = C̄n−j to satisfy

Ȳn−j = Y (tn−j) + C̄n−j∆
γ′+1/2
t . (3.54)
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Replacing Ȳn−j in (3.53) by (3.54) gives

L̄n =

∣∣∣∣∣
s∑
j=0

C∅,jX(tn−j)−∆t

s∑
j=0

C(0),jf
(
X(tn−j), Y (tn−j) + C̄n−j∆

γ′+1/2
t

)
−

s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X

(
X(tn−j), Y (tn−j) + C̄n−j∆

γ′+1/2
t

)
(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

) ∣∣∣∣∣.
By the Lipschitz condition,∣∣∣Lαid1

X

(
X(tn−j), Y (tn−j) + C̄n−j∆

γ′+1/2
t

)
− Lαid1

X(X(tn−j), Y (tn−j))
∣∣∣

≤ KC̄n−j∆γ′+1/2
t ,

for some K > 0. Choose K = Kα,n−j to satisfy

Lαid1
X

(
X(tn−j), Y (tn−j) + C̄n−j∆

γ′+1/2
t

)
= Lαid1

X(X(tn−j), Y (tn−j)) +Kα,n−jC̄n−j∆
γ′+1/2
t .

This leads the following estimate of L̄n:

L̄n ≤

∣∣∣∣∣
s∑
j=0

C∅,jX(tn−j)−∆t

s∑
j=0

C(0),jf(X(tn−j), Y (tn−j)) (3.55)

−
s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(X(tn−j), Y (tn−j))

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

)∣∣∣∣∣+ |R̄|,

where the term R̄ is given by

R̄ =
s∑
j=0

C(0),j∆tK(0),n−jC̄n−j∆
γ′+1/2
t

+
s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

)
Kα,n−jC̄n−j∆

γ′+1/2
t .

The first term of the right hand side of (3.55) is the same with Ln and it
can be evaluated as (3.52). If R̄ is ∆

γ+1/2
t -order, L̄n is also the same order.

Obviously (γ′ + 3/2) is the lowest power with respect to ∆t in R̄ and

γ′ +
3

2
≥ γ +

1

2
,
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i.e., γ′ ≥ γ − 1, so

L̄n ≤ (CCLαid1
X

+ CR̄)∆
γ+1/2
t ,

for γ′ ≥ γ − 1 and some constant CR̄ > 0. This means that the inequality
(3.52) holds also for Ȳn−j obtained by γ′ ≥ γ − 1 order schemes.



Chapter 4

RODEs with affine structure

In chapter 3, we investigate RODE with Itô diffusion and their numerical
schemes are developed via RODE-SODE transformation. In this chapter,
we include more general noise, but now RODEs with affine structure are
considered.

A d-dimensional RODE with m-dimensional affine noise has the form:

dx

dt
= f0(t, x) +

m∑
j=1

f j(t, x) ζjt , (4.1)

where x = (x1, . . . , xd) ∈ Rd and the noise process ζt = (ζ1
t , . . . , ζ

m
t ) takes

values in Rm. The sample paths of ζt are assumed to be at least Lebesgue
measurable and almost surely bounded, so the differential equation must
be interpreted in the sense of Carathéodory. Typical noise processes are
Wiener processes and fBms, which have Hölder continuous sample paths, and
compound Poisson processes, which have piecewise constant sample paths.

Numerical schemes for RODEs with affine structure can be constructed
with a similar approach that used by Grüne & Kloeden [37] to systemati-
cally derive higher order numerical schemes for deterministic affine control
systems. These are based on stochastic Stratonovich-Taylor expansion and
the hierarchical sets in section 2.4 and [66], which is possible since the chain
rules of deterministic and Stratonovich calculi are analogous. After a brief
introduction of affine-RODE-Taylor expansions in section 4.1, affine-RODE-
Taylor schemes, derivative-free schemes and schemes for affine-RODEs with
additive and commutative noises as well as LMMs are developed in sections
4.2 and 4.3, respectively.

59
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4.1 Affine-RODE-Taylor expansions

The RODE (4.1) can be written equivalently in the integral form:

x(t) = x(t0) +

∫ t

t0

f0(s, x(s)) ds+
m∑
j=1

∫ t

t0

f j(s, x(s)) ζjs ds. (4.2)

The chain rule:

U(t, x(t)) = U(t0, x(t0)) +

∫ t

t0

L0U(s, x(s)) ds+
m∑
j=1

∫ t

t0

LjU(s, x(s)) ζjs ds

(4.3)
for any continuously differentiable function U : [t0, T ] × Rd → R can be
applied to each function under integral in (4.2). The idea is similar to the
derivation of Stratonovich-Taylor expansions that for Stratonovich SDEs in
[66], which was later applied to deterministic affine-control systems in [37].

Here the partial differential operators L0 and Lj are given by

L0 =
∂

∂t
+

d∑
k=1

f0,k ∂

∂xk
, Lj =

d∑
k=1

f j,k
∂

∂xk
, j = 1, . . . ,m, (4.4)

where f j,k is the k-th component of the vector valued function f j for k = 1,
. . . , d and j = 1, . . . , m.

Assume that the coefficients f0 and f j in (4.1) are sufficiently smooth
real-valued functions. We apply the chain rule (4.3) to the functions U = f0

and U = f j in (4.2), respectively.

x(t) = x(t0) +

∫ t

t0

(
f0(t0, x(t0)) +

∫ s

t0

L0f0(s1, x(s1)) ds1 (4.5)

+
m∑
j=1

∫ s

t0

Ljf0(s1, x(s1)) ζjs1 ds1

)
ds

+
m∑
j=1

∫ t

t0

(
f j(t0, x(t0)) +

∫ s

t0

L0f j(s1, x(s1)) ds1

+

m∑
j1=1

∫ s

t0

Lj1f j(s1, x(s1)) ζj1s1 ds1

)
ζjs ds

= x(t0) + f0(t0, x(t0))

∫ t

t0

ds+

m∑
j=1

f j(t0, x(t0))

∫ t

t0

ζjs ds+R1 (4.6)
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where R1 is the remainder term given by

R1 =

∫ t

t0

∫ s1

t0

L0f0(s2, x(s2)) ds2ds1 +
m∑
j=1

∫ t

t0

∫ s1

t0

Ljf0(s2, x(s2)) ζjs2 ds2ds1

+

m∑
j=1

∫ t

t0

∫ s1

t0

L0f j(s2, x(s2)) ζjs1 ds2ds1 (4.7)

+

m∑
j1,j2=1

∫ t

t0

∫ s1

t0

Lj2f j1(s2, x(s2)) ζj2s2ζ
j1
s1 ds2ds1.

Applying the chain rule again to, e.g., Lj2f j1 in R1 yields

x(t) = x(t0) + f0(t0, x(t0))

∫ t

t0

ds+
m∑
j=1

f j(t0, x(t0))

∫ t

t0

ζjs ds

+
m∑

j1,j2=1

Lj2f j1(t0, x(t0))

∫ t

t0

∫ s1

t0

ζj2s2ζ
j1
s1 ds2ds1 +R2,

where the remainder term is now

R2 =

∫ t

t0

∫ s1

t0

L0f0(s2, x(s2)) ds2ds1 +
m∑
j=1

∫ t

t0

∫ s1

t0

Ljf0(s2, x(s2)) ζjs2 ds2ds1

+

m∑
j=1

∫ t

t0

∫ s1

t0

L0f j(s2, x(s2)) ζjs1 ds2ds1

+

m∑
j1,j2=1

∫ t

t0

∫ s1

t0

Lj2f j1(s2, x(s2)) ζj2s2ζ
j1
s1 ds2ds1 (4.8)

+
m∑

j1,j2=1

∫ t

t0

∫ s1

t0

∫ s2

t0

L0Lj2f j1(s2, x(s2)) ζj2s2ζ
j1
s1 ds3ds2ds1

+
m∑

j1,j2,j3=1

∫ t

t0

∫ s1

t0

∫ s2

t0

Lj3Lj2f j1(s3, x(s3)) ζj3s3ζ
j2
s2ζ

j1
s1 ds3ds2ds1.

By iterating the same argument, affine-RODE-Taylor expansions of arbi-
trary higher order can be obtained. This is greatly facilitated by the notation
of multi-indices and hierarchical sets.

Define a hierarchical set AN and the remainder set B(AN ) as

AN := {α ∈Mm : l(α) ≤ N},

B(AN ) := {α ∈Mm \ AN : −α ∈ AN},

where

Mm = {α = (j1, . . . , jm) ∈ {0, 1, 2, . . . ,m}l : l ∈ N} ∪ {∅}.
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Now for the hierarchical set AN with remainder set B(AN ) and a sufficiently
smooth function F : [t0, T ]×Rd→ R, the AN -affine-RODE-Taylor expansion
of F (t, x(t)) for a solution x(t) of the RODE (4.1) is written compactly in
the form

F (t, x(t)) =
∑
α∈AN

LαF (t0, x(t0))Iα,t0,t +
∑

α∈B(AN )

Iα,t0,t[L
αF (·, x(·))], (4.9)

where the coefficient functions Fα is given by

LαF :=

F : l = 0

Lj1L−αF : l ≥ 1,

with the differential operator Lj1 defined by (4.4). Moreover, the following
theorem holds.

Theorem 7. (Affine-RODE-expansion.)
Let F : R+×Rd → R and let AN ∈Mm be a hierarchical set with remainder
set B(AN ). Then the affine-RODE-Taylor expansion corresponding to the
hierarchical set AN given by (4.9) holds, provided all of the derivatives of
F , f0, f1, . . . , fm and all of the multiple integrals of stochastic processes
appearing here exist.

The proof follows that of the stochastic Itô-Taylor expansion for SODE [66]
(Theorem 5.5.1).

Proof. The theorem is proved by mathematical induction.
For N = 0, the hierarchical set A0 = {∅} and the equation (4.9) is

directly derived from the chain rule (4.3). In addition, the corresponding
affine-RODE-Taylor expansion is given by (4.2).

Suppose that (4.9) holds for some k, i.e.,

F (t, x(t)) =
∑
α∈Ak

LαF (t0, x(t0))Iα,t0,t +
∑

α∈B(Ak)

Iα,t0,t[L
αF (·, x(·))] (4.10)

for the hierarchical set Ak = {α ∈ Mm : l(α) ≤ k}. Applying the chain
rule (4.3) to the second term on the right hand side of (4.10) yields∑
α∈B(Ak)

Iα,t0,t[L
αF (·, x(·))] (4.11)

=
∑

α∈B(Ak)

LαF (t0, x(t0))Iα,t0,t +
∑

α∈B(B(Ak))

Iα,t0,t[L
αF (·, x(·))]

=
∑

α∈Ak+1\Ak

LαF (t0, x(t0))Iα,t0,t +
∑

α∈B(Ak+1)

Iα,t0,t[L
αF (·, x(·))],
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since B(Ak) = Ak+1 \ Ak and B(B(Ak)) = B(Ak+1 \ Ak) = B(Ak+1). Now
substitute (4.11) in (4.10) and we have

F (t, x(t)) =
∑

α∈Ak+1

LαF (t0, x(t0))Iα,t0,t +
∑

α∈B(Ak+1)

Iα,t0,t[L
αF (·, x(·))].

This means that the equation (4.9) holds for N = k + 1 and the Theorem
holds for all N .

4.2 Taylor schemes

4.2.1 Derivation of affine-RODE-Taylor schemes

Affine-RODE-Taylor expansions (4.9) are used with the identity function
F (t, x) ≡ x, i.e., F = id, to construct numerical schemes for RODEs with
an affine structure such as (4.1). Thus, componentwise, k = 1, . . ., d,

xk(t) =
∑
α∈AN

Lαidk(t0, x(t0))Iα,t0,t +
∑

α∈B(AN )

Iα,t0,t[L
αidk(·, x(·))]. (4.12)

Note that

L0idk(t, x) = f0,k(t, x), Ljidk(t, x) = f j,k(t, x),

for j = 1, . . ., m, componentwise with k = 1, . . ., d.
Higher order affine-RODE-Taylor schemes can be constructed systemati-

cally using the affine-RODE-Taylor expansions (4.12) on a finite subintervals
[tn−1, tn] of [t0, T ], renaming and deleting the remainder term of the right
hand side of the equation (4.12). In general, the k-th component of the
affine-RODE-Taylor scheme of order N for (4.1) has a form:

Xk
n = Xk

n−1 +
∑

α∈AN\{∅}

Lαidk(tn−1, Xn−1)Iα,tn−1 , (4.13)

where Xn is an approximated value at tn. This scheme is indeed of order N
if the noise sample paths are continuous or essentially bounded on bounded
time intervals.

Theorem 8. (Pathwise convergence.)
Suppose that noise sample paths are continuous or essentially bounded on
bounded time intervals. Then, under the assumptions in Theorem 7, the
affine-RODE-Taylor scheme (4.13) has pathwise order of convergence N .

Proof. The pathwise local discretization error of orderN of the affine-RODE-
Taylor scheme is given by

LN :=

∣∣∣∣∣∣
∑

α∈B(AN )

Iα,tn−1

[
Lαidk(·, x(·, ω))

]∣∣∣∣∣∣ .
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Under the standard assumptions, the RODE (4.1) has a unique solution
on a finite time interval [t0, T ]. Since the sample paths of its solution are
continuous, there is a finite R(T, ω) such that |x(t, ω)| < R(T, ω) for all t ∈
[t0, T ].

Since the sample paths of the stochastic process ζt are assumed to be
almost everywhere bounded,

C(α, T, ω) := ess supt∈[t0,T ]|ζ
j
t (ω)| <∞,

so
|Iα,tn | ≤ C(α, T, ω)l(α)−n(α)∆l(α)

n ,

where n(α) is the number of zero elements in α, l(α) is the length of α and
∆n = tn − tn−1. Define

CLαid(T, ω) := sup
t∈[t0,T ]

|x(t,ω)|<R(T,ω)

∣∣∣Lαidk(t, x(t, ω))
∣∣∣ <∞.

Then the pathwise local discretization error LN can be estimated as

LN =
∑

|α|=N+1

∣∣∣Iα,tn−1 [Lαidk(·, x(·))]
∣∣∣

≤
∑

|α|=N+1

CLαid(T, ω)
∣∣Iα,tn−1

∣∣
≤

∑
|α|=N+1

CLαid(T, ω)C(α, T, ω)N+1−n(α)∆N+1
n ,

since all α ∈ B(AN ) have length l(α) = N + 1. Obviously LN ∼ O
(
∆N+1
n

)
,

which means that the affine-RODE-Taylor scheme (4.13) has global order of
convergence N .

The Euler approximation is the simplest affine-RODE-Taylor scheme and
it has order N = 1 pathwise convergence. The corresponding hierarchical
set A1 is {∅, (0), (j)} and its k-th component is given by

Xk
n = Xk

n−1 + f0,k(tn−1, Xn−1)∆n +
m∑
j=1

f j,k(tn−1, Xn−1)I(j),tn−1
, (4.14)

where

∆n = I(0),tn−1
=

∫ tn

tn−1

ds and I(j),tn−1
=

∫ tn

tn−1

ζjs ds.

The 2-order affine-RODE-Taylor scheme has k-th component given by

Xk
n = Xk

n−1 + f0,k(tn−1, Xn−1)∆n +
m∑
j=1

f j,k(tn−1, Xn−1)I(j),tn−1
(4.15)

+
1

2
L0f0,k(tn−1, Xn−1)∆2

n +

m∑
j1,j2=0
j1+j2 6=0

Lj1f j2,k(tn−1, Xn−1)I(j1,j2),tn−1
,
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while the 3-order affine-RODE-Taylor has k-th component given by

Xk
n = Xk

n−1 + f0,k(tn−1, Xn−1)∆n +
m∑
j=1

f j,k(tn−1, Xn−1)I(j),tn−1

+
1

2
L0f0,k(tn−1, Xn−1)∆2

n +
m∑

j1,j2=0
j1+j2 6=0

Lj1f j2,k(tn−1, Xn−1)I(j1,j2),tn−1

+
1

6
L0L0f0,k(tn−1, Xn−1)∆3

n

+

m∑
j1,j2,j3=0
j1+j2+j3 6=0

Lj1Lj2f j3,k(tn−1, Xn−1)I(j1,j2,j3),tn−1
, (4.16)

since

I(0,0),tn−1
=

∫ tn

tn−1

∫ s1

tn−1

ds2ds1 =
1

2
∆2
n,

I(0,0,0),tn−1
=

∫ tn

tn−1

∫ s1

tn−1

∫ s2

tn−1

ds3ds2ds1 =
1

6
∆3
n.

4.2.2 Derivative-free schemes

The above affine-RODE-Taylor schemes involve partial derivatives of the
coefficients functions, which may be inconvenient, especially in high dimen-
sions. It is possible to derive derivative-free schemes from them as in section
3.1.3 and [7, 8, 37, 66] by approximating the partial derivatives by suitable
finite difference quotients. To illustrate this, consider the scalar RODE with
a single noise integral, i.e., d = m = 1, and the affine-RODE is given by

dx

dt
= f0(t, x) + f1(t, x) ζ1

t ,

for which the affine-RODE-Taylor scheme of order 2 is

Xn = Xn−1 + f0(Xn−1)∆n + f1(tn−1, Xn−1)I(1),tn−1

+
1

2
L0f0(tn−1, Xn−1)∆2

n +

1∑
j1,j2=0
j1+j2 6=0

Lj1f j2(tn−1, Xn−1)I(j1,j2),tn−1
.

The Taylor approximation yields

Lj1f j2(t, x) = f j1(t, x)
∂f j2(t, x)

∂x

=
1

∆n

(
f j2(t, x+ f j1(t, x)∆n)− f j2(t, x)

)
+O(∆n),
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and the corresponding error introduced in the scheme has order ∆3
n, which

can be included in the local discretization error without reducing the con-
vergence order of the scheme. This gives the 2-order derivative-free scheme:

Xn = Xn−1 + f0(tn−1, Xn−1)∆n + f1(tn−1, Xn−1)I(1),tn−1
(4.17)

+
1

2

(
f0(tn−1, Xn−1 + f0(tn−1, Xn−1)∆n)− f0(tn−1, Xn−1)

)
∆2
n

+
1

∆n

1∑
j1,j2=0
j1+j2 6=0

(
f j2(tn−1, Xn−1 + f j1(tn−1, Xn−1)∆n)

−f j2(tn−1, Xn−1)
)
I(j1,j2),tn−1

.

4.2.3 Affine-RODEs with special structure

Affine-RODE-Taylor schemes introduced above can be simplified when the
coefficients in (4.13) have special structures such as additive noise or com-
mutative noise.

Additive noise

The noise in a RODE is said to be additive when the noise coefficients f1,
f2, . . . , fm are constants or functions of t only, so their derivatives in x
are identically zero. Then, all of the ”spatial” derivatives of these noise
coefficients as well as corresponding higher order terms in the affine-RODE-
Taylor schemes vanish. For example, the affine-RODE-Taylor scheme of
order 2 (4.15) with additive noise reduces to

Xk
n = Xk

n−1 + f0,k(tn−1, Xn−1)∆n +

m∑
j=1

f j,k(tn−1, Xn−1)I(j),tn−1

+
m∑
j=0

Ljf0,k(tn−1, Xn−1)I(j,0),tn−1
.

Commutative noise

A noise process is said to be commutative if the drift and noise coefficients
satisfy

Lif j,k(t, x) = Ljf i,k(t, x) for all i, j = 0, 1, . . . ,m.

This then allows

Lif j,k(tn−1, x(tn−1))I(i),tn−1
I(j),tn−1

= Lif j,k(tn−1, x(tn−1))I(i,j),tn−1
+ Ljf i,k(tn−1, x(tn−1))I(j,i),tn−1
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by the integration by parts, i.e.,

I(i),tn−1
I(j),tn−1

= I(i,j),tn−1
+ I(j,i),tn−1

for i, j = 0, 1, . . . ,m.

This allows stochastic integrals with lower multiplicity to be used instead
of higher ones. In fact, the order 2 affine-RODE-Taylor scheme (4.15) then
reduces to

Xk
n = Xk

n−1 + f0,k(tn−1, Xn−1)∆n +

m∑
j=1

f j,k(tn−1, Xn−1)I(j),tn−1

+
1

2
L0f0,k(tn−1, Xn−1)∆2

n +
∑

0≤i<j≤m
Lif j,k(tn−1, Xn−1)I(i),tn−1

I(j),tn−1
.

It contains no multiple stochastic integrals.

4.3 Linear multi-step methods

LMMs were derived for RODEs driven by an Itô diffusion, i.e., solution of an
Itô SODE, in section 3.2 and [9], using the stochastic Itô-Taylor expansions.
Since the driving noise needs not be an Itô diffusion, a similar approach, but
now using affine-RODE-Taylor approximations will be outlined here. The
resulting multi-step methods are then, in particular, directly applicable to
the affine-RODE (4.1). For notational simplicity, denote I(j),tn [Ljf(·, x(·))]
by I(j),tn [Ljf ] in this section. In addition, we assume the equidistant step
size ∆t in this section.

Euler-type s-step LMMs for the RODE (4.1) with m-dimensional affine
noise have the general form, componentwise,

s∑
l=0

αlX
k
n−l =

s∑
l=0

βlf
0,k(tn−l, Xn−l)∆t +

s∑
l=1

γl

m∑
j=1

f j,k(tn−l, Xn−l)I(j),tn−l ,

(4.18)
for k = 1, . . ., d. The coefficients in (4.18) need to satisfy certain consistency
conditions for the LMMs (4.18) to have order 1. First of all, we derive the
consistency conditions for the case s = 2.

The pathwise local discretization error Ln of the LMMs (4.18) is given
by

Ln :=
∣∣∣ 2∑
l=0

αlx
k(tn−l)−

2∑
l=0

βlf
0,k(tn−l, x(tn−l))∆t

−
2∑
l=1

γl

m∑
j=1

f j,k(tn−l, x(tn−l))I(j),tn−l

∣∣∣. (4.19)
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The affine-RODE-Taylor expansions:

xk(tn) = xk(tn−1) + f0,k(tn−1, x(tn−1))I(0),tn−1

+
m∑
j=1

f j,k(tn−1, x(tn−1))I(j),tn−1
+

m∑
j1,j2=0

I(j1,j2),tn−1
[Lj1f j2,k]

xk(tn−1) = xk(tn−2) + f0,k(tn−2, x(tn−2))I(0),tn−2

+

m∑
j=1

f j,k(tn−2, x(tn−2))I(j),tn−2
+

m∑
j1,j2=0

I(j1,j2),tn−2
[Lj1f j2,k]

and classical chain rule expansions:

f0,k(tn, x(tn)) = f0,k(tn−1, x(tn−1)) +
m∑
j=0

I(j),tn−1
[Ljf0,k]

f0,k(tn−1, x(tn−1)) = f0,k(tn−2, x(tn−2)) +

m∑
j=0

I(j),tn−2
[Ljf0,k]

f j,k(tn−1, x(tn−1)) = f j,k(tn−2, x(tn−2)) +

m∑
j1=0

I(j1),tn−2
[Lj1f j,k]

are substituted into the local discretization error (4.19) to yield

Ln =
∣∣∣(α0 + α1 + α2)xk(tn−2)

+ (2α0 + α1 − (β0 + β1 + β2)) f0,k(tn−2, x(tn−2))∆t

+
m∑
j=1

(
α0I(j),tn−1

+ (α0 + α1)I(j),tn−2

−γ1I(j),tn−1
− γ2I(j),tn−2

)
f j,k(tn−2, x(tn−2)) +R1

∣∣∣,
where R1 is a remainder term given by

R1 =
m∑

j1,j2=0

(
α0Î

tn
(j1,j2),tn−2

[Lj1f j2,k] + α1I(j1,j2),tn−2
[Lj1f j2,k]

)

−
m∑
j=0

(
β0Î

tn
(j),tn−2

[Ljf0,k] + β1I(j),tn−2
[Ljf0,k]

)
∆t

−
m∑
j1=0

m∑
j2=1

γ1I(j1),tn−2
[Lj1f j2,k]I(j2),tn−1

.



4.3. LINEAR MULTI-STEP METHODS 69

Now R1 is ∆2
t -order and when the coefficients of the LMMs (4.18) satisfy

the following consistency conditions:
α0 + α1 + α2 = 0

β0 + β1 + β2 = 2α0 + α1

γ1 = α0, γ2 = α0 + α1,

(4.20)

the LMMs (4.18) have 1.0-order convergence.
In order to construct higher order schemes, the integrands in the remain-

der term R1 are expanded in the same manner. Its terms with constant
coefficients are now included in the numerical scheme and a new remain-
der term R2 with threefold noise integrals is obtained. The corresponding
LMMs, which now contain terms with the derivatives L0f0,k, Ljf0,k, L0f j,k

and Lj1f j2,k, have the form, componentwise,

2∑
l=0

αlX
k
n−l =

2∑
l=0

βlf
0,k(tn−l, Xn−l)∆t +

2∑
l=1

γl

m∑
j=1

f j,k(tn−l, Xn−l)I(j),tn−l

+
2∑
l=1

δl

m∑
j=0

Ljf0,k(tn−l, Xn−l)I(j),tn−l∆t (4.21)

+
2∑
l=1

εl

m∑
j1,j2=0

Lj1f j2,k(tn−l, Xn−l)I(j1,j2),tn−l ,

for k = 1, . . ., d. The corresponding local discretization error is given by

Ln :=
∣∣∣ 2∑
l=0

αlx
k(tn−l)−

2∑
l=0

βlf
0,k(tn−l, x(tn−l))∆t

−
2∑
l=1

γl

m∑
j=1

f j,k(tn−l, x(tn−l))I(j),tn−l

−
2∑
l=1

δl

m∑
j=0

Ljf0,k(tn−l, x(tn−l))I(j),tn−l∆t

−
2∑
l=1

εl

m∑
j1,j2=0

Lj1f j2,k(tn−l, x(tn−l))I(j1,j2),tn−l

∣∣∣,
and this reduces to
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Ln =
∣∣∣ m∑
j1,j2=0

(
α0Î

tn
(j1,j2),tn−2

[Lj1f j2,k] + α1I(j1,j2),tn−2
[Lj1f j2,k]

)

−
m∑
j=0

(
β0Î

tn
(j),tn−2

[Ljf0,k] + β1I(j),tn−2
[Ljf0,k]

)
∆t

−
m∑
j1=0

m∑
j2=1

γ1I(j1),tn−2
[Lj1f j2,k]I(j2),tn−1

(4.22)

−
2∑
l=1

δl

m∑
j=0

Ljf0,k(tn−l, x(tn−l))I(j),tn−l∆t

−
2∑
l=1

εl

m∑
j1,j2=0

Lj1f j2,k(tn−l, x(tn−l))I(j1,j2),tn−l

∣∣∣
from the consistency conditions of order 1. Applying Taylor expansions and
chain rules yields

Ln =
∣∣∣ m∑
j1,j2=0

(
α0Î

tn
(j1,j2),tn−2

+ α1I(j1,j2),tn−2

)
Lj1f j2,k(tn−2, x(tn−2))

−
m∑
j=0

(
β0Î

tn
(j),tn−2

+ β1

)
∆tL

jf0,k(tn−2, x(tn−2))

−
m∑
j1=0

m∑
j2=1

γ1I(j1),tn−2
I(j2),tn−1

Lj1f j2,k(tn−2, x(tn−2))

−
m∑
j=0

(δ1I(j),tn−1
+ δ2I(j),tn−2

)∆tL
jf0,k(tn−2, x(tn−2))

−
m∑

j1,j2=0

(ε1I(j1,j2),tn−1
+ ε2I(j1,j2),tn−2

)Lj1f j2,k(tn−2, x(tn−2)) +R2

∣∣∣,
where R2 is the remainder term given by

R2 =
m∑

j1,j2,j3=0

(
α0Î

tn
(j1,j2,j3),tn−2

[Lj1Lj2f j3,k] + α1I(j1,j2,j3),tn−2
[Lj1Lj2f j3,k]

)

−
m∑

j1,j2=0

(
β0Î

tn
(j1,j2),tn−2

[Lj1Lj2f0,k] + β1I(j1,j2),tn−2
[Lj1Lj2f0,k]

)
∆t
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−
m∑

j1,j2=0

m∑
j3=1

γ1I(j1,j2),tn−2
[Lj1Lj2f j3,k]I(j3),tn−1

−
m∑

j1,j2=0

δ1I(j1),tn−2
[Lj1Lj2f0,k]I(j2),tn−1

∆t

−
m∑

j1,j2,j3=0

ε1I(j1),tn−2
[Lj1Lj2f j3,k]I(j2,j3),tn−1

.

Now α0 = γ1 from the 1.0-order consistency conditions (4.20),
m∑

j1,j2=0

α0I(j1),tn−2
I(j2),tn−1

Lj1f j2,k(tn−2, x(tn−2))

−
m∑
j1=0

m∑
j2=1

γ1I(j1),tn−2
I(j2),tn−1

Lj1f j2,k(tn−2, x(tn−2))

=
m∑
j1=0

α0I(j1),tn−2
I(0),tn−1

Lj1f0,k(tn−2, x(tn−2)).

The formula (4.21) has 2.0-order convergence if the following consistency
conditions: δ1 = −β0, δ2 = α0 − β0 − β1,

ε1 = α0, ε2 = α0 + α1,
(4.23)

are satisfied.

3-step schemes

When s = 3, the local error Ln of the scheme (4.18) is given by

Ln :=
∣∣∣ 3∑
l=0

αlx
k(tn−l)−

3∑
l=0

βlf
0,k(tn−l, x(tn−l))∆t (4.24)

−
3∑
l=1

γl

m∑
j=1

f j,k(tn−l, x(tn−l))I(j),tn−l

∣∣∣.
In addition to the the affine-RODE-Taylor expansions and classical chain
rules for s = 2, we have to include terms up to tn−3, i.e.,

xk(tn−2) = xk(tn−3) + f0,k(tn−3, x(tn−3))I(0),tn−3

+

m∑
j=1

f j,k(tn−3, x(tn−3))I(j),tn−3
+

m∑
j1,j2=0

I(j1,j2),tn−3
[Lj1f j2,k]
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f0,k(tn−2, x(tn−2)) = f0,k(tn−3, x(tn−3)) +

m∑
j=0

I(j),tn−3
[Ljf0,k]

f j,k(tn−2, x(tn−2)) = f j,k(tn−3, x(tn−3)) +
m∑
j1=0

I(j1),tn−3
[Lj1f j,k].

The corresponding terms in the local error (4.24) are substituted. It is given
by

Ln =
∣∣∣(α0 + α1 + α2 + α3)xk(tn−3)

+ (3α0 + 2α1 + α2 − (β0 + β1 + β2 + β3)) f0,k(tn−3, x(tn−3))∆t

+
m∑
j=1

(
α0I(j),tn−1

+ (α0 + α1)I(j),tn−2
+ (α0 + α1 + α2)I(j),tn−3

−γ1I(j),tn−1
− γ2I(j),tn−2

− γ3I(j),tn−3

)
f j,k(tn−3, x(tn−3)) +R1

∣∣∣,
where the remainder term R1 is now

R1 =

m∑
j1,j2=0

(
α0Î

tn
(j1,j2),tn−3

[Lj1f j2,k] + α1Î
tn−1

(j1,j2),tn−3
[Lj1f j2,k]

+α2I(j1,j2),tn−3
[Lj1f j2,k]

)
−

m∑
j=0

(
β0Î

tn
(j),tn−3

[Ljf0,k] + β1Î
tn−1

(j),tn−3
[Ljf0,k] + β2I(j),tn−3

[Ljf0,k]
)

∆t

−
m∑
j1=0

m∑
j2=1

(
γ1Î

tn−2

(j1),tn−3
[Lj1f j2,k]I(j2),tn−1

+ γ2I(j1),tn−3
[Lj1f j2,k]I(j2),tn−2

)
.

R1 is ∆2
t -order and when the coefficients of the LMMs (4.18) satisfy the

following consistency conditions:


α0 + α1 + α2 + α3 = 0,

β0 + β1 + β2 + β3 = 3α0 + 2α1 + α2,

γ1 = α0, γ2 = α0 + α1, γ3 = α0 + α1 + α2,

the LMMs (4.18) have 1.0-order convergence.
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Order 2.0 schemes

Similar to s = 2 case, a general form of 2.0-order LMMs is given by

3∑
l=0

αlX
k
n−l =

3∑
l=0

βlf
0,k(tn−l, Xn−l)∆t +

3∑
l=1

γl

m∑
j=1

f j,k(tn−l, Xn−l)I(j),tn−l

+
3∑
l=1

δl

m∑
j=0

Ljf0,k(tn−l, Xn−l)I(j),tn−l∆t

+
3∑
l=1

εl

m∑
j1,j2=0

Lj1f j2,k(tn−l, Xn−l)I(j1,j2),tn−l ,

and the local discretization error is defined by

Ln :=
∣∣∣ 3∑
l=0

αlx
k(tn−l)−

3∑
l=0

βlf
0,k(tn−l, x(tn−l))∆t

−
3∑
l=1

γl

m∑
j=1

f j,k(tn−l, x(tn−l))I(j),tn−l

−
3∑
l=1

δl

m∑
j=0

Ljf0,k(tn−l, x(tn−l))I(j),tn−l∆t

−
3∑
l=1

εl

m∑
j1,j2=0

Lj1f j2,k(tn−l, x(tn−l))I(j1,j2),tn−l

∣∣∣,
The same argument with s = 2 yields

Ln =
∣∣∣ m∑
j1,j2=0

(
α0Î

tn
(j1,j2),tn−3

+ α1Î
tn−1

(j1,j2),tn−3
(4.25)

+α2I(j1,j2),tn−3

)
Lj1f j2,k(tn−3, x(tn−3))

−
m∑
j=0

(
β0Î

tn
(j),tn−3

+ β1Î
tn−1

(j),tn−3
+ β2I(j),tn−3

)
∆tL

jf0,k(tn−3, x(tn−3))

−
m∑
j1=0

m∑
j2=1

(
γ1Î

tn−1

(j1),tn−3
I(j2),tn−1

+γ2I(j1),tn−3
I(j1),tn−2

)
)
Lj1f j2,k(tn−3, x(tn−3))
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−
m∑
j=0

(δ1I(j),tn−1
+ δ2I(j),tn−2

+ δ3I(j),tn−3
)∆tL

jf0,k(tn−3, x(tn−3))

−
m∑

j1,j2=0

(ε1I(j1,j2),tn−1
+ ε2I(j1,j2),tn−2

+ ε3I(j1,j2),tn−3
)

Lj1f j2,k(tn−3, x(tn−3)) +R2

∣∣∣,
where R2 is a remainder term. The equation (4.25) yields the following
consistency conditions of order 2:δ1 = −β0, δ2 = α0 − β0 − β1, δ3 = 2α0 + α1 − β0 − β1 − β2

ε1 = α0, ε2 = α0 + α1, ε3 = α0 + α1 + α2.

General form

Higher order LMMs as well as LMMs with more steps for the affine-RODEs
(4.1) can be generated systematically in the same manner. In general, an
s-step LMM for an affine-RODE (4.1) with order N has the form:

s∑
l=0

C∅,lX
k
n−l =

s∑
l=0

C(0),lf
0,k(tn−l, Xn−l)∆t (4.26)

+
s∑
l=1

m∑
j=1

C(j),lf
j,k(tn−l, Xn−l)I(j),tn−l

+
s∑
l=1

∑
α∈A0

N\{(0)}

C∗α,lL
α−f0,k(tn−l, Xn−l)Iα−,tn−l∆t

+
s∑
l=1

∑
α∈AN\{∅,(0),(j)}

Cα,lL
αidk(tn−l, Xn−l)Iα,tn−l ,

where A0
N is given by

A0
N = {α ∈ AN : the last component jl = 0}

and the coefficients C·,l satisfy consistency conditions up to N -order.



Chapter 5

Stability

We often encounter stiff systems in practice and the stability property of
numerical schemes is a crucial issue when we solve such systems numerically.
It is well known from the theory of classical Runge-Kutta schemes for ODEs
that an implicit scheme is required for the stable integration of a stiff ODE.

In case of RODEs, we need to take into account of the effects of nonlin-
earity in the equations, which play a much more significant role in RODEs
than deterministic ones. It is also not clear in RODEs or SODEs what class
of linear test functions is suitable. In addition, even a simple linear RODE
contains a noise term in its matrix and it makes the system pathwise nonau-
tonomous, so it is not easy to generalize the Dahlquist theory since it involves
Lyapunov exponents instead of eigenvalues and they are very hard to calcu-
late. In order to circumvent these problems, we focus on the B-stability.

In fact, implicit schemes which are B-stable are even better [28, 42],
i.e., preserve the non-expansive structure of trajectories of ODEs with a
dissipative one-sided Lipschitz condition, i.e.,

‖Xi −X ′i‖ ≤ ‖Xi−1 −X ′i−1‖,

for i = 1, 2, . . . , n where Xi and X ′i are two solutions of the scheme. Recall
that no explicit or linear implicit Runge-Kutta scheme is ever B-stable. Since
RODEs are generalizations of ODEs, this applies equally well to RODEs.

5.1 B-stability of averaged schemes

Before showing the B-stability of the IAES (2.36) and IAMS (2.37), we
prove the solvability and convergence in the Theorems 3 and 4 introduced
in subsection 2.3.2.

5.1.1 Solvability of the averaged schemes

The IAES (2.36) and IAMS (2.37) are implicit schemes involving an algebraic
equation that needs to be solved for each iterative step. Each one has a
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unique solution when the step size ∆t is small enough when L > 0 and
arbitrary otherwise.

The proof is based on that of Theorem 6.54 in [28]. Suppose that Xn−1

is known.

Solvability of the IAES

We start with the IAES (2.36) and consider the mapping g : Rd→ Rd defined
by

y 7→ Xn−1 + f (y, In−1) ∆t − y.
It follows from the one-sided Lipschitz condition (2.38) for the vector field f
that g satisfies

〈g(a)− g(b), a− b〉 = ∆t 〈f(a, In−1(ω))− f(b, In−1(ω)), a− b〉 − ‖a− b‖2

≤ L∆t ‖a− b‖2 − ‖a− b‖2 = (L∆t − 1) ‖a− b‖2 ,

for all a, b ∈ Rd, which is a one-sided Lipschitz condition with constant
L∆t−1. By assumption we have L∆t−1< 0, so we can apply the Contractive
Dynamics Theorem in [91] to the mapping g to conclude that g has a unique
zero, which we denote by Xn. Hence, Xn is the unique fixed point in Rd of
the equation:

y = Xn−1 + f (y, In−1) ∆t, y ∈ Rd,
which proves the unique solvability of the IAES (2.36).

Solvability of the IAMS

A similar argument holds for the IAMS (2.37). We now consider the mapping
g : Rd → Rd defined by

y 7→ Xn−1 + f

(
1

2
(Xn−1 + y) , In−1

)
∆t − y.

From the one-sided Lipschitz condition (2.38) for the vector field f , it follows
that

〈g(a)− g(b), a− b〉

= ∆t

〈
f

(
1

2
(Xn−1(ω) + a) , In−1(ω)

)
−f
(

1

2
(Xn−1(ω) + b) , In−1(ω)

)
, a− b

〉
− ‖a− b‖2

≤ (L∆t)

∥∥∥∥1

2
(Xn−1(ω) + a)− 1

2
(Xn−1(ω) + b)

∥∥∥∥2

− ‖a− b‖2

=
1

4
L∆t ‖a− b‖2 − ‖a− b‖2 =

(
1

4
L∆t − 1

)
‖a− b‖2 ,
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for all a, b ∈ Rd, i.e., the mapping g satisfies a one-sided Lipschitz condition
with constant L∆t/4− 1. Since L∆t/4− 1 < 0, we can also apply Theorem
2.8.4 of [91] to g to conclude that g has a unique zero, which we denote by
Xn. Thus, Xn is the unique fixed point in Rd of the equation:

y = Xn−1 + f

(
1

2
(Xn−1 + y) , In−1

)
∆t, y ∈ Rd,

which proves the unique solvability for the IAMS (2.37).

5.1.2 Convergence of the averaged schemes

Convergence of the IAES

We show by induction over n for the IAES (2.36) that

‖x(tn)−Xn‖ ≤ ∆
min(2θ,1)
t


CE(n∆t) : L ≤ 0

CE
L

(
exp

(
Ln∆t

1− α

)
− 1

)
: L > 0

(5.1)

holds for every n = 0, 1, . . . , N , which implies the assertion. (We recall that
α ∈ (0, 1) is arbitrary, but fixed here).

For n = 0 the assertion is clear. Therefore, suppose that the inequality
(5.1) is true for n ∈ {0, 1, . . . , N − 1}. We will show that it is then true for
n+ 1. From subsection 5.1.1, the equation

z = x(tn) + f(z, In) ∆t

has a unique solution, which we denote by Z. Then, by the one-sided Lips-
chitz condition (2.38) for f and the Cauchy-Schwarz inequality, we obtain

‖Xn+1 − Z‖2 = 〈Xn+1 − Z,Xn − x(tn)〉

+∆t 〈Xn+1 − Z, f(Xn+1, In)− f(Z, In)〉

≤ ‖Xn+1 − Z‖ · ‖Xn − x(tn)‖+ L∆t ‖Xn+1 − Z‖2 ,

from which it follows that

‖Xn+1 − Z‖ ≤
(

1

1− L∆t

)
‖Xn − x(tn)‖ . (5.2)

We also have∥∥∥∥∫ tn+1

tn

f(x(s), Y (s)) ds−
∫ tn+1

tn

f(x(tn+1), Y (s)) ds

∥∥∥∥ (5.3)

≤ 1

2

(
sup

0≤s,u≤T
‖fx (x(u), Y (s)) f (x(u), Y (u))‖

)
∆2
t .
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By the Mean Value Theorem,

f(x(tn+1), In) ∆t = f(x(tn+1), Y (tn)) ∆t (5.4)

+

∫ tn+1

tn

∫ 1

0
fy

(
x(tn), Y (tn) +

u

∆t

∫ tn+1

tn

(Y (v)− Y (tn)) dv

)
· (Y (s)− Y (tn)) du ds

and

∫ tn+1

tn

f(x(tn+1), Y (s)) ds = f(x(tn+1), Y (tn)) ∆t (5.5)

+

∫ tn+1

tn

∫ 1

0
fy (x(tn+1), Y (tn) + u (Y (s)− Y (tn))) · (Y (s)− Y (tn)) du ds.

Hence, by (5.4) and (5.5), we obtain

∥∥∥∥f(x(tn+1), In) ∆t −
∫ tn+1

tn

f(x(tn+1), Y (s)) ds

∥∥∥∥
≤
(

sup
‖w‖≤‖Y ‖∞

0≤s≤T

‖fyy (x(s), w) ‖
)

×
∫ tn+1

tn

∫ 1

0
u

∥∥∥∥∆−1
t

∫ tn+1

tn

(Y (v)− Y (tn)) dv − (Y (s)− Y (tn))

∥∥∥∥
‖Y (s)− Y (tn)‖ du ds

≤ 1

2

(
sup

‖w‖≤‖Y ‖∞
0≤s≤T

‖fyy (x(s), w) ‖
)

Θ2 ·∆1+2θ
t , (5.6)

where Θ is the random variable in the Hölder estimate (2.33).

Equations (5.3) and (5.6) give

∥∥∥∥f(x(tn+1), In) ∆t −
∫ tn+1

tn

f(x(s), Y (s)) ds

∥∥∥∥ ≤ CE ·∆1+min(2θ,1)
t

and we thus obtain
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‖x(tn+1)− Z‖2

= 〈x(tn+1)− Z, x(tn+1)− (x(tn) + f(Z, In)) ∆t〉

=

〈
x(tn+1)− Z,

∫ tn+1

tn

f(x(s), Y (s)) ds− f(Z, In) ∆t

〉

=

〈
x(tn+1)− Z,

∫ tn+1

tn

f(x(s), Y (s)) ds− f(x(tn+1), In) ∆t

〉

+∆t

〈
x(tn+1)− Z, f(x(tn+1), In)− f(Z, In)

〉

≤ ‖x(tn+1)− Z‖ ·
∥∥∥∥∫ tn+1

tn

f(x(s), Y (s)) ds− f(x(tn+1), In) ∆t

∥∥∥∥
+L∆t ‖x(tn+1)− Z‖2

≤ ‖x(tn+1)− Z‖ ·
(

CE
1− L∆t

)
·∆1+min(2θ,1)

t

by the one-sided Lipschitz condition (2.38) and the Cauchy-Schwarz inequal-
ity. This and equation (5.2) then imply that

‖x(tn+1)−Xn+1‖ ≤ ‖x(tn+1)− Z‖+ ‖Z −Xn+1‖

≤
(

CE
1− L∆t

)
∆

1+min(2θ,1)
t +

(
1

1− L∆t

)
‖Xn − x(tn)‖ .

Finally, the induction assumption (5.1) gives

‖x(tn+1)−Xn+1‖ ≤ CE∆
1+min(2θ,1)
t + CE · n∆t ·∆min(2θ,1)

t

≤ CE ·∆min(2θ,1)
t (∆t + n∆t) = CE · (n+ 1)∆t ·∆min(2θ,1)

t

in the case L ≤ 0 and

‖x(tn+1)−Xn+1‖

≤
(

CE
1− α

)
∆

1+min(2θ,1)
t +

(
1 +

(
1

1− α

)
L∆t

)
‖Xn − x(tn)‖

≤
(

CE
1− α

)
∆

1+min(2θ,1)
t

+

(
1 +

(
L

1− α

)
∆t

)(
e

(
Ln∆t
1−α

)
− 1

)(
CE
L

)
·∆min(2θ,1)

t

≤
(

CE
1− α

)
∆

min(2θ,1)
t

(
∆t + (1 + β∆t)

(
eβn∆t − 1

)
β

)
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=

(
CE

1− α

)
∆

min(2θ,1)
t · 1

β

(
β∆t + (1 + β∆t)

(
eβn∆t − 1

))
=

(
CE

1− α

)
∆

min(2θ,1)
t · 1

β

(
β∆t + eβn∆t − 1 + β∆eβn∆t − β∆t

)

≤
(

CE
1− α

)(
eβ(n+1)∆t − 1

β

)
∆

min(2θ,1)
t

=

(
CE
L

)(
e

(
L(n+1)∆t

1−α

)
− 1

)
·∆min(2θ,1)

t

in the case L > 0 with β = L/(1− α). Here we used the inequality

1

1− r
≤ 1 +

(
1

1− α

)
r, r ∈ [0, α].

Convergence of the IAMS

We now show by induction over n for the IAMS (2.37) that

‖x(tn)−Xn‖ ≤ ∆2θ
t


CM (n∆t) : L ≤ 0

CM
L

(
exp

(
Ln∆t

1− α

)
− 1

)
: L > 0

(5.7)

holds for every n = 0, 1, . . . , N .
This is obvious for n = 0. We suppose that inequality (5.7) is true for

n ∈ {0, 1, . . . , N − 1} and show that it is then true for n+ 1. Let Z denote
the unique solution of the equation

z = x(tn) + f

(
1

2
(x(tn) + z) , In

)
∆t,

which we know exists from subsection 5.1.1.
Now, we have

(Xn+1 − Z)︸ ︷︷ ︸
=:En+1

− (Xn − x(tn))︸ ︷︷ ︸
=:En

=

(
f

(
1

2
(Xn +Xn+1) , In

)
− f

(
1

2
(x(tn) + Z) , In

))
︸ ︷︷ ︸

=:A

∆t

or
En+1 = En +A∆t.

Define
e :=

1

2
(En + En+1) = En +

1

2
A∆t.
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Then

‖En+1‖2 = ‖En +A∆t‖2

= ‖En‖2 + 2 〈En, A∆〉+ ‖A∆t‖2

= ‖En‖2 + 2

〈
e− 1

2
A∆, A∆t

〉
+ ‖A∆t‖2

= ‖En‖2 + 2∆t 〈e,A〉

= ‖En‖2 + 2∆t

〈
1

2
(Xn +Xn+1)− 1

2
(x(tn) + Z) , A

〉

≤ ‖En‖2 + 2L∆t

∥∥∥∥1

2
(Xn +Xn+1)− 1

2
(x(tn) + Z)

∥∥∥∥2

= ‖En‖2 + 2L∆t ‖e‖2 .

Now

‖e‖2 = 〈e, En〉+

〈
e,

1

2
A∆t

〉
≤ ‖e‖ ‖En‖+

1

2
L∆t ‖e‖2 ,

which implies that

‖e‖ ≤

(
1

1− 1
2L∆t

)
‖En‖.

When L > 0, we obtain

‖En+1‖2 ≤ ‖En‖2 +
8L∆t

(2− L∆t)
2 ‖En‖

2

=

(
(2− L∆t)

2 + 8L∆t

(2− L∆t)
2

)
‖En‖2

=
(2 + L∆t)

2

(2− L∆t)
2 ‖En‖

2.

Finally, in both cases,

‖Xn+1 − Z‖ ≤ ‖Xn − x(tn)‖ ·


2 + L∆t

2− L∆t
: L > 0

1 : L ≤ 0.

(5.8)
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We also have∫ tn+1

tn

f(x(s), Y (s)) ds

=

∫ tn+1

tn

f(x(tn), Y (s)) ds+

∫ tn+1

tn

∫ s

tn

fx(x(u), Y (s))f(x(u), Y (u)) du ds

and

f

(
1

2
(x(tn) + x(tn+1)) , In

)
∆t − f (x(tn), In) ∆t

=
1

2
∆t

∫ 1

0
fx

(
x(tn) +

u

2
(x(tn+1)− x(tn)) , In

)
du · (x(tn+1)− x(tn)) ,

from which we obtain∥∥∥∥f (1

2
(x(tn+1)− x(tn)) ∆t, In

)
−
∫ tn+1

tn

f(x(s), Y (s)) ds

∥∥∥∥ ≤ CM ∆1+2θ
t .

Therefore,

‖x(tn+1)− Z‖2

=

〈
x(tn+1)− Z, x(tn+1)− x(tn)− f

(
1

2
(x(tn) + Z) , In

)
∆t

〉

=

〈
x(tn+1)− Z,

∫ tn+1

tn

f(x(s), Y (s)) ds− f
(

1

2
(x(tn) + Z) , In

)
∆t

〉

=

〈
x(tn+1)− Z,

∫ tn+1

tn

f(x(s), Y (s)) ds− f
(

1

2
(x(tn) + x(tn+1)) , In

)
∆t

〉

+∆t

〈
x(tn+1)− Z, f

(
1

2
(x(tn) + x(tn+1)) , In

)
− f

(1

2
(x(tn) + Z) , In

)〉

≤
∥∥x(tn+1)− Z

∥∥ · ∥∥∥∥∫ tn+1

tn

f(x(s), Y (s)) ds− f
(1

2
(x(tn) + x(tn+1)) , In

)
∆t

∥∥∥∥
+

1

2
L∆t ‖x(tn+1)− Z‖2

≤ ‖x(tn+1)− Z‖ ·

(
CM

1− 1
2L∆t

)
·∆1+2θ

t ,

where we have used the one-sided Lipschitz condition (2.38) and the Cauchy-
Schwarz inequality.
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The last estimate, the estimate (5.2) and the induction assumption (5.1)
imply that

‖x(tn+1)−Xn+1‖ ≤ ‖x(tn+1)− Z‖+ ‖Z −Xn+1‖

≤ CM∆1+2θ
t + ‖Xn − x(tn)‖

≤ CM∆1+2θ
t + CM n∆t ∆2θ

t

≤ CM ∆2θ
t (∆t + n∆t) = CM · (n+ 1)∆t ∆2θ

t

in the case L ≤ 0 and

‖x(tn+1)−Xn+1‖

≤ ‖x(tn+1)− Z‖+ ‖Z −Xn+1‖

≤
(

2CM
2− L∆t

)
∆1+2θ
t +

(
2 + L∆t

2− L∆t

)
‖Xn − x(tn)‖

≤
(

2CM
2− α

)
∆1+2θ
t +

(
1 +

(
2

2− α

)
L∆t

)
‖Xn − x(tn)‖

≤
(

2CM
2− α

)
∆1+2θ
t +

(
1 +

(
2

2− α

)
L∆t

)(
e

(
2Ln∆t

2−α

)
− 1

)(
CM
L

)
∆2θ
t

≤
(

2CM
2− α

)
∆2θ
t

(
∆t + (1 + β∆t)

(
eβn∆t − 1

)
β

)

=

(
2CM
2− α

)
∆2θ
t

β

(
β∆t + (1 + β∆t)

(
eβn∆t − 1

))
=

(
2CM
2− α

)
∆2θ
t

β

(
β∆t + eβn∆t − 1 + β∆te

βn∆t − β∆t

)

≤
(

2CM
2− α

)(
eβ(n+1)∆t − 1

β

)
∆2θ
t

=

(
CM
L

)(
e

(
2L(n+1)∆t

2−α

)
− 1

)
∆2θ
t

in the case L > 0 with β = 2L/(2− α), where we have used the inequality

2 + r

2− r
≤ 1 +

(
2

2− α

)
r, r ∈ [0, α].
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5.1.3 B-stability of the averaged schemes

B-stability of the IAES

We consider two solutions Xn and X ′n of the IAES (2.36) and denote

D := f (Xn+1, In) ∆t − f
(
X ′n+1, In

)
∆t.

Then, we have (
Xn+1 −X ′n+1

)
=
(
Xn −X ′n

)
+D

and hence∥∥Xn+1 −X ′n+1

∥∥2
=

∥∥(Xn −X ′n
)

+D
∥∥2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈
Xn −X ′n, D

〉
+ ‖D‖2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈(
Xn+1 −X ′n+1 −D

)
, D
〉

+ ‖D‖2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈
Xn+1 −X ′n+1, D

〉
− ‖D‖2

≤
∥∥Xn −X ′n

∥∥2
+ 2

〈
Xn+1 −X ′n+1, D

〉
.

Now, 〈
Xn+1 −X ′n+1, D

〉
≤ L∆t ‖Xn+1 −X ′n+1‖2 ≤ 0

by the one-sided Lipschitz condition (2.38) and the assumption that L ≤ 0,
so we obtain ∥∥Xn+1 −X ′n+1

∥∥2 ≤
∥∥Xn −X ′n

∥∥2
,

which proves the B-stability of the IAES (2.36).

B-stability of the IAMS

For the IAMS (2.37) we also have(
Xn+1 −X ′n+1

)
=
(
Xn −X ′n

)
+D,

but now with

D := f

(
1

2
(Xn +Xn+1) , In

)
∆t − f

(
1

2

(
X ′n +X ′n+1

)
, In

)
∆t,

which is equivalent to

1

2
(Xn +Xn+1)− 1

2

(
X ′n +X ′n+1

)
=
(
Xn −X ′n

)
+

1

2
D.
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Hence,∥∥Xn+1 −X ′n+1

∥∥2

=
∥∥(Xn −X ′n

)
+D

∥∥2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈
Xn −X ′n, D

〉
+ ‖D‖2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈
1

2
(Xn +Xn+1)− 1

2

(
Yn +X ′n+1

)
− 1

2
D,D

〉
+ ‖D‖2

=
∥∥Xn −X ′n

∥∥2
+ 2

〈
1

2
(Xn+1 +Xn)− 1

2

(
X ′n+1 +X ′n

)
, D

〉
.

Finally, by the one-sided Lipschitz condition (2.38) on f and the assumption
that L ≤ 0, we obtain∥∥Xn+1 −X ′n+1

∥∥2 ≤
∥∥Xn −X ′n

∥∥2
,

which means that the IAMS (2.37) is B-stable.

5.2 B-stability of linear multi-step methods

5.2.1 Illustrative example

The essential idea of the proof of B-stability is clear when applied to the
1.5-order implicit SLMM:

Xn =
1

2
Xn−1 +

1

2
Xn−2

+
1

2
∆t

(
f(Xn, Ȳn) + f(Xn−1, Ȳn−1) + f(Xn−2, Ȳn−2)

)
+L1f(Xn−1, Ȳn−1)

(
I(1,0),tn−1

− 1

2
I(1),tn−1

∆t

)
(5.9)

+L0f(Xn−1, Ȳn−1)

(
I(0,0),tn−1

− 1

2
I(0),tn−1

∆t

)
+

1

2
L1f(Xn−2, Ȳn−2)I(1,0),tn−2

+
1

2
L0f(Xn−2, Ȳn−2)I(0,0),tn−2

.

The difference of two solutions Xn and X ′n is given by

Xn −X ′n =
1

2
(Xn−1 −X ′n−1) +

1

2
(Xn−2 −X ′n−2)

+
1

2
∆t{(f(Xn, Ȳn)− f(X ′n, Ȳn)) + (f(Xn−1, Ȳn−1)− f(X ′n−1, Ȳn−1))

+(f(Xn−2, Ȳn−2)− f(X ′n−2, Ȳn−2))}
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+

(
I(1,0),tn−1

− 1

2
I(1),tn−1

∆t

)
(L1f(Xn−1, Ȳn−1)− L1f(X ′n−1, Ȳn−1))

+
1

2
I(1,0),tn−2

(L1f(Xn−2, Ȳn−2)− L1f(X ′n−2, Ȳn−2))

+

(
I(0,0),tn−1

− 1

2
I(0),tn−1

∆t

)
(L0f(Xn−1, Ȳn−1)− L0f(X ′n−1, Ȳn−1))

+
1

2
I(0,0),tn−2

(L0f(Xn−2, Ȳn−2)− L0f(X ′n−2, Ȳn−2)).

Multiplying both sides by Xn −X ′n yields

‖Xn −X ′n‖2 =
1

2
∆t

〈
f(Xn, Ȳn)− f(X ′n, Ȳn), Xn −X ′n

〉
+

1

2

〈
Xn−1 −X ′n−1, Xn −X ′n

〉
+

1

2
∆t

〈
f(Xn−1, Ȳn−1)− f(X ′n−1, Ȳn−1), Xn −X ′n

〉
+

(
I(1,0),tn−1

− 1

2
∆tI(1),tn−1

)
·
〈
L1f(Xn−1, Ȳn−1)− L1f(X ′n−1, Ȳn−1), Xn −X ′n

〉
+

(
I(0,0),tn−1

− 1

2
∆tI(0),tn−1

)
·
〈
L0f(Xn−1, Ȳn−1)− L0f(X ′n−1, Ȳn−1), Xn −X ′n

〉
+

1

2

〈
Xn−2 −X ′n−2, Xn −X ′n

〉
+

1

2
∆t

〈
f(Xn−2, Ȳn−2)− f(X ′n−2, Ȳn−2), Xn −X ′n

〉
+

1

2
I(1,0),tn−2

〈
L1f(Xn−2, Ȳn−2)− L1f(X ′n−2, Ȳn−2), Xn −X ′n

〉
+

1

2
I(0,0),tn−2

〈
L0f(Xn−2, Ȳn−2)− L0f(X ′n−2, Ȳn−2), Xn −X ′n

〉
.

Lipschitz condition ‖Lαid1
X(X, Ȳ )− Lαid1

X(X ′, Ȳ )‖ ≤ K‖X −X ′‖ and the
one-sided Lipschitz condition (2.38) give(

1− 1

2
L∆t

)
‖Xn −X ′n‖2

≤ 1

2
‖Xn−1 −X ′n−1‖ ‖Xn −X ′n‖+

1

2
K∆t‖Xn−1 −X ′n−1‖ ‖Xn −X ′n‖
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+

∣∣∣∣I(1,0),tn−1
− 1

2
∆tI(1),tn−1

∣∣∣∣ K ‖Xn−1 −X ′n−1‖ ‖Xn −X ′n‖

+

∣∣∣∣I(0,0),tn−1
− 1

2
∆tI(0),tn−1

∣∣∣∣ K ‖Xn−1 −X ′n−1‖ ‖Xn −X ′n‖

+
1

2
‖Xn−2 −X ′n−2‖ ‖Xn −X ′n‖+

1

2
K∆t‖Xn−2 −X ′n−2‖ ‖Xn −X ′n‖

+
1

2
|I(1,0),tn−2

|K ‖Xn−2 −X ′n−2‖ ‖Xn −X ′n‖

+
1

2
|I(0,0),tn−2

|K ‖Xn−2 −X ′n−2‖ ‖Xn −X ′n‖.

Thus,

‖Xn −X ′n‖ ≤
1

(1− 1
2L∆t)

(
Kn−1‖Xn−1 −X ′n−1‖+Kn−2‖Xn−2 −X ′n−2‖

)
,

(5.10)
where

Kn−1 =
1

2
(1 +K∆t)

+K

(
|I(1,0),tn−1

|+ 1

2
∆t|I(1),tn−1

|+ I(0,0),tn−1
+

1

2
∆tI(0),tn−1

)
∼ 1

2
(1 +K∆t) +O(∆

3/2
t )

Kn−2 =
1

2
(1 +K∆t) +K

(
1

2
|I(1,0),tn−2

|+ 1

2
I(0,0),tn−2

)
∼ 1

2
(1 +K∆t) +O(∆

3/2
t ).

Subtracting ‖Xn−2 −X ′n−2‖ from both sides of equation (5.10) then yields

‖Xn −X ′n‖ − ‖Xn−2 −X ′n−2‖ ≤
1

(1− 1
2L∆t)

(
Kn−1‖Xn−1 −X ′n−1‖

−
(

1− 1

2
∆tL−Kn−2

)
‖Xn−2 −X ′n−2‖

)
,

hence,

‖Xn −X ′n‖ − ‖Xn−2 −X ′n−2‖

≤ Kn−1

(1− 1
2L∆t)

(
‖Xn−1 −X ′n−1‖ − ‖Xn−2 −X ′n−2‖

)
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when Kn−1 ≤ 1− 1
2L∆t −Kn−2. It follows that

‖Xn −X ′n‖ ≤ ‖Xn−1 −X ′n−1‖

when L ≤ −2K + O(∆
1/2
t ). The SLMM (5.9) is thus B-stable for all step

sizes ∆t > 0, provided the dissipativity (given by L) is large enough for the
nonlinearities (given by K).

5.2.2 General case

The above argument can be applied to arbitrary higher order s-step SLMMs.
For simplicity, take C∅,0 = 1. Then, the difference of two solutions of the
γ-order s-step SLMMs (3.49) is

Xn −X ′n = C(0),0∆t(f(Xn, Ȳn)− f(X ′n, Ȳn))

+

s∑
j=1

{
C∅,j(Xn−j −X ′n−j) + C(0),j∆t(f(Xn−j , Ȳn−j)− f(X ′n−j , Ȳn−j))

+
∑

α∈Λ0
γ\{∅,(0)}

(Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t)

(Lαid1
X(Xn−j , Ȳn−j)− Lαid1

X(X ′n−j , Ȳn−j))
}
.

This can be estimated in the same manner as above to yield

‖Xn −X ′n‖ ≤
1

(1− C(0),0L∆t)

s∑
j=1

Kn−j‖Xn−j −X ′n−j‖, (5.11)

where

Kn−j = C∅,j + C(0),jK∆t +
∑

α∈Λ0
γ\{∅,(0)}

K(Cα,j |Iα,tn−j |+ C∗α,j |Iα−,tn−j |∆t).

Now subtracting
∑s

j=2 ‖Xn−j −X ′n−j‖ from both sides of (5.11) yields

‖Xn −X ′n‖ −
s∑
j=2

‖Xn−j −X ′n−j‖

≤ 1

(1− C(0),0L∆t)

(
Kn−1‖Xn−1 −X ′n−1‖

−
s∑
j=2

(1− C(0),0L∆t −Kn−j)‖Xn−j −X ′n−j‖

)

≤ Kn−1

(1− C(0),0L∆t)

(
‖Xn−1 −X ′n−1‖ −

s∑
j=2

‖Xn−j −X ′n−j‖

)
,
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provided Kn−1 ≤ 1− C(0),0L∆t −Kn−j .
This gives

‖Xn −X ′n‖ ≤ ‖Xn−1 −X ′n−1‖,

that is, the B-stability of the γ-order s-step SLMM (3.49) when the constant
L satisfies

L ≤ (1−Kn−1 −Kn−j)

C(0),0
∆t ≤ −

K

C(0),0
+O(∆

1
2
t ).

Remark 2. The constants L and K may depend on the sample path as well
as the length of the time interval under consideration. The global nature
of the one-sided Lipschitz condition and the standard assumptions are not
essential for the proof, just convenient.
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Chapter 6

Integrals of stochastic processes

The numerical schemes derived in the previous chapters require the simula-
tion of noise process ζt and their integral:

I(j1,...,jl),tn−1
=

∫ tn

tn−1

· · ·
∫ sl−1

tn−1

ζjlsl · · · ζ
j1
s1 dsl · · · ds1

on each discretized subinterval [tn−1, tn]. The components ζjt of the driving
noise process are assumed to be at least Lebesgue integrable in time, in
particular with essentially bounded sample paths.

In general, for processes with continuous or piecewise continuous sample
paths, the integrals can be calculated using Riemann sums on much finer
partition of the discretization subinterval so that the error is dominated by
local discretization error of the scheme itself. For example, the averaged
numerical schemes discussed in subsection 2.3.2 require the averaged noise
integral:

In−1(ω) :=
1

∆n

∫ tn

tn−1

ζs(ω) ds

on each discretization subinterval [tn−1, tn] with step size ∆n.

On the other hand, some integrals can be simulated directly if the dis-
tributions of ζjt are known. For example, if the noise process ζt is a Wiener
process or an OU process, then sample paths of the integrals can be calcu-
lated directly.

In this chapter, four kinds of noise processes, namely a Wiener process,
an OU process, a compound Poisson process and an fBm, are introduced
and the processes and their integrals are evaluated.

91
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6.1 Wiener process

Denote a Wiener process by W (t) and define the sample path of the integral
as

Itn−1(W ) :=

∫ tn

tn−1

W (s) ds.

For notational clarity the integral will be derived for the time interval [0,∆]
in this section and define ∆W := W∆ − W0.

The integral Itn−1(W ) is an N
(
0, 1

3∆3
n

)
-distributed random variable, so

the integral In = 1
∆n
Itn−1(W ) in the averaged numerical schemes for RODEs

can be simulated directly as

In =
1√
3

∆1/2
n G (6.1)

where G is an N (0, 1)-distributed random variable.

The integral Itn−1(W ) arises in the order γ = 1.5 strong Taylor scheme
for Itô stochastic differential equations (see Chapter 10 in [66]). Essentially,
I(W ) :=

∫ ∆
0 W (s) ds and ∆W are correlated Gaussian random variables

with distributions and correlation:

∆W ∼ N (0,∆), I(W ) ∼ N
(

0,
1

3
∆3

)
, E (I(W )∆W ) =

1

2
∆2.

The proof follows from the Itô formula to give the identity:

d (tW (t)) = t dW (t) +W (t) dt

and the fact that the Itô integral
∫ ∆

0 t dW (s) is N
(
0, 1

3∆3
)
-distributed, since

E
(∫ ∆

0
t dW (t)

)
= 0, E

(∫ ∆

0
t dW (t)

)2

=

∫ ∆

0
t2 dt =

1

3
∆3

by basic properties of the Itô integral.
Common sample paths of I(W ) and ∆W can be simulated using two

independent N (0, 1)-distributed random variables G1 and G2 via the linear
relationship:

∆W = ∆1/2G1, I(W ) =
1

2
∆3/2

(
G1 +

1√
3
G2

)
.

This is useful for comparing the numerical schemes with the averaged integral
simulated directly or approximated as a Riemann sum.
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6.2 Ornstein-Uhlenbeck process

Denote an OU process by O(t) and define the sample path of the integral as

Itn−1(O) :=

∫ tn

tn−1

O(s) ds.

We assume again that the integral will be derived for the time interval [0,∆]
and define ∆O := O∆ − O0.

The integral Itn−1(O) is an N (0, s2)-distributed random variable, where
the variance s2 is given by

s2 :=
σ2

γ3

(
2γ∆n − 1 + e−γ∆n

)
,

where γ is a parameter of OU process. The desired integral In = 1
∆n
Itn−1(O)

in the averaged numerical schemes for RODEs can thus be simulated directly
as

In =
s

∆n
G (6.2)

using an N (0, 1)-distributed random variable G.
To see this, first note that the OU stochastic stationary process O(t) with

positive parameters γ and σ, is a solution of the scalar Itô SODE:

dX(t) = −γX(t) dt+ σ dW (t), (6.3)

which has the explicit solution:

X(t) = X0e
−γt + σe−γt

∫ t

0
eγs dW (s). (6.4)

Moreover, by (6.4),

∆Z := O∆ −O0e
−γ∆ = σe−γ∆

∫ ∆

0
eγs dW (s),

is Gaussian distributed with mean E (∆Z) = 0 and, by the Ito isometry,
variance:

E (∆Z)2 = E
(
σe−γ∆

∫ ∆

0
eγs dW (s),

)2

= σ2e−2γ∆

∫ ∆

0
e2γs ds =

σ2

2γ

(
1− e−2γ∆

)
.

Furthermore, by the generalized Itô isometry,

E (∆Z ·∆W ) = E
(
σe−γ∆

∫ ∆

0
eγs dW (s),

∫ ∆

0
dW (s),

)

= σe−γ∆

∫ ∆

0
eγs ds =

σ

γ

(
1− e−γ∆

)
.
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On the other hand, integrating the SODE (6.3) directly for the solution
O(t) over the interval [0,∆] gives

I(O) :=

∫ ∆

0
O(s) ds =

1

γ

(
σ

∫ ∆

0
dW (s)−

∫ ∆

0
dO(s)

)
=

σ

γ
∆W − 1

γ
(O∆ −O0)

=
σ

γ
∆W − 1

γ
∆Z +

1

γ

(
1− e−γ∆

)
O0,

so I(O) is Gaussian distributed with mean E (I(O)) = 0.
Now it is known that, O(t) is given explicitly by

O(t) = σe−γt
∫ t

−∞
eγs dW (s),

which requires W (t) to be a two-sided Wiener process, i.e., defined for all t
∈ R, see [5, 20]. Hence

O0 = σ

∫ 0

−∞
eγs dW (s),

is N (0, σ2/(2γ))-distributed by the properties of the Itô integral, in partic-
ular by the Itô isometry,

E (O0) = σE
(∫ 0

−∞
eγs dW (s)

)
= 0

E (O0)2 = σ2E
(∫ 0

−∞
eγs dW (s)

)2

= σ2

∫ 0

−∞
e2γs ds =

σ2

2γ
.

Since O0 depends on the Wiener process only up to time t = 0, it is clearly
independent of ∆W and ∆Z. Hence the variance of I(O) is given by

E
(
I(O)2

)
=

1

γ2

[
σ2E (∆W )2 − 2σE (∆W,∆Z) + E (∆Z)2

+
(
1− e−γ∆

)2 E (O0)2
]

=
σ2∆

γ2
− 2σ2

γ3

(
1− e−γ∆

)
+

σ2

2γ3

(
1− e−2γ∆

)
+

σ2

2γ3

(
1− e−γ∆

)2
=
σ2

γ3

(
γ∆− 1 + e−γ∆

)
=: s2.
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6.3 Compound Poisson process

A representative example of a noise process with piecewise continuous sample
path is the Poisson process, and, more generally, the compound Poisson
process, see [25, 43]. A Poisson process X(t) counts the number of events,
which are independent of each other, that occur during a given time interval
[0, t]. It has the probabilities

P{X(t) = k} = (λt)k
e−λt

k!
, k = 0, 1, 2, . . . , (6.5)

where λ is a positive real number.
Let T1 be the time when the first event occurs and let N(t) the number

of events occurred until time t. The distribution function of T1 is

F1(t) = P{T1 ≤ t} = P{N(t) ≥ 1} =

∞∑
i=1

(λt)k
e−λt

k!
= 1− e−λt,

which is continuous and monotonically increasing, hence invertible. Thus T1

can be simulated as T1 = F−1
1 (t) = log(1−U)/λ = log(V )/λ, where U and

V = 1− U are uniformly distributed on [0, 1].
The compound Poisson process is a Poisson process with jumps of random

magnitude, which satisfy a distribution function f , for example uniformly
distributed on some bounded interval. It is defined by

ζjt =

Nt∑
i=1

Yi, (6.6)

where Yi is the jump magnitude at i-th jump. When the jump magnitude
Yi ≡ 1 for all i, the compound Poisson process is just a Poisson process.

Typical trajectories of the compound Poisson processes are shown in
Figure 6.1.

The compound Poisson process (6.6) is a left-continuous step function.
Let ζjt = Sji for Ti ≤ t < Ti+1. If there is no jump in the interval [tn−1, tn),
then the integration of (6.6) can be given as direct integration gives

I(j),tn−1
=

∫ tn

tn−1

ζjs ds =

∫ tn

tn−1

Sji ds = Sji∆n.

On the other hand if tn−1 < Ti < tn and there are no other jumps in this
interval, then

I(j),tn−1
=

∫ tn

tn−1

ζjs ds =

∫ Ti

tn−1

Sji−1ds+

∫ tn

Ti

Sji ds

= Sji−1(Ti − tn−1) + Sji (tn − Ti).
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Figure 6.1: Typical trajectories of the compound Poisson processes with λ
= 5 and jumps uniformly distributed on [0, 0.5].

In case there are more jumps on [tn−1, tn), the given interval is divided into
an appropriate number of subintervals and the result summed.

Higher order integrals can be derived in the same manner. Assume that
two independent compound Poisson processes ζj1t and ζj2t have jumps (only)
at Ti1 and Ti2 on [tn−1, tn) and their values at the i1-th and i2-th jumps are
given by Sj1i1 and Sj2i2 , respectively. For simplicity, suppose that tn−1 < Ti1
< Ti2 < tn. Then

I(j1,j2),tn−1
=

∫ tn

tn−1

∫ s1

tn−1

ζj1s1ζ
j2
s2 ds2ds1

=

∫ Ti1

tn−1

∫ s1

tn−1

Sj1i1−1S
j2
i2−1 ds2ds1 +

∫ Ti2

Ti1

∫ s1

Ti1

Sj1i1 S
j2
i2−1 ds2ds1

+

∫ tn

Ti2

∫ s1

Ti2

Sj1i1 S
j2
i2
ds2ds1

=
1

2
Sj1i1−1S

j2
i2−1(Ti1 − tn−1)2 +

1

2
Sj1i1 S

j2
i2−1(Ti2 − Ti1)2

+
1

2
Sj1i1 S

j2
i2

(tn − Ti2)2.

On the other hand, if ζj1t is a stochastic process with continuous sample
paths such as a Wiener process W (t) and ζj2t is an independent compound
Poisson process P (t) which has a single jump at time Ti2 on [tn−1, tn) with
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value Si2 , then

I(j1,j2),tn−1
=

∫ tn

tn−1

∫ s1

tn−1

W (s1)P (s2) ds2ds1

= Si2−1

∫ Ti2

tn−1

W (s1)(s1 − tn−1) ds1 + Si2

∫ tn

Ti2

W (s1)(s1 − Ti2) ds1.

6.4 Fractional Brownian motion

A self-similar process with long range dependence appears in a wide range of
applications such as hydrology, geophysics, biology and economy [26]. The
idea of such process was first suggested by Kolmogorov and later Mandelbrot
& Van Ness introduced the fBm, a family of Gaussian random functions
defined by

BH(t) :=
1

Γ(H + 1/2)

(∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s) (6.7)

+

∫ t

0
(t− s)H−1/2dB(s)

)
,

where H is a Hurst parameter satisfying 0 < H < 1 and Γ represents the
Gamma function, i.e., Γ(α) :=

∫∞
0 xα−1 exp(−x)dx [74]. The integrator B

is an ordinary Brownian motion and the fBm (6.7) reduces to B when H =
1/2.

The fBm is a Gaussian process. It has stationary increments satisfying
E[BH(t) − BH(s)] = 0 and the variance is given as E[(BH(t) − BH(s))2] =
|t − s|2Hσ2, where we take σ = 1 in what follows. In addition, from the
self-similar property, the covariance function is given as

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H).

In literature, a couple of exact and approximate methods have been used
to generate fBm [26, 29, 102]. Among them, the Cholesky method, the FFT
method and the RMD method [83] are introduced in this section. After
generating random Gaussian increments by the above three methods, BH(t)
is obtained by summing up the increments appropriately.

The Riemann integral of the fBm is defined as

Iti−1(BH) :=

∫ ti

ti−1

BH(s) ds, (6.8)

and we can approximate (6.8) by the Riemann sums as

Iti−1(BH) ≈ ∆I

m∑
k=1

BH(ti−1 + k∆I), (6.9)



98 CHAPTER 6. INTEGRALS OF STOCHASTIC PROCESSES

where ∆I = ∆t/m for ∆t = ti − ti−1 and m sufficiently large to achieve the
desired accuracy.

For example, in order to achieve ∆2
t -order convergence, the difference

between Iti−1(BH) and the Riemann sum should be ∆3
t -order, i.e.,∣∣∣∣∣

∫ ti

ti−1

BH(s) ds−∆I

m∑
k=1

BH(ti−1 + k∆I)

∣∣∣∣∣ ≤ C∆3
t , (6.10)

for some constant C > 0. By Hölder condition, the left hand side of the
equation (6.10) can be evaluated as follows:∣∣∣∣∣
∫ ti

ti−1

BH(s) ds−∆I

m∑
k=1

BH(ti−1 + k∆I)

∣∣∣∣∣
≤

m∑
k=1

∫ ti−1+k∆I

ti−1+(k−1)∆I

|BH(s)−BH(ti−1 + k∆I)| ds

≤
m∑
k=1

∫ ti−1+k∆I

ti−1+(k−1)∆I

Cε |s− (ti−1 + k∆I)|H−ε ds

= − Cε
H + 1− ε

m∑
k=1

[((ti−1 + k∆I)− s)H+1−ε]
ti−1+k∆I

ti−1+(k−1)∆I

=
Cε

H + 1− ε

m∑
k=1

((ti−1 + k∆I)− (ti−1 + (k − 1)∆I))
H+1−ε

=
Cε

H + 1− ε

m∑
k=1

∆H+1−ε
I =

Cε
H + 1− ε

(m∆I)∆
H−ε
I =

Cε
H + 1− ε

∆t∆
H−ε
I ,

where Cε ≥ 0 is a random variable depending only on ε. This means that
the ∆2

t -order convergence can be attained if the following inequality holds

Cε
H + 1− ε

∆H−ε
I ≤ C∆2

t ,

i.e., the condition ∆H−ε
I ≤ C ′(H + 1− ε)∆2

t , where C ′ = C/Cε, is necessary
for ∆2

t -order convergence (see also [38, 64, 94, 95]).

We can generate BH(t) with very small step size in order to have I(BH)

:=
∫ ∆

0 BH(s)ds with the desired order, however, solving large covariance
matrix is time consuming, e.g., Cholesky decomposition requires n3-order
time for n × n matrix and it becomes (10 × n)3-order if we take m = 10
in (6.9). To avoid this large calculation, we generate first BH(t) by the
above three methods and then generate intermediate points on each interval
[ti−1, ti] by the RMD method.
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There is a different approach to avoid the calculation of the Riemann
sums, i.e., (6.9). The idea is that we estimate the covariance matrix of fBm
and its integral and calculate the square root of it. Then we generate BH(t)
and its Riemann integral I(BH) simultaneously.

6.4.1 Covariance matrix of BH(t)

In order to generate BH(t), firstly we generate the covariance matrix:

G11 = (E[XiXj ])i,j , (6.11)

where
(Xi, Xj) = (BH(ti)−BH(ti−1), BH(tj)−BH(tj−1)) ,

for i, j = 1, . . . , n. For simplicity, we assume an equidistant partition on a
given interval [t0, tn] and ∆t = ti − ti−1 for i = 1, . . . , n.

(1) G11 = (E[XiXj ])i,j

E[(BH(ti)−BH(ti−1)) (BH(tj)−BH(tj−1))]

= E[BH(ti)BH(tj)−BH(ti)BH(tj−1)−BH(ti−1)BH(tj)

+BH(ti−1)BH(tj−1)]

=
1

2

(
(t2Hi + t2Hj − |ti − tj |2H)− (t2Hi + t2Hj−1 − |ti − tj−1|2H)

−(t2Hi−1 + t2Hj − |ti−1 − tj |2H) + (t2Hi−1 + t2Hj−1 − |ti−1 − tj−1|2H)
)

=
1

2
(− |ti − tj |2H︸ ︷︷ ︸

a

+ |ti − tj−1|2H︸ ︷︷ ︸
b

+ |ti−1 − tj |2H︸ ︷︷ ︸
c

− |ti−1 − tj−1|2H︸ ︷︷ ︸
d

). (6.12)

(i) Case ti = tj

The two terms a and d in (6.12) are canceled out and we have

(6.12) = (ti − ti−1)2H = ∆2H
t . (6.13)

(ii) Case ti > tj

(6.12) = −1

2

(
(ti − tj)2H − (ti−1 − tj)2H − (ti − tj−1)2H + (ti−1 − tj−1)2H

)
=

1

2
∆2H
t

(
−2k2H + (k − 1)2H + (k + 1)2H

)
, (6.14)

where ti − tj = k∆t.
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(iii) Case ti < tj

(6.12) = −1

2

(
(tj − ti)2H − (tj−1 − ti)2H − (tj − ti−1)2H + (tj−1 − ti−1)2H

)
=

1

2
∆2H
t

(
−2k2H + (k − 1)2H + (k + 1)2H

)
, (6.15)

where tj − ti = k∆t.

The equations (6.13), (6.14) and (6.15) give the covariance matrix G11

as

G11 =


α0 α1 α2 · · · αn−1

α1 α0 α1 · · · αn−2

α2 α1 α0 · · · αn−3
...

...
...

. . .
...

αn−1 αn−2 αn−3 · · · α0

 , (6.16)

where α0 is given by (6.13), αi by (6.14).

The Cholesky method

The matrix (6.16) is always positive definite due to the local non-determinism
of fBm [103]. Then it has a Cholesky decomposition and it is given as

G11 = LΛLT = (L
√

Λ) (
√

ΛLT ) = (L
√

Λ) (L
√

Λ)T = L̃ L̃T ,

where L is a lower triangular matrix and Λ is a matrix of eigenvalues, i.e.,
Λ = diag(λ0, . . . , λn−1) with eigenvalues λi for i = 0, . . . , n− 1 [61].

Suppose that the matrix L̃ is given by

L̃ =


l1,1 0 · · · 0
l2,1 l2,2 · · · 0
...

...
. . .

...
ln,1 ln,2 · · · ln,n

 .

Prepare a vector n = (n1, n2, . . . , nn) which has independent and identically
distributed (iid) N (0, 1) components. The product of L̃ and nT :

l1,1 0 · · · 0

l2,1 l2,2 · · · 0

...
...

. . .
...

ln,1 ln,2 · · · ln,n

 (n1, n2, . . . , nn)T =


l1,1n1∑2
i=1 l2,ini

...∑n
i=1 ln,ini

 =


X1

X2

...

Xn


gives the increments of fBm, i.e., BH(ti)−BH(ti−1) for i = 1, . . . , n.
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Now we take BH(t0) = 0 and

BH(t1)−BH(t0) = X1

BH(t1) = X1.

Similarly

BH(t2)−BH(t1) = X2

BH(t2) = X2 +BH(t1) =

2∑
j=1

Xj .

This means

BH(tm) =
m∑
j=1

Xj . (6.17)

The fast Fourier transformation

The idea of using the FFT was firstly introduced by Davies & Harte [27] and
later it was generalized by Dietrich & Newsam [30] and Wood & Chan [102].
Similar to Cholesky decomposition, the method estimate the square root of
the covariance matrix G11, however, it can be applied only to matrices of
size 2s × 2s where s ∈ N. When n < 2s for some s ∈ N, we need to embed
G11 firstly in a Toeplitz matrix G∗11 of size 2s × 2s. Then G∗11 is embedded
in a circulant matrix C11 of size 2s+1.

For simplicity, we assume that n = 2s for some s ∈ N, i.e., we do not
have to consider about embedding G11 in G∗11. The circulant matrix C11 of
size 2n = 2s+1 can be obtained in the following manner:

C11 =



α0 α1 α2 · · · αn−1 Φ αn−1 αn−2 · · · α1

α1 α0 α1 · · · αn−2 αn−1 Φ αn−1 · · · α2

α2 α1 α0 · · · αn−3 αn−2 αn−1 Φ · · · α3
...

...
...

. . .
...

...
...

...
. . .

...
αn−1 αn−2 αn−3 · · · α0 α1 α2 α3 · · · Φ

Φ αn−1 αn−2 · · · α1 α0 α1 α2 · · · αn−1

αn−1 Φ αn−1 · · · α2 α1 α0 α1 · · · αn−2

αn−2 αn−1 Φ · · · α3 α2 α1 α0 · · · αn−3
...

...
...

. . .
...

...
...

...
. . .

...
α1 α2 α3 · · · Φ αn−1 αn−2 αn−3 · · · α0


,

(6.18)
where Φ is arbitrary. Then we generate a random vector X ∼ N (0, G11) as
follows (see details in [26, 29]).

Define Y = QΛ1/2Q∗Z where Λ1/2 = diag{λ1/2
0 , . . . , λ

1/2
2n−1} and Z =

(Z0, . . . , Z2n−1)T is a vector of independent N (0, 1) random variables. Then
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Y ∼N (0, C11) becauseQ is unitary. If we take a subvectorX = (Y0, . . . , Yn−1),
X has the desired property, i.e., X ∼ N (0, G11).

Step 1.
The fast Fourier transform is performed to the elements of the first row of
the matrix C11 in order to determine the eigenvalues Λ:

λk =
2n−1∑
j=0

αk exp

(
−2πijk

2n

)
,

for k = 0, · · · , 2n− 1.
Step 2.

Generate random numbers Z ∼ N (0, 1) and determine W = Λ1/2Q∗Z. Q∗Z
can be generated in the following manner:

• Generate two standard normal random variables for Q∗Z0 and Q∗Zn,
the first and n-th elements.

• For 1 ≤ j < n, generate two independent standard normal random
variables V (1)

j and V (2)
j and calculate

Q∗Zj =
1√
2

(
V

(1)
j + iV

(2)
j

)
Q∗Z2n−j =

1√
2

(
V

(1)
j − iV (2)

j

)
.

Step 3.
Generate Y by the fast Fourier transform and X can be obtained by picking
up n elements from the top of Y :

X

(
k

n

)
=

2n−1∑
j=0

1√
2n
Wj exp

(
−2πijk

2n

)
,

for k = 0, . . . , n− 1.

We sum up the generated Gaussian noise as we did in Cholesky decom-
position case and the fBm at time tm can be obtained as (6.17).

The random midpoint displacement method

The RMD method was first introduced by Fournier et al. as a method to
generate fractal terrains [34]. The base idea of the RMD method is bisection
and interpolation and it generates intermediate points keeping the original
property of fBm on a given interval. The Figure 6.2 illustrates the first two
steps of RMD method [86].
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Figure 6.2: The first two steps of the RMD method.

Assume that A and B are points at t = 0 and 1 and denote their values
by X(0) and X(1), respectively. The process is fBm and the increment has
mean 0 and variance:

V[X(t2)−X(t1)] = |t2 − t1|2Hσ2, (6.19)

for some 0 ≤ t1 ≤ t2 ≤ 1.
The point C is a midpoint between A and B and t = 0.5. X(0.25) is then

given as the sum of the average of X(0) and X(1) and a Gaussian random
offset D1 with mean 0 and variance ∆2

1, i.e.,

X(0.5) =
1

2
(X(1) +X(0)) +D1. (6.20)

Now we subtract X(0) from both sides of the equation (6.20) and take the
variance:

V [X(0.5)−X(0)] = V
[

1

2
(X(1)−X(0)) +D1

]
=

1

4
σ2 + ∆2

1. (6.21)

By the equation (6.19), the left hand side of the equation (6.21) is (1/2)2Hσ2

and this gives

∆2
1 =

((
1

2

)2H

− 1

4

)
σ2.

The points D and E are midpoints between A and C and C and B and
t = 0.25 and 0.75, respectively. X(0.25) and X(0.75) are then given in the
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same manner as

X(0.25) =
1

2
(X(0.5) +X(0)) +D2, X(0.75) =

1

2
(X(1) +X(0.5)) +D2,

(6.22)
where D2 is a Gaussian random offset with mean 0 and variance ∆2

2. Sub-
tracting X(0) from the both sides of the first equation in (6.22) and taking
variance give

V [X(0.25)−X(0)] = V
[

1

2
(X(0.5)−X(0)) +D2

]
=

1

4

(
1

2

)2H

σ2 + ∆2
2.

(6.23)
The left hand side of the equation (6.23) is (1/4)2Hσ2 and

∆2
2 =

((
1

4

)2H

− 1

4

(
1

2

)2H
)
σ2.

This argument yields the variance of the midpoint displacement Dn at n-step
as

∆2
n =

1

(2n)2H

(
1− 22H−2

)
σ2.

After generating BH(t) by the Cholesky decomposition or the FFT,
we generate enough intermediate points on each subinterval by the RMD
method to have the desired resolution. In general, the RMD method re-
quires n-order computational costs when n points are needed and combining
Cholesky decomposition or the FFT with the RMD method is much faster
than estimating the square root of the large covariance matrix and calcu-
lating the Riemann sums although the RMD method is not exact while the
Cholesky decomposition and the FFT are.

6.4.2 BH(t) and I(BH) by the Cholesky method

In order to generate fBm, BH(t), and the Riemann integral of fBm, I(BH),
simultaneously, firstly we generate the full covariance matrix:

G =

(
G11 G12

G21 G22

)
=

(
(E[XiXj ])i,j (E[Xi Yj ])i,j

(E[YiXj ])i,j (E[Yi Yj ])i,j

)
, (6.24)

where
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(Xi, Xj) = (BH(ti)−BH(ti−1), BH(tj)−BH(tj−1)) ,

(Xi, Yj) =

(
BH(ti)−BH(ti−1),

∫ tj

tj−1

(BH(t)−BH(tj−1))dt

)
,

(Yi, Xj) =

(∫ ti

ti−1

(BH(t)−BH(ti−1))dt,BH(tj)−BH(tj−1)

)
,

(Yi, Yj) =

(∫ ti

ti−1

(BH(t)−BH(ti−1))dt,

∫ tj

tj−1

(BH(t)−BH(tj−1))dt

)
,

for i, j = 1, · · · , n. Then we estimate each covariance matrix and sum them
up. For simplicity, we assume again an equidistant partition on a given
interval [t0, tn] and ∆t = ti − ti−1 for i = 1, . . . , n.

(1) G11 = (E[XiXj ])i,j

As we see in subsection 6.4.1, the covariance matrix G11 is given as (6.16).

(2) G21 = (E[YiXj ])i,j

∫ ti

ti−1

E[(BH(t)−BH(ti−1)) (BH(tj)−BH(tj−1))]dt

=

∫ ti

ti−1

E[BH(t)BH(tj)−BH(t)BH(tj−1)−BH(ti−1)BH(tj)

+BH(ti−1)BH(tj−1)]dt

=
1

2

∫ ti

ti−1

(
(t2H + t2Hj − |t− tj |2H)− (t2H + t2Hj−1 − |t− tj−1|2H)

−(t2Hi−1 + t2Hj − |ti−1 − tj |2H) + (t2Hi−1 + t2Hj−1 − |ti−1 − tj−1|2H)
)
dt

=
1

2

∫ ti

ti−1

(− |t− tj |2H︸ ︷︷ ︸
e

+ |t− tj−1|2H︸ ︷︷ ︸
f

+ |ti−1 − tj |2H︸ ︷︷ ︸
g

− |ti−1 − tj−1|2H︸ ︷︷ ︸
h

)dt.

(6.25)

Compute terms e, f , g and h separately again.

(i) Case ti = tj : t ∈ [ti−1, ti] gives t− tj ≤ 0, t − tj−1 ≥ 0, ti−1 − tj <
0 and ti−1 − tj−1 = 0.
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Term e:

1

2

∫ ti

ti−1

(−|t− tj |2H)dt = −1

2

∫ ti

ti−1

(ti − t)2Hdt

= − 1

2(2H + 1)
(ti − ti−1)2H+1.

Term f :

1

2

∫ ti

ti−1

|t− tj−1|2Hdt =
1

2

∫ ti

ti−1

(t− ti−1)2Hdt =
1

2(2H + 1)
(ti − ti−1)2H+1.

Term g:

1

2

∫ ti

ti−1

|ti−1 − tj |2Hdt =
1

2

∫ ti

ti−1

(ti − ti−1)2Hdt =
1

2
(ti − ti−1)2H+1.

Substituting e, f and g in (6.25) yields

(6.29) =
1

2
(ti − ti−1)2H+1 =

1

2
∆2H+1
t . (6.26)

(ii) Case ti > tj : t ∈ [ti−1, ti] gives t− tj ≥ 0, t− tj−1 > 0, ti−1 − tj ≥
0 and ti−1 − tj−1 > 0.

Term e:

1

2

∫ ti

ti−1

(−|t− tj |2H)dt = −1

2

∫ ti

ti−1

(t− tj)2Hdt

= − 1

2(2H + 1)

(
(ti − tj)2H+1 − (ti−1 − tj)2H+1

)
.

Term f :

1

2

∫ ti

ti−1

|t− tj−1|2Hdt =
1

2

∫ ti

ti−1

(t− tj−1)2Hdt

=
1

2(2H + 1)

(
(ti − tj−1)2H+1 − (ti−1 − tj−1)2H+1

)
.

Term g:

1

2

∫ ti

ti−1

|ti−1 − tj |2Hdt =
1

2

∫ ti

ti−1

(ti−1 − tj)2Hdt =
1

2
(ti − ti−1)(ti−1 − tj)2H .
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Term h:

1

2

∫ ti

ti−1

(−|ti−1 − tj−1|2H)dt = −1

2

∫ ti

ti−1

(ti−1 − tj−1)2Hdt

= −1

2
(ti − ti−1)(ti−1 − tj−1)2H .

Substituting e, f , g and h in (6.25) gives

(6.25) = −1

2

{ 1

2H + 1

(
(ti − tj)2H+1 − (ti−1 − tj)2H+1

−(ti − tj−1)2H+1 + (ti−1 − tj−1)2H+1
)

−(ti − ti−1)(ti−1 − tj)2H + (ti − ti−1)(ti−1 − tj−1)2H
}

= −1

2
∆2H+1
t

( 1

2H + 1

(
2k2H+1 − (k − 1)2H+1 − (k + 1)2H+1

)
−(k − 1)2H + k2H

)
, (6.27)

where ti − tj = k∆t.

(iii) Case ti < tj : t ∈ [ti−1, ti] gives t− tj < 0, t− tj−1 ≤ 0, ti−1 − tj <
0 and ti−1 − tj−1 < 0.

The equation (6.25) can be estimated in the same manner with the case
ti > tj and

(6.25) =
1

2

{ 1

2H + 1

(
(tj − ti)2H+1 − (tj−1 − ti)2H+1

−(tj − ti−1)2H+1 + (tj−1 − ti−1)2H+1
)

+(ti − ti−1)(tj − ti−1)2H − (ti − ti−1)(tj−1 − ti−1)2H
}

=
1

2
∆2H+1
t

( 1

2H + 1

(
2k2H+1 − (k − 1)2H+1 − (k + 1)2H+1

)
+(k + 1)2H − k2H

)
, (6.28)

where tj − ti = k∆t.

(3) G12 = (E[Xi Yj ])i,j

The argument for G21 can be applied to G12 = (E[Xi Yj ])i,j .
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∫ tj

tj−1

E[(BH(ti)−BH(ti−1)) (BH(s)−BH(tj−1))]ds

=

∫ tj

tj−1

E[BH(ti)BH(s)−BH(ti)BH(tj−1)−BH(ti−1)BH(s)

+BH(ti−1)BH(tj−1)]ds

=
1

2

∫ tj

tj−1

(
(t2Hi + s2H − |ti − s|2H)− (t2Hi + t2Hj−1 − |ti − tj−1|2H)

−(t2Hi−1 + s2H − |ti−1 − s|2H) + (t2Hi−1 + t2Hj−1 − |ti−1 − tj−1|2H)
)
ds

=
1

2

∫ tj

tj−1

(− |ti − s|2H︸ ︷︷ ︸
i

+ |ti − tj−1|2H︸ ︷︷ ︸
j

+ |ti−1 − s|2H︸ ︷︷ ︸
k

− |ti−1 − tj−1|2H︸ ︷︷ ︸
l

)ds.

(6.29)

(i) Case ti = tj

Obviously

(6.29) =
1

2
(ti − ti−1)2H+1 =

1

2
∆2H+1
t . (6.30)

(ii) Case ti > tj

The equation (6.29) can be estimated in the same manner with (6.25)
and

(6.29) =
1

2

{ 1

2H + 1

(
(ti − tj)2H+1 − (ti−1 − tj)2H+1

−(ti − tj−1)2H+1 + (ti−1 − tj−1)2H+1
)

+(tj − tj−1)(ti − tj−1)2H − (tj − tj−1)(ti−1 − tj−1)2H
}

=
1

2
∆2H+1
t

( 1

2H + 1

(
2k2H+1 − (k − 1)2H+1 − (k + 1)2H+1

)
+(k + 1)2H − k2H

)
, (6.31)

where ti − tj = k∆t.

(iii) Case ti < tj

Similarly
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(6.29) = −1

2

{ 1

2H + 1

(
(tj − ti)2H+1 − (tj−1 − ti)2H+1

−(tj − ti−1)2H+1 + (tj−1 − ti−1)2H+1
)

−(tj − tj−1)(tj−1 − ti)2H + (tj − tj−1)(tj−1 − ti−1)2H
}

= −1

2
∆2H+1
t

( 1

2H + 1

(
2k2H+1 − (k − 1)2H+1 − (k + 1)2H+1

)
−(k − 1)2H + k2H

)
, (6.32)

where tj − ti = k∆t.

(4) G22 = (E[Yi Yj ])i,j∫ ti

ti−1

∫ tj

tj−1

E[(BH(t)−BH(ti−1)) (BH(s)−BH(tj−1))]dsdt

=

∫ ti

ti−1

∫ tj

tj−1

E[BH(t)BH(s)−BH(t)BH(tj−1)−BH(ti−1)BH(s)

+BH(ti−1)BH(tj−1)]dsdt

=
1

2

∫ ti

ti−1

∫ tj

tj−1

(
(t2H + s2H − |t− s|2H)− (t2H + t2Hj−1 − |t− tj−1|2H)

−(t2Hi−1 + s2H − |ti−1 − s|2H) + (t2Hi−1 + t2Hj−1 − |ti−1 − tj−1|2H)
)
dsdt

=
1

2

∫ ti

ti−1

∫ tj

tj−1

(− |t− s|2H︸ ︷︷ ︸
m

+ |t− tj−1|2H︸ ︷︷ ︸
n

+ |ti−1 − s|2H︸ ︷︷ ︸
o

− |ti−1 − tj−1|2H︸ ︷︷ ︸
p

)dsdt.

(6.33)

Compute m, n, o and p separately.

(i) Case ti = tj : t, s ∈ [ti−1, ti] gives t− tj−1 ≥ 0 and ti−1 − s ≤ 0. In
addition, ti−1 − tj−1 = 0.

Term m:

1

2

∫ ti

ti−1

∫ tj

tj−1

(−|t− s|2H)dsdt = −1

2

∫ ti

ti−1

∫ ti

ti−1

|t− s|2Hdsdt

= −1

2

∫ ti

ti−1

(∫ t

ti−1

(t− s)2Hds+

∫ ti

t
(s− t)2Hds

)
dt
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= − 1

2(2H + 1)

∫ ti

ti−1

([
−(t− s)2H+1

]t
ti−1

+
[
(s− t)2H+1

]ti
t

)
dt

= − 1

2(2H + 1)

∫ ti

ti−1

(
(t− ti−1)2H+1 + (ti − t)2H+1

)
dt

= − 1

2(2H + 1)(2H + 2)

[
(t− ti−1)2H+2 − (ti − t)2H+2

]ti
ti−1

= − 1

(2H + 1)(2H + 2)
(ti − ti−1)2H+2.

Term n:

1

2

∫ ti

ti−1

∫ tj

tj−1

|t− tj−1|2Hdsdt =
1

2

∫ ti

ti−1

∫ ti

ti−1

(t− ti−1)2Hdsdt

=
1

2
(ti − ti−1)

∫ ti

ti−1

(t− ti−1)2Hdt

=
1

2(2H + 1)
(ti − ti−1)2H+2.

Term o:

1

2

∫ ti

ti−1

∫ tj

tj−1

|ti−1 − s|2Hdsdt =
1

2

∫ ti

ti−1

∫ ti

ti−1

(s− ti−1)2Hdsdt

=
1

2

∫ ti

ti−1

1

2H + 1
(ti − ti−1)2H+1dt

=
1

2(2H + 1)
(ti − ti−1)2H+2.

Substituting terms m, n and o in (6.33) gives

(6.33) = − 1

(2H + 1)(2H + 2)
(ti − ti−1)2H+2 +

1

(2H + 1)
(ti − ti−1)2H+2

=
1

2H + 2
(ti − ti−1)2H+2

=
1

2H + 2
∆2H+2
t . (6.34)

(ii) Case ti > tj : t ∈ [ti−1, ti] and s ∈ [tj−1, tj ] yield t− s ≥ 0, t− tj−1

> 0, ti−1 − s ≥ 0 and ti−1 − tj−1 > 0.
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Term m:

1

2

∫ ti

ti−1

∫ tj

tj−1

(−|t− s|2H)dsdt = −1

2

∫ ti

ti−1

∫ tj

tj−1

(t− s)2Hdsdt

= −1

2

∫ ti

ti−1

[
− 1

2H + 1
(t− s)2H+1

]tj
tj−1

dt

=
1

2(2H + 1)

∫ ti

ti−1

(
(t− tj)2H+1 − (t− tj−1)2H+1

)
dt

=
1

2(2H + 1)(2H + 2)

(
(ti − tj)2H+2 − (ti−1 − tj)2H+2

−(ti − tj−1)2H+2 + (ti−1 − tj−1)2H+2
)
.

Term n:

1

2

∫ ti+1

ti

∫ tj+1

tj

|t− tj |2Hdsdt =
1

2

∫ ti+1

ti

∫ tj+1

tj

(t− tj)2Hdsdt

=
1

2
(tj+1 − tj)

∫ ti+1

ti

(t− tj)2Hdt

=
1

2(2H + 1)
(tj+1 − tj)

(
(ti+1 − tj)2H+1 − (ti − tj)2H+1

)
.

Term o:

1

2

∫ ti

ti−1

∫ tj

tj−1

|ti−1 − s|2Hdsdt =
1

2

∫ ti

ti−1

∫ tj

tj−1

(ti−1 − s)2Hdsdt

=
1

2

∫ ti

ti−1

− 1

2H + 1

(
(ti−1 − tj)2H+1 − (ti−1 − tj−1)2H+1

)
dt

= − 1

2(2H + 1)
(ti − ti−1)

(
(ti−1 − tj)2H+1 − (ti−1 − tj−1)2H+1

)
.

Term p:

1

2

∫ ti

ti−1

∫ tj

tj−1

(−|ti−1 − tj−1|2H)dsdt = −1

2

∫ ti

ti−1

∫ tj

tj−1

(ti−1 − tj−1)2Hdsdt

= −1

2
(ti − ti−1)(tj − tj−1)(ti−1 − tj−1)2H .
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Substituting terms m, n, o and p in (6.33) gives

(6.33) =
1

2(2H + 1)(2H + 2)

(
(ti − tj)2H+2 − (ti−1 − tj)2H+2

−(ti − tj−1)2H+2 + (ti−1 − tj−1)2H+2
)

+
1

2(2H + 1)
(tj − tj−1)

(
(ti − tj−1)2H+1 − (ti−1 − tj−1)2H+1

)
− 1

2(2H + 1)
(ti − ti−1)

(
(ti−1 − tj)2H+1 − (ti−1 − tj−1)2H+1

)
−1

2
(ti − ti−1)(tj − tj−1)(ti−1 − tj−1)2H .

Suppose that ti − tj = k∆t. Then ti−1 − tj = (k − 1)∆t and ti − tj−1 =
(k + 1)∆t and

(6.33) =
1

2
∆2H+2
t

( 1

2H + 1

(
(k + 1)2H+1 − (k − 1)2H+1

)
− k2H (6.35)

+
1

(2H + 1)(2H + 2)

(
2k2H+2 − (k − 1)2H+2 − (k + 1)2H+2

) )
.

(iii) Case ti < tj : t ∈ [ti−1, ti] and s ∈ [tj−1, tj ] give t− s ≤ 0, t− tj−1

≤ 0, ti−1 − s < 0 and ti−1 − tj−1 < 0.

The terms m, n, o and p can be estimated in the same manner and

(6.33) =
1

2(2H + 1)(2H + 2)

(
(tj − ti)2H+2 − (tj−1 − ti)2H+2

−(tj − ti−1)2H+2 + (tj−1 − ti−1)2H+2
)

+
1

2(2H + 1)
(ti − ti−1)

(
(tj − ti−1)2H+1 − (tj−1 − ti−1)2H+1

)
− 1

2(2H + 1)
(tj − tj−1)

(
(tj−1 − ti)2H+1 − (tj−1 − ti−1)2H+1

)
−1

2
(ti − ti−1)(tj − tj−1)(tj−1 − ti−1)2H .

Suppose that tj − ti = k∆t. Then tj−1 − ti = (k − 1)∆t and tj − ti−1 =
(k + 1)∆t and

(6.33) =
1

2
∆2H+2
t

( 1

2H + 1

(
(k + 1)2H+1 − (k − 1)2H+1

)
− k2H (6.36)

+
1

(2H + 1)(2H + 2)

(
2k2H+2 − (k − 1)2H+2 − (k + 1)2H+2

) )
,
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which is equal to (6.35).

For simplicity, denote

G11 =


α0 α1 α2 · · · αn−1

α1 α0 α1 · · · αn−2

α2 α1 α0 · · · αn−3
...

...
...

. . .
...

αn−1 αn−2 αn−3 · · · α0

 ,

G12 =


β0 β1 β2 · · · βn−1

γ1 β0 β1 · · · βn−2

γ2 γ1 β0 · · · βn−3
...

...
...

. . .
...

γn−1 γn−1 γn−3 · · · β0

 ,

G21 =


β0 γ1 γ2 · · · γn−1

β1 β0 γ1 · · · γn−2

β2 β1 β0 · · · γn−3
...

...
...

. . .
...

βn−1 βn−2 βn−3 · · · β0

 ,

G22 =


δ0 δ1 δ2 · · · δn−1

δ1 δ0 δ1 · · · δn−2

δ2 δ1 δ0 · · · δn−3
...

...
...

. . .
...

δn−1 δn−2 δn−3 · · · δ0

 ,

where α0 is given by (6.13), αi by (6.14), β0 by (6.30), βi by (6.31), γi by
(6.32), δ0 by (6.34) and δi by (6.35) for i = 1, · · · , n − 1. Obviously the
covariance matrix G given by (6.24) is a symmetric matrix which elements
are real numbers.

The same argument in subsubsection 6.4.1 gives the covariance matrix
G has a Cholesky decomposition and it is given as G = L̃ L̃T . Suppose that
the matrix L̃ is given by

L̃ =


l1,1 0 . . . 0
l2,1 l2,2 . . . 0
...

...
. . .

...
l2n,1 l2n,2 . . . l2n,2n

 .

Similarly prepare a vector n = (n1, n2, . . . , n2n) which has iid N (0, 1) com-
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ponents. Then,


l1,1 0 . . . 0

l2,1 l2,2 . . . 0

...
...

. . .
...

l2n,1 l2n,2 . . . l2n,2n

 (n1, n2, . . . , n2n)T =


l1,1n1∑2
i=1 l2,ini

...∑2n
i=1 l2n,ini

 =

(
X
Y

)
,

where X and Y are given by

X =


X1

X2

...

Xn

 =


l1,1n1∑2
i=1 l2,ini

...∑n
i=1 ln,ini

 , Y =


Y1

Y2

...

Yn

 =



∑n+1
i=1 ln+1,ini∑n+2
i=1 ln+2,ini

...∑2n
i=1 l2n,ini

 ,

which correspond to the increments of fBm BH(ti)−BH(ti−1) and the inte-
gral

∫ ti
ti−1

(BH(s)−BH(ti−1)) ds.
Now we take BH(t0) = 0 and

BH(t1)−BH(t0) = X1

BH(t1) = X1.

Similarly

BH(t2)−BH(t1) = X2

BH(t2) = X2 +BH(t1) =

2∑
i=1

Xi.

This means

BH(tm) =

m∑
i=1

Xi.

The m-th element of Y is given by

Ym =

∫ tm

tm−1

(BH(s)−BH(tm−1)) ds =

∫ tm

tm−1

BH(s) ds−BH(tm−1)

∫ tm

tm−1

ds

and we obtain ∫ tm

tm−1

BH(s) ds = Ym +BH(tm−1)∆t. (6.37)
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The equation (6.37) gives the Riemann integral of BH(t) on [t0, tm] as∫ tm

t0

BH(s) ds =

∫ t1

t0

BH(s) ds+ · · ·+
∫ tm

tm−1

BH(s) ds

= (Y1 +BH(t0)∆t) + · · ·+ (Ym +BH(tm−1)∆t)

=
m∑
i=1

(Yi +BH(ti−1)∆t) .

6.4.3 Comparison of computational costs

Here we compare the computational costs to generate BH(t) and I(BH) on
[0, 1] interval by the following methods:

1. Solving the full covariance matrix G by Cholesky decomposition and
generating BH(t) and I(BH) simultaneously.

2. SolvingG11 by Cholesky decomposition, generating intermediate points
by the RMD method and taking the Riemann sums for I(BH).

3. Solving G11 by the FFT, generating intermediate points by the RMD
method and taking the Riemann sums for I(BH).

4. Generating BH(t) with small step size by the RMD method and taking
the Riemann sums for I(BH).

The step size for BH(t) are ∆t = 2−4, 2−6, 2−8 and 2−10 and the step size
for I(BH) for the methods 2-4 are set to ∆I = 2−8, 2−12, 2−16 and 2−20,
i.e., ∆I = ∆2

t .
Computational costs to generate 1 sample path as well as 1000 paths by

the above four methods with different step sizes ∆t are listed on Tables 6.1
and 6.2 and also illustrated in Figure 6.3. We consider the simulation on
the [0, 1] interval and the number of subintervals in each column is given by
1/∆t.

∆t 2−4 2−6 2−8 2−10

Method 1 0.007063 0.020983 0.514968 23.880383
Method 2 0.004789 0.025458 0.225578 12.767898
Method 3 0.004829 0.009526 0.068878 0.851457
Method 4 0.004082 0.010707 0.034688 0.740504

Table 6.1: Computational costs to generate 1 sample path.



116 CHAPTER 6. INTEGRALS OF STOCHASTIC PROCESSES

∆t 2−4 2−6 2−8 2−10

Method 1 1.149970 2.806160 18.66572 170.5010
Method 2 2.882757 9.091249 52.02268 693.3296
Method 3 3.587168 9.020846 51.34058 679.4948
Method 4 3.930499 10.310124 51.16574 655.2259

Table 6.2: Computational costs to generate 1000 sample path.

Figure 6.3: Comparison of computational costs to generate BH(t) and
I(BH).

In general, the FFT and the RMD method require O(n log(n)) and O(n)
computational costs, respectively, while Cholesky decomposition does O(n3)
[60, 61, 86]. In fact, Table 6.1 shows the FFT and the RMD method have
a big advantage from computational point and they generate sample paths
much faser than Cholesky decomposition. However, it is necessary to repeat
the whole process by these two methods while in case of Cholesky decompo-
sition, we can reuse the obtained square root of the covariance matrix and
generate new sample paths by multiplying newly generated random num-
bers. We generate many sample paths in practice and if the number of
sample paths to be generated is quite big, the total computational costs by
Cholesky decomposition (the method 2) are almost the same with the FFT
(the method 3) and the RMD method (method 4).

The computational costs to generate one sample path by the method 1
gets very large especially when the step size ∆t gets smaller, i.e., the number
of intervals gets larger. However, we can reuse the estimated square root of
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the covariance matrix in the method 1 and Table 6.2 and Figure 6.3 show
that it requires the least computational cost when the number of sample
paths are big.

Figure 6.4: Sample paths by the method 1 and the method 2 with H = 0.6,
∆t = 2−5 and ∆I = ∆2

t .

Figure 6.4 illustrates the sample paths of BH(t) and I(BH) generated by
the method 1 and the method 2.
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Chapter 7

Numerical examples

Analytical solutions are rarely obtained in practice and numerical simulation
can give us useful information of the behavior of the systems. In addition,
it can yield valuable insights into the problem of identifying which variables
have big impacts on the systems and we can see their change in behavior
under different conditions.

As we saw in previous chapters, we can control calculation error by step
sizes, i.e., the approximation with small calculation error will be obtained
for small step sizes. On the other hand, the computational costs get higher
for such small step sizes and it is quite important to choose appropriate
differential equation solvers and suitable step sizes. In particular, when the
system is stiff, explicit schemes do not perform well and implicit schemes
should be used because they are more stable.

Figure 7.1 is the simulation result of hepatitis C virus (HCV) kinetic
model [6].

Figure 7.1 continued.

119
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Figure 7.1: Simulation results of HCV model by different solvers.

The black line is approximated by explicit Euler scheme (3.18) and the
blue and red lines by lsoda [46], an LMM which detects stiffness of the
system and switches automatically between stiff and nonstiff methods. The
step sizes are set to 0.25 for the black line, 0.5 for the blue line and 0.01 for
the red line. The black line describes completely different trajectory even
though its step size is smaller than the blue line, while the blue line coincides
well with the red line, the ”exact” solution.

There are various kinds of noisy scenario in practice and three different
kinds of noise processes are introduced in section 7.1. Then, the numeri-
cal schemes derived in the previous chapters are applied to biological and
medical models. Systems of RODEs are transformed into RODE-SODE pair
in section 7.2 to section 7.5 and RODE parts of the systems are solved by
the numerical schemes introduced in chapter 3. Only numerical schemes for
RODEs are developed in previous chapters, but in general, many systems
are much more complicated and they depend not only on time, but also on
space, i.e., we need to solve random partial differential equations (RPDEs).
One approach is method of lines. RPDEs are discretized by method of lines
with respect to spatial parameter and they are transformed into a system of
RODEs so that the derived schemes can be applied to the system. In sec-
tion 7.6 and section 7.7, RPDEs are discretized in space and RODE-Taylor
schemes as well as SLMMs are applied to the systems. A model with affine
structure is introduced in section 7.8 and the affine-RODE schemes in chap-
ter 4 are used. In the last section, 7.9, a simple system of RODEs with
different kinds of noisy scenario are investigated and their trajectories are
compared here.

In order to see the performance of the numerical schemes, trajectories of
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solutions and computational costs are illustrated in section 7.2, section 7.3
and section 7.9 and the error vs step sizes as well as their computational
costs are compared among them in the rest of the sections.

7.1 Noise process

Biological systems such as human body can be considered as random envi-
ronment. They vary randomly with respect to time, but they are assumed
to be continuous and essentially bounded.

One simple example to obtain bounded noise processes is implementing
a Wiener process Y (t) in cosine function, i.e.,

c(Y (t)) := c0(1− 2ν cos(Y (t))), (7.1)

where ν is a positive parameter. A typical example of sample paths and the
histogram of the values are illustrated in Figure 7.2. The process c(Y (t))
has values on the interval [c0 − ν, c0 + ν], especially more values near its
boundaries c0 − ν and c0 + ν.

Figure 7.2: An example of the switching noise (7.1). The parameter is set
to c0 = 0.5 and ν = 0.2.

Second example also gives noisy switching effect. Here a positive param-
eter k is replaced by the stochastic process

k(Y (t)) := k0

(
1− 2ν

Y (t)

1 + Y (t)2

)
, (7.2)

where k0 and ν are positive constants with ν ∈ (0, 1]. The noise process
k(Y (t)) tends to peak around k0(1 ± ν), and is thus suitable for a noisy
switching scenario.
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Figure 7.3: An example of the switching noise (7.2). A Wiener process is
implemented in this example and the parameters are set to k0 = 0.2 and ν
= 0.2.

In the last example, a positive parameter δ will be replaced by the
stochastic process

δ(Y (t)) := δ0

(
1− 2ν

π
arctanY (t)

)
, (7.3)

where δ0 and ν are positive constants with ν ∈ (0, 1]. This process takes
values in the interval δ0(1± ν) and is centered on δ0.

Figure 7.4: An example of (7.3). An OU process is implemented in this
example and the parameters are set to δ0 = 0.2 and ν = 0.15.
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7.2 Tumor growth model

As an example of non-stiff system, we consider the cancer model fromWodarz
& Komarova [100], page 154, in which angiogenesis inhibition prevents tumor
cell division, namely

dC(t)

dt
=

(
rC(t)

εC(t) + 1

)(
P (t)

I(t) + 1

)
− δC(t),

dP (t)

dt
= aPC(t)− bPP (t),

dI(t)

dt
= ζ + aIC(t)− bII(t),

where C is the population of cancer cells, P promoters of cancer cell growth
and I inhibitors. The parameters are all positive except the inhibitor input
ζ which may be zero. Note that the coefficient functions and their partial
derivatives satisfy global Lipschitz bounds on the biologically relevant region
R3

+.
Replacing ζ by the bounded random process ζ(Y (t)):

ζ(Y (t)) := ζ0

(
1− 2ν

Y (t)

1 + Y (t)2

)
,

we obtain a system of RODEs:

dC(t)

dt
=

(
rC(t)

εC(t) + 1

)(
P (t)

I(t) + 1

)
− δC(t),

dP (t)

dt
= aPC(t)− bPP (t),

dI(t)

dt
= ζ(Y (t)) + aIC(t)− bII(t),

or the equivalent vector Itô SODE, i.e., a RODE-SODE pair:

d


C(t)

P (t)

I(t)

Y (t)

 =



(
rC(t)
εC(t)+1

)(
P (t)
I(t)+1

)
− δC(t)

aPC(t)− bPP (t)

ζ(Y (t)) + aIC(t)− bII(t)

0

 dt+


0

0

0

1

 dW (t). (7.4)

In the following simulation example, the step size is fixed to ∆a = 0.2
for the EAES (2.35) and ∆t = ∆2

a for other schemes. The parameters are
set to r = 1, δ = 0.1, aP = 4.5, bP = 0.11, aI = 0.2, bI = 0.01, ε = 0.34,
ζ0 = 4 and the initial population of cancer cells C0 = 35. The other initial
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values are obtained by the quasistationary approach and the initial value of
promoters P0 and one of inhibitors I0 are given by P0 = aP /bP C0 and I0 =
(ζ0 + aIC0)/bI . Moreover, the spread of the noise ν is fixed to 1.

Solutions of the system (7.4) are approximated by the explicit Euler
scheme (3.18), the derivative-free explicit 1.5 order scheme (3.24), the Adams-
Bashforth scheme (3.37) and the EAES (2.35).

Figures 7.5 and 7.6 illustrate a typical sample path. The black line, the
red line and the light green line are the population of the cancer cells, the
promoters and the inhibitors, respectively. The black line, the dark blue
line, the red line and the light green line on the left figure of Figure 7.7 are
the solutions by the explicit Euler scheme (3.18), the derivative-free explicit
1.5 order scheme (3.24), the Adams-Bashforth scheme (3.37) and the EAES
(2.35). The histogram shows the sum of 100 times simulation time by each
scheme.

All solution curves look very similar, however, the computational cost for
the EAES (2.35) is much smaller than the ones by other three schemes.

Figure 7.5: The approximation by the explicit Euler scheme (3.18) and the
derivative-free explicit 1.5-order scheme (3.24). The step sizes are ∆a = 0.2
for the EAES (2.35) and ∆t = ∆2

a for the other schemes. The parameters
are set to r = 1, δ = 0.1, aP = 4.5, bP = 0.11, aI = 0.2, bI = 0.01,
ε = 0.34 and ζ0 = 4 with initial value C0 = 35, P0 = aP /bP C0 and I0 =
(ζ0 + aIC0)/bI . The black line: the population of the cancer cells, the red
line: the population of the promoters and the light green line: the population
of the inhibitors.



7.3. HCV KINETIC MODEL 125

Figure 7.6: The approximation by the Adams-Bashforth scheme (3.37) and
the EAES (2.35). The step sizes are ∆a = 0.2 for the EAES (2.35) and ∆t

= ∆2
a for the other schemes. The parameter values and the line colors are

the same with Figure 7.5.

Figure 7.7: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the derivative-free explicit 1.5-order scheme
(3.24), Adams-Bashforth scheme (3.37) and the EAES (2.35). The parameter
values and the line colors are the same with Figure 7.5.

7.3 HCV kinetic model

As an example of stiff system, we consider the epidemiological model in [7].
The three compartment HCV kinetics model given by

dV (t)

dt
= (1− ε)pI(t)− cV (t),

dI(t)

dt
= βT (t)V (t) + pI

(
1− T (t) + I(t)

Tmax

)
I(t)− δI(t),

dT (t)

dt
= γ

(
1− T (t) + I(t)

Tmax

)
,
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where V is a compartment for viruses, I for infected cells and T for target
cells. The parameters of the model are the effect of interferon ε, the produc-
tion rate of new virus p, the clearance rate of virus c, the de-novo infection
rate β, the proliferation rate of infected cells pI , the death rate of infected
cells δ, the regeneration rate of target cells γ and the maximum number of
cells Tmax.

We replace the parameter δ by the bounded noise process δ(Y (t)) given
as (7.3) to obtain a stiff system of RODEs:

dV (t)

dt
= (1− ε)pI(t)− cV (t),

dI(t)

dt
= βT (t)V (t) + pI

(
1− T (t) + I(t)

Tmax

)
I(t)− δ(Y (t))I,

dT (t)

dt
= γ

(
1− T (t) + I(t)

Tmax

)
.

This can be reformulated as a vector Itô SODE or a RODE-SODE pair:

d


V (t)

I(t)

T (t)

Y (t)

 =



(1− ε)pI(t)− cV (t)

βT (t)V (t) +
{
pI

(
1− T (t)+I(t)

Tmax

)
− δ(Y (t))

}
I(t)

γ
(

1− T (t)+I(t)
Tmax

)
θ1 − θ2Y (t)


dt

+


0
0
0
θ3

 dW (t), (7.5)

where, to be specific, we have taken Y (t) to be an OU process solution of
the Itô SODE:

dY (t) = (θ1 − θ2Y (t)) dt+ θ3 dW (t), (7.6)

with θ1 non-negative and θ2, θ3 positive. This has the explicit solution

Y (t) =
θ1

θ2
+

(
Y0 −

θ1

θ2

)
e−θ2t + θ3

∫ t

0
e−θ2(t−s)dW (s).

In this simulation example, the step size is fixed to ∆a = 0.1 for the
IAES (2.36) and ∆t = ∆2

a for other schemes. The parameters are set to ε =
0.3, c = 6, pI = 0.2, δ0 = 0.42, γ = 1× 105, Tmax = 3× 106 and the initial
population of the viruses V0 = 1× 107, the infected cells I0 = 1.9× 106 and
the target cells T0 = 1.1 × 106. p and β are given by p = cV0/I0 and β =
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δ0I0/(T0 V0) from the quasistationary approach. The spread of the noise ν
is fixed to 1 in this model.

Solutions of the system (7.5) will be approximated by the implicit Eu-
ler scheme (3.22), the derivative-free implicit 1.5-order scheme (3.26), the
Adams-Moulton scheme (3.38) and the IAES (2.36).

An example of sample paths is given on Figures 7.8 and 7.9. Here the
black line, the red line and the light green line are the population of the
viruses, the infected cells and the target cells, respectively. The black line,
the dark blue line, the red line and the light green line on the left figure
of Figure 7.10 are the solutions by the implicit Euler scheme (3.22), the
derivative-free implicit 1.5 order scheme (3.26), the Adams-Moulton scheme
(3.38) and the IAES (2.36). The histogram shows the sum of 100 times
simulation time by each scheme.

All schemes are implicit schemes and the trajectories on Figure 7.10
coincide well. The step size is set to ∆a = 0.1 for the IAES (2.36) and ∆t =
∆2
a = 0.01 for the other schemes and the difference in the calculation time

is quite obvious.

Figure 7.8: The approximation by the implicit Euler scheme (3.22) and the
derivative-free implicit 1.5-order scheme (3.26). The step sizes are ∆a = 0.1
for the IAES (2.36) and ∆t = ∆2

a for the other schemes. The parameters are
set to ε = 0.3, c = 6, pI = 0.2, δ0 = 0.42, γ = 1 × 105, Tmax = 3 × 106 and
the initial values V0 = 1× 107, I0 = 1.9× 106 and T0 = 1.1× 106. The black
line: the virus compartment, the red line: the infected cells compartment
and the light green line: the target cells compartment.
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Figure 7.9: The approximation by the Adams-Moulton scheme (3.38) and
the IAES (2.36). The step sizes are ∆a = 0.1 for the IAES (2.36) and ∆t =
∆2
a for the other schemes. The parameter values and the line colors are the

same with Figure 7.8.

Figure 7.10: The comparison of the trajectories and the calculation costs by
the implicit Euler scheme (3.22), the derivative-free implicit 1.5-order scheme
(3.26), Adams-Moulton scheme (3.38) and the IAES (2.36). The parameter
values and the line colors are the same with Figure 7.8.

7.4 Population dynamics

The next example is a non-stiff nonlinear scalar RODE originating in popu-
lation dynamics [45] and given by

dX(t)

dt
= rX(t)(k −X(t)) cos(Y (t)), (7.7)



7.4. POPULATION DYNAMICS 129

where Y (t) is an OU process satisfying (7.6).

The 1.0, 1.5 and 2.0-order RODE-Taylor schemes (3.18), (3.19) and (3.20)
are applied here. In addition, explicit SLMMs of order 1.0, 1.5 and 2.0 to be
applied are as follows

(Ex1.0) Xn = Xn−1 +
1

2
∆t (fn−1 + fn−2) , (7.8)

(Ex1.5) Xn = Xn−1 + ∆tfn−2 + L1fn−1I(1,0),tn−1
+ L1fn−2I(1),tn−2

∆t

+L0fn−1I(0,0),tn−1
+ L0fn−2I(0),tn−2

∆t, (7.9)

(Ex2.0) Xn =
1

2
Xn−1 +

1

2
Xn−2 + ∆t

(
fn−1 +

1

2
fn−2

)
(7.10)

+L1fn−1I(1,0),tn−1
+

1

2
L1fn−2I(1,0),tn−2

+L0fn−1I(0,0),tn−1
+

1

2
L0fn−2I(0,0),tn−2

+L1L1fn−1I(1,1,0),tn−1
+

1

2
L1L1fn−2I(1,1,0),tn−2

,

as well as the Adams-Bashforth scheme (3.37), which has order 1.0 conver-
gence.

In the following simulations, the initial condition and the parameters are
fixed toX0 = 0.5, r = 5, K = 3, θ1 = 0, θ2 = 4 and θ3 = 0.1. For comparison,
the solution of the 2.0-order Itô-Taylor scheme (3.20) with the step size ∆t

= 2−12 is used as the ”exact” solution and compared to the other schemes
with step sizes ∆t = 2−10, 2−9, 2−8, 2−7, 2−6 and 2−5.

The step size versus mean error and the computational costs for 100 times
simulation are shown on Figure 7.11. The solid thick lines on the first figure
are the error by 1-step schemes and the dashed lines by multi-step schemes.
The solid thin lines are for reference and they have slopes of orders 1.0, 1.5
and 2.0.

The error by 1.5-order Itô-Taylor scheme (3.19) (solid cyan) coincides
closely with the 2.0-order Itô-Taylor scheme (3.20) (solid dark red) and is
not visible here. The Adams-Bashforth scheme (3.37) (dashed gray) has
order 1.0 convergence, but its consistency conditions satisfy C∗α,j = 0 for α
= (1, 0) and (0, 0). Moreover, Y (t) oscillates around 0, which gives L1f ≈ 0
and the remainder term of 1.0-order convergence schemes is also close to 0, so
the Adams-Bashforth scheme (3.37) in fact shows higher order convergence,
while the other 1.0-order SLMM (7.8) (dashed light brown) does not.

No big difference in computational costs can be observed here.
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Figure 7.11: The comparison of accuracy and calculation time for (7.7)

7.5 Lotka-Volterra model

Multi-species Lotka-Volterra model in [96] has a form:

dA(t)

dt
= (εA − kAC(t))A(t),

dB(t)

dt
= (εB − kBC(t))B(t),

dC(t)

dt
= (−εC + kAA(t) + kBB(t))C(t),

where A, B and C are the population of two kinds of preys and predators,
respectively, kA and kB the predatory rates of A and B, εA and εB the birth
rate of A and B and εC the death rate of C.

In [96], a switching scenario was considered and the predatory rates kA
and kB were replaced by suitable functions:

kA(A,B) =
a

1 + (B/A)n
, kB(A,B) =

b

1 + (A/B)n
,

for some constants a and b.
Instead of using three compartment model, a switching noise process is

implemented in two compartment model, i.e., one predator species and one
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prey species, and the corresponding RODE-SODE pair is given by

d


A∗(t)

C∗(t)

Y (t)

 =


(εA∗ − k(Y (t))C∗(t))A∗(t)

(−εC∗ + k(Y (t))A∗(t))C∗(t)

θ1 − θ2Y (t)

 dt+


0

0

θ3

 dW (t),

(7.11)
where A∗ and C∗ are prey and predator compartments, εA∗ the birth rate
of A∗ and εC∗ the death rate of C∗. The predatory rate k(Y (t)) is given by
the equation (7.2) with Y (t) an OU process.

Explicit SLMMs of order 1.0, 1.5 and 2.0 to be applied are as follows

(Ex1.0) Xn = Xn−1 +
1

2
∆t (fn−1 + fn−2) , (7.12)

(Ex1.5) Xn = Xn−1 +
1

2
∆t (fn−1 + fn−2) (7.13)

+L1fn−1I(1,0),tn−1
+

1

2
L1fn−2I(1),tn−2

∆t

+L0fn−1I(0,0),tn−1
+

1

2
L0fn−2I(0),tn−2

∆t,

(Ex2.0) Xn = Xn−1 +
1

2
∆t (fn−1 + fn−2) (7.14)

+L1fn−1I(1,0),tn−1
+

1

2
L1fn−2I(1),tn−2

∆t

+L0fn−1I(0,0),tn−1
+

1

2
L0fn−2I(0),tn−2

∆t,

+L1L1fn−1I(1,1,0),tn−1
+

1

2
L1L1fn−2I(1,1),tn−2

∆t.

In addition, the EAES (2.35), 1.0, 1.5 and 2.0-order Itô-Taylor schemes
(3.18), (3.19) and (3.20) are applied.

The initial conditions and the parameters are fixed to A∗0 = 100, C∗0 = 10,
k0 = 0.2, εA∗ = 1, εC∗ = 1.2, θ1 = 0, θ2 = 5 and θ3 = 0.1. For comparison,
the solution of the 2.0-order Itô-Taylor scheme (3.20) with the step size ∆t

= 2−12 is used as the ”exact” solution and compared to the other schemes
with step sizes ∆t = 2−11, 2−10, 2−9, 2−8and 2−7.

Figure 7.12 shows the results of 100 times simulation. The EAES (2.35)
shows 1.0-order convergence while the accuracy is relatively low comparing
to higher order schemes. L1L1f term in the 2.0-order schemes are very small
and 1.5-order schemes show 2.0-order decay. No big difference in computa-
tional cost is observed between Itô-Taylor schemes and SLMMs.
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Figure 7.12: The comparison of accuracy and calculation time for (7.11).

7.6 Pattern formation

Consider a system of RPDEs:

∂a(t, x)

∂t
= s

(
a(t, x)2

b(t, x)
+ ba

)
− raa(t, x) +Da

∂2a(t, x)

∂x2
,

∂b(t, x)

∂t
= s a(t, x)2 − rbb(t, x) +Db

∂2b(t, x)

∂x2
+ bb,

(7.15)

on a spatial domain given by the bounded interval 0 ≤ x ≤ xf with Neumann
boundary conditions. This system describes an interaction between the ac-
tivator a(t, x) and the inhibitor b(t, x) in pattern formation of sea shells [75].
Here Da and Db are the diffusion coefficients, ra and rb the decay rates of
a and b, ba and bb the basic activator and inhibitor production and s is the
ability of the cells to perform the autocatalysis. The parameter s is given
by random fluctuations around ra through the noise process (7.3), where
ν = 0.01 and Y (t) a Wiener process.

The system of RPDEs (7.15) is discretized with respect to space by the
method of lines [89] using a uniform partition of the interval [0, xf ] with grid
size ∆x = xf/M . In particular, the second order derivatives in (7.15) are
approximated by central finite difference quotients:

∂2a(t, xj)

∂x2
=
a(t, xj+1)− 2a(t, xj) + a(t, xj−1)

∆2
x

+O(∆2
x),

∂2b(t, xj)

∂x2
=
b(t, xj+1)− 2b(t, xj) + b(t, xj−1)

∆2
x

+O(∆2
x),
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where a(t, xj) and b(t, xj) are the values of a and b at j-th grid in space.
Then a(t, xj) and b(t, xj) are replaced by a∗j (t) and b∗j (t) for i = 0, 1, · · · ,M
and the local discretization error is discarded. This results in a 2(M + 1)-
dimensional system of RODEs for which the core blocks are

da∗j (t)

dt
= s(Y (t))

(
a∗2j (t)

b∗j (t)
+ ba

)
− raa∗j (t) +Da

a∗j+1(t)− 2a∗j (t) + a∗j−1(t)

∆2
x

db∗j (t)

dt
= s(Y (t)) a∗2j (t)− rbb∗j (t) +Db

b∗j+1(t)− 2b∗j (t) + b∗j−1(t)

∆2
x

+ bb

with initial conditions:

a∗j (t = 0) = a(t = 0, x = xj),

b∗j (t = 0) = b(t = 0, x = xj),

for j = 0, 1, . . . ,M . The boundary blocks need to be modified to take into
account the Neumann boundary conditions:

∂a∗(t, x = 0)

∂x
=

∂a∗(t, x = xf )

∂x
= 0,

∂b∗(t, x = 0)

∂x
=

∂b∗(t, x = xf )

∂x
= 0.

The system is stiff, so the IAES (2.36), 1.0 and 1.5-order implicit Itô-
Taylor schemes (3.22) and (3.23) as well as implicit SLMMs:

(Imp1.0) Xn = Xn−1 +
1

4
∆t (2fn + fn−1 + fn−2) , (7.16)

(Imp1.5) Xn = Xn−1 +
1

12
∆t (5fn + 8fn−1 − fn−2) (7.17)

+L1fn−1I(1,0),tn−1
− 5

12
L1fn−1I(1),tn−1

∆t −
1

12
L1fn−2I(1),tn−2

∆t

+L0fn−1I(0,0),tn−1
− 5

12
L0fn−1I(0),tn−1

∆t −
1

12
L0fn−2I(0),tn−2

∆t,

are applied to the model. The first implicit SLMM (7.16) has order 1.0
convergence and the second (7.17) order 1.5.

In the simulation, the parameters are set to Da = 0.01, Db = 0.4, ra
= 0.05, rb = 0.08, ba = 0.05 and bb = 0 [75] with the initial values a0 =
0.2 and b0 = 0.1. Moreover, x0 = 0 and xf = 5 with ∆x = 2−2, which
gives a 42-dimensional system of RODEs. The ”exact” solution is obtained
by 1.5-order implicit Itô-Taylor scheme (3.23) with the step size ∆t = 2−11

and compare with approximations by 1.0 and 1.5-order implicit Itô-Taylor
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schemes (3.22) and (3.23), the implicit SLMMs (7.16) and (7.17) and the
IAES (2.36) with different step sizes ∆t = 2−9, 2−8, 2−7, 2−6 and 2−5. For
the latter initial conditions at time t1 were calculated using 1-step schemes
of the same orders.

Figures 7.13 and 7.14 illustrate the step size versus mean error and com-
putational costs for 25 times simulation by the above schemes. The solid
thick lines are the error by 1-step schemes and the dashed lines by multi-
step schemes. The solid thin lines are for reference and have slopes of order
1.0, 1.5 and 2.0.

Figure 7.13: The comparison of accuracy for (7.15)

The difference between the 1.5-order and 2.0-order schemes comes from
L1L1f terms and it depends deeply on the value of a in the inhibitor com-
partment. In particular a is small when time is small and this makes the
1.5-order schemes show roughly 2.0-order convergence decay.

The system is now of relatively high dimension and a difference in com-
putational costs, especially between 1.5-order Itô-Taylor scheme (3.23) and
the SLMM (7.17), is quite apparent.
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Figure 7.14: The comparison of calculation time for (7.15)

7.7 HBV with spatial dependence

Hepatitis B virus (HBV) with spatial dependence model can be given by

∂T (t, x)

∂t
= s− βT (t, x)V (t, x)−mT (t, x),

∂I(t, x)

∂t
= βT (t, x)V (t, x)− δI(t, x),

∂V (t, x)

∂t
= d∆V (t, x) + pI(t, x)− cV (t, x),

(7.18)

where T , I and V are the compartments of target cells, infected cells and free
viruses, respectively [98]. The parameters here are the production rate of the
target cells s, the de-novo infection rate β, the loss rate of the target cells
m, the loss rate of infected cells δ, the diffusion coefficient d, the production
rate of the new virus p and the loss rate of the virus c. ∆ in V compartment
is Laplacian and it is given by ∆V =

∑n
l=1 ∂

2V/∂x2
l , n = 1, 2 or 3.

We investigate the model when n = 2, i.e., R2 spatial domain in this
section. Similar to the pattern formation example in section 7.6, firstly the
RPDEs (7.18) are discretized with respect to space by method of lines. We
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assume an equidistant partition in space and denote the spatial interval by
∆x and we set ∆x = 1 for simplicity. Suppose that the system is given on
the spatial domain [0, 20]× [0, 20].

The second order derivative
∑2

l=1 ∂
2V/∂x2

l are

∆V (t, xi,j) =
∂2V (t, xi,j)

∂x2
1

+
∂2V (t, xi,j)

∂x2
2

=
V (t, xi+1,j)− 2V (t, xi,j) + V (t, xi−1,j)

∆2
x

+
V (t, xi,j+1)− 2V (t, xi,j) + V (t, xi,j−1)

∆2
x

+O(∆2
x),

where V (t, xi,j) is a value of V in i-th and j-th grid with respect to x1 and
x2 respectively.

Now ignore the local discretization error O(∆2
x) and replace V (t, xi,j) by

V ∗i,j(t). Denote T ∗i,j(t) and I∗i,j(t) as the values of T and I in i-th and j-th
grid respectively. δ is replace by (7.3) with Y (t) a Wiener process and the
core blocks of the corresponding system of RODEs are obtained:

dT ∗i,j(t)

dt
= si,j − βV ∗i,j(t)T ∗i,j(t)−mT ∗i,j(t),

dI∗i,j(t)

dt
= βT ∗i,j(t)V

∗
i,j(t)− δ(Y (t))I∗i,j(t),

dV ∗i,j(t)

dt
=

d

∆2
x

(
(V ∗i+1,j(t)− 2V ∗ij(t) + V ∗i−1,j(t))

+(V ∗i,j+1(t)− 2V ∗i,j(t) + V ∗i,j−1(t))
)

+ pI∗i,j(t)− cV ∗i,j(t),

for i, j = 1, . . . , 19. The initial conditions are given as

T ∗i,j(t = 0) = T (t = 0, x = xi,j),

I∗i,j(t = 0) = I(t = 0, x = xi,j),

V ∗i,j(t = 0) = V (t = 0, x = xi,j),

for i, j = 0, 1, . . . , 20 and the boundary blocks are now modified to take
into account the Neumann boundary conditions:

∂T ∗(t, x = xi,j)

∂x
=
∂I∗(t, x = xi,j)

∂x
=
∂V ∗(t, x = xi,j)

∂x
= 0,

for i, j = 0 or 20.
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The system is stiff, so the IAES (2.36), 1.0 and 1.5-order implicit Itô-
Taylor schemes (3.22) and (3.23) as well as implicit SLMMs:

(Imp1.0) Xn = Xn−1 +
1

4
∆t (2fn + fn−1 + fn−2) , (7.19)

(Imp1.5) Xn = Xn−1 +
1

12
∆t (5fn + 8fn−1 − fn−2) (7.20)

+L1fn−1I(1,0),tn−1
− 5

12
L1fn−1I(1),tn−1

∆t −
1

12
L1fn−2I(1),tn−2

∆t

+L0fn−1I(0,0),tn−1
− 5

12
L0fn−1I(0),tn−1

∆t −
1

12
L0fn−2I(0),tn−2

∆t,

are applied to the model.
The parameters are set to si,j = 1× 107/(21× 21), β = 5× 10−10, m =

0.1, d = 0.002, p = 15 and c = 5. The initial values are randomly assigned
in [0, 20]× [0, 20] grids in each simulation, but the their sums are fixed to T0

= 2× 105, I0 = 1× 105 and V0 = 1× 106. In addition, δ0 = 0.1 and ν = 0.1
for δ(Y (t)). The ”exact” solution is obtained by 1.5-order implicit Itô-Taylor
scheme (3.23) with the step size ∆t = 2−7 and compare with approximations
by the IAES (2.36), 1.0 and 1.5-order implicit Itô-Taylor schemes (3.22) and
(3.23) and the implicit SLMMs (7.19) and (7.20) with different step sizes ∆t

= 2−6, 2−5, 2−4 and 2−3. For the latter initial conditions at time t1 were
calculated using 1-step schemes of the same orders.

Figure 7.15: The comparison of calculation time for (7.18).

Figure 7.15 illustrates the 25 times simulation of HBV kinetic model.
Each compartment was discretized into 21×21 grids, i.e. i, j = 0, 1, . . . , 20.
L1L1f term in the 2.0-order schemes are very small and 1.5-order schemes
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show 2.0-order decay. Now the system is of high dimension due to the spatial
discretization and the difference in computational costs, especially between
1.5-order Itô-Taylor scheme (3.23) and the SLMM (7.20), is quite apparent.

7.8 Toggle-switch model

A simple toggle switch model with time-dependent parameters appeared in
[97] is investigated in this section. The authors consider two interacting genes
X and Y and the concentrations of the corresponding protein products are
labeled x and y. Then the model is formulated as

dx(t)

dt
=

(
αx +

x(t)4

a4 + x(t)4

)(
b4

b4 + y(t)4

)
− λxx(t),

dy(t)

dt
=

(
αy +

y(t)4

c4 + y(t)4

)(
d4

d4 + x(t)4

)
− λyy(t),

(7.21)

where parameters αx and αy represent the external activation on genes X
and Y , a and c determine auto-activation thresholds, b and d thresholds for
mutual repression and λx and λy protein decay rates. For the simulations
here we assume αx and αy are given by two compound Poisson processes
(6.6).

First to third order affine-RODE-Taylor schemes (4.14), (4.15) and (4.16)
and LMM:

(Ex1.0) Xk
n = Xk

n−1 +
1

2
(f0,k
n−1 + f0,k

n−2)∆t +

m∑
j=1

f j,kn−1I(j),tn−1
, (7.22)

(Ex2.0) Xk
n = Xk

n−1 +
1

2
(3f0,k

n−1 + f0,k
n−2)∆t +

m∑
j=1

f j,kn−1I(j),tn−1
, (7.23)

+
m∑

j1,j2=0
j1+j2 6=0

Lj1f j2,kn−1I(j1,j2),tn−1
− 1

2

m∑
j=1

Ljf0,k
n−2I(j),tn−2

∆t,

as well as 1- and 2-order RODE-Taylor schemes [57, 64] are applied to the
model.

In the simulation, the parameters are set to a = c = 0.25, b = d = 0.4 and
λx = λy = 1.25 with the initial values x0 = y0 = 10. The jump magnitudes
of two compound Poisson processes follow a uniform distribution on [0, 0.5]
and the parameter λ for (6.5) is fixed to 5 in both cases. The ”exact” solution
is obtained by 3-order affine-RODE-Taylor scheme (4.16) with the step size
∆t = 2−9 and compare with approximations by (4.14), (4.15), (4.16), (7.22),
(7.23), 1-order and 2-order RODE-Taylor schemes with different step sizes
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Figure 7.16: Plots for error vs step sizes for (7.21).

Figure 7.17: The histogram for the computational costs for (7.21).

∆t = 2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1. The values at time t1 for LMMs
were calculated by the same order affine-RODE-Taylor schemes.

The step size versus mean error and the computational costs for 100
times simulations are shown on Figures 7.16 and 7.17. The solid thick lines
on Figure 7.16 are the errors by affine-RODE-Taylor schemes, the dashed



140 CHAPTER 7. NUMERICAL EXAMPLES

lines by LMMs and the dashed and dotted lines by RODE-Taylor schemes.
The solid thin lines are for reference and have 1-, 2- and 3-order slopes.

Both of the 1- and 2-order RODE-Taylor schemes (dashed and dotted
lines) coincide closely with the 1- and 2-order affine-RODE-Taylor schemes
(4.14) and (4.15) (solid lines), respectively. No big difference in computa-
tional costs can be observed among the affine-RODE-Taylor schemes, LMMs
and RODE-Taylor schemes.

7.9 Virus kinetic model

One of the simplest models for human immunodeficiency virus (HIV) or HCV
kinetics with three compartments is given by

dH(t)

dt
= s− βH(t)V (t)− dH(t),

dI(t)

dt
= βH(t)V (t)− δI(t),

dV (t)

dt
= (1− ε)pI(t)− cV (t),

where H is the compartment for the healthy cells, I for the infected cells
and V for the free viruses [80, 87]. This already displays some of the com-
plications that arise in higher dimensional models, in particular different
interaction rates and time scales [1, 79]. The parameters here are the pro-
duction rate of the healthy cells s, the de-novo infection rate β, the loss rate
of the healthy cells d, the loss rate of infected cells δ, the production rate of
the new virus p, the loss rate of the virus c and the effect of treatment ε.

The parameter δ has a strong impact on the outcome. Here, it will be
considered to vary randomly, but to remain bounded, so δ is replaced by
(7.3), where Y (t) is a Wiener process. This gives the RODE:

dH(t)

dt
= s− βH(t)V (t)− dH(t),

dI(t)

dt
= βH(t)V (t)− δ0

(
1− ν 2

π
arctanY (t)

)
I(t),

dV (t)

dt
= (1− ε)pI(t)− cV (t).

(7.24)

The time step size is set to ∆t = ∆2
a for the explicit Euler scheme (3.18) and

∆a for the averaged schemes. The other parameters are fixed to c = 8, δ0 =
0.4, s = 1.3× 106, d = 0.5 and ε = 0.1 with initial values H0 = 1.6× 106, I0

= 1.2 × 106 and V0 = 1 × 107. Moreover, p and β are given by p = cV0/I0

and β = δ0 I0/(H0 V0).
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Solutions of the system (7.24) are approximated by the explicit Euler
scheme (3.18), the EAES (2.35), the IAES (2.36) and the IAMS (2.37).

Typical sample paths are illustrated on Figures 7.18 to 7.26. The black
line, the blue line and the red line on the first four graphs for each step size
are the virus, the infected cell and the healthy cell values, respectively. The
black line, the blue line, the red line and the green line on the graph for
comparison are the solutions for the explicit Euler scheme (3.18), the EAES
(2.35), the IAES (2.36) and the IAMS (2.37), respectively. The spread of
the noise ν is fixed to 1 in these examples. The histograms show the sum of
100 times simulation time by each scheme. In Figure 7.18, with step size ∆a

= 0.2, the solution of the EAES (2.35) oscillates unstably, which makes this
scheme unsuitable with such step size. A difference between the solutions of
the explicit Euler scheme (3.18) and the EAES (2.35) is still apparent for step
size ∆a = 0.1 (Figure 7.21), while all solution curves look very similar when
the step size ∆a is 0.05 (Figure 7.26). The implicit schemes return a good
approximation even for large step sizes such as ∆a = 0.2 (Figure 7.19). At
the same time, the computational costs by these schemes are mostly smaller
than one by the explicit Euler scheme (3.18), in particular for small step
sizes (Figure 7.26).

Figures 7.27–7.35 are simulation results under different amplitude ν. The
step size is fixed to 0.1 and ν is changed from 0.3 to 0.8. The results by both
implicit schemes are similar to ones by the explicit Euler scheme (3.18) even
for large ν (Figure 7.35).
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Figure 7.18: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.2 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18). The parameters are set to c = 8,

δ0 = 0.4, s = 1.3×106, d = 0.5 and ε = 0.1 with initial values H0 = 1.6×106,
I0 = 1.2 × 106 and V0 = 1 × 107. The black line: the virus compartment,
the blue line: the infected cells compartment and the red line: the healthy
cells compartment.

Figure 7.19: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.2 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.
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Figure 7.20: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.2 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18). The parameter values and the

line colors are the same with Figure 7.18.

Figure 7.21: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.1 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18). The parameter values and the

line colors are the same with Figure 7.18.
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Figure 7.22: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.1 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.

Figure 7.23: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.1 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18). The parameter values and the

line colors are the same with Figure 7.18.
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Figure 7.24: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.05 for the averaged schemes and
∆t = ∆2

a for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.

Figure 7.25: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.05 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18). The parameter values and the line colors are
the same with Figure 7.18.
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Figure 7.26: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.05 for the averaged schemes and
∆t = ∆2

a for the explicit Euler scheme (3.18). The parameter values and the
line colors are the same with Figure 7.18.

Figure 7.27: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.1 for the averaged schemes and
∆t = ∆2

a for the explicit Euler scheme (3.18) and ν = 0.3. The parameter
values and the line colors are the same with Figure 7.18.
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Figure 7.28: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.1 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18) and ν = 0.3. The parameter values and the line
colors are the same with Figure 7.18.

Figure 7.29: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.1 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18) and ν = 0.3. The parameter values

and the line colors are the same with Figure 7.18.
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Figure 7.30: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.1 for the averaged schemes and
∆t = ∆2

a for the explicit Euler scheme (3.18) and ν = 0.5. The parameter
values and the line colors are the same with Figure 7.18.

Figure 7.31: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.1 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18) and ν = 0.5. The parameter values and the line
colors are the same with Figure 7.18.
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Figure 7.32: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.1 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18) and ν = 0.5. The parameter values

and the line colors are the same with Figure 7.18.

Figure 7.33: The approximation by the explicit Euler scheme (3.18) and the
EAES (2.35). The step sizes are ∆a = 0.1 for the averaged schemes and
∆t = ∆2

a for the explicit Euler scheme (3.18) and ν = 0.8. The parameter
values and the line colors are the same with Figure 7.18.
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Figure 7.34: The approximation by the IAES (2.36) and the IAMS (2.37).
The step sizes are ∆a = 0.1 for the averaged schemes and ∆t = ∆2

a for the
explicit Euler scheme (3.18) and ν = 0.8. The parameter values and the line
colors are the same with Figure 7.18.

Figure 7.35: The comparison of the trajectories and the calculation costs by
the explicit Euler scheme (3.18), the EAES (2.35), the IAES (2.36) and the
IAMS (2.37). The step sizes are ∆a = 0.1 for the averaged schemes and ∆t

= ∆2
a for the explicit Euler scheme (3.18) and ν = 0.8. The parameter values

and the line colors are the same with Figure 7.18.
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Deutsche Zusammenfassung

Zufällige gewöhnliche Differentialgleichungen (englisch: Random Ordinary
Differential Equations, Akronym: RODEs) sind gewöhnliche Differential-
gleichungen (englisch: Ordinary Differential Equations, Akronym: ODEs),
die einen stochastischen Prozess in ihrer Vektorfeld-Funktion haben. RODEs
werden in einer Vielzahl von Anwendungen, z.B. in der Biologie, Medizin,
Populationsdynamik und der Technik eingesetzt [15, 70, 81, 90, 92] und spie-
len eine wichtige Rolle in der Theorie der zufälligen dynamischen Systeme
[5]. Lange jedoch standen sie im Schatten von stochastischen Differential-
gleichungen (englisch: Stochastic Differential Equations, Akronym: SDEs).

Allgemein werden RODEs auf Rd1 in der Form:

dx

dt
= f(x, Y (t)), (1)

geschrieben, wobei Y (t) ein stochastischer Prozess [57] ist. Typischerweise
hat der Antriebsstochastische Prozess Y (t) höchstens Hölder-stetige Pfade.
Das resultierende Vektorfeld (t, x) 7→ f(x, y(t)) ist somit höchstens Hölder-
stetig in der Zeit, egal wie glatt die Vektorfunktion in der Originalvariablen
ist, so dass die Pfade der Lösung von (1) sicherlich stetig differenzierbar,
aber ihre Ableitungen zumindest Hölder-stetig in der Zeit sind. Somit kön-
nen die klassischen numerischen Verfahren für ODEs pfadweise als RODEs
angewendet werden, aber ihre traditionellen Ordnungen werden dabei nicht
erreicht werden können.

Neuerdings haben Grüne & Kloeden dabei explizite gemittelte Euler-
Verfahren abgeleitet, indem sie den Mittelwert des Rauschens innerhalb
des Vektorfeldes verwendet haben. Darüber hinaus wurden von Jentzen
& Kloeden für RODEs neue Formen Taylor-artiger Verfahren systematisch
abgeleitet. Trotzdem ist es wichtig, numerische Verfahren höherer Ordnung
weniger rechnenintensiv und numerisch stabil zu konstruieren. Das ist die
Motivation dieser Arbeit. Die Verfahren in [56, 64] sind sehr allgemein
gehalten. Hier werden RODEs mit spezieller Struktur, d.h. RODEs mit
Itô-Rauschen und RODEs mit affiner Struktur fokussiert und es werden
numerische Verfahren genutzt, die diese speziellen Strukturen untersuchen.

Taylor-Entwicklungen
Taylor-Entwicklungen sind das Rückgrat der Entwicklung von numerischen
Verfahren für die deterministischen ODEs und Taylor-Verfahren beliebig ho-
her Ordnung können durch vernachlässigen der entsprechende Restglieder
erhalten werden. Zusätzlich zu den Taylor-Verfahren werden verschiedene
Klassen von numerischen Methoden wie das Runge-Kutta-Verfahren und das
lineare Mehrschrittverfahren (englisch: Linear Multi-step Methods, Akro-
nym: LMMs) entwickelt und auf verschiedene Arten von Problemen angewen-
det [18, 36, 41, 42, 61].
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Ähnlich zu der deterministischen Numerik, sind die Itô-Taylor-Entwick-
lungen die wichtigsten Werkzeuge, um numerische Verfahren für SDEs abzu-
leiten. Nehmen wir an, Y (t) sei ein Itô stochastisches ODE (englisch: Stochas-
tic ODE, Akronym: SODE) auf Rd2 , d.h.

dY (t) = a(Y (t)) dt+

m∑
j=1

bj(Y (t)) dW j(t), (2)

mit m unabhängigen skalaren Wiener Prozessen W 1(t), W 2(t), . . . , Wm(t).
Dann wird die k-te Komponente von Y (t) durch ein starkes Itô-Taylor-
Verfahren der Ordnung γ approximiert als

Y k
n =

∑
α∈Λγ

LαidkY(tn−1, Yn−1) Iα,tn−1 , (3)

mit einem linearen Differentialoperator L:

L0 =
∂

∂t
+

d2∑
k=1

ak
∂

∂yk
+

1

2

d2∑
k,l=1

m∑
j=1

bkj b
l
j

∂2

∂yk∂yl
, Lj =

d2∑
k−1

bkj
∂

∂yk
,

und einer hierarchischen Menge von Multiindizes Λγ :

Λγ =

{
α ∈Mm : l(α) + n(α) ≤ 2γ oder l(α) = n(α) = γ +

1

2

}
,

n(α) sei die Menge von Komponenten von α gleich 0 ist und l(α) die Länge
α ist. Zusätzlich notieren wir die Menge aller MultiindizesMm als

Mm =
{
α = (j1, . . . , jl) ∈ {0, 1, 2, . . . ,m}l : l ∈ N

}
∪ {∅},

wobei ∅ die leere Menge ist mit der Länge l(α) = 0. Außerdem gilt für die
Multiindizes α = (j1, . . . , jl) mit l ≥ 1, dass die multiplen Integrale Iα,tn−1

und die iterierten Operatoren Lα definiert werden als

Iα,tn−1 :=

∫ tn

tn−1

· · ·
∫ s2

tn−1

dW j1(s1) · · · dW jl(sl), Lα := Lj1 · · ·Ljl ,

wobei I∅,tn−1
= 1 und L∅ = id.

Die stochastischen Runge-Kutta-Verfahren und die stochastischen LMMs
(englisch: Stochastic LMMs, Akronym: SLMMs) sind ebenfalls systematisch
aufgebaut und ihre Konvergenz, sowie ihre starke, schwache und pfadweise
Konvergenz und ihre Stabilitätseigenschaften sind in der Literatur [35, 45,
54, 57, 63, 65, 66, 76, 88] ausführlich diskutiert.

Gekoppeltes RODE-SODE System
Wenn das Rauschen regelmäßig ist, so gibt es in der Tat eine enge Verbindung
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zwischen RODEs und SDEs. Dabei können RODEs in der Form von SODEs
und umgekehrt geschrieben werden.

Angenommen, der Rauschprozess Y (t) ist wie in (2) beschrieben gegeben.
Dann kann ein gekoppeltes RODE-SODE System für das RODE aus (1)
durch die folgende Gleichung gegeben werden:

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

m∑
j=1

(
0

bj(Y (t))

)
dW j(t). (4)

Der Diffusionskoeffizient aus RODE Teil (4), d.h. die Komponente X, ist
0 und wegen dieser speziellen Struktur können die Verfahren aus (3) als
RODE-Taylor-Darstellung in komponentenweiser Form reduziert werden:

Xk
n =

∑
α∈Λ0

γ

LαidkX(Xn−1, Yn−1) Iα,tn−1 , k = 1, . . . , d1. (5)

Dabei ist Λ0
γ eine Teilmenge von Λγ :

Λ0
γ = {α ∈ Λγ : α = ∅ oder l(α) ≥ 1 mit letzte Komponent jl = 0} .

Es ist bekannt, dass die starken Itô-Taylor-Approximationen der Ord-
nung γ eine starke Konvergenz der Ordnung γ zeigen, falls die Koeffizienten
den Standardannahmen [67, 76] genügen, d.h. die Koeffizientenfunktionen
gehören zu dem Raum C2γ+1

b der (2γ+1)-mal stetig differenzierbaren Funk-
tionen mit gleichmäßig beschränkten partiellen Ableitungen. Daraus folgt,
durch ein Ergebnis der Arbeit von Kloeden & Neuenkirch [65], dass die Ver-
fahren pfadweise Konvergenz der Ordnung (γ − ε) und die entsprechenden
Verfahren für RODEs auch eine pfadweise Konvergenz der Ordnung (γ − ε)
haben.

Andererseits ist die Bedingung, in der Tat, zu stark für die pfadweise
Konvergenz der RODE-Taylor-Verfahren (5), da sie viele interessante An-
wendungen ausschließt. In dieser Arbeit wird gezeigt, dass das Ergebnis
der pfadweisen Konvergenz auch für f ∈ C2γ+1 gilt, wobei die partiellen
Ableitungen von f in der x-Variable nicht gleichmäßig beschränkt werden
muss, obwohl sie es in den y-Variablen sind. Der Beweis basiert auf einem
Lokalisierungs-Argument ähnlich dem von Satz 1 in [56], der wiederum, in
einem anderen Kontext, Ideen von [40] nutzt. Es kommt nicht auf die spezi-
fische Struktur von starken Itô-Taylor-Verfahrenen an, nur auf die Tatsache,
dass sie pfadweise konvergieren unter der Standardannahme, die durch ein
Borel-Cantelli Argument folgt, wenn alle Fehler Momente gegen die gleiche
Ordnung γ konvergieren.

Die RODE-Taylor-Verfahren (5) der Ordnung γ enthalten die Ableitun-
gen der Koeffizientenfunktionen. Sie sind schwer in höherdimensionalen
Beispielen zu bestimmen. Durch den Austausch solcher Ableitungen mit
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geeigneten Finite-Differenzen-Quotienten können die ableitungfreien Verfah-
ren entwickelt werden. LMMs haben große Vorteile im Rechenaufwand und
es können willkürliche SLMMs höherer Ordnung abgeleitet werden:

s∑
j=0

C∅,jXn−j = ∆t

s∑
j=0

C(0),jf(Xn−j , Ȳn−j) (6)

+

s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(Xn−j , Ȳn−j)

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

)
,

wobei s die Anzahl der Schritte ist, ∆t die Schrittgröße, α− die Komponen-
ten des α ohne das letzte Element und C sind die Konstanten die die korre-
spondierenden Konsistenzbedingungen erfüllen. Ȳn−j ist der Rauschanteil,
der genau erzeugt oder unabhängig angenähert wird durch numerische Ver-
fahren ausreichend höherer Ordnung. Das Verfahren reduziert sich auf ein
explizites Verfahren, wenn C(0),0 = 0 gilt. Im Folgenden wird die pfadweise
Konvergenz von SLMMs untersucht.

RODEs mit affiner Struktur
Ein d-dimensionales RODE mit m-dimensionalen affinen Rauschen hat die
Form:

dx

dt
= f0(t, x) +

m∑
j=1

f j(t, x) ζjt ,

wobei x = (x1, . . . , xd) ∈ Rd und der Rauschprozess ζt = (ζ1
t , . . . , ζ

m
t ) Werte

in Rm ausnimmt. Für die Probenpfade von ζt wird angenommen, dass sie
mindestens Lebesgue-messbar und fast sicher begrenzt sind, so dass die Dif-
ferentialgleichung im Sinne von Carathéodory ausgelegt werden kann.

Die numerischen Verfahren für RODEs mit einer affinen Struktur sind
mit einem ähnlichen Ansatz aufgebaut wie Grüne & Kloeden benutzt haben,
um numerische Verfahren systematisch höherer Ordnung für deterministische
affine Steuerungssysteme zu entwickeln [37]. Sie basieren auf Stratonovich-
Taylor-Entwicklungen und der hierarchischen Menge in [66], da hier die de-
terministischen Ketten-Regeln und die Stratonovich-Kalküle analog sind.

Nach der Herleitung der Taylor-Entwicklung für affine-RODEs werden
nun affine-RODE-Taylor-Verfahren und LMMs auf deren Basis entwickelt.

B-Stabilität
Es gibt oft steife Systeme in der Praxis und die Stabilitätseigenschaften der
numerischen Verfahren sind dabei ein wichtiges Thema, sobald wir solche
Systeme numerisch lösen wollen. Es ist aus der Theorie der klassischen
Runge-Kutta-Verfahren bekannt, dass implizite Verfahren erforderlich sind
für die stabile Integration von einem steifen ODE.

Im Falle der RODEs müssen wir in Betracht ziehen, dass die Effekte
von Nichtlinearität in den Gleichungen eine viel größere Rolle in RODEs
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spielen als im deterministischen Fall. Es ist auch nicht klar, welche Klasse
von linearen Testfunktionen für RODE oder SODE geeignet ist. Zusätzlich
enthält eine einfache lineare RODE ein Rauschterm in der Matrix, und es
macht das System pfadweise nichtautonom. Daher kann man nicht einfach
die Dahlquist-Theorie verallgemeinern, da es Lyapunov-Exponenten anstelle
von Eigenwerten enthält und diese sind sehr schwer zu berechnen. Um diese
Probleme zu umgehen wird in der Dissertation die B-Stabilität fokussiert.

In der Tat sind B-stabile implizite Verfahren noch besser [28, 42], d.h.
die Erhaltung der nicht-expansiven Struktur von Trajektorien von ODEs mit
einer dissipativen einseitigen Lipschitz-Bedingung, d.h.

‖Xi −X ′i‖ ≤ ‖Xi−1 −X ′i−1‖,

für i = 1, 2, . . . , n, wobei Xi und X ′i zwei Lösungen sind.
B-Stabilität der gemittelten Verfahren, nämlich das implizit gemittelte

Euler-Verfahren und das implizit gemittelte Mittelpunktverfahren, sowie die
B-Stabilität der impliziten SLMMs (6) beliebig höherer Ordnung werden im
Folgenden gezeigt und ihre entsprechenden Bedingungen für die Dissipativi-
tätskonstante und die Schrittweite entwickelt.

Integrale von stochastischen Prozessen
Die numerischen Verfahren dieser Dissertation setzen die Simulation von
Rauschprozessen ζt und folgende Integrale voraus:

I(j1,...,jl),tn−1
=

∫ tn

tn−1

· · ·
∫ sl−1

tn−1

ζjlsl · · · ζ
j1
s1 dsl · · · ds1,

auf jedem diskreten Teilintervall [tn−1, tn].
In der Regel können für Prozesse mit stetigen oder stückweise stetigen

Pfaden die Integrale mit Riemann-Summen für viel feinere Teilungen der
Diskretisierung in Teilintervallen berechnet werden, so dass der Fehler durch
die lokale Diskretisierungsfehler der Verfahren selbst dominiert wird.

Auf der anderen Seite können wir einige Integrale direkt simulieren, wenn
die Verteilungen von ζjt bekannt sind. Zum Beispiel, wenn der Rauschprozess
ζt ein Wiener-Prozess oder ein Ornstein-Uhlenbeck (OU)-Prozess ist, können
die Integrale von Probenpfaden direkt berechnet werden.

Vier Arten von Rauschprozessen, d.h. ein Wiener-Prozess, ein OU-
Prozess, ein zusammengesetzte Poisson-Prozess und eine gebrochene Brown-
sche Bewegung, werden vorgestellt und die zugehörigen Prozesse sowie deren
Riemann-Integrale ausgewertet.

Numerische Beispiele
Biologische Modelle z.B. menschliche Körper können als zufällige Umgebung
berücksichtigt werden. Sie unterscheiden sich nach dem Zufallsprinzip in
Bezug auf die Zeit, wobei angenommen wird, dass sie stetig und wesentlich
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beschränkt ist. Es gibt verschiedene Arten von noisy-Szenarien. Das gleich-
mäßig verteilte beschränkte Rauschen und das Schaltrauschen werden zunächst
eingeführt.

Dann werden die entwickelten numerischen Verfahren auf mehrere mathe-
matische Modelle in der Biologie und Medizin angewendet. In der Disser-
tation werden lediglich numerische Verfahren für RODEs konstruiert. Im
Allgemeinen gibt es aber viele komplizierte Systeme, die nicht nur von der
Zeit, sondern auch vom Raum abhängen, d.h. dazu müssen wir mit zufälli-
gen partiellen Differentialgleichungen (englisch: Random Partial Differential
Equations, Akronym: RPDEs) umgehen. Eine Idee dazu ist die Linien-
methode [89], bei der RPDEs durch die Linienmethode auf räumliche Para-
meter diskretisiert werden. D.h. sie werden in einem System von RODEs
transformiert, so dass die abgeleitete Verfahren auf das System angewendet
werden können.

Um die Leistungsfähigkeit der numerischen Verfahren zu untersuchen,
sind Trajektorien von Lösungen dargestellt. Zusätzlich werden die Fehler
versus der Schrittgrößen sowie der Rechnenaufwand bei den neu entwickelten
Verfahren und den Methoden in der Literatur verglichen [38, 56, 57].
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Summary

Random ordinary differential equations (RODEs) are ordinary differen-
tial equations (ODEs) which have a stochastic process in their vector field
functions. RODEs have been used in a wide range of applications such as bi-
ology, medicine, population dynamics and engineering [15, 70, 81, 90, 92] and
play an important role in the theory of random dynamical systems [5], how-
ever, they have been long overshadowed by stochastic differential equations
(SDEs).

In general, RODEs on Rd1 can be written in the form:
dx

dt
= f(x, Y (t)), (1)

where Y (t) is a stochastic process [57]. Typically, the driving stochastic
process Y (t) has at most Hölder continuous sample paths and the resulting
vector field (t, x) 7→ f(x, y(t)) is, thus, at most Hölder continuous in time,
no matter how smooth the vector function is in its original variables, so the
sample paths of the solution of (1) are certainly continuously differentiable,
but their derivatives are at most Hölder continuous in time. Consequently,
although the classical numerical schemes for ODEs can be applied pathwise
to RODEs, they do not achieve their traditional orders.

Recently, Grüne & Kloeden derived the explicit averaged Euler scheme
by taking the average of the noise within the vector field [38]. In addition,
new forms of higher order Taylor-like schemes for RODEs are derived sys-
tematically by Jentzen & Kloeden [56, 64]. However, it is still important
to build higher order numerical schemes and computationally less expensive
schemes as well as numerically stable schemes and this is the motivation of
this thesis. The schemes in [56, 64] are very general, so RODEs with spe-
cial structure, i.e., RODEs with Itô noise and RODEs with affine structure,
are focused and numerical schemes which exploit these special structures are
investigated.

Taylor expansions
Taylor expansions are the backbone of developing numerical schemes for
the deterministic ODEs and arbitrary higher order Taylor schemes can be
obtained by discarding the respective remainder terms appropriately. In
addition to the Taylor schemes, different classes of numerical methods such
as Runge-Kutta schemes and linear multi-step methods (LMMs) have been
developed and applied to various kinds of problems [18, 36, 41, 42, 61].

Similar to the deterministic numerics, the stochastic Itô-Taylor expan-
sions are the fundamental tools in the derivation of numerical methods for
SDEs. When Y (t) satisfies an Itô stochastic ODE (SODE) on Rd2 , i.e.,

dY (t) = a(Y (t)) dt+

m∑
j=1

bj(Y (t)) dW j(t), (2)
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with m independent scalar Wiener processes W 1(t), W 2(t), . . . , Wm(t), the
k-th component of Y (t) is approximated by γ-order strong Itô-Taylor scheme
as

Y k
n =

∑
α∈Λγ

LαidkY(tn−1, Yn−1) Iα,tn−1 , (3)

where L is the differential operator given by

L0 =
∂

∂t
+

d2∑
k=1

ak
∂

∂yk
+

1

2

d2∑
k,l=1

m∑
j=1

bkj b
l
j

∂2

∂yk∂yl
, Lj =

d2∑
k−1

bkj
∂

∂yk
,

and Λγ is the hierarchical set of multi-indices given by

Λγ =

{
α ∈Mm : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ +

1

2

}
,

with n(α) is the number of components of α that are equal to 0 and l(α) is
the length of α. In addition,Mm is given as

Mm =
{
α = (j1, . . . , jl) ∈ {0, 1, 2, . . . ,m}l : l ∈ N

}
∪ {∅},

with ∅ being the empty index of length l(α) = 0. Moreover, for a multi-
index α = (j1, . . . , jl) with l ≥ 1, the multiple integrals Iα,tn−1 and iterated
operators Lα are defined by

Iα,tn−1 :=

∫ tn

tn−1

· · ·
∫ s2

tn−1

dW j1(s1) · · · dW jl(sl), Lα := Lj1 · · ·Ljl ,

with I∅,tn−1
= 1 and L∅ = id.

The stochastic Runge-Kutta schemes and the stochastic LMMs (SLMMs)
have been also constructed systematically and their convergence such as
strong, weak and pathwise convergence as well as their stability properties
have been discussed in literature [35, 45, 54, 57, 63, 65, 66, 76, 88].

Coupled RODE-SODE system
When the noise is regular noise, there is, in fact, a close connection between
RODEs and SDEs and RODEs can be written in the form of SODEs and
vice versa.

Suppose that the noise process Y (t) is given as (2). Then, a coupled
RODE-SODE system for the RODE (1) can be given as

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt+

m∑
j=1

(
0

bj(Y (t))

)
dW j(t). (4)

The diffusion coefficient in RODE part of (4), i.e., theX-component, is 0 and
because of this special structure, the numerical scheme (3) can be reduced
to RODE-Taylor scheme in componentwise form:

Xk
n =

∑
α∈Λ0

γ

LαidkX(Xn−1, Yn−1) Iα,tn−1 , k = 1, . . . , d1, (5)
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with Λ0
γ , a subset of Λγ , given by

Λ0
γ = {α ∈ Λγ : α = ∅ or l(α) ≥ 1 with last component jl = 0} .

It is well-known that the order γ strong Itô-Taylor scheme has order
γ strong convergence if the coefficients satisfy the standard assumptions
[67, 76], i.e., the coefficient functions belong to the space C2γ+1

b of (2γ + 1)
time continuously differentiable functions with uniformly bounded partial
derivatives. It follows by a result of Kloeden & Neuenkirch [65] that the
scheme has order (γ−ε) pathwise convergence and the corresponding scheme
for RODE also has order (γ − ε) pathwise convergence.

On the other hand, the assumptions are, in fact, too strong just for the
pathwise convergence of the RODE-Taylor scheme (5) and it excludes many
interesting applications. In this thesis, it is shown that the result of pathwise
convergence also holds in case f ∈ C2γ+1, where the partial derivatives of
f in the x-variable need not be uniformly bounded, although those in the
y-variables are. The proof is based on a localization argument similar to that
of Theorem 1 in [56] in a different context, which in turn uses ideas from [40].
It does not depend on the specific structure of the strong Itô-Taylor schemes,
just the fact that they converge pathwise under the standard assumptions,
which follows by a Borel-Cantelli argument when all of the error moments
converge with the same order γ.

The order γ RODE-Taylor schemes (5) contain derivatives of the coeffi-
cients functions and they may be difficult to determine in higher dimensional
examples. By replacing such derivatives with appropriate finite difference
quotients, the derivative-free schemes can be developed. LMMs have big ad-
vantages in computational costs and arbitrary higher order SLMMs are also
derived:

s∑
j=0

C∅,jXn−j = ∆t

s∑
j=0

C(0),jf(Xn−j , Ȳn−j) (6)

+
s∑
j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(Xn−j , Ȳn−j)

(
Cα,jIα,tn−j + C∗α,jIα−,tn−j∆t

)
,

where s is the number of steps, ∆t is the step size, α− is the components
of α without the last element and Cs are the constants satisfying the cor-
responding consistency conditions. Ȳn−j is the noise term, which is exactly
generated or independently approximated by enough higher order numeri-
cal schemes. The method reduces to an explicit scheme when C(0),0 = 0.
Furthermore, the pathwise convergence of SLMMs are investigated.

RODEs with affine structure
A d-dimensional RODE with m-dimensional affine noise has the form:

dx

dt
= f0(t, x) +

m∑
j=1

f j(t, x) ζjt ,
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where x = (x1, . . . , xd) ∈ Rd and the noise process ζt = (ζ1
t , . . . , ζ

m
t ) takes

values in Rm. The sample paths of ζt are assumed to be at least Lebesgue
measurable and almost surely bounded, so the differential equation can be
interpreted in the sense of Carathéodory.

The numerical schemes for RODEs with an affine structure are con-
structed with a similar approach that were used by Grüne & Kloeden [37] to
systematically derive higher order numerical schemes for deterministic affine
control systems. These are based on stochastic Stratonovich-Taylor expan-
sion and the hierarchical sets in [66], which is possible since the chain rules
of deterministic and Stratonovich stochastic calculi are analogous.

After deriving the Taylor expansions for affine-RODEs, both of the affine-
RODE-Taylor schemes and LMMs are developed based on them.

B-stability
We often encounter stiff systems in practice and the stability property of
numerical schemes is a crucial issue when we solve such systems numerically.
It is known from the theory of classical Runge-Kutta schemes for ODEs that
an implicit scheme is required for the stable integration of a stiff ODE.

In case of RODEs, we need to take into account of the effects of nonlin-
earlity in the equations, which play a much more significant role in RODEs
than deterministic ones. It is also not clear in RODE or SODE what class
of linear test functions is suitable. In addition, even a simple linear RODE
contains a noise term in its matrix and it makes the system pathwise nonau-
tonomous, so it is not easy to generalize the Dahlquist theory since it involves
Lyapunov exponents instead of eigenvalues and they are very hard to cal-
culate. In order to circumvent these problems, B-stability is focused in the
thesis.

In fact, B-stable implicit schemes are even better [28, 42], i.e., preserve
the non-expansive structure of trajectories of ODEs with a dissipative one-
sided Lipschitz condition, i.e.,

‖Xi −X ′i‖ ≤ ‖Xi−1 −X ′i−1‖,

for i = 1, 2, . . . , n, where Xi and X ′i are two solutions of the scheme.
B-stability of the averaged schemes, namely the implicit averaged Euler

scheme and the implicit averaged midpoint scheme, as well as B-stability
of the arbitrary higher order implicit SLMMs (6) are shown and the corre-
sponding conditions for dissipativity constant and the step size are obtained.

Integrals of stochastic processes
The numerical schemes derived in this thesis require the simulation of noise
process ζt and their integral

I(j1,...,jl),tn−1
=

∫ tn

tn−1

· · ·
∫ sl−1

tn−1

ζjlsl · · · ζ
j1
s1 dsl · · · ds1,
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on each discretized subinterval [tn−1, tn].
In general, for processes with continuous or piecewise continuous sample

paths, the integrals can be calculated using Riemann sums on much finer
partition of the discretization subinterval so that the error is dominated by
the local discretization error of the scheme itself.

On the other hand, some integrals can be simulated directly if the dis-
tributions of ζjt are known. For example, if the noise process ζt is a Wiener
process or an Ornstein-Uhlenbeck (OU) process, the sample paths of the
integrals can be calculated directly.

Four kinds of noise processes, i.e., a Wiener process, an OU process, a
compound Poisson process and a fractional Brownian motion, are introduced
and the processes as well as their Riemann integrals are evaluated.

Numerical examples
Biological models such as human body can be considered as random envi-
ronment. They vary randomly with respect to time, but they are assumed
to be continuous and essentially bounded. There are various kinds of noisy
scenario and uniformly distributed bounded noise and switching noise are
firstly introduced here.

Then the developed numerical schemes are applied to several mathemat-
ical models in biology and medicine. Only numerical schemes for RODEs
are constructed in the thesis, however, in general, many systems are much
more complicated and they depend not only on time, but also on space, i.e.,
we need to deal with random partial differential equations (RPDEs). One
idea is method of lines [89] and RPDEs are discretized by method of lines
with respect to spatial parameter and they are transformed into a system of
RODEs so that the derived schemes can be applied to the system.

In order to see the performance of the numerical schemes, trajectories of
solutions are illustrated. In addition, the error vs. step sizes as well as the
computational costs are compared among newly developed schemes and the
schemes in literature [38, 56, 57].
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要約

ランダム常微分方程式 (Random Ordinary Di�erential Equations，以
下，RODEs)は，そのベクトル場をなす関数に確率過程を伴った常微分方
程式 (Ordinary Di�erential Equations，以下，ODEs)である．RODEsは，
生物学，医学，人口動態および工学といった様々な分野 [15, 70, 81, 90, 92]

で応用され，さらにランダムな力学系の理論において重要な役割を果たし
てきたが [5]，長い間，確率微分方程式 (Stochastic Di�erential Equations，
以下，SDEs)の影に隠れる存在であった．
一般に，Rd1 において，RODEsは

dx

dt
= f(x, Y (t)), (1)

の形で表現することができる．ここで，Y (t)は確率過程とする [57]．概し
て，確率過程 Y (t)はせいぜいHölder連続な見本路を持ち，結果として得
られるベクトル場 (t, x) 7→ f(x, y(t))は，いかにその関数が元の変数につ
いて滑らかであっても，時間についてはせいぜいHölder連続である．そ
のため，(1)の解の見本路は，連続微分可能であるが，その導関数は時間
についてせいぜい Hölder連続である．その結果，ODEsの従来の数値計
算法はパスごとにRODEsに適用可能であるが，元の収束次数を満たすこ
とはない．
近年，Grüneと Kloedenが，ベクトル場内のノイズの平均を取ること

により，陽的平均化 Euler法を導出した [38]. さらに，新しい形の高次の
Taylor法に似た方法が Jentzenと Kloedenにより導き出された [56, 64]．
しかしながら，高次の数値計算法や計算量の少ない方法，そして数値計算
の面でより安定した方法を作ることは，いまだに重要であり，これが本論
文の動機である．JentzenとKloedenは，一般的なRODEsに対する数値
計算法を開発したが，ここでは，伊藤の SDEsで与えられるノイズを伴う
RODEsとアファイン構造を持つRODEsという二つの特別な形を持った
RODEsに焦点をあて，それらの構造を利用した数値計算法を考えた．

Taylor展開
Taylor展開は，決定論における ODEsの数値計算法を作っていく上で重
要な要素であり，任意の高次のTaylor法は，その剰余項を適切に省くこと
で得られる．Taylor法以外にも，Runge-Kutta法や線形多段階法 (Linear

Multi-step Methods，以下，LMMs)といった異なった形の数値計算法が
導かれ，様々な問題に応用されてきた [18, 36, 41, 42, 61]．
決定論における数値計算法と同様に，伊藤-Taylor展開が SDEsに対す

る数値計算法の導出における重要な要素となる．ここで，Y (t)が Rd2 上
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の確率常微分方程式 (Stochastic Ordinary Di�erential Equations，以下，
SODEs)

dY (t) = a(Y (t)) dt +
m∑

j=1

bj(Y (t)) dW j(t), (2)

で与えられるとする．ただし，W 1(t), W 2(t), . . . , Wm(t)は，m個の独
立なスカラーWiener過程とする．そのとき，Y (t)の k番目の要素は，γ-

次の強伊藤-Taylor法によって

Y k
n =

∑
α∈Λγ

Lαidk
Y(tn−1, Yn−1) Iα,tn−1 , (3)

と近似される．ただし，微分作用素 Lは

L0 =
∂

∂t
+

d2∑
k=1

ak ∂

∂yk
+

1
2

d2∑
k,l=1

m∑
j=1

bk
j b

l
j

∂2

∂yk∂yl
, Lj =

d2∑
k−1

bk
j

∂

∂yk
,

Λγ は多重指数からなる階層集合で

Λγ =
{

α ∈ Mm : l(α) + n(α) ≤ 2γ もしくは l(α) = n(α) = γ +
1
2

}
,

で与えられる．n(α)は αの要素で 0に等しいものの数，l(α)は αの長さ
とする．さらに，Mmは

Mm =
{

α = (j1, . . . , jl) ∈ {0, 1, 2, . . . ,m}l : l ∈ N
}
∪ {∅},

で与えられ，∅は，その長さが l(α) = 0となる空な要素である．また，l

≥ 1である多重指数 α = (j1, . . . , jl)に対し，多重積分 Iα,tn−1，また反復
作用素 Lαは

Iα,tn−1 :=
∫ tn

tn−1

· · ·
∫ s2

tn−1

dW j1(s1) · · · dW jl(sl), Lα := Lj1 · · ·Ljl ,

で定義される．ここで，I∅,tn−1
= 1および L∅ = idである．

SDEs に対する Runge-Kutta 法や LMMs (Stochastic LMMs，以下，
SLMMs)も同様に導かれ，強い収束，弱い収束，パスごとの収束 (pathwise

convergence)といった収束性や，それらの安定性についても多く議論され
てきた [35, 45, 54, 57, 63, 65, 66, 76, 88]．

RODE-SODEシステム
ノイズが一般的なノイズのとき，RODEsと SDEsの間には密接な関係が
あり，RODEsは SODEsの形で表現することができ，また逆もまた同様
に可能である．
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確率過程 Y (t) が (2) で与えられたとする．そのとき，(1) に対して，
RODE-SODEシステムは

d

(
X(t)

Y (t)

)
=

(
f(X(t), Y (t))

a(Y (t))

)
dt +

m∑
j=1

(
0

bj(Y (t))

)
dW j(t), (4)

で与えられる．(4)のRODE項，すなわちX項の拡散係数は 0であり，こ
の特別な構造により，(3)は，以下の RODE-Taylor法

Xk
n =

∑
α∈Λ0

γ

Lαidk
X(Xn−1, Yn−1) Iα,tn−1 , k = 1, . . . , d1, (5)

に変形される．ただし，Λ0
γ は Λγ の部分集合で

Λ0
γ = {α ∈ Λγ : α = ∅ もしくは l(α) ≥ 1で最後の要素 jl = 0} ,

で与えられる．
係数が標準仮定 (standard assumptions) [67, 76]，すなわちその関数が

(2γ+1)回連続微分可能な関数でその偏導関数が一様に有界な空間，C2γ+1
b

に属するとき，γ-次の強伊藤-Taylor法は，γ-次の強い収束を満たすこと
がよく知られている．KloedenとNeuenkirchの結果 [65]により，その数
値計算法は (γ − ϵ)-次のパスごとの収束を示し，ここから，それに対応す
る RODE-Taylor法も同じく (γ − ϵ)-次のパスごとの収束を示すことがわ
かる．
一方で，この標準仮定は，RODE-Taylor法 (5)のパスごとの収束のため

には強すぎ，この仮定のために多くの興味深い問題が除外されてしまう．
そのため，本論文では，f ∈ C2γ+1，すなわち，その偏導関数が yについ
ては一様に有界でも，xについてはそうではない場合にも，このパスごと
の収束性が満たされることを示した．その証明は，[56]の定理１で用いら
れた局所化の議論に似た議論に基づいているが，異なったコンテクスト，
つまり，[40]のアイディアを用いて示されている．これは，強伊藤-Taylor

法の特定の構造によるわけではなく，全てのエラーモーメントが同じ次数
γで収束するとき，Borel-Cantelliの議論によって標準仮定の下，その数
値計算法がパスごとに収束するということである．

γ-次の RODE-Taylor法 (5)は，係数関数の導関数を含んでおり，高次
元の場合においては，それらを求めるのは難しいことがある．それらの導
関数を適当な有限差分商で置き換えることにより，導関数項を持たない数
値計算法を導出することが可能である．また，LMMsはコンピューター
コストの面で非常にメリットがあることが知られており，任意の高次の
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SLMMs

s∑
j=0

C∅,jXn−j = ∆t

s∑
j=0

C(0),jf(Xn−j , Ȳn−j) (6)

+
s∑

j=1

∑
α∈Λ0

γ\{∅,(0)}

Lαid1
X(Xn−j , Ȳn−j)

(
Cα,jIα,tn−j + C∗

α,jIα−,tn−j∆t

)
.

を導いた．ただし，sはステップ数であり，∆t はステップ幅，α−は α

の要素で最後の要素を除いたもの，そして C は適合条件式 (consistency

conditions)を満たす係数である．Ȳn−j はノイズ項で，これは正確に生成
されるか，もしくは十分高次の数値計算法により独立に近似されるものと
する．ここで，(6)は C(0),0 = 0のときに陽的となる．さらに，本論文で
は，(6)がパスごとに収束することも示された．

アファイン構造を持つRODEs

m-次のアファインノイズを持つ d-次元 RODEは，次の形

dx

dt
= f0(t, x) +

m∑
j=1

f j(t, x) ζj
t ,

で与えられる．ただし，x = (x1, . . . , xd) ∈ Rdであり，ノイズ過程 ζt =
(ζ1

t , . . . , ζm
t ) は Rm に値を持つものとする．ζt の見本路を，少なくとも

Lebesgue可測でほとんど確実に有界であると想定すると，その微分方程
式は Carathéodoryの意味で解釈されうる．
アファイン構造を持つRODEsの数値計算法は，決定論におけるアファ

インコントロールシステムに対する，Grüneと Kloedenによる高次の数
値計算法の導出方法に似たアプローチで導かれる．これは，決定論におけ
る連鎖律と Stratonovichの意味での確率計算が同類であることから可能
であり，その導出方法は，Stratonovich-Taylor展開と [66]の階層集合に
基づいている．
ここでは，a�ne-RODEsに対するTaylor展開を導いた後，それに基づ

いて，a�ne-RODE-Taylor法および LMMsを導出した．

B-stability

実用においては，硬い系に遭遇することがしばしばある．そのような問題
を数値解析的に解こうとすると，数値計算法の安定性が非常に大きな問題
となる．ODEsに対する古典的 Runge-Kutta法の理論により，硬い系を
安定して積分するには，陰的方法が必要であることが知られている．
RODEsでは，決定論における議論よりもさらに重要な役割を果たす，

式の非線形性の効果を考慮に入れる必要がある．同時に，RODEや SODE

においては，どのようなクラスの線形テスト関数が適しているかがはっき
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りしていない．さらに，シンプルな線形RODEでさえ，その中にノイズ
項を含むため，システムがパスごとに非自励系となる．そのため，固有
値のかわりに Lyapunov指数が含まれ，それらを計算することは難しく，
Dahlquistの理論を一般化することは困難である．これらの問題を回避す
るため，ここでは B-stabilityに焦点を当てた．
実際，B-stableな陰的方法はさらによい性質を持ち，散逸的な片側Lip-

schitz条件を持つODEsの軌道の非拡張構造を保存する [28, 42]．すなわ
ちXiとX ′

i を２つの解としたとき，i = 1, 2, . . . , nに対し，

∥Xi − X ′
i∥ ≤ ∥Xi−1 − X ′

i−1∥

が成り立つ．
陰的平均化Euler法および陰的平均化中点法のB-stability，また，任意

の高次の陰的 SLMMs (6)のB-stabilityが示され，対応する散逸性定数と
ステップ幅の条件が得られた．

確率過程の積分
導出された数値計算法を用いるには，各離散区間 [tn−1, tn]における確率
過程 ζtとその積分

I(j1,...,jl),tn−1
=

∫ tn

tn−1

· · ·
∫ sl−1

tn−1

ζjl
sl
· · · ζj1

s1
dsl · · · ds1,

が必要となる．
一般に，連続かもしくは区分的に連続な見本路を持つ過程については，

各区間をさらに細かい区間に分け，その Riemann和を取ることで積分値
を評価することができる．このとき，その誤差は数値計算法自体が持つ局
所離散化誤差に支配される．
一方で，確率過程 ζj

t の分布が既知の場合，その積分値は直接評価する
ことができる．例えば，ζt がWiener過程や Ornstein-Uhlenbeck (以下，
OU)過程で与えられるとき，その積分の見本路は直接計算可能である．
本論文では，Wiener過程，OU過程，複合 Poisson過程および非整数

Brown運動の４つの確率過程について，その過程とそれらのRiemann積
分を評価した．

数値解析例
人体といった生物モデルはノイズの入った環境とみなすことができる．そ
れらは，時間についてランダムに変化するが，連続で，本質的に有界と想
定することが可能である．様々な形のノイズが考えられるが，ここでは，
一様に分布する有界なノイズとスイッチ状の役割を果たすノイズを紹介
する．
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また，本論文で導出された数値計算法を，生物学，医学に現れる数理モ
デルに適用した．RODEsに対する数値計算法のみを本論文では扱ったが，
現実の多くのモデルはより複雑であり，それらは時間だけでなく，空間に
もよる構造をしている．そのような場合，ランダム偏微分方程式 (Random

Partial Di�erential Equations，以下，RPDEs)を考える必要がある．こ
れらの問題を扱う方法の一つとして，線の方法 (method of lines) [89]が
ある．これを用いて，RPDEsを空間について離散化することで，RPDEs
をRODEsからなる系に書き直すことができ，導出した数値計算法が適用
可能となる．
数値計算法の性能を見るため，解の軌道を例示した．同時に，新しく得

られた数値計算法と既存の方法 [38, 56, 57] を比較するために，誤差とス
テップ幅およびコンピューターコストのグラフを作成した．
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