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Zusammenfassung 

Zusammenfassung 

Die vorliegende Dissertation befasst sich mit den kognitiven Prozessen die 

Intelligenz ausmachen.  In diesem Zusammenhang wird der Frage nachgegangen, 

warum Aufgaben die das Arbeitsgedächtnis betreffen mit Aufgaben zur 

Intelligenzmessung korrelieren.  Typische Aufgaben zur Intelligenzmessung sind zum 

Beispiel Matrix-Aufgaben.  Diese lassen sich als Aufgaben zum induktiven Denken 

klassifizieren.  Das bedeutet, dass dem Aufgabenmaterial eine versteckte Regel 

zugrunde liegt, die aus dem Aufgabenmaterials abgeleitet werden muss.  Induktives 

Denken ist, vereinfacht gesagt, ein Rückschluss vom Einzelfall auf den allgemeinen Fall 

oder vergleichbare Fälle.  Wenn also die versteckten Regeln anhand eines Teilproblems 

ausgemacht werden, so sollte man versuchen die Regeln auf andere Aspekte der 

Aufgabe anzuwenden.  Eine zentrale Frage dieser Arbeit ist, ob aktuelle Modelle der 

Informationsverarbeitung, in denen das Arbeitsgedächtnis in der Regel eine zentrale 

Rolle spielt, erklären können wie Menschen solche Regeln herleiten.  Die Arbeit ist in 

drei aufeinander aufbauende Teile aufgeteilt.   

Der erste Teil gibt zunächst einen Überblick über die Intelligenzmessung bei 

Kindern und rezensiert den Beitrag kognitiver und nicht-kognitiver Variablen zur 

Vorhersage von Hochbegabung in einer Altersspanne die von der Geburt bis zur 

Einschulung reicht.  Aus dem nicht-kognitiven Bereich stammen Konstrukte wie das 

Schlafverhalten, motivationale Faktoren wie Neugier und Interesse, und 

Einflussfaktoren aus dem sozialen Umfeld.  Auch kognitive Variablen werden 

diskutiert, wie zum Beispiel frühe, außergewöhnliche Sprach-, Lese-, Schreib- und 

Rechenfähigkeiten, sowie Intelligenzquotienten die mit den gängigsten 

testpsychologischen Verfahren ermittelt werden.  Außerdem werden Komponenten der 

Informationsverarbeitung wie Habituation und Arbeitsgedächtniskapazität als mögliche 

Prädiktoren diskutiert.  Trotz der Berichte über mittlere Korrelationen ist die aktuelle 

Datenlage kritisch zu betrachten.  Die meisten Verfahren weisen eine niedrige 

Vorhersagevalidität der Frühprognose von Hochbegabung auf.  Das gilt insbesondere, je 

weiter man in das Säuglingsalter zurückgeht, wobei im vorschulischen Bereich Maße 

des Arbeitsgedächtnisses noch relativ vielversprechend sind.  Es wird abschließend das 

dynamische Modell der Intelligenz angeführt, nach dem die mangelnde prognostische 

Validität und die Unzuverlässigkeit der kognitiven Vorhersageindikatoren auf die 

Annahme zurückzuführen sind, dass kognitive Prozesse in frühen Entwicklungsstadien 
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noch weitgehend unabhängig voneinander sind.  Erst im Laufe des Lebens werden diese 

immer häufiger miteinander verknüpft und korreliert (Mutualismus).  Das bedeutet, es 

findet eine zunehmende Integration kognitiver Prozesse statt und daraus resultiert der g-

Faktor.   

Doch das Arbeitsgedächtnis spielt weiterhin eine zentrale Rolle in Bezug auf 

Intelligenz, wenn nicht im Säuglingsalter, dann zumindest ab dem Vorschulalter und 

besonders im Erwachsenenalter.  Arbeitsgedächtniskapazität stellt das Ausmaß an 

Fähigkeit dar, Informationen simultan zu speichern und zu verarbeiten, ohne die 

Notwendigkeit auf Vorwissen zurückzugreifen.  Es kann damit als eng umschriebener 

kognitiver Prozess aufgefasst werden.  Vorherige Forschungsarbeiten haben bereits 

deutlich gezeigt, dass Arbeitsgedächtnis und Intelligenz korrelativ stark 

zusammenhängen.  Das ist durchaus überraschend, denn die Aufgaben und Tests mit 

denen die Konstrukte jeweils erfasst werden können sich oberflächlich stark 

unterscheiden.  Um fluide Intelligenz valide erfassen zu können, sind Aufgaben zum 

induktiven Denken, wie zum Beispiel Matrix-Aufgaben, sehr beliebt.  Wie bereits 

erwähnt, ist eine zentrale Charakteristik dieser Aufgaben, dass versteckte Regeln 

entdeckt werden sollen.  Es liegt also unvollständige Information vor.  Auf der anderen 

Seite liefern typische Aufgaben zu Messung der Arbeitsgedächtniskapazität, wie zum 

Beispiel komplexe Spannenaufgaben, vollständige Information.  Das bedeutet, bei 

Arbeitsgedächtnisaufgaben ist die Aufgabenleistung allein durch das Kapazitätslimit 

begrenzt und die Aufgabenschwierigkeit rührt daher, dass das zu merkende Material im 

Umfang zunimmt während gleichzeitige Ablenkung einwirkt.  Bei 

Arbeitsgedächtnisaufgaben muss also nicht hergeleitet oder entdeckt werden.  

 Der zweite Teil der vorliegenden Arbeit widmet sich daher dem Einfluss der 

Prozesse Zielmanagement und Regel-Induktion auf den Zusammenhang zwischen 

Arbeitsgedächtnis und Problemlösung der Matrix-Aufgaben.  Basierend auf vorherigen 

Forschungsarbeiten war die Ausgangsvermutung, dass Zielmanagement neben 

Regelinduktion die zweite Subkomponente des Löseprozesses bei Raven‘s Advanced 

Progressive Matrices darstellt.  Zielmanagement wurde bereits zuvor mit dem 

Arbeitsgedächtnis in Verbindung gebracht jedoch war die Befundlage hinsichtlich der 

Regel-Induktion unklar.   

Daher sollte die Hypothese ob Regel-Induktion unabhängig vom 

Arbeitsgedächtnis ist, in einem kritischen Experiment überprüft werden (N = 644, 

mittleres Alter = 12 Jahre).  Bei Neutralisierung der Notwendigkeit für Regelinduktion, 
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indem den Probanden die Regeln im Voraus erklärt wurden, konnte man einen erhöhten 

Zusammenhang zwischen der Arbeitsgedächtniskapazität und den Ergebnissen im 

Raven-Test erkennen.  Das deutet in der Tat darauf hin, dass Regel-Induktion nicht vom 

Arbeitsgedächtnis abhängig ist, zumindest nicht im gleichen Maße wie 

Zielmanagement. Darüber hinaus zeigte sich, dass die Kenntnis der Regeln den 

Problemlöseprozess beeinflusst und die Aufgabenleistung insgesamt deutlich erhöht.   

Dieser Befund wurde im Wesentlichen in zwei weiteren Experimenten bestätigt 

(jeweils N = 366 und N = 393, mittleres Alter = 12 Jahre).  Jedoch sollte in diesen 

weiteren Experimenten auch eine Komplementärhypothese überprüft werden.  Demnach 

sollte, wenn bei bekannten Regeln keine Regel-Induktion mehr notwendig wäre, nicht 

nur die Korrelation mit Arbeitsgedächtnisaufgaben steigen, sondern auch umgekehrt die 

Korrelation mit Aufgaben die für die Regel-Induktion relevante Prozesse erfassen 

fallen.  Um die kognitiven Prozesse der Regel-Induktion messbar zu machen wurde in 

einem Experiment die „Brixton Rule Anticipation“ Aufgabe eingesetzt.  Bei dieser 

Aufgabe geht es darum das Bewegungsmuster eines Punktes vorherzusagen, wobei sich 

dieser nach einer bestimmten Regel innerhalb einer räumlichen Anordnung bewegt.  

Diese Aufgabe wurde zuvor bereits in Neuropsychologischen Experimenten eingesetzt 

und man vermutet dass die Prozesse der Regel-Entdeckung und Regel-Anwendung eine 

zentrale Rolle spielen.  In einem weiteren Experiment wurden typischen Aufgaben aus 

der Kreativitätsforschung eingesetzt.  Bei diesen Aufgaben geht es darum innerhalb 

einer vorgegebenen Zeitspanne möglichst viele Ideen oder Begriffe zu einem 

Schlagwort zu generieren und aufzuschreiben.  Es wurden sowohl die Anzahl der 

generierten Ideen gewertet (Flüssigkeit) als auch deren Qualität (Kreativität).  Jedoch 

zeigten sich bei keiner der beiden Aufgaben die vorhergesagten Ergebnismuster.  Die 

Korrelationen waren zwischen den Experimentellen Bedingungen nicht signifikant 

verschieden.  Eine mögliche Ursache für diesen Befund war, dass die Aufgaben 

möglicherweise keine reinen Maße der Regel-Induktion darstellen.  Die Brixton 

Aufgabe schien eine starke Arbeitsgedächtnisanforderung zu haben und die Maße zur 

Kreativität hatten eine bedenkliche Reliabilität.   

In einem vierten Experiment wurde das gleiche Paradigma wie in den ersten drei 

Experimenten eingesetzt jedoch wurden nun zusätzlich Augenbewegungen erfasst (N = 

47, mittleres Alter = 19 Jahre).  Der Hintergrund war, dass bereits einige Vorarbeiten in 

diesem Bereich gezeigt haben, dass Augenbewegungsmuster auf gewisse 

Lösungsstrategien hindeuten und weiterhin, dass diese auch von der 
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Arbeitsgedächtniskapazität der jeweiligen Person abhängig sind.  Es stand daher die 

Hypothese im Raum, ob nicht das Wissen der Regeln in der einen experimentellen 

Bedingung die Anwendung von Anspruchsvollen Lösungsstrategien gefördert hat.  

Tatsächlich lag die Analyse der Augenbewegungen genau diesen Schluss nahe.  Diese 

ergab, dass Probanden in der Bedingung mit bekannten Regeln eine Strategie anwenden 

bei der eine potenzielle Antwort im visuellen Arbeitsgedächtnis erstellt wird um diese 

dann mit den vorgegebenen Antwortalternativen abzugleichen (engl. constructive 

matching).  Damit eröffnete sich eine alternative Erklärung zu den Befunden aus den 

ersten drei Experimenten.  Die Korrelation mit Maßen der Arbeitsgedächtniskapazität 

hätte sich demnach erhöht, weil anspruchsvollere Strategien zum Einsatz gekommen 

sind, die zwar effektiver sind, gleichzeitig jedoch eine zusätzliche Beanspruchung für 

das Arbeitsgedächtnis darstellen.   

Der dritte und letzte Teil der vorliegenden Arbeit widmete sich deshalb erneut 

dieser Fragestellung und stellt die Ergebnisse aus zwei weiteren Experimenten dar 

(jeweils N = 50 und N = 109 aus einer studentischen Population).  Erneut kamen 

Matrix-Aufgaben zum Einsatz und es wurden Testleistungen, Augenbewegungen und 

Reaktionszeiten erhoben, um den Einfluss von Regelwissen zu erfassen.  Es zeigte sich 

erneut die Anwendung einer effektiveren Lösungsstrategie in der 

Experimentalbedingung.  Anhand der Eye-Tracking Messung wurde gezeigt, dass 

Probanden mit Regelwissen über einen längeren Zeitraum das problemrelevante Areal 

der Matrix-Aufgabe fixieren, und eine niedrigere Frequenz an Sakkaden zwischen 

diesem Areal und den Antwortalternativen aufwiesen.  Weitere Einflussvariablen auf 

die Lösestrategie stellen Schwierigkeit der Aufgabe und Fähigkeiten des Probanden dar.  

Diese weisen einen differenziellen Einfluss auf zwei Subgruppen von Indikatoren der 

Augenbewegungsmessung auf, die in Relation zu den Reaktionszeiten gesetzt wurden 

um ein besseres Verständnis dieser Variablen zu erzielen.  Es wird vermutet, dass 

Variablen wie Augenbewegungen und Reaktionszeiten das Ausmaß des Entstehens von 

mentalen Modellen während des logischen Denkens widerspiegeln.  Unter der Annahme 

dass die Komplexität von Mentalen Modellen mit einer gewissen Belastung für das 

Arbeitsgedächtnis einhergeht, lassen sich auch vorherige Ergebnisse mit dieser 

Hypothese in Einklang bringen.  

Abschließend werden die grundlegenden kognitiven Prozesse des induktiven 

Denkens diskutiert.  Es wird eine Theorie ausgearbeitet die affektive Reaktionen  und 

motivationale Prozesse berücksichtigt und induktives Denken im Wesentlichen als 
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Resultat des Zusammenspiels von Langzeitgedächtnis und Arbeitsgedächtnis betrachtet.  

Zu guter Letzt wird nochmal ausgeführt warum es wichtig ist, Intelligenz nicht nur als 

psychometrisches Konstrukt und Kraft mit unbekanntem Ursprung aufzufassen, sondern 

sich stattdessen auch in der differenziellen Psychologie mit eng umschriebenen 

kognitiven Prozessen zu befassen.  
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Prologue 

 What is intelligence?  Many students of psychology learn that intelligence is 

what the tests test.  But what does that mean?  This frequently cited definition was 

originally written by Boring (1923) as part of a commentary on the then-current state of 

research in psychological measurement.  He was concerned with the validity of 

measures of intelligence and discussed the implications for the assessment of cognitive 

development and heredity.  Boring noted that contemporary scientists have made good 

progress in developing measures of cognitive ability that could reliably discriminate 

between those who did well and those who did not.  But he also noted that there was no 

single measure of intelligence available, instead there were batteries of tests, and each 

test could be quite different from the other.  Today, research on the measurement of 

intelligence has unveiled some of the cognitive processes involved in reasoning and 

problem solving.  But still, many common measures of intelligence are constructed as 

batteries of various tests, grounded in the psychometric theory of intelligence.   

This theory was pioneered by Spearman (1904).  His seminal work on the 

objective measurement of general intelligence made evident, for the first time, that 

many tests have a common underlying factor.  Spearman was unhappy with the state of 

experimental psychology and reviewed a host of findings that seemed largely 

incompatible with each other.  Many of his contemporary psychological scientists were 

trying to assess intelligence and the approaches were as numerous as they were diverse.  

These included, for example, the assessment of reaction time, memory, attention, sight 

and hearing, creativity, weight discrimination, moral sentiments, muscular force, and 

even swiftness in fencing.  Sometimes, the tests were compared to teacher ratings of 

their pupils’ aptitudes, but oftentimes they were simply compared among each other.  In 

the eye of Spearman, nothing conclusive came of this line of research, as some 

researchers reported correlations that were contradicted by others.  He was particularly 

disappointed with the lack of validity of laboratory research for real world practical 

intelligence, and went on to introduce the concepts of measurement error and 

confounds.  Not only did the consideration of these concepts inspire classical test 

theory, but also lead to the invention of factor analysis.   

It is important to point out that Spearman (1904) confined himself to the 

measurement of simple perceptual discrimination of weight, sound, and sight.  The 

sight-task required participants to judge the difference of the brightness of grayscale 
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printed cards.  The dependent variable was the minimal difference in brightness that 

could reliably be detected.  The weight-task worked exactly the same, except that 

weights were compared (controlled for their size).  Finally, the sound-task required the 

discrimination of tone pitch in the same way.  He named these measurements “the 

discriminations” and compared them with “the intelligences”.  But Spearman did not 

directly measure intelligence with tests on his subjects, which were all school children 

from various schools in his neighborhood.  Instead, Spearman asked teachers to classify 

the students in high, low, and average brightness.  He also asked the headmaster’s wife, 

and two of the oldest children of a class to do the same classifications in order to obtain 

multiple measurements.  Spearman collected these data on five different occasions, 

amounting to a combined sample size of 123 boys and girls.  Although the methods to 

measure or estimate intelligence might appear crude in light of today’s advances in 

psychological measurement, the strength of this work lies predominantly in the 

theoretical thoughts and statistical analyses.  Spearman noted that all measurements of 

discrimination were positively correlated and could be statistically accounted for by a 

general discrimination factor.  The same was true for all ratings of intelligence, which 

could be accounted for by a general intelligence factor.  Furthermore, both factors were 

almost perfectly correlated.  The general factor of intelligence was born: the g-factor.   

From that point on, intelligence was mostly equated with the g-factor and was 

seen as some mysterious force that accounts for performance in all sorts of tasks that 

require thought (Spearman, 1923).  The phenomenon of positive correlations among all 

sorts of tests is known as the positive manifold and reveals one fundamental 

characteristic of human intelligence: Omnipresence.  That is, if someone is good at one 

particular task (e.g., math), chances are that they are also good at any other task (e.g., 

arts).  The positive manifold implies that all tasks are influenced by one central force, 

and if that force is strong, then it has an impact on everything.  This means that there 

can hardly be any trade-off between different abilities, however Spearman did point out 

that “at any rate to assume anything like a universal correspondence of this kind – so 

that, for example, the man with greater power of imagination for chess must necessarily 

have it also for music – is a palpable fallacy” (Spearman, 1923, p. 4).  This notion gave 

rise to the theory of two factors, proposing that every task is partly determined by some 

specific source of variance.  Yet, the major force is always the g-factor or whatever is 

responsible for it.    
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Even today, more than a century after Spearman’s revelation, there is no 

definitive answer as to the cause of the g-factor.  Some researchers pursued the idea that 

it is grounded in elementary cognitive speed (e.g., Jensen, 1993).  More recently, 

working memory seems a promising candidate (see Ackerman, Beier, & Boyle, 2005).  

Yet another theory proposes that there may be no single source for the g-factor and 

views it as an epiphenomenon (van der Maas et al., 2006).  The current dissertation is an 

attempt to identify at least some of the cognitive processes that are relevant for 

intelligence.  In order to find an answer to the question what intelligence is, I will ask: 

What are the cognitive mechanisms and processes that are relevant in intelligence tests?  

What does a human brain (or any brain for that matter) have to accomplish to perform 

well on such tests?  There is little dispute about regarding someone who performs well 

on IQ tests as being intelligent.  In this sense: Intelligence is what the tests test.  What 

are they testing?   
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Part 1: The Prospects and the Limits to the Prediction of 
Giftedness   

Publication Note 

The following part was published in German language as:  Beißert, H., 

Hasselhorn, M., & Lösche, P. (2014).  Möglichkeiten und Grenzen der Frühprognose 

von Hochbegabung.  In M. Stamm (Ed.), Handbuch Talententwicklung (pp. 415-425).  

Bern, Switzerland: Hans Huber.   

Abstract 

This chapter is intended to provide an overview of the current state of research 

in assessment and prediction of talent and giftedness.  The focus is on the age range 

from infancy to preschool.  Non-cognitive variables, such as sleeping habits, social 

background, and motivational factors, are discussed.  Cognitive indicators, like early 

information processing, preschool intelligence, and exceptional preschool 

precociousness in literacy and math are discussed as well.  In conclusion, the possibility 

to predict giftedness appears to be unreliable for the most part of this age range.  One 

possible explanation is discussed by considering a dynamic model of general 

intelligence that provides a theoretical account for limited reliability of intelligence 

assessment during early development.   

Einleitung 

Außergewöhnliche Begabungen üben seit jeher Faszination aus.  In der 

wissenschaftlichen wie öffentlichen Diskussion steht dabei oftmals die Frage im 

Vordergrund, was denn unter Hochbegabung zu verstehen sei.  Anfang der 1970er Jahre 

veröffentlichte die amerikanische Regierung einen Bericht über die 

Bildungsmöglichkeiten und Förderinitiativen für Hochbegabte.  Da dieser unter der 

Federführung des damaligen Bildungsbeauftragten Sidney Marland entstand, wird er 

oftmals als Marland-Bericht bezeichnet.  Hochbegabung wurde im Marland-Bericht als 

herausragendes Verhaltenspotential in einem oder mehreren der folgenden Bereiche 

definiert: allgemeine intellektuelle Fähigkeit, spezifische schulische Hochleistungen, 

kreatives oder produktives Denken, Führungsqualität, bildnerische und darstellende 

Künste sowie psychomotorische Fähigkeiten (Marland, 1971).  Dadurch wird ein sehr 

breites Spektrum von Hochbegabung aufgespannt.  Wissenschaftliche Bemühungen um 

eine präzise Definition von Hochbegabung standen immer wieder vor dem Problem, 
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dass Personen mit individuellen Spitzenwerten in einem der Bereiche, oftmals in den 

meisten anderen Bereichen keine Spitzenwerte erzielen.  In der langen Tradition 

psychometrischer Intelligenztests hat sich aber immer wieder gezeigt, dass die 

Intelligenztestleistungen zu den besten Prädiktoren für ganz unterschiedliche kulturelle 

Leistungen zählen.  Daher reserviert man heute in der Regel den Begriff Hochbegabung 

für das Phänomen besonders ausgeprägter allgemeiner intellektueller Fähigkeiten (Rost, 

2009a, 2009b).    

Die festgestellte Hochbegabung einer Person (meist operationalisiert über einen 

IQ ≥ 130) hat also hohen prognostischen Wert für spätere Leistungen.  Wann und wie 

aber lässt sich im frühen Kindesalter prognostizieren, ob ein Kind im Schulalter oder 

später das Hochbegabungs-Kriterium erfüllt?  Diese Frage steht im Fokus des 

vorliegenden Beitrags.   

Alle gängigen Theorien der allgemeinen Intelligenz gehen davon aus, dass die 

intellektuelle Grundausstattung des Menschen zu einem beträchtlichen Teil biogenetisch 

determiniert ist (Neisser et al., 1996).  Von Geburt an sollte daher feststehen, in welcher 

Bandbreite der messbare IQ später einmal liegen wird.  Diese Annahme nährt die 

Hoffnung, dass man schon im frühen Kindesalter Verhaltensmarker finden kann, mit 

deren Hilfe vergleichsweise sicher vorhersagbar ist, ob ein Kind im Schulalter einen IQ 

von 130 oder mehr aufweisen wird. 

Der Beitrag gibt einen Überblick über die Ansätze und empirischen Ergebnisse 

bisheriger Bemühungen der Frühprognose von Hochbegabung.  Insgesamt zeigt sich 

dabei, dass die prognostischen Validitäten selbst der besten identifizierten 

Verhaltensmarker eher bescheiden ausfallen, so dass Einzelfallprognosen etwa vom 

Kleinkindalter auf eine Hochbegabung im Schulalter nicht zuverlässig möglich sind.  

Das dynamische Modell der allgemeinen Intelligenz von van der Maas et al. (2006) sagt 

im Unterschied zu klassischen g-Faktor-Modellen der Intelligenz genau dies auch 

voraus.  Der vorliegende Beitrag endet daher mit einer Skizze dieses aktuellen Ansatzes.   

Empirische Versuche der Frühprognose 

In der Literatur finden sich eine Reihe verschiedener Verfahren bzw. 

Indikatoren, die herangezogen wurden, um zu einem möglichst frühen Zeitpunkt im 

Leben eines Kindes eine später nachweisbare Hochbegabung festzustellen.  Im 

Folgenden werden die gängigsten dieser Indikatoren vorgestellt und diskutiert.   
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Schlafverhalten 

In der Praxis ist die Überzeugung weit verbreitet, dass hochbegabte Kinder ein 

verringertes Schlafbedürfnis aufweisen oder gar unter Schlafproblemen leiden 

(Freeman, 1979; Stapf, 2010).  Dies spiegelt sich auch in einigen Checklisten zur 

Erkennung Hochbegabter wieder (Graue, 1985) .  Die Annahme, dass kindliches 

Schlafverhalten als Identifikationsmerkmal von Hochbegabung geeignet ist, wird durch 

die empirische Forschungslage allerdings nur wenig gestützt.  Es finden sich zwar 

Studien, in denen die hochbegabten Kinder kürzer schliefen als die Referenzgruppe 

(Stapf & Stapf, 1988), aber auch Studien, in denen Umgekehrtes der Fall war (Jung, 

Molfese, Beswick, Jacobi-Vessels, & Molnar, 2009; Terman, 1925), oder in denen sich 

überhaupt keine Unterschiede im Schlafverhalten feststellen ließen (Freeman, 1979).  

Zudem ist die Forschung in diesem Bereich nur begrenzt aussagefähig, denn bei den 

meisten Studien handelt es sich um Retrospektivbefragungen und/oder Studien mit 

relativ kleinen Stichprobengrößen, die auch häufig erst mit Kindern ab dem Schulalter 

durchgeführt wurden (Perleth, Schatz, & Mönks, 2000).  Prospektive 

Längsschnittuntersuchungen, in denen das Schlafverhalten im frühen Kindesalter als 

Prädiktor für eine Hochbegabung in späteren Altersstufen herangezogen wird, fehlen 

fast vollkommen.   

Bei einer Stichprobe von mehr als 17.000 Kindern fand Pollock (1992) keine 

nennenswerten Zusammenhänge zwischen Schlafproblemen in früher Kindheit und den 

intellektuellen Fähigkeiten im Alter von zehn Jahren.  Allerdings wurden in dieser 

Studie nicht speziell hochbegabte Kinder untersucht und nicht gezielt nach der 

Schlafdauer gefragt.  In einer Längsschnittstudie von Jung et al. (2009) wiesen Kinder 

mit täglichen Schlafzeiten von über 8 Stunden zu allen Messzeitpunkten (3, 4 und 5 

Jahre) höhere Werte in den kognitiven Maßen auf.  Es findet sich dort jedoch kein 

Zusammenhang zwischen der Schlafdauer und einer beschleunigten kognitiven 

Entwicklung, was zu erwarten gewesen wäre, wenn die Schlafdauer eine kausale 

Ursache für das Tempo der kognitiven Entwicklung wäre.  Zusammenfassend ist zu 

sagen, dass vor dem Hintergrund der aktuellen Befundlage das kindliche 

Schlafverhalten nicht zuverlässig als früher Indikator von Hochbegabung herangezogen 

werden kann (Perleth et al., 2000).   
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Außergewöhnliche Leistungen  

Frühe und besondere Leistungen in Bereichen wie Sprechen, Lesen, Schreiben 

oder Rechnen  werden oft als Hinweis auf eine Hochbegabung interpretiert (Stöger, 

Schirner, & Ziegler, 2008).  Betrachtet man allerdings die Forschungslage, so zeigt sich, 

dass dies nicht unbedingt gerechtfertigt ist.  Sowohl beim frühen Lesen als auch beim 

frühen Rechnen ist die Befundlage nicht eindeutig.  Jackson, Donaldson, and Cleland 

(1988) konnten zwar schwache Zusammenhänge zwischen frühen Lesekompetenzen 

und Intelligenz finden, allerdings kommen sie zu dem Schluss, dass eine besonders hohe 

Intelligenz keine notwendige Bedingung für den Erwerb früher Lesekompetenzen ist, 

sondern dass frühes Lesen von einer Reihe anderer Aspekte abhängt.   

Stamm (2004) demonstrierte in einer Längsschnittstudie, dass die Gruppe der 

Frühleser und Frührechner auch acht Jahre nach der Einschulung noch einen 

signifikanten Vorteil in Intelligenz und Schulleistungen aufweisen.  Trotz dieses 

Zusammenhangs wird dort auch deutlich, dass hohe Intelligenz keine zwingende 

Voraussetzung ist, um früh Lesen oder Rechnen zu lernen.  Es finden sich viele später 

nicht hochbegabte Kinder unter den frühen Lesern und Rechnern und umgekehrt auch 

viele Hochbegabte, die nicht früh mit dem Lesen oder Rechnen begonnen haben.  

Vielmehr scheint die Eigeninitiative beim vorschulischen Kompetenzerwerb ein 

wichtiger Faktor zu sein.  So zeigt sich zum Beispiel bei Schülern, deren vorschulischer 

Kompetenzerwerb auf Instruktionen der Eltern zurückgeht, ein erhöhtes Risiko ihren 

Leistungsvorsprung später zu verlieren.  Stamm (2004) stellt fest, dass „die elterliche 

Anleitung zum Lesen- oder Rechnenlernen lediglich eine vergleichsweise unbedeutende 

Rolle spielt“ (S. 405).  Ferner berichtet Stamm (2004), dass Kinder aus der Mittel- und 

Oberschicht eher früh lesen und rechnen, jedoch auch 20% der Kinder aus 

bildungsfernem Milieu zu den Frühlesern und Frührechnern gezählt werden können, 

somit also nicht auf ein intellektuell-responsives Elternhaus angewiesen sind.  Sie 

vermutet, dass sich Kinder mit hoher Eigeninitiative auch bei intellektuell wenig 

anregenden Umgebungen die notwendigen Umweltbedingungen selbst schaffen.   

Im Bereich des frühen Schreibens gibt es wenig Forschung, da frühe 

Schreibfertigkeiten durch feinmotorische Fähigkeiten beschränkt werden, die sich 

gewöhnlich nicht vor dem fünften Lebensjahr entwickeln (Rudolf, 1980).  Durch diese 

asynchrone Entwicklung von Lesen und Schreiben werden Kinder, obwohl sie bereits 

lesen können, möglicherweise durch mangelnde Feinmotorik darin behindert, Sprache 

in Schriftform darzustellen (Terassier, 1985). 
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Etwas günstiger fallen die Befunde zur frühen Sprachentwicklung für die 

Prognose von späterer Hochbegabung aus.  So finden sich Zusammenhänge zwischen 

früher und schneller Sprachentwicklung und verschiedenen Intelligenzmaßen 

(Robinson, Dale, & Landesman, 1990).  In der in diesem Zusammenhang am häufigsten 

zitierten Belegstudie von Cameron, Livson, and Bayley (1967) zeigte sich allerdings ein 

Interaktionseffekt: der Zeitpunkt der ersten kindlichen Wortproduktion erwies sich nur 

bei Mädchen (nicht bei Jungen) als moderater Prädiktor für den IQ im jungen 

Erwachsenenalter.  Andere Studien berichten lediglich aggregierte Effekte, die sich 

nicht ohne Weiteres auf die Individualdiagnostik übertragen lassen (Shapiro et al., 

1989).  Somit sind auch die prognostischen Möglichkeiten der frühen 

Sprachentwicklung sehr beschränkt.  Insgesamt lässt sich also festhalten, dass 

außergewöhnliche Leistungen in der frühen Kindheit nicht zuverlässig auf eine spätere 

Hochbegabung hindeuten.   

Motivationale Aspekte 

In vielen  Modellen zur Hochbegabung ist Motivation eines der relevanten 

Kriterien, um hohes intellektuelles Potenzial in außergewöhnliche Leistungen 

umzuwandeln (Gagné, 1993; Heller, Perleth, & Hany, 1994).  Da sich aber 

motivationale Dispositionen oftmals erst im Laufe der Grundschulzeit entwickeln, gibt 

es kaum Untersuchungen, die die Motivation vor dem Schulalter untersuchen (Perleth et 

al., 2000).  In der frühen Kindheit scheinen aber Neugier und Interesse relevante 

motivationale Aspekte für die  Identifikation von Hochbegabung zu sein (Winner, 

2004).  Neugier, die sich in der frühen Kindheit vor allem im kindlichen 

Explorationsverhalten manifestiert, stellt einen motivationalen Zustand dar, der Kinder 

dazu antreibt, sich neuen Reizen auszusetzen und Informationen aufzunehmen (Berg & 

Sternberg, 1985; Lehwald, 1991).  Das soziale Umfeld reagiert auf die Neugier des 

Kindes mit der Bereitstellung besonderer Lerngelegenheiten und treibt somit die 

Entwicklung der kognitiven Fähigkeiten voran (Stöger et al., 2008).  So zeigt sich, dass 

das Interesse an Neuem in der frühen Kindheit prädiktiv für die spätere Intelligenz ist 

(Berg & Sternberg, 1985).   

Allerdings ist nun auch schon ein Problem angesprochen, das mit dem 

Heranziehen von  Neugier als Identifikationsmerkmal von Hochbegabung verbunden 

ist: Die Entwicklung von motivationalen Ausprägungen in der Kindheit ist eng an das 

familiäre Umfeld gebunden und somit nicht von der Umwelt des Kindes zu trennen.  
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Auszugehen ist hier von reaktiven Anlage-Umwelt-Interaktionen, da die Umwelt auf 

das Kind reagiert und es durch diese Reaktionen weiter fördert (Perleth, 2000).   

Soziales Umfeld 

Von Anzeichen einer Hochbegabung im frühen Kindesalter lässt sich nicht ohne 

Weiteres auf eine Hochbegabung in späteren Lebensphasen schließen (Stöger et al., 

2008).  Lewis and Michalson (1985) sehen eine Erklärung dafür im Einfluss des 

sozialen Umfelds, vor allem des familiären Hintergrunds, auf die 

Begabungsentwicklung.  Neben der genetischen Mitgift schaffen Eltern auch 

Entwicklungsmöglichkeiten (zum Beispiel in Form von Lernumwelten) und leisten 

somit aktiv einen Beitrag an der Begabungsentwicklung ihrer Kinder (Lewis & 

Michalson, 1985; Stöger et al., 2008).  Es finden sich Hinweise, dass dieses 

Bereitstellen von Lerngelegenheiten dem Einfluss sozialer Schichtungsfaktoren 

unterliegt (Büchner & Krüger, 1996).  So scheinen Eltern aus intellektuellen Milieus 

besser in der Lage zu sein, ihren Kindern Lernumwelten zu bieten, die für die 

Entwicklung der kognitiven Fähigkeiten förderlich sind.  Interessant ist dabei auch, dass 

der Bildungshintergrund der Familie und die Lernumwelt des Kindes hoch mit dem 

sozioökonomischen Hintergrund der Familie korrelieren (Stöger et al., 2008).  Dies 

könnte ein Grund dafür sein, warum hochbegabte Kinder überzufällig häufig aus 

mittleren bis oberen sozialen Schichten stammen (Carman & Taylor, 2010; Rost, 1993).   

Das soziale Umfeld darf also in seinem Einfluss auf die Genese von Begabung 

nicht unterschätzt werden.  In einer Studie von Rubin and Balow (1979) erwies sich der 

sozioökonomische Hintergrund der Eltern sogar als besserer Prädiktor für 

Hochbegabung als verschiedene frühe Intelligenzmaße.   

Intelligenzmessung anhand psychometrischer Verfahren  

Intelligenztests spielen nach wie vor eine bedeutende Rolle in der Intelligenz- 

und Hochbegabungsdiagnostik.  Es gibt eine Reihe von Tests, die sich schon im frühen 

Kindesalter anwenden lassen.  Die Stanford-Binet Intelligenz-Skala (Thorndike, Hagen, 

& Sattler, 1986), die Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) 

(Wechsler & Petermann, 2009) und die Kaufman Assessment Battery for Children (K-

ABC) (Kaufman, Kaufman, Melchers, & Preuß, 2009) sind z.B. häufig eingesetzte 

Verfahren, die bereits ab einem Alter von zwei bis drei Jahren angewendet werden 

können (Helmsen, Lehmkuhl, & Petermann, 2009).  Eine sehr umfassende Bewertung 

verschiedener Intelligenztests für das frühe Kindesalter findet sich bei Perleth et al. 
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(2000).  Eine Sichtung der Literatur ergibt allerdings, dass die größten Schwächen von 

Intelligenztests im frühen Kindesalter in deren mangelnder Reliabilität und geringen 

Entwicklungsstabilität liegen (Sattler, 1988).  Es zeigt sich immer wieder, dass 

Ergebnisse aus Intelligenztests im (frühen) Kindesalter nur gering bis maximal moderat 

mit solchen aus dem Erwachsenenalter korrelieren (Schneider, Bullock, & Sodian, 

1998; Shapiro et al., 1989). 

Intelligenzmessungen im frühen Kindesalter scheinen also auch nicht dazu 

geeignet zu sein, zuverlässig eine spätere Hochbegabung vorherzusagen (Shapiro et al., 

1989; Stöger et al., 2008).  Die Stabilität von Intelligenzmessungen nimmt erst im Laufe 

der Schulzeit deutlich zu (Perleth et al., 2000).  Prinzipiell gilt dabei, je älter das Kind 

bei der ersten Testung ist und je geringer das Retestintervall, desto stabiler ist der IQ 

(vgl. Sattler, 1988, S. 73).   

Komponenten der Informationsverarbeitung 

Es hat seit den 1970er Jahren immer wieder Ansätze gegeben, die 

Hochbegabung auf eine besonders effektive und effiziente Informationsverarbeitung 

zurückführen (Sternberg, 1985).  In der frühen Kindheit gemessen, stellen Maße der 

Informationsverarbeitung einen moderaten Prädiktor für IQ-Werte im mittleren 

Kindesalter dar (Rose, Feldman, Jankowski, & Van Rossem, 2012).  Typische Aspekte, 

die in diesem Rahmen untersucht werden, sind Habituation, Gedächtnis, 

Verarbeitungskapazität und Informationsverarbeitungsstrategien (Stöger et al., 2008).   

Das Habituationsparadigma 

Besonders Rekognition und Habituation scheinen auf den ersten Blick für die 

Prognose von Hochbegabung geeignet zu sein.  Diese Verfahren nutzen aus, dass 

Säuglinge und Kleinkinder in der Regel mehr Aufmerksamkeit auf neue Reize lenken, 

diese also gegenüber vertrauten Reizen länger und häufiger anschauen.  Die Häufigkeit 

oder Dauer der Darbietung eines neuen Reizes (z.B. ein Spielzeug), bis er gegenüber der 

erstmaligen Darbietung nur noch halb so viel Interesse des Kindes auf sich zieht, wird 

als Habituation oder Habituierung bezeichnet und gilt als Indikator dafür, dass das Kind 

den Reiz im Gedächtnis gespeichert hat.  Dementsprechend kann man schlussfolgern, 

dass sich ein Kind an einen Reiz erinnert (Rekognition), wenn es diesen nach einer 

gewissen Pause wieder vorgelegt bekommt und wenig Interesse daran zeigt (McCall & 

Carriger, 1993).   
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In einem umfangreichen Review kommen McCall and Carriger (1993) zu dem 

Schluss, dass derartige Maße der Informationsverarbeitung im Säuglingsalter zu einem 

gewissen Grad den IQ der späten Kindheit oder sogar den IQ des jungen 

Erwachsenenalters vorhersagen können.  Basierend auf einer Metaanalyse schätzen sie 

die mittlere Korrelation etwa auf .36.  Dieser Wert wurde von Fagan, Holland, and 

Wheeler (2007) in einer neueren Längsschnittstudie bestätigt.  Wenn man die Effekte 

des sozioökonomischen Status auspartialisiert und für die Reliabilität der Maße 

minderungskorrigiert, so zeigen sich Korrelationen von bis zu .59 mit schulischen 

Leistungen oder der Intelligenz im jungen Erwachsenenalter.  Auch Rose et al. (2012) 

kommen auf der Grundlage einer Längsschnittstudie zu ähnlich hohen prädiktiven bzw. 

prognostischen Validitäten.  Verschiedene Maße für die Informationsverarbeitung im 

Säuglings- und Kleinkindalter korrelieren (unkorrigiert) bis zu .26 mit dem Wechsler-

IQ im Alter von 11 Jahren.   

Allerdings muss dabei beachtet werden, dass bisher keine Studien speziell zur 

Prognose von Hochbegabung durchgeführt wurden.  So kann nicht ausgeschlossen 

werden, dass die Korrelationen überwiegend durch Varianz zustande kommt, die durch 

besonders schwache Kinder erzeugt wird (McCall & Carriger, 1993).  Ein weiteres nicht 

zu vernachlässigendes Problem von Habituierungs- und Rekognitionsmaßen sind deren 

geringe Retestreliabilitäten (Slater, 1997).  Zwar zeigen die minderungskorrigierten 

Korrelationen deutlich höhere Werte, aber diese sind eher entwicklungspsychologisch 

interessant, weil sie auf eine gewisse Kontinuität in der Entwicklung der kognitiven 

Prozesse (differentielle Entwicklungsstabilität) schließen lassen.  Sollten die Tests 

jedoch für die Einzelfalldiagnostik verwendet werden, so wird die prognostische 

Validität durch die schwachen Reliabilitäten stark eingeschränkt.  Daraus lässt sich 

schließen, dass der Nutzen von Rekognitions- und Habituierungsmaßen zur 

Identifikation und Auswahl von Hochbegabten sehr beschränkt ist.  Will man sie 

nutzen, so ist zu beachten, dass im Alter zwischen zwei und acht Monaten die 

Langzeitprognosen besonders gut ausfallen (McCall & Carriger, 1993).   

Arbeitsgedächtniskapazität 

Arbeitsgedächtniskapazität wird typischerweise mit Aufgaben erfasst, die 

simultane Speicherung und Verarbeitung von Informationen verlangen.  Die 

Bewältigung dieser Aufgaben erfordert keinerlei Vorwissen und wird als relativ pures 

Maß der Informationsverarbeitungskapazität verstanden.  Im Gegensatz dazu erfassen 
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globale Intelligenztests eine Vielzahl an kognitiven Prozessen.  Alloway and Alloway 

(2010) berichten, dass die Arbeitsgedächtniskapazität im Alter von 4 bis 5 Jahren die 

sechs Jahre später beobachtbaren schulischen Leistungen im Alter von 10 bis 11 Jahren 

vorhersagen kann.  Die Korrelationen liegen im Bereich von .33 bis .45 und sind 

ähnlich hoch wie die für zwei Subtests aus dem Wechsler Vorschul-Intelligenztest.  Die 

Ergebnisse der von den Autoren durchgeführten Regressionsanalysen legen weiterhin 

den Schluss nahe, dass Arbeitsgedächtniskapazität eigene Varianzanteile der 

Schulleistung im Vergleich zum nonverbalen IQ vorhersagen kann.  Der Ansatz ist also 

recht vielversprechend, jedoch dadurch eingeschränkt, dass noch wenige Studien zum 

Vorschulalter vorliegen und die meisten Testverfahren für Kinder unter 5 Jahren kaum 

geeignet sind.   

Prognostische Validität aus klassifikatorischer Sicht 

Bei der Sichtung der empirischen Befunde zu den Möglichkeiten der 

Frühprognose von intellektuellen Fähigkeiten haben wir argumentiert, dass auf der 

Basis mittlerer Korrelationen zwischen Prädiktorvariablen und späterer Intelligenz keine 

zuverlässige Vorhersage einer Hochbegabung möglich ist.  Entscheidend ist nämlich, 

mit welcher Wahrscheinlichkeit das prognostizierte Auftreten einer Hochbegabung 

eintritt oder nicht.  Dies lässt sich mit einem klassifikatorischen Ansatz abschätzen, bei 

dem die Wahrscheinlichkeit für eine zukünftige Ausprägung eines Merkmals wie 

Hochbegabung durch ein diagnostisches Verfahren eingeschätzt wird.  Dazu wird eine 

inhaltlich begründete Merkmalsgrenze (cut-off-Wert) gewählt, die festlegt, ab welcher 

Ausprägung des Prädiktors mit dem zu prognostizierendem Merkmal zu rechnen ist.  

Bei Vorliegen entsprechender Daten lassen sich so alle Personen einem von vier Fällen 

zuordnen: die Prognose einer Hochbegabung trifft zu (wahr Positive), es wurde 

fälschlicherweise eine Hochbegabung prognostiziert (falsch Positive), die Prognose 

einer Nicht-Hochbegabung trifft zu (wahr Negative), es wurde fälschlicherweise eine 

Nicht-Hochbegabung prognostiziert (falsch Negative).   

Die prognostische Validität eines Prädiktors ist dann gegeben, wenn keine 

falsche Vorhersagen auftreten, also falsch Positive (Fehler erster Art, α-Fehler) oder 

falsch Negative (Fehler zweiter Art, β-Fehler) ausbleiben.  Das ist allerdings 

unrealistisch, so dass es in der Regel darum geht, beide Fehlerarten so klein wie 

möglich zu halten.  Die beiden Fehlerarten sind nicht unabhängig voneinander, denn 

meist geht die Reduktion der einen Fehlerart mit der Erhöhung der anderen einher.   
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Nun kommt erschwerend hinzu, dass die Basisquote im Falle der Hochbegabung 

extrem klein ist, da nur mit etwa 2 Prozent Hochbegabten in einer repräsentativen 

Stichprobe zu rechnen ist.  In Anlehnung an einen Vorschlag von Marx (1992) lässt sich 

die Vorhersagegüte eines Prädiktors empirisch über den relativen Anstieg der 

Trefferquote gegenüber der Zufallstrefferquote (RATZ-Index) bestimmen.  Der Index 

setzt den Anstieg der Gesamttrefferquote gegenüber der Zufallstrefferquote (Differenz 

zwischen der Gesamt- und Zufallstrefferquote) ins Verhältnis zum maximal möglichen 

Anstieg (Differenz der Maximal- und Zufallstrefferquote).  Marx (1992) hat 

vorgeschlagen, dass RATZ-Werte ab 66% und größer als sehr gut gelten, Werte 

zwischen 34% und 66% als gut, und Werte kleiner als 34% als ungenügend für die 

Individualprognose zu bewerten sind.   

Man hat aufgrund der geringen Basisquote schlechte Chancen, wirklich 

Hochbegabte zu identifizieren (vgl. Tabelle 1).  Der größere Anteil der Begabten bleibt 

in der Regel unentdeckt.  Selbst mit den besten der bisher empirisch eingesetzten 

Prädiktorvariablen ließen sich nicht mehr als etwa 35% der Hochbegabten frühzeitig 

identifizieren, und die Auswahl wäre dann kaum besser als eine Zufallsauswahl.  Unter 

der Annahme einer utopisch hohen prognostischen Validität von .83 würde man 

immerhin etwa 90% identifizieren können.  Die aktuell verfügbaren Instrumente sind 

jedoch weit von diesem Wert entfernt und durch die geringe Basisquote hat man immer 

mit einer relativ hohen Anzahl an nicht Hochbegabten in der Auswahl zu rechnen.    
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Tabelle 1 
Varianten klassifikatorischer Vorhersage-Güte der Hochbegabung auf der Basis der günstigsten 
empirisch gezeigten regressionsanalytischen Prädiktionswerte nach McCall & Carriger (1993)  
 
a) Annahmen: 
Selektionsquote 2% (strenges Kriterium, entspricht der Basisquote) 
Prognostische Validität = .36 (vgl. McCall & Carriger, 1993)  
Basisquote 2% (entspricht den geläufigen Hochbegabungsdefinitionen)  
 

Ausgewählte (2) Nicht Ausgewählte (98) 
 

Hochbegabte (2) 0.2 1.8 Nur 10% ausgeschöpft 

Nicht Hochbegabte (98) 1.8 96.2  

 90% Falsch Positiv  RATZ = 0.08 

 
b) Annahmen:  
Selektionsquote 10% (liberales Kriterium) 
Prognostische Validität = .36 (vgl. McCall & Carriger, 1993)  
Basisquote 2% (entspricht den geläufigen Hochbegabungsdefinitionen)  
 

Ausgewählte (10) Nicht Ausgewählte (90) 
 

Hochbegabte (2) 0.7 1.3 Nur 35% ausgeschöpft 

Nicht Hochbegabte (98) 9.3 88.7  

 93% Falsch Positiv  RATZ = 0.28 

 
c) Annahmen:  
Selektionsquote 10% (liberales Kriterium) 
Prognostische Validität = .83 (entspricht der Retest-Reliabilität bei Erwachsenen)  
Basisquote 2% (entspricht den geläufigen Hochbegabungsdefinitionen)  
 

Ausgewählte (10) Nicht Ausgewählte (90) 
 

Hochbegabte (2) 1.8 0.2 90% ausgeschöpft 

Nicht Hochbegabte (98) 8.2 88.8  

 82% Falsch Positiv  RATZ = 0.89 

 

 

Das dynamische Modell der Intelligenz 

Die empirischen Befunde zu den Möglichkeiten der Frühprognose von 

intellektuellen Fähigkeiten ergeben insgesamt ein eher enttäuschendes Bild.  Zwar 

zeigen verschiedene Längsschnittstudien, dass eine gewisse kognitive Kontinuität bzw. 

eine überzufällige differentielle Entwicklungsstabilität für viele basale kognitive 

Merkmale vorhanden ist (Alloway & Alloway, 2010; Fagan et al., 2007; Rose et al., 

2012), jedoch sind die Korrelationen im Längsschnitt zu gering für eine zuverlässige 

Prognose von Talent oder für eine frühe Identifikation von Hochbegabten (Perleth et al., 

2000; Shapiro et al., 1989).  Drei Befunde sind besonders markant (McCall & Carriger, 
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1993; Sattler, 1988): Erstens ist die Retest-Reliabilität von Tests für Säuglinge und 

Kleinkinder eher mangelhaft und wird schwächer je höher das Intervall zwischen den 

Messungen liegt; zweitens wird die prognostische Validität der Verfahren immer 

schwächer je weiter man in die Kindheit zurück geht; drittens korrelieren verschiedene 

Verfahren zur Erfassung kognitiver Leistungsniveaus in jungen Jahren eher gering 

miteinander.  Doch warum ist das so?   

Vor nicht allzu langer Zeit entwickelten van der Maas et al. (2006) ein 

dynamisches Modell der allgemeinen Intelligenz (g), das diese Befunde plausibel 

erklären kann.  Das dynamische Modell basiert auf der Annahme, dass kognitive 

Prozesse (wie zum Beispiel die verbale Verarbeitung oder das Kurzzeitgedächtnis) 

unabhängig voneinander sind und sich folglich auch zunächst unabhängig voneinander 

entwickeln.  Man beachte, dass diese Annahme fundamental von dem klassischen g-

Faktor-Modell der Intelligenz abweicht.  Dies beinhaltet nämlich in der Regel die Idee 

einer einzelnen kognitiven Entität als Grundlage für das gesamte kognitive System: zum 

Beispiel Speed (Jensen, 1993) oder Arbeitsgedächtnis (Kyllonen & Christal, 1990).   

Das Besondere am dynamischen Modell von van der Maas et al. (2006) ist die 

Annahme, dass einzelne kognitive Prozesse im Entwicklungsverlauf zunehmend 

miteinander in Interaktion treten, weil bei bestimmten Anforderungen mehrere Prozesse 

in Anspruch genommen werden.  Man spricht von Mutualismus, wenn sich mehrere 

kognitive Prozesse ergänzen.  Man kann sich zum Beispiel vorstellen, dass bei der 

Dekodierung von Kommunikation sowohl verbale (auditive Verarbeitung) als auch 

nonverbale Informationen (visuelle Verarbeitung) integriert werden.  Dieser 

Mutualismus führt dann dazu, dass die Leistungsniveaus der einzelnen kognitiven 

Prozesse und Bereiche zunehmend miteinander korrelieren.   

Es lässt sich mathematisch-formal und in Computersimulationen zeigen, dass die 

Leistungsniveaus am Ende der Entwicklung unabhängig von den Startwerten und von 

der Entwicklungsgeschwindigkeit der einzelnen Bereiche sind.  Das bedeutet, dass die 

kognitive Leistungsfähigkeit im Erwachsenenalter weitgehend unabhängig von 

individuellen Differenzen im Säuglingsalter ist.  Viel mehr ist das Endniveau abhängig 

vom Mutualismus, also von der Stärke der gegenseitigen Interaktion der kognitiven 

Subprozesse und Bereiche.  Dabei müssen nicht mal alle Prozesse miteinander in 

positiver Interaktion stehen und auch die Stärke der Kooperation zwischen Prozessen 

kann variieren.  Wichtig ist nur, dass der interaktive Austausch im Mittel positiv ist, 
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dass also kognitive Prozesse im Mittel eher davon profitieren (sich also schneller 

entwickeln), wenn sie mit anderen Prozessen kooperieren.   

Die Annahme der Unabhängigkeit von Startwerten und 

Entwicklungsgeschwindigkeit bringt weiterhin mit sich, dass einzelne Prozesse zu 

Beginn der Entwicklung noch wenig oder gar nicht miteinander korrelieren.  Daraus 

resultiert, dass sich der psychometrische g-Faktor erst im späteren Entwicklungsverlauf 

herauskristallisiert, also eine Integration der kognitiven Prozesse stattfindet.  Diese 

Annahme ist gut vereinbar mit empirischen Befunden von Rose, Feldman, and 

Jankowski (2005).  Dort zeigt sich, dass die Struktur der kognitiven Fähigkeiten im 

Säuglingsalter besser multifaktoriell erklärt werden kann als durch ein g-Faktor-Modell.  

Das schränkt jedoch die Möglichkeiten ein, aufgrund einzelner kognitiver Merkmale in 

der frühen Kindheit, komplexe kognitive Merkmale wie die allgemeine Intelligenz oder 

schulische Leistungsfähigkeit zu prognostizieren.  Bessere Vorhersagen lassen sich für 

einzelne Prozesse wie Gedächtnis, Aufmerksamkeit oder 

Informationsverarbeitungsgeschwindigkeit machen.   

Insgesamt kann das dynamische Modell plausibel erklären, warum einzelne 

kognitive Tests für Kinder im Säuglingsalter wenig miteinander korrelieren und warum 

Testergebnisse aus der Kindheit wenig mit Testergebnissen aus der späten Kindheit 

oder dem Erwachsenenalter korrelieren.  Außerdem kann das dynamische Modell 

erklären, warum kognitive Tests der frühen Kindheit eine geringe Retest-Reliabilität 

aufweisen.  Dazu muss man davon ausgehen, dass kognitive Tests (wie zum Beispiel 

das Habituationsparadigma) nicht nur einen einzigen kognitiven Prozess erfassen 

sondern unterschiedliche.  Man müsste ferner davon ausgehen, dass aufgrund von 

Variabilität im Mutualismus unter den Prozessen (van der Maas et al., 2006) an 

unterschiedlichen Zeitpunkten auch unterschiedliche Prozesse bei der Bewältigung von 

ein und derselben Aufgabe involviert sind.  Diese Annahmen sind nicht bewiesen, 

jedoch gut vereinbar mit dem dynamischen Modell und könnten die mangelhaften 

Retest-Reliabilitäten von kognitiven Tests im Säuglings- und Kleinkindalter gut 

erklären.   
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The Current Research Program  

The previous chapter ended on the notion, that there may not be one single 

cognitive process responsible for the positive manifold.  One important implication of 

this notion is to focus on the research on encapsulated cognitive processes.  One 

obvious candidate for that is working memory capacity.  In recent years, working 

memory has become of particular interest in the research of human intelligence for two 

reasons.  First, working memory and intelligence are highly correlated.  Second, the 

measurement of working memory has similar psychometric qualities as the 

measurement of intelligence in terms of reliability and predictive validity.   

Measuring Working Memory   

One of the first and frequently cited studies in this context was conducted by 

Kyllonen and Christal (1990) and was an attempt to explain individual differences in 

intelligence with an information processing model.  That is, instead of relying on a 

mysterious g-factor to explain the positive manifold, they assumed a small network of 

cognitive processes, at the heart of which lay working memory.  Along the way, it was 

also one of the first attempts to define working memory psychometrically as a latent 

variable.  The tests to measure working memory capacity were selected on theoretical 

considerations of Baddeley (1986), defining working memory as a limited capacity 

system responsible for “temporary storage of information that is being processed” (p. 

34).  This has become the hallmark definition whenever it came to the measurement of 

working memory and it is found in almost every publication in the field.  This is 

interesting because it is such a narrow definition and entirely focused on cognitive 

processes, unlike definitions of intelligence that mostly try to capture the versatility of 

the human mind (e.g., Gottfredson, 1997).   

One working memory task in Kyllonen and Christal (1990), for example, was to 

integrate the information of three consecutive sentences.  Each sentence contained 

information about the relationship of the letters ABCD, such as “A precedes B” or “C 

precedes D”.  Sentences could not be revisited, so that the information had to be 

memorized, and with each consecutive sentence, new information had to be considered 

and the mental representation of the four letters had to be adjusted accordingly.  In 

another task, subjects were asked to engage in mental arithmetic with variables.  

Formulas were presented consecutively and could not be revisited, for example “A = 

B/2” or “B = C – 4”.  Thus, mental operations had to be performed on the variables and 
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their values updated accordingly.  It is relatively clear to see how these tasks require the 

simultaneous storage and manipulation of old and new information over a short period 

of time.  

In a series of four studies, Kyllonen and Christal (1990) demonstrated 

correlations between the latent variables for working memory and reasoning (a close 

relative to general fluid intelligence) that were consistently beyond .80.  This was 

somewhat surprising because the tasks used to measure reasoning seemed more diverse 

in their mental requirements.  In one reasoning task, for example, participants were 

presented four sets, each containing three digits (e.g., “282, 848, 244, 566”).  The digits 

in each set were governed by a hidden rule so they had something in common (e.g., all 

even digits).  But one of the number sets violated that rule (e.g., contained an odd digit), 

and participants were asked to identify the one set that did not follow the rule.  At least 

superficially, it is hardly recognizable how such a task would rely on memory because 

all information is readily available and nothing needs to be remembered or recalled.  

Another reasoning task consisted of verbal analogies, like for example 

“DISTANCE:MILE::VOLUME:?”, whereas the correct analog should be selected from 

a given list (“LITRE, BOTTLE, WATER”).  Again, it is hard to see how this would rely 

on working memory and rather seems to rely on verbal knowledge.  Based on the 

observation of very high correlations, Kyllonen and Christal argued that reasoning 

ability is mostly determined by working memory capacity and conjectured that 

“working-memory capacity affects success across the various component stages of 

reasoning tasks” (p. 427).  They basically claimed to have found the source process 

accountable for the g-factor.   

However, some other tasks that Kyllonen and Christal (1990) used to measure 

reasoning can, in retrospect, be assumed to be measures of working memory capacity.  

There was, for example, one reasoning test that contained arithmetic word problems of 

the form: “Pat put in a total of 16½ hours on a job during 5 days of the past week. How 

long is Pat's average workday?” (Department of Defense, 1984, as cited in Kyllonen & 

Christal, 1990, p. 394)  This kind of mental arithmetic would fit the definition of 

temporary storage and processing, in that it requires performing the mathematical 

operations and storing intermediary results before arriving at the final result.  Other 

tasks, attributed to reasoning, were linear syllogism problems such as: “Dick is better 

than Pete, John is worse than Pete, Who is best?”  Here too, the clauses can be assumed 

to be processed consecutively, so that the relation between John and Pete is processed 
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and integrated into the relation between Dick and Pete.  This theoretical overlap of 

latent variable indicators could very well explain why the correlations obtained in 

confirmatory factor analysis models were of such magnitude.  Indeed, this study 

inspired a host of subsequent studies regarding the relationship between intelligence and 

working memory and, although all of them found a considerable correlation, the 

correlations were never as high as suggested by Kyllonen and Christal.   

Fifteen years later, so much research had accumulated on the topic that 

Ackerman et al. (2005) asked “working memory and intelligence: the same or different 

constructs” (p. 30) and tried to find an answer in a comprehensive review and meta-

analysis.  They estimated the meta-analytical average correlation at around .50 and 

concluded that, although both constructs share considerable amount of variance, the two 

are dissociable.  In a comment on the very same paper, Oberauer, Schulze, Wilhelm, 

and Süß (2005) pointed out that it is not only important to distinguish working memory 

and intelligence by means of correlation, but that it is even more important to highlight 

conceptual differences:   

From a theoretical point of view, there is no reason to assume that [working 

memory capacity] is the same as g.  By definition, g is conceptually opaque – it 

is the common variance of a set of tasks that happened to be constructed and 

used by intelligence researchers over a century.  It reflects no explicit theoretical 

concept, and hence there is no theory-based procedure for measuring it.  Rather, 

g reflects a mixture of the mostly implicit theories of intelligence various 

researchers have endorsed and their intuitions about ways to test it.  (p. 64)   

This quotation taps into the key difference between working memory and intelligence.  

As pointed out in the introduction, the scientific pursuit of the measurement of human 

intelligence started with the tests.  It was only after there was already a considerable 

diversity in measurement approaches when Spearman (1904) identified the g-factor.  

There was no theory about the mechanism, and theories to explain the g-factor were 

proposed and investigated ex post facto.  The working memory construct, on the other 

hand, resulted from theories and research in the field of memory and inspired 

measurement methods that were strictly confined to the theoretical cognitive processes.   

One influential working memory model was partly derived from the observation 

that multitasking, although with some detriment to performance, is possible.  Hitch and 

Baddeley (1976) asked participants to perform two tasks simultaneously.  The main task 

was, what Hitch and Baddeley called a verbal reasoning task.  It consisted of a verbal 
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statement describing the relationship between two letters (e.g., “A follows B”) and an 

arrangement of two letters that could either be consistent with the statement (“BA”) or 

inconsistent (“AB”).  The subjects were asked to respond as quickly as possible.  Note 

that this task is arguably less complex than the inductive reasoning tasks that are the 

subject of this dissertation, and Hitch and Baddeley (1976) report that error rates were 

usually well below 10%.  Nonetheless, this task should draw on resources in working 

memory by requiring the translation of the verbal information into a mental 

representation that can finally be compared against the visual information to make a 

congruence judgement.  This task was combined with various versions of a secondary 

task that should compete for short-term storage capacity.  A rather simple version of the 

secondary task required to verbally repeat the simple word “the” out loud at a high rate.  

A more complex version required to repeat a sequence of six random digits out loud.  

The results of these experiments revealed that most of the simple load tasks had almost 

no impact on verbal reasoning, and even the rather complex load tasks impaired 

performance and latencies far less than expected.  Hence, Hitch and Baddeley assumed 

that short-term memory not only has a limited storage capacity, but also a processing 

mechanism that would account for performance on concurrent tasks.  The 

multicomponent model therefore assumes two temporary storage systems, respectively 

for verbal and visual information, which are both controlled by the central executive, 

responsible for focusing, dividing, and switching attention.  As a whole, this system is 

responsible for ongoing information processing and can account for findings in 

reasoning, learning, and comprehension (see Baddeley, 2003).   

Although, there are still many unknowns in this field of research, especially 

concerning the central executive system (Vandierendonck, 2016), the precise theoretical 

framework lead to the development of a small set of tasks that were repeatedly used to 

measure working memory capacity.  Prominent among those are complex span tasks, 

grounded on the notion that simultaneous storage and processing is a key aspect of 

information processing in working memory (Daneman & Carpenter, 1980).  A 

systematic comparison and overview of some of these tasks (reading span, operation 

span, and counting span) was provided by Conway et al. (2005).  All complex span 

tasks follow a similar procedure and involve two subtasks.  For example, the reading 

span requires test-takers to read a sentence and judge its validity (true or false).  This 

makes for the processing component.  The storage component lies in the requirement to 

memorize the last word of the sentence for later recall.  The operation span task works 

25 
 



 
The Current Research Program 

essentially the same way, except that math equations are to be verified as the processing 

component.  The processing component in the counting span task requires test-takers to 

count stimuli with a certain feature (e.g., counting all red circles).  The storage 

component lies in the requirement to memorize said counts for later recall.  The relevant 

dependent variable is usually the storage component, whereas the processing component 

is considered to be very easy with generally few mistakes.  The processing component 

is assumed to interfere with active rehearsal of the storage component.  Hence, the task 

should provide an estimate of the amount of information that can be actively maintained 

during distraction.   

There are other tasks to measure working memory capacity and Cowan et al. 

(2005) pointed out some of the difficulties in interpreting dual task scores.  After 

reviewing and comparing some prominent working memory measures, they concluded 

that dual tasks are not really necessary to obtain a good estimation of a person’s 

working memory capacity for individual differences research.  They propose to measure 

what they call the “scope of attention”, which is the amount of information that a person 

can attend to at a given point in time.   

One task to measure the scope of attention is the running memory span, where a 

constant stream of digits (or other stimuli) is presented to the test-taker.  The stream will 

disrupt at some random point and test-takers are then asked to recall all the digits up the 

point of disruption in forward order.  The assumption is that the items of the list are 

retrieved from a stream of sensory memory that forms automatically from active 

attention and perception during number presentation.  Another example is the visual 

array task which presents consecutively two arrays of colored squares that should be 

compared.  One of the squares is marked on the second array and participants are asked 

to indicate whether it had the same or different color in the previous array.  Again, the 

assumption is that the array of squares will be retrieved from a visual sensory memory 

trace that forms from perception, and that there cannot be enough time in the brief 

interval between arrays to rehearse verbally or form chunks.   

The idea with these kinds of tasks is that sensory memory has a comparably 

large capacity but is very short-lived.  Thus, information from this short-lived memory 

needs to be transferred into the capacity-limited scope of attention so it can be recalled 

(Cowan, Fristoe, Elliott, Brunner, & Saults, 2006).  Although this theory is different 

from classical storage and processing theories of working memory, the general idea is 

the same: Limited capacity affects online information processing.  
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Working Memory vs. Matrix Reasoning  

In the previous section, I have established that working memory and intelligence 

are closely related, however there are differences.  It is not easy to work those out, 

mostly because intelligence is such a diverse construct.  Take the Wechsler Adult 

Intelligence Scale (WAIS; Wechsler, 2009) as an example.  The test battery has a total 

of 14 subtests which can be very different.  One of those is the “digit span” test, which 

is essentially a short-term memory test for digit recall and part of the working memory 

subscale in the WAIS.  So on this specific task, there is literally no difference between 

working memory and intelligence.  Then there is the verbal comprehension subscale, 

which consists of verbal knowledge subtests like “vocabulary” and “comprehension”.  It 

is fair to assume that those cover long-term memory contents (i.e., crystallized 

intelligence) but should not be primarily dependent on working memory capacity.   

Another subtest requires test-takers to complete a matrix of figural stimuli that 

are arranged according to some hidden rule.  This kind of task is of particular relevance 

in this dissertation because of the requirement to detect hidden rules, which is the main 

characteristic of inductive reasoning.  Inductive reasoning means to recognize regularity 

and to infer a general rule from a particular example and to generalize this rule to other 

conditions.  In the specific case of matrix reasoning, this means to recognize how figural 

elements in the visible part of the matrix are related and to infer how the missing piece 

should look like.  Matrix reasoning tests have somewhat of a special standing in 

intelligence research, and this is especially true for Raven’s matrices (Raven, Raven, & 

Court, 1998).  Spearman (1938) already remarked on an early version of the test that he 

regarded it very suitable to measure intelligence.  Others have demonstrated that 

Raven’s matrices share a large amount of variance with the g-factor (Marshalek, 

Lohman, & Snow, 1983) and Carroll (1993)  noted: “Our evidence suggests that the 

Progressive Matrix test is a good measure of g and of the second-stratum factor 2F, but 

the degree to which this test measures first-order factors I and VZ is not clear“ (p. 696).  

The test is also very easy to administer and to score, which is probably why it is very 

popular among researchers and very frequently used in all sorts of studies to provide an 

estimate of intelligence.   

Therefore, the study of the relationship between working memory and 

intelligence is oftentimes a study of the relationship between working memory and 

matrix reasoning.  Even in studies that work with a g-factor definition of intelligence, 

matrix reasoning tasks are almost certainly part of the test battery.  One of such studies 
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was reported by Conway, Cowan, Bunting, Therriault, and Minkoff (2002) where, in 

addition to Raven’s matrices, Cattell’s Culture Fair Test was used as a marker of fluid 

intelligence.  The Cattell test comprises of four subtests, one of which is a matrix 

reasoning test as well, and the others are mostly variants of inductive reasoning tests as 

well.  Conway et al. reported results from structural equation models that estimated the 

relevance of processing speed, working memory, and short-term memory as predictors.  

Notably, working memory tasks were allowed to load on the short-term memory factor 

to draw storage variance and leave the processing part.  In this model, short-term 

memory and processing speed were no significant predictors but working memory was a 

strong predictor.   

Conway et al. argued that controlled attention, responsible for information 

processing in the face of distraction, would be most relevant because inductive 

reasoning would bring about an interplay of discovery and maintenance of rules: “In 

order to solve difficult matrix problems, one must discover a rule and then maintain that 

rule while searching to discover a second rule and so on” (p. 179).  Since this account 

would involve the temporary storage of discovered rules and intermediate results, it is 

surprising that Conway et al. could not estimate a significant relationship with the 

storage factor (but see Martínez et al., 2011 for a different finding).   

Conway et al. (2002) also discussed the possible role of strategy use for the 

relationship between working memory and intelligence.  They argue that previous 

studies have found that individual differences in strategy use can account for 

performance on both, working memory tasks and intelligence tests.  Hence, the common 

ability to both tasks would “involve the recognition and successful execution of 

particular strategies” (p. 179).   

Unsworth and Engle (2005) hypothesized that working memory capacity would 

be important in matrix reasoning because test-takers need to store a certain amount of 

relationships on each problem.  Thus, they investigated the correlation between single 

item response accuracies and working memory capacity.  However, they found that 

correlations were constant across item difficulty levels, and could not be accounted for 

by the amount of rules underlying each problem.  Unsworth and Engle discuss that 

short-term storage must be of little importance but “it is the central executive 

component of the working memory system that is important on both working memory 

span tasks and tasks of fluid abilities” (p. 78).   
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Wiley, Jarosz, Cushen, and Colflesh (2011) tested the hypothesis that the 

discovery of new rules in matrix reasoning tests can be mostly accounted for by 

working memory capacity.  Their analyses revealed that all items that make use of a 

new rule or new combination of rules in the Raven test, were stronger correlated with 

working memory capacity than the other items.  They argue that “previously learned 

and used rules may interfere with performance when a new rule combination is needed” 

(p. 261).  Hence, the ability to control the focus of attention (executive functioning) 

would be relevant in ignoring irrelevant solution approaches.   

Harrison, Shipstead, and Engle (2014) failed to replicate the findings of Wiley et 

al. (2011).  They constructed a special composition of matrix reasoning items and 

presented two parallel items, with the same underlying rules, in consecutive order.  

Hence, they could compare how very similar items correlate with working memory, 

depending on whether they were presented first or second.  The pattern of results was 

contradictory to Wiley et al.’s findings in that repeated-rule problems correlated 

significantly higher with working memory than first-rule problems.  The authors argue 

that “one of the reasons that [working memory capacity] is correlated with Raven’s 

problems is possibly that subjects with high [working memory capacity] are able to 

retrieve solutions from previous Raven’s problems to solve the current problem” (p. 

394).  This explanation puts the finger back on the storage component of the working 

memory system as a major source of variance in matrix reasoning; however Harrison et 

al. (2014) acknowledge that there could be multiple mechanisms that account for this 

shared variance.   

It is interesting to note that none of the accounts for the relationship between 

working memory capacity and matrix reasoning make explicit assumptions about the 

source of rule discovery.  Most of them acknowledge that rules play some role, either 

because they need to be retained in storage or need suppressed as distractions.  This 

raises the question as to the nature of the rule induction process itself, which is the key 

characteristic of matrix reasoning tests as a subcategory of inductive reasoning tests and 

general fluid intelligence tests.  Thus, the following experiments are an attempt to 

explore this aspect of matrix reasoning in more detail.  The hypothesis is that working 

memory can in itself not account for individual differences in the ability to discover 

rules.  This is thought to be a key difference between working memory and inductive 

reasoning and may as such represent a conceptual difference between working memory 

and intelligence.  The research reviewed herein suggests that working memory capacity 
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is critical for almost all measures of fluid intelligence, however inductive reasoning 

should also be affected by some additional process that can account for the ability to 

come up unknown rules and relations in matrix reasoning.   
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Abstract 

The solution process underlying Raven’s Advanced Progressive Matrices 

(RAPM) has been conceptualized to consist of two subprocesses: rule induction and 

goal management.  Past research has also found a strong relation between measures of 

working memory capacity and performance on RAPM.  The present research attempted 

to test whether the goal management subprocess is responsible for the relation between 

working memory capacity to RAPM, using a paradigm where the rules necessary to 

solve the problems were given to subjects, assuming it would render rule induction 

unnecessary.  Three experiments revealed that working memory capacity was still 

strongly related to RAPM performance in the given-rules condition, while in two 

experiments the correlation in the given-rules condition was significantly higher than in 

the no-rules condition.  Experiment 4 revealed that giving the rules affected problem 

solving behavior.  Evidence from eye tracking protocols suggested that participants in 

the given-rules condition were more likely to approach the problems with a constructive 

matching strategy.  Two possible mechanisms are discussed that could both explain why 

providing participants with the rules might increase the relation between working 

memory capacity and RAPM performance.  

Introduction 

There is reasonable evidence that working memory capacity plays a crucial role 

in human intelligence.  Most studies that have contributed to this finding follow a 

methodology where each construct is operationalized with some representative tests and 

then the correlational pattern is subject to analysis, utilizing latent factor modeling.  In 

most cases some other constructs are also being taken into account, like short term 

memory, processing speed, or long term memory.  The latent variable correlations or 

factor weights describing the relation between working memory capacity and 
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intelligence are usually quite substantial even when other variables are taken into 

account (see for example, Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; 

Conway et al., 2002; Engle, Tuholski, Laughlin, & Conway, 1999; Kyllonen & Christal, 

1990; Süß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002).  However, this 

correlational approach has its limits: From the studies mentioned above we can 

conclude that there is some substantial association and that working memory capacity 

plays a bigger role than other cognitive resources, but we cannot tell exactly where the 

relation stems from.   

Ackerman et al. (2005) stated that “resolution of the question of how and how 

much working memory and intelligence are related ultimately requires additional 

research” (p. 52).  Oberauer et al. (2005) have argued that the “distinction between these 

constructs does not hinge on the size of the correlation but on a qualitative 

difference…” (p.63).  This leads us to suggest that with a plain correlational approach 

we cannot conclude exactly how basic cognitive resources like working memory 

capacity are involved in the processing of intelligence tasks and to what degree.  For 

this reason, the present article shall explore the borders of the relation between 

intelligence and working memory capacity by combining the prevailing correlational 

approach with an experimental methodology.  The central question is: Where lies the 

common link between working memory capacity and intelligence?   

The Two-Process-Theory of Inductive Matrix Reasoning  

We will approach this question by examining the solution process of the Raven 

Advanced Progressive Matrices (RAPM) test (Raven et al., 1998).  Typical RAPM 

items require test-takers to analyze figural elements in a matrix in order to select the 

correct solution out of eight response alternatives (see Figure 1).  According to Carroll 

(1993), tasks of this kind form a good representation of the general fluid intelligence 

factor (gf) which he describes as being “concerned with basic processes of reasoning 

and other mental activities that depend only minimally on learning and acculturation” 

(p. 624).  His analysis suggests that tasks of this kind load reasonably high on the g-

factor, the gf-factor, and various reasoning factors and indeed, matrix reasoning tasks 

are included in numerous prominent test batteries for intellectual assessment, including 

the WAIS-IV and the SB5.  The solution process in inductive reasoning tasks of this 

sort has been subject to analysis in previous studies and there is some understanding of 

the processes involved.   
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Figure 1.  Prototypical problem of Raven’s APM 
with two areas of interest designated. 

 

Carpenter, Just, and Shell (1990) have contributed substantially in this vein in 

their approach to simulate successful human performance on RAPM with a computer 

program.  In order to reach this goal, they performed a task analysis of problem solving 

behavior in RAPM using techniques like eye tracking and think aloud protocols.  Using 

this approach, they articulated two subprocesses that distinguish among higher and 

lower scoring individuals: the ability to induce abstract relations and the ability to 

dynamically manage a large set of problem solving goals in working memory.   

Rule induction refers to the process of finding abstract relations among the 

elements in the figural matrices and concluding which rules guide these relations.  

Based on their research, Carpenter et al. (1990) postulate a taxonomy of five different 

types of rules that would be sufficient to describe the relation among elements for most 

of the items in RAPM.  They describe the process of finding these correspondences like 

a trial-and-error method, where a subject tries to identify some elements in the matrix 

with a rule, and if it leads to a dead end, tries a different rule or different elements.  

According to their analyses, correspondence finding involves the decomposition of the 

figures into their composing elements and comparing them pairwise; furthermore the 

process is proposed to be sequential, which means that one rule is induced at a time.   

Goal management refers to the process of setting and monitoring goals and 

subgoals during problem solving.  The main goal is evidently to solve the problem, but 

in order to reach this, subgoals need to be created, like finding a connection among 

certain elements (i.e. correspondence finding).  This process involves the association of 

the figural elements in the matrix with certain subgoals.  Also, the process involves 

monitoring the relations found and keeping them present in working memory.  That is, 
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once a relation is regarded as valid it has to be maintained before the search for further 

rules among other elements can continue.   

Carpenter et al. (1990) offered two results that suggest that goal management 

processes are largely responsible for successful performance on RAPM.   First, in their 

Study 1A, they reported a correlation of -.57 between the number of rule tokens 

required to solve each problem and its solution rate.  On the basis of these results they 

argued that “the presence of a larger number of rule tokens taxes not so much the 

processes that induce the rules, but the goal-management processes that are required to 

construct, execute, and maintain a mental plan of action during the solution of those 

problems containing multiple rule tokens as well as difficult correspondence finding” 

(p. 410).  Hence they argued that as the number of rules increases, the demand placed 

on working memory capacity increases as well.  Second, in Study 2, they taught 

participants how to solve another problem solving task, the Tower of Hanoi, using a 

recursion strategy, and showed that performance on that specific version of the task, 

where the need to induce the recursion strategy was removed, was also highly correlated 

with performance RAPM (r =.77).  Given the high relation between this modified 

Tower of Hanoi task and performance on RAPM, which they attribute to the need for 

goal management on both tasks, they raise the question whether there is any need to 

postulate other processes, such as abstraction or inductive ability, as additional sources 

of individual differences in the Raven test.   

The Role of Working Memory Capacity in RAPM 

The working memory concept originated from the notion that complex cognitive 

tasks need information readily accessible, and it was further put forward with the 

distinction between primary and secondary memory (Berti, 2010).  The observation that 

it is actually possible to combine two relatively complex tasks without any disastrous 

detriment in performance on either task let to the conclusion that there had to be some 

sort of managing system (the central executive) that is responsible for the coordination 

of simultaneous processes, especially when the capacity limit for short term storage is 

reached (Baddeley & Hitch, 2007).  As an individual differences measure, working 

memory capacity can be seen either as a measurement of the amount of information that 

a person can store and retrieve in the face of a competing task, or alternatively, as the 

ability to make the most effective use of this system via the use of attentional control or 
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executive functioning (Conway et al., 2005; Cowan et al., 2005; Kane, Conway, 

Hambrick, & Engle, 2007).   

Several previous studies of RAPM performance have suggested that item 

characteristics, like the number of elements and rules, affect item difficulty by placing 

demands on working memory (Embretson, 1998; Primi, 2001).  Arguably, the sheer 

amount of elements and rules that need to be handled while solving an item would 

exceed the storage capacity of working memory.  Still, working memory capacity has 

not been assessed directly in these studies and, to the contrary, several studies that have 

assessed working memory capacity have failed to find a relation with item difficulty 

(Salthouse & Pink, 2008; Unsworth & Engle, 2005; Wiley et al., 2011).  For example, 

Unsworth and Engle (2005) showed that item difficulty is not at all related to working 

memory capacity.  They found that performance on individual items is rather constantly 

correlated with working memory capacity.  Furthermore, Salthouse and Pink (2008) 

found out that the correlation between memory span and gf is fairly independent from 

the list length in the memory tasks.  Similarly, several researchers have also been unable 

to find relations between the number of rules or rule tokens and working memory 

capacity.  If more cognitive load is put on working memory and goal maintenance 

processes due to increased numbers of rules, then the relation between working memory 

capacity and RAPM performance should increase as the number of rules required to 

solve the problems increase.  However, several studies have reported that the relation 

between working memory capacity and RAPM remains constant across items regardless 

of the number of rules or rule tokens that they require (Unsworth & Engle, 2005; Wiley 

et al., 2011).  Hence, although early work provided support for the hypothesis that the 

relation between working memory capacity and RAPM is largely due to goal 

management processes, more recent research suggests the role of goal management in 

explaining the relation between working memory capacity to RAPM performance is still 

unclear.   

The Current Paradigm 

As noted earlier, Carpenter et al. (1990) suggested that goal management is the 

crucial process in the RAPM solution process, however, the rule induction process in 

their simulations works presumably differently from an actual human cognitive process.  

Their computer program was designed in a way that it searched for applicable rules to 

solve the problem at hand from a finite set of rules, formed by the five rules from their 
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taxonomy.  The program does not account for the possibility that someone might take a 

completely different approach which may lead to a dead end, or, by mere chance, also to 

a correct solution.  For a human being, the rules stem from a potentially greater 

population of solution strategies.  A human being who has never encountered the 

problems before has to come up with an idea about how to approach the problem in the 

first place.  Verguts, De Boeck, and Maris (1999) describe this step like sampling rules 

from an urn until all element relations in the problem can be accounted for.   

We asked ourselves: What would happen if the set size of the urn would be 

reduced to the number of rules that are actually applicable to the problems?  What if 

humans already know the rules, as was the case for Carpenter et al.’s computer 

programs?  More specifically, we were interested to what degree working memory 

capacity is involved in the sampling of new rules.  The research that has linked working 

memory to gf has, to this point, mainly focused on the part that is not involved in 

generating rules.  The prevailing accounts for the correlation envision some sort of 

information processing that involves storage, maintenance, inhibition, supervision, 

attention, or updating, but none of these accounts can explain how a mental 

representation of a rule or abstract relationship is actually formed.  Furthermore, it lies 

in the nature of working memory tasks that they are free of inductive processes.  That is, 

in typical working memory tasks participants are fully informed about the task and 

about the relation of the task material to a correct response, so that performance is solely 

limited by capacity.  In our view, this aspect is fundamentally different from 

intelligence tests like RAPM, where the connection among stimuli is unknown to the 

subject.   

Over a course of four experiments we wanted to shed some new light on the 

relationship between working memory capacity and rule induction by introducing a new 

paradigm that involves teaching the rules that would be necessary to solve problems 

from Raven’s APM.  We predicted to find an increased correlation between RAPM and 

working memory capacity when the rules are known in Experiment 1.  We further 

predicted to find the opposite pattern for the correlation between RAPM and measures 

of rule induction and productive thinking in Experiments 2 and 3.  Finally, in 

Experiment 4 we predicted to find different patterns in eye movement behavior while 

solving RAPM problems, depending on whether the rules are known or not.   
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Experiment 1  

As mentioned before, we know that there is some decent correlation between 

RAPM and measures of working memory capacity.  However, it is unclear how 

individual differences in working memory capacity are affecting performance on 

RAPM.  To test whether working memory capacity contributes to performance on 

RAPM via its influence on goal maintenance alone, we conceived of an experimental 

manipulation which eliminates the need to induce rules during the solution process of 

RAPM: Teaching the rules necessary to solve the problems even before test-takers 

tackle the problems.   

This manipulation involves teaching participants five rules, first developed by 

Carpenter et al. (1990), and having them solve a subset of the items that can be solved 

using those rules (see Table 2 for a description).  The assumption is that if the test-

takers know the rule taxonomy, they would simply have to recall the rules and check if 

any of the rules are applicable.  They would not have to rely on rule generation or 

hypothesis formation, meaning that any relation between working memory capacity and 

RAPM performance in this case should be due to goal maintenance processes.   

On the contrary, if goal maintenance processes do not play a unique role in the 

relation of working memory capacity and RAPM performance (for example if rule 

induction is largely responsible for the relation), then the relation between working 

memory capacity and RAPM performance should be decreased when only goal 

maintenance is required.  Thus, the amount of variance in RAPM predicted by working 

memory capacity would be lower than in the control group where rule induction is still 

required.   
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Table 2 
Taxonomy of Rules (Based on Carpenter et al., 1990) 

Original rule name Description Rephrased rule 
name 

Constant in a row The same value occurs throughout a row, but changes 
down a column. 

Always the same 

Quantitative pairwise 
progression 

A quantitative increment or decrement occurs between 
adjacent entries in an attribute such as size, position, 
or number. 

Progress 

Figure addition or subtraction A figure from one column is added to (juxtaposed or 
superimposed) or subtracted from another figure to 
produce the third. 

Plus  
Minus 

Distribution of three values Three values from a categorical attribute (such as figure 
type) are distributed through a row. 

One of each 

Distribution of two values Two values from a categorical attribute are distributed 
through a row; the third value is null.   

-- 

 

Method 

Redraft of the Rule Taxonomy 

Since the rule taxonomy developed by Carpenter et al. (1990) consists of 

somewhat long and technical terms like “quantitative pairwise progression” and since 

we decided to work with children as participants (for reasons explained later), we used 

only a subset of the problems that could be solved with five of the rules, and rephrased 

some of the rule names (see Table 2).  This was intended to make it easier for 

participants to remember and understand the rules.  The “constant in a row” rule was 

rephrased to always the same, the “quantitative pairwise progression” rule was 

rephrased to progress, the “figure addition or subtraction” rule was split into two 

corresponding rules named plus and minus, and the “distribution of three values” rule 

was rephrased to one of each.  We dropped the “distribution of two values” rule because 

most items where this rule is applicable are also solvable via one of each or plus or 

minus.  Additionally, this omission kept the instructions shorter, which was intended to 

make it easier to remember all rules.   

Working Memory Assessment 

All task materials for working memory assessment were adapted from Vock and 

Holling (2008), where they proved to be appropriate for use with children from 8 to 13 
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years of age.  The tasks were chosen to represent each of three possible task modalities 

(verbal, spatial, and numerical).   

The first task was a spatial working memory task (SWM).  In this task a series of 

3x3 patterns with white and black squares was presented sequentially, each pattern for 

1.5 seconds.  Before each series of patterns, an arrow indicated the direction in which 

these patterns had to be rotated mentally; either 45 degrees to the right or to the left.  

The length of series increased from 1 to 4.  After each series, the participant was 

required to change the colors of blank 3x3 checker fields to indicate his or her memory 

of the mentally rotated patterns.  There was a 60 second time restriction on the response 

screen.  After that or when the participant pressed an ok-button, the next item was 

immediately presented.  Four practice items preceded the 13 test items.  Each correctly 

recalled pattern was scored with one point divided by the number of patterns on the item 

(partial credit scoring), for a maximum possible score of 13 points.     

The second task was a backward digit span task (BDS).  In this task a series of 

digits between 1 and 9 was presented sequentially, each digit for 1.5 seconds.  The 

length of the series increased from 4 to 7.  After each series, the participant was required 

to enter the series backwards in a textbox.  The participants could indicate missing 

digits with an underscore.  There was a 60 second time restriction on the response 

screen.  After that or when the participant pressed an ok-button, the next item was 

presented immediately.  Two practice items preceded the 12 test items.  Recalled digits 

had to be in the correct position within the series.  Each correctly recalled digit was 

scored with one point divided by the number of digits of the item (partial credit 

scoring), for a maximum possible score of 12 points.   

The third task was a verbal span task (VS).  In this task, a list of words was 

presented for 6 seconds.  The length of the list increased from 3 to 6 words, each word 

consisted of no more than two syllables.  After each list, distraction tasks followed in 

which an array of five words was presented on the screen.  A category term was placed 

in the center with four nouns in the corners.  Participants were asked to click on the 

correct word that was a member of the category.  The number of distraction tasks 

alternated between two and three.  There was no time restriction on the distraction tasks.  

Afterwards, a textbox was presented where participants could enter the words they 

remembered from the list, via keyboard.  The participants were instructed that minor 

spelling and typing errors were not important to scoring.  A 90 second time restriction 

was displayed on the response screen.  After that or when the participant pressed an ok-
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button, the next item was immediately presented.  Two practice items preceded the 10 

test items.  Recalled words had to be in the correct order relative to the other correctly 

recalled words.  Each correctly recalled word was scored one point divided by list 

length (partial credit scoring).  Errors of commission and errors of omission were 

ignored.  The maximum possible score was then 10 points.   

In order to have a whole score for working memory performance, a composite 

working memory task score was calculated by averaging z-scores of spatial working 

memory and backward digit span for cases that had no missing data on these tasks.  For 

consistency with the other experiments reported here, the verbal span task was omitted 

in this composite score (which did not affect the pattern of results).   

Raven’s APM 

The fourth task was Raven’s Advanced Progressive Matrices (RAPM).  The 

main task was preceded by an instruction video and some practice items.  In both 

groups, the video explained the task.  Differences between the two groups were as 

follows:  

The control group received an instruction that very closely followed the manual 

(Raven et al., 1998).  That is, Item 1 from Set 1 was shown and it was explained that 

one had to infer what kind of piece was missing in the displayed pattern.  Two wrong 

solutions were shown before the right solution was given, and it was explained why 

they were right or wrong.  An explanation was given that one had to look for the 

underlying rules which might apply from left to right or top to bottom.  Then Item 2 was 

shown and the video gave the participant some time to think for him- or herself; 

afterwards the correct solution was given.  Then again, it was explained that it was 

important to look out for the principles on which the tasks work, and the participant 

could practice for 12 minutes on some tasks which would not be scored.  Then the 12 

items from Set 1 were presented.  The length of the instruction video was 3:00 minutes.   

The experimental group received an instruction that emphasized the five rules: 

Always the same, progress, one of each, plus, and minus.  First, participants were 

informed that the task was to identify the missing piece in the problem from the eight 

pieces given.  Then, four items from Set 1 were shown to exemplify the rules.  Item 6 

was shown to exemplify the rules always the same and progress, then Item 7 was shown 

to exemplify always the same and one of each, then Item 10 was shown to exemplify 

plus, then Item 12 was shown to exemplify minus.  Colored animations helped to 
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visualize the important elements for each rule on each item.  Furthermore, an 

explanation stated that the rules would apply from left to right and that the rules would 

be sufficient to solve any problem in the test.  After that, the same four items were 

presented again and the participants were given 5 minutes time to work on them as 

practice items which would not be scored.  The length of the instruction video was 6:41 

minutes.   

In the main task, only 26 items from Set 2 were deployed since careful analysis 

of the Items 15, 18, 19, 20, 25, 30, 31, 33, 35, and 36 indicated that the rules described 

earlier would not apply in the same way as they would for the other items.  For item 15, 

the rule plus does apply, but it applies in different directions for different elements, 

whereas the instructions in the experimental condition emphasized that participants 

should look for rules from left to right.  For item 18 none of the aforementioned rules 

apply.  A new rule that could be called “morph shape” (Wiley et al., 2011), would apply 

here, which however would not apply to any other problem in the set.  For Items 19, 20, 

25, 30, 33, 35 the plus and minus rules do not apply in their simplest way, instead a 

specific plus/minus rule would have to be inferred for certain elements.  For example 

for Item 33, one would have to infer something like “same color + same color = 

increase” and “different color + different color = decrease”.  For other items from this 

list, the plus/minus rule would need some differential consideration of foreground and 

background, like in Item 20 where blank patterns are always on top.  To keep the 

instructions as simple as possible, these subtleties of the plus and minus rules were 

omitted.  Note that Items 18 and 19 were also not classified by Carpenter et al. (1990)  

because “the nature of the rules differed from all others” (p. 408).  For Items 31 and 36 

the “distribution of two values” rule would have to be employed.  However this rule was 

omitted in the current study for reasons explained earlier.   

All 26 included items were presented individually on the computer screen in a 

similar fashion as the paper-and-pencil version of the test.  The participants were 

required to indicate via button click which of the eight given solutions they thought 

would be correct.  They could freely move through the set of items forward and 

backward and always change their responses.  Whenever they thought they were done 

with the task, they could just press a button to finish.  If they did not finish manually, 

the task would terminate automatically after a 30 minute time limit (which occurred 

only with 2 participants).    
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Procedure 

The participants were tested in groups of 5 to 22 individuals (M = 10.9, SD = 

5.3).  They had about 1.5 hours time, which was always sufficient to complete all of the 

tasks.  All tasks were presented on computers, which were controlled partly by mouse 

and partly by touchscreen.  The students wore headphones throughout the tasks to 

receive audio-visual instructions.  The setting was either a classroom or a computer lab 

at the school.  After a brief introduction to what the study was about, how many tasks 

the participants would encounter, and the nature of the tasks, they could start at their 

own will.  After the starting screen where age and gender was inquired, participants got 

to a screen with buttons for each task.  Each task could be started with pressing a button 

and each task was preceded by a short introduction video.  Participants were allowed to 

take breaks at leisure between tasks.  The order of the tasks was fixed, which was 

accomplished by enabling or disabling the corresponding buttons, based on which tasks 

had already been completed.  The assignment to one of the two experimental groups 

was accomplished via a built-in random number generator in the computer program.   

Pretesting had indicated that participants’ working time on the tasks could vary 

quite strongly.  One of the consequences was that students who finished earlier than 

their classmates may have influenced slower students in their task performance.  Thus a 

dummy task was added as a fifth task, just to keep the quick students busy for a while.  

This task was a spatial working memory task which did not produce any data.   

Sample 

Due to the experimental manipulation a ceiling effect was likely to occur on 

RAPM, thus the target population should be from the lower end of the ability 

distribution.  Accordingly, the decision was to target students from grades 5 to 8, which 

includes the youngest age group RAPM is applicable to, according to the manual 

(Raven et al., 1998).  The participants were located in 4 different secondary schools in 

Frankfurt am Main, Germany.  Their parents were required to sign an informed consent 

as a prerequisite for participation.  The participants were informed about the voluntary 

nature of their participation and confidentiality of their responses.  Each participating 

class received a donation of 150€ to the class treasury as a compensatory payment.   

The total amount of participants tested for the study was 647.  However, there 

was missing data on all 4 main tasks from 3 participants who were therefore excluded 

from the analysis.  Reasons for missing data were mostly technical issues, like sound, 
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video, mouse, or keyboard crashing.  Furthermore, any score equaling zero on any of 

the main tasks was recoded to missing, assuming there may have been motivation or 

comprehension issues.  The sample for analysis, then, consisted of N = 644 secondary 

school students, from which 316 were randomly assigned to the control group and the 

remaining 328 to the experimental group.  Grade was approximately evenly distributed 

(grade 5 = 165, grade 6 = 214, grade 7 = 137, grade 8 = 128), as was school level (350 

from the highest level, 294 from the second highest level), and gender (319 male, 325 

female) among participants.  The participants’ age ranged from 10 to 16 years (M = 

12.2, SD = 1.3).   

Results 

First, means and differences in task performance are reported for the two 

experimental groups, which can be obtained from Table 3.  Task performance in the 

working memory tasks did not differ significantly between groups (ts < 1.08, ps > .28) 

and the variances of the working memory tasks did not differ significantly between 

groups (Levene’s Fs < 1.53, ps > .28).  Also, the correlations among the three working 

memory tasks did not differ significantly between experimental groups (see Table 4).  

This suggests that random assignment resulted in an evenly distributed working 

memory capacity profile in both experimental groups.   

Second, task performance on RAPM was significantly better in the given-rules 

group than in the control group, t(624) = 6.40, p < .01, d = .52.  On average, participants 

in the experimental group were able to solve about 2.3 items more, due to knowing the 

rules underlying the problems.  There was no ceiling effect, as indicated by skew = -.03 

and maximum score = 24.  Further, there was a significant correlation between 

measures of working memory capacity and RAPM in both conditions (see Table 4).  

The correlation between RAPM and the composite working memory score was 

significantly greater by .16 in the given-rules condition, z(598) = 2.77, p < .01.   
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Table 3 
Task Means, Standard Deviations, and Reliability Estimates for Each 
Experimental Group in Experiment 1 

Tasks Control Given-Rules d 

SWM  
(13 items) 

M 5.80 6.02 0.05 
SD 2.53 2.62  
n 306 313  
α .79 .82  

BDS  
(12 items) 

M 6.55 6.47 -0.04 
SD 1.92 2.06  
n 311 325  
α .72 .76  

VS  
(10 items) 

M 6.67 6.70 0.03 
SD 1.73 1.84  
n 311 320  
α .79 .80  

WMC  
(z-score)  

M -0.01 0.02 0.04 
SD 0.81 0.85  
n 303 313  

RAPM  
(26 items) 

M 9.60 11.93 0.52 
SD 4.56 4.55  
n 305 321  
α .82 .82  

Note.  SWM = spatial working memory, BDS = backward digit span, VS = 
verbal span, WMC = working memory composite score, RAPM = Raven 
Advanced Progressive Matrices. 

 

 
Table 4 
Correlations Among Different Tasks for Each Experimental Group in Experiment 1 
 WMC SWM BDS VS 
Control Condition: 
RAPM .46 (292) .42 (295) .33 (300) .31 (300) 
WMC  .84 (303) .83 (303) .46 (301) 
SWM   .39 (303) .27 (303) 
BDS    .49 (308) 
Given-Rules Condition: 
RAPM .62* (308) .58* (308) .46* (318) .38 (313) 
WMC  .84 (313) .84 (313) .46 (307) 
SWM   .41 (313) .31 (307) 
BDS    .49 (318) 
Note.  r (N).  SWM = spatial working memory, BDS = backward digit span, VS = verbal span, 
WMC = working memory composite score, RAPM = Raven Advanced Progressive Matrices.  * 
indicates significant difference from control group at p < .05 
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Figure 2.  Experiment 1 Model 1.  Standardized estimates for control/ given-rules condition.  SWM = 
spatial working memory, BDS = backward digit span, VS = verbal span.  †p = ns, *p < .05, all other 
estimates are significant at p < .01.   
 

Third, a latent variable model was estimated in order to account for 

measurement error and possible covariates.  All calculations were performed using the 

software Mplus 6.1.  In a first step, a standard model was estimated (with maximum 

likelihood) for the two experimental groups.  A latent factor for performance on RAPM 

was created using the sum scores of odd and even test items.  Both factor loadings were 

fixed to 1 since both parts are expected to represent the underlying factor equally.  

Working memory capacity was modeled by performance on spatial working memory, 

backward digit span, and verbal span.  All factor loadings were restricted to be equal 

across groups to specify metric invariance.  Also, the participants’ age, grade, and 

school level were included in the analysis as covariates.  The resulting parameter 

estimates are depicted in Figure 2 and the model fitted reasonably well (χ² = 73.52, df = 

33, p < .01, RMSEA = .06, CFI = .97, TLI = .95).  Estimates for the correlation between 

RAPM and WM were r = .58 in the control group and r = .77 in the given-rules group, 

which suggests an increase of .19 due to the experimental manipulation.  In order to see 

if this difference is significant, a restricted model was estimated, in which the 
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correlation between RAPM and WM was constrained to be equal across groups.  The 

resulting model also fitted reasonably well (χ² = 78.23, df = 34, p < .01, RMSEA = .06, 

CFI = .96, TLI = .94), yet a chi-square difference test indicated that the fit of this 

restricted model was significantly worse than the fit of the standard model (Δχ² = 4.71, 

df = 1, p = .03), suggesting the correlation should not be restricted to be equal across 

groups.  That is, the difference of the correlation between groups was significantly 

different from zero.   

Discussion 

Based on the theoretical assumption that the solution process in RAPM can be 

divided into two subprocesses, rule induction and goal management (Carpenter et al., 

1990), we explored the extent to which goal management processes might explain the 

relation between working memory capacity and RAPM performance in a condition 

where rule induction might not be required.  To test this, Experiment 1 incorporated a 

manipulation of RAPM in which the appropriate rules for solution had been taught to 

the participants beforehand.  Results revealed that the correlation between RAPM and 

measures of working memory did not decrease when participants were given the rules, 

suggesting that goal management is correlated with working memory capacity.  Further 

analyses revealed that the correlation significantly increased due to the experimental 

manipulation.  Although the overall solution rates are higher when the rules had been 

given to participants, the relative account of working memory for task performance was 

larger.  The difference of the correlations between the two experimental conditions was 

evident from zero-order correlations at single task level, as well as from first-order 

latent variable correlations.  A possible interpretation of  the present results is that 

teaching participants the rules eliminates the need for rule induction, and makes the task 

more clearly one of goal management, which itself is highly related to working memory 

capacity.   

Experiment 2 

The purpose of this experiment was to further investigate what happens when 

the rules are known while solving RAPM.  In Experiment 1, it was shown that teaching 

participants the rules to solve RAPM problems did not decrease, but did in fact increase 

the relation between working memory capacity and RAPM.  It was suggested that 

teaching participants the rules removed the need to engage in rule induction.  The aim 

for this experiment was to operationalize and measure rule induction ability as a way of 
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showing that this ability might be less predictive of success on RAPM when the rules 

are given.  Thus, if rule induction is not necessary any more, RAPM should not 

correlate with measures of rule induction ability, or any correlation with a measure of 

rule induction ability should significantly decrease under the given-rules condition.   

Method 

Measuring Rule Induction Ability 

Rule induction ability was operationalized via the Brixton spatial rule 

anticipation test  (BRX), as described by Crescentini et al. (2011).  This test requires 

predicting the pattern of change in a visuo-spatial stimulus.  In the original version, the 

stimulus changes according to a hidden rule and the rule might change without notice 

(similar to the Wisconsin Card Sorting Test).  The test demands the frequent induction 

of new rules according to the most recent sequence of stimuli, and the inhibition of 

previously learned rules.  Some changes were made compared to Crescentini et al. 

(2011) in order to make the test more suitable for the targeted age group and to focus 

more on rule induction than on rule inhibition.  To reach the former goal, 10 rule 

sequences from the lower end of the difficulty spectrum were selected.  To achieve the 

latter goal, the test was altered in a way that rules would not change unannounced.  

Instead, participants were presented 10 distinct items with a new rule on each.   

On every item, participants were presented with a 2x6 arrangement of empty 

circles.  One of these circles would fill with blue color for one second.  After that, 

participants were asked to predict which circle would fill next.  After participants 

indicated their response the next circle would fill with blue color for one second and the 

participants received a feedback whether their prediction was correct or not.  After a 

certain amount of steps, the visuo-spatial patterns became predictable in that they 

followed a certain rule.  Once participants detected the hidden rule, they should have 

been able to predict the next step.   

The test consisted of 10 items plus two practice items.  Rule patterns could vary 

in regard to their period, meaning the number of steps before the rule starts repeating 

and becomes predictable.  Items with period two consisted of 11 steps, and items with 

period one consisted of eight steps.  Once a participant correctly predicted at least two 

consecutive steps without further errors, the rule was considered detected.  If 

participants failed to predict a rule they were assigned a score equal to the steps in that 

item plus one.  The mean step at which a correct sequence begins across all 10 items 
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served as the dependent variable and as an indicator of rule induction ability.  Thus, 

lower scores on this task indicate better rule induction ability. 

Working Memory Assessment 

The same complex span measures as in Experiment 1 were used, excluding the 

verbal span task.  Previous studies suggested that the intelligence-working memory 

correlation may be accounted for by short term storage, presumably because all of these 

constructs are limited by the same cognitive resources to a very high degree (Colom, 

Abad, Quiroga, Shih, & Flores-Mendoza, 2008; Martínez et al., 2011).  Accordingly, 

two measures of short term memory capacity were added to assess the unique influences 

of working memory capacity over and above short term memory capacity on RAPM 

performance.   

The first measure was a forward digit span task (FDS).  This measure was 

comparable to the backward digit span used in Experiment 1, but participants were 

required to recall the digits in the same order as they were presented.  This task 

consisted of two practice items and 10 test items, whereas the length of series was 

increasing from 4 to 8.  Applying partial credit scoring, the maximum possible score 

was 10.   

The other measure was a dot memory task (DM) which was adapted from 

Miyake, Friedman, Rettinger, Shah, and Hegarty (2001).  This task required 

memorizing a visuo-spatial pattern over a short time interval and then recalling that 

pattern.  Participants were presented with a 5x5 matrix of white squares on grey 

foreground.  A varying number of blue dots appeared simultaneously in a subset of 

these squares for one second, then the matrix was masked black for 50ms and finally all 

squares where white again.  The number of dots in a stimulus was increasing from 3 to 7 

across items.  The participants were then asked to indicate their memory of the locations 

of the blue dots by clicking on the corresponding white squares.  There was a 60 second 

time restriction on the response screen.  After that or when the participants pressed an 

ok-button, the matrix was masked for 50ms again, and then the next item was presented.  

Two practice items preceded 10 test items.  Using partial credit scoring the maximum 

possible score was 10.   

Two composite measures were created, one for working memory capacity and 

one for short term memory capacity, each by averaging z-scores of the corresponding 

measures for each construct.   

48 
 



 
Part 2 

Procedure 

The participants were tested in small groups not larger than 10 individuals.  All 

tasks were presented on tablet PCs with touchscreen.  Participants worked on the 

working memory tasks first, followed by the Brixton test, then RAPM, and finally the 

short term memory tasks.  Other than that, the procedure was the same as in Experiment 

1.   

Sample 

Again, secondary school students were recruited from the same population and 

with the same procedure as in Experiment 1, but from 4 different schools.  The total 

sample comprises of N = 366 individuals, with n = 176 in the control condition and n = 

190 in the given-rules condition.  There were 158 students from grade 5, 54 from grade 

6, 118 from grade 7, and 36 from grade 8.  There were 196 students from the highest 

school level and n = 170 students from the second highest school level (only 

Gesamtschule in this sample).  About 51% of the participants were female.  The 

participants age ranged from 10 to 16 years (M = 12.1, SD = 1.2).   

Results  

First, differences between the experimental conditions in working memory 

capacity, short term memory capacity, and the Brixton test were examined (see Table 

5).  Unfortunately, random assignment did not result in equal distributions between the 

two conditions.  Significant differences were present between groups on spatial working 

memory, t(361) = 2.00, p = .05 and on dot memory t(320.19) = 3.08, p < .01.  Levene’s 

test of homogeneity of variances was significant for dot memory meaning that the two 

conditions differed in their variance on this task, F(1, 356) = 6.35, p = .01.  And some 

differences were seen in patterns of relations among the working memory and short 

term memory measures (see Table 6), namely a higher correlation between dot memory 

and forward digit span in the given-rules condition, z(357) = 2.66, p < .01, and the 

correlation between dot memory and backward digit span was slightly higher in the 

given-rules condition, however not significantly, z(353) = 1.79, p = .07.  There was no 

significant difference on RAPM score between groups, t(338.17) = 1.25, p = .21.  

Furthermore, Levene’s test of homogeneity of variances was significant for RAPM, F(1, 

351) = 4.87, p = .03.   
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Table 5 
Task Means, Standard Deviations, and Reliability Estimates for Each 
Experimental Group in Experiment 2 
Tasks Control Given-Rules d 

SWM  
(13 items) 

M 5.38 4.71 -0.21 
SD 3.29 3.09  
n 174 189  
α .88 .86  

BDS  
(12 items) 

M 6.20 5.89 -0.13 
SD 2.42 2.32  
n 173 189  
α .84 .81  

FDS  
(10 items) 

M 6.00 5.84 -0.09 
SD 1.73 1.97  
n 175 188  
α .77 .81  

DM  
(10 items) 

M 8.54 8.12 -0.33 
SD 1.01 1.54  
n 173 185  
α .74 .86  

WMC  
(z-score) 

M 0.09 -0.08 -0.20 
SD 0.88 0.85  
n 173 189  

STMC  
(z-score) 

M 0.11 -0.10 -0.25 
SD 0.68 0.97  
n 173 185  

BRX 
(35 items) 

M 6.33 6.42 0.05 
SD 2.04 1.83  
n 174 187  
α .80 .74  

RAPM  
(26 items) 

M 10.05 10.74 0.14 
SD 5.42 4.80  
n 170 183  
α .87 .83  

Note.  SWM = spatial working memory, BDS = backward digit span, FDS = 
forward digit span, DM = dot memory, WMC = working memory composite, 
STMC = short term memory composite, BRX = Brixton test, RAPM = Raven 
Advanced Progressive Matrices. 
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Table 6 
Correlations Among Different Tasks for Each Experimental Group in Experiment 2 

 BRX WMC STMC   SWM BDS FDS DM 
Control Condition: 

RAPM -.57 (169) .68 (169) .52 (167) .69 (169) .49 (168) .43 (169) .39 (167) 
BRX  -.59 (172) -.50 (171) -.56 (173) -.44 (172) -.37 (173) -.43 (171) 
WMC   .64 (170) .86 (174) .86 (173) .60 (172) .39 (170) 
STMC    .50 (171) .59 (170) .84 (173) .75 (173) 
SWM     .47 (173) .39 (173) .41 (171) 
BDS      .65 (172) .25 (170) 
FDS       .26 (173) 

Given-Rules Condition: 
RAPM -.57 (182) .68 (182) .52 (180) .64 (182) .55 (182) .49 (183) .39 (180) 
BRX  -.57 (187) -.43 (184) -.55 (187) -.44 (187) -.39 (187) -.35 (184) 
WMC   .61 (184) .87 (189) .88 (189) .62 (187) .44 (184) 
STMC    .47 (184) .59 (184) .86 (185) .88 (185) 
SWM     .53 (189) .48 (187) .35 (184) 
BDS      .61 (187) .42 (184) 
FDS       .50* (185) 

Note.  r (N).  SWM = spatial working memory, BDS = backward digit span, FDS = forward digit span, DM 
= dot memory, RAPM = Raven Advanced Progressive Matrices, BRX = Brixton test, WMC = working 
memory composite, STMC = short term memory composite.  * indicates significant difference from 
control group at p < .05 

 

As shown in Table 6, correlations were seen between RAPM and working 

memory composite score, and RAPM and the Brixton test, in both conditions.  There 

was no difference in the strength of these correlations between conditions.   

Second, because random assignment failed, a subsample of participants was 

matched on the working memory composite score.  The matching procedure searched 

for each individual in the control group another individual in the experimental group 

with a comparable value on the working memory composite raw score.  A comparable 

value was defined as having a maximum difference of +1 or -1.  In terms of z-scores 

this means that values differed no more than +0.5 or -0.5.  This resulted in a sample of 

320 participants, 160 in each condition.  This matched sample was used for further 

analyses.  In the matched sample, participants in the given-rules condition solved more 

problems than participants in the control condition, although in this experiment the 

advantage was only about 1.5 problems, t(308) = 2.70, p < .01.  Still, there were no 

group differences in correlations.  To test for the unique effects of each predictor 

variable, a linear regression with RAPM as the dependent variable showed that working 

memory composite, β = .43, t(299) = 7.54, p < .01, and the Brixton test, β = -.29, t(299) 
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= 5.72, p < .01, both contributed significant unique variance when short term memory 

composite, β = .10, t(299) = 1.99, p = .05, was included in the model, R² = .49, F(3, 

299) = 94.26, p < .01.   

Fitting a comparable model as in Experiment 1 to the data with one factor for 

RAPM and one for working memory capacity, indicated by spatial working memory 

and backward digit span, revealed that the factors were correlated at .91 in the control 

condition and at .90 in the given-rules condition (χ² = 8.62, df = 8, p = .38, RMSEA = 

.02, CFI = .99, TLI = .99).  Adding a short term memory factor, indicated by forward 

digit span and dot memory, did not produce a well-fitting model (χ² = 92.59, df = 21, p 

< .01, RMSEA = .14, CFI = .93, TLI = .89) and resulted in an unrealistic estimate for 

the correlation between short term memory and working memory in the control 

condition of 1.04, indicating a possible linear dependency between factors.  Thus, a 

further model was fitted where the working memory factor was indicated by all four 

memory tasks (χ² = 104.43, df = 26, p < .01, RMSEA = .13, CFI = .92, TLI = .91) and 

estimated the correlation between working memory and RAPM at .86 in the control 

condition and .87 in the given-rules condition.  Since previous analyses suggested that 

dot memory and spatial working memory differed between the two groups, we then 

excluded those tasks and fitted a two factor model with working memory being 

indicated by backward digit span and forward digit span only.  This model fitted quite 

well (χ² = 3.84, df = 6, p = .70, RMSEA < .01, CFI = 1, TLI = 1) and estimated the 

correlation between factors at .61 in the control condition and at .74 in the experimental 

condition, which is comparable to the estimates obtained in Experiment 1.  However, 

restricting the factor correlation to be equal between groups did not result in a 

significantly worse fitting model (Δχ² = 2.32, df = 1, p = .13), indicating this difference 

is not statistically significant.  We finally added the Brixton score as an observed 

variable to the unrestricted model regressed on the working memory factor while also 

estimating correlations with RAPM factor (χ² = 5.16, df = 10, p = .88, RMSEA < .01, 

CFI = 1, TLI = 1).  The resulting estimates for the correlation between RAPM and the 

Brixton test was .31 in the control group and .23 in the given-rules group.  The beta 

weight between the working memory factor and Brixton score was estimated at .43 in 

the control group and at .52 in the given-rules group.  None of these differences 

qualified to be statistically significant.   
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Discussion 

The purpose of Experiment 2 was to replicate and extend the findings of 

Experiment 1.  We predicted that working memory capacity would again explain a 

larger amount of unique variance in performance on RAPM when rules were given to 

participants.  Second, we predicted that rule induction ability would not correlate with 

RAPM in the given-rules condition.   

Contrary to predictions, the results of this experiment do not indicate a 

difference in the correlation between RAPM and working memory capacity between 

groups.  Comparing these correlations across studies, it seems like the correlation in the 

control group was unusually high, compared to Experiment 1 and also compared to 

values obtained in previous research (eg., Ackerman et al., 2005).  The Brixton test was 

highly correlated with RAPM in both conditions and the correlation did not differ as 

predicted.   

The samples in Experiment 1 and 2 were drawn from the same population and 

were comparable in terms of age and grade.  In light of these similarities it is surprising 

that the variances in Experiment 2 were unequal and that some measures of working 

memory capacity and short term memory suggested differences between the two 

conditions.  Only when these differences were reduced by using a matched sample, a 

small benefit could be seen from being given the rules in this study.  Furthermore, 

excluding the odd tasks from the structural equation model revealed that results were 

much more in line with results obtained in Experiment 1.  Comparing the levels of 

performance across the two studies, it appears that the given-rules group did less well in 

Experiment 2, indicating that the experimental manipulation might not have had the 

same impact. 

Some experimental circumstances may be noteworthy at this point.  First, in 

some schools testing conditions may have been suboptimal.  Some of the rooms where 

the testing took place were rather tiny and participants were sitting fairly close to each 

other.  This resulted in a lot of interaction among students.  Some of them might have 

peeked, hence blurring experimental differences.  Another difference from the 

procedure in Study 1 was the addition of the Brixton test before RAPM.  This rule 

induction test was frustrating for many students since mistakes are necessary, and this 

test being in advance to the experimental manipulation might have had an effect on it.  

Additionally the number of tasks was increased from 4 to 6 compared to Experiment 1 

which some students remarked as being too much work.   
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These imperfect experimental circumstances might give some reasons for the 

failed manipulation in this experiment from the standpoint of affecting the relation 

between working memory capacity and RAPM.  We must, however, acknowledge the 

possibility that the results obtained in Experiment 1 might just have been a false 

positive.   

Experiment 3 

The primary purpose of Experiment 3 was to test whether a measure of 

productive thinking might differentially predict performance across the given-rules and 

not-given-rules conditions.  One way to think about rule induction is that it requires the 

ability to come up with new approaches to a problem and generate new rules.  A 

construct that seems to be related to this idea is productive thinking which in turn is 

tapped by divergent thinking tasks, such as thinking of novel uses for a brick (Guilford, 

1957).  Generally measures of this kind are not very highly correlated with general 

intelligence measures (K. H. Kim, 2005), but based on findings from Nusbaum and 

Silvia (2011) we expected to find something in the range of .10 to .20.  Assuming that 

divergent thinking is not necessary under the given-rules condition, we expected this 

correlation to drop near zero.   

A second purpose of Experiment 3 was to see if the findings of Experiment 1 

could be replicated under more controlled experimental circumstances.  As such we 

predicted to find that measures of working memory would be strongly correlated with 

RAPM in the given-rules condition, and less so in the control condition.   

Method 

Measuring Productive Thinking 

A very frequently used task to measure productive thinking is the unusual uses 

task, where one has to come up with unusual ideas for use of everyday objects (Silvia et 

al., 2008).  For this experiment a computerized adaptation of the task was used.  Prior to 

the task, participants watched a video where they learned that the task was about 

creativity and that it was important to generate responses that would be as creative as 

possible.  Creative responses were defined as being original, unusual, and sometimes 

funny.  An example item was given (unusual uses of duct tape) along with some 

example responses.  Participants were asked to generate unusual uses for three items: a 

brick, a wooden board, and a paper coffee cup.  They were given two minutes time for 
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each item indicated by a timer counting down backwards.  On the left-hand side of the 

screen was a picture of the object along with a prompt asking what the object could be 

used for.  On the right-hand side of the screen was a textbox where participants could 

type in their responses.  After the time has expired the participants were asked to 

indicate which of their responses were the most creative by clicking a checkbox next to 

the response.   

The responses were later independently coded by six raters (research assistants) 

on a Likert scale ranging from 1 (not at all creative) to 5 (very creative).  Individual 

responses were pooled in one table and the order randomized so that raters were blind to 

condition and other characteristics of respondents.  In order to ensure raters had the 

same conception of creativity as the respondents they were told that responses, in order 

to qualify as creative, should be original, unusual, or funny.  There was reasonable 

agreement among raters for ratings of unique responses (see Table 7).  Only ratings for 

the two most creative responses, indicated by participants themselves, were considered 

for the total score (top two scoring method, Silvia et al., 2008).  These ratings were 

averaged across all six raters to obtain one creativity score on each item.  Fluency, or 

the number of valid responses produced, was used as an additional indicator of 

productive thinking.   
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Table 7 
Correlations Across Creativity Ratings of Unique Responses for Each Productive Thinking Item in 
Experiment 3 
Item  Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 
Brick Rater 1 .20 .49 .27 .13 .38 
 Rater 2  .34 .49 .58 .33 
 Rater 3   .60 .29 .42 
 Rater 4    .50 .41 
 Rater 5     .28 
       
Board Rater 1 .10 .29 -.01 .09 .25 
 Rater 2  .29 .54 .58 .34 
 Rater 3   .34 .26 .45 
 Rater 4    .55 .41 
 Rater 5     .30 
       
Cup Rater 1 .19 .28 .08 .09 .37 
 Rater 2  .36 .41 .63 .34 
 Rater 3   .60 .39 .46 
 Rater 4    .47 .40 
 Rater 5     .34 
Note.  The total number of unique responses (N) was 308, 332, and 248 for the Brick, Board, and Cup 
item respectively. 

 

Working Memory Assessment 

To measure working memory capacity, the same complex span tasks as in 

Experiment 2 were used (spatial working memory and backward digit span) plus 

reading span as an additional verbal task.  Like the other working memory measures, 

this task was adapted from Vock and Holling (2008).  The reading span task (RS) 

presents a series of written statements on the screen which were either logical (e.g. a 

snowman is made of snow) or nonsensical (e.g. humans have three legs).  Each 

statement was displayed for 5 seconds during which the participants had time to give a 

response about whether that statement was true or false.  Participants were instructed to 

memorize the final word of each statement for later recall.  The series varied in length 

between 3 and 6.  After the series, a prompt asked to enter the memorized words in a 

textbox.  There was a 60 second time restriction on the response screen.  Three practice 

items preceded the 11 test items.  Each correctly recalled word being in the correct order 

was scored with one point divided by the number of words on the item (partial credit 

scoring), for a maximum possible score of 11 points.  Errors of commission and errors 

of omission were ignored.  For consistency across studies, a composite working 
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memory score based on z-scores of spatial working memory and backward digit span is 

used for the main analysis (including reading span did not affect the pattern of results).   

Raven’s APM 

The same reduced version of RAPM as in Experiments 1 and 2 was used, but 

this time with a manipulation check added.  Right after the practice set, participants in 

the given-rules condition were prompted to recall what rules they had learned in the 

instruction video (free recall test).  After entering a response they saw the list of correct 

responses as feedback.  This served not only as a manipulation check, but also as a form 

of reinforcement by retrieval-based learning.  After that, participants would see a 

depiction of a rule from the introduction video and were given 5 multiple choice 

response options, one for each rule, to indicate which rule was depicted (recognition 

test).  This was repeated for two more items.  We later realized that the depictions were 

ambiguous, meaning that for some of them, more than one rule was applicable, 

therefore this part of the manipulation check will be disregarded in future analyses 

(however, the results were comparable to the free recall test).   

Procedure 

In this study a couple of measures were taken to ensure a more controlled 

environment during testing sessions.  It was ensured that participants had enough space 

and dividers were placed in between them, so they would not peek or interact with each 

other during testing.  Feedback was added to the working memory tasks, so after each 

item the students were shown how their response contrasted against the correct 

response.  Many students have asked about this in our previous studies, consequently 

this might have improved compliance and prevented frustration.  Additionally, the 

introduction videos for all tasks were improved in audio and video quality, but with the 

same text and video content.  Furthermore, the unusual uses task was put at the end, 

after RAPM, so the task order was comparable to Experiment 1.  Other than that, the 

procedure was the same as in Experiment 1.   

Sample 

Again, secondary school students were recruited from the same population and 

with the same procedure as in Experiments 1 and 2, but from 6 different schools.  The 

total sample consisted of N = 393 individuals, with n = 199 in the control condition and 
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n = 194 in the given-rules condition.  There were 79 students from grade 5, 185 from 

grade 6, and 129 from grade 7.  There were n = 52 individuals from the highest school 

level and 341 individuals from the second highest school level (Realschule and 

Gesamtschule combined).  About 53% of the participants were female.  The participants 

age ranged from 10 to 14 years (M = 11.8, SD = 0.9).   

Results 

First, means and differences in task performance are reported for the two 

experimental groups, which can be obtained from Table 8.  Task performance in the 

working memory tasks did not differ significantly between groups (t-values from 0.96 

to 1.31, df from 373 to 380, p-values from .19 to .54) and the variances of the working 

memory tasks did not differ significantly between groups (Levene’s F-values from 0.03 

to 2.54, p-values from .11 to .87).  Also, the correlations among the three working 

memory tasks did not differ significantly between experimental groups (see Table 9).  

This suggests that random assignment resulted in an evenly distributed working 

memory capacity profile in both experimental groups.  This also holds for measures of 

productive thinking, except the correlation between fluency and creativity ratings for the 

board item was significantly lower in the given-rules condition, z(363) = 1.97, p = .05 .   
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Table 8 
Task Means, Standard Deviations, and Reliability Estimates for Each 
Experimental Group in Experiment 3 

 Control Given-Rules d 

SWM  
(13 items) 

M 4.62 4.26 -0.16 

SD 2.53 2.75  

n 192 190  

α .78 .84  

BDS  
(12 items) 

M 5.54 5.66 0.06 

SD 1.86 1.96  

n 195 191  

α .73 .75  

RS  
(11 items) 

M 6.76 6.57 -0.10 

SD 1.78 1.98  

n 188 187  

α .85 .86  

WMC 
(z-scores) 

M ,01 -,01 -0.02 

SD ,82 ,86  

n 195 192  

Average  
Fluency 
(3 items) 

M 4.29 4.33 0.02 

SD 1.76 1.52  

n 195 190  

α .80 .75  

Brick  
Average  
Creativity  

M 2.26 2.24 -0,04 

SD 0.57 0.51  

n 189 185  

Board  
Average  
Creativity  

M 2.40 2.42 0,04 

SD 0.46 0.46  

n 187 178  

Cup  
Average  
Creativity  

M 2.26 2.32 0,12 

SD 0.49 0.52  

n 187 181  

RAPM  
(26 items) 

M 6.61 8.89 0.56 

SD 4.20 3.93  

n 191 191  

α .79 .75  
Note.  SWM = spatial working memory, BDS = backward digit span, RS = 
reading span, RAPM = Raven Advanced Progressive Matrices. 
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Second, participants in the given-rules condition solved about 2.3 items more 

due to the experimental manipulation, t(380) = 5.47, p < .01, d = .56.  Furthermore, the 

manipulation check revealed that participants in the given-rules condition recalled on 

average 2.8 out of 5 rules (SD = 1.6) on the free recall test.  About 81% of participants 

recalled at least one rule, and about 70% recalled at least 3 rules, indicating that the 

manipulation was successful for the majority of participants.  The dark shaded bar in 

Figure 3 marks the mean RAPM score in the control group, which is almost exactly as 

high as the score of participants who did not recall any rules in the given-rules group, 

while subjects who recalled at least one rule scored higher on RAPM.  The amount of 

rules recalled was significantly correlated with RAPM, r(186) = .40, p < .01, and this 

correlation remains significant after controlling for working memory capacity, r(183) = 

.23, p < .01.  This indicates that knowing the rules does help in solving RAPM items.   

 

 
Figure 3.  Mean RAPM scores in Experiment 3 depending on the number of rules 
recalled in the given-rules condition.  The dark shaded bar represents the mean in the 
control condition.  Error bars represent 95% CI. 

 

Third, an inspection of Table 9 reveals that the correlation between RAPM and 

working memory composite was significantly greater by .19 in the given-rules 

condition, z(376) = 2.55, p = .01.  Note, that the magnitude of the correlations was 

comparable to the ones observed in Experiment 1.   

Fitting a comparable model as in Experiment 1 (χ² = 44.87, df = 27, p = .02, 

RMSEA = .06, CFI = .97, TLI = .96) suggests that the correlation between RAPM and 

working memory capacity in the given-rules condition is about .29 higher than in the 
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control condition (see Figure 4).  Again, restricting this difference to be zero resulted in 

a significant decrease in model fit (Δχ² = 7.10, df = 1, p < .01), suggesting the difference 

is significantly different from zero.   

Finally, there were no significant differences between groups in the correlations 

between RAPM and measures of productive thinking (see Table 9).  Exploring the 

relation in a structural equation model with productive thinking operationalized as 

fluency (χ² = 65.46, df = 45, p = .02, RMSEA = .05, CFI = .98, TLI = .97) revealed that 

fluency is not significantly correlated with RAPM in either condition (see Figure 5).  

The same was true when operationalizing productive thinking via creativity ratings (χ² = 

61.37, df = 45, p = .05, RMSEA = .04, CFI = .98, TLI = .97; see Figure 6).   

 
Table 9 
Correlations Among Different Tasks for Each Experimental Group in Experiment 3 

 Fluency Brick Board Cup SWM BDS RS WMC 
Control Condition: 
RAPM .14 (190) .15 (185) .14 (182) .11 (182) .36 (187) .33 (189) .39 (183) .42 (189) 
Fluency  .27 (189) .29 (187) .13 (187) .13 (190) .14 (192) .33 (186) .15 (192) 
Brick   .33 (181) .33 (182) .08 (184) .14 (186) .17 (180) .13 (186) 
Board    .27 (183) .18 (182) .17 (184) .22 (178) .20 (184) 
Cup     .08 (182) .09 (184) .04 (178) .10 (184) 
SWM      .44 (192) .36 (185) .84 (192) 
BDS       .57 (187) .85 (195) 
RS        .54 (187) 
Given-Rules Condition: 
RAPM .17 (189) .23 (184) .31 (177) .23 (180) .58* (187) .44 (188) .50 (184) .61* (189) 
Fluency  .15 (185) .09* (178) .13 (181) .19 (187) .18 (188) .28 (183) .21 (189) 
Brick   .27 (173) .22 (176) .24 (182) .13 (183) .11 (178) .23 (184) 
Board    .18 (174) .20 (175) .12 (176) .09 (171) .20 (177) 
Cup     .17 (179) .19 (179) .23 (174) .23 (180) 
SWM      .36 (189) .37 (183) .83 (190) 
BDS       .53 (184) .83 (191) 
RS        .54 (185) 
Note.  r (N).  SWM = spatial working memory, BDS = backward digit span, RS = reading span, RAPM = 
Raven Advanced Progressive Matrices, WMC = working memory composite.  * indicates significant 
difference from control group at p < .05. 
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Figure 4.  Experiment 3 Model 1.  Standardized estimates for control/ given-rules condition.  SWM = 
spatial working memory, BDS = backward digit span, RS = reading span.  *p < .05, all other estimates 
are significant at p < .01. 

 
Figure 5.  Experiment 3 Model 2.  Standardized estimates for control/ given-rules condition.  SWM = 
spatial working memory, BDS = backward digit span, RS = reading span.  †p = ns, all other estimates are 
significant at p < .01. 
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Figure 6.  Experiment 3 Model 3.  Standardized estimates for control/ given-rules condition.  SWM = 
spatial working memory, BDS = backward digit span, RS = reading span.  †p = ns, all other estimates are 
significant at p < .01. 

 

Discussion 

The results from Experiment 3 are much more in line with Experiment 1, 

replicating the original finding, that RAPM is more highly correlated with measures of 

working memory capacity when the rules are known.  Thus, the results suggest that this 

relationship is even stronger when the task is reduced to goal management.  The 

findings were extended and corroborated by a manipulation check, which indicated that 

subjects fair better on RAPM when they have learned more rules.  More importantly, 

the results of the manipulation check revealed that the majority of the subsample 

retained at least some of the rules.  We further explored whether RAPM would correlate 

less with a measure of productive thinking when the rules were given, which was not 

the case.  After accounting for working memory capacity operationalized via fluency or 

via creativity ratings RAPM was not correlated at all with productive thinking in either 

condition.   

63 
 



 
Part 2 

Experiment 4 

The previous experiments have shown twice that the relation between working 

memory capacity and solution on a subset of RAPM problems increases when 

participants are taught the rules required for solving those problems.  However, it is still 

an open question how providing the rules is changing the task, and why it is increasing 

the relationship between working memory capacity and RAPM.  Two attempts failed to 

demonstrate that reliance on rule induction or productive thinking processes is reduced 

in those conditions.  Measures of rule induction and productive thinking were found to 

be just as correlated with performance in the given-rules conditions as in the no-rules 

condition.  Thus, a new approach to understanding the effect was undertaken in this 

final study.  In this study, we used eye tracking measures to test whether knowledge of 

the rules might be affecting the strategies that students deploy while attempting to solve 

RAPM problems. 

Bethell-Fox, Lohman, and Snow (1984) described two different strategies that 

solvers appear to use on figural analogy problems: constructive matching and response 

elimination.  They suggested that constructive matching would be predominantly 

applied on easy problems and by high ability subjects.  This result was corroborated and 

further extended by Vigneau, Caissie, and Bors (2006) in an eye tracking study with 

Raven’s APM.  They found that subjects who scored higher on Raven’s APM spent 

proportionately more time analyzing the actual problem and waited later before 

consulting response alternatives.  They interpreted this behavior as reflecting the 

reliance on matrix information as opposed to information from the response alternatives, 

which is consistent with the idea of a constructive matching strategy.   

Coming back to Carpenter et al. (1990), the way they described the solution 

process very much resembles the constructive matching strategy.  This is not surprising, 

given that their simulation models were informed by eye movement patterns of an elite 

university student sample.  Their computer programs compared elements in the matrix 

row wise one by one to extract differences and similarities.  These comparisons used the 

build-in list of rules as a reference to see if any of those could account for observed 

regularities.  This process was called correspondence finding, and it continued until all 

unaccounted elements were covered.  Based on that, a further process generated 

preliminary responses and compared them with response alternatives.  Hence, the 

computer programs simulated a constructive matching strategy under the condition of 

known rules.   
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 Thus, Carpenter et al.’s computer models provide a prediction for the eye 

movement behavior we may see in real humans while solving RAPM in the given-rules 

condition.  In the given rules condition, it can be hypothesized that eye movements 

should be more consistent with a constructive matching strategy.  Subjects should spend 

more time attempting to identify matching elements to rules in order to come up with a 

possible response.  That way, they should only later consult response alternatives for 

further information.  On the other hand, in the control condition where rules are 

unknown, we hypothesized that subjects would earlier and more frequently seek 

additional information from the response alternatives.  Since subjects have no 

framework of rules to guide their correspondence finding behavior, they might consider 

more sources of information to make sense of the problems.   

In order to test these hypotheses, the current experiment combined the same rule 

teaching paradigm from the previous experiments with eye tracking methodology.  

Based on Vigneau et al. (2006) we extracted three variables from eye tracking protocols 

to reflect constructive matching behavior: proportion of time before first fixation on 

response bank, toggle rate between matrix and response bank, and proportion of total 

time on matrix.   

The time to first fixation on the response bank is the timestamp of the first 

fixation falling on the response bank area of interest.  Due to the fixation cross before 

each problem, participants are forced to start their inspection in the lower part of the 

matrix area.  They usually continue to analyze the elements in the matrix to only later 

seek additional information in the response bank.  The proportion of time before the 

first fixation on the response bank was computed by dividing the timestamp for the first 

fixation on the response bank by the total solving time.  We hypothesized time before 

the first response bank fixation would be longer in the given-rules condition. 

The toggle rate reflects the frequency of saccades made between the matrix and 

the response bank.  The toggle rate was calculated by summing all saccades that both 

start on the matrix and end on the response bank or vice versa, and dividing the sum by 

the total solving time in seconds.  Hence, toggle rate expresses the number of saccades 

between matrix and response bank per second of solution time.  We hypothesized the 

toggle rate would be lower in the given-rules condition.   

The proportion of time spent on the matrix reflects the overall time of all 

fixations on the matrix divided by the total time of fixations on either the matrix or the 
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response bank.  Fixations outside of the task area are disregarded.  We hypothesized that 

the proportion of time spent on the matrix would be longer in the given-rules condition.   

Method 

Eye Movement Data Collection 

Participants' eye movements during RAPM were recorded using an Eyelink II 

head-mounted eye tracker.  The device samples eye fixations and saccades at a rate of 

250Hz with one camera for each eye.  A third camera, mounted to the headband, keeps 

track of infrared signals from the corners of the screen to account for head movement.  

The eye tracker had 15 min of arc and spatial accuracy of approximately 0.5°.  If 

possible, both eyes were recorded, with only the data from the better-calibrated eye used 

for analyses.  Eye movements were analyzed with respect to two areas of interest: the 

matrix and the response bank.  These areas were defined in a similar way as Vigneau et 

al. (2006) defined them with the region of interest for the matrix including the 3x3 

problem grid, and the region of interest for the response bank including all 8 response 

options (see Figure 1).   

Raven’s APM 

Some changes were made to make RAPM compatible with the eye tracker.  

First, before each problem the participants saw a fixation cross at the center of the 

screen in order to allow for drift correction and to ensure that every participant started 

each problem in the same location.  Second the time restriction was removed from the 

test to get eye tracking data on all problems.  Furthermore, instead of the entire Set 1 the 

control group received only half the items (1, 2, 6, 7, 10, and 12) as practice.  That way, 

practice conditions were equalized between the control and known-rules condition and 

the difference was more pronounced on rule teaching.  Again, a manipulation check was 

performed, similar to that in Experiment 3, by asking participants to remember the 5 

rules in a free recall test right after practice.   

Working Memory Assessment 

Since previous studies suggest that eye movement strategies are dependent on 

working memory capacity (Jarosz & Wiley, 2012), participants were asked to complete 

a backward digit span task (backward digit span) before working on RAPM items.  The 

score would serve to ensure that both experimental conditions are comparable in terms 
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of working memory capacity.  This task was different from the span tasks in 

Experiments 1 to 3 in order to account for the expected higher ability in the target 

sample.  Participants encountered a series of digits, individually presented on the screen 

for 500ms each, increasing in length from 3 to 8 across trials.  After each series, 

participants were required to enter the series backwards in a textbox.  The participants 

could indicate missing digits with an underscore.  There was a 15 second time 

restriction on the response screen.  After that or when participants pressed an ok-button, 

they would receive a feedback by contrasting their response against the correct 

response.  Two practice items preceded 12 test items.  Using partial credit scoring the 

maximum possible score was 12.   

Procedure 

Participants were tested in single testing sessions lasting between 30 and 45 

minutes.  After receiving information about the purpose of the experiment they would 

work on the working memory span task first, without eye tracking.  After that, the eye 

tracker was calibrated.  Then they worked on RAPM items with eye tracking.   

Sample 

Recruited were 47 undergraduates from the subject pool of the University of 

Illinois at Chicago, of which 23 were randomly assigned to the control condition and 24 

to the given-rules condition.  An additional eight participants were tested but excluded 

from the analysis due to low quality eye tracking data and one more participant was 

excluded due to very low scores.  Participants’ age ranged from 18 to 27 years (M = 

19.3, SD = 1.7) with 53% being female.  All participants had normal or corrected to 

normal vision.   
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Table 10 
Task Means and Standard Deviations in Experiment 4 

 Control Given-Rules d 

Backward Digit Span  
(12 items) 

M 8.00 7.72 -0.20 

SD 1.39 1.40  

Raven APM 
(26 items) 

M 13.74 16.29 0.81 

SD 3.29 3.01  

First Response Fixation M .44 .52 0.89 

SD .10 .08  

Toggle Rate M 0.37 0.30 -0.93 

SD 0.09 0.06  

Time on Matrix M .80 .81 0.29 

SD .04 .03  

 n 23 24  
 

Results 

Inspections of backward digit span means reveals that both experimental groups 

are comparable in their working memory capacity, t(45) = 0.67, p = .51 (see Table 10).  

The two experimental groups were also homogeneous in terms of variance in backward 

digit span and RAPM (Levene’s Fs < 0.60, ps > .44).   

Overall, participants in the given-rules condition were able to solve about 2.5 

items more than in the control condition, t(45) = 2.77, p < .01, d = 0.81.  The 

manipulation check further revealed that participants in the given-rules condition 

recalled on average 3.4 out of 5 rules (SD = 1.5).  About 74% of them recalled at least 3 

rules.  The number of rules recalled was significantly correlated with RAPM, r(21) = 

.49, p = .02, and this was also true after controlling for backward digit span, r(20) = .47, 

p = .03.  This suggests the experimental manipulation had a similar impact as in the 

previous experiments. 

In terms of the eye movement data, significant differences were seen in two 

measures.  As shown in Table 10, the time before the first response bank fixation was 

significantly longer in the given-rules condition compared to the control group, t(45) = 

2.94, p < .01, d = 0.89.  The toggle rate was lower in the given-rules condition, t(45) = 

3.40, p < .01, d = -0.93.  However, there was no significant difference in the 

proportionate time of fixations on matrix, t(45) = 1.12, p = .27, d = 0.29.   

Discussion 

The results of this final study show that providing the rules changes the way that 

solvers approach RAPM problems.  Compared to participants in the control condition, 
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participants in the given-rules condition spent longer on the matrix before viewing the 

response bank, and made fewer saccades back and forth between the matrix and the 

response bank.  These eye tracking data are consistent with the hypothesis that solvers 

in the given-rules condition are more likely to approach solutions using a constructive-

matching strategy.  Thus, these results suggest that providing the rules to participants 

alters the strategies they use to solve RAPM items.   

General Discussion 

Summary 

Over the course of four experiments we manipulated whether participants were 

provided with a set of rules that related to a subset of RAPM problems, and examined 

how knowledge of those rules affected RAPM performance.  In Experiment 1 we found 

that giving the rules made test-takers perform better at RAPM items using those rules, 

and that it elevated the correlation between working memory capacity and performance.  

In Experiment 2 we tested whether providing the rules eliminated the need to engage in 

rule induction by introducing a measure of rule induction ability: the Brixton test.  We 

expected to find that this test would not be correlated with RAPM performance when 

the rules are given to subjects.  This was not the case.  The Brixton test correlated rather 

strongly with RAPM performance in both experimental conditions.  Additionally, 

Experiment 2 failed to replicate the finding from Experiment 1 in terms of the 

correlation between working memory capacity and RAPM performance being increased 

in the given-rules condition.  One possible explanation for this result was that the 

experimental circumstances were flawed and thus affected the data.  All effects of 

Experiment 1 were replicated in Experiment 3, giving some confidence in the 

observation of an elevated correlation between RAPM and working memory capacity 

due to knowing the rules.  The results of the manipulation check in Experiment 3 further 

revealed that subjects actually learned some of the rules and that rule knowledge helped 

them solving the test, giving some confidence that the observed effects are due to the 

knowledge of rules.  However, the addition of a productive thinking measure was again 

unable to demonstrate differences between the two experimental conditions.  Thus, 

Experiment 4 investigated whether giving the rules affects the strategies that 

participants use on RAPM problems by analyzing participants’ eye movements during 

the test.  The results suggested that subjects who were given the rules were more likely 

to use a constructive matching strategy, while subjects without knowledge of the rule 
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taxonomy seemed to seek more information from the response bank.  Overall the results 

suggest that when the rules are known, the rate of solution increases, solution becomes 

more correlated with working memory capacity, and more participants attempt to use a 

constructive matching strategy. 

Implications  

These studies were motivated by early work that suggested that two processes, 

goal management and rule induction, are chiefly responsible for successful performance 

on RAPM items.  The intent behind providing solvers with the rules in these studies was 

to remove the need to engage in rule induction.  Consistent with this approach, one 

explanation for these results is that giving the rules reduce the solution process to one of 

goal management, hence the correlation with measures of working memory increases.  

The reason why performance improves with knowledge of the rules is because of the 

reduction of necessary cognitive processes for solution.  Further, the observed changes 

in eye movement behavior could be considered as symptoms of the changing task 

demands towards goal management, whereas the goal management process draws on 

working memory capacity and executive processes.  Goal management could benefit 

from the ability to control interference from previous representations, subgoals, and 

strategies (Burgess, Gray, Conway, & Braver, 2011).  It is not exactly clear in how far 

storage capacity is relevant (Chuderski & Neecka, 2012), but it is likely that it helps in 

maintaining representations of possible solutions and intermediary bindings (Oberauer, 

Süß, Wilhelm, & Sander, 2007).  Our results can thus be seen as consistent with the 

view that working memory capacity may contribute to RAPM performance through its 

impact on the goal management process.   

At the same time, however, the studies presented here were unable to show any 

of the hypothesized effects for rule induction ability, specifically that rule induction 

might be less necessary when the rules were known.  This might in part be because we 

failed to select an appropriate measure of this ability, but seeing the overall pattern of 

results there is an alternative explanation to consider.  Especially the finding that giving 

the rules affects eye movement behavior raises the question whether alterations in 

behavior can account for the findings.  That is, teaching the rules might inspire subjects 

to use different strategies, which may be more effective, but also more working memory 

demanding.  Hence, the elevated correlation and the higher solution rates in the given 

rules condition might just be symptoms of the fact that subjects are using strategies that 
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are more demanding.  Rule induction may still play a role in the solution process for 

RAPM items even when the possible set of rules is known, in that participants still need 

to judge when each rule fits a problem, and will still need to engage in the 

correspondence finding process of determining which elements can be used to employ a 

rule.   

Another possible account for the results may be that teaching the rules reduces 

error variance of the task by narrowing the set size of possible strategic approaches.  

Accordingly, rule induction would not be considered a cognitive process with 

systematic influence, but rather as a random effect, meaning strategies would be 

sampled independently of cognitive ability.  This would imply that measuring cognitive 

ability with Raven’s APM would be more accurate when giving test-takers the rules.  

Note however, that estimates of reliability did not differ as a result of the experimental 

manipulation in neither dataset.  Thus, there is no indication of less error variance when 

the rules are known.   

Turley-Ames and Whitfield (2003) have found that low spans profit more from 

rehearsal strategy training on working memory tasks, and argued that high spans would 

naturally come up with efficient strategies.  Thus, we explored in a separate analysis 

whether there were similar patterns in our datasets, by comparing the slopes between 

experimental groups when RAPM is regressed on working memory.  We found no 

significant difference in all datasets indicating that high spans and low spans profit to 

the same degree from learning the rules, though by trend, high spans profit somewhat 

more.  All datasets are part of the online supplementary material, so interested readers 

can follow up on our analyses (see Appendix A).   

Limitations 

One of the limitations may be that the instructions that informed participants of 

the rules differ not only in terms of content, but also in terms of length and 

thoroughness, from the instructions given in the control group.  The instruction video in 

the given-rules condition was twice as long and contained twice as many example 

problems.  Hence, the elevated correlation might be driven by participants’ better 

understanding of the task.  Although the experimental group saw more example items, 

the control condition saw three times as many practice items.  Nonetheless, future 

research is desirable that would keep all other aspects of instruction constant between 
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the two conditions, while maintaining the difference in terms of knowledge of the rules 

themselves.   

A major limitation was the failure to include an independent measure of gf in the 

study to test whether providing participants with the rules fundamentally changes the 

nature of the test.  Teaching the rules might turn the test into a more reliable and valid 

instrument by reducing noise, bringing out goal management as the main source of 

variance in the test.  On the other hand, if teaching the rules takes the subprocess of rule 

induction out of the test, it might as well impact its validity, by reducing the correlation 

with measures of real-life performance, like school achievement.  Either way, the fact 

that the correlation with working memory changes, raises the question how changing 

the test by giving the rules affects the correlation with other common measures of gf, for 

example figural analogies, series completion, or mental rotation.   

Another limitation was the fact that only a subset of the items from Raven’s 

APM was utilized in the current studies.  This raises the question of whether the results, 

especially the increase in the correlation between working memory capacity and RAPM 

in the given-rules condition, would generalize to the full RAPM set which contains 

several items that do not rely on these five rules and require the induction of new and 

more complex rules (Wiley et al., 2011).  Addressing these limitations is a goal for 

future work so that we can better understand this effect and the extent to which it may 

generalize.   

Conclusions 

One of the main contributions of this work is showing the role that working 

memory capacity plays in RAPM performance via the goal management process.  We 

hope the rule teaching paradigm inspires other researchers to explore how knowing the 

rules affects the solution process, and to explore how the rule induction process may, or 

may not, also be a critical link between working memory and measures of gf.  Current 

models of reasoning (and creativity), oftentimes envision individual differences in 

working memory capacity to play a crucial role (e.g., Hummel & Holyoak, 2003), but 

individual differences in working memory capacity alone are not sufficient to fully 

capture the human potential to form entirely new ideas that come seemingly out of 

nothing (Dartnall, 2002).  Especially in the field of artificial intelligence this part of 

human intelligence seems hard to capture, yet promises to be crucial in order to model 

machines that go beyond following predetermined algorithms (Boden, 1998).  In light of 
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our results from Experiment 4, it seems that the computer programs developed by 

Carpenter et al. (1990) were already fairly accurate in simulating the solution process 

under the condition of known rules.  What is still needed, as a complement to this work, 

is to better understand the mechanisms that underlie the solution process when the rules 

are not known.   
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Part 3: The Effects of Rule Knowledge on Eye Movements and 
Response Time in Matrix Reasoning 

Publication Note 

The following part was first submitted on 3.3.2016 as an original research article 

and is pending review in the Journal of Experimental Psychology: Learning, Memory, 

and Cognition:  Loesche, P. & Hasselhorn, M. (submitted).  The Effects of Rule 

Knowledge on Eye Movements and Response Time in Matrix Reasoning.   

Abstract 

Given the potential importance of detecting hidden rules during inductive 

reasoning, we manipulated whether test-takers of a matrix reasoning test know the 

underlying rules by introducing a short teaching session in advance to the test.  We 

analyzed test performance, response times, and eye movement behavior from a sample 

of 109 college students in a series of multi-level models.  The results suggest that eye 

movement behavior under the condition of known rules shifted towards a potentially 

more efficient strategy.  That is, longer fixation on the problem space and less relative 

saccadic frequency between the main areas of interest.  Additionally, we identified two 

groups of eye movement indicators that were distinctly affected by item difficulty and 

person ability, suggesting that ability and difficulty have a differential impact on 

strategy use.  By putting eye movement indicators in relation to response times, we got 

a clearer interpretation of the meaning of these variables and they probably reflect the 

degree to which mental models build up during reasoning.  The results have 

implications for the interpretation of eye movements and response times as these 

variables provide a window into the cognitive processes involved in figural reasoning.   

Introduction 

Figural reasoning tasks are among the traditional approaches to assess 

intelligence and there is accumulating evidence in the literature that there are essentially 

two kinds of strategies towards solving figural analogies or matrix reasoning tests 

(Arendasy & Sommer, 2013; Bethell-Fox et al., 1984; Jarosz & Wiley, 2012; Snow, 

1980; Vigneau et al., 2006).  Those two strategies were mostly derived from the 

analyses of eye movements and verbal protocols during problem solving.  Probably the 

first to document these strategies was Snow (1980) who labelled them constructive 

matching and response elimination.  His description of the constructive matching 
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strategy was apparently influenced by theoretical models of problem solving that were 

prominent at that time.  Mulholland, Pellegrino, and Glaser (1980) compared and 

reviewed some of these models and noted that the solution process is usually 

characterized by an iterative series of steps that are similar in all of them.  The process 

usually starts with an encoding phase which results in the identification of visual 

elements and members of the problem space.  Since it is essential to most measures of 

mental ability, the next step is usually related to finding the underlying rules of the 

elements in the problem space.  The final steps involve the mapping of elements and 

rules and ideally results in a mental representation of a response and the ultimate choice 

of a response.  The constructive matching strategy basically describes exactly these 

steps of problem solving and is mostly characterized as effective but also as mentally 

demanding.  Snow (1980) also noticed in his data that occasionally subjects seem to 

deviate from that strategy as evident from eye movement patterns that showed a lot of 

switching between the problem and the response alternatives and the consideration of 

more response alternatives.  Thus, he concluded that subjects might follow the response 

elimination strategy which would involve kind of a backwards approach that aims at the 

successive elimination of implausible response alternatives.   

In a recent study, we discovered that these strategies could be influenced by 

certain instructions (Loesche, Wiley, & Hasselhorn, 2015).  Given the potential 

importance of detecting hidden rules during inductive reasoning, we manipulated 

whether test-takers of a matrix reasoning test know the underlying rules by introducing 

a short teaching session in advance to the test.  The results suggested that eye movement 

behavior under the condition of known rules shifted towards the potentially more 

efficient strategy of constructive matching.  This finding raised a couple of questions 

that we wanted to address with the experiments presented here.  First, we wanted to 

investigate whether this effect can be replicated by a within-subjects manipulation of 

rule knowledge.  The previous study used a between subjects manipulation and not only 

found that eye movement patterns differ between experimental groups but also that the 

correlation with measures of working memory revealed to be more substantial when 

subjects knew the rules.  Testing this hypothesis required a fairly large sample and in 

the interest of test power, the possibility of a within subjects experiment seemed 

appealing in order to replicate and further investigate how the correlation of matrix 

reasoning tests change after providing the relevant rule knowledge.   
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This leads to our second research question, addressing the issue whether the 

correlation with other common measures of fluid intelligence (gf) would change when 

the relevant rule knowledge was provided.  Our preferred interpretation of the finding 

that the correlation with working memory measures increases when the rules are known 

was that the rule induction process is independent from working memory capacity.  We 

argued that prominent working memory theories generally focus on the management of 

available information but cannot really explain how entirely new information could be 

created, which should be a necessary step in solving the items of an inductive reasoning 

test.  For the same reason we predicted to find a decreased correlation with alternative 

measures of fluid intelligence when the rules are known.  That is, if the matrix 

reasoning test did not share the rule induction process with other measures, then these 

measures should have less common variance.   

The alternative interpretation of said results, however, bears on changes in 

strategy use that occurred due to knowing the rules.  As noted before, the constructive 

matching strategy is assumed to be more demanding to cognitive resources like working 

memory capacity, because a mental representation of one or even more potential 

solutions needs to be created from the multitude of information in the problem.  So the 

pure fact that knowing the rules changes people’s strategies towards this demanding 

strategy might explain why the correlation with measures of working memory capacity 

increases under those circumstances while their performance increases at the same time.  

In that case however, correlations with other measures of gf should be largely 

unaffected by rule knowledge, or even increase as well.   

Eye Movements  

Recently, Hayes, Petrov, and Sederberg (2015) pointed out how important the 

study of eye movements is not only to describe strategy use, but also as an indicator of 

test score gains in longitudinal cognitive training studies.  Eye movements, as an 

indicator of strategy use, could serve as an objective measure of training effects and 

would be more clearly interpretable than simple test score gains.  Hence, it is important 

to understand under what circumstances strategies emerge and how they are related to 

item difficulty or a person’s cognitive ability.  Rule knowledge has recently been 

considered as a potential explanation for secular gains in IQ scores, known as the Flynn 

Effect (Armstrong & Woodley, 2014; M. C. Fox & Mitchum, 2013), and given the 

potential link between rule knowledge and strategies (Loesche et al., 2015) this could 
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open up a new methodological approach by studying how secular IQ gains coincide 

with reasoning strategies.   

 

 
Figure 7.  Illustration of a typical Raven item with 
designated areas of interest (AOI).   

 

Vigneau et al. (2006) presented an extensive analysis of quantifiable eye 

movement patterns during the solution of the Raven test.  They investigated eye 

movement variables that were mainly defined relative to the response area and the 

matrix area of the Raven test (Figure 7).  That is, these variables reflect the degree to 

which test-takers seek visual information from the figural problem space or from the 

response alternatives.  It stands to reason that seeking information from the matrix area 

should coincide with the decomposition of the figural elements and the mapping of 

these elements to common rules (Carpenter et al., 1990).  We will argue that this phase 

of problem solving behavior serves to build up a mental model (Johnson-Laird, 2005) 

that can logically explain all the perceived changes and relationships of the items’ 

figural elements and provide at least one potential solution. It should be only after an 

idea of a potential response comes to mind that a test-taker seeks further information 

from the response alternatives in order to see if something matches their hypothesis.  

This solution strategy was labeled constructive matching by Snow (1980) and he 

characterized this strategy as systematic and effective.  A subsequent study suggested 

that this strategy is more likely to be deployed by test-takers with high reasoning ability 

(Bethell-Fox et al., 1984).  The strategy might not lead to a solution on the first iteration 

so the test-taker will probably backtrack by seeking more information from the matrix 

area and this behavior should be visible in eye-movements.  Vigneau et al. (2006) 
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labeled the frequency of macro saccades running between the matrix area and the 

response area rate of toggling and it likely reflects the success rate of the constructive 

matching strategy, which we assume to be the default strategy by any test taker.  

Furthermore, Jarosz and Wiley (2012) reported that persons with high working memory 

capacity tended to exhibit a lower rate of toggling on the Raven test, which could be 

indicative of more extensive and coherent mental models.  Along the same line of 

research, Hayes, Petrov, and Sederberg (2011) were able to use a new methodological 

approach to show that the rate of toggling is closely related to overall test performance.  

They constructed a scanpath successor representation of eye movements on a matrix 

reasoning test.  This is a data driven method that extrapolates regularities in the visual 

scanpaths by estimating the location of successive fixations under the condition of a 

current fixation.  Two principal components were extracted from this analysis and they 

were interpreted as an anti-toggle component and a systematicity component.  The anti-

toggle component corresponds to the already described toggle rate and the systematicity 

component describes a problem solving behavior of analyzing the matrix area 

systematically row by row and cell after cell and was closely related to overall test 

performance, as well.   

Vigneau et al. (2006) concluded that eye movements have differing relations 

depending on whether the analysis is at the individual subject level or at the item level.  

On the item level, they found that difficulty was “related to solution latency, matrix 

inspection, response-choice inspection, the number of alternation between interest areas, 

and latency to first alternation” (p. 270).  That is, item difficulty affected almost all the 

investigated variables.  On the individual subject level, they found that better test-takers 

tend to spend relatively longer time gazing at the matrix area and exhibit less frequent 

saccades between the matrix area and the response alternatives, which is generally in 

line with the idea that good test scores coincide with a constructive matching strategy.  

Given that there might be differing effects depending on the level of analysis, the 

present study was designed to investigate these effects in multi-level-models.  In line 

with the research reviewed here, we expected to find that item difficulty increase the 

frequency of response elimination, while ability would facilitate the use of constructive 

matching.  Rule knowledge was expected to work as a facilitator of constructive 

matching strategy because it provides additional information to incorporate into a 

mental model.   
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Response Times  

Although not explicitly reported in Loesche et al. (2015), the datasets appended 

to that paper suggest a strong positive relationship between overall response time and 

test performance on the Raven test.  A reanalysis revealed correlations ranging from .58 

in Experiment 4 to .74 in Experiment 2.  Thus, one goal of the experiments presented 

here, was to investigate this relationship further by considering eye movement behavior, 

item difficulty, and independent measures of ability.  The relationship between response 

time and performance in complex reasoning tasks has already been the subject of 

investigation in numerous previous studies and they suggest that it is important to 

differentiate between effects on the item level and effects on the person level.     

Goldhammer and Klein Entink (2011), for instance, utilized a joint item 

response modeling technique that simultaneously accounted for reasoning ability along 

with reasoning speed and estimated corresponding latent trait parameters.  In their 

sample of 230 students the latent trait estimates for reasoning ability and reasoning 

speed correlated negatively (r = -.36) meaning that slow test-takers tended to have a 

higher level of ability.  While reasoning ability was also correlated with executive 

attention, reasoning speed was not, which lead the authors to conclude that there may be 

different cognitive mechanisms underlying these two latent traits.  They assumed that 

the correlation between reasoning ability and speed can be explained via mental models, 

by assuming that a good test performance would be grounded in the consideration of 

alternative solution approaches, especially during the final stage of the mental model 

building process.  This means that able test-takers would question their assumptions 

before choosing a response, thus taking more time to reach a solution, but having a 

higher probability of reaching a correct solution.  This fits with Doerfler and Hornke 

(2010) reporting that extraversion lead to lower response latencies on matrix reasoning 

items, which in turn was detrimental to test performance.   

Scherer, Greiff, and Hautamäki (2015) discussed the possible role of 

motivational factors.  They estimated the correlation between task performance and time 

on task at r = .40 on complex problem solving tasks.  Furthermore, their data indicated 

that motivation (measured with a short questionnaire) may be able to explain some 

variance in time on task, but not in problem solving ability.  This suggests that ability 

and speed may be somewhat different constructs with differing underlying mechanisms, 

where motivation is assumed to underlie time.   
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Goldhammer, Naumann, and Greiff (2015) argued that the degree to which a 

task is tackled via controlled and automated processes determines the nature of the 

relationship to response times.  If items are easy or subjects are able then the degree of 

automated processes would be high, thus fast responses could be expected.  In a sample 

of 230 Raven test results, they estimated an overall negative response time effect on the 

item level in a multi-level model.  Item performance on a logit scale was generally 

worse when response time increased.  Furthermore, this fixed effect was negatively 

correlated with the random intercept across persons, indicating that this effect was even 

stronger in test-takers of high ability.  That is, the gradient in item performance from 

low to high response times is large in highly able test-takers, and rather flat on the other 

end of the ability spectrum.  This finding seems contrary to previous findings of a 

positive correlation between time and ability, especially since the sample for this 

analysis appears to be the same as that of Goldhammer and Klein Entink (2011).  But at 

a second glance it becomes clear that this relationship is dependent on the level of 

analysis.  Goldhammer et al. (2015) essentially found that hard items take longer time 

(negative correlation between time and score) which actually is just what Goldhammer 

and Klein Entink (2011) reported for this level of analysis.  They found a correlation of 

r = .63 between an items’ difficulty and time intensity (i.e., negative correlation 

between time and score), but focused the discussion more on the finding of a negative 

correlation between person level speed and ability.  Neubauer (1990) has already noted 

that the relationship between response time and ability depends on item difficulty and 

can go in opposite directions on very easy and very hard reasoning items.  Thus, we 

wanted to analyze the covariance patterns between time and performance in multi-level 

models to clarify the interrelations and the possible implications for the interpretation of 

eye movements and strategy choices.  Response times are potentially relevant in the 

interpretation of eye movement behavior since most variables are defined in relation to 

time (e.g., toggles per second or time on matrix).  Furthermore, eye movement behavior 

could shed some light on the effects of ability, difficulty, and rule knowledge on 

response times, since they could provide information about how exactly people use their 

time.  

Pilot Study  

With this pilot study we wanted to test whether it was feasible to realize the rule 

teaching paradigm in a within-subjects design.  There were a couple of concerns 
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connected with it.  The biggest issue was that subjects could not unlearn the rules once 

they have learned about them.  Thus, the known-rules condition could only come after 

the control condition.  As a result, whatever effect might occur due to the experimental 

manipulation could be confounded with test experience, or item characteristics, or other 

factors such as test motivation and fatigue.  To minimize the effects of such potential 

confounds, the experiment was planned as a 2-by-2-mixed-design with rule knowledge 

as within subjects factor and item block order counterbalanced across subjects.  The 

Raven APM test (Raven et al., 1998) was split up in two item blocks (A and B) of 

which one was presented first and was preceded by an introduction video that covered 

the basic controls and logic of the task and provided four example items.  After that, a 

video explained five rules that govern the elements in the matrix reasoning items 

followed by the second item block.  Thus, there were two item block orders (referred to 

as AB and BA) varied randomly between subjects and a within-subjects factor of rule 

knowledge which was introduced between pretest and posttest.   

Two hypotheses should be tested with this experiment and the following pattern 

of results was derived as predictions.  First, test performance should significantly 

improve from rule knowledge.  This effect was consistently demonstrated in previous 

experiments (Loesche et al., 2015) and should confirm that the knowledge of relevant 

rules has an impact on test performance.  Second, eye movements should change from 

pretest to protest in a way that they reflect more systematic solution strategies like 

constructive matching.   

Task Material  

We started out with the same item pool from the Raven test as in Loesche et al. 

(2015) in order to make the items in the test compatible with the rules being taught in 

the video.  We then split the items up based on odd and even items and made some 

adjustments by considering item characteristics such as difficulty and the kinds of rules 

involved (see Table 11).  For example, there were a total of seven items in Block A as 

well as in Block B that contain a constant rule at least once.   

  

81 
 



 
Part 3 

 
Table 11 
Raven items in the pilot study, arranged in order of appearance within each block 

Item Block 
Any  
constant  
rule 

Any  
progress  
rule 

Any  
one of each  
rule 

Any  
plus/minus  
rule 

APM 1 A x  x  
APM 3 A x x   
APM 5 A x x   
APM 7 A    x 
APM 9 A    x 
APM 11 A    x 
APM 13 A x  x  
APM 14 A x x   
APM 21 A x  x  
APM 23 A    x 
APM 26 A  x x  
APM 28 A   x  
APM 32 A x x   
APM 2 B x x   
APM 4 B x x   
APM 6 B x x   
APM 8 B   x  
APM 10 B x x   
APM 12 B    x 
APM 16 B    x 
APM 17 B x  x  
APM 22 B    x 
APM 24 B x x   
APM 27 B   x  
APM 29 B   x  
APM 34 B x  x  
Sum Block A:  7 5 5 4 
Sum Block B:  7 5 5 3 
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Eye Movement Measures 

There are multiple ways to summarize eye movement data.  Following Vigneau 

et al. (2006) we defined variables with respect to two interest areas: the matrix and the 

response bank (Figure 7).  The toggle rate (TR) is based on the number of saccades 

running either way between the matrix area and the response area (number of toggles) 

divided by total response time in seconds (i.e., toggles per second).  The relative time on 

matrix (RTM) is the summed duration of all fixations within the matrix area (time on 

matrix) divided by total response time.  The relative first response fixation (RFRF) is 

the timestamp of the first fixation within the response area (time before first response 

fixation) divided by total response time.  Following Bethell-Fox et al. (1984) we also 

investigated the total number of responses visited (RV) and counted all response 

alternatives that were fixated at least once during the response time.   

Procedure  

A total of 50 undergraduate subjects (mean age = 24 years) were randomly 

assigned to either the AB (n = 28) or BA (n = 22) item block order condition.  Two 

additional participants were excluded due to technical issues or low quality of eye 

movement data.  Participants were tested in single sessions lasting between 30 and 45 

minutes and received money or course credit in exchange.  An EyeLink 1000 device 

recorded eye movements at a sample rate of 500 Hz.  Where necessary, we performed 

post-hoc adjustments to account for obvious miss-calibrations by aligning whole 

fixation patterns to the stimuli.  After receiving information about the purpose of the 

experiment the eye tracker was calibrated and participants started working on either 

block A or block B, depending on their random assignment.  The first block was 

preceded by four practice items and an introduction video of 2:28 minute length.  

Noteworthy, this video was revised from the one described in Loesche et al. (2015) in 

order to iron out some discrepancies between testing conditions.  The example items 

shown in this video were the same as in the rule teaching video and correct responses to 

all example items were given.  However, it was not explained why the responses were 

correct and neither was any rule mentioned.  This was to ensure that differences 

between instructions were only attributable to whether rules were taught or not.  After 

watching this video, participants worked on the first 13 items with no time restrictions 

while eye movements were recorded.  Each item trial started with the presentation of a 

fixation cross, designed after recommendations from Thaler, Schütz, Goodale, and 
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Gegenfurtner (2013), to ensure the fixation was at the center of the matrix area.  

Responses were indicated with the mouse and there was no time limit and no feedback 

on the response.  After the first block, a rule teaching video (4:52 minute) was 

presented, which was basically the same as in Loesche et al. (2015), except that some 

part was trimmed from the beginning since subjects were already familiar with the 

basics of the task.  The video showed the same four example items as in the pretest 

instruction and each item exemplified one or two of the five rules labeled as Plus, 

Minus, Constant, Progress, and One of Each.  Then participants worked on 13 items 

from the second block and finally answered a free recall question about the rules they 

could remember from the rule teaching video.   

Prior to working on the Raven test, we asked participants to complete a 

backward digit span task, which consisted of 14 items.  On each consecutive item there 

was a series of single digits with increasing lengths from 2 to 8.  Each digit was 

presented for 500 ms and afterwards participants were asked to recall the digits in 

reverse order within a 15 second response time window.   

Results  

We briefly report the basic results of the pilot study and go into more detailed 

analyses with the data from the main experiment.  The online supplementary material 

contains complete datasets and scripts for R (R Core Team, 2015), not only for the pilot 

study but also for the main experiment, so as to allow the interested reader to retrace 

and extend our analyses (see Appendix A).   

 
Table 12 
Dependent variable means in the pilot study across two factors 
Rule 
knowledge 

Block 
order 

Raven 
score 

Raven 
log(time)  RTM RFRF TR RV 

Pre AB 0.574 
(0.176) 

3.353 
(0.371) 

0.667 
(0.054) 

0.436 
(0.115) 

0.407 
(0.131) 

5.648 
(1.278) 

Post AB 0.709 
(0.144) 

3.476 
(0.237) 

0.692 
(0.083) 

0.466 
(0.140) 

0.334 
(0.132) 

5.349 
(1.157) 

Pre BA 0.731 
(0.108) 

3.331 
(0.365) 

0.686 
(0.052) 

0.423 
(0.119) 

0.356 
(0.117) 

5.759 
(0.810) 

Post BA 0.699 
(0.150) 

3.609 
(0.240) 

0.713 
(0.050) 

0.517 
(0.106) 

0.292 
(0.094) 

5.601 
(1.071) 

Note.  Values in parentheses are SD.  RTM = relative time on matrix, RFRF = relative first response 
fixation, TR = toggle rate, RV = responses visited, MTDI = matrix time distribution index. 

 

As a confirmation that the manipulation worked we expected to find that 

subjects would perform better after the rules were taught, which was generally 
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confirmed by significant within subjects main effect, F(1, 48) = 13.18, p < .01.  

However, this effect was qualified by a significant interaction with block order, F(1, 48) 

= 23.65, p < .01.  The pattern was similar for log-transformed response time for which 

the main effect of rule knowledge, F(1, 48) = 32.65, p = <.01, interacted with block 

order, F(1, 48) = 5.22, p = .03.  As can be seen in Table 12, the two block order 

conditions already differed significantly on the pretest, F(1, 48) = 13.43, p < .01.  

Performance on the backward digit span was comparable between conditions, F(1, 47) 

= 0.68, p = .41.  This implies that item compositions had different difficulty levels.  

Furthermore, there were significant main effects of rule knowledge on the 

relative time on matrix, F(1, 48) = 10.36, p < .01, on toggle rate, F(1, 48) = 43.53, p < 

.01, and on the relative first response fixation, F(1, 48) = 16.41, p < .01.  These effects 

were consistent with the hypothesis that strategy shifted towards constructive matching.  

The effect on the relative first response fixation was also qualified by a significant 

interaction effect, F(1, 48) = 4.83, p = .03.  The amount of responses visited did not 

change significantly due to rule knowledge, F(1, 48), p = .11.   

Main Experiment 

The results of the pilot study suggest that the experimental manipulation had an 

effect on most of the investigated eye movement variables and partly on test 

performance.  However, the results may have been biased by different levels of 

difficulty between item blocks.  In this subsequent experiment we tried to address this 

issue by revising the composition of item blocks.  Additionally, we wanted to 

investigate the relationship to other measures of fluid intelligence and whether the 

relationship would change due to the experimental manipulation.  The correlation with 

working memory measures was rising with rule knowledge in Loesche et al. (2015).  

This effect could have been due to an increased relative task demand on working 

memory because a test like the Raven would essentially turn into a measure of working 

memory capacity when there is no need to come up with possible rules.  Hence, we 

expected to find an increased correlation with the backward digit span after the rules 

were known.   

But the main purpose of the current experiment was to test the reverse logic of 

this hypothesis.  This was based on the assumption that many other measures of fluid 

intelligence have in common with the Raven test, the requirement to detect underlying 

rules of the task material.  So if the impact of the ability to come up with rules was 
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eliminated from the Raven test, then the test should have less in common with other 

measures of the like.  Hence, we predicted to find a reduced correlation with measures 

of fluid intelligence when the rules were known on the posttest.  An alternative 

explanation for the finding of an increased correlation with working memory was 

connected with the finding that strategies shifted towards constructive matching.  This 

strategy is theoretically more demanding to information processing entities like the 

working memory system, so if test-takers rely more frequently on this strategy they are 

more likely to reach the limits of working memory.  This could as well explain why the 

correlation with measures of working memory increases under the condition of known 

rules, but the correlation with measures of fluid intelligence should remain unaffected.   

Finally, we wanted to explore the effects of rule-knowledge on response time.  

As pointed out in the introduction, previous research suggests a strong positive 

relationship on the person level.  Hence, we expected to find the same positive 

correlation between response time and test performance.  Given the assumption that test 

performance and test time are positively correlated, it seems plausible to assume that 

test time under the condition of known rules increases along with test performance.  

Additionally, using a constructive matching strategy might theoretically take more time 

since it is the more laborious way.  On the other hand, it might also be the more efficient 

way, thus reducing response time.  A re-analysis on the dataset from Loesche et al. 

(2015) revealed that the effects of rule knowledge on response times were weak or 

nonexistent, with a tendency to increase response time.  In the pilot study we found a 

main effect of rule-knowledge on response time but the effect was limited by an 

interaction effect.  Thus, it was not clear what to expect from the effect of rule 

knowledge on response time.  However, response times are also of potential relevance 

for the interpretation of eye-movement behavior.  Most eye-movement indicators are 

defined relative to time (i.e., relative time on matrix or toggles per second) but can also 

be defined as absolute values (i.e., absolute time on matrix or number of toggles).  It is 

important to understand how response times behave in order to understand the meaning 

of these variables.  For example, an increase in the number of toggles per seconds can 

be due to reduced response time with a constant number of toggles or it can be due to an 

increased number of toggles in the same amount of time.  Furthermore, eye-movements 

can potentially provide information about the use of time.  Snow (1980) hypothesized 

that response elimination is a fallback strategy that participants would revert to when 
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constructive matching fails.  In that case we expect to see an increase of corresponding 

eye-movement indicators along with an increase in response time.   

Task Material  

For the main experiment, we revised the item composition of the two blocks to 

address the issues occurring in the pilot study.  We excluded items that were apparently 

too easy (solution rate of 100%) and item 29 since it seemed very hard and, on a second 

thought, was not completely compatible with the rule set in the intervention.  We finally 

added some items from the Raven Standard Progressive Matrices (Styles, Raven, & 

Raven, 1998) to fill up the void. Where possible, item pairs were identified based on 

difficulty and the kind and number of rules involved (see Table 13).  Two items were 

considered parallel if they required roughly the same number and kind of rules.  For 

example, the first item in APM (APM 1) requires three one of each rules.  Item number 

13 of the same test (APM 13) was considered parallel since it requires one constant rule 

and two one of each rules.  It was not possible to identify a parallel item for all items in 

the test, thus the remaining items were allocated to one of the two blocks based on the 

solution rate obtained in the pilot study.  

General Ability Measures   

Participants completed a set of three tasks that can be considered as measures of 

general fluid intelligence.  We used a figural analogies test with 15 items, loosely 

adapted from an unpublished test described in Chuderski, Taraday, Nęcka, and Smoleń 

(2012).  Each item consisted of a figural analogy of the form A:B::C:D where D is a 

missing figure that needs to be chosen from five response alternatives.  Due to a 

graphical error one of the items in this test (number six) was ambiguous and therefore 

excluded from all analyses.  We also used a letter sets test with 15 items based on the 

same test in the Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, & 

Diran, 1976).  Each item in this test consisted of five groups with four letters in each 

group.  The letters in the groups were arranged based on some hidden rule whereas one 

group violated this rule.  The subjects were asked to identify the one letter set that did 

not fit the rule.  As a third measure of gf we utilized a number series test, similar to the 

one described in Thurstone (1938).  Each of the 15 items in this test displays a series of 

seven numbers that follow some hidden rule.  The participants were asked to complete 

the series by entering one number that would correctly complete the series.  This task 

did not require a multiple choice response, but a free response that required more than 
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one button click, which might have affected response time measures (see Results 

section).   
Table 13 
Items selected for the main experiment, arranged in order of 
appearance within each block  

Original item 
number 

Pilot study 
pretest 

solution rate 

Selected for 
Block 

Roughly 
parallel to 

APM 3 0.852 A APM 2 
APM 5 0.889 A APM 4 
APM 9 0.926 A APM 7 
APM 1 0.741 A APM 13 

SPM D2 -- A APM 12 
SPM E1 -- A APM 14 
APM 16 0.909 A -- 
APM 22 0.409 A APM 23 
APM 21 0.370 A SPM E2 
SPM E7 -- A APM 24 
APM 26 0.296 A -- 
APM 34 0.727 A APM 28 
SPM E4 -- A -- 
APM 32 0.222 A SPM E9 
APM 2 0.864 B APM 3 
APM 4 0.909 B APM 5 
APM 7 0.741 B APM 9 

APM 13 0.481 B APM 1 
APM 12 0.864 B SPM D2 
APM 14 0.778 B SPM E1 
APM 17 0.864 B -- 
APM 23 0.222 B APM 22 
SPM E2 -- B APM 21 
APM 24 0.227 B SPM E7 
APM 27 0.591 B -- 
APM 28 0.185 B APM 34 
SPM D8 -- B -- 
SPM E9 -- B APM 32 
APM 6 1.000 excluded  
APM 8 1.000 excluded   

APM 10 1.000 excluded  
APM 11 0.889 excluded   
APM 29 0.136 excluded   

Note.  APM = item from Raven’s Advanced Progressive 
Matrices.  SPM = item from Raven’s Standard Progressive 
Matrices.   
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Eye Movement Measures   

We analyzed the same eye movement indicators as in the pilot study and also 

broke them down into their numerators and denominators for a more detailed analysis.  

In this Experiment, we also investigated the matrix time distribution index (MTDI) as 

defined by Vigneau et al. (2006).  This index reflects the relative frequency of fixations 

at the last column and the last row of the matrix area and it was calculated as time of 

fixations on four top-left cells (1, 2, 4, 5), minus the time of fixations on the other five 

cells (3, 6, 7, 8, 9), divided by the total time on the matrix area (Figure 7).  Finally, we 

suspected that our experimental manipulation might have had an effect on the direction 

of the matrix inspection.  Both the initial instruction and the rule teaching instruction 

emphasized to analyze the matrix area horizontally, but the rule instructions were all 

explained row-wise so they might have given test-takers additional conviction that this 

was the right approach.  Thus, we counted all horizontal saccades (HS) within the 

matrix area as a proportion of the total number of saccades in the same area.  

Procedure   

A total of 109 undergraduate students (mean age = 24 years) participated in this 

study in exchange for money or course credit.  Four participants were excluded from 

analyses pertaining to the Raven test due to technical problems during testing, the 

remaining participants were randomly assigned to either the AB item block order (n = 

56) or the BA item block order (n = 49).  One additional participant was excluded from 

analyses pertaining to eye movements because the recorded data was distorted and too 

noisy.  Participants started the testing session with three measures of gf in randomized 

order, followed by the same backward digit span task as in the Pilot study.  After that, 

the experiment followed the same procedure as in the pilot study.  Testing sessions 

usually lasted less than one and a half hours.  

Results   

Analyses of Variance.  First, we wanted to confirm that the experimental 

manipulation resulted in an increased test performance and that the two item blocks 

were indeed parallel and thus comparable.  A two-way ANOVA with item block order 

as between subjects factor and rule knowledge as within subjects factor, revealed a 

significant main effect of rule knowledge, F(1, 103) = 17.97, p < .01, which was again 

qualified by a significant interaction with item block order, F(1, 103) = 8.75, p < .01.  In 

contrast to the pilot study, pretest performances did not differ significantly on the two 
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item blocks, F(1, 103) = 1.42, p = .24.  This suggests that item blocks were much more 

comparable than in the pilot study but still not completely parallel.  There was no main 

effect of rule knowledge on log-transformed response times, F(1, 103) = 2.70, p = .10, 

there was however a significant cross interaction effect, F(1, 103) = 89.99, p < .01, 

indicating that response times were independent of our experimental intervention and 

were rather tied to the specific item compositions (Table 14).  A comparison of the gf 

estimates for each block order group, suggested that they were comparable, F(1, 103) = 

0.23, p = .63.   

 
Table 14 
Dependent variable means in the main experiment across two factors 
Rule 
knowledge 

Block 
order 

Raven 
score 

Raven 
log(time)  RTM RFRF TR RV HS 

Pre AB 0.669 
(0.150) 

3.271 
(0.363) 

0.808 
(0.04) 

0.481 
(0.116) 

0.328 
(0.071) 

5.812 
(0.676) 

0.758 
(0.103) 

Post AB 0.690 
(0.180) 

3.484 
(0.353) 

0.815 
(0.04) 

0.478 
(0.095) 

0.304 
(0.072) 

5.975 
(0.708) 

0.807 
(0.051) 

Pre BA 0.634 
(0.177) 

3.422 
(0.353) 

0.797 
(0.045) 

0.432 
(0.129) 

0.338 
(0.109) 

6.288 
(0.604) 

0.761 
(0.097) 

Post BA 0.730 
(0.190) 

3.251 
(0.325) 

0.827 
(0.042) 

0.520 
(0.137) 

0.297 
(0.091) 

5.330 
(0.847) 

0.805 
(0.053) 

Note.  Values in parentheses are SD.  RTM = relative time on matrix, RFRF = relative first response fixation, 
TR = toggle rate, RV = responses visited, HS = horizontal saccades.   

 

All eye movement variables were significantly affected by the within subjects 

factor rule knowledge and all effects pointed in the predicted directions.  Relative time 

on matrix was larger with rule knowledge, F(1, 102) = 27.16, p < .01.  The first 

response fixation occurred later with rule knowledge, F(1, 102) = 17.42 , p < .01.  The 

toggle rate was lower with rule knowledge, F(1, 102) = 22.93, p < .01.  The number of 

responses visited was lower with rule knowledge, F(1, 102) = 37.86, p < .01.  Parallel to 

test performance, three effects were qualified by significant interaction effects with item 

block order.  This was the case with the relative time on matrix, F(1, 102) = 11.61, p < 

.01, with the first response fixation, F(1, 102) = 23.59, p < .01, and with the number of 

responses visited, F(1, 102) = 88.92, p < .01.  There was no interaction effect on toggle 

rate, F(1, 102) = 1.62, p = .20.   

Correlations.  Table 15 shows the correlations between measures of gf and the 

two blocks of the Raven test collapsed across the two order conditions.  We calculated 

paired sample significance tests (Revelle, 2015) on the differences of correlations 

between testing conditions.  The results suggest that Raven scores did not correlate 
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differently with any of the tested measures after the rules were given to participants (all 

p > .38).   

 
Table 15  
Correlations of Raven test scores with other ability measures. 

  
Pre 

Raven  
Post 

Raven  
Figural 

Analogies  
Letter 
Sets  

Number 
Series  

Post Raven  .691**     
Figural Analogies  .536** .593**    
Letter Sets  .456** .510** .655**   
Number Series  .472** .443** .602** .523**  
Backward Digit Span .308** .330** .164 .198* .301** 
Note.  N = 105.  ** p < .01.  * p < .05.   

 

 
Table 16  
Population estimates of the correlation between person speed and ability.   

 
Speed 

 

Raven 
Pretest 

Block A 

Raven 
Posttest 
Block B 

Raven 
Pretest 

Bock B 

Raven 
Posttest 

Block A 
Figural 

Analogies Letter Sets 
Number 

Series 

Ability -.482 .022 -.655 -.219 -.667 -.732 -.074 

 

Conjoint Item Response and Time Models.  Response times were further 

investigated by utilizing a conjoint item response and time modeling approach (CIRT) 

that simultaneously estimates item and person parameters for response time and test 

performance (J.-P. Fox, Entink, & van der Linden, 2007).  Note that the CIRT models 

operate with a speed variable instead of a response time variable, meaning that the 

model algorithms multiply all response times with negative one.  This analysis revealed 

that population estimates for speed and ability were mostly negatively correlated (see 

Table 16).  That is, subjects who were overall slower on the test were more likely to 

achieve a higher score, and vice versa.  There were two exceptions.  First, the 

correlation between ability and speed for the number series task was almost zero and 

this might be due to the response format in this task.  Unlike all the other tasks the 

number series response required more than just a single click and was not multiple-

choice.  Thus, it seems plausible to assume that the requirement to construct the 
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response from nine digits, added additional variance to the response time data.  

Responses on the other two gf tasks required only one click, thus times should closely 

reflect cognitive processes affected by the task itself.  Second, the correlation between 

speed and ability on the Raven dropped considerably from pretest to posttest to almost 

zero in group AB and to -.219 in group BA.  Noteworthy this drop was about the same 

magnitude in both experimental conditions and may have occurred due to the rule 

knowledge manipulation.   

Table 17 displays the complete correlation table of ability and speed for the 

Raven and the fluid intelligence measures.  These are not the population correlation 

estimates from the CIRT models reported earlier.  Instead, all person parameter 

estimates were attributed to the corresponding subjects and sample correlations were 

computed based on these estimates.  This allows the examination of correlations 

between ability and speed estimates across different tasks.  Considering the ability-

speed correlations, it strikes that they were negative within all tasks, meaning that with 

increasing response times, task performance became better, and vice versa.  Correlations 

of ability and speed within the same fluid intelligence tasks were r = -.81 for figural 

analogies and r = -.84 for letter sets, but only r = -.15 for number series.  As mentioned 

above, this was likely due to the response modality in this task.  In line with this 

interpretation is also the fact, that response times on figural analogies and letter sets 

explain a good amount of variance in number series task performance.   

On the Raven pretest correlations of ability and speed were r = -.57 and r = -.74 

in the two conditions.  However these numbers change drastically on the posttest, where 

correlations drop to .02 and -.25.  That is, the correlation drops by about 50 points in 

both item order conditions from pretest to posttest, so this effect occurs regardless of the 

subsample and the items (both 𝛥𝛥p < .01).  That is, variance in time did not explain as 

much variance in performance after the rules were known and this finding corresponds 

to the population correlation estimates from the CIRT model (see above).   

Finally, Table 17 reveals that time and performances were correlated across 

tasks, suggesting that there was not only an individual disposition for ability in this 

sample, but also for speed.  For example, speed on the letter sets test was correlated 

with Raven test performance between r = -.19 and r = -.59, depending on the 

experimental condition, and there were similar cross-task relationships between ability 

and speed with other task combinations.  
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Table 17 
Sample correlations of person level estimates for speed and ability from the CIRT models.   
 Ability  Speed  (-time)  Ability  Speed (-time) 
 AB  BA  AB  BA  Gf 
 1) Pre 2) Post 3) Pre 4) Post 5) Pre 6) Post 7) Pre 8) Post 9) FA 10) LS 11) NS 12) FA 13) LS 14) NS 
1)  1              
2) .669 1             
3)   1            
4)   .810 1           
5) -.570 -.251   1          
6) -.271 .022   .790 1         
7)   -.739 -.474   1        
8)   -.449 -.250   .796 1       
9) .631 .585 .663 .615 -.510 -.259 -.624 -.437 1      
10) .490 .332 .621 .599 -.558 -.359 -.621 -.501 .703 1     
11) .506 .445 .460 .421 -.411 -.091 -.465 -.274 .619 .544 1    
12) -.548 -.339 -.554 -.448 .653 .519 .718 .728 -.758 -.682 -.462 1   
13) -.420 -.186 -.594 -.555 .664 .564 .666 .563 -.629 -.830 -.431 .780 1  
14) -.302 -.096 -.438 -.355 .558 .532 .611 .660 -.384 -.454 -.135 .705 .657 1 
Note.  FA = figural analogies, LS = letter sets, NS = number series, AB and BA refer to block-order conditions.  N = 105, nAB = 56, nBA = 49.   
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Next, we report the CIRT model estimates for the item parameter estimates.  On 

the item level, the correlation between population estimates of time intensity and 

difficulty were generally positive within the tasks in the experiment, meaning that hard 

items required more time while easy items were solved quickly (see Table 18).  This 

effect may seem contradictory to the person level effect because on the item level it 

means, when a person has high ability, the test items should be relatively easy for them 

so they should have responded quickly (implying a positive ability-speed relation).  Yet, 

the actual finding on the person level was that high ability was associated with slow 

response times (negative ability-speed relation).  This finding hints towards distinct 

relationships between time and performance depending on the level of observation, 

which we will discuss more thoroughly in the next section.  It is also worth mentioning 

that, unlike the speed-ability correlation, the correlation between difficulty and time 

intensity is relatively stable between pretest and posttest conditions.   

 
Table 18  
Population estimates of the correlation between item parameters for time intensity and 
difficulty.   

 
Item time intensity 

 

Raven 
Pretest 

Block A 

Raven 
Posttest 
Block B 

Raven 
Pretest 

Bock B 

Raven 
Posttest 

Block A 
Figural 

Analogies 
Letter 

Sets 
Number 

Series 

Item  
difficulty  

 
.443 .391 .382 .381 .162 .326 .144 

 

 

Multi-level Analyses of Performance.  To further explore the effect of the 

experimental manipulation and some further variables on item performance, a series of 

multi-level models were evaluated.  All multi-level analyses were computed with 

version 1.1.10 of the lme4 R-package (Bates, Mächler, Bolker, & Walker, 2015).  We 

provide p-values based on the Satterthwaite approximation from the lmerTest R-

package, version 2.0.29 (Kuznetsova, Brockhoff, & Christensen, 2015) but would like 

to point out that providing p-values for nested effects is currently subject of debate 

because of the difficulty of attributing degrees of freedom to the model levels (Bates et 

al., 2015; Bolker, 2015).  Hence, p-values should be interpreted with caution but do 

provide some guiding perspective on the likelihood of the data presented here.  
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Table 19 
Series of multi-level models predicting the dichotomous dependent variable item performance.   

 Predictor variables 

Variance 
components, 
and model fit 

Rule 
knowledge  

Person 
ability  Item time  

Item 
difficulty  RFRF  RTM  TR  HS  RV  MTDI  

Intercept 1.123** 
(0.358) 

1.325*** 
(0.344)  

1.373*** 
(0.307)  

1.321*** 
(0.131)  

1.336*** 
(0.340)  

1.310*** 
(0.353)  

1.310*** 
(0.354)  

1.319*** 
(0.349)  

1.351*** 
(0.330)  

1.330*** 
(0.352)  

Fixed effect 0.433*** 
(0.101) 
[0.236,  
0.645] 

0.738*** 
(0.091) 
[0.564,  
0.912] 

-0.603*** 
(0.114)  
[-0.820,  
-0.404] 

-1.729*** 
(0.093) 
[-1.929,  
-1.535] 

1.220*** 
(0.241) 
[0.723,  
1.739] 

1.523* 
(0.702) 
[0.185,  
2.804] 

-0.972* 
(0.392) 
[-1.739,  
-0.214] 

1.568** 
(0.579) 
[0.484,  
2.556] 

-0.194*** 
(0.032) 
[-0.261,  
-0.130] 

0.122  
(0.299)  
[-0.414,  
0.659] 

Intercept 
variance across 
subjects 

1.163 0.568 1.215 1.128 1.138 1.100 1.095 1.121 1.157 1.128 

Intercept 
variance across 
items 

3.090 3.042 2.184 0.067 2.800 3.062 3.080 2.984 2.597 3.033 

Number of 
estimated 
parameters 

4 4 4 4 4 4 4 4 4 4 

-2 log-
likelihood 

2693.82 2659.39 2684.75 2630.23 2651.70 2673.05 2670.09 2670.54 2625.03 2664.81 

Note.  Each column represents a unique model with a different predictor.  Values in parentheses are standard errors.  Values in brackets are 95% bootstrap CI.  
K = 28 items were crossed with N = 105 subjects.  P-values are based on the Satterthwaite approximation of degrees of freedom (see text).  RFRF = relative 
first response fixations, RTM = relative time on matrix, TR = toggle rate, HS = horizontal saccades, RV = responses visited, MTDI = matrix time distribution 
index.  ***p < .001.  **p < .01.  *p < .05.   
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We investigated how various variables predict item performance by estimating a 

series of logistic multi-level models, each with a different predictor.  Three measures of 

general fluid ability (gf) were averaged and standardizing to serve as an estimate of 

ability.  All eye movement variables were centered to the individual mean.  A random 

effect was specified for the subject level factor, and a further random effect was 

specified for the item content factor.  The item content factor was coded based on the 

content of the item, irrespective of whether the item was presented at pretest or posttest 

in a given subsample.  Both factors were completely crossed, i.e. there was one 

observation for any combination of the two factors values.  We fitted a series of models, 

each with a different predictor and compared the model fit to a null model (see Table 

19).   

The analysis revealed that there was a significant positive effect of rule 

knowledge on item performance (β = 0.433), indicating that the experimental 

manipulation worked as hypothesized.  Person ability and item difficulty were also 

significant predictors of item performance, but more importantly, there were differences 

among eye movement variables in their predictive power.  Judging by the p-values of 

the effects, it appears that RFRF (β = 1.220, p < .001) and RV (β = -0.194, p < .001) are 

the best single predictors.  However, none of the estimated 95% CI overlap with zero, 

indicating that all eye movement variables were in fact correlated with item 

performance.  The one exception was MTDI, which we will discuss in more detail in the 

result-section on eye movements.   

 

  
Figure 8.  Estimated item score as a logistic function 
of response time for different levels of subject test 
performance.   

Figure 9.  Estimated item score as a logistic function of 
response time for different levels of item solution rates.   
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Item response time had a negative effect (β = -.603) on item performance, 

meaning that items with long response times tended to have a lower probability of a 

correct response which replicated a finding reported by Goldhammer et al. (2015).  We 

followed their example and specified two additional random effects for the slopes of the 

effect of time on response across the two grouping factors for subjects and items.  This 

model resulted in a significantly better model fit than the fixed slope model (-2-log-

likelihood = 2655, 𝛥𝛥𝜒𝜒² = 29.82, 𝛥𝛥df = 4, 𝛥𝛥p < .001).  The random intercept model 

provides an estimate for the correlation between intercept and slope across subjects.  

With -1.00 this estimate suggests a perfectly negative relationship, meaning that the 

negative effect of time on accuracy becomes even more negative with higher intercept 

levels.  Higher intercept levels suggest overall better test performance of a subject, thus 

it appears that subjects with high ability express a stronger gradient of item score 

between occasions where they take a lot of time and occasions where they take less 

time.  This is depicted graphically in Figure 8 which shows how subjects with high 

ability (i.e., high test score) had a steeper estimated decline in the probability to solve an 

item with increasing time.  The same perfectly negative linear relationship was 

estimated across items, meaning that the negative effect of time on accuracy becomes 

even more negative with higher solution rates (on easier items).  The graphic also shows 

that the relationship was estimated negative for all subjects, only somewhat weaker for 

low ability subjects.  Figure 9 shows how the estimated probability to solve easy items 

(i.e., high solution rates) drops significantly with longer response times, but this 

relationship weakens and even turns around for harder items (i.e., low solutions rates).  

That is, the probability to solve very hard items is higher with long response times but 

for most items the probability is lower with long response times.  It should be noted 

however, that estimates of exactly negative one are likely to be a sign that there was not 

enough information in the dataset for an accurate estimation.  That is, there might not be 

enough levels of one of the random effects or not enough observations.   
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Table 20 
Series of multi-level models predicting item response time 

Predictors, variance 
components, and 
model fit Null model 

Fixed slope 
model 

Random 
slope model 

Cross-level 
interaction 
model 1 

Cross-level 
interaction 
model 2 

Intercept 3.358***  
(0.108)  

3.358***  
(0.063)  

3.358***  
(0.070)  

3.358***  
(0.063)  

3.358***  
(0.063)  

Person ability   0.119***  
(0.030)  

0.109**  
(0.038)  

0.119***  
(0.033)  

0.119***  
(0.033)  

Item difficulty   0.473***  
(0.057)  

0.307***  
(0.054)  

0.473***  
(0.058)  

0.473***  
(0.057)  

Rule knowledge    -0.010  
(0.009)  

-0.011  
(0.008)  

-0.011  
(0.008)  

-0.011  
(0.008)  

Ability × difficulty        0.124***  
(0.019)  

0.124***  
(0.019)  

Ability × rule 
knowledge          0.030***  

(0.008)  

Residual variance 0.213 0.213 0.182 0.183 0.182 

Intercept variance 
across subjects 0.102 0.088 0.089 0.089 0.089 

Intercept variance 
across items 0.300 0.084 0.111 0.085 0.085 

Slope variance of 
difficulty across 
subjects 

    0.012 0.011 0.011 

Slope variance of 
ability  across 
items  

    0.016 0.005 0.005 

Intercept-slope 
correlation across 
subjects   

 0.185 0.184 0.183 

Intercept-slope 
correlation across 
items  

 0.654 0.517 0.528 

Number of 
estimated 
parameters 

4 7 11 12 13 

-2 log-likelihood 4220.51 4169.79 3887.73 3857.69 3844.05 

compared to 
previous model  

𝜒𝜒²(3) = 
50.72*** 

𝜒𝜒²(4) = 
282.06*** 

𝜒𝜒²(1) = 
30.04*** 

𝜒𝜒²(1) = 
13.64*** 

ICC 0.448     

Note.  Values in parentheses are standard errors.  K = 28 items are crossed with N = 105 subjects.  
P-values are based on the Satterthwaite approximation of degrees of freedom (see text).  ***p < 
.001.  **p < .01.  *p < .05.   
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Multi-level Analyses of Time.  In order to better understand the slope-intercept 

correlation, it was beneficial to interchange the predictor and the dependent variable in 

the previously presented models by predicting item response time from accuracy.  This 

could overcome limitations of predicting a dichotomous variable and the problems to 

estimate random effect covariance in the previous models.  We were interested in how 

item difficulty (level one) and person ability (level two) affected item response time.  

Three measures of general fluid ability (gf) were averaged and standardizing to serve as 

an estimate of ability.  As a measure of item difficulty we used the estimates from the 

CIRT model and standardized the values to make them comparable to the level two 

measure of general ability.  We used only pretest estimates and expanded these to 

posttest items because they were unaffected by our experimental manipulation.  This 

was warranted by the fact that both subsamples did not differ in terms of gf, F(1, 103) = 

0.23, p = .63.  A random effect was specified for the subject level factor and a further 

random effect was specified for the item content factor.  Both factors were completely 

crossed, i.e. there was one observation for any combination of the two factor’s values.   

The random intercept and fixed slope model suggests that person ability and 

item difficulty explain a significant amount of variance in item response time (see Table 

20).  Item difficulty had about four times as strong of an effect compared to ability.  

That is, for each standard deviation increase in item difficulty the response time for that 

item increases by about 0.473 log(seconds), while a standard deviation increase in 

ability increases response time by 0.119 log(seconds).  The rule teaching intervention 

did not seem to have an effect on response time, which confirms the ANOVA result 

reported above.   

The random slope model fits the data significantly better than the fixed slope 

model as indicated by a likelihood ratio test (see Table 20).  This indicates that slopes 

have a variance that is significantly different from zero and allows for the test of 

interactions between fixed effects (Aguinis, Gottfredson, & Culpepper, 2013).  The 

cross-level interaction model estimates the interaction effect between person ability and 

item difficulty at β = 0.133, meaning that subjects with high ability took even more time 

on hard items than subjects with low ability.  This is depicted graphically in Figure 10 

illustrating that, on very easy items, subjects with low ability tended to take slightly 

longer than their counterparts.  The opposite was true at the other end of the item 

difficulty spectrum, where response times of low ability subjects fall behind those of 

high ability subjects.  It appears that high ability subjects were slightly faster than low 
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ability subjects on very easy items, but adapted to the difficulty level of the items by 

taking more time on hard items.  On the other hand, low ability subjects were slightly 

slower on easy items and jumped to hasty conclusions on hard items, which were more 

likely to be wrong.  Although not reported here, we found similar results for the figural 

analogies task and for the letter sets task (see supplementary material).  

There was also a significant negative interaction between the effects of ability 

and the intervention (β = -0.059), suggesting that the relationship between ability and 

response time is significantly weaker with rule knowledge (see Figure 11).  This 

confirms the results from the CIRT models and a visual inspection of the interaction 

effect suggest that low ability subjects increased their response times with rule 

knowledge, while high ability subjects showed barely any difference between pretest 

and posttest measures.   

 

  
Figure 10.  Estimated interaction effect of item 
difficulty and person ability on item response time.  
The x-axis covers the range of values in the 
sample.   

Figure 11.  Estimated interaction effect of person 
ability and rule knowledge on item response time.  
The x-axis covers the range of values in the 
sample.   
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Table 21 
Series of multi-level models predicting various eye movement indicators.   

Predictors, 
variance 
components, 
and model fit  TR NTOG RTM TM TA RFRF BFRF AFRF 

Intercept 0.332***  
(0.013)  

11.418***  
(0.666)  

0.803***  
(0.010)  

31.268***  
(1.989)  

7.052***  
(0.491)  

0.457***  
(0.020)  

14.302***  
(0.947)  

24.038***  
(1.795)  

Person ability -0.022**  
(0.007)  

0.657  
(0.420)  

0.013***  
(0.003)  

5.717***  
(1.274)  

0.442  
(0.251)  

0.003  
(0.011)  

2.244***  
(0.618)  

3.841**  
(1.188)  

Item difficulty -0.018  
(0.011)  

3.993***  
(0.574)  

0.008  
(0.009)  

14.406***  
(1.821)  

2.640***  
(0.461)  

-0.066***  
(0.018)  

5.017***  
(0.833)  

12.051***  
(1.618)  

Rule 
knowledge 

-0.032***  
(0.005)  

-0.793**  
(0.268)  

0.018***  
(0.003)  

1.286  
(0.668)  

-0.396*  
(0.173)  

0.042***  
(0.008)  

1.591***  
(0.395)  

-0.746  
(0.707)  

Ability × 
difficulty  

  0.904**  
(0.266)  

 5.646***  
(1.005)  

0.673***  
(0.188)  

 1.871***  
(0.447)  

4.398***  
(0.931)  

Ability × rule 
knowledge  

        

Residual 
variance  

0.135 51.503 0.073 17.914 4.633 0.215 10.577 18.927 

Intercept 
variance across 
subjects 

0.005 14.062 0.001 96.066 4.384 0.010 26.584 89.235 

Intercept 
variance across 
items 

0.003 7.632 0.002 78.668 5.141 0.008 15.761 59.238 

Slope variance 
of difficulty 
across subjects 

 2.962  29.878 1.465  7.209 30.645 

Slope variance 
of ability  
across items  

 0.631  16.366 0.365  2.421 11.903 

Intercept-slope 
correlation 
across subjects 

 0.969  0.989 1  1 1 

Intercept-slope 
correlation 
across items 

 0.364  0.872 0.314  0.816 0.801 

Number of 
estimated 
parameters 

7 12 7 12 12 7 12 12 

-2 log-
likelihood 

-3050.27 19943.34 -6613.48 25314.12 17441.82 -395.96 22112.11 25488.36 

ICC 0.323 0.398 0.386 0.501 0.404 0.324 0.357 0.412 

Note.  Table continues on next page.  Each column represents a unique model with a different dependent 
variable.  Values in parentheses are standard errors.  K = 28 items were crossed with N = 105 subjects.  P-
values are based on the Satterthwaite approximation of degrees of freedom (see text).  TR = toggle rate, 
NTOG = number of toggles, RTM = relative time on matrix, TM = time on matrix, TA = time on 
alternatives, RFRF = relative first response fixations, BFRF = time before first response fixation, AFRF = 
time after first response fixation, RV = responses visited, HS = horizontal saccades, MTDI = matrix time 
distribution index, MTDSD = matrix time distribution standard deviation.  ***p < .001.  **p < .01.  *p < 
.05.   
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Table 21 (continued) 
Series of multi-level models predicting various eye movement indicators.   

Predictors, 
variance 
components, 
and model fit  RV HS MTDI Abs(MTDI)  MTDSD  

Intercept 6.063***  
(0.211)  

0.759***  
(0.008)  

0.030  
(0.028)  

0.201***  
(0.008)  

7.067***  
(0.061)  

Person ability 0.072  
(0.073)  

0.003  
(0.007)  

0.031**  
(0.011)  

-0.004  
(0.005)  

0.103**  
(0.035)  

Item difficulty 0.783***  
(0.206)  

-0.010  
(0.005)  

-0.014  
(0.026)  

-0.027***  
(0.007)  

0.399***  
(0.055)  

Rule 
knowledge 

-0.399***  
(0.061)  

0.047***  
(0.003)  

-0.023***  
(0.003)  

0.005*  
(0.003)  

-0.028**  
(0.009)  

Ability × 
difficulty  

0.144*  
(0.053)  

 
  

  0.117***  
(0.021)  

Ability × rule 
knowledge  

    0.031**  
(0.010)  

Residual 
variance  

1.641 0.090 0.032 0.020 0.254 

Intercept 
variance across 
subjects 

0.308 0.004 0.012 0.002 0.096 

Intercept 
variance across 
items 

1.107 0.001 0.018 0.001 0.076 

Slope variance 
of difficulty 
across subjects 

0.034    0.011 

Slope variance 
of ability  
across items  

0.041    0.006 

Intercept-slope 
correlation 
across subjects 

    -0.009 

Intercept-slope 
correlation 
across items 

    0.312 

Number of 
estimated 
parameters 

12 7 7 7 13 

-2 log-
likelihood 

11343.10 -5383.34 -1415.80 -2933.50 4711.80 

ICC 0.414 0.371 0.490 0.075 0.537 

Note.  Continuation of previous table.  RV = responses visited, HS = horizontal 
saccades, MTDI = matrix time distribution index, MTDSD = matrix time distribution 
standard deviation.   
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Multi-level Analyses of Eye Movements.  Table 21 summarizes the results of a 

series of multi-level models that explore the effects of person ability, item difficulty, 

and rule knowledge on various eye movement variables.  For the sake of briefness we 

present only the final best fitting models that resulted from a process of successively 

adding parameters (see supplementary data for all models).  Some models estimated 

slope variances of zero or close to zero, in which case we present fixed slope models.  

Whenever random slopes seemed justified by the data we also tested if interaction 

effects could improve model fit.  The predictor variables ability and difficulty were 

standardized to z-scores for easy comparability and interpretability.  Rule knowledge 

was coded with zero (pretest) and one (posttest).  

The first column in Table 21 shows results of a multi-level model for the Toggle 

Rate (TR) variable which reflects the frequency of saccades that ran between the two 

main areas of interest.  It appears that TR was affected by person ability and by rule 

knowledge, but not by item difficulty.  On the other hand, the absolute number of 

toggles (NTOG) was affected by item difficulty, but not by person ability.  Thus, the 

reduction of TR due to higher ability was mainly driven by an increase of the processing 

time, while the absolute number of toggles remained constant across ability levels.  

The relative time on matrix (RTM) reflects the cumulative timespan of all 

fixations within the bounds of the matrix area relative to total response time.  This 

variable showed similar covariance patterns as TR and was influenced by ability but not 

difficulty.  By breaking the RTM down to its numerator and denominator, we got 

clearer picture about how eye fixation time is allocated to the areas of interest.  

Difficulty increased both, the time on matrix (TM) and the time on alternatives (TA) 

which seems to mirror the overall effect of difficulty on processing time.  In contrast, 

person ability did only increase the TM.  In addition there was a significant interaction 

between the effects of ability and difficulty on the TM, which was also larger than the 

corresponding interaction effect on the TA.  Cross referencing this with the pattern of 

results for response time shows that the increasing time spent on harder items by high 

ability subjects is mainly devoted to the matrix area, which is indicative of a 

constructive matching strategy.  

Interestingly, this pattern was different for the relative time of the first response 

fixation (RFRF).  This variable reflects the amount of time that was initially spent on 

the matrix area as a percentage of total response time and is based on the timestamp of 

the first fixation in any part of the response area.  This variable was affected by item 
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difficulty but not by person ability.  Breaking this variable down to its numerator and 

denominator, reveals basically the same pattern as we found for overall response time, 

meaning that difficulty and ability both increase response time before and after the first 

response fixation.  A closer look at the magnitude of effects, suggests that difficulty 

affected the absolute time after the first response fixation more (β = 12.051) than the 

time before (β = 5.017).  The number of response alternatives visited (RV) showed the 

same pattern and was also affected by difficulty but not ability.  Overall it seems like 

there were two distinct kinds of variables: Those affected by item difficulty (NTOG, 

RFRF, and RV) and those affected by person ability (TR and RTM).  

Besides the differential effects of ability and difficulty on eye movement 

behavior, there was a pervasive effect of rule knowledge on all variables.  This is 

consistent with the hypothesis that rule knowledge changes the strategic approach of 

problem solvers.  Looking at the effects of rule knowledge on the decomposed eye 

movement variables revealed further details about how rule knowledge acts to change 

strategies.  While ability reduced TR via an increase in time and constant NTOG, rule 

knowledge actually reduced NTOG while having no effect on response time.  Thus, the 

effect of rule knowledge is more like the inverse effect of item difficulty.  Similarly, 

rule knowledge had no significant impact on the TM, again acting unlike ability.  The 

effect on RTM was rather driven by a weak negative effect on the TA and this pattern is 

also more comparable to an inverse effect of item difficulty.  The effect of rule 

knowledge on RV was also like an inverse effect of difficulty, but the pattern of results 

for RFRF and its constituents was rather unique.  Rule knowledge significantly 

increased the BFRF (β = 1.591) without affecting AFRF while difficulty was increasing 

AFRF stronger than BFRF.   

Finally, the matrix time distribution index (MTDI), as originally proposed by 

Vigneau et al. (2006) was somewhat correlated with ability replicating their finding.  

Vigneau et al.’s interpretation was that “high-scoring individuals [were] trying to take 

into account all the information provided by each cell and low-scoring individuals 

[were] biasing their inspection mainly toward adjacent cells (last row and last column)” 

(p. 271).  However, we noticed in our data that the MTDI distribution spanned rather 

evenly into positive and negative values (min = -1, max = .69), so a positive correlation 

should mean that, with higher ability, fixations were slightly biased towards the four top 

left cells of the matrix area.  In order to test whether ability or difficulty affect the 

degree to which matrix time is distributed evenly versus unevenly it seemed more 
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appropriate to analyze the absolute value of the MTDI.  Positive values on this new 

variable should mean that matrix time is biased to either side, while values near zero 

suggest an even distribution.  Since this variable was heavily skewed towards zero, we 

log-transformed the variable before the analysis.  After this transformation the 

Abs(MTDI) was mostly affected by difficulty in that harder items produced an even 

distribution (β = -0.027).  Note, the rather low ICC = .075 indicated that this variable 

was not as much affected by person level variance as other variables in this experiment 

(Table 21).  Seeing that this variable might be hard to interpret, we conceived of an 

alternative and probably more direct way to index uneven time distribution among 

matrix cells.  We took the sum of the duration of all fixations on each cell and 

calculated the standard deviation.  We excluded cell nine from this statistic, since there 

should have been no information to glean from and there were consistently lower 

fixation times.  An even distribution would result in a matrix time distribution standard 

deviation (MTDSD) near zero, while biased information seeking would result in 

increasing values.  Again, this variable was heavily skewed towards zero, so we log-

transformed the variable before the analysis.  This variable was affected by difficulty (β 

= 0.399) in a way that it biased matrix cell fixations towards an uneven distribution.  

The MTDSD was also related to ability in the same way (β = 0.103).  This finding runs 

contrary to Vigneau et al.’s interpretation of the original MTDI.  Furthermore, two 

interaction effects suggest that ability increased bias even more with rule knowledge (β 

= 0.031) and that higher ability increased bias even more with higher difficulty (β = 

0.117).  In sum, three different indicators of matrix time distribution yielded three 

different, and partly contradicting, covariance patterns.   

General Discussion 

Are matrix reasoning strategies influenced by rule knowledge?  How is response 

time related to ability, difficulty, and the use of strategy?  The results from the current 

study offer some answers to these questions.  The pilot study explored the feasibility of 

a within subjects paradigm.  The results generally supported the hypothesis that eye 

movement behavior was affected by rule knowledge in a way that increases constructive 

matching.  But we also noted that the two item blocks were not balanced and potentially 

confounded the results.  After a careful revision of the item composition of the two 

blocks, we used the revised material in the main experiment.  Here we also assessed 

participants’ general mental ability with three additional measures of fluid intelligence.  
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An extensive series of multi-level models revealed some new insights into the 

relationship between ability, difficulty, response time, and eye movement behavior.  We 

confirmed two of the hypothesized effects of rule knowledge: test performance 

increased, and eye movement behavior changed.  We did not observe any of the 

hypothesized differences in the pattern of correlations between pretest and posttest 

conditions.  That is, performance on the Raven test did not correlate differently with 

measures of fluid intelligence or with the backward digit span task as a measure of 

working memory capacity.  We did, however observe a significant decrease of the 

correlation between Raven test scores and test time from pretest to posttest.  Further 

multi-level analyses revealed that this effect might have occurred due to low ability 

subjects’ increase in test time due to rule knowledge.  Furthermore, the interaction 

effect of ability and difficulty on item response time suggests that persons with high 

ability somehow adapted to the difficulty of very hard items.  Finally, by incorporating 

the effects on time into the effects on strategy we got a clearer interpretation of eye 

movement variables.   

Eye Movement and Time   

Response time on the Raven test was heavily influenced by item difficulty.  

Parallel to this finding, difficulty affected a distinct pattern of eye movement indicators.  

Harder items resulted in a higher absolute number of toggles (NTOG), in more response 

alternatives being taken into consideration (RV), and in an increased time after the 

initial inspection of the matrix (AFRF).  That is, these behavioral variables are probably 

determined by item complexity, which generally indicates the amount of information 

that can be extracted from the item and how hard it is to extract this information.  Many 

studies have shown that item complexity is a major determinant of item difficulty and 

processing time (Bethell-Fox et al., 1984; Green & Kluever, 1992; Mulholland et al., 

1980; Primi, 2002) so this is nothing new, but the eye movement indicators give some 

insight into the way subjects spend their increased response times.  Apparently they do a 

lot of comparisons between the problem matrix and the response alternatives and take 

more response alternatives into consideration.  The lower RFRF on high difficulty items 

can, at least in part, be explained by increased time.  Although difficulty affected 

processing time overall, the time after the first response fixations seems stronger 

affected than the time before.  By definition, there can be no toggles or responses visited 

before the first response fixation, so the increased time after the first response fixation 
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goes hand in hand with an increase of RV and NTOG.  These findings suggest that 

difficulty increases the use of response elimination strategy and are well in line with the 

idea that it is a fallback strategy on harder items (Snow, 1980).   

On the other hand, the overall mean RFRF was 48%, thus on average, subjects 

spent almost the entire first half of their total response time exclusively on the matrix 

area.  By definition, there can be no response elimination during this time, thus 

constructive matching was the default strategy by the majority of subjects in this 

sample.  This is in line with the mental model theory of reasoning which assumes that 

reasoners build an iconic and symbolic model of the elements in the problem and their 

interrelations (Johnson-Laird, 2004).  From this model it is possible to deduce possible 

response alternatives and it should be only then, that reasoners consult response 

alternatives for comparison.  It is possible that reasoners obtain disconfirming evidence 

from the response alternatives, for example, when they encounter multiple response 

alternatives compatible with their mental model.  In that case they should try to make 

adjustments to the model based on additional information from the matrix area.  This 

should be an iterative process that repeats until a satisfactory solution is found.  

However, if no solution is found then subjects have to revert to an alternative strategy 

that likely involves guessing.  Previous descriptions of the response elimination strategy 

were rather elliptical and it is unclear how this strategy operates and when it is 

triggered.  Given our assumption that constructive matching was the default strategy for 

a vast majority in our sample, it appears unlikely that participants eliminate responses 

from the very start of the reasoning process.  We propose that each toggle down to the 

response area marks the completion of a model building or model updating process.  

The initial model usually takes the largest amount of time, almost half of the total 

response time.  If disconfirming evidence is encountered during the first inspection of 

response alternatives then the initial model is updated and further information is sought 

from the matrix area.  In this regard, TR or RV are not so much indicators of a distinct 

strategy, but indicators of iterations in a mental model building and updating process 

when the model does not lead to one definite solution.   

Additionally, the RFRF was one of the main predictors of item performance and 

seems a crucial indicator for the initial mental model building process.  Consider, for 

example, a study by Oberauer, Weidenfeld, and Hörnig (2006) in which participants 

were presented with a series of sentences describing spatial relationships between 

figural elements.  Of the four sentences, the first sentence was by far the one with the 
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longest reading time.  Thus, it appears that setting up an initial mental model, even if it 

contains just two elements and one relation, takes the longest amount of time.  

Additional information is subsequently integrated into the initial model and takes less 

time.   

Difficulty did also affect the MTDSD and made the distribution of fixations 

within the matrix more uneven.  It is, however, not possible to say in what way it makes 

the distribution uneven since this statistic treats all the cells evenly.  We surmise that 

biases are actually contingent on the content of a matrix.  Raven items can differ 

greatly, for example, in the direction that the rules work or the focus that rules have on 

individual cells.  For example, a one-of-each rule could evoke an even distribution of 

fixations within a row, while a plus rule might evoke fixations on the two addends in the 

first two cells of a row.  Hence, further research is necessary to clarify the role of 

fixation distributions among matrix cells by controlling for matrix content.  Meanwhile, 

Hayes et al. (2011) offered one solution by suggesting that eye movements of well 

performing subjects run systematically from cell to cell and row by row within the 

matrix area.   

On the subject level, we found two variables that were related to ability instead 

of difficulty.  The RTM was increasing and the TR was decreasing with higher ability.  

This finding is compatible and explainable with findings from the analysis of time.  The 

lower TR due to ability was actually a result of increased response time while the 

absolute number of toggles remained rather constant.  The increased RTM was also a 

result of increased response time, but especially due to increased response time on the 

matrix, while response time on alternatives was unaffected by ability.  Thus, these two 

eye movement indicators give a good picture about how high ability subjects used their 

increased response time: They spend it almost exclusively on the matrix area while 

toggles between matrix and response alternatives remain constant.  There was also a 

significant cross-level interaction on TM, meaning that on harder items, subjects with 

high ability seek even more information from the matrix.  This might be evidence 

against the interpretation of response elimination as a fallback strategy, because then 

participants should direct less attention towards the matrix. 

Bringing these results together it seems like person ability and item difficulty 

have somewhat differing effects on the information seeking pattern of test-takers.  

While ability increases the time invested and biases information seeking towards the 
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matrix area, difficulty increases the frequency of information seeking from response 

alternatives.  

Eye Movement and Rule Knowledge 

All eye movement variables were affected by rule knowledge, generally 

supporting the idea that rule knowledge changes strategy.  Looking at the effects of rule 

knowledge on the decomposed eye movement variables revealed further details about 

how rule knowledge acts to change strategies.  Overall, the effect of rule knowledge on 

eye movements seems parallel to the inverse effect of difficulty.   

The rule knowledge effect on RFRF was driven by an increased processing time 

of the matrix area and rather constant time after the FRF.  This was unlike the effects of 

person ability or item difficulty, which were mostly reflecting the overall response time 

effect.  This is clear evidence that subjects were trying harder to figure out how to apply 

the learned rules to the problem in the very beginning of the problem solving process.  

That is, rule knowledge stimulated subjects to spend more time on building an initial 

mental model.  The fact that rule knowledge did also reduce the number of toggles and 

the number of responses visited provides evidence that the constructive matching 

process was overall more successful, leading to a response in fewer updating iterations.   

A unique effect of rule knowledge was present for HS and this was likely due to 

the fact that the rule teaching video explained the rules row-wise.  If the rules were 

taught vertically we would likely have observed an increase of vertical saccades, but 

this should not have affected any of the other variables as they are defined independent 

of gaze direction within the matrix area.   

In sum, rule knowledge does not increase response time while reducing the 

number of toggles, reducing the amount of responses visited, reducing the absolute time 

on alternatives, and increasing the initial processing time of the matrix.  This pattern of 

results does not only indicate a frequent usage of a constructive matching strategy, but 

also indicates that the strategy is more successful when the rules are known.   

Time 

Our first approach to the analysis of response time data was a conjoint item 

response and time model (CIRT), which estimates parameters for time and performance 

on the item level and the person level.  The results replicated previous findings and 

encouraged the notion that item level and person level effects should be analyzed 

separately.  We found that persons with higher ability were overall slower and that 
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items with increasing difficulty made item response times slower.  We also found that 

response latencies were correlated across different tasks of general fluid ability, thus 

giving further evidence for the idea that there is a general test-taking time factor 

(Roberts & Stankov, 1999).   

Dodonova and Dodonov (2013) raised concerns about the CIRT approach 

because “a single estimate of the speed-accuracy correlation at the person level can hide 

the true relations between these variables, which are likely to vary as a result of varying 

item difficulty” (p. 9).  We were able to confirm a varying effect of ability on response 

time, depending on item difficulty in a multi-level analysis.  That is, subjects with high 

ability were as fast as the rest on easy items (or slightly faster even) but seemed to adapt 

to increasing item difficulty with longer response times.  Subjects with low ability were 

also adapting and increasing their response times to difficulty but at a significantly 

lower rate.  Although not reported here, we also found similar patterns of results with 

measures of fluid intelligence other than the Raven (see supplementary material).  This 

explains the, at a first glance, contrary effects of item difficulty and person ability.  That 

is, on any given item, difficulty increases response time and easiness reduces response 

time.  That should mean that a person with high ability, for whom the item is easy, 

should be faster than a person for whom the item is hard.  But the person with high 

ability will invest even more time to solve the hard items and thus achieve a higher 

probability for a correct response.  That is why there is generally a positive correlation 

on the person level.   

Sternberg made the point: “… not that more intelligent people are inherently 

slower than less intelligent ones, but rather, that the key to their intelligence insofar as 

speed of processing is concerned is not just that they are fast or slow, but that they know 

when to be which” (Sternberg, 1986, p. 269).  But how do they know?  At least two 

explanations seem plausible, both of which suggest a role of motivation.  First, the 

positive correlation might be an epiphenomenon of motivation as a common underlying 

cause.  That is, motivation would affect effort that is related to the investment of 

cognitive resources.  Assuming that the capacity of cognitive resources is limited by 

general ability and independent of motivation, then higher motivation would affect the 

timespan over which cognitive resources are allocated to the task of interest.  This in 

turn might increase the probability of finding a correct solution to a given problem.  As 

such, motivation would be an independent factor of general ability but also important in 
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explaining test results.  The challenging question in this context is, whether the low 

ability subjects would have scored higher had they taken themselves more time?   

A second plausible explanation assumes that motivation or effort, as reflected by 

time investment, is a result of test experience.  As a test-taker progresses through the 

items of a test they may experience how hard or easy the test is for them (Mitchum & 

Kelley, 2010), which would in turn be dependent on the individual’s general ability.  

This might in turn affect their motivation as pictured by Weiner’s attributional theory of 

motivation (Weiner, 1985).  That is, if an individual experiences the test items as 

challenging then motivation might decline thus items are not given the proper mental 

resources.  On the other hand, if an individual feels confident in his answers, then this 

might lead them to accept the challenges of very hard items and invest a lot of time an 

effort into the solution process.   

The distinction is similar to the one between a trait and a state, which means that 

actually both explanations can be true at the same time and cannot be answered 

conclusively with the current data.  Nonetheless, the finding that rule knowledge did 

improve test performance and strategy but not response times, might be indicative for 

the first explanation, i.e. that motivation acts as trait and has an effect independent of 

ability and test experience.  Also, the CIRT estimated traits of person speed correlated 

across different fluid intelligence tasks and provide evidence for an independent 

motivational cause.  We also found that the correlation between time and performance 

was significantly lower and almost zero after rule knowledge and this effect was related 

to the finding that subjects with low ability increased their response times with rule 

knowledge but high ability subjects did not.  This could mean that subjects with low 

ability did profit especially from the rule teaching intervention but that was not the case, 

as there was no significant interaction between ability and the intervention effect on test 

performance (see supplementary material).  So all subjects did profit from knowing the 

rules to about the same degree, but low ability subjects did also increase their response 

times and this could have a motivational cause.   

Further research is necessary, that would incorporate experimental 

manipulations of the time limits or manipulations of the motivational state via 

incentives.  One could, for example, limit the response time windows for high ability 

subjects to the same level as those of low ability subjects and see if performance would 

drop to about the same level, or one could persuade low ability subjects to take as much 

time as high ability subjects.  There are, of course, methodological challenges with the 
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implementation of such designs because there is no uniquely typical response time span 

for all subjects with certain ability.  Setting a time limit to some average would not 

work for many individuals.  Maybe, the estimation of such time limits could be 

informed by an on-line evaluation of eye-movements.  That is, if it was possible to 

identify distinct stages of reasoning in eye movements then it could be possible to set 

time limits or provide incentives based on this information.  The current research can be 

seen as a first step towards the identification of such stages in matrix reasoning.   

Stable Correlations   

The hypothesis concerning changes in the correlations with measures of fluid 

intelligence was not confirmed in this sample.  This parallels previous findings in which 

correlations with creativity or measures of rule discovery did not change due to rule 

knowledge (Loesche et al., 2015).  Thus, changes in strategy could explain previous 

findings in which the correlation with working memory capacity raised with rule 

knowledge.  Constructing a mental model of the problem and deducting possible 

response alternatives is arguably demanding to working memory capacity because all 

the elements and relations need maintained during reasoning.  Eye movement indicators 

revealed that rule knowledge increased the time of the initial model building phase, as 

indicated by a delayed first response fixation.  This leads us to suggest that the 

knowledge of possible relations is already incorporated into early mental models.  This 

did also result in a more successful reasoning and less frequent model updates, as 

indicated by lesser toggles between the matrix and the response alternatives.   

Our original idea was that working memory is not crucial for generating possible 

rules during the reasoning process because current theories about working memory are 

mostly concerned with processing and maintenance of already available information.  

Thus, other processes should be relevant, processes that control the emergence of new 

information.  So far there was no other process that seems empirically plausible for the 

explanation of rule generation, so how do people come up with the rules?  Most of the 

rules can probably be considered as abstractions of more or less common knowledge 

(e.g., addition or subtraction).  So rules probably need not be created and induced from 

scratch, but abstract concepts of the rules need to be sought out from conceptual 

knowledge in long term memory (Hunt, 1974).   

Arguably in our experiments, people did not learn completely new rules.  

Everybody should be aware of concepts such as addition, or the even distribution of 
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things, or the progressive change of attributes.  So the rule teaching videos did not 

exactly teach something new but were rather activating certain concepts and made them 

more accessible.  It is questionable if the teaching of rules would have had the same 

success in populations where these common concepts are unknown, like very young 

children for example.  Intelligence test items for preschool or early elementary school 

do often contain figural reasoning tasks but the underlying rules are much simpler than 

in adult versions.  Arguably, adult rule concepts would not work for young children.  It 

seems unlikely that preschool children could induce new complex concepts all on their 

own during an IQ test when there is no prior knowledge.  Thus, reasoning would depend 

on knowledge.  Complementary to investment theory (Cattell, 1963; Schweizer & Koch, 

2001), this is probably one reason why there is a relation between fluid and crystallized 

intelligence and it is a possible explanation for the Flynn effect (Armstrong & Woodley, 

2014; M. C. Fox & Mitchum, 2013).   

Intriguing questions remain unanswered as to under what circumstances certain 

concepts get activated.  For example, it might not only be relevant that conceptual 

knowledge of a rule is present at all, but also the accessibility of said knowledge.  

Research from Rosen and Engle (1997) suggests that working memory capacity is a 

limiting factor in a verbal fluency task that measures the accessibility of long term 

memory content.  Working memory is supposedly responsible for monitoring and 

enables a controlled strategic search of accessible knowledge.  Another theory proposes 

the link to long term memory works through the episodic buffer, and is separate from 

the working memory system (Baddeley, 2000).  Baddeley thought of this memory 

component as being episodic in nature, however abstract concepts underlying figural 

reasoning tasks are rather semantic.  More relevant then is probably the visuospatial 

sketchpad which Baddeley supposed to be relevant for semantic content.  The episodic 

buffer, to date, is not very well understood, both theoretically and empirically, and has 

often been used to explain puzzling results (Baddeley, Allen, & Hitch, 2010).  Thus, 

further research is necessary to investigate how mental models in working memory 

match up with conceptual knowledge about abstract rules in long term memory.   

Limitations 

Contrary to previous results (Loesche et al., 2015) the correlation with a 

backward digit span did not increase with rule knowledge in the current sample.  The 

focus of this study was on the relationship to gf, so there was only a single task to 
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measure working memory capacity and this was possibly not fully capturing the 

construct.  Thus, possible effects could have been overshadowed by task specific 

sources of variance.  Additionally, the effect of rule knowledge was comparably weak 

in the current sample (about 5% more items solved with rule knowledge) than in 

previous between-subjects designs (about 10% more items solved with rule knowledge; 

Loesche et al., 2015).  Reasons could be due to the alignment of instructions between 

pretest and posttest or possibly due to the limited ability range in the current sample.  

Compared to middle school students in previous research, the current sample comprised 

of undergraduates who arguably were a selective subpopulation with relatively higher 

and fully developed working memory capacity.  This might have factored into the 

observed correlations and would suggest a developmentally differential role of working 

memory capacity for the application of certain strategies.  Despite these possible 

explanations, this raises doubt on our previous finding and further research is necessary 

to investigate the robustness of this effect.  It seems at least plausible to expect higher 

reliance on working memory because the observed strategy shifts should demand more 

working memory capacity.   

A further limitation is that there was no true control group, which could have 

been helpful in clarifying the interaction effects due to unequal item blocks.  However, 

the whole purpose of the within-subjects design was to avoid the necessity of such a 

control group and maximize the test-power in a limited sample size.  Additionally, the 

fact that we already found strong effects on eye movement behavior in a between-

subjects design (Loesche et al., 2015), strengthens the interpretation that the current 

findings were attributable to rule knowledge.   

Finally, short item blocks of fourteen items each in the main experiment, might 

have caused estimation problems in some of our multi-level models.  Although this 

should not have affected the central pattern of results, it could be useful in future studies 

to utilize automatic item generators (e.g., Arendasy & Sommer, 2005; Matzen et al., 

2010) to create fully parallel items in large quantities.   

Conclusion 

Rule knowledge affects strategy for the better.  We interpreted our results in 

light of the model theory of reasoning (Johnson-Laird, 2005).  Eye movements suggest 

that rule knowledge affects the initial encoding and mental model building process and 

leads to a response with fewer iterations.  That is, mental models are more 
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comprehensive and this can explain why previous studies have found an increased 

correlation with measures of working memory in samples where the capacity was not 

yet full-grown (Loesche et al., 2015).   

For decades, researchers have assumed that two strategies can be applied in 

figural reasoning.  Seeing that eye-movement variables were largely affected by item 

difficulty it seems questionable to assume qualitative strategic differences on the person 

level.  Our interpretation is rather, that differences in cognitive ability make differences 

in the comprehensiveness of mental models.  Response elimination as a purely 

backwards reasoning strategy does probably not exist and would be incompatible with 

the idea, that people build mental models during reasoning.  We maintain that eye-

movement indicators that were previously connected to a response elimination strategy 

(e.g., toggle rate) are better interpreted as indicators of the efficiency of the model 

building process.  We propose that response elimination would only occur after the 

initial constructive matching fails to yield a satisfying solution and is more guessing 

than strategy.   

Last, but not least, our analyses of response times suggest that subjects of high 

ability do generally employ more effort in their reasoning and even more so on 

challenging problems.  This hints towards a motivational aspect in reasoning that is, at 

the same time, closely linked to ability.  Recent discussions about the application of 

speeded versus power tests (Ackerman & Ellingsen, 2016) could be informed by this 

finding, suggesting that high ability individuals can only play their cards right when 

they have the proper time for it.    
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Epilogue 

The first part of this dissertation gave an overview of the possibilities of 

cognitive assessment in infants and children.  One major finding in this field of research 

is that with younger age, a reliable assessment is increasingly hard to achieve.  Methods 

that attempt to assess cognitive abilities in infants and children suffer from low 

reliability and it is harder to find evidence for a psychometric g-factor in very young 

children than in adults.  A theoretical account by van der Maas et al. (2006) suggested 

that the g-factor is an epiphenomenon that emerges during cognitive development in 

early years from the interplay of cognitive processes.  Hence, research in psychological 

assessment of talent and giftedness could gain new insight by focusing on well 

described cognitive functions.  Recent studies have shown that working memory is a 

good predictor of early school achievement (Alloway & Alloway, 2010; Fischbach, 

Preßler, & Hasselhorn, 2012).  Furthermore, working memory has gained much 

attention in intelligence research over the past two decades (e.g., Ackerman et al., 

2005).  That is why the role of working memory capacity for measures of intelligence 

was of particular interest in the empirical parts of this dissertation.   

The experiments in Part 2 were inspired by the idea that rule induction would 

not depend on working memory capacity.  The first three experiments explored the 

correlational pattern of the Raven test with other measures, under the condition of 

known rules and under normal testing conditions.  The finding that the correlation with 

working memory capacity increases under the condition of known rules suggests that 

rule induction is not dependent on working memory.  However, testing the inverse 

rationale of this hypothesis did not reveal the expected results.  The idea was that pure 

measures of rule induction should correlate less with the Raven test under the condition 

of known rules.  But the Brixon Rule Anticipation test (see Crescentini et al., 2011) and 

creativity measures correlated the same with matrix reasoning under both experimental 

conditions.  Experiment 4 additionally revealed that eye movement patterns were 

changing as a result of the experimental manipulation of rule knowledge.  The results 

suggest that matrix reasoning with known rules involves less frequent saccades between 

the matrix and response alternatives and longer inspection times of the matrix.  In 

combination with previous research (Vigneau et al., 2006), this pattern of results 

indicates that reasoners deploy a more advanced and effective strategy that is usually 

deployed by individuals with high ability.  Assuming that the advanced solution strategy 
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is working memory demanding, this finding offers an alternative explanation for the 

finding of increased working memory correlations.  That is to say, correlations with 

working memory measures might have increased because knowing the rules enabled 

reasoners to engage in more working memory demanding strategies.   

The aim of the experiments in Part 3 was to investigate this hypothesis further.  

The basic idea was to replicate the results of Experiment 4 in a larger sample and to 

utilize a within-subjects design for greater test power.  Indeed, the results replicated the 

finding of changing eye movement patterns due to rule knowledge and provide further 

insight into the problem solving process via the consideration of response latencies.  

The data does generally support the notion that test-takers are more likely to engage in a 

constructive matching strategy.  This strategy involves the mental construction of a 

possible answer to then match it against the given response alternatives.  This strategy 

was interpreted against the background of mental models theory, which assumes that 

reasoning involves the construction of mental models that form abstractions of 

perceived stimuli (Johnson-Laird, 2004, 2005).  According to this interpretation, there 

should be no qualitative inter-individual differences in solution strategies.  The data 

revealed that eye-movements were predominantly changing within subjects as a 

function of task difficulty, suggesting that variables that were previously interpreted to 

reflect a qualitatively different strategy are more likely to reflect the progress of the 

mental model building process.  I will elaborate more on the implications of these 

results for inductive reasoning in the next section and will then conclude with thoughts 

on intelligence.   

Thoughts on Inductive Reasoning 

After reviewing a host of research on reasoning and analyzing first-hand 

empirical results in the current dissertation, I have come to revise my initial theory 

about inductive reasoning.  I first thought that inductive reasoning, as measured by 

matrix reasoning items, can be described by two components that were inspired by 

Carpenter et al. (1990).  One must be chiefly influenced by working memory capacity.  

This was a necessary assumption, since measures of working memory capacity have 

reliably proven to share a great amount of variance with measures fluid intelligence in 

general, and with matrix reasoning in particular.  Initially, working memory was 

thought to be connected to goal management as hypothesized by Carpenter et al. (1990).  

According to this notion, working memory would be a requirement for active 
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maintenance and updating of task goals during the execution of various reasoning 

processes.  But the concept of goal management is probably more relevant when 

researchers are trying to model human cognition in artificial cognitive architectures 

where they provide a guiding structure (e.g., Choi, 2011).  Computer programs are 

usually systematic so that the same input leads to the same output.  However, that is not 

necessarily the case in natural human cognition.  The discussion of results in Part 3 of 

this dissertation concludes that a mental model theory (Johnson-Laird, 2004, 2005) can 

explain why matrix reasoning relies on temporary storage and processing.  Supported by 

observations of eye-movements and response times, it was conjectured that a central 

part of matrix reasoning consists of the consecutive build and update of an abstract 

mental representation of the matrix problem.  This implies that working memory 

capacity would be completely occupied with a mental model that is characterized by 

figural elements (or abstractions thereof) and their relations.  

The relations are central to the second supposed process, namely rule induction.  

It is evident that John Raven created his matrices with some rules in mind, and 

Carpenter et al. (1990) empirically showed that people are able to recognize and 

verbalize these rules.  They listed five rules that were based on a small sample of think-

aloud protocols.  However, these were only the ones that were actually recognized and 

verbalized in their samples of 12 and 22 students.  There are certainly more rules 

involved in Raven’s APM or other matrix reasoning tests and this is why some items 

could not be classified by Carpenter et al. (1990).   

Regardless of the actual amount of rules, one central research question of this 

dissertation was how people can recognize these rules.  Based on theoretical 

considerations, it was initially hypothesized that working memory cannot be responsible 

for rule induction.  The logic was that rules need to be generated, so the cognitive 

process responsible for this needed some productive feature.  Thus, one of the empirical 

approaches towards this process was the consideration of creativity, which was 

unsuccessful.  Creativity turned out to be a particularly difficult construct.  There are 

ways of measuring it (Silvia et al., 2008), but when it comes to the practical 

implementation, there are so many points that require a decision of some sort, that in the 

end one can barely speak of an objective and reliable measurement.  There is, for 

example, the decision about what responses should be excluded for being beside the 

point or unrealistic, and there are multiple options for the degree to which guidelines 

confine ratings.  Furthermore, the inter-rater agreement was alarmingly low (see Part 2) 
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which was possibly a result of providing sparse confinement.  However, more rigorous 

guidelines could have compromised ratings in a way that they reflect the guidelines 

instead of actual ratings, and guidelines are subjective as well.  The bottom line is that 

creativity, in terms of productive and divergent thinking, is hardly measurable and it 

requires great time and effort to even try.   

Another approach to make the underlying processes directly detectable was 

based on a method from research in cognitive neuroscience.  The Brixton Spatial 

Anticipation task was shown to trigger activation in brain areas that were different, 

depending on whether the current phase in the task required search for a rule or 

application of a rule (Crescentini et al., 2011).  However, research presented here 

suggests that performance on this task was significantly correlated with working 

memory capacity.  In retrospect, this is not surprising because the task has a storage 

demanding component.  Participants were asked to track the position of a circle on a 

12x2 spatial array of slots.  This circle was jumping from slot to slot, following a hidden 

rule.  In order to recognize the pattern, it was inevitable to memorize at least two 

consecutive slots and to process whether the current guess is right or wrong.  While the 

recognition of hidden rules certainly has a part in this task, the reliance on working 

memory is just too big to consider it a pure measure of rule induction.   

Finally, one of the theoretical assumptions put forward in Part 3, was that rule 

induction must be relevant in other inductive reasoning tasks that are common in the 

field of intelligence research.  To cut a long story short, there were again none of the 

predicted patterns in the results.  Correlations were not changing as a function of rule 

knowledge.  However, the results from the observation of eye movements in the final 

experiment in Part 2 and in the experiments in Part 3 suggest that previous results, that 

were thought to be connected to rule induction, could be related to the use of certain 

reasoning strategies.  As pointed out in the beginning of this paragraph, this points 

towards a mental model theory of reasoning.   

The conclusions to be drawn empirically about rule induction are limited, mostly 

because none of the approaches to find a pure measure were particularly successful.  

However, I can try to advance our understanding of rule induction and inductive 

reasoning theoretically.  One key revelation came during the discussion of the results in 

Part 3: The manipulation of rule knowledge, the main characteristic of the paradigms in 

all experiments here, did not manipulate rule knowledge.  The idea is that all the rules 

that were taught in the current experiments (plus, minus, one of each, constant, 
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progress) were common knowledge in the population underlying the samples here.  In 

other words, the rules are assumed to be already present as abstract concepts in long-

term memory of most human beings with a certain age and education.  Unlike my first 

assumption, rules need not at all be created from scratch.  Instead, the representations of 

said rules need to be retrieved from long-term memory and correctly matched to the 

current mental model.  There is no need for a rule induction process that generates these 

rules and makes them a conscious representation in working memory.  The process is 

probably more like a thorough search for matching representations in long-term 

memory, similar to the search for the name to a familiar face.  This might be quite easy 

but can prove to be quite troublesome, as research on the tip-of-the-tongue effect has 

shown (Burke, MacKay, Worthley, & Wade, 1991).    

A long-term-memory-theory of rule induction would assume that teaching of 

rules to a matrix reasoning task pre-activates the corresponding representations in long-

term memory.  As a result, more time and effort can be devoted to building the mental 

model instead of trying to match rules.  Verguts et al. (1999) proposed that rule 

generation works similar to sampling from an urn, and this seems like a very 

appropriate analogy to the rule induction process if one assumes that the urn is filled 

with knowledge.  Long-term memory can be thought of as an associative network 

(Raaijmakers & Shiffrin, 1981) and each representation in long-term memory has to 

have a certain pattern of neuronal activation or neural structure (Kandel, 2001; 

Moscovitch et al., 2005).  On the other hand, mental models should correspond to 

certain neuronal activation patterns in the frontal cortex and visual cortex (Linden, 

2007).  There has to be a binding entity between working memory and long-term 

memory that would (1) guide the search through long-term memory and (2) give some 

sort of signal if a match is found.   

The search might be guided by the associative nature of long-term memory 

itself, meaning that one activation leads to the next and spreads out.  In this regard, 

creativity could be reconsidered, not so much as a measure of productive thinking as 

presented here, but rather as a measure of the associative hierarchy of knowledge in 

long-term memory (Benedek, Könen, & Neubauer, 2012; Mednick, 1962).  The signal 

could be grounded in an affective reaction, similar to the one being assumed to occur 

with problem solving insight (Topolinski & Reber, 2010).  The strength of that signal 

could be determined by the degree of overlap between neural activation in working 

memory and neural structure in long-term memory.  It is possible that people find a rule 
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concept in long-term memory that kind of matches, but is not entirely correct.  There 

could still be some discrepancy so that the rule cannot fully explain everything, or there 

might even be some contradicting aspects in the problem, and that is what people can 

feel.  The idea is related to Festinger’s theory of cognitive dissonance (Festinger, 1957).  

Although Festinger did not define the theory on the basis of a distinction between 

working memory and long-term memory, the basic idea should hold.  Take the famous 

example of a smoker who learns that smoking is unhealthy.  The habit of smoking 

should be connected to various representations in long term memory.  Especially 

episodic memory should contain various episodes where smoking was a part.  If a 

smoker is confronted with evidence for the unhealthiness of smoking, this information 

is processed as ongoing cognition in working memory and embodies a discrepancy to 

long-term memory representations.  According to Festinger’s theory, people would feel 

uneasy about such cognitive dissonance and would try to resolve the issue.  Such 

affective states might in turn be the underlying cause of confidence judgements in 

matrix reasoning that can be either over-confident or under-confident (Mitchum & 

Kelley, 2010).  Under-confidence could be the result of said discrepancies when long-

term memory concepts do not fully correspond to mental models.  Over-confidence 

could be the result of inaccurate or incomplete mental models, to which some long-term 

memory content matches subjectively well, but is actually inadequate.  “If high and low 

performers differ in their mental representations of items, this could also affect how 

perceptual and item features are used as cues for confidence monitoring” (Mitchum & 

Kelley, 2010, p. 708).     

The implication for inductive matrix reasoning is twofold.  First, the success of 

reasoning is dependent on working memory capacity in that the mental model needs to 

capture as many features as possible from the problem space.  Second, reasoning is 

dependent on the accessibility of relevant knowledge structures in long-term memory.  

Search in long-term memory might be directly controlled by working memory as 

suggested by Unsworth, Brewer, and Spillers (2013).  Furthermore, Baddeley (2000) 

suggested that the link between working memory and long-term memory, the episodic 

buffer, is closely linked to working memory.  This view implies that retrieval from long-

term memory does not only depend on long-term memory itself, but also on working 

memory.  This stresses how cognitive processes involved in inductive reasoning do not 

work additively, but interact and influence each other multiplicatively.   
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Thoughts on Intelligence 

What is intelligence?  That was the opening question of this dissertation and 

really one of the first questions I asked myself when I was looking for a topic.  I was 

originally aiming to do research on talent and giftedness, but got stuck with this very 

fundamental question that many have asked before me.  While the short answer would 

simply be “I still don’t know”, the long answer might cover at least some ground 

towards an understanding.   

McGrew (2009) presented the CHC-theory of the psychometric structure of 

intelligence.  This theory is based on previous g-factor theories and stresses the 

importance of g; however, it also showcases how diverse psychometric measurements 

of intelligence are.  At the intermediate stratum II, there are at least ten broad ability 

domains: Fluid reasoning, comprehension knowledge, short-term memory, visual 

processing, auditory processing, long-term memory, processing speed, reaction and 

decision speed, reading and writing, and quantitative knowledge.  All of them are 

thought to be chiefly accounted for by the g-factor.  But what could explain individual 

differences in performance on simple reaction time tasks as well as performance on 

reading and writing tests?  The key term here is: individual differences.  If g really was 

some sort of “energy or power which serves in common the whole cortex” (Spearman, 

1923, p. 5), then there has to be variation in its magnitude across individuals.  However, 

given that we can already distinguish between so many abilities and have, in part, 

established different brain areas as their basis, there is little more left that g could be.  

Instead I favor the view that the mutualism model of intelligence proposes (van der 

Maas et al., 2006).  According to this theory, the g-factor is just an epiphenomenon of 

the interplay of many distinct cognitive processes (see Part 1).  I have argued in the 

previous section that working memory and long-term memory work together to enable 

inductive reasoning.  Thus, individual differences can actually stem from either 

cognitive process.   

Most of what is currently known about the human brain, suggests that it is 

compartmentalized.  There is, for example, a part in the brain responsible for vision 

(visual cortex) and other parts (Broca’s and Wernicke’s area) for language (see 

Rosenzweig, Breedlove, & Watson, 2005).  We already touched the distinction between 

long-term memory and short-term memory (Shiffrin & Atkinson, 1969).  Thus, there is 

no measurable intelligence but only batteries of tests that serve to provide an index of a 

more or less representative sample of cognitive functions, meaning that intelligence is 
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just what the intelligence test measures (van der Maas, Kan, & Borsboom, 2014).  There 

is nothing wrong with an index and it has already proven to be very useful on various 

occasions (e.g., military recruiting, job applications).  However, there are instances 

where such an approach has drawbacks.  

For example, studies about the genetic origins and heritability of intelligence, 

are more often than not working with a g-factor definition of intelligence.  Chabris et al. 

(2012) reported three studies that investigate the correlations between various single-

nucleotide polymorphisms (SNPs) and general intelligence.  All three studies measured 

g with a different test battery.  Notably, Chabris et al. reported that 11 of the 12 

investigated SNPs were not significantly correlated with general intelligence, although 

all of them have been reported in previous studies to be of significance.  Chabris et al. 

argue that previously reported results were false positives from underpowered samples 

and discuss “that g is a highly polygenic trait on which common genetic variants 

individually have only small effects” (p. 1320).  This must be especially true when g is 

being measured with a broad range of cognitive tests.  Each gene on the DNA strand 

codes for certain proteins, the building blocks of living organisms, of which there are 

thousands (M.-S. Kim et al., 2014).  It is hardly conceivable how single base-pairs in a 

gene, which only result in slight variations in the resulting proteins, can account for a 

broad amalgamation of cognitive abilities.  Instead, focusing on the investigation of 

narrow cognitive functions might be more productive.   

As a further example, in research on learning disabilities like dyslexia it is very 

common to look at general intelligence as a benchmark against which reading deficits 

are compared (Hasselhorn & Schuchardt, 2006).  However, the cognitive deficit of 

dyslexia is likely a deficit of working memory (Brandenburg et al., 2015), and given 

that working memory is even an explicit part of some intelligence batteries, it appears to 

be more reasonable to compare the reading deficits to other cognitive functions that are 

independent of working memory.   

Finally, applied psychological assessment could gain something by turning away 

from the g-factor.  Looking back at all the research that was discussed in this 

dissertation, it seems to me that if there really was a single process responsible for g, 

then it would probably be working memory.  There are some of the broad abilities in 

CHC-theory that share little variance with working memory capacity, like processing 

speed for example (Conway et al., 2002).  Thus, working memory is probably not 

exactly like the omnipresent mental power that Spearman and other g-proponents have 
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envisioned, but it is central to a broad range of tasks (Baddeley, 1986).  Some studies 

have already shown that working memory measures are predictive for school 

achievement (Alloway & Alloway, 2010; Cowan et al., 2005; Fischbach et al., 2012; 

Vock & Holling, 2008) and it is only a matter of time until they are being used in job 

applications and military recruiting.  This could have one major advantage compared to 

general intelligence measures: Making norms superfluous.   

Intelligence tests need a norming sample to compare individual assessments 

against (relative measurement) because test scores on their own are meaningless and 

cannot be compared to scores from a different test.  Creating such norms is a lot of work 

and needs to be repeated every so often to account for the Flynn effect (Flynn, 1984).  

Research on working memory has already made some advances towards a direct 

approximation of the underlying capacity which is estimated to range from three to five 

chunks (Cowan et al., 2005).  Thus, instead of an IQ, it would theoretically be possible 

to measure human intellectual potential directly as a capacity, just like measuring 

running speed and jumping height in sports.  Of course, there would still be need for a 

reliable instrument and in the end the choice for an instrument is a matter of consensus, 

just like a running distance of 100m is a consensus.  However, in sports there is no need 

to compare performance against a representative sample of runners because the speed is 

meaningful on its own.  Research on the Flynn effect might actually profit from this, 

because estimating this effect goes not without making some simplifications.  For 

example, Flynn’s (1984) original estimate translates to 3 IQ points per decade but that 

can hardly mean that people today have an average IQ of 115 compared to 50 years ago.  

It is necessary to express the Flynn effect in terms of IQ points because its estimation is 

based on many different tests.  The estimation of working memory capacity is, to a 

certain degree, as well dependent on the task that is being used, so there is still work left 

to be done before it is possible to obtain an absolute measurement.  But once it is 

possible, this might revolutionize human cognitive assessment.   
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