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Abstract. Shortcomings revealed by experimental and theoretical researchers

such as Allais (1953), Rabin (2000) and Rabin and Thaler (2001) that put

the classical expected utility paradigm von Neumann and Morgenstern (1947)
into question, led to the proposition of alternative and generalized utility func-

tions, that intend to improve descriptive accuracy. The perhaps best known
among those alternative preference theories, that has attracted much popu-

larity among economists, is the so called Prospect Theory by Kahneman and

Tversky (1979) and Tversky and Kahneman (1992). Its distinctive features,
governed by its set of risk parameters such as risk sensitivity, loss aversion

and decision weights, stimulated a series of economic and financial models

that build on the previously estimated parameter values by Tversky and Kah-
neman (1992) to analyze and explain various empirical phenomena for which

expected utility doesn’t seem to offer a satisfying rationale. In this paper, after

providing a brief overview of the relevant literature, we take a closer look at
one of those papers, the trading model of Vlcek and Hens (2011) and analyze

its implications on Prospect Theory parameters using an adopted maximum

likelihood approach for a dataset of 656 individual investors from a large Ger-
man discount brokerage firm. We find evidence that investors in our dataset

are moderately averse to large losses and display high risk sensitivity, support-

ing the main assumptions of Prospect Theory.
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Prospect Theory, Parameter Elicitation and Investors Heterogeneity

1. Introduction

Despite its elegant approach, intuitive appeal and formal axiomatization, Ex-
pected Utility Theory (EUT ) appears to struggle in explaining observed behavior
of decision makers (as unraveled in experimental studies such as Allais (1953) and
others). These shortcomings in EUT motivated researchers to reconciliate observed
violations with utility theory and to propose alternative or generalized utility func-
tions to improve descriptive accuracy.1 These efforts prompted the creation of alter-
natives preferences such as rank-dependent Utility (RDU) (see Karmarkar (1978),
Karmarkar (1979), Quiggin (1982) and Wakker (1994)), designed to capture the
nonlinear treatment of physical probabilities but try to hold on to expected util-
ity.2 Although risk averse behavior can be reflected by non-linearities in the decision
weights as shown by Yaari (1965), these modifications of the decision weight were
found to be insufficient to explain the observed asymmetric treatment of gains and
losses.

Based on experimental evidence, Kahneman and Tversky (1979) contemplated
the possibility that the utility function (in accordance with Markowitz (1952)) is not
completely concave for gains (convex for losses) but contains convex (concave) ele-
ments in the domain of gains (losses).3 They argued that the typical value function
is rather normally concave above a certain reference point and often convex below,
tantamount to risk seeking in the domain of losses (concavity) and risk avoidance
for gains (concavity). This S -shaped value function with decreasing marginal value
for rising magnitudes of gains and losses is governed by a curvature parameter α,
which is usually referred to diminishing sensitivity towards variations in the re-
spective outcomes.4 Based on empirical evidence indicating losses to be perceived
more painful than an equal magnitude of gains, Kahneman and Tversky addition-
ally introduced a steepness-multiplier λ whereby the magnitude of λ determines a
stretching or a buckling of the value function. For cases where λ > 1 the attitude

1For example, Friedman and Savage (1948) proposed a Utility-of-Income function, which incor-

porates a convex (risk-seeking) segment surrounded by two concave (risk-avoidance) segments to

explain simultaneous demand for insurance and risky gambles. Markowitz (1952) found, that the
Friedman and Savage utility function leads to unrealistic predictions such as too much gambling

and concluded, that the inflection point, where the concave region turns to be convex, should be

located at the level of the current wealth. Furthermore, he suggested the use of gains and losses
instead of terminal wealth as arguments and proposes two additional inflection points. Although

increasing marginal utility causes certain discomfort for economists, Hershey and Schoemaker

(1980) argued in accordance with Markowitz that a concave and convex utility function on gains
or losses, from which the specific name value function replaced the usual terminology utility

function, can account for all non-expected utility behavior.
2According to rank-dependent Utility , the overall utility URD(Xi, pi) from an outcome Xi,

arising in state i with probability pi depends on an utility function of the risky outcome still being

formulated in terms of final wealth (Quiggin (1982)).
3In their attempt to eliminate flaws of the original version of Prospect Theory and to cap-

ture individual preferences more accurately, Tversky and Kahneman (1992) combined the ideas
of Quiggin (1982) with their original Prospect Theory and posed what they called Cumulative

Prospect Theory. Being put on an axiomatic basis by Wakker and Tversky (1993), this theory
conflates the advantages of rank dependent utility and concurrently eliminates some deficiencies
of the original Prospect Theory like the preference of stochastically dominated lotteries and the

restrictions to simple binary lotteries. Kahneman and Tversky (1979), p. 275 already noted

the problem of stochastic dominance and solved it by ”detection of dominance” assuming that
dominated alternatives are eliminated during the editing phase. See Wakker (2010) for further

details.
4Risk seeking in the domains of losses has empirical support and arises from the idea, that

individuals dislike losses, so that they try to gamble for resurrection and are therefore willing to

take more risk.
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towards gains and losses is commonly labeled as loss aversion.5 The final distinc-
tive freatoure of Prospect Theory in comparison to Expected Utility Theory is the
treatment of physical probabilities in a non-linear fashion, leading decision makers
to upward-biased decision weights if the probability on an event is sufficiently low
and vice versa, captured by a functional on physical probabilities ω(p).

Financial models that are built around these specific features often refer to the
parameters estimated by Tversky and Kahneman (1992) although it is not sure
whether these parameter estimates fit for models such that the implications drawn
from these provide a good description with regard to decision making and asset
pricing in financial markets. With the intention to contribute to the stream of
literature on Prospect Theory and its parameterization in finance (and for trading
models in particular), we select the model of Vlcek and Hens (2011) due to its
prominence, simplicity and intuitive appeal, and estimate the required parameters
α, λ and γ that comply with observed trading data using a maximum likelihood
approach derived from their model. In detail, this paper is organized as follows:
In chapter two, we provide a brief reflection of the relevant studies that deal with
Prospect Theory in finance, particularly establishing a connection between the char-
acteristics of Prospect Theory and investors trading behavior. Among these studies
presented in this chapter, we select and analyze the model of Vlcek and Hens (2011).
As their model is constructed under a rather theoretical environment, we need to
modify and transform their model into an econometric model that allows for the
estimation of the Prospect Theory parameters used. Therein, we also discuss the
necessary modifications, the underlying assumptions we made and the estimation
procedure that allows us to estimate the Prospect Theory parameters of their (mod-
ified) model using trade data of individual investors from a large German brokerage
firm. Chapter four presents the results of this estimations, in which we relate them
to the results of empirical and theoretical studies and highlight their commonalities
and differences.

2. Prospect Theory: Fit for Finance? A brief reflection of
relevant studies

Although not seen as a definitive theory (see e.g. Birnbaum et al. (1999), Starmer
(2000)), but backed by countless studies (e.g. Currim and Sarin (1989), Camerer
and Ho (1994), Hey and Orme (1994), Fennema and Wakker (1997), Loomes
et al. (2002), Wu et al. (2005)), Prospect theory gained much popularity among
economists. For instance, theoretical literature suspected various empirically ap-
proved phenomena to be related to Prospect Theory such as matters of portfolio
choice (Berkelaar et al. (2004), Gomes (2005), Jin and Zhou (2008)) as well as
some aspects of asset pricing (see Benartzi and Thaler (1995), Barberis and Huang
(2001) as well as Barberis et al. (2001)). Prospect Theory is also seen as driving
factor for various effects affecting trading decisions of individual investors and its
consequences such as the presence of the equity premium (Benartzi and Thaler
(1995)), excess stock return volatility (Barberis et al. (2001)), overinsurance (Cut-
ler and Zeckhauser (2004)), stock market momentum (Grinblatt and Han (2005b),
Grinblatt and Han (2005a)) as well as its implications on market liquidity (Pasquar-
iello (2008)), return forecasts (Barberis and Huang (2001)) and herding behavior
in stock markets (Lin and Hu (2010)).

5Evidence for loss aversion and initial wealth as reference point is supported by Rabin (2000)

and Rabin and Thaler (2001).
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Prospect Theory, Parameter Elicitation and Investors Heterogeneity

The perhaps most prominent manifestation of Prospect Theory in financial mar-
kets has been seen in the so called Disposition Effect, initially coined by Shefrin
and Statman (1985), brought into prominence by Ferris et al. (1988) and the fa-
mous work of Odean (1998) and repeatedly found in empirical and experimental
settings.6 The suspicion that the Disposition Effect is engendered by differences
in the values attached to potential gains and losses was initially listed in Shefrin
and Statman (1985)7 and has lead subsequent studies to cite Prospect Theory as
the main, if not only driver of the Disposition Effect (Weber and Camerer (1998),
Odean (1998), Garvey and Murphy (2004), Jordan and Diltz (2004), Lehenkari
and Perttunen (2004), Frazzini (2006), Dhar and Zhu (2006)).8 If Prospect Theory
triggers phenomena like the Disposition Effect, this particular behavioral pattern
should be observable in other environments as well. In fact, evidence for the Dis-
position Effect has been found among individual investors in the stock market (e.g.
Schlarbaum et al. (1978a), Ferris et al. (1988), Odean (1998), Odean (1999) and
others), in financial advice of stock brokers (Shapira and Venezia (2001)), in the
behavior of future trades (Heisler (1994), Frino et al. (2004), Coval and Shumway
(2005) as well as Locke and Mann (2005)), IPO trading volume (Kaustia (2004a)),
real estate markets (Genesove and Mayer (2001)), insurance contracts (i.e.Camerer
and Kunreuther (1989), Schoemaker and Kunreuther (1979)) and observed risk be-
havior in laboratory environments for stocks (see Weber and Camerer (1998), Chui
(2001), Dhar and Zhu (2006), Vlcek and Wang (2007) and Talpsepp et al. (2014)).

Regardless of its popularity, the theoretical connection between Prospect The-
ory and the Disposition Effect appears questionable given the estimated parameters
from experimental studies such as Tversky and Kahneman (1992), Camerer and Ho
(1994), Tversky and Fox (1995), Wu and Gonzalez (1996), Birnbaum and Chavez
(1997), Fennema and van Assen (1999), Gonzalez and Wu (1999a), Bleichrodt and
Pinto (2000), Abdellaoui (2000), Abdellaoui et al. (2005), Abdellaoui et al. (2007)
and many others. There are various reasons for this breakdown mentioned in the
relevant literature. Some studies such as Kaustia (2004b), Barberis and Xiong
(2009), Kaustia (2010) and Vlcek and Hens (2011) identified a logical flaw in the
argumentation of Shefrin and Statman (1985). They found that if investors are
modeled as myopic decision makers following Prospect Theory in a multiperiod
setting (as implicitly assumed in Shefrin and Statman (1985)), the parameter es-
timates commonly used cause inconsistencies in those models and fail to explain

6Note that the Disposition Effect has been defined in various ways such as the behavioral
pattern where investors linger on to stocks that have lately depreciated in value and are anxious

in selling those whose price has risen (Shefrin (2008), p. 419), as the tendency to hold losers
too long and sell winners too soon (Odean (1998), p. 1775) or in terms of probability, whereby
investors sell winners more likely than losers (Odean (1998), p. 1779).

7Although Shefrin and Statman (1985) support roles for avoiding regret and seeking pride
(Muermann and Volkmann (2006)), the role of emotions is not fully explored and leads to an

unclear explanation, especially in the case of gains, or even results in behavioral patterns that

are inconsistent with the Disposition Effect (see Shefrin and Statman (1985), Shefrin (2008)).
O’Curry Fogel and Berry (2006) discussed the potential role of regret and pride in the context of

losers, but without separating regret and disappointment.
8Andreassen (1988) however suspected that investors believe after a stock reached its peak,

its price is more likely to decline, whereas losing stocks are perceived to have reached bottom

and are likely to rise no matter whether a lack in mean reversion is detected (Murstein (2003),
Odean (1998) reported only approx. 5% of all stocks to be mean reverting). Early empirical

investigations indicated, that the trading pattern of individual investors, the absence of a strong

demand for stocks with past underperformance, is inconsistent with a widespread belief in mean
reverting stock prices (Odean (1998), Zuchel (2001), Kaustia (2004b)).
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the Disposition Effect.9 Other studies such as Arkes et al. (2008), Meng (2010),
Ingersoll and Jin (2012) suggest a modification of the reference point to rematch
empirical trading profiles with trading implications derived from Prospect Theory.
In another rescue attempt that tries to reestablish the link between Prospect The-
ory and the Disposition Effect, Barberis and Xiong (2010), Barberis and Xiong
(2009) and Ingersoll and Jin (2012) introduced the concept of realization utility.
Despite its ingenuity however, the concept of realization utility received only little
support from empirical studies (Ben-David and Hirshleifer (2012)).

Furthermore, experimental studies have been critizised for their artificial set-
ting, in particular regarding their unrealistic payoff-structure (e.g. Kahneman and
Tversky (1979), Hershey and Schoemaker (1985), McCord and DeNeufville (1986)
and Tversky and Kahneman (1992), Etchart-Vincent (2004) and Laury and Holt
(2005)) as well as the way relevant information was presented as participants were
told the exact relevant probabilities and returns (or at least they had the chance to
infer them from the setting). In financial decision making however it cannot be ex-
pected that investors are able to derive the relevant probabilities and returns from
the underlying stochastic process (e.g. Ellsberg (1961)). Thus, the way market pa-
rameters are estimated, particularly the dynamics of market parameter estimates,
may influence the magnitude of the parameters of Prospect Theory. Indeed, pa-
rameter values adopted from experimental studies such as Tversky and Kahneman
(1992), which are used to calibrate financial models model, are often deemed to
be implausible or inconsistent to reconcile conclusions drawn from these models
with evidence from financial markets.10 Consequently, it seems inevitable to dis-
cuss Prospect Theory parameter assumptions in financial markets in the light of
empirical data to address the question which assumption regarding risk sensitivity,
loss aversion and the decision weight are consistent with observed trading behavior.
The paper of Vlcek and Hens (2011), in whcih the authors concluded that Prospect
Theory parameters need to differ significantly from Tversky and Kahneman (1992)
to (consistently) explain the Disposition Effect seems to be a good starting point
to address this question.11

3. An empirical Estimation of Vlcek and Hens (2011)-
Stock Market, Trading Behavior and the Elicitation Procedure

Intending to make a statement regarding Prospect Theory parameters in finan-
cial markets, the seductive charm of Vlcek and Hens (2011) can be seen in the
simplicity of their model, which directly allows to derive conclusions regarding the
parameterization of Prospect Theory that is consistent with observed trading be-
havior. To start with, Vlcek and Hens (2011) capture the evolution of the stock

9However, due to subtle features of the decision weights, dynamic optimization under Prospect
Theory can generate time-inconsistent trading strategies and thus trading patterns such as the

Disposition Effect. Barberis (2012) demonstrated that this can be traced back to the interplay

between the curvature of the value function and the inherent non-linearities of the decision weights.
10The earliest reference to the best of our knowledge is Siegmann (2002), who recognized that

the curvature of the S-shaped value function (given the common magnitudes of loss aversion) is
insufficient to trigger a phenomenon such as the Disposition Effect.

11In a related study, Vlcek and Wang (2007) investigated the relationship between risk sensi-
tivity, loss aversion and decision weighting and the trading behavior of individuals in a controlled
experimental setup and found parameter values close to those of Tversky and Kahneman (1992).

Although the authors detected decision pattern similar to the Disposition Effect. Based on the
results of logistic regressions, they concluded that the parameterization of the underlying Prospect
Theory functions does not seem to explain much of the observed trading decisions.
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price by a simple binomial process (Cox et al. (1979)) as it has been done by oth-
ers in the context of Prospect Theory (see Barberis and Xiong (2009) and Roger
(2009)). In this setting two possible states of the world are identified, namely an
upside state U , realized with probability p > 0 at time t, where the stock price
follows a rise and yields an upside return RU > 1, and a downside state D with
probability 1− p, accompanied with a downside return 0 ≤ RD < 1.

With regard to empirical data, constant amplitudes for upside and downside
returns as modeled in Vlcek and Hens (2011) might be difficult to justify, thus we
are forced to deviate from this assumption. As a proposed modification, at any
time t, only two outcomes, indicated by an index t and written as gross returns
RD,t and RU,t, are possible, where we allow pt, RD,t and RU,t to vary across time.
To keep notation manageable, we denote the possible upside and downside returns
by a common variable RS,t where S ∈ {U ;D} unless stated otherwise. Note that
regarding RD,t and RU,t, positive prices require the satisfaction of the non-arbitrage
condition 0 ≤ RD,t < 1 ≤ Rf,t < RU,t, where Rf,t represents an alternative riskfree
investment (notably the gross return of a bank account). Accordingly at date t
there are t+ 1 possible states in the tree, where for j = 1, 2, . . . , t+ 1 the case j = 1
denotes the highest and t+ 1 the lowest node. The price of the risky stock with j
movements at time t is therefore

Pt,j = P0R
t−j+1
U,t Rj−1D,t . (3.1)

To identify investors whose behavior is driven by Prospect Theory, Vlcek and Hens
(2011) follow Kahneman and Tversky (1979) and assume that preferences of the in-
dividual investor k are based on changes of the initially invested amount of wealth
W0 (Garvey and Murphy (2004), see Grinblatt and Keloharju (2001b), Kaustia
(2010) and Meng (2010) for other possible reference points.) evoluting as in (3.1)
and being repeatedly evaluated at any point in time t ∈ {1, . . . , T}, a day between
the buying and the selling day T . Whenever acting on the stock market, the in-
vestor faces the choice between an investment in a risky stock bestowing her a daily
gross return of either RU,t or RD,t or, alternatively, an investment in a money mar-
ket account from which she receives a daily gross return of Rf,t - both alternatives
modeled as being mutually exclusive.12 In this vein, Vlcek and Hens (2011) model
an investors’ decision to trade a stock as based on differences in utilities from the
stock and the riskfree asset, denoted as ∆t(Uk|θk) given the Prospect Theory pa-
rameter set θk = {α, λ, γ} where α denotes the curvature of the Prospect Theory
value functional and to which Vlcek and Hens (2011) refer to as risk sensitivity, λ
denotes the loss aversion parameter and where parameter γ represents a decision
weight parameter defined according to Tversky and Kahneman (1992).

Although trying to keep as close as possible to Vlcek and Hens (2011), we need
to deviate with respect to some aspects to capture some features of our dataset.
First, modeling the Disposition Effect with respect to Prospect Theory parameters
appears to be too restrictive as investors in could also exhibit the opposite Disposi-
tion Effect (we refer to Weber et al. (2014) for details of our dataset). In addition,

12It should be noted that modeling portfolio strategies as in Vlcek and Hens (2011) is in line
with theoretical models on static portfolio choice under Prospect Theory such as (Schmidt and

Zank (2007), Jin and Zhou (2008), Bernard and Ghossoub (2010) and He and Zhou (2011)), who

found that investors with Prospect Theory preferences may find corner solutions optimal and
prefer full sales of existing positions (see Gomes (2005) for a CRRA-form of Prospect Theory

and Polkovnichenko (2005) under rank-dependent Utility). Note that once multiperiod settings

are considered, corner solutions are not necessarily optimal any longer (e.g. Gollier (1997), Vlcek
(2006), Barberis and Xiong (2009) and others).
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Vlcek and Hens (2011) noted that to generate a pattern that resembles the Dispo-
sition Effect, not all parameter combinations allow a consistent model of purchases
and sales of the risky asset.13 A second significant deviation is the introduction
of a more general formulation for intermediate gains and losses (Odean (1998)) as
Vlcek and Hens (2011) allow only gains and losses to be in a short range (namely
RU and RD) due to their two-period setting, which appears to be too restrictive
for our dataset.

Modeling an investors trading behavior under generalized current gains and
losses as in Vlcek and Hens (2011) has significant implications on the model setup.

The specification of intermediate gains and losses, denoted henceforth as R̂S,t where

S ∈ {U ;D}, indicating a current gain (S = U where R̂S,t > 1 ) or loss (S = D where

R̂S,t ≥ 0), is crucial to ∆t(Uk|θk) as R̂S,t determines the respective prospect values
and the application of loss aversion parameter λ. In distinction to the two-period
setting of Vlcek and Hens (2011), we define risk in terms of R̂S,t rather than RD,t
which in turn requires an extended case distinction. If accumulated gains R̂S,t are

high enough such that R̂S,tRU,t > R̂S,tRf,t ≥ R̂S,tRD,t ≥ 1 (Case 1), the investors’

overall prospect value for the stock at time t, denoted as Uk(W0, R̂S,t, RS,t|θk), can
be written as

Uk(W0, R̂S,t, RS,t|θk) =

ω(pt)(W0R̂S,tRU,t −W0)α + ω(1− pt)(W0R̂S,tRD,t −W0)α. (3.2)

According to Vlcek and Hens (2011), the decision weights ω(pt) are defined as

ω(pt) = pγt (pγt +(1−pt)γ)−
1
γ (likewise ω(1−pt), see Tversky and Kahneman (1992)).

The prospect value of the riskfree asset, denoted as Uk(W0, R̂S,t, Rf,t|θk) is assumed

to be (W0R̂U,tRf,t−W0)α. If the investor is endowed with the stock which has only

moderately increased in value such that R̂S,tRU,t > R̂S,tRf,t ≥ 1 > R̂S,tRD,t ≥ 0
(Case 2), her overall prospect value can be written as

Uk(W0, R̂S,t, RS,t|θk) =

ω(pt)(W0R̂S,tRU,t −W0)α − λω(1− pt)(W0 −W0R̂S,tRD,t). (3.3)

The prospect value of the riskfree asset Uk(W0, R̂S,t, Rf,t|θk) is (W0R̂S,tRf,t−W0)α

as in Case 1. The prospect values derived from holding the stock until the next
period can be decomposed in prospect value stemming from a rise of the stockprice
by the amount RU,t and a second component, multiplied by loss aversion λ that
represents the loss of prospect value if the downside state occurs. Both expres-
sions are multiplied by their corresponding decision weights ω(pt) and ω(1 − pt),
expressing the impact of the upside or downside event on the overall prospect value.

13In their paper, Vlcek and Hens (2011) distinguished between a ex-post Disposition Effect,
for which a large scale of Prospect Theory parameters provide acceptable results, and an ex-ante
Disposition Effect. The authors argue that if initial purchase decisions are considered, it can be

optimal for investors not to buy the stock if they are aware of the ex post behavior in the next

period (similarly Barberis and Xiong (2009)). With respect to evidence from empirical studies,
it seems not to be advisable to solely rely on Prospect Theory for modeling purchase decisions,

as following Odean (1999), Glaser and Weber (2007) and Statman et al. (2006), these decisions
are driven by different factors. For example overconfident investors may suffer from biased beliefs
about the anticipated returns they expect to generate by trading stocks even if these investors

performed averagely in the past (Odean (1999), Barber and Odean (1999), Glaser and Weber
(2007)), thus being inclined to buy stocks more readily. As a consequence, this opens a wide
range of other possible reasons why these investors bought the stock in the first place.
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Note that in the domain of accumulated losses where 0 ≤ R̂S,t < 1, the investor

still faces Case 2: If the losses turn out to be moderate such that R̂S,tRU,t >

R̂S,tRf,t ≥ 1 > R̂S,tRD,t ≥ 0, the investor still holds a chance to win back these
losses and end up with a gain by switching into the riskfree asset. Accordingly, the
investors prospect value can be written as

Uk(W0, R̂S,t, RS,t|θk) =

ω(pt)(W0R̂S,tRU,t −W0)α − λω(1− pt)(W0 −W0R̂S,tRD,t). (3.4)

The prospect value from an investment in the riskfree asset is Uk(Wt, R̂S,t, Rf,t|θk) =

(W0R̂S,tRf,t −W0)α as in Case 1. Although for moderate accrued losses, the in-
vestor finds herself in a Case 2 situation, we indicate that the investor incurred a
loss and define an auxilary Case 3. If losses R̂S,t turn out to be more severe where

R̂S,tRU,t > 1 > R̂S,tRf,t > R̂S,tRD,t ≥ 0 (Case 4), the investor experiences an
overall prospect value from the stock of the form

Uk(W0, R̂S,t, RS,t|θk) =

(W0R̂S,tRU,t −W0)α − λω(1− pt)(W0 −W0R̂S,tRD,t). (3.5)

Note that in this case, the prospect value of the riskfree asset Uk(W0, R̂S,t, Rf,t|θk)

is now negative −λ(W0−W0R̂S,tRf,t)
α. Finally, if losses are high enough such that

they can’t be offset by the proceeds from the riskless assets (i.e. 1 > R̂S,tRU,t >

R̂S,tRf,t > R̂S,tRD,t ≥ 0 (Case 5)), both prospect values from the stock and the
riskfree asset are negative. In particular the prospect value of the stock is now
written as

Uk(W0, R̂S,t, RS,t|θk) =

− λ(W0 −W0R̂S,tRU,t)
α − λω(1− pt)(W0 −W0R̂S,tRD,t) (3.6)

and the prospect of the riskfree asset Uk(W0, R̂S,t, Rf,t|θk) takes the form −λ(W0−
W0R̂S,tRf,t)

α. Therefore, due to the applicability of loss aversion parameter λ its
imperative to distinguish whether the incurred losses can still be offset by the pro-
ceeds of the riskless investment alternative or the upside returns from the risky
asset respectively. Accordingly, in the framework of Vlcek and Hens (2011), an

investor buys or holds the stock whenever ∆t(Uk|θk) := Uk(W0, R̂S,t, RS,t|θk) −
Uk(W0, R̂S,t, Rf,t|θk) ≥ 0 and vice versa.

In the light of empirical evidence on trading behavior in stock markets, it seems
reasonable to assume that an individual investors decisions to sell or buy stocks
are not solely driven by differences in prospect values ∆t(Uk|θk) but also depen-
dent on other, independent factors. As a logical consequence, we need to cope
with these factors and extend the model of Vlcek and Hens (2011) by an investor
specific and additively separable stochastic component εk to introduce a certain
unsharpness in the decision process (Cramer (1986), Train (1986), Rust (1994) and

Train (2009)), such that we arrive at the decomposition Vk(W0, R̂S,t, RS,t|θk) =

Uk(W0, R̂S,t, RS,t|θk) + εk. Accordingly, an investor buys or holds the risky asset
whenever ∆t(Uk|θk) + εk ≥ 0, including the case where the difference in prospect
value is negative but due to other factors the error is large enough to counterbal-
ance the inequality. By specifying the underlying stochastic process of the investor-
specific error term εk, we can derive the likelihood function of investor k, denoted
as L(∆t(Uk|θk)). As a technical remark, we assume that the riskfree return Rf,t is
in fact riskfree, which in turn allows us to assume that the investor specific error is

8
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zero for payoffs generated by the riskfree asset. This technical assumption avoids
the necessity to evaluate the covariance matrix of errors along with θk. Note that
the standard errors estimated for θk depends on the correlation structure of the
error terms but should not have an impact on the estimated parameters (see Train
(2009) for details).

A well-established assumption on the stochastic characteristics of εk, which con-
sequently determines the functional form of L(∆t(Uk|θk)) is to assume that εk are
normally distributed εk ∼ N(0, σ2

k) where the density of the error is characterized

by φ(εk) = (2πσ2
k)−

1
2 e−

1
2 (εk/σk)

2

(see Hey and Orme (1994) and Carbone and Hey
(2000)). By assuming normally distributed errors, we implicitly assume that other
factors driving the purchase and sales decisions of investors, are unsystematic with
respect to utility Uk(W0, R̂S,t, RS,t|θk), although other assumptions of εk are pos-
sible (see e.g. Harless and Camerer (1994), Hey and Orme (1994), Loomes and
Sugden (1995), Wilcox (2008) and Booij et al. (2009). We refer to Harrison and
Rutstrom (2008) for a discussion of the different specifications of εk). The intro-
duction of a buy-or-hold index Ik,t := I[∆t(Uk|θk) + εk ≥ 0] allows us to derive the
respective choice probabilities for ∆t(Uk|θk): Given the normal distribution of εk,
the conditional choice probability to hold the stock is defined as cumulative normal
density function Φ (∆t(Uk|θk)/σk) and the probability to invest in the riskless asset
is defined as 1 − Φ (∆t(Uk|θk)/σk) = Φ (−∆t(Uk|θk)/σk).14 Note that the model
of Vlcek and Hens (2011) represents the (extreme) cases where the probability to
hold the stock converges to unity if the stock generates an infinite stream of utility
(e.g. ∆t(Uk|θk)→∞). On the other hand, if the difference in utility is infinitively
negative such that ∆t(Uk|θk) → −∞, the investor probability to hold the stock
approaches zero (see for a general reference Rust (1994)).

Given the binary choice feature of Vlcek and Hens (2011), reflected in the di-
chotomous variable Ik,t, combined with the assumption of the error term, the overall
(logarithmized) likelihood function of an investor i is

logL(∆t(Uk|θk)) =
∑
t∈T

log

(
Φ

(
∆t(Uk|θk)

σk

)Ik,t
Φ

(
−∆t(Uk|θk)

σk

)1−Ik,t
)
, (3.7)

in which we omit constant terms as they add no further information about θk.15 It
can be shown that maximizing logL(∆t(Uk|θk)) with respect to θk provides asymp-

totically efficient and unbiased estimators θ̂k. To obtain θ̂k equation (3.7) needs
to be evaluated numerically. The numerical evaluation of logL(∆t(Uk|θk)) for θk,
is performed in the ml model-environment of the statistical software Stata Version
10.1 as it allows to conveniently customize the likelihood function logL(∆t(Uk|θk)).

4. Estimation of Prospect Theory Parameters:

14In detail p(∆t(Uk|θk) > 0) can be derived as

p(∆t(Uk|θk) > 0) =

∫ ∞
−∞

I[∆t(Uk|θk) + εk > 0]φ(εi)dεi

=

∫ ∆t(Uk|θk)

σk

−∞
φ(εk)dεk = Φ (∆t(Uk|θk)/σk) .

.
15Similar expressions for logL(∆t(Uk|θk)) are used in Hey and Orme (1994), Harrison and

Rutstrom (2008) and de Palma et al. (2008).
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Calibration of Vlcek and Hens (2011) using Trading Data

To estimate θk in the model of Vlcek and Hens (2011), it is imperative to per-
form the necessary analysis on a per-investor basis as the model is formulated for
an individual investor.16 An appropriate way to conduct this is to use trading data
from discount brokers as it has been done in other studies that focus on individ-
ual investors’ trading behavior (see e.g. Odean (1998), Barber and Odean (1999),
Odean (1999), Barber and Odean (2000), Barber and Odean (2001), Kumar and
Goetzmann (2008) and Kumar (2009)). We emphasize that our dataset is similar
to Odean (1999) and Barber and Odean (2000) and contains information regarding
portfolio compositions and trading data for a random selection of 5.000 individual
investors, where the recorded transaction in the trade file can be uniquely assigned
to an individual investor (see Weber et al. (2014) for details).

Regarding the setup for their model, Vlcek and Hens (2011) emphazise that
empirical research provides some indication that individual investors treat other
streams of income such as dividends and other cash flows resulting from corporate
actions and other stocks (Shefrin and Statman (1984), Baker and Wurgler (2004))
in different mental accounts (Thaler (1985)). Furthermore, the tendency to evaluate
risky lotteries separately, known as narrow framing (Barberis and Huang (2001),
Barberis et al. (2001), Barberis et al. (2001), Berkelaar et al. (2004), Gomes (2005),
Barberis and Huang (2009)) is in line with Vlcek and Hens (2011), complementing
studies on individual investor trading decisions that examine the trading decisions
for each stock separately.17 Concerning the stochastic process of the risky asset,
Vlcek and Hens (2011) do not explicitly mention other risky assets such as traded
fixed income investments, mutual funds or structured products - consequently we
discard those investments and focus exclusively on stocks.18

With respect to the stochastic process of the stocks and the specification of (3.1),
results derived from a large number of empirical studies need to be considered when
it comes to individual investors’ trading behavior and formulation of expectations

16Note that our procedure differs due to the high number of observations that comes along

with trading data from the usual way parameter estimates are obtained in experimental studies
(e.g. Harrison and Rutstrom (2008), Harrison and Rutstrom (2009), von Gaudecker et al. (2009)

and others). In these studies, a single maximum likelihood function is evaluated across the whole

sample and p-values for the estimates are obtained by Wald-tests (see Harrison (2008) and Harrison
and Rutstrom (2008)).

17See for instance Shefrin and Statman (1985), Odean (1998), Odean (1999), Barber and Odean
(2000), Barberis and Huang (2001), Grinblatt and Keloharju (2001a), Grinblatt and Keloharju
(2001b), Barber and Odean (2002), Dhar and Kumar (2002), Hong and Kumar (2002), Zhu (2002),

Grinblatt and Han (2005b), Lim (2006), Frazzini (2006), Barber and Odean (2008) among many
other studies.

18This is common practice in empirical studies on matters of individual investors trading such
as Barber and Odean (2000), Barber and Odean (2001), Graham and Kumar (2004), Mitton and

Vorkink (2007), Kumar and Goetzmann (2008) and Barber et al. (2011) although insights from

trades in securities or portfolios characterized by asymmetric payoffs (Mitton and Vorkink (2007),
Barberis and Huang (2008)) regarding decision weight parameter γ are ignored. We expect the

loss of information to be negligible as Weber et al. (2014) reports that products with asymmetric
return profiles are not widespread investments in our dataset. This is in line with studies on
trading behavior in mutual funds (e.g. Grinblatt and Titmann (1989), Grinblatt and Titmann

(1993), Brown and Goetzmann (1995), Carhart (1997), Daniel et al. (1997), Chan et al. (2000),
Wermers (2000), Coval and Moskowitz (2001) and Kosowski et al. (2006), see Murstein (2003) for

the resulting trade pattern) and in financial products with asymmetric payoffs (Baule and Tallau

(2011)) indicate that other trading motives may exist that mimic trade pattern from Prospect
Theory (regarding trading in mutual funds see Ivkovic and Weisbrenner (2009), Chang et al.

(2012), for trading in structured products see Entrop et al. (2013)), thus probably leading to

systematic biases in the calibration of the parameter set.
10
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about pt, RD,t and RU,t of the stocks underlying the trades in our dataset. DeBondt
(1993) mentioned investors may consider recent past returns to be representative
for future developments of the stock price and formulate their expectations based on
the stocks’ history (Kahneman and Tversky (1973), Andreassen (1987), Andreassen
(1988) and Andreassen and Kraus (1990)). We consider this mental pattern and
formulate the return parameters RD,t and RU,t as prospects extrapolated from the
past over some period n, which we set to n = 60 days, the default in for thein-
vestors’ trading tools offered by the discount broker.19

Concerning the estimation of pt, we follow the approach presented in Weber and
Camerer (1998), in which an individual investor is assumed to update a subjective
probability pt in a Bayesian fashion by observing up- and downticks, given the in-
vestor observes a change in the prices.20 For the specification of RU,t and RD,t, we
apply a similar method as in Barberis and Xiong (2009), which draws on the as-
sumption that the stock price is assumed to follow a binomial process as defined in
(3.1). Given the features of such a stochastic process, we estimate expected returns
µt and the volatility σt for each stock in our dataset, consequently values for RD,t
and RU,t can be derived from µt and σt.

21 To break down complex trades from the
trade file to obtain simple and unambiguous trading sequences, commonly referred
to as round-trips (Shapira and Venezia (2001)), we follow the methods proposed
by Lacey (1945), Schlarbaum et al. (1978b), Schlarbaum et al. (1978a) and Silber
(1984) and apply the First-in-First-out-Principle (FIFO) throughout our dataset.
By applying FIFO (which is the implicit accounting principle according to cur-
rent tax regulations in Germany), we reflect the results from empirical studies such
as Lakonishok and Schmidt (1986), Grinblatt and Keloharju (2004), Barber and

19In doing so we explicitly distinguish from the representativeness bias, whereupon investors

base their judgments on stereotypes and seek for patterns in returns or prices (e.g. Weber and

Camerer (1998), Shefrin (2008)). Note that given the observation of past returns to formulate
RU,t and RD,t, due to extrapolation bias with short horizons, investors may buy stocks whose

price has recently increased, especially if following a myopic trading strategy, ruling out implicit

mean reversion expectation (Zuchel (2001)). Formulating RU,t and RD,t based on past returns
over n, we align the model of Vlcek and Hens (2011) with other studies such as Grinblatt and

Keloharju (2000) and Kaustia (2010), who found that Finnish investors bought past winners and

sold past losers - thus revealing a trend-following trading strategy, which is not consistent with an
expectation of mean reverting stock prices. Similarly, Dhar and Kumar (2002) investigated the

price trends of stocks bought by more than 62000 households using discount brokerage data and

concluded that investors prefer to buy stocks that have recently enjoyed abnormal returns.
20We calculate the required uptick probability as pt = t−j+1

t
= nU

nD+nU
, where nD and nU

denote the number of down- or up moves of the respective risky asset. Note that pt is a maximum-

likelihood estimator for probability p given a binomial distribution pt = pt−j+1(1− p)j−1.
21Using a rolling window estimation approach over lookback period n, the expected

returns and the volatility takes the form µt = (RU,tpt + RD,t(1 − pt))t and σ2
t =(

(R2
U,tpt +R2

D,t(1− pt))− (RU,tpt +RD,t(1− pt))2
)t

. Aligning the required stock parameters

with these two expressions, RD,t and RU,t have to fulfill these basic equations simultaneously. By
combining both equations and solving for RU,t and RD,t, we obtain explicit expressions for RU,t

and RD,t respectively. A sketch of the derivation and the explicit formulas are relegated to the

appendix.
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Odean (2004), Ivkovic et al. (2005) and Horn et al. (2009), supporting the assump-
tion that mental accounting of individual investors follows tax regulations. 22

The evaluation of the likelihood function (3.7) is performed for each investor in
our dataset to obtain estimates for θk and the standard deviation of the error term
σk, where we transform the latter by an exponential function (Rabe-Hersketh and
Everitt (2004)) to guarantee strict positivity of the estimate for the error term. The
numerical search algorithm is constructed by a mixed iteration procedure where we
run a Newton-Ralphson procedure for the first five steps. If no solution is obtained
or the algorithm fails to converge, we switch to the Davidon-Fletcher-Powell algo-
rithm (Fletcher (1980)) for the next five iterations to push the estimates outside of
the critical section of the likelihood function and then return to the former tech-
nique. Furthermore, we follow the recommendation of Cramer (1986) and restrict
the number of iterations to 30.23

With respect to the surface of the likelihood function logL(∆t(Uk|θk)), we are
concerned that local maximum problems may arise due to convex segments in the
prospect value function, leading to erroneous estimates for θk if the numerical search
algorithm gets stuck in such a local optimum. We address this problem in two ways:
First, as described above, we alter the numerical search algorithm every five steps
- a procedure also recommended by Judge et al. (1985), Ruud (2000) and Gould
et al. (2006)). Secondly, we decided to apply a vector of randomly selected starting
values for the numerical algorithm within the boundaries of our parameter set θk
(Liu and Mahmassani (2000)). Every time Stata reports successful convergence,
we store the estimates and repeat this procedure using a new starting vector. This
procedure is repeated 11 times and the estimate with the highest absolute value for
logL(∆t(Uk|θk)) is selected at the end.

5. Vlcek and Hens (2011) put to the test:
Presentation of the Estimation Results

As the estimation of a multi-parameter function as the ones used in Vlcek and
Hens (2011) turned out to be numerically and computationally demanding and in
particular time consuming, we decided to use a reduced dataset instead of the total
5, 000 investors. To optimize computation time and yet obtain a satisfying statis-
tical reliability of our estimation results, we picked a subset of investors, for which
we performed the evaluation of the likelihood function (3.7). From our original
dataset we randomly selected a sub-sample of 656 investors, covering 3, 724 distinct

22Although Vlcek (2006) presented a model extension of Vlcek and Hens (2011), where portfolio
weights vary between zero an one, we ignore the underlying portfolio positions as these might not

fully reflect risk preferences due to other factors (e.g portfolio inertia Calvet et al. (2009) and Bilias

et al. (2010)) which potentially affects our results for risk preferences. However, we admit that
trade data might be contaminated as well by other factors such as stale limit orders (see in the

context of the Disposition Effect Linnainmaa (2010)). It should be noted that portfolio positions

can be retrieved by reconstructing residual positions such as described in Barber et al. (2007)
and Barber et al. (2009) to reflect active decision making. Under this approach however, initial

portfolio positions can be pronouncedly volatile due to the inherent initial share of idiosyncratic
risk, erroneously indicating lower risk aversion if used for the estimation of an individuals risk
aversion before ramping up enough portfolio volume that can be used to further analysis.

23A try-and-error search in terms of number of iterations and computational time showed
that among the available numerical search techniques within Stata Version 10.1, Berndt-Hall-

Hall-Hausman’s algorithm (Berndt et al. (1974)) performed the worst, which left us with the

Newton-Ralphson and Davidon-Fletcher-Powell algorithm (Fletcher (1980)), a result that is in
line with the results found by Griffiths et al. (1987).
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securities, for which we constructed single likelihood functions for each day of their
trading history, summing up to 17, 186, 660 single likelihood functions needed to be
evaluated. The application of an overlapping-window procedure in our estimation
of the stocks’ characteristics µt, σt and pt further reduces the number of likelihood
functions and cuts down the number of investors to 653 as 3 investors had to be
dropped due to the fact that their time series spans less than 60 days. The remain-
ing observations comprise 38, 903 round-trips, conducted between 1999 and 2012 in
stocks, with an average of approximately 107 and a median of 65 round-trips per
investor.

Given this set of observations, we tried to evaluate 2, 612 Prospect Theory and
nuisance parameters numerically, from which we actually estimated 1, 084 parame-
ters successfully, summing up to a total number of 271 out of 653 investors. Review-
ing the outcomes of the numerical evaluation of the likelihood function as presented
in equation (3.7), we noted that for 382 investors, for which we did not obtain esti-
mates for θk, the likelihood function logL(∆t(Uk|θk)) suffers from several deficien-
cies such that as a consequence no estimates for θk were obtained. Closer inspection
of the maximum likelihood procedure showed that for among these 382 investors,
the likelihood function (3.7) cannot be evaluated as the iteration was canceled as
the maximum number of iteration steps was exceeded (293 investors) and thus the
evaluation stopped. For 89 Stata reported non-concavity of the likelihood function
in the final iteration step. In these cases Stata still reports successful convergence
and provided values for the likelihood function and θ̂k but the associated standard
errors are set to missing, which can be taken as a hint towards problems in the evalu-
ation procedure. Excluding those investors, where the likelihood function cannot be
evaluated or standard errors of θ̂k are missing, reduces our dataset to 271 investors.

To investigate why for so many investors the likelihood function cannot be
evaluated, we modified those parts of our program in which the evaluation of
logL(∆t(Uk|θ̂k)) is specified. In particular, to gain further insights regarding the
deficiencies, that stem from the numerical algorithm, we extracted the Hessian ma-
trix H(∆t(Uk|θ̂k)) by rewriting the program in the form of a d2-evaluator instead
of using the lf-evaluation specification.24 We found for those investors, where the
maximum likelihood function cannot be evaluated, that for values of θk mentioned
in Vlcek and Hens (2011), the determinant of the Hessian matrix detH(∆t(Uk|θ̂k))
is close to zero, consequently the Hessian matrix cannot be inverted, which in turn
results in the cancellation of the numerical search algorithm.25 However, for those
investors, where the maximum likelihood function can be evaluated and Stata re-
ports no errors during the numerical search, the Hessian matrix H(∆t(Uk|θ̂k)) is
negative definite over the parameter space of θk.

Regarding this reduced dataset, it is inevitable to check whether these deficiencies
in the evaluation process somehow could bias our results. A tabulation of market
parameters RU,t, RD,t, pt and its underlying parameters of the binomial process (see
Table (1)) as well as realized trade returns and intermediate gains and losses (see

24Deficiencies in the Hessian matrix H(∆t(Uk|θ̂k)) has some consequences for some of the
numerical methods (i.e. the Newton-Ralphson method) as the step size of the numerical search,

determined by −H(∆t(Uk|θk))−1, cannot be determined if the Hessian matrix is degenerate.
25It is worth mentioning that other numerical search procedures, such as the Davidon-Flechter-

Powell algorithm don’t require an evaluation of −H(∆t(Uk|θk))−1, however at the costs of a

(potentially) lower precision regarding θ̂k.
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Tables (2) and (3)), which serve as arguments for likelihood logL(∆t(Uk|θk)) re-
veals no significant differences between the original and the reduced dataset. T-tests
performed to compare the means of both datasets showed no significant differences
between the market parameters µt, σt and pt used to derive RU,t and RD,t. With
respect to the comparison of the means of trade returns and accrued returns similar
t-tests indicated no significant differences between both datasets as well such that
we conclude that no systematic differences occurred due to the reduction of our
dataset.
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Prospect Theory, Parameter Elicitation and Investors Heterogeneity

Figure 2. Descriptive Summary of Trade Returns

The table on the top provides a descriptive summary of realized trade (round-trip) returns

across all investors. The table below summarizes the results for individual investors where
the likelihood function (3.7) was successfully evaluated. For both tables, trade returns R̂S,T

are taken directly from the trade records and reported as daily gross returns. Obs. denotes

the number of observed round-trips in the dataset, Mean and Median denotes the arithmetic
mean and the median of returns, Std. the standard deviation of returns, 5p, 25p, 75p and 95p

denote the 5%, 25%, 75% and 95% percentiles of the returns respectively.

.

Mean Std. Median 5p 25p 75p 95p Obs.

Trade Returns for All Investors

Total 0.9885 0.7099 0.9922 0.1825 0.7928 1.1025 1.6885 38903
Case 1 1.4040 0.9835 1.1765 1.0328 1.0854 1.4118 2.4120 15141
Case 2 1.0642 0.4553 1.0230 1.0024 1.0103 1.0471 1.1403 3031
Case 3 0.9999 0.0001 0.9999 0.9998 0.9999 1.0000 1.0000 4
Case 4 0.9649 0.0489 0.9804 0.8824 0.9595 0.9911 0.9975 2731
Case 5 0.6531 0.2896 0.7542 0.0569 0.4581 0.8928 0.9650 17996

Trade Return for Estimated Investors

Total 1.0082 0.9826 0.7486 0.1292 0.7478 1.1358 1.9181 9048
Case 1 1.4778 1.2118 0.9450 1.0311 1.0926 1.4931 2.7779 3277
Case 2 1.0796 1.0199 0.5595 1.0022 1.0083 1.0474 1.1986 519
Case 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
Case 4 0.9667 0.9830 0.0464 0.8793 0.9596 0.9926 0.9981 515
Case 5 0.6363 0.7362 0.3022 0.0505 0.3984 0.8943 0.9711 4032

Figure 3. Descriptive Summary of Accrued Returns

The table on the top provides a descriptive summary of accrued returns across all investors.

The table below summarizes the results for investors where the likelihood function (3.7) was

successfully evaluated. Accrued returns are calculated according to Vlcek and Hens (2011)

to obtain R̂S,t and reported as daily gross returns. Obs. denotes the number of observations

in days in the dataset, Mean and Median denotes the arithmetic mean and the median of
returns, Std. the standard deviation of returns, 5p, 25p, 75p and 95p denote the 5%, 25%,

75% and 95% percentiles of the returns respectively.

.

Mean Std. Median 5p 25p 75p 95p Obs.

Accrued Returns for All Investors

Total 0.8967 0.8696 0.8343 0.0915 0.4290 1.1027 1.9816 17186660
Case 1 1.5515 1.1090 1.2558 1.0345 1.1086 1.6032 2.9528 3193124
Case 2 1.0592 0.6166 1.0163 1.0019 1.0074 1.0341 1.1200 617604
Case 3 0.9999 0.0001 0.9999 0.9996 0.9998 1.0000 1.0000 1210
Case 4 0.9758 0.0380 0.9862 0.9209 0.9731 0.9934 0.9983 538436
Case 5 0.5518 0.2944 0.5880 0.0556 0.2868 0.8213 0.9525 8430401

Accrued Returns for Estimated Investors

Total 0.9243 0.8365 0.8791 0.1137 0.4308 1.1250 2.1240 5497408
Case 1 1.6238 1.2928 1.1122 1.0365 1.1224 1.6965 3.2610 1862136
Case 2 1.0480 1.0140 0.5695 1.0017 1.0067 1.0298 1.1105 161075
Case 3 0.9999 0.9999 0.0001 0.9996 0.9998 1.0000 1.0000 386
Case 4 0.9787 0.9877 0.0323 0.9304 0.9765 0.9940 0.9987 152638
Case 5 0.5435 0.5677 0.2898 0.0701 0.2763 0.8092 0.9509 3321173
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Figure 4. Estimated Parameters for Prospect Theory

The table summarizes the result of the evaluation of the maximum likelihood function (3.7) and

the results of a one-sided t-test of the presumption regarding the parameter set α < 1, λ > 1
and γ < 1. V ar. represent the Prospect Theory parameter, Case Type denotes the round-trip

category as described in the text. Mean denotes the arithmetic mean of the estimates across

all investors for which the likelihood function (3.7) was successfully evaluated. Results from
Wald tests performed on per-investor level are not reported. Note that Case 3 is missing as

no Case 3 round-trips are observed.

.

Var. Case
Type

Mean of
Estimates

Standard
Error

p-value
α, γ < 1
λ > 1

Lower 95%
Confidence
Interval

Upper 95%
Confidence
Interval

Number
of Obs.

α Total 0.3738 0.0111 0.0000 0.3520 0.3956 271
Case 1 0.4733 0.0168 0.0000 0.4402 0.5065 129
Case 2 0.3511 0.0631 0.0000 0.1967 0.5056 7
Case 4 0.3307 0.0458 0.0000 0.2223 0.4391 8
Case 5 0.2733 0.0102 0.0000 0.2531 0.2935 127

λ Total 1.0940 0.0080 0.0000 1.0782 1.1097 271
Case 1 1.0497 0.0129 0.0003 1.0242 1.0752 129
Case 2 1.0716 0.0378 0.0748 0.9792 1.1640 7
Case 4 1.0719 0.0310 0.0407 0.9986 1.1452 8
Case 5 1.1480 0.0082 0.0000 1.1319 1.1642 127

γ Total 0.7242 0.0084 0.0000 0.7077 0.7407 271
Case 1 0.7376 0.0148 0.0000 0.7084 0.7669 129
Case 2 0.7117 0.0519 0.0007 0.5846 0.8387 7
Case 4 0.6726 0.0514 0.0002 0.5511 0.7941 8
Case 5 0.7246 0.0092 0.0000 0.7064 0.7429 127

An inspection of Table (4) reveals that risk sensitivity parameter α tends to
stay below 0.88 (p-value < 0.001), the frequently cited estimates of Tversky and
Kahneman (1992), which reflects a high curvature of the Prospect value function,
confirming the usual prior of diminishing risk sensitivity. The p-values derived from
the one-sided t-tests, which is appropriate for testing the presumption that the
prospect value function displays significant curvature (i.e. α < 1, see Table (4))26,
indicate that we can reject the hypothesis that our estimates for α are significantly
larger than one on a 1% significance level. A part of a possible explanation for the
observed low estimates of α is probably rooted in the implications of the model of
Vlcek and Hens (2011), particularly regarding Case 1 and Case 5 round-trips. These
implications might drive our results as a large fraction of these round-trips can be
found in our dataset. In fact, it can be shown that for a Case 1 round-trips to occur,
α is required to be lower than unity to observe a sale. In particular, for any gain
R̂U,T , these Case 1 round-trips cannot be explained by Prospect Theory for high
values of risk sensitivity parameter α for a given γ. Similar for Case 5 round-trips,
it can be shown that for any loss R̂D,T ≥ 0, where the relation of possible downside
returns to riskless returns is larger than unity, these Case 5 round-trips cannot be
explained by Prospect Theory for high values of risk sensitivity parameter α and

26We refer to Train (2009) for the use of t-tests for the evaluation of the estimated parameters

of the likelihood function and Harrison (2008) for its use in the context of Prospect Theory.
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a given γ.27 The proof is similar for both arguments and relegated to the appendix.28

Diminishing risk sensitivity in general is in line with evidence from experimental
studies fitting variants of Prospect Theory with power function, where α normally
falls in a range of 0.5 ≤ α < 1 (the properties of diminishing sensitivity towards
variations in areas of gains were confirmed in Wakker and Deneffe (1996), Fennema
and van Assen (1999) and for losses Fox and Tversky (1998)). Exemplarily, Tversky
and Kahneman (1992) estimated the parameters of Prospect Theory conducting a
controlled lottery questioning and elicitated parameter values by applying nonlin-
ear regression, concluding α to be close to 0.88. These results are predominantly
confirmed, however, some studies such as Fennema and van Assen (1999) provide
mixed results, where the outcomes of the estimation depend on the method applied
and range from α = 0.39 (α = 0.39) for gains to α = 0.84 (α = 0.34) for losses.
Although some studies have found values of α as low as 0.22 (Loomes et al. (2002))
or slightly above (Camerer and Ho (1994), Wu and Gonzalez (1996) and Gonzalez
and Wu (1999a)), the majority of experimental studies points towards weak sen-
sitivity, tantamount to high values for α.29 Table 2 summarizes the findings and
provides a compact overview.

However, in contrast to the majority of experimental studies, a comparison of
our findings to results derived from theoretical and empirical studies on decision
making in financial markets seems to support the direction of α to fall below 0.88
(we summarize the results from a selection of theoretical studies in Table (1)). For
the Finnish stock market, Kaustia (2004b) and Kaustia (2010) tested implications
derived from Prospect Theory with empirical investor data using a probit model,
concluding that Prospect Theory may cause the Disposition Effect only if α is
sufficiently low. For given market parameters of expected return and volatility, he
finds that sales are only compatible with Prospect Theory if α falls substantially
below 0.7 or alternatively, loss aversion does not exceed 1.6, while an investor, who
realizes a gain around 7% matches with λ ≤ 1.2 and α ≥ 0.7 (Kaustia (2010), p.
9 and Kaustia (2004b), pp. 10-11). Barberis and Xiong (2009) argue as soon as α
falls below 0, 88, a trading pattern similar to the Disposition Effect can be observed
more often - for an expected value of 10% and volatility of 30%, α needs to decline
sufficiently, particularly for the case at hand below 0.77.30

Our results for loss aversion λ indicate that loss aversion is not much prevalent
in the trading behavior within our dataset.31 According to Table (4), loss aversion

27In particular, for both cases the non-arbitrage condition 0 ≤ RD,t < 1 ≤ Rf,t < RU,t

(particularly the requirement that RU,t > Rf,t if α→ 0 or α→ 1) is violated.
28Note that Vlcek and Hens (2011) discussed the cases where α = 0 and γ = 1 for λ ≤ 1,

concluding that in their model an investor under Prospect Theory is prone to what they call

ex-post Disposition Effect once a state similar to Case 4 occurs.
29The result from these and other studies are discussed in Stott (2006) and Booij et al. (2010).
30Barberis and Xiong (2009) argue that the investor does not gamble towards the edge of the

concave region any longer and therefore decides to take smaller positions at the beginning. In the
domain of losses, lower values of α leads to increased convexity and thus to increased positions in

the risky asset after a loss (Barberis and Xiong (2009), p. 771). Applying a full-market model,
Li and Yang (2009) accentuate that conclusions as the inexplainability of the Disposition Effect
through prospect value function might be partly to blame to high expected values and the almost

risk neutrality reflected in the mildy concavity and convexity of the value function for high values
of α (Barberis and Xiong (2009), p. 769, Li and Yang (2009), p. 27).

31Recall that λ > 1 is commonly equivalent to loss aversion (e.g. Kahneman and Tversky
(1979), Bowman et al. (1999), Neilson (2002) and Koebberling and Wakker (2005)). Although

Wakker and Tversky (1993) and Schmidt and Zank (2008) provide a framework for loss aversion

under Cumulative Prospect Theory, there is no consent about what comprises loss aversion and
18
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Figure 5. Distribution of Estimated Parameters

The figures on the left illustrate the dependence between gross trade returns and risk sensitivity

parameter α (figure upper left), loss aversion parameter λ (middle left) and of the decision
weighting parameter γ (figure lower left). The figures on the right display the associated

histogram for risk sensitivity parameter α (figure upper right), loss aversion parameter λ

(middle right) and of the decision weighting parameter γ (figure lower right).

λ varies around unity more or less with a tendency to be slightly above one, in-
dicating only weak forms of loss aversion. One-sided t-tests show that across all
round-trips λ is distinct from one, although for Case 2 and Case 4 round-trips, due
to the low number of obsrvations, loss aversion parameter λ is statistically distinct
from one only on a 10%- and 5%-significance level respectively. However, even for
these round-trips λ is still significantly smaller than the frequently cited values of
2.25 (p-value ≤ 0.001 for all Case 2 and Case 4 round-trips) mentioned in Tversky
and Kahneman (1992). In the light of these estimates, it is noteworthy that Vl-
cek and Hens (2011), conclude that for λ ≤ 1 and α = 0, their Prospect Theory

how it can be implemented in a mathematical framework (see Neilson (2002), Schmidt and Zank
(2005) and Koebberling and Wakker (2005) and Booij et al. (2010)). Abdellaoui et al. (2007)

compared several definitions that have been proposed in the literature and concluded that the
definitions proposed by Kahneman and Tversky (1979) and Koebberling and Wakker (2005) were
most satisfactory in classifying most subjects according to their attitude towards losses.
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Table 1. Parameter Values and the Disposition Effect

The parameter listed in the studies in the table are the respective boundaries mentioned

regarding the occurance of the Disposition Effect. Market parameters are in the order of
upside return, downside return, riskfree return, probability. Whenever missing or not reported,

values for RD,t and RU,t are derived from µt and σt if mentioned in the study by RU,t = µ
1
t
t +√

1−pt
pt

(
(µ2t + σ2

t )
1
t − (µ2t )

1
t

)
and RD,t = µ

1
t
t −

√
pt

1−pt

(
(µ2t + σ2

t )
1
t − (µ2t )

1
t

)
respectively.

Note that the studies differ in the used market parameters as well as the methodology, the
underlying model and definition of the Disposition Effect. We calculated the required market

values for Kaustia (2010), Roger (2009) and Henderson (2012) as in Barberis and Xiong (2009)

for one period. Li and Yang (2009) match values for λ and α to the disposition measure in
Dhar and Zhu (2006) and other market parameters as e.g. momentum in an earlier version of

their paper. Yao and Li (2013) match their estimates to the data points provided by Odean

(1998). Both provide no direct market parameters. Parameter values for Vlcek and Hens
(2011) are a selection of the parameters mentioned in the study.

Parameter Specifications

Theoretical Study Boundary Values Market Values

Kaustia (2004b) α ≤ 0.67 λ ≤ 1.5 1.334 0.85 1.038 0.5
Vlcek and Hens (2011) α ≤ 0.88 λ ≤ 5 1.330 0.770 1.10 0.5
Barberis and Xiong (2009) α ≤ 0.77 λ ≤ 2.25 1.16 0.89 1.00 0.5
Henderson (2012) α ≤ 0.50 λ ≤ 2.2 1.180 0.84 1.00 -
Li and Yang (2009) α ≤ 0.37 λ = 1.0 - - 1.038 0.5
Roger (2009) α ≤ 1.00 λ ≤ 2.65 1.255 0.854 1.006 0.5
Kaustia (2010) α ≤ 0.7 λ ≤ 1.6 1.62 0.62 1.016 -
Yao and Li (2013) α ≤ 0.74 λ ≤ 1.61 - - - -

model favours the occurance of the Disposition Effect.32 Empirical evidence from
financial studies is mixed as our results for loss aversion seem to be confirmed in
Dimmock and Kouwenberg (2010), who find λ to be lower for investors, who invest
in stocks, but contrasts others such as Hwang and Satchell (2011), who base their
analysis on asset allocation decisions of pension funds. According to them, one rea-
son for our low values for λ might be driven by a selection bias, as those investors,
whose λ ≥ 1 tend to stay away from investing in stocks as they prefer low propor-
tions of stocks in their portfolio (e.g. Ang et al. (2004), Berkelaar et al. (2004),
Polkovnichenko (2005), Gomes (2005), Barberis and Huang (2006), Dimmock and
Kouwenberg (2010)). From a market-based view however, Shumway (1997) investi-
gated an equilibrium asset pricing model with Prospect Theory preferences, finding
λ to be close to 3.11 and α to range near 0.758. The results were fitted to stock
market returns and display a strong dependency concerning the regarded evalua-
tion period. Note that for three month returns as in our case, λ was reported to
be less than one while for one-month returns, α is found to be 1.367, implying risk
seeking in the domain of gains. Benartzi and Thaler (1995) explain the observed
magnitude of equity premium through loss aversion equal to 2.77.

32For given risk sensitivity and market parameters Barberis and Xiong (2009) present some

evidence that the Disposition Effect is less likely to hold as soon as loss aversion disappears. They
offer a rationale whereby individual investors take more aggressive positions in the risky asset to
begin with and cut back the position to prevent his wealth being dipped into losses if the assets

value declines. Henderson (2012), p. 20 comes to a similar conclusion for loss aversion around
2.25 the probability of selling at a gain is close to unity, although in the absence of loss aversion,
the probability is still high.
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Table 2. Parameter Values in the Laboratory

The table provides an overview for a representative selection of studies investigating partic-

ular parameter value characteristics. Note that these studies differ in the used methodology,
reported mean or median and presupposed functional form. CE denoted certainty equivalent

based, LE indicates lottery equivalent method.

Parameter Estimates

Elicitation Study Method Alpha Gamma

Tversky and Kahneman (1992) CE α = 0.88 γ+ = 0.61 γ− = 0.69
Camerer and Ho (1994) LE α = 0.37 γ+ = 0.56 γ− = 0.56
Tversky and Fox (1995) CE α = 0.88 γ+ = 0.69 γ− = 0.69
Wu and Gonzalez (1996) LE α = 0.50 γ+ = 0.71 γ− = 0.71
Birnbaum and Chavez (1997) LE α = 0.82 - -
Fennema and van Assen (1999) CE α = 0.39 - -
Gonzalez and Wu (1999a) CE α = 0.49 γ+ = 0.44 γ− = 0.44
Bleichrodt and Pinto (2000) CE α = 0.77 γ+ = 0.67 γ− = 0.67
Abdellaoui (2000) CE α = 0.89 γ+ = 0.60 γ− = 0.70
Kilka and Weber (2001) CE α = 0.88 γ+ = 0.49 γ− = 0.42
Etchart-Vincent (2004) CE α = 0.97 - γ− = 0.87
Abdellaoui et al. (2005) CE α = 0.91 γ+ = 0.83 γ− = 0.83
Stott (2006) LE α = 0.19 γ+ = 0.96 -
Abdellaoui et al. (2007) LE α = 0.73 - -

Our estimates for the decision weight indicate that γ takes values below one.
One-sided t-tests show that for all round-trips γ is larger than 0.65 as estimated by
Tversky and Kahneman (1992) with a p-value < 0.001, but significantly lower than
one. We provided an argument that low values in some parameter values might be
due to the way Vlcek and Hens (2011) constructed their model. This argumenta-
tion can also be applied here with respect to γ: Similar to our argumentation for
α, it can be shown that for any gain R̂U,T such that a Case 1 round-trip occurs,
observing a sale cannot be explained by Prospect Theory for low values of ω(pt),
implying high values of γ for some pt given α.33 Likewise for round-trips that sat-
isfy the conditions for Case 5 round-trips, it can be shown that for any loss R̂D,T ,
where the relation of possible downside returns to riskless returns is larger than
unity, these trades cannot be explained by Prospect Theory for low values of ω(pt)
or high values of γ for some pt given α.34 The proof is similar for both arguments
and relegated to the appendix.

With respect to the overall picture on Prospect Theory, the interdependence
between α, λ and γ has been discussed in Vlcek and Hens (2011), but is also de-
bated in theoretical studies such as Kaustia (2004b), Polkovnichenko (2005), Dacey
and Zielonka (2008), Kaustia (2010), Li and Yang (2009) and Barberis and Xiong
(2009). In addition, from an econometric point of view, significant correlation
among the estimators may point towards multicollinearity issues, which affects the
quality of our estimators as unbiasedness of estimators only holds asymptotically
(Gonzalez and Wu (1999b)). Thus, the correlation structure across our dataset

33According to Table (1), this statement holds true for almost all values of pt at the time of
the sale.

34In particular, for both cases the non-arbitrage condition, particularly RU,t > Rf,t if pt → 0

or γ → 1, is violated.
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is of some interest. Given our data, we find a weak but statistically significant
positive correlation between α and γ and between λ and γ.35 A statistically sig-
nificant negative relationship seems to exist between α and λ, which is not only
in line with Vlcek and Hens (2011), but also in accordance with other theoretical
studies (Kaustia (2004b), Kaustia (2010), Dacey and Zielonka (2008) and Barberis
and Xiong (2009).36 Regarding the reliability of the Prospect Theory parameters

θ̂k), the low correlation we detected between the parameters also reflects a low level
of multicollinearity, measured in terms of the off-diagonal elements of the inverse
Hessian matrix H(∆t(Uk|θ̂k)). This is also reflected in the low standard errors of

our estimates θ̂k as the inverse of the Hessian matrix serves as the (asymptotic)
covariance matrix of the estimates (Cramer (1986)).37

Our results were derived given the reference point specification in Vlcek and Hens
(2011), however, the sensitivity of our estimators towards the reference point, one of
the essential ingredients of Prospect Theory (Kahneman and Tversky (1981), Kah-
neman and Tversky (2000)) might be of interest as Kahneman and Tversky (1979)
missed to specify, where the reference point should be located. In the context of
Prospect Theory and its relevance for the Disposition Effect, Vlcek and Hens (2011)
assumed that the initial wealth serves as a fixed reference point, a view similar to
studies on the Disposition Effect (e.g. Weber and Camerer (1998)). Despite the
intuitive appeal to use the level of initial wealth, other studies chose a different
approach of what constitutes a loss (Weber and Camerer (1998), (previous stock
price and initial stock price), Odean (1998), Garvey and Murphy (2004), Jordan
and Diltz (2004), Lehenkari and Perttunen (2004), Gneezy (2005) (historical high
prices), Frazzini (2006), Dhar and Zhu (2006), Barberis and Xiong (2009) (Wealth
times riskfree return)). Given the possibility that individual investors adapt their
reference point to their expectations or recent gains or losses (Andreassen (1988),
Arkes et al. (2008), Meng (2010), Ingersoll and Jin (2012)) Prospect Theory ap-
pears to reconciliate with empirical trading pattern. In contrast to Vlcek and Hens
(2011), who assume the reference point to be fixed at the initial wealth W0, Meng
(2010) suggested that the reference point is subject to a dynamic adaption process
and might be equal to the expected wealth (see also Chen and Rao (2002), Arkes
et al. (2008) and Arkes et al. (2010)).

Its not clear how our estimates change if the reference point is modified as
a change in the reference point may alters trading behavior. Consequently, to

35The correlation between α and γ is 0.1333 (p-value 0.0282), the correlation between λ and γ

is 0.1752 (p-value 0.0038), whereas the correlation between α and λ is significantly negative with
−0.4185 (p-value< 0.001).

36A notable exception is the study by Li and Yang (2009) where loss aversion λ does not seem
to have an impact on the magnitude of the Disposition Effect. Li and Yang (2009) do not provide

specific ranges for possible parameters, but discuss the effects of a decrease in risk sensitivity on
the interaction between stock market momentum and the Disposition Effect. As long as α does
not deceed a critical value, a increasing risk sensitivity leads to rising sales of winner stocks for

given return specifications. Once the benchmark value is undershot, less winners were sold albeit

for losing stocks a similar turnaround was not detected. The authors trace this paradox back to
the influence of α on momentum which yields to a reascending of the attractivity for holding hold

on the winning stock, thus counterbalancing the direct effect α has on the Disposition Effect.
37Note that the confidence interval boundaries from the per-investor estimation determines the

boundaries of the confidence intervals of our t-tests. Multicollinearity is expressed in high standard

errors as inferred from the inverse Hessian matrix H(∆t(Uk|θ̂k)), yielding in wide confidence

intervals, due to the flat surface of the likelihood function. As the width of the confidence intervals
of the t-test cannot be smaller than the confidence interval derived from the maximum likelihood
estimation, multicollinearity should be reflected in our t-tests.
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investigate the sensitivity of θ̂k with respect to a change in the reference point,
we modified equation (3.7), replaced the initial wealth W0 by its expected value
W0µt and rerun the evaluation of equation (3.7) to reestimate θk. The results
are presented in Table (6). As the reference point changes, we obtain a different

Figure 6. Estimated Parameters for W0 = W0µt

The table summarizes the result of the evaluation of the maximum likelihood function (3.7) and
the results of a one-sided t-test of the presumption regarding the parameter set α < 1, λ > 1

and γ < 1. V ar. represent the Prospect Theory parameter, Case Type denotes the round-trip

category as described in the text. Mean denotes the arithmetic mean of the estimates across
all investors for which the likelihood function (3.7) was successfully evaluated. Results from

Wald tests performed on per-investor level are not reported. Note that Case 3 is missing as
no Case 3 round-trips are observed.

.

Var. Case
Type

Mean of
Estimates

Standard
Error

p-value
α, γ < 1
λ > 1

Lower 95%
Confidence
Interval

Upper 95%
Confidence
Interval

Number
of Obs.

α Total 0.3751 0.0117 0.0000 0.3520 0.3982 271
Case 1 0.4554 0.0190 0.0000 0.4177 0.4931 107
Case 2 0.4436 0.0362 0.0000 0.3629 0.5243 11
Case 4 0.3943 0.0334 0.0000 0.3227 0.4659 15
Case 5 0.2774 0.0114 0.0000 0.2548 0.3000 138

λ Total 1.1492 0.0068 0.0000 1.1357 1.1627 271
Case 1 1.1327 0.0118 0.0000 1.1094 1.1561 107
Case 2 1.1909 0.0287 0.0000 1.1269 1.2549 11
Case 4 1.1603 0.0197 0.0000 1.1180 1.2026 15
Case 5 1.1566 0.0089 0.0000 1.1390 1.1742 138

γ Total 0.9752 0.0063 0.0000 0.9629 0.9876 271
Case 1 0.9745 0.0099 0.0057 0.9549 0.9941 107
Case 2 1.0165 0.0288 0.7106 0.9524 1.0806 11
Case 4 0.9838 0.0202 0.2175 0.9405 1.0271 15
Case 5 0.9668 0.0089 0.0001 0.9492 0.9844 138

distribution of round-trips in terms of our classification for Case 1 to Case 5 trades.
Nevertheless, risk sensitivity α appears to be robust to changes in the reference
point. As the same individual investor is reestimated given a modified reference
point, paired t-test shows that for all round-trips the difference between both α is
not significant (p-value 0.4639). Concerning loss aversion λ however, the difference
appears to be substantial (p-value < 0.001). A shift in the reference point also
affects γ, which is now significantly increased in comparison to our results if the
reference point is assumed to be equal to the initial wealth (p-value < 0.001).
With regard to the correlations between the various parameters, the correlation
structure seems not much affected: the correlation between α and γ and between
λ and γ is still positive and significantly different from zero on a 1% significance
level. A significantly negative relationship seems to be prevalent between α and
λ, which is in line with the relevant theoretical literature (Kaustia (2004b), Vlcek
and Hens (2011), Kaustia (2010) and Barberis and Xiong (2009) on trading and
Polkovnichenko (2005), Dacey and Zielonka (2008) and Roger (2009)).38 Questions

38The correlation between α and γ is 0.5264 (p-value < 0.001), the correlation between λ and
γ is 0.2349 (p-value < 0.001), wheras the correlation between α and λ is significantly negative

with −0.2608 (p-value < 0.001).
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regarding the sensitivity of our estimators with respect to a shift in the reference
point is closely connected to the way round-trips are defined in our dataset. A
reestimation of θk for round-trips given a different accounting principle such as
Last-in-First-out LIFO yields similar results as a shift in the reference point from
W0 to a reference point larger than W0 if the market displays a positive trend µt.
In the case of LIFO, we find a mean α to be around 0.38, the mean of loss aversion
parameter λ to be located around 1.15 and the mean of γ to substantiate near 0.96
across all round-trips. In neither case these parameter estimates are statistically
distinct from the case where the reference point is shifted to W0µt. Simulations
have shown that the effect of round-trip length on θ̂k is negligible.39

Figure 7. Distribution of Estimated Parameters for W0 = W0µt

The figures on the left illustrate the dependence between gross trade returns and risk sensitivity
parameter α (figure upper left), loss aversion parameter λ (middle left) and of the decision

weighting parameter γ (figure lower left). The figures on the right display the associated

histogram for risk sensitivity parameter α (figure upper right), loss aversion parameter λ
(middle right) and of the decision weighting parameter γ (figure lower right).

39Note that a similar argumentation applies regarding lump-sum trading costs C for purchases
and sales as proportional trading cost factors c can be truncated from ∆t(Uk|θk) if based on the

respective realized gain or loss.
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Figure 8. Estimated Parameters (Nonlinear Least Squares)

The table summarizes the result of the nonlinear least squares estimation and the results of

a one-sided t-test of the presumption regarding the parameter set α < 1, λ > 1 and γ < 1.
V ar. represent the Prospect Theory parameter, Case Type denotes the round-trip category as

described in the text. Mean denotes the arithmetic mean of the estimates across all investors

for which the likelihood function (3.7) was successfully evaluated. Results from Wald tests
performed on per-investor level are not reported. Note that Case 3 is missing as no Case 3

round-trips are observed.

.

Var. Case
Type

Mean of
Estimates

Standard
Error

p-value
α, γ < 1
λ > 1

Lower 95%
Confidence
Interval

Upper 95%
Confidence
Interval

Number
of Obs.

α Total 0.3408 0.0132 0.0000 0.3149 0.3667 271
Case 1 0.4466 0.0205 0.0000 0.4061 0.4870 129
Case 2 0.4077 0.0402 0.0000 0.3094 0.5060 7
Case 4 0.2671 0.0522 0.0000 0.1436 0.3905 8
Case 5 0.2282 0.0122 0.0000 0.2042 0.2523 127

λ Total 1.0564 0.0077 0.0000 1.0412 1.0716 271
Case 1 1.0283 0.0117 0.0084 1.0052 1.0514 129
Case 2 1.1071 0.0300 0.0059 1.0338 1.1805 7
Case 4 1.0544 0.0169 0.0073 1.0145 1.0943 8
Case 5 1.0959 0.0096 0.0000 1.0770 1.1149 127

γ Total 0.7169 0.0090 0.0000 0.6992 0.7346 271
Case 1 0.7085 0.0148 0.0000 0.6792 0.7378 129
Case 2 0.7594 0.0350 0.0002 0.6738 0.8450 7
Case 4 0.6411 0.0499 0.0001 0.5231 0.7591 8
Case 5 0.7269 0.0112 0.0000 0.7047 0.7491 127

Although the maximum likelihood approach we adopted is state of the art in
experimental economics since Hey and Orme (1994) (see e.g. Carbone and Hey
(1994), Hey and Orme (1994), Orme (1995), Hey (1995), Hey and Carbone (1995),
Carbone and Hey (1995), Loomes and Sugden (1995), Carbone (1997), Carbone
and Hey (2000), Loomes et al. (2002) and Stott (2006), we refer to Harrison and
Rutstrom (2008) and de Palma et al. (2008) for an overview), several shortcomings
in the evaluation of the likelihood function (3.7) can affect our Prospect Theory
estimates (see Cramer (1986), Liu and Mahmassani (2000), Rabe-Hersketh and
Everitt (2004) and Gould et al. (2006)) if these shortcomings are correlated with
θk.

To see whether our estimates change if we embrace an alternative estimation
method, we adopt a alternative calibration approach in which we minimize the
(normalized) squared difference of Prospect Values ∆t(Uk|θk). According to Weier-
strass Theorem, a solution can be obtained for a continuous spectrum of θk and
by auxiliary defining border values. The objective function in our case is continu-
ous in θk and constrained such that a solution for the optimal vector of θk can be
found. Minimization with respect to θk was performed in Stata using the optimize
command embedded in Stata’s matrix calculation environment Mata. Standard er-
rors on a per-investor level were derived from the inverse of the Hessian matrix
of the objective function (for details on non-linear least square methods see e.g.
Bard (1974), Seber and Wild (1989) and Wooldridge (2010), Chapter 12). For the
numerical search algorithm, we specified the Newton-Ralphson algorithm as search
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Figure 9. Distribution of Estimated Parameters (Nonlinear
Least Squares)

The figures on the left illustrate the dependence between gross trade returns and risk sensitivity

parameter α (figure upper left), loss aversion parameter λ (middle left) and of the decision
weighting parameter γ (figure lower left). The figures on the right display the associated

histogram for risk sensitivity parameter α (figure upper right), loss aversion parameter λ
(middle right) and of the decision weighting parameter γ (figure lower right).

method as our pretests revealed that the Newton-Ralphson algorithm seems to con-
verge more reliably when minimizing the squared difference to find θk. However,
by minimizing the squared difference, outliers obtain a higher weight compared to
minimizing the absolute difference as in Vlcek and Wang (2007).

A comparison between the results in Table (8) with our estimates in Table (4)
shows that both parameter estimates reveal a certain similarity. According to
paired t-tests, the correct test in this case as the trade history of the same individ-
ual investor has been evaluated by two different methods, we find for risk sensitivity
parameter α under the nonlinear least squares method, that their difference is not
significant (p-value 0.5780), likewise for loss aversion parameter λ (p-value 0.2180)
and for the decision weighting parameter γ (p-value 0.5673). The correlation struc-
ture seems also to be preserved and is similar to the maximum likelihood estimators.
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We still detect positive correlation between α and γ as well as between λ and γ
and negative correlation between α and λ.40 We suspect the remarkable similarity
between our maximum likelihood estimators and those estimators obtained from
the nonlinear least square method to be systematic. Recall that the maximum like-
lihood estimation was performed using normally distributed error terms εk. Given
this structure, the nonlinear least square method and the maximum likelihood ap-
proach converge as shown by Seber and Wild (1989), thus the similarity to the
maximum likelihood estimates might not be completely coincidental.

6. Discussion and Summary

Hitherto, following a brief review of the application of Prospect Theory in fi-
nance in general and trading models in particular, we selected the model of Vlcek
and Hens (2011) due to its prominence, simplicity and intuitive appeal. As their
model is constructed for a rather theoretical environment, we needed to extend
their framework to capture the features of our dataset to address the question,
which Prospect Theory parameters comply with observed trading behavior. Given
a dataset of trading data of individual investors from a large German discount
brokerage firm, we estimated the Prospect Theory parameters, discussed its impli-
cations and limitations with regard to the outcomes of our estimation and compare
them to the results of related studies.

Models such as Vlcek and Hens (2011) illustrate the decision process as a myopic
optimization problem, which implicitly results in an underestimation of the value
of waiting (Henderson (2012)). If the Disposition Effect is modeled as result of
sequential decision making instead (Zuchel (2001)), models that apply a intertem-
poral optimization as in Kyle et al. (2006) and Henderson (2012) address this feature
more adequately. These models have been recently elaborated by Nielssen and Jaf-
fray (2004), Barberis and Xiong (2009) and Ebert and Strack (2012) among others.
Moreover, considering the full spectrum of Prospect Theory parameters can lead
to more subtle explanations for the interdependence between Prospect Theory and
trading pattern such as the Disposition Effect (Barberis (2012)).

Another aspect of Vlcek and Hens (2011) we didn’t address in this paper is the
question whether the mathematical specification of Prospect Theory, which Vlcek
and Hens (2011) used in their model, is the one that provides the best fit to our
data. Although Kahneman and Tversky (1979) provided some mathematical rea-
sons for the power functional used in Prospect Theory (Kahneman and Tversky
(1979), Appendix), its is not unchallenged whether this functional form fits for fi-
nance. According to Vlcek and Hens (2011) it appears to be difficult to reconciliate
Prospect Theory under a power functional with trading pattern such as the Dispo-
sition Effect. A number of recent studies in finance have challenged the idea of a
power functional and its ability to capture individual investors’ trading behavior.
Exemplarily, Rieger and Wang (2008) refined Prospect Theory for the application
in continuous-outcome-environments as it is common to model financial markets
and assets using stochastic calculus. In DeGiorgi and Hens (2006), the authors
discuss the idea of a piecewise negative exponential value function (see DeGeorgi
et al. (2004)) to capture trading patterns such as the Disposition Effect. They argue
that given the power function as used in Vlcek and Hens (2011), investors would

40In detail, the correlation between α and γ is 0.6974 (p-value < 0.001) as well as between λ
and γ (0.2969, p-value < 0.001) and negative correlation between α and λ with −0.1401 (p-value

0.0211).
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not chose to invest in risky assets at the beginning, however, under a piecewise
negative exponential value function, the optimal solution can generate a trading
pattern similar to the Disposition Effect.41

The difficulty of Vlcek and Hens (2011) to explain the Disposition Effect is also
related to the market parameters we observed, in particular the low expected re-
turns µt from the risky assets (recall our results in Table (1)). Kaustia (2010)
noted that low expected values yield to inconsistencies if the investor considers
whether the asset should be held ex ante, a point that has been remarked in re-
cent literature (Kaustia (2004b), Barberis and Xiong (2009)) whereby Kyle et al.
(2006) emphasize that this inconsistency does not arise with the piecewise negative
exponential value function. However, Henderson (2012) demonstrates that under
S -shaped preferences the risky stock can display low Sharpe-ratios being equivalent
to relatively poor expected returns and will still be hold ex-ante if the individual
investor gambles on the possibility of liquidating at a small gain. This is a surpris-
ing implication as Vlcek and Hens (2011) remarked that Prospect Theory cannot
completely account for the Disposition Effect if the investor takes into account the
decision to buy the stock ex-ante.

Despite the work of DeGeorgi et al. (2004), DeGiorgi and Hens (2006), Kyle
et al. (2006) and Rieger and Wang (2008), Prospect Theory with fixed reference
points and a power functional is still the most-commonly used functional form in
financial studies, backed by recent studies that deal with the best fitting shape
(Wakker (2008)). For instance, Blondel (2002) fitted linear, power and exponential
functions to experimental data. He finds strong evidence in favor for the power and
exponential function, concluding that these forms provide a better fit to his data
than linear functions. Furthermore, he notes that power functions fit slightly better
that exponential ones. Stott (2006) examined the best fit for power and exponential
functions, while quadratic and linear specifications display the worst. Stott (2006)
finds (Cumulative) Prospect Theory to be most predictive if power value function
is combined with Prelec (1998) probability weighting function when using a logit
stochastic process. A further comparison between the power and exponential func-
tional forms showed, in line with Blondel (2002), that power specifications fit even
better to experimental data.42 Other experimental studies such as Lattimore et al.
(1992), Hey and Orme (1994) and Abdellaoui (2000) assess parametric forms at the
level of individual subjects. From the perspective of experimental studies, results
are most consistent with an inverse S -shaped probability weighting function (Wu

41DeGiorgi and Hens (2006) mention that under an exponential instead of a power-form of the
prospect value function, the problem whether the asset is held ex ante can be solved due to the fact
that under a negative exponential displays more curvature at the edges of the return distribution.

It should be noted that as soon as non-negative skewness is present in the return distribution of

the stock, where an increase in the stock value shifts the position in the domain of large gains
and a decline puts him in a relatively small dent in his wealth position, the mild curvature of the

S -shaped prospect function given a power-functional is sufficient for the Disposition Effect. In
that case, the investor needs a larger stock position after a gain compared to a position after a
loss to gamble to the edge of the respective part of his prospect value function and the Disposition

Effect may hold for the given market parameters (see Barberis and Xiong (2009), Li and Yang
(2009)).

42Levy and Levy (2002) however challenged the idea of the S -shaped Prospect Theory value
function since their data rather supports Markowitz’s hypothesis of an inverse S-shape. They
used a stochastic dominance approach to conclude that investors are not generally risk-loving over

losses but are more likely to exhibit risk-aversion in both the gain and loss domains. In contrast
to Levy and Levy (2002), Wakker (2003) showed that Levy and Levy’s mistake was to neglect the
probability weighting function. Once it is incorporated into their analysis, their data supports
Prospect Theory.
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and Gonzalez (1996), Wu and Gonzalez (1999), Abdellaoui (2000), Bleichrodt and
Pinto (2000), Abdellaoui et al. (2005)). However, to the best of our knowledge,
nobody tried to test a piecewise negative exponential function yet.
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7. Remarks on the Maximum Likelihood Approach

As elaborated, experimental studies maximize the overall likelihood of an in-
vestor or decision maker, given the assumption of stochastically independent error
terms yielding the likelihood function for a utility model of type k, expressed as

logL(∆t(Uk|θk)) =
∑
t∈T

∑
I∈Ik,t

Ik,t log pIk,t(∆t(Uk|θk)),

in which it is required that ∆t(Uk|θk) is a one-to-one relationship connecting the
functional values to particular values of θk and where pIk,t(∆t(Uk|θk)) denotes
the respective conditional probabilities. To clarify notation and provided there
exists a unique solution to the maximizing problem within the possible range of
θk, maximizing the likelihood function (7.1) for a given sample and time periods

t ∈ {1, . . . , T} returns a maximum likelihood estimate θ̂k|n,t, depending on the

sample size, of the true but unknown parameter θ̂k, briefly denoted as

θ̂k|n,t = arg max
θk∈θk

logL(∆t(Uk|θk)). (7.1)

Accordingly, the obtained estimator θ̂k|n,t is characterized by the usual standard
conditions concerning the score vector S(∆t(Uk|θk)), which should be equal to a
zero vector, and the Hessian matrix H(∆t(Uk|θk)), consequently being positive
definite. Ignoring σt for a moment and following Edwards (1992), the score vector
S(∆t(Uk|θk)) is

S(∆t(Uk|θk)) =
∑
I∈Ik,t

δ(Uk|θk)S(∆t(θk)) (7.2)

where we use the abbreviation δt(Uk|θk) to denote the square matrix of first deriva-
tives of ∆t(Uk|θk) with respect to each of its parameters and denote the (Kk × 1)
vector of outer derivatives of the likelihood function as S(∆t(θk)), being the prod-
uct of a diagonal matrix I with elements Ik,t/pIk,t and the diagonal matrix PI con-
taining the outer derivatives of pIk,t . Following this notation, the Hessian matrix
H(∆t(Uk|θk)) consists of two terms, namely a matrix containing partial deriva-
tives of the elements of δ(Uk|θk) and a matrix collecting the second derivatives of
∆t(Uk|θk) with respect to its parameters (see Edwards (1992) for details).43

To obtain the Information matrix I(∆t(Uk|θ̂k), the sign of the Hessian needs to
be reversed and taken by its expectations, where we can use the fact that E(Ik,t) =
pIk,t . Since the sum of the choice probabilities equals 1

∑
I∈Ik,t pIk,t = 1, the last

term of the Hessian vanishes if evaluated at θ̂k such that the last term can be
greatly simplified (Fisher (1956), Edwards (1992), their Theorem 7.2.2) to

I(∆t(Uk|θ̂k)) =
∑
I∈Ik,t

δ(Uk|θk)I(∆t(θk))δ(Uk|θk)
′
. (7.3)

Here, δt(Uk|θk) denotes the square matrix of first derivatives of ∆t(Uk|θk) with

respect to each of its parameters and I(∆t(θk)) = PIP
′

II being the product of a
diagonal matrix I with elements Ik,t/pIk,t and the diagonal matrix PI containing
the outer derivatives of pIk,t . It is evident from this structure that for each Ik,tth

term, the Hessian is a positive semi-definite matrix since I(∆t(θk)) = PIP
′

II is

43Note that due to the independence assumption, each element of the score vector and the Hes-
sian matrix consist of a series of sums. This is not surprising since, according to the independence

assumption across time and choice sets, the log-likelihood function inherits the regularity property
in the sense that differentiation and summation are interchangeable (e.g., Cramer (1986)), which

in turn carries over to the entire sample if it holds for any single observation.
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symmetrical. Disregarding the possibility that H(∆t(Uk|θk)) is singular, the Hes-

sian is in fact positive definite. This implies that I(∆t(Uk|θ̂k)) is also a positive

definite matrix over reasonable values of θ̂k.

We mentioned above that the usual invariance and asymptotic properties can
be applied to show that maximizing the log-likelihood function for each of the
Kk elements of θk and nuisance parameter σt of the score vector returns es-
timators that are consistent and asymptotically efficient. Until now, we used
θ̂k and the sample size–dependent estimate θ̂k|t,n interchangeably and implicitly
assumed that the latter is asymptotically consistent with the former. Showing
that θ̂k|n,t is indeed a consistent and asymptotically efficient estimator of θ̂k is
conceptually straightforward and based on several existing insights on parame-
ter transformation from likelihood theory (for the classical proof see Wald (1949)
and Chung (1974), Serfling (1974), Spanos (1999) and DeGroot and Schervish
(2002) for more recent sources). In the case at hand, it must be shown that

limnt→∞ P
(
|∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)| > ν

)
= 0 for any arbitrarily small posi-

tive value of ν, a feature that, according to the Slutsky Theorem, carries over to
the estimators θ̂k|n,t. To sketch this, we return to a series of convergence theorems,
pre-supposing that certain criteria for their application are met (Gnedenko (1962)).
In accordance with the usual line of argumentation, we define mean expected values
of the likelihood function logL(∆t(Uk|θk)) and information matrix I(∆t(Uk|θk))
as

L̄(∆t(Uk|θk)) =
1

nt
E (logL(∆t(Uk|θk))) and Ī(∆t(Uk|θk)) =

1

nt
E (I(∆t(Uk|θk))) .

It should be remembered that ∆t(Uk|θk) are independent but not identically dis-
tributed since their density depends on the current characterization of the market
parameters for the lookback period–and it can be expected that these values differ
across time t and stock n. Consequently, the score vector L(∆t(Uk|θk)) and the
Hessian H(∆t(Uk|θk)) are not identically distributed either–a feature that carries
over to its mean values. To make this distinction clearer, we denote the respective
estimates and terms with subscripts n, t. Invoking the Chebychev version of the
Weak Law of Large Numbers, we know that

1

nt
logL(∆t(Uk|θk))

p→ L̄(∆t(Uk|θk)) (7.4)

whereupon the sample mean converges in probability to its expectations at any
θ ∈ θk. According to Gnedenko (1962) and Rao (1973), this determines the char-

acteristics of the maximands θ̂k|n,t for (7.1) as

max
θk∈θk

1

nt
logL(∆t(Uk|θk))

p→ max
θk∈θk

L̄(∆t(Uk|θk)). (7.5)

We can directly make use of this result and expand the score vector of a given
sample size in a Taylor series around each of the Kk true parameters to obtain the
approximation

Sk|n,t(∆t(Uk|θ̂k|n,t)) ≈

≈ Sk|n,t(∆t(Uk|θ̂k)) +Hk|n,t(∆t(Uk|θ̂k))(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k))

Since Sk|n,t(∆t(Uk|θ̂k)) is a zero vector at θ̂k, it is possible to isolate the parts of the

utility difference that contain the true estimator θ̂k of model k by rearrangement
of the former expression to obtain

(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)) ≈ −Hk|n,t(∆t(Uk|θ̂k))−1Sk|n,t(∆t(Uk|θ̂k))
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or accordingly
√
nt(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)) ≈

≈
(
− 1√

nt
Hk|n,t(∆t(Uk|θ̂k))

)−1
1√
nt
Sk|n,t(∆t(Uk|θ̂k)).

(7.6)

If either the number of stocks traded by this particular investor n increases (i.e.,
the investor engages in day-trading) or we can keep track of the investor’s trading
history for a longer period of time, meaning that t extends considerably (i.e., the
investor’s security account was opened in the past and has been actively used ever
since), the Chebychev Weak Law of Large Numbers implies that

− 1√
nt
Hk|n,t(∆t(Uk|θ̂k))

p→ Ī(∆t(Uk|θk)). (7.7)

Since inverting Hk|n,t(∆t(Uk|θ̂k)) can be treated as a function of the Hessian
matrix, we know by the Slutsky Theorem (Cramer (1946), Theil (1971), Serfling
(1974)) that the results from above also hold for(

− 1√
nt
Hk|n,t(∆t(Uk|θ̂k))

)−1
p→
(
Ī(∆t(Uk|θk)))−1.

The classical proof would continue from here, but we need to remember that, as
pointed out earlier, the mean values are not identically distributed. To account for
this heterogeneity, we introduce parameter σt such that we need to add an inter-
mediate step and use the Liapounov Central Limit Theorem for non-identically
distributed variables to argue that their distribution also converges asymptoti-
cally to a normal distribution (see Gnedenko (1962)). Keeping in mind that

Sk|n,t(∆t(Uk|θ̂k)) equals zero if evaluated at θ̂k, its variance is

E

(
1√
nt
Sk|n,t(∆t(Uk|θ̂k))Sk|n,t(∆t(Uk|θ̂k))T

1√
nt

)
=

1√
nt
Hk|n,t(∆t(Uk|θ̂k)),

of which we already know that 1√
nt
Hk|n,t(∆t(Uk|θ̂k)) = Īk|n,t(∆t(Uk|θ̂k)). By

combining this with equation (7.6) and invoking the Chebychev Weak Law of Large
Numbers once more, we obtain in the limit

√
nt(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k))

L→ N

0,
∑
I∈Ik,t

δ(Uk|θk)
′
I−1(∆t(θk))δ(Uk|θk)


(7.8)

as claimed (Cramer (1946)). These are important results for our likelihood ap-
proach, since, due to its limiting distribution being normal, it allows us to use sim-
ple t-tests to evaluate the statistical significance of each of our maximum likelihood
estimators, although the likelihood function is highly nonlinear due to ∆(Uk|θ̂k).
By making use of the Chebychev Inequality, we complete the final step and estab-
lish a connection to the probability statement as claimed in the text. In principle,
the statement posits that the probability of a positive difference is below a certain
bound, defined in terms of variance

P
(
|∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)| > ν

)
≤
H(∆t(Uk|θ̂k|n,t))

ν2nt
(7.9)

where, according to Rao (1945) and Cramer (1946), the lower bound of the variance

of ∆t(Uk|θ̂k|n,t) is defined by the inverse of the information matrix

H(∆t(Uk|θ̂k|n,t)) ≥ I(∆t(Uk|θ̂k|n,t))−1 (7.10)
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as n or t goes to infinity as shown in (7.7), the right-hand side approaches zero.
To complete the statement, according to the Slutsky Theorem, this carries over
to the estimates for θ̂k|n,t. Concerning these estimates, Lehmann (1983) shows,

furthermore, that, under certain regularity conditions, the estimator θ̂k|n,t leads to
the best possible inference in terms of being efficient if measured according to the
Cramér-Rao Lower Bound.

8. Proof: Derivation of Stock Parameters RU,t and RD,t

Values for RD,t and RU,t can be assigned by calculating from µt and σt at time t

for differing formation periods with RU,t = µ
1
t
t +

√
1−pt
pt

(
(µ2
t + σ2

t )
1
t − (µ2

t )
1
t

)
and

RD,t = µ
1
t
t −

√
pt

1−pt

(
(µ2
t + σ2

t )
1
t − (µ2

t )
1
t

)
respectively.

Proof. From (3.1) we can calculate the expected value and the volatility of the
stock for time t in terms of returns as µt = (RU,tpt + RD,t(1 − pt))

t and σ2
t =(

(R2
U,tpt +R2

D,t(1− pt))− (RU,tpt +RD,t(1− pt))2
)t

. The required values of RU,t
and RD,t have to fulfill these two basic equations simultaneously. Adding and
substracting µ2 combines them and gives us µ2

t + σ2
t − µ2

t = ptR
2
U,t(1 − pt) +

(1 − pt)R2
D,tpt − 2pt(1 − pt)RU,tRD,t which allows us to use the binomial formula

µ2
t + σ2

t − µ2
t = pt(1 − pt)[RU,t − RD,t]2 and RU,t − RD,t =

√
(σ2 + µ2)

1
t − (µ2)

1
t .

From µt follows that RU,t = 1
pt
µ

1
t − 1−pt

pt
RD,t and RD,t = 1

1−ptµ
1
t − pt

1−ptRD,t. By

combining this with µ2
t +σ2

t −µ2
t , the required market values for RU,t and RD,t can

be calculated as stated above.
�

9. Proof of further statements: Case 1

It can be shown that for any gain R̂U,T such that R̂U,tRU,t > R̂U,tRf,t >

R̂U,tRD,t > 1, observing a sale is inconsistent to be explained by Prospect The-
ory for high values of risk sensitivity parameter α or low values of ω(pt), implying
high values of γ if pt is below 50%. Note that Vlcek and Hens (2011) discussed the
case where α converges to zero.

Proof. The observation of a sale with large gains where R̂D,T ≥ 1
RU,t

in addition to

α > 0 we obtain (R̂U,TRU,t − 1) < 1, (R̂U,TRD,t − 1) < 1, (R̂U,TRf,t − 1) < 1 which
according to Vlcek and Hens (2011) implies (after truncating and canceling W0 from

both sides of the inequality) that ω(pt)(R̂U,TRU,t−1)α+ω(1−pt)(R̂U,TRD,t−1) ≤
(R̂U,TRf,t−1)α is true. Note that, as no losses occur, the decision to sell the stock is

independent from loss aversion parameter λ. Dividing by (R̂U,TRf,t−1)α the obser-

vation of a sale implies that ω(pt)
(

(R̂U,TRU,t−1)
(R̂U,TRf,t−1)

)α
+ω(1−pt)

(
(R̂D,TRD,t−1)
(R̂D,TRf,t−1)

)α
≤ 1.

From this inequality we know that ω(1 − pt) (R̂U,TRD,t−1)
(R̂U,TRf,t−1)

is smaller than unity as

long as ω(1− pt) < 1, ω(pt) < 1 and
(R̂U,TRD,t−1)
(R̂U,TRf,t−1)

< 1. Unfortunately,
(R̂U,TRU,t−1)
(R̂U,TRf,t−1)

is larger than unity, so that the overall effect of R̂U,T on the inequality is not clear if

ω(1−pt)
(

(R̂U,TRU,t−1)
(R̂U,TRf,t−1)

)α
> 1. For ω(pt) < 1, ω(1−pt) < 1 and

(R̂U,TRU,t−1)
(R̂U,TRf,t−1)

< 1 we

rewrite ω(1−pt)
(

(R̂U,TRU,t−1)
(R̂U,TRf,t−1)

)α
as α
√
ω(pt)(R̂U,TRU,t−1) > (R̂U,TRf,t−1). Some
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rearrangements give us R̂U,T >
α
√
ω(pt)−1

α
√
ω(pt)RU,t−Rf,t

. Substituting RU,t = kRf,t where

for any k > 1 we obtain 1
lRf,t

α
√
ω(pt)−1

α
√
ω(pt)k−1

. Similarly, replacing RD,t = lRf,t for any

l < 1 such that for Case 1 R̂U,t >
1

RD,t
= 1

lRf,t
holds true, we get l <

α
√
ω(pt)k−1

α
√
ω(pt)−1

. If

the no-arbitrage-condition holds (RU,t > Rf,t > RD,t), we require l < 1 < k also to

be true. By substituting k = lm or l = k
m for l < 1 requires m > 1, we are able to

reformulate k
m <

α
√
ω(pt)k−1

α
√
ω(pt)−1

, which implies k
(

1
m

α
√
ω(pt)− α

√
ω(pt)− 1

m

)
< −1.

As k > 1 we find that
(

1
m

α
√
ω(pt)− α

√
ω(pt)− 1

m

)
< 0 or m <

α
√
ω(pt)−1
α
√
ω(pt)

respec-

tively. It can be shown that for ω(pt) → 0 or α → 1 it is necessary to require

m < 1. To see this, by substituting α = 1
s and ω(pt) = 1

v in m <
α
√
ω(pt)−1
α
√
ω(pt)

we can

write m <
1
s

√
1
v−1

1
s

√
1
v

= 1− vs, where for ω(pt) we find that v > 0 for any value of s.

The case of α→ 0, which can be expressed as s→∞, we obtain an expression for
m which is smaller than one. If α grows beyond any boundaries such that s→ 0,
we find that m < 0. On the other side, for RU,t > Rf,t and Rf,t > RD,t condition
m > 1 must hold such that we are forced to conclude that a sale in the domain
of high gains is inconsistent with Prospect Theory as it implies a violation of the
non-arbitrage condition.

�

10. Proof of further statements: Case 5

It can be shown that for any loss R̂D,T , where R̂D,T ≤ 1
RU,t

such that 1 >

R̂D,tRU,t > R̂D,tRf,t > R̂D,tRD,t, and where the relation of possible downside
returns to riskless returns is larger than unity, these trades cannot be explained
by Prospect Theory for high values of risk sensitivity parameter α or low val-
ues of ω(pt) or high values of γ for some pt. Assume exemplarily for moder-
ate losses, given the prospect values of a stock and a riskfree investment alter-
native, where a sale of the respective stock can be observed, which implies that
ω(pt)(1 − R̂D,TRU,t)α + ω(1 − pt)(1 − R̂D,TRD,t) ≤ (1 − R̂D,TRf,t)α. The non-
arbitrage is violated (especially the requirement that RU,t > Rf,t) if pt → 0 or
α→ 0 and we yield inconsistencies in the attempt to explain these loss trades with
Prospect Theory. The proof is similar for all other forms of the prospect value as
described above.

Proof. For R̂D,T ≤ 1
RU,t

in addition to α > 0 we obtain (1 − R̂D,TRU,t) < 1, (1 −
R̂D,TRD,t) < 1, (1 − R̂D,TRf,t) < 1 such that ω(pt)(1 − R̂D,TRU,t)

α + ω(1 −
pt)(1 − R̂D,TRD,t) ≤ (1 − R̂D,TRf,t)

α is true. Dividing by (1 − R̂D,TRf,t)
α we

get ω(pt)
(

(1−R̂D,TRU,t)
(1−R̂D,TRf,t)

)α
+ ω(1 − pt)

(
(1−R̂D,TRD,t)
(1−R̂D,TRf,t)

α

≤ 1 . We know that expres-

sion ω(pt)
(1−R̂D,TRU,t)
(1−R̂D,TRf,t)

is smaller than unity as long as ω(pt) < 1, ω(1 − pt) < 1

and
(1−R̂D,TRU,t)
(1−R̂D,TRf,t)

< 1. Unfortunately,
(1−R̂D,TRD,t)
(1−R̂D,TRf,t)

is larger than unity, so that

the overall effect on the inequality with respect to R̂D,T is not clear. For ω(pt) <

1, ω(1 − pt) < 1 and
(1−R̂D,TRU,t)
(1−R̂D,TRf,t)

< 1 we rewrite ω(1 − pt)
(1−R̂D,TRD,t)
(1−R̂D,TRf,t)

> 1

as α
√
ω(1− pt)(1 − R̂D,TRD,t) > (1 − R̂D,TRf,t). Some rearrangements give us
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R̂D,T >
1− α
√
ω(1−pt)

Rf,t− α
√
ω(1−pt)RD,t

. If Rf,t = kRD,t where for any k > 1, we obtain

1
RD,t

1− α
√
ω(1−pt)

k− α
√
ω(1−pt)

. For RU,t = lRD,t where l > 1 we reformulate R̂D,T < 1
RD,t

=

1
lRD,t

and get
1− α
√
ω(1−pt)

k− α
√
ω(1−pt)RD,t

< 1
l or l <

k− α
√
ω(1−pt)

1− α
√
ω(1−pt)

respectively. If the no-

arbitrage-condition holds (RU,t > Rf,t > RD,t), we require l > k > 1 also to be

true. Substituting for l = mk we can conclude that 1 < mk <
k− α
√
ω(1−pt)

1− α
√
ω(1−pt)

, which

implies k[m− 1−m α
√
ω(1− pt)] < − α

√
ω(1− pt) and m[1− α

√
ω(1− pt)]− 1 < 0.

It can be shown that for ω(1− pt)→ 0 or α → 0 it is necessary to require m < 1.
If we substitute α = 1

s and ω(1 − pt) = 1
v in m < 1

1− α
√
ω(1−pt)

we can write

m < 1

1− 1
s

√
1
v

= 1
1− 1

vs
. This can be expressed as lim

s→0

[
vs

vs−1
]
→ 1 and for large s and

large v we obtain m < 1. On the other side, for RU,t > Rf,t condition m > 1 must
hold, thus leading to a contradiction. This completes the proof and would therefore
yield to inconsistencies in the modeling, in other words, in our framework Prospect
Theory may fail to explain sales after a realizable loss appears in particular situa-
tions.

�
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