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Abstract

Photoinduced energy transfer processes and reactions play an important role in

many areas of chemistry, physics and biology. Among the most prominent exam-

ples are biological light-harvesting in photosynthesis and excitation energy transfer

in functional materials. Here, we focus upon the second type of systems, which are

used, e.g., in organic electronics as well as in a variety of tailored donor-acceptor

units and switches. More specifically, we study two types of functional organic

systems: First, oligo-para-phenylene-vinylene (OPV) and oligo-thiophene (OT)

as building blocks for paradigm materials used in organic photovoltaics. Second,

a small donor-acceptor dyad, i.e., dithienylethene boron-dipyrromethene (DTE-

BODIPY) which has been developed and investigated in collaboration with the

experimental groups of K. Rück-Braun (TU Berlin) and J. Wachtveitl (Goethe

University).

In order to understand the relevant energy transfer mechanisms, we employ first-

principles electronic structure and quantum dynamical studies. Parametrized

model Hamiltonians based on high-level ab initio calculations are combined with

high-dimensional quantum dynamical or mixed quantum-classical simulations. The

parametrization of the Hamiltonian is carried out for small fragments which allow

for an electronic-structure treatment, while the Hamiltonian as such can be used

for much larger systems. The dynamical calculations rely either on the Multi-

Configuration Time-Dependent Hartree (MCTDH) method which permits a full

quantum treatment, or else on the semi-classical Ehrenfest method, which allows

to treat larger systems. The Ehrenfest method was implemented in an independent

code, including Langevin driving by an environment.

In the oligomer (OPV, OT) systems, the dynamics in the presence of a struc-

tural defect was investigated. We aim to understand the dynamical phenomena

induced by photoexcitation, which involve the migration of electronic excitations

(excitons). We also aim to clarify the "spectroscopic unit" concept that postulates

the confinement of photoinduced electronic excitations (excitons) due to geometric

defects.

The system is defined in a Frenkel exciton basis, where each basis function describes

strongly localized electron-hole pairs on a monomer unit. Delocalized electronic

excitations are represented as superpositions of such localized Frenkel states. Be-

yond the Frenkel picture, a generalized electron-hole basis including charge-transfer

states, i.e., allowing for spatial separation of electrons and holes, is also addressed.

The parametrization of the model Hamiltonian is based upon high level electronic

structure calculations by the Algebraic Diagrammatic Construction (ADC(2))

method, in conjunction with a transition density analysis. This level of treatment



allows a correct identification of the supermolecular states as Frenkel type exciton

states, and their distinction from charge-transfer states. To include vibronic effects,

low and high-frequency modes representing torsional and bond-length-alternation

(BLA) coordinates of the system are included. To this end, potential energy sur-

face (PES) cuts are carried out and mapped upon a global potential surface.

With this setup, the quantum dynamical and mixed quantum-classical simulations

for hexamer and 20-mer OPV and OT species were carried out. These calculations

show that excitation energy transfer takes place on a sub-picosecond time scale

and strongly correlates with structural defects. In the hexamer system, a coherent

spreading of the exciton across a torsional defect is observed and simulations of

a 20-mer system provide evidence for a „coherent hopping“ type mechanism of

exciton migration. On a time scale of less than 100 femtoseconds, exciton trapping

effects are observed. The effect of fluctuations is included either at a quantum level

(quantum fluctuations at T=0) or else via the semi-classical Ehrenfest/Langevin

approach. The latter is not adequate to describe the details of exciton dynamics

and trapping, but is suitable to model a fluctuation-driven hopping type dynamics

of trapped states on a longer time scale and as a function of temperature.

The study of the photodynamics of the second system, i.e., the DTE-BODIPY

dyad, aims to explain the experimentally observed ultrafast appearance of vibra-

tional excitation of the BODIPY moiety, following electronic excitation of the DTE

moiety in a time-resolved UV/Vis pump-probe experiment. Our study therefore

focuses on the photoinduced vibrational energy redistribution (IVR) on a sub-

ps time scale. A model Hamiltonian representing the DTE-BODIPY dyad is

developed and parametrized using Time-Dependent Density Functional Theory

(TDDFT) calculations. From a complete set of normal modes, localized modes

on the DTE and BODIPY moieties are constructed, some of which are coupled

and transmit vibrational excitation to the BODIPY moiety. This transfer is found

to be driven by a reservoir of vibronically excited DTE modes. The time scale

and characteristic frequencies of the experimentally observed IVR process are well

reproduced by our high-dimensional MCTDH simulations. A strong dependence

of the IVR process on local and environmental couplings is found.







Zusammenfassung

Photoinduzierte Energietransferprozesse und -reaktionen spielen in vielen Gebieten

von Chemie, Physik und Biologie eine wichtige Rolle. Zu den prominentesten Bei-

spielen zählen der Lichtsammelprozess in der Photosynthese und der Anregungs-

energietransfer in funktionellen Materialien. Der Fokus dieser Arbeit liegt auf letz-

terem Bereich, genauer auf organischer Elektronik und flexiblen Donor-Akzeptor-

Bausteinen und Schaltern. Im Besonderen werden hier zwei verschiedene Typen

von funktionellen organischen Systemen betrachtet: zum einen oligomere Frag-

mente organischer halbleitender Polymere wie Oligo-p-Phenylen-Vinylen (OPV)

und Oligo-Thiophen (OT), welche als Bausteine für neuartige organische Solar-

zellen dienen, und zum anderen kleine funktionelle Donor-Akzeptor-Einheiten wie

Dithienylethen-Bordipyrromethen (DTE-BODIPY). Letzteres wurde in Koopera-

tion mit den experimentellen Gruppen von K. Rück-Braun (TU Berlin) und J.

Wachtveitl (Goethe Universität) untersucht.

Um die relevanten Energietransfermechanismen genauer zu verstehen, wurden an

diesen Systemen elektronische Strukturrechnungen und quantendynamische Un-

tersuchungen durchgeführt. Hierzu wurden mittels ab initio-Methoden Modell-

Hamiltonians parametrisiert und mit hochdimensionalen quantendynamischen oder

semiklassischen Methoden kombiniert. Während die Parametrisierung für kleinere

Fragmente durchgeführt wurde, lässt sich der so parametrisierte Hamiltonian ohne

Weiteres auf größere Systeme erweitern. Die dynamischen Studien der betreffen-

den Systeme wurden mittels der Multikonfigurationellen Zeitabhängigen Hartree

(MCTDH)-Methode durchgeführt, welche eine vollständige quantendynamische

Beschreibung des Systems zulässt. Für größere Systeme wurde die semiklassische

Ehrenfest Methode in Verbindung mit dem Langevin-Ansatz zur Beschreibung

von Umgebungseffekten genutzt. Hierzu wurde ein eigens für diese Methode und

Systeme geschriebenes Programm eingesetzt.

Im Falle der OT- und OPV-Oligomere wurde die Dynamik bei Vorliegen eines

strukturellen Defekts untersucht. Ziel war es hierbei, die dynamischen Phänome-

ne, welche durch die Photoanregung induziert werden, zu untersuchen. Des Weite-

ren wurde untersucht, ob das Konzept von „spektroskopischen Einheiten“, welche

die Lokalisierung der Anregung durch strukturelle Defekte beschreibt, in diesen

Systemen zutrifft. Hierzu wurden die Systeme in einer Frenkel-Basis definiert, wel-

che ein auf einem Monomer lokalisiertes Elektron-Loch-Paar beschreibt. Deloka-

lisierte elektronische Anregungen können somit als Superposition solcher Frenkel-

Zustände beschrieben werden. Neben der Frenkel-Basis wurde aber auch eine ver-

allgemeinerte Elektron-Loch-Basis verwendet, welche über zusätzliche Ladungs-

transferzustände eine räumliche Separation von Elektronen und Löchern erlaubt.



Die Parametrisierung des OPV- und OT-Hamiltonians erfolgte mittels der Alge-

braischen Diagrammatischen Konstruktions (ADC(2))-Methode, welche in Kom-

bination mit einer Übergangs-Dichte-Matrix-Analyse eine sehr akkurate Beschrei-

bung der Frenkel- und Ladungstransferzustände basierend auf den supermolekula-

ren Zuständen erlaubt. Um vibronische Effekte auf die Dynamik miteinzubeziehen,

wurden nieder- und hochfrequente Torsions- und alternierende Bindungslängenmo-

den des Systems im Hamiltonian berücksichtigt. Hierzu wurden eindimensionale

Schnitte der Potentialflächen entlang dieser Koordinaten berechnet und mittels

einer Transformation in diabatische Potentialflächen überführt.

Mit diesem Setup wurden die quantendynamischen und semiklassischen Simulatio-

nen für ein OPV/OT-Hexamer und ein 20-mer durchgeführt. Die Ergebnisse dieser

Simulationen zeigen, dass der Energietransfer auf einer Subpikosekunden-Zeitskala

stattfindet und eine starke Abhängigkeit vom Vorliegen eines strukturellen Defekts

aufweist. Des Weiteren konnte auf einer Zeitskala von 100 Femtosekunden eine

Lokalisierung des Exzitons beobachtet werden. Fluktuationseffekte werden zudem

über Quantenfluktuationen im Falle von MCTDH bzw. über thermische Fluk-

tuationen im Falle des Ehrenfest-/Langevin-Ansatzes berücksichtigt. Letzterer ist

jedoch nicht in der Lage, die kohärente Charakteristik der mit den Schwingungs-

moden gekoppelten Exziton- und Lokalisierungsdynamik wiederzugeben. Dage-

gen kann dieser Ansatz erfolgreich genutzt werden, um eine fluktuationsgetriebene

„Hopping“-Dynamik des quasi-stationären Zustandes auf einer längeren Zeitskala

in Abhängigkeit von der Temperatur zu beschreiben.

Die Beschreibung der Photodynamik der DTE-BODIPY-Dyade zielt darauf ab,

experimentell beobachtete vibrationelle Schwingungen des BODIPY-Fragments zu

erklären, die ohne eine direkte Anregung dieses Fragments zustande kommen. Die-

se wurden nach einer selektiven Anregung des DTE-Fragments in zeitaufgelös-

ten UV/Vis Anreg-Abtast-Experimenten beobachtet. Der Fokus der Untersuchung

liegt daher auf der Beschreibung der photoinduzierten intramolekulare Energieum-

verteilung (IVR) auf einer Subpikosekunden-Zeitskala. Die DTE-BODIPY-Dyade

wurde mittels eines Hamiltonians, welcher durch TDDFT-Rechnungen parame-

trisiert wurde, dargestellt. Basierend auf den Normalmoden des Systems, wurden

lokale DTE- und BODIPY-Moden konstruiert, wobei einige dieser Moden mitein-

ander gekoppelt sind und die Photoanregung des DTE auf das BODIPY-Fragment

übertragen. Hierbei zeigte sich, dass die Zeitskala und die charakteristischen Fre-

quenzen des Experiments mittels der hochdimensionalen MCTDH-Methode gut

reproduziert wurden. Aus den Simulationen ergab sich zudem, dass der beobach-

tete Energietransfer stark von einem Reservoir von vibrationell angeregten lokalen

DTE-Moden beeinflusst wird. Der untersuchte IVR- Prozess zeigt zudem eine aus-

geprägte Abhängigkeit von lokalen Kopplungen und der Kopplung an eine Umge-

bung.
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1 | Deutsche Zusammenfassung

Photoinduzierte Energietransferprozesse und -reaktionen spielen in vielen Gebie-

ten von Chemie, Physik und Biologie eine wichtige Rolle. Zu den prominentesten

Beispielen zählen der Lichtsammelprozess in der Photosynthese und der Anre-

gungsenergietransfer in funktionellen Materialien.

Der Fokus dieser Arbeit liegt auf letzterem Bereich, genauer auf organischer Elek-

tronik und flexiblen Donor-Akzeptor Bausteinen und Schaltern. Speziell wurden

die folgenden zwei Typen von funktionellen organischen Systemen untersucht: zum

einen organische halbleitende Oligomer-Fragmente wie Oligo-p-Phenylen-Vinylen

(OPV) und Oligo-Thiophen (OT) und zum anderen kleine funktionelle Donor-

Akzeptor Einheiten wie Dithienylethen-Bordipyrromethen (DTE-BODIPY). Letz-

teres wurde in Kooperation mit den experimentellen Gruppen von K. Rück-Braun

(TU Berlin) und J. Wachtveitl (Goethe Universität) untersucht.

Um die relevanten Energietransfermechanismen nach einer Photoanregung genau-

er zu verstehen, wurden an diesen Systemen elektronische und quantendynamische

Untersuchungen durchgeführt. Hierzu wurden mittels ab initio-Methoden Hamil-

tonians parametrisiert und mit hochdimensionalen quantendynamischen oder se-

miklassischen Methoden kombiniert. Während die Parametrisierung für kleinere

Fragmente durchgeführt wurde, lässt sich der parametrisierte Hamiltonian ohne

Weiteres auf größere Systeme erweitern. Um kohärente Phänomene auf ultrakurzen

Zeitskalen korrekt zu erfassen, wurden die dynamischen Studien mittels der Multi-

konfigurationellen Zeitabhängigen Hartree (MCTDH)-Methode durchgeführt, wel-

che eine vollständige quantendynamische Beschreibung des Systems inklusive einer

korrekten Beschreibung kohärenter Prozesse darstellt. Für größere Systeme wur-

de die semiklassische Ehrenfest-Methode in Verbindung mit dem Langevin-Ansatz

zur Beschreibung von Umgebungseffekten genutzt. In diesem Zusammenhang wur-

de eigens für diese Untersuchungen ein FORTRAN 90-Computercode entwickelt.

Im Gegensatz zu einer vollständigen quantendynamischen Beschreibung mittels

MCTDH ist die Ehrenfest-Methode als Mean-Field-Methode aufgrund fehlender

Korrelationen nicht in der Lage, Kohärenzeffekte korrekt wiederzugeben. Aller-

dings erlaubt die Ehrenfest-Methode eine Simulation der Dynamik auf einer Zeits-

kala von 10-100 Pikosekunden und in Kombination mit dem Langevin-Ansatz eine

explizite Beschreibung der Temperatur.

Im Falle der OT- und OPV-Oligomere wurde die Dynamik der elektronischen Anre-

gung (Exzitonen) bei Vorliegen eines strukturellen Defekts untersucht. Ziel war es

1



CHAPTER 1. DEUTSCHE ZUSAMMENFASSUNG

dabei, die durch die Photoanregung induzierten dynamischen Phänomene zu ana-

lysieren. Insbesondere wurde untersucht, ob das Konzept von „spektroskopischen

Einheiten“, welche die Lokalisierung der Anregung durch strukturelle Defekte be-

schreibt, in diesen Systemen zutrifft. Typischerweise liegt die Delokalisierungslänge

der Anregung bei 5-15 Monomereinheiten. Der hierzu genutzte Hamiltonian be-

schreibt das zu untersuchende Polymersystem in einer Elektron-Loch-Basis, wel-

che es erlaubt, die elektronische Dynamik in eine monomerbasierte Darstellung zu

übersetzen. Im einfachsten Fall wird der Hamiltonian in einer Frenkel-Basis be-

schrieben, die ein auf einem Monomer lokalisiertes Elektron-Loch Paar beschreibt.

Die räumliche Ausdehnung der Anregung kann nun über eine Superposition dieser

Zustände beschrieben werden. Diese Elektron-Loch-Basis lässt sich jedoch auch

unter Einbeziehung von Ladungstransferzuständen in eine verallgemeinerte Basis

überführen, welche eine Separation des Elektron-Loch-Paares erlaubt. Des Weite-

ren beinhaltet das Modell eine koordinatenabhängige Kopplung dieser Zustände

sowie eine generelle Beschreibung von für die Exzitondynamik ausschlaggebenden

Koordinaten. Hierbei wurden niederfrequente Torsionsmoden sowie hochfrequente

Bindungsmoden (auch alternierende Bindungslängen oder BLA genannt) zwischen

den Monomereinheiten berücksichtigt, da diese Koordinaten einen großen Einfluss

auf den Überlapp des π-Systems der Polymere haben. Die Parametrisierung die-

ser Koordinaten erfolgte über eindimensionale Potentialschnitte, welche mittels

der Algebraischen Diagrammatischen Konstruktions (ADC(2))-Methode berech-

net wurden. Um dissipative Effekte, etwa durch Umgebungsmoden, zu berück-

sichtigen, wurde in der quantendynamischen Beschreibung das Caldeira-Leggett

Modell genutzt. Im semiklassischen Fall erfolgte diese Beschreibung mittels des

Langevin-Ansatzes.

Bei den untersuchten Systemen handelt es sich um kleine Fragmente aus einer

PPV- oder PT-Kette, wobei der Fokus der Arbeit auf der Exzitondynamik inner-

halb dieser Ketten liegt. Diese Fragmente bieten die Möglichkeit, die Exzitondyna-

mik mittels akkurater, multikonfigurationeller Methoden theoretisch zu studieren.

Der hier entwickelte Hamiltonian beinhaltet wie bereits erwähnt verschiedene, für

die Dynamik wichtige Koordinaten und wurde für das jeweilige System anhand

berechneter Potentialschnitte parametrisiert. Da der Hamiltonian elektronisch an-

geregte Zustände beinhaltet, wurde die auf eine genaue Beschreibung angereg-

ter Zustände entwickelte ADC(2)-Methode genutzt. Diese Analyse bestätigt, dass

die Frenkel-Zustände als particle-in-a-box-Eigenzustände beschrieben werden kön-

nen, wobei der niedrigste Frenkel-Zustand auch gleichzeitig der niedrigste, knoten-

freie particle-in-a-box-Eigenzustand ist. Diese Zustände weisen einen ausgeprägten
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Diagonalcharakter bezüglich der Elektron-Loch-Basis auf. Alle weiteren Frenkel-

Zustände können zudem über die Anzahl der Knoten identifiziert werden. Dagegen

besitzen Ladungs-Transfer-Zustände einen ausgeprägten außerdiagonalen Anteil.

Zur Verwendung der Potentialkurven für die folgenden quantendynamischen Be-

rechnungen wurden diese mittels eines eigens hierfür entwickelten Transformati-

onsverfahrens in eine diabatische Darstellung überfuührt. Anschließend wurden

diese Potentialschnitte an analytische Funktionen gefittet.

Basierend auf dem beschriebenen Hamiltonian und den über die Transformation

der ab initio-Potentialflächen erhaltenen funktionellen Darstellungen wurden quan-

tendynamische Simulationen mittels der MCTDH-Methode durchgeführt. Ziel die-

ser Simulationen war es, die Exzitonen- und Kerndynamik (bzw. die Dynamik des

Freiheitsgrades) nach einer Photoanregung bei Vorliegen eines strukturellen De-

fekts in der Mitte der Polymerkette zu untersuchen. Da die quantendynamischen

Methoden numerisch aufwendig sind und als Funktion der Systemgröße exponen-

tiell skalieren, wurde die OPV- und OT-Systemgröße auf eine Hexamer- sowie eine

20-mer-Oligomerkette beschränkt. Mit Hilfe dieses Systems ist man jedoch schon

in der Lage, Erkenntnisse über die Exzitondynamik nach einer Photoanregung zu

gewinnen. Des Weiteren ist das 20-mer groß genug, um die typische Delokalisie-

rungslänge der Anregung auf 5-15 Monomeren wiederzugeben.

Im Falle des PT-Systems konnte gezeigt werden, dass die exzitonische Dynamik

ausgehend von einem Subfragment auf einer sub-Pikosekunden-Zeitskala abläuft.

Hierbei verteilt sich das anfangs kompakte Exziton auf das gesamte Polymer und

bildet nach ca. 700 fs einen quasi-stationären Zustand, welcher die höchste Popu-

lation in der Mitte der Kette aufweist, während die Population nach außen hin

abnimmt. Dieser Zustand ist direkt vergleichbar mit dem Frenkelzustand nied-

rigster Energie, der durch Geometrieoptimierung aus den ab initio Berechnungen

erhalten wurde. Dieser Zustand kann ebenfalls über einen relaxierten, knotenfrei-

en particle-in-a-box Eigenzustand beschrieben werden. Dieses Verhalten zeigt, dass

das untersuchte Oligomer als J-Aggregat betrachtet werden kann.

Des Weiteren konnte gezeigt werden, dass die beobachtete Exzitondynamik eine

starke Korrelation zur Kerngeometrie aufweist. So konnte gezeigt werden, dass ein

in unmittelbarer Nähe eines Torsionsdefektes lokalisiertes Exziton sich innerhalb

von ≈ 250 fs über das gesamte Gitter ausdehnt, während die Torsion innerhalb

von ≈ 750 fs planarisiert.

Die Simulationen an einem 20-mer zeigen darüber hinaus, dass ein weiter vom

Torsiondefekt entferntes Exziton eine ultraschnelle „Hopping“-artige Migrations-

dynamik aufweist. In beiden Fällen treten kohärente transiente Effekte auf. Nach
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ca. 500 fs wird ein quasi-stationärer Zustand erreicht, welcher als „getrapptes“

Exziton-Polaron bezeichnet wird. Der Trapping-Effekt wird in erster Linie durch

die BLA- Koordinaten hervorgerufen. In diesem quasi-stationären Zustand sind

die Bindungslängen in der Mitte der Kette deutlich verkürzt, während die Bin-

dungslänge zum Rand der Kette hin wieder zunimmt. Wie bereits erwähnt deckt

sich diese Beobachtung mit quantenchemischen Ergebnissen.

Die für das OPT-System erzielten Ergebnisse ließen sich, abgesehen von gering-

fügigen Abweichungen, direkt auf das OPV-System übertragen. Dies weist darauf

hin, dass die beschriebenen Mechanismen in diesen System ähnlich und auch all-

gemeingültig sind.

Anhand der MCTDH-Methode können zwar die Elementarschritte der Exziton-

dynamik untersucht werden, aber längere Zeitskalen und der Einfluss thermischer

Fluktuationen sind nur bedingt zugänglich. Daher wurde die gemischt quanten-

klassische Ehrenfest-Methode implementiert und auf größere Systeme angewen-

det. Des Weiteren sollte untersucht werden, ob diese approximative Methode in

der Lage ist, die exakte Referenzdynamik der MCTDH-Methode wiederzugeben.

Die Idee hierbei ist, die Wellenpaketdynamik mittels vieler unabhängiger Einzeltra-

jektorien abzubilden. Basierend auf dem Ehrenfest-Theorem, welches die Dynamik

der quantendynamischen Erwartungswerten mit den klassischen Bewegungsglei-

chungen verbindet, konnte somit die Exzitondynamik für größere Systeme analy-

siert werden. Des Weiteren können Dissipations- und Temperatureffekte mittels

des Langevin-Ansatzes explizit beschrieben werden. Hierzu wurde ein auf diesen

Anwendungszweck ausgelegtes FORTRAN 90-Programm geschrieben, anhand des-

sen eine Ehrenfestpropagation durchgeführt wird.

Die durchgeführten Vergleichsrechnungen zeigen, dass die Ehrenfest-Methode qua-

litativ in der Lage ist, die exzitonische und Kerndynamik der MCTDH-Simulation

korrekt wiederzugeben. So war die Übereinstimmung der Exzitondynamik spezi-

ell für Zeitskalen oberhalb einer Pikosekunde und den damit verbundenen quasi-

stationären Zustand sehr gut. Auch die Übereinstimmung der Torsions- und BLA-

Dynamik zeigte nur geringe Abweichungen. Allerdings konnte auch beobachtet

werden, dass die zeitliche Auflösung der Exzitondynamik, speziell auf der ultra-

kurzen Zeitskala bis zu 300 fs, nicht an die räumliche und zeitliche Auflösung

der wellenfunktionsbasierten MCTDH Methode herankommt. Dies konnte jedoch

aufgrund des Mean-Field-Charakters der Methode und den damit fehlenden Kor-

relationen auch nicht unbedingt erwartet werden.

Basierend auf diesen Ergebnissen wurde die Exzitondynamik eines OPV-20-mers

in Hinsicht auf den Einfluss von Temperatur und Geometrie untersucht. So konnte
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gezeigt werden, dass die Exzitondynamik maßgeblich durch die Temperatur beein-

flusst wird. Dies zeigt sich vor allem bei sehr niedrigen Temperaturen, bei denen

ein kompaktes „Trapping“ des Exzitons in der Mitte der Polymerkette auf einer

längeren Zeitskala beobachtet werden konnte. Dieser „Trapping“-Effekt ist aller-

dings unabhängig von der strukturellen Anfangsdeformation des Polymers und

lässt sich auf die konzertierte Dynamik der hochfrequenten BLA-Koordinaten und

der niederfrequenten Torsionskoordinaten zurückführen. Diese generieren ein ener-

getisches Minimum, welches bei tiefen Temperaturen nur geringfügig verändert

wird, da die thermischen Fluktuationen sehr eingeschränkt sind. Mit steigender

Temperatur werden jedoch die thermischen Fluktuationen der Kernfreiheitsgrade

ausgeprägter und eine kompakte „Hopping“-artige Exzitonpropagation in der Oli-

gomerkette ist beobachtbar. Diese Dynamik lässt sich durch fluktuationsbedingte

Übergänge zwischen lokalen Minima erklären, die im Wesentlichen durch starke

geometrische Änderung der Torsionskoordinaten zustande kommen. Eine genauere

Analyse zeigt, dass durch die erhöhte Temperatur die Torsionsdynamik innerhalb

der gesamten Kette deutlich beeinflusst wird und sich so ein zeitabhängiger „mini-

mum energy path“ über das gesamte Polymer ausbildet, der die Exzitondynamik

maßgeblich beeinflusst. Eine weitere Erhöhung der Temperatur führt nun dazu,

dass die Torsionsdynamik noch weiter verstärkt wird, was allerdings den zuvor

klar definierten „minimum energy path“ zerstört. Dies spiegelt sich in der Exzi-

tondynamik wider, welche sich bei hohen Temperaturen als sehr diffus erweist.

Im zweiten Anwendungsteil dieser Arbeit wurde der Einfluss von molekularen

Schwingungen auf Dynamik in den elektronisch angeregten Zuständen einer DTE-

BODIPY-Dyade theoretisch untersucht. Wie bereits erwähnt, wurde dieses Pro-

jekt parallel zu spektroskopischen Untersuchungen der Wachtveitl-Gruppe durch-

geführt.

Das DTE-BODIPY-Molekül besteht aus einem Dithienylethen (DTE)-Photoschalter,

welcher kovalent an ein Bordipyrromethan (BODIPY)-Molekül gebunden ist. Mit

Hilfe von UV-Licht bzw. sichtbarem Licht kann der DTE-Schalter sehr selektiv zwi-

schen einer offenen und geschlossenen Form geschaltet werden. In Femtosekunden-

zeitaufgelösten Anreg/Abtast-Experimenten wurden nun nach einer selektiven An-

regung des DTE-Fragments Schwingungen des BODIPY-Fragments detektiert. Mit

Hilfe einer theoretischen Analyse, basierend auf TDDFT-Rechnungen, konnten die-

se Oszillationen eindeutig Normalmoden des Systems zugewiesen werden. Bemer-

kenswert hierbei ist allerdings, dass die experimentell beobachteten Schwingungen

dem BODIPY-Fragment des Moleküls zugewiesen werden können, obwohl eine se-

lektive Photoanregung des DTE Fragments induziert wurde und beide Fragmente
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elektronisch entkoppelt sind. Gestützt durch die theoretische Analyse und die Vi-

sualisierung der berechneten Normalmoden kann diese Beobachtung anschaulich

dadurch erklärt werden, dass die Photoanregung des DTE eine Planarisierung des

DTE-Fragments nach sich zieht, welche mechanisch Energie auf das BODIPY über-

trägt und so die beobachteten Schwingungen induziert. Um ein besseres Verständ-

nis des Mechanismus zu erhalten, wurde ein Modell der DTE-BODIPY-Dyade

mit Blick auf eine quantendynamische Beschreibung entwickelt, welche darauf ab-

zielt, den Einfluss verschiedener inter- und intra-molekularer Wechselwirkungen

auf die Dynamik zu studieren. Dieses Modell beschreibt das DTE- und BODIPY-

Fragment über gekoppelte harmonische Oszillatoren, welche anhand von TDDFT-

Rechnungen parametrisiert wurden. Um den Franck-Condon-Punkt im angeregten

Zustand und den folgenden Relaxationsprozess korrekt zu beschreiben, beinhaltet

das Modell zusätzlich ein Reservoir an lokalen DTE-Moden. Diese Moden werden

während der Photoanregung stark angeregt und spielen eine wesentliche Rolle in

der Transferdynamik.

In der quantendynamischen Untersuchung konnte gezeigt werden, dass der durch

die Photoanregung induzierte Energietransfer vom DTE- zum BODIPY-Fragment

stark durch die Kopplung an die während der Photoanregung involvierten Nor-

malmoden beeinflusst wird. Unabhängig von der Stärke der Kopplung zeigt sich

aber auch, dass die Energietransferdynamik auf einer Zeitskala von ≈ 1.0 ps statt-

findet, was in guter Übereinstimmung mit experimentellen Daten ist. Des Weite-

ren konnte gezeigt werden, dass Umgebungseffekte den Energietransfer ebenfalls

stark beeinflussen, während die Kopplung zwischen DTE und BODIPY nur einen

Einfluss auf die Frequenz des Transfers und nicht auf die Amplitude der Energie

hat. Ein direkter Vergleich zwischen den quantendynamischen Studien und den

experimentellen Daten zeigt zudem, dass das genutzte Modell vor allem auf einer

Zeitskala bis zu ≈ 250 fs eine sehr gute Übereinstimmung mit den experimentel-

len Daten aufweist. Auch die Beschreibung eines stationären Zustandes auf einer

längeren Zeitskala wird korrekt wiedergegeben.

Zusammenfassend lässt sich sagen, dass Energietransferphänomene in zwei sehr

unterschiedlichen Systemklassen anhand von Modell-Hamiltonians und hochdi-

mensionaler Quantendynamik studiert werden konnten. Des Weiteren zeigt der

Vergleich mit der semiklassischen Ehrenfest-/Langevin-Methode, dass eine Schnitt-

stelle zwischen der exakten quantendynamischen und semiklassischen Behandlung

sinnvoll definiert werden kann und die Behandlung größerer Systeme und längerer

Zeitskalen ermöglicht.
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2 | Introduction

One of the most important processes in nature involving efficient energy transfer

is the photosynthetic process in plants [1, 2]. This process has been perfectly

optimized over about a billion years. Therefore, much work is in progress to mimic

the energy transfer process of photosynthesis by developing functional materials

which can be used, e.g., for optoelectronic devices.

In the middle of the 20th century, the first optoelectronic devices, e.g., solar cells,

based on silicon were developed. These devices allow to convert solar energy into

electric energy [3]. The efficiency of the first solar cells was below 2%, whereas by

now, efficiency has been increased to ≈ 19-22% for commercially available solar

cells [4] (the record of a proof-of-principle device is ≈ 45% [4]). However, silicon-

based solar cells have the disadvantage that already a small amount of impurities

can reduce the efficiency drastically [5].

An alternative to silicon-based optoelectronic devices are new types of devices

based on functional organic materials, e.g., organic polymers [6–8] or small func-

tional donor-acceptor systems. Beyond optoelectronics, many applications exist

for optically excited organic building blocks, e.g., organic light emitting diodes [9,

10] or photocontrolled switches.

Figure 1: Illustration of different applications of a new type of donor-acceptor based
functional material. The system state can be switched by light with different
wavelengths resulting in different reaction pathways [11].
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As shown in Fig.1, the functionality of typical donor-acceptor type systems is

extremely variable and can be controlled by different excitation wavelengths. These

properties can be used to trigger exactly defined states, e.g., „on“ or „off“ states

and state dependent reactions.

One of the most important processes in these systems is excitation energy trans-

fer (EET). Traditionally, EET is described by Förster theory [12] which, how-

ever, cannot capture ultrafast, coherent EET dynamics. Hence, much work is in

progress on the experimental and theoretical side to elucidate the details of the

EET mechanism for various chemical, material and biological systems. Especially

the coherence time of the EET process is of interest, since for some systems, e.g.,

photosynthetic systems, a comparatively long coherence life time is observed [13].

The work of this thesis will focus on the elementary EET processes on an ultrafast

time scale (sub-ps) in the following systems:

(i) EET dynamics in an oligothiophene (OT) type system using a full quantum

dynamical description.

(ii) EET in an oligo-p-phenylene vinylene (OPV) type system depending on ther-

mal noise and structural disorder using semi-classical and multiconfigura-

tional methods.

(iii) Photoinduced intra-molecular vibrational energy redistribution (IVR) pro-

cesses in an electronically decoupled dithienylethene-boron-dipyrromethene

(DTE-BODIPY) dyad.

These energy transfer processes taking place on an ultrafast time scale are of special

interest, since the dynamics is expected to be at the border between a coherent and

non-coherent („hopping-type“) process. Furthermore, the competition of different

coupling mechanisms in the EET and IVR processes will be studied. In general,

the work on these topics can help to understand the elementary transfer processes

in such complex environments as biological and material systems.

To capture the coherent nature of the relevant processes on an ultrafast time scale,

high dimensional quantum dynamical methods have to be used. In particular,

highly efficient multiconfigurational methods have been developed over the last

25 years, namely the Multiconfiguration Time-Dependent Hartree method [14,

15]. This method alleviates the exponential scaling problem that makes quantum

dynamics in many dimensions a challenging task.

Organic polymers are increasingly used as new component materials for the devel-

opment for optoelectronic devices. Up to now, organic semi-conducting polymer
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based solar cells have reached efficiencies up to 11% [7] as compared to about 20%

for perovskite based solar cells [16, 17]. Due to EU regulations, it is more likely

that organic polymer based solar cells or small functional donor-acceptor systems

will be used for commercial applications.

Many experimental investigations are carried out in order to understand the pho-

toinduced energy transfer processes in these materials [18–24]. In parallel, various

theoretical models have been developed to simulate EET on different time scales.

Overall, the EET mechanism in these materials is complex and depends on a num-

ber of aspects including (i) structural properties, (ii) electronic properties and (iii)

electronic-vibrational (vibronic) coupling effects. In general, the structure of a

polymer can contain ordered and disordered domains and can be controlled during

the production process. Depending on the amorphous or regio-regular nature of

the material at the nano-scale, an intra- or inter-molecular EET within the poly-

mer chains can be dominant [25–28]. The resulting main pathway also depends on

the electronic properties of the polymer, which are in turn influenced by the struc-

ture [29–31]. Depending on the structure and additives, the band-gap between

valence and conduction band can be tuned, which directly effects the conductivity

of the polymer. But also structural aspects, like defects in the polymer backbone,

can influence EET; especially the intra-molecular transfer is affected by these de-

fects [32, 33]. Furthermore, temperature has a very strong effect on the transfer

dynamics in these systems [21, 33–35].

Using theoretical methods and models, new prospects are created to investigate the

EET dynamics in these types of systems and help to understand the mechanism

for efficient EET. Depending on the model and the approach, different aspects in

the conversion process can be revealed but it is challenging to capture the complete

process. Therefore, new techniques have to be developed to increase the system

size accessible to the model and also the time scale under study.

Besides the photoinduced EET in semi-conducting polymers, similar transfer pro-

cesses have been investigated for small functional organic donor-acceptor sys-

tems like dithienylethene-boron-dipyrromethene (DTE-BODIPY). The experimen-

tal observations indicate a molecular energy redistribution after photoexcitation

via coupled molecular vibrational modes, similar to the vibronic contributions of

the energy transfer in semi-conducting polymers [36–40]. As illustrated in Fig.1,

these materials use light as a trigger to switch the system between different states

with different properties. The requirements for these materials are: (i) selective ex-

citation wavelengths, (ii) high efficiency, (iii) reversibility and (iv) low photobleach-

ing. A promising material fulfilling these requirements is the above-mentioned
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electronically decoupled DTE-BODIPY dyad, which has been developed by the

group of K. Rück-Braun (TU Berlin) [11, 41, 42] and investigated by time-resolved

pump-probe experiments in the group of J. Wachtveitl (Goethe University) [42].

Interestingly, the photodynamics of this system indicates that the IVR process

takes place on a sub-ps time scale [42].

To describe the dynamics of these systems, the following strategy is employed:

first-principles parametrized model Hamiltonian is constructed, using ab initio

methods, and subsequently combined with a high-dimensional quantum descrip-

tion of the dynamics. The Hamiltonian comprises electronic and vibronic contri-

butions, and dissipative effects are included as well (either by explicitly including

many vibrational modes or by a introducing a Langevin dynamics). One of the

most challenging aspects of the theoretical description is the appropriate choice

of the electronic structure methods and the model Hamiltonian describing the dy-

namics of the system. For the most part, high-level ab initio methods like the

Algebraic Diagrammatic Construction (ADC(2)) scheme are used. On the quan-

tum dynamics side, methods are needed that a capable to propagate tens or hun-

dreds of modes on many non-adiabatically coupled potential surfaces. Therefore,

we employed the above mentioned multiconfigurational techniques of the MCTDH

class.

With this setup, the exciton dynamics in a PT or PPV oligomer system can be

studied. In projects (i) and (ii), exciton dynamics in a Frenkel-type basis for

PT and PPV on a minimal lattice is studied using the MCTDH method combined

with an accurate parametrization. The model focuses on the effect of steric defects,

such as torsional deformations of the polymer backbone, on the exciton dynamics.

Furthermore, the effects of thermal noise and disorder are considered using the

semi-classical Ehrenfest approach. This approach allows an explicit description

of temperature and the treatment of larger model systems, which are needed to

investigate the exciton dynamics in a more realistic setting. A FORTRAN 90

program was written to implement specifically an Ehrenfest/Langevin treatment

for oligomer type systems. Furthermore, the „spectroscopic unit“ concept [43] is

investigated using a larger PT system combined with the more powerful multilayer

(ML) version of MCTDH [15].

In project (iii), the experimental observations of oscillatory signals in the photo-

dynamics of a DTE-BODIPY dyad are described theoretically. To this end, we

employ electronic structure calculations along with a normal mode decomposition,

which is complemented by a transformation of normal modes into a local mode

picture. This is performed by using results obtained from TDDFT calculations.
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Furthermore, the system is mapped to an appropriate model Hamiltonian rep-

resenting the system and the IVR process after photoexcitation in terms of the

competition between intra- and inter-molecular coupling values.

The thesis is structured as following: (i) a review of the general energy transfer con-

cepts and the theoretical methods will be given in Chp.3 and 4, (ii) computational

aspects of the implementation of the Ehrenfest method are given in Chp.5.1, (iii)

the exact adiabatic-diabatic mapping procedure is presented in Chp.5.2, (iv) the

results for the investigation of the exciton dynamics in PT and PPV are presented

in Chp.5.3 and 5.4, (v) the investigation of the IVR process in a DTE-BODIPY

dyad is presented in Chp.5.5. Finally, some concluding remarks and a outlook are

given in Chp.6.
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3 | Theoretical Background

In this Chapter, a general overview over the most important mechanisms and mod-

els for energy transfer processes in organic and inorganic materials is presented.

Furthermore, a brief introduction to semi-conducting systems and their application

will be given.

This chapter is structured as follows: (i) a general introduction to energy transfer

processes, (ii) an introduction to the theory of semi-conducting materials and,

(iii) an overview over different models to describe the energy transfer dynamics in

these materials. A detailed introduction of the particular systems will be given in

Chap.5.

3.1 Models for Energy Transfer Processes in In-

organic and Organic Systems

The theoretical and experimental description of energy transfer processes is a field

of intensive research in many groups around the world. Several groups, experimen-

tal and theoretical, are working on the description of the key steps of photo-induced

excitation energy transfer (EET) in inorganic and organic materials [22, 44, 45].

In addition to EET, which is a pure electronic process, the intramolecular vibra-

tional energy redistribution (IVR) is an additional important mechanism in several

systems. In general, energy transfer processes can be found in a broad type of sys-

tems from light-harvesting systems of plants to semi-conducting polymers. In an

one-electron picture, the description of EET is based on the assumption that an

electron located in the electronic ground state is excited to a specific state (known

as Franck-Condon excitation) upon irradiation by light. The electron in the ex-

cited state and the following dynamical process can be described by several models,

depending on the localization of the electron and the „hole“ that is left behind in

the ground-state configuration. The electron and the corresponding hole are often

called electron-hole pair or e-h pair. In the following sections, the e-h pair is also

considered as a quasi-particle that is called exciton. A characteristic quantity is the

e-h separation, denoted coherence size ∆eh. This quantity is to be distinguished

from the delocalization length that describes the spatial extension of the exciton.

Assuming an arbitrary system with a definite size, three different kinds of excitons

are encountered, depending upon the material under investigation:
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• Frenkel exciton: e-h pair well localized, no static el. dipole, coherence size

∆eh= 0

• Wannier-Mott exciton: e-h pair delocalized, no static el. dipole, coherence

size ∆eh 6= 0

• Charge-transfer exciton: e-h pair separated, static el. dipole, coherence size

∆eh 6= 0

A Frenkel exciton [46] is typically found in molecular systems with a low dielectric

constant which leads to a strong Coulomb interaction between electron and hole

(the typical coupling strength is of the order of 0.1 - 1.0 eV). In case of larger

systems e.g. in photosystems, a Frenkel exciton can be spatially located on a

small part of the system e.g. an aromatic system or in case of a polymeric system

on a monomer unit. The position and the spatial extent of the exciton can be

calculated by theoretical approaches or determined experimentally. Typically, a

Frenkel exciton is localized in a radius up to ≈ 1.0 nm, in case of organic polymeric

systems on 1 monomer unit. The delocalization length of a Frenkel exciton over

several monomer units is related to a superposition of localized e-h pairs, whereas

the coherence size is 0. In terms of an e-h basis, the delocalization length can be

described by the diagonal contributions and the coherence size by the off-diagonal

contribution.

Figure 2: Schematic representation of different exciton models on a lattice (blue) (a)
Frenkel exciton located on one monomer unit (b) Wannier Mott exciton
delocalized over several monomer units and (c) Charge transfer exciton.
The gray area indicates a bounded e-h pair.

In systems with a high dielectric constant, the Coulomb coupling between electron

and hole is low, which leads to a strong delocalization of the electron-hole pair (the

typical coupling strength is ≈ 0.01 eV). This type of exciton is called Wannier-

Mott exciton [47] and often found in semi-conducting systems e.g quantum dots.

In contrast to the Frenkel exciton, the spatial extent of the Wannier-Mott exciton

18



Energy Transfer Models for Inorganic and Organic Systems

is up to 30 nm, depending on the type of system, also observable in a coherence

size 6= 0.

In contrast to the still bound but delocalized e-h pair in the Frenkel or Wannier-

Mott type exciton, the charge-transfer exciton is a coulombic bounded e-h pair. A

charge-transfer exciton (CT) [48] is often observed in donor-acceptor type systems.

To visualize the different type of exciton, a lattice can be assumed as a basis

representing the different parts of a system (as shown in Fig.2). The representation

shown in Fig.2 allows a mapping of a given system to this lattice, which can

simplify the further analysis. As shown, the spatial extent of the Wannier-Mott

exciton is much larger compared to the Frenkel or CT exciton. This fact can

have a strong influence on the physical and optical properties of a system e.g the

absorption properties of quantum dots. Furthermore, two elementary processes

can be described using these exciton types:

• Exciton migration (energy transfer)

• Exciton dissociation (charge transfer)

Photosythesis

One of the most studied systems by experimental and theoretical groups is the

light harvesting system [2] of plants, which is essential for life on earth. The EET

in light harvesting systems is an extremely complex reaction with a efficiency of

≈ 100% which includes several steps carried out in several proteins [1, 44]. In

this specific and unique system, nature has developed a very efficient and ultrafast

mechanism to generate energy from sun light. In the so-called Z-scheme shown

in Fig.3, the photoinduced charge-separation needed for the reduction of NADP+

to NADPH is illustrated. This reduction is essential for all living organisms. In

general, the first steps of the charge separation take place on a time scale of femto-

to sub-pico seconds which is quite fast compared to the overall time of ≈ 500 ms

for the whole photosynthetic process [49].

Even though the process of generating energy from sunlight including all steps

of the reaction cycle is well known, it is still widely discussed whether this is a

coherent or non-coherent process and if the coherence is essential for the high ef-

ficiency of the reaction. First experimental attempts to solve this question have

been done by Fleming et al. using two-color-photon echo experiments on the

Fenna-Matthew-Olsen (FMO) complex [50]. These experiments suggest that the

high efficiency of the EET of the photosynthetic system is indeed a strong coher-

ent reaction, which is strongly influenced by its environment and includes several

intermediate energetic levels [51, 52].
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Figure 3: Schematic representation of the electron transport process in the photosyn-
thetic process.

In addition to the experimental approaches, several theoretical studies have been

done using different levels of theory e.g. a full quantum dynamical study on

EET in the FMO complex [53–55]. One advantage of a theoretical description of

these reactions is the high flexibility of the system setup. Using an appropriate

model, several aspects, which are not accessible by experiments, can be described

e.g pH dependency or different initial conditions. This helps to understand the

fundamental principles and mechanism of EET which can then be used to design

molecules and devices, which mimic the light-harvesting complex e.g new types of

organic solar cells with a high power conversion factor. Such devices can help to

reduce the amount of fossil energy resources and also offer a completely new type

of applications [56–58].

Photovoltaics

The development of such molecules started with the development of inorganic

solar cells by the end of the 19th century after exploring the photoelectric effect

[59] by Heinrich Hertz. The photoelectric effect is the fundamental feature of any

solar cell and therefore, a lot of investigations have been conducted to improve the

efficiency of this effect in different materials e.g. silicon. In the 1950th, the first

practical silicon-based solar cells for aerospace projects were developed by the Bell

laboratories [3]. These solar cells had a poor efficiency (≈ 6%) and were very costly

(generation I solar cells; see lower panel of Fig.4). Due to an increase of efficiency

and a better cost/Watt ratio (generation II solar cells), the world production of
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Figure 4: Overview of the development of organic solar cells. (upper panel) Develop-
ment of the total efficiency of different types of solar cells (Figure taken from
Ref.[4], 2015). (lower panel) Different generations of solar cells compared
by efficiency and cost/watt ratio.

photovoltaic cells increased rapidly since then. These type of solar cells are still

state-of-the-art solar cells (the standard efficiency of a silicon based solar-cell is

≈ 20%, for detailed informations on different types of solar-cells and their efficiency,
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see upper panel of Fig.4). In the 1990th, the development of organic solar cells

based on polymeric systems started (generation III) [7, 8]. The great advantage of

these new generation of solar cells is the very easy and cheap production, and new

physical properties of the material, e.g. they can be designed to have any color &

shape [58, 60]. Due to these properties a huge range of applications is possible. As

a proof-of-principle, ultra thin flexible LED displays or printable solar cells have

been produced by several companies [9]. Up to now, the efficiency of these type

of solar cells is about ≈ 12% which is not sufficient for practical use, but as for

generation II cells it is quite likely that the efficiency will be increased in the near

future (generation IV) [6]. It is assumed that these future type solar cells might

be usable for any kind of application and will help to reduce the consumption of

non-regenerative fuels.

Energy Transfer Theories

Due to the ubiquitous appearance of EET and charge transfer (CT) in nature and

synthetic materials, several theories have been developed over the years including

different physical aspects realating ti energy and charge transfer. The following

rate (or kinetic) theories have been accepted by the experimental and theoretical

community:

• Förster theory [61]

• Dexter theory [62]

• Marcus theory [63, 64]

For comparison, the first three theories are illustrated in Fig.5. Förster theory

describes the energy transfer efficiency from a donor system to an acceptor system

after photo-excitation depending on the distance of donor and acceptor, the ori-

entation of the donor dipole and acceptor dipole and the spectral overlap of donor

and acceptor. In general, the transfer rate depends on the donor acceptor distance

rDA by

kF örster = krad
D

(
rF

rDA

)6

(1)

with the Förster radius rF . Due to the strong dependency on the radius, Förster

theorie can be used as a tool to measure distances in macromolecular systems.

The physical origin of the energy transfer are dipole-dipole interactions. In prin-

ciple, Förster theory describes the non-radiative energy transfer by assuming that

an excited electron on the donor relaxes non-radiatively from the lowest excited
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state S1 to the ground state, while simultaneously an electron on the acceptor is

excited. This mechanism is a one-step process. Förster theory is widely used in the

experimental community, since it offers an easy and accurate method to determine

intermolecular distances or transfer rates using spectroscopic methods.

Figure 5: Comparison of different transfer theories from donor (red) to acceptor
(green) for the singlet-singlet case. (a) Förster, (b) Dexter and (c) Marcus
theory.

In contrast to Förster theory, Dexter theory is a theory describing the exchange

efficiency of two electrons in the basis of overlapping wave functions

kET ∝ Jexp
[

−2r

L

]

(2)

J =
∫

fD(λ)ǫA(λ)λ4dλ (3)

with the donor-acceptor distance r, the sum of the Van-der-Vaals radii of donor

and acceptor L and the spectral overlap integral J. The spectral overlap integral

J depends on the donor fluorescence spectra fD, the acceptor absorption spectra

ǫA and the wavelength λ. Due to the wave function overlap-based description, the

typical range of Dexter transfer is up to 1 nm, whereas Förster theory describes

transfer processes up to 10 nm, which is related to the dipole-dipole interactions.

In contrast to Förster and Dexter theory, which describe the non-radiative energy

transfer from a donor to an acceptor, Marcus theory has been developed to describe

the electron transfer occurring in e.g. redox reactions or electro-chemistry. The

fundamental principles of the Marcus theory are: (i) the electron transfer process

is described classically and (ii) the Franck-Condon principle is valid, which mean

that the electronic transfer process is faster than the reorganization of the nuclear

degrees of freedom. The electron transfer rate is defined by

kET = A · exp
[

−∆G

RT

]

(4)
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with the system dependent-constant A, the temperature T, the ideal gas constant

R and the Gibbs energy ∆G. The Gibbs energy contains the dependency of the

reorganization energy λ and is given by

∆G =
(∆G◦ + λ)2

4λ
(5)

Besides different mechanisms of energy transfer, the time scale of these energy

transfer is also important. As mentioned above, the time scale of energy transfer

in organic systems like e.g. light harvesting complexes, is from several ps to ms.

In contrast to such a long time scale, the time scale of energy transfer processes

in organic semi-conductors is in the range of sub-ps to ns [22, 65, 66].

In the following section, the application of energy-transfer in the context of solar-

cells (inorganic and organic) will be introduced.

3.2 Energy Transfer Processes in Silicon Based

Solar Cells and Organic Semi-Conducting

Polymers

As already mentioned, the understanding of the key steps in the light-to-energy

conversion process in organic systems will help to improve the development of

future devices, which mimic these process in a sufficient way. In the following

section the principles of energy generation of inorganic silicon-based solar cells

and organic polymeric solar cells will be introduced [67, 68].

Figure 6: Band diagram of an inorganic silicon-based solar cell.

As shown in Fig.6, most modern silicon based solar cells are build by two electrodes,

a negative doped part (n-doped) and a positive doped part (p-doped). A typical

material for a n-doped silicon crystal is phosphorous, whereas boron is used for p-

doped silicon crystals. The combination of p and n doped silicon allows an efficient

solar cell, which can be explained by the fact that a n-doped material contains
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’more’ electrons, whereas an p-doped material contains ’more’ holes. The resulting

silicon crystals are highly ordered and already a small number of crystal defects

can reduce the energy conversion efficiency drastically.

The most common way to visualize and explain the photoelectric effect and the

principle of silicon-based solar cells is to use a valence and conducting band picture.

As shown in Fig.6 in a simplified way, the front side of a solar cell is built by a

metal contact (a very fine lattice) and the n-doped silicon. The p-doped silicon

and another metal contact form the back side of the solar cell. A typical size

for the n-doped layer is about ≈ 1 µm whereas the p-doped layer has a typical

size of ≈ 600 µm. A photoexcitation by light generates an electron-hole pair at

the p-n interface. Due to the electric field gradient between the n- and p-layer,

the electrons will be transported to the n-doped layer whereas the holes will be

transported to the p-doped layer. Connecting both metal contacts, an electric

current can be measured.

By optimizing the layer material and sizes, the contact material and by combining

different doped layers, several different types of inorganic solar cells have been

developed with a wide range of efficiency (as shown in Fig.4).

A completely different type of solar cell is based on semi-conducting polymers

e.g. poly-para-phenylene vinlyene, polythiophene or polyacetylene [69–73]. The

common property of most of the semi-conducting organic polymers is a large conju-

gated π-system [74–77]. The principle of energy conversion by light is very similar

to inorganic solar cells.

Figure 7: Steps during the energy conversion process after irradiation of a donor-
acceptor (D-A) type system: (I) Exciton generation by irradiation (II) Ex-
citon migration and (III) Charge separation at a donor-acceptor interface.

As in the inorganic case, the light-to-energy conversion in semi-conducting poly-

mers is a complex, multi-step process, which cannot be described by a simple

picture. Most of the semi-conducting polymers used for the new type of solar cells

are built by a donor and an acceptor part [78–80]. As shown in Fig.7, the first and

essential step in the conversion process is the absorption of a photon by the donor.

25



CHAPTER 3. THEORETICAL BACKGROUND

The absorption process is the elemental process to generate an electron-hole pair

(e-h), which is needed for an energy transfer process. The absorption efficiency in

these materials strongly depends on the energy gap between the valence and the

conduction band [81]. For semi-conducting polymeric systems, this band-gap is

mainly in the range of UV/Vis radiation and can be tuned by a controlled dop-

ing of the semi-conducting polymer with impurities or by a controlled production

process of the chain length and the order/disorder of the system [60, 82–87].

In a second step, the e-h pair, which can also be described in terms of a Frenkel or a

Wannier-Mott exciton, starts to move from its initial position in the system. This

movement is an oriented but random process, which depends on several aspects:

the material itself, an external or internal gradient [78, 88] (e.g. an electric field),

the local structure of the system [26, 89–91], temperature [25, 35, 78, 92] and

structural defects [32, 93, 94]. All these aspects will influence the diffusion length

of the exciton and therefore also the efficiency of the solar cell [87, 95, 96]. By

understanding and optimizing the effect of these parameters, a strong improvement

of organic photovoltaic materials can be achieved.

If the e-h pair reaches the donor-acceptor hetero-junction (similar to the n-p-

interface), it is possible that the e-h pair separates in a third step. For all steps, a

recombination of the e-h pair can takes place, which will annihilate the excitation

and therefore, it is important that the annihilation probability is low for an efficient

light-to-energy conversion. The time scale of the first step is on the ultra-short

fs range. This process is a Franck-Condon excitation from the electronic ground

state to an excited state including the relaxation of the electronic wave function on

the new excited state surface. In contrast to this ultrafast time scale, the second

step can take place on a much longer time scale depending on the system and the

donor-acceptor ratio and morphology. Typically, the diffusion of the e-h pair takes

place on a ps to sub-ns time scale. The final e-h dissociation takes place on a sub-

ps timescale. These different processes and their corresponding time scales have

been investigated using experimental and theoretical approaches in order to get a

better understanding of the mechanism behind the light-to-energy conversion.

3.3 Model Hamiltonians for Energy Transfer Pro-

cesses

To study EET processes on a theoretical level, a Hamiltonian is needed to de-

scribe the physical properties of the type of energy transfer and the information

about the system under study such as internal degrees of freedom, environment
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or electron-phonon coupling effects. In principle, the full molecular Hamiltonian

would describe the system perfectly. It is obvious that by using this Hamiltonian

the computational effort is too high since it describes all physical and chemical

aspects of the system explicitly. Thus approximations that restrict the description

to the minimal set of DOFs are needed

Hfull = Hsys. +Henv. +Hsys.+env. (6)

Hsys = Hnuc. +Hel. +Hnuc.+el. (7)

The first approximation is to decompose the full Hamiltonian into a sum of a

system Hamiltonian Hsys., an environmental Hamiltonian Henv. and an interaction

of both Hsys.+env.. For Henv. several models e.g. hierarchical mode representation

or a Langevin description can be used. This model also affects the interaction

Hamiltonian Hsys.+env. which couples the system to the environment e.g. a linear

coupling. In contrast, the approximation of Hsys. is essential, since on the one hand

the system’s properties have to be represented on a reasonable level of theory, on

the other hand the computational costs should be as low as possible. By dividing

this Hamiltonian into an electronic Hel., a nuclear Hnuc. and an interaction Hnuc.+el.

part, it is possible to approximate every term by simple expressions including e.g.

only active degrees of freedom combined with an appropriate basis of the electronic

wave function.

In the following, three widely used Hamiltonians for EET processes will be in-

troduced and discussed, whereby the focus will lie on the Merrifield Hamiltonian,

which has been adopted and modified in this work. A detailed description of the

used model Hamiltonians including the parametrization is given in the respective

sections of Chp.5. In the following list, the four Hamiltonians are listed, including

references, for a more detailed description and derivation:

• Holstein Hamiltonian [97]

• Merrifield Hamiltonian [98, 99]

• Su-Schrieffer-Heeger (SSH) Hamiltonian [84, 100]

One of the first models to describe EET is the Holstein model, which was origi-

nally developed to describe electron-phonon interactions and self-trapping effects

in molecular crystals in the 1950th. The general form of the Holstein Hamiltonian

reads as follows

HHolstein = −t0
∑

i,j

c†
icj − g

∑

i

c†
ici(ai + a†

i ) + ω0

∑

i

a†
iai (8)
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where the creation (annihilation) operator of fermions is given by cj (c†
i ), the

creation (annihilation) operator of local vibrations is given by ai (a†
i ). w0 denotes

the local mode frequency, t0 is the electron inter-site resonance integral and g

denotes the electron-phonon coupling constant.

Almost parallel to the development of the Holstein type model, the Merrifield

Hamiltonian was developed by R. E. Merrifield in the 1960th to describe excitons

in molecular crystals including ionized states. This Hamiltonian is based on the

exciton theory developed by Frenkel in 1931, which states that a photoexcitation

cannot be seen as an excitation on a particular atom in a molecule or crystal, but

as a ’shared’ excitation of all or at least a few atoms. The general form of the

Merrifield Hamiltonian is given by

HMerrifield =ω
∑

σ

b∗
σbσ +

∑

k

ǫ(k)a†
kak

+γωN−0.5
∑

k

∑

σ

a∗
k+σak(bσ + b†

−σ) (9)

with the creation (annihilation) operator b (b†) for the phonon, a (a†) for the

exciton, the ground state frequency ω, the excitation energy ǫ and the electron-

phonon coupling constant γ. This Hamiltonian captures the interactions between

molecular degrees of freedom and excitons considering ground and excited state

potentials. The wave function is expressed in terms of single excitonic states

Ψ =
∑

i

ci|ϕi〉 (10)

In the 1980th, the Su-Schrieffer-Heeger (SSH) Hamiltonian has been developed

to describe the soliton formation in polymeric systems like poly-acetylenes. For a

poly-acetylene chain with n repeating units, the SSH Hamiltonian is given by

HSSH = −
∑

iσ

ti+1,i(c
†
i+1,σciσ + h.c.) +

k

2

∑

i

(ui+1 − ui)
2 +

m

2

∑

i

u̇2
i (11)

where ti+1,i = t0 − g(ui+1 − ui) denotes the intersite hopping with the electron-

phonon coupling constant g. c and c† denote the creation and annihilation op-

erator. The electron spin is defined by σ, t0 is the hopping in absence of vibra-

tions, ui are the coordinates (also called group displacement in the context of

poly-acetylene), k is the force constant of the phonons and m denotes the mass of

the repeating units.

The aim of all three models is the description of EET in molecular systems using

an as most accurate and realistic description as possible. Nevertheless, all models

have some differences, advantages and disadvantages and the main problem is not

to find a good model in general, but to find a good model for the type of system
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under study. The general problem of all models is an appropriate parametrization

of the Hamiltonian, which can be very complicated for complex systems, especially

if quantities such as electron-phonon coupling values are not easily accessible by

experiments, while parameters such as frequencies can be taken from experiments

or ab initio calculations.

The Merrifield type Hamiltonian and the Holstein Hamiltonian have been devel-

oped in the middle of the 20th century to explain photoreactions in molecular

crystals. Their description is based on a molecular crystal with only a few active

degrees of freedom and an appropriate basis for the wave function e.g. a Frenkel

basis. While the Merrifield Hamiltonian uses a frequency representation through-

out, the Holstein Hamiltonian uses an integral representation for the description

of electrons, which allows a quantum description of trapping effects. Nevertheless,

both types of Hamiltonians are widely used in the field of organic photovoltaics or

photophysical processes in organic systems, since these models allow a simple but

very intuitive description of EET processes. In contrast, the SSH Hamiltonian is

widely used in the field of organic photosystems e.g. photosynthesis since the SSH

Hamiltonian allows a distinction of electronic spins, which makes it very easy to

compare theoretical results to EPR experiments [101]. The common aspect of all

of these three Hamiltonian is the description of energy transfer in terms of electron

or energy transfer after photoexcitation using a wave function description.
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In this chapter, the relevant methods used in this thesis will be explained in a brief

way. Detailed descriptions and derivations of all electronic structure methods can

be found in the following reviews, articles and books:

• Hartree-Fock theory [102]

• DFT and TDDFT approaches [103–105]

• MP2, CC2 and ADC(2) methods [106–108]

A detailed description of the following quantum dynamical methods can be found

in the following references:

• MCTDH method [15, 109, 110]

• Ehrenfest dynamics [111, 112]

In general, this chapter consists of five parts: part (i) introduces the basic ap-

proximations and ab initio methods used in this work, part (ii) describes the full

quantum multiconfiguration time-dependent Hartree (MCTDH) method and part

(iii) explains the semi-classical Ehrenfest method using a wave function/density

matrix ansatz. If not specified, all equations are given in atomic units (the Planck

constant h̄, the elementary charge e, the electron mass me and the speed of light

c are assumed to be 1). Small indices indicate the electronic and capital indices

indicate the nuclear coordinates.

Before starting with the description of the relevant approximations and methods,

a few words will be addressed to the problem of the theoretical framework of this

work and computational chemistry in general.

In general, the exact description of any system can be done using the exact Hamil-

tonian including the exact wave function for a given system. For typical systems

under study, solving the exact Schrödinger equation is analytically and numeri-

cally impossible (the Schrödinger equation can be solved exact for e.g. a hydrogen

atom or helium cation). Therefore, several approximations and methods have been

developed and introduced to solve the Schrödinger equation. The level of approxi-

mation starts with elementary ones like the Born-Oppenheimer approximation and

is improved from the Hartree-Fock method to the Full CI method. The accuracy

of the results for the system under study including all properties (e.g. total ener-

gies, excited state energies, relaxed geometries or frequencies) is strongly related
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to the used method. For very simple methods like Hartree-Fock, a correct descrip-

tion of e.g. excited states including the correct ordering of the excited states is

almost impossible. To solve this problem, better methods like CCS, CCSD, CC2

or ADC(2) are needed to describe excited states correct. The disadvantage of a

better description is the computationally higher effort, which increases drastically

with higher level methods (in general, every calculation is also scaled by the size of

the basis-set which is another factor for the computational effort). Therefore, one

has to find a tradeoff between an appropriate description of the molecule including

the properties of interest and an acceptable computational time.

4.1 Basic Approximations and ab initio Meth-

ods

The goal of all quantum methods is to solve the time-(in)dependent molecular

Schrödinger equation for a given Hamiltonian Ĥ

Ĥψ(x) = Eψ(x) time-independent Schrödinger equation

ĤΨ(x, t) = ih̄
∂

∂t
Ψ(x, t) time-dependent Schrödinger equation

(12)

(13)

In general, the molecular Schrödinger equation is a high dimensional partial dif-

ferential equation, which cannot be solved analytically (except systems with only

one electron). Therefore, several approximations have to be used to solve the

Schrödinger equation numerically.

4.1.1 The Born-Oppenheimer Approximation

The molecular Hamiltonian of a given system depends on the electronic and the

nuclear degrees of freedom. The first approximation is achieved by separating the

electronic and the nuclei part [113]. For this approximation, it is assumed that

the electronic degrees of freedom react instantaneously on changes of the nuclei

degree of freedom, which can be explained by the large difference of mass of the

electronic and the nuclei DOF (the mass of an electron is ≈ 2000 smaller than the

mass of an proton). In Eqn.15, the total molecular Hamiltonian is given by
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H(r, R)Ψ(r, R) =EΨ(r, R) (14)

H = −
N∑

i

1

2
∇2

i −
M∑

I

1

2MI

∇2
I −

N∑

i

M∑

I

ZI

|ri − rI |

+
N∑

i=1

N∑

j>i

1

|ri − rj|
+

M∑

I

M∑

J>I

ZIZJ

|rI − rJ | (15)

The mass of the nuclei is denoted by MI , its charge by ZI . The first two terms of

Eqn.15 define the kinetic energy of electrons and nuclei, the third term defines the

electron-nuclei interaction, the fourth term defines the electron-electron repulsion

and the last term defines nuclei-nuclei repulsion. To separate the molecular Hamil-

tonian into an electronic part and a nuclei part, all terms of Eqn.15 depending only

on the electronic part and parametrically on the nuclear coordinates are described

by an electronic Hamiltonian

Hel. = −
N∑

i

1

2
∇2

i −
N∑

i

M∑

I

ZI

|ri − rI | +
N∑

i=1

N∑

j>i

1

|ri − rj|
+ V (R) (16)

with the additive nuclear repulsion term V(R) (the term V (R) =
∑M

I

∑M
J>I

ZIZJ

|rI−rJ |

is seen to be constant for a certain geometry). From this, an electronic Schrödinger

equation can be constructed

Hel.Ψel(r;R) = Eel.Ψel(r;R) (17)

where Ψ(r;R) parametrically depends on the nuclear distance R. The total energy

for a fixed geometry is given by

Etotal = Eel. +
M∑

I

M∑

J>I

ZIZJ

|rI − rJ | (18)

For the nuclear degrees of freedom a similar Hamiltonian can be constructed

Hnuc. = −
M∑

I

1

2MI

∇I + Etotal (19)

which includes the total energy Etotal. From this approximation, the overall wave

function Ψ(r, R) can be described by a product of an electronic and an nuclear

wave function

Ψ(r, R) = Φ(R)Ψel(r;R) (20)

Using these expressions, the electron-nuclear problem can be separated into two

parts
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Hel.(r;R)Ψel.(r;R) = Eel.(R)Ψel.(r;R) (21)

ih̄
∂

∂t
Φ(R) = (T̂nuc + Eel.(R))Φ(R) (22)

In general, the Born-Oppenheimer approximation is valid as long as the electronic

states are not degenerated with respect to the nuclear configuration. For regions

near e.g. conical intersections or avoided crossings, the Born-Oppenheimer ap-

proximation breaks down.

4.1.2 Hartree-Fock

The fundamental problem in solving the electronic Schrödinger equation is a two-

particle problem which is the result of the electron-electron repulsion in the elec-

tronic Hamiltonian. To solve this problem, the Hartree-Fock (HF) theory has been

developed by D.R. Hartree and V. A. Fock in the 1930th. In the HF ansatz, the

system is approximated by a set of noninteracting particles. The corresponding

wave function is given by the product of one-particle wave functions

Ψel.(x1, x2, ..., xN ;R) = χi(x1)χj(x2)...χk(xN) (23)

This so-called Hartree-Product does not fulfill the Pauli antisymmetry principle.

To fulfill this principle, a Slater-determinant is used to create an antisymmetric

wave function

Ψel.(x1, x2, ..., xN ;R) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · · · ·
· · · ·
· · · ·

χi(xN) · · · · · · χk(xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= |χi(x1)χj(x2)...χk(xN)〉 (24)

Using the wave function of Eqn.24 and the variational principle, the minimum

energy of a system can be calculated by

E0 ≥ 〈Ψ0|H|Ψ0〉 (25)

using the optimal Ψ0 function (using the exact wave function and the exact Hamil-

tonian, one would obtain the exact minimum energy). Therefore, the Hartree-Fock

energy is determined by the eigenvalue problem
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f(i)χ(xi) = ǫiχ(xi) (26)

with the Fock-operator f defined by

f(i) = h(i) + V HF (i) (27)

= −1

2
∇2

i −
M∑

I=1

ZI

riI

+ V HF (i) (28)

where h(i) denotes the one-particle Hamiltonians and VHF the Hartree-Fock poten-

tial. This potential includes a Coulomb (J ) and exchange operator (K ). In other

words, using the Hartree-Fock approach, an electron i is described in the mean

field of all other electrons by taking the correlation and the exchange of one elec-

tron with respect to all other electrons into account. Since the mean field depends

on the wave function itself, this leads to a self-consistent-field procedure (SCF).

This procedure allows to calculate the minimum energy for a given system using

an initial guess for the wave function applied to the variational principle. During

the SCF procedure, the wave function is optimized with respect to convergence

parameter e.g. the change of total energy.

4.1.3 DFT and TDDFT

In contrast to the Hartree-Fock method, in density functional theory (DFT) the set

of single-electron equations is derived in a different manner. The idea is not to use

a complex wave function, which depends on the spin and the spatial coordinates for

the electrons (for fixed nuclei positions) but to use a density, which is an equivalent

representation to a wave function and only depends on the spatial coordinates of

the electrons. The density is defined by

ρ =
N∑

i

|χi|2 (29)

with the Slater-determinal wave function χi. The DFT method is based on the

Hohenberg-Kohn (HK) theorems [114], which proof that for a given external po-

tential Vext., the electronic ground-state energy of a system of N electrons is defined

by a definite electron density (HK 1) and that the correct ground-state density

minimizes the total energy of the system (HK 2). Therefore, the knowledge of the

exact potential Vext. will lead to the exact ground-state minimum energy. Similar,

to the SCF method of the Hartree-Fock approach, the Kohn-Sham self-consistent

field method [115] has been developed to solve the Schrödinger equation.

For a non-interacting system of N electrons, the energy is given by
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E[ρ(r)] =
N∑

i=1

(

〈χi|−
1

2
∇2

i |χi〉 − 〈χi|
M∑

I=1

ZI

|ri − rI | |χi〉
)

+
N∑

i=1

〈χi|
1

2

∫ ρ(r′)

|ri − r′|dr
′|χi〉 + Exc[ρ(r)] (30)

with the kinetic energy of the electrons described by the first term, the second term

describing the electron-nuclear repulsion, the third term describing the electron

electron repulsion and the last term Exc defining the exchange-correlation energy

including the exchange and correlation terms and also the classical self-interaction

energy. Similar as in HF, an eigenvalue problem has to be solved

hKS
i χi = ǫiχi (31)

by finding the optimal χi. The one-electron Kohn-Sham operator hi is defined by

hKS
i = −1

2
∇2

i −
M∑

I=1

ZI

|ri − rI | +
∫ ρ(r′)

|ri − rj|
dr′ + Vxc[ρ(r)] (32)

with the exchange-correlation functional Vxc[ρ(r)]. Due to the (so far) unknown

exact potential of this term, an exact solution of the DFT method is not possible

(only the exact form for the free electron gas is known, which is not helpful in this

context). To avoid this problematic term, several functionals have been developed

to approximate the exchange-correlation term in a correct way e.g. local den-

sity approximation (LDA) [116], gradient approximations (GGA) [117] or hybrid

functionals like B3LYP [118].

So far, only the time-independent case has been considered. The time-dependent

extension of the DFT ansatz is the so called time-dependent density functional

theory (TDDFT), which can be derived using the Runge-Gross (RG) theorem [119].

The RG theorem is very similar to the HK theorems, and proves that an one-to-

one mapping between the time-dependent density and the external potential exists

(RK 1). In contrast to DFT which is based on the HK 2 theorem, an equivalent

RG 2 theorem cannot be formulated. Nevertheless, the RG 1 theorem defines an

action functional A[ρ] for the time-dependent density for which the exact density

is a stationary point. Based on the RG theorem, a Kohn-Sham like non-interacting

system with an explicit time-dependency can be formulated

[

−1

2
∇2 + υs(r, t)

]

φi(r, t) = i
∂

∂t
φi(r, t) (33)

with the potential vs(r, t)

vs(r, t) = vs[ρ](r, t) = vext(r, t) +
∫ ρ(r′, t)

|r − r′|dr
′ + Vxc[ρ(r)] (34)

36



Basic Approximations and ab initio Methods

defined by the external potential vext(r,t) and the action functional Vxc=
δAxc

δρ
.

If the exchange-correlation action potential is known, the resulting density of the

non-interacting system should be identical to the density of the interacting system.

Unfortunately, this is not the case but TDDFT is applicable as an extension to

DFT to calculate excited state. Usually, the same exchange-correlation functionals

are used as in standard DFT.

Comparing the Hartree-Fock and the (TD-)DFT method, several aspects have to

be considered. In HF theory, a wave function is used whereas in DFT a density is

used. The consequence of this is that on the one hand, the density is an experi-

mental available quantity and on the other hand, a density can be described only

by three coordinates and the number of electrons. This benefit can be used for

a computationally fast evaluation of the density, while for a wave function based

method, increasing the system size will also increase the wave function rapidly.

Therefore, DFT is able to describe larger systems including more electrons in a

reliable time. The most important drawback of DFT is the approximation of the

exchange-correlation functional: using a non-suitable XC-functional will lead to

completely wrong results. Furthermore, the description of excited states, especially

the description of charge-transfer states, can be very inaccurate. TDDFT often

underestimates the excitation energy of CT states and therefore, the ordering of

excited states calculated by TDDFT is untrustworthy. Therefore, it is always rec-

ommended to evaluate the used XC functional. Nevertheless, DFT and TDDFT

are state-of-the-art methods for many applications and widely used even thanks to

the fact that a lot of different XC-functionals have been developed e.g. long-range

corrected functionals for a correct excited state description by TDDFT.

4.1.4 High-Level ab initio Methods: MP2, CC2 and ADC(2)

The main problem of standard TDDFT is the wrong description of charge-transfer

states, the general underestimation of their electronic excitation energies and in

some cases, the wrong description of molecular geometries. A lot of work has been

done on the TDDFT side to overcome these problems by developing new function-

als e.g hybrid or double hybrid functionals or long-range corrected functionals but

the problem still exists.

Another approach to solve these problems is to use higher level methods which de-

scribe e.g. charge-transfer states on a correct level including electron correlation.

Two of the most prominent and widely used methods are the second-order approx-

imate coupled cluster singles and doubles theory (CC2) [120] and the algebraic

diagrammatic construction second order (ADC(2)) method [107], which allow a

37



CHAPTER 4. THEORETICAL METHODS

very accurate description of excitation energies and charge-transfer states even for

larger molecules. Both methods, CC2 and ADC(2), are similar to perturbation

theory, and therefore, the Møller-Plesset (MP) perturbation theory [121] will be

introduced (to keep it short, only the lowest energy state will be considered) in

the beginning of this section. The MP theory was developed in 1934 by C. Møller

and M. S. Plesset to overcome the limitations of the Hartree-Fock theory by in-

cluding electron correlation. The electron correlation is not explicitly described

by HF theory and describes the electron-electron interaction. This interaction is

important for a correct description of the system and cannot be described by a

single Slater determinant, which is used in the HF method. Assuming that the

total Hamiltonian is given by

H = H0 + λH ′ (35)

H0Φi = EiΦi i = 0, 1, 2, · · · ,∞ (36)

with the unperturbed Hamiltonian H0, the perturbation H ′ and the perturbation

parameter λ. For the unperturbed Hamilton operator (λ = 0), the solutions of

Eqn.36 form a closed set and are known. These equations can be solved using

approximations such as HF. The perturbed Schrödinger equation is given by

HΨ = EP er.Ψ (37)

For λ = 0 one obtains

H0Φ0 = E0Φ0 (38)

The energy and the wave function can be written in terms of a Taylor-expansion

in powers of the perturbation parameter λ

EP er. = λ0E0 + λ1E1 + λ2E2 + · · · (39)

Ψ = λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + · · · (40)

With these expressions, Eqn.37 can be expressed by

(H0 + λH ′)(λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + · · ·)
= (λ0E0 + λ1E1 + λ2E2 + · · ·)(λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + · · ·) (41)

which includes all possible values for λ and therefore, all terms with the same order

can be collected (for simplification, only terms up to second order will be shown)
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λ0 : H0Ψ0 = E0Ψ0

λ1 : H0Ψ1 +H ′Ψ0 = E0Ψ1 + E1Ψ0 (42)

λ2 : H0Ψ2 +H ′Ψ1 = E0Ψ2 + E1Ψ1 + E2Ψ2

...

These expressions can be used to improve the calculation by including higher

order terms. In general, to solve these equations, an appropriate unperturbed

Hamiltonian has to be chosen. The most common choice is to take this as a

sum over Fock operators, which will double include the average electron-electron

repulsion. For this case, the perturbation becomes Vee −〈Vee〉 which is also known

as fluctuation potential.

H0 =
Nelec∑

i=1

Fi =
Nelec∑

i=1



hi +
Nelec∑

j=1

(Jj −Kj)





=
Nelec∑

i=1

hi +
Nelec∑

i=1

Nelec∑

j=1

〈gij〉 =
Nelec∑

i=1

hi + 2V 〈Vee〉 (43)

H ′ = H −H0 =
Nelec∑

i=1

Nelec∑

j>i

gij −
Nelec∑

i=1

Nelec∑

j=1

〈gij〉 = Vee − 2〈Vee〉

For the zeroth-order, one obtains the HF determinant for the wave function. In

zeroth-order, the energy is just a sum of MO energies. For the first-order, one

obtains the HF energy, which is given by

MP (0) : E(MP (0)) = 〈Ψ0|H0|Ψ0〉 =
Nelec∑

i=1

ǫi (44)

MP (1) : E(MP (0)) + E(MP (1)) = 〈Ψ0|H ′|Ψ0〉 + 〈Ψ0|H0|Ψ0〉 = EHF (45)

This is related to the fact that the overcounting of the electron-electron repulsion

at zeroth-order is corrected by the first-order term and therefore, the electron

correlation correction starts with the second-order term of the MP theory.

MP (2) :
occ∑

i<j

virt∑

a<b

〈Φ0|H ′|Φab
ij 〉〈Φab

ij |H ′|Φ0〉
E0 − Eab

ij

(46)

The matrix elements between the HF and the double excited determinants are

given by two-electron integrals over MOs, which can be calculated using numerical

methods. In accordance to Koopmans theorem, the difference in total energy

becomes a difference in MO energies and therefore, the MP(2) energy is given by

E(MP (2)) = E(MP (1)) +
occ∑

i<j

virt∑

a<b

〈φiφj|φaφb〉 − 〈φiφj|φbφa〉
ǫi + ǫj − ǫa − ǫb

(47)
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In principle, the MP theory can be extended to higher order, while in practice, the

numerical effort for these type of calculation is already very high and therefore,

second-order type calculations are used for most systems. To improve the calcu-

lation of a specific type of correction (e.g. singles or doubles) a coupled cluster

(CC) approach is used, which includes all corrections of a given type to infinite

order (this is in contradiction to MP theory, which adds all types of corrections to

a given order).

In CC, an excitation operator is defined by

T = T1 + T2 + T3 + T4 + · · · + TNelec
(48)

Depending on the type of Ti, one can generate the Slater determinants for singles,

doubles etc. using a HF reference wave function Φ0

T1Φ0 =
occ∑

i

virt∑

a

tai Φa
i (49)

T2Φ0 =
occ∑

i<j

virt∑

a<b

tab
ij Φab

ij (50)

The CC wave function is defined by

ΨCC = eT Φ0 (51)

eT = 1 + T +
1

2
T 2 +

1

6
T 3 + · · · =

∞∑

k=0

1

k!
T k (52)

Using the expression of Eqn.48, one can define all types of excitations and rewrite

the general Schrödinger equation in terms of the CC wave function

HeT Φ0 = EeT Φ0 (53)

Projecting Eqn.53 onto a reference wave function and expanding out the exponen-

tials, one will end up with the CC energy defined by

ECC = 〈Φ0|HeT |φ0〉 (54)

To avoid computational effort, the CC theory is usually truncated after second-

order. The CC2 method is an additional approximation to CC theory, which

includes the equation for singles exact but approximates the doubles to first-order

only. In other words, the CC2 equations are only a subset of the full CCSD

equations. Therefore, CC2 is less expensive and accurate as "real" CCSD but still

better than CIS or CCS.

In the ADC(2) approximation, a similar ansatz is used: the ADC(2) excitation

energies are obtained as eigenvalues of a hermitian matrix. The basis of this ansatz
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is the construction of a many-particle basis based on the exact ground state wave

function |Ψ0〉. To calculate the excited states, a set of excitation operators ĈI

is applied on this ground state wave function, which are represented by pairs of

creation and annihilation operators

ĈI ∈
{

ĉa
†ĉi; ĉb

†ĉj ĉa
†ĉi, a < b, i < j; . . .

}

(55)

Applying these excitation operators on the ground state wave function results in

|Ψ#
I 〉 = ĈI |Ψ0〉 (56)

where the resulting states can be grouped into classes of single, doubled or higher

excitations. The problem of this ansatz is the fact that the so obtained states are

not necessarily orthogonal to each other. Therefore, the excited states wave func-

tion |Ψ#
I 〉 has to be orthogonalized. This orthogonalization can be performed using

e.g. a Gram-Schmidt orthogonalization, which results in the basis of orthonormal

intermediate states |Ψ̃I〉. These intermediate states can be used to construct a

matrix representation of a shifted Hamiltonian Ĥ − E0

MI,J =
〈

Ψ̃I |Ĥ − E0|Ψ̃J

〉

(57)

where the diagonalization of MI,J will in principle result in the exact excited states

and the excited states energies within the given single-particle basis. Due to the

fact that neither the exact excited state or ground state energy is known, these

energies have to be approximated by n-th order MP theory. This will results in

the n-th order ADC equations.

In general, the theoretical effort of CC2 and ADC(2) scales by ≈ N5 compared to

(TD-)DFT ≈ N3, which limits these high-level methods to smaller systems than

in TDDFT case (N is the number of basis functions). The great advantage of

the ADC(2) method over the CC2 method is the derivation of excitation energies:

the ADC(2) excitation energies are obtained as eigenvalues of a hermitian matrix

whereas the CC2 excitation energies are obtained as eigenvalues of a non-hermitian

Jacobi matrix. The overall accuracy of both methods is comparable, but it is pos-

sible that the CC2 wave function can be less stable because of numerical problems

which can complicate further analysis based on the wave function e.g. the anal-

ysis of electron-hole distributions. Therefore, MP2 and ADC(2) as implemented

in the TURBOMOLE program package are used for the ground and excited state

optimization, the calculation of the PES cuts and the analysis of the excited states

using a density matrix approach.
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4.2 Beyond Born-Oppenheimer: Dynamics on

Non-Adiabatically Coupled Potential Energy

Surfaces

In the framework of the BO-approximation, one neglects that the nuclear kinetic

energy operator has non-zero matrix elements between different electronic eigen

functions. However, these matrix elements are of key importance in excited-state

dynamics since they generate ultrafast decay channels between different electronic

states. If the states come energetically very close, non-adiabatic transitions due

to the non-zero matrix elements can be observed. Therefore, a more general wave

function ansatz, the so-called group BO ansatz, is needed, which allows to describe

these phenomena

Ψ(r, R) =
∑

n

ψn(rel.;R)φn(R) (58)

where ψn(rel.;R) are solutions of the electronic Schrödinger equation. By integra-

tion over the electronic coordinates, it turns out that the nuclear wave functions

φ(R) are coupled to each other

(

− h̄2

2M

∂2

∂R2
+ ǫn(R)

)

φn +
∑

n6=m

Λ̂mnφm = Eφn (59)

Λ̂mn describes the non-adiabatic coupling and is given by

Λ̂mn = − h̄2

M
〈ψm| ∂

∂R
|ψn〉 ∂

∂R
+ 〈ψm|T̂N |ψn〉 (60)

For a more intuitive interpretation, a matrix representation can be used

ih̄
∂

∂t




φ1(R, t)

φ2(R, t)



 =




T̂N + ǫ1(R) Λ̂12(R)

Λ̂21(R) T̂N + ǫ2(R)








φ1(R, t)

φ2(R, t)



 (61)

By applying an appropriate unitary transformation of the electronic wave func-

tions, a diabatic representation is formulated. In the diabatic representation, the

kinetic energy coupling almost vanish

Φdia.(rel;R) = S(R)ψad.(rel;R) (62)

Using the matrix representation

ih̄
∂

∂t




φ̃1(R, t)

φ̃2(R, t)



 =




T̂N + V dia

1 (R) V12(R)

V21(R) T̂N + V dia
2 (R)








φ̃1(R, t)

φ̃2(R, t)



 (63)
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it turns out that the coupling terms can be described by a potential term. In

practice, the diabatic representation is preferred since the diabatic states have

a well defined electronic character. Furthermore, the calculation of derivative

couplings is avoided (for a more detailed discussion, see Ref. [122]).

4.3 The Multiconfiguration Time-Dependent Har-

tree Method (MCTDH)

To describe quantum dynamical phenomena such as electron transfer processes or

the dynamical interaction of a system with the environment, one has to solve the

time-dependent Schrödinger equation for a system using a full quantum ansatz.

A very effective approach is the so-called Multiconfiguration Time-Dependent

Hartree (MCTDH) method, which has been developed by Meyer, Manthe and

Cederbaum in 1990 [14, 109, 110, 123].

First attempts to solve the time-dependent Schrödinger equation have been done

using the Time-Dependent Hartree (TDH) method. The great advantage of the

MCTDH method is the very efficient and flexible full quantum correlated descrip-

tion of the wave function, which is also reliable for systems up to 100 degrees of

freedom. The basis of the MCTDH method for a system with f degrees of freedom

described by the coordinates q1, ..., qf is a wave function of the form

Ψ(q1, ..., qf , t) = Ψ(Q1, ..., Qp, t) (64)

=
n1∑

j1=1

· · ·
np∑

jp=1

Aj1...jp
(t)ϕ(1)

j1
(Q1, t) · · ·ϕ(p)

jp
(Qp, t) =

∑

J

AJΦJ (65)

=
nκ∑

j=1

ϕ
(κ)
j Ψ(κ)

j (66)

The wave function Ψ is described by a direct-product of p sets of orthonormal

time-dependent basis-functions ϕκ, the so-called single-particle functions (SPF).

This ansatz is very similar to the standard wave packet expansion, but uses a

time-dependent SPF basis. Applying the MCTDH wave function to the Dirac-

Frenkel variational principle, a coupled set of equations can be obtained, one for

the expansion coefficient and one for each set of SPFs

iȦ = KA

iϕ̇ = (1 − P (κ))(ρ(κ))−1H(κ)ϕ(κ)

(67)

(68)

with the projector onto the space spanned by the SPFs
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P (κ) =
∑

j

|ϕ(κ)
j 〉〈ϕ(κ)

j | (69)

and the density matrix ρ(κ) = 〈Ψ(κ)
a |Ψ(κ)

b 〉. The Hamiltonian operator K is ex-

pressed in a matrix form represented in the basis of Hartree products

KJL = 〈ΦJ |H|ΦL〉 (70)

while the mean-field operator matrix H(κ) is given by

H
(κ)
ab = 〈Ψ(κ)

a |H|Ψ(κ)
b 〉 (71)

with

Ψ(κ)
a =

∑

Jκ

AJκ
a
ΦJκ (72)

The presented form of the wave function of the MCTDH formalism allows an

efficient calculation using up to 100 DOF but is often limited to only a small

number of electronic states (≈ 10; the computational effort strongly correlates

with the used Hamiltonian and can be increased using the single-set formalism).

To overcome this limitation, the so called multilayer (ML) formalism is used [15].

This formalism expands the wave function in terms of n layers and allows the

description of systems up to 1000 DOF and several 100 electronic states. The

general form of the ML-MCTDH wave function is given by

|Ψ〉 =
∑

j1

∑

j2

...
∑

jM

Aj1,j2...,jM
(t)

M∏

k=1




∑

i1

∑

i2

...
∑

iQ

Bk,jk

i1,i2...,iQ
(t)

Q
∏

q=1

|νk,q
iq

(t)〉


 (73)

For comparison, see Eqn.65.

In general, the MCTDH equations are norm preserving and for time-independent

operators, energy conserving, which is an important property of this method, since

the norm is an important measure of the quality of a calculation. Furthermore, the

density can be used as an additional measure of quality, since the eigenfunctions

of the density matrix can be seen as natural orbitals and the eigenvalues provide

the populations of this function, which is very similar to electronic structure cal-

culations. Therefore, the natural orbital population gives an additional measure

for the quality of a calculation.

4.4 Ehrenfest Dynamics

In contrast to the MCTDH method introduced in the previous section, the Ehren-

fest approach is a semi-classical approach based on the Ehrenfest theorem [111,
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124]. In general, the Ehrenfest theorem connects quantum mechanics to classi-

cal mechanics by assuming that the expectation values 〈x〉t and 〈p〉t of a moving

wave packet are identical to the classical values xt and pt. Assuming the time-

dependence of the expectation value of an operator 〈A〉

〈A〉 =
∫

Ψ∗AΨdτ (74)

then

d

dt
〈A〉 =

〈

dΨ

dt
|AΨ

〉

+

〈

Ψ|AdΨ
dt

〉

+

〈

Ψ|∂A
∂t

Ψ

〉

(75)

Using the fact that

ih̄
∂Ψ

∂t
= HΨ (76)

ih̄
∂Ψ∗

∂t
= −HΨ∗ (77)

Eqn.75 can be rewritten

d

dt
〈A〉 =

1

ih̄
〈−HΨ|AΨ〉 +

1

ih̄
〈ΨA|HΨ〉 +

〈

Ψ|∂A
∂t

Ψ

〉

(78)

=
1

ih̄
〈Ψ|[A,H]|Ψ〉 +

〈

∂A

∂t

〉

(79)

Assuming that the operator A has no implicit time-dependence, the time-evolution

of the expectation value of A can be described by

ih̄
d

dt
〈A〉 = 〈Ψ|[A,H]|Ψ〉 (80)

For Hamiltonians of the form H = p2/2m + V (q), one arrives at the Ehrenfest

theorem (with A= q or p):

d

dt
〈q〉 =

〈p〉
m

(81)

d

dt
〈p〉 =

〈

−∂V

∂q

〉

(82)

The Ehrenfest model is widely used when a decomposition of a given system into

a classical and a quantum system is needed, e.g. when the dynamics of electrons is

described quantum mechanically whereas the dynamics of the nuclei is described

classically. The advantage of this separation is the possibility to describe large

systems with many degrees of freedom on a correct level, since for a large number of

individual trajectories, the classical expectation values for q and p are in agreement

with the quantum expectation values, whereas the electronic part of the system

is described by a quantum wave function. In general, quantum effects such as
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coherence are not well described by Ehrenfest dynamics, which is related to the

loss of phase information after calculating the expectation value.

4.4.1 Ehrenfest Equations of Motion: Wave Function Based

Ansatz

To derive the Ehrenfest equations of motion [112] for q, p and the electronic part

for a single trajectory, the Hamiltonian of a full quantum system is again

Ĥ = − h̄2
∑

J

1

2MJ

∇2
J − h̄2

∑

j

1

2
∇j +

1

4

∑

J<K

ZJZK

|QJ −QK |

− 1

4

∑

j<k

1

|qj − qk| − 1

4

∑

J,j

ZJ

|QJ − qj|

= − h̄2
∑

J

1

2MJ

∇2
J − h̄2

∑

j

1

2
∇2

j + Vn−e(r, R)

= − h̄2
∑

J

1

2MJ

∇2
J +Hel.(q,Q) (83)

with MJ the mass of the Js nucleus and ZJ is the charge of the Js nucleus (small

indices indicate the electronic degree of freedom). Furthermore, the potential

Vn−e and the electronic Hamiltonian Hel.(q,Q) have been defined to contain the

electronic contribution. The Born-Oppenheimer approximation is applied and thus

the wave function is represented by

Ψ(q,Q, t) = ϕel.(q, t;Q)φnuc.(Q, t)

ϕel.(q, t;Q) =
∞∑

i=1

ci(t)ϕi(q, t;Q) (84)

where the electronic wave function ϕel. is represented in the basis of the electronic

states i satisfying the condition
∑

i|ci(t)|2= 1. Up to now, the nuclear and the

electronic subsystem are still coupled. After applying a classical limit procedure

to the nuclear part, one will arrive at the Ehrenfest equations of motion:

MJQ̈J = −〈Ψ|∇JHel.(q,Q)|Ψ〉 (85)

ih̄
d

dt
|Ψ〉 = Hel.(q,Q)|Ψ〉 (86)

These equations can be transformed into a Hamilton-type description using a

Hamiltonian function of the form

H(q, p) =
∑

J

p2
J

2MJ

+ 〈Ψ|Hel.(q, p)|Ψ〉 (87)

and by fixing a relation of the form
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pJ = Mq̇J (88)

The resulting equations are very similar to the Hamilton’s equations

dqJ

dt
=

pJ

MJ

dpJ

dt
= −〈Ψ|∇JHel.(r, q)|Ψ〉

ih̄
d

dt
|Ψ〉 = Hel.|Ψ〉

(89)

The equation of motion given in Eqn.89 can be used to study different types of

systems with a different number of states as long as the system is a closed system.

4.4.2 Ehrenfest Equations of Motion: Density Matrix

Based Ansatz

Instead of using an ansatz with a wave function of the form Ψ =
∑

i ci(t)ϕi,

a density matrix ansatz can be used [125, 126]. The benefit of a density matrix

representation is the fact that it can be easily extended to open systems e.g systems

including a dissipative state. In general, the density is defined by

ρ =
∑

i

|ψi|2 (90)

and the EOM’s of the coordinate, the momentum and the density are given by

dqJ

dt
=
pJ

M
dpJ

dt
= −Tr(∇JHel.ρ)

dρ

dt
= −i[Hel., ρ]

(91)

where the square brackets denote the commutator. To introduce dissipative dy-

namics as one would expect in open quantum systems, an additional dissipative

part has to be introduced e.g. an additional non-hermitian Hamiltonian with a uni-

direct coupling from a system state to the dissipative state. The time-derivative

of the density is now given by

dρ

dt
= LSys.ρ+ Ldiss.ρ (92)
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with the Liouville superoperator for the system or the dissipative part. LSys.ρ is

equivalent to −i[Hel., ρ] while Ldiss. only includes the coupling of the system to the

dissipative state.

One of the most important aspects of the Ehrenfest dynamics is a very easy imple-

mentation of a temperature dependent environment, which can be described e.g.

by a Langevin bath [127]. The Langevin bath is a description which introduces

dissipation on the one hand but also thermal response (fluctuation) on the other

hand. The implementation using the Ehrenfest equations is given by

dpJ

dt
= −〈Ψ|∇JHel.(r, q)|Ψ〉 − γ

pJ

M
+B (93)

B = χ

√

2γmkBT

∆t
(94)

where the second term in the r.h.s introduces a friction and the third term a tem-

perature dependent fluctuation. χ is a random number from a normal distribution

centered around x0= 0.

In general, the Ehrenfest method is performed by running n independent trajec-

tories and calculating the average of these trajectories, which reduces the compu-

tational costs of the Ehrenfest method drastically compared to the full quantum

MCTDH method. In theory, a good implementation of the initial condition gen-

eration and the propagation of the system will allow a linear scaling with the

system size l, since all trajectories can be calculated in parallel because they are

independent to each other.

4.4.3 Multiconfigurational Ehrenfest Dynamics

As mentioned above, the wave function is represented by a set of independent

trajectories, which can be seen as a set of delta functions. This implies no overlap

between the individual trajectories and therefore, coherence effects related to the

overlap of the individual trajectories are not described. This aspect can be very

important for the dynamics, especially on the short time scale (several tens or

hundreds of fs). To overcome this problem, the overlap between the trajectories

has to be taken into account by introducing a wave function representation using

Gaussian functions. This results in a multiconfigurational type description as

described by Shalashilin et al. [128, 129]. In the following, this ansatz will be

described briefly.

As demonstrated by Römer et al. in [130], a classical limit wave function according

to the ’single-set’ formulation of Gaussian-based G-MCTDH can be expressed by
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|Ψqc(r, t)〉 =
L∑

l=1

N∑

n=1

Bnl(t)exp
(
i

ǫ
Scl

l (t)
)

gǫ,l(r; ql(t), pl(t))|n〉 (95)

=
L∑

l=1

N∑

n=1

Bnlg
cl
l (r, t)|n〉 (96)

=
L∑

l=1

|Φqc
l (r, t)〉 (97)

where |Φqc
l 〉 refers to an ’Ehrenfest configuration’. In the classical limit, these

configurations are found to decouple which allows an evolution of the coefficients

and Gaussian wave packet (GWP) parameters according to the classical Ehrenfest

ansatz (see Eqn.89). It has to be noted that phase information is implied in this

ansatz by the phase factor exp( i
ǫ
Scl

l (t)) which results from the classical-limit G-

MCTDH equations (Scl
l refers to the classical action). Since in practice non-scaled,

finite-width GWP will be used for the sampling of the initial conditions and the

reconstruction of the wave function, norm conservation needs to be guaranteed.

Therefore, an additional set of coefficients Al with each Ehrenfest configuration is

introduced [131] and the time evolution of these coefficients to determined based

on the Dirac-Frenkel variational principle. The resulting quantum-classical wave

function is given by

|Ψqc(r, t)〉 =
L∑

l=1

Al(t)|Φqc
l (r, t)〉 (98)

=
L∑

l=1

Al(t)

[
N∑

n=1

Bnl(t)g
cl
l (r, t)|n〉

]

(99)

=
L∑

l=1

N∑

n=1

AlBnl(t)exp
(
i

ǫ
Scl

l (t)
)

gǫ,l(r; ql(t), pl(t))|n〉 (100)

with the classical-limit GWP and the Bnl coefficients following the classical Ehren-

fest EOM while the new set of coefficients Al are obtained from the Dirac-Frenkel

variational principle. The complete set of EOMs for the multiconfigurational

Ehrenfest dynamics (MCE) is given by

dqJ

dt
=
pJ

M
dpJ

dt
= −〈Ψ|∇JHel.(r, q)|Ψ〉

i
dBl

dt
= Hel.Bl

iS
dA

dt
= (H̃ − iτ)A

(101)

(102)

(103)

(104)
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with the time derivative of the A-coefficients. All matrix elements needed for

the calculation of the derivative of A are formulated in the basis of Ehrenfest

configurations |Φqc
l 〉 and given by

H̃lk = 〈Φqc
l |H|Φqc

k 〉 (105)

=
∑

n

∑

n′

B∗
nlBn′k〈n|〈gcl

l |H|gcl
k 〉n′〉 (106)

and similarly for for the overlap matrix elements Slk

Slk = 〈Φqc
l |Φqc

k 〉 (107)

=
∑

n

∑

n′

B∗
nlBn′k〈gcl

l |gcl
k 〉〈n|n′〉 (108)

=
∑

n

B∗
nlBnk〈gcl

l |gcl
k 〉. (109)

Finally, the differential overlap τ is defined by

τlk = 〈Φqc
l |Φ̇qc

k 〉 (110)

=
∑

n

∑

n′

(

B∗
nlḂn′k〈gcl

l |gcl
k 〉〈n|n′〉 +B∗

nlBn′k〈gcl
l |ġcl

k 〉〈n|n′〉
)

(111)

=
∑

n

B∗
nlḂnk〈gcl

l |gcl
k 〉 +B∗

nlBnk〈gcl
l |ġcl

k 〉. (112)

Using normalized frozen Gaussians, the differential GWP overlap can be expressed

by

〈gcl
l |ġcl

k 〉 = 〈gcl
l |
(

∂gcl
k

∂qk

)

〉q̇k + 〈gcl
l |
(

∂gcl
k

∂pk

)

〉ṗk + 〈gcl
l |
(

∂gcl
k

∂Sk

)

〉Ṡk (113)

Using these expressions, the wave function and the corresponding expectation

values can be reconstructed. In principle, the described MCE ansatz is similar

to a 2-layer MCTDH ansatz and introduces an additional coefficient to describe

the evolution of the weighting of the different trajectories (the here formulated

expressions are similar to the expressions described by Shalashilin et al. [132]). In

principle this ansatz allows an accurate description of the electronic sub-system

on a short time scale with the limitation that the inverted overlap matrix S−1

is needed. This operation can be very time-consuming for a large number of

trajectories.
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5 | Results

In this chapter, the results of the main projects of the thesis will be presented.

The first two sections concern methodological topics, while the remaining three

sections concern applications to ultrafast energy transfer phenomena.

In detail, the projects will be presented in the following order: (i) the implementa-

tion of the Ehrenfest method in a Fortran 90 code, (ii) an exact adiabatic-diabatic

mapping procedure for polymeric systems, (iii) the ab initio characterization and

the ultrafast exciton dynamics of representative oligo-thiophene (OT) fragments

using high-level ab initio methods and the MCTDH method, (iv) the effect of ther-

mal noise and disorder on the exciton dynamics of oligo-para-phenylene vinylene

studied by MCTDH and the semi-classical Ehrenfest method and (v) the ultrafast,

photoinduced vibrational energy transfer in a DTE-BODIPY system studied by

time-resolved spectroscopy and theoretical modeling.
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5.1 Implementation of the Ehrenfest Dynamics

in a FORTRAN 90 Code

The implementation of the Ehrenfest equations presented in Sec. is done using

the FORTRAN 90 language. The reason for using FORTRAN is on the one hand

the high number of optimized mathematical functions, e.g., using the BLAS and

LAPACK routines and on the other hand the very easy and stable possibility

to handle large arrays and array operations. Furthermore, FORTRAN is a well

established, widely used and very efficient computer language in natural science.

In general, the implementation of the Ehrenfest dynamics for a given system is

done in three steps: (i) generation of the initial conditions for n trajectories (ii)

independent time-propagation of n trajectories and (iii) calculation of the expec-

tation values by taking an ensemble avereage over the trajectory distribution. In

Fig.8, the program scheme of the Ehrenfest dynamics is shown.

Figure 8: Ehrenfest dynamics program scheme.

We have implemented both the wave function based Ehrenfest equations (Eqn.89

and the density matrix version of Eqn.91). In both schemes, dissipation was added

in terms of Langevin forces (Eqn.93) and a dissipative Liouvillian (Eqn.92), re-

spectively. For the initial condition generation of a given system, a Wigner quasi-

probability distribution of a harmonic oscillator is obtained from the vibrational

ground state wave function [133]. For a pure-state Gaussian, dissipative-free case,
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the Wigner quasi-probability distribution P(q,p) for a Gaussian wave function

Ψ(x) is given by

P (q, p) =
(

1

πh̄

)

exp

(

− 1

2σ(0)
qq

(q − q0)
2 − 1

2σ(0)
pp

(p− p0)
2

)

(114)

centered around q0 and p0 and the width

σ(0)
qq =

h̄

2mω
, σ(0)

pp =
mh̄ω

2
(115)

The numerical values of q and p are generated using an importance sampling proce-

dure. In general, most of the modern computer languages only generate uniformly

distributed random numbers. The random number can be transformed to a normal

distribution using e.g. the Box-Muller transformation [134] or the Marsaglia polar

method [135]. The great advantage of these methods is the fact that for a normal

distribution the variance s =
√
σ can be generated from uniformly distributed

random numbers with a simple code. Additionally, a temperature dependence

variance of the random numbers can be introduced by

Γ =
h̄ω

2
coth

(

h̄ω

2kT

)

(116)

σ(0)
qq =

Γ

mω2
, σ(0)

pp = mΓ (117)

This amount to mapping the zero-temperature quantum width of Eqn.115 to a

thermal width according to Eqn.116 and 117.

In Fig.9, the effect of temperature on the initial sampling for 3000 trajectories

centered around x0= 45◦ is shown. As expected, the width of the Wigner function

and therefore the spatial distribution centered around x0 of the random numbers

increases with temperature.

For very low temperatures, a highly local sampling is obtained, whereas for higher

temperatures, the sampling gets much broader.

For the propagation part, each trajectory is propagated independently from all

other trajectories. This is achieved by starting the propagation n times with the

initial conditions of trajectory n generated in step 1. At first, the initial electronic

Hamiltonian is calculated using the initial q value for the given trajectory and

stored in a matrix. For the time-propagation, whose simplest numerical realization

is given by

y(t+ ∆t) = y(t) + dy(t)∆t (118)

where y is a generic quantity (here representing q,p and Ψ), one has to calculate

the derivatives of q, p and Ψ. The simplest integration scheme can be realized us-
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Figure 9: Temperature effect of the initial sampling of a torsional degree θ centered
around 40 degrees for 3000 trajectories.

ing an Euler integrator [136, 137] (see Eqn.118). After every integration step, the

electronic Hamiltonian is updated using the new q values. In practice, the correct

integration can be verified by calculating the norm of the wave function, which

should be conserved during the propagation. For the Euler integrator, which is

easy to implement, it turns out that the step-size ∆t has to be reduced dramati-

cally to be norm-conserving. To use larger step-sizes for each integration step, a

higher order integrator has to be used, e.g., Runge-Kutta (RK) [138] 4th/8th or-

der integrator or a different type of integrator such as an Adam-Bashford-Multon

(ABM) integrator [137]. In contrast to the RK integration scheme, the ABM inte-

gration scheme is a so-called predictor-corrector integration scheme, which uses the

information of the previous step to calculate the derivatives for the current step.

Furthermore, the step-size is adjusted with respect to a tolerance value. In theory,

such an integrator will give very accurate results, but the problem of an adaptive

step-size integrator is the tolerance criterion. If this criterion is not fulfilled, the

step-size is reduced and the integration step is repeated. For stiff equations, it is

possible that the step-size is reduced to very small values and in such a case, the

ABM integrator will slow down or in worst case the integration stops. In contrast

to the ABM integration scheme, the implemented RK scheme is a fixed step-size

scheme (but can be extended to an adaptive step-size scheme with the problems
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mentioned before) which guarantees a correct propagation as long as the norm is

conserved (norm conservation is used as a convergence criterion). The RK4 and

RK8 schemes that we employed are shown in Eqn.119 and Eqn.120 respectively.

y(t+ ∆t) = y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) (119)

with

k1 = ∆tf(xn, yn)

k2 = ∆tf(xn +
∆t

2
, yn +

k1

2
)

k3 = ∆tf(xn +
∆t

2
, yn +

k2

2
)

k4 = ∆tf(xn + ∆t, yn + ∆tk3)

y(t+ ∆t) = y(t) +
41k1

840
+

34k6

105
+

9k7

35
+

9k8

35
+

9k9

280
+

9k10

280
+

41k11

840
(120)

with
k1 = ∆tf(xn, yn)

k2 = ∆tf(xn +
2∆t

27
, yn +

2∆t

27
k1)

k3 = ∆tf(xn +
∆t

9
, yn +

k2

36
(k1 + 3k2))

k4 = ∆tf(xn +
∆t

6
, yn +

∆t

24
(k1 + 3k3))

k5 = ∆tf(xn +
5∆t

12
, yn +

∆t

48
(20k1 − 75k3 + 75k4))

k6 = ∆tf(xn +
∆t

2
, yn +

∆t

20
(k1 + 5k4 + 4k5))

k7 = ∆tf(xn +
5∆t

6
, yn +

∆t

108
(−25k1 + 125k4 − 260k5 + 250k6))

k8 = ∆tf(xn +
∆t

6
, yn + ∆t(

31

300
k1 +

61

225
k5 −

2

9
k6 +

13

900
k7))

k9 = ∆tf(xn +
2∆t

3
, yn + ∆t(2k1 −

53

6
k4 +

704

45
k5 −

107

9
k6 +

67

90
k7 + 3k8)

k10 = ∆tf(xn +
∆t

3
, yn + ∆t(−

91

108
k1 +

23

108
k4 −

976

135
k5 +

311

54
k6 −

19

60
k7 +

17

6
k8 −

1

12
k9))

k11 = ∆tf(xn + ∆t, yn + ∆t(
2383

4100
k1 −

341

164
k4 +

4496

1025
k5 −

301

82
k6 +

2133

4100
k7 +

45

82
k8 +

45

164
k9 +

18

41
k10)

To improve the integration scheme, a mixed RK scheme is used: for the integration

of q and p, a RK integrator 4th order is used, whereas a more accurate RK 8th

order is used for the integration of the electronic wave function. In Fig.10, the effect

of the integrator order on the error of the integration is illustrated. as mentioned

above, the advantage of using the fixed step-size scheme is to avoid the reduction

of step-size as it is possible in the ABM scheme. Furthermore, the implementation

of the Langevin formalism is very simple for fixed step-size while for variable step

size the noise term has to be rescaled properly every step.

For the Euler integrator, the calculation of the derivatives is done once, including

the calculation of the friction and the noise term. In contrast to the Euler integra-
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tor, the RK 4th order scheme will calculate the derivatives four times. Therefore,

one has to include this aspect in the fluctuation term, as now explained.

Figure 10: Illustration of the integration order, (red) Euler, (blue) RK 4, (green) RK
8 and (black) analytic function with the fixed step-size h.

The time-step ∆t of the fluctuation term corresponds to the time between the

sequential calls of the integrator. For a forth order integration scheme, which

calculates the derivatives four times, the time-step between theses calls is ∆τ and

therefore, the original ∆t has to be set to ∆t=τ/4. Using the mixed integration

scheme, one can achieve quite good accuracy even for large integration steps (in

general, the step-size is limited to the fastest component, which is in the most

cases the electronic component). Therefore, the step-size that was typically used

is in the range of ∆t= 0.1-1.0 a.u. ≈ 0.0024-0.024 fs. As mentioned in Sec.5.1,

the Ehrenfest dynamics can also be performed using a density matrix approach,

e.g., to calculate dissipative dynamics. For a non-dissipative system, the mixed

RK scheme is accurate enough, whereas for the dissipative system, the mixed

RK is not sufficient any more (at least in theory, the RK scheme should give

the exact results for very small step-sizes but this is not practicable anymore).

This failure can be explained by the stability of the RK integration scheme, which

is not high for dissipative systems [139]. To calculate dissipative dynamics, an

asynchronous leap-frog scheme [140] as shown in Eqn.121 is used for the integration

of the wave function, which is more stable for dissipative systems than the RK

scheme. Nevertheless, the norm-conserving numerical integration of a dissipative

open-quantum system is quite challenging.

ρ(t+ ∆t) = ρ(t) + κ(t)
∆t

2
(121)

κ = κ+ 2(
1

ih̄
[H(t), ρ] − κ)

ρ(t+ ∆t) = ρ(t+ ∆t) + κ(t)
∆t

2
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κ has to be initialized in the beginning using κ = 1
ih̄

[H(t0), ρ(t0)].

After the successful propagation of all trajectories, the expectation values of the

observables of interest are calculated in a third step. For this purpose, the average

of every observable is calculated, which are identical to the quantum expectation

values as stated by the Ehrenfest theorem.

One of the biggest advantages of the Ehrenfest dynamics over the full quantum

MCTDH method is the computationally cheap propagation of the coordinates and

the wave function, which can be used to calculate rather big systems with many

degrees of freedom and electronic states. Furthermore, using the independent

propagation scheme for each trajectory, many trajectories can be calculated at

once on a large computer cluster. Nevertheless, the Ehrenfest dynamics is a semi-

classical method, which is not able to reconstruct all properties and observables

like in the full quantum picture e.g. information about the electronic coherence is

lost.
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5.2 Exact Adiabatic-to-Diabatic Transformation

In order to perform quantum dynamics using the Ehrenfest or MCTDH ansatz, an

appropriate model with an adequate representation has to be chosen. In principle,

the adiabatic or a suitable diabatic representation can be used to describe the

phenomena under study. Both representations are equivalent but the interpreta-

tion of diabatic results is more intuitive, especially if a site-based representation is

chosen. One of the main features of a diabatic representation are the non-zero off-

diagonal coupling elements for a given Hamiltonian (see the discussion in Sec.4.2).

This aspect is one of the key features for all models of this work and therefore,

all models and methods used and developed in this thesis are based on the dia-

batic representation such that the implementation of non-adiabatic couplings (see

Sec.4.2 is avoided. Thus, all potential energy surfaces (PES) have to be expressed

in the diabatic basis. The PES obtained from ab initio calculations are in fact

adiabatic PES and therefore, have to be mapped onto a diabatic representation.

One possible and exact adiabatic-to-diabatic mapping procedure has been devel-

oped by Binder et al. [32, 141]. The resulting diabatic PES can then be fitted by

a suitable functional form and used in the quantum dynamical calculations.

In the following section, a brief description of the adiabatic-diabatic mapping de-

scription for polymeric systems will be given. In general, the mapping procedure

developed by Binder et al. [141] works for any kind of Hückel-type system with

some restrictions. First, a Hamiltonian of the system is needed which is expressed

in terms of separated units, which are given by different potentials and in terms of

ground and excited states, e.g., a Frenkel type Hamiltonian. Second, an adiabatic

PES cut along the coordinate of interest is needed. Third, the correct electronic

states have to be identified e.g. the lowest Frenkel excitonic states have to be

known.

Assuming a polymeric system with a steric defect centered in the middle of the

system, the corresponding potential matrix can be constructed, as illustrated in

Fig.11.

Based on this matrix and the adiabatic PES, the diabatic potential matrix can be

calculated. In Fig.12, the complete adiabatic-diabatic transformation procedure

is illustrated. Starting with two adiabatic states λt and λs at a specific geometry

(typical the Hückel geometry), the adiabatic potential matrix can be constructed.

The diabatic states can be seen as eigenvalues of the Frenkel type matrix which

can in turn be re-diagonalized. Using these two states and the ground-state in-

formation, the Frenkel type matrix can be constructed by mapping the adiabatic
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Figure 11: Potential matrix representation of a polymeric system with a structural
defect. Note that the diagonal and off diagonal matrix elements located
at the defect postion (d̃ and ω) differ from the remaining values (d and
ω0).

potential matrix onto the Frenkel type matrix. A diagonalization of this Frenkel

matrix will result in the two input eigenvalues and all other eigenvalues of the sys-

tem. Applying this procedure to the results of an adiabatic PES, an exact diabatic

PES can be obtained. The new diabatic PES can be fitted to a functional form

and used for further applications e.g. quantum dynamical calculations.

This procedure as been employed to construct the potential surfaces for the OT

and OPV systems under study.
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Figure 12: Illustration of the adiabatic-diabatic transformation procedure from elec-
tronic structure information to a Frenkel type model (adopted from
Ref.[141]).
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5.3 Exciton Dynamics on a Minimal Oligo-Thio-

phene Lattice

Polythiophene (PT) and its derivatives like Poly(3-hexylthiophene) (P3HT) are

promising materials for the development of new types of organic solar cells, or-

ganic light emitting diodes (OLED) or sensors [142–144]. Interestingly, PT is rarely

used commercially although it shows some remarkable properties such as fluores-

cence or semi-conductivity. Depending on the chain length, the macromolecular

structure and the doping/substituents, the photochemical properties (fluorescence

wavelength or the HOMO-LUMO band-gap) can be tuned [145]. In addition, the

manufacturing process of PT is simple and offers a wide range of potential appli-

cations. First studies have been done by M. Ree et al. and N. Robertson et al.

[87, 146] to demonstrate the applicability of PT as a material for organic photo-

voltaics or by R. A. J. Janssen et al. [147] using PT as a donor molecule for a

bulk heterojunction solar cell in combination with fullerene derivatives as an ac-

ceptor material. In order to understand the physical processes in the solar energy

conversion for these type of systems, several experimental and theoretical studies

have already been performed by a number of groups, to characterize the ultrafast

transport processes taking place in these systems [66, 148–150]. In case of donor-

acceptor type solar cells, the efficiency of the solar energy conversion correlates

with the ratio of donor and acceptor material and the dispersity, which can be

controlled during the manufacturing process.

Figure 13: Illustration of a typical PT polymer built from n thiophene monomer
units. The black solid line represents the polymer backbone, with different
areas (i) random coiled and (ii) linear structure. The intra- and inter-site
transfer mechanism are indicated by black arrows.

Of course, the relevant material is the most important parameter for an efficient

conversion, and therefore, many materials are used to find the best candidates.

69



CHAPTER 5. RESULTS

Since polythiophene is one of the very promising materials, a lot of effort is un-

derway, to understand the conversion processes in polythiophene. As mentioned

in Sec.3.2, several steps take place in the donor material until a successful charge

separation happens. Probably the most difficult step to model is the exciton mi-

gration after a FC excitation. Different schemes have been introduced in the last

years to describe this process correctly e.g. exciton relaxation followed by a hop-

ping process [13, 151, 152] or a compact exciton packet dynamics [33, 78, 89, 153].

As shown in Fig.13, the observed dynamics strongly depend on the main exciton

transfer mechanism: intra-chain (a coherent EET of „surfing“ type) [154, 155]

transfer or inter-chain (hopping type) transfer [24, 156, 157].

Figure 14: Exciton dynamics on a oligo-thiophene lattice exhibiting a torsional defect
after photoexcitation. Important coordinates are shown by arrows in the
inbox.

The main transfer mechanism is strongly governed by several aspects: the poly-

mer conformation (ordered/disordered), steric aspects (polymeric defects) and the

electronic properties of the system [82]. The first two aspects can be controlled

in the production process, while the last aspect strongly depends on the type of

system. In general, the intra-chain exciton coupling is described as a J -type ag-

gregate and is strongly correlated to the overlap of the conjugated π-system, while

an inter-site transfer can be described by a H -type aggregate [155, 158, 159]. A

typical intra-chain coupling is on the order of ≈ 0.1-1.0 eV while the inter-chain

coupling is on the order of ≈ 0.05-0.2 eV. In addition, the intra-chain mechanism

is influenced by steric defects, which can be ’healed’ to some extend, whereas the

inter-chain mechanism depends on the distance between the polymer chains. Fur-

thermore, the type of exciton, Frenkel, Wannier-Mott or CT exciton (see Chp.3),

plays an important role for a correct description. As shown in Chp.3, it is difficult

to find a model to describe all aspects of the transfer and therefore, the aim of this
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work was to develop a model Hamiltonian describing the intra-chain Frenkel and

CT exciton dynamics in a PT-chain in the presence of a geometric defect. The

molecular structure, the geometric defect and the active degrees of freedom of the

model are illustrated in Fig.14. The model represents a PT hexamer (or a 20-mer

in our most recent calculation), which can be seen as part of a linear PT chain,

in either a Frenkel or a Frenkel + CT exciton basis (a detailed description of the

model is given in Sec.5.3.1, and 5.3.2). This model describes the exciton dynamics

on this chain using a relaxed wave function on a sub-fragment of the system as an

initial condition.

The oligomer fragments under consideration can be taken to be examples of J-

aggregate systems, which exhibit a head-to-tail arrangement of monomer units.

A first characterization of J-aggregates has been given by Jelly et al. [158] and

originally describes the self-association of dyes in solution or at a solid-liquid in-

terface resulting in a spectral shift. Depending on the shift – bathochromic or

hypsochromic – a definition of J or H type aggregates is given. This shift is a

result of coupled transition dipole moments and has been observed for many types

of systems [12].

While the J-type aggregate property suggests a delocalization over the whole poly-

mer, in practice delocalization is limited due to structural defects or conjugation

breaks. In this context the concept of so-called „spectroscopic units“ has been used

which explains that delocalization is restricted to several neighboring monomer

units. Typically, the photogenerated exciton is delocalized across 5-15 monomer

units. Despite its intuitive appeal, this concept is still much debated to date [43].

5.3.1 Quantum Chemical Method and Model

To describe the exciton dynamics of a reasonable level of theory, an appropriate

model with a correct parametrization has to be used. Based on the assumption

that the diffusion process after FC excitation is strongly correlated to the overlap

of the π-system, the model Hamiltonian used for the dynamics will introduce a

torsional and bond-length dependent exciton transfer [160–162]. This assumption

is in turn correlated to the flexibility of the polymer backbone which is defined by

the torsional angle between two monomer units and the distance of two monomer

units. As shown in Fig.15, n-PT is built from n thiophene monomer units, which

are linked by a 1-3 carbonyl bond. For steric reasons, the S-C-C’-S’ torsional angle

is 168° in the electronic ground state and 180° in the first excited state [163–165].

This value is related to the sulfur-sulfur repulsion or to be more precise, to the

free electron pair of the sulfur which is localized in very diffuse orbitals. In the
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ground state, the system contains a conjugated π-system over the full chain. This

π-system is essential for a good conductivity and can be disturbed by a conju-

gation break (as illustrated in Fig.15 between monomer 3 and 4). As mentioned

before, this torsional coordinate has been considered in the model Hamiltonian

as an important coordinate for the energy transfer efficiency after photoexcita-

tion, since the overlap of the π-system and the presence of a torsional defect can

strongly influence the excitation transfer. To improve the model, the C-C dis-

tance coordinate between two monomer units has been chosen as an additional

active coordinate. To parametrize the torsional and the C-C distance (also called

bond-length alternation (BLA)) coordinates, high level ab initio calculations are

performed using the MP2 and ADC(2) method as implemented in the TURBO-

MOLE 6.4 program package. The main advantage of the ADC(2) method over

standard TDDFT calculations is the correct description of double-excitations and

charge-transfer states, which are often underestimated by TDDFT. An alternative

method to ADC(2) with very similar results would be CC2, but CC2 has the disad-

vantage that the excitation energies are obtained as eigenvalues of a non-hermitian

Jacobi matrix in contrast to ADC(2), where the excitation energies are obtained

as eigenvalues of a hermitian matrix. To be consistent, MP2 has been used for

ground state optimization whereas ADC(2) is used for excited state optimizations

and the calculations of the PESs. Nevertheless, the results of ADC(2) and CC2

are very similar, but for both methods, the computational costs are very high and

therefore, all calculation were performed using extensive parallelization.

Figure 15: Oligo-thiophene unit described in the quantum dynamics. The site-
correlated coordinates (torsional and BLA) are indicated by arrows. The
red colored area defines the torsional angle.

Due to the ≈ n5 scaling of ADC(2) and MP2 with the number of basis function,

the system size for the parametrization of the torsional and the BLA coordinates

has been limited to a PT octamer (in order to use the appropriate basis set def2-
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TZVP). This system size is already able to describe the excitonic band character of

a larger system (see Fig.20). For the coordinates, one-dimensional cuts along the

PES have been performed based on the relaxed ground state geometry. The final

parametrization has been performed by an exact adiabatic-diabatic transformation

of the quantum chemical results according to the procedure described in Sec.5.2.

5.3.2 Model Hamiltonian

For the quantum dynamics, either a Frenkel Hamiltonian is used, or else or a

Merrifield type Hamiltonian comprising a full e-h basis [99] (see Chp.3). Each site

ξ is defined in terms of a thiophene monomer unit and carries a site-correlated

torsional and bond-length coordinate. (I.e., these modes couple simultaneously

to two neighboring thiophene units). The basis of a general e-h state is given by

|νeµh〉 ≡ |νµ〉 where the electron is located at site νe = ν while the hole is located

on site µh = µ. This description can be compared to the valence/conduction band

picture, where an electron is created in the conduction band at site ν while a hole

is left in the valence band at site µ. All other states remain in their ground state.

This will cause a different dynamics for the coordinates. The general form of the

vibronic Hamiltonian is given by

H =
∑

νµ

∑

ν′µ′

Hνµ,ν′µ′|νµ〉〈ν ′µ′| (122)

with

Hνµ,ν′µ′ =δνν′δµµ′(H intr
νµ,ν′µ′ +HBLA

νµ,ν′µ′ +Htors
νµ,ν′µ′ +Hbath

νµ,ν′µ′)

+δνµδν′µ′HFrenkel
νµ,ν′µ′ +HCT

νµ,ν′µ′ (123)

where all terms can depend on the vibrational coordinates. The first four terms are

diagonal in the e-h basis and correspond to (i) the intrinsic electron-hole interac-

tion, (ii+iii) vibronic contributions related to the BLA and the torsional coordinate

and (iv) a harmonic oscillator bath acting as a source of dissipation. The terms

HFrenkel
νµ,ν′µ′ and HCT

νµ,ν′µ′ represent Frenkel type and CT type coupling terms and are

off-diagonal. The CT transfer integrals couple CT excitons to Frenkel excitons

and among each other.

This Hamiltonian is comparable to a quasi-diabatic vibronic coupling Hamiltonian

with a diagonal representation of the nuclear kinetic energy and potential type

couplings. As explained in Ref.[32, 141] an exact adiabatic-diabatic transformation

of the ab inito potentials is performed to map the electronic structure information

onto this Hamiltonian (see Sec.5.2). The intrinsic e-h pair interaction is given by
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H intr
νµ,ν′µ′ = δνν′δµµ′

(

e0 − 1

4πǫ0ǫrrνµ

)

(124)

where rνµ is the e-h distance as a function of the sites (νµ), r = |ν − µ|rru + r0,

with rru the repeat unit length, and r0 the intrinsic e-h distance for a Frenkel

exciton. The binding energy e0 for a localized e-h pair is set to zero, such that

Hνν,νν = 0. The relative permittivity ǫr has been set to 4 (as given in Ref.[145]).

The second and the third term of Eqn.123 correspond to the excitonic potentials

including the monomer ground (G) and excited (E) states potentials for the site-

correlated torsional and the BLA coordinate. For the site-correlated coordinates,

the following expression is used

Hvibr
νµ,ν′µ′(zξ,ξ+1) = δνν′δµµ′

Nsites−1∑

ξ=1

[

−1

2

∂2

∂z2
ξ,ξ+1

+ V G(zξ,ξ+1)+

(δν,ξ + δν,ξ+1)
(

V E(zξ,ξ+1) − V G(zξ,ξ+1)
) ]

(125)

where zξ,ξ+1 ∈ {xξ,ξ+1, θξ,ξ+1}, i.e. contributions for the BLA and torsional coor-

dinates will be summed over. Nsites corresponds to the number of monomer units,

VG and VE denote the effective ground/excited state potential that are composed

of combinations of ground and excites-state monomer potentials. For a correct

description of the finite lattice and to avoid edge effects, an edge potential was

added as described in Ref.[166].

In contrast to the site-correlated system coordinates, the bath Hamiltonian is

coupled to one torsional coordinate, to minimize the computational effort with a

maximum effect. The bath Hamiltonian is adopted from a Caldeira-Leggett model

and given by

HBath
νµ,ν′µ′ = δνν′δµµ′

NB∑

i=1



−1

2

∂2

∂x2
B,i

+
1

2
ω2

B,i

(

xB,i − cB,i

ω2
B,i

θ

)2


 (126)

where cB,i are the system-bath couplings obtained from an Ohmic spectral density

cB,i = (2ω∆ωJOhm(ω)/π)1/2 with the discrete frequency interval ∆ω determining

the Poincaré recurrence time tP C = 2π/∆ω. The Ohmic spectral density is given

by JOhm = 2γ∆ωe−ω/Λ with the friction coefficient γ and the cut-off frequency Λ.

Finally, the site-to-site couplings are defined as next-neighbor couplings depending

only on the torsional coordinate. Due to the fact that well localized Frenkel type

excitons and delocalized e-h pairs have to be considered, two different types of

coupling will be defined. First, the Frenkel type coupling is defined by

HF renkel
νµ,ν′µ′ = δνµδν′µ′(δν′,ν+1JF renkel(θ) + δν′,ν−1JF renkel(θ)) (127)
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whereas the e-h coupling is defined by

HCT
νµ,ν′µ′ = δνν′(δµ′,µ+1tCT (θ) + δµ′,µ−1tCT (θ))

+ δµµ′(δν′,ν+1tCT (θ) + δν′,ν−1tCT (θ)) (128)

with the transfer integral tCT = t0 · cos(θ) with t0=2.6 eV [167]. As mentioned

above, the parameters needed for this Hamiltonian are obtained by high-level

quantum chemical calculations and an exact adiabatic-diabatic transformation.

In the following section, the quantum chemical results and the parametrization of

the coordinates are presented.

5.3.3 Electronic Structure Calculations

All quantum chemical results presented in this section have been performed with

the TURBOMOLE 6.4 program package [168, 169] using the MP2 and ADC(2)

method combined with the def2-TZVP basis set [170–173]. This combination is

known to give accurate results, especially the results for excited states are known

to be more precise than results obtained by TDDFT even though the relevant

high-level methods require more computational effort [174].

Before calculating the required PES cuts, a detailed structural analysis of the

molecule has been performed including an analysis of the first 10 excited states. To

obtain the relaxed ground and excited state geometries, a geometry optimization

at the MP2 level has been performed for the ground state.

Figure 16: (a) Relaxed ground and (b) excited state structure of the oligo-thiophene
studied using ab initio methods.

Based on this structure, the relaxed structure of the first excited state is calculated

by geometry optimization using ADC(2). In Fig.16, the corresponding structures

are shown. As one would expect, both structures are linear with some visible
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differences: the relaxed ground state structure shows a twisted polymer chain with

a torsional angle of ≈ 160° which is in good agreement with experimental results

[175–177]. Furthermore, an alternating ’up-down’ structure of the thiophene rings

is observable resulting in an distorted but still symmetric structure. In contrast

to this twisted structure, the first excited state structure is almost planar with

a S-C-C’-S’ torsional angle of ≈ 180°. Such a planarization in the excited state

after photoexcitation is a well known phenomena of conjugated systems [178]. In

Tbl.1, the bond-length of the first four thiophene units is shown for the ground

and the first excited state (due to the symmetry of the system and for clarification

reasons).

Table 1: Bond length and monomer-monomer distance values of the oligo-thiophene
for the first 4 monomer units. The excited state values are given in paren-
thesis. All values are given in Å.

Bond Distance
number Unit 1 Unit 2 Unit 3 Unit 4 ξ, ξ + 1

1 1.38 (1.38) 1.39 (1.40) 1.39 (1.41) 1.39 (1.42) 1-2 1.442 (1.432)
2 1.42 (1.40) 1.40 (1.39) 1.40 (1.38) 1.40 (1.37) 2-3 1.437 (1.412)
3 1.38 (1.39) 1.39 (1.40) 1.39 (1.41) 1.39 (1.42) 3-4 1.436 (1.397)
4 1.72 (1.73) 1.73 (1.74) 1.73 (1.74) 1.73 (1.75) 4-5 1.436 (1.391)
5 1.72 (1.71) 1.73 (1.73) 1.73 (1.74) 1.73 (1.75)

The bond-length values given in Tbl.1 clearly show the typical change of sin-

gle and double bonds character after photoexcitation, which is also observable in

quinone-like systems. In general, it is observable that the carbon-sulfur bonds

are not strongly affected by the photoexcitation, in contrast to all carbon-carbon

bonds, which indicates a contribution of the conjugated π-system. Furthermore,

the monomer units located in the middle of the chain are affected much more

strongly than the outer ones. By analyzing only the monomer-monomer bond-

length for the ground state and the excited state, the typical trapping effect after

photoexcitation can be demonstrated. As shown in Fig.17, the relative BLA values

for the ground state are less diverging for the different bonds, while in the excited

state, a much more pronounced change is observable resulting in a much shorter

bond-length centered in the middle of the chain compared to the outer ones.

As demonstrated, this trapping effect of the monomer-monomer bond-length is

strongly correlated to the electronic excitation. To analyze the electronic excita-

tions on a monomer resolved level, the transition densities for the first 10 excited

singlet states are calculated based on the relaxed excited state geometry. For this

analysis, the single-particle transition density matrix in the atomic orbital (AO)

representation is used [179]

ρ(k)
nm = 〈k|b̂†

nâm|0〉 (129)
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Figure 17: BLA values of the relaxed ground (black) and excited state (red) structure.
The BLA index represents the bond between monomer site ξ and ξ+1.

with the annihilation operator âm removing an electron from the ground state |0〉
in the m-th AO and the creation operator b̂†

n creating an electron in the excited

state 〈k| in the n-th AO. The transition density Ω(k)
νµ is obtained by summing

components of ρ(k)
mn over defined fragments

Ω(k)
νµ =

1

2

∑

n∈ν

∑

m∈µ

(ρ(k)S)nm(Sρ(k))nm (130)

with the overlap matrix S in the AO basis. This analysis allows to characterize

the excitation in terms of electrons and holes and also to evaluate the spatial

distribution σ of the excitation. This is important for the further parametrization,

since only Frenkel type excitonic states should be considered in the dynamics. As

shown for the so obtained transition density in Fig.18, the excitations show a very

systematic pattern.

Figure 18: Transition density of the first 10 excited singlet (a - j) states. The x-axis
corresponds to the position of the electron µ and y-axis corresponds to
the position of the hole ν. The deviation of the spatial distribution for the
first three Frenkel excitonic states is σS1= 1.4, σS2= 1.7 and σS3= 1.5.
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In general, one can distinguish between well localized excitations, or Frenkel-type

excitons, and charge-transfer (CT) excitations by analyzing the electron-hole dis-

tribution. For localized excitations e.g S1, a strong on-diagonal transition density

is observed, whereas for CT states e.g. S3, a strong off-diagonal transition density

is observed. Furthermore, the non-CT states show a particle-in-the-box pattern

with an increasing number of nodes which is clearly observable for the states S1, S2,

S3, S5 & S7. These states seem to belong to the same Frenkel excitonic manifold.

The spatial distribution of the first three excited states proves the Frenkel-type

character for this states. As explained in the caption of Fig.18, the spatial distribu-

tion is in the range of 1.4-1.7, which indicates a very compact excitation typical for

Frenkel-type excitons. As shown in Tbl.2, the corresponding oscillator strengths

also indicate a non-CT character for these states, whereas the oscillator strength

for the CT states is very small or almost zero. Additionally, these numbers also

indicate the typical features of a J-aggregate, where the lowest excitonic state

of a J-aggregate has a high oscillator strength whereas all other excitonic states

belonging to the same manifold only have a very low one.

Table 2: Singlet excitation energies of oligo-thiophene.

State S1 S2 S3 S4 S5

Exc. energy [eV] 3.22 3.57 3.92 4.01 4.24
Oscil. strength 2.81 5.94·10−4 0.28 1.21·10−5 6.48·10−4

State S6 S7 S8 S9 S10

Exc. energy [eV] 4.27 4.54 4.59 4.77 4.86
Oscil. strength 1.60·10−7 0.12 1.09·10−4 9.99·10−3 3.30·10−2

Another indication of the particle-in-the-box behavior of the excited states is given

by analyzing the center-of-mass population of the transition density for the lowest

excitonic states. The center-of-mass population is defined as

ΩCM
ξ =

∑

ν,µ=1

Ωνµ

∣
∣
∣
∣
ν+µ=2ξ

. (131)

ν and µ describe the position of electron and hole on the polymer lattice, the

transition density is given by Ωνµ and the center-of-mass index ξ defines the center-

of-mass position in terms of monomer units.

The resulting center-of-mass distribution ΩCM
νµ is shown in Fig.19. As expected, a

node-less distribution is found for the lowest excited state, whereas the second and

the third state show one or two nodes, respectively. For these excited states, the

center-of-mass distribution is almost symmetric, which is related to the symmetric
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Figure 19: Ab initio center of mass population of oligo-thiophene for the first three
Frenkel-type excited states.

structure of the oligo-thiophene fragment. To verify whether the oligomer is able

to represent a polymeric system or if the chosen system is too small, the excitation

energies for different chain lengths are calculated. In theory, a decrease of the

excitation energy with increasing number of monomer units should be observed,

resulting in a band-type structure of semi-conducting systems. As shown in Fig.20

for the first five electronic states, the described decrease of excitation energy with

increasing system size is indeed observable.

Figure 20: Dependency of the excitation energy on the chain length. The experimen-
tal values for selected chain lengths are given by blue stars [180–182].

Especially the lowest electronic state shows the typical trend towards a stationary

state for large systems. All other states show a similar but less pronounced trend.

In general, all excitation energies are decreased by at least 1 eV starting from the

dimeric system. Furthermore, the agreement between calculated and experimental

excitation energies for the first excited state for the different systems is quite good,

even though the difference between theory and experiment is ≈ 0.5 eV. For other
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types of systems, similar or even better agreements have been reported for ADC(2)

[183, 184].

Figure 21: Total energies of the (a) torsional and (b) BLA coordinate for the ground
state and the first 10 singlet excited states.

The results for the structure and the electronic properties discussed so far lead to

the conclusion that the combination of MP2 and ADC(2) is a reliable method to

describe oligo-thiophene and to calculate the 1D PES required for the parametriza-

tion. In order to parametrize the model Hamiltonian, PES cuts for the coordinates

of interest have to be obtained. Therefore, a rigid scan along the torsional and BLA

coordinate (as defined in Fig.15) starting from the relaxed ground state structure

has been performed. In Fig.21, the total energies of the ground state and the first

10 excited states for the torsional and the BLA PES are shown. For the ground

state, the torsional coordinate shows 2 minima, one at ≈ 30° and one global min-

imum at ≈ 160°, whereas the minima of the excited states are at 0°/180°. All

states have their global maximum at 90°, while the barrier height at this point

differs.

For the excited states, it is observable that at this point, an avoided crossing of

states exists, e.g., for states 4 and 5. This avoided crossing also explains the

fact, that the description of the four highest states is not perfect, since the wave

functions for these states are not stable any more, especially in the area of the

avoided crossing. Nevertheless, the results are still reliable, since only the two

lowest Frenkel states are of interest for the further analysis. For the BLA PES,

one minimum is observed for all states, which is shifted to negative values compared

to the ground state value centered at 0.0. The general curvature of the PES is

Morse-type showing that all states are well separated for larger BLA values, while

for negative BLA values, curve crossings are observable e.g. state 7 and 8.

These adiabatic PES have been transformed to a diabatic representation using the

transformation routine as described in Chp.3 and the information about the two
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Figure 22: Results of the adiabatic-diabatic transformation (a) torsional coordinate
and (b) BLA coordinate. The dots correspond to the adiabatic states,
whereas the solid lines correspond to the transformed diabatic states
(black=S1, red=S2).

lowest excitonic states (S1/S2) obtained from the transition density analysis. As

shown in Fig.22 for the excitonic states of the torsional and the BLA PES, the

adiabatic-diabatic transformation results in the same potentials as stated by the

theory (the diabatic ground state is obtained directly from the adiabatic ground

state potential). Finally, these potentials have been fitted to a functional form, as

shown in Fig.23.

Figure 23: Transformed diabatic potentials (dots) and fitted diabatic potentials (line)
represented by a functional form to the resulting points of the ground state
(black), the excited state (red) and the coupling (blue) for (a) the torsional
coordinate and (b) the BLA coordinate.

The functional form of the torsional PES is described by a cosine Fourier series as

shown in Eqn.132

V S(θ) = a0 +
N∑

k=1

(ak · cos(k · (θ − θ0)) − ak) (132)
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with S= ground state or excited state (G/E). The BLA potentials are fitted to a

Morse-type functional form

V S(ξ) = E0 + a · (1 − e−b(ξ−ξ0))2 (133)

For both coordinates, a good agreement of the diabatic potentials and the fitted

functional form is observable. This good agreement is necessary for quantum

dynamical calculations, since the results of the quantum dynamics are only such

as good as the used potentials. The parameters of the torsional and the BLA

functional form are given in Tbl.3 and 4, respectively.

Table 3: Parameters of the functional form of the PT torsional coordinate. If not
specified, all parameters are given in a.u.

a0 a1 a2 a3 a4

Ground state 6.7 ·10−5 -2.8 ·10−4 2.2 ·10−3 -2.2 ·10−4 7.1 ·10−4

Excited state -6.3 ·10−3 4.4 ·10−3 -3.3 ·10−2 -4.7 ·10−3 4.1·10−3

Coupling -4.6 ·10−2 3.8·10−4 2.7 ·10−3 -5.1·10−4 9.5·10−5

a5 a6 a7 a8 θ0

Ground state -1.8 ·10−5 7.7 ·10−5 7.9 ·10−6 9.0 ·10−6 160°
Excited state 6.1 ·10−4 -2.4 ·10−5 -5.1 ·10−4 1.7 ·10−4 180.0°

Coupling 8.3 ·10−4 -5.1 ·10−4 -1.6 ·10−4 -1.4 ·10−4

Table 4: Parameters of the functional form of the PT BLA coordinate. If not specified,
all parameters are given in a.u.

E0 a b ξ0

Ground state 0.0 1.9 ·10−1 9.9 ·10−1 -4.73 ·10−4

Excited state -6.1 ·10−3 2.8 ·10−1 9.9 ·10−1 -1.7 ·10−1
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5.3.4 Exciton Dynamics on a Minimal Lattice

Based on the ab initio calculations and the parametrization presented in the previ-

ous section, quantum dynamical calculations for a PT hexamer system have been

performed using the Heidelberg MCTDH package. The aim of the simulation was

to describe the exciton dynamics of the PT hexamer in the presence of a torsional

defect (structure distorted by 60° with respect to the ground state torsional an-

gle) centered in the middle of the polymer chain in a Frenkel or a full e-h basis.

The total number of electronic states of the Hamiltonian is N=6 for the Frenkel

and N2=36 for the full e-h model with a total number of DOF k=13 (1 torsional

DOF, 5 BLA DOF and 7 harmonic oscillator bath coordinates). In case of the

Frenkel model, a multi-set formalism is used for the description of the SPF’s while

a single-set formalism is used for the full e-h model. The active coordinates are

represented by SPFs (at least 5 SPFs per coordinate), whereas two BLA modes

have been combined into one SPF to reduce the computational effort. The SPFs

are expanded in a primitive grid basis, which is described by a discrete variable

representation. A harmonic oscillator representation is used with 1024 grid points

for the torsional DOF, 80 grid points for the BLA DOF and 50 grid points for

the harmonic oscillator bath. The reason for the large number of grid points of

the torsional coordinate is the large expected change of the coordinate, whereas

the expected change of the BLA and the bath coordinates is rather small. The

total number of configurations of the Frenkel model is Nconfig=2370480, whereas

the total number of configurations for the full e-h model is Nconfig=640744. The

overall accuracy is given by analyzing the population of the highest populated

SPF and the population of the primitive grid at the end and the beginning. For

a fully converged calculation, the population of the highest SPF should be less

then 0.1% and the population at the ends of the grid almost zero. For the pure

Frenkel case, this convergence is achieved, whereas for the full e-h model, the SPF

convergence is not achieved completely (which is related to the large number of

degrees of freedom). Nevertheless, the results of the CT model are in agreement

with the Frenkel type model.

As an initial condition, a FC excitation on a sub-fragment (left or right) is as-

sumed. Such a fragment is often called spectroscopic unit and described by vari-

ous experiments. This initial condition is prepared by relaxing an arbitrary initial

wave function on the sub-fragment lattice. The resulting wave function can be

seen as the lowest eigenstate of a particle-in-a-box system, which is defined by

the sub-lattice. The so relaxed wave function is used for the propagation of the

system.
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In Figs.24-26, the results for the Frenkel excitonic system are shown.

Figure 24: (a) Time evolution of the dynamics of the torsional coordinate θ34 and (b)
the electronic coherence from the ’left’ to the ’right’ fragment of the PT
hexamer up to 1.5 ps.

For the torsional degree of freedom, a planarization to 180°, starting from the

initial value of 100°, is observable within 1.5 ps. During the first 500 fs, a steep

increase in the torsional angle is observable with slower oscillations around the

minimum value θ0=180° afterwards.

Figure 25: (a) 1D representation of the Frenkel exciton dynamics. The initial popu-
lation is located on site 1-3 with the maximum on site 2 (population on
site 2= 0.5). The inlay focuses on the first 150 fs. (b) Time evolution of
the total energy of the torsional coordinate θ34, the BLA coordinate and
the harmonic oscillator bath.

This planarization is the result of the coupling of the torsional coordinate to the

harmonic oscillator bath and the exciton dynamics. Analyzing the Frenkel state

population dynamics, a direct correlation between the torsional DOF and the state

populations is observable. As shown in Fig.25, the initial population is strictly
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located on states 1-3 (as prepared by the relaxation process) and a rapid transfer

to states 4-6 is observable within the first 100 fs with a strong oscillating pattern.

After ≈ 500 fs, a quasi-stationary state centered in the middle of the lattice is

formed, which is observable up to the maximum simulation time. This quasi-

stationary state, also called local excitonic ground state (LEGS), can be described

by the lowest particle-in-a-box state (for a different perspective, see Fig.26b) for

the overall lattice, whereas the oscillatory dynamics of the population on the longer

time scale is related to energy fluctuations induced by the BLA coordinates.

Analyzing the total energy of the coordinates, it is observable that the harmonic

oscillator bath efficiently absorbs the energy of the torsional DOF resulting in a

similar quasi-stationary state, whereas the total energy of the BLA coordinates

shows only minor changes. The formation of the new LEGS is also observable in

the BLA dynamics. As shown in the left panel of Fig.26, the BLA coordinates end

up in a mirrored dynamics of the Frenkel state population (right panel of Fig.26).

Such trapping effects of coordinates are known for many types of systems after

photoexcitation e.g. carotene type systems but is also described theoretically by

Barford et al. for PPV type systems [96, 185].

Figure 26: (a) BLA displacement for the stationary state. The BLA values of the
stationary state are calculated by averaging the last 100 fs of the simula-
tion. (b) Frenkel population dynamics for selected times. The population
of the stationary state is calculated by averaging the last 100 fs of the
simulation.

To evaluate if the observed Frenkel exciton dynamics is a coherent or a non-

coherent process, the real and imaginary part of the coherence from the ’left’

to the ’right’ fragment is calculated. In general, the imaginary part of the coher-

ence can be seen as a measure if a transfer process is coherent or non-coherent and

how long a coherent transfer process takes place. (More specifically, the imaginary

part of the coherence is related to the transient population flux.) As shown in
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the right panel of Fig.24, the life-time of the imaginary part of the coherence is

≈ 150-200 fs, which is quite long for such a fast exciton dynamics. The real part

of the coherence also shows the formation of a quasi-stationary state and the time

scale of this process is in good agreement with the time scale observed for the

torsional DOF and the Frenkel exciton dynamics. To improve the Frenkel model

and to include delocalized states such as CT states, the same setup is used for

a model Hamiltonian in the full e-h basis. Due to the high computational effort

for the high number of configurations, the number of SPFs is reduced to at least

3 per DOF and therefore, the number of configurations is smaller compared to

the Frenkel case (the higher number of configurations strongly correlates with the

number of electronic states).

Figure 27: (a) Time evolution of the dynamics of the torsional coordinate θ34 for the
full e-h model and (b) the total energy of the torsional, the BLA and the
harmonic oscillator bath coordinates.

Nevertheless, these results are reliable and the accuracy is acceptable but the small

number of configurations can be a reason for some unexpected observations, since

the calculation is not fully converged. The effect of this not fully converged calcu-

lation is observable in the torsional dynamics as shown in Fig.27a. As expected,

a fast dynamics takes place during the first 250 fs towards a planar structure,

however, the dynamics of the torsional mode is not as clear as in the pure Frenkel

case. This is directly related to a not fully converged calculation. Nevertheless, it

is clearly shown that the torsional angle planarizes, which is also indicated by the

energy dynamics shown in Fig.27b.

Here a clear dissipative dynamics for the torsional DOF is observable, resulting

in a quasi-stationary state. As in the Frenkel case, the total energy of the BLA

DOF is almost constant for the overall simulation time. Due to the high number

of states resulting from the full e-h model, a center-of-mass (PCM
ξ ) population
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Figure 28: (a) and (b) Center-of-mass distribution PCM
ξ for selected times (c) Center-

of-mass distribution in the quasi-stationary state and (d) BLA displace-
ment in the quasi-stationary state.

is defined, which is a more intuitive description of the population. The PCM
ξ is

defined as

PCM
ξ (t) =

Nsite∑

ν,µ=1

Pνµ |ν+µ=2ξ (134)

In Fig.28a and b, 1D representations of the PCM
ξ for selected times are shown,

indicating that the population transfer is again an ultrafast transfer from the ’left’

to the ’right’ fragment (for comparison to the pure Frenkel model, see Fig.26b)

starting from the LEGS on the sub-lattice to the new LEGS on the overall lattice.

The formation of LEGS is clearly observable for longer time scales and again, a

trapping effect of the BLA coordinates can be seen. A different representation

is shown in Fig.29. Here, the dynamics is described in the full e-h basis. The

formation of the LEGS takes place on a time scale of ≈ 500 fs, which is on the

same order as in the pure Frenkel model. The population dynamics starts to

spread over the full lattice from its initial position and an oscillatory dynamics is
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Figure 29: Time-evolution of the e-h dynamics on the hexamer lattice for selected
times complementary to Fig.28a and b. The x-axis corresponds to the
position of the electron and the y-axis corresponds to the position of the
hole. The distribution is plotted in grayscale; the scale is not identical for
all plots.

observable up to 500 fs. The advantage of the full e-h model is the possibility to

describe the dynamics in a 2D context, which allows to calculate properties such

as standard deviations of distributions. Furthermore, the results can be compared

to the transition densities calculated by ab initio methods. The analysis of the

standard deviation of the coherence size distribution, the individual coherence

size components and the general electronic coherence from the ’left’ to the ’right’

fragment are shown in Fig.30. As shown, the standard deviation of the coherence

size increases immediately from ≈ 0.95 to ≈ 1.25 which is very similar to the

value of ΩS1= 1.4 calculated for the ab initio transition densities. This is also

apparent from the e-h distribution for the stationary time, which is very similar to

the transition density of the lowest single excited state of the PT octamer shown

in Fig.18.

In contrast to the Frenkel model, the electronic coherence of the energy transfer

from the ’left’ to the ’right’ fragment does not show such a clear dynamics as in the

Frenkel case. In the full e-h model, the real part of the electronic coherence is less

strong but also indicates the formation of a stationary state, while the imaginary
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Figure 30: (a) Time evolution of the standard deviation σ of the coherence size dis-
tribution (upper panel) and individual coherence size components P CS

∆ =
∑NSite

ν,µ=1;ν−µ=∆ Pν,µ(t) for ∆ = 0, ±1, ... (lower panel) (b) Time-evolution
of the electronic coherences from the initial ’left’ fragment to the ’right’
fragment. Red= real part, black= imaginary part. Only the Frenkel type
coherences are considered.

part decays on the same time scale as in the Frenkel model. The different time-

evolution of the real part coherence can be related to the not fully converged

calculation but can also be an effect of the generalized e-h model.

5.3.5 Exciton Dynamics on a Large Lattice

Up to now, the system size is small as compared to real systems even though

representative exciton dynamics cal already be described as detailed above. To

describe exciton dynamics for larger systems, which can capture exciton migration,

the Hamiltonian is extended to a PT 20-mer in combination with the ML-MCTDH

method.

By a systematic variation of the initial conditions, the role of low- and high-

frequency coordinates in the exciton transfer dynamics and the concept of spec-

troscopic units [43] can be evaluated.

In Fig.31, the results for different setups and initial conditions are shown. For

a fixed torsional coordinate (Fig.31a), a confined is observable. For the first few

hundred fs most of the initial wave packet remains on the initial fragment and

shows some minor oscillations, while only a few percent of the population are

transferred to the other sub-lattice on this time scale. After ≈ 600 fs, most of the

population is transferred to the upper sub-lattice and forms a new LEGS. This

new LEGS is stable for ≈ 200 fs and is then re-transferred to the lower sub-lattice.

89



CHAPTER 5. RESULTS

The impact of the torsional motion on this dynamics is shown in Fig.31b. By

describing the torsional coordinate as an active degree of freedom coupled to a

dissipative bath, the formation of a new local excitonic ground state centered in

the middle of the overall lattice can be observed. This new LEGS is formed after

≈ 300 fs, but already after ≈ 100 fs, a significant population transfer to the upper

sub-lattice is observable. On this time scale, the torsional angle reaches the regime

of the ground state value.

Interestingly, the exciton dynamics described for these two initial conditions shows

high-frequency fluctuations during the overall simulation time. These fluctuations

are due to both electronic Rabi-type oscillations and BLA vibrations.

By reducing the coupling to the dissipative bath (Fig.31c), a more delocalized

exciton dynamics on the overall lattice is observed. The formation of a stable

LEGS is now observable after ≈ 1.0 ps which is much slower than the dynamics

described before. In contrast to this slow formation, the formation of the LEGS

for a planar system as shown in Fig.31d takes place on a time scale of ≈ 100 fs,

which is much shorter compared to a twisted initial condition. Furthermore, very

strong fluctuations in the first 200 fs can be observed.

By removing the dissipative bath (as shown in Fig.31e), no formation of a LEGS

is observable but the exciton dynamics takes place on the overall lattice. Again,

the exciton dynamics is observable on the overall lattice after 200-300 fs but no

formation of a LEGS for longer times is observable. In contrast to the dynamics

described in Fig.31(a)-(d), no planarization of the torsional coordinate is observed.

In general, it can be observed that a rapid change in the population dynamics is

observable for torsional angles close to the ground state value or a planar value.

For these structures, a compact exciton centered in the middle of the lattice can

be found if dissipation is present. By contrast for the case without a dissipative

bath, a spread-out dynamics on the overall lattice is observable.

These results lead to the conclusion that the dynamics of the torsional coordinate,

especially the planarization of the system, is essential for the exciton dynamics

on the overall lattice and the formation of a LEGS centered in the middle of the

lattice. However, LEGS formation also depends on the BLA coordinate which is

responsible for the exciton trapping. Interestingly, the exciton dynamics shows a

very fast transition between the left and right sub-lattice for all setups. One reason

for this fast, apparently electronic dynamics could be the fact that Hamiltonian

includes only correlated modes which favor electronic resonance effects. By adding

a site-local high-frequency coordinate on each monomer, this resonance effect can

be reduced. These coordinates can be compared to local ring vibrations, which
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Figure 31: Analysis of the exciton dynamics and the exciton self-trapping effect for
different initial conditions for a PT 20-mer using the full quantum ML-
MCTDH method. The initial wave function is always located on sites 1-
10. (a) Fixed torsional coordinate θ=100°, (b) active torsional coordinate
θ=100°, (c) active torsional coordinate θ=100° with a very low damping
factor, (d) active torsional coordinate θ=180° and (e) active torsional co-
ordinate θ=100° without coupled bath. The color scaling is identical for
all plots and given by the color bar. For all plots, the right panels show
the overall dynamics whereas the left panels show only the dynamics up
to 500 fs.
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Figure 32: Analysis of the exciton dynamics and the exciton self-trapping effect for
different initial conditions for a PT 20-mer using the full quantum ML-
MCTDH method with and without additional site-local coordinates. The
initial wave function is always located on sites 1-10. (a) Fixed torsional
coordinate θ=100°, (b) Fix torsional coordinate θ=100° with additional
site-local coordinates, (c) Active torsional coordinate θ=100° and (d) Ac-
tive torsional coordinate θ=100° with additional site-local coordinates.
The color scheme of panel (a) and (b) is given next to panel (b), the color
bar of panel (c) and (d) is given next to panel (d).

have been observed e.g. by Bragg et al. [186]. In Fig.32, the comparison of

this augmented model to the original model is shown for θinit.=100°. As shown in

Fig.32a and b, the effect of the additional site-local coordinates is quite remarkable.

As postulated, these coordinates induce a de-tuning of the resonant electronic

system which results in a smoother dynamics. For a fixed torsional coordinate,

most of the initial population remains on the initial sub-system and forms a new

LEGS. Only a minor friction of the population is transferred to the upper sub-

lattice and forms a LEGS on this lattice. By describing the torsional coordinate as

an active coordinate (as shown in Fig.32c and d), the fast dynamics after ≈ 100 fs is

decreased and also the fluctuations in the population are decreased. This indicates

that the previously described dynamics is a result of the highly correlated site-

site coordinates of the model Hamiltonian. By introducing uncorrelated site-local
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coordinates, the site energies became more off-resonant. This de-tuning results in

a more smooth exciton dynamics and should better capture the dynamics in the

real system.

5.3.6 Conclusion

Using a small hexamer model system and a larger 20-mer system, we were able to

describe two typical situations: first, the spreading of an exciton across a torsional

defect, from an initial condition located close to the defect. Second, the torsion-

induced migration of an exciton which is initially trapped on a sub-lattice. Both

phenomena are ultrafast and coherent. Interestingly, the second case exhibits a

coherent hopping type dynamics.

Based on the results presented for the Frenkel type model and the full e-h model,

the minimal lattice used in the simulation is already able to describe the exciton

dynamics properly. The results of the full e-h model are very close to the results

of the simplified Frenkel type model, with the drawback that the computational

effort is much higher due to the high number of electronic states. Therefore, the

full e-h representation is not necessarily needed to describe intra-chain dynamics.

This allows the dynamical description of energy transfer on a full quantum level,

using a Frenkel model.

Furthermore, it was shown that the time scale of the energy transfer process is

in the sub-ps range, which is indeed a very fast process. Additionally, it has

been demonstrated that the exciton dynamics is affected by structural defects. A

„healing“ of the defects favors the exciton migration on the overall lattice. Also

the observed time scale for the EET agrees with the observations of previous

simulations on similar systems [166, 187].

By describing the exciton dynamics on a larger lattice, we arrive at observations

that are consistent with the spectroscopic unit concept. In particular, (i) the exci-

ton is found to be spatially confined due to geometric defects, (ii) exciton migration

occurs as a consequence of planarization of the central torsional coordinate, (iii)

if the torsional coordinate is damped, immediate formation of a new LEGS oc-

curs in the middle of the lattice. By including uncorrelated site-local coordinates,

the electronic transfer dynamics is detuned such that extremely rapid Rabi-type

oscillations disappear. A description including both correlated and uncorrelated

modes should provide a realistic setting.

Finally, the theoretical results obtained by the quantum dynamical calculations are

in agreement with results for similar types of systems. As described by Barford

and others [152, 185, 188, 189] the formation of LEGS is observable. However,
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the present results are the first quantum dynamical investigation of the exciton

migration mechanism, leading to an interesting „coherent hopping“ type picture.

In the following section, we will use more approximate mixed quantum-classical

methods to move toward longer time scales and include thermal effects.
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5.4 Exciton Dynamics on a Minimal Oligo-p-

Phenylene Vinylene Lattice studied by MCTDH

and Ehrenfest Dynamics

Another very promising material for the development of organic photovoltaics is

poly-para-phenylene vinylene (PPV). This material is not widely used commer-

cially for organic photovoltaic devices but in contrast to PT, devices based on

PPV with a sufficient large efficiency (up to 9%) have been developed. The prob-

lem of these devices is the sensitivity to environmental effects such as water or

very low temperatures [190, 191]. Up to now, these environmental effects destroy

the semi-conducting polymer-layer on a very short time scale (several month) [192,

193]. However, for photovoltaic devices it is necessary that they are robust and

stable for daily use, e.g., on roofs. Furthermore, the conversion mechanism from

solar energy to electric energy and the role of different external effects such as tem-

perature are not well studied yet. Various experimental and theoretical approaches

to study the initial energy transfer dynamics in PPV have been carried out [20,

71, 83, 194, 195]. Several groups developed different theoretical models to describe

the energy transfer on a sub-ps time scale. As for PT, the full quantum MCTDH

method in combination with ab initio parameters was used by Burghardt et al.

to study the EET in the presence of a torsional defect[23]. These results show an

energy transfer within the polymer chain on a sub-ps time scale. Their model and

the parametrization has been improved by Binder et al. including a dissipative

bath [166]. Another approach was introduced by Barford et al. describing the EET

as a two step process: (i) an ultra-fast relaxation on a sub-ps time scale followed

[185, 188] by (ii) a random hopping process [96]. First time-resolved experiments

using spectroscopic techniques were performed by Scholes et al., describing the

EET as a surfing-type process [13]. This surfing-type EET is also described by

Stafstrøem et al. using an electron lattice dynamical description, to simulate the

EET in a PPV wire [34]. They used the Ehrenfest dynamics for the description

of vibrational DOF and electronic states. Their work is focused on the dynamics

in ordered/disordered systems in the presence of an external electric field. Using

the Ehrenfest approach and a simple model Hamiltonian, they were able to de-

scribe the EET for systems up to 300 sites also including steric effects such as

torsional coordinates (such a large system including so many electronic states can

not be described by the full-quantum MCTDH method. For these systems, the

ML-MCTDH approach could be useful).
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Thus, a lot of research has focused on steric effects or order/disorder and most

of the models neglect the effect of temperature. Some models include tempera-

ture effects implicitly, e.g., a harmonic oscillator bath can include a temperature

dependent sampling, but models including temperature as an explicit parameter

for EET have been restricted to kinetic treatments. Therefore, the focus of this

project is on the effect of temperature on the intra-molecular EET in a PPV

wire. To include temperature explicitly, the Langevin description of a heat bath

is used combined with the Ehrenfest dynamics. In order to evaluate the Ehren-

fest method, benchmark calculations are performed using the MCTDH method

for a small PPV system. This benchmark is important since so far, no compar-

isons of the semi-classical Ehrenfest method and full quantum methods for EET

in these types of systems have been performed. For other areas of research, only a

few benchmark calculations have been carried out, indicating some discrepancies

between Ehrenfest and exact methods [196, 197].

5.4.1 Model System and Model Hamiltonian

To study the temperature effect on the EET process in PPV in the presence of

a torsional defect, an appropriate model is needed. The model used for the ab

initio calculations and the quantum dynamics is very similar to the model used

for the description of PT. As shown in Fig.33, the system is constructed from n

p-phenylene vinylene monomer units resulting in a linear chain. EET depends

on the overlap of the conjugated π-system and therefore, the torsional coordinate

between the ethenyl bridge and the benzene ring plays an important role in these

processes [198, 199]. This coordinate will be included explicitly in the quantum

dynamical simulations. In addition, the high-frequency BLA coordinate illustrated

in the inset of Fig.33 is also included in the model to study self-trapping effects

after photoexcitation. We expect that the interplay of torsional and BLA modes

captures the main features of the vibronic dynamics. The parametrization of these

coordinates is performed using the exact adiabatic-diabatic transformation of ab

initio data as described in Chp.5.2.

The ab initio calculations were performed by Panda et al. [29] using the MP2

and ADC(2) method with the SV(P) basis set [200] as implemented in the TUR-

BOMOLE program package [169]. To represent the band character of the semi-

conducting system, a PPV octamer was used in the ab initio calculations. One-

dimensional cuts along the coordinate of interest were performed based on the

relaxed ground state structure.
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Figure 33: Model system for the ab initio calculation of the PPV oligomer. The site-
local BLA coordinates xi are indicated by arrows, the site-local torsional
coordinate θi is indicated by the red and blue area.

For the quantum dynamical calculations, a Frenkel-type basis is used to represent

the model Hamiltonian. The advantage of this basis is the description of excitonic

states in terms of monomer units. The general form of the model Hamiltonian is

similar to the PT case, except that site-local instead of site-correlated modes are

defined. The Hamiltonian is given as follows

H =
∑

νµ

∑

ν′µ′

Hνµ,ν′µ′|νµ〉〈ν ′µ′| (135)

with

Hνµ,ν′µ′ =δνν′δµµ′(H intr
νµ,ν′µ′ +HBLA

νµ,ν′µ′ +Htors
νµ,ν′µ′ +Hbath

νµ,ν′µ′)

+δνµδν′µ′HFrenkel
νµ,ν′µ′ +HCT

νµ,ν′µ′ (136)

All terms of Eqn.136 can depend on vibrational coordinates. The first term on the

r.h.s describes the intrinsic e-h pair interactions Hintr and is diagonal in the e-h

basis. The second and the third term describe the vibronic contributions related to

the BLA and the torsional coordinate. The fourth term corresponds to a harmonic

oscillator bath, acting as a source of dissipation. The last two terms describe the

Frenkel or charge-transfer type couplings and contain off-diagonal elements. This

model can be reduced from the full e-h basis to the Frenkel basis by discarding all

terms including CT states. The resulting Frenkel Hamiltonian is given by

HF renkel =
∑

ν

∑

ν′

Hνν,ν′ν′|νν〉〈ν ′ν ′| (137)

99



CHAPTER 5. RESULTS

with

Hνν,ν′ν′ =δνν′(H intr
νν,ν′ν′ +HBLA

νν,ν′ν′ +Htors
νν,ν′ν′ +Hbath

νν,ν′ν′) +HFrenkel
νν,ν′ν′ (138)

The terms of Eqn.138 are identical to the terms described in Eqn.136. Similar to

the PT Hamiltonian, the intrinsic interaction term is given by

H intr
νµ,ν′µ′ = δνν′δµµ′

(

e0 − 1

4πǫ0ǫrrνµ

)

(139)

with the e-h distance rνµ as a function of the sites(νµ). rνµ is defined by rνµ =

|ν−µ|rru + r0, with rru the repeat unit length, and r0 the intrinsic e-h distance of

a Frenkel exciton. The relative permittivity is set to 1, e0 is the exciton binding

energy and defined in this way that for a localized e-h pair Hintr
νµ,ν′µ′=0. The vibronic

elements of Eqn.136 correspond to contributions of the torsional coordinate θi and

the BLA coordinate χi for the ground and excited state. For a vibronic term Htors

or HBLA is given by

Hvibronic
νµ,ν′µ′ (xξ) = δνν′δµµ′

Nsites∑

ξ=1

(

−1

2

∂2

∂x2
ξi

+ vG
i (xξi

)(1 − δνξ) + vE
i (xξi

)δνξ

)

(140)

where the site-local coordinates θ and χ are represented by xξi
, vS

i denotes the

ground and excited state monomer potential (S=G/E) and Nsite is the number of

monomer units. Each monomer consists of two site-local torsional and two site-

local BLA coordinates, whereby only the two torsional coordinates centered in the

middle of the chain are treated as active coordinates. The location of the electron

νe = ν defines the participation of an excited-state monomer potential.

The bath Hamiltonian Hbath is taken to act on the torsional coordinates only. This

description of a dissipative environment will reduce the computational effort with

a maximum effect. For the quantum dynamical calculations using the MCTDH

ansatz, a Caldeira-Leggett description of the bath is used given by

HBath
νµ,ν′µ′ = δνν′δµµ′

NB∑

i=1



−1

2

∂2

∂x2
B,i

+
1

2
ω2

B,i

(

xB,i − cB,i

ω2
B,i

θ

)2


 . (141)

Here, an Ohmic spectral density given by JOhm = 2γ∆ωe−ω/Λ is used. The cou-

pling coefficients ci are calculated by cB,i = (2ω∆ωJOhm(ω)/π)1/2 with the discrete

sampling interval ∆ω defining the Poincaré recurrence time tP C = 2π/∆ω.

Finally, the Frenkel-type couplings are given by

HF renkel
νµ,ν′µ′ = δνµδν′µ′(δν′,ν+1JF renkel(

1

2
(θR

ν − θL
ν′))(

1

2
(χR

ξν
− χL

ξν′
))

+δν′,ν−1JF renkel(
1

2
(θR

ν − θL
ν′))(

1

2
(χR

ξν
− χL

ξν′
))) (142)

100



Exciton Dynamics on a Minimal Oligo-p-Phenylene Vinylene Lattice studied by

MCTDH and Ehrenfest Dynamics

with the Frenkel-type coupling JF renkel. The Frenkel-type couplings are described

in terms of a difference torsional angle θdiff
ν′ν = 1/2(θR

ν′ − θL
ν ) and a difference BLA

coordinate χdiff
ν′ν = 1/2(χR

ν′ − χL
ν ). The terms for the torsional, the BLA and the

coupling are fitted to a functional form representing the diabatic PES.

Figure 34: Diabatic potential energy surfaces of the first two Frenkel excitonic states
and the coordinate dependent coupling of the PPV octamer obtained af-
ter an exact adiabatic-diabatic transformation (a) PES of the site-local
torsional coordinate and (b) PES of the site-local BLA coordinate.

The diabatic torsional and BLA potential for the ground and the excited state are

shown in Fig.34. The ground state potential of the torsional coordinate indicates

two minima, one located around 30° and one located around 150°, whereas the

excited state potential has minima at 0° and 180°. Both potentials have their

maximum at 90°. In contrast, the form of the BLA potentials is similar for the

ground and excited state, only a shift in the excited state to negative values is

observable. The torsional potential is fitted to a truncated Fourier series defined

by

V S(θ) = a0 +
N∑

j=1

(aj · cos(j · (θ − θ0)) − aj) (143)

The BLA potential is fitted to a harmonic oscillator-type form

V S(x) = E0 +
1

2
aS(χ− χ0)

2 (144)

The coupling is defined as a two-dimensional function depending on θ and the

BLA coordinate χi and is defined by

J(θ, χ) =



a0 +
N∑

j=1

(

aj · cos(j · 1

2
· (θR − θL)) − aj

)


 ·
(

E0 +
1

2
· a · (

1

2
(χR − χL) − χ0)

2
)

· ̺ (145)

101



CHAPTER 5. RESULTS

The parameter ̺ guarantees that the product of this 2-D function is always smaller

or equal to the value at the maximum of the functions. All parameters of the

functional forms are given in Tbl.5-6.

Table 5: Parameters of the functional form of the PPV torsional coordinate. All
parameters are given in a.u.

a0 a1 a2 a3

Ground state 0.0 -6.60 ·10−4 -2.46 ·10−3 -2.30 ·10−4

Excited state 0.0 -7.53 ·10−4 -3.12 ·10−2 -6.95 ·10−4

Coupling -3.52 ·10−2 6.19·10−5 6.87 ·10−4 3.01 ·10−4

a4 a5 a6 θ0

Ground state 9.35 ·10−4 -9.58 ·10−5 1.57 ·10−4 30.0°
Excited state 2.60 ·10−3 -1.83 ·10−5 2.98 ·10−4 0.0°

Coupling -7.29 ·10−4 -1.58 ·10−5 2.70 ·10−4

Table 6: Parameters of the functional form of the PPV BLA coordinate. All param-
eters are given in a.u.

E0 a x0

Ground state 0.0 1.46 ·10−1 1.91 ·10−1

Excited state 0.0 1.27 ·10−1 -3.11 ·10−1

Coupling -3.40 ·10−2 7.06 ·10−3 1.59 ·10−1
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5.4.2 Quantum Dynamics

Using the model Hamiltonian and the parametrization of the PPV octamer de-

scribed in the previous section, full quantum dynamical and semi-classical simula-

tions are performed. As for PT, two different main transfer pathways of the EET

are possible: inter-chain and intra-chain. As illustrated in Fig.35, the polymer

chain is built from n monomer units resulting in a random but partially ordered

structure. This structure contains disordered areas (random coils) and ordered

chains. Small fragments of these ordered areas are often described in terms of

spectroscopic units as discussed in Sec.5.3. The concept of spectroscopic units

allows to explain experimentally and theoretically spectroscopic observations or

dynamical processes[201–203]. The dynamics simulated in the following will focus

on the intra-chain EET in the presence of a structural defect for a PPV hexamer.

The hexamer system-size can be seen as a combination of two minimal spectro-

scopic units separated by a structural defect.

Figure 35: Schematic representation of a PPV polymer with different transfer path-
ways and areas.

In order to validate the semi-classical Ehrenfest method, a benchmark study for the

PPV hexamer using the Frenkel model in combination with the MCTDH approach

is performed. Based on this benchmark study, calculations for larger systems

including an explicit description of temperature are performed using the semi-

classical Ehrenfest method. These studies will focus on the effect of structural

disorder and thermal noise on the EET in PPV.

The model contains 6 monomer Frenkel states, 2 site-local torsional coordinates

centered in the middle of the chain and 12 site-local BLA coordinates. For the

dissipative environment, a set of 2x7 harmonic oscillators sampled from an Ohmic

spectral density and coupled to the torsional coordinates θi is used. The initial

value of the torsional coordinates is ±45°, resulting in a difference torsional angle
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θdiff.= 90° between two monomer units. These torsional coordinates are fixed

for the preparation of the initial wave function. All other torsional coordinates

are implicitly described by a fixed value of ≈ 20°. The initial value of the BLA

coordinates is set to the ground state minimum. These coordinates are considered

as active coordinates in the preparation of the initial wave function. This ansatz

for the preparation of the initial wave function guarantees that the high-frequency

BLA modes are relaxed while the torsional coordinates describing the structural

defect are kept at their initial value θi= ±45°. Furthermore, the electronic wave

function can be relaxed on the sub-fragment.

The number of SPFs is 7 for the torsional coordinates, 3 for the BLA coordinates

and 3 for the bath coordinates. The SPFs are described using a primitive grid basis

representation. For the primitive grid, a so-called discrete variable representation

(DVR) is used. Here, 256 functions are used for the description of the torsional

coordinate, 30 for the BLA and 20-50 functions for the bath coordinates. The

total number of configurations of the MCTDH wave function is 1.49·106. At a

later stage, calculations using the ML-MCTDH were carried out.

The initial condition of the system is prepared in the following way: an arbitrary

wave function is relaxed on a sub-lattice of the system e.g. on monomers 1-3 (’left’

fragment). This is done by relaxing the initial wave function in negative imaginary

time. The so prepared initial state is used as a starting point for the propagation

of the system in real time.

5.4.2.1 Convergence of the Ehrenfest Method

In theory, the convergence of the MCTDH approach scales with the number of

SPFs and the primitive-grid size. The convergence of a MCTDH calculation is

checked by analyzing the population of the primitive grid and the population of

the highest occupied SPF. This analysis indicates an appropriate convergence of

the MCTDH reference calculations.

In contrast to the MCTDH ansatz, the convergence of the Ehrenfest approach

correlates with the sampling of the initial conditions and the reconstruction of

the corresponding Wigner distribution. An improved sampling is achieved by an

importance sampling procedure and therefore, the convergence of the Ehrenfest

approach strongly correlates with the number of trajectories and the used integra-

tor step-size. As already mentioned in Sec.5.1, a mixed RK integrator scheme with

a fixed step-size is used for the integration of the trajectories. A similar integrator

ansatz is used by Barford et al. [185] resulting in fast but still accurate results. In

theory, the Ehrenfest approach is a norm-conserving approach and therefore, the
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Figure 36: Convergence of the Ehrenfest approach for different number of trajectories
(a) dynamics of the torsional coordinate and (b) Frenkel state dynamics.
Very light colors represent the average of 10, light colors the average of
100, dark colors the average of 500 and symbols 3000 trajectories.

norm is used as a measure of quality of the calculation. For integrator step-sizes in

the range of ∆t ≥ 2.0 a.u., no norm-conservation is observed for the overall simula-

tion time. Reducing the step-size to ∆t ≤ 2.0 a.u, norm-conservation is achieved.

Therefore, the typical integrator step-size is around 1.0 a.u. (or ≈ 0.025 fs). This

step-size is in the same order as the MCTDH step-size using the ABM integrator.

In Fig.36, the results for the torsional coordinate and the state population are

shown for a different number of trajectories (with θdiff
34 =20°). For the torsional

coordinate, it turns out that the initial sampling for a small number of trajectories

is already quite accurate and differs only by about ≈ 1.0° compared to the sam-

pling using more trajectories. Increasing the number of trajectories to 500 leads

to a very good initial sampling. The dynamics of the torsional coordinate for a

small number of trajectories is as expected but does not show a smooth dynam-

ics. Using a total number of 3000 trajectories, a very good initial sampling of the

torsional coordinate and a smooth torsional dynamics is achieved. For the Frenkel

state population shown in Fig.36b, a more drastic dependency on the number of

trajectories is observable. For 10 trajectories, a very noisy state population is no-

ticeable. This noise is significantly reduced for a higher number of trajectories.

For 3000 trajectories, a very smooth population dynamics with only minor statis-

tical fluctuations is observed. Nevertheless, already a small number (e.g. 500) of

trajectories reproduce the correct Frenkel state dynamics on a long time scale.

Based on these results, it is assumed that 3000 trajectories are sufficient for con-

verged Ehrenfest results. Therefore, the benchmark of the hexamer-type system

is based on 3000 independent Ehrenfest trajectories using an integrator step-size

of 1.0 a.u.
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5.4.2.2 Benchmark Calculation for a PPV hexamer

The results of the benchmark calculations for the PPV hexamer are shown in

Fig.37-39. All parameters and initial conditions are identical for the Ehrenfest and

the MCTDH setup, except the fact that a Langevin type description is used for the

dissipative environment in the Ehrenfest approach. Here, the friction coefficient is

chosen to be identical to the MCTDH calculations, while thermal fluctuations are

neglected (T=0 K). As shown in Fig.37a-d, the dynamics of the active coordinates

and the state populations are almost the same.

Figure 37: Expectation values of the MCTDH and Ehrenfest results for (a) the tor-
sional coordinate θ

diff
34 (b) the time-evolution of the Frenkel state popula-

tion (c) the Frenkel state population for the stationary state and (d) the
BLA displacement for the stationary state (for symmetric reasons, two
BLA coordinates on one monomer unit are shown as one averaged BLA
coordinate). The Ehrenfest results are coloured red (Fig.a,c,d) while in
Fig.b, the light colors correspond to the MCTDH results.

For the torsional coordinate θdiff
34 a very good agreement up to ≈ 1000 fs is ob-

servable. The torsional coordinate θdiff. shows a damped dynamics towards the

excited state minimum values of 0°. The dynamics of the Ehrenfest method differs
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from the MCTDH results for times greater than 1000 fs. In general, the discrep-

ancy of the torsional coordinate is very small and especially for longer times, the

Ehrenfest results seem to be more reliable, since the expected damped dynamics

are smoother for these times. Comparing the Frenkel state population shown in

Fig.37b, a very good agreement of both methods is observable. The dynamics of

the Frenkel states show a very fast oscillatory signature within the first 300 fs,

followed by a slower formation of a stationary state within ≈ 900 fs (also called

local excitonic ground state (LEGS)). In contrast to the Ehrenfest Frenkel state

populations, the MCTDH state populations seem to oscillate in a more coherent

fashion.

Figure 38: Site- and time-resolved Frenkel state population of the PPV hexamer. (a)
Results of the MCTDH method up to 1500 fs, (b) results of the Ehrenfest
method up to 1500 fs, (c) results of the MCTDH method up to 300 fs and
(d) results of the Ehrenfest method up to 300 fs. For a more improved
visualization of the state population, a different color-coding is used for
panel c and d. The absolute scale of the population does not change.

Nevertheless, the absolute value of the Frenkel state populations for the LEGS

shown in Fig.37d shows a very good agreement between both methods. Also, the

trapping effect of the BLA coordinates is well described by both methods for the
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stationary state. Analyzing the Frenkel state population on different time scales, a

large discrepancy can be found for the first 300 fs. As shown in a 3-D representation

in Fig.38a and b, a clear trapping of the Frenkel state population centered in the

middle of the lattice is observable by both methods within 1.5 ps. Comparing the

first 300 fs shown in Fig.38c and d, it turns out that the state populations given

by the MCTDH method show an ultrafast, compact and well localized population

transfer from one end of the lattice to the other end of the lattice. Up to 150 fs,

well separated population spots are observable and the formation of the LEGS

begins after this time. In contrast to these results, the Ehrenfest results of the

EET on this time scale do not show this well defined dynamics.

Figure 39: Comparison of the Frenkel state population for the TDH, MCTDH and
Ehrenfest method. (a + d) TDH results, (b + e) MCTDH results and (c
+ f) Ehrenfest results. The scale and the color bar are identical for all
data.

For the Ehrenfest approach, certain traces of this compact EET transfer from one

end of the lattice to the other end are recognizable but the details of the oscilla-

tory transfer can only be assumed. Indeed, it is possible to identify the compact

Frenkel population at certain times on the lattice but in general, the Frenkel state

population seem to be more blurred. Nevertheless, the clear formation of the sta-

tionary state can be observed on the same time scale as for MCTDH. To verify

this result, an additional comparison of the Frenkel state population using the

Time-Dependent Hartree (TDH) method is performed. As shown in Fig.39, the

overall agreement between the TDH method and the MCTDH method shows a

strong mismatch, whereas the agreement between Ehrenfest and MCTDH is very

good. Interestingly, the TDH method describes the ultrafast and well localized
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Frenkel population transfer from one end of the lattice to the other end on the

short time scale very well but fails for the description of the formation of the

LEGS [188]. Clearly, the TDH approach captures electronic-nuclear correlation

that lead to LEGS formation less well than the Ehrenfest approach. These results

allow the conclusion that the semi-classical Ehrenfest approach is able to repro-

duce the results of the full-quantum MCTDH approach, for classical coordinates

and electronic DOF, with the limitation that the first 150-300 fs of the electronic

populations are not perfectly reproduced. The blurred electronic population could

be an artifact of the averaging procedure, which is needed to calculate the ex-

pectation values. Nevertheless, the great advantage of the Ehrenfest method is

the explicit description of temperature at limited computational expense and the

thereby associated possibility to study the effect of temperature on the energy

transfer dynamics. Furthermore, the Ehrenfest method and the Langevin-type

description do not underlie the restriction of a Poincaré recurrence time, which

allows the simulation of longer time scales. Using the Caldeira-Leggett model, a

longer simulation time can only be achieved by using a smaller frequency spac-

ing ∆ω of the bath modes. This will result in a less accurate description of the

dissipative dynamics using the same number of bath modes and can only be com-

pensated by using more bath coordinates (which will result in a much increased

computational effort). Finally, comparing the computational effort of the calcula-

tions, a converged Ehrenfest calculation costs much less compared to the MCTDH

method. In theory, the independent Ehrenfest trajectories allow a linear scaling

with the number of trajectories, since all trajectories can be calculated at once.

The computational time of one trajectory for the PPV hexamer is in the range of

1-5 minutes for a propagation of 1.5 ps (depending on the integrator step-size).

In practice, this scaling is limited by the computational resources, but on large

HPC clusters, a massive speed up in the total computational time can be achieved.

In practice, the total time of the Ehrenfest calculation is about 1 hour (or less)

for 3000 trajectories, whereas the ML-MCTDH method takes about 19 hours (the

normal MCTDH method takes ≈ 127 hours).
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5.4.2.3 Density Matrix Description of an Irreversible Transfer Dynam-

ics using the Ehrenfest Method

All results shown so far are based on a wave function type description. This

description has the disadvantage that only pure states can be described by the

electronic wave function. To overcome this drawback, a density based formulation

can be used. This ansatz allows the description of pure and mixed states. As

explained in Chp.3, the Liouville-von Neumann equation is used to describe the

time evolution of the density. Another advantage of the density-type description

is the possibility to describe the dynamics of irreversible transfer processes given

by a non-Hermitian Hamiltonian.

Figure 40: Comparison of the wave function based Ehrenfest results to the density
based results. (a) torsional coordinate θ

diff
34 , (b) Frenkel state popula-

tions, (c) BLA displacement for the quasi-stationary state (for symmetric
reasons, two BLA coordinates on one monomer unit are shown as one
averaged BLA coordinate) and (d) Frenkel state population for the quasi-
stationary state.

In the following, the density matrix ansatz of the Ehrenfest method will be com-

pared to the wave function based Ehrenfest approach in the absence of an irre-
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versible transfer. As shown in Fig.40, the overall agreement of the torsional and

the BLA coordinates is very good. Also for longer times, the discrepancy of both

methods for the coordinates is almost zero. Further, the Frenkel state dynamics is

almost identical. Comparing the results for the new LEGS, small discrepancies of

the Frenkel state population and the BLA values can be observed. Nevertheless,

these discrepancies are very small and could be related to the different type of

integrator used for the density matrix ansatz (see the following paragraph for an

explanation).

Figure 41: Dissipative dynamics on a PPV hexamer type lattice linear and irreversible
coupled to a trapping state with Υ=0.000005 a.u.. (a) Dynamics of the
torsional coordinate θ

diff
34 (b) Frenkel and acceptor state population dy-

namics (c) Displacement of the BLA coordinate ξ (for symmetric reasons,
two BLA coordinates on one monomer unit are shown as one averaged
BLA coordinate) for the stationary state and (d) State population for the
stationary state.

As a proof of principle, the irreversible energy transfer dynamics in a PPV hexamer

connected to a trapping state is calculated. In the current setup, the last state of

the PPV hexamer system is linearly coupled to an absorbing state. This state can
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be understood as a trapping state of the system e.g. a state describing the final

e-h separation at an interface in terms of an irreversible dissipative process.

Using a non-hermitian Hamiltonian, the numerical stability of the integration rou-

tine becomes very challenging: to be norm-preserving, a small integrator step-size

is needed. Also the numerical integration only works for very low coupling val-

ues. The solution to this problem is to perform the integration using an asyn-

chronous leap frog algorithm (this algorithm has a larger area of stability) [140].

As a proof-of-concept the irreversible coupling value is set to Υ=0.000005 a.u.

(0.136056 meV). As shown in Fig.41, the overall dynamics up to 5.0 ps is very

similar to the dynamics described above in the absence of an irreversible coupling.

The torsional dynamics shown in Fig.41a illustrates the expected damped dynam-

ics resulting in a planar structure within 1.5 ps. Again, two different time scales

can be observed: a rapid dynamics within the first 500 fs followed by a slower dy-

namics resulting in the planar structure. A trapping event on the lattice is again

observable via the state population or the BLA displacement shown in Fig.41b-d.

In addition to the Frenkel population, the population of the trapped state (site

index 7) is shown in Fig.41b and d. The dynamics of this state indicates the ex-

pected linear but weak increase resulting in an overall population of ≈ 0.075 after

5.0 ps. Simultaneously to the increasing trapping state population, the overall

Frenkel state population is decreasing.

Due to these reasons, preferences is given to the wave function based Ehrenfest

implementation.

5.4.2.4 Effect of Noise and Disorder on EET

As explained in Chp.3, the implementation of the environment and temperature is

done via a Langevin type description. This description contains the temperature

dependent random fluctuation term which is calculated using a norm-distributed

random number centered around 0.0. For the implementation in the source code

and the calculation of Ehrenfest trajectories, two different ways are possible: (i)

use the same set of random numbers for all trajectories or (ii) use different sets of

random numbers.

This apparently minor difference is very important for the obtained results. Es-

pecially the EET dynamics is strongly affected by the type of implementation.

In the following, the effect of the implementation on the EET dynamics and the

general effect of temperature and disorder on the EET dynamics will be analyzed.

In order to illustrate the EET dynamics more realistically, the system size is in-

creased to a PPV 20-mer. Additionally, all torsional and BLA coordinates are
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Figure 42: Analysis of the Langevin implementation on the EET transfer dynamics
in the PPV 20-mer using a temperature of T=100 K. (a) Frenkel state
population up to 10.0 ps using different random numbers for every trajec-
tory (b) Mean Frenkel state population for different random numbers (c)
Frenkel state population using the same set of random numbers and (d)
the corresponding mean Frenkel state population.

described as active coordinates. Again, a kink centered in the middle of the lattice

is implemented described by a torsional angle θdiff
1011=90° while all other torsional

angles are set to their ground state values. The initial wave function is prepared

by relaxing an arbitrary wave function on the left site of the kink (state 1- 10) via

negative imaginary time propagation. The so generated LEGS is used as an initial

condition for the propagation.

In Fig.42, the effect of different implementations on the EET dynamics on the

PPV 20-mer lattice is shown. The dynamics of the Frenkel states shows a very

strong discrepancy depending on the different noise setups. For the implementa-

tion using the same random numbers (and thus the same bath realization) for all

trajectories, a well defined and compact exciton dynamics on the overall lattice is

observable starting from the prepared initial state as shown in Fig.42c. For the

first ≈ 800-1000 fs, the exciton dynamics looks blurred but after this time, a com-
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pact exciton is formed. This compact exciton randomly moves on the lattice and

at certain times, a splitting of the exciton is observable e.g. after 3.0 ps. The two

exciton packets move independently from each other until they recombine after

≈ 7.0 ps. An additional evidence for the transfer dynamics on the overall lattice is

shown in Fig.42d. Here, the mean Frenkel state population is shown. This mean

value indicates that the population moves rapidly from its initial position centered

between monomer 5 and 6 to the center of the lattice. After this rapid dynamics

from the initial position, a strong fluctuating dynamics centered in the middle of

the lattice is observable. In contrast to these observations, the EET dynamics

using different random numbers shows a different picture. As shown in Fig.42a,

no compact exciton dynamics is observable. For this implementation, it is also

observable that the whole lattice is populated but in contrast to the dynamics

described for the same random number, only a blurred population is observable.

This is also indicated by the mean Frenkel population shown in Fig.42b. The dy-

namics of the mean Frenkel state population show the same initial rapid dynamics

from its initial position to the center of the lattice but in contrast to the dynamics

described before, the mean population stays in the center of the lattice without

the fluctuation described before.

The different observations depending on the random number generation can be

explained by the following theory: the random fluctuation generated by the same

bath for all trajectories shown in Fig.42c and d can be seen as a more quantum

mechanical type description of a dissipative environment comparable to a Caldeira-

Leggett type description. This type of implementation can be understood such that

each single trajectory interacts with the same bath. This description is similar to

a single-molecule experiment and therefore, this type of EET dynamics should

be observed in a single-molecule experiment and agrees with the MCTDH results

presented before. In contrast, using a different bath for every trajectory as shown in

Fig.42a and b, each trajectory interacts with the environment in a different way and

therefore, no compact exciton propagation is observable. This type of description is

comparable to an experiment on a statistical ensemble and therefore, the observed

exciton dynamics is a mean value of the overall ensemble. This interpretation of

the different implementation of the Langevin bath allows the explanation of the

very different EET dynamics.

In order to clarify the effect of thermal noise and structural disorder on the EET

using the quantum like description of the Langevin bath, a systematic evaluation

of the temperature and the torsional coordinates using the Ehrenfest approach is

done. All torsional and BLA coordinates are described as active DOFs and the
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Figure 43: Effect of thermal noise and structural disorder on the EET dynamics.
Each row corresponds to one temperature and each column to one initial
θ value. Starting from the first row, the temperatures correspond to T=
1 K, 10 K, 100 K, 200 K and 300 K and the initial θ values to θdiff = 0°,
40°, 80°. The absolute scale is identical for all plots and indicated by the
color bar on the right side.
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number of trajectories is always 3000. The focus of the analysis will be on the

EET. In Fig.43, the results of the systematic scan are shown. The results show a

clear correlation between the temperature and the observed EET dynamics.

For low temperatures, the exciton dynamics show a very pronounced trapping

effect of the exciton. For θdiff= 0° and 20°, a trapping centered in the middle

of the lattice with 1.2 ps is observable resulting in a new quasi-stationary state.

In contrast, for θdiff= 80°, a rapid shift of the exciton packet within 1.2 ps from

one end of the lattice to the other end is observable. The exciton then forms a

compact packet and slowly relaxes towards the middle of the lattice. Increasing the

temperature to 10 K, a slightly different dynamics is observable: for all initial θdiff

values, the overall dynamics is similar to the 1 K case but the previously observed

compact exciton seems to be more blurred and broadened. For temperatures higher

than 10 K, a completely different EET dynamics is observed. Now, a very fast

initial exciton dynamics on the overall lattice within the first 1.0-1.5 ps resulting

in a new compact exciton wave packet is observed. This compact exciton then

starts moving on the overall lattice. At certain times, an exciton splitting into two

separate exciton wave packets is observable which recombines at a later time. The

effect of a higher thermal noise is nicely observable for 200 K and 300 K: for 200 K,

a compact exciton packet is observable up to 10.0 ps. In contrast, the compact

exciton is still observable at 300 K at certain times but the exciton is splitted into

more individual exciton packets, which recombines or splits again. The overall

exciton population seems to be more spread out on the overall lattice compared

to the dynamics at 200 K (or 100 K). In general, the influence of the initial θdiff

value and the associated disorder is not as high as one would expect. An effect

can be seen for low temperatures (1 K and 10 K) but for a higher disorder, the

effect of the thermal noise is much stronger.

5.4.2.5 Exciton Trapping

The systematic analysis of the structural disorder and the effect of thermal noise

indicate a strong correlation between the observed exciton dynamics and these

parameters. Furthermore, the effect of different descriptions of the environments

has been shown. Until now, it is still unknown why this compact exciton packet

is observed, why the effect of temperature can be so drastic and what is the role

of the BLA and torsional coordinate for the compact dynamics. To answer this

question, the population dynamics and the corresponding total energy of each

monomer site is analyzed for the PPV 20-mer model system. The initial θdiff.

value is 40° and the initial wave function is prepared as explained in the previous
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sections. To distinguish the contributions of both coordinates, the torsional or

the BLA coordinate are not included in the propagation (fixed coordinates) and

a reference calculation with all active coordinates is done. To exclude sampling

effects, all initial conditions for a given temperature are identical for the three

different setups. In Fig.44, the results for T= 1 K are shown.

Figure 44: Analysis of the exciton dynamics and the exciton self-trapping effect at
T=1 K. Upper row: exciton dynamics for (a) reference calculation (b)
fixed BLA coordinates and (c) fixed torsional coordinates. Lower row:
total site energy for (a) reference calculation (b) fixed BLA coordinates
and (c) fixed torsional coordinates. For the upper row, the population is
indicated by a color-bar, which is identical for all graphs and given on the
right. For the lower panel, the site energy is color scaled with a maximum
value of 0.2 eV for all graphs. Please note that for a better illustration,
the minimum value of the color-bar changes.

The population dynamics shown in the upper row indicates a clear trapping effect

centered in the middle of the chain for the reference calculation and the system

with fixed torsional coordinates. For fixed BLA coordinates, only a less pronounced

exciton trapping effect centered on the initial sub-fragment is observable. In this

case, the overall lattice is populated, whereas for fixed torsional coordinates, a

compact exciton is observed. Nevertheless, a clear difference between the exciton

dynamics shown in Fig.44a and c is depicted: the dynamics shown in Fig.44c

includes much stronger fluctuations. These observations strongly correlate with

the total site energy of the lattice. As shown in the lower row of Fig.44, a minimum

in total energy centered in the middle of the lattice is observable for the reference

calculation. A similar minimum can be found for fixed torsional coordinates,

whereas for fixed BLA coordinates, no minimum is found.
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Figure 45: Analysis of the exciton dynamics and the exciton self-trapping effect at
T= 100 K. Upper row: exciton dynamics for (a) reference calculation (b)
fixed BLA coordinates and (c) fixed torsional coordinates. Lower row:
total site energy for (a) reference calculation (b) fixed BLA coordinates
and (c) fixed torsional coordinates. For the upper row, the population
is indicated by a color-bar, which is identical for all graphs and given
on the right. For the lower panel, the site energy is color scaled with a
maximum value of 0.2 eV for all graphs. Note that for better illustration,
the minimum value of the color-bar changes.

Performing the same analysis for T= 100 K, a different result is obtained. As shown

in Fig.45, the exciton dynamics of the reference calculation indicates a clear and

compact exciton propagation over the overall lattice. By fixing the BLA coordi-

nates, a still compact exciton propagation is formed but the absolute population

values are less than in the reference system. Also the exciton packet itself seems to

be more blurred. A completely different dynamics is observed for fixed torsional

coordinates. In this case, no compact, well defined exciton packet is observable

and no clear exciton dynamics is observable. The initial population is spread over

the whole lattice and does not indicate any trapping behavior. Analyzing the total

site energy as it is shown in Fig.45d-f, an explanation for the different observations

can be found. In the case of the reference system, a minimum path is found but

also local energy maxima. The observed exciton dynamics is directly linked to this

energy map and follows the minimum energy path. In case of fixed BLA coordi-

nates, a similar energy map is shown, which correlates to the exciton dynamics.

For fixed torsional coordinates, no energetic minimum pathway is observed. This

observation is in agreement with the exciton dynamics for fixed torsional coordi-
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nates. These observations lead to the conclusion that both types of coordinates,

the low frequency torsional coordinate and the high-frequency BLA coordinate

are important for the observed exciton dynamics. In general, the BLA coordi-

nates are essential for the formation of a compact exciton as shown in Fig.44c

for the low-temperature case. In contrast, the torsional coordinate is essential for

the formation of a minimum energy pathway as illustrated in Fig.45e for higher

temperatures. The large change in energy and the formation of local maxima and

minima is related to the strong changes in the torsional coordinate and the corre-

sponding potential energy induced by thermal noise. It is also observable that the

exciton dynamics is not as compact as in the reference calculation. Therefore, it

can be stated that for a compact exciton dynamics, both coordinates are essential,

the BLA coordinate for the compact exciton formation and the torsional coordi-

nate for the propagation on the lattice. These findings also explain the observed

dynamics in a high temperature regime: for high temperatures (e.g. 300 K as

shown in Fig.43), the thermal noise induces very strong structural disorder and

fluctuations. Especially the stronger fluctuations in the torsional coordinate create

a ’hot’ energy surface with no clear minimum energy pathway. This ’hot’ energy

surface avoids the formation and propagation of a compact exciton.

5.4.3 Conclusion

The data presented for the exciton dynamics on a PPV lattice using the MCTDH

and the semi-classical Ehrenfest approach show some remarkable results. On the

one hand, it is shown that the semi-classical Ehrenfest method is able to reproduce

the results obtained by the full quantum MCTDH method very accurately. This

is remarkable, since for other type of systems, the semi-classical Ehrenfest method

fails [197, 204, 205]. Interestingly, the nuclear motion is reproduced at a very

accurate level for all time scales while the dynamics of the electronic sub-system

is described very accurately for longer times but shows discrepancies on a shorter

time scale. On the short time scale, the semi-classical Ehrenfest method has a

lower temporal and spatial resolution which results in a more blurred dynamics of

the electronic sub-system. One approach to overcome this problem is to use more

configurations by using a multiconfigurational Ehrenfest ansatz (as described by

Shalashilin et al. [128, 129, 206] or Römer et al. [130]). This approach allows

to consider coherence effects on the short time scale and eventually describes the

electronic dynamics on this time scale correctly. Ensuing from the very good

agreement (especially on a longer time scale), the Ehrenfest method allows the

description of larger systems which need a high computational effort using MCTDH
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(it is also possible that the number of configurations is too large to be handled by

MCTDH). On the other hand, using the Langevin description in combination with

the Ehrenfest approach, explicit temperature effects on the EET can be studied.

It is shown that the effect of thermal noise is necessary for the observed exciton

dynamics. The thermal noise scales the structural disorder of the system and

especially the torsional disorder is essential for a compact exciton propagation. In

combination with the high-frequency BLA coordinates, a minimum energy path is

formed. For very low temperatures, this minimum energy path is located in the

middle of the lattice and does not show a strong response on thermal noise. This

dynamics of the minimum energy path leads to the formation of a new LEGS on

a longer time scale. In contrast, the dynamics for higher temperatures shows a

very strong response to thermal noise. As already mentioned, the thermal noise

induces high changes in the monomer total energy. These changes allow a compact

exciton dynamics on the overall lattice whereas for very high temperatures, the

compact dynamics is not observable due to the chaotic torsional dynamics. This

observation is in disagreement with the theory of Stafstrøm et al. that the exciton

propagation shows a strong dependency on the initial structure (as described in

Chp. 8 in Ref.[199]). In contrast to Stafstrøm, temperature and structural disorder

are described as explicit and independent parameters.

Furthermore, in a proof-of-principle study the extension of the wave function based

Ehrenfest method to a density matrix representation including irreversible dissi-

pative dynamics has been demonstrated. This extension allows the description of

irreversible processes and also points out the problem of numerical integration of

these type of systems.
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5.5 Photoinduced Vibrational Energy Transfer

in a DTE-BODIPY System

As shown in the last two sections, photochemistry plays an important role in

developments related to organic photovoltaics. Another important aspect of pho-

tochemistry is the control of photoreactions by light. Using light as a trigger in an

appropriate system, a photoreaction can be induced in a controlled way, e.g.,as ex-

emplified by the photoisomerization of azobenzene. The system we want to study

in this chapter is a dithienylethene (DTE) molecule linked by a rigid bridge to a

boron-dipyrromethene (BODIPY) molecule[42]. DTE is a widely used photoswitch

with a well defined absorption range for the isomerization process [207–209]. In

turn, BODIPY is a well known fluorescent dye [210]. In the molecule under study,

DTE acts as a donor-type moiety whereas BODIPY acts as an acceptor-type moi-

ety. Both molecules are electronically decoupled and have a well defined excitation

wavelength. The general idea is to develop a new type of material with the fol-

lowing properties: (i) a well defined ’ON’ or ’OFF’ state defined via structural

changes and (ii) a state-dependent energy transfer or fluorescence. This concept

is illustrated in Fig.46.

Figure 46: Concept of the DTE-BODIPY system for the application as a state sen-
sitive molecule. (a) Possible wavelength and state-dependent pathways of
the DTE-BODIPY dyad and (b) Energetic representation of the fluores-
cence quenching mechanism for the open and closed DTE molecule after
photoexcitation of the BODIPY moiety.

As sketched in Fig.46a, a variety of different reactions can take place depending on

the wavelength of the light and the structural state of the molecule. As shown, the

DTE molecule can be switched between an open/closed form using the wavelength

λ1 or λ2 (1). This photoreaction is an ultrafast process with a high quantum

yield and takes place on a sub-ps time scale. Applying a third wavelength on

the BODIPY molecule while the DTE is in the open form, fluorescence of the

BODIPY can be observed (2). Exciting the closed DTE form, a FRET process
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from the BODIPY to the DTE is observed (3). The explanation for the different

reactions is given in Fig.46b: in the open DTE form, the lowest excited state of the

DTE molecule is above the lowest excited state of the BODIPY molecule whereas

in the closed DTE form, the lowest excited state of the DTE is below the lowest

excited state of the BODIPY. In the second case, the lower DTE state will act as

a quenching state of the fluorescence and a FRET process from the DTE to the

BODIPY takes place, while in the first case, a fluorescence of the BODIPY moiety

is observed. This property can be used to either induce an electron transfer to a

surface or to a quantum dot and has been proposed by various groups for different

applications, e.g. a new type of storage system. The idea of using light, both

as a trigger and as a photoswitch, has been developed by K. Rück-Braun et al.

[11]. The group of Rück-Braun developed several types of molecules all containing

a DTE molecule as a wavelength-dependent photoswitch and a BODIPY as an

acceptor. For a better understanding of the state-dependent quenching process,

time-resolved measurements of the ring-opening reaction of the DTE molecule

in the full DTE-BODIPY dyad, as illustrated in Fig.47 have been performed by

Schweighöfer et al. [42].

Figure 47: Wavelength-dependent ring-opening/closing reaction of the DTE moiety.

The results of the time-resolved UV/Vis measurements are shown in Fig.48.

Interestingly, the measurements show an oscillatory signal at a probe wavelength of

530 nm after photoexcitation of the DTE molecule using a wavelength of 600 nm.

An extensive analysis of the signal at this specific wavelength using a Fourier

transformation indicates that two dominant vibrational frequencies are related to

the observed oscillatory dynamics: one frequency centered around ≈ 80 cm−1 and

one frequency centered around ≈ 146 cm−1. Suprisingly, the absorption spectrum

of the open form and the photo-stationary state indicate that these signals are
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Figure 48: Experimental results of the fs time-resolved UV/Vis measurements of the
ring opening reaction of the DTE-BODIPY dyad and the FT transforma-
tion of these data. The results of the Fourier transformation are shown
for the probe wavelength of 539 nm. Blue indicates a negative signal, red
a positive signal.

related to a BODIPY vibration and not to the DTE, which is unexpected, since

the DTE was excited specifically and both molecules are electronically decoupled.

To clarify why the BODIPY signal is observed, electronic structure calculations on

the DTE-BODIPY dyad were performed to identify vibrational modes of interest

in this spectral range. Furthermore, a model is developed to simulate the energy

transfer using quantum dynamical calculations in terms of the competition of intra-

and inter-molecular interactions.

5.5.1 Electronic Structure Calculations

The ab initio calculations were performed using the TDDFT method as imple-

mented in the TURBOMOLE 6.4 program package [169] (the BHLYP functional

[211–215] in combination with the 6-31G∗ [216, 217] basis set was used. This

functional is known to give reliable results as shown in Ref.[218]).

The relaxed structure of the first excited state was obtained based on the relaxed

ground state structure and is shown in Fig.49a.

The results of the geometry optimization indicate that in the ground state (grey),

the DTE is twisted by ≈ 24° with respect to the phenyl ring of the bridge, which

is almost perpendicular to the BODIPY molecule. In the first excited state, a

planarization of the DTE and the bridge is observed, whereas the changes of the

BODIPY geometry are negligible. The perpendicular structure of the BODIPY

and the bridge already indicate an electronically decoupled system, since the conju-

gated π-system is interrupted by this perpendicular structure. As shown in Fig.49b

and c, the calculated electronic transitions are located either on the DTE moiety
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Figure 49: (a) Ground (grey) and excited state (red) structure of the DTE-BODIPY
dyad. For clarification, the structures are overlayed on the BODIPY
system and hydrogen atoms are not shown. (b) S0 to S1 excitation
(Eexc.=2.47 eV) and (c) S0 to S2 excitation (Eexc.=3.02 eV).

(S1) or the BODIPY moiety (S2). This observation is in good agreement with

the experimentally observed electronically decoupled states. The absolute values

of the excitation energy differ from experiment by ≈ 1.0 eV, which is acceptable

(no solvent effects are considered in the quantum chemical calculations), since the

calculations did not focus on optimizing the excitation energy but rather on the

effect of the vibrations on the excitation.

To identify and characterize the experimentally observed oscillations, the effect of

each excited state normal mode on the S1 to S2 excitation energy is calculated

(see Fig.50a for illustration; all frequencies were scaled by a factor of 0.945, which

is the mean value of the standard HF and BLYP scaling factor [219]). Using a

shifted harmonic oscillator model for the excited states, each vibrational mode i

is shifted by a value xi. The xi value for the frequency i is obtained by applying

the normalized displacement vector xi
norm with a scaling factor ai on the relaxed

excited state structure x0. The scaling factor ai is calculated using a harmonic

potential such that

ai =
1

xi
norm

√

2Eexcess

ki

(146)

with the excess energy Eexcess describing the difference between the energy at

the FC point and the minimum energy of the S1 state. ki is the force constant

of the frequency i. This approach is directly comparable to the experimentally

observed shift ∆E for the excitation wavelength. All parameters were extracted

from the TDDFT calculations. Based on these shifted structures, the change in

transition energy ∆Ei, as defined in Fig.50a, is calculated. The results of this

procedure are shown in Fig.50b and demonstrate that at least three vibrational

modes have a strong effect on the energy shift ∆Ei. Two of these frequencies are in

very good agreement with the experimental observed frequencies (147.0 cm−1 and

97.0 cm−1). To characterize these frequencies, the displacement of each frequency
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is analyzed. As shown in Fig.51, the displacement of the lower frequency combines

the displacement of the DTE and the bridge and an additional displacement of

the phenyl rings of the bridge.

Figure 50: (a) Harmonic oscillator model to calculate the experimental observed en-
ergy shift ∆Ei for each normal mode i. (b) Calculated ∆Ei values for the
molecular normal modes.

The frequency centered around 147.0 cm−1 also combines DTE and bridge pla-

narization but also includes a strong displacement of the phenyl rings of the bridge

towards the BODIPY.

Figure 51: Displacement vectors of the modes at 97.0 cm−1 (a) and 147.0 cm−1

(b) which show a strong shift of the electronic excitation energy of the
DTE-BODIPY dyad. (c) Displacement of the BODIPY system for the
147.0 cm−1 normal mode, illustrating a transfer of momentum to the
BODIPY via the bridge. Red illustrates the displaced structure, grey
the relaxed structure.

This displacement can be seen as an transfer of momentum via the rigid bridge from

the DTE to the BODIPY, which is a completely unexpected result. Interestingly, a

similar oscillatory dynamics has been experimentally observed for a different type
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of molecule, which is also a photoswitch [220]. Here, the theoretical investigations

have not only been used to identify the relevant normal mode but also to explain

the effect of this vibration on a photoinduced ring-opening reaction.

Based on the theoretical investigation of the experimentally observed oscillatory

signals presented up to here, only the origin of the observed oscillatory signal

could be explained. No information about the competing dynamics of DTE local

molecular relaxation processes or the coupling of the DTE to the BODIPY was

considered. Therefore, a model for the description of the intramolecular vibra-

tional energy redistribution (IVR) after photoexcitation from DTE to BODIPY

is developed and studied in the context of the competition between the molecu-

lar relaxation process, the intra-molecular energy transfer and the inter-molecular

interactions to e.g. a dissipative environment.

5.5.2 Model System

To describe the IVR process taking place in the DTE-BODIPY dyad after pho-

toexcitation, an appropriate model has to be used. On the one hand, this model

should describe the molecular geometry and the IVR of the DTE-BODIPY dyad

under study sufficiently well, on the other hand, it should be small enough to be

suitable for a quantum dynamical description. The challenge is to map the existing

structure to such a model. In Fig.52, the mapping of the molecular structure to a

model is illustrated.

Figure 52: Mapping of the the DTE-BODIPY structure to a model for a quan-
tum dynamical simulation. (a) Molecular structure of the DTE-BODIPY
dyad. The red bond indicates the bond broken in the photoreaction. (b)
Schematic representation of the DTE and the BODIPY fragment. (c)
Schematic representation in terms of local vibrations described by cou-
pled harmonic oscillators.
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As a simple representation, the molecule is divided into two fragments: a DTE and

a BODIPY fragment. Both fragments exhibit one main coordinate that plays the

role of a transport mode, the two transport modes are linearly coupled. Further-

more, to include molecular relaxation processes taking place after photoexcitation,

the DTE fragment contains a set of DTE local modes linearly coupled to the DTE

transport coordinate. To include dissipation, the BODIPY transport coordinate

is coupled to a harmonic oscillator bath. In general, all modes are represented

by shifted harmonic oscillators. A similar model describing the IVR process in

molecular chains has been used by, e.g., P. Hamm and M. Schade [37, 39, 40]. The

mass-frequency weighted Hamiltonian is given by

Htotal = HDT E +HBODIP Y +Hlin.coupl. +Hbath (147)

HDT E =
N∑

i=1

Ti +
N∑

i=1

1

2
ωi(x− x0)

2 +
N∑

i=2

ǫx1xi (148)

HBODIP Y = T +
1

2
ω(x− x0)

2 (149)

Hlin.coupl. =
1

2
κ(xDT E,1 − xBODIP Y )2 (150)

Hbath =
M∑

j=1

Tj +
M∑

j=1

1

2
ωj

(

xj − cjxBODIP Y

ω2
j

)

(151)

with the kinetic energy operator T, the frequency ω and the DTE local coupling ǫ.

N defines the total number of DTE local modes, whereas i=1 is the DTE transport

coordinate and M defines the total number of bath modes. The Hamiltonian is

parametrized using TDDFT results and spectral densities obtained from these cal-

culations. The parametrization of the harmonic oscillator bath is performed using

a discrete Ohmic spectral density JOhm = 2γ∆ωe−ω/Λ. As illustrated in Fig.52,

a local mode representation is used for the local DTE and BODIPY modes. To

obtain these local modes, frequency calculations for the whole system with fixed

atoms for the DTE or the BODIPY moiety are performed using the GAUSSIAN09

program package at the same TDDFT level of theory as described for the calcu-

lation of the excited states energies (this task can be performed in GAUSSIAN09

[221] by defining sub-fragments of the system and calculating the frequencies of

the sub-fragments. In contrast, such a procedure is not possible using the TUR-

BOMOLE program package). The advantage of this procedure is the fact that the

complete system is calculated, but only local modes on the DTE or BODIPY moi-

ety are considered. These modes can be directly mapped to the transport or local

modes of the DTE and BODIPY moiety. The total number of DTE local modes

is N=51; 1 transport coordinate and 50 local coordinates acting as a heat bath,

129



CHAPTER 5. RESULTS

representing a hot excited state after FC excitation, whereby the local modes are

represented by a discrete sampling of the spectral density obtained for the DTE

fragment.

Figure 53: (a) Spectral density for the DTE (red) and BODIPY (blue) fragment for
the first excited state. The spectral density of the overall system for the
same state is shown in black. (b) Ohmic spectral density of the harmonic
oscillator bath JOhm = 2γ∆ωe−ω/Λ.

The discrete sampling defines the Poincaré recurrence time TP C and is defined in

such a way that the same TP C is achieved as for the discrete sampling of the bath

modes. The fragment based spectral densities calculated for the first excited state

are shown in Fig.53 and illustrate on the one hand, the strong contribution of low

frequency normal modes (spectral range between 0-500 cm−1) and high frequency

normal modes (spectral range between 1200-2000 cm−1) and on the other hand,

the lack of participation of the BODIPY modes which is due to the electronically

decoupled nature of the DTE and BODIPY fragments. This is indicated by the

almost zero contribution of the BODIPY spectral density for the whole spectral

range in the first excited state. The local transport coordinates are represented

as a linear combination of two fragment normal modes identified by inspection of

the calculated normal modes. The linear combination of the two fragment based

normal modes results in a reliable description of the experimental and theoretical

observed normal mode centered around 147.0 cm−1. As shown in Fig.54, the two

fragment normal modes, centered around 150.0 cm−1 and 164.0 cm−1, represent

the normal mode of the full system quite accurately.

The mathematical description of this procedure is given by

~vGlobal = c1~vL1 + c2~vL2 (152)

with the displacement ~v for the global and the local normal (L1/2) modes. Addi-

tionally, the coupling value κ of the transport modes can be calculated using this
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Figure 54: Representation of the theoretical and experimentally observed normal
mode by linear combination of two fragment normal modes. The red
arrows indicate the displacement vectors of the normal modes.

ansatz. This ansatz is similar to the ansatz of Reiher et al. [222–224], describing a

transformation from uncoupled normal modes to coupled local modes. The general

expression for this ansatz is

HLocal = UTHGlobalU (153)

with the transformation/rotation matrix U and the diagonal matrix HGlobal with

Hii=ωGlobali . The matrix HLocal contains the local mode frequencies and couplings

with Hii=ωLocali and Hij=κ. This ansatz is used to calculate the coupling κ based

on the coefficients c and the frequencies ω for the known local and global normal

mode

HGlobal = UHLocalU
T (154)

or in a matrix type representation




ω1 0

0 ω2



 =




c1 c2

c3 c4








ωL1 κ

κ ωL2








c1 c3

c2 c4



 (155)

From Eqn.155, κ can be calculated analytically. The coupling value ǫ of the local

DTE modes to the DTE transport coordinate is calculated using the ansatz of

Reiher et al. with the focus on the coupling value ǫi between the local modes and

not on a good mode localization, since already well localized normal modes are
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used as input parameter. From the obtained ǫi values, the averaged value of ǫ is

calculated. In Tbl.7, all frequencies and coupling values are shown.

Table 7: Parameters of the DTE-BODIPY model Hamiltonian. If not specified, all
parameters are given in cm−1.

ωDT E ωBODIP Y ∆ωlocal ǫ κ
150.6 164.6 23.0 15.0 313.0

TP C [ps] γ [fs−1] ∆ωbath [a.u.]
1.4 300.0/500.0/750.0 1.02·10−4

Although the described procedure for the parametrization of the model Hamilto-

nian may seem unintuitive, it is the best method to calculate all needed parameters

based on ab initio results. Furthermore, recent experimental results on different

types of systems show that the numerical values of the calculated coupling values

κ and ǫ are reliable [225].

5.5.3 Quantum Dynamics

The quantum dynamical calculations for the evaluation of the energy transfer

process in the DTE-BODIPY dyad have been performed using the Heidelberg

MCTDH package [123]. In order to simulate the FC excitation of the system

and the following IVR process properly, an appropriate initial condition has to

be used. Therefore, the system is assumed to be in the electronic ground state,

which is defined via the harmonic oscillators in their global minimum. This is

achieved by relaxing the initial MCTDH wave function of the overall system to

the global ground state with x0=0.0 for all coordinates. Due to the fact that

the FC excitation is a DTE local event and that the excited state potentials are

not identical to the ground state potential (here it is assumed that the frequency

remains the same but the minimum of the excited state surface is shifted), only the

DTE local coordinates have to be shifted by x0 6= 0. This shift is calculated using

the spectral density of the DTE fragment and is directly coupled to the vibronic

coupling κvib. of an harmonic oscillator.

Vharm. =
ω

2
(x− x0)

2 (156)

=
ω

2
x2 − ωx0

︸︷︷︸

=κvib.

x+
ω

2
x2

0 (157)

The vibronic coupling can be defined via the spectral density by
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κi =
√

2ωi∆ωJ(ω) (158)

with the frequency ωi, the discrete frequency interval ∆ω and the spectral density

J(ω). Finally, the shift x0 is calculated by

x0 = −κi

ωi

(159)

with the κi values obtained from the calculated spectral densities. Using these

new x0 values for the DTE local coordinates and x0=0 for the BODIPY local

coordinates, the FC excitation can be represented in a correct way.

The focus of the quantum dynamics is on the competition between the different

parameters that can influence the IVR process and therefore, the following issues

are addressed:

• What is the effect of the fragment-local, fragment-fragment and the dissipa-

tive coupling on the transfer dynamics?

• What is the contribution of the fragment-local modes to the energy transfer?

• Does the model system reproduce the experimental data?

To answer these questions, systematic variations of the different parameters are

performed. In Fig.55a, the effect of a systematic variation of the site-local coupling

values ǫ by a factor of 1.0, 0.5 and 0.1 is shown with respect to the initial energy

of the DTE transport coordinate. The site-local DTE coordinates can be seen as

a local heat bath created by the FC excitation.

As shown in Fig.55a, the scaled total energy of the DTE transport coordinate for

a coupling value of ǫ= 15 cm−1 increases drastically within the first ≈ 100 fs and

reaches a maximum after ≈ 250 fs. This rapid increase in energy is followed by

a damped oscillatory dynamics with ≈ 1.2 ps. An analysis of the total fragment

energy of the DTE and the BODIPY moiety indicates the formation of a relaxed

system within ≈ 1.2 ps after FC excitation, which is observable by the formation

of a quasi-stationary state. The total energies shown in Fig.55b indicate a similar

oscillatory dynamics as observed for the total energy of the DTE transport coordi-

nate: a rapid increase of the total energy of the BODIPY fragment followed by a

damped dynamics resulting in a quasi-stationary state, whereas the total energy of

the DTE fragment is almost a mirror image of the BODIPY dynamics. As shown

for lower ǫ values (7.5 and 0.15 cm−1), the increase of scaled total energy of the

DTE transport coordinate is much less compared to the normal coupling case and
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Figure 55: Effect of the fragment local coupling parameter ǫ on the energy transfer
with κ=313.0 cm−1 and γ=500.0 fs−1. The variable ǫ=15.0 cm−1 is scaled
by a factor of 0.5 or 0.1. A positive signal indicates an increase in energy,
whereas a negative signal indicates a decrease in energy. (a) Total energy of
the DTE local transport mode and (b) Total energy of DTE and BODIPY
fragment. The solid line indicates the total DTE energy, the dotted line
the total BODIPY energy. The energies are scaled with respect to the
initial energy at t=0.

also observable in the total energy of the DTE fragment. Nevertheless, for all val-

ues, the formation of a quasi-stationary state is observable within 1.2 ps while the

effect of the low coupling is indirectly observable only in the decreased total en-

ergy of the BODIPY fragment transferred from the DTE for the first 250 fs. This

dynamics indicates that the total energy transferred to the BODIPY fragment is

strongly correlated to local coupling effects of the DTE fragment.

Figure 56: Total energy of DTE local modes. A positive signal indicates an increase
in energy, whereas a negative signal indicates a decrease in energy. (a)
ǫ=15.0 cm−1 and (b) ǫ=0.15 cm−1. The red line indicates the frequencies
of the DTE and BODIPY transport coordinate. The color bar indicates a
positive or negative energy change with respect to the initial total energy
of coordinate i. The energies are scaled with respect to the initial energy
at t=0.

In order to clarify if all DTE-local coordinates are involved in the transfer process

in the same way, the total energies of the site-local coordinates are analyzed as
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shown in Fig.56. For the normal coupling case shown in Fig.56a, it is observable

that the local coordinates below 80 cm−1 and in resonance (or with the doubled

frequency of the DTE transport coordinate) with the DTE-transport coordinate

centered around 164 cm−1 are strongly involved in the transport dynamics. The

scaled total energy of the low frequency coordinate clearly shows a strong decrease

within 1.2 ps, whereas the total energy of the coordinate in resonance and 2.0·ωDT E

show a strong increase in total energy. The change in total energy of all other

modes is almost zero for the overall simulation time, indicating no or only minor

contributions.

In the low coupling case shown in Fig.56b, the contribution of all modes is almost

zero. Only the in-resonance coordinates show a small positive amplitude.

This observation leads to the conclusion that on the one hand, only a few local

coordinates are really involved in the transfer process and on the other hand, the

energy of the local modes is funneled to the DTE transport coordinate.

To study the effect of the intra-molecular coupling parameter κ, this parameter

has also been varied systematically by the factor 0.5 and 0.1.

Figure 57: Effect of the fragment-fragment coupling parameter κ on the energy trans-
fer with ǫ=15.0 cm−1 and γ=500.0 fs−1. The variable κ=313.0 cm−1 is
scaled by a factor of 0.5 or 0.1. A positive signal indicates an increase in
energy, whereas a negative signal indicates a decrease in energy. (a) Total
energy of the DTE local transport mode and (b) Total energy of DTE
and BODIPY fragment. The solid line indicates the total DTE energy,
the dotted line the total BODIPY energy. The energies are scaled with
respect to the initial energy at t=0.

As shown in Fig.57a, the site-site coupling parameter κ has a drastic effect on the

scaled total energy of the DTE transport coordinate. As shown for the effect of

varying ǫ, a similar oscillatory pattern is observable. Comparing the dynamics for

the different κ values, it is observable that the total energy of the DTE transport

coordinate increases with decreasing coupling strength. Nevertheless, a fast in-

crease followed by a damping of the total energy is observable on the same time
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scale as shown for the DTE local coupling parameter ǫ. The analysis of the total

energies of both fragments approve the drastic effect of the variation of the site-

site coupling parameter κ. As shown in Fig.57b, the total energy of the BODIPY

fragment decreases rapidly with decreasing coupling value. For coupling values

between 150-313 cm−1, an efficient energy transfer from the DTE to the BODIPY

is observable resulting in a quasi-stationary state as reported before. A noticeable

difference can be found in the frequency of the energy transfer but not in the am-

plitude. In contrast, for a very small coupling value of ≈ 31 cm−1, only a small

amount of transferred energy to the BODIPY is observable within 300 fs, which

decreases to almost zero after ≈ 500 fs due to the coupling to the phenomenolog-

ical bath. These results show that on the one hand, the coupling parameter κ is

essential for an energy transfer from the DTE to the BODIPY fragment but on the

other hand, does not influence the absolute value for the transferred energy. Only

for very small coupling values, an effect on the absolute value of the total energy

is observable, which is related to the coupling to a phenomenological environment.

To evaluate the effect of this environment coupled to the BODIPY fragment, this

coupling has been changed systematically representing a low, medium and strong

coupled environment.

Figure 58: Effect of the dissipative environment coupling parameter γ on the energy
transfer with ǫ=15.0 cm−1 and κ=313.0 cm−1. A positive signal indicates
an increase in energy, whereas a negative signal indicates a decrease in
energy. (a) Total energy of the DTE local transport mode and (b) Total
energy of DTE and BODIPY fragment. The solid line indicates the total
DTE energy, the dotted line the total BODIPY energy. The energies are
scaled with respect to the initial energy at t=0.

As shown in Fig.58a for the scaled total energy of the DTE transport coordinate,

an indirect coupling of the DTE fragment to the environment is observable. For

very high friction coefficients (red) a rapid decrease of the total energy of the

DTE transport coordinate is observable after ≈ 200 fs. In contrast to this fast
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dissipation, the medium and low coupling case show the typical damped oscilla-

tory dynamics as observed before. The efficient energy dissipation induced by the

coupled phenomenological environment is also observed in the total energy of the

fragments (see Fig.58b). Again, a rapid decrease of the DTE total energy is ob-

servable for very high coupling values resulting in a stationary state, whereas the

BODIPY total energy increases.

So far, the theoretical results shown for the energy transfer dynamics in a DTE-

BODIPY dyad after FC excitation are only based on ab initio calculations and

transformations of normal modes. To validate if the results of the quantum dy-

namical simulations, the model and parameters are able to represent the experi-

mentally observed dynamics in an appropriate way, the experimentally observed

energy change ∆E is compared to the theoretical results using the originally ob-

tained parameters κ=313 cm−1, ǫ=15 cm−1 and γ=750 fs−1.

Figure 59: Comparison of the DTE total energy with the theoretically determined pa-
rameters to the experimentally observed ∆E (both values are normalized
to 1 at t=0).

The main discrepancy of theory and experiments is the order of magnitude in the

energy change ∆E, and therefore, theoretical and experimental values are normal-

ized with respect to the initial value (the theoretical description underestimates

the absolute value of transferred energy by a factor of 102, which is mainly related

to our model). As shown in Fig.59, the overall amplitude and frequency of the

energy transfer is in good agreement with the experiment, up to a time of ≈ 300 fs.

After this time, a shift is observable, but the dynamics are still in good agreement.

This shift can be explained by an additional frequency in the experimental sig-
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nal. Also the time for the formation of a quasi-stationary state is comparable.

These observations lead to the conclusion that the model and parametrization are

quite accurate for the description of the energy transfer in the DTE-BODIPY dyad

including dissipative coupling effects to a phenomenological environment.

5.5.4 Conclusion

The observations presented in this section show an excellent agreement between

experiment and theory. First, a theoretical explanation of experimentally observed

oscillations in a time-resolved experiment is derived starting from the geometry

of a DTE-BODIPY dyad using ab initio methods. These results show that the

electronic states of the DTE-BODIPY dyad under study are indeed electronically

decoupled and located on the DTE and BODIPY fragment and that the selective

excitation of the DTE fragment can induce an energy transfer via a transfer of

momentum. This energy transfer via the bridge is related to a normal mode of the

system centered around ≈ 147.0 cm−1 which is in very good agreement with the

experimentally observed oscillations. Furthermore, a second normal mode, also

observed in the experiment, has been found, indicating an energy transfer from

DTE to BODIPY via the rigid bridge.

Second, a mapping of the DTE-BODIPY dyad onto a model system including

an appropriate parametrization is presented. This model describes the system in

terms of coupled harmonic oscillators, which are representing the DTE or BODIPY

moiety. Furthermore, a heat bath, representing the hot vibrational state after FC

excitation is introduced by a set of DTE local coordinates. Dissipative effects

are represented by a harmonic oscillator bath. This model is parametrized using

ab initio results and calculated spectral densities and is able to reproduce the

experimentally observed dynamics and time scales in good agreement.

Finally, the mechanism of the energy transfer is evaluated by systematically chang-

ing the parameters of the model Hamiltonian. Intuitively, the energy transfer is

expected to show a strong dependency on the coupling between the two coordinates

representing the DTE and BODIPY moiety. Interestingly, this coupling parameter

does not effect the absolute value of transferred energy in such a strong way as

one would expect. However, it has been shown that the coupling to a dissipative

environment and the coupling to the DTE local coordinates has a much stronger

effect on the absolute value of transferred energy. This is explained by the fact that

the local mode energy is funneled into the DTE transport coordinate and dissipate

to the environment after transfer to the BODIPY. For a high local coupling, more

energy can be redistributed or funneled to the DTE transport coordinate than for
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the low coupling case. A similar statement can be formulated for the effect of the

dissipative environment: for a high coupling value, a strong energy gradient to the

bath is found, resulting in a fast and effective IVR via the BODIPY to the bath.

The presented results lead to the conclusion that the observed energy transfer de-

pends on site-local relaxation processes and coupling effects rather than on site-site

coupling effects. Nevertheless, the model is approximate and can be improved by

including more coupling terms from the site-local modes to the BODIPY fragment.
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6 | Concluding Remarks and Out-

look

The work presented in this thesis helps to clarify the mechanism of excitation

energy transfer (EET) after photoexcitation in organic semi-conducting polymers

like PPV and PT, or small functional building blocks as exemplified by a DTE-

BODIPY dyad. We have focused upon the elementary EET steps on ultrafast

time scales, where standard kinetic descriptions are not applicable. Our theo-

retical approach is based upon electron-hole Hamiltonians of Frenkel or Merri-

field type, which are parametrized using high-level electronic structure methods

together with adiabatic-to-diabatic mapping procedures. These first-principles

parametrized Hamiltonians are subsequently used for high-dimensional quantum

dynamical calculations including explicit electronic-vibrational (vibronic) interac-

tions. Similarly, the description of vibrational energy transfer in a DTE-BODIPY

system is based upon a first-principles parametrized model for intramolecular vi-

brational energy redistribution (IVR).

In the context of semi-conducting polymers, small oligomer species were studied

– i.e., hexamer or 20-mer species – whose size is sufficient to exhibit the excitonic

(band-like) properties that are typical of larger polymer segments. To show this,

the electronically excited states which were computed using the high-level ADC(2)

method, have been analyzed by a transition density analysis. From excited-state

PES cuts along a set of relevent coordinates, including torsional and bond length

alternation (BLA) coordinates, diabatic potentials are then generated using a

novel adiabatic-to-diabatic mapping scheme. These potentials are used in quan-

tum dynamical calculations by the Multiconfiguration Time-Dependent Hartree

(MCTDH) method.

Specifically, an ab initio parametrized model Hamiltonian is employed to study

ultrafast exciton dynamics across a torsional defect in an oligo-thiophene (OT)

fragment. The torsional coordinate planarizes on a time scale of less that one

picosecond and guides the exciton dynamics on the lattice. Starting from an

initially prepared wave packet on a sub-lattice of the OT oligomer, the exciton

dynamics exhibits an EET process on a sub-ps time scale, resulting in a new

quasi-stationary state, a so-called local excitonic ground state (LEGS), centered in

the middle of the overall lattice. The LEGS state can be directly related to the

relaxed excited state obtained from our electronic structure (ADC(2)) calculations.
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For the smaller hexamer lattice, we observed the spreading of an exciton across a

torsional defect, from an initial condition located close to the defect. The larger

20-mer system allowed us to monitor the torsion-induced migration of an exciton

which is initially trapped on a sub-lattice. Interestingly, the exciton is found to

undergo a “coherent hopping” type dynamics: That is, starting from a LEGS

type initial condition localized on a sub-lattice, a rather sudden transition occurs

to a LEGS on the overall lattice. The transition is of electronically coherent

nature, but the coherent transients subside rapidly, on a scale of ∼100 fs. Exciton

trapping is found to be caused by the high-frequency bond length alternation

(BLA) coordinates, and very rapidly acts to create a relaxed, polaronic LEGS

state. The “hopping” of the LEGS state is driven by the healing of the torsional

defect, and necessitates energy dissipation which is provided by a bath coupled

to the torsional mode. These results support the “spectroscopic unit” concept,

according to which exciton delocalization is determined by structural defects and

conjugation breaks.

The results of the full Merrifield (generalized e-h) model are very close to the results

of the simplified Frenkel type model, with the drawback that the computational

effort is much higher due to the large number of electronic states. Therefore, the

full e-h representation is not necessarily needed to describe intra-chain dynamics.

This allows the dynamical description of energy transfer on a full quantum level,

using a Frenkel model.

For an OPV hexamer and 20-mer system, similar results have been obtained. The

model Hamiltonian differs slightly, though, since the torsional and BLA modes

are now treated as site-local modes, while these modes were taken to be corre-

lated (i.e., coupled simultaneously to neighboring sites) in the case of OT. Again,

an adiabatic-to-diabatic mapping of PES cuts was performed to generate high-

dimensional potential surfaces, and MCTDH calculations were performed includ-

ing BLA and torsional modes.

Based on the potential energy surfaces for OPV, EET dynamics was studied for

larger systems including more degrees of freedom and an explicit description of

temperature, using the semi-classical Ehrenfest approach including dissipative

Langevin dynamics. A FORTRAN 90 program was written specifically for this

purpose. In order to validate the semi-classical Ehrenfest method, benchmark

calculations are performed for a PPV hexamer system in a Frenkel type basis us-

ing the full-quantum MCTDH method. These benchmark calculations show very

good agreement with regard to the torsional dynamics and LEGS formation, even

though coherent transients on a time scale of several hundred femtoseconds are not
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correctly reproduced. We attribute this to the fact that the Ehrenfest approach is

not capable of capturing the full electronic-nuclear correlations. Furthermore, it

has been shown that a reasonably small number of trajectories are able to describe

the dynamics with acceptable accuracy: For a converged Ehrenfest calculation,

≈ 3000 independent trajectories are needed. Dissipation is included either in a

Langevin setting, or else using a density-based version of the Ehrenfest dynamics.

(The latter, however, does not prove numerically robust.) In the Langevin set-

ting, it turns out that the dynamics depends in a sensitive fashion on whether the

fluctuations act in the same way on all trajectory realizations.

The Ehrenfest approach is used to simulate the dynamics of an OPV 20-mer sys-

tem, including 20 Frenkel states and 80 coordinates. Using this model, the effects

of thermal noise and structural disorder are studied by systematically varying the

initial conditions of the classical coordinates and the temperature. The results of

the systematic variation of these parameters show some drastic effects. On the one

hand, no strong effect of the torsional coordinate on the overall exciton dynamics

is observed. On the other hand, a strong correlation between the exciton dynamics

and temperature is observed. For very low temperatures (T≤10 K), the formation

of a new LEGS on the overall lattice is found whereas for higher temperatures

(T≥10 K) a compact exciton packet can be seen to undergo a hopping type dy-

namics on the entire lattice. This compact dynamics seems to be correlated to the

formation of a minimum energy path created due to the thermal fluctuations of

the system coordinates, especially the torsional modes. Increasing the temperature

to more than 200 K, the thermal fluctuations of the coordinates are increasingly

large, and no minimum energy path is formed. In order to investigate the effect

of the different coordinates (i.e., BLA and torsion) a systematic study at 1 K and

100 K has been performed. This study indicates that the high-frequency BLA co-

ordinates are essential for the observed trapping effect at low temperatures while

the torsional coordinates are essential for the formation of a minimum energy path.

The results of this project part indicate the capability of a simple mixed quantum-

classical method to describe EET on intermediate time scales, beyond the ultrafast

regime which necessitates a correct description of quantum coherence. The influ-

ence of noise and disorder on the EET process can be captured very well by the

Ehrenfest/Langevin approach.

The second type of system that was investigated using high-dimensional quan-

tum dynamical methods is a functional DTE-BODIPY dyad. These investigations

were intended to help understand experimental observations and clarify the IVR

mechanism in this system. Quite remarkably, ultrafast oscillatory signals associ-
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ated with the BODIPY moiety were observed following electronic excitation of the

DTE moiety.

Using standard TDDFT methods, several normal modes were identified that are

likely associated with the experimentally observed oscillations. In a local-mode

picture, an IVR process was proposed explaining the energy transfer between the

relevant DTE and BODIPY modes. A model Hamiltonian was set up that includes

a subset of transport modes responsible for the energy transfer, along with a

“bath” of local modes for each moiety. Using this model, the competition between

intra- and intermolecular transfer has been investigated. The outcome of this

investigation shows a correlation between an intra-molecular heat-bath created

by the photoexcitation and the vibrational energy transfer. Furthermore, the

effect of different external environments has been demonstrated, indicating that

the external environment has a strong effect on the energy transfer in the system.

In general, the projects addressed in this thesis show how a realistic quantum

dynamical analysis can be carried out by combining (i) suitable model Hamiltoni-

ans, (ii) an ab initio based parametrization, and (iii) high-dimensional multicon-

figurational quantum dynamics and approximate semi-classical approaches. The

strength of this approach is a consistent and transparent treatment of all relevant

interactions, and an adequate treatment of ultrafast, coherent transients. Never-

theless, the projects also reveal the limitations of the approach: A full atomistic

description is out of reach both from the electronic structure side and from the

quantum dynamical perspective (and would require accurate on-the-fly quantum

dynamics in many dimensions, which is not yet available). The present approach

offers a reasonable compromise, in terms of first-principles parametrized model

Hamiltonians that carry over to many dimensions and can be equally used for

quantum-dynamical, mixed quantum-classical, and kinetic treatments. Indeed,

the present approach is very suitable as a starting point for a multi-scale treat-

ment, and a QM/MM type embedding into a classical environment.
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