
Improvements in a Functional Core Language with Call-By-Need
Operational Semantics

Manfred Schmidt-Schauß and David Sabel?

Goethe-University, Frankfurt, Germany

Technical Report Frank-55

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

Revision V3 from August 13, 20161

Abstract. An improvement is a correct program transformation that optimizes the program, where the
criterion is that the number of computation steps until a value is obtained is decreased. This paper investi-
gates improvements in both – an untyped and a polymorphically typed – call-by-need lambda-calculus with
letrec, case, constructors and seq. Besides showing that several local optimizations are improvements, the
main result of the paper is a proof that common subexpression elimination is correct and an improvement,
which proves a conjecture and thus closes a gap in Moran and Sands’ improvement theory. We also prove
that several different length measures used for improvement in Moran and Sands’ call-by-need calculus
and our calculus are equivalent.

1 Introduction

Motivation and State of the Art Lazy functional programming languages like Haskell [9] support
declarative programming, since they provide a high level of abstraction and allow a definition of the
intended results without specifying the exact sequence of operations (see for instance, [6] for further
motivation of functional programming). While there does not exist an official formal semantics of
Haskell, it is often loosely identified with an extended lazy lambda-calculus with call-by-name evalu-
ation. However, all real implementations of Haskell use call-by-need evaluation – i.e. lazy evaluation
extended with sharing to avoid duplicated evaluation of subexpressions.

For reasoning about program semantics, it does not matter whether a call-by-name or call-by-need
semantics is used, since both induce the same (equational) semantics. However, for reasoning about the
resource consumption, the call-by-name evaluation does not match the real implementations and thus
a call-by-need has to be used. Thus, call-by-need program calculi provide a good model of both the
correctness of the programs as well as the amount of required work for executing programs. Analyzing
these calculi and providing tools for proving transformations correct and/or to be optimizations is
cumbersome, since sharing complicates reasoning, but it is worth the effort.

There are several works on analyzing and proving correctness of program transformations
(e.g. [11,7,24]). However, there seems to be much less research on whether the (correct) program trans-
formations are also optimizations – i.e. while preserving the meaning of the programs they also do not
increase the runtime or the space behavior of the programs. Having such results is for instance useful in
automated tools for program transformation like Hermit [25] and in general for optimizing compilers.

A theory of optimizations or improvements in extended lambda calculi was developed in [10] for
an untyped higher-order language with call-by-need evaluation, and for a call-by-value variant in [16].

? The second author is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.
1 This version is a revision of Version V2 from November 30, 2015

2 D. Sabel and M. Schmidt-Schauß

In [10] the resource model counts the steps of an abstract machine for call-by-need evaluation which is
a variant of Sestoft’s abstract machine [26]. The work of Moran and Sands [10] provides a foundation
for program improvements which leads to several results exhibiting program transformations that are
improvements and also provides techniques for showing program transformations being improvements.
Moran and Sands also remark in [10] that the reductions used in any context (a form of partial
evaluation) are improvements, but the efficiency gain has a limit: it is at most polynomial. A detailed
analysis on this topic can be found in the work of Gustavsson and Sands [4] for a call-by-value
lambda calculus. Clearly, other program transformations (which are not calculus reductions) have
a higher potential to improve efficiency. One such rule is common subexpression elimination which
identifies equal subexpressions of the program and replaces them by references to a single copy of the
subexpression. As a small (artificial) example with an exponential speedup, consider the (inefficient)
definition of the following tree-recursive function treeRec in Haskell:

treeRec x = if x == 0 then 1 else (treeRec (x-1)) + (treeRec (x-1))

Evaluation of treeRec n requires O(2n) reduction steps. Applying common subexpression elimination
for the two occurrences of treeRec (x-1) results in the definition

treeRec x = if x == 0 then 1 else let y = treeRec (x-1) in y + y

for which the evaluation of treeRec n only requires O(n) reduction steps.
Common subexpression elimination is treated in [10], but not proved to be an improvement (but

it is conjectured).
Recently, Hackett and Hutton [5] rediscovered the improvement theory of [10] to argue that opti-

mizations are indeed improvements, with a particular focus on worker/wrapper transformations (see
for instance [2] for more examples). The work of [5] is based on the call-by-need abstract machine of
[10] with a slightly modified measure for the improvement relation.

Goals and Results The goal of this paper is to develop an improvement theory for the LR-calculus [24],
an extended higher-order lambda calculus which models the core language of Haskell. The LR-calculus
extends the lambda calculus with letrec-expressions (to express recursive and shared-bindings), data
constructors and case-expressions (which act as selectors), and Haskell’s seq-operator. The operational
semantics of the LR-calculus is a small-step call-by-need evaluation.

Differences to the work of Moran and Sands are (i) that the LR-calculus uses a small-step op-
erational semantics expressed by rewriting rules and a strategy, (ii) that LR does not restrict the
syntax of arguments (of applications) to be variables (i.e. in LR arbitrary expressions are allowed as
arguments), and (iii) that it includes the seq-operator for strict evaluation of expressions which is
indispensable to model the semantics of Haskell (see e.g. [7,17]).

We use previous results and techniques for the LR-calculus to establish new improvement laws, in
particular we show that common subexpression elimination is an improvement. Here we can build upon
a detailed analysis of reduction lengths (performed in [24] in the context of a strictness analysis); the
method of using diagrams to compute and join overlaps between reductions and transformations which
we developed and applied in several works [8,24,14,15] to show correctness of program transformations;
and correctness of inlining (or common subexpression elimination) via infinite expressions (to unfold
and remove the letrec-expressions) established in [23]. We prefer analyzing reductions in LR, due to
the success of the diagram method in LR. For example, the letrec calculus mentioned in [1] is related,
but does not model case, constructors nor seq, and its deref rule complicates diagram proofs.

Since our improvement relation is different from [10] (it uses a different measure and operational
semantics), we compare our measures with those in [10,5]. The result is that our improvement theory
can be transferred to the abstract machine of [10] using our measure, and that our calculus and Moran
and Sand’s calculus together with their measures are equivalent w.r.t. resources.

Analyzing untyped calculi covers a large amount of program transformations, however, sometimes
typing arguments are required for showing that interesting program transformations are improvements
(see e.g. [5]). Due to cyclic bindings, using monomorphic typing and monomorphising a polymorphic

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 3

calculus is insufficient. Hence we adapt ideas from system-F polymorphism [3,12], in particular from
an intermediate language in a Haskell compiler [9,27], and extend our improvement theory for the
calculus LRP – a polymorphically typed variant of LR with let-polymorphism.

Since the type erasure of reduction sequences in LRP exactly leads to the untyped reduction
sequences in LR, the connection between the untyped and the typed calculi is quite close and indeed
it is rather simple to transfer the results and the techniques from LR into LRP. As a further application
of our improvement theory for the typed setting, we consider a transformation (called (caseId)), which
is type-dependent, i.e. the transformation is only correct in LRP, but incorrect in the untyped calculus
LR. We show that our methods are applicable for (caseId) and show that the transformation is indeed
an improvement.

Outline In Sect. 2 we recall the untyped calculus LR, and in Sect. 3 we introduce improvement for
LR and prove a context lemma. In Sect. 4 we show that common subexpression elimination is an
improvement. In Sect. 5 we compare our length measure with the measures used by Moran and Sands’
improvement theory. In Sect. 6 we consider the polymorphically typed variant of LR. We conclude in
Sect. 7.

This paper is an extended version of [20] with the following additions and differences: The reduction
measures rln (for the calculus) and mln for the abstract machine are parametrized, and thus all
claims are generalized and re-proved. This extension to different length measures provides finer grained
information on the complexity of functions. Furthermore, the analysis and comparison on (lll), (gc),
(cpax)-normalized expressions in Sect. 5.4 is new. Also discussion on complexity of functions in Sect. 5.5
w.r.t. several measures is added compared to [20]. Finally, improvement results for the polymorphically
typed calculus LRP in Section 6 are new.

2 The Call-by-Need Lambda Calculus LR

We recall the calculus LR [24], which is an untyped call-by-need lambda calculus that extends the
lambda calculus by recursive letrec, data constructors, case-expressions, and the seq-operator. We
recall results from previous investigations: from [24] we reuse a counting theorem for reduction lengths
and correctness of several program transformations. From [23] we reuse correctness of copying arbitrary
expressions.

We employ the syntax of the calculus LR [24]. Let Var be a countable infinite set of variables. We
assume that there is a fixed set of type constructors K, where every type constructor K ∈ K has an
arity ar(K) ≥ 0, and there is a finite, non-empty set DK = {cK,1, . . . , cK,|DK |} of data constructors.
Every data constructor has an arity ar(cK,i) ≥ 0.

Example 2.1. K may include the 0-ary type constructor Bool and the 1-ary type constructor List

with DBool = {True, False}, DList = {Nil, Cons}, ar(True) = ar(False) = ar(Nil) = 0, and
ar(Cons) = 2.

The syntax of expressions r, s, t ∈ Expr of LR is defined in Fig. 1. We write FV (s) for the set
of free variables of an expression s. Besides variables x, abstractions λx.s, and applications (s t) the
syntax of LR comprises the following constructs: Constructor applications (cK,i s1 . . . sar(cK,i)) always
occur fully saturated. In our meta-notation we sometimes omit the index of the constructor or use
vector notation and thus write for instance (c−→s) instead of (cK,i s1 . . . sar(cK,i)). In a letrec-expression
letrec x1 = s1, . . . , xn = sn in t all variables x1, . . . , xn must be pairwise distinct, the scope of xi is
all si and t. The bindings x1 = s1, . . . , xn = sn are called the letrec-environment and t is called the
in-expression. Sometimes the environment or parts of it are abbreviated by Env (for instance, we write
letrec Env in s or letrec Env1,Env2 in s). For a letrec-environment Env = {x1 = t1, . . . , xn =
tn}, we define LV (Env) := {x1, . . . , xn} and sometimes write {xi = ti}ni=1 as abbreviation for such
an environment. For a chain of variable-to-variable bindings xj = xj−1, xj+1 = xj , . . . , xm = xm−1 we
use the abbreviation {xi = xi−1}mi=j . A seq-expression (seq s t) can be used for strict evaluation of
expressions, since the expression smust be successfully evaluated before t is evaluated. For everyK ∈ K

4 D. Sabel and M. Schmidt-Schauß

r, s, t ∈ Expr := x | λx.s | (s t) | (cK,i s1 . . . sar(cK,i)) | (letrec x1 = s1, . . . , xn = sn in t) | (seq s t)

| (caseK s (cK,1 x1 . . . xar(cK,1) -> t1) . . . (cK,|DK | x1 . . . xar(cK,|DK |) -> t|DK |))

Fig. 1: Expressions of the language LR where x, xi ∈ Var are term variables

(s t)sub∨top → (ssub t)vis

(letrec Env in s)top → (letrec Env in ssub)vis

(letrec x = s,Env in C[xsub]) → (letrec x = ssub,Env in C[xvis])

(letrec x = s, y = C[xsub],Env in t) → (letrec x = ssub, y = C[xvis],Env in t), if C 6= [·]
(letrec x = s, y = xsub,Env in t) → (letrec x = ssub, y = xnontarg,Env in t)

(seq s t)sub∨top → (seq ssub t)vis

(case s of alts)sub∨top → (case ssub of alts)vis

letrec x = svis∨nontarg, y = C[xsub],Env in t → Fail

(letrec x = C[xsub],Env in s) → Fail

Fig. 2: Computing reduction positions using labels (see Definition 2.4), where a ∨ b means label a or
label b. The algorithm does not overwrite non-displayed labels.

(lbeta) C[((λx.s)sub r)]→ C[(letrec x = r in s)]

(cp-in) (letrec x1 = (λx.s)sub, {xi = xi−1}mi=2,Env in C[xvism])
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[λx.s])

(cp-e) (letrec x1 = (λx.s)sub, {xi = xi−1}mi=2,Env , y = C[xvism] in r)
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[λx.s] in r)

(llet-in) (letrec Env1 in (letrec Env2 in r)sub)→ (letrec Env1,Env2 in r)

(llet-e) (letrec Env1, x = (letrec Env2 in sx)sub in r)→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t)sub s)]→ C[(letrec Env in (t s))]

(lcase) C[caseK (letrec Env in t)sub alts]→ C[(letrec Env in caseK t alts)]

(lseq) C[seq (letrec Env in s)sub t]→ C[(letrec Env in seq s t)]

(seq-c) C[seq vsub t]→ C[t], if v is a value

(seq-in) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2,Env in C[seq xvism t]

→ letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env in C[t]

(seq-e) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2,Env , y = C[seq xvism t] in r

→ letrec x1 = (c
−→
t), {xi = xi−1}mi=2,Env , y = C[t] in r

(case-c) C[caseK (c
−→
t)sub . . . (c−→y -> t) . . .]→ C[letrec {yi = ti}ar(c)i=1 in t], if ar(c) ≥ 1

(case-c) C[caseK csub . . . (c -> t) . . .]→ C[t], if ar(c) = 0

(case-in) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . (c−→z -> t) . . .]

→ letrec x1 = (c−→y), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env in C[letrec {zi = yi}ar(c)i=1 in t],
where ar(c) ≥ 1 and yi are fresh variables

(case-in) letrec x1 = csub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . (c -> t) . . .]
→ letrec x1 = c, {xi = xi−1}mi=2,Env in C[t], if ar(c) = 0

(case-e) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2, u = C[caseK xvism . . . (c−→z -> r1) . . .],Env in r2

→ letrec x1 = (c−→y), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2, u = C[letrec {zi = yi}ar(c)i=1 in r1],Env in r2
where ar(c) ≥ 1 and yi are fresh variables

(case-e) letrec x1 = csub, {xi = xi−1}mi=2, u = C[caseK xvism . . . (c -> r1) . . .],Env in r2
→ letrec x1 = c, {xi = xi−1}mi=2 . . . , u = C[r1],Env in r2, if ar(c) = 0

Fig. 3: Reduction rules

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 5

there is a case-expression (caseK s (cK,1 x1 . . . xar(cK,1) -> t1) . . . (cK,|DK | x1 . . . xar(cK,|DK |)
-> t|DK |))

with exactly one case-alternative ((cK,i x1 . . . xar(cK,i)) -> ti) for every data constructor cK,i ∈ DK .
The variables x1, . . . , xar(cK,i) in the case-pattern ((cK,i x1 . . . xar(cK,i)) -> ti) must be pairwise distinct
and the scope of the variables x1, . . . , xar(cK,i) is the expression ti. We sometimes use the meta-symbol
alts to abbreviate the case-alternatives and thus write (caseK s alts).

Example 2.2. The case-expression caseBool s1 (True -> s2) (False -> s3) corresponds to the condi-
tional if s1 then s2 else s3. The function map which maps a function to all elements of a list can be
defined as letrecmap =λf, xs.caseList xs (Nil -> Nil) (Cons y ys -> Cons (f y) (map f ys)) inmap.

We assume the convention that bound variables are only introduced once in expressions, and that
these are different from free variables, which can always be achieved by renaming bound variables.
We assume that reduction rules and transformations are followed by a renaming to fulfill this distinct
variable convention. In our meta-notations we assume that variable names that appear twice are the
same object, if not mentioned otherwise. For instance, the notation (letrec x = s,Env in C[xsub])
assumes that C does not capture x in its hole.

Definition 2.3. A context C is an expression with a hole (denoted by [·]) at expression position.
Surface contexts S are contexts where the hole is not in an abstraction, top contexts T are surface
contexts where the hole is not in an alternative of a case, and weak top contexts are top contexts
where the hole is not in a letrec-expression. With C[s] we denote the substitution of the hole in the
context C by expression s. A multicontext M is an expression with zero or more (different) holes at
expression positions.

2.1 Normal Order Reduction

A value in LR is an abstraction λx.s or a constructor application (c−→s). The reduction rules of LR are
defined in Fig. 3, where the role of the labels sub, top, vis, nontarg will be explained below in Definition
2.4. The rule (lbeta) is the sharing variant of classical β-reduction. The rules (cp-in) and (cp-e) copy
abstractions. The rules (llet-in) and (llet-e) join two letrec-environments. The rules (lapp), (lcase),
and (lseq) float-out a letrec from the first argument of an application, a case-, or a seq-expression.
The rules (seq-c), (seq-in), and (seq-e) evaluate a seq-expression, provided that the first argument is
a value (or a variable that is bound (via indirections) to a constructor application). The rules (case-c),
(case-in), and (case-e) evaluate a case-expression provided that the first argument is (or is a variable
which is bound to) a constructor application of the right type.

The normal order reduction strategy of the calculus LR is a call-by-need strategy. It applies the
reduction rules at specific positions which will be defined by an algorithm to find the position of a
redex2.

Definition 2.4 (Labeling Algorithm). The labeling algorithm detects the position to which a re-
duction rule will be applied according to normal order. It uses the labels top,sub,vis,nontarg where top
means reduction of the top term, sub means reduction of a subterm, vis marks already visited subex-
pressions, and nontarg marks visited variables that are not target of a (cp)-reduction. For a term s
the labeling algorithm starts with stop, where no other subexpression in s is labeled and proceeds by
applying the rules given in Fig. 2 exhaustively.

Note that the labeling algorithm does not descend into sub-labeled letrec-expressions. If the labeling
algorithm does not fail, then a potential normal order redex is found, which can only be a superterm
of the sub-marked subexpression. However, it is possible that there is no normal order reduction, if
the evaluation is already finished, or no rule is applicable.

2 This is equivalent to a syntactic definition of reduction contexts (using a context free grammar) which is omitted in
this paper, but can be found for the calculus LR in [24].

6 D. Sabel and M. Schmidt-Schauß

(gc1) letrec {xi = si}ni=1,Env in t→ letrec Env in t, if for all i : xi 6∈ FV (t,Env)

(gc2) letrec {xi = si}ni=1 in t→ t, if for all i : xi 6∈ FV (t)

(cpx-in) letrec x = y,Env in C[x]→ letrec x = y,Env in C[y], if x 6= y ∈ Var

(cpx-e) letrec x = y, z = C[x],Env in t→ letrec x = y, z = C[y],Env in t, if x 6= y ∈ Var

(cpax) letrec x = y,Env in s→ letrec x = y,Env [y/x] in s[y/x], if x 6= y ∈ Var , y ∈ FV (s,Env)

(cpcx-in) letrec x = c
−→
t ,Env in C[x]→ letrec x = c−→y , {yi = ti}ar(c)i=1 ,Env in C[c−→y]

(cpcx-e) letrec x = c
−→
t , z = C[x],Env in t→ letrec x = c−→y , {yi = ti}ar(c)i=1 , z = C[c−→y],Env in t

(abs) letrec x = c
−→
t ,Env in s→ letrec x = c−→x , {xi = ti}ar(c)i=1 ,Env in s, where ar(c) ≥ 1

(abse) (c
−→
t)→ letrec {xi = ti}ar(c)i=1 in c−→x , where ar(c) ≥ 1

(xch) letrec x = t, y = x,Env in r → letrec y = t, x = y,Env in r

(ucp1) letrec Env , x = t in S[x]→ letrec Env in S[t]

(ucp2) letrec Env , x = t, y = S[x] in r → letrec Env , y = S[t] in r

(ucp3) letrec x = t in S[x]→ S[t]
where in the (ucp)-rules, x has at most one occurrence in S[x] and
no occurrence in Env , t, r; and S is a surface context

Fig. 4: Extra transformation rules

Definition 2.5 (Normal Order Reduction of LR). Let t be an expression. Then a single normal
order reduction step t

no−→ t′ is defined by first applying the labeling algorithm to t, and if the labeling
algorithm terminates successfully, then one of the rules in Fig. 3 has to be applied, if possible, where
the labels sub, vis must match the labels in the expression t (t may have more labels), and t′ is the
result after erasing all labels.

Example 2.6. For (letrec w = λx.x, y = w, z = (y y) in z), the labeling algorithm success-
fully ends with (letrec w = (λx.x)sub, y = wnontarg, z = (yvis y)vis in zvis)vis. Only the rule
(cp-e) matches the subexpressions and the labels, i.e. (letrec w=λx.x, y=w, z= (y y) in z)

no−→
(letrec w=λx.x, y=w, z= ((λx′.x′) y) in z) where the α-renaming is performed implicitly to fulfill
the distinct variable convention. Note that the label nontarg at w prevents the normal order reduction
to copy the sub-labeled abstraction into this position.

For letrec x= (y y), y=x in y the labeling fails and thus the expression has no normal order
reduction. For (Cons True Nil) (λx.x), the labeling terminates with ((Cons True Nil)sub (λx.x))vis

and also for letrec x = True in x, the labeling ends successful with (letrec x = Truesub in xvis)vis.
However, for both expressions no normal order reduction is applicable (since the labels do not match
the reduction rules). The former expression is irreducible, since it has a “dynamic type error”. The
latter expression is irreducible since it is successfully evaluated, i.e. it is a weak head normal form (see
Definition 2.8).

By a case analysis one can verify that normal order reduction is unique, i.e. for an expression t either no
normal order reduction is possible, or there is a unique expression t′ (up-to α-equivalence) s.t. t

no−→ t′.

We sometimes attach more information to the reduction arrow, for instance
no,lbeta−−−−−→ denotes a

normal order reduction using rule (lbeta). For a binary relation →, we write
+−→ for the transitive

closure, and
∗−→ for the reflexive-transitive closure of →. E.g.,

no,∗−−→ denotes the reflexive-transitive

closure of
no−→. We write

n−→ for exactly n →-steps and we write
n∨m−−−→ for either n or m steps. The

notation
a∨b−−→ is also used for a and b being rule names, meaning the union of the rules a and b.

For instance,
no,lbeta∨no,lapp,0∨1−−−−−−−−−−−−−→ means one or none normal order reduction step using rule (lbeta)

or rule (lapp). For two binary relations →1,→2, we write →1 . →2 for their composition, that is
→1 .→2 := {(s1, s3) | s1 →1 s2 ∧ s2 →2 s3}.

We define reduction contexts and weak reduction contexts:

Definition 2.7. A reduction context R is any context, such that its hole will be labeled with sub or
top by the labeling algorithm in Fig. 2. A weak reduction context, R−, is a reduction context, where
the hole is not within a letrec-expression.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 7

Clearly, every reduction context is also a top context, and thus also a surface context.

Definition 2.8. An expression s is a weak head normal form (WHNF), if s is a value,
or s is of the form letrec Env in v, where v is a value, or s is of the form
letrec x1 = (c

−→
t), {xi = xi−1}mi=2,Env in xm.

By inspecting the labeling algorithm and the reduction rules one can verify that every WHNF is
irreducible w.r.t. normal order reduction. As usual for lazy functional programming languages, we
consider WHNFs as successfully evaluated programs and define the notion or convergence accordingly:

Definition 2.9. An expression s converges, denoted as s↓, iff there exists a WHNF t s.t. s
no,∗−−→ t.

This may also be denoted as s ↓ t. We write s↑ iff s↓ does not hold.

2.2 Program Transformations

A program transformation P is a binary relation on expressions. We write s
P−→ t, if (s, t) ∈ P . For

a set of contexts X and a transformation P , the transformation (X,P) is the closure of P w.r.t. the

contexts in X, i.e. C[s]
X,P−−→ C[t] iff C ∈ X and s

P−→ t.
Ignoring the label, the reduction rules in Fig. 3 are also program transformations. In Fig. 4 addi-

tional program transformations are defined. The transformation (gc) performs garbage collection by
removing unused letrec-environments, and (cpx), (cpax) copy variables, and can be used to shorten
chains of indirections. The transformation (cpcx) copies a constructor application into a referenced
position, where the arguments are shared by new letrec-bindings. Similarly, (abs) and (abse) perform
this sharing without copying the constructor application. The transformation (ucp) means “unique
copying” and it inlines a shared expression which is referenced only once.

Definition 2.10. We define unions for the rules in Fig. 3: (case) is the union of (case-c), (case-in),
(case-e); (seq) is the union of (seq-c), (seq-in), (seq-e); (cp) is the union of (cp-in), (cp-e); (llet) is
the union of (llet-in), (llet-e); and (lll) is the union of (llet), (lapp), (lcase), and (lseq).

We use the following unions for the transformations in Fig. 4: (gc) is the union of (gc1) and (gc2);
(cpx) is the union of (cpx-in) and (cpx-e); (cpcx) is the union of (cpcx-in) and (cpcx-e); and (ucp) is
the union of (ucp1), (ucp2), and (ucp3).

We use the unions of the rules also for normal order reduction and for instance write
no,llet−−−−→ for

no,llet−in∨no,llet−e−−−−−−−−−−−−−→.

2.3 Contextual Equivalence

As program equivalence we use contextual equivalence which equates two expressions if exchanging one
program by the other program in any surrounding program context does not change the termination
behavior. Due to the quantification over all contexts, it is sufficient to observe convergence.

Definition 2.11. Let s, t be two LR-expressions. We define contextual equivalence ∼c w.r.t. the op-
erational semantics of LR: Let s ∼c t, iff for all contexts C[·]: C[s]↓ ⇐⇒ C[t]↓.
Contextual equivalence is a congruence, i.e. it is an equivalence relation which is compatible with
contexts. Usually, proving two expressions to be contextually equivalent is difficult, since all contexts
have to be taken into account. In contrast, disproving an equivalence is often easy, since a single
counter-example is sufficient. E.g., the constants True and False are not contextually equivalent,
since the context caseBool [·] (True -> True) (False ->Ω) distinguishes them; where Ω is a divergent
expression, for instance Ω = (λx.x x) (λy.y y).

Definition 2.12. A program transformation P is correct, if it preserves contextual equivalence,
i.e. P ⊆ ∼c.
In [24] we proved that all introduced transformations are correct:

Proposition 2.13 ([24]). The program transformations (lbeta), (case), (seq), (cp), (lll), (gc), (cpx),
(cpax), (cpcx), (abs), (abse), (xch), and (ucp) are correct.

8 D. Sabel and M. Schmidt-Schauß

3 Improvement in the LR-Calculus

While contextual equivalence is a correctness criterion for program transformations, it has no require-
ments on the transformation being an optimization w.r.t. time (or space) complexity of a program.
This is where the improvement relation comes into play and restricts contextual equivalence of s and
t by the additional requirement that s may be replaced by t (within a program) if the number of
computation steps for successfully evaluating the whole program is not increased. We define measures
for estimating the time consumption: on the one hand we count all reduction steps, on the other hand
we count essential reduction steps where we use a generic approach and leave some freedom in the
choice of which steps are counted:

Definition 3.1. In the following let A := {(lbeta), (case), (seq)} and ∅ 6= A ⊆ A. Let t be a closed
expression with t↓t0. Then rlnA(t) is the number of a-reductions with a ∈ A in the normal order
reduction t↓t0. With rlnall(t) we denote the number of all reductions in t↓t0. The measures are
defined as ∞, if t↑, since we are only interested in values on converging expressions.

Similarly, we apply the measures to reduction sequences t
∗−→ t′.

The restriction of counting mainly reductions in A can be justified as follows: The (cp)-reductions
are not counted, since the number of (cp)-reductions of an expression t is at most 2 ·rlnA(t)+1: every
(no,cp)- is followed by an (no,lbeta)- or an (no,seq)-reduction, or it is the last reduction.

Also (lll)-reductions are not counted, since these can be more efficiently implemented on abstract
machines, often more efficient than in the calculus model, by floating environments to the top in
one step instead of doing it step-by-step. A further deviation from real run-time is the size of the
abstractions, which are duplicated in a (cp)-reduction. Also the search for a redex (modeled by our
labeling algorithm) is not counted by our measures (which is different from [10]). If the computation
is long compared to the size of the expression, then the sizes of abstractions can be considered as
constant. In particular, in call-by-need computation, the size of abstractions cannot be increased. This
alleviates the error made by not counting the size (see also Theorem 5.21).

Using measures with A 6= A has two motivations: On the one hand we get more exact information,
and on the other hand, we can show an improvement relation also for variations of the measure like
a1 · rln{lbeta} + a2 · rln{case} + a3 · rln{seq} with ai ≥ 0.

We analyze the relative number of (lbeta)-reductions w.r.t. other reductions in A. First we define
the size of an expression:

Definition 3.2. For an LR-expression s, its size size(s) is defined as

size(x) := 1, if x ∈ Var
size(λx.s) := 1 + size(s)
size(s t) := 1 + size(s) + size(t)
size(seq s t) := 1 + size(s) + size(t)

size(letrec x1 = s1 . . . , xn = sn in s0) := 1 +
n∑
i=0

size(si)

size(caseK t (pat1 -> s1) . . . (patar(K) -> sar(K))) := 1 + size(t) +
ar(K)∑
i=0

(size(pati) + size(si))

size(cK,i s1 . . . sar(cK,i)) := 1 +
ar(cK,i)∑
i=1

size(si)

Proposition 3.3. Let s be a closed expression. Then rlnA(s) ≤ (size(s) + 1) · (rln{lbeta}(s) + 1).

Proof. It suffices to assume that s↓, since otherwise the claim obviously holds. So suppose s
no,∗−−→ t

where t is a WHNF. For every (cp)-reduction in this sequence exactly one of the following properties
holds: i) The (cp)-reduction is the last reduction in the sequence. ii) The (cp)-reduction is followed
by a (seq)-reduction (which removes the copied abstraction). iii) The (cp)-reduction is followed by

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 9

an (lbeta)-reduction (which uses the copied abstraction in function position). Let us conflate these
reductions, i.e. we write (cpseq) for a (cp)-reduction followed by (seq), (cplbeta) for a (cp)-reduction
followed by (lbeta), and (cpWHNF) for a (cp)-reduction as a last reduction in a normal order reduction
to a WHNF. Let sizeni be the size of an expression without counting indirections (x = y-bindings),
i.e. sizeni(s) = size(s) − indirections(s), where indirections(s) is the number of letrec-bindings
x = y in s where y is a variable.

Then all the reduction rules of LR different from (cplbeta) and (cpWHNF) do not increase the
sizeni, and the reduction rules (case), (seq), and (cpseq) strictly decrease sizeni.

Thus to estimate the number of (case)-, (seq)- and (cpseq)-reductions it is sufficient to determine
the initial size of the expression and the size increase of (cplbeta)-reductions.

In the reduction sequence s
no,∗−−→ t, a single (cplbeta)-reduction increases the sizeni at most

by size(s). Thus the overall size which can be used by (seq), (cpseq), and (case) is (1+number of
(cplbeta)) · (size(s)) (the size increase of (cpWHNF) cannot be used by (seq), (cpseq), or (case)).

The number of (cplbeta)-reductions in s
no,∗−−→ t is at most rln{lbeta}(s). Hence rlnA(s) is at most

rln{lbeta}(s) plus size(s) · (rln{lbeta}(s) + 1), which is at most (size(s) + 1) · (rln{lbeta}(s) + 1). ut

Remark 3.4. Note that there are normal-order reduction sequences with an arbitrary number of
(lbeta)-reductions, but without any (case)- or (seq)-reductions, hence Proposition 3.3 is not valid
for {case}, {seq} or {case, seq} instead of {lbeta}.
As a concrete example, let us consider the following expressions tn, for n ≥ 0 defined by tn :=
letrec {xi = λy.((xi−1 x0) (xi−1 x0))}ni=2, x0 = λz.z in (xn x0). Evaluation of tn requires
3 · 2n − 2 (no,lbeta)-reductions, but neither any (no,seq)- nor (no,case)-reduction. The size of tn
is size(tn) = 8 · n + 6. Thus, for any set A with ∅ 6= A ⊆ {case, seq}, in particular rln{lbeta} =
rlnA(tn) = 3 · 2n − 2 > (size(tn) + 1) · (rlnA(tn) + 1) = 8 · n+ 7 for all n > 3, and furthermore, for
any polynomial poly : rlnA(tn) > poly(size(tn), rlnA(tn)) for all n ≥ n0 for some n0.

We present results from [22] w.r.t. reduction lengths of the transformations in Figs. 3 and 4, which
are slightly more general, and can be derived from these papers.

Theorem 3.5 ([24]). Let t be a closed LR-expression s.t. t ↓ t0.

1. If t
C,a−−→ t′ and a ∈ {case, seq, lbeta}, then for all A: rlnA(t) ≥ rlnA(t′) and rlnall(t) ≥

rlnall(t′).

2. If t
C,cp−−→ t′, then for all A: rlnA(t) = rlnA(t′).

3. If t
S,a−−→ t′ and a ∈ {case, seq, lbeta}, then for all A: rlnA(t) ≥ rlnA(t′) ≥ rlnA(t) − 1 if a ∈ A,

and otherwise, if a 6∈ A, then rlnA(t) = rlnA(t′).

4. If t
C,a−−→ t′ and a ∈ {lll, gc}, then for all A: rlnA(t) = rlnA(t′) and rlnall(t) ≥ rlnall(t′). For

a = gc1 the equation rlnall(t) = rlnall(t′) holds.

5. If t
C,a−−→ t′ and a ∈ {cpx, cpax, xch, cpcx, abs}, then for all A: rlnA(t) = rlnA(t′) and rlnall(t) =

rlnall(t′).

6. If t
C,ucp−−−→ t′, then for all A: rlnA(t) = rlnA(t′) and rlnall(t) ≥ rlnall(t′).

3.1 The Improvement Relation

The improvement relation relates only contextual equivalent expressions and requires that the reduc-
tion length rlnA(·) is not increased:

Definition 3.6 (Improvement Relation). For s, t ∈ Expr, A ⊆ A, let s �A t (t is A-improved by
s), iff s ∼c t and for all contexts C[·] s.t. C[s], C[t] are closed: rlnA(C[s]) ≤ rlnA(C[t]). We write
t �A s if s �A t holds. If s �A t and s �A t, we write s ≈A t.

A program transformation P is an A-improvement iff P ⊆ �A.

10 D. Sabel and M. Schmidt-Schauß

Remark 3.7. In practical applications of improvements (e.g. if they are applied for program optimiza-
tion), those improvements are interesting which strictly decrease the number of computations steps
when they are applied. However, for the definition of the improvement relation it is not useful to
replace “rlnA(C[s]) ≤ rlnA(C[t])” by rlnA(C[s]) < rlnA(C[t]): such a definition would be empty,
since there are contexts C where the evaluation of C[r] ignores the position of r. Thus, those contexts
would refute the modified improvement property. Also an additional requirement of the existence of at
least one context C s.t. rlnA(C[s]) < rlnA(C[t]) is not helpful, since then the improvement relation
would no longer be a congruence (using the same arguments as before).

Let η ∈ {≤,=,≥} be a relation on non-negative integers. For a class of contexts X3, A ⊆ A, let
s ./η,X,A t iff s ∼c t and for all X-contexts X, s.t. X[s], X[t] are closed: rlnA(X[s]) η rlnA(X[t]). In
particular, instantiating ./η,X,A with all contexts gives the already introduced improvement relations,
i.e. ./≤,C,A = �A, ./≥,C,A = �A, and ./=,C,A = ≈A.

The context lemma for improvement shows that it suffices to take reduction contexts into account
for proving improvement. Its proof uses a generalized claim with multicontexts and it is similar to the
ones for context lemmas for contextual equivalence in call-by-need lambda calculi (see [24,18]).

Lemma 3.8 (Context Lemma for Improvement). Let s, t be expressions, η ∈ {≤,=,≥}, and
A ⊆ A. Then s ./η,R,A t (or s ./η,T,A t, or s ./η,S,A t) iff s ./η,C,A t.

Proof. It suffices to consider the case for reduction contexts, since reduction contexts are also T - or
S-contexts and thus if the context lemma holds for ./η,R,A then it also holds for ./η,T,A or ./η,S,A. One
direction of the claim is trivial. For the other direction we prove a more general claim:

For all n ≥ 0 and for all i = 1, . . . , n let si, ti be expressions with si ∼c ti and si ./η,R,A ti.
Then for all multicontexts M with n holes such that M [s1, . . . , sn] and M [t1, . . . , tn] are closed:
rlnA(M [s1, . . . , sn]) η rlnA(M [t1, . . . , tn]).

The proof is by induction on the pair (k, k′) where k is the number of normal order reductions of
M [s1, . . . , sn] to a WHNF, and k′ is the number of holes of M . If M (without holes) is a WHNF,
then the claim holds. If M [s1, . . . , sn] is a WHNF, and no hole is in a reduction context, then also
M [t1, . . . , tn] is a WHNF and rlnA(M [s1, . . . , sn]) = 0 = rlnA(M [t1, . . . , tn]).

If in M [s1, . . . , sn] one sj is in a reduction context, then one hole, say i, of M is in a reduction
context and M [t1, . . . , ti−1, ·, ti+1, . . . , tn] is a reduction context. Applying the induction hypothesis to
the multicontext M [. . . , ·, si, ·, . . .] (with n− 1 holes) shows rlnA(M [s1, . . . , si−1, si, si+1, . . . , sn]) ξ
rlnA(M [t1, . . . , ti−1, si, ti+1, . . . , tn]), and the assumption shows rlnA(M [t1, . . . , ti−1, si, ti+1, . . . , tn])
ξ rlnA(M [t1, . . . , ti−1, ti, ti+1, . . . , tn]), and hence rlnA(M [s1, . . . , sn]) ξ rlnA(M [t1, . . . , tn]).

If in M [s1, . . . , sn] there is no sj in a reduction context, then the first normal order reduction

is of the form M [s1, . . . , sn]
no,a−−→ M ′[s′1, . . . , s

′
n′], and it may copy or shift some of the si where

s′j = ρ(si) for some variable permutation ρ. However, the reduction type is the same for the first step

of M [s1, . . . , sn] and M [t1, . . . , tn], i.e. M [t1, . . . , tn]
no,a−−→ M ′[t′1, . . . , t

′
n′] with (s′j , t

′
j) = (ρ(si), ρ(ti)).

We take for granted that the renaming can be carried through. The rlnA(.)-contribution of both
no,a−−→-

reduction steps is either m = 0 or m = 1, depending on a. We can apply the induction hypothesis
to M ′[s′1, . . . , s

′
n′] and M [t′1, . . . , t

′
n′], and thus rlnA(M [s1, . . . , sn]) = (m+ rlnA(M ′[s′1, . . . , s

′
n′])) ξ

(m+ rlnA(M ′[t′1, . . . , t
′
n′])) = rlnA(M [t1, . . . , tn]).

3.2 Proof Technique

We explain our proof technique for proving that a program transformation is an improvement. The
method is similar to the diagram-based technique used to show correctness of program transformations

(see e.g. [24]). Let
P−→ be a correct program transformation. Due to the context lemma for improve-

ment, it suffices to prove
P−→ ⊆ ./≥,X,A (where X is instantiated with an appropriate set of contexts,

3 We will instantiate X with all contexts C; all reduction contexts R; all surface contexts S; or all top-contexts T

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 11

·
iS,cp //

no,a
��

·
no,a
��

·
no∨iS,cp

// ·

·
iS,cp //

no,a
��

·

no,a{{·

·
iS,cp //

no,cp
��

·
no,cp
��

·
no,a
��

·
no,a
��

·
no∨iS,cp

// ·
iS,cp

// ·

a ∈ {(lbeta), (case), (seq), (lll)} a ∈ {(lbeta), (case), (seq)} a ∈ {(lbeta), (seq)}
(1) (2) (3)

Fig. 6: Forking diagrams for (iS,cp)

i.e. reduction contexts R, top-contexts T , surface contexts S) to conclude
P−→ ⊆ �A. To ease notation

we will show this claim by proving that for all s, t with s
X,P−−→ t the inequation rlnA(s) ≥ rlnA(t)

holds, i.e. we use the closure of
P−→ w.r.t. X-contexts. If rlnA(s) = ∞, then s ∼c t implies that

rlnA(t) = ∞ must also hold. Thus, the remaining case is that s↓. Given the normal order reduction
sequence from s to a WHNF, we construct a converging normal order reduction sequence for t and
use this construction to prove that rlnA(s) ≥ rlnA(t) holds. For the construction of the reduction

sequence, we use so-called sets of forking diagrams for the transformation
X,P−−→ and often also addi-

tional forking diagrams for other transformations. These diagrams are then used in an inductive proof
to construct the normal order reduction sequence for t, where often specific induction measures are
required (if the diagrams are sufficiently complex).

A forking diagram describes how an overlap (a fork) of the form s′
no,+←−−− s X,P−−→ t can be closed by a

sequence of reductions and transformations of the form s′
P ′,∗−−→ t′

no,+←−−− t, where
P ′−→ are program trans-

formations, for instance
X,P−−→, but it maybe also another transformation. A forking diagram abstracts

·
no,+

��

X,P // ·
no,+

��
·

P ′
// ·

Fig. 5: Forking di-
agram

from the concrete terms and thus it is written as depicted in Fig. 5, where often the
reductions and transformations are more concrete (i.e. which rule of a normal order
reduction is used). Sometimes also meta-terms are used to represent the expressions.
The solid arrows are the given reductions (the fork) and the dashed arrows are the
existentially quantified reductions. A set of forking diagrams is complete for transfor-

mation
X,P−−→, if the set contains an applicable diagram for every fork s′

no,+←−−− s X,P−−→ t,
where a diagram is applicable if the reductions and transformations concretely exist.
A complete set of forking diagrams is obtained by a case analysis which considers all
overlaps of a transformation and a normal order reduction. This usually is a tedious task, and thus
we do not include the case analyses in this paper, but they can be found in [24].

If s
X,P−−→ t and s↓, i.e. s = s0

no−→ · · · no−→ sn, where sn is a WHNF, then a complete set of
forking diagrams can be used to construct a reduction sequence which witnesses t↓ and satisfies
rlnA(s) ≥ rlnA(t): A single forking diagram is applied for every step si → si+1 and one has to show
hat the construction terminates (usually using an inductive argument). If other transformations than
X,P−−→ occur in the forking diagrams, then usually also the corresponding sets of diagrams are required
for the construction of the reduction sequences.

Note that the same technique can also be used to show
P−→ ⊆ � or also

P−→ ⊆ ≈.

3.3 Properties of (cp) and Other Transformations

We apply the diagram proof technique to prove properties of the (cp)-reduction using the diagrams in
[24]. The set of forking diagrams in Fig. 6 covers all cases of overlaps between a normal order reduction

and an
iS,cp−−−→-transformation where iS means the closure of (cp) in surface contexts, but excluding

(no,cp) reductions. The diagrams are obtained from Lemmas B.8 and B.9 of the appendix of [24]. We
use these diagrams to prove the following theorem.

Theorem 3.9. Let t be closed s.t. t ↓. If t
C, cp−−−−→ t′ then rlnA(t) = rlnA(t′).

12 D. Sabel and M. Schmidt-Schauß

Proof. We use the context lemma 3.8 for improvements for the relation ≈A and for surface contexts,

i.e., we show (cp) ⊆ ./=,S,A to derive ./=,C,A = ≈A. Let s be closed and s
S,cp−−→ s′. We already know

that s ∼c s′, hence we can assume that s ↓, which implies s′ ↓. We can also assume that the reduction
is not normal order, since in this case the claim is trivial.

We prove rlnA(s) = rlnA(s′) by induction on rlnA(s) and then on the length of a normal order
reduction. If the length is 0, then s is a WHNF, and hence s′ is a WHNF.

If s
no,a−−→ s1 for a ∈ A, then rlnA(s1) = rlnA(s) − 1. Either diagram (30) or (31) holds. In the

former case we can apply the induction hypothesis, and in the latter case the claim obviously holds.
If s

no,cp−−−→ s1, then there are two cases: s1 is a WHNF. In this case it is easy to see that there is a
WHNF s2 with s′

no,cp−−−→ s2, and the claim holds. The other case is that diagram (32) is applicable.

Then s1
no,a−−→ s2 and rlnA(s2) = rlnA(s)−1. Hence we can apply the induction hypothesis twice, and

obtain the claim. If s
no,lll−−−→ s1, then diagram (30) applies, and by he induction hypothesis, we have

s′
no,lll−−−→ s1, and since rlnA(s′) = rlnA(s1), we obtain rlnA(s) = rlnA(s′).

Due to the exact analyses in [24] on the influence of the reduction rules (Fig. 3) and the addi-
tional transformations (Fig. 4) concerning the reduction lengths as stated in Theorems 3.5 and 3.9,
Proposition 2.13 and Lemma 3.8 imply the following theorem:

Theorem 3.10. The transformations (case), (seq), (lbeta), (cp), (lll), (gc), (cpx), (cpax), (xch),
(abs), and (ucp) are A-improvements. Moreover, for b ∈ {(cp), (lll), (gc), (cpx), (cpax), (xch), (abs),
(ucp)} the inclusion b ⊆ �A and thus the inclusion b ⊆ ≈A holds.

4 Common Subexpression Elimination

In this section, we show the improvement property for common subexpression elimination (cse):

(cse) M [s, . . . , s]→ letrec x = s in M [x, . . . , x]
where x is a fresh variable and the multicontext M does not capture a variable in s

Although it seems to be obvious that (cse) is an improvement, its proof is not trivial, due to several
reasons. The calculus LR is call-by-need, which means that (parts of) computations can be shared. To
the best of our knowledge, we are only aware of a correctness proof of (cse) in a call-by-need calculus
via a translation into a call-by-name calculus on infinite trees [23], which cannot be used to analyze
resource usage under call-by-need. The improvement-property of (cse) was mentioned as a conjecture
in [10].

We describe the structure of our proof that (cse) ⊆ �A holds for all A. As a first step, we consider
the general-copy rule (gcp) which allows to inline an arbitrary expression4:

(gcp) letrec x = s in C[x] → letrec x = s in C[s]. (where C does not capture x nor a variable in s)

We will show that the inverse of (gcp) is an improvement (and thus (gcp) ⊆ �A). This result together
with the result that garbage collection is invariant w.r.t. ≈A (Theorem 3.10) imply that (cse) is an
improvement, since

letrec x = s in M [x, . . . , x]
gcp,∗−−−→ letrec x = s in M [s, . . . , s]

gc−→M [s, . . . , s] (4)

(where (gc) is applicable, since x is fresh for M and s) and thus (cse) ⊆ (�A ◦ ≈A) which implies
(cse) ⊆ �A, since �A ⊆ ≈A and since �A is a precongruence.

It remains to prove that the inverse of (gcp) is an improvement.

4 Note that x ∈ FV (s) is permitted in (gcp).

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 13

Remark 4.1. The diagram based method fails to show correctness of (gpc), since for proving that

s
T,gcp−−−→ t, s↓ implies t↓, diagrams of the shapes

·

no,a

��

T,gcp // ·
no,a��
·
no,a��

·
T,gcp

// ·

and

·
no,a

��

T,gcp // ·
no,a

��
·
T,gcp

// ·
T,gcp

// ·

occur. For the combination of both diagrams no induction proof is possible, since the diagrams can
be used to construct unbounded reduction sequences for t from a given finite sequence for s.

Even though the diagram method fails for this problem, correctness of (gcp) was recently shown in
[23] by another technique.

Using the correctness result we are able to prove that the transformation (pcg) – a slight extension
of the inverse of (gcp) – is an improvement by using a complete set of forking diagrams for (T, pcg)
and then applying the context lemma for improvement.

However, the forking diagrams for (T, pcg) (shown in Fig. 8) contain further transformations. They
include some additional transformations from Fig. 4 which are already analyzed w.r.t. their behavior on
reduction lengths, but also a new transformation, called (pcgE), which unions several variants of (pcg)
in environments. As already mentioned, this forces us to develop a complete set of forking diagrams
also for (T, pcgE). Luckily, these diagrams (shown in Fig. 7) do not require new transformations and
thus the complete sets of forking diagrams for (T, pcg) and (T, pcgE) and the results on the additional
transformations are sufficient to establish that (pcg) is an improvement.

Definition 4.2. The transformation (pcgE) is the union of the following rules, where Env ′α = Env
and α only renames variables of LV (Env ′).

(pcgE1-in) letrec Env ,Env2 in C[letrec Env ′,Env3 in r]
→ letrec Env ,Env2 in C[letrec Env3α in rα]

(pcgE2-in) letrec Env ,Env2 in C[letrec Env ′ in r]→ letrec Env ,Env2 in C[rα]
(pcgE1-e) letrec Env ,Env2, x = C[letrec Env ′,Env3 in r] in s

→ letrec Env ,Env2, x = C[letrec Env3α in rα] in s
(pcgE2-e) letrec Env ,Env2, x = C[letrec Env ′ in r]→ letrec Env ,Env2, x = C[rα] in s
(pcgE3) letrec Env ,Env ′,Env3 in r → letrec Env ,Env3α in rα

The transformation (pcg) is the union of the rules:

(pcg-in) letrec x = s,Env in C[s]→ letrec x = s,Env in C[x]

(pcg-e) letrec x = s,Env , y = C[s] in r → letrec x = s,Env , y = C[x] in r

Correctness of the transformations (pcg) and (pcgE) is a consequence of a result shown in [23]:

Proposition 4.3. The program transformations (pcg) and (pcgE) are correct.

Proof. In [23] the following result for LR was obtained:

For an expression s, its infinite tree IT (s) is derived by unfolding all letrec-bindings (and
removing the letrec). If IT (s) = IT (t) for expressions s, t (where = is syntactic equality
modulo α-equivalence on infinite trees), then s ∼c t.

Since s
pcg∨pcgE−−−−−−→ t implies IT (s) = IT (t), correctness of (pcg) and (pcgE) holds.

We first prove that (pcgE) is an improvement in Proposition 4.5, and thereafter we use this result
in Lemma 4.6 and Theorem 4.7 to show that (pcg) is an improvement.

14 D. Sabel and M. Schmidt-Schauß

s
T,pcgE//

no,a ��
t
no,a��

s′
T,pcgE

// t′

(5)

s
T,pcgE//

no,lll ��
t

s′
T,pcgE

;;

(6)

s
T,pcgE //

no,llet ��
t
no,llet��

s′
C,llet

// s′′
T,pcgE

// t′

(7)

s
T,pcgE //

no,a ��
t
no,a��

s′
C,a
// s′′

T,pcgE
// t′

(8)

s
pcgE //

no,a ��
t

no,a{{
s′

for a ∈ {seq, case}
(9)

s
T,pcgE //

no,cp ��
t
no,cp��

s′
T,pcgE

// s′′
T,pcgE

// t′

(10)

s
T,pcgE //

no,case ��
t
no,case��

s′
C,abs

// s′′
T,pcgE

// t′

(11)

s
T,pcgE //

no,case ��
t
no,case��

s′
C,case

// s′′
C,(cpx∨gc),∗

// s′′′
T,pcgE

// t′

(12)

Fig. 7: Forking diagrams for (pcgE)

Lemma 4.4. If s
T,pcg−−−→ s′ for a WHNF s, then either s′ is a WHNF or s′

no,cp−−−→ s′′ where s′′ is a
WHNF.

Proposition 4.5. If s
T,pcgE−−−−→ t, then for all A ⊆ A: rlnA(s) ≥ rlnA(t) and rlnall(s) ≥ rlnall(t).

Moreover, (pcgE) is an improvement, i.e. (pcgE) ⊆ �A for all A.

Proof. Let s′
no,a←−− s T,pcgE−−−−→ t. All possible overlappings (forks) can be joined by one of the diagrams in

Fig. 7 details are in Appendix C.1. By induction on rlnall(s) we show that rlnall(t) ≤ rlnall(s)
and rlnA(t) ≤ rlnA(s). If rlnall(s) = 0 then s is a WHNF, and t must also be a WHNF and

rlnall(t) = rlnA(t) = 0. If rlnall(s) > 0, then let s
no,a−−→ s′.

– For diagram (5), we can apply the induction hypothesis to s′
T,pcgE−−−−→ t′, since rlnall(s′) =

rlnall(s)− 1. This shows that rlnall(t) ≤ rlnall(s) and rlnA(t) ≤ rlnA(s).

– For diagram (6), we apply the induction hypothesis to s′
T,pcgE−−−−→ t which shows rlnall(t) ≤

rlnall(s′) = rlnall(s)− 1 and rlnA(t) ≤ rlnA(s′) = rlnA(s).

– For diagram (7), we have rlnall(s) > rlnall(s′) and rlnA(s) = rlnA(s′). By Theorem 3.5 (4)
rlnall(s′′) ≤ rlnall(s′) and rlnA(s′′) ≤ rlnA(s′). We can apply the induction hypothesis

to s′′
T,pcgE−−−−→ t′ which shows rlnall(t′) ≤ rlnall(s′′) and rlnA(t′) ≤ rln(s′′). This implies

rlnall(t) ≤ rlnall(s) and also rlnA(t) ≤ rlnA(s).

– For diagram (8), we have rlnall(s′) < rlnall(s) and rlnA(s′) ≤ rlnA(s). Theorem 3.5 shows
that rlnall(s′′) ≤ rlnall(s′) and rlnA(s′′) ≤ rlnA(s′). We apply the induction hypothesis to

s′′
T,pcgE−−−−→ t′ and have rlnall(t′) ≤ rlnall(s′′) and rlnA(t′) ≤ rlnA(s′′). This implies both

rlnall(t) ≤ rlnall(s) as well as rlnA(t) ≤ rlnA(s).

– For diagram (9), obviously rlnall(s) = rlnall(t) and rlnA(s) = rlnA(t) hold.

– For diagram (10), we have rlnall(s′) < rlnall(s) and rlnA(s) = rlnA(s′). We apply the in-

duction hypothesis to s′
T,pcgE−−−−→ s′′ and have rlnall(s′′) ≤ rlnall(s′) and rlnA(s′′) ≤ rlnA(s′).

Applying the induction hypothesis to s′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′) and rlnA(t′′) ≤

rlnA(s′′). Since t
no,cp−−−→ t′, this shows rlnall(t) ≤ rlnall(s) and rlnA(t) ≤ rlnA(s).

– For diagram (11), we have rlnall(s′) < rlnall(s) and rlnA(s) ≤ rlnA(s′). By Theorem 3.5 (5)
we have rlnA(s′′) ≤ rlnA(s′) and rlnall(s′′) ≤ rlnall(s′). Applying the induction hypothesis to

s′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′) and rlnA(t′) ≤ rlnA(s′′) which shows rlnall(t) ≤

rlnall(s) and rlnA(t) ≤ rlnA(s).

– For diagram (12), we have rlnall(s′) < rlnall(s) and rlnA(s) ≤ rlnA(s′). By Theorem 3.5
(1), (4), (5) we have rlnA(s′′′) ≤ rlnA(s′) and rlnall(s′′′) = rlnall(s′). Applying the induction

hypothesis to s′′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′′) and rlnA(t′) ≤ rlnA(s′′) which shows

rlnall(t) ≤ rlnall(s) and rlnA(t) ≤ rlnA(s).

Since (pcgE) is correct (Proposition 4.3), Lemma 3.8 shows (pcgE) ⊆ �.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 15

·
T,pcg //

no,a ��

·
no,a��

·
T,pcg

// ·

a 6= (cp)

(13)

·
T,pcg //

no,cp

��

·
no,cp��

no,a ��

·
no,a��

·
T,pcg
// ·
T,pcg,0∨1

// ·

a ∈ {lbeta, seq}
(14)

·
T,pcg //

no,cp ��

·
no,cp��

·
no,a ��

·
no,a��

·
C,cp
// ·

C,a
// ·
T,pcg
// ·

a ∈ {lbeta, seq}
(15)

·
T,pcg //

no,a ��

·
no,a��

·
C,a,∗
// ·
T,pcg
// ·

a 6= (cp)

(16)

·
no,a ��

T,pcg // ·
no,azz·

a ∈ {case, seq}
(17)

·
T,pcg //

no,llet �� no,llet��
·
T,pcgE

// ·
T,pcg
// ·

(18)

·
T,pcg //

no,case ��

·
no,case��

·
C,lll,∗

// ·
T,pcg

// ·
T,pcg

// · ·
C,(cpx∨gc),∗
oo

(19)

·
T,pcg //

no,case ��

·
no,case��

·
T,case

// ·
C,(cpx∨gc),∗

// ·
T,pcg
// ·

(20)

Fig. 8: Forking-diagrams for (pcg)

Lemma 4.6. For closed s with s
T,pcg−−−→ s′: rlnA(s) ≥ rlnA(s′) for all A.

Proof. Let s↓, and s
T,pcg−−−→ s′. Let ∅ 6= A ⊆ A be arbitrary but fixed. We show rlnA(s) ≥ rlnA(s′) by

induction on the measure (rlnA(s), rlnall(s)), ordered lexicographically. For the base case rlnA(s) =
rlnall(s) = 0, the expression s is a WHNF and Lemma 4.4 shows that rlnA(s′) = 0.

For the induction step, Fig. 8 shows the overlappings between normal order reduction-steps and a
T,pcg−−−→-transformation (details are in Appendix C.2) where the cases that the (T ,pcg)-transformation
is an inverse (C,cp)- or (C,cpx)-transformation are not covered, since in these cases Theorem 3.5 (5),
or Theorem 3.9 show the claim. We consider the remaining cases:

1. If s
no,case∨seq∨lbeta−−−−−−−−−−−→ t1, then diagram (13), (16), (17), (19), or (20) of Fig. 8 holds. The diagrams

can be summarized as follows where a ∈ {case, seq, lbeta}:

s
T,pcg //

no,a
��

s′

no,a
��

t1
C,a,∗∨C,lll,∗

// t2
C,gc∨cpx,∗

// t3
T,pcg,∗

// t4 oo
C,gc∨cpx,∗

t5

We have rlnA(t1) = rlnA(s)−1 and by Theorem 3.5 we have rlnA(t3) ≤ rlnA(t1) and rlnA(t3) ≤
rlnA(t1). We apply the induction hypothesis for every step in t3

T,pcg,∗−−−−→ t4 and we derive rlnA(t4) ≤
rlnA(t1) < rlnA(s) and rlnA(t4) ≤ rlnA(t1). Theorem 3.5 shows that rlnA(t4) = rlnA(t5) and
rlnA(t4) = rlnA(t5), and thus rlnA(s′) = rlnA(t5) + 1 ≤ rlnA(t1) + 1 = rlnA(s) and either
rlnA(s′) = rlnA(t5) ≤ rlnA(t1) = rlnA(s) (if a 6∈ A), or rlnA(s′) = rlnA(t5)+1 ≤ rlnA(t1)+1 =
rlnA(s) (if a ∈ A).

2. Let s
no,cp−−−→ t1. If t1 is a WHNF, then by Lemma 4.4 s′

no,cp,0∨1−−−−−−→ t′1 where t′1 is a WHNF and

rlnA(s′) ≤ rlnA(s) and also rlnA(s′) ≤ rlnA(s) holds. If t1 is not a WHNF, then t1
no,a−−→ t2 where

a ∈ {(lbeta), (seq)} and diagram (14) or (15) of Fig. 8 holds. For diagram (14) we have:

s
no,cp

��

T,pcg // s′

no,cp��
t1

no,a
��

t′1
no,a
��

t2
T,pcg

// t3
T,pcg,0∨1

// t4

Then rlnA(t2) < rlnA(s) and we apply the induction hypothesis to t2
T,pcg−−−→ t3 which shows

rlnA(t3) ≤ rlnA(t2) < rlnA(s). We then apply the induction hypothesis to t3
T,pcg,0∨1−−−−−−→ t4 which

shows rlnA(t4) ≤ rlnA(t2) < rlnA(s), rlnA(s′) ≤ rlnA(s), and either rlnA(s′) = rlnA(t4) ≤
rlnA(t2) = rlnA(s) (if a 6∈ A) or rlnA(s′) = rlnA(t4) + 1 ≤ rlnA(t2) + 1 = rlnA(s) (if a ∈ A).

16 D. Sabel and M. Schmidt-Schauß

Similarly, in diagram (15) the situation is: t2
no,a←−− t1

no,cp←−−− s
pcg−−→ s′

no,cp−−−→ t′1
no,a−−→ t5, and

t2
C,cp−−→ t3

C,a−−→ t4
T,pcg−−−→ t5. Then rlnA(t2) < rlnA(s), rlnA(t2) ≤ rlnA(s) and by Theorem 3.5 (1)

rlnA(t4) ≤ rlnA(t2), rlnA(t4) ≤ rlnA(t2) and we apply the induction hypothesis to t4
T,pcg−−−→ t5

and have rlnA(t5) ≤ rlnA(t4) < rlnA(s) and rlnA(s′) ≤ rlnA(s) and also rlnA(s′) ≤ rlnA(s).

3. If s
no,lll−−−→ t1, then diagram (13), (16), or (18) of Fig. 8 holds, which can be summarized as follows:

s
T,pcg //

no,lll
��

s′

no,lll
��

t1
C,lll,∗∨T,pcgE

// t2 pcg
// t3

Then rlnA(t1) = rlnA(s), rlnA(t1) = rlnA(s), and rlnall(t1) = rlnall(s)− 1. Theorem 3.5 (4),
and Proposition 4.5 show that rlnA(t2) ≤ rlnA(t1), rlnA(t2) ≤ rlnA(t1), and rlnall(t2) ≤
rlnall(t1). Thus we can apply the induction hypothesis to t2

T,pcg−−−→ t3 which yields rlnA(t3) ≤
rlnA(t2) (also for A = A). Since s′

no,lll−−−→ t3, we have rlnA(s′) = rlnA(t3) ≤ rlnA(t2) = rlnA(t1) =
rlnA(s) which shows the claim. ut

Theorem 4.7. The program transformations (pcg), (pcgE), and (cse) are improvements.

Proof. For (pcgE) the claim is proved in Proposition 4.5 and for (pcg) this follows from Lemma 4.6,
correctness of (pcg) (Proposition 4.3) and the context lemma for improvement (Lemma 3.8).

As demonstrated in Eq. (4), the transformation (cse) can be represented as a sequence
gc←− . pcg,∗−−−→

and since (gc) ⊆ ≈A for all A by Theorem 3.10, this shows that (cse) is an improvement for all A.

5 Abstract Machine Semantics and Analysis of Resource Measures

The goal of this section is to investigate the relationship between the measure rln(·) and the counting
measures used in [10,5] for their improvement relations. The following results are obtained in this
section:

– In Theorem 5.15 we show that rlnA(·) coincides with the number of essential transition steps
mlnA(·) for all A, of the abstract machine of [10].

– In Theorem 5.19 we compare the number of all transitions steps (the measure used by [10]) with
our measure and the measure used by [5].

– For normal forms under (lll)-, (gc)- and (cpax)-reductions, the measures counting all machine
transitions and counting essential machine transitions are almost the same (see Theorem 5.24).

– We show that the complexity of first-order functions is the same under various measures of reduc-
tions.

To compare and relate the resource consumption of two program calculi, we define the notion of
an asymptotically resource-preserving translation. Therefore, we use the O-notation as follows.

For a set of expressions E and functions f, g : E → N, we write f ∈ O(g), if there is a constant
c > 0, s.t. for all e ∈ E: f(e) ≤ c · g(e).

Definition 5.1. Let K1 = (E1,∼1, size1, µ1), K2 = (E2,∼2, size2, µ2) be two calculi with sets of
expressions Ei, contextual equivalences ∼i, size-measures sizei for expressions, and measures µi
for reduction length of expressions. A translation ξ : K1 → K2 is size-preserving, iff size1(e) ∈
O(size2(ξ(e))) and ξ is fully abstract; i.e., for all e, e′ ∈ E1: e ∼1 e

′ ⇐⇒ ξ(e) ∼2 ξ(e
′). A translation

ξ : K1 → K2 is asymptotically resource-preserving, iff ξ is size-preserving and there exists an n ∈ N
with µ1(e1) ∈ O(size2(ξ(e1))

n · (µ2(ξ(e1)) + 1)).

In Theorem 5.21 we prove several results on asymptotic resource-preserving translations between
the calculus LR and the abstract machine of [10] w.r.t. different measures for reduction lengths.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 17

(Lookup) 〈Γ, x = s | x | S〉 −⇀ 〈Γ | s | #upd(x) : S〉
(Update) 〈Γ | v | #upd(x) : S〉 −⇀ 〈Γ, x = v | v | S〉 where v is a value (v = λx.s or v = c−→y)

(Unwind1) 〈Γ | (s x) | S〉 −⇀ 〈Γ | s | #app(x) : S〉
(Unwind2) 〈Γ | (seq s x) | S〉 −⇀ 〈Γ | s | #seq(x) : S〉
(Unwind3) 〈Γ | caseK s alts | S〉 −⇀ 〈Γ | s | #case(alts) : S〉
(Subst) 〈Γ | λx.s | #app(y) : S〉 −⇀ 〈Γ | s[y/x] | S〉
(Seq) 〈Γ | v | #seq(y) : S〉 −⇀ 〈Γ | y | S〉 where v is a value (v = λx.s or v = c−→y)

(Branch) 〈Γ | ci,K−→x | #case(. . . (ci,K
−→y -> t) . . .) : S〉 −⇀ 〈Γ | t[−→x /−→y] | S〉

(Letrec) 〈Γ | letrec Env in s | S〉 −⇀ 〈Γ,Env | s | S〉

Fig. 9: Machine transitions

5.1 Abstract Machine Semantics

The abstract machine used by [10] extends Sestoft’s abstract machine mark 1 [26] by handling case-
expressions and data constructors. We recall this abstract machine and extend it slightly to also handle
seq-expressions

Definition 5.2. The syntax of machine expressions is the same as the syntax for LR-expressions
except that argument positions are restricted to variables, i.e. in applications (s t), seq-expressions
(seq s t), and constructor applications (c t1 . . . tar(c)) the expressions t, ti must be variables.

We define a translation from LR-expressions into machine expressions:

Definition 5.3. The translation ψ from LR-expressions into machine expressions is

ψ(x) := x, if x ∈ Var
ψ(s t) := letrec x = ψ(t) in (ψ(s) x)
ψ(seq s t) := letrec x = ψ(t) in (seq ψ(s) x)
ψ(c s1 . . . sn) := letrec x1 = ψ(s1), . . . , xn = ψ(sn) in (c x1 . . . xn)
ψ(M [s1, . . . , sn]) := M [ψ(s1), . . . , ψ(sn)],

for all multicontexts M of the forms letrec x1 = [·], . . . , xn = [·] in [·], λx.[·],
or caseK [·] (pat1 -> [·]) . . . (patn -> [·]).

Lemma 5.4. For s ∈ Expr, size(s) ≤ size(ψ(s)) ≤ max(3, 2+maxArityOfConstructors(s))·size(s)
where maxArityOfConstructors(s) is the maximal arity of constructors that occur in s.

Proof. Since size(ψ(s t)) = size(letrec x = ψ(t) in (ψ(s) x)) = 3 + size(ψ(s)) + size(ψ(t)), the
factor 3 is required. size(ψ(c s1 . . . sn)) = size(letrec x1 = ψ(t1), . . . , xn = ψ(tn) in (c x1 . . . xn)) =
2 + n +

∑
i size(ψ(si)), which has to be compared with size(c s1 . . . sn), which is 1 +

∑
size(si),

hence the factor 2 + n is required. So we can take the maximum for an estimation.

Since ψ(t)
C,ucp,∗−−−−→ t, Theorem 3.5 (6) implies:

Lemma 5.5. For all closed t ∈ Expr and all A: rlnA(t) = rlnA(ψ(t)).

Definition 5.6. A state Q of the machine is a tuple 〈Γ | s | S〉, where Γ is an environment of bindings
(like a letrec-environment), s is a machine expression, and S is a stack, with entries #upd(x),
#app(x), #seq(x), #case(alts) where x is a variable and alts is a set of case-alternatives. We use list
notation for the stack S. The transition rules of the machine are shown in Fig. 9. With (Unwind) we
denote the union of (Unwind1), (Unwind2), and (Unwind3). The machine starts with 〈∅ | s | []〉 for
an expression s and an accepting state is of the form 〈Γ | v | []〉 where v is a value (i.e. an abstraction
or a constructor application). A machine state 〈Γ | s | S〉 is reachable iff there exists an expression t

s.t. 〈∅ | t | []〉 ∗−⇀ 〈Γ | s | S〉.

18 D. Sabel and M. Schmidt-Schauß

We define a mapping φ from reachable machine states to machine expressions:

φ(〈Γ | s | #upd(x) : S〉) := φ(〈Γ, x = s | x | S〉) φ(〈Γ | s | #app(x) : S〉) := φ(〈Γ | (s x) | S〉)
φ(〈Γ | s | #seq(x) : S〉) := φ(〈Γ | (seq s x) | S〉) φ(〈Γ | s | #case(alts) : S〉) := φ(〈Γ | (case s alts) | S〉)
φ(〈Γ | s | []〉) := letrec Γ in s

Note that φ(〈Γ | v | []〉) = letrec Γ in v and thus accepting states are mapped to WHNFs. Let
ψ(lbeta) = Subst, ψ(case) = Branch, and ψ(seq) = Seq, and for ∅ 6= A ⊆ {lbeta, case, seq} let
ψ(A) := {ψ(a) | a ∈ A}, in particular ψ(A) = {Subst,Branch, Seq}.

Definition 5.7. Let s be a closed machine expression such that 〈∅ | s | []〉 n−⇀ Q where Q is an accepting
state. Then mlnall(s) = n, and mlnA(s) counts the number of the (Subst)-, (Branch)-, and (Seq)-steps
which are in ψ(A). The number mlnlook(s) counts all (Lookup)-transitions. If no such sequence exists
for s, then mlnall(s) = mlnA(s) = mlnA(s) = mlnlook(s) = ∞. We use mlnA(·), mlnA(·), mlnlook(·)
with the same meaning also for reachable states Q of the machine.

Note that the improvement theory in [10] is based on the measure mlnall(·), whereas the measure
in [5] is mlnlook(·) (see the comparison Theorems 5.21 and 5.24). Note also that the complexity of
reduction of expressions is adequately measured with mlnall:

Proposition 5.8. The number of steps k on a RAM executing the reduction of a machine expression
s on the abstract machine is smaller than a · size(s) · mlnall(s) where a is a constant independent of
s. This is under the assumption that storing and accessing the store requires constant time.

Proof. The transitions (Lookup), (Unwind), (Seq), and (Letrec) require constant time, and the tran-
sitions (Update), (Subst), and (Branch) require time O(size(s)), since the size of abstractions and
case-alternatives in the transition sequence starting with 〈∅ | s | []〉 is at most size(s).

5.2 Relating the Essential Reduction Steps

In this section we show that for a machine expression s the number of essential transition steps coincides
with the number of essential normal order reductions in LR, i.e. we show that rlnA(s) = mlnA(s).
With Lemma 5.5 this also implies that for every LR-expression s the equation rlnA(s) = mlnA(φ(s))
holds.

Lemma 5.9. For a reachable state Q with Q −⇀ Q′, one of the following cases holds for φ(Q) and
φ(Q′):

Q

φ $$

Lookup∨Unwind/ Q′

φzz
φ(Q) = φ(Q′)

Q
φ ��

Branch / Q′

φ��
φ(Q)

no,case−c
// s
T,cpax,∗

// s′
T,gc,∗
// φ(Q′)

Q
φ ��

Update / Q′

φ��
φ(Q)

T,cp
// φ(Q′)

Q
φ ��

Letrec / Q′

φ��
φ(Q)

T,lll,∗
// φ(Q′)

Q
φ ��

Seq / Q′

φ��
φ(Q)no,seq

// φ(Q′)

Q
φ ��

Update / Q′

φ��
φ(Q)

T,cpcx
// s
T,cpx,∗

// s′
T,gc,∗

// φ(Q′)

Q
φ ��

Subst / Q′

φ��
φ(Q)

no,lbeta
// s
T,cpax

// s′
T,gc
// φ(Q′)

Proposition 5.10. For a closed machine expression s and ∅ 6= A ⊆ A, mlnA(s) = n implies
rlnA(s) = n.

Proof. Let mlnA(s) = n. We consider the sequence of machine transitions from 〈∅ | s | []〉 to an accept-
ing state and construct a sequence of (no,lbeta)-, (no,case-c)-, (no,seq)-, (T,cp)-, (T,cpcx)-, (T,cpax)-,
(T,lll)-, and (T-gc)-transformations from s to a WHNF.

So let Q0 = 〈∅ | s | []〉 k−⇀ Qk where Qk is an accepting state. We use induction on k: If k = 0 then
s = φ(Q0) is a WHNF. If k > 0 then we apply Lemma 5.9 to Q0 −⇀ Q1 and then apply the induction

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 19

(mo,cpv-e) letrec Env , x = vsub, y = C[xsub∨nontarg] in s→ letrec Env , x = v, y = C[v] in s
where v is a value

(mo,cpv-in) letrec Env , x = vsub in C[xsub]→ letrec Env , x = v in C[v] where v is a value

(mo,β-var) C[(λx.s)sub y]→ C[s[y/x]]

(mo,casecx) C[caseK (cK,i
−→x)sub . . . (cK,i

−→y -> s) . . .]→ C[s[−→x /−→y]]

(mo,seq-c) C[seq vsub x]→ C[x]

(mo,glletm) R−[(letrec Env in s)sub]→ letrec Env in R−[s]

(mo,gllet-in) letrec Env1 in C[(letrec Env2 in s)sub]→ letrec Env1,Env2 in C[s]

(mo,gllet-e) letrec y = C[(letrec Env1 in s)sub],Env2 in t→ letrec y = C[s],Env1,Env2 in t

Fig. 10: Machine order reduction rules

s
mo,cpv,∗ //

no,cp,∗ ��

·
mo,β−var// r
· S,cp,∗

77

·
no,lbeta �� · S,gc,∗

99

t S,cpx,∗

77

(21)

s
mo,cpv,∗ //

no,case

��

·
mo,casecx// r

· S,gc,∗

88

· S,cpx,∗

77

t S,cpcx,∗

88

(22)

s
mo,cpv,∗ //

no,cp,∗
��

·
mo,seq−c // r
· S,cp,∗

77

·
no,seq ��

· S,gc,∗

77

· S,cpx,∗
77

t S,cpcx,∗

77

(23)

s
mo,glll //

no,lll

��

r

t

S,lll,∗

;;

(24)

Fig. 11: Diagrams for transferring normal order reductions into machine order reductions

hypothesis to Q1
k−1−−⇀ Qk. This construction gives a sequence of transformations from s = φ(Q0) to a

WHNF, where the sum of (no,lbeta)-, (no,case-c)-, and (no,seq)-steps is n.
Now iteratively apply Theorems 3.5 and 3.9 from right to left to every transformation which is not

a normal order reduction. Since all these steps leave the measure rlnA(·) unchanged, and the normal
order step increases the measure by 1, this shows rlnA(s) = n.

We define a variant of the normal order reduction for machine expressions – called machine order
reduction: It uses the reduction rules shown in Fig. 10 and the machine order redex is found by
the labeling algorithm in Definition 2.4. Let (mo,cpv) be the union of (mo,cpv-e) and (mo,cpv-in),
and (mo,glll) be the union of (mo,glletm), (mo,gllet-in), and (mo,gllet-e). A machine order WHNF
(MWHNF) is a value or an expression of the form letrec Env in v where v is a value. Let ψ(lbeta) =
(mo,β-var), ψ(case) = (mo, casecx), and ψ(seq) = (mo, seqc). For a closed expression s and ∅ 6=
A ⊆ A, let rlnmo,A(s) be the number of (mo, a)-reductions with (mo, a) ∈ ψ(A) in a machine order
reduction sequence from s to an MWHNF, and rlnmo,A(s) =∞ otherwise.

Lemma 5.11. If the machine expression s is a WHNF, then either s is also an MWHNF, or

s
mo,cpv,∗−−−−−→ s′ where s′ is an MWHNF.

Lemma 5.12. Let s
no,a−−→ t where a is not a (cp), or s

no,cp,∗−−−−→ s′
no,seq∨lbeta−−−−−−−−→ t. The diagrams in

Fig. 11 show how at least one machine order reduction can be performed for s, s.t. s
mo,+−−−→ r and how

t and r are joinable by program transformations.

Proposition 5.13. For all ∅ 6= A ⊆ A, closed machine expressions s: rlnA(s) = n =⇒ rlnmo,A(s) =
n.

Proof. Let s
no,k−−→ tk where tk is a WHNF. We use induction on (rlnA(s), rlnall(s)) to show the

claim. If rlnall(s) = rlnA(s) = 0, then s is a WHNF, and s
mo,cpv,∗−−−−−→ s′ where s′ is an MWHNF

and thus rlnmo,A(s) = 0. Now assume rlnall(s) > 0. If s
no,cp−−−→ s′, where s′ is a WHNF, then

s
mo,cpv,∗−−−−−→ s′′, where s′′ is a WHNF, and so rlnA(s) = rlnmo,A(s′′) = 0. In the other cases we apply

a diagram from Lemma 5.12 to a prefix of s
no,k−−→ tk. For diagram (24) we have rlnA(t) = rlnA(s),

rlnall(t) < rlnall(s), and rlnA(t) = rlnA(s) By Theorem 3.5 (4) rlnA(r) = rlnA(s) (also for A =
A) and rlnall(r) < rlnall(s). We apply the induction hypothesis to r and get rlnmo,A(r) = rlnA(s)
and thus rlnmo,A(s) = rlnA(s).

20 D. Sabel and M. Schmidt-Schauß

If diagram (22), (23), or (21) is applied, then rlnA(t) = rlnA(s)− 1 and Theorem 3.5 shows that

rlnA(r) = rlnA(t). Let
no,a−−→ be the given normal order reduction which is not a (no, cp). Applying

the induction hypothesis to r shows rlnmo,A(r) = rlnA(s)− 1 (if a ∈ A) or rlnmo,A(r) = rlnA(s) (if

a 6∈ A). Since s
mo,∗−−−→ r where exactly one (mo,casecx)-, (mo,seq-c)-, or (mo,β-var)-reduction is in the

sequence, where ψ(a) is this reduction, we have rlnmo,A(s) = rlnA(s). ut

Proposition 5.14. For all ∅ 6= A ⊆ A and closed machine expressions s: rlnA(s) = n =⇒
mlnA(s) = n.

Proof. From rlnA(s) = n we get rlnmo,A(s) = n by Proposition 5.13. Let s
mo,k−−−→ s′ where s′ is an

MWHNF. By induction on k, we show that for every reachable machine state Q0 with φ(Q0) = s there

exists an accepting state Qm s.t. Q0
∗−⇀ Qm and mlnA(Q0) = n. If k = 0, then Q0

Letrec,0∨1−−−−−−⇀ Q′ where

Q′ is accepting. For k > 0, let s
mo−−→ s0

mo,k−1−−−−−→ s′. The following diagrams (where (UL) is (Unwind)
∨ (Lookup)) show the relationship between s

mo−−→ s0 and the machine transition for Q0:

s
mo,cpv // s0

Q0

φ
OO

UL,∗
/

Update
/ Q1

φ
OO s

mo,β−var // s0

Q0

φ
OO

UL,∗
/

Subst
/ Q1

φ
OO s

mo,seqc // s0

Q0

φ
OO

UL,∗
/

Seq
/ Q1

φ
OO s

mo,casecx // s0

Q0

φ
OO

UL,∗
/

Branch
/ Q1

φ
OO s

mo,glll // s0

Q0

φ
OO

UL,∗
/

Letrec
/ Q1

φ
OO

The diagrams show that after applying the induction hypothesis to s0 and Q1 we have rlnmo,A(s) =
mlnA(Q0). Finally, since φ(Q0) = s for Q0 = 〈∅ | s | []〉, we have mlnA(s) = rlnmo,A(s).

By Propositions 5.10 and 5.14 and Lemma 5.5 we have:

Theorem 5.15. For any closed s ∈ Expr and ∅ 6= A ⊆ A: rlnA(s) = mlnA(ψ(s)).

Corollary 5.16. The translation ψ seen as a translation from LR to the abstract machine of [10] in
the variant presented in this paper is fully-abstract.

5.3 Relating Essential and All Transition Steps

In this section, we compare our different length measures and relate counting the essential transition
steps and counting all transition steps. In the following, we write (ULLU) for the union of (Unwind),
(Letrec), (Lookup), (Update) and (SBS) for the union of (Subst), (Branch), (Seq).

Theorem 5.17. For all closed machine expressions s with s↓: mlnall(s) ≤ 3·(size(s)+2)·(mlnA(s)+
1).

Proof. Let mlnA(s) = n and Q0 = 〈∅ | s | []〉 m−⇀ Qm, where Qm is an accepting state and the
sequence contains n (SBS)-transitions. The number of (Update)-transitions is equal to the number of
(Lookup)-transitions. The number of (Unwind)-transitions is equal to the number of (SBS)-transitions.
It remains to count the (Letrec)- and the (Lookup)-transitions. First observe that letrec-expressions
and -bindings which are generated by an (SBS)-transition are a copy of a subexpression which exists
in s (where variables may be permuted). Since a (Letrec)-transition removes the letrec, there are at
most (n+1) ·size(s) (Letrec)-transitions. The same argument applies to the first (Lookup)-transition
of a binding x = The number of other (Lookup)-transitions (which are not the first for a binding
x = . . .) is bounded by n + 1, since for such a (Lookup) the binding must be x = v, where v is a
value, which implies, that no other (Lookup) transition can follow before another (SBS)-transition is
performed. Thus, in total there are at most (n+ 1) · (size(s) + 1) (Lookup)-transitions.

Concluding, in the sequence there are at most (n + 1) · size(s) (Letrec)-transitions, at most
(n+ 1) · (size(s) + 1) (Lookup)-transitions, at most (n+ 1) · (size(s) + 1) (Update)-transitions, and
exactly n (Unwind)-transitions. By adding the n (SBS)-transitions this shows mlnall(s) ≤ 3 · (n+ 1) ·
(size(s) + 2).

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 21

We analyze whether the measure mlnlook(·) is appropriate as claimed in [10] and used in [5].

Proposition 5.18. For all closed machine expressions s with s↓: mlnall(s) ≤ (2 · size(s) ·
(mlnlook(s) + 1)).

Proof. Consider a valid transition subsequence without a (Lookup)-transition. For every intermedi-
ate machine state mi = 〈Γ | si | Si〉, i = 1, . . . , n consider the expression ui = φ(〈 ∅ | si | Si〉).
Then size(ui) is never increased by the intermediate steps, but strictly decreased by (Subst),
(Branch), (Seq), (Update), and (Letrec). The maximal size of ui is not greater than size(s) (as
already argued), hence mlnA(s) + (number of (Update)s) + (number of (Letrec)s) is not greater
than size(s) · (mlnlook(s) + 1). Since the overall number of (Unwind)s is exactly mlnA(s), we obtain
mlnall(s) ≤ (2 · size(s) · (mlnlook(s) + 1)).

Theorem 5.19. Let s be a closed machine expression. Then mlnlook(s) ≤ mlnall(s) ≤ (2 · size(s) ·
(mlnlook(s) + 1)), and mlnA(s) ≤ mlnall(s) ≤ 3 · (size(s) + 4) · (mlnA(s) + 1).

Note that Theorem 5.19 justifies our claim that common subexpression elimination (also called
β-expand) is an improvement in [10] and also in [5]. However, our proofs only show that this is the
case if improvement is defined w.r.t. mlnA(.) in their calculus5. Note that also the size is not increased
(up to the initial inverse (gc)) by common subexpression elimination.

As direct consequence of Proposition 3.3, Theorem 5.15, and Lemma 5.4 is:

Corollary 5.20. Let s be an expression. Then for s′ = ψ(s): rlnA(s′) ≤ (size(s′)+1)·(rln{lbeta}(s′)+
1) as well as mlnA(s′) ≤ (size(s′)+1) · (mln{lbeta}(s′)+1). With the size estimation in Lemma 5.4 this
also shows: rlnA(s) ≤ (4 + maxArityOfConstructors(s)) · size(s) · (rln{lbeta}(s) + 1) and mlnA(s) ≤
(4 + maxArityOfConstructors(s)) · size(s) · (mln{lbeta}(s) + 1).

The results in this section imply:

Theorem 5.21. The following calculi allow asymptotically resource-preserving translations into each
other: (i) LR with rlnA; (ii) Moran-Sands calculus with mlnall; (iii) Moran-Sands calculus with
mlnA; (iv) the Moran-Sands calculus with mlnlook; (v) Moran-Sands calculus with mln{lbeta};and (vi)
LR with rln{lbeta};

Note that in LR switching from rlnA(.) to rlnall(.) is not resource-preserving, since there are LR-
expressions s s.t. rlnall(s) ∈ O(size(s)n(rlnA(s) + 1)) is false for all n (details are in Appendix B).
However, this is not a counter argument against the LR-calculus, but only an argument against an
implementation that really mimics the (lll)-reductions.

5.4 Comparison of Measures for Simplified Expressions

We show that after a simplification, the measures mlnA, mlnall, mlnlook are almost equivalent.

Definition 5.22. An expression s is a (lcpgc)-normal form, if there are no (lll)-, (cpax)- nor (gc)-
reductions (the (lcpgc)-reductions) possible for s. For every closed expression s, its (lcpgc)-normal
form nflcpgc(s) can be effectively computed by applying the reductions.

Lemma 5.23. For every closed expression s its unique nflcpgc(s) exists. It can be computed in polyno-
mial time by exhaustively applying (lcpgc)-reductions. If s is a machine expression, then also nflcpgc(s)
is a machine-expression. The expression s is improved by nflcpgc(s).

A closed expression in (lcpgc)-normal form has the following syntactic structure: The letrec-
subexpressions can only be the following: (i) s itself; (ii) the body of abstractions, (iii) alternatives of
case-expressions, (iv), the second expression of a seq, (v) the immediate subexpressions of a constructor
application; (v) bindings x = y can only be of the form x = x.

5 We also cannot express the improvement result for (cse) using mlnall and so-called ticks (see [10]), since ticks can
only express additive work, but the measures mlnA(.) and mlnall differ by a factor depending on the size of the initial
expression.

22 D. Sabel and M. Schmidt-Schauß

Proof. Every reduction sequence using only (lcpgc)-reductions is terminating and confluent [24]. The
other properties follow easily by checking the reduction rules.

There is a better estimation in Theorem 5.17 for (lcpgc)-normal-forms s:

Theorem 5.24. Let s be a closed (machine-)expression with s↓ and that is in (lcpgc)-normal form.
Then

1. mlnA(s) ≤ mlnall(s) ≤ 7 · mlnA(s) + 3

2. mlnlook(s) ≤ 2 · mlnA(s) + 1

3. mlnA(s) ≤ 2 · size(s) · (mlnlook(s) + 1)

4. mlnall(s) ≤ 2 · size(s) · (mlnlook(s) + 1)

Proof. mlnA(s) ≤ mlnall(s) holds by definition of the measures. For showing mlnall(s) ≤ 7·mlnA(s)+
3, let s = s0 be in (lcpgc)-normal form. Let Q0〈∅ | s0 | []〉

m−⇀ Qm, where Qm is an accepting state, the
sequence has n (SBS)-transitions, and let Qi = 〈Hi, si, Si〉.

Throughout the proof, we use the following invariant for each state Qi, which can be verified by
checking all transition rules and using the fact that s is in (lcpgc)-normal form:

All expressions occurring in the heap and on control for each Qi are in (lcpgc)-normal form,
and there never appear bindings x 7→ s in the heap, where s is a variable different from x, or
s is a letrec-expression.

We first consider the case Qi
Letrec−−−−⇀ Qi+1. Due to the above invariant, the subsequent transition

applied to Qi+1 cannot be a (Letrec)-transition. The transitions that may generate a state 〈Hi, si, Si〉,
where si is a letrec-expression are only (Subst) and (Branch) due to the invariant. Thus the maximal
number of (Letrec)-transitions in the sequence Q0

m−⇀ Qm is at most (n+ 1).

The number of (Update)-transitions is at most (2n+1) which can be justified as follows: We assign
each (Update)-transition either to the final state, or to an (SBS)-transition: For Qi := (Γ, v,#upd(x) :

S)
Update−−−−⇀ (Γ ∪ {x 7→ v}, v, S) := Qi+1, we consider what happens next in the state Qi+1:

1. the stack S is empty, and a final state is reached. The (Update)-transition is assigned to the final
state.

2. the stack S is non-empty and the top symbol of S is #app(y), #seq(y), or #case(alts) (for some

variable y, or alternatives alts, resp.). Then Qi+1
SBS−−−⇀ Qi+2 and we assign the (Update)-transition

to this (SBS)-transition.

3. the stack S is non-empty and the top symbol of S is #upd(y). Let Qj := (Γ ∪ {y 7→ t}, y, S′) −⇀
(Γ, t,#upd(y) : S′) := Qj+1 with j < i be the (Lookup)-transition which added the #upd(y)-
symbol s.t. S = #upd(y) : S′. Due to the invariant from above it is impossible that t is a variable
or a letrec-expression. Moreover, t cannot be a value, since then the state Qi cannot be of the
form (Γ, v,#upd(x) : #upd(y) : S) (since Qj+1 −⇀ Qj+2 would update the binding for y). Thus t
can only be an application, a case-expression, or a seq-expression. In any case there must be an
(SBS)-transition between Qj+1 and Qi which evaluates t. We assign the (Update)-transition to
this (SBS)-transition.

Considering all (SBS)-transitions, each (SBS)-transition gets at most two assignments: at most one
of type (2) and also at most one of type (3), since there is at most one (Lookup)-(Update)-pair for
the binding y 7→ t. Thus, there are at most n (Update)-transitions of type (2), at most n (Update)-
transitions of type (3) and at most 1 (Update)-transition of type (1).

Since the number of (Unwind)-transitions is exactly n (since every (SBS)-transition requires a
preceding (Unwind)-transition), and since the number of (Lookup)-transitions is equal to the number
of (Update)-transitions, this shows mlnall(s) ≤ 7n+ 3.

The second part follows from the already provided arguments. The third and fourth part follow
from Theorem 5.19.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 23

Remark 5.25. The factor size(s) in the last two parts of the preceding theorem cannot be omitted.
Let s0j := xj and sij := (λy.si−1j) x0, and tm,n = letrec x0 = True, {xi = sni−1}mi=1 in xm. Then
tm,n is in (lcpgc)-normal form, and mlnA(tm,n) = mln{lbeta}(tm,n) = m · n, mlnlook(tm,n) = m + 1,
mlnall(tm,n) = 2m·(n+1)+3, and size(tm,n) = m·(3n+1)+2, which shows that there does not exist a
polynomial poly , s.t. for all n ≥ n0 for some fixed n0 and fixed m: mlnall(tm,n) ≤ poly(mlnlook(tm,n))
(mlnA(tm,n) ≤ poly(mlnlook(tm,n)), resp.)

As a further remark, we show that the relation between
mlnA and mln{lbeta} is not necessarily linear: For rm,n :=
letrec x=λy.(letrec z1=seq True y, {zi=seq True zi−1}mi=2), u0=True, {ui=(x ui−1)}mi=1 in un,
The number of (lbeta)-reductions is n and the number of seq-reductions is n ·m, where n,m can be
chosen independently. Hence, in this series of examples the inequation mlnA(s) ≤ c · mln{lbeta}(s) can
be refuted for every constant c.

5.5 Invariance of Complexity of Functions

In this section we want to analyze the relation between complexity of functions, improvement, and
different measures. We will apply the analysis to machine expressions and use the mln-measures.

We will use linear real-valued functions f : R→ R of the form f x = a1 ·x+a2, where a1, a2 ∈ R and
a1, a2 ≥ 0; The composition of two linear real-valued functions is again a linear real-valued function.

Definition 5.26. Let the weak improvement relation �weak be defined by s �weak t iff s ∼c t and
there is a linear real-valued function k, s.t. for all contexts C: mlnA(C[s]) ≤ k(mlnA(C[t])).

Note that this relation is a precongruence, and that s � t implies s �weak t.
The claim that we show in the following is that the complexity of functions on data is not made

worse under weak improvements. Roughly, the complexity of a function expression f is defined as a
positive real function g, s.t. for all arguments a, mlnA(f a) ≤ g(size(a)).

We will first analyze unary functions that operate on data, i.e. on arguments that do not contain
function expressions or abstractions.

Definition 5.27. A data expression in LR is a closed expression that consists only of constructors.

Thus a data expression may be a constant like True, a pair of constants, or a finite list of data
expressions.

Definition 5.28. Let us define an upper complexity-bound of a closed expression s as a real-valued
function g, s.t. there exists a linear real-valued function k and for all data expressions d: mlnA(s d) ≤
k(g(size(d))).

Proposition 5.29. If s �weak t, then every complexity-bound of t is also a complexity-bound of s.

Proof. Let g be a complexity-bound of t. Then there exist linear functions k1, k2, such that for all
data expressions d: mlnA(s d) ≤ k1(mlnA(t d)), and mlnA(t d) ≤ k2(g(size(d))). Then for all data
expressions d: mlnA(s d) ≤ k1(mlnA(t d)) ≤ k1(k2(g(size(d)))), and (k1 ◦ k2) is also a linear function.
Hence g is also a complexity-bound of s.

Lemma 5.30. Let s be a machine expression and µ, µ′ ∈ {mlnA(·), mlnall(·), mlnlook(·),
mln{lbeta}(·)} and d be a (machine-) data expression i.e. d = φ(d′) for a data expression d′. Then
there are linear real-valued functions h1, h2, such that µ(s d) ≤ h2(size(s)) · h1(µ′(s d)).

Proof. This can be derived mainly from Section 5.3. But an additional argument is required: Applying
the formula there would lead to a h(size(s d)) factor instead of h(size(s)). However, the data expres-
sions do not contribute to this size component, since the contribution comes from copying abstraction.
But there are no abstractions in d, hence the size of any abstraction in (s d) is not greater than the size
of s. The nontrivial cases can be derived from Theorem 5.17 and Proposition 5.18, and for mln{lbeta},
from Proposition 3.3.

24 D. Sabel and M. Schmidt-Schauß

Theorem 5.31. Upper complexity-bounds of LR-functions on data are the same for all the measures
{mlnA(·), mlnall(·), mlnlook(·), mln{lbeta}(·)}.

Proof. We apply Lemma 5.30 for an expression s and for µ, µ′ ∈ {mlnA(·), mlnall(·), mlnlook(·),
mln{lbeta}(·)}. There are linear real-valued functions h1, h2, such that for all data expressions d: µ(s d) ≤
h2(size(s)) · h1(µ′(s d)). If g is a complexity upper bound of s w.r.t. µ′, then there is a linear
real-valued function k1 with µ′(s d) ≤ k1(g(size(d))). Combining this, we obtain the inequation:
µ(s d) ≤ h2(size(s)) · h1(k1(g(size(d))). Since s was chosen fixed, h2(size(s)) is a constant, hence
there is a linear real-valued function k2 with µ(s d) ≤ k2(size(d)). This argument is valid for all pairs
µ, µ′, hence the theorem holds.

Extending the analysis to higher-order functions where the arguments d are general, i.e. may also
contain abstractions, leads to weaker estimations. However, a natural condition on the expression s
and argument d, implies that also in this case, the same bounds are valid. We extend Definition 5.28:

Definition 5.32. Let s be an expression and let P be a predicate on closed expressions. An upper
(higher-order) complexity-bound of a (closed) expression s under condition P is a real-valued func-
tion g, s.t. there is a linear real-valued function k1 and for all closed expressions d that satisfy P :
mlnA(s d) ≤ k1(g(size(d))).

Proposition 5.29 still holds for the higher-order complexity bounds and all P , which can be proved
using the same estimations. However, Theorem 5.31 is weakened: by switching the measure, the upper
higher-order complexity bounds may increase from g to λx.x · g(x), i.e. for polynomial complexities,
the degree may increase by 1 at most. For example, consider switching from mlnA to mlnall. Let g
be the higher-order complexity bound. The inequation becomes mlnall((s d)) ≤ 3 · (size(s d) + 2) ·
(mlnA((s d)) + 1)) = 3 · (3 + size(s) + size(d)) · (mlnA((s d)) + 1)) ≤ 3 · (3 + size(s) + size(d)) ·
(k1(g(size(d))))). We see that the asymptotical upper bound is a1 +a2 ·size(d) ·g(size(d)). Thus for
higher-order functions, the complexity may be increased by one order if the complexity is polynomial.

Using the estimations in Theorem 5.24, we can show that the complexity also of higher-order
functions is not changed under switching between mln and mlnall under some natural conditions on
the syntactic argument structure:

Lemma 5.33. Let s be a machine expression in lcpgc-normal form (see Definition 5.22), and µ, µ′ ∈
{mlnA(·), mlnall(·)}, and d be an lcpgc-normal form. Then there is a linear real-valued function h,
s.t. µ(s d) ≤ h(µ′(s d)).

Proof. Since (s d) is also in lcpgc-normal form, this follows from Theorem 5.24.

Note that for the measure mlnlook(·) such a result cannot be obtained: due to the additional factor
size(s) in Theorem 5.24, see Remark 5.25.

Theorem 5.34. Let s be a closed machine expression in lcpgc-normal form, and let P be a predicate
for arguments, and assume that there exists a complexity-bound according to Definition 5.32. Then the
complexity-bounds of s are the same for the measures mlnA(·) and mlnall(·).

Proof. Let µ, µ′ ∈ {mlnA(·), mlnall(·)}. Lemma 5.33 shows that there is a linear real-valued function
h s.t. µ(s d) ≤ h(µ′(s d)). Let g be a complexity upper bound of s w.r.t. µ′ and P . Then there
is a linear real-valued function k with µ′(s d) ≤ k(g(size(d))). Combining both inequations yields
µ(s d) ≤ h(k(g(size(d)))). Since h ◦ k is a linear real-valued function, this shows that g is an upper
complexity bound of s w.r.t. µ and P . Since µ, µ′ where chosen freely, the theorem holds.

6 Adding Polymorphic Typing

In this section we consider the polymorphically typed variant LRP of the calculus LR, and look for
improvement in the typed setting. Considering the typed case is motivated by the fact, that there

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 25

τ ∈ Typ := a | (τ1 → τ2) | K τ1 . . . τar(K)

ρ ∈ PTyp := τ | λa.ρ
u ∈ PExprF := Λa1.Λak.λx :: τ.s, k ≥ 0
r, s, t ∈ Expr := u | x :: ρ | (s τ) | (s t) | (cK,i :: τ s1 . . . sar(cK,i)) | (seq s t)

| (letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t)
| (caseK s (cK,1 :: τ1 x1,1 :: τ1,1 . . . x1,ar(cK,1) :: τ1,ar(cK,1) -> t1) . . .

(cK,|DK | :: τ|DK | x|DK |,1 :: τ|DK |,1 . . . x|DK |,ar(cK,|DK |) :: τ|DK |,ar(cK,i) -> t|DK |))

Fig. 12: Types τ ∈ Typ, polymorphic types ρ ∈ PTyp, polymorphic abstractions u ∈ PExprF , and
expressions r, s, t ∈ Expr of the language LRP where x, xi ∈ Var are term variables and a, ai ∈ TVar
are type variables.

s :: τ2

(λx :: τ1.s) :: τ1 → τ2

s :: ρ

Λa.s :: λa.ρ

s :: λa.ρ

(s τ) :: ρ[τ/a]

s :: τ1 → τ2 t :: τ1

(s t) :: τ2

s :: τ t :: τ ′

(seq s t) :: τ ′

s :: τ1 pat i :: τ1 ti :: τ2

(caseK s (pat1 -> t1) . . . (pat |DK | -> t|DK])) :: τ2

s1 :: ρ1 . . . sn :: ρn t :: ρ

(letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t) :: ρ

s1 :: τ1, . . . , sar(c) :: τar(c) τ = τ1 → . . .→ τar(c) → τar(c)+1

type(c) = λa1, . . . , am.τ
′′ there are τ ′1, . . . , τ

′
m with τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c :: τ s1 . . . sar(c)) :: τar(c)+1

Fig. 13: Typing Rules for LRP

are equivalences and improvements which hold in LRP, but do not hold in LR: For the test in the
definition of contextual equivalence and in the improvement relation a smaller set of contexts is taken
into account, since only those contexts need to be considered which leave the expressions well-typed.
Since LRP is a core language of (pure) Haskell [9] our results are applicable there. As we show, our
results and techniques on improvements can straightforwardly be transferred from LR to LRP.

The extensions of LRP w.r.t. LR are type annotations at variables and constructors, and extra lan-
guage components, e.g. types as arguments, including a type reduction. This will be in system-F-style
and restricted to let-polymorphism [3,13,12,27]. See also [19] for an analysis of typed LR of simulations
as a tool for correctness. The syntax of the calculus LRP is defined in Fig. 12, where every data con-
structor c ∈ DK has a polymorphic type type(c) of the form λa1, . . . ak.τ1 → . . . τar(c) → K(a1, . . . , ak).
We assume the distinct variable convention for term and type variables. For simplicity, LRP is explic-
itly typed and thus we assume that all typing information is already given by the type annotations.
Thus, the typing rules given in Fig. 13 only perform type checking (but not type-inference). All ex-
pressions of a polymorphic type λa.ρ are of the form x :: ρ, Λ.e, (e τ), and (letrec Env in e), other
forms are not possible. A polymorphic abstraction is an expression of the form Λa1, . . . , ak.λx.e, and
values are abstraction, polymorphic abstractions, and constructor applications.

Definition 6.1. The reduction rules of the calculus LRP are:

(Tbeta) ((Λa.u)sub τ)→ u[τ/a]

and all other rules from LR (Fig. 3), extended by types and the extended syntax such that: every
variable is labeled with a type, and fresh variables in rules are labeled with a type, which is derived in
the rules (case-in) and (case-e) from the types of the ti such that the types in the binding xi = ti are
equal, and in rule (cp) also polymorphic abstractions can be copied.

The labeling algorithm is the same as for LR (see Fig. 2) where type applications are treated like usual
applications. If the labeling algorithm terminates without Fail, then either a normal order redex is
found, which is a superterm of the sub-marked subexpression, or the evaluation is already finished
(a WHNF). Reduction contexts, weak reduction contexts, surface and top contexts are as for LR,
extended by typing.

26 D. Sabel and M. Schmidt-Schauß

·
T,caseId//

LRP,a ��

·
LRP,a��

·
T,caseId

// ·

(25)

·
T,caseId//

LRP,
lcase ��

·

· T,caseId

::

(26)

·
T,caseId//

LRP,
case-c ��

·

LRP,absezz·

(27)

·
T,caseId //

LRP,
case ��

·
T,cpcx
ss·

· T,gc,∗
33

· T,cpx,∗
33

(28)

·
LRP,
case �� T,caseId

zz·

(29)

Fig. 14: Diagrams for (caseId)

Definition 6.2 (Normal Order Reduction in LRP). Let t be an expression. Then a single normal

order reduction step
LRP−−−→ is defined by first applying the labeling algorithm to t, and if the labeling

algorithm terminates successfully, then one of the rules in Definition 6.1 has to be applied, if possible,
where the labels sub, vis must match the labels in the expression t.

Definition 6.3. A weak head normal form (WHNF) in LRP is a value, or an
expression of the form (letrec Env in v), where v is a value, or of the form
(letrec x1 = (c

−→
t), {xi = xi−1}mi=2,Env in xm).

An LRP-expression s converges, denoted as s↓, iff there exists a WHNF t such that s
LRP,∗−−−−→ t. Let

s, t be two LRP-expressions of the same type ρ. Then s and t are contextually equivalent (denoted by
s ∼c t), iff for all contexts C[· :: ρ]: C[s]↓ ⇐⇒ C[t]↓.

Contextual equivalence satisfies the type substitution properties of logical relations (see e.g. [13]), i.e.:
If s ∼c t with s, t :: ρ, then s[τ ′/a] ∼c t[τ ′/a] for s, t :: ρ[τ/a], and if s, t :: λa.ρ with s ∼c t, then
(s τ) ∼c (t τ).

Definition 6.4. The type erasure function ε : LRP → LR maps LRP-expressions to LR-expressions
by removing the types, the type information and the Λ-construct. In particular: ε(s τ) = ε(s), ε(Λa.s) =
ε(s), ε(x :: ρ) = x, and ε(c :: ρ) = c.

Clearly,
LRP−−−→-reductions are mapped by ε to LR-normal-order reductions where exactly the

(Tbeta)-reductions are omitted. The translation ε is not fully abstract, but adequate:

Proposition 6.5. The translation ε is adequate (i.e. ε(e1) ∼c ε(e2) =⇒ e1 ∼c e2) and resource-
preserving.

The measure for estimating the time consumption of computation also in LRP is rlnA(t) for
∅ 6= A ⊆ A = {lbeta, case, seq}. We do not count (TBeta)-reductions.

Definition 6.6. Let s, t be two LRP-expressions of the same type ρ. We define the improvement
relation �A for LRP: Let s �A t iff s ∼c t and for all contexts C[· :: ρ]: if C[s], C[t] are closed, then
rlnA(C[s]) ≤ rlnA(C[t]). If s �A t and t �A s, we write s ≈A t.

The following facts are valid and can easily be verified:

1. for closed LRP-expressions s, the equation rlnA(s) = rlnA(ε(s)) holds,

2. the reduction rules and extra transformations in their typed forms can also be used in LRP. They
are correct program transformations and improvements,

3. common subexpression elimination applied to well-typed expressions is an improvement in LRP.

For η ∈ {≤,=,≥} and a class of contexts X we define: For s, t of type ρ the relation s ./η,X,A t (in
LRP) holds iff for all X-contexts X[· : ρ]: if X[s], X[t] are closed, then rlnA(X[s]) η rlnA(X[t]). The
context lemma for improvement also holds for LRP with almost the same proof.

Lemma 6.7 (Context Lemma for Improvement). Let s, t be LRP-expressions of type ρ. Then
s ./η,R,A t (or s ./η,S,A t or s ./η,T,A t) implies s ./η,C,A t.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 27

We end this section by showing that the following transformation (caseId) is an improvement in
LRP:

(caseId) (caseK s (pat1 -> pat1) . . . (pat|DK | -> pat|DK |))→ s

The rule (caseId) is the heart also of other type-dependent transformations, and it is only correct
under typing, i.e. in LRP, but not in LR, which can be seen by trying the case s = λx.t.

Lemma 6.8. Let s
T,caseId−−−−−→ t. If s is a WHNF, then t is a WHNF. If t is a WHNF, then

s
LRP,lll,∗−−−−−→ LRP,case,0∨1−−−−−−−−→ LRP,lll,∗−−−−−→ s′ where s′ is a WHNF.

Lemma 6.9. If s↓ ∧ s T,caseId−−−−−→ t, then t↓ and rlnA(s) ≥ rlnA(t).

Proof. Let s
T,caseId−−−−−→ t and s

LRP,k−−−−→ s′ where s′ is a WHNF. We use induction on k. For k = 0

Lemma 6.8 shows the claim. For the induction step, let s
LRP−−−→ s1. The diagrams in Fig. 14 describe

all cases how the fork s1
LRP←−−− s

T,caseId−−−−−→ can be closed. For diagram (25) we apply the induction

hypothesis to s1
T,caseId−−−−−→ t1 which shows t1↓, rlnA(s1) ≥ rlnA(t1) and thus also t↓ and rlnA(s) ≥

rlnA(t). For diagram (26) the induction hypothesis shows the claim. For diagram (27) we have t↓,
since (abse) is correct. Moreover, t

T,abse−−−−→ s′ is equivalent to s′
T,ucp∨gc,∗−−−−−−−→ t and Theorem 3.5 (4)

and (6) show rlnA(s′) = rlnA(t). Thus also rlnA(s) ≥ rlnA(t). For diagram (28) we have t↓, since
(cpcx),(gc), and (cpx) are correct. Theorem 3.5 shows that rlnA(s) ≥ rlnA(s′) = rlnA(t), since
(cpcx),(cpx) and (gc) do not change the measure rlnA(·). For diagram(29) the claim obviously holds.

Theorem 6.10. (caseId) is an improvement.

Proof. Lemma 6.8 and the diagrams in Fig. 14 can be used to show (by induction on the sequence for

t) that if s
T,caseId−−−−−→ t and t↓, then s↓, since the used existentially quantified transformations are correct

and diagram 26 can only be applied finitely often. Then the context lemma for ∼c (which states that
convergence preservation and reflection in reduction contexts suffices to show ∼c, see e.g. [18]) and
Lemma 6.9 show that (caseId) is correct. Finally, the context lemma for improvement (Lemma 6.7)
and Lemma 6.9 show that (caseId) is an improvement.

7 Conclusion

We have developed a theory for improvements (w.r.t. the time behavior of programs) for the call-
by-need functional core language LR. Based on the exact analysis of counting reduction steps w.r.t.
program transformations in [24] in connection with a context lemma for improvement, we were able
to show that several local program transformations – which for instance occur during program sim-
plification in compilers or in reasoning tasks for larger program transformations – are improvements.

As a main result we have shown that common subexpression elimination is an improvement. This
novel result proves a conjecture in [10]. Moreover, it is also practically useful, since for instance,
the reasoning on improvements for worker-wrapper transformations in a call-by-need language in [5]
requires the property that so-called β-expansion is an improvement, which appears in [10], but the
improvement property is only conjectured. Since β-expansion is an instance of common subexpression
elimination, we have also proved that β-expansion is an improvement.

Since our model for a call-by-need functional core language using a rewriting semantics is slightly
different from the abstract machine model used by [10], we have deeply analyzed the connection
between the formalisms. We also have clarified the relationship of the use of three different length
measures, respectively, in our approach and in [10,5]. There are differences between the measures, but
they are not substantial.

A further requirement of the reasoning tasks performed in [5] is to exclude untyped cases by using
a typed instead of an untyped language. Since in the typed languages more program equivalences
(on typed expressions) hold, also more improvement laws hold on typed expressions. We have shown

28 D. Sabel and M. Schmidt-Schauß

that it is rather straightforward to extend and transfer our results on improvements from the untyped
language to the typed language. Additionally, we have demonstrated by a small example that our
diagram-based technique can also be used in typed languages to prove that the improvement property
holds for typed program transformations.

The investigation of further reasoning techniques similar to the tick-algebra of [10] is not a topic
of this paper. However, recent results in [21] show that it is possible to develop such techniques which,
for instance, allow to prove improvements by inductive methods for list-like structures and functions
operating on them.

For future research we may investigate improvements w.r.t. other resources like space in call-
by-need calculi (see [4]). We conjecture that our diagram-based proof methods can also be used in
those settings. However, there are some obstacles when defining an improvement relation for space
measurement. One question is which measure should be used, for instance, one can sum the size over all
expressions that occur in successful reduction sequences, while it seems to be more adequate to use a
measure which only counts the maximum of the size of all those expressions. A further complication is
that the operational semantics of the LR-calculus as given in this paper does not care about generating
and collecting garbage, i.e. letrec-bindings which are no longer required for computing the result.
However, when measuring space this garbage should not be counted and thus it has to be removed,
which requires an adapted evaluation strategy which performs garbage collection.

References

1. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 7(3):265–301, 1997.
2. Richard Bird. Thinking functionally with Haskell. Cambridge University Press, Cambridge, UK, 2014.
3. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1994.
4. Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-need space improvement. In Benjamin C.

Pierce, editor, Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP
’01), Firenze (Florence), Italy, September 3-5, 2001., pages 265–276, 2001.

5. Jennifer Hackett and Graham Hutton. Worker/wrapper/makes it/faster. In Johan Jeuring and Manuel M. T.
Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 95–107. ACM, 2014.

6. John Hughes. Why functional programming matters. Comput. J., 32(2):98–107, 1989.
7. Patricia Johann and Janis Voigtländer. The impact of seq on free theorems-based program transformations. Funda-

menta Informaticae, 69(1–2):63–102, 2006.
8. Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-need lambda calculus. In International

Conference on Functional Programming 1998, pages 324–335. ACM Press, 1998.
9. Simon Marlow, editor. Haskell 2010 – Language Report. 2010. www.haskell.org.

10. A. K. D. Moran and D. Sands. Improvement in a lazy context: An operational theory for call-by-need. In POPL
1999, pages 43–56. ACM Press, 1999.

11. Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler inliner. Journal of Functional
Programming, 12(4+5):393–434, July 2002.

12. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
13. Andrew M. Pitts. Parametric polymorphism and operational equivalence. Math. Structures Comput. Sci., 10:321–

359, 2000.
14. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with locally bottom-avoiding choice:

Context lemma and correctness of transformations. Math. Structures Comput. Sci., 18(03):501–553, 2008.
15. David Sabel and Manfred Schmidt-Schauß. A contextual semantics for Concurrent Haskell with futures. In Peter

Schneider-Kamp and Michael Hanus, editors, PPDP 2011, pages 101–112, New York, NY, USA, 2011. ACM.
16. David Sands. Improvement theory and its applications. In A. D. Gordon and A. M. Pitts, editors, Higher Order

Operational Techniques in Semantics, Publications of the Newton Institute, pages 275–306. Cambridge University
Press, 1998.

17. M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Extending Abramsky’s lazy lambda calculus: (non)-conservativity
of embeddings. In Femke van Raamsdonk, editor, 24th International Conference on Rewriting Techniques and
Applications (RTA 2013), volume 21 of LIPIcs, pages 239–254, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

18. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for higher-order calculi with sharing. Theoret.
Comput. Sci., 411(11-13):1521 – 1541, 2010.

19. Manfred Schmidt-Schauß and David Sabel. Contextual equivalences in call-by-need and call-by-name polymorphi-
cally typed calculi (preliminary report). In First International Workshop on Rewriting Techniques for Program
Transformations and Evaluation, WPTE 2014, July 13, 2014, Vienna, Austria, volume 40 of OASICS, pages 63–74.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 29

20. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need operational
semantics. In Moreno Falaschi and Elvira Albert, editors, Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015, pages 220–231. ACM, July
2015.

21. Manfred Schmidt-Schauß and David Sabel. Sharing-aware improvements in a call-by-need functional core language.
In Ralf Lämmel, editor, Proceedings of IFL, IFL ’15, pages 6:1–6:12, New York, NY, USA, 2015. ACM.

22. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need operational
semantics. Frank report 55, Institut für Informatik, Goethe-Universität Frankfurt am Main, August 2016. http:

//www.ki.informatik.uni-frankfurt.de/papers/frank/.
23. Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-calculus with

letrec, case, constructors, and seq. Log. Methods Comput. Sci., 11(1), 2015.
24. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct. Pro-

gramming, 18(04):503–551, 2008.
25. Neil Sculthorpe, Andrew Farmer, and Andy Gill. The HERMIT in the tree: Mechanizing program transformations

in the GHC core language. In Proceedings of the 24th Symposium on Implementation and Application of Functional
Languages, volume 8241 of Lecture Notes in Computer Science, pages 86–103, 2013.

26. P. Sestoft. Deriving a lazy abstract machine. J. Funct. Programming, 7(3):231–264, 1997.
27. Dimitrios Vytiniotis and Simon Peyton Jones. Evidence Normalization in System FC (Invited Talk). In Femke van

Raamsdonk, editor, 24th RTA 2013, volume 21 of LIPIcs, pages 20–38, Dagstuhl, Germany, 2013. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

http://www.ki.informatik.uni-frankfurt.de/papers/frank/
http://www.ki.informatik.uni-frankfurt.de/papers/frank/

30 D. Sabel and M. Schmidt-Schauß

A Proof of Theorem 3.9

The following diagrams cover all cases of overlappings between normal order reduction and an (iS, cp)-
transformation where iS means that the closure of (cp) in surface contexts, but excluding (no, cp)
reductions. The diagrams are obtained from Lemmas B.8 and B.9 of the appendix of [24]6.

· iS,cp //
no,a
��

·
no,a
��

·
no∨iS,cp

// ·

· iS,cp //
no,a
��

·
no,a{{·

a ∈ {(lbeta), (case), (seq), (lll)} a ∈ {(lbeta), (case), (seq)}

(30) (31)

· iS,cp //
no,cp

��

·
no,cp
��

·
no,a
��

·
no,a
��

·
no∨iS,cp

// ·
iS,cp

// ·

a ∈ {(lbeta), (seq)}

(32)
We will use these diagrams to prove Theorem 3.9 which is repeated here:

Theorem A.1. Let t be a closed LR-expression with t ↓ t0, ∅ 6= A ⊆ A.

If t
C, cp−−−−→ t′ then rlnA(t) = rlnA(t′).

Proof. We use the context lemma 3.8 for improvement for the relation ≈, i.e., we show (cp) ⊆ ./=,S to

derive ./=,C = ≈. Let s be closed and s
S,cp−−→ s′. We already know that s ∼c s′, hence we can assume

that s ↓, which implies s′ ↓. We can also assume that the reduction is not normal order since in this
the claim is trivial.

We prove rlnA(s) = rlnA(s′) by induction on rlnA(s) and then on the length of a normal order
reduction. If the length is 0, then s is a WHNF, and hence s′ is a WHNF.

If s
a−→ s1 for a ∈ {(lbeta), (case), (seq)}, then rlnA(s1) = rlnA(s)− 1 and rlnA(s1) = rlnA(s) (if

a 6∈ A) and rlnA(s1) = rlnA(s)− 1 (if a ∈ A) . Either diagram (30) or (31) holds. In the former case
we can apply the induction hypothesis, and in the latter case the claim obviously holds.

If s
no,cp−−−→ s1, then there are two cases: s1 is a WHNF. In this case it is easy to see that there is a

WHNF s2 with s′
no,cp−−−→ s2, and the claim holds. The other case is that diagram (32). Then s1

no,a−−→ s2
and rlnA(s2) = rlnA(s)−1. Hence we can apply the induction hypothesis twice, and obtain the claim.

If s
no,lll−−−→ s1, then diagram (30) applies, and we can apply the induction hypothesis, we have

s′
no,lll−−−→ s1, and since rlnA(s′) = rlnA(s1), we obtain rlnA(s) = rlnA(s′).

B On the number of rlnall-reductions in LR

We show by a counter example that the identity-translation from LR with rlnall into LR with rlnA
is not resource-preserving.

We first prove a lemma which shows that the number of (lapp)-reductions can be quadratic in the
number of applications, while the number of (lbeta)-, (case)-, and (seq)-reductions is linear:

Let us write idi as an abbreviation for the expression λxi.xi.

Lemma B.1. For an environment Env and a number n ≥ 1, let s = letrec Env in (id1 . . . idn).

Then the equality rlnall(s) =
n · (n+ 3)− 4

2
and rlnA(s) = n− 1 holds.

6 we do not distinguish between (cpd)- and (cpt)-transformations as in [24] and simply write (cp)

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 31

Proof. By induction on n: For n = 1, the expression is a WHNF, and thus rlnA(s) = rlnall(s) = 0.
For n = 2 the normal order reduction is as follows:

letrec Env in (id1 id2)
no,lbeta−−−−−→ letrec Env in letrec x1 = id2 in x1
no,llet−−−−→ letrec Env , x1 = id2 in x1
no,cp−−−→ letrec Env , x1 = id2 in id2

and thus rlnA(s) = 1 and rlnall(s) = 3.
For the induction step, let n ≥ 3. We consider the normal order reduction of s:

letrec Env in id1 id2 . . . idn
no,lbeta−−−−−→ letrec Env in ((letrec x1 = id2 in x1) id3 . . . idn)
no,lapp,n−2−−−−−−−→ letrec Env in (letrec x1 = id2 in (x1 id3 . . . idn))
no,llet−−−−→ letrec Env , x1 = id2 in (x1 id3 . . . idn)
no,cp−−−→ letrec Env , x1 = id2 in (id2 id3 . . . idn)

By the induction hypothesis, we have

rlnall(s) = (n+ 1) +
(n− 1) · (n+ 2)− 4

2
=
n · (n+ 3)− 4

2

and rlnA(s) = n− 2 + 1 = n− 1.

However, the previous lemma is not sufficient to disprove resource-preservation, since the size of
the input-expression is c ∗ n. Thus, in the remainder of the section we show, that we can generate the
input expression s (from Lemma B.1) with n = c ∗ 2m from an expression of size d ∗m (where c, d > 0
are constants).

Let us assume that Peano-numbers are available with constructors S and Z and let us write (Sn Z)
for the n-th peano number.

First consider the expression

s2m := letrec n = (S2m Z), f = F in f n

where F := λx.(case x of ((S y) -> f y id) (Z -> id))

Then s2m
no,∗−−→ letrec Env in (id1 . . . id2m+1) where the number of (no,case)- and (no,lbeta)-

reductions is 2 ∗ (2m + 1). However, for constructing the counter-example the representation of the
Peano number is insufficient, since the size of s2m is O(2m) which is too large. Hence, we use a shared
representation of the Peano representation of 2m which replaces the binding for n in the expression
s2m , and thus let

t2m := letrec x20 = λh.S h, {x2i = λh.x2i−1(x2i−1h)}mi=1,
h0 = Z, h2m = x2m h0,
f = F

in f h2m

One can verify that h2m indeed represents 2m as a Peano number, and that evaluating h2m results in
a binding h2m = S h2m−1, and iteratively evaluating h2m−1, h2m−2, . . .h1 (which f does) results in an
expression

letrec h0 = Z, {hi = S hi−1}2
m

i=1, Env in (id1 . . . id2m+1).

Clearly, for counting (lbeta)- and (case)-reductions, the reductions for evaluating the 2m calls to f
are still 2 ∗ (2m + 1), but there are additional (lbeta)-reductions for decompressing the number which
we will count in the following.

During generation and evaluation of the bindings for hi, they are of one of the following forms
(ignoring some intermediate forms, which are removed by (lll)-reductions):

32 D. Sabel and M. Schmidt-Schauß

1. hi = S hi−1, or
2. hi = x2j hk, where k + 2j = i, or
3. hi = (x2j (x2j hk)), where k + 2 ∗ 2j = i.

We analyze the connection (in the reduction) between these three possible forms, where we will also add
some (gc)- and (cpx)-transformations, which does not break our counting, since both transformations
do not change the rlnA(·) measure.

1. For case (1) the binding hi is successfully evaluated and no more (lbeta)-reductions are necessary
for this binding.

2. For case (2) we consider two subcases.
(a) Assume that j > 0. Then the evaluation is

hi = (x2j hk)
cp−→ hi = (λh.x2j−1 (x2j−1 h)) hk
lbeta,llet−−−−−→ hi = x2j−1 (x2j−1 h), h = hk
cpx,gc−−−−→ hi = x2j−1 (x2j−1 hk).

Thus with one (lbeta) step, we derive a binding of type (3)
(b) Assume that j = 0. Then the evaluation is

hi = (x20 hi−1)
cp−→ hi = (λh.S h) hi−1
lbeta,llet−−−−−→ hi = S h, h = hi−1
cpx,gc−−−−→ hi = S hi−1.

Thus with one (lbeta) step, we derive a binding of type (1).
3. For case (3), the reduction is

hi = (x2j (x2j hk))
cp−→ hi = (λh2j+k.(x2j−1 (x2j−1 h2j+k)) (x2j hk))
lbeta,llet−−−−−→ hi = (x2j−1 (x2j−1 h2j+k)), h2j+k = (x2j hk).

Thus with one (lbeta) step we a derive a binding of type (3) and additionally generate a binding
of type (2).

The following ideas help to prove that the generation of hi is unique. First note that generating
bindings of type (1) terminates, since the indices get smaller in every step. For uniqueness, which
means that every hi is generated only once, the following invariant can be used in an induction proof:
Let H be the environment consisting of all the bindings of the three forms. Let g(b) for bindings b
of type (1) be 1, for b = {hi = x2j hk} of type (2) let g(b) = 2j , and for b = {hi = (x2j (x2j hk))}
of type (3), let g(b) = 2j+1. Let g(H) =

∑
b∈H g(b). Then the rules for type (2) and (3) remove one

binding and add 1 or 2, but leave the sum invariant. Hence, by induction, and since the start we have
g(H) = 2m, exactly 2m bindings are created. It is also easy to see that every number will be generated.

Now we calculate the sum of the (lbeta)-reductions: Case (1) does not require (lbeta)-reductions,
case (3) can only occur 2m − 1 times (since there are no more generated hi-bindings), case (2a) can
also only occur 2m − 1 times (since it results in case (3)), and case (2b) can occur 2m times (i.e.
once for each binding hi). This results in 3 ∗ 2m − 2 (lbeta)-reductions for decompressing the Peano-
number. Summing up the essential reductions for decompressing the Peano-number, for unfolding the
definition of f , and for evaluating letrec Env in (id1 . . . id2m+1) (Lemma B.1) yields rlnA(t2m) =
3 ∗ 2m − 2 + 2 ∗ (2m + 1) + ((2m + 1)− 1) = 6 ∗ 2m.

However, by Lemma B.1 rlnall(t2m) ≥ c∗22∗m = c∗(2m)2 for some constant c, and size(t2m) = d∗
m for some constant d. Since for all positive integers k, (2m)2 is asymptotically larger than mk∗2m, the
translation from LR with measure rlnA(·) into LR with measure rlnall(·) is not resource-preserving.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 33

C Diagrams for pcgE and pcg

C.1 Diagrams for pcgE

letrec E1, E2

in (letrec E′1
in r)

T,pcgE //

no,llet−in

��

letrec

E1, E2

in rα

letrec

E1, E2, E
′
1

in r

T,pcgE

==

letrec E1, E2

in (

(
letrec E′1
in r

)
u)

T,pcgE //

no,lapp

��

letrec

E1, E2

in (rα u)

letrec E1, E2,

in

(
letrec E′1
in (r u)

)
T,pcgE

99

letrec

x = (letrec E′1 in r),
E1, E2

in s

T,pcgE //

no,llet−e

��

letrec

x = rα,
E1, E2

in s

letrec x = r, E′1, E1, E2

in s

T,pcgE

::

(a) Typical cases for diagram (6)

letrec x = (letrec E in r), E1

x′ = (letrec E′ in r′), E′1 E2

in R−[x]

no,llet−e
��

T,pcgE // letrec x = (letrec E in r), E1, E2α
in R−[x]α

no,llet−e

��
letrec x = r, E,E1

x′ = (letrec E′ in r′), E′1, E2

in R−[x]
C,llet

//
letrec x = r, E,E1

x′ = r′, E′, E′1, E2

in R−[x]
T,pcgE

// letrec x = r, E,E1, E2α
in R−[x]α

(b) Typical case for diagram (7)

letrec x = v, z = R−[x], E1,
x′ = v′, z′ = R−[x′], E′1, E2

in R−0 [z]

no,cp−e
��

T,pcgE // letrec x = v, z = R−[x], E1, E2α
in R−0 [z]α

no,cp−e

��
letrec x = v, z = R−[v], E1,

x′ = v′, z′ = R−[x′], E′1, E2

in R−0 [z]
C,cp
//
letrec x = v, z = R−[v], E1,

x′ = v′, z′ = R−[v′], E′1, E2

in R−0 [z]
T,pcgE

// letrec x = v, z = R−[v], E1, E2α
in R−0 [z]α

(c) Typical case for diagram (8)

R[seq (c (letrec E1, E
′
1 in r)) s]

T,pcgE //

no,seq

��

R[seq (c (letrec E1 in rα)) s]

no,seq

ss
R[s]

(d) Typical case for diagram (9)

Fig. 15: Typical cases for the diagrams for (pcgE)

Inspecting all overlappings of a normal order reduction step and a (pcgE)-transformation shows
that all overlappings between a normal order reduction step and a (T ,pcgE)-transformation can be
closed by one of the diagrams shown in Figs. 7.

Diagram (5) describes the case of a non-critical overlap where the steps can be commuted. Dia-
gram (6) covers the case, where a letrec-expression which is part of an (no,lll)-redex is removed by
(pcgE), i.e. three typical cases are shown in Fig. 15a

Diagram(7) covers the cases where a binding environment is removed which includes a letrec-
expression which is a duplicate of a letrec-expression that is part of a (no,llet)-redex is removed (pcgE).
A typical case is is in Fig. 15b.

Diagram (8) covers the case where the normal order reduction modifies parts of a letrec-
environment which is a duplicate used by the (pcgE)-transformation. A typical case is in Fig. 15c.

34 D. Sabel and M. Schmidt-Schauß

letrec x = (y u),
y = λz.(letrec E in s), E

in x

no,cp

��

T,pcgE // letrec x = (y u), y = λz.s, E
in x

no,cp

��
letrec x = (λz.(letrec E in s) u)

y = λz.(letrec E in s), E
in x

T,pcgE,T,pcgE
//
letrec x = (λz.s u),

y = λz.s, E
in x

(a) Typical case for diagram (10)

letrec x = c s1 s2,
x′ = c s1 s2

in case x of c y1 y2 -> t

no,case

��

T,pcgE // letrec x = c s1 s2,
in case x of c y1 y2 -> t

no,case

��
letrec x = c w1 w2, w1 = s1, w2 = s2,

x′ = c s1 s2
in letrec y1 = w1, y2 = w2 in t

T,abs
//
letrec x = c w1 w2, w1 = s1, w2 = s2,

x′ = c w′1 w
′
2, w

′
1 = s1, w

′
2 = s2

in letrec y1 = w1, y2 = w2 in t
T,cpgE

// letrec x = c w1 w2, w1 = s1, w2 = s2,
in letrec y1 = w1, y2 = w2 in t

(b) Typical case for diagram (11)

letrec

x = case y of

c z1 z2 → t,
x′ = case y of

c z′1 z
′
2 → t′,

y = c s1 s2
in x

no,case

��

T,pcgE //

letrec

x = case y of

c z1 z2 → t,
y = c s1 s2
in x

no,case

��letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = case y of

c z′1 z
′
2 → t′,

y = c w1 w2,
w1 = s1,
w2 = s2
in x

C,case
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = letrec

z′1 = w′1,
z′2 = w′2
in t′,

y = c w′1 w
′
2,

w′1 = w1,
w′2 = w2,
w1 = s1,
w2 = s2
in x

C,cpx,∗,C,gc,∗
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = letrec

z′1 = w1,
z′2 = w2

in t′,
y = c w1 w2,
w1 = s1,
w2 = s2
in x

T,cpgE
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
y = c w1 w2,
w1 = s1,
w2 = s2
in x

(c) Typical case for diagram (12)

Fig. 16: Typical cases for the diagrams for (pcgE), cont’d.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 35

Diagram (9) covers the case where the (pcgE)-redex is removed by the normal order reduction, an
example is given in Fig. 15d. Diagram (10) covers the case where the (pcgE)-redex is copied by the
normal order reduction, an example is given in Fig. 16a.

The seventh diagram (11) covers the case where the environment shared by (pcgE) contains a
constructor application used by (no,case) reduction. An example is given in Fig. 16b.

The seventh diagram (12) covers the case where the redex of a (no,case) is shared by (pcgE). An
example is given in Fig. 16c.

C.2 Diagrams for pcg

letrec z = r′′, x = λx′.r′′ in (x u)
T,pcg //

no,cp ��

letrec z = r′′, x = λx′.z in (x u)

no,cp��
letrec z = r′′, x = λx′.r′′

in ((λx′.r′′) u)

no,lbeta ��

letrec z = r′′, x = λx′.z
in ((λx′.z) u)

no,lbeta��
letrec z = r′′, x = λx′.r′′

in (letrec x′ = u in r′′) T,pcg
// letrec z = r′′, x = λx′.z
in (letrec x′ = u in r′′) T,pcg

// letrec z = r′′, x = λx′.z
in (letrec x′ = u in z)

(a) Typical case for diagram (14)

letrec z = r′′, x = λx′.r′′ in (seq x u)
T,pcg //

no,cp ��

letrec z = r′′, x = λx′.z in (seq x u)

no,cp��
letrec z = r′′, x = λx′.r′′

in (seq (λx′.r′′) u)

no,seq ��

letrec z = r′′, x = λx′.z
in (seq (λx′.z) u)

no,seq��
letrec z = r′′, x = λx′.r′′

in u T,pcg
// letrec z = r′′, x = λx′.z
in u

letrec z = r′′, x = λx′.z
in u

(b) Typical case for diagram (14) with seq

letrec z = x u, x = λx′.r
in (x u)

T,pcg //

no,cp ��

letrec z = x u, x = λx′.r in z

no,cp��
letrec z = x u, x = λx′.r
in ((λx′.r) u)

no,lbeta
��

letrec z = ((λx′.r) u), x = λx′.r
in z

no,lbeta��

letrec z = x u, x = λx′.r
in (letrec x′ = u in r) C,cp;C,lbeta

//
letrec z = (letrec x′ = u in r),

x = λx′.r
in (letrec x′ = u in r)

T,pcg
//
letrec z = (letrec x′ = u in r),

x = λx′.r
in z

(c) Typical case for diagram (15)

letrec z = seq x u, x = λx′.r
in (seq x u)

T,pcg //

no,cp ��

letrec z = seq x u, x = λx′.r in z

no,cp��
letrec z = seq x u, x = λx′.r
in (seq (λx′.r) u)

no,seq

��

letrec z = (seq (λx′.r) u), x = λx′.r
in z

no,seq��

letrec z = seq x u, x = λx′.r
in u C,cp;C,seq

//
letrec z = u,

x = λx′.r
in u

T,pcg
//
letrec z = u,

x = λx′.r
in z

(d) Typical case for diagram (15) with (seq)

We inspect the overlappings between normal-order reduction steps and top-context-applications of
(pcg). Some easy cases (which need not be treated by a diagram) are the following:

36 D. Sabel and M. Schmidt-Schauß

letrec x = (r u) in C[(r u)]
pcg //

no,lbeta
��

letrec x = (r u) in C[x]

no,lbeta
��

letrec x = (r u)
in C[(letrec y = u in r′)] C,lbeta

//
letrec x =
(letrec y = u in r′)
in C[(letrec y = u in r′)]

T,pcg
// letrec x = (letrec y = u in r′)
in C[x]

letrec x = r
in C[r]

T,pcg //

no,a ��

letrec x = r
in C[x]

no,a��
letrec x = r
in C[r′] C,a,∗

// letrec x = r′

in C[r′] T,pcg
// letrec x = r′

in C[x]

letrec x = r
in M [x, r]

T,pcg //

no,a ��

letrec x = r
in M [x, x]

no,a��
letrec x = r′

in M [x, r] C,a,∗
// letrec x = r′

in M [x, r′] T,pcg
// letrec x = r′

in M [x, x]

(a) Typical cases for diagram (16)

R[seq (c C[r]) s]

no,seq ��

T,pcg // R[seq (c C[x]) s]

no,seqss
R[s]

(b) Typical case is for diagram (17)

letrec

x = (letrec E1 in s2)
in M [x, (letrec E1 in s2)]

T,pcg //

no,llet
��

letrec

x = (letrec E1 in s2)
in M [x, x]

no,llet
��

letrec

E1, x = s2
in M [x, (letrec E1 in s2)]

T,pcgE
//
letrec

E1, x = s2
in M [x, s2]

T,pcg
//
letrec

E1, x = s2
in M [x, x]

(c) Typical case for diagram (18)

letrec x = (c s1 s2)
in C[case (c s1 s2) of

(c z1 z2) -> r[z1, z2]]

T,pcg //

no,case ��

letrec x = (c s1 s2)
in C[case x of

(c z1 z2) -> r[z1, z2]]

no,case��
letrec x = c s1 s2 in

C[letrec
y1 = s1, y2 = s2

in r[y1, y2]]

C,lll,∗
//
letrec x = c s1 s2,
y1 = s1, y2 = s2

in C[r[y1, y2]]
T,pcg,pcg

//
letrec x = c y1 y2,
y1 = s1, y2 = s2

in C[r[y1, y2]]

letrec x = c y1 y2,
y1 = s1, y2 = s2

in C[letrec z1 = y1, z2 = y2
in r[z1, z2]]

C,cpx,cpx,gc
oo

(d) Typical case for diagram (19)

letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c s1 s2)

in R−[case y of

(c z1 z2) -> r[z1, z2]]

T,pcg //

no,case

��

letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c s1 s2)

in R−[x]

no,case

��
letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c u1 u2),
u1 = s1, u2 = s2

in R−[letrec z1 = u1, z2 = u2

in r[z1, z2]]

S,case
//

letrec x = (letrec
z1 = u′1, z2 = u′2
in r[z1, z2])

y = (c u′1 u
′
2),

u′1 = u1, u
′
2 = u2,

u1 = s1, u2 = s2
in R−[letrec

z1 = u1, z2 = u2

in r[z1, z2]]

T,cpx,∗,gc,∗
//

letrec x = (letrec
z1 = u1, z2 = u2

in r[z1, z2])
y = (c u1 u2),
u1 = s1, u2 = s2

in R−[letrec
z1 = u1, z2 = u2

in r[z1, z2]]

T,pcg
//

letrec x =
(letrec z1 = u1, z2 = u2

in r[z1, z2]),
u1 = s1, u2 = s2,
x = (c u1 u2)

in R−[x]

(e) Typical case for diagram (20)

Fig. 18: Typical cases for the diagrams for (pcg), cont’d.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 37

– The (T ,pcg)-transformation is also an inverse (C,cp) or an inverse (C,cpx) transformation. Ex-

amples are letrec x = λy.y in (λy′.y′) (λz.z)
T,pcg−−−→ letrec x = λy.y in x (λz.z) and

letrec x = λy.y, x = y, z = y in r
T,pcg−−−→ letrec x = λy.y, x = y, z = x in r.

– The normal order reduction step is a (no,cp)-reduction and leads to a WHNF, e.g. letrec x =

λy.y, z = λy.y in x
no,cp−−−→ letrec x = λy.y, z = λy.y in λy.y

For the remaining cases at least one of the diagrams shown in Figs. 8 is applicable.
We explain the diagrams in Fig. 8 and gives exemplary instances of the diagrams:
Diagram (13) describes the case where the reductions can be commuted. Diagrams (14) and (15)

cover the cases where a (no,cp)-reduction is followed by a (no,lbeta)-reduction, and the shared expres-
sion is inside the copied expression. Typical cases for the second and third diagram are in Figs. 17a
and 17c.

Diagram (16) describes the cases where the normal order reduction modifies the subexpression
which occurs twice and is shared by the (cpg)-transformation. Three prototypical expressions and
overlappings for diagram (16) are show in Fig. 18a

Diagram(17) covers the case, that the duplicated expression is inside the first argument of seq or
in an unused alternative of a case-expression. A typical case is given in Fig. 18b.

Diagram (18) covers the case that the duplicated subexpression is a letrec-expression which is
deconstructed by an (no, llet)-reduction. A typical case is given in Fig. 18c. Diagram (19) covers the
case that the scrutinee of a case-expression is one of the duplicated expressions. A typical case is
given in Fig. 18d.

D Further Estimations

Lemma D.1. Let s be a closed expression with s↓. Then rlnall(s) is in O(rlnA(s)2 ∗ size(s))

Proof. Suppose s
no,∗−−→ sn where sn is a WHNF, and let si be the intermediate expressions.

For every (cp)-reduction in this sequence exactly one of the following statements holds:

– The (cp)-reduction is the last reduction in the sequence.
– The (cp)-reduction is followed by a (seq)-reduction (which removes the copied abstraction)
– The (cp)-reduction is followed by an (lbeta)-reduction (which uses the copied abstraction in func-

tion position)

Let us conflate these reductions, i.e. we write (cpseq) for a (cp)-reduction followed by (seq), (cplbeta)
for a (cp)-reduction followed by (lbeta), and (cpWHNF) for a (cp)-reduction as a last reduction in a
normal order reduction to a WHNF.

Let sizeLR be the size of an expression, where we do not count the x = y-bindings, i.e. sizeLR(s) =
size(s)− indirections(s), where indirections(s) is the number of letrec-bindings x = y in s where y
is a variable.

Then all the reduction rules of LR with the exception of (cplbeta) and (cpWHNF) do not increase
the sizeLR, and the reduction rules (case), (seq), and (cpseq) strictly decrease sizeLR. The (llet)-
rules strictly decrease sizeLR.
Let sumdepthLR, be the sum of the depth of all letrec-symbols. The (lapp)-, (lcase)-, and (lseq)-
reductions do not change sizeLR, but they decrease sumdepthLR, The only rules that increases this
size measure is: (cplbeta) by sizeLR(si) ∗ sizeLR(s).

We make a rough estimation: sizeLR(sn) ≤ (rlnA(s) + 1) ∗ (size(s) + 1). Thus sumdepthLR(si) ≤
(rlnA(s) + 1)2 ∗ (size(s) + 1).

Now we are ready to compute an upper bound for rlnall(s) using rlnA: there are at most
(rlnA(s) + 1) (cp)-reductions, at most (rlnA(s) + 1) ∗ (size(s) + 1) (llet)-reductions, and at most
(rlnA(s) + 1)2 ∗ (size(s) + 1) (lapp)-, (lcase)-, and (lseq)-reductions. Hence rlnall(s) ≤ rlnA(s) +
(rlnA(s) + 1) + (rlnA(s) + 1) ∗ (size(s) + 1) + (rlnA(s) + 1)2 ∗ (size(s) + 1) Hence rlnall(s) is in
O(rlnA(s)2 ∗ size(s)) ut

38 D. Sabel and M. Schmidt-Schauß

E Properties of the Polymorphic Type System

Some properties are described and proved and the expressive power is analyzed.
First some remarks

– The convention that bound type variables are different, is a necessary requirement that the type
system works correct. Consider the expression

Λa.λx::a.letrec z::λb.b→ b = (Λa.λx :: a.case True of (True ->x); (True -> y)) in z

This expression passes the type check, since variables x, y have the same type. However, a renaming
of the type variables will produce

Λa.λx::a.letrec z::λb.b→ b = (Λa′.λx :: a′.case True of (True ->x); (True -> y)) in z

which does not pass the type check, since now x, y have different types. Clearly both expressions
are not correct. Thus, for the type check it is necessary that bound type variables are all different.

– The syntactic type system is monomorphic, which means that every subexpression has exactly one
type (up to variable renaming).

– There is a bot-expression of every polymorphic type: The expressions is letrec x::ρ = x in x. This
expressions is permitted due to our syntax, its type is also ρ, a and it does not normal-order reduce.
Note that this expression has a polymorphic type without a Λ. Let us make this more concrete. Con-
sider (letrec x::λa.a = x in x) Bool. Then this expression permits a normal order reduction step
resulting in (letrec x::λa.a = x in (x Bool); and then there is no further normal order reduction.
There is no possibility to reduce it to (letrec x::Bool = x in x, since there is no Λ. However, the
program translation (letrec x::λa.ρ = C[(x Bool)] in C ′[(x Bool)] → (letrec x::ρ[Bool/a] =
C[x] in C ′[x] appears to be correct.

Proposition E.1. Normal-order reduction in LRP does not produce type errors. More rigorously: if

s :: ρ, and s
LRP−−−→ s′, then s′ :: ρ′. This also holds for the main reduction rules in any context, and for

the extra reduction rules.

Proof. The proof for the first part consists of checking for all reduction rules that the type remains
unchanged (up to renaming of type variables). We make this explicit only for a selection of the
reduction rules.

– The (Tbeta) rule is ((Λa.u) τ)→ u[τ/a]. If the type of u is ρ, then the type of ((Λa.u) τ) is ρ[τ/a].
The type computation of u[τ/a] will also compute the type ρ[τ/a], provided the distinct variable
convention holds for the expression.

– The (llet-e)-rule is letrec Env1, x = (letrec Env2 in t)sub in r→ letrec Env1,Env2, x = t in r.
Since there is type scoping in the binding (letrec Env2 in t), the computed types for both ex-
pressions are identical.

Checking all the extra transformation rules is also an easy scan. Only two issues have to be noted:
Freshly introduced variable must have a type such that the new expression remains well-typed; and
the expressions before the transformation must satisfy the distinct variable convention for expression
variables and for type variables.

The translation ε : LRP→ LR removes all types and type information. We also use it for reduction
sequences, where only the reduction (Tbeta) is eliminated.

We show relation between the two notions of normal-order reductions:

Proposition E.2. Let s, s′ be LRP-expression.

1. If s
LRP,a−−−−→ s′, then either ε(s) = ε(s′)if a = (Tbeta) or s

LR,a−−−→ s′ for all other reductions a.

Improvements in a Functional Core Language with Call-By-Need Operational Semantics 39

2. If ε(s)
LR,a−−−→ ε(s′), then s

LRP,T beta,∗−−−−−−−−→ LRP,a−−−−→ LRP,T beta,∗−−−−−−−−→ s′.

Proof. Part (1) is immediate, since the mapping ε leads to the same reduction if a 6= (Tbeta), and
in the case a = (Tbeta), the LR-expressions are the same. Note that the restriction to polymorphic
abstractions is required for this argument, since then the copied polymorphic abstractions in (cp) are
mapped to abstractions.
For Part (2) the syntactic restrictions have to be checked. Since abstractions are monomorphic, it is
not possible to construct an expressions ((λx.s) τ), and since Λa.s requires s to be an abstraction or
a polymorphic abstraction bindings x = λx.s in LR can only stem from x = r, where in case there
is no normal-order (Tbeta)-reduction possible for r, the expressions r is a polymorphic abstraction.
Hence it can also be copied. We have to check the expressions of the form (r τ), if these cannot be
further normal-order reduced. r can only be a polymorphic expression of a ρ-type: If it is a Λa.r′,
or a letrec then a reduction is possible. If it is a variable, then a cp-reduction has to be done before
it can be reduced. It can also not be a seq-expression, a case-expression, an application where the
right expression is not a type, nor a constructor expression. Hence we have checked all cases. Thus
the claimed form of the LRP-reduction is valid.

Proposition E.3. Let s be an LRP-expression. Then s ↓LRP ⇐⇒ ε(s) ↓LR

Proof. This follows from the previous proposition and the fact that the WHNFs correspond.

	Improvements in a Functional Core Language with Call-By-Need Operational Semantics

