
Sharing Decorations for Improvements in a Functional Core
Language with Call-By-Need Operational Semantics

Manfred Schmidt-Schauß and David Sabel

Goethe-University, Frankfurt, Germany

Technical Report Frank-56

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

Revision V2 from December 1, 20151

Abstract. The calculus LRP is a polymorphically typed call-by-need lambda calculus extended by data
constructors, case-expressions, seq-expressions and type abstraction and type application. This report is
devoted to the extension LRPw of LRP by scoped sharing decorations. The extension cannot be properly
encoded into LRP if improvements are defined w.r.t. the number of lbeta, case, and seq-reductions, which
makes it necessary to reconsider the claims and proofs of properties. We show correctness of improvement
properties of reduction and transformation rules and also of computation rules for decorations in the
extended calculus LRPw. We conjecture that conservativity of the embedding of LRP in LRPw holds.

1 Introduction

In this technical report we consider improvements in the polymorphically typed, extended call-by-need
functional language LRP and its extension by shared-worked decorations LRPw. Since it is known that
the extension cannot be encoded in LRP (see Proposition 3.12), it is necessary to reconsider the claims
and proofs of properties. The goal of the report is to show that known improvement laws for LRP
also hold in the extended calculus LRPw, that a context lemma for improvement holds in LRPw and
that several computation rules which simplify the reasoning with decorated expressions are invariant
w.r.t. the improvement relation. The results of this report allow to use shared work decorations as a
reasoning tool, e.g. for proving improvement laws on list-processing expressions and functions.

For reasoning on the correctness of program transformations, a notion of program semantics is
required. We adopt the well-known and natural notion of contextual equivalence for our investigations:
Contextual equivalence identifies two programs as equal if exchanging one program by the other
program in any surrounding larger program (the so-called context) is not observable. Due to the
quantification over all contexts it is sufficient to only observe the termination behavior of the programs,
since e.g. different values like True and False can be distinguished by plugging them into a context C
s.t. C[True] terminates while C[False] diverges. A program transformation is correct if it preserves the
semantics, i.e. it preserves contextual equivalence. For reasoning whether program transformation are
also optimizations, i.e. so-called improvements, we adopt the improvement theory originally invented
by Moran and Sands [2], but slightly modified and adapted in [7] for the calculus LR. The calculus
LR [11] is an untyped call-by-need lambda calculus extended by data-constructors, case-expressions,
seq-expressions, and letrec-expressions. This calculus e.g. models the (untyped) core language of
Haskell. In [11] the calculus LR was introduced and analyzed in the setting of a strictness analysis using
abstract reduction where also several results on the reduction length w.r.t. program transformation

1 This version is a revision of Version V1 from September 7, 2015

2 M. Schmidt-Schauß and D. Sabel

were proved. The calculus LRP is the polymorphically typed variant of LR. Typing in LRP is by let-
polymorphism [3, 4, 1, 12]. Polymorphism is made explicit in the syntax and there are also reduction
rules for computing the specific types of functions. The type erasure of reduction sequences exactly
leads to the untyped reduction sequences in LR, so that the untyped and typed calculus are compatible.
The transfer of the results on improvement in LR to LRP is straightforward and can be found in [8].

In [2] a tick-algebra was introduced to prove correctness of improvement laws in a modular way.
A tick Xn can be attached to an expression to add a fixed amount of work to the expression (i.e.
n execution steps). Several laws for computing with ticks are formulated and proved correct. In this
paper we introduce the calculus LRPw which extends LRP in a similar way, where ticks are called
decorations, but they are extended to a formalism that can express work which is shared between
several subexpressions, which makes reasoning more comfortable and also more exact. In LRPw there
are the two new (compared to LRP) constructs: Bindings of the form a := n and decorations of the
form s[a]. Here s[a] means that the work expressed by the binding for a (i.e. n essential steps, if the
binding is a := n) has to be done before the expression s can be further evaluated. If decoration
a occurs at several subexpression, then the work is shared between the subexpressions (and thus at
most performed once). The bindings a := n occur in usual letrec-expressions and thus also define the
scope of the sharing, and a notion of α-equivalence w.r.t. the labels a. This makes a formal treatment
possible. As shorthand notation we will use the notation s[a7→n] for shared work. However, this notation
is imprecise and requires a definition of its semantics in the calculus LRPw (to fix the scoping of a).

As an example for the usefulness of shared-work decoration, consider the expression
let from x = x : (from (x + 1)) in from (2 ∗ 21) which generates an infinite list of numbers
[42, 43, . . .]. For simplicity in this example we assume a work amount of 1 for arith-
metic operations. The work for computing the product (2*21) is shared between all
list elements, which can be expressed by our decorations: we can rewrite this list as
(42[a7→1]: let from x = x : (from (x + 1)) in from (43[1,a7→1])[a

′ 7→1] which exactly shows that there is
shared work between the head and the tail of the list. Clearly, this can be iterated for further partial
evaluation of the tail. Moreover, since we provide computation rules for the shared decorations, we can
further compute with the decorations. Using the tick-notation of [2] such exact computations seem to
be impossible.

We develop the improvement theory in the calculus LRPw and prove correctness and result w.r.t.
improvement for the reduction rules and for several other program transformations. We develop com-
putation rules for the shared-work decoration and proof their soundness.

Outline. Section 2 introduces the different calculi LRP and LRPw, and transfers the basic defini-
tions, lemmas and correctness proofs of program transformations from LRP to LRPw. Section 3 defines
the work decorations and proves a theorem that provides several computation rules for work decora-
tions. Section 4 contains a proof that an improvement simulation on lists is correct for improvement
and can be used as a tool. Some lengthy proofs can be found in the appendix.

2 The Polymorphically Typed Lazy Lambda Calculus LRPw

The extended call-by-need lambda calculus LRP (see e.g. [9, 6]), is a polymorphically typed variant of
the calculus LR [11].

The calculus LRPw extends the calculus LRP by shared work decorations, where the decoration of
the shared position is explicitely represented by two new constructs: There are new letrec-bindings
ai := ni meaning that a work load of n essential reduction steps is associated with label a where the
shared position is the top of the letrec-expression, the construct s[a] means that before expression s
can be evaluated the work associated with label a has to be evaluated.

Let K be a fixed set of type constructors, s.t. every K ∈ K has an arity ar(K) ≥ 0 and an
associated finite, non-empty setDK of data constructors, s.t. every cK,i ∈ DK has an arity ar(cK,i) ≥ 0.
We assume that K includes type constructors for lists, pairs and Booleans together with the data
constructors Nil and Cons, where we often use the Haskell notation of an infix colon; pairs as mixfix
brackets, and the constants True and False.

Sharing Decorations for Improvements 3

Variables: We assume type variables a, ai ∈ TVar and term variables x, xi ∈ Var

Labels: We assume label names a, b, ai, bi used for sharing work.

Types: Types Typ and polymorphic types PTyp are generated by the following grammar:

τ ∈ Typ ::= a | (τ1 → τ2) | K τ1 . . . τar(K)

ρ ∈ PTyp ::= τ | λa.ρ

Expressions: Expression ExprF , patterns patK,i, and polymorphic abstractions PExprF are generated by the follow-
ing grammar:

s, t ∈ ExprF ::= u | x :: ρ | (s τ) | (s t) | (seq s t) | (letrec Bind1, . . . ,Bindn in t)

| (s[a])
| (cK,i :: τ s1 . . . sar(cK,i)) | (caseK s (patK,1 -> t1) . . . (patK,|DK | -> t|DK |))

patK,i ::= (cK,i :: τ x1 :: τ1 . . . xar(cK,i) :: τar(cK,i))

Bind i ::= xi :: ρi = s1 | ai := ni where ai is a label and ni is a nonnegative integer

u ∈ PExprF ::= Λa1.Λak.λx :: τ.s

Typing rules:

u :: ρ

Λa.u :: λa.ρ

s :: τ1 pat i :: τ1 ti :: τ2

(caseK s (pat1 -> t1) . . . (pat |DK | -> t|DK])) :: τ2

s :: τ2

(λx :: τ1.s) :: τ1 → τ2

s :: λa.ρ

(s τ) :: ρ[τ/a]

s :: τ1 → τ2 t :: τ1

(s t) :: τ2

s1 :: ρ1 . . . sn :: ρn t :: ρ

(letrec a1 := n1, . . . , am := nm, x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t) :: ρ

s :: τ t :: τ ′

(seq s t) :: τ ′

s1 :: τ1, . . . , sar(c) :: τar(c) τ = τ1 → . . .→ τar(c) → τar(c)+1

type(c) = λa1, . . . , am.τ
′′ ∃τ ′1, . . . , τ ′m : τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c :: τ s1 . . . sar(c)) :: τar(c)+1

Labeling algorithm: Labeling of s starts with stop. The rules from below are applied until no more labeling is possible
or until a fail occurs, where a ∨ b means label a or label b.

(s t)sub∨top → (ssub t)vis

(letrec Env in s)top → (letrec Env in ssub)vis

(letrec x = s,Env in C[xsub]) → (letrec x = ssub,Env in C[xvis])

(letrec x = s, y = C[xsub],Env in t) → (letrec x = ssub, y = C[xvis],Env in t), if C 6= [·]
(letrec x = s, y = xsub,Env in t) → (letrec x = ssub, y = xnontarg,Env in t)

(seq s t)sub∨top → (seq ssub t)vis

(caseK s alts)sub∨top → (caseK ssub alts)vis

letrec x = svis∨nontarg, y = C[xsub] . . . → Fail

letrec x = C[xsub],Env in t → Fail

Fig. 1. Syntax of expressions and types, typing rules, and rules for labeling

4 M. Schmidt-Schauß and D. Sabel

The syntax of expressions and types of LRPw is defined in Fig. 1, where we assume that variables
have a fixed type, written as x :: ρ. The calculus LRPw extends the lambda-calculus by recursive let-
expressions, data constructors, case-expressions (for every type constructor K), seq-expressions and
by type abstractions Λa.s and type applications (s τ) in order to express polymorphic functions and
type instantiation, and by the shared work-decorations a := n and [a]. Polymorphically typed variables
are only permitted for usual bindings of let-environments; at other places, the language is monomorphic
where the concrete types can be computed through type reductions. For example, the identity can be
written as Λa.λx :: a.x, and an application to the constant True is written (Λa.λx :: a.x) Bool True.
The reduction is (Λa.λx :: a.x) Bool True → (λx :: Bool.x) True → (letrec x = True in x). An
expression s is well-typed with type τ (polymorphic type ρ, resp.), written as s :: τ (or s :: ρ, resp.), if
s can be typed with the typing rules in Fig. 1 with type τ (ρ, resp.).

The calculus LR [11] is the untyped variant of LRPw (without shared work-decorations), where
types and type-reduction are removed. In the following we often ignore the types and omit the types
at variables and also sometimes omit the type reductions. We use some abbreviations: We write
λx1, . . . , xn.s instead of λx1.λxn.s. A letrec-environment (or a part of it) is abbreviated by Env ,
and with {xg(i) = sf(i)}mi=j we abbreviate the bindings xg(j) = sf(j), . . . , xg(m) = sg(m). We write
if s then t1 else t2 instead of caseBool s (True -> t1) (False -> t2). Alternatives of case-expressions
are abbreviated by alts. Constructor applications (cK,i s1 . . . sar(cK,i)) are abbreviated using vector
notation, omitting the index as c−→s .

We use FV (s) and BV (s) to denote the free and bound variables of an expression s, and FN (s)
and BN (s) to denote the free and bound label-names of an expression s. An expression s is closed iff
FV (s) = ∅ and FN (s) = ∅. In an environment Env = {xi = ti}ni=1, we define LV (Env) = {x1, . . . , xn}.

A value is an abstraction λx.s, a type abstraction Λa1. . . . Λan.λx.s, or a constructor application
c−→s .

A context C is an expression with exactly one hole [·] at expression position. The reduction rules of
the calculus are in Fig. 2. The operational semantics of LRPw is defined by the normal order reduction
strategy which is a call-by-need strategy, i.e. a call-by-name strategy adapted to sharing. The labeling
algorithm shown in Fig. 1 is used to detect the position to which a reduction rule is applied according
to normal order, and the labelings in the expressions in Fig 2 indicate the exact place and positions of
the expressions and subexpressions involved in the reduction step. It uses the labels: top,sub,vis,nontarg
where top means reduction of the top term, sub means reduction of a subterm, vis marks already visited
subexpressions, and nontarg marks already visited variables that are not target of a (cp)-reduction.
Note that the labeling algorithm does not descend into sub-labeled letrec-expressions. The rules of
the labeling algorithm are in Fig. 1. If the labeling algorithm terminates, then we say the termination
is successful, and a potential normal order redex is found, which can only be the direct superterm
of the sub-marked subexpression. It is possible that there is no normal order reduction: in this case
either the evaluation is already finished, or it is a dynamically detected error (like a type-error), or
the labeling fails.

Definition 2.1. Let t be an expression. Then a normal order reduction step t
LRPw−−−−→ t′ is defined by

first applying the labeling algorithm to t, and if the labeling algorithm terminates successfully, then one
of the rules in Fig. 2 has to be applied resulting in t′, if possible, where the labels sub, vis must match
the labels in the expression t.

A weak head normal form (WHNF) is a value v, or an expression letrec Env in v, where v is a
value, or an expression letrec x1 = c

−→
t , {xi = xi−1}mi=2,Env in xm.

An expression s converges, denoted as s↓LRPw, iff there is a normal-order reduction s
LRPw,∗−−−−−→ s′,

where s′ is a WHNF. This may also be denoted as s ↓LRPw s′. If not s↓, we write s↑. With ⊥ we
denote a diverging, closed expression.

Note that there are diverging expressions of any type, for example letrec x :: ρ = x in x.

The calculus LRP is the subcalculus of LRPw which does not have the syntactic constructs a := n

Sharing Decorations for Improvements 5

(lbeta) C[((λx.s)sub r)]→ C[letrec x = r in s]

(Tbeta) ((Λa.u)sub τ)→ u[τ/a]

(cp-in) letrec x1 = vsub, {xi = xi−1}mi=2,Env in C[xvism]→ letrec x1 = v, {xi = xi−1}mi=2,Env in C[v]
where v is a polymorphic abstraction

(cp-e) letrec x1 = vsub, {xi = xi−1}mi=2,Env , y = C[xvism] in r
→ letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[v] in r where v is a polymorphic abstraction

(llet-in) (letrec Env1 in (letrec Env2 in r)sub)→ (letrec Env1,Env2 in r)

(llet-e) letrec Env1, x = (letrec Env2 in t)sub in r → letrec Env1,Env2, x = t in r

(lapp) C[((letrec Env in t)sub s)]→ C[(letrec Env in (t s))]

(lcase) C[(caseK (letrec Env in t)sub alts)]→ C[(letrec Env in (caseK t alts))]

(seq-c) C[(seq vsub t)]→ C[t] if v is a value

(seq-in) (letrec x1 = (c−→s)sub, {xi = xi−1}mi=2,Env in C[(seq xvism t)])→ (letrec x1 = (c−→s), {xi = xi−1}mi=2,Env in C[t])

(seq-e) (letrec x1 = (c−→s)sub, {xi = xi−1}mi=2,Env , y = C[(seq xvism t)] in r)
→ (letrec x1 = (c−→s), {xi = xi−1}mi=2,Env , y = C[t] in r)

(lseq) C[(seq (letrec Env in s)sub t)]→ C[(letrec Env in (seq s t))]

(case-c) C[caseK (c
−→
t)sub . . . ((c−→y)→ t) . . .]→ C[letrec {yi = ti}ar(c)i=1 in t] if ar(c) ≥ 1

(case-c) C[(caseK csub . . . (c→ t) . . .)]→ C[t] if ar(c) = 0

(case-in) letrec x1 = (c
−→
t)sub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . ((c−→z)→ t) . . .]

→ letrec x1 = (c−→y), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,Env

in C[letrec {zi = yi}ar(c)i=1 in t] if ar(c) ≥ 1 and where yi are fresh variables

(case-in) letrec x1 = csub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . (c→ t) . . .]
→ letrec x1 = c, {xi = xi−1}mi=2,Env in C[t] if ar(c) = 0

(case-e) letrec x1=(c
−→
t)sub, {xi=xi−1}mi=2, u=C[caseK xvism . . . ((c−→z)→ r) . . .],Env in s

→ letrec x1=(c−→y), {yi=ti}ni=1, {xi=xi−1}mi=2, u=C[letrec {zi=yi}ni=1 in r],Env
in s where n = ar(c) ≥ 1 and yi are fresh variables

(case-e) letrec x1 = csub, {xi = xi−1}mi=2, u = C[caseK xvism . . . (c→ r1) . . .],Env in r2
→ letrec x1 = c, {xi = xi−1}mi=2, u = C[r1],Env in r2 if ar(c) = 0

(letwn-in) letrec Env , a := n, in C[(s[a])sub]→ letrec Env , a := n− 1 in C[s[a]] if n > 0

(letwn-e) letrec a := n, x = C[(s[a])sub],Env in r → letrec a := n− 1, x = C[s[a]],Env in r if n > 0

(letw0-in) letrec Env , a := 0, in C[(s[a])sub]→ letrec Env , a := 0 in C[s]

(letw0-e) letrec a := 0, x = C[(s[a])sub],Env in r → letrec a := 0, x = C[s],Env in r

Fig. 2. Reduction rules

and s[a], and the operational semantics of LRP does not have the reduction rules (letwn) and (letw0).
WHNFs are defined as in LRPw. Convergence ↓LRP is defined accordingly.

Lemma 2.2. For every LRPw-expression s which is also an LRP-expression (i.e. s has no decorations
and no a := n-construct): s ↓LRPw ⇐⇒ s ↓LRP.

Remark 2.3. The relation between the typed reduction in LRP and the untyped reduction in LR [11,
7] is that the removal of types and the reduction (Tbeta) results exactly in the untyped normal-order
reduction. This also holds for WHNFs and the convergence notions. An immediate consequence is that
the untyped contextual approximations and equivalences can be inherited to the typed LRP, since the
typed contexts are also untyped ones.

We define some special context classes:

Definition 2.4. A reduction context R is any context, such that its hole will be labeled with sub or
top by the labeling algorithm in Fig. 1. A weak reduction context, R−, is a reduction context, where
the hole is not within a letrec-expression. Surface contexts S are contexts where the hole is not in an
abstraction, top contexts T are surface contexts where the hole is not in an alternative of a case, and
weak top contexts are top contexts where the hole does not occur in a letrec. A context C is strict
iff C[⊥] ∼c ⊥.

6 M. Schmidt-Schauß and D. Sabel

(gc1) letrec {xi = si}ni=1,Env in t→ letrec Env in t, if for all i : xi 6∈ FV (t,Env)

(gc2) letrec x1 = s1, . . . , xn = sn in t→ t, if for all i : xi 6∈ FV (t)

(gcW1) letrec Env , a1 := n1, . . . , am := nm in s→ letrec Env in s, if labels a1, . . . , am do not occur in Env or t
(gcW2) letrec a1 := n1, . . . , am := nm in s→ s, if labels a1, . . . , am do not occur in t
(cpx-in) letrec x = y,Env in C[x]→ letrec x = y,Env in C[y], if y ∈Var , x 6= y

(cpx-e) letrec x=y, z=C[x],Env in t→ letrec x=y, z=C[y],Env in t, if y ∈Var , x 6= y

(cpax) letrec x = y,Env in s→ letrec x = y,Env [y/x] in s[y/x],
if y ∈ Var , x 6= y, y ∈ FV (s,Env)

(cpcx-in) letrec x = c
−→
t ,Env in C[x]→ letrec x = c−→y , {yi = ti}ar(c)i=1 ,Env in C[c−→y]

(cpcx-e) letrec x = c
−→
t , z = C[x],Env in t

→ letrec x = c−→y , {yi = ti}ar(c)i=1 , z = C[c−→y],Env in t

(abs) letrec x = c
−→
t ,Env in s→ letrec x = c−→x , {yi = ti}ar(c)i=1 ,Env in s

(abse) (c
−→
t)→ letrec {yi = ti}ar(c)i=1 in c−→x

(xch) letrec x = t, y = x,Env in r → letrec y = t, x = y,Env in r

(lwas) T [letrec Env in t]→ letrec Env in T [t]
if T is a weak top context with hole depth 1

(letsh1) letrec Env ,Env ′ in T [s]→ letrec Env ′ in T [(letrec Env in s)]

(letsh2) letrec Env ,Env ′, y = T [s] in r → letrec Env ′, y = T [(letrec Env in s)] in r

(letsh3) letrec Env in T [s]→ T [(letrec Env in s)]
where in the (letsh)-rules, the variables LV (Env) only occur in s,
and T is weak top context that does not bind the variables in Env .

(ucp1) letrec Env , x = t in S[x]→ letrec Env in S[t]

(ucp2) letrec Env , x = t, y = S[x] in r → letrec Env , y = S[t] in r

(ucp3) letrec x = t in S[x]→ S[t]
where in the (ucp)-rules, x 6∈ FV (S,Env , t, r) and S is a surface context

Fig. 3. Extra Transformation Rules

A program transformation P is binary relation on expressions. We write s
P−→ t, if (s, t) ∈ P . For

a set of contexts X and a transformation P , the transformation (X,P) is the closure of P w.r.t. the

contexts in P , i.e. s
X,P−−→ t iff there exists C ∈ X with C[s]

P−→ C[t].

Definition 2.5. We define several unions of the program transformations in Figs. 2 (ignoring the
labels) and 3: (case) is the union of (case-c), (case-in), (case-e); (seq) is the union of (seq-c), (seq-in),
(seq-e); (cp) is the union of (cp-in), (cp-e); (llet) is the union of (llet-in), (llet-e); (lll) is the union of
(lapp),(lcase),(lseq),(llet-in),(llet-e); (letwn) is the union of (letwn-in), (letwn-e); (letw0) is the union
of (letw0-in), (letw0-e); (letw) is the union of (letwn), (letw0); (gc) is the union of (gc1), (gc2); (cpx)
is the union of (cpx-in), (cpx-e); (cpcx) is the union of (cpcx-in), (cpcx-e); (letsh) is the union of
(letsh1), (letsh2), (letsh3), and (ucp) is the union of (ucp1), (ucp2), (ucp3).

2.1 Improvement in LRP and LRPw

The main measure for estimating the time consumption of computation in this paper is a measure
counting essential reduction steps in the normal-order reduction of expressions. We omit the type
reductions in this measure, since these are always terminating and usually can be omitted after com-
pilation. See [9] for more detailed explanations.

We define the essential reduction length for both calculi, where we allow some freedom in which
reduction rules (as a subset of {lbeta, case, seq, letwn}) should be seen as essential. Clearly, we require
that letwn-reductions are always counted (since they should represent work). We also require that
(lbeta)-reductions are always counted, since there are expressions which have no (case)- or (seq)-
reductions but an unbounded number of (lbeta)-reductions (see [8]).

Definition 2.6. Let A = {lbeta, case, seq, letwn}, Amin = {letwn, lbeta} and Amin ⊆ A ⊆ A. Let
L ∈ {LRP,LRPw} and let t be a closed L-expression with t↓Lt0. Then rlnA(t) is the number of a-

Sharing Decorations for Improvements 7

reductions in the normal order reduction t↓Lt0 where a ∈ A. It is consistent to define the measure as

∞, if t↑L. For a reduction t
L,∗−−→ t′, we define rln(t

L,∗−−→ t′) as the number of (lbeta)-, (case)-, (seq)-,
and (in LRPw) (letwn)-reductions in it.

We define contextual equivalence and the improvement relation for both calculi LRPw and LRP:

Definition 2.7. For L ∈ {LRP,LRPw}, let s, t be two L-expressions of the same type ρ and let
Amin ⊆ A ⊆ A.

– s is contextually smaller than t, s ≤c,L t, iff for all L-contexts C[· :: ρ]: C[s]↓L =⇒ C[t]↓L.

– s and t are contextually equivalent, s ∼c,L t, iff for all L-contexts C[· :: ρ]: C[s]↓L ⇐⇒ C[t]↓L.

– s A-improves t, s �A,L t, iff s ∼c,L t and for all L-contexts C[· :: ρ] s.t. C[s], C[t] are closed:
rlnA(C[s]) ≤ rlnA(C[t]). If s �A,L t and t �A,L s, we write s ≈A,L t.

A program transformation P is correct (in L) if P ⊆ ∼c,L and it is an A-improvement iff
P−→ ⊆

(�A,L)−1.

The following context lemma for contextual equivalence holds in LRP and also in LRPw. The proof
is standard, so we omit it.

Lemma 2.8 (Context Lemma for Equivalence). Let L ∈ {LRP,LRPw} and let s, t be L-
expressions of the same type. Then s ≤c t iff for all C ∈ {R,S, T}: C[s] ↓L =⇒ C[t] ↓L.

Let η ∈ {≤,=,≥} be a relation on non-negative integers, X be a class of contexts X (we will
instantiate X with: all contexts C; all reduction contexts R; all surface contexts S; or all top-contexts
T), and let Amin ⊆ A ⊆ A. For expressions s, t of type ρ, let s ./A,η,X t iff for all X-contexts X[· : ρ],
s.t. X[s], X[t] are closed: rlnA(X[s]) η rlnA(X[t]). In particular, ./A,≤,C = �A, ./A,≥,C = �A,
and ./A,=,C = ≈A.

In the following we formulate statements for the calculus LRPw, if not stated otherwise.

The context lemma for improvement shows that it suffices to take reduction contexts into account
for proving improvement. Its proof is similar to the ones for context lemmas for contextual equivalence
in call-by-need lambda calculi (see [7, 11, 5]).

Lemma 2.9 (Context Lemma for Improvement). Let s, t be expressions with s ∼c t, η ∈ {≤,=
,≥}, and let X ∈ {R,S, T}. Then s ./A,η,X t iff s ./A,η,C t.

Proof. The proof is nearly a complete copy of the proof of the context lemma for improvement in LRP
(see [7]). However, for the sake of completeness we include it:

One direction is trivial. For the other direction we prove a more general claim using multicontexts
where we assume A to be fixed as stated in the lemma:

For all n ≥ 0 and for all i = 1, . . . , n let si, ti be expressions with si ∼c ti and si ./A,η,R ti.
Then for all multicontexts M with n holes such that M [s1, . . . , sn] and M [t1, . . . , tn] are closed:
rlnA(M [s1, . . . , sn]) η rlnA(M [t1, . . . , tn]).

The proof is by induction on the pair (k, k′) where k is the number of normal order reductions
of M [s1, . . . , sn] to a WHNF, and k′ is the number of holes of M . If M (without holes) is a WHNF,
then the claim holds. If M [s1, . . . , sn] is a WHNF, and no hole is in a reduction context, then also
M [t1, . . . , tn] is a WHNF and rlnA(M [s1, . . . , sn]) = 0 = rlnA(M [t1, . . . , tn]).

If in M [s1, . . . , sn] one si is in a reduction context, then one hole, say i of M
is in a reduction context and the context M [t1, . . . , ti−1, ·, ti+1, . . . , tn] is a reduction
context. By the induction hypothesis, using the multi-context M [. . . , ·, si, ·, . . .], we have
rlnA(M [s1, . . . , si−1, si, si+1, . . . , sn]) η rlnA(M [t1, . . . , ti−1, si, ti+1, . . . , tn]), and from the assump-
tion we have rlnA(M [t1, . . . , ti−1, si, ti+1, . . . , tn]) η rlnA(M [t1, . . . , ti−1, ti, ti+1, . . . , tn]), and hence
rlnA(M [s1, . . . , sn]) η rlnA(M [t1, . . . , tn]).

8 M. Schmidt-Schauß and D. Sabel

If in M [s1, . . . , sn] there is no si in a reduction context, then M [s1, . . . , sn]
LRPw,a−−−−−→M ′[s′1, . . . , s

′
n′],

may copy or shift some of the si where s′j = ρ(si) for some permutation ρ on variables and on the shar-
ing labels. However, the reduction type is the same for the first step of M [s1, . . . , sn] and M [t1, . . . , tn],

i.e. M [t1, . . . , tn]
LRPw,a−−−−−→ M ′[t′1, . . . , t

′
n′] with (s′j , t

′
j) = (ρ(si), ρ(ti)). We take for granted that the re-

naming can be carried through. The rlnA(.)-count on both sides is m = 0 or m = 1, depending
on whether or not a ∈ A holds. Thus we can apply the induction hypothesis to M ′[s′1, . . . , s

′
n′]

and M [t′1, . . . , t
′
n′], and so we have rlnA(M [s1, . . . , sn]) = m + rlnA(M ′[s′1, . . . , s

′
n′]) η m +

rlnA(M ′[t′1, . . . , t
′
n′]) = rlnA(M [t1, . . . , tn]).

We now use the context lemma and the context lemma for improvement to show several properties
about the reduction rules and the additional transformation rules.

Lemma 2.10. A complete set of forking and commuting diagrams for internal (letw)-transformations
applied in reduction contexts can be read off the following diagrams:

·
LRPw,a

��

iR,b // ·
LRPw,a

��
·
iR,b
// ·

b ∈ {letwn, letw0}, a arbitrary

·
LRPw,a

��

iR,letw// ·

LRPw,a��
·

a arbitrary

·
LRPw,a

��

iR,b // ·

LRPw,a

��

·
LRPw,b

��
·

b ∈ {letwn, letw0}, a arbitrary

·
LRPw,cp

��

iR,letw0 // ·
LRPw,cp

��
·
iR,letw0

// ·
iR,letw0

// ·

Proof. The first diagram describes the case where the transformation and the normal order reduc-
tion commute. It also includes cases where a (letw-in)-transformation is flipped into an (letw-e)-
transformation, if the normal order reduction is (LRPw,llet). The second diagram describes the case
where the a-labeled expression of the (letw)-transformation is removed by the normal order reduction,
which may be the case if the expression is inside an unused alternative of case or inside the first
argument of seq. The third diagram describes the case where the internal (letw)-transformation be-
comes a normal-order reduction. There are several cases where this may happen, e.g. for expressions
of the form letrec Env in letrec a := n in C[s[a]] where the normal order reduction is (LRPw,llet).
The fourth diagram describes the case where an a-labeled expression is inside an abstraction which
is copied by (LRPw,cp). If the transformation is a (letwn), then the transformations commute, but if
the transformation is (letw0), then the transformation is duplicated, since it has to remove the a-label
twice.

Lemma 2.11. If s
iR,letw−−−−→ t then s is a WHNF iff t is a WHNF.

Lemma 2.12. Let R be a reduction context and s
letw−−→ t. Then R[s] ↓ ⇐⇒ R[t] ↓.

Proof. We split the proof in several parts:

– R[s] ↓ =⇒ R[t] ↓: Assume that R[s] ↓ holds, and let R[s]
LRPw,k−−−−−→ r where r is a WHNF. We show

R[t]
LRPw,k′−−−−−→ r′ where r′ is a WHNF, and k′ ≤ k. We use induction on k. The base case k = 0 is

covered by Lemma 2.11. For the induction step let R[s]
no−→ r1

LRPw,k−1−−−−−−−→ r. If R[s]
LRPw,letw−−−−−−−→ R[t],

then r1 = R[t] and R[t]
LRPw,k−1−−−−−−−→ r and thus the claim holds. If the reduction is internal, then

apply a forking diagram to r1
no←− R[s]

LRPw,letw−−−−−−−→ R[t].

1. If the first diagram is applied, then r1
iR,letw−−−−→ r′1, R[t]

no−→ r′1 and r1
LRPw,k−1−−−−−−−→ r. We apply

the induction hypothesis to r1 and r′1 which shows r′1
LRPw,k′′−−−−−−→ r′ where r′ is a WHNF and

k′′ ≤ k − 1. Thus R[t]
LRPw,k′−−−−−→ r′ where r′ is a WHNF and k′ ≤ k

2. If the second diagram is applied, then R[t]
no−→ r1

LRPw,k−1−−−−−−−→ r and thus the claim holds.

Sharing Decorations for Improvements 9

3. If the third diagram is applied, then R[t]
no−→ r2

LRPw,k−2−−−−−−−→ r (where r1
no−→ r2) and the claim

holds.
4. In case of diagram (4) we apply the induction hypothesis twice for each (iR, letw)-

transformation, which shows that R[t]
LRPw,cp−−−−−→ r′1

LRPw,k′′−−−−−−→ r′ where r′ is a WHNF, k′′ ≤ k−1.
Thus the claim holds.

– R[t] ↓ =⇒ R[s] ↓. Let #cp(r) be the number of (LRPw,cp) reductions in the normal order

reductions from r to a WHNF and #cp(r) = ∞ if r ↑ Assume that R[t]
LRPw,k−−−−−→ r where r is a

WHNF. We show R[s] ↓ and #cp(R[s]) ≤ #cp(R[t]) by induction on the measure (#cp(R[t]), k).
For the base case (0,0) R[t] is a WHNF and thus by Lemma 2.11 also R[s] is a WHNF and the

claim holds. For the induction step let (l, k) > (0, 0). Then R[t]
no−→ t′

LRPw,k−1−−−−−−−→ r where r is a

WHNF. If R[s]
LRPw,letw−−−−−−−→ R[t] then the claim holds: R[s] ↓ and #cp(R[s]) = #cp(R[t]). If the

transformation is internal, then we apply a commuting diagram to R[s]
iR,letw−−−−→ R[t]

no−→ t1.

1. For the first diagram we have an expression s1 s.t. R[s]
LRPw,a−−−−−→ s1, s1

iR,letw−−−−→ s2 and the
measure for t1 is (#cp(t1), k− 1) which is strictly smaller than (l, k) (since #cp(t1) ≤ l). Thus
we can apply the induction hypothesis and derive s1 ↓ and #cp(s1) ≤ #cp(t1). This shows
R[s] ↓ and #cp(R[s]) ≤ #(R[t]).

2. For the second diagram the claim obviously holds.
3. For the third diagram, the claim also holds.
4. For the last diagram, we apply the induction hypothesis twice, which is possible since #cp(·)

is strictly decreased.

Theorem 2.13. The transformations (letw0) and (letwn) are correct.

Proof. Correctness of the transformation (letw) follows from Lemma 2.12 and the context lemma.

Lemma 2.14. Let Amin ⊆ A ⊆ A. If s
letw0−−−→ t, then for all reduction contexts R, s.t. R[s], R[t] are

closed: rlnA(R[s]) = rlnA(R[t])

Proof. Since (letw0) is correct we know that rlnA(R[s]) = ∞ ⇐⇒ rlnA(R[t]) = ∞. So sup-
pose that rlnA(R[s]) = n. We show rlnA(R[t]) = n by induction on a normal order reduction

R[s]
LRPw,k−−−−−→ s′ where s′ is a WHNF. The base case is covered by Lemma 2.11. For the induction

step, let R[s]
no−→ s1

LRPw,k−1−−−−−−−→ s′. If R[s]
LRPw,letw0−−−−−−−→ R[t], then rlnA(R[s]) = rlnA(R[t]) = rlnA(s1)

and the claim holds. If the transformation is internal, then we apply a forking diagram to s1. For

the first diagram we have s1
iR,letw0−−−−−→ t1 and we apply the induction hypothesis to s1 and thus

have rlnA(s1) = rlnA(t1). This also shows rlnA(R[s]) = rlnA(R[t]). For the second diagram the
claim holds. For the third diagram the claim also holds, since the additional (LRPw,letw0)-reduction
in the normal order reduction for R[s] is not counted in the rlnA-measure. For the fourth dia-

gram we have s1
iR,letw0−−−−−→ s′1

iR,letw0−−−−−→ t1
LRPw,cp←−−−−− R[t]. We apply the induction hypothesis twice:

For s1 we get rlnA(s1) = rlnA(s′1) and for s′1 we get rlnA(s′1) = rlnA(t1) which finally shows
rlnA(R[t]) = rlnA(t1) = rlnA(s1) = rlnA(R[s]).

The context lemma for improvement and the previous lemma imply:

Corollary 2.15. For Amin ⊆ A ⊆ A: (letw0) ⊆ ≈A.

Lemma 2.16. Let Amin ⊆ A ⊆ A. If s
letwn−−−→ t, then for all reduction contexts R s.t. R[s] and R[t]

are closed: rlnA(R[s]) = rlnA(R[t]) or rlnA(R[s]) = 1 + rlnA(R[t]).

Proof. Since (letwn) is correct we know that rlnA(R[s]) = ∞ ⇐⇒ rlnA(R[t]) = ∞. So suppose
that rlnA(R[s]) = n. We show rlnA(R[t]) = n or rlnA(R[t]) = n+ 1 by induction on a normal order

reduction R[s]
LRPw,k−−−−−→ s′ where s′ is a WHNF. The base case is covered by Lemma 2.11. For the

10 M. Schmidt-Schauß and D. Sabel

induction step, let R[s]
no−→ s1

LRPw,k−1−−−−−−−→ s′. If R[s]
LRPw,letwn−−−−−−−−→ R[t], then rlnA(R[s]) = 1 +rlnA(R[t])

and the claim holds. If the transformation is internal, then we apply a forking diagram to s1. For

the first diagram we have s1
iR,letwn−−−−−→ t1 and we apply the induction hypothesis to s1 and thus have

rlnA(s1) = 1 + rlnA(t1) or rlnA(s1) = rlnA(t1). This also shows rlnA(R[s]) = 1 + rlnA(R[t]) or
rlnA(R[s]) = rlnA(R[t]). For the second diagram we have rlnA(R[s]) = rlnA(R[t]). For the third
diagram we have rlnA(R[s]) = 1 + rlnA(R[t]). The fourth diagram is not applicable, since the given
transformation is (letwn).

Corollary 2.17. For Amin ⊆ A ⊆ A, (letwn) ⊆ �A.

Proposition 2.18. All reduction rules are correct.

Proof. For the (letwn)-rules this is already proved. For the other rules, correctness was shown in the
untyped calculus LR in [11], which can be directly transfered to LRP. However, LRPw has shared-
work decorations and the (letwn)-rules as normal order reduction. To keep the proof compact, we
only consider these new cases. The reasoning to show correctness of the reduction rules in LRPw is
the same as for LR, since all additional diagrams between an internal transformation step (i, b) and a
(LRPw, letw)-reduction are:

·
LRPw,a

��

i,b // ·
LRPw,a

��
·

i,b
// ·

a ∈ {letwn, letw0}, b ∈ {lbeta, cp, case, seq, lll}

·
LRPw,letw0

��

i,b // ·

LRPw,letw0

��

·
LRPw,T

��
·

b ∈ {lbeta, cp, case, seq, lll}

The first case is the case where the (LRPw,letw) and the transformation commute, the second case
is that the internal transformation becomes a normal order reduction after removing the a label.
However, these cases are already covered by the diagram proofs in LR (see [11]) and thus can easily
added.

We define a translation from expressions with work-decorations into decoration-free expressions,
by removing the work-decorations and the corresponding bindings:

Definition 2.19. Let t be an expression in LRPw, and rmw(t) be derived from t by removing the
work-syntax, i.e.

rmw(letrec x1 = s1, . . . , xn = sn, a1 := n1, . . . , am := nm in s) =
letrec x1 = rmw(s1), . . . , xn = rmw(sn) in rmw(s) for m ≥ 0, n ≥ 1

rmw(letrec a1 := n1, . . . , am := nm in s) = rmw(s),

rmw(s[a]) = rmw(s)
rmw(f [s1, . . . , sn]) = f [rmw(s1), . . . , rmw(sn)]

for all other language constructs f .

Proposition 2.20. Let t be an expression in LRPw, then t ↓LRPw ⇐⇒ rmw(t) ↓LRPw.

Proof. Observing that t
LRPw−−−−→ t′ implies rmw(t) = rmw(t′) or rmw(t)

LRPw−−−−→ rmw(t′), the proof is obvious.

An immediate consequence is the following theorem:

Theorem 2.21. The embedding of LRP into LRPw w.r.t. ∼c is conservative.

Sharing Decorations for Improvements 11

Considering conservativity of the embedding of LRP into LRPw w.r.t. the improvement relation
≈A, we are able to show that for the case seq 6∈ A this embedding is an isomorphism w.r.t. ≈A (this
will be proved in Theorem 3.10). However, we do not know whether the embedding of LRP into LRPw
is conservative w.r.t. the improvement relation �A if (seq) ∈ A. We conjecture that the embedding of
LRP into LRPw is conservative w.r.t. the improvement relation �A. However, we did not find a proof.
A naive proof which tries to encode the work decorations by usual expressions fails, since there are
work decorations which cannot be encoded (see Proposition 3.12) if (seq) ∈ A. However, conservativity
is not really necessary. It would allow to lift results on improvements from LRP to LRPw more easily.
Our goal to use the calculus LRPw as a proof technique to show results on improvements for LRP is
possible:

Lemma 2.22. Let Amin ⊆ A ⊆ A. Let s, t be LRP-expressions s.t. s �A,LRPw t. Then also s �A,LRP t
holds.

Proof. This holds, since every LRP-context is also an LRPw-context and on decoration-free expressions
the rln-length is the same in both calculi.

We prove correctness and (invariance w.r.t. ≈) for (gcW), the transformation which performs
garbage collection of a := n-bindings which have no corresponding [a]-label.

Lemma 2.23. A complete set of forking and commuting diagrams for (S,gcW) can be read off the
following diagrams:

· S,gcW //

LRPw,a

��

·
LRPw,a

��
·
S,gcW

// ·

a arbitrary

· S,gcW //

LRPw,a

�� LRPw,a��
·

a arbitrary

·S,gcW2//

LRPw,lll

��

·

·
S,gcW2

@@

Proof. The first diagram covers the case where the transformation and the reduction commute. There
are also cases where a (gcW2) becomes a (gcW1)-transformation, e.g. in letrec x = (letrec a :=

n in s) in r
S,gcW2−−−−−→ letrec x = s in r where letrec x = (letrec a := n in s) in r

LRPw,llet−−−−−−→
letrec x = s, a := n in r. The second diagram covers the case where the (gcW)-redex is removed by
the normal order reduction, e.g. if it is in an unused alternative of case or inside the first argument
of seq. The last diagram covers the case where the letrec-expression of the redex of (LRPw,lll) is
removed by (gcW2).

Lemma 2.24. If s
S,gcW−−−−→ t then

– If s is a WHNF, then t is a WHNF.

– If t is a WHNF, then s
LRPw,llet,0∨1−−−−−−−−−→ s′ where s′ is a WHNF

Proof. The first item can be easily verified. For the second item it may be the case that s is not a

WHNF, but t is a WHNF, e.g. letrec a := n in r
gcW2−−−→ r where r is a WHNF.

Proposition 2.25. The transformation (gcW) is correct and for Amin ⊆ A ⊆ A: (gcW) ⊆ ≈A.

Proof. We first show correctness. Let s
S,gcW−−−−→ t

– s ↓ =⇒ t ↓: This can be shown by induction on the length k in s
LRPw,k−−−−−→ s′ where s′ is a WHNF.

For the base case Lemma 2.24 shows t ↓. For the induction step we apply a forking diagram. For the

first diagram we have s
LRPw,a−−−−−→ s1, s1

S,gcW−−−−→ t1, t
LRPw,a−−−−−→ t1. Applying the induction hypothesis

to s1 and t1 shows t1 ↓ and thus t ↓. For the second diagram t ↓ obviously holds. For the third

diagram we have s
LRPw,lll−−−−−→ s1, s1

gcW2−−−→ t. We apply the induction hypothesis to s1 and t which
shows t ↓.

12 M. Schmidt-Schauß and D. Sabel

– t ↓ =⇒ s ↓: We use an induction in the length k in t
LRPw,k−−−−−→ t′ where t′ is a WHNF. For the base

case k = 0 Lemma 2.24 shows that s ↓. For the induction step we apply a forking diagram. For the
first and the second diagram the cases are analogous to the previous part. For the third diagram
we apply the diagram as long as possible which terminates, since there are no infinite sequences

of (LRPw, , lll)-reductions. Then we get an expression s′ with either s
LRPw,lll,+−−−−−−−→ s′ where s′ is a

WHNF and thus s ↓, or we apply the first or second diagram to t and s′, and then the induction
hypothesis (in case of diagram 1). In any case we derive s ↓.

The two items and the context lemma for ∼c show that (gcW) is correct. Now we consider improve-

ment. Let s
S,gcW−−−−→ t. We show rlnA(s) = rlnA(t). The context lemma for improvement then implies

(gcW) ⊆ ≈A. Since (gcW) is correct we already have rlnA(s) = ∞ ⇐⇒ rlnA(t) = ∞. Now let

s ↓ s′ (where s
LRPw,k−−−−−→ s′) and rlnA(s) = n. We show rlnA(t) = n by induction on k. If k = 0 then

Lemma 2.24 shows rlnA(s) = 0 = rlnA(t). If k > 0 then we again apply the forking diagrams. The
cases are completely analogous as for the correctness proof, where have to verify, that the first and
the second diagram do either introduce nor remove normal order reductions, and the third diagram
may only remove (LRPw, lll)-reductions which are not counted by the rlnA-measure.

The following results from [11, 9] on the lengths of reductions also hold in the calculus LRPw, since
the overlappings for (LRPw, letw) and the corresponding transformation are analogous to already
covered cases.

Theorem 2.26. Let t be a closed LRPw-expression with t ↓ t0 and Amin ⊆ A ⊆ A.

1. If t
C, a−−−→ t′, and a ∈ A, then rlnA(t) ≥ rlnA(t′).

2. Let t be a closed LR-expression with t ↓ t0 and t
C,cp−−→ t′, then rlnA(t) = rlnA(t′).

3. If t
S,a−−→ t′, and a ∈ A, then rlnA(t) ≥ rlnA(t′) and rlnA(t′) ≥ rlnA(t) − 1 if a ∈ A, and

rlnA(t′) = rlnA(t) if a 6∈ A.

4. If t
C, a−−−→ t′, and a ∈ {lll, gc}, then rlnA(t) = rlnA(t′).

5. If t
C,a−−−→ t′, and a ∈ {cpx, cpax, xch, cpcx, abs, lwas}, then rlnA(t) = rlnA(t′).

6. If t
C, ucp−−−−→ t′, then rlnA(t) = rlnA(t′).

Corollary 2.27. For Amin ⊆ A ⊆ A:

1. If s
S,a−−→ s′ where a is any rule from Figs. 2 and 3, then s′ �A s.

2. If s
C,a−−→ s′ where a is (lll), (cp), (letw0) or any rule of Fig. 3. Then s′ ≈A s.

Proof. The claims follow from Theorem 2.26 and the context lemma, and for the rule (letsh) the
claim holds, since it is a composition of (lwas) and (llet) and their inverses. For (gcW) this follows
from Proposition 2.25. For (letw0) it follows from Corollary 2.15, and for (letwn) it follows from
Corollary 2.17.

3 Work Decorations

In this section we consider another notation for work decorations.

Definition 3.1. For LRPw we use the following notation:

work-decoration : If n ∈ N, then s[n] is an expression, where [n] is called a (unshared) work deco-
ration. The semantics of s[n] is letrec a := n in s[a] where a is a fresh label.

sharing decoration : If a is label and n ∈ N, then C[s
[a7→n]
1 , . . . , s

[a7→n]
m] is an expression. The se-

mantics of C[s
[a7→n]
1 , . . . , s

[a7→n]
m] is letrec a := n in C[s

[a]
1 , . . . , s

[a]
m]

Sharing Decorations for Improvements 13

further notation: For convenience, we also write several decorations in the form [n, a1 7→
m1, . . . , ak 7→ mk] (where the ai are distinct). We also write labels(X) for the set of labels occuring
in an expression or decoration X. The semantics of the expressions can be derived from the pre-
vious cases, where the nondeterminism in the translation is irrelevant, since (lll)-transformations
allow to reorder and combine the corresponding environments without changing the rln-measure.
We may also use the abstract notation [n, p] for a sharing decoration with constant n, and further
sharing decorations p.

Note that LRPw contains expressions, which cannot be expressed by this notation. E.g., the expres-
sion λx.letrec a = n in C[s[a], t[a]], since the semantic translation of λx.C[s[a], t[a]] is letrec a =
n in λx.C[s[a], t[a]] which is a different expression.

We show that the (non-shared) work-decorations are redundant, and can be encoded by usual
LRP-expressions.

Proposition 3.2. The work decorations s[n] can be encoded as letrec x = (idn) in (x s) and thus
are redundant.

Proof. The proof is in Appendix A.

3.1 Computation Rules for Decorations

In this section we develop the computation rules with decorations.
First we define a combination of labels, since addition has to be modified. Here we assume that

labels are sets consisting of exactly one nonnegative integer (a work-decoration) and several sharing
decorations.

Definition 3.3. The combination p1 ⊕ p2 of two decorations p1 = [n1, p
′
1] and p2 = [n2, p

′
2] is defined

as [n1 + n2, p3], where p3 = p1 ∪ p2.
For two decorations p1 = [n1, p

′
1] and p2 = [n2, p

′
2] we write p1 ≤ p2, iff n1 ≤ n2 and for all labels a

that occur in p1, p2: if a 7→ m1 is in p1, and a 7→ m2 is in p2, then m1 ≤ m2.

For example, [1, a1 7→ 3, a2 7→ 5]⊕ [2, a1 7→ 3, a3 7→ 7] = [3, a1 7→ 3, a2 7→ 5, a3 7→ 7].
A corollary from the theorem on reduction lengths (Theorem 2.26) is:

Corollary 3.4. Let Amin ⊆ A ⊆ A and let S be a surface context. If s
S−→ s′ by any reduction or

transformation rule from Figs. 2 and 3, then s′ �A s and s �A s′[1].

In Appendix B the following computation rules are proved:

Theorem 3.5. Let Amin ⊆ A ⊆ A.

1. If s
LRPw,a−−−−−→ t with a ∈ A then s ≈A t[1], and if a 6∈ A, then s ≈A t.

2. R[letrec a := n in s[a]] ≈A letrec a := n in R[s][a] and thus in particular R[s[n]] ≈A R[s][n].
3. rlnA(letrec a := n in s[a]) = n + rlnA(s′) where s′ is s where all [a]-labels are removed. In

particular this also shows rlnA(s[n]) = n+ rlnA(s)
4. For every reduction context R: rlnA(R[letrec a := n in s[a]]) = n + rlnA(R[s′]) where s′ is s

where all [a]-labels are removed. In particular, this shows rlnA(R[s[n]]) = n+ rlnA(R[s]).
5. (s[n])[m] ≈A s[n+m]

6. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] �A letrec a := n in S1[S2[s]]

[a] and
if S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈A letrec a := n in S1[S2[s]]
[a].

In particular, this shows for all surface contexts S and expressions s: S[s[k]] �A S[s][k], and if S
is strict, then S[s[k]] ≈A S[s][k].

7. letrec a := n, b := m in (s[a])[b] ≈A letrec a := n, b := m in (s[b])[a]

8. letrec a := n in (s[a])[a] ≈A letrec a := n in (s[a])
9. (tp1)p2 ≈A tp1⊕p2.

14 M. Schmidt-Schauß and D. Sabel

10. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Then letrec a :=

n in S[s
[a]
1 , . . . , s

[a]
n] �A letrec a := n in S[s1, . . . , sn][a]. If some hole ·i with i ∈ {1, . . . , n}

is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈A letrec a :=

n in S[s1, . . . , sn][a].
11. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Let S[s1, . . . , sn] be closed.

Then S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] �A S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then

S[s
[p1,a7→m]
1 , . . . , s

[pn,a 7→m]
n] ≈A S[sp11 , . . . , s

pn
n][m].

By iteratively applying the claim this shows for all surface contexts S and expressions s: S[sp] �A
S[s]p, and if S is strict, then S[sp] ≈A S[s]p.

12. The following transformation is correct and invariant w.r.t. ≈A: Replace
(letrec x = s[n,p],Env in t) by letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x],
where a is a fresh label and all occurrences of x are in surface position.

13. If a label-name a occurs exactly once in a surface context, then it can be changed into an unshared
work-decoration.

14. If p, p′ are two decorations with p ≤ p′, and s �A t, then s[p] �A t[p
′].

An immediate consequence is:

Proposition 3.6. The following variant of reduction is correct w.r.t. the LRPw-semantics:

The reduction on LRP expressions with shared work-decorations is as follows: If n > 0 and

t = R[t
[n]
1], then R[t

[n]
1]

LRPw−−−−→ R[t
[n−1]
1] where this reduction contributes to the rln-measure. If

n = 0 then R[t
[0]
1]

LRPw−−−−→ R[t1] where this reduction is not counted.

If n > 0 and t = R[t
[a7→n]
1] where R is a reduction context, where no decorations are on the

path to the hole, then R[t[a7→n]]
LRPw−−−−→ R′[t[a7→n−1]], where all [a 7→ n]-decorations in R and t

are changed into [a 7→ n − 1]. The reduction step also counts as one rln-reduction step, i.e.

rln(R[t[a7→n]]) = 1+rln(R[t[a7→n−1]]). If t = R[t
[a7→0]
1] where R is a reduction context, where no

decorations are on the path to the hole, then R[t[a7→0]]
LRPw−−−−→ R′[t], this reduction is not counted

by the rln-measure.

We are now able to show that the embedding of LRP into LRPw is an isomorphism w.r.t. ≈A
provided that seq 6∈ A. Let idk be an abbreviation of id . . . id︸ ︷︷ ︸

k

, where id := λx.x. We consider the

following program transformation (enc), which replaces an a := n-binding by (lbeta)-redexes:

(enc) letrec a := n,Env in s
enc−−→ letrec xa := (id . . . id)n+1,Env [seq xa t/t

[a]] in s[seq xa t/t
[a]]

where [seq xa t/t
[a]] means that every subterm which is labeled with a is replaced by the corre-

sponding seq-expression.

Lemma 3.7. A complete set of forking and commuting diagrams for (R, enc) can be read off the
following diagrams

·
LRPw,a

��

R,enc // ·
LRPw,a

��
·
R,enc

// ·

·

LRPw,letwn

��

R,enc // ·
LRPw,lbeta

��
·
S,cp

��
·
S,gc

��
·
R,enc

// ·

·

LRPw,letw0

��

R,enc // ·
LRPw,seq

��
·
S,gc,∗
��

·
S,gcW,∗

// ·

Sharing Decorations for Improvements 15

Lemma 3.8. If s
R,enc−−−→ t then s is a WHNF iff t is a WHNF.

Proposition 3.9. Let Amin ⊆ A ⊂ A, s.t. seq 6∈ A. Then (enc) ⊆ ≈A

Proof. We first show correctness and use the context lemma. Let s
R,enc−−−→ t. Then we have to show

two parts:

– s ↓ =⇒ t ↓: We use induction on the length k of the reduction s
LRPw,k−−−−−→ sk, where sk is a

WHNF. If k = 0 then Lemma 3.8 shows that t is a WHNF thus t ↓. For the induction step we

apply a forking diagram to t
R,enc←−−− s

LRPw−−−−→ s1. For the first diagram, we have t
LRPw−−−−→ t1 s.t.

s1
LRPw−−−−→ t1. Since s1

LRPw,k−1−−−−−−−→ sk, the induction hypothesis shows t1 ↓ and thus also t ↓. For

the second diagram, we have t
LRPw,lbeta−−−−−−−→ t′

C,cp−−→ C,gc−−−→ t1 s.t. s1
enc−−→ t1. The induction hypothesis

shows t1 ↓ and correctness of (cp) and (gc) shows t′ ↓ and thus t ↓. For the last diagram, we have

t
LRPw,seq−−−−−−→ t′

C,gc,∗−−−−→ C,gcW,∗←−−−−− s1. Correctness of (gc) and (gcW) shows t′ ↓ and thus t ↓.
– t ↓ =⇒ s ↓: Let t

LRPw,k−−−−−→ tk where tk is a WHNF. We use induction on (rlnA(t), k). For the case
(0, 0), Lemma 3.8 shows that s is a WHNF thus s ↓. For the induction step we apply a commuting

diagram to s
R,enc−−−→ t

LRPw−−−−→ t1. Note that if rlnA(t) = 0 (but k > 0) then only the first diagram
is applicable.

For the first diagram, we have s
LRPw−−−−→ s1 s.t. s1

LRPw−−−−→ t1. Since t1
LRPw,k−1−−−−−−−→ tk, and rlnA(t1) ≤

rlnA(t), the induction hypothesis is applicable and shows s1 ↓ and thus also s ↓.
For the second diagram, we have s

LRPw,letwn−−−−−−−−→ s′
R,enc−−−→ s′′

S,gc←−− S,cp←−− t1. We have rlnA(t1) <
rlnA(t) and by Theorem 2.26 we have rlnA(s′′) < rlnA(t). Thus we can apply the induction
hypothesis to s′′ which shows s′ ↓ and thus s ↓.
For the third diagram, we have s

LRPw,letw0−−−−−−−→ s′
S,gcW,∗−−−−−→ S,gc,∗←−−− t1. Correctness of the rules (letw0),

(gcW) and (gc) shows s ↓.

For proving (enc) ⊆ ≈A we use the context lemma for improvement. Thus it is sufficient to show that

for s
R,enc−−−→ t, the equarion rlnA(s) = rlnA(t) holds. Clearly rlnA(s) = ∞ ⇐⇒ rlnA(t) = ∞. So

let s
LRPw,k−−−−−→ sk where sk is a WHNF. By induction on k, we show rlnA(s) = rlnA(t). If k = 0, then

s is a WHNF, and Lemma 3.8 implies that t is a WHNF, and thus rlnA(s) = 0 = rlnA(t). If k > 0

then we apply a forking diagram to s1
LRPw←−−−− s

R,enc−−−→ t. For the first diagram, we have t
LRPw−−−−→ t1

s.t. s1
LRPw−−−−→ t1. Since s1

LRPw,k−1−−−−−−−→ sk, the induction hypothesis shows rlnA(s1) = rlnA(t1) and thus
also rlnA(s) = rlnA(t).

For the second diagram, we have t
LRPw,lbeta−−−−−−−→ t′

C,cp−−→ C,gc−−−→ t1 s.t. s1
enc−−→ t1. Clearly rlnA(s) =

1 + rlnA(s1) and rlnA(t) = 1 + rlnA(t′) Now the induction hypothesis shows rlnA(s1) = rlnA(t1)
and Theorem 2.26 shows rlnA(t1) = rlnA(t′) which shows the claim.

For the last diagram, we have t
LRPw,seq−−−−−−→ t′

C,gc,∗−−−−→ C,gcW,∗←−−−−− s1. Then rlnA(s) = rlnA(s1) and (since
seq 6∈ A) rlnA(t) = rlnA(t′). Finally, Theorem 2.26 and Proposition 2.25 show rlnA(t′) = rlnA(s1).

Theorem 3.10. Let Amin ⊆ A ⊂ A, s.t. seq 6∈ A. Then every decorated expression s can be repre-
sented as an LRP-expression s′ with s ≈A s′. This means the embedding of LRP into LRPw is an
isomorphism w.r.t ≈A.

Proof. It suffices to show that s ≈LRP,A t implies s ≈LRPw,A t. Let s ≈LRP,A t and let C be an
LRPw-context. Then rlnA(C[s]) = rlnA(C[t]) in LRPw and thus s ≈LRPw,A t: We apply (enc)-
transformations to C[s] and C[t] (without changing s, t, since they do neither contain a := n labels
nor ·[a] labels.) until we get expressions C ′[s], C ′[t] s.t. both are free of bindings a := n and labels ·[a].
We have C ′[s] ≈A C[s] and C ′[t] ≈A C[t] by Proposition 3.9 and thus rlnA(C ′[s]) = rlnA(C[s])
and rlnA(C ′[t]) = rlnA(C[t]). Since C ′ is an LRP-context, the precondition s ≈LRP,A t shows
rlnA(C[s]) = rlnA(C[t]) which shows the claim.

16 M. Schmidt-Schauß and D. Sabel

(cp-in) letrec x1 = (λy.t)[n,p1], {xi = xi−1}mi=2,Env in C[xp2m]

→ letrec x1 = λy.t[a7→n,p1], {xi = xi−1}mi=2,Env in C[(λy.t)([a7→n,p1]⊕p2]

where p2 is nontrivial only if xp2m is not the right hand side of a binding

(llet-e) (letrec Env1, x = (letrec Env2 in t)p in r)→ (letrec Env1,Env2, x = tp in r)

The standard cases are usually dealt with shifting the decoration up, since the decoration is in a strict position,
and/or using further rules (locally) from Theorem 3.5.

Fig. 4. The non-standard cases of decoration modification of reduction rules of LRPw (variants omitted)

(cpcx-in) letrec x = c
−→
t

[n,p1]
,Env in C[xp2]→ letrec x = c−→y [a7→n,p1], {yi = ti}ar(c)i=1 ,Env in C[c−→y [a7→n,p1]⊕p2]

(xch) letrec x = tp, y = x,Env in r → letrec y = tp, x = y,Env in r where y = xq is not permitted.

(lwas) T [letrec Env in tp]→ letrec Env in T [tp]
if T is a weak top context with hole depth 1

(ucp1) letrec Env , x = tp in S[x]→ letrec Env in S[tp]

The standard cases are usually dealt with shifting the decoration up, since the decoration is in a strict position,
and/or using further rules (locally) from Theorem 3.5.

Fig. 5. Non-standard cases of decoration modification in the Extra Transformation Rules (variants omitted)

Remark 3.11. For a surface context C, the sharing decorated expression s := C[s
[n1,a7→h]
1 , . . . , s

[nm,a 7→h]
m]

can be given a semantics in the case ni > 0 for all i.: Define

sem(s) := letrec x0 = id[h] in C[(x0 s
[n1−1])
1 , . . . , (x0 s

[nm−1]
m)]).

In the case seq ∈ A and ni = 0 for some i , the equivalence classes of expressions w.r.t. ≈A are properly
extended (see Proposition 3.12)

It can easily be verified, that sem(s)
T,∗−−→ s′ with s′ ≈A C[s1, . . . , sm], where the reduction requires

h +
∑m

i=1 ni rln-reduction steps: h + ni steps for each (x0 s
[ni−1]
i) where h is the number of shared

rln-reduction steps.

In the exceptional case n1 = 0 there are some cases, which can be given a semantics: for example
(Z [a7→1], Z [a7→1]) ≈A letrec x = id Z in (x, x). Generalizing, if the sharing decorated subexpressions
are syntactically equal, then the construction may be applied in certain cases.

Proposition 3.12. Let A = A. Then the decorated expression (Z [a7→1], Nil[a7→1]) is not equivalent
w.r.t. ≈A to any LRP-expression.

Proof. Assume there is such an expression s. Then s ∼c (Z, Nil) and rlnA(s) = 0, so we can assume
that s is a WHNF. Using the correctness w.r.t. ≈A of program transformations and that Z 6∼c Nil,
we can assume that s is of the form letrec x = s1, y = s2,Env in (x, y). We see that s1 as well as
s2 alone have rlnA-count 1 in the environment. Using that (lll), (cpx) and (gc) are correct program
transformations w.r.t ≈A, we can assume that s1, s2 are applications, seq- or a case-expressions. But
then every of them requires at least one rlnA-reduction that is independent of the other to become
a WHNF. Hence the context C := let z = [·] in seq (fst z) (snd z) applied to (Z [a7→1], Nil[a7→1])
requires 6 = 5 + 1 steps: 2 for fst, 2 for snd, 1 for seq, and 1 for the shared evaluation of Z [a7→1],
whereas s requires at least 7 = 5 + 2: the 2 reductions are the minimum to reach a WHNF for the first
as well for the second component.

We show how the decorations are implicitly modified under reductions and transformations, where
the reduction are invariant under ≈. See figure 4 for the reduction rules of LRP w.r.t. decorations.

Sharing Decorations for Improvements 17

·
T,caseId//

LRP,a ��

·
LRP,a��

·
T,caseId

// ·

(1)

·
T,caseId//

LRP,lcase ��

·

· T,caseId

::

(2)

·
T,caseId//

LRP,case−c ��

·

T,absezz·

(3)

·
T,caseId //

LRP,case ��

·
T,cpcx
ss·

· T,gc,∗
33

· T,cpx,∗
33

(4)

·
LRP,case �� T,caseId

zz·

(5)

Fig. 6. Diagrams for (caseId)

3.2 More Transformations and Improvements

Let (caseId) be defined as:

(caseK s (pat1 → pat1) . . . (pat|DK | → pat|DK |))→ s

The rule (caseId) is the heart (of the correctness proof) of other type-dependent transformations, like
rules involving map, filter, fold, asf., and it is only correct under typing, i.e. in LRP and LRPw, but
not in LR, which can be seen by trying the case s = λx.t.

We show that (caseId) is an improvement in LRPw.

Lemma 3.13. Let s
T,caseId−−−−−→ t. If s is a WHNF, then t is a WHNF. If t is a WHNF, then

s
LRPw,lll,∗−−−−−−→ LRPw,case,0∨1−−−−−−−−−→ LRPw,lll,∗−−−−−−→ s′ where s′ is a WHNF.

Lemma 3.14. Let Amin ⊆ A ⊆ A. If s↓ ∧ s T,caseId−−−−−→ t, then t↓ and rlnA(s) ≥ rlnA(t).

Proof. Let s
T,caseId−−−−−→ t and s

LRPw,k−−−−−→ s′ where s′ is a WHNF. We use induction on k. For k = 0

Lemma 3.13 shows the claim. For the induction step, let s
LRPw−−−−→ s1. The diagrams in Fig. 6 describe

all cases how the fork s1
LRPw←−−−− s

T,caseId−−−−−→ can be closed. For diagram (1) we apply the induction

hypothesis to s1
T,caseId−−−−−→ t1 which shows t1↓, rlnA(s1) ≥ rlnA(t1) and thus also t↓ and rlnA(s) ≥

rlnA(t). For diagram (2) the induction hypothesis shows the claim. For diagram (3) we have t↓,
since (abse) is correct. Moreover, t

T,abse−−−−→ s′ is equivalent to s′
T,ucp∨gc,∗−−−−−−−→ t and Theorem 2.26 shows

rlnA(s′) = rlnA(t). Thus also rln(s) ≥ rln(t). For diagram (4) we have t↓, since (cpcx), (gc), and
(cpx) are correct. Theorem 2.26 shows that rlnA(s) ≥ rlnA(s′) = rlnA(t), since (cpcx), (cpx) and
(gc) do not change the measure rln(·). For diagram(5) the claim obviously holds.

Theorem 3.15. (caseId) is an improvement, i.e. for Amin ⊆ A ⊆ A: (caseId) ⊆ �A.

Proof. Lemma 3.13 and the diagrams in Fig. 6 can be used to show (by induction on the sequence

for t) that if s
T,caseId−−−−−→ t and t↓, then s↓, since the used existentially quantified transformations are

correct and diagram 2 can only be applied finitely often. Then the context lemma for ∼c (which states
that convergence preservation and reflection in reduction contexts suffices to show ∼c, see e.g. [5]) and
Lemma 3.14 show that (caseId) is correct. Finally, the context lemma for improvement (Lemma 2.9)
and Lemma 3.14 show that (caseId) is an improvement.

4 A Head-Centered Improvement Simulation for Lists

For Amin ⊆ A ⊆ A, we define an improvement simulation vA,h,τ on lists of the same type, List τ , for
proving �-relations between functions on lists.

Definition 4.1. Let Amin ⊆ A ⊆ A. Let τ be a type, and Lτ := {(s, t) | s, t :: List(τ),FV (s) =
FV (t) = ∅, decorations are only in surface contexts in s, t, and s ∼c t}. We define the following
operator FA,h :: Lτ → Lτ : Let η ⊆ Lτ , and s η t.

1. If s ∼c ⊥ ∼c t, then s FA,h(η) t.
2. If s ≈A Nil[k], t ≈A Nil[k

′] and k ≤ k′, then s FA,h(η) t.

18 M. Schmidt-Schauß and D. Sabel

3. If s �A (s
[p1]
1 : s

[k2]
2)[k3], and (t

[p′1]
1 : t

[k′2]
2)[k

′
3] �A t, for some expressions s1, s2, t1, t2, with

FV (s1) = FV (s2) = FV (t1) = FV (t2) = ∅ and decorations where s2, t2 may contain further
sharing decorations, but only in surface context positions; where we also assume that there may be
common labels in the expressions. and the following conditions hold:

(a) p1 ≤ p′1, k2 ≤ k′2, and k3 ≤ k′3.
(b) s1 �A t1 and s1, t1 are decoration-free.
(c) The set D0 of labels in s is also the set of labels in t, and the set of labels Di in si, i = 1, 2,

are also the set of labels in ti, i = 1, 2.
(d) For labels in D0, we assume that these are free in the expressions, and that the relations

s �A (s
[p1]
1 : s

[k2]
2)[k3] and (t

[p′1]
1 : t

[k′2]
2)[k

′
3] �A t, hold under this freeness-assumption.

(e) s2 η t2.

Then s Fh(η) t.

Let vA,h,τ be the greatest fixpoint of FA,h. ut

To ease reading we leave out the index τ in the following and simply write vA,h instead of vA,h,τ
unless the type τ becomes relevant.

Clearly, the operator FA,h is monotone, and thus vA,h is well-defined, i.e. the fixpoint exists.
Moreover, due to determinism of normal-order reduction, FA,h is lower-continuous, and thus

Kleene’s fixpoint theorem can be applied, which implies the following inductive characterization of
vA,h: Let vA,h,0= Lτ , and vA,h,i= F (vA,h,i−1) for i > 0. Then vA,h=

⋂∞
i=0 vA,h,i. Thus for (s, t) ∈ Lτ

we can show s vA,h t by proving s vA,h,i t for all i.

Theorem 4.2. If s vA,h t, then also s �A t.

Proof. We show a generalized claim. Using this claim with a single-hole surface-context T and
n = 1 shows that s �A,T t, and thus using the context lemma for improvement, also the claim of the
theorem follows. The claim is:

Let C[·, . . . , ·] be a multicontext, where the holes are in surface-contexts, for i = 1, . . . , n let
si, ti be closed and of the same type such that for each pair si, ti the relation si vA,h ti (and
thus si, ti :: List(τ)) holds. Then rlnA(C[s1, . . . , sn]) ≤ rlnA(C[t1, . . . , tn]) holds.

For the proof we assume that for the first input pair (s, t), the infinite sequence of the expansion
(including the decorations asf.) according to Definition 4.1 is fixed, and so we make the same choices
even if copies of s, t appear in the expressions. Hence we can use the Kleene-criterion for computing
the fixed point.
First observe that rlnA(C[t1, . . . , tn]) =∞ if, and only if rlnA(C[s1, . . . , sn]) =∞, which follows from
finiteness of decorations and from si ∼c ti.

In other cases we show the claim by induction on the lexicographically ordered measure (µ1, µ2, µ3)
where µ1 = rlnA(C[t1, . . . , tn]), µ2 is the number of holes in C and µ3 = rlnall(C[t1, . . . , tn]).

The base case is that there is no reduction of C[t1, . . . , tn] and there is no hole in a reduction
context. Then the context itself is either a WHNF, and rlnA(C[t1, . . . , tn]) = 0 = rlnA(C[s1, . . . , sn]),
or the context is stuck, in which case both expressions are divergent, and rlnA(C[t1, . . . , tn]) =∞ =
rlnA(C[s1, . . . , sn]).

The other cases are that a hole of C is in a reduction context, or a reduction is possible for
C[t1, . . . , tn]), and we will show that we can apply the induction hypothesis.

If no hole of C is in a reduction context, then C[t1, . . . , tn]
no−→ C ′[t1, . . . , tn] as well as

C[s1, . . . , sn]
no−→ C ′[s1, . . . , sn], where C ′ has n or less than n holes, since all holes are in surface

contexts. We can apply the induction hypothesis after the reduction, since µ1 remains equal or is
decreased by 1, µ2 remains equal or is decreased, and µ3 is strictly decreased.
Note that this reduction may change the value of sharing decorations. Since we have assumed in con-
dition (3d) that the relations hold also under the change of the value, the induction hypothesis is
applicable.

Sharing Decorations for Improvements 19

Now we consider the case that some tj is in a reduction context in C[t1, . . . , tn]. Then we can
assume w.l.o.g. that the hole j is in a reduction context in C, independent of the expressions in the
holes. Hence sj as well as tj are in a reduction context in C[s1, . . . , sn] and C[t1, . . . , tn], respectively.

We check the cases from the definition of vA,h.

1. If sj ∼c ⊥, then tj ∼c ⊥, and C[s1, . . . , sj , . . . sn] ∼c ⊥ ∼c C[t1, . . . tj , . . . , tn].

2. If sj ≈A Nil[k], then tj ≈A Nil[k
′] with k ≤ k′. Since Nil[k] �A Nil[k

′], it is sufficient to show
rlnA(C[s1, . . . , Nil

[k′], . . . sn]) ≤ rlnA(C[t1, . . . , Nil
[k′], . . . , . . . tn]), which follows from the induc-

tion hypothesis, since C[·1, . . . , ·j−1, Nil[k
′], ·j+1, . . . , ·n] has n − 1-holes (which strictly decreases

µ2), and µ1 is unchanged.

3. If sj �A (s
[pj,1]
j,1 : s

[kj,2]
j,2)[kj,3] then due to the preconditions there is a representation (t

[p′j,1]

j,1 :

t
[k′j,2]

j,2)[k
′
j,3] �A tj with pj,1 ≤ p′j,1, kj,2 ≤ k′j,2, kj,3 ≤ k′j,3, sj,1 �A tj,1 and sj,2 vA,h tj,2.

It suffices to show that rlnA(C[s1, . . . , (s
[pj,1]
j,1 : s

[kj,2]
j,2)[kj,3], . . . , sn]) ≤ rlnA(C[t1, . . . , (t

[p′j,1]

j,1 :

t
[k′j,2]

j,2)[k
′
j,3], . . . , tn]) to prove the claim. The assumption sj,1 �A tj,1 implies that it is sufficient

to show rlnA(C[s1, . . . , (t
[pj,1]
j,1 : s

[kj,2]
j,2)[kj,3], . . . , sn]) ≤ rlnA(C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2)[k
′
j,3], . . . , tn]).

Since pj,1 ≤ pj,1′ , it is sufficient to show rlnA(C[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2)[kj,3], . . . , sn]) ≤

rlnA(C[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2)[k
′
j,3], . . . , tn]). Note that this change may have an effect on the in-

ner decorations of sj,2.
Similarly, since kj,3 ≤ k′j,3, and the hole j is in a reduction context, it is sufficient to show

rlnA(C[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2), . . . , sn]) ≤ rlnA(C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]). At this place in
the proof we we switch to the language LRPw: Let Df , the set fresh labels, be Df = D1 \D0. The

expressions in hole j are (letrec a1 = h1, a2 = h2 . . . in tj,1 : s
[kj,2]
j,2 , and (letrec a1 := h1, a2 :=

h2 . . . in tj,1 : t
[k′j,2]

j,2 where the ai are the (fresh) labels in Df .

We integrate the subcontext (letrec a1 := h1, a2 := h2 . . . in (tj,1 : [.])) into the multi-context C,
resulting in the context C ′ = C[. . . . , (letrec a1 := h1, a2 := h2 . . . in (tj,1 : [.]))︸ ︷︷ ︸

j

, . . . , .] and obtain

that the number of holes of C ′ is again n and µ1 is unchanged. The next normal-order reductions are
shifting this let-environment to the top. However, the induction hypothesis could not be applied,
since the number of rlnall-reductions may have been increased. Now consider the next normal

order reduction for C ′′[t1, . . . , t
[k′j,2]

j,2 , . . . , tn] = C ′′′[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]. If there is no such

reduction, then C ′′[t1, . . . , t
[k′j,2]

j,2 , . . . , tn] is a WHNF. Then C ′′[s1, . . . , s
[kj,2]
j,2 , . . . , sn] is also a WHNF

and thus rlnA(C ′′′[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]) = 0 = rlnA(C ′′′[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2), . . . , sn])

which shows the claim and µ1 = 0. If a normal order reduction for C ′′′[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]
exists, then – due to typing – it must be a (seq)- or (case)-reduction.

The reduction strictly decreases the measure µ1, but we have to look for the form of the results:

If the (seq)-reduction removes (t
[p′j,1]

j,1 : s
[kj,2]
j,2) and (t

[p′j,1]

j,1 : t
[k′j,2]

j2
), then we can apply the induction

hypothesis.

If the (seq)-reduction does not remove (t
[p′j,1]

j,1 : s
[kj,2]
j,2) and (t

[p′j,1]

j,1 : t
[k′j,2]

j2
), since the seq-expression

is of a form seq x r, then this expression is part of the context and replaced by r, and so we can
apply the induction hypothesis.

If the reduction is a (case)-reduction, then the expressions tj,1, sj,2 and also tj,1, tj,2 are moved into
a letrec-environment and remain in surface-context position. Since µ1 is strictly decreased, the
preconditions hold for the result, we can apply the induction hypothesis, which shows the claim.
2

20 M. Schmidt-Schauß and D. Sabel

For the case A 6= A, we make a separate definition and a separate proof though the definitions of
proofs have a lot in comman. The advantage is that the (slightly different) proofs can be separately
checked.

Definition 4.3. Let Amin ⊆ A ⊂ A. Let τ be a type, and Lτ := {(s, t) | s, t :: List(τ),FV (s) =
FV (t) = ∅, decorations are only in surface contexts in s, t, and s ∼c t}. We define the following
operator FA,lbc : Lτ → Lτ : Let η ⊆ Lτ , and s η t.

1. If s ∼c ⊥ ∼c t, then s FA,h(η) t.

2. If s ≈A Nil[k], t ≈A Nil[k
′] and k ≤ k′, then s FA,h(η) t.

3. If s �A (s
[p1]
1 : s

[k2]
2)[k3], and (t

[p′1]
1 : t

[k′2]
2)[k

′
3] �A t, for some expressions s1, s2, t1, t2 with

FV (s1) = FV (s2) = FV (t1) = FV (t2) = ∅, and decorations where s2, t2 may contain further
sharing decorations, but only in surface context positions, and where we also assume that there
may be common labels in the expressions, and the following conditions hold:

(a) p1 ≤ p′1, k2 ≤ k′2, and k3 ≤ k′3.

(b) If k′3 = 0, then also (t
[p′1]
1 : t

[k′2]
2) �A t.

(c) s1 �A t1 and s1, t1 are decoration-free.

(d) The set D0 of labels in s is also the set of labels in t, and the set of labels Di in si, i = 1, 2,
are also the set of labels in ti, i = 1, 2. The set of fresh labels Df is D1 \D0.

(e) For labels in D0, we assume that these are free in the expressions, and the relations s �A
(s

[p1]
1 : s

[k2]
2)[k3], (t

[p′1]
1 : t

[k′2]
2)[k

′
3] �A t and (t

[p′1]
1 : t

[k′2]
2) �A t hold under this assumption.

(f) s2 η t2.

Then s Flbc(η) t.

Let vA,lbc,τ be the greatest fixpoint of FA,lbc. ut

For A with Amin ⊆ A ⊆ A, in particular for the case A 6= A, the simulation vA,lbc is correct for
�A, where the proof of Theorem 4.2 is modified at several places.

Theorem 4.4. Let Amin ⊆ A ⊆ A. If s vA,lbc t, then also s �A t.

Proof. We show a generalized claim. Using this claim with a single-hole surface-context T and
n = 1 shows that s �A,T t, and thus using the context lemma for improvement, also the claim of the
theorem follows. The claim is:

Let C[·, . . . , ·] be a multicontext, where the holes are in surface-contexts, for i = 1, . . . , n let
si, ti be closed and of the same type such that for each pair si, ti : si vA,lbc ti (and thus
si, ti :: List(τ)).
Then rlnA(C[s1, . . . , sn]) ≤ rlnA(C[t1, . . . , tn]) holds.

For the proof we assume that for the first input pair (s, t), the infinite sequence of the expansion
(including the decorations asf.) according to Definition 4.3 is fixed, and so we make the same choices
even if copies of s, t appear in the expressions. Hence we can use the Kleene-criterion for computing
the fixed point.
First observe that rlnA(C[t1, . . . , tn]) =∞ if, and only if rlnA(C[s1, . . . , sn]) =∞, which follows from
finiteness of decorations and from si ∼c ti.

In other cases we show the claim by induction on the lexicographically ordered measure
(µ1, µ2, µ3, µ4) where µ1 = rlnA(C[t1, . . . , tn]), µ2 is the number of holes in C, µ3 = rlnA(C[t1, . . . , tn])
and µ4 = rlnall(C[t1, . . . , tn]).

The base case is that there is no reduction of C[t1, . . . , tn] and there is no hole in a reduction
context. Then the context itself is either a WHNF, and rlnA(C[t1, . . . , tn]) = 0 = rlnA(C[s1, . . . , sn]),
or the context is stuck, in which case both expressions are divergent, and rlnA(C[t1, . . . , tn]) =∞ =
rlnA(C[s1, . . . , sn]).

Sharing Decorations for Improvements 21

The other cases are that a hole of C is in a reduction context, or a reduction is possible for
C[t1, . . . , tn], and we will show that we can apply the induction hypothesis.

If no hole of C is in a reduction context, then C[t1, . . . , tn]
no−→ C ′[t1, . . . , tn] as well as

C[s1, . . . , sn]
no−→ C ′[s1, . . . , sn], where C ′ has n or less than n holes, since all holes are in surface

contexts. We can apply the induction hypothesis after the reduction, since µ1 remains unchanged or
is decreased by 1, µ2 remains equal or is decreased, and (µ3, µ4) is strictly decreased. Note that this
reduction may change the value of sharing decorations. Since we have assumed that the relations hold
in condition (3e) also under the change of the value, the induction hypothesis is applicable.

Now we consider the case that some tj is in a reduction context in C[t1, . . . , tn]. Then we can
assume w.l.o.g. that the hole j is in a reduction context in C, independent of the expressions in the
holes. Hence sj as well as tj are in a reduction context in C[s1, . . . , sn] and C[t1, . . . , tn], respectively.

We check the cases from the definition of vA,lbc .

1. If sj ∼c ⊥, then tj ∼c ⊥, and C[s1, . . . , sj , . . . sn] ∼c ⊥ ∼c C[t1, . . . tj , . . . , tn].
2. If sj ≈A Nil[k], then tj ≈A Nil[k]. Since Nil[k] �A Nil[k

′], it is sufficient to show
rlnA(C[s1, . . . , Nil, . . . sn]) ≤ rlnA(C[t1, . . . , Nil, . . . tn]), which follows from the induction hy-
pothesis, since C[·1, . . . , ·j−1, Nil, ·j+1, . . . , ·n] has n− 1-holes (which strictly decreases µ2), and µ1
is unchanged.

3. If sj �A (s
[pj,1]
j,1 : s

[kj,2]
j,2)[kj,3] then due to the preconditions there is a representation (t

[p′j,1]

j,1 :

t
[k′j,2]

j,2)[k
′
j,3] �A tj such that k ≤ k′, pj,1 ≤ p′j,1, kj,2 ≤ k′j,2, kj,3 ≤ k′j,3, and sj,1 �A tj,1 and

sj,2 vA,lbc tj,2.
If k′j,3 > 0, then it is sufficient to show the claim for the two expressions C[s1, . . . , (s

[pj,1]
j,1 :

s
[kj,2]
j,2)[kj,3], . . . , sn]) and C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2)[k
′
j,3], . . . , tn], which follows from the induction hy-

pothesis, since k′j,3 > 0.

If k′j,3 = 0, then also kj,3 = 0 and we have to show the claim for the two expressions C[s1, . . . , (s
[pj,1]
j,1 :

s
[kj,2]
j,2), . . . , sn]) and C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]. Note that (t
[p′j,1]

j,1 : t
[k′j,2]

j,2) �A tj , hence µ3 is not
increased.
The assumption sj,1 �A tj,1 implies that it is sufficient to show the claim for C[s1, . . . , (t

[pj,1]
j,1 :

s
[kj,2]
j,2), . . . , sn]) and C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]. Since pj,1 ≤ p′j,1 it is sufficient to show the

claim for C[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2), . . . , sn]) and C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn]. Note that this
change may have an effect on the inner decorations of sj,2.
At this place in the proof we switch to the language LRPw: Let Df , the set fresh labels, be

Df = D1 \ D0. The expressions in hole j are (letrec a1 := h1, a2 := h2 . . . in tj,1 : s
[kj,2]
j,2 , and

(letrec a1 := h1, a2 := h2 . . . in tj,1 : t
[k′j,2]

j,2 where the ai are the (fresh) labels in Df .
We integrate the subcontext (letrec a1 := h1, a2 := h2 . . . in (tj,1 : [.])) into the multi-context C,
resulting in the context C ′ = C[. . . . , (letrec a1 := h1, a2 := h2 . . . in (tj,1 : [.]))︸ ︷︷ ︸

j

, . . . , .] and obtain

that the number of holes of C ′ is again n and µ1 is unchanged. The next normal-order reductions are
shifting this let-environment to the top. However, the induction hypothesis could not be applied,
since the number of rlnall-reductions may have been increased. Note that we have modified the

right-hand side, but from (t
[p′j,1]

j,1 : t
[k′j,2]

j,2) �A tj , we see that rlnA(C[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2
j,2]), . . . , tn])

≤ rlnA(C[t1, . . . , tn]).

Now consider the next normal order reduction for C[t1, . . . , t
[k′j,2]

j,2 , . . . , tn] = C[t1, . . . , (t
[p′j,1]

j,1 :

t
[k′j,2]

j,2), . . . , tn]. If there is no such reduction, then C[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn] is a WHNF.

Then C[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2), . . . , sn] is also a WHNF and the measure is µ1 = 0. Then

C[s1, . . . , (t
[p′j,1]

j,1 : s
[kj,2]
j,2), . . . , sn] and C[t1, . . . , (t

[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn] do not have a normal-order
reduction, and the claim is shown.

22 M. Schmidt-Schauß and D. Sabel

If a normal order reduction for C[t1, . . . , (t
[p′j,1]

j,1 : t
[k′j,2]

j,2), . . . , tn] exists, then – due to typing – the
reduction rule b must be a (seq)- or (case)-reduction. Either µ1 is strictly decreased or µ1, µ2 are
the same and (µ3, µ4) is strictly decreased, hence the global order is strictly decreased.
We have to look at the results whether we can apply the induction hypothesis:

If the (seq)-reduction removes (t
[p′j,1]

j,1 : s
[kj,2]
j,2) and (t

[p′j,1]

j,1 : t
[k′j,2]

j2
), then we the expression has a form

such that the induction hypothesis can be applied.

If the (seq)-reduction does not remove (t
[p′j,1]

j,1 : s
[kj,2]
j,2) and (t

[p′j,1]

j,1 : t
[k′j,2]

j2
), since the seq-expression

is of a form seq x r, then this expression is part of the context and replaced by r, and so we can
apply the induction hypothesis.

If the reduction is a (case)-reduction, then the expressions t
[p′j,1]

j,1 , s
[kj,2]
j,2 and also t

[p′j,1]

j,1 , t
[k′j,2]

j,2 are
moved into a letrec-environment and remain in surface-context position (at the same places in
the C[s..] and the C[t..]-expression). Thus we can apply the induction hypothesis.

Since the order is strictly decreased and the form of the expressions permits the application of the
induction hypothesis, the claim is shown. 2

5 A List Induction Scheme

The goal of this section is to show that there is a specialization of the list induction scheme (CC-
list induction scheme) for improvement that can also be used for ∼c, for example to show that
a ++ (b ++ c) ∼c (a ++ b) ++ c for any a, b, c.

In this section A is irrelevant, so we mean by rln the measure rlnA.

5.1 CC-List Induction Scheme for Equivalence

Definition 5.1. The constructor depth of a context C is the number of constructors on the path to
the hole.

Lemma 5.2. If C has constructor depth n, (case) ∈ A, and rln(C[s]) < n for some s, then C is not
strict.

Proof. This holds, since looking one constructor depth deeper requires at least one normal-order case-
reduction.

The following induction scheme is slightly different and covers more cases than the scheme that
requires C1[xs] ∼ C2|xs] =⇒ C1[x : xs] ∼c C2[x : xs] instead of (3) of Definition 5.3.

Definition 5.3 (CC-List Induction Scheme for Equivalence). Let C1, C2 be surface contexts
such that C1[x], C2[x] are of the same type for a fresh variable x of type List(τ).

Let the following hold:

1. C1[⊥] ∼c C2[⊥].

2. C1[Nil] ∼c C2[Nil].

3. For fresh variables xh and xs and some expression t the following holds: (C1[xh : xs]) ∼c (t :
C1[xs]) and (C2[xh : xs]) ∼c (t : C2[xs]).

Then C1, C2 satisfy the CC-list induction scheme for equivalence.

We show that the CC-list induction scheme is sufficient for contextual equivalence:

Theorem 5.4. If the contexts C1, C2 satisfy the CC-list induction scheme for equivalence, then for a
fresh variable x and for all expressions s:
letrec x = s in C1[x] ∼c letrec x = s in C2[x].

Sharing Decorations for Improvements 23

Proof. We use the context lemma: Let s be an arbitrary expression and S be a surface context such
that S[letrec x = s in C1[x]], S[letrec x = s in C2[x]] are closed.
The goal is to show that S[letrec x = s in C1[x]] ↓ ⇐⇒ S[letrec x = s in C2[x]] ↓.
The assumptions show that if the local evaluation of x in S[letrec x = s in x] diverges, i.e., results
in ⊥, then S[letrec x = s in C1[x])] ↓ ⇐⇒ S[letrec x = s in C2[x])] ↓.
The assumptions also show that if the local evaluation of x in S[letrec x = s in x] results in Nil,
then S[letrec x = s in C1[x])] ↓ ⇐⇒ S[letrec x = s in C2[x])] ↓.

Now assume the local evaluation of x in S[letrec x = s in C1[x])] results in S′[letrec x =
sh : st in C1[x])], then this is ∼c S′[letrec xh = sh, xt = st in C1[xh : xt])] ∼c S′[letrec xh =
sh, xt = st in t : C1[xt])], where the constructor-depth of S and S′ are the same. (The relation
rln(S[letrec x = s in C1[x]]) ≥ rln(S′[letrec xh = sh, xt = st in t : C1[xt])]) holds.)

Similarly for the C2-part: S[letrec x = s in C2[x])] ∼c S′[letrec xh = sh, xt = st in t :
C2[xt])]. Now, standard methods using induction show, basically on the constructor depth of the
hole in S[letrec x = s in [·]] and S′[letrec xh = sh, xt = st in t : [·])], that S[letrec x =
s in C1[x]] ↓ ⇐⇒ S[letrec x = s in C2[x]] ↓. Hence by the context lemma for equivalence, we obtain
letrec x = s in C1[x] ∼c letrec x = s in C2[x]. ut

The append-function ++ can be defined in LRP as a recursive letrec-binding:

Env++ := (++) = λxs, ys.(caseList xs (Nil→ ys)
((z : zs)→ z : ((++) zs ys)))

Using the CC-induction scheme we are able to show that left-associative and right-associative
bracketing of append are contextually equialent:

Proposition 5.5. Then right-associative bracketing for ++ is contextually equivalent to left-
associative bracketing.

Proof. With C1 = letrec Env++ in [·] ++ (b ++ c) and C2 = letrec Env++ in ([·] ++ b) ++ c, the pre-
conditions of the induction scheme 1 (see Definition 5.3) hold and we can apply Theorem 5.4:

– C1[x] ∼c C2[x] can be shown by standard inductive reasoning on contextual equivalence.
– C1[⊥] ∼c ⊥ ∼c C2[⊥] and thus C1[⊥] ∼c C2[⊥].
– C1[Nil] ∼c (b ++ c) and C2[Nil] ∼c b ++ c)
– C1[xh:xs] ∼c (xh:C1[xs]) and C2[xh:xs] ∼c (xh:C2[xs]). ut

Example 5.6. Let filter, id, not, and not3 be defined as follows:

id = λx.x
filter = λp, xs.caseList xs

(Nil -> Nil)
((y : ys) -> (caseBool y

(True -> y : (filter p ys))
(False -> filter p ys)))

not = λx.caseBool x (True -> False) (False -> True)
not3 = (λx.not (not (not x)))

Let Env be a letrec-environment where the required definitions of id, map, filter are included, and
let L := letrec Env [·].

CC-Induction scheme (together with Theorem 5.4) can easily be applied to show that the following
transformations are correct:

– L[map id xs] → L[xs].
– L[filter (λx.True) xs] → L[xs].
– L[map not3 xs]→ L[map not xs]

24 M. Schmidt-Schauß and D. Sabel

6 Improvement for Folds

We analyse various fold-applications and exhibit improvement transformations between fold expres-
sions.

Lemma 6.1. Let (case) ∈ A. Let s be closed expression of type τ , where τ does not contain →-types,
and let n > 0. Then there is a closed expression vn of depth at most n subject to the following condition:

1. The nodes at depth k ≤ n are constructor-nodes or ⊥, whereas deeper nodes may be arbitrary;

2. Every node at a depth k ≤ n (at position q) may carry a sharing decoration Wq.

3. For all (type-correct) contexts C with rln(C[s]) ≤ n the equation rln(C[s]) = rln(C[vn]) holds.

Proof. We apply Theorem 3.5 for sharing decorations.
If s⇑, then the representation is ⊥.

If s↓, then s ≈ (letrec Env in c s1 . . . sm)[k0] for some k0, where c is a constructor matching the
type of s. This is the same as s ≈ (letrec Env in (c s1 . . . sm)[k0]).
We proceed by locally evaluating one si after the other. If the evaluation of si diverges, then we replace
it by ⊥. Otherwise we replace it by the result and keep the sharing decorations such that the overall
expression is invariant w.r.t. ≈ . Iterating this evaluation also for deeper positions, i.e. until all nodes
of constructor-depth ≤ n are developed, we obtain an expression v′, almost as claimed with v′ ≈ s,
but only if the letrec-environments would be removed. If the constructor-depth is at least n, then we
copy all the letrec-environments down to the nodes at constructor-depth n, (and after that we remove
them at the source position) and thus obtain vn. We could even replace all nodes of constructor-depth
n by ⊥. This copy-operations and the final replacements do not change the rln-number for a request
C[.] with rln(C[s]) ≤ n, since normal-order reductions with not more than n case-reductions cannot
test the contents of the nodes at constructor depth ≥ n.

Corollary 6.2. Let s be an epression of type List(τ), where τ does not contain →-types, let (case) ∈
A. and let n > 0.

Then there is a closed expression vn = (sW1
1 : (sW2

2 : (. . .)W2,tl)W1,tl)W0, with sharing work decoration
Wi,Wi,tl, such that s ∼c vn, in vn either the last si is ⊥, or vn corresponds to a list of length at least
n, i.e., the n-th tail is converging, and for all C with rln(C[s]) ≤ n, also rln(C[s]) = rln(C[vn]).

Note that s � vn holds by using the knowledge about the pcgE-transformation [8]. However, there
is a small gap to show that (pcgE) is also an improvement in LRPw. We outline how to bridge this
gap: The proof for showing that (pcgE) is an improvement in LRPw uses the same the method and
diagrams as in [8] for LRP. However, a required lemma is that copying arbitrary expressions is a
correct program transformation in LRPw. This lemma can be established by using the methods in
[10] applied to the untyped variant of LRPw, i.e. the calculus LR extended by a := n and [a] constructs.
Showing correctness of copy in this calculus is straightforward by using infinite trees as in [10] for the
calculus LR: The new constructs are simply kept in the infinite trees. Finally, the correctness in the
untyped setting has to be lifted into the typed setting which again is straightforward.

7 Computing Decorations

In this section we present an algorithm to compute work decorations by partially evaluating expres-
sions.

Algorithm 7.1 Let Amin ⊆ A ⊆ A. The following procedure computes decorations for closed expres-

sions s: If s ⇑, then s can be written as ⊥. If s ↓ s0, and n = rlnA(s), then s can be written as s
[n]
0 .

For subexpressions, we can make use of so-called local evaluation, where a subexpression is labeled with
top, and then the label-shifting and reduction follows, where the reductions are only permitted if they

Sharing Decorations for Improvements 25

fulfill the label-conditions for normal-order reductions, and where for a reduction sequence, the label
top remains at the (starting local) subexpression until the reduction ends.
An interesting special case is a closed expression of the form

letrec Env in (c s1 . . . sn),

where the sharing decorations can be defined (and perhaps also computed) in some cases. Therefore,
let us assume that the local evaluation of all si terminates, and that for every i: after the evaluation
of si to s′i, the environment is no longer needed for s′i.

1. First determine the numbers nJ for ∅ 6= J ⊆ {1, . . . , n}, which count the necessary number of
rlnA-reductions in the common local evaluation of the subexpressions sj , j ∈ J in s.

2. Then determine the numbers bJ , for j ⊆ {1, . . . , n}, which can be interpreted as the number of
rlnA-reductions required for exactly the set si, i ∈ J , but not for subsets. This can be done using
the inclusion-exclusion principle of combinatorics:
For example b{1,2,3} is
n{1,2,3} −

∑
K⊆{1,2,3},|K|=2 nK +

∑
K⊆{1,2,3},|K|=1 nK .

and in general b{1,...,n} is ∑
K⊆{1,...,n},|K|=1 nK

−
∑

K⊆{1,...,n},|K|=2 nK
. . .
− (−1)n−1

∑
K⊆{1,...,n},|K|=n−1 nK

Using this approach, all bJ ∈ N can be determined from the numbers nJ by using the corresponding
formulas, and using only addition and subtraction.

3. The computed expression is then of the form

(c t1
p1 . . . tn

pn)

with the following conditions and computations:

(a) For i = 1, . . . , n, ti is the result of the local evaluation of si.
(b) The sharing decorations pi consist of all aJ 7→ bJ with i ∈ J ⊆ {1, . . . , n}
(c) For all ∅ 6= J ⊆ {1, . . . , n} the sharing decorations are aJ 7→ bJ .

Note that some sharing decorations are in fact (unshared) decorations; in particular ai 7→ bi.

For n = 2, the expression is letrec Env in (c s1 s2), Then n1 is the rlnA-reduction count for s1, n2
for s2, and n1,2 for evaluating both s1, s2. The numbers are: b1,2 = (n1 +n2)−n1,2, and b1 = n1− b1,2,

b2 = n2 − b1,2. The expression is then represented as (t
[b1,a1 7→b1,2]
1 , t

[b2,a1 7→b1,2]
2).

However, note that this method is insufficient for the general case where ti may have a common
environment after evaluation.

8 Conclusion

We have provided the necessary proofs of all the computation rules for unshared and shared decora-
tions. There is also a proof of the simulation proof method for improvement.

References

1. Simon Marlow, editor. Haskell 2010 – Language Report. 2010. www.haskell.org.
2. Andrew Moran and David Sands. Improvement in a lazy context: An operational theory for call-by-need. In Proc.

POPL 1999, pages 43–56. ACM Press, 1999.
3. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
4. Andrew M. Pitts. Parametric polymorphism and operational equivalence. Math. Structures Comput. Sci., 10:321–

359, 2000.

26 M. Schmidt-Schauß and D. Sabel

5. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for higher-order calculi with sharing. Theoret.
Comput. Sci., 411(11-13):1521 – 1541, 2010.

6. Manfred Schmidt-Schauß and David Sabel. Contextual equivalences in call-by-need and call-by-name polymorphi-
cally typed calculi (preliminary report). In Proc. WPTE 2014, volume 40 of OASICS, pages 63–74. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2014.

7. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need operational
semantics. In Elvira Albert, editor, Proc. PPDP ’15, pages 220–231, New York, NY, USA, 2015. ACM.

8. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need opera-
tional semantics. Frank report 55, Institut für Informatik, Goethe-Universität Frankfurt am Main, November 2015.
http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

9. Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core language with call-by-need opera-
tional semantics. Frank report 55, Institut für Informatik, Goethe-Universität Frankfurt am Main, March 2015.
http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

10. Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-calculus with
letrec, case, constructors, and seq. Log. Methods Comput. Sci., 11(1), 2015.

11. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct. Pro-
gramming, 18(04):503–551, 2008.

12. Dimitrios Vytiniotis and Simon Peyton Jones. Evidence Normalization in System FC (Invited Talk). In Femke
van Raamsdonk, editor, Proc. RTA 2013, volume 21 of LIPIcs, pages 20–38, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Sharing Decorations for Improvements 27

A Redundancy of rln-Decorations

We prove Proposition 3.2:

Proposition A.1. The sharing rln-decorations s[n] can be encoded as letrec x = (idn) in (x s) and
thus are redundant.

Proof. Let Amin ⊆ A ⊆ A. We show that s[n] = letrec a := n in s[a] ≈A letrec x = (idn) in (x s):
Let R be a reduction context. It suffices to show R[letrec a := n in s[a]] ∼c R[letrec x =
(idn) in (x s)] and rlnA(R[letrec a := n in s[a]]) = rlnA(R[letrec x = (idn) in (x s)]), since
then the context lemma for ∼c and the context lemma for improvement show the claim.

– If R is a weak reduction context, then

R[letrec a := n in s[a]]
LRPw,lll,∗−−−−−−→ letrec a := n in R[s[a]]

and thus rlnA(R[letrec a := n in s[a]]) = rlnA(letrec a := n in R[s[a]]). Now

letrec a := n in R[s[a]]
LRPw,letwn,n−−−−−−−−−→ letrec a := 0 in R[s[a]]

LRPw,letw0−−−−−−−→ letrec a := 0 in R[s]

and thus rlnA(R[letrec a := n in s[a]]) = n+rlnA(R[letrec a := 0 in s]). Now Proposition 2.25
shows rlnA(R[letrec a := n in s[a]]) = n+ rlnA(R[s]).
For R[letrec x = (idn) in (x s)] one can verify that

R[letrec x = (idn) in (x s)]
LRPw,lll,∗−−−−−−→ (

LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1
LRPw,cp−−−−−→ LRPw,lbeta−−−−−−−→ LRPw,lll,∗−−−−−−→

letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[xn]

and thus rlnA(R[letrec x = (idn) in (x s)]) = n+rlnA(letrec x = x1, x1 = x2, xn−1 = id, xn =
s in R[xn]). Finally, since

letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[xn]
ucp−−→ letrec x = x1, x1 = x2, xn−1 = id, xn = s in R[s]
gc2−−→ R[s]

and Theorem 2.26 shows that (ucp) and (gc2) do not change the rlnA-measure, we have
rlnA(R[letrec x = (idn) in (x s)]) = n + rlnA(R[s]). Concluding, this shows R[letrec a :=
n in s[a]] ∼c R[letrec x = (idn) in (x s)] since the left expression can be transformed into
the right expression by correct program transformations and it also shows rlnA(R[letrec a :=
n in s[a]]) = rlnA(R[letrec x = (idn) in (x s)]).

– If R is not a weak reduction context, then there are two cases:

1. R[letrec a := n in s[a]]
LRPw,lll,∗−−−−−−→ letrec Env , a := n in R−1 [s[a]] and

R[letrec x = (idn) in (x s)]
LRPw,lll,∗−−−−−−→ letrec Env , x = (idn) in R−1 [(x s)] where R−1 is a

weak reduction context.
For the left expression:

letrec Env , a := n in R−1 [s[a]]
LRPw,letwn,n−−−−−−−−−→ letrec Env , a := 0 in R−1 [s[a]]
LRPw,letw0−−−−−−−→ letrec Env , a := 0 in R−1 [s]
gcW−−−→ letrec Env in R−1 [s]

and thus R[letrec a := n in s[a]]) ∼c letrec Env in R−1 [s] and rlnA(R[letrec a :=
n in s[a]]) = n+ rlnA(letrec Env in R−1 [s]).

28 M. Schmidt-Schauß and D. Sabel

For the right expression

letrec Env , x = (idn) in R−1 [(x s)]

(
LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1 letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [(x s)]

LRPw,cp−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [(id s)]
LRPw,lbeta−−−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [letrec xn = s in xn]
LRPw,lll,∗−−−−−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id, xn = s in R−1 [xn]
ucp−−→ letrec Env , x = x1, x1 = x2, . . . , xn−1 = id in R−1 [s]
gc−→ letrec Env in R−1 [s]

and thus R[letrec x = (idn) in (x s)] ∼c letrec Env in R−1 [s] and rlnA(R[letrec x =
(idn) in (x s)]) = n+ rlnA(letrec Env in R−1 [s])
Together this shows R[letrec a := n in s[a]] ∼c R[letrec x = (idn) in(x s)] and
rlnA(R[letrec a := n in s[a]]) = rlnA(R[letrec x = (idn) in (x s)]).

2.
R[letrec a := n in s[a]]

LRPw,lll,∗−−−−−−→ letrec Env , a := n, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2, in R
−
0 [ym]

and
R[letrec x = (idn) in (x s)]

LRPw,lll,∗−−−−−−→ letrec Env , x = (idn), y1 = R−1 [(x s)], {yi = R
yi−1

i }mi=2 in R−0 [ym]

where R−0 , . . . , Rm are weak reduction contexts.
For the left expression:

letrec Env , a := n, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
LRPw,letwn,n−−−−−−−−−→ letrec Env , a := 0, y1 = R−1 [s[a]], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
LRPw,letw0−−−−−−−→ letrec Env , a := 0, y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]
gcW−−−→ letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and thus

R[letrec a := n in s[a]] ∼c letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and

rlnA(R[letrec a := n in s[a]]) = n+rlnA(letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 inR
−
0 [ym])

For the right expression:

letrec Env , x = (idn), y1 = R−1 [(x s)], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

(
LRPw,lbeta−−−−−−−→ LRPw,llet−−−−−−→)n−1 letrec Env , x = x1, {xi = xi+1}n−2i=1 , xn−1 = id,

y1 = R−1 [(x s)], {yi = R−i [yi−1]}mi=2

in R−0 [ym]
LRPw,cp−−−−−→ LRPw,lbeta−−−−−−−→ lll,∗−−→ letrec Env , x = x1, {xi = xi+1}n−2i=1 , xn−1 = id, xn = s,

y1 = R−1 [xn], {yi = R−i [yi−1]}mi=2

in R−0 [ym]
ucp−−→ gc−→ letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

and thus

R[letrec x = (idn) in (x s)] ∼c letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 in R−0 [ym]

Sharing Decorations for Improvements 29

and

rlnA(R[letrec x = (idn) in (x s)]) = n+rlnA(letrec Env , y1 = R−1 [s], {yi = R−i [yi−1]}mi=2 inR
−
0 [ym])

Together this shows

R[letrec a := n in s[a]] ∼c R[letrec x = (idn) in (x s)]

and
rlnA(R[letrec a := n in s[a]]) = rlnA(R[letrec x = (idn) in (x s)])

B Proofs of Computation Rules

The following theorem summarizes the results proved in this section.

Theorem B.1. Let Amin ⊆ A ⊆ A.

1. If s
LRPw,a−−−−−→ t with a ∈ A, then s ≈A t[1], and if a 6∈ A, then s ≈A t.

2. R[letrec a := n in s[a]] ≈A letrec a := n in R[s][a] and thus in particular R[s[n]] ≈A R[s][n].
3. rlnA(letrec a := n in s[a]) = n + rlnA(s′) where s′ is s where all [a]-labels are removed. In

particular this also shows rlnA(s[n]) = n+ rlnA(s)
4. For every reduction context R: rlnA(R[letrec a := n in s[a]]) = n + rlnA(R[s′]) where s′ is s

where all [a]-labels are removed. In particular, this shows rlnA(R[s[n]]) = n+ rlnA(R[s]).
5. (s[n])[m] ≈A s[n+m]

6. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] �A letrec a := n inS1[S2[s]]

[a] and
if S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈A letrec a := n inS1[S2[s]]
[a].

7. letrec a := n, b := m in (s[a])[b] ≈A letrec a := n, b := m in (s[b])[a]

8. letrec a := n in (s[a])[a] ≈A letrec a := n in (s[a])
9. (tp1)p2 ≈A tp1⊕p2.
10. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Then letrec a :=

n in S[s
[a]
1 , . . . , s

[a]
n] �A letrec a := n in S[s1, . . . , sn][a]. If some hole ·i with i ∈ {1, . . . , n}

is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈A letrec a :=

n in S[s1, . . . , sn][a].
11. Let S[·, . . . , ·] be a multi-context where all holes are in surface position. Let S[s1, . . . , sn] be closed.

Then S[s
[p1,a 7→m]
1 , . . . , s

[pn,a7→m]
n] �A S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then

S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] ≈A S[sp11 , . . . , s

pn
n][m].

12. The following transformation is correct w.r.t. ≈A: Replace (letrec x = s[n,p],Env in t) by
letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x], where a is a fresh label and all oc-
currences of x are in surface position.

13. If a label-name a occurs exactly once in a surface context, then it can be changed into an unshared
decoration.

14. If p, p′ are two decorations with p ≤ p′, and s �A t, then s[p] �A t[p
′].

Proof. (1) is proved in Theorem B.8.
(2) is proved in Proposition B.3.
(3) is proved in Lemma B.4.
(4) is proved in Corollary B.5.
(5) is proved in Proposition B.6.
(6) is proved in Corollary B.12.
(7) and (8) are proved in Proposition B.13, and (9) holds by iteratively applying items (4), (7) and

(8) and by applying (lll) and (gcW)-transformations which are invariant w.r.t. ≈A.
(10) is proved in Proposition B.14.

30 M. Schmidt-Schauß and D. Sabel

(11) is proved in Corollary B.15.
(12) is proved in Proposition B.16.
(13) follows from the semantics of the labels.
(14) follows from (1) and the context lemma for improvements.

Proposition B.2. Let Amin ⊆ A ⊆ A. If s
LRPw,letwn−−−−−−−−→ t, then s ≈A t[1]

Proof. We use the context lemma for improvement and thus have to show for all reduction contexts
R:

rlnA(R[s]) = rlnA(R[letrec a := 1 in t[a]])
There are three general cases for the reduction context R and two cases for s and t:

1. s = letrec b := n,Env in R−0 [r[b]],

t = letrec b := n− 1,Env in R−0 [r[b]]

(a) R is a weak reduction context. Then rlnA(R[s]) = rlnA(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env in R[R−0 [r[b]]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env in R[R−0 [r[b]]]

R[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1 in R[(letrec b := n− 1,Env in R−0 [r[b]])[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1, b := n− 1,Env in R[R−0 [r[b]])[a]]
LRPw,letwn−−−−−−−−→ letrec a := 0, b := n− 1,Env in R[R−0 [r[b]])[a]]
LRPw,letw0−−−−−−−→ letrec a := 0, b := n− 1,Env in R[R−0 [r[b]])]
gcW−−−→ letrec b := n− 1,Env in R[R−0 [r[b]])]

(b) R = letrec Env ′ in R′[·], where R′ is a weak reduction context. Then rlnA(R[s]) =
rlnA(R[letrec a := 1 in t[a]]), since:

letrec Env ′ in R′[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env ,Env ′ in R′[R−0 [r[b]]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env ,Env ′ in R′[R−0 [r[b]]]

letrec Env ′ in R′[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1 in R′[(letrec b := n− 1,Env in R−0 [r[b]])[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, b := n− 1,Env in R′[R−0 [r[b]])[a]]
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env in R′[R−0 [r[b]])[a]]
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env in R′[R−0 [r[b]])]
gcW−−−→ letrec Env ′, b := n− 1,Env in R′[R−0 [r[b]])]

(c) R = letrec Env ′, x = R′[·] in u, where R′ is a weak reduction context. Then rlnA(R[s]) =
rlnA(R[letrec a := 1 in t[a]]), since:

letrec Env ′, x = R′[s] in u
LRPw,lll,∗−−−−−−→ letrec b := n,Env ,Env ′, x = R′[R−0 [r[b]]] in u
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env ,Env ′, x = R′[R−0 [r[b]]] in u

letrec Env ′, x = R′[letrec a := 1 in t[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, x = R′[(letrec b := n− 1,Env in R−0 [r[b]])[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, b := n− 1,Env , x = R′[R−0 [r[b]][a]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env , x = R′[R−0 [r[b]][a]] in u
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, b := n− 1,Env , x = R′[R−0 [r[b]]] in u
LRPw,gcW−−−−−−−→ letrec Env ′, b := n− 1,Env , x = R′[R−0 [r[b]]] in u

Sharing Decorations for Improvements 31

2. s = letrec b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym]

t = letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym]

(a) R is a weak reduction context. Then rlnA(R[s]) = rlnA(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym]]
LRPw,letwn−−−−−−−−→ letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym]]

R[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec a := 1 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])[a]]
LRPw,letwn−−−−−−−−→ letrec a := 0 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])[a]]
LRPw,letw0−−−−−−−→ letrec a := 0 in

R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])]
gcW−−−→ R[(letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R−m+1[ym])]
LRPw,lll,∗−−−−−−→ letrec b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R[R−m+1[ym])]

(b) R = letrec Env ′ in R′[·], where R′ is a weak reduction context. Then rlnA(R[s]) =
rlnA(R[letrec a := 1 in t[a]]), since:

letrec Env ′ in R′[s]
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]
LRPw,letwn−−−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]

letrec Env ′ in R′[letrec a := 1 in t[a]]
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1 in R′[t[a]]
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0 in R′[t[a]]
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0 in R′[t]
gcW−−−→ letrec Env ′ in R′[t]
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2 in R′[R−m+1[ym]]

(c) R = letrec Env ′, x = R′[·] in u, where R′ is a weak reduction context. Then rlnA(R[s]) =
rlnA(R[letrec a := 1 in t[a]]), since:

letrec Env ′, x = R′[s] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u

letrec Env ′, x = R′[letrec a := 1 in t[a]] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, a := 1, x = R′[t[a]] in u
LRPw,letwn−−−−−−−−→ letrec Env ′, a := 0, x = R′[t[a]] in u
LRPw,letw0−−−−−−−→ letrec Env ′, a := 0, x = R′[t] in u
gcW−−−→ letrec Env ′, x = R′[t] in u
LRPw,lll,∗−−−−−−→ letrec Env ′, b := n− 1,Env , y1 = R−0 [r[b]], {yi = R−i [yi−1]}mi=2, x = R′[R−m+1[ym]] in u

Proposition B.3. Let Amin ⊆ A ⊆ A. R[letrec a := n in s[a]] ≈A letrec a := n in R[s][a] and
thus in particular R[s[n]] ≈A R[s][n]

32 M. Schmidt-Schauß and D. Sabel

Proof. We show R[letrec a := n in s[a]] ≈A letrec a := n in R[s][a] by induction on n. If n = 0
then the claim holds, since (letw0) ⊆≈A.

For the induction step assume that the claim holds for all k, with k ≤ n− 1.

We make a case distinction on the reduction context R.

1. R is a weak reduction context. Then

R[letrec a := n in s[a]]

≈A letrec a := n in R[s[a]] (since (lll) ⊆≈A)

≈A letrec b := 1 in (letrec a := n− 1 in R[s[a]])[b] (by Proposition B.2)

≈A letrec b := 1 in R[letrec a := n− 1 in s[a]][b] (since (lll) ⊆≈A)

≈A letrec b := 1 in (letrec a := n− 1 in (R[s][a]))[b] (induction hypothesis)

≈A letrec a := n in (R[s][a]) (by Proposition B.2)

2. R = letrec Env in R′[·] where R′ is a weak reduction context.

R[letrec a := n in s[a]]

= letrec Env in R′[letrec a := n in s[a]]

≈A letrec a := n,Env , R′[s[a]] (since (lll) ⊆≈A)

≈A letrec b := 1 in (letrec a := n− 1,Env in R′[s[a]])[b] (by Proposition B.2)

≈A letrec b := 1 in R[letrec a := n− 1 in s[a]][b] (since (lll) ⊆≈A)

≈A letrec b := 1 in (letrec a := n− 1 in R[s][a])[b] (induction hypothesis)

= letrec b := 1 in (letrec a := n− 1 in (letrec Env in R′[s])[a])[b]

≈A letrec a := n in (letrec Env in R′[s])[a]) (by Proposition B.2)

= letrec a := n in (R[s])[a]

3. R = letrec Env , x = R′[·] in u where R′ is a weak reduction context.

R[letrec a := n in s[a]]

= letrec Env , x = R′[letrec a := n in s[a]] in u

≈A letrec Env , a := n, x = R′[s[a]] in u (since (lll) ⊆≈A)

≈A letrec b := 1 in (letrec Env , a := n− 1, x = R′[s[a]] in u)[b] (by Proposition B.2)

≈A letrec b := 1 in (letrec Env , x = (R′[letrec a := n− 1 in s[a]]) in u)[b] (since (lll) ⊆≈A)

= letrec b := 1 in (R[letrec a := n− 1 in s[a]])[b]

≈A letrec b := 1 in (letrec a := n− 1 in R[s][a]])[b] (induction hypothesis)

= letrec b := 1 in (letrec a := n− 1 in (letrec Env , x = R′[s] in u)[a])[b]

≈A letrec a := n in (letrec Env , x = R′[s] in u)[a] (by Proposition B.2)

= letrec a := n in R[s][a]

Lemma B.4. Let Amin ⊆ A ⊆ A. Then rlnA(letrec a := n in s[a]) = n + rlnA(s′) where s′ is s
where all [a]-labels are removed. In particular this also shows rlnA(s[n]) = n+ rlnA(s)

Proof. The reduction letrec a := n in s[a]
LRPw,letwn,n−−−−−−−−−→ C,letw0,∗−−−−−−→ letrec a := 0 in s′ shows

rlnA(s[n]) = n+ rlnA(letrec a := 0 in s). Finally, (gcW) ⊆≈ shows the claim.

Corollary B.5. Let Amin ⊆ A ⊆ A. For every reduction context R: rlnA(R[letrec a := n in s[a]]) =
n+rlnA(R[s′]) where s′ is s where all [a]-labels are removed. In particular, this shows rlnA(R[s[n]]) =
n+ rlnA(R[s]).

Proof. By Proposition B.3 we have rlnA(R[letrec a := n in s[a]]) = rlnA(letrec a := n in R[s][a])
and by Lemma B.4 we have rlnA(letrec a := n in R[s][a]) = n+ rlnA(R[s′]).

Sharing Decorations for Improvements 33

Proposition B.6. Let Amin ⊆ A ⊆ A. Then (s[n])[m] ≈A s[n+m]

Proof. Clearly (s[n])[m] ∼c s[n+m] Let R be a reduction context, then rlnA(R[(s[n])[m]]) = m +
rlnA([R[s[n]]) = m+n+ rlnA(R[s]) = rlnA(R[s[n+m]]) by Corollary B.5. Now the context lemma for
improvement shows the claim.

Lemma B.7. Let Amin ⊆ A ⊆ A. If s
LRPw,a−−−−−→ t and a ∈ {lbeta, case − c, seq − c}, then s ≈A t[1] if

a ∈ A.

Proof. We use the context lemma for improvement and thus have to show for all reduction contexts
R:

rlnA(R[s]) = rlnA(R[t[1]]) (if a ∈ A)

By Corollary B.5 we have rlnA(R[t[1]]) = 1 + rlnA(R[t]) and thus it suffices to show

rlnA(R[s]) = 1 + rlnA(R[t])

Let s0
a−→ t0 for a ∈ {lbeta, case− c, seq} and assume a ∈ A. We very all cases for s and t:

1. s = R−0 [s0],
t = R−0 [t0]

Then R[s]
LRPw,a−−−−−→ R[t].

2. s = letrec Env in R−0 [s0],
t = letrec Env in R−0 [t0]

We go through the cases for R:

(a) R is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env in R[R−0 [s0]]
LRPw,a−−−−−→ letrec Env in R[R−0 [t0]]
LRPw,lll,∗←−−−−−− R[letrec Env in R−0 [t0]] = R[t]

(b) R = letrec Env ′ in R′, where R′ is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ,Env ′ in R′[R−0 [s0]]
LRPw,a−−−−−→ letrec Env ,Env ′ in R′[R−0 [t0]]
C,lll,∗←−−−− letrec Env ′ in R′[letrec Env in R−0 [t0]]

= R[t]

(c) R = letrec Env ′, u = R′ in r, where R′ is a weak reduction context. Then rln(R[s]) =
rln(R[letrec a := 1 in t[a]]), since:

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ,Env ′, u = R′[R−0 [s0]] in r
LRPw,a−−−−−→ letrec Env ,Env ′, u = R′[R−0 [t0]] in r
C,lll,∗←−−−− letrec Env ′, u = R′[letrec Env inR−0 [t0]] in r

= R[t]

3. s = letrec Env , y = R−0 [s0] in u0
t = letrec Env , y = R−0 [t0] in u0

We go through the cases for R:

(a) R is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env , y = R−0 [s0] in R[u0]
LRPw,a−−−−−→ letrec Env , y = R−0 [t0] in R[u0]
C,lll,∗←−−−− R[t]

34 M. Schmidt-Schauß and D. Sabel

(b) R = letrec Env ′ in R′, where R′ is a weak reduction context.

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ′,Env , y = R−0 [s0] in R

′[u0]
LRPw,a−−−−−→ letrec Env ′,Env , y = R−0 [t0] in R

′[u0]
C,lll,∗←−−−− R[t]

(c) R = letrec Env ′, u = R′ in r, where R′ is a weak reduction context. Then

R[s]
LRPw,lll,∗−−−−−−→ letrec Env ′,Env , y = R−0 [s0], u = R′[u0] in r
LRPw,a−−−−−→ letrec Env ′,Env , y = R−0 [t0], u = R′[u0] in r
C,lll,∗←−−−− R[t]

Theorem B.8. Let Amin ⊆ A ⊆ A. If s
LRPw,a−−−−−→ t with a ∈ {lbeta, case, seq, letwn}, then s ≈ t[1],

provided a ∈ A.

Proof. For (letwn) this was proved in Proposition B.2, for (case-c), (seq-c), and (lbeta) this was
proved in Lemma B.7. For the remaining (case) and (seq)-reductions, it suffices to observe that these
transformation can be expressed by using one (LRPw,case-c)-reduction (or (LRPw,seq-c)-reduction
respectively) and (cpcx), (gc), and (lll) transformations. Since for all these transformation we have

u
C,cpcx∨gc∨lll−−−−−−−−→ u′ implies u ≈A u′ (Theorem 2.26) the claim follows.

Proposition B.9. Let Amin ⊆ A ⊆ A. For any strict surface context S: S[letrec a := n in s[a]] ≈A
letrec a := n in S[s][a] and thus in particular S[s[n]] ≈A S[s][n]

Proof. If S[r] ∼c ⊥ for all r, then S[letrec a := n in s[a]] ∼c ⊥ ∼c letrec a := n in S[s][a] and since
for any reduction context R: R[⊥] ↑, R[S[letrec a := n in s[a]]] ↑ and R[letrec a := n in S[s][a]] ↑
and thus rlnA(R[letrec a := n in s[a]]) = ∞ = rlnA(R[letrec a := n in S[s][a]]) and the context
lemma for improvement shows S[letrec a := n in s[a]] ≈A letrec a := n in S[s][a].

Otherwise, for every r and any reduction context R: R[S[r]]
LRPw,k−−−−−→ R′[r] where R′ is a reduction

context. and rlnA(R[S[r]]
LRPw,k−−−−−→ R′[r]) = m for some m ≤ k.

For R[S[letrec a := n in s[a]]], we have rlnA(R[S[letrec a := n in s[a]]]) = m +
rlnA(R′[letrec a := n in s[a]]) and by Proposition B.3 we have rlnA(R′[letrec a := n in s[a]]) =
rlnA(letrec a := n in R′[s][a]). By Lemma B.4 we have rlnA(letrec a := n in R′[s][a]) =
n+rln(R′[s′]) where s′ is s where all [a]-labels are removed. Thus rlnA(R[S[letrec a := n in s[a]]]) =
m+ n+ rlnA(R′[s′])

For R[letrec a := n in S[s][a]], we have by Corollary B.5 rlnA(R[letrec a := n in S[s][a]]) = n+
rlnA(R[S[s′]]) where s′ is s where all [a]-labels are removed. Since rlnA(R[S[s′]]) = m+rlnA(R′[S[s′]),
we have rlnA(R[letrec a := n in S[s][a]]) = n+m+ rlnA(R′[S[s′]).

Concluding we have shown rlnA(R[S[letrec a := n in s[a]]]) = rlnA(R[letrec a := n in S[s][a]])
and clearly also R[S[letrec a := n in s[a]]] ∼c R[letrec a := n in S[s][a]] holds. Thus the context
lemma for improvement shows the claim.

Proposition B.10. Let Amin ⊆ A ⊆ A. Let S be a surface context. Then S[letrec a := n in s[a]] �A
letrec a := n in S[s][a] and in particular S[s[n]] �A S[s][n].

Proof. Let R be a reduction context. If R[S] is strict, then Proposition B.9 shows R[S[letrec a :=
n in s[a]]] �A R[letrec a := n in S[s][a]] and thus rlnA(R[S[letrec a := n in s[a]]]) ≤
rlnA(R[letrec a := n in S[s][a]]) for all reduction contexts.

If R[S] is non-strict, then rlnA(R[S[r]]) = mR for any R and where mR depends only depends
the context R[S]. Then rlnA(R[S[letrec a := n in s[a]]]) = mR. From Corollary B.5 we have
rlnA(R[letrec a := n in S[s][a]]) = n+ rlnA(R[S[s′]]) where s′ is s where all [a]-labels are removed.
Thus rlnA(R[letrec a := n in S[s][a]]) = n + mR. Since S[letrec a := n in s[a]] ∼c letrec a :=
n in S[s][a] (by correctness of (letw) and (gcW)), the context lemma for improvement shows the claim.

Sharing Decorations for Improvements 35

Proposition B.11. Let Amin ⊆ A ⊆ A. Let S be a surface context. Then letrec a := n in S[s[a]] �A
letrec a := n in S[s][a], and if S is strict, then letrec a := n in S[s[a]] ≈A letrec a := n in S[s][a].

Proof. First assume that S is strict. Let R be a reduction context. Then S′ := R[letrec a :=
n in S[·] is also strict. If S′[r] ∼c ⊥ for all r, then rlnA(R[letrec a := n in S[s[a]])) = ∞ and
rlnA(R[letrec a := n in S[s])[a]) = n+ rlnA(R[S[s]]) = n+∞ =∞

Now assume that S is not strict. Let R be a reduction context. By (lll)-transformations we have
R[letrec a := n in S[s[a]]] ≈A letrec a := n in R[S[s[a]].

If R[S[·]] is strict, then we have letrec a := n in R[S[s[a]]] ≈A letrec a := n in R[S[s]][a] (since
R[S[·]] is a strict surface context) and letrec a := n in R[S[s]][a] ≈A letrec a := n in R[S[s][a]]
(since R is a strict surface context).

By (lll)-transformations we have letrec a := n in R[S[s][a]] ≈A R[letrec a := n in S[s][a]]. thus
rlnA(R[letrec a := n in S[s[a]]]) = rlnA(R[letrec a := n in S[s][a]]).

If R[S[·]] is non-strict, then rlnA(R[S[r]]) = mR for any r and where mR only depends on the
context R[S]. Then rlnA(R[letrec a := n in S[s[a]]]) = rlnA(letrec a := n in R[S[s[a]]]]) = mR,
since rlnA-length of the normal order reduction for R[S[r]] is the same for letrec a := n in R[S[r]],
since only (lll)-reduction may be added. We also have rlnA(R[letrec a := n in S[s][a]]) = n +
rlnA(R[S[s]]) = n+mR by Corollary B.5.

Thus in any case rlnA(R[letrec a := n in S[s[a]]]) ≤ rlnA(R[letrec a := n in S[s][a]]) and the
expressions are contextually equivalent and thus the context lemma for improvement shows the claim.

Corollary B.12. Let Amin ⊆ A ⊆ A. For all surface contexts S1, S2: S1[letrec a := n in S2[s
[a]]] �A

letrec a := n inS1[S2[s]]
[a] and if S1[S2] is strict, also S1[letrec a := n in S2[s

[a]]] ≈A letrec a :=
n inS1[S2[s]]

[a].

Proof. This follows from Propositions B.10 and B.11.

Proposition B.13. Let Amin ⊆ A ⊆ A.

1. letrec a := n, b := m in (s[a])[b] ≈A letrec a := n, b := m in (s[b])[a]

2. letrec a := n in (s[a])[a] ≈A letrec a := n in (s[a])

3. (tp1)p2 ≈A tp1⊕p2.

Proof. 1. Let R be a reduction context. Then R[letrec a := n, b := m in (s[a])[b]] ≈A R[letrec b :=
m in (letrec a := n in (s[a])[b]]), since (llet) ⊆≈A. Applying Corollary B.5 two times shows
rlnA(R[letrec b := m in (letrec a := n in (s[a])[b]])) = m+rlnA(R[letrec a := n in (s′[a])]) =
m+ nrlnA(R[s′′]) where s′′ is s where all label [a] and [b] are removed. Completely analogously it
can be shown that rlnA(R[letrec a := n, b := m in (s[b])[a]]) = n + m + rlnA(R[s′′]). Clearly,
letrec a := n, b := m in (s[a])[b] ∼c letrec a := n, b := m in (s[b])[a] and thus the context lemma
for improvement shows the claim.

2. Corollary B.5 shows that for all reduction contexts R the equation rlnA(R[letrec a :=
n in (s[a])[a]]) = n + rlnA(R[s′]) = rlnA(R[letrec a := n in (s[a])]) holds, where s′ is s where
all [a]-labels are removed. The expressions are also contextually equivalent and thus the context
lemma for improvement shows the claim.

3. This follows from the previous parts and from Proposition B.6.

Proposition B.14. Let Amin ⊆ A ⊆ A. Let S[·, . . . , ·] be a multi-context where all holes are in surface

position. Then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] �A letrec a := n in S[s1, . . . , sn][a]. If some hole

·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then letrec a := n in S[s
[a]
1 , . . . , s

[a]
n] ≈A

letrec a := n in S[s1, . . . , sn][a].

Proof. This follows by repeated application of Corollary B.12 and Proposition B.13.

36 M. Schmidt-Schauß and D. Sabel

Corollary B.15. Let Amin ⊆ A ⊆ A. Let S[·, . . . , ·] be a multi-context where all holes are in surface

position. Let S[s1, . . . , sn] be closed. Then S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] �A S[sp11 , . . . , s

pn
n][m].

If some hole ·i with i ∈ {1, . . . , n} is in strict position in S[. . . . , .], then S[s
[p1,a7→m]
1 , . . . , s

[pn,a7→m]
n] ≈A

S[sp11 , . . . , s
pn
n][m].

Proposition B.16. Let Amin ⊆ A ⊆ A. The following transformation is correct w.r.t. ≈A: Replace
(letrec x = s[n,p],Env in t) by letrec x = s[x[a7→n,p]/x], Env [x[a7→n,p]/x] in t[x[a7→n,p]/x], where a
is a fresh label and all occurrences of x are in surface position.

Proof. Let R be a reduction context. If all occurences of x in R[(letrec x = s[n,p],Env in t)]
are in non-strict positions, then rlnA(R[(letrec x = s[n,p],Env in t)]) =
rlnA(R[(letrec x = s,Env in t)]) = rln(R[letrec x = s[x[a7→n,p]/x],
Env [x[a7→n,p]/x] in t[x[a7→n,p]/x]]). If there is a strict position of x in R[(letrec x = s[n,p],Env in t)],
then rlnA(R[(letrec x = s[n,p],Env in t)]) = rlnA(letrec x = s[x[a7→n,p]/x],
Env [x[a7→n,p]/x] in t[x[a7→n,p]/x]), since the work corresponding to labels in p are evaluated
once and also the work n is only evaluated once. The context lemma for improvement thus shows the
claim.

