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Thomas Dangl†, Otto Randl‡and Josef Zechner§
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Abstract

In traditional portfolio theory, risk management is limited to the choice
of the relative weights of the riskless asset and a diversified basket of
risky securities, respectively. Yet in industry, risk management represents
a central aspect of asset management, with distinct responsibilities and
organizational structures. We identify frictions that lead to increased im-
portance of risk management and describe three major challenges to be
met by the risk manager. First, we derive a framework to determine
a portfolio position’s marginal risk contribution and to decide on opti-
mal portfolio weights of active managers. Second, we survey methods
to control downside risk and unwanted risks since investors frequently
have non-standard preferences which make them seek protection against
excessive losses. Third, we point out that quantitative portfolio manage-
ment usually requires the selection and parametrization of stylized models
of financial markets. We therefore discuss risk management approaches
to deal with parameter uncertainty, such as shrinkage procedures or re-
sampling procedures, and techniques of dealing with model uncertainty
via methods of Bayesian model averaging.

1 Introduction

In traditional portfolio theory the scope for risk management is limited. Wilson
(1968) showed that in the absence of frictions the consumption allocation of each
agent in an efficient equilibrium satisfies a linear sharing rule as long as agents
have equi-cautious HARA utilities. This implies that investors are indifferent
between the universe of securities and having access to only two appropriately

∗This paper is extended work based on a keynote talk by Josef Zechner at the Risk Manage-
ment Reloaded Conference held at Technische Universität München in September 2013. We
thank Victor DeMiguel, Matthias Scherer, Neal Stoughton, Raman Uppal, Arne Westerkamp,
Rudi Zagst and conference participants for helpful discussions.
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defined portfolio positions, a result that is usually referred to as the Two-Fund
Separation Theorem. If a riskless asset exists, then these two portfolios can be
identified as the riskless asset and the tangency portfolio. Risk management in
this traditional portfolio theory is therefore trivial: the portfolio manager only
needs to choose the optimal location on the line that combines the riskless asset
with the tangency portfolio, i.e. on the security market line. Risk management
is thus equivalent to choosing the relative weights that should be given to the
tangency portfolio and to the riskless asset, respectively.

In a more realistic model that allows for frictions, risk management in asset
management becomes a much more central and complex component of asset
management. First, a world with costly information acquisition will feature
informational asymmetries regarding the return moments, as analyzed in the
seminal paper by Grossman and Stiglitz (1980). In this setup, investors gener-
ally do not hold the same portfolio of risky assets and the two fund separation
theorem brakes down (see, e.g., Admati, 1985). We will refer to such port-
folios as active portfolios. In such a setup, risk management differs from the
simple structure described above for the traditional portfolio theory. Second,
frictions such as costly information acquisition frequently require delegated port-
folio management, whereby an investor transfers decision power to a portfolio
manager. This gives rise to principal-agent conflicts that may be mitigated
by risk monitoring and portfolio risk control. Third, investors may have non-
standard objective functions. For example, the investor may exhibit large costs
if the end-of-period portfolio value falls below a critical level. This may be the
case, for example, because investors are subject to their own principal-agent
conflicts. Alternatively, investors may be faced with model risk, and thus be
unable to derive probability distributions over possible portfolio outcomes. In
such a setting investors may have non-standard preferences, such as ambigu-
ity aversion. We will now discuss each of these deviations from the classical
frictionless paradigm and analyze how it affects portfolio risk management.

2 Risk Management for Active Portfolios

If the optimal portfolio differs from the market portfolio, portfolio risk manage-
ment becomes a much more complicated and important task for the portfolio
manager. For active portfolios individual positions’ risk contributions are no
longer fully determined by their exposures to systematic risk factors that affect
the overall market portfolio. Instead, a position’s contribution to overall portfo-
lio risk must not be measured by the sensitivity to the systematic risk factors but
instead by the sensitivity to the investor’s portfolio return. For active portfolios
the manager must therefore correctly measure each asset’s risk-contributions to
the overall portfolio risk and ensure that it corresponds to the expected return
contribution of the asset. We will now derive a simple framework that a port-
folio manager may use to achieves this.
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We consider an investor who wishes to maximize his expected utility, E[ũ]. In
this section, we consider the case where the investor exhibits constant absolute
risk aversion with the coefficient of absolute risk aversion denoted by A. In
the following derivations, we borrow ideas from Sharpe (1981) and assume for
convenience that investment returns and their dispersions are small relative to
initial wealth, V0. Thus, we can approximate A u γ/V0 with γ denoting the
investor’s relative risk aversion. This allows for easy translation of the results
into the context of later sections, where we focus on relative risk aversion.1 An
expected-utility maximizer with constant absolute risk aversion solves

max
w

E[ũ] = max
w

E[− exp(−A(V0(1+w′r̃)))] = max
w

E[− exp(−γ(1+w′r̃))] (1)

where w represents the (N × 1) vector of portfolio weights and r̃ is the (N × 1)
vector of securities returns. If returns are jointly normally distributed, then the
investor’s utility is lognormally distributed. Thus we have

log(E[ũ]) = E[log(ũ)] +
1

2
Var[log(ũ)] (2)

where Var[log(ũ)] is the variance of the log utility. Therefore the portfolio
optimization problem is equivalent to

min
w
{log(E[exp(−γ(1 + w′r̃))])} = min

w
{−γ(1 + w′µ) +

1

2
γ2σ2

p(w)} (3)

where µ is the vector of expected securities returns and σ2
p(w) denotes the port-

folio’s return variance given weights w. This optimization is in turn equivalent
to

max
w
{(rf + w′µe)− 1

2
γw′Σw} (4)

where µe is the (N × 1) vector of securities’ expected returns in excess of the
risk free rate rf and Σ is the covariance matrix of excess returns.

The first-order-conditions are then given by

µe − γΣw = µe − 1

2
γMR = 0 (5)

where MR denotes the vector of marginal risk contributions resulting from
a marginal increase in portfolio weight of the respective asset, i.e., MR =
∂(σ2

p)/∂w, financed against the riskless asset. For each asset i in the portfolio
we must therefore have

µei =
1

2
γMRi (6)

which implies

µei
MRi

=
µej

MRj
=

1

2
γ ∀i, j.

1see, e.g., Pennacchi (2008) for more details on this assumption.

3



These results show the fundamental difference between risk management for
active and passive portfolios. While in the traditional world of portfolio theory,
each asset’s risk contribution was easily measured by a constant (vector of) beta
coefficient(s) to the systematic risk factors, the active investor must measure a
security’s risk contribution by the sensitivity of the asset to the specific portfolio
return, expressed by 2e′iΣw. This expression makes clear that each position’s
marginal risk contribution depends not only on the covariance matrix Σ but
also on the portfolio weights, i.e. the chosen vector w. It actually converges
to the portfolio variance, σ2

p, as the security’s weight approaches one. In the
case of active portfolios, these weights are likely to change over time, and so
will each position’s marginal risk contribution. The portfolio manager can no
longer observe a position’s relevant risk characteristics from readily available
data providers such as the stock’s beta reported by Bloomberg, but must cal-
culate the marginal risk contributions based on the portfolio characteristics.
As shown in Equation (7), a major responsibility of the portfolio risk manager
now is to ensure, that the ratios of securities expected excess returns over their
marginal risk contribution are equated.

2.1 Factor Structure and Portfolio Risk

A prevalent model of investment management in practice features a CIO who
decides on the portfolio’s asset allocation and on the allocation between passively
or actively managed mandates within each asset class. The actual management
of the positions within each asset class is then delegated to external managers.
In the following we provide a consistent framework within which such a problem
can be analyzed. We hereby assume a linear return generating process so that
the vector of asset excess returns, re can be written as

re = α+Bfe + ε, (7)

where

• re is the (N × 1) vector of fund or manager returns in excess of the risk
free return

• B is a (N ×K) matrix that denotes the exposure of each of the N assets
to the K return factors and

• fe is a (K × 1) vector of factor excess returns.

Let Σf denote the covariance matrix of factor excess returns and Ω the covari-
ance matrix of residuals, ε. Then the covariance matrix of managers’ excess
returns Σ is given by

Σ = E(rere′)

= E([Bfe + ε][Bfe + ε]′)

= E(Bfefe′B′ + εε′)

= BE(fefe′)B′ + E(εε′)

= BΣfB
′ + Ω

4



Let w denote the N × 1 vector of weights assigned to managers by the CIO,
then the portfolio excess return rep is given by

rep = w′re

If ei is the i-th column of the (N ×N) identity matrix then

Cov(rei , r
e
p) = Cov(e′iBf

e + e′iε, w
′Bfe + w′ε)

= Cov(e′iBf
e, w′Bfe) + Cov(e′iε, w

′ε)

= e′iBΣfB
′w + e′iΩw

The beta of manager i’s return with respect to the portfolio is then

β̃i =
e′iBΣfB

′w + e′iΩw

w′(BΣfB′ + Ω)w

Thus, we have an orthogonal decomposition of the vector of betas, β̃, into a
part that is due to factor exposure, β̃S , and a part that is due to the residuals
of active managers (tracking error), β̃I

β̃ =
BΣfB

′w + Ωw

w′(BΣfB′ + Ω)w
=

BΣfB
′w

w′(BΣfB′ + Ω)w︸ ︷︷ ︸
β̃S

+
Ωw

w′(BΣfB′ + Ω)w︸ ︷︷ ︸
β̃I

.

We can now determine the beta of a pure factor excess return fek to the portfolio.
With eFk denoting the k-th column of the (K×K) identity matrix, the covariance
between the factor excess return and the portfolio excess return is

Cov(fek , r
e
p) = Cov(eFk

′
fe, w′Bfe + w′ε)

= eFk
′
ΣfB

′w.

The vector of pure factor betas, β̃F , to the portfolio is therefore

β̃F =
ΣfB

′w

w′(BΣfB′ + Ω)w

We thus have β̃S = Bβ̃F . Consequently, a position’s beta to the portfolio can
be written as

β̃ = Bβ̃F + βI

i.e., we can decompose the position’s beta into the exposure-weighted betas of
the pure factor returns plus the beta of the position’s residual return.

Next we can derive the vector of marginal risk contributions of the portfolio
positions. Given the factor structure above, the effect of a small change in
portfolio weights, w, on portfolio risk, σ2

p is given by MR:
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1

2
MR =

1

2

∂

∂w
w′Σw = Σw

= σ2
pβ̃ = σ2

p(Bβ̃F + β̃I)

Thus, an individual portfolio position i’s marginal risk contribution, MRi, is
given by

1

2
MRi =

1

2

∂

∂wi
w′Σw

= e′iΣw

= σ2
pβ̃i = σ2

p(Bβ̃Fi + β̃Ii )

2.2 Allocation to Active and Passive Funds

One important objective of risk control in a world with active investment strate-
gies is to ensure that an active portfolio manager’s contribution to the portfolio
return justifies his idiosyncratic risk or “tracking error”. If this is not the case,
then it is better to replace the active manager with a passive position that only
provides a pure factor exposures but no idiosyncratic risks. To analyze this
question we define νe as the vector of expected excess returns of the factor-
portfolios. Then the vector of expected portfolio excess returns can be written
as

E(re) = E(α+Bfe + ε) = α+Bνe

First order optimality conditions state that the following condition must hold
across managers

E(rei )

MRi
=
E(rej )

MRj

Thus, a manager i justifies her portfolio weight relative to a pure factor invest-
ment compared to factor k iff

E(rei )

E(fek)
=
e′iBE(fe) + αi

E(fek)
=
e′iBν

e + αi
νek

≥ β̃i

β̃Fk
=
e′iBβ̃

F + e′iβ̃
I

β̃Fk
.

Consider the case where asset manager i has exposure only to factor k,
denoted by Bi,k. Then this manager justifies her capital allocation iff

Bi,kν
e
k + αi
νek

≥ Bi,kβ̃
F
k + β̃Ii
β̃Fk

Bi,k +
αi
νek

≥ Bi,k +
β̃Ii
β̃Fk

αi ≥
β̃Ii
β̃Fk

νek.
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Note that in general this condition depends on the portfolio weight. For suffi-
ciently small weights wi, manager i’s tracking error risk will be “non-systematic”
in the portfolio context, i.e. β̃Ii = 0. However, as manager i’s weight in the port-
folio increases, his tracking error becomes “systematic” in the portfolio context.
Therefore the manager’s hurdle rate increases with the portfolio weight. This
is illustrated in Example 2.1 below.

Example 2.1:

Consider the special case where there is only one single factor and a portfolio
which consists of a passive factor-investment and a single active fund. The port-
folio weight of the passive investment is denoted by w1 and that of the active
fund by w2. The active fund is assumed to have a beta with respect to the
factor denoted by β and idiosyncratic volatility of σI .

2

The covariance of factor returns is then a simple scalar equal to the market
return variance, the matrix of factor exposures B has dimension (2×1) and the
idiosyncratic covariance matrix is (2× 2)

w =

(
1− w2

w2

)
, Σf = σ2

ν , B =

(
1
β

)
, Ω =

(
0 0
0 σ2

I

)
.

The usual assumption νe > 0, σ2
I > 0 applies. The hurdle to be met by the

alpha of the active fund is accordingly given by

H(w2) =
β̃I

β̃F
νe =

σ2
Iw2

σ2
ν(1− (1− β)w2)

νe.

The derivative of this hurdle with respect to the weight of the active fund w2 is

dH

dw2
=
σ2
I

σ2
ν

νe
1

(1− (1− β)w2)2
> 0,

i.e., the hurdle has a strictly positive slope, thus, the higher the portfolio weight
of an active fund, the higher is the required α it must deliver. This is so because
with low portfolio weight, the fund’s idiosyncratic volatility is almost orthogonal
to the portfolio return, and so its risk contribution is low. When in contrast the
fund has a high portfolio weight, the fund’s idiosyncratic volatility already co-
determines the portfolio return and is – in the portfolio’s context – a systematic
component. The marginal risk contribution of the fund is then larger and con-
sequently demands a higher compensation, translating into an upward-sloping
α-hurdle.

Take as an example JPMorgan Funds - Highbridge US STEEP, an open-end
fund incorporated in Luxembourg that has exposure primarily to U.S. com-
panies, through the use of derivatives. Using monthly data from 12/2008 to
12/2013, we estimate

2Note that β is the linear exposure of the fund to the factor. It is a constant and indepen-
dent of portfolio weights. In contrast, betas of portfolio constituents relative to the portfolio,
β̃F and β̃I , depend on weights.
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Σ̂f = σ̂2
ν = 0.002069, B̂ =

(
1

0.9821

)
, Ω̂ =

(
0 0
0 0.000303

)
Furthermore, we use the historical average of the market risk premium ν̄ =
0.013127, and the fund’s estimated alpha α̂ = 0.001751. The optimal allocation
is the vector of weights w∗ such that the marginal excess return divided by
the marginal risk contribution is equal for both assets in the portfolio. The
increasing relationship between alpha and optimal fund weight is illustrated in
Figure 1. At the estimated annualized alpha of 17.51 basis points, the optimal
weights are given by

w∗ =

(
0.1029
0.8971

)
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Figure 1: Minimum Alpha Justifying Portfolio Weights.
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3 Dealing with investors’ downside-risk aversion

When discussing investor’s utility optimization in section 2, we referred to lit-
erature showing that under fairly general assumptions optimal static sharing
rules for risk and return are linear in the investment’s payoff, i.e., optimal risk
sharing implies holding a certain fraction of a risky investment rather than ne-
gotiating contracts with nonlinear payoff. In a dynamic context, Merton (1971)
derives an optimal savings-consumption rule that is also in accordance with this
finding. In a continuous time framework, he analyzes the optimal consumption
and portfolio rules of an investor who is able to change the allocation wt to
the risky asset over time. When the risky asset follows a geometric Brownian
motion with drift µ and volatility σ, and utility exhibits a constant relative risk
aversion λ, then the optimal allocation to the risky asset is constant over time
and can be described as wt = µe/(λσ2). This means with constant investment
opportunities (µ and σ constant over time) investors keep the proportions of the
risky and risk-free assets in the portfolio unchanged over time. To keep weights
constant, portfolio rebalancing requires buying the risky asset when it decreases
in value and selling it with increasing prices.

While these theoretical results suggest that investors should not avoid expo-
sure to risky investments even after sharp draw-downs of their portfolio’s value,
financial intermediaries face strong demand for products that provide portfo-
lio insurance. I.e., investors seem to have considerable downside-risk aversion.
Rebalancing to constant portfolio weights is in clear contrast to portfolio in-
surance strategies, where the allocation to the risky asset has to be decreased
if it falls in value, and the risky asset will be purchased in response to price
increases. Perold and Sharpe (1988) note that these opposing rebalancing rules
lead to different shapes of strategy payoff curves. Buying stocks as they fall (as
in the Merton model) leads to concave payoff curves. Such strategies do well
in flat but oscillating markets, as assets are bought cheaply and sold at higher
prices. However in persistent downmarkets losses are aggravated from buying
ever more stocks as they fall. Portfolio insurance rebalancing rules prescribe the
opposite: selling stocks as they fall. This limits the impact of persistent down
markets on the final portfolio value and at the same time keeps the potential
of upmarkets intact, leading to a convex payoff profile. Yet if markets turn out
flat but oscillating, convex strategies perform poorly.

3.1 Portfolio Insurance

In this paper we define portfolio insurance as a dynamic investment strategy
that is designed to limit downside risk. The variants of portfolio insurance are
therefore popular examples of convex strategies. The widespread use of portfolio
insurance strategies among both individual and institutional investors indicates
that not all market participants are equally capable of bearing the downside risk
associated with their average holding of risky assets. Individual investors might
be subject to habit formation or recognition of subsistence levels that define

9



a minimum level of wealth required. For corporations, limited debt capacity
makes it impossible to benefit from profitable investment projects if wealth falls
below a critical value. Furthermore, kinks in the utility function could originate
in agency problems, e.g. career concerns of portfolio managers, who see fund
flows and pay respond in an asymmetric way to performance. In the litera-
ture on portfolio insurance, Leland (1980) has stated the prevalence of convex
over concave strategies for an investor whose risk aversion decreases in wealth
more rapidly than for the representative agent. Alternatively, portfolio insur-
ance strategies should be demanded by investors with average risk tolerance
but above average return expectations. Leland argues that insured strategies
allow such an optimistic investor to more fully exploit positive alpha situations
through greater levels of risky investment, while still keeping risk within man-
ageable bounds.

Brennan and Solanki (1981) contrast this analysis and derive a formal condi-
tion for optimality of an option like payoff that is typical for portfolio insurance.
It can be shown that a payoff function where the investor receives the maxi-
mum of the reference portfolio’s value and a guaranteed amount is optimal
only under the stringent conditions of a zero risk premium and linear utility
for wealth levels in excess of the guaranteed amount. Similarly, Benninga and
Blume (1985) argue that in complete markets utility functions consistent with
optimality of portfolio insurance would have to exhibit unrealistic features, like
unbounded risk aversion at some wealth level. However, they make the point
that portfolio insurance can be optimal if markets are not complete. An ex-
treme example of market incompleteness in this context which makes portfolio
insurance attractive is the impossibility for an investor to allocate funds into
the riskfree asset. Grossman and Vila (1989) discuss portfolio insurance in com-
plete markets, noting that the solution of an investor’s constrainted portfolio
optimization problem (subject to a a minimum wealth constraint VT > K) can
be characterized by the solution of the unconstrained problem plus a put op-
tion with exercise price K. More recently, Dichtl and Drobetz (2011) provide
empirical evidence that portfolio insurance is consistent with prospect theory,
introduced by Kahneman and Tversky (1979). Loss-averse investors seem to
use a reference point to evaluate portfolio gains and losses. They experience
an asymmetric response to increasing versus decreasing wealth, in being more
sensitive to losses than to gains. In addition, risk aversion also depends on the
current wealth level relative to the reference point. The model by Gomes (2005)
shows that the optimal dynamic strategy followed by loss-averse investors can
be consistent with portfolio insurance.3

3It is interesting to study the potential effects of portfolio insurance on the aggregate
market. As our focus is the perspective of a risk-manager who does not take into account
such market-wide effects of his actions, we do not cover this literature. We refer the interested
reader to Leland and Rubinstein (1988), Brennan and Schwartz (1988), Grossman and Zhou
(1996), and Basak (2002) as a starting point.
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3.2 Popular Portfolio Insurance Strategies

The main portfolio insurance strategies used in practice are stop-loss strate-
gies, option based portfolio insurance, constant proportion protfolio insurance,
ratcheting strategies with adjustments to the minimum wealth target, and value-
at-risk based portfolio insurance.

Stop-loss strategies: The simplest dynamic strategy for an investor to limit
downside risk is to protect his investment using a stop-loss strategy. In this
case, the investor sets a minimum wealth target or floor FT , that must be ex-
ceeded by the portfolio value VT at the investment horizon T . He then monitors
if the current value of the portfolio Vt exceeds the present value of the floor
e−rf (T−t)FT , where rf is the riskless rate of interest. When the portfolio value
reaches the present value of the floor, the investor sells the risky and buys the
riskfree asset. While this strategy has the benefit of simplicity, there are several
disadvantages. First, due to discreteness of trading or illiquidity of assets, the
transaction price might be undesirably far below the price triggering portfolio
reallocation. Second, once the allocation has switched into the riskfree asset the
portfolio will grow deterministically at the riskfree rate, making it impossible to
even partially participate in a possible recovery in the price of the risky asset.

Option Based Portfolio Insurance (OBPI): Brennan and Schwartz (1976)
and Leland (1980) describe that portfolio insurance can be implemented in two
eqivalent ways: (1) holding the reference portfolio plus a put option, or (2)
holding the riskfree asset plus a call option. When splitting his portfolio into a
position S0 in the risky asset and P0 in a protective put option at time t = 0,
the investor has to take into account the purchase price of the option when set-
ting the exercise price K, solving (S0 + P0(K)) · (FT /V0) = K for K. The ratio
FT /V0 is the minimum wealth target expressed as a fraction of initial wealth.
If such an option is available on the market it can be purchased and no further
action is needed over the investment horizon.

In practice however, an option that perfectly insures the reference portfolio
might not be available. Rubinstein and Leland (1981) have popularized the op-
tion replication strategy, that creates the required put synthetically by dynamic
trading. To replicate the insured portfolio, one has to calculate its Delta ∆t and
set the allocation to the risky asset equal to Et = ∆tVt. If the risky asset falls in
value, Delta decreases and therefore the risky asset has to be sold. Conversely,
the risky asset will be bought on price increases. In contrast to the stop-loss
strategy, changes in the portfolio allocation will now be implemented smoothly.
Even after a fall in the risky asset’s price there is scope to partially participate
in an eventual recovery as long as Delta is strictly positive. Towards the end of
the investment horizon, the replication strategy may lead to undesired portfolio
switching if the risky asset fluctuates around the present value of the exercise
price. This results from the feature that the Delta and therefore the asset mix
of the replicating strategy will practically be either zero or 100 percent in the
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risky asset when the remaining life of the option to be replicated approaches
zero.

Constant Proportion Portfolio Insurance (CPPI): In order to provide
a simpler alternative to the option replication approach described above, Black
and Jones (1987) propose CPPI for equity portfolios. Black and Perold (1992)
describe properties of CPPI and propose a kinked utility function for which
CPPI is the optimal strategy. Implementation of CPPI starts with calculation
of the cushion Ct = Vt−Ft, which is the excess of current portfolio value Vt over
the present value of the minimum wealth target (Ft = e−rf (T−t)FT ). Thus, the
cushion can be interpreted as the risk capital available at time t. The exposure
Et to the risky asset is determined as a constant multiple m of the cushion Ct,
while the remainder is invested riskfree. To avoid excessive leverage, exposure
will typically be determined subject to the constraint of a maximum leverage
ratio l, hence Et = min(m ·Ct, l ·Vt). If the portfolio is monitored in continuous
time, the portfolio value at time T cannot fall below FT . However, discrete
trading in combination with sudden price jumps could lead to a breach of the
minimum wealth target (gap risk).

Ratcheting Strategies: The portfolio insurance strategies discussed so far
limit the potential shortfall from the start of the investment period to its end,
frequently a calendar year. But investors may also be concerned with losing
unrealized profits that have been earned within the year. Estep and Kritzman
(1988) propose a technique called TIPP (time invariant portfolio insurance) as
a simple way of achieving (partial) protection of interim gains in addition to
the protection offered by CPPI. Their methodology adjusts the floor Ft used to
calculate the cushion Ct over time. The TIPP floor is set as the maximum of last
period’s floor and a fraction k of current portfolio value: Ft = max(Ft−1, kVt).
This method of ratcheting the floor up is time invariant in the sense that the
notion of a target date T is lost. However, if the percentage protection is required
with respect to a specific target date, the method can easily adjusted by setting
a target date floor FT proportional to current portfolio value Vt, which is then
discounted. Grossman and Zhou (1993) provide a formal analysis of portfolio
insurance with a rolling floor, while Brennan and Schwartz (1988) characterize
a complete class of time-invariant portfolio insurance strategies, where asset
allocation is allowed to depend on current portfolio value but is independent of
time.

Value-at-Risk Based Portfolio Insurance: In a broader context, Value-
at-Risk (VaR) has emerged as a standard for measurement and management of
financial market risk. VaR has to be specified with confidence a and horizon ∆t
and is the loss amount that will be exceeded only with probability (1−a) over the
time span ∆t. It is therefore a natural measure to control portfolio drawdown
risk. The typical definition of VaR assumes that over the time horizon no
adjustments are made to the portfolio. Yet if under adverse market movements
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risk reducing transactions are implemented, VaR is likely to overestimate actual
losses, making portfolio insurance even more effective. On the other hand, poor
estimation of the return distribution will lead to bad quality of the VaR estimate.
Herold, Maurer, and Purschaker (2005) and Herold, Maurer, Stamos, and Vo
(2007) describe a VaR based method for controlling shortfall risk. The allocation
to the risky asset is chosen such that the VaR equals the pre-specified minimum
return. They note that their method can be seen as a generalized version of
CPPI with a dynamic multiplier mt = 1/(Φ−1(a)

√
∆tσt), where Φ−1(a) is the

a-percentile of the standard normal distribution, and σt is the volatility of the
reference portfolio. Typically market volatility increases when markets crash,
leading to a more pronounced reduction of the allocation to the risky asset as
both the cushion and the multiplier shrink. This offers the potential advantage
of VaR-based risk control that if markets calm, the allocation to the risky asset
will increase again, allowing the portfolio to benefit from a recovery. Basak and
Shapiro (2001) take a critical view on VaR-based risk management: Strictly
interpreting VaR as a risk quantile, managers could be inclined to deliberately
assume extreme risks if they are not penalized for the severity of losses that
occur with a probability less than 1 − a. However, in a portfolio insurance
context this could be easily fixed, e.g. by restrictions on assuming tail risks.

3.3 Performance Comparison

Benninga (1990) uses Monte Carlo simulation techniques to compare stop-loss,
OBPI, and CPPI. Surprisingly, he finds that stop-loss dominates with respect
to terminal wealth and Sharpe ratio. Dybvig (1999) considers asset allocation
and portfolio payouts in the context of endowment management. If payouts
are not allowed to decrease, CPPI exhibits more desirable properties than con-
stant mix strategies. Balder, Brandl, and Mahayni (2009) analyze risks associ-
ated with implementation of CPPI under discrete-time trading and transaction
costs. Zagst and Kraus (2011) compare OBPI and CPPI with respect to stochas-
tic dominance. Taking into account that implied volatility – which is relevant
for OBPI – is usually higher than realized volatilty – relevant for CPPI – they
find that under specific parametrizations CPPI dominates. Recently, Dockner
(2012) compares buy-and-hold, OBPI and CPPI concluding that there does not
exist a clear ranking of the alternatives. Dichtl and Drobetz (2011) consider
prospect theory (Kahneman and Tversky, 1979) as framework to evaluate port-
folio insurance strategies. They use a twofold methodological approach: Monte
Carlo simulation and historical simulation with data for the German stock mar-
ket. Within the behavioral finance context chosen, their findings provide clear
support for the justification of downside protection strategies. Interestingly, in
their study stop-loss, OBPI and CPPI turn out attractive while the high protec-
tion level of TIPP associated with opportunity costs in terms of reduced upside
potential turns out to be suboptimal. Finally, they recommend to implement
CPPI aggressively, by using the highest multiplier m consistent with tolerance
for overnight or gap risk.
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Example 3.1:

In 4 out of the 18 calendar years from 1995 to 2013, the S&P 500 total return in-
dex lost more than 5 percent. For investors with limited risk capacity it was not
helpful that these losses happened three times in a row (2000, 2001, and 2002),
or were severe (2008). The following example illustrates how simple versions of
common techniques to control downside risk have performed over these 18 years.
We assume investment opportunities in the S&P 500 index and a risk-free asset,
an investment horizon equal to the calendar year, and a frictionless market (no
transaction costs). Each calendar year the investment starts with a January 1st
portfolio value of 100. Rebalancing is possible with daily frequency. For the
portfolio insurance strategies investigated, the desired minimum wealth is given
with 95, and free parameters are set in a way to make the strategies compara-
ble, by ensuring equal equity allocations at portfolio start. This is achieved by
resetting the multiples m for CPPI and TIPP each January 1st according to the
Delta of the OBPI strategy. Similarly, the VaR confidence level is set to achieve
this same equity proportion at the start of the calendar year. OBPI Delta also
governs the initial equity portion of the buy-and-hold portfolio. Table 1 reports
the main results, and Figure 2 summarizes the distribution of year-end portfolio
values in a box plot.

St. Dev.
Mean Median all lower Min Max Turnover

Long Only 110.92 113.91 19.29 15.55 63.91 137.59 0.00
Buy & Hold 108.32 107.15 12.52 9.18 79.99 132.11 0.00
Stop Loss 108.77 105.77 16.09 6.52 89.13 137.59 0.42
CPPI 107.71 104.77 12.52 2.82 94.62 136.89 4.58

TIPP 105.31 104.20 7.45 3.29 94.63 122.75 1.03
OBPI 108.50 105.21 12.43 4.29 95.00 135.58 3.63
Option Repl. 108.84 107.07 11.93 4.72 92.04 132.59 3.64
VaR 108.21 104.15 13.21 2.64 94.79 137.59 8.16

Table 1: Portfolio Insurance Strategies. Standard deviation is calculated both over the whole
sample (all) and for the subsample where the annual S&P 500 total return is below its mean
(lower).

The achieved minimum wealth levels show that for CPPI, TIPP, OBPI,
and VaR-based portfolio insurance even in the worst year the desired minimum
wealth has been missed just slightly, while in the case of the stop loss strategy
there is a considerable gap. This can be partly explained by the simple set-up of
the example (e.g., rebalancing using daily closing prices only, while in practice
intra-day decision making and trading will happen). But a possibly large gap
between desired and achieved minimum wealth is also systematic of stop loss
strategies because of the mechanics of stop-loss orders. The moment the stop
limit is reached, a market order to sell the entire portfolio is executed. The
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Figure 2: Comparison of Portfolio Insurance Strategies, Annual Horizon, S&P 500, 1995-
2013. For each strategy, the shaded area indicates the observations from the 25th to the
75th percentile, the median is shown as the line across the box and the mean as a diamond
within the box. The whiskers denote the lowest datum still within 1.5 interquartile range
of the lower quartile, and the highest datum still within 1.5 interquartile range of the upper
quartile. If there are more extreme observations they are shown separately by a circle. The
semitransparent horizontal line indicates the desired minimum wealth level.

trading price therefore can and frequently will be lower than the limit. This
can pose considerable problems in highly volatile and illiquid market environ-
ments. Option replication comes next in missing desired wealth protection. In
the example, this might be due the simplified setup, where the exercise price of
the option to be replicated is determined only once per year (at year start), and
then daily Delta is calculated for this option and used for allocation into the
risky and the riskless asset. In practice new information on volatility and the
level of interest rates will also lead to a reset of the strike used for calculation
of the Delta. Another observation is that the standard deviation of annual re-
turns is lowest for TIPP, which comes at the price of the lowest average return.
If the cross-sectional standard deviation is computed only for the years with
below-average S&P 500 returns, it is lowest for VaR-based risk control. For
all methods shown, practical implementation will typically use higher levels of
sophistication. For example, trading filters will be applied to avoid adjusting
portfolios as frequently as in the example leading to high turnover values.

Figure 3 shows examples for within-year paths of portfolio value. For each
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Figure 3: Examples for within-year portfolio dynamics.
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year, the left chart shows the within-year paths of various strategies’ portfolio
values. The right chart exhibits the equity allocations over time. The top charts
show the year 2003, where a drop in the S&P 500 index in the first quarter leads
to a disappointing result of the stop-loss strategy, while the other risk control
strategies benefit from the subsequent recovery. Within downside risk control
strategies, the VaR based method performs best. Note that the high allocation
to stocks of the OBPI strategy is somewhat misleading, as here the remainder is
not invested in the risk-free asset as for all other straegies, but in a protective put
option. In 2008, any risk control strategy offers valuable protection, with equity
allocations reaching zero towards the end of the year. The bottom charts for the
year 2011 tell a different story. All risk control strategies lead to reduced equity
allocation when the market drops in the second half of the year and therefore
cannot profit from the subsequent recovery. Here, the option replication strategy
prescribes huge swings in asset allocation towards the end of the year as its
portfolio value hovers around the present value of the guarantee level.

3.4 Asset Liability Management

In the previous discussion, shortfall risk was seen from the perspective of an
investor holding assets only. However, many institutional investors simultane-
ously optimize a portfolio of assets A and liabilities L. Sharpe and Tint (1990)
describe a flexible approach to systematically incorporate liabilities into pen-
sion fund asset allocation, by optimizing over a surplus measure S = A − kL,
where k ∈ [0, 1] is a factor denoting the relative weight attached to liabilities. In
the context of asset liability management, Ang, Chen, and Sundaresan (2013)
analyze the effect of downside risk aversion, and offer an explanation why risk
aversion tends to be high when the value of the assets approaches the value of
the liabilities. Ang et al. (2013) specify the objective function of the fund as
mean-variance over asset returns plus a downside risk penalty on the liability
shortfall that is proportional to the value of an option to exchange the optimal
portfolio for the random value of the liabilities. An investor following their ad-
vice tends to be more risk averse than a portfolio manager implementing the
Sharpe and Tint (1990) model. For very high funding ratios, the impact of
downside risk on risk taking and therefore the asset allocation of the pension
fund manager is small. For deeply underfunded plans, the value of the option
is also relatively insensitive to changes in volatility, again leading to a small im-
pact on asset allocation. The effect on liabilities on asset allocation is strongest
when the portfolio value is close to the value of liabilities. In this case, lower
volatility reduces the value of the exchange option, leading to a smaller penalty.

3.5 Dealing with unwanted risks

An investor might be willing to accept only specific sources of risk in his port-
folio. There are several reasons to be selective about the risks one is willing
to assume. Specialization might lead to a comparative advantage in analyzing
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a specific asset class, making it reasonable to hedge against types of risk not
primarily driving the returns of this asset class. For example, implementation of
an equity strategy using derivatives might come together with unwanted coun-
terparty risk. Or, implementation of a dynamic asset allocation strategy such
as portfolio insurance potentially brings credit risk into the portfolio via tem-
porary cash holdings. Another example for a specific risk type is liquidity risk,
which is related to the uncertainty of being able to execute transactions at a
fair price, and has gained increased attention in recent times of market turbu-
lence. In general a low or even zero expected risk premium is a strong reason
for eliminating a source of risk. A frequently discussed example is currency risk,
which is so common in diversified portfolios that it deserves to be discussed in
more detail.

Perold and Schulman (1988) propose full currency hedging as a standard,
which they define as hedging an amount equal to the face value of the foreign
investment. They argue that while risk reduction from currency hedging is
large, expected returns from currency positions can be considered zero on aver-
age. A simple and cost efficient way of implementation is via currency forwards
and futures. Therefore, any deviation from full hedging should be considered
an active decision. Their argument in favor of full currency hedging remains
controversial, as in a hedging context the correlation between risky assets and
foreign exchange should be considered. Also, the expected return on currency
holdings needs not be equal to zero. The fact that investors A and B with
different base currencies can both have positive expected currency returns on
each other’s currency is known as Siegel’s paradoxon. Example 3.2 provides an
illustration. Siegel (1972) first noted that under risk neutrality the expected
value of the future spot price will be above the forward price. Therefore full
hedging is not optimal: investors should hold positive exchange risk. Under the
assumption of constant risk tolerance across countries, Black (1990) derives a
universal forex hedge ratio, which depends on average world market risk premia,
asset volatilities, and exchange rate volatilities.

Example 3.2:

Consider investor A with base currency USD holding EUR and investor B
with base currency EUR holding USD. Assume for simplicity that exchange

rates are quoted directly from the U.S. perspective (S
USD/FC
t = x means the

amount FC 1 is equal to USD x). Further let the future exchange rate be either

S
USD/EUR
T,d = 0.5 or S

USD/EUR
T,u = 2 with a probability of 50 percent for each

state. From Jensen’s inequality investor As expected future payoff will be above
the reciprocal of investor Bs expected future payoff:

E
(
S
USD/EUR
T

)
> 1/E

(
S
EUR/USD
T

)
1.25 = (0.5 · 0.5 + 0.5 · 2) > 1/ (0.5 · 2 + 0.5 · 0.5) = 0.8
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To derive portfolio specific optimal currency hedge ratios, Glen and Jorion
(1993) empirically analyze international stocks and bonds over the 1974 to 1990
time period. As a full hedge ignores both correlations between exchange rates
and asset returns and return-seeking motives for taking currency positions, they
analyze four optimal currency strategies: joint optimization of stocks/bonds and
forward contracts (1) with and (2) without short sales; (3) adding an optimal
position in forwards on pre-specified portfolios, and (4) adding time-varying
forward positions that depend on interest rate differences between the USD
and foreign currencies. While the first three approaches bring along little im-
provement from full or universal hedge ratios, they find the fourth strategy to
improve performance of both stock and bond portfolios. This is in contrast to
recent evidence by Campbell, Medeiros, and Viceira (2010) who analyze global
currency hedging over the 1975 to 2005 period. For bond portfolios, they find
a full hedge to be the optimal strategy for risk-minimizing investors, while the
optimal strategy varies considerably with respect to the currency analyzed for
stock portfolios. Driving force is the correlation between a stock market and
a currency. As an example, consider the Canadian dollar which tends to de-
preciate when the Canadian stock market falls. Therefore a Canadian investor
in the domestic stock market can hedge by holding long positions in foreign
currencies. This contrasts the perspective of an investment in the Swiss stock
market, where short positions in currencies other than the Swiss Frank will help
to mitigate the risk from a stock market decline. A global equity investor should
underhedge the USD, Euro and Swiss Franc and overhedge exposure to all other
currencies. With respect to conditioning currency risk management on interest
rate differentials, Campbell et al. (2010) find only weak evidence.

The tendency of high interest rate currencies not to quickly depreciate to the
levels implied by forward rates generally will lead to increasing real exchange
rates – that are corrected only in the very long run. Froot (1993) challenges
conventional wisdom on currency hedging by looking at long term investment
horizons of several years instead of the short term. He finds that the properties
of currency hedges strongly depend on the horizon, and complete currency hedg-
ing actually can lead to an increase of return variance rather than a reduction.
Driving force behind his argument is that purchasing power parity should hold
over the long term, therefore protecting assets with exposure to real exchange
rates.

Example 3.3:

Consider the example of international investors tracking the S&P 500 index.
Table 2 shows for investors with base currency Euro and Japanese Yen the av-
erage annualized standard deviation of their investment over the period 01/2002
to 12/2013, comparing different currency hedging strategies. While European
investors were not able to considerably reduce total investment risk by cur-
rency hedging, the benefit from currency hedging has been large for Japanese
investors. Setting a time-varying hedge ratio appears to be a sensible strategy,
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as the risk characteristics of currencies change over time, which cannot be cap-
tured by a constant hedge ratio.

Hedging Strategy
None Full Constant Time-varying

EUR 14.7 15.3 14.0 14.0
JPY 19.4 15.4 15.3 15.8

Table 2: Forex Hedging the S&P 500 Index. The table shows the annualized standard
deviation in percent of an investment in the S&P 500 index using various hedging strategies
from the viewpoint of investors with base currency Euro (first row) or Japanese Yen (second
row).

To illustrate the variation in the optimal hedge ratio, the results for a Euro-
zone investor are shown in Figure 4. The time-varying hedge ratio is estimated
from 36-months rolling regressions. While for periods ending before 2007 ap-
proximately a full hedge seems reasonable, the variance minimizing hedge ratio
is closer to zero for recent periods. This can be explained by partial offset of
negative stock market movements through an increasing USD in the latter half
of the sample. This is a desirable property that should not be eliminated by
overly aggressive currency hedging.

Time−Varying Optimal Hedge Ratio

Dec 2003 Dec 2005 Dec 2007 Dec 2009 Dec 2011 Dec 2013

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 4: Eurozone Investors’ Optimal S&P 500 Hedge Ratio.
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4 Parameter Uncertainty andModel Uncertainty

Quantitative portfolio management builds on optimization output of stylized
models, which (i) need to be carefully chosen to capture relevant features of the
market framework and (ii) must be calibrated and parametrized. These choices,
model selection as well as model calibration, bear the risk of mis-specification
which might have severely negative consequences on the desired out-of-sample
properties of the portfolio. Thus, a main application of risk management in
asset management is controlling the risk inherent in model specification and pa-
rameter selection. In this section we distinguish between parameter uncertainty
and model uncertainty in the following way. With parameter uncertainty we
refer to the case where we know the structure of the data generating process
that lies behind the observed set of data but the parameters of the process must
be empirically determined.4 Finite data history is the only limiting factor which
prevents us from deriving the true values of the model parameters. Under the
assumption of the null hypothesis, we can derive the joint distribution of the
estimated parameters relative to the true values, and finally the joint predictive
distribution of asset returns under full consideration of estimation problems.
Thus, we can treat parameter uncertainty simply as an additional source of
variability in returns. It is non-controversial to assume that a decision-maker
does not distinguish between uncertainty in returns caused by the general vari-
ability of returns and uncertainty that has its origin in estimation problems,
and hence, the portfolio optimization paradigm is not affected.

In contrast, with model uncertainty we refer to the case where a decision-
maker is not sure which model is the correct formulation that describes the
underlying dynamics of asset returns. In such a case it is generally not possible
to specify probabilities for the models considered as feasible. Thus, model un-
certainty increases uncertainty about asset returns but we are not able to state
a definite probability distribution of returns which incorporates model uncer-
tainty. I.e., model uncertainty is a prototypical case of Knightian uncertainty,
referring to Knight (1921), where it is not possible to characterize the uncer-
tain entity (in our case the asset return) by means of a probability distribution.
Consequently, model uncertainty fundamentally changes the decision-making
framework and we have to make assumptions regarding a decision-maker’s pref-
erences concerning situations of ambiguity.

4.1 Parameter Uncertainty

The most obvious estimation problem in a traditional minimum-variance port-
folio optimization task arises when determining the covariance structure of asset
returns. This is so because estimates of the sample covariance matrix turn out
to be weakly conditioned in general and – as soon as the number of assets is

4We assume in general, that the model has a structure which ensures that parameters are
identifiable. E.g. it is assumed that log-returns are normally distributed but mean as well the
variance must be estimated from observed data.
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larger than the number of periods considered in the return history – the sample
covariance matrix is singular by construction.

Example 4.1:

Consider as a broad asset universe the S&P 500 with N = 500 constituents. It
is common practice to estimate the covariance structure of stock returns from
two years of weekly returns. The argument for a restriction of the history to
T = 104 weeks is a reaction to the fact that there is apparently some time-
variation in the covariance structure which the estimate is able to capture only
if one restricts the used history.5

Let r denote the (T ×N) matrix containing weekly returns, then the sample

covariance matrix Σ̂S is then determined by

Σ̂S =
1

T − 1
r′M r, (8)

where the symmetric and idempotent matrix M is the residual maker with
respect to a regression onto a constant,

M = I− 1 (1′ 1)−1 1′,

with I the (T × T ) identity matrix and 1 a column vector containing T times
the constant 1.

In the assumed setup, the sample covariance matrix is singular by construc-
tion. This is so because from (8) it follows that the rank of Σ̂S is bounded from
above by min{N,T − 1}.6 And even in the case where the number of return
observations per asset exceeds the number of assets (T > N + 1) the sample co-
variance matrix is weakly determined, hence, subject to large estimation errors
since one has to estimate N(N + 1)/2 elements of Σ̂S from T ·N observations.

Since a simple Markowitz optimization, see Markowitz (1952), needs to in-
vert the covariance matrix, matrix singularity prohibits any attempt of advanced
portfolio optimization and is, thus, the most evident estimation problem in

5Such an approach is typical for dealing with inadequate model specification. The formal
estimate is based on the assumption that the covariance structure is stable. Since data show
that the covariance structure is not stable, an ad-hoc adaptation – the limitation of the data
history – is used to capture the recent covariance structure. The optimal amount of historical
data that should be used cannot be derived within the model but must be roughly calibrated
to some measure of goodness-of-fit, which balances estimation error against timely response
to time variations.

6The residual maker M has at most rank T − 1 because it generates residuals from a
projection onto a one-dimensional subspace of RT . Since r has at most rank N , we have

rank(Σ̂S) ≤ min{N,T − 1}.

E.g., the sample covariance matrix estimated from two years of weekly returns of the 500
constituents of the S&P 500 (104 observations per stock) has at most rank 103. Hence, it is
not positive definite and not invertible, because at least 397 of its 500 eigenvalues are exactly
equal 0.
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portfolio management. Elton and Gruber (1973) is an early contribution which
proposes the use of structural estimators of the covariance matrix. Jobson and
Korkie (1980) provide a rigorous analysis of the small sample properties of es-
timates of the covariance structure of returns.

Less evident are the problems caused by errors in the estimates of return ex-
pectations, whereas it turns out that they are economically much more critical.
Jorion (1985) shows in the context of international equity portfolio selection
that the errors in the estimates of return expectations have a severe impact on
the out-of-sample performance of optimized portfolios. He further shows that
the Bayes-Stein shrinkage approach introduced in Jorion (1986) helps mitigate
errors and at the same time improves out-of-sample properties of the portfolio.

Structural Estimators: Means and covariances of asset returns are the most
basic inputs into a portfolio optimization model. However, estimation errors in
further model parameters like some measure of risk aversion, speed of reversion
to long term averages, etc. must be estimated from empirical data and are,
thus, equally likely inflicted with estimation errors. While sample estimates of
distribution means, (co-)variances and higher moments are generally unbiased
and efficient, they tend to be noisy. This can be improved by imposing some
sort of structure on the estimated parameters. Such structural estimates are
less prone to estimation errors at the expense of ignoring part of the informa-
tion inherent in the observed data sample. When determining the covariance
structure of asset returns, Elton and Gruber (1973) analyze a set of different
structural assumptions, e.g., what they call the single index model (assuming
that the pairwise covariance of asset returns is only generated by the assets in-
dividual correlation to a market index), the mean model (pairwise correlations
between assets are assumed constant across the asset universe), and models that
assume that the correlation structure of asset returns is determined by within
industry averages or across industry averages or by a (small) number of princi-
pal components of the sample covariance matrix. They show that especially the
particularly restrictive estimates (single index model and mean model) deliver
forecasts of future correlation that are more accurate than the simple historical
sample estimates.7

Shrinkage Estimators: When determining model parameters θ, it is very
popular to apply some shrinkage approach. This approach aims to combine
the advantages of a sample estimate θ̂S (pure reliance on sample data) and

a structural estimate θ̂struct (robustness) by computing some sort of weighted

7See, e.g., Dangl and Kashofer (2013) for an overview of structural estimates of the covari-
ance structure of large equity portfolios – including shrinkage estimates.
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average8

θ̂ = λθ̂S + (1− λ)θ̂struct.

While practitioners often use ad hoc weighting schemes, the literature pro-
vides a powerful Bayesian interpretation of shrinkage which allows for the com-
putation of optimal weights. In this Bayesian view, the structural estimator
serves as the prior which anchors the location of model parameters θ and the
sample estimate acts as the conditioning signal. Bayes’ rule then gives a strin-
gent advice of how to combine prior and signal in order to compute the up-
dated posterior that is used as an input for the portfolio optimization. The
above-mentioned Bayes-Stein shrinkage used in Jorion (1985, 1986) focusses on
estimates of the expected returns. In the context of covariance estimation, an
early contribution is Frost and Savarino (1986). More recently, Ledoit and Wolf
(2003) determine a more general Bayesian framework to optimize the shrinkage
intensity, in which the authors explicitly correct for the fact that the prior (i.e.,
the structural estimate of the covariance structure) as well as the updating in-
formation (i.e., the sample covariance matrix) are determined from the same
data. Consequently, errors in these two inputs are not independent and the
Bayesian estimate must control for the interdependence.9

Weight Restrictions: A commonly observed reaction to parameter uncer-
tainty in portfolio management is imposing ad-hoc restrictions on portfolio
weights. I.e., the discretion of a portfolio optimizer is limited by maximum
as well as minimum constraints on the weights of portfolio constituents.10 In
sample, weight restrictions clearly reduce portfolio performance (as measured by
the objective function used in the optimization approach).11 Nevertheless, out
of sample studies show, that in many cases weight restrictions improve the risk-
return tradeoff of portfolios. Jagannathan and Ma (2003) provide evidence why
weight restrictions might be an efficient response to estimation errors in the
covariance structure. Analyzing minimum-variance portfolios they show that
binding long only constraints are equivalent to shrinking extreme covariance
estimates towards more moderate levels.

Resampling: A different approach to deal with parameter uncertainty in as-
set management is resampling. This technique does not attempt to produce
more robust parameter estimates or to build a portfolio-optimization model

8Shrinkage is usually a multivariate concept, i.e., λ is in general not a fixed scalar but it
depends on the observed data in some non-linear fashion.

9See also Ledoit and Wolf (2004a,b) for more on shrinkage estimates of the covariance
structure.

10Weight restrictions are frequently part of regulatory measures targeting the fund industry
aimed to control the risk characteristics of investment funds.

11Green and Hollifield (1992) argue that in the apparent presence of a strong factor structure
in the cross-section of equity returns, mean-variance optimal portfolios should take large
short positions in selected assets. Hence, a restriction to a long-only portfolio is expected to
negatively influence portfolio performance.
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which directly regards parameter uncertainty in portfolio optimization. Resam-
pling is a simulation-based approach that was first described in the portfolio-
optimization context by Michaud (1998) and exists in different specifications. It
takes the sample estimates of mean returns as well as of the covariance matrix
and resamples a number M of return ‘histories’ (where M is typically between
1000 and 10000). From each of these return histories, an estimate of the vector
of mean returns as well as of the covariance matrix is derived. These estimates
form the ingredients to calculate M different versions of the mean-variance fron-
tier. Resampling approaches differ in the set of restrictions used to determine
the mean-variance frontiers and in the way how the frontiers are averaged to get
the definite portfolio weights. Some authors criticize that the unconditionally
optimal portfolio does not simply follow from an average over M vectors of con-
ditionally optimal portfolio weights (see, e.g., Scherer (2002) or Markowitz and
Usmen (2003)), others point out that the ad-hoc approach of resampling could
be improved by using a Bayesian approach (see, e.g., Scherer (2006), or Harvey,
Liechty, and Liechty (2008), Harvey, Liechty, Liechty, and Müller (2010)). De-
spite the critique, all those studies appreciate the out-of-sample characteristics
of resampled portfolios.

Example 4.2:

This simple example builds on Example 2.1 which discusses the optimal weight
of an active fund relative to a passive factor investment. An index-investment
in the S&P500 serves as the passive factor investment and an active fund with
the constituents of the S&P500 as its investment universe is the delegated active
investment strategy. In Example 2.1 we take a history of five years of monthly
log-returns (60 observations) to estimate mean returns as well as the covariance
structure and the alpha which the fund generates relative to the passive invest-
ment. We use these estimates to conclude that the optimal portfolio weight of
the fund should be roughly 90% and only 10% of wealth should be held as a
passive investment.

Being concerned about the quality of our parameter estimation that feeds
into the optimization, we first examine the regression which was performed
to come up with these estimates. Assuming that log-returns are normally dis-
tributed, we conclude from the regression in Example 2.1 that our best estimates
of the parameters α, β and m are

α̂ = 17.51 bp/month, β̂ = 0.9821, ν̂ = 131.27 bp/month,

and that the estimation errors are t-distributed with a standard deviation12

σ58(α̂) = 23.40 bp/month, σ58(β̂) = 0.0498, σ59(ν̂) = 454.91 bp/month.

Furthermore, we conclude that estimation errors in α̂ and β̂ are negatively cor-
related with a correlation coefficient ρ = −27.93% and errors in the estimate of

12Subscripts denote degrees of freedom.
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the market risk premium ν̂ are uncorrelated to the errors in α̂ and β̂. A statisti-
cian would now conclude that neither the fund’s α nor the factor’s risk premium
ν is significantly different from zero, and thus, an investor should seek exposure
to none of the two. Another approach is to extend the optimization problem
and include parameter uncertainty as an additional source of variability in the
final outcome.

In contrast to a full consideration of parameter uncertainty, we use a resam-
pling approach, which addresses this issue in a more ad-hoc manner. We take
the empirical estimates as the true moments of the joint distribution of factor re-
turns and active returns, and resample 100 000 histories.13 The we perform the
optimization discussed in Example 2.1 on each of the simulated histories. Fig-
ure 5 illustrates the distribution of optimal active weights across theses 100 000
histories. Given the null hypothesis that returns are normally distributed with
the estimated moments, resampling gives a good and reliable overview of the
joint distribution of model parameters we estimate and – finally – an overview
of the distribution of optimal weights. We can conclude that in the present
setup, optimal active weights are not well determined since the estimation of
the optimization model from only 60 observations per time series is too noisy
to get a well determined outcome. While resampling generates a good picture
of the overall effects of parameter uncertainty, it provides no natural advice for
the optimal portfolio decision beyond this illustrative insight.14

Finally, a study that perfectly illustrates the strong implications of parame-
ter uncertainty on optimal portfolio decisions is Pastor and Stambaugh (2012).
The authors question the paradigm that due to mean reverting returns, stocks
are less risky in the long run than over short horizons. This proposition is true
if we know the parameters of the underlying mean reverting process with cer-
tainty. Pastor and Stambaugh (2012) show that as soon as we properly regard
estimation errors in model parameters, additional uncertainty from estimation
errors dominates the variance reduction due to mean reversion and, thus, they
provide strong evidence against time diversification in equity returns.

13This is the simplest version of resampling, mostly used in portfolio optimization. Given
the null hypothesis that returns are normally distributed, we know that the empirical estimates
of distribution moments are t-distributed around the true parameters, see Jobson and Korkie
(1980) for a detailed derivation of the small sample properties of these estimates.Thus, a more
advanced approach samples for each of the histories first the model parameters from their
joint distribution and then – given the selected moments – the history of normally distributed
returns. Harvey et al. (2008) is an example that uses advanced resampling to compare bayesian
inference with simple resampling.

14Some authors do propose schemes how to generate portfolio decisions from the cross-
section of the simulation results, see, e.g., Michaud and Michaud (2008). These schemes
are, however, criticized by other authors for not being well-founded in decision theory, e.g.,
Markowitz and Usmen (2003) and others mentioned in the text above.
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Figure 5: Distribution of optimal portfolio weight in the interval [−100%, 200%] of the active
investment over 100 000 resampled histories. Approximately 29% of weights lie outside the
stated interval.

4.2 Model Uncertainty

Qualitatively different from dealing with parameter uncertainty is the issue of
model uncertainty. Since it is not at all clear, what the exact characteristics of
the data-generating process which underlies asset returns are, it is not obvious,
which attributes a model must feature in order to capture all economically
relevant effects of the portfolio selection process. Hence, every model of optimal
portfolio choice bears the risk of being misspecified. In Section 4.1 we already
mention the fact that traditional portfolio models assume that mean returns and
the covariance structure of returns are constant over time. This is in contrast
to empirical evidence that the moments of the return distribution are time
varying. Limiting the history which is used to estimate distribution parameters
is a frequently used procedure to get a more actual estimate. The correct length
of historical data that shall be used is, however, only rarely determined in a
systematic manner.

Bayesian Model Averaging: A systematic approach to estimation under
model uncertainty is Bayesian model averaging. It builds on the concept of
a Bayesian decision-maker that has a prior about the probability weights of
competing models that are constructed to predict relevant variables (e.g., as-
set returns) one period ahead. Observed returns are then used to determine
posterior probability weights for each of the models considered applying Bayes
rule.15 Each of the competing models generates a predictive density for the next

15The posterior probability that a certain model is the correct model is proportional to the
product of the model’s prior probability weight and the realized likelihood of the observed
return.
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period’s return. After observing the return, models which have assigned a high
likelihood to the observed value (compared to others) experience an upward re-
vision of their probability weight. In contrast, models that have assigned a low
likelihood to the observed value experience a downward revision of their weight.
Finally, the overall predictive density is calculated as a probability-weighted
sum of all models’ predictive densities. This Bayesian model averaging is an
elegant way to approach a problem of model uncertainty to transform it into
a standard portfolio problem to find the optimal risk-return tradeoff under the
derived predictive return distribution. This approach can, however, only be ap-
plied under the assumption that the decision maker has a single prior and that
she shows no aversion against the ambiguity inherent in the model uncertainty.16

Raftery, Madigan, and Hoeting (1997) provide the technical details of Bayesian
model averaging and Avramov (2002), Cremers (2002), and Dangl and Halling
(2012) are applications to return prediction. Bayesian model averaging treats
model uncertainty just as an additional source of variation. The predictive den-
sity for next period’s returns becomes more disperse the higher the uncertainty
about models which differ in their prediction. The optimal portfolio selection is
then unchanged but regards the additional contribution to uncertainty.

Ambiguity Aversion: If it is not possible to explicitly assess the probabil-
ity that a certain model correctly mirrors the portfolio selection problem and
investors are averse to this form of ambiguity, alternative portfolio selection
approaches are needed. Garlappi, Uppal, and Wang (2007) develop a portfolio
selection approach for investors who have multiple priors over return expec-
tations and show ambiguity aversion. The authors prove that the portfolio
selection problem of such an ambiguity-averse investor can be formulated by
imposing two modifications to the standard mean-variance model, (i) an addi-
tional constraint that guarantees that the expected return lies in a specified con-
fidence region (the way how multiple priors are modeled) and (ii) an additional
minimization over all expected returns that conform to the priors (mirroring
ambiguity aversion). This model gives an intuitive illustration of the fact that
ambiguity averse investors show explicit desire for robustness.

5 Conclusion

The asset management industry has substantial influence on financial markets
and on the welfare of many citizens. Increasingly, citizens are saving for retire-
ment via delegated portfolio managers, such as pension funds or mutual funds.
In many cases there are multiple layers of delegation. It is therefore crucial
for the welfare of modern societies that portfolio managers manage and control
their portfolio risks. This article provides an eagle’s perspective on risk man-

16As explained in the introduction to this section, ambiguity aversion refers to preferences
that express discomfort with uncertainty in the sense of Knight (1921).
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agement in asset management.

In traditional portfolio theory, the scope for risk control in portfolio manage-
ment is limited. Risk management is essentially equivalent to determining the
fraction of capital that the manager invests in a broadly and well diversified bas-
ket of risky securities. Thus, the “risk manager” only needs to find the optimal
location on the securities market line. By contrast, in a more realistic model of
the world that accounts for frictions, risk management becomes a central and
important module in asset management that is frequently separate from other
divisions of an asset manager. We identify several major frictions that require
risk management that goes beyond choosing the weight of the riskless asset in
the portfolio. First, in a world with costly information acquisition, investors do
not hold the same mix of risky assets. This requires measuring a position’s risk
contributions relative to the specific portfolio. Thus, risk management requires
constant measurement of each portfolio position’s marginal risk contribution
and comparing it to its marginal return contribution. This article derives a
framework to calculate the marginal risk contributions and to decide on opti-
mal portfolio weights of active managers.

In many realistic instances, investors have non-standard preferences which
make them particularly sensitive to down-side risks. We therefore review the
main portfolio insurance concepts to achieve protection against downside risk.
Stop-loss strategies, option-based portfolio insurance, constant proportion port-
folio insurance, ratcheting strategies and value-at-risk based portfolio insurance.
Using data for the S&P 500 since 1995 we simulate these alternative risk man-
agement concepts and demonstrate their risk and return characteristics.

We also discuss risk management techniques to eliminate undesirable risks.
One possible example for an undesirable risk can be currency risk. We discuss
techniques to eliminate exchange rate risk from portfolios and provide empirical
examples.

Finally, we point out that quantitative portfolio management usually builds
on the output from rather stylized models which must be chosen to capture
the relevant market environment and which must be calibrated and parameter-
ized. Both these choices, i.e. model selection and model calibration, contain the
risk of mis-specification and thus the risk of negative effects on out-of-sample
portfolio performance. We survey and discuss risk management approaches to
deal with parameter uncertainty, such as shrinkage procedures or re-sampling
procedures. Qualitatively different from parameter uncertainty is the effect of
model uncertainty. Different ways of dealing with model uncertainty via meth-
ods of Bayesian model averaging and the consideration of ambiguity aversion
are therefore surveyed and discussed.

The increased risk during the financial crisis and the following sovereign
debt crisis has lead to a substantially increased focus on risk control in the as-
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set management industry. At the same time these market episodes have also
demonstrated the limitations of risk management in asset management. For
example that volatile markets without strong trends make existing downside
protection strategies very expensive for investors. Furthermore, risk manage-
ment concepts for long-term investors are still in their infancy. Scenario-based
approaches, possibly combined with min-max strategies may be more useful in
this context than standard risk management tools.
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