Entwicklung neuartiger Modulatoren der Arachidonsäurekaskade

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt beim Fachbereich Biochemie, Chemie und Pharmazie der Goethe-Universität Frankfurt am Main

von

Stefano Woltersdorf

aus Frankfurt am Main

Frankfurt am Main 2015

(D30)

Vom Fachbereich Biochemie, Chemie und Pharmazie der Goethe-Universität als Dissertation angenommen.

Dekan: Univ.-Prof. Dr. M. Karas

- 1. Gutachter: Univ.-Prof. Dr. H. Stark
- 2. Gutachter: Univ.-Prof. Dr. D. Steinhilber

Datum der Disputation:

Meiner Familie

- und allen die mir wichtig sind

Inhaltsverzeichnis

1.	Ν	Iolekularbiologischer Hintergrund	5
	1.1. Die	Arachidonsäurekaskade – Ein Überblick	6
	1.2. Der	· Cyclooxygenaseweg und die Prostaglandine	8
	1.2.1.	Isoformen der Cyclooxygenase	9
	1.2.1.1	COX-1	9
	1.2.1.2	COX-2	. 12
	1.2.2.	Der COX-Katalyse-Mechanismus	. 13
	1.2.3.	Biologische Funktion der Prostaglandine	. 16
	1.2.4.	Inhibitoren der COX	. 19
	1.2.4.1	Nicht-selektive COX-Inhibitoren	. 19
	1.2.4.2	Selektive COX-2-Inhibitoren	. 21
	1.2.4.3	Duale COX-2/5-LO-Inhibitoren	. 23
	1.2.4.4	Indikationen der NSAR	. 24
	1.3. Der	· Lipoxygenaseweg und die Leukotriene	25
	1.3.1.	Struktur des 5-LO Enzyms	. 26
	1.3.2.	Der 5-LO-Katalysemechansimus	. 28
	1.3.3.	Regulation der Expression und Aktivität der 5-Lipoxygenase	. 29
	1.3.4.	Biologische Funktion der Leukotriene	. 32
	1.3.5.	Inhibitoren der 5-Lipoxygenase	. 33
	1.3.5.1	Indirekte / FLAP-Inhibitoren	. 33
	1.3.5.2	Eisen-Chelat-Inhibitoren	. 35
	1.3.5.3	Redox-Inhibitoren	. 36
	1.3.5.4	Nicht-Redox-Inhibitoren	. 37
	1.3.6.	Weitere Inhibitoren in der Anti-Leukotrien-Therapie	. 38
	1.3.7.	Indikation einer Anti-Leukotrien-Therapie	. 41
	1.4. Ent	zündungsauflösende Lipidmediatoren	43
	1.4.1.	Lipoxine	. 44
	1.4.2.	Resolvine	. 46
	1.4.3.	Protectine	. 49
	1.4.4.	Maresine	. 50
2.	Z	lielsetzung	52
	2.1. Cyc	clooxygenase Modulatoren	52
	2.2. 5-L	ipoxygenase-Inhibitoren	53
3		vnthetischer Teil	55
~•	31 7	Synthese der Cycloovygenese Meduletoren	56
	3.1. Zul	Docking der Cycloovygenase Modulatoren	JU 56
	J.1.1.	Doeking uci Cyclooxygenase-wodulatofen	. 50

3.1.2.	Modulatoren mit COX-2 selektiven Grundgerüsten	59
3.1.2.1	Synthese der Celecoxib-Derivate	59
3.1.2.2	Synthese der Etoricoxib-Derivate	61
3.1.2.3	Synthese der Rofecoxib-Derivate	63
3.1.2.4	. Synthese der Valdecoxib-Derivate	66
3.1.2.5	Synthese COX-2-selektiver Derivate mit diversen zentralen Heterozyklen	69
3.1.3.	Modulatoren mit NSAR-Grundgerüst	77
3.1.3.1	Synthese der Diclofenac-Derivate	77
3.1.3.2	Synthese der Nimesulid-Derivate	81
3.1.3.3	Synthese der Acetylsalicylsäure-Derivate	85
3.1.3.4	Synthese der O-Acetylsalicylhydroxamsäure-Derivate	86
3.1.3.5	Synthese des Piroxicam-Derivats	87
3.2. Syr	these der 5-Lipoxygenase Inhibitoren	
3.2.1.	Allgemeine Synthese von substituierten 2-Aminothiazolen	88
3.2.2.	Variation von 2-Aminothiazolen an der 5-Thiazol-Position	
3.2.3.	Variation von 2-Aminothiazolen an der 4-Thiazol-Position	
3.2.3.1	Synthese von Coumarin-Derivaten an der 4-Thiazol-Position	
3.2.4.	Synthese von analogen Thiazolen ohne bzw. mit veränderter 2-Aminofunktion	
3.2.5.	Variation von 2-Aminothiazolen an der 2-Thiazol-Position	101
3.2.6.	Synthese von 2-Aminothiazolen mit kombinierten Variationen	102
3.3. Zus	ammenfassung der Synthesen	108
4. 1	Pharmakologischer Teil	109
4.1. Pha	ırmakologische Charakterisierung der COX-aktiven Substanzen	110
4.1.1.	In vitro und in vivo Testsysteme	110
4.1.1.1	Bestimmung der COX-Aktivität	110
4.1.1.2	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell	111
4.1.1.2 4.1.2.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung	111
4.1.1.2 4.1.2.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen	111
4.1.1.2 4.1.2. 4.1.3.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650	111
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650	111
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha 4.2.1.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 trmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme	
4.1.1.2 4.1.2. 4.1.3. 4.2. Ph: 4.2.1. 4.2.1.1	 Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 Irmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme Bestimmung der 5-LO-Aktivität 	
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha 4.2.1. 4.2.1.1 4.2.1.2	 Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 Irmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme Bestimmung der 5-LO-Aktivität Bestimmung der Toxizität 	
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha 4.2.1. 4.2.1.1 4.2.1.2 4.2.2.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 Irmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme Bestimmung der 5-LO-Aktivität Bestimmung der Toxizität Hemmwirkung und SAR der 2-Aminothiazole als 5-LO-Inhibitoren	
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha 4.2.1. 4.2.1.1 4.2.1.2 4.2.2. 4.2.3.	Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 trmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme Bestimmung der 5-LO-Aktivität Bestimmung der Toxizität Hemmwirkung und SAR der 2-Aminothiazole als 5-LO-Inhibitoren Weitere Charakterisierung von ST-1853	
4.1.1.2 4.1.2. 4.1.3. 4.2. Pha 4.2.1. 4.2.1.1 4.2.1.2 4.2.2. 4.2.2. 4.2.3. 5. 2	 Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell. Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen Weitere Charakterisierung von ST-1650 urmakologische Charakterisierung der 5-LO-aktiven Substanzen In vitro Testsysteme Bestimmung der 5-LO-Aktivität. Bestimmung der Toxizität Hemmwirkung und SAR der 2-Aminothiazole als 5-LO-Inhibitoren. Weitere Charakterisierung von ST-1853 	

6.1.	Analytische Methoden, Geräte und Materialien	
6.2.	Allgemeine Synthesevorschriften	
6.3.	Synthese und Charakterisierung der Cyclooxygenase-Modulatoren	
6.3	1. Celecoxib-Derivate und ihre Vorstufen	
6.3	2. Etoricoxib-Derivate und ihre Vorstufen	
6.3	3. Rofecoxib-Derivate und ihre Vorstufen	
6.3	4. Valdecoxib-Derivate und ihre Vorstufen	
6.3	5. Derivate mit Imidazol-Grundgerüst und ihre Vorstufen	
6.3	6. Derivate mit Imidazolon-Grundgerüst und ihre Vorstufen	
6.3	7. Derivate mit Benzfuran-, Indenon- und Thiazol-Grundgerüst und ihre Vorstufen	190
6.3	8. Diclofenac Derivate mit und ihre Vorstufen	
6.3	9. Nimesulid-Derivate und ihre Vorstufen	
6.3	10. Acetylsalicylsäure- und Derivate und ihre Vorstufen	
6.4.	Synthese und Charakterisierung der 5-LO-Inhibitoren	
6.4	1. 2-Aminothiazol-Derivate des zentralen Zyklus und ihre Vorstufen	
6.4	2. 2-Aminothiazol-Derivate des variierten linken und ihre Vorstufen	
6.4	3. 2-Aminothiazol-Derivate des zentralen Aminolinkers und ihre Vorstufen	
6.4	4. 2-Aminothiazol-Derivate des rechten Zyklus und ihre Vorstufen	
6.4	5. 2-Aminothiazol-Derivate mit drei variierten Zyklen und ihre Vorstufen	
6.5.	Pharmakologische Testung	
6.5	1. Bestimmung der COX-1-Produktbildung	
6.5	2. Bestimmung der COX-2-Produktbildung in intakten Zellen vor und nach	
	Auswaschung des Inhibitors	
6.5	3. Bestimmung der COX-2-Produktbildung im zellfreien Assay	
6.5	4. Bestimmung der Zellviabilität via WST-1 Assay der COX-Modulatoren	
6.5	5. Bestimmung der 5-LO-Produktbildung in polymorphonuklearen Leukozyten	
6.5	6. Bestimmung der 5-LO-Produktbildung im zellfreien Assay	
6.5	7. Bestimmung der Zellviabilität via WST-1 Assay der 5-LO-Inhibitoren	
6.5	8. Bestimmung der Zellmembranintegrität via LDH-Assay der 5-LO-Inhibitoren	
7.	Abkürzungsverzeichnis	
8.	Literaturverzeichnis	
9.	Anhang	
0.1	Publikationslista	200
7.1.		
9.2.	Lebenslauf	
9.3.	Eidesstattliche Erklärung	

1. Molekularbiologischer Hintergrund

1.1. Die Arachidonsäurekaskade – Ein Überblick

Von der Arachidonsäure (AA), einer essentiellen ω -6-Fettsäure, leiten sich mehrere Familien von potenten bioaktiven Lipiden ab, welche zuerst in den 1930er Jahren entdeckt wurden. Dazu gehören die Prostaglandine (PGe) und die Leukotriene (LTe). Goldblatt et al.¹ sowie von Euler et al.² beschrieben damals einen Extrakt aus der Prostata bzw. aus der Samenflüssigkeit, der den Blutdruck sinken ließ und zu einer Muskelkontraktion der glatten Muskulatur führte. Darüber hinaus entdeckten Feldberg und Kellaway im Jahre 1938,³ dass ein Inhaltsstoff im Perfusat von Meerschweinchenlungen, welche zuvor mit Kobragift behandelt wurden, ebenfalls eine Muskelkontraktion verursachte. In den 1950er und 1960er Jahren konnten schließlich Bergström et. al die ersten PGe identifizieren und differenzieren.⁴ Dies führte zur Entdeckung ihrer Vorstufe im Stoffwechsel, der Arachidonsäure, von welcher sie sich alle ableiten. Da es sich um eine Eicosatetraenfettsäure (eicosa = C20) handelt⁵, werden die einzelnen PGe und LTe oft als Eicosanoide zusammengefasst.⁶ Ihre Biosvnthese wurde später in den 1970er Jahren durch die Gruppe um B. Samuelsson am Karolinska Institut in Stockholm aufgeklärt.⁷⁻⁹ Dafür wurde ihm im Jahr 1982 der Nobelpreis verliehen. Sie fanden heraus, dass von der AA zwei Stoffwechselwege abzweigen: Entweder findet eine Hydroperoxidation statt, und das dafür verantwortliche Enzym wurde daher Lipoxygenase (LOX) genannt, oder es kommt zu einer Oxidation und Ringbildung und das dafür verantwortliche Enzym wurde daher Cyclooxygenase (COX) genannt. Nach beiden Reaktionen findet im Anschluss eine Peroxidase-Reaktion statt.

Einen Überblick über die in den beiden Stoffwechselketten hergestellten Eicosanoide und die daran beteiligten Enzyme, bietet Abbildung 1.1. Aus den Phospholipiden in der Zellmembran kann durch die Phospholipase A_2 des Zytoplasmas (cPLA₂) die AA freigesetzt werden. Die zwei wichtigsten Enzyme sind dann die COX und die LOX, wobei letztere für die LT-Biosynthese als 5-Lipogenase (5-LO) auftritt. Die AA wird dann in jeweils zweistufigen Reaktionen entweder durch COX in Prostaglandin H₂ umgewandelt (PGH₂, Cyclooxygenaseweg in Abbildung 1.1 gelb hinterlegt), oder durch 5-LO in Leukotrien A₄ (LTA₄, 5-Lipogenaseweg lila in Abbildung 1.1 hinterlegt). Durch unterschiedliche zellspezifische Isomerasen bzw. Oxidoreduktasen wird dann einerseits PGH₂ zu Prostaglandinen, Prostacyclinen und Thromboxanen weiter verarbeitet bzw. andererseits die 5-Hydroperoxyeicosatetraensäure (5-HPETE) zu dem instabilen LTA₄, welches sofort zu Leukotrien B₄ (LTB₄) und zu den cysteinylhaltigen Leukotrienen C₄-E₄ (LTC₄-E₄) umgewandelt wird.

Abbildung 1.1: Die Arachidonsäurekaskade: Stoffwecheselwege und Wirkungspektren der Prostaglandine und Leukotriene frei nach¹⁰

Prostaglandine und Leukotriene sind Mediatoren, die ihre Wirkung direkt am Ort der Freisetzung entfalten. Sie agieren als sekundärere Botenstoffe, indem sie hauptsächlich mit G-Protein gekoppelten Rezeptoren (GPCRen) interagieren.⁶ Dabei spielen sie eine entscheidende Rolle in der Regulation physiologischer und pathophysiologischer Prozesse. Prostaglandine sind die prominentesten Botenstoffe bei Entzündungen, Schmerzen und Fieber. Leukotriene hingegen führen z.B. zur Bronchokonstriktion bei Asthma und erhöhen auch die vaskuläre Permeabilität.¹¹ Beide gehören sie zur Klasse der pro-inflammatorisch wirkenden Lipid-Mediatoren. Sie entfalten ihre Wirkung schon im nM- bis pM-Konzentrationsbereich unmittelbar am Ort ihres Entstehens. Ihre Lebensdauer und räumliche Reichweite sind stark begrenzt.

Im Folgenden werden nun Einzelheiten des Cyclooxygenaseweges (Kapitel 1.2) und des Lipoxygenaseweges (Kapitel 1.3) detailliert beschrieben sowie die Bildung von entzündungsauflösenden Lipidmediatoren (Kapitel 1.4).

1.2. Der Cyclooxygenaseweg und die Prostaglandine

Die Cyclooxygenase (COX), früher auch Prostaglandin-H₂-Synthase (PGHS) genannt, ist das Schlüsselenzym, das die ersten zwei Schritte der Umwandlung von AA zu Prostaglandinen katalysiert. Sie gehört zur Familie der Pathogen-induzierbaren-Oxidoreduktasen und ist für die Bildung von PGen verantwortlich. Die detaillierte Metabolisierung der AA in die einzelnen PGe ist in Abbildung 1.2 dargestellt.

Abbildung 1.2: Detaillierte Darstellung der Metabolisierung von Arachidonsäure durch Cyclooxygenase.

Die enzymatische Katalyse der COX umfasst eine Bisoxygenierung von AA, welche cPLA₂ freisetzt. Im ersten Schritt katalysiert die COX als Dioxygenase die Umwandlung von AA zu Prostaglandin G₂ (PGG₂) durch Einführung zweier Sauerstoffmoleküle an die Doppelbindungen der ungesättigten Fettsäure. Im Anschluss reduziert die COX das entstandene PGG₂ mittels ihrer Peroxidase-Funktion durch eine Zwei-Elektronen-Reduktion zum PGH₂.^{12,13} Die Metabolisierung geschieht an zwei unterschiedlichen jedoch strukturell verbundenen Orten im COX-Enzym (Kapitel 1.2.2). Das PGH₂ dient dann als Substrat für Isomerasen bzw. Synthasen zur Bildung verschiedener Prostaglandine (PGD₂-F₂), Prostacycline sowie Thromboxane, welche biologisch aktiv sind und Signale im Körper übermitteln (Kapitel 1.2.3). Die PG-Spiegel lassen sich medikamentös reduzieren (Kapitel 1.2.4).

1.2.1. Isoformen der Cyclooxygenase

Seit 2002 sind drei verschiedene aktive Isoformen des COX-Enzyms bekannt, die durch zwei unterschiedliche Gene kodiert werden: die COX-1 und die COX-2. Die COX-1b, welche von ihren Entdeckern als COX-3 bezeichnet wurde stellt wohl nur eine Splicevariante in Hunden dar.¹⁴ Es existieren weitere Splicevarianten der COX-1, welche jedoch katalytisch inaktiv sind.¹⁵

1.2.1.1. COX-1

Die COX-1 katalysiert die stetige Bildung geringer Konzentrationen von Prostaglandinen, welche für den Erhalt physiologischer Funktionen im Körper wichtig sind. Die Expressionsrate bzw. die Aktivität der COX-1 werden durch entzündungsfördernde Mediatoren wie z.B. Lipopolysaccharide kaum beeinflusst.¹⁶ Aus diesem Grund gilt die COX-1, im Gegensatz zur COX-2, als "housekeeping" Enzym. Sie spielt eine Rolle während Entzündungsprozessen, in der Schwangerschaft sowie beim Geburtsvorgang und steuert bzw. reguliert die Thrombozytenaggregation, Blutgefäßfunktionen, gastrointestinale Schutzfunktionen sowie die Kontraktion der Bronchial- und Uterusmuskulatur.^{17,18} Die COX-1 ist beim Menschen auf dem Chromosom-9 kodiert. Das Gen besteht aus elf Exons und wird ubiquitär transkribiert. Es ist wenig reguliert und die pre-mRNA kann in unterschiedlichen Splicevarianten auftreten. Die aktive Hauptsplicevariante der COX-1 besteht aus

576 Aminosäuren. Das Protein ist an der Innenseite des endoplasmatischen Retikulums lokalisiert, wo es als Homodimer vorliegt.

Bis heute ist das menschliche COX-1 Enzym noch nicht kristallisiert worden. Aus diesem Grund wird im Folgenden die Struktur am Beispiel der COX-1 beschrieben, welche aus Schafen isoliert wurde und die eine hohe Sequenzidentität besitzt. Die Kristallstruktur wurde 1994 aufgeklärt und ist in Abbildung 1.3 dargestellt.¹⁹ Sie besteht, im Gegegnsatz zur humanen COX-1, aus 587 Aminosäuren.

Abbildung 1.3: Kristallstruktur des COX-1 Homodimer (PDB-ID: 1PRH) entnommen aus²⁰

Die Struktur lässt sich in drei unabhängige Domänen untergliedern. Zum einen bilden die Aminosäuren 34 bis 72 durch drei Disulfidbindungen innerhalb der Domäne eine Tertiärstruktur aus, welche einem epidermalen Wachstumsfaktor (EGF; engl: "*epidermal growth factor*") gleicht.²¹ Die zweite Einheit, gebildet von Aminosäure 73 bis 116, stellt eine rechtsgewundene Schraube aus vier α-Helices dar, welche das Membranbindungsmotiv der COX zur Integration des Enzyms in die Lipiddoppelschicht darstellt. Die Aminosäuren 117 bis 587 bilden zusammen die kugelförmige katalytische Domäne aus, welche das aktive Zentrum der Cyclooxygenase- und der Peroxidasefunktion beherbergt (für den Mechanismus Kapitel 1.2.2). Der Substratkanal für die Dioxygenase-Reaktion der COX-1 besitzt einen hydrophoben Charakter im Zentrum des Proteins, um mit der lipophilen AA wechselwirken zu können. In dieser hydrophoben Tasche befindet sich auch die Aminosäure Ser⁵³⁰, welche bei Gegenwart von Acetylsalicylsäure spontan acetyliert wird. Zusätzlich besitzt das Enzym einen Eisenporphyrinring (Häm) als Cofaktor an der Proteinoberfläche, welcher die Peroxidationsreaktion der Fettsäuren katalysiert.^{12,13} Die beiden aktiven Zentren sind jedoch nur strukturell miteinander verbunden, da die Peroxidaseaktivität unabhängig von der

Cyclooxygenaseaktivität ablaufen kann, auch wenn die Cyclooxygenaseaktivität durch Substrat oder Inhibitor blockiert wird.^{22,23}

Abbildung 1.4: Länge und Funktion der mRNA-Abschnitte der alternativen Splicevarianten für das COX-Enzym entnommen aus¹⁴

Die Beobachtung, dass Paracetamol die COX-Aktivität in Gehirn von Hunden stärker inhibiert als in deren Milzhomogenaten, führte zur Entdeckung der COX-1b.²⁴ Dieser Sachverhalt war so erstaunlich, da zu diesem Zeitpunkt bereits die zwei Enzymvarianten COX-1 und COX-2 bekannt waren und Paracetamol nur eine geringe Potenz gegenüber diesen beiden Enzymen aufweist.²⁵ Zudem wirkt Paracetamol nur analgetisch und antipyretisch, jedoch nicht antiphlogistisch. Daraufhin wurde die COX-1- und COX-2-RNA-Expression in Hunden untersucht, wobei in den Hundehirnhomogenaten zwei neue unterschiedliche mRNAs identifiziert wurden, welche mit einer COX-1 cDNA hvbridisieren.¹⁴ Einer der beiden neuentdeckten Stränge ist ca. 2.6 Kilo-Basenpaare (kbp) lang, der andere nur ca. 1.9 kbp. Die Länge und Funktion dieser mRNA-Abschnitte nach der Translation der Isoformen ist in Abbildung 1.4 dargestellt. Durch Sequenzierung wurde für den längeren Messenger eine Insertion von 90 Basenpaaren identifiziert (entspricht 30 Aminosäuren), die sich in der Nähe des 5'-Endes der isolierten cDNA befindet. Die Insertion stimmt zu 75% mit dem Intron 1 der menschlichen COX-1 überein. Das darin kodierte Enzym übt die gleiche katalytische Funktion aus, besitzt jedoch eine geringere Aktivität im Vergleich zur normalen COX-1. Aus dem Grund, dass Paracetamol seine antipyretische Wirkungsweise bevorzugt an diesem Enzym ausübt,²⁶ wurde diese Splicevariante der COX-1 von ihren Entdeckern als COX-3 bezeichnet.¹⁴ Der kürzere Messenger enthält ebenfalls das Intron 1, jedoch sind die Exons 5-8 deletiert. Das Enzym ist inaktiv und wird als partielle COX (PCOX-1a) bezeichnet.

Im Menschen wird die funktionelle Relevanz von COX-1b jedoch kritisch betrachtet, da eine alternative Prozessierung der RNA nötig ist, um ein funktionelles Protein zu bilden, die im Menschen nicht beobachtet wurde.²⁷ Aus diesem Grund wird sie in letzter Zeit als COX-1b bezeichnet.

1.2.1.2. COX-2

Schon zu Beginn der 1970er Jahre wurde über eine zweite COX-Variante spekuliert und im Jahr 1992 wurde die Existenz einer zweiten Isoforme bestätigt: die COX-2. Diese weist in ihrer Tertiärstruktur sehr große Ähnlichkeit mit der COX-1 auf, obwohl ihre Sequenzen insgesamt nur zu 61% übereinstimmen.²⁸ Aus diesem Grund wird im Folgenden hauptsächlich auf die Unterschiede zwischen den beiden Isoformen eingegangen. Im Vergleich zur COX-1 wird die COX-2 nur in wenigen Geweben, wie z.B. dem Gehirn und den Nieren, konstitutiv exprimiert. Dort trägt sie zur Steuerung des Wasser- und Elektrolythaushaltes bei.^{29,30} Zu einer Induktion der COX-2-Expression kommt es hauptsächlich erst durch das Einwirken am Ort eines Reizes von entzündungsfördernden Mediatoren, wie z.B. Zytokinen, Interleukinen, Bradykininen oder Lipopolysacchariden. Beispiele hierfür findet man im vaskulären Endothel, in Monozyten und in Makrophagen.^{31–34} Die COX-2 ist ein Schlüsselenzym bei der Entstehung von Entzündungen und Schmerzen, da die von ihr gebildeten Prostaglandine den beginnenden Entzündungsprozess um ein vielfaches verstärken.³⁵⁻³⁸ Da die Transskription der COX-2-Gene infolge gewebeschädigender Reize schnell induziert wird, zählt man es zur Enzym-Familie der "Immediate Response"-Proteine.³⁹ Bereits nach einer halben Stunde lässt sich die Transkriptionsaktivierung des COX-2-Enzyms nachweisen, welches sein Maximum nach einer Stunde erreicht.⁴⁰ Weiterhin fördert die COX-2 die Angiogenese.⁴¹ Sie wird auch in vielen Krebstypen überexprimiert und deshalb wird untersucht, ob Krebserkrankungen durch Hemmung der COX-2 positiv beeinflusst werden können.42-44

Die COX-2 ist auf dem Chromosom-1 kodiert und das Gen enthält zehn Exons. Die mRNA ist mit 4.6 kbp deutlich länger als die der COX-1, aber nach posttransskriptionellen Modifikationen ist das fertige COX-2-Peptid mit 70-72 kDa genauso schwer wie die COX-1. Die humane COX-2 besteht dann aus 587 Aminosäuren und wurde 1996 erstmals von Luong *et al.* kristallisiert.⁴⁵ Durch Konvention wird die COX-2-Aminosäuresequenz genauso wie die

COX-1-Sequenz nummeriert, um bei Vergleichen dieselben Aminosäuren zu adressieren. Die COX-2 liegt ebenfalls als Homodimer vor, besitzt ein Häm als Cofaktor und ist wie die COX-1 an der Innenseite des endoplasmatischen Retikulums lokalisiert. Zusätzlich ist die COX-2 auch an der inneren Kernhülle zu finden. Die aktiven Zentren sowie der hydrophobe Substratkanal der beiden Isoformen besitzten untereinander eine ca. 87% ige Sequenzhomologie und auch eine strikte Konservierung zu anderen Spezies. Diese sind also in der Evolution fast unverändert erhalten geblieben.⁴⁶ Jedoch bewirkt der Austausch von zwei Isoleucinen in Position 523 und Position 434 durch Valin bei der COX-2 im Vergleich zur COX-1 eine ca. 20% größere und polarere Substratbindungsstelle (s. Abbildung 1.5),⁴⁷ welche der COX-2 die Erkennung mehrerer Substratmoleküle gestattet wodurch sie sowohl Eicosapentaensäure als auch Docosahexaensäure zu wundheilungsfördernden Mediatoren umwandeln kann (s. Kapitel 1.4). Außerdem führte die Entdeckung des Austauschs von Aminosäuren in der Nähe des aktiven Zentrums auch zur Entwicklung von COX-2 selektiven Inhibitoren (s. Kapitel 1.2.4.2).

Abbildung 1.5: Vergleich der Ausdehnung der beiden Bindungstaschen (blau) von COX-1 (links) und COX-2 (rechts) entnommen aus²⁰

1.2.2. Der COX-Katalyse-Mechanismus

Das aktive Zentrum der Cyclooxydationsdomäne ist durch einen schmalen, 25 Å langen, hydrophoben Tunnel zugänglich, welcher sich in der katalytischen Domäne befindet.¹⁹ Aus der COX-1-Kristallstruktur, mit gebundener AA im aktiven Zentrum, lässt sich erkennen,

dass die Fettsäure in einer L-förmigen Konformation im hydrophoben Tunnel liegt und mit 19 Aminosäuren in direktem Kontakt steht.⁴⁸ Zielgerichtete Mutationsstudien haben ergeben, dass von den 19 Aminosäuren nur das Tyr³⁸⁵ an der Umwandlung von AA direkt beteiligt ist, indem es die Ausbildung eines Radikals unterstützt.⁴⁹ Durch endogene Oxidantien, z.B. Fettsäureperoxide, welche jedoch noch nicht näher charakterisiert sind, wird das aktivierte Eisen(III) im Häm zu einem Ferryl(IV)-oxo-Radikal oxidiert (s. Abbildung 1.6). Dieses erzeugt das Tyr³⁸⁵-Radikal, welches die Cyclooxydation von AA in der Bindungstasche der Cyclooxydationsdomäne induziert. Dabei liegt eine Ferryl(IV)-oxo-Spezies im Häm vor, welche durch endogene Reduktionsmittel zum Eisen(III) wieder reduziert wird.

Abbildung 1.6: Zyklus für die katalytische Aktivierung von frisch exprimierten COX-Enzymen nach¹⁵.

Die restlichen Aminosäuren im Substratkanal dienen der Positionierung der AA, indem das Arg¹²⁰ und das Tyr³⁵⁵ mit der Säuregruppe der AA wechselwirken und der Alkenylrest der AA mit den lipophilen Aminosäuren interagiert. Es bilden sich dabei bis zu 50 hydrophobe Wechselwirkungen aus.¹⁵ Durch die Fixierung in die L-förmige Lage kommt es zur stereospezifischen Reaktion und nicht zur Bildung anderer Hydroperoxide als Nebenprodukte. Eine besondere Rolle nehmen dabei das Ser⁵³⁰ und das Val³⁴⁹ ein, welche den stereochemischen Angriff von Sauerstoff steuern.⁵⁰ Im Falle einer Acetylierung von Ser⁵³⁰ durch Acetylsalicylsäure, verhindert die Acetylgruppe die Abstrahierung des 13-proS-Wasserstoffatoms von AA (s. Abbildung 1.6) in COX-1 durch sterische Hinderung im aktiven Zentrum.⁵¹ Im Gegensatz dazu findet eine Abstrahierung vom acetylierten COX-2-Enzym

statt, was zur Bildung von 15-*R*-Hydroxyeicosotetraensäure anstatt PGH_2 führt. Im Zusammenspiel mit 5-LO führt dieser Mechanismus zur Bildung von Lipoxinen (s. Kapitel 1.4.1).⁵²

Abbildung 1.7: Postulierter Mechanismus für die Umwandlung von AA zu PGG₂ nach⁵³

Der postulierte Mechanismus für die Cyclooxygenasereaktion von Hamberg und Samuelsson⁵³ ist in Abbildung 1.7 dargestellt. Das Tyr³⁸⁵-Radikal initiiert die Cyclooxydation durch Abstrahierung des 13-proS-Wasserstoffatoms der **AA**.⁵⁴ Durch die Doppelbindung kann das gebildete Radikal um eine Position verlagert werden, sodass das Arachidonylradikal (Schritt **I**), mit aus der Membran diffundiertem Sauerstoff, weiter zum 11-Hydroperoxyl-Radikal reagiert (Schritt **II**). Dieses zyklisiert anschließend zum Endoperoxidradikal (Schritt **III**), welches wiederum zum Arachidonylradikal weiter zyklisiert (Schritt **IV**). Die beiden aneinander gereihten Zyklisierungen verlaufen durch die Lage der AA stereospezifisch ab. Durch Diffusion gelangt ein weiteres Equivalent Sauerstoff in das aktive Zentrum, wo es das 15-Hydroperoxyl-Radikal generiert (Schritt **V**). Das gebildete 15-Hydroperoxyl-Radikal befindet sich wieder in räumlicher Nähe zum Tyr³⁸⁵, sodass es unter Regenerierung des Tyr³⁸⁵-Radikals zu PGG₂ reagiert (Schritt **VI**).⁵⁵ Dieser Mechanismus wurde auch in zwei

unabhängigen Computerstudien mittels Dichte-Funktional-Theorie simuliert und einem alternativen Mechanismus gegenübergestellt.^{56,57} Silva *et al.*⁵⁶ und Blomberg *et al.*⁵⁷ kamen zu dem Ergebnis, dass dieser ausschließlich radikalisch ablaufende Mechanismus für die Bildung von PGG₂ den Katalysezyklus am besten wiederspiegelt. Das gebildete Hydroperoxid, wird anschließend an die Peroxidationsdomäne weitergereicht und abschließend zu einem Alkohol, dem PGH₂, reduziert.

1.2.3. Biologische Funktion der Prostaglandine

Die aus dem Cyclooxygenaseweg stammenden PGe binden an spezifische membranständige G-Protein-gekoppelte Rezeptoren (GPCRen)^{58,59} und spielen eine Rolle in der Entstehung von Entzündungen, Schmerzen und Fieber. Außerdem beeinflussen sie das Immunsystem, den Gastrointestinaltrakt, das kardiovaskuläre System, die Niere, die Lunge und die Reproduktion. Darüberhinaus wirken sie auf das Gehirn und das Rückenmark. In der Nomenklatur werden PG-Rezeptoren mit einem "P" abgekürzt und mit einem Präfix versehen, welches durch die Buchstaben D, E, F, I oder T die Präferenz des jeweiligen Rezeptors zu den entsprechenden PGen beschreibt.⁶ Die Rezeptoren können noch in Subtypen unterschieden werden, welche sich unterschiedliche PGen durch Affinitäten zu den und unterschiedlichen Signalweiterleitungen in der Zelle auszeichnen. Bislang sind zehn PG-Rezeptoren bekannt: DP₁₋₂, EP₁₋₄, FP, IP₁₋₂ und TP.^{60,61} Im Folgenden werden die Wirkungsweisen der einzelnen PGe aus Tabelle 1.1 erläutert.

PGD₂ wird hauptsächlich in Mastzellen im Laufe einer allergischen Reaktion gebildet und ist mit der Ausbildung entzündlicher Erkrankungen der Atemwege, wie z.B. Asthma, assoziiert.⁶² Weiterhin spielt es eine untergeordnete Rolle im Schlaf-Wach-Zyklus und der Schmerzwahrnehmung.^{63,64} PGD₂ wirkt an den zwei Rezeptor-Subtypen DP₁ und DP₂. DP₁ liegt weit verbreitet vor und die Bindung von PGD₂ führt zur Aktivierung von Adenylylcyclasen. Außerdem kommt es zu einer starken Inhibition der Thrombozytenaggregation, zu Bronchospasmen und zur Vasodilatation.^{65,66} DP₂ dagegen wird in Typ2-T-Helferzellen (TH2-Zellen), Eosinophilen und Basophilen gebildet. Seine Aktivierung führt zu einer intrazellulären Calcium²⁺-Freisetzung und induziert die Chemotaxis und Migration von TH2-Zellen.⁶⁷ PGD₂ führt somit zu einem andersartigen Effekt als PGE₂.

Ligand	Rezeptor	Effekte				
	DP ₁	Inhibition der Thrombozytenaggregation, Bronchospasmen,				
Prostaglandin D ₂		Vasodilatation				
1100 008 -0000 2 2	DP ₂	Senkung der Körpertemperatur, allergische Reaktion,				
_	212	Entzündung und Schmerz				
Prostaglandin E ₂	EP ₁	Kontraktion der glatten Muskulatur von Bronchien und				
Prostaglandin F ₂		Gastrointestinaltrakt, Vasokonstriktion, Schmerz				
	EP ₂	Erschlaffung der glatten Muskulatur von Bronchien und				
	2	Gastrointestinaltrakt, Homeostase der Niere, Vasodilatation				
Prostaglandin E ₂	EP ₃	Fieber, Hemmung der Magensäuresekretion				
	EP_4	Vermehrte Magenschleimsekretion, Vasodilatation,				
_		Inhibition der Thrombozytenaggregation				
Prostaglandin F ₂	FP	Geburtseinleitung / Uteruskontraktion, Luteolyse				
Prostacyclin	IP	Vasodilatation, Inhibierung der Thrombozytenaggegation,				
1100000 901111		Homeostase der Niere				
Thromboxan A ₂	ТР	Vasokonstriktion, fördert Thrombozytenaggegation,				
		Bronchokonstriktion				

Tabelle 1.1: Zusammenstellung der PG-Rezeptoren und der Präferenzen der enstprechenden PGe nach⁶⁸

PGE₂ reguliert das Zellwachstum, den Blutdruck, das Natrium-Gleichgewicht im Körper und spielt eine Rolle während des Geburtsvorgangs.⁶⁹ Von allen PGen sind die biologischen Effekte des PGE₂ am komplexesten und oft gegensätzlich. Zum Beispiel bewirkt PGE₂ eine Vasodilatation im arteriellen und venösen System, aber bei der glatten Muskulatur der Luftröhre, des Darms und des Magens führt es zu einer Kontraktion. Diese Beobachtung lässt sich dadurch erklären, dass PGE₂ vier Rezeptor-Subtypen aktiviert, welche jeweils über eine andere Wirkung bzw. einen anderen Wirkungsmechanismus verfügen. Der EP₁-Rezeptor bewirkt durch erhöhte Inositol-3-phophat-Bildung sowie gesteigerte intrazelluläre Calcium²⁺-Konzentraionen eine Vasokonstriktion.⁷⁰ Zusätzlich vermittelt er die schmerzverstärkende Wirkung von PGE₂ nach Sensibilisierung durch Histamin oder Bradykinin.⁷¹

Der EP₂-Rezeptor wird hauptsächlich im Uterus, der Lunge, der Niere und in der Milz exprimiert. Somit ist PGE₂ am Eisprung und bei der Steuerung des Wasser- und Elektrolythaushaltes (der salzabhängigen Hypertonie) beteiligt. Das Signal wird durch eine Erhöhung des cAMP-Levels vermittelt.⁷²

Der EP₃-Rezeptor wird für die fieberinduzierende und die säurehemmende Wirkung des PGE₂ verantwortlich gemacht. Die Bindung an den Rezeptor fördert die Bildung von neutralisierendem Schleim, der durch cAMP-Inhibition die Magenschleimhaut schützt.^{59,61,73}.

Der EP₄-Rezeptor wirkt als systemischer Vasodepressor und hemmt schon bei geringen Konzentrationen von PGE_2 die Thrombozytenaggregation durch Erhöhung des cAMP-Levels.⁷³⁻⁷⁵

 $PGF_{2\alpha}$ ist hauptsächlich dafür bekannt die Luteolyse (Rückbildung des Gelbkörpers) bei ausbleibender Schwangerschaft im Eierstock einzuleiten. Dabei findet eine Einwanderung von Makrophagen in den Gelbkörper statt, der dann mit ihrer Hilfe abgebaut wird.⁷⁶ Bei Tieren können $PGF_{2\alpha}$ bzw. $PGF_{2\alpha}$ -Analoga zur Geburtseinleitung verabreicht werden (Cloprostenol, Tiaprost).⁷⁷ $PGF_{2\alpha}$ bewirkt außerdem eine Kontraktion der glatten Muskulatur und kann zu einer Hypertrophie der Herz-Muskelfasern führen.^{78,79} Zudem steht $PGF_{2\alpha}$ in der Diskussion an der Entstehung von Hautkrebs beteiligt zu sein. Im Auge ist es außerdem in der Lage den Augeninnendruck zu reduzieren.^{80,81} In der Therapie des Glaukoms wird das stabilere $PGF_{2\alpha}$ -Analogon Latanoprost (Xalatan[®]) verwendet.⁸²

Das äußerst labile Prostacyclin (PGI₂) ist ein starker endogener Antikoagulator und Vasodilatator. Damit stellt es ein Gegengewicht zu den Thromboxanen her, indem es die Thrombozyten-Aktivierung unterbindet.⁸³ Es besitzt außerdem antiproliferative Wirkungen. Im Endothel stellt Prostacyclin den Hauptmetaboliten der AA-Kaskade dar, welcher gleichermaßen durch COX-1 und COX-2 gebildet wird. Innerhalb weniger Minuten wandelt es sich spontan in den Blutgefäßen zum stabilen 6-keto-PGF_{1α} um, welches eine schwächere (gleichartige) Wirkung besitzt.⁸⁴ Die Aktivierung von IP-Rezeptoren, welche auch im Herzen, in der Lunge, der Leber und der Niere gebildet werden, bewirkt eine Erhöhung des intrazellulären cAMP-Levels. Dadurch wird die Proteinkinase A-Kaskade, oder die Phospholipase C aktiviert.⁸⁵ Prostacyclin bzw. stabile Analoga (Iloprost und Treprostinil) werden in der Medizin auch als Thrombozytenaggregationshemmer eingesetzt zur Verbesserung der Blutzirkulation.

Thromboxan A₂ (TxA₂) ist ein potenter Thrombozytenaggregator und Vasokonstriktor, welcher bei Entzündungen und Verletzungenen wichtig ist. TxA₂ wirkt auf die Zellproliferation,^{86–88} moduliert die Thrombozythenform und vermittelt Hypertrophie.⁸⁹ TxA₂ besitzt eine sehr kurze Halbwertszeit und wird binnen einer halben Minute zu TxB₂ hydrolisiert. Der TP-Rezeptor war 1991 der erste klonierte Eicosanoid-Rezeptor. Er wird in der Lunge, der Leber, der Niere, dem Herzen, dem Uterus und vor allem in den Endothelzellen ausgebildet.⁹⁰ Die Biosynthese von TxA₂ ist hauptsächlich COX-1 vermittelt, da es von Thrombozyten generiert wird, die nur diese Isoform exprimieren. Die Aktivierung des Rezeptors bewirkt eine Erhöhung der intrazellulären Calcium²⁺-Konzentration durch Phospholipase C.⁹¹

1.2.4. Inhibitoren der COX

COX-Inhibitoren lassen sich aufgrund ihrer Selektivität bezüglich der COX-Isoformen in zwei verschiedene Klassen unterteilen. Auf der einen Seite stehen die klassischen nichtsteriodalen Antirheumatika (NSAR; englisch: "*Non-Steroidal Anti-Inflammatory Drugs*", NSAIDs), welche die typischen over-the-counter Präparate gegen Schmerzen einschließen. Sie besitzen eine geringe Isoform-Präferenz und weisen eine hohe strukturelle Diversität auf. Die zweite Klasse stellen die selektiven COX-2-Inhibitoren dar, auch Coxibe genannt, die zumeist strukturell sehr ähnlich sind. Zum jetzigen Zeitpunkt sind viele Coxibe vom Markt zurückgenommen worden, da sich in Langzeitstudien das Risiko für Herzinfarkte bzw. Schlaganfälle verdoppelte. Eine weitere Klasse, bilden die COX/LOX Inhibitoren. Diese hemmen neben der COX- auch die 5-LO-Aktivität, wodurch ein Ausweichen der AA-Metabolisierung von COX auf LOX verhindert wird.

1.2.4.1. Nicht-selektive COX-Inhibitoren

NSAR sind (neben Paractamol), seit der Vermarktung von Acetylsalicylsäure (Aspirin[®]) im Jahre 1898 durch die Firma Bayer, die am meisten verbreitete Wirkstoffklasse um Schmerzen, Entzündungen und Fieber zu behandeln. Die prominentesten Vertreter sind neben Acetylsalicylsäure (Aspirin[®]): Diclofenac, Ibuprofen, Indometacin, und Naproxen.⁹² Die Strukturen der NSAR sind in Abbildung 1.8 dargestellt. Sie hemmen beide COX-Isoformen, indem sie mit AA um die Bindungsstelle kompetieren, weisen aber eine COX-1-Präferenz auf. Die Hemmung kann zeitabhängig, wie z. B. bei Ibuprofen, oder zeitunabhängig, wie z.B bei Diclofenac, geschehen.^{93,94} Meist besitzen NSAR eine saure funktionelle Gruppe, welche sie in die Lage versetzt sich in Geweben mit niedrigeren pH-Werten anzureichern. Dies befähigt sie sich in entzündeten Geweben zu akkumulieren und ihren analgetischen und antiphlogistischen Effekt auszuüben.

Abbildung 1.8: Prominente Vertreter der nicht-selektiven NSAR

Von allen zugelassenen NSAR ist ausschließlich Acetylsalicylsäure in der Lage, die COX zusätzlich kovalent zu modifizieren. Nach Aufklärung der Kristallstruktur¹⁹ und durch theoretische Modellierungen⁹⁵ (Vgl. Abbildung 1.9) von Acetylsalicylsäure im aktiven Zentrum der COX wird zurzeit folgender Mechanismus angenommen: Acetylsalicylsäure gelangt durch den Substratkanal zum aktiven Zentrum und ihre Carboxylgruppe bildet eine schwache ionische Bindung mit Arg¹²⁰ aus. Dadurch gelangt die Acetoxygruppe der Acetylsalicylsäure in eine optimale Orientierung für eine Acetylierung der COX-1, in einen Abstand von 5 Å zum Ser⁵³⁰Rest. Die kovalente Bindung der Acetylgruppe erfolgt dann in Schritten über einen zwei aufeinanderfolgenden metastabilen tetraedrischen Übergangszustand und führt zur irreversiblen Inhibition der Enzymaktivität.

Abbildung 1.9: Modellierung der Lage (links) und Acetylübertragung der Acetylsalicylsäure in der COX-1(rechts) nach ⁹⁵

Die Hemmung der COX-1 durch Acetylsalicylsäure erreicht im Vergleich zur COX-2 fast den 60fachen Wert (vgl. IC₅₀-Werte in Tabelle 1.2). Dies wird auf eine langsamere Reaktionsgeschwindigkeit und auf die größere Bindungstasche der COX-2 zurückgeführt, zwei Faktoren, welche hier die Acetylierung erschweren. Die einmalige Fähigkeit der COX-Acetylierung führt auch dazu, dass Acetylsalicylsäure zusätzlich als Gerinnungshemmer wirkt. Indem Acetylsalicylsäure die COX-1 in den Thrombozyten irreversibel hemmt und diese wegen des fehlenden Zellkerns nicht in der Lage sind das COX-Enzym neu zu bilden, kommt es nur in Thrombozythen zusätzlich zu einer permanenten Hemmung der COX-1 Durch diesen Sonderfall bleibt durch Acetylsalicylsäure. die TxA₂-Bildung aus Thrombozyten und somit auch deren Aggregationsfähigkeit gering.

NSAR-Name	Acetylsalicylsäure	Diclofenac	Ibuprofen	Indomethacin	Paracetamol
IC ₅₀ COX-1 [μM]	1.7	0.075	7.6	0.013	> 100
IC50 COX-2 [µM]	100	0.038	7.2	1.0	49
Selektivität $\frac{IC_{50}(COX - 2)}{IC_{50}(COX - 1)}$	59	0.5	0.9	77	0.5

Tabelle 1.2: Selektivität der NSAR, Bestimmungen aus Gesamtblutassay nach⁹²

Paracetamol und Metamizol, welche zum Teil ebenfalls zu den NSAR gezählt werden, zeichnen sich dadurch aus, dass sie nur fiebersenkende und schmerzstillende Eigenschaften besitzen, jedoch keine antientzündliche Wirkung aufweisen. Der genaue Wirkungsmechanismus ist zur Zeit noch unklar. Paracetamol ist ein schwacher COX-Inhibitor (vgl. Tabelle 1.2). Es wird vermutet, dass es durch die Blut-Hirn-Schranke dringt und dort seine Wirkung entfaltet. Alternativ wurde ein Redox-Mechanismus als mögliche Wirkungsweise postuliert.⁹⁶ Metamizol wirkt ebenfalls nur schwach als nicht-selektiver COX-Inhibitor.⁹⁷ Als zusätzlicher Wirkmechanismus wird eine Beteiligung am 5-HT- oder Opioid-Stoffwechsel diskutiert.

Bei umfangreicher Anwendung von NSAR, etwa im Bereich der Selbstmedikation, ist der Einsatz insbesondere bei Langzeiteinnahme mit starken Nebenwirkungen behaftet. Wegen der Anreicherung von NSAR in Geweben mit niedrigen pH-Werten akkumulieren diese in der Magenschleimhaut und den Nieren. In diesen Organen führt die COX-Inhibierung zu einer Senkung der PGE₂-Produktion, was eine verminderte Magenschleimproduktion zur Folge hat. Daraus resultierende Magenblutungen und Magenulzerationen können im unbehandelten Fall die Entstehung von Magenkrebs begünstigen.

1.2.4.2. Selektive COX-2-Inhibitoren

Die Entdeckung der strukturellen Unterschiede zwischen COX-1 und COX-2 infolge der Aufklärung der Kristallstrukturen, führte in den 1990er Jahren zur gezielten Entwicklung von COX-2-selektiven Inhibitoren.^{15,92} Durch die strukturelle Einsicht wurde eine hydrophobe Seitentasche in der Nähe des aktiven Zentrums der COX-2 entdeckt, in die sich nicht-saure Gruppen einlagern können. Dies dient als Ersatz für die ionische Bindung der NSAR mit dem Arg¹²⁰-Rest. Von besonderer Bedeutung, um diese Seitentasche zu belegen, hat sich als selektives Molekülfragment ein *para*-substituierter Phenylring mit einem Sulfonamid- bzw. einem Methylsulfon-Rest erwiesen. Dieser kann mit den Aminosäuren His^{90} , Arg^{513} , Phe^{518} und Gln^{192} interagieren.⁹⁸ Coxibe besitzen eine (*Z*)-ständige Diarylkomponente. Die Strukturen der prominentesten Vertretern sind in Abbildung 1.10 dargestellt

Abbildung 1.10: Auflistung von Coxiben, welche eine Marktzulassung bekommen haben

Coxibe sind im Vergleich zu klassischen NSAR schwache COX-1-Inhibitoren, jedoch potente COX-2-Inhibitoren. Sie besitzen eine langsame off-Kinetik an der COX-2, also eine lang andauernde Wechselwirkung mit dem Enzym, welche ihre Selektivität erhöht (vergleiche Tabelle 1.3).⁹⁹ Die Coxibe werden deshalb auch als zeitabhängige Inhibitoren bezeichnet. Es ist bekannt, dass die Verabreichung von COX-2-selektiven Inhibitoren über mehrere Tage die Entzündungsauflösung verlangsamt. Die zusätzliche Gabe von Prostaglandin D_2 und Cyclopentanon-Prostaglandinen führt dagegen zu einer Rekonstitution der normalen Wundheilung.¹⁰⁰ Dies wird darauf zurückgeführt, dass Prostaglandine die Bildung von wundheilungsfördernden Mediatoren induzieren können.¹⁰¹

Coxibname	Celecoxib	Etoricoxib	Nimesulid	Rofecoxib	Valdecoxib
IC ₅₀ COX-1 [µM]	6.7	116	10	19	26
IC ₅₀ COX-2 [µM]	0.87	1.1	1.9	0.53	0.87
Selektivität $\frac{IC_{50}(COX - I)}{IC_{50}(COX - 2)}$	8	105	5	36	27

Tabelle 1.3: Selektivität der Coxibe, Bestimmungen aus Gesamtblutassay nach⁹²

I

Wie die klassischen NSAR zeigen auch die Coxibe eine entzündungshemmende, schmerzreduzierende und fiebersenkende Wirkung.¹⁰² Bei längerer Einnahme verursachen sie jedoch weniger renale- und gastrointestinale Nebenwirkungen als NSAR.^{103,104} Dies ist darauf zurückzuführen, dass sie die COX-1 nur in geringem Umfang hemmen und so schienen sie

zunächst für eine Langzeitanwendung geeigneter zu sein. Langzeitstudien zur Bewertung von Sicherheitsrisiken für die jeweiligen Vertreter zeigten dann allerdings, dass nur Celecoxib und Etericoxib eine verringerte gastrointestinale Toxizität aufweisen, so dass die Nebenwirkungen vergleichsweise geringer sind als bei der Langzeiteinnahme von klassischen NSAR.^{105–107} Bei Einnahme von Lumiracoxib wurde dagegen eine hohe Lebertoxizität festgestellt,^{92,108} während für Rofecoxib ein erhöhtes Risiko für Blutdruckhochdruck, Schlaganfälle und Myokard-Infarkte postuliert wird.^{105,109,110} Valdecoxib und dessen Prodrug Parecoxib, bergen die gleichen Risiken wie Rofecoxib.^{92,108} Aus diesen Gründen sind diese vier Coxibe mittlerweile vom Markt genommen worden. Ein Erklärungsansatz für diese Beobachtungen ist, dass selektive COX-2-Inhibitoren das Gleichgewicht zwischen dem pro-thrombotischen TxA₂ und dem anti-thrombotischen Prostacyclin I2 zu Gunsten von TxA2 verschieben, weil dessen COX-1 vermittelte Produktion in Thrombozyten nicht inhibiert wird.^{92,110} Coxibe spielen deshalb in der Medikation nur noch eine untergeordnete Rolle und werden nur in Ausnahmen unter ärtzlicher Beobachtung eingesetzt, z. B. bei chronischer Polyarthritis, oder wenn klassische NSAR nicht eingesetzt werden können. Als neue Hoffnungsträger gelten duale COX-2/5-LO-Inhibitoren.

1.2.4.3. Duale COX-2/5-LO-Inhibitoren

Bei der Entstehung von Entzündungen im Körper spielt neben der COX auch die 5-LO eine wichtige Rolle. Bei spezifischer Inhibition der COX kommt es zu einem sogenannten "Shunting"-Effekt. Dabei wird die AA-Metabolisierung aufgrund gesteigerter 5-LO-Aktivität zu Gunsten von LTen verschoben. Dies ist eine Folge der Substratanreicherung und verschlimmert die Entzündung bzw. verlängert den natürlichen Entzündungsprozess. Deshalb wird dieser Mechanismus als kontraproduktiv angesehen¹¹¹ und führte zur Entwicklung von dualen COX-2- / 5-LO-Inhibitoren, welche oft auch als 3. Generation der NSAR angesehen werden. Dabei handelt es sich meist um strukturelle Hybride zwischen einer (*Z*)-Diarylkomponente, welche als COX-2 selektiver Teil fungiert, und einem zweiten Teil, der auch die 5-LO-Aktivität durch unterschiedliche Wirkmechanismen reduziert (Vgl. Kapitel 1.3.5). Als Beispiele sind in Abbildung 1.11 zwei Vertreter abgebildet. Zum einen Compound 1 von Barbey *et al.*¹¹² (IC₅₀ für COX-2 = 0.05 μ M; IC₅₀ für 5-LO = 0.003 μ M) und zum anderen Licofelon (IC₅₀ für COX-2 = 0.16 μ M; IC₅₀ für 5-LO = 0.23 μ M).¹¹³ Letzteres stellt die am weitesten entwickelte Verbindung dieser Klasse dar und wurde von Merckle, Alfa, Wassermann und Lacer entwickelt. Licofelon ist zur Behandlung von

Osteoarthritis im Knie indiziert mit bereits abgeschlossenen Phase-III-Studien.¹¹⁴ Es zeigte sich, dass verglichen mit anderen NSAR, Licofelon in Studien an gesunden Probanden verringerte gastrointestinale Toxizität und Ulcusbildung aufweist. Es ist besser wirksam als Naproxen und ist so selektiv wie Celecoxib.¹¹⁵ Langzeitstudien und Studien mit größerem Patientenkreis müssen noch erfolgen.

Abbildung 1.11: Strukturen Dualer COX-2 / 5-LO-Inhibitoren

1.2.4.4. Indikationen der NSAR

NSAR sind hauptsächlich bei leichten bis mittleren, akuten Schmerzen und Fieber indiziert. Beispiele hierfür sind: Kopfschmerzen, Migräne, Gewebeschädigungen. Aufgrund ihrer zusätzlichen antiphlogistischen Wirkung werden sie zusätzlich für die Behandlung chronischer, entzündlicher Schmerzen verwendet. Symptombezogen werden sie z.B. zur Linderung von Osteoarthritis und rheumatoider Arthritis eingesetzt. Wegen ihrer gerinnungshemmenden Wirkung wird zur Prävention von Thrombose und Schlaganfällen in der Langzeittherapie ausschließlich Acetylsalicylsäure verwendet. Im experimentellen Stadium befinden sich der Einsatz von NSAR, vor allem der COX-2 selektiven Inhibitoren, für die Prävention von Alzheimer und Adenomen sowie in der Krebsforschung zur Behandlung von Prostata- und Darmkrebs. Kontraindiziert sind NSAR dahingegen bei Menschen die bereits unter gastrointestinalen Blutungen oder Magengeschwüren gelitten haben bzw. unter der Autoimmunerkrankung Morbus Crohn leiden. Außerdem sollten Patienten mit eingeschränkter Nierenfunktion oder mit kardiovaskulären Vorerkrankungen die Einnahme von NSAR vermeiden. Besonders hinzuweisen ist auf das Verbot der Einnahme von Acetylsalicylsäure vor chirurgischen Eingriffen aufgrund der gerinnungshemmenden Wirkung.

1.3. Der Lipoxygenaseweg und die Leukotriene

Die Lipoxygenasen (LO) sind Schlüsselenzyme, welche die ersten zwei Schritte in der Biosynthese von Arachidonsäure zu Leukotrienen bzw. zu Hydroxyeicosatetraensäuren (HETE) katalysieren. Sie gehören wie die COX zur Familie der Oxidoreduktasen. Die LO werden in mehrere Subfamilien unterteilt, wobei die vorangestellte Nummer besagt, an welcher Position der Fettsäure das Enzym die Hydroperoxidation durchführt. Die wichtigste LO im Entzündungsvorgang ist die 5-LO (s. Kapitel 1.3.1). Weitere bekannte Vertreter sind die 12- und die 15-LO. Die Metabolisierung der AA durch 5-LO in die verschiedenen LTe ist in Abbildung 1.12 detailliert dargestellt. Zur bereits angesprochenen Bisoxygenierung der AA katalysiert die 5-LO im ersten Schritt die Hydroperoxydierung zur 5-Hydroperoxyeicosapentaensäure (5-HPETE). Im zweiten Schritt bildet sie ein instabiles allylisches Epoxid, das Leukotrien A4 (LTA4). Diese zweistufige Oxidation wird von einem nicht-Häm gebundenen Eisenatom katalysiert (Kapitel 1.3.2). Außerdem kann 5-HPETE aber auch 5-LOunabhängig vor Ort zu dem entsprechenden Alkohol, der 5-Hydroxyeicosapentaensäure (5-HETE), durch ubiquitäre Peroxidasen reduziert werden. Das Verhältnis zwischen 5-HPETE und LTA₄ ist von modulierenden Cofaktoren abhängig (Kapitel 1.3.3). LTA₄ dient als Vorstufe für die LTA₄-Hydrolase zur Bildung von LTB₄ Darüber hinaus wird es durch die LTC₄-Synthase durch Bindung von Glutathion zum Leukotrien C₄ (LTC₄) umgewandelt.¹¹⁶ Dieses wird nach der Freisetzung in den extrazellulären Raum, unter Abspaltung einzelner Aminosäuren des Glutathionrests, in die beiden cysteinhaltigen LTe, Leukotrien D_4 (LTD₄) und Leukotrien E₄ (LTE₄), überführt (s. Abbildung 1.12).

Die LTe sind für verschiedene biologische Funktionen im Körper verantwortlich (Kapitel 1.3.4). Durch Inhibition der 5-LO-Aktivität mittels unterschiedlicher Mechanismen lassen sich diese Auswirkungen reduzieren (Kapitel 1.3.5). Jedoch ist bislang nur Zileuton als direkter 5-LO-Inhibitor zur Behandlung des Asthma Bronchiale in den USA zugelassen. Um diese Lücke zu schließen, werden weitere Strategien einer Anti-LT-Therapie verfolgt, die in Kapitel 1.3.6 und 1.3.7 vorgestellt werden.

5-LO ist neben der Synthese von LTen auch durch transzelluläre Prozesse im Zusammenspiel mit 12-LO oder 15-LO an der Biosynthese von entzündungsauflösenden Lipidmediatoren beteiligt (s. Kapitel 1.4).

Abbildung 1.12: Darstellung der Metabolisierung von Arachidonsäure durch 5-Lipoxygenase

1.3.1. Struktur des 5-LO Enzyms

Die 5-LO ist ein konstitutiv exprimiertes Enzym, welches hauptsächlich in polymorphonuklearen Leukozyten (PMNL), Monozyten, Makrophagen, Mastzellen, neutrophilen Granulozyten und B-Lymphozyten exprimiert wird.¹¹⁷ Für die Leukotrienbiosynthese wird das 5-Lipoxygenase-aktivierende Protein (FLAP) benötigt (s. Kapitel 1.3.3). Die 5-LO bzw. das ALOX5-Gen ist auf dem Chromosom-10 kodiert. Das Gen enthält 14 Exons deren Transkription streng reguliert ist.¹¹⁸ In Studien von Boado et al.¹¹⁹ konnten posttranskriptionale Modifikationen bei unterschiedlichen Splicevarianten der 5-LO in Gehirntumoren nachgewiesen werden. Hierbei korrelieren die verschiedenen Isoformen mit der Malignität des Geschwürs. Der Einfluss auf den gesunden Organismus ist bisher unklar.¹¹⁹

Die 5-LO besteht aus 673 Aminosäuren und liegt im inaktiven Zustand sowohl im Zytosol als auch im Zellkern als Monomer vor.¹²⁰ Obwohl das Enzym schon seit den 1970er Jahren bekannt ist, waren aufgrund seiner Kurzlebigkeit lange Zeit nur Modelle homologer Strukturen auf Basis anderer gelöster LO-Isoformen, so aus Sojabohne, Hase und Koralle verfügbar. Die Strukturaufklärung der humanen 5-LO gelang erst im Jahr 2011 durch Gilbert *et al.*, nachdem durch Mutationen eine stabilisierte Form generiert wurde, die eine Kristallisation ermöglichte.¹²¹ Hierfür wurden Veränderungen der Lys⁶⁵³⁻⁶⁵⁵-Reste und der Aminosäuren 13, 14, 40-44, 75 und 76 durchgeführt. Darüber hinaus wurden Cys²⁴⁰ und Cys⁵⁶¹ durch Alanin ausgetauscht. Die solcherweise aufgeklärte Struktur ist in Abbildung 1.13 dargestellt.

Abbildung 1.13: Modell der humanen 5-LO erstellt anhand der PDB-Struktur 308Y.¹²¹ Darstellung der C2-ähnlichen Domäne in grün, der katalytischen Domäne in blau und des zentralen Eisenion im aktiven Zentrum als rote Kugel.

Das Enzym lässt sich in zwei Domänen untergliedern. Einerseits in die kleinere *N*-terminale Domäne, welche von den Aminosäuren 1-114 gebildet wird. Diese Domäne besitzt hauptsächlich regulatorische Eigenschaften und weist klassische Strukturmerkmale einer C2-Domäne auf, welche an der gezielten Lenkung von Proteinen zur Zellmembran involviert ist.¹²² Sie dient aufgrund ihrer überwiegend negativ geladen Aminosäuren als Bindestelle für Ca^{2+} -Ionen und der anschließenden Interaktion mit zellulären Membranen.¹²³ Ihre Sekundärstruktur wird durch ein β -Sandwich ausgebildet, welches aus acht antiparallel ausgerichteten β -Faltblättern besteht.

Die zweite Einheit im 5-LO-Enzym ist die größere *C*-terminale Domäne, welche von den übrigen Aminosäuren (121-673) gebildet wird. Dieser Bereich bildet die katalytische Domäne und enthält ein nicht-Häm gebundenes Eisenatom bzw. das aktive Zentrum. Es übt die Bisoxygenierungs-Funktion der 5-LO aus (für den Mechanismus s. Kapitel 1.3.2). Das Eisenion wird durch drei hochkonservierte Histidine (His³⁶⁷, His³⁷² und His⁵⁵⁰) und durch die Säuregruppe des endständigen Ile⁶⁷³ koordiniert. Die Bindetasche ist flach, länglich geformt und geschlossen, sodass die 5-LO eine Konformationsänderung eingehen muss, bevor das Substrat in das aktive Zentrum gelangen kann.¹²¹ Momentan steht das Konzept des "beweglichen Deckels" in der Diskussion. Dieses beschreibt wie die Substratzufuhr mit Hilfe des "Deckels" geregelt werden könnte und ist bereits bei weiteren Enzymen mit Polycystin-1-, Lipoxygenase- oder Alpha-Toxin-(PLAT)-Domänen bekannt.¹²⁴

1.3.2. Der 5-LO-Katalysemechansimus

Die 5-LO katalysiert die zweistufige Oxidation von AA zu LTA4 durch ein nicht-Hämgebundenes Eisenatom. Entsprechend seiner Oxidationsstufe besitzt es in seiner Koordinationssphäre ein Wassermolekül (als Eisen(II)-Ion) oder ein Hydroxyidion (als Eisen(III)-Ion). Dieses prosthetische Eisenion fungiert bei der Katalyse als Elektronendonor bzw. als -akzeptor. Dabei werden zwei Arachidonylradikale gebildet, welche zur 5-HPETE bzw. zum LTA4 umgewandelt werden. Die Radikale verlassen dabei nicht das Enzym, sondern werden vor Ort umgewandelt. Das 5-LO-Protein muss nach seiner Bildung zunächst aktiviert werden. Studien an der 5-LO mittels paramagnetischer Elektronenresonanz-Spektroskopie ergaben, dass das Eisenatom der katalytisch aktiven Form als Eisen(III)-Spezies vorliegt. Diese entsteht aus der inaktiven Eisen(II)-Spezies, mit Hilfe von Lipidhydroperoxiden.¹²⁵ Die Exposition des Enzyms mit Luft-Sauerstoff bewirkt einen Aktivitätsverlust.¹²⁶ Diese Befunde und zielgerichtete Mutationsstudien¹²⁷ führen zu dem in Abbildung 1.14 dargestellten Katalysemechanismus. Es wird postuliert, dass der erste Katalyseschritt mit einer stereospezifischen Abstraktion des pro-S-Wasserstoffatoms an C-7 durch die Eisen(III)-Spezies beginnt. Diese Spezies liegt anschließend in der inaktiven Eisen(II)-Form vor. Das durch die Abstraktion gebildete Radikal A lagert sich um und reagiert antrafacial mit eindiffundiertem Sauerstoff zum Peroxyradikal **B**,¹²⁸ welchem ein einElektronen-Transfer durch das Eisen(II)-Atom widerfährt.¹²⁹ Dabei bildet sich die katalytisch aktive Eisen(III)-Spezies zurück und das Intermediat 5-HPETE entsteht. Die anschließende Epoxidierung erfolgt nicht direkt, sondern über eine Radikalumlagerung. Das Eisen(III)-Ion abstrahiert dabei erneut ein Wasserstoffatom, jedoch diesmal das pro-*R* an C-10 zum Intermediat C,¹³⁰ und liegt dann wieder als Eisen(II)-Ion vor. Das gebildete Radikal C kann sich zum Radikal D umlagern. Durch die räumliche Lage des Eisen(II)-Ions katalysiert dieses einen suprafacialen homolytischen Bindungsbruch des Hydroperoxids.¹³¹ Dies führt zu einer Wasserabspaltung aus der Koordinationssphäre des Eisenatoms und der Regenerierung der katalytisch aktiven Eisen(III)-Spezies. Außerdem kommt es zur Epoxidbildung unter Ausbildung von zwei neuen *trans*-Doppelbindungen an C-7 und C-9 und damit zur Synthese von LTA₄.

Abbildung 1.14: Postulierter Mechanismus für die Umwandlung von AA zu LTA₄ durch die 5-LO nach^{132,133}

1.3.3. Regulation der Expression und Aktivität der 5-Lipoxygenase

Bereits die Transkription des ALOX-5-Gens ist durch mehrere regulatorische Elemente in dessen Promoterregion streng kontrolliert. Zum Einen finden in der GC-Box des Gens Methylierungen statt, welche das Anlagern des Transkriptionsfaktors Sp1 inhibieren. Dadurch wird das Ablesen bzw. die Expression des Gens in nicht-5-LO-exprimierenden Zellen unterbunden.¹³⁴ Die 5-LO wird weiterhin auf Transkriptionsebene reguliert. Bei der Regulation spielen viele Faktoren eine Rolle wie Vitamin D-Responseelemente,

transformierender Wachstumsfaktor- β (TGF- β) -Responseelemente, Smad-bindende Elemente sowie der Nuklearfaktor-"kappa-light-chain-enhancer" (NF- κ B), die nuklearen Faktoren von aktivierten T-Zellen (NFAT) und auch aktivierendes Protein 2 (AP-2) und Transkriptionsfaktor Pu1.¹¹⁶ Eine gesteigerte Expression findet vor allem durch den Einfluss von Entzündungsmediatoren statt. Darüber hinaus kann die Expression auch durch Retinsäure, Zytokine und Wachstumsfaktoren induziert werden. Ein Beispiel hierfür sind unterschiedliche Zellarten, die unter dem Einfluss von TGF- β und Calcitriol (1,25-Dihydroxy-Vitamin D₃) eine bis zu 100-fach gesteigerte Induktion zeigen.^{117,135} Außerdem findet eine posttransskriptionale Regulation auf der Ebene der 5-LO -mRNA durch microRNA statt. Diese wirkt sich repressiv auf die Expression der 5-LO aus.¹³⁶.

Die Aktivität der 5-LO wird durch zwei Hauptmechanismen gesteuert: durch den Einstrom von Ca²⁺-Ionen und durch unterschiedliche Phosphorylierungen an den Serinresten Ser²⁷¹, Ser⁵²³ und Ser⁶⁶³. Das Aktivierungsschema der 5-LO ist in Abbildung 1.15 wiedergegeben.

Abbildung 1.15: Aktivierung der 5-LO-Aktivität durch Ca²⁺-Ionen bzw. Phosphorylierung und Translokation zur Zellhülle nach¹¹⁶

Der Anstieg der Ca²⁺-Ionen Konzentration in der Zelle führt zu zwei parallel verlaufenden bzw. gekoppelten Aktivierungen, welche eine effiziente Bereitstellung und Verwendung des Substrats sicherstellen. Zum Einen kommt es zur Aktivierung der cPLA₂, welche in Abhängigkeit von ihrem Phosphorylierungsstatus die Freisetzung von AA aus Phospholipiden der Membran bewirkt.^{137,138} Gleichzeitig wird die 5-LO durch Bindung von Ca²⁺-Ionen an der C2-ähnlichen Domäne aktiviert.¹³⁹ Dadurch kommt es zur Translokation des Enzyms vom Zytosol bzw. Nukleoplasma hin zur Zellkernhülle.¹⁴⁰ Dieser Vorgang wird unter Zellstress durch Mitogen-aktivierte Proteinkinase (MAP-KAP Kinase) vermittelte Phosphorylierungen am Ser²⁷¹ unterstützt. Des Weiteren findet eine Phosphorylierung am Ser⁶⁶³ durch die extrazelluläre Signalkinase 2 (ERK2) statt.^{141,142} Diese beiden Phosphorylierungen führen ebenfalls zur 5-LO-Translokation und tragen so zur Aktivierung bei. Dies wurde durch Mutationsstudien und den Einsatz von Tyrosinkinase-Inhibitoren bestätigt.¹⁴³ Ein Inaktivierungsmechanismus wird durch erhöhte cAMP-Konzentration ausgelöst, die zu einer Aktivierung der Proteinkinase A (PKA) und anschließender Phosphorylierung an Ser⁵²³ führt. Dadurch kommt es zur Hemmung der 5-LO-Translokation zur Kernhülle. Ein gegenteiliger Effekt wird durch die Zugabe von exogener AA herbei geführt.¹⁴⁴ Es wird daher vermutet, dass es eine regulatorische und eine katalytische Bindestelle für Fettsäuren an der 5-LO gibt.

Freie AA bindet spezifisch an FLAP, welches an der Kernhülle lokalisiert ist.¹⁴⁵ FLAP wurde als ein 18 kDa schweres Protein identifiziert, welches essentiell ist, um die endogen freigesetzte AA der 5-LO zuzuführen.^{146,147} FLAP zählt zu den Membran-assoziierten Proteinen im Eicosanoid- und Gluthathionmetabolismus (MAPEG). Allerdings ist es das einzige Protein dieser Proteinfamilie, welches keine eigene enzymatische Aktivität ausübt.¹⁴⁸ Es wird daher vermutet, dass FLAP den Transport von AA zum aktiven Zentrum der 5-LO fördert und das Eindringen in die geschlossene Bindungstasche erleichtert.¹⁴⁹

Zusätzlich zu Ca²⁺-Ionen und Phosphorylierungen können noch drei weitere Faktoren die 5-LO-Aktivität steigern: Phosphatidylcholin (PC), 1-Oleoyl-2-acetylglycerol (OAG) und das Coactosin-ähnliche Protein (CLP). Durch Bindung an die C2-ähnliche Domäne scheinen alle drei Faktoren, den katalytisch aktiven Komplex zu stabilisieren und eine höhere Umsatzrate zu erzielen. Allerdings sind sie nicht essentiell für die LT-Biosynthese, da die 5-LO-Aktivität auch ohne sie vorhanden ist.¹¹⁷ Zur effektiven Aktivierung der 5-LO ist jedoch ein Zusammenspiel aller beteiligten Faktoren notwendig. Bei einer durch CLP-vermittelten Induktion der 5-LO-Aktivität in Gegenwart von Ca²⁺ und in Abwesenheit von PC beobachtet man eine vermehrte Bildung von 5-HETE. Die Bildung von LTA₄ ist jedoch unverändert.¹⁵⁰ Außerdem wird die 5-LO-Aktivität durch die Bindung bzw. das Anlagern von ATP gesteigert. ATP wird dabei nicht zu ADP gespalten. Dies lässt vermuten, dass ATP ebenfalls zur Stabilität des aktiven Komplexes beiträgt.
1.3.4. Biologische Funktion der Leukotriene

Die aus dem Lipoxygenaseweg stammenden LTe binden an spezifische LT-GPCRen und spielen eine Rolle in der Entstehung von (chronischen) Entzündungen, wie z.B. Asthma, allergischer Rhinitis, Arthritis, Arteriosklerose und Psoriasis.^{151,152} Außerdem beeinflussen sie die Gefäßpermeabilität und spielen beim Wachstum und dem Überleben von Krebszellen eine Rolle.^{151,152} LTe sind Entzündungsmediatoren, die sich durch einen schnellen und kurzzeitigen Effekt auszeichnen. Sie entfalten ihre Wirkung im niederen nM-Bereich. Dies hält das Immunsystem im Gleichgewicht und verhindert überzogene immunologische Reaktionen. LTB₄ übt seinen Effekt hauptsächlich über den BLT₁-Rezeptor aus, der in Zellen der Immunabwehr exprimiert wird. Darüber hinaus bindet LTB₄ an den ubiquitär exprimierten BLT₂-Rezeptor. Der BLT₁-Rezeptor weist im Vergleich zum BLT₂-Rezeptor eine höhere Sensibilität gegenüber LTen auf. Die Bindung von LTen an den Rezeptoren führt in der Zelle zur Aktivierung der CLP und erhöht die Bildung von OAG. Dies führt dann zu einer erhöhten Aktivität des 5-LO Enzyms (s. Kapitel 1.3.3).¹¹⁶

Die cysteinyl-haltigen LTe, LTC₄-E₄, üben ihren Effekt über den CysLT₁- bzw. den CysLT₂-Rezeptor aus. Die agonistische Aktivität nimmt am CysLT₁-Rezeptor in der Reihenfolge LTC₄ < LTD₄ < LTE₄ ab, wohingegen die CysLTe am CysLT₂-Rezeptor in etwa äquipotent sind. Die Rezeptoren sind organspezifisch verteilt.¹⁵³ Ihre Nomenklatur entspricht ihrer Affinität gegenüber den Antagonisten Montelukast oder Zafirlukast. (Zur Anti-LT-Therapie s. Kapitel 1.3.6). Beiden Antagonisten wirken nur auf den CysLT₁-Rezeptor antagonistisch, jedoch nicht auf den CysLT₂-Rezeptor. Entsprechend der LTB-Rezeptoren bewirken sie eine Aktivierung von CLP in der Zelle.

LTB₄ ist ein potenter Leukozytenaktiviator, der die Chemotaxis von neutrophilen Granulozyten und T-Zellen zum beschädigten Gewebe hin stimuliert. Dies führt zu einem Anheften der neutrophilen Granulozyten an die Blutgefäßwände. Außerdem kommt es zur Degranulation sowie zur Freisetzung von Cathelicidin LL-37 und Superoxiden, die Teile der Immunantwort darstellen.¹⁵⁴ Weiterhin steigert LTB₄ die Phagozytose-Aktivität von neutrophilen Granulozyten sowie Makrophagen und stimuliert die Sekretion von Antikörpern.¹⁵² Diese Auswirkungen auf die Immunantwort weisen auf eine entscheidende Rolle von LTB₄ in entzündungsbedingten Krankheiten wie Asthma und Arthritis hin. Dies konnte an 5-LOΔ- sowie an FLAPΔ-Mäusen belegt werden. Beide sind nicht in der Lage chronische Arthritis zu entwickeln.¹⁵⁵ In der Entstehung von Asthma und der allergischen Rhinitis sowie der Ausbildung einer chronischen Entzündung sind die cysteinyl-haltigen LTe involviert. Diese bewirken eine Kontraktion der glatten Muskulatur in den Bronchien und der Gefäße sowie eine gesteigerte Vasopermeabilität, Schleimsekretion und Rekrutierung von Eosinophilen.¹⁵¹

1.3.5. Inhibitoren der 5-Lipoxygenase

Die Effekte, die durch LTe verursacht werden, lassen sich auf unterschiedlichste Weise inhibieren. Es werden drei Ansätze verfolgt. Der erste führt zur kompletten Ausschaltung des Lipoxygenasewegs durch Inhibition des 5-LO-Enzyms beziehungsweise seiner für die Aktivität essentiellen Interaktionspartner, wie cPLA₂ oder FLAP. Das cPLA₂-Enzym wäre ein denkbares Target, um der 5-LO das Substrat zu entziehen. Studien haben jedoch ergeben, dass dies zu einem kompletten Ausfall des Eicosanoidstoffwechsels führt. Dies ist aufgrund starker Nebenwirkungen unerwünscht.¹⁵⁶ Die Inhibition von FLAP hingegen beeinflusst lediglich den AA-Transfer zur 5-LO. Diese Art der Inhibition wird daher oft als indirekte 5-LO Inhibition bezeichnet (s. Kapitel 1.3.5.1).¹⁵⁷ Die direkt an der 5-LO agierenden Inhibitoren werden in drei Klassen unterteilt, jeweils in Abhängigkeit ihres Wirkmechanismus. Dazu zählen die Eisen-Chelat-Inhibitoren (Kapitel 1.3.5.2), die redoxaktiven Inhibitoren (Kapitel 1.3.5.3) und die nicht-redoxaktiven Inhibitoren (Kapitel 1.3.5.4). Zur Klasse der nicht-redoxaktiven Inhibitoren (Lapitel 1.3.5.4). Zur Klasse der nicht-redoxaktiven Inhibitoren (Lapitel 1.3.5.4).

Als zweiter Ansatz wird die Unterdrückung der LT-Biosynthese durch Inhibition der LTA₄-Hydrolase und/oder der LTC₄-Synthase verfolgt. Dabei wird ein der 5-LO nachfolgendes Enzym in der Kaskade der LT-Biosynthese inhibiert (vgl. Abbildung 1.12). Zuletzt können auch die von LTen verursachten Effekte durch LT-Rezeptorantagonisten unterdrückt werden, welche die BLT- bzw. die CysLT-Rezeptoren blockieren. Diese beiden zuletzt genannten Ansätze und die dafür entwickelten Inhibitoren werden in Kapitel 1.3.6 vorgestellt.

1.3.5.1. Indirekte / FLAP-Inhibitoren

Die indirekten Inhibitoren der 5-LO führten in den späten 1980er Jahren zur Entdeckung von FLAP. In Versuchen der Firma Merck-Frosst war das Indolderivat MK886 (s. Abbildung 1.16) in der Lage die LT-Biosynthese *in vitro* und *in vivo* zu inhibieren, ohne die katalytische Funktion der 5-LO oder von cPLA₂ zu beeinflussen, sodass MK886 nicht im aktiven Zentrum

der 5-LO binden konnte.¹⁵⁸ Stattdessen bindet es an FLAP und unterbricht somit den Substrattransfer aus der Membran zum 5-LO Standort an der Oberfläche der Kernhülle (vgl. Kapitel 1.3.3). Nach der Aufklärung der FLAP-Kristallstruktur, inklusive komplexiertem Inhibitor (MK0591), fand man heraus, dass diese Substanzklasse als FLAP-Antagonisten fungiert, jedoch werden sie aus historischen Gründen weiter als 5-LO-Inhibitoren klassifiziert.¹⁵⁷

Abbildung 1.16: FLAP Inhibitoren

Fast zeitgleich mit MK886 (IC₅₀ = 3 nM) wurde das Chinolinderivat Veliflapon durch die Firma Bayer entwickelt (ursprünglich Bay-X 1005, IC₅₀ = 60 nM).¹⁵⁹ Beide Inhibitoren weisen diverse Strukturelemente auf, die dann in dem Indol-Chinolin-Hybriden MK0591 (IC₅₀ = 1.6 nM) zusammengeführt wurden.¹⁶⁰ Alle drei Inhibitoren, MK886, Bay-X 1005 und MK0591 wurden in klinischen Phase-II-Studien für die Asthmatherapie untersucht, konnten jedoch keinen therapeutischen Zusatznutzen zeigen. Dies führte zur Weiterentwicklung der Substanzklasse und zur Entwicklung von AM103 (IC₅₀ = 4.2 nM). Dieses zeichnet sich durch bessere pharmakodynamische Eigenschaften aus, hat bereits eine Phase-I-Studie erfolgreich abgeschlossen und gilt als derzeit vielversprechendster Kandidat.^{161–163}

Daneben befindet sich zur Zeit das Veliflapon schon in klinischen Phase-III Studien für die Behandlung des Myokardinfarkts und gilt daher als aussichtsreichster Kandidat für die Zulassung eines FLAP-Inhibitors, da es bisher trotz vieler Bemühungen noch zu keiner Zulassung eines FLAP-Inhibitors kam.

1.3.5.2. Eisen-Chelat-Inhibitoren

Eisen-Chelat Inhibitoren zeichnen sich durch ihre Fähigkeit katalytisch wirkende Eisen-Ionen zu chelatisieren aus. Dies führt zum Verlust der 5-LO-Aktivität, da der Katalysezyklus unterbrochen wird. Charakteristische funktionelle Gruppen bzw. Bindungsmotive dieser Klasse sind hydrolytisch labile Hydroxamsäuren oder metabolisch stabilere *N*-Hydroxyharnstoffe. In Abbildung 1.17 sind literaturbekannte Vertreter dieser Klasse abgebildet.

Abbildung 1.17: Eisen-Chelat-Inhibitoren

Die prominentesten Vertreter sind BWA4C, Zileuton und Atreleuton. BWA4C ist ein sehr potenter Inhibitor in zellulären Systemen (IC₅₀ = 50 nM).¹⁶⁴ Heutzutage dient er als Referenzsubstanz für die *in vitro* Testung anderer Inhibitoren, da er *in vivo* schnell inaktiviert wird, indem er zu einem Nitrooxidradikal oxidiert wird.¹⁶⁵ Dieser Umstand führte zur Entwicklung von Zileuton, welches eine metabolisch stabile N-Hydroxyharnstoff-Gruppe enthält. Zileuton ist im Vergleich zu BWA4C deutlich weniger potent (IC₅₀ = 0.5 - 1 μ M),¹⁶⁶ ist aber bisher als einziger direkter 5-LO-Inhibitor (Zyflo[®]) auf dem US amerikanischen Markt zugelassen. Durch seine chelatisierende Eigenschaft hemmt es auch andere Enzyme, deren Aktivität auf zweiwertigen Kationen beruht. Weiterhin besitzt Zileuton eine sehr kurze Halbwertszeit von etwa drei Stunden, sodass eine hohe orale Dosis von bis zu 2.4 g pro Tag eingenommen werden muss, um den gewünschten pharmakologischen Effekt zu erzielen. Diese hohe Dosis bedingt eine relativ hohe Lebertoxizität.¹⁶⁷ Zileuton ist ausschließlich zur Behandlung des mittelschweren Asthma Bronchiale indiziert. Bei allergischer Rhinitis, rheumatoider Arthritis oder bei entzündlichen Darmerkrankungen wurde kein therapeutischer Zusatznutzen festgestellt.¹⁶⁸ Aus diesem Grund wurde die Struktur von Zileuton zum

Atreleuton weiterentwickelt. Atreleuton ist fünfmal potenter als Zileuton (IC₅₀ = 0.16 μ M) und besitzt mit 16 Stunden eine deutlich höhere Halbwertszeit.¹⁶⁹

1.3.5.3. Redox-Inhibitoren

Die Redox-(aktiven)-Inhibitoren reduzieren das katalytisch aktive Fe^{3+} -Ion im aktiven Zentrum der 5-LO zum katalytisch inaktiven Fe^{2+} -Ion. Dies geschieht durch direkte Reduktion oder durch das Abfangen des entstehenden Arachidonylradikals. Dadurch wird die Regeneration des aktiven Fe^{3+} -Ions verhindert und somit der Katalysezyklus blockiert. Redox-Inhibitoren stellen die älteste Klasse der 5-LO-Inhibitoren dar. Sie lassen sich in natürlich vorkommende pflanzliche Verbindungen, wie z.B. Kaffeesäure (IC₅₀ = 3.7 μ M) und Nordihydroguajaretsäure (IC₅₀ = 0.8 μ M),^{170,171} sowie synthetische Verbindungen unterteilen. Als deren Vertreter seien hier AA-861, L-656224 und BW755C genannt (s. Abbildung 1.18).

Abbildung 1.18: 5-LO Redox-Inhibitoren

Alle Redox-Inhibitoren sind *in vitro* sehr potent, zeigen jedoch *in vivo* zum Einen eine geringe Selektivität gegenüber der 5-LO und zum Anderen eine geringe orale Bioverfügbarkeit. Trotzdem wurde AA-861 (IC₅₀ = 0.8μ M) in einer klinischen Phase-II-Studie zur Behandlung von Asthma sowie in einer Phase-III-Studie zur rheumatoider Arthritis hin untersucht.¹⁷² Es ließen sich starke unerwünschte Nebenwirkungen beobachten, insbesondere eine Methämoglobinbildung. Dies führte zur Einstellung der klinischen Entwicklung von Redox-Inhibitoren, sodass diese Inhibitorklasse nie Marktreife erlangte. Die Nebenwirkungen lassen sich mit dem Wirkmechanismus der Redox-Inhibitoren begründen, der auch andere biologische Redox-Systeme oder im Körper entstehende Radikalspezies beeinflusst.^{173,174} Aus diesem Grund wurde die Weiterentwicklung von L-656224 (IC₅₀ = 0.4 μ M) und BW755C (IC₅₀ = 4.9 μ M) ebenfalls eingestellt.^{175,176}

1.3.5.4. Nicht-Redox-Inhibitoren

Im Gegensatz zu den anderen bereits erwähnten Inhibitoren greifen die nicht-Redoxaktiven Inhibitoren nicht in den Katalysezyklus ein, sondern konkurrieren mit AA oder Lipidhydroperoxiden um deren Bindungsstellen.¹⁷⁴ Außer durch orthosterische Inhibition kann die 5-LO-Hemmung auch über einen allosterischen Bindemodus erreicht werden. Dabei wird die Bindungsaffinität des Substrates durch Interaktion mit Regulations- und Stimulationsbindestellen des Enzyms reduziert (vgl. Kapitel 1.3.3). Die nicht-Redoxaktiven Inhibitoren weisen eine sehr hohe chemische Diversität auf. Dies ist ein Vorteil gegenüber anderen Wirkmechanismen, da eine strukturbedingte höhere Anfälligkeit für Nebenwirkungen durch hohe Selektivitäten vermieden werden kann.

Abbildung 1.19: Nicht-Redoxaktive 5-LO-Inhibitoren

Die ersten oral verfügbaren Vertreter dieser Klasse, waren die Verbindungen ZD2138 (IC₅₀ = 3 nM), L-699333 (IC₅₀ = 7 nM) und L-739010 (IC₅₀ = 1.6 nM) (s. Abbildung 1.19).^{177,178} Für ZD2138 wurde für die Indikation Asthma eine klinische Phase-II-Studie durchgeführt, welche jedoch nicht die gewünschten Effekte zeigte.¹⁷⁹ Im Nachhinein zeigte sich nämlich , dass das Ausmaß der Inhibition bei dieser allosterischen Hemmung von anderen Stimuli auf die

Zellen beeinflusst wird, indem sich erhöhte intrazelluläre Peroxidspiegel beziehungsweise das Phosphorylierungslevel der 5-LO auf das Inhibitionsverhalten auswirken. Diese sind z.B. in entzündetem Gewebe erhöht.¹⁶⁴ Werden die Zellen in 5-LO-Aktivitäts-Assays mit den Verbindungen ZD2138 und L-739010 zusätzlich mit Calcium-Ionophor A23187 stimuliert, so sind beide Substanzen äußerst potent. Werden die Zellen jedoch durch Phosphorylierung stimuliert, ist eine Verschlechterung der Inhibition um den Faktor 10-100 zu beobachten.¹⁸⁰ Dies führt zur Annahme, dass Phosphorylierung die Effizienz dieser nicht-Redoxaktiven Inhibitoren beeinträchtigt. Unter Beachtung dieser Befunde wurden neue nicht-Redoxaktive Inhibitoren entwickelt, die Stimulus-unabhängig inhibieren. Dazu zählen die Verbindungen CJ13610 (IC₅₀ = 0.07 μ M) und Setileuton (IC₅₀ = 3.9 nM; ehemals MK0633), welche in Entzündungs- und Schmerzmodellen gute Wirkungen zeigten.^{181,182} In klinischen Phase-II-Studien zur Behandlung von Asthma führte die Einnahme von Setileuton jedoch zu erhöhten Transaminase-Werten, welche auf eine Schädigung der Leber hindeuten, sodass die Entwicklung eingestellt wurde.¹⁸³

1.3.6. Weitere Inhibitoren in der Anti-Leukotrien-Therapie

Die Anti-LT-Therapie kann nicht nur durch Inhibition der 5-LO erfolgen, sodass die komplette LT-Biosynthese und 5-HETE-Bildung ausgeschaltet wird, sondern auch durch ein späteres Eingreifen in der AA-Kaskade. Dafür bieten sich die Inhibition der LTA₄-Hydrolase und die der LTC₄-Synthase an. Vor Allem die Inhibition der LTA₄-Hydrolase ist interessant, da es dadurch zur Anreicherung von LTA₄ kommt. Es wir postuliert, dass es in diesem Fall zu einem "Shunting"-Effekt kommt, wodurch das Substrat vermehrt zu Lipoxinen umgesetzt wird (s. zur Lipoxin Biosynthese Kapitel 1.4.1).

Die Entwicklung von LTA₄-Hydrolase-Inhibitoren begann schon bevor im Jahre 2004 die Kristallstruktur des Enzyms aufgeklärt wurde.¹⁸⁴ Es war bereits bekannt, dass das aktive Zentrum ein Zink-Ion enthält und das Enzym eine Aminopeptidaseaktivität aufweist. Dadurch konnte ein vereinfachtes Modell der Bindungstasche generiert werden.¹⁵¹ Als erste nichtselektive Inhibitoren wurden bereits bekannte Arzneistoffe wie Bestatin (IC₅₀ = 4 μ M), Captopril (IC₅₀ = 11 μ M) und Kelatrophan (IC₅₀ = 0.005 μ M) identifiziert (s. Abbildung 1.20). Die Wirkung von Captopril basiert jedoch auf seiner freien Thiolgruppe, welche das katalytische Zink-Ion komplexiert und somit die Aktivität LTA₄-Hydrolase inhibiert. was auch bei jedem anderen zinkhaltigen Enzym im Körper hervorgerufen werden könnte. Es wurde deshalb als Entwicklungslinie nicht weiter verfolgt. Die anderen beiden dienten als

Ausgangspunkt zur Entwicklung einer zweiten, selektiven Generation.^{185,186} Dazu zählen die Verbindungen SA6541 (IC₅₀ = 4 μ M) und SC57461A (IC₅₀ = 49 nM), welche gute antientzündliche Eigenschaften zeigen.^{187,187,188}

Nach der Strukturaufklärung der LTA₄-Hydrolase erfolgte eine strukturbasierte Inhibitorentwicklung, welche vorläufig in der Entwicklung von DG-051 (IC₅₀ = 47 nM) zur Behandlung eines Myokardinfarkts, und in JNJ26993135 (IC₅₀ = 12 nM) zur Behandlung entzündlicher Darmerkrankung und allergischer Atemwegsentzündung gipfelte und die klinisch untersucht wurden.^{189,190}

Abbildung 1.20: LTA₄ Hydrolase Inhibitoren

Die Strukturaufklärung der LTC₄-Synthase gelang erst im Jahre 2007. Leider war die Aufklärung kein Startschuss zur Entwicklung neuer selektiver LTC₄-Synthase-Inhibitoren.^{151,191} Die zwei schon bekannten FLAP-Inhibitoren MK886 (IC₅₀ = 10 μ M) und L-699333 (IC₅₀ = 22 nM) erwiesen sich aber auch als potente LTC₄-Synthase-Inhibitoren. Dies erklärt sich anhand der Strukturhomologie von LTC₄-Synthase und FLAP.^{192,193} Bisher hat sich nur die Arbeit von Ago *et al.* gezielt mit der Entwicklung von LTC₄-Synthase-Inhibitoren beschäftigt.¹⁹⁴ Mit der Synthese von Compound 1 (IC₅₀ = 1.9 nM) gelang ihnen die Entwicklung eines äußerst potenten Inhibitors, welcher bislang nur *in vitro* getestet wurde (Abbildung 1.16).

Abbildung 1.21: LTC₄-Synthase Inhibitoren

Die Anti-LT-Therapie kann auch durch LT-Rezeptorantagonisten erfolgen. Durch die Blockade der BLT- bzw. CysLT-Rezeptoren wird der entzündungsfördernde LT-Effekt an ihren Wirkungsorten unterbunden. Ursprünglich ging man von einem einzelnen BLT-Rezeptor aus. Aus diesem Grund sind die Antagonisten nicht auf eine BLT₁-Spezifität hin entwickelt worden, sondern binden auch an den BLT₂-Rezeptor. ¹⁵¹ In Abbildung 1.22 sind einige BLT-Rezeptorantagonisten abgebildet: Amebulant (ehemals BIIL284; IC₅₀ = 0.8 nM), CP105696 (IC₅₀ = 5.6 nM), Etalocib (ehemals LY293111; IC₅₀ = 20 nM) und Moxilubant (ehemals CGS25019C).^{195–197} Sie weisen in vielen Entzündungsmodellen gute Ergebnisse auf, konnten jedoch in klinischen Studien keinen therapeutischen Zusatznutzen im Vergleich zur Standardtherapie erzielen, da offensichtlich nicht nur LTB₄ am Entzündungsgeschehen beteiligt ist. Aus diesem Grund ruht ihre Weiterentwicklung zur Zeit.¹⁵¹

Abbildung 1.22: BLT-Rezeptorantagonisten

Im Vergleich zu den BLT-Rezeptorantagonisten hat sich für die CysLT-Rezeptorantagonisten bei der Behandlung von Asthma und allergischer Rhinitis ein Nutzen erwiesen. Aus diesem Grund sind einige Vertreter auf dem Markt. Dies sind Montelukast (Singulair[®]; CysLT₁ /

CysLT₂: IC₅₀ = 2.3 nM / inaktiv), Pranlukast (Onon[®]; CysLT₁ / CysLT₂: IC₅₀ = 4.3 nM / 3.6 μ M) und Zafirlukast (Accolate[®]; CysLT₁ / CysLT₂: IC₅₀ = 1.9 nM / 7.4 μ M), die hauptsächlich den CysLT₁-Rezeptor als Antagonisten binden.^{198,199} Von den drei Vertretern ist nur Montelukast in Deutschland zugelassen.. Zafirlukast ist in weiten Teilen Europas sowie den USA zugelassen, während Pranlukast nur in Asien auf dem Markt ist. Die Verbindungen sind in Abbildung 1.23 dargestellt.

Zafirlukast

Abbildung 1.23:CysLT Rezeptorantagonisten

1.3.7. Indikation einer Anti-Leukotrien-Therapie

Es ist bekannt, dass eine Dysregulation der LT-Biosynthese bei vielen chronischen Krankheiten eine Rolle spielt. Eine Anti-LT-Therapie ist deshalb bei entzündungsbasierten Krankheiten indiziert. Das prominenteste Beispiel ist Asthma bronchiale. Anfallartig leiden die Patienten hierbei unter Bronchiospasmen, die zu einer Hyperventilierung führen können, und vermehrter Schleimsekretion. Neben Asthma liegt eine LT-Dysregulation auch bei allergischer Rhinitis, chronisch-entzündlichen Darmerkrankungen, Nephritis, Psoriasis, Dermatitis, Arteriosklerose und verschiedenen Formen von Krebs vor.¹⁵¹ Außerdem wurde gezeigt, dass sich LTe negativ auf die Knochenhomöostase auswirken, sie begünstigen Osteoporose.

In verschiedenen Tumorarten (chronisch myeloische Leukämie (CML) sowie Brust-, Darm-, Lungen-, Pankreas- und Prostatakrebs) konnten 5-LO-Stoffwechselprodukte identifiziert werden. Im gesunden Zustand sind diese Gewebe nicht in der Lage 5-LO zu exprimieren. Außerdem nehmen LTe Einfluss auf die Angiogenese, fördern das Zellwachtum und verhindern Apoptose. In Mausstudien konnte mit Hilfe von 5-LO-Inhibitoren das Tumorwachstum verlangsamt werden, sodass eine Anti-LT-Therapie einen zusätzlichen Ansatz zur herkömmlichen Krebstherapie darstellt.^{151,200} Eine klinische Phase-I-Studie, die die gemeinsame Gabe von Zileuton und Imatinib untersuchte, wurde jedoch kürzlich ohne Angabe von Gründen abgebrochen.²⁰¹

Die Krankheiten bei denen eine LT-Dysregulation bekannt ist sind in Abbildung 1.24 zusammengestellt. Es lässt sich zusammenfassen, dass mit Ausnahme der Behandlung von Asthma bis heute kein LT-Antagonist bzw. 5-LO-Inhibitor zur Behandlung der genannten Krankheiten zugelassen ist. Aus diesem Grund ist die Suche nach neuartigen potenten Wirkstoffen notwendig.¹⁶⁷

Abbildung 1.24: Leukotrien-assoziierte Krankheiten, zugeordnet den LTen welche dabei dysreguliert sind, nach¹⁵¹

1.4. Entzündungsauflösende Lipidmediatoren

Der Entzündungsprozess ist einer der wichtigsten biologischen Faktoren, um die Genesung von beschädigtem Gewebe einzuleiten. Dieser stellt eine charakteristische Antwort auf einen schädlichen Reiz oder einer Gewebeverletzung dar, um gegebene Schäden zu reparieren. Eine zu lange andauernde Entzündung ist jedoch für das Gewebe schädlich und führt zu chronischen Entzündungen oder zur Geschwür- und Narbenbildung (s. Abbildung 1.25).²⁰² Die Entzündungsauflösung galt lange Zeit als passiver Prozess, der durch Abdiffusion von entzündungsfördernden Mediatoren abklingt. Aktuelle Befunde belegen jedoch, dass es sich um einen aktiven Auflösungsprozess handelt, welcher genauso komplex ist wie der Entzündungsprozess.²⁰³ Im Wundheilungsprozess spielen spezielle zelluläre Steuerungsmechanismen eine Rolle. Die daran beteiligten Mediatoren verhindern die Migration von neutrophilen Granulozyten zum entzündeten Gewebe, leiten die Apoptose von neutrophilen Granulozyten ein und stimulieren die Monozytenrekrutierung bzw. die Makrophagen-differenzierung und ihre Einwanderung in das entzündete Gewebe sowie die Efferozytose von apoptotischen neutrophilen Granulozyten.^{204–206}

Abbildung 1.25:Unterschiedliche Möglichkeiten für den Verlauf nach einer akuten Entzündung nach 207

Im gewöhnlichen Entzündungsverlauf werden zuerst PGe und LTe aus AA gebildet. Das auf dem COX-Weg gebildete PGE₂ und das PGD₂ induzieren nach einem gewissen Zeitraum die Bildung von entzündungsauflösenden Mediatoren in neutrophilen Granulozyten. Dieser Prozess wird in der Literatur allgemein als "lipid-mediator class switching"¹⁰¹ bezeichnet. Die gebildeten hochkonservierten Mediatoren sind das Lipoxin (LX), das Resolvin (Rv), das Protectin (PD) und das Maresin (MaR). Alle Mediatoren lassen sich in Subtypen unterteilen. Sie leiten sich von den ω -3-Fettsäuren, wie Eicosapentaensäure (EPA) oder Docosahexaensäure (DHA), oder von einer ω -6-Fettsäure, der AA, ab. Alle Mediatoren sind in der Lage auf unterschiedlichen Wegen die Entzündung aktiv zu hemmen und werden auch als SPM zusammengefasst (spezialisierte entzündungsauflösende Mediatoren; engl. *"Specialized Pro-resolving Mediators"*).²⁰⁸ Jede einzelne Klasse dieser SPM besitzt eine einmalige, strukturelle Eigenschaft, welche sie von klassischen Eicosanoiden, wie PGen und LTen, unterscheidet. Die Stereochemie jeder Struktur wurde durch organische Vollsynthese verifiziert.^{209–211} SPM werden durch unterschiedliche Lipoxygenasen oder durch acetylierte COX-2 gebildet (vergl. Kap. 2.1.2) und sind bereits in geringen Konzentrationen wirksam.²⁰⁸

1.4.1. Lipoxine

Die erste entdeckte Klasse entzündungshemmender Mediatoren waren die LX.^{212,213} Sie leiten sich von der AA ab. Die LX-Biosynthese (s. Abbildung 1.26) verläuft über einen zweistufigen Mechanismus in den unterschiedlichsten Zellen, wie Makrophagen, Granulozyten, Thrombozyten, Endothel- und Epithelzellen ab.^{214,215} AA wird unter Zusammenwirkung von 15-LO und 5-LO zu LX metabolisiert. Dabei entsteht im Hydroperoxidationsschritt, durch 15-LO die 15*S*-HPETE, welche anschließend durch 5-LO epoxidiert und zum Lipoxin A₄ (LXA₄) oder LXB₄ geöffnet wird.

Abbildung 1.26: Biosynthese von 15-epi-LXA₄ und LXA₄. Umwandlung von Arachidonsäure durch acetylierte COX-2 oder durch 15-LO für körpereigenen Lipoxine

Im Falle der medikamentösen Einnahme von Acetylsalicylsäure, z.B. bei einer Entzündung, wird möglicherweise eine zusätzliche Syntheseroute für LX eröffnet, die durch acetylierte COX-2 katalysiert wird. Wie bereits in Kapitel 1.2.1.2 erörtert, ist die COX-2 Expression im gereizten bzw. beschädigten Gewebe induziert. Acetylsalicylsäure ist dort in der Lage den hochkonservierten Ser⁵³⁰-Rest im aktiven Zentrum der COX-2 zu acetylieren²¹⁶ (vgl. Kapitel 1.2.4.1) und damit die Bildung von PGen zu inhibieren. Die acetylierte COX-2 ist jedoch nicht katalytisch inaktiv,²¹⁷ sondert katalysiert die Umwandlung von AA zu 15*R*-HPETE

anstatt zum 15*S*-Isomer. Dieses Stereoisomer wird von der 5-LO ebenfalls als Substrat erkannt, wobei jedoch ein Epimer von LXA₄ gebildet wird.²¹⁸ Das Epimer ist an der C15-Position der Fettsäure nun *R*-konfiguriert, anstatt wie beim LXA₄ *S*-konfiguriert. Die unterschiedliche Konfiguration des 15-epi-LXA₄ führt zu zwei bis dreimal höherer Potenz.^{219,220} Aufgrund der Entstehungsweise des 15-epi-LXA₄ wird es auch als "Aspirintriggered"-Lipoxin (ATL) bezeichnet, da weder nicht-acetylierte COX-2 noch COX-1 in der Lage sind diesen Schritt zu katalysieren. Wie bereits erwähnt, verläuft die LXA₄-Umwandlung bei der 15-LO / 5-LO-katalysierten sowie bei der Aspirin[®]-induzierten Metabolisierung nur transzellulär über eine Zell-Zell-Wechselwirkung ab. Dabei arbeiten 15-LO-exprimierende Zellen, z.B. Monozyten, oder COX-2 exprimierende Zellen, z.B. Endothelzellen, mit 5-LO-exprimierenden Zelltypen, z.B. neutrophile Granulozyten, zusammen. Die 15-epi-LXA₄-Biosynthese lässt sich auch durch Nitrosilierung des Ser⁵³⁰-Restes der COX-2 auslösen²²¹ oder durch Cytochrom P450-Aktivität, wodurch ebenfalls 15*R*-HPETE entstehen kann.²²²

Abbildung 1.27: Wirkungsschema für den entzündungshemmenden Einfluss von Lipoxinen, Resolvinen und Protectinen nach²¹⁹. Die Pfeile bedeuten: Zellaktivität nimmt zu (↑) bzw. ab (↓)

Die LX-Konzentration übt einen wichtigen Einfluss auf das Ausmaß der Granulozytenakkumulation bzw. deren Aktivierung aus und kann Aufschluss über das

Ausmaß einer Entzündung geben.²⁰⁸ Entzündungsprozesse werden durch LX und andere Mediatoren aktiv gehemmt. Abbildung 1.27 zeigt, dass neutrophile Granulozyten und Monozyten die Blutbahn verlassen und in das umgebende Gewebe eindringen können, um spezifisch zu wirken. LXA₄ entfaltet seine Wirkung, indem es G-Protein-gekoppelte Rezeptoren aktiviert (GPR32; Vgl. Tabelle 1.4), welche Chemotaxis und Migration von neutrophilen Granulozyten zum entzündeten Gewebe und die Granulation von Chemokinen reduzieren.^{223,224} Ebenso wie PGe entfalten LX ihre Wirkung bereits im pM- bis nM-Konzentrationsbereich.²¹² Zusätzlich begünstigen LX das Einleiten der Apoptose bei neutrophilen Granulozyten *in vivo*, sowie die Migration von Monozyten bzw. Makrophagen in entzündetes Gewebe, welche stimuliert werden, um z.B. apoptotische neutrophile Granulozyten zu entfernen.^{205,225,226} Sie sind somit in der Lage die entzündungsfördernden Vorgänge auf mehreren Wegen zu inhibieren bzw. damit die Wundheilung aktiv zu stimulieren und werden deshalb als "dual-acting mediators" bezeichnet.²¹⁹

1.4.2. Resolvine

Eine weitere entzündungsauflösende Mediatorklasse, welche in der Lage ist die Migration neutrophiler Granulozyten in das Gewebe zu reduzieren, wurde aus Wundsekret isoliert. Diese Mediatoren entfalten *in vivo* im Vergleich zu LX bzw. ATL bei gleicher Konzentration eine 100-fach stärkere Wirkung.²²⁷ Sie werden deshalb als Resolvine (Rv) (engl. *resolve*" = Auflösen) bezeichnet. Rv entstehen wie LX ebenfalls durch transzelluläre Prozesse, jedoch durch Umwandlung von ω -3-Fettsäuren. Sie teilen sich in Abhängigkeit von ihrem Substrat in zwei unterschiedliche Subtypen auf. Die E-Serie entsteht ausgehend von Eicosapentaensäure (EPA), die D-Serie hingegen ausgehend von Docosahexaensäure (DHA).

Die E-Serie entsteht durch die Umwandlung von ω -3-EPA und wird durch acetylierte COX-2 vermittelt. Die acetylierte COX-2 erlangt dabei die Eigenschaft der Katalyse von ω -3-EPA zu 18-Hydroperoxypicosapentaensäure (18-HPEPE) und dies ist in Abbildung 1.28 dargestellt. Das ω -3-EPA kann ebenfalls durch Einwirkung von bakteriellen Cytochrom P450 zu 18-HPEPE metabolisiert werden. Bislang ist nur das bakterielle CYPBM-3 bekannt diesen Schritt zu katalysieren.²²⁸ Die weitere Umwandlung erfolgt in neutrophilen Granulozyten durch 5-LO, sodass 18-Hydroperoxy-EPE die Zelle wechseln muss. Dort erfolgt eine zweite Hydroperoxidation zur 5*S*-Hydroperoxy-18-hydroxy-EPE. Dieses Zwischenprodukt kann anschließend zum Resolvin E₂ (RvE₂) enzymatisch reduziert werden oder zum 5*S*(6)-Epoxy-18-Hydroxy-EPE epoxidiert werden, um abschließend zum Resolvin E₁ (RvE₁) hydrolisiert zu werden.²⁰⁷ So wie bei der LX-Bildung sind weder nicht-acetylierte COX-2 noch COX-1 in der Lage die Hydroperoxidation zur 5*S*-Hydroperoxy-18-hydroxy-EPE zu katalysieren. Die Umwandlung ist daher ebenfalls als "Aspirin-triggered" einzustufen, genauso wie die vorher beschriebene Umwandlung von Arachidonsäure zu 15*R*-Hydroperoxy-ETE, welche zur Bildung von 15-epi-LXA₄ führt (Kapitel 1.4.1).^{209,227}

Abbildung 1.28: Biosynthese der Resolvine E1 und E2.

Für RvE₁ wurden hohe Affinitäten zu einem G-Protein-gekoppelten Rezeptor der Klasse A CMKLR1 (K_D \approx 11 nM) und zum LTB₄-Rezeptor BLT₁ (IC₅₀ \approx 70 nM) nachgewiesen .²²⁹ Am BLT1-Rezeptor wirkt RvE₁ jedoch als partieller Agonist, sodass die Wirkung des entzündungsfördernden LTB₄ gedämpft wird.^{227,229}

Die entzündungshemmenden/auflösenden Effekte sind bei RvE₁ ähnlich wie bei LX. Geringe RvE₁-Konzentrationen reduzieren bereits die durch neutrophile Granulozyten vermittelte Entzündungsreaktion und aktivieren die Wundheilung.^{204,230} RvE₁ reduziert die Wechselwirkung zwischen Endothelzellen und neutrophilen Granulozyten und verhindert die Migration neutrophiler Granulozyten zum entzündeten Gewebe. Darüber hinaus regen sie die Phagozytose von Makrophagen an und verhindern die Ausschüttung von entzündungsfördernden Zytokinen (s. Abbildung 1.27).^{209,227,230–232} Zusätzlich inhibiert RvE₁ effektiv die entzündungsbedingte Angiogenese.^{233,234}

Die D-Serie der Rv entsteht neben der Biosynthese via 15-LO auch durch die acetylierte COX-2 vermittelte Umwandlung von DHA. Dieser Rv-Subtyp wurde erst später entdeckt, als bekannt wurde, dass AA und EPE acetylierter COX-2 ebenfalls als Substrate dienen können.²³¹ Die Abfolge der Umwandlungsschritte entspricht der für RvE₁. Nach zwei Hydroperoxidationsschritten, an Position C-17 sowie an Position C-7 oder C-4, folgt eine Epoxidierung. Die gebildeten Epoxide werden auf unterschiedliche Weise hydrolisiert, sodass die "Aspirin-triggered" Resolvine D₁ (AT-RvD₁) bis D₄ entstehen.²³⁵ Bei Untersuchungen von menschlichem Blut ohne Aspirin[®]-Zugabe auf DHA-Oxygenierungsprodukte stellte man fest, dass ebenfalls Rv der D-Serie gebildet werden können. Diese besitzen jedoch ausschließlich S-Konfiguration an Position C-17. Die AT-Rv hingegen weisen alle eine R-Konfiguration an Position C-17 auf. Dieser Befund, dass zwei Epimere gebildet werden, deutet darauf hin, dass es auch bei Abwesenheit von actetylierter COX-2 eine alternative körpereigene Biosyntheseroute für Resolvine der D-Serie geben muss.²³⁵ 15-LO ist ebenfalls in der Lage DHA als Substrat zu akzeptieren und an der Position C-17 mit S-Konfiguration stereospezifisch zu hydroperoxidieren. Die weitere Umwandlung erfolgt analog. Die Epimere AT-RvD₁ und RvD₁ sind in der nachfolgenden Abbildung 1.29 dargestellt.

Abbildung 1.29: Epimerbildung von Resolvin D₁.

RvD₁ entfaltet seine entzündungshemmende-/auflösende Wirkung, indem es oxidative Prozesse in neutrophilen Granulozyten reduziert. Dadurch werden Gewebsschäden durch reaktive Sauerstoff- und Stickstoffspezies verringert, welche von neutrophilen Granulozyten freigesetzt werden, um Mikroorganismen zu bekämpfen. ²³⁶ RvD₂ inhibiert die Granulozytenmigration, stimuliert die Phagozytose und reduziert die Bildung von Interleukin-10, welches die Aktivität von Makrophagen hemmt.²³⁷ RvD₁ bindet bereits im pM-Konzentrationsbereich $(K_D \approx 0.7 \text{ nM}).^{238}$ an zwei spezifische Klasse A G-Protein-gekoppelte Rezeptoren (GPR32 und ALX/FPR2). Da LXA₄ ebenfalls an letzterem Rezeptor bindet, ist dies der erste entdeckte Rezeptor, an den SPM binden können.²³⁸ Zur Verdeutlichung sind in Tabelle 1.4 alle bekannten Affinitäten der SPM ihren Rezeptoren zugeordnet.

Mediator	•	Rezeptor	K_D bzw. $(EC_{50})^a$ [nM]
Lipoxin A ₄		ALX / FPR2	0.7
		GPR32	(0.034)
15-epi-Lipo	xin	ALX / FPR2	2.0
Resolvin I	E_1	CMKLR1	11.3
Protectin I	\mathbf{D}_1	Unbekannter Rezeptor an Neutrophilen Granulozyten	25.0
Resolvin D ₁		GPR32	(0.0088)
		ALX / FPR2	(0.0012)

Tabelle 1.4: Affinitäten entzündungsauflösender Mediatoren an G-Protein-gekoppelten Rezeptoren nach²⁰⁸

^a: EC₅₀-Werte sind in Klammern gesetzt; CMKLR1 = Chemokin-artiger Rezeptor 1, GPR32 = G-Proteingekoppelter Rezeptor 32, ALX/FPR2 = Lipoxin A₄ Rezeptor / Formylpeptid Rezeptor 2

1.4.3. Protectine

Die bisher beschriebenen SPM werden zumeist über transzelluläre Biosyntheserouten gebildet. Es finden sich aber auch Mediatoren, welche in einer einzelnen Zelle aus ω -3-Fettsäuren, wie der DHA, generiert werden. Die Namensgebung des Protectins (PD) erfolgte auf Grund der bewahrenden, beschützenden (engl. "*protective*") Wirkung auf Gehirn-, Immun- und Retinazellen. Die Biosynthese (s. Abbildung 1.30) erfolgt ausschließlich via 15-LO und ähnelt der Biosynthese der Rv-E-Serie.^{235,239} Die DHA wird zuerst einer Hydroperoxidation, gefolgt von einer enzymatischen Epoxidierung unterzogen, sodass sich das 16(17)-Epoxy-DHA bildet. Das Epoxid wird anschließend in Protectin D₁ (PD₁) umgewandelt.^{240,241} In neuronalen Zellen gebildetes PD₁ wird auch als Neuroprotectin D₁ (NPD₁) bezeichnet, um den Ursprungs- und Wirkungsort zu kennzeichnen.^{204,230,235,242} Zusätzlich zum PD₁ konnte auch Protectin D₅ identifiziert werden, welches durch die zusätzliche Einwirkung von 5-LO entsteht.²³⁵ Mittlerweile wurde auch das entsprechende

"aspirin-triggered" PD (AT-NPD₁) identifiziert, welche genauso potent sind wie die natürlichen PD.^{243,244}

Abbildung 1.30: Die Protectin D₁ Biosynthese. Die Umwandlung erfolgt ausgehend von DHA durch 15-LO.

PD₁ interagiert im pM- bis nM-Konzentrationsbereich mit neutrophilen Granulozyten und NPD₁ an Pigmentzellen der Retina.^{245,246} Um welchen Rezeptor es sich dabei handelt ist noch unbekannt. PD₁ inhibiert in einem starken Maß, wie RvE₁, die Chemotaxis und Migration von neutrophilen Granulozyten in das entzündete Gewebe.^{235,240} NPD₁ reduziert das Ausmaß eines Hirninfarkts im Tiermodell,²⁴⁷ reduziert retinale und korneale Verletzungen²⁴⁸ und fördert deren Heilungen.²⁴⁹ In Untersuchungen mit Mäusen konnte für das Zusammenwirken von PD₁ und RvE₁ ein additiver Effekt nachgewiesen werden.²²⁶

1.4.4. Maresine

Eine weitere potente entzündungauflösende Mediatorenklasse, welche nur durch Einwirken eines einzelnen Enzyms gebildet wird, sind die Maresine (engl. "*Macrophage mediator in resolving inflammation*", MaR). Über sie ist noch wenig bekannt. Für diese Klasse von Mediatoren ist eine Makrophagen-gerichtete Wirkung charakteristisch.²⁵⁰ Diese zielgerichtete Wirkung kommt zustande, weil Makrophagen MaR-spezifische Rezeptoren exprimieren. Durch diese greifen MaR mit Inhibition der LTA₄-Hydrolase in die LTB₄-Synthese ein.²⁵¹ Die MaR werden ebenfalls wie die PD und Rv der D-Serie aus DHA gebildet. Die Umwandlung erfolgt analog zu PD₁ wird jedoch durch 12-LO katalysiert, welche durch Makrophagen und Thrombozyten exprimiert wird, sodass eine anderes Stereoisomer gebildet wird.^{252,253} Der gebildete Mediator ist in Abbildung 1.31 dargestellt. Die DHA wird zuerst einer Hydroperoxidation, gefolgt von einer enzymatischen Epoxidierung unterzogen, sodass sich das 13(14)-Epoxy-Maresin bildet.²⁵⁴ Diese Zwischenstufe wirkt bereits entzündungauflösend. Das Epoxid wird anschließend zu Maresin 1 (MaR₁) hydrolisiert. Bis zum heutigen Zeitpunkt wurden noch keine "aspirin-triggered" Maresine identifiziert, jedoch wurde kürzlich MaR₂ als weiterer Mediator identifiziert.²⁴³ Die MaR-Biosynthese wird bei der Phagozytose durch Makrophagen aktiviert und trägt zur Rückkehr zur Homöostase bei.²⁵⁵ MaR₁ reduziert ebenfalls, wie PD₁, die Granulozytenmigration, stimuliert jedoch gleichzeitig die die Beseitigung von toten Zellen durch Phagozytose (Efferozytose).²⁵⁵ Es bewirkt somit eine Phänotyp Änderung von Makrophagen von M1, pro-inflammatorisch, hin zu einem M2-Phänotyp, welcher bei Entzündungshemmung beobachtet wird, was zu einer Regeneration des Gewebes führt. Außerdem ist MaR 1 in der Lage in einem gewissen Maße Schmerzen zu reduzieren.²⁵¹

Abbildung 1.31: Maresin 1 Biosynthese. Die Umwandlung erfolgt ausgehend von DHA durch 12-LO.

Die erörterten SPM (LX, ATL, Rv, PD und MaR) haben sich als überaus wirkungsvolle Regulatoren bei den physiologischen Vorgängen der Entzündungsauflösung erwiesen. Außer der Rolle ihrer ω-3 Fettsäurevorläufer im intermediären Stoffwechsel und bei der Membranbeweglichkeit, können SPM Infektionen, Schmerz und entzündliche Krankheiten positiv beeinflussen.

1.5. Zielsetzung

Die vorliegende Arbeit beschäftigt sich mit der Synthese von Modulatoren und Inhibitoren der Arachidonsäurekaskade. Deren primäre Produkte, die Leukotriene und die Prostaglandine, sind entzündungsfördernde Mediatoren und nehmen Einfluss auf den Entzündungsauflösendenprozess und sind bei einer Ungleichgewichtung für diverse Erkrankungen mitverantwortlich (vgl. Kapitel 1.2.4.4 und 1.3.7). Die Kaskade gliedert sich mit ihren beiden Hauptenzymen, Cyclooxygenase und 5-Lipoxygenase, in zwei Wege auf, welche beide in der Lage sind, entzündungsauflösende Mediatoren zu bilden, z.B. das Lipoxin und das "aspirin-triggered"-Lipoxin. Diese Mediatoren werden benötigt, um (chronische) Entzündungen und beschädigtes Gewebe zurück zur Homöostase zu führen.

Die gezielte Modulation und Einflussnahme auf die Arachidonsäurekaskade an einem der beiden Enzyme, stellt einen guten Ansatz für eine verbesserte Therapiemöglichkeit von (chronischen) entzündlichen Krankheiten dar.

1.5.1. Cyclooxygenase Modulatoren

Die Bildung entzündungshemmender Mediatoren, wie z.B. von "Aspirin-triggered"-Lipoxinen, kann durch die Katalyse der COX-2 erfolgen, wenn dieses Enzym acetyliert wurde. Es ist bekannt, dass bereits eine niedrig dosierte Einnahme von Acetylsalicylsäure die katalytische Funktion von COX-2 modulieren kann. Gleichzeitig wird die Bildung von entzündungsfördernden Prostaglandinen unterdrückt. Acetylsalicylsäure ist jedoch nicht COX-2 selektiv, sodass es durch ihre Wirkung auf die COX-1 zu unerwünschten Nebenwirkungen wie renalen und insbesondere gastrointestinalen Blutungen kommt. Es ist daher wünschenswert, die einzigartige, triggernde Eigenschaft von Acetylsalicylsäure spezifischer auf die COX-2 zu lenken. Durch die Vereinigung mit den Eigenschaften eines COX-2 selektiven Inhibitors soll der ideale Wirkstoff in der Lage sein, die Prostaglandinbildung zu hemmen und die Bildung der wundheilungsförderden "Aspirintriggered"-Mediatoren fördern. die zu ohne bekannten Nebenwirkungen der Acetylsalicylsäure hervorzurufen, die auf COX-1 zurückzuführen sind. Durch seine erhöhte Selektivität für COX-2, würde sein pharmazeutischer Nutzen enorm gesteigert werden.

Der Grundgedanke der vorliegenden Arbeit war es also, ausgehend von den Coxiben, selektive und irreversible COX-2-Inhibitoren herzustellen, welche eine labile Acetoxygruppe besitzen, die auf das Enzym übertragen werden kann. Dabei galt es die gemeinsamen, für Coxibe charakteristischen Strukturelemente bewahren und zu zusätzlich die Acetylsalicylsäure-Struktur darin zu integrieren (Abbildung 1.32). Dies würde eine gezielte, COX-2-spezifische Acetylübertragung ermöglichen, wonach das Enzym dann die Lipoxinbildung anregen und die körpereigene Entzündungshemmung sowie die Wundheilung fördern und beschleunigen würde. Basierend auf zuvor durchgeführten Arbeiten.²⁵⁶ sollten geeignete neue Stellen in den Inhibitormolekülen zur Einführung einer potentiell übertragbaren Acetoxygruppe ermittelt werden, diese Gruppe in die Coxib- bzw. NSAR-Grundstrukturen eingebaut werden und nach der Synthese solcher Moleküle dann ihre biologische Charakterisierung erfolgen.

Abbildung 1.32: Integration von Acetylsalicylsäure unter Beibehaltung der Coxib- bzw. NSAR-Grundstruktur bei einer Auswahl der geplanten COX Modulatoren.

1.5.2. 5-Lipoxygenase-Inhibitoren

Die Biosynthese der Leukotriene, wichtigen und potenten Entzündungsmediatoren, wird durch 5-Lipoxygenase vermittelt. Eine Dysregulation der Leukotriene spielt in vielen chronisch entzündlichen Krankheiten wie bei Asthma bronchiale und allergischer Rhinitis eine Rolle. Die bislang einzigen dafür zur Behandlung zugelassenen Arzneistoffe sind der CysLT-Rezeptorantagonist Montelukast, Pranlukast und Zafirlukast und der direkte 5-Lipoxygenase-Inhibitor Zileuton. Letzerer besitzt eine kurze Halbwertszeit und ruft viele Nebenwirkungen hervor, wie z.B starke Brustschmerzen. Aufgrund dieses ungünstigen pharmakologischen Profils ist die Entwicklung neuer 5-Lipoxygenase-Inhibitoren wünschenswert. Im Jahr 2012 wurde durch Suh *et al.*²⁵⁷ die Substanz **SKI-II** als brauchbare Leitstruktur zur Entwicklung von 5-Lipoxygenase-Inhibitoren identifiziert.

In der vorliegenden Arbeit sollten, ausgehend von der Leitstruktur **SKI-II**, die Einflüsse der Reste R^{1-4} des Thiazols-Rings und des Aminolinkers auf die 5-Lipoxygenase-Aktivität hin untersucht werden, um die entdeckten Struktur-Wirkungsbeziehung initialer Arbeiten zu vertiefen (Abbildung 1.33). Für die Untersuchung der Struktur-Wirkungsbeziehung sollten Derivate mit unterschiedlichen Abwandlungen der Moleküleigenschaften synthetisiert werden, also mit unterschiedlicher sterischer Ausdehnung, mit Wasserstoffbrückenakzeptoren oder –donoren, mit elektronenziehenden und elektronendonierenden Resten, mit tautomeriefähigen Strukturen sowie unterschiedlichen Ringsystemen. Ferner soll der Aminolinker durch Sauerstoff- oder Kohlenstoffatome ersetzt werden. In Abbildung 1.33 ist die unterschiedliche Derivatisierung den Resten R^{1-4} zugeordnet.

Abbildung 1.33: Untersuchung der Struktur-Wirkungsbeziehung (SAR) des 5-Lipoxygenase-Inhibitors SKI-II (ST-1083).

2. Synthetischer Teil

2.1. Zur Synthese der Cyclooxygenase-Modulatoren

Schon vor über zehn Jahren wurden die ersten selektiven COX-Inhibitoren mit potentiell übertragbarer Acetoxygruppe synthetisiert.²⁵⁸ Der Leitgedanke war, einen irreversiblen selektiven COX-2-Inhibitor zu erhalten. Bis heute wurden dabei nur Coxib-Acetoxyanaloga von Celecoxib und Rofecoxib synthetisiert,^{256,259,260} wobei nur der *p*-Tolylrest derivatisiert wurde. Die Derivate wurden auch nur bezüglich ihrer COX-Selektivität untersucht.

Es sollten deshalb mittels Docking (Kapitel 2.1.1) weitere Positionen an den Inhibitormolekülen zur Einführung einer potentiell auf das COX-Enzym übertragbaren Acetoxygruppe ermittelt werden. Damit die Acetylierung möglichst zielgerichtet erfolgen kann, sollen sich diese Positionen auf der Seite des Inhibitors befinden, welche im gebundenem Zustand dem Ser⁵³⁰ zugewandt ist. Dieses ist für die irreversible Hemmung der COX-2 verantworlich (vgl. Wirkungsweise von Acetylsalicylsäure Kapitel 1.2.4.1). Weil die besondere Wirkungsweise von Acetylsalicylsäure wahrscheinlich durch die Carboxylgruppe mit verursacht wird, ist eine Fusionierung möglichst weiterer Teile der Acetylsalicylsäure-Struktur mit einer Coxib-Grundstruktur erstrebenswert. In vorangegangen Arbeiten wurde dies realisiert,²⁵⁶ jedoch führte die Einführung einer Carboxylgruppe an R³ (s. Abbildung 2.1) zu einem völligen Aktivitätsverlust an der COX-2. Dieser Befunde stimmt mit der der SAR von Coxiben überein, welche in Abbildung 2.1 dargestellt ist.

Abbildung 2.1: SAR COX-2 selektiver Inhibitoren am Coxib- bzw. Stilbengrundgerüst, abgeleitet von Talley *et al.*²⁶¹ und Singh *et al.*²⁶²

2.1.1. Docking der Cyclooxygenase-Modulatoren

Vor dem Beginn der Synthesen wurde die Struktur- bzw. Syntheseplanung mit Hilfe von Dockingstudien am aktiven Zentum der COX-2 anhand deren Kristallstruktur (Protein-Datenbank Eintrag / PDB-ID = 3LN1) unterstützt. Das Docking wurde durch Herrn Daniel Moser aus dem Arbeitskreis Proschak der Goethe Universität durchgeführt und mit dem Softwarepaket PLANTS durchgeführt.²⁶³ Ziel war es, die möglichst räumlich nahestehendsten

Positionen des Coxib- bzw. NSAR-Grundgerüstes zum Ser⁵³⁰ anhand der Kristallstruktur mit gedocktem Inhibitor zu identifizieren. An diesen ausgemachten Positionen wurden die Leitstrukturen abgeändert. Die daraus resultierenden Acetoxy-Derivate wurden anschließend mittels Docking erneut daraufhin überprüft, ob deren Acetoxygruppe in räumlicher Nähe zum Ser⁵³⁰ liegt und dadurch potentiell übertragbar ist.

Die Analyse der Kristallstrukturen ergab für das Coxib-Grundgerüst, dass die günstigsten Positionen für die Einführung einer Acetoxygruppe einerseits beim *p*-Tolylrest und andererseits beim zentralen Heteroaromat zu liegen scheinen (s. Abbildung 2.2). Die Derivatisierung des *p*-Tolylrestes von Celecoxib und Rofecoxib wurde bereits in vorigen Arbeiten durchgeführt,^{256,259,260} sodass in dieser Arbeit die Acetoxygruppe nur am Heteroaromat der Coxib-Grundstruktur eingeführt wurde.

Am Diclofenac-Grundgerüst hingegen scheint sich in der Nähe der Säurefunktion eine günstigste Lage für die Einführung einer Acetoxygruppe bzw. eines Acetylsalicylsäure-Elements zu befinden.

Abbildung 2.2: Günstige Poitionen zur Einführung eines Acetoxyrestes in räumlicher Nähe zum Ser⁵³⁰

Nach abgeschlossener Analyse wurden die in dieser Arbeit zu synthetisierenden Verbindungen desingt (Kapitel 2.1.2 und 2.1.3), erneut gedockt und der Abstand des Acetoxyrests zum Ser⁵³⁰ bestimmt. In der für das Docking verwendeten Kristallstruktur fällt das acetylierbare Ser⁵³⁰, nach Nummerierung der kristallisierten Aminosäuresequenz, auf das Ser⁵¹⁶ und wird im Folgenden als Ser⁵¹⁶ bezeichnet. In Abbildung 2.3 sind beispielhaft vier Verbindungen (**171** (**A**), **118** (**B**), **13** (**C**) und **59** (**D**)) der gedockten Strukturen mit bereits integrierter Acetoxygruppe abgebildet. Da es sich bei der Berechnung der Dockingposen um ein starres System handelt (im Modell bewegen sich die Aminosäurereste nicht), kann es dazu führen, dass die berechneten Abstände die spätere Anordnung womöglich nicht korrekt widerspiegeln. Als Näherung treffen sie jedoch eine brauchbare Aussage. Bei den beiden NSAR-Strukturen **171**, einem Acetylsalicylsäure-Derivat, und **118**, einem Diclofenac-Derivat, wird größtenteils nur die linke Seitentasche des V-förmigen aktiven Zentrums belegt. Diese

linke Seitentasche entspricht dem kompletten aktiven Zentrum der COX-1 (vgl. Abbildung 1.5). Der untere Teil der Bindungstasche wird kaum ausgefüllt, sodass eine günstige Lage des Acetoxyrests im NSAR-Grundgerüst schwer vorhersagbar ist. Bei den zwei geplanten Verbindungen liegt das Carbonylkohlenstoffatom der Acetoxygruppe dem Ser⁵³⁰-Rest zugewandt und der Abstand beträgt 5.29 Å (**171**) bzw. 7.15 Å (**118**). Bei den beiden Coxib-Derivaten **13** und **59** hingegen wird die gesamte COX-2 Bindungstasche ausgefüllt. Der *p*-Sulfonamidophenyl- bzw. *p*-Sulfonylmethylphenyl-Rest füllen die untere Tasche vollständig aus und interagieren mit den polaren Aminosäuren Arg⁵¹³, Ser³⁵³ und Gln¹⁹² sowie der Aminosäure Phe⁵¹⁸, was eine COX-2-Selektivität verursachen kann (vgl. Kapitel 1.2.1.2). Bei den beiden geplanten Coxib-Derivaten mit abgewandeltem Heteroaromaten, beträgt der Abstand zu Ser⁵¹⁶ 4.59 Å (**13**) bzw. 4.09 Å (**59**). Alle Abstände bzw. Positionen sollten nahe genug liegen, um eine Acetylübertragung zu ermöglichen.

Abbildung 2.3: Dockingposen vier verschiedener Verbindungen. Die COX-2 Bindungstasche ist hellgrau unterlegt und der Abstand (d) des Acetoxyrestes zum Ser⁵¹⁶ (entspricht acetylierbaren Ser⁵³⁰) wurde berechnet: A) **171**; d = 5.29 Å, B) **118**; d = 7.15 Å, C) **13**; d = 4.59 Å, D) **59**; d = 4.09 Å.

2.1.2. Modulatoren mit COX-2 selektiven Grundgerüsten2.1.2.1. Synthese der Celecoxib-Derivate

Die Strukturen der Celecoxib-Derivate **14** und **13** weisen eine Abweichung von der klassischen Celecoxib-Grundstruktur **1** auf, insofern als die charakteristische Trifluormethylgruppe am Pyrrazolring, welche maßgeblich für die potente Inhibitiorwirkung verantwortlich ist,⁹² durch eine Methylgruppe ausgetauscht werden mußte. Es zeigte sich, dass die Einführung einer Acetoxygruppe bzw. Hydroxygruppe (s. Schema 2.1) mit benachbarter Trifluormethylgruppe trotz meheren Versuchen nicht gelang. Zunächst ging die geplante Synthese für ein Celecoxib-Derivat mit Trifluormethylgruppe von Acetophenon **2** aus. Die Trifluormethylgruppe wurde mittels einer Claisen-Ester-Kondensation eingeführt. Dazu wurde **2** mit Natriumhydrid in THF mit Trifluoressigsäureethylester zum 1,3-Diketon **3** umgesetzt. Dies gelang mit einer Ausbeute von 85%, während die alternative Methode in Ethanol, mit Natriumethanolat als Base, nur 60% Ausbeute erreicht.²⁶⁴

Schema 2.1: Synthese von Celecoxib-Analoga. Reagenzien und Bedingungen: i) Trifluoressigsäureethylester, NaH, THF, RT, 8 h; ii) Blei(IV)tetraacetat, EtOAc, Toluen, 60 °C, 2 h; iii) 4-Hydrazinobenzen-1-sulfonamid Hydrochlorid (5), EtOH, RT, 2 h; iv) LDA oder *n*-Buthyllithium, Kaliumacetat, THF, -78 °C.

Die Umsetzung von **3** zu **4** gestaltete sich als Herausforderung. Durch den starken –I-Effekt der Trifluormethylgruppe liegt das 1,3-Diketon **3** bevorzugt in der Enol-Form vor und erschwert dadurch die Oxidation des Kohlenstoffatoms durch literaturbekannte Oxidationsmittel für 1,3-Diketone.^{265,266} Mit Blei(IV)tetraacetat sowie (Diacetoxyiod)benzen konnten nur geringe Mengen oxidiert werden und die anschließende Umsetzung zu **6** fand nicht statt. Umwege wie z.B. durch Chlorierung mit Sulforylchlorid bzw. Bromierung mit Brom und weitere Umsetzung mit Kaliumacetat oder Natriummethanolat führten ebenfalls nicht zu 4. Bei den Versuchen das oxidierte 1,3-Diketon 4 mit 4-Hydrazinobenzensulfonamid 5 umzusetzen, wurde meist nur Celecoxib 1 isoliert anstatt einer Acetoxy-, Hydroxy- oder Methoxygruppe 6. Es wurde ebenfalls die gleiche Versuchsreihe ausgehend von Celecoxib 1 durchgeführt, wobei durch Oxidation oder Substitution eine Acetoxygruppe einführen sollte. Beide Ansätze führten nur zur Isolierung von Edukt, da bei allen Versuchen ein schwerlöslicher Niederschlag auftrat, welcher eine weitere Reaktion verhinderte.

Schema 2.2: Synthese der Celecxoib-Derivate 14 und 13. Reagenzien und Bedingungen: i) (Diacetoxyiod)benzen, DCM, RT, 2 h; ii) 4-Hydrazinobenzen-1-sulfonamid Hydrochlorid (5), EtOH, RT, 2 h; iii) zu 14: Ac-Cl, Et₃N, DCM, 1 h; zu 13: Ac-Cl, Pyridin, 0 °C, 1 h.

Es erfolgte daraufhin die Synthese der Celecoxib-Derivate mit Methylgruppe **13** und **14** in einer dreistufigen Synthese (s. Schema 2.2), die von dem kommerziell erhältlichen 1,3-Diketon Benzoylaceton **7** ausging, welches bevorzugt in der Keto-Form vorliegt. Dieses wurde mit Diacetoxyiodobenzol **8** erfolgreich zu Verbindung **9** oxidiert. Nach Einführung der Acetoxygruppe wurde der Pyrrazol-Heterozyklus frei nach Penning *et al.*²⁶⁷ mit 4-Hydrazinobenzensulfonamid **5** aufgebaut. Da nach Erhitzten nur Nebenprodukte isoliert wurden, wie z.B. Hydrazon **10**, wurden daher milde Bedingungen gewählt. Die Reaktion wurde bei Raumtemperatur mit verkürzter Reaktionszeit durchgeführt, sodass zunächst das Pyrrazol-Derivat **11** erhalten wurde. Dieses bildet sich durch begünstigte tautomere Formen aus, welche beim Ringschluss entstehen, wie z.B. **12**. Durch anschließende Acetylierung mit Acetylchlorid in Pyridin oder in Dichlormethan und Triethylamin wurden die beiden Acetoxy-Derivate **13** (**ST-1726**) bzw. **14** (**ST-1725**) erhalten.

2.1.2.2. Synthese der Etoricoxib-Derivate

Die zwei Etoricoxib-Derivate **21** und **27** wurde in einer sechsstufigen Synthese (Schema 2.3) ausgehend von 2-(4-(Methylsulfonyl)phenylessigsäure (**15**) hergestellt.

Schema 2.3: Synthese der Etoricoxib-Derivate 21 und 27. Reagenzien und Bedingungen: i) 1. Thionylchlorid, Chloroform, 2 h, Reflux; 2. AlCl₃, Toluen, Chloroform, 6 h, Reflux. ii) Acrylnitril, *tert*-BuOH, *tert*-KOBu, 50 °C, 2 h; iii) konz. H₂SO₄, AcOH, 0 °C, 1 h; iv) Pd/C (10%), Dowtherm A, 250 °C, 48 h; v) Ac₂O, Pyridin, 0 °C, 2 h.

Die Säure wurde mit Thionylchlorid in das entsprechende Säurehalogenid überführt und in einer Friedel-Crafts-Acylierung mit Toluen und Aluminiumtrichlorid als Katalysator zu **16** umgesetzt. Das Keton **16** reagierte anschließend mit Kalium-*tert*-butanolat als Base und mit Acrylnitril in einer Michael-Addition zum Nitril **17**. Der Mechanismus ist in Schema 2.4 dargestellt. Das Keton **16** wird durch die Base zum Enolat **A** umgewandelt und fungiert als Michael-Donor. Dieser ist in der Lage die durch das Nitril stark elektrophile Doppelbindung des Michael-Akzeptors (Acrylnitril) nukleophil anzugreifen. Es entsteht das Intermediat **B**, welches unter Rückgewinnung der Base zu **17** protoniert wird.

Schema 2.4: Michael-Addition der Umsetzung von Verbindung 16 zu 17.

Im nächsten Schritt schließt das Nitril **17** in einer intramolekularen Reaktion einen sechsgliedrigen Ring zum Lactam **18** mit Hilfe von konzentrierter Schwefelsäure in Essigsäure. Der Reaktionsmechanismus ist in Schema 2.5 abgebildet. Dabei wird zunächst **17** protoniert (**A**) und ist nun für einen intramolekularen nukleophilen Angriff der Nitrilgruppe aktiviert. Dabei entsteht der sechsgliedrige Ring **B**. Anschließend wird der Rest vom Nitril in den Schritten **C-F** bei der wässrigen Aufarbeitung zu einem Lactam hydrolisiert. Die Doppelbindung in **18** entsteht durch abschließende β -Eliminierung.

Schema 2.5: Reaktionsmechanismus der intramolekularen Reaktion von Nitril 17 zum Lactam 18.

Lactam 18 wurde anschließend mittels katalytischer Dehydrierung der 3- und 4-Position des Lactams 18 durch Palladium (auf Kohle 10%ig) zum Pyridinon 19 umgesetzt. Die gewünschte Pyridin-Struktur 20 bildet sich durch eine Keto-Enol-Tautomerie, welche durch die Entstehung eines aromatischen Systems stark begünstigt ist, sodass nach der Dehydrierung das Gleichgewicht ausschließlich auf der Seite das 2-Hydroxypyridin-Derivats 20 liegt und dieses ausschließlich erhalten wurde. Dem 2-Hydroxypyridin 20 wurde abschließend die Acetylgruppe durch Acetylchlorid in Pyridin hinzugefügt, um das Etoricoxib-Derivat 21 (ST-1859) zu erhalten. Die Synthese des Etoricoxib-Derivats 27 erfolgte ausgehend von Desoxybenzoin 22 nach dem gleichen (Schema 2.3), über Nitril 23, Lactam 24 und Pyridinon 25 bzw. 2-Hydroxypyridin 26 um 27 zu erhalten. Jedoch stellte sich das Etoricoxib-Derivat 27 als nicht lagerstabil heraus, da bereits nach drei Tagen bei Raumtemperatur und Lichtausschluß eine Essigsäurefreisetzung zu beobachten (Geruch / NMR) war.

2.1.2.3. Synthese der Rofecoxib-Derivate

In den Arbeiten von Mao *et al.* und Harmon *et al.* wurde die Verbindung **31** als primäres Oxidationsprodukt von Rofecoxib **38** bei erhöhtem pH identifiziert.^{268,269} Die oxidierte Rofecoxib-Form (s. Abbildung 2.4) ist weiterhin pharmakologisch aktiv und daher geeignet für eine Derivatisierung.²⁷⁰

Abbildung 2.4: Pharmakologisch aktives Oxidationsprodukt von Rofecoxib 38.

Der fünfstufige Syntheseweg für das Derivat der oxidierte Form von Rofecoxib **33** ging von einer modifizierten, von Moon *et al.* beschriebenen, Synthesestrategie aus, welche für die Einführung einer Acetoxygruppe entsprechend erweitert wurde.²⁷⁰ Sie ist in Schema 2.6 dargestellt. Im ersten Schritt wurde *p*-Tolylmagnesiumbromid (**28**) und Oxalsäurediethylester zur 1,2-Dicarbonylverbindung **29** umgesetzt. Dieses wurde durch Hydrolyse mit 2M Natronlauge in die Säure **30** überführt. Verbindung **30** wurde anschließend mit 4- (Methylsulfonyl)phenylessigsäure (**15**) in siedendem Essigsäureanhydrid zum zyklischen Anhydrid **31** umgesetzt..²⁶⁹ Die Einführung der Acetoxygruppe sollte über ein Hydroxamsäure-Derivat erfolgen, sodass sich Anhydrid **31** mit Hydroxylaminhydrochlorid in Pyridin zum Hydroxamsäure-Derivat **32** umgesetzte. Dieses konnte mit Acetylchlorid in das acetylierte Rofecoxib-Derivat **33** (**ST-1454**) überführt werden.

Schema 2.6: Synthese von oxidiertem Rofecoxib-Derivat 33. Reagenzien und Bedingungen: i) Diethyloxalat, Et₂O, -70 °C, 2 h \rightarrow RT, 2 h; ii) 2M NaOH, 110 °C, 8 min μ w; iii) Ac₂O, Reflux, 3.5 h; iv) NH₂OH·HCl, Pyridin, Reflux, 3 h; v) Ac-Cl, Et₃N, 0 °C, 2 h.

Der vierstufige Syntheseweg zum Rofecoxib-Derivat **40** erfolgte nach einer von Knaus *et al.*²⁵⁹ beschrieben Synthesestrategie, welche für die Einführung der Acetylgruppe entsprechend erweitert werden mußte (Schema 2.7). 1-(4-(Methylsulfonyl)phenyl)ethanon (**34**) wurde durch Zutropfen von Brom zunächst in das α-Bromketon **35** überführt und mit *p*-Tolylessigsäure (**36**) zu **37** umgesetzt. Es erfolgte der Ringschluss des Diketons **37** mit Hilfe von Diisopropylethylamin in DMF zu Rofecoxib **38**. Das Lacton in Rofecoxib **38** wurde anschließend mit Ammoniumacetat in einer Mikrowellen-unterstützten Reaktion in Lactam **39** überführt. Versuche, Rofecoxib **38** mit Hydroxylaminhydrochlorid in die entsprechende Hydroxamsäure zu überführen scheiterten, weil für die Lactonspaltung hohe Temperaturen von mindestens 180 °C erforderlich waren. Die Zersetzungstemperatur von Hydroxylaminhydrochlorid liegt jedoch bereits bei 155 °C, sodass selbst bei niedrigeren Temperaturen mit verlängerter Reaktion des Lactams **39** mit Natriumhydrid (60%ig in Mineralöl) in DMF mit Acetylchlorid ergab das Rofecoxib-Derivat **40** (**ST-1860**).

Schema 2.7: Synthese von Rofecoxib-Derivat 40. Reagenzien und Bedingungen: i) Br₂, Chloroform, ii) Et₃N, Acetonitril, 30 min, Reflux; iii) DIPEA, DMF, RT, 2 h; iv) NH₄OAc, AcOH, 200 °C 15 min μ w; v) NaH, DMF, RT; vi) Ac-Cl, NaH, DMF, RT, 2h.

Bei der Synthese von **40** stellte sich die Frage, ob die Verbindung tatsächlich als solche vorliegt, oder der Lactam-Stickstoff acetyliert wurde (**41**). Untersuchungen dazu ergaben, dass Lactam **39** bei Behandlung durch Base in Hydroxypyrrol **42** übergeht. Die Tautomerie des Lactams **39**, vor Baseneinwirkung, zum Lactim **42**, nach Zugabe von Base, lässt sich im NMR-Spektrum-Vergleich der beiden einzelnen Verbindungen (s. Abbildung 2.5; Protonenverschiebung durch Pfeile gekennzeichnet) anhand der Verschiebung der aliphatischen Methylengruppe (4.38 ppm, Integral entspricht zwei Protonen; in schwarz dargestellt) zu einem aromatischen Signal (7.73 ppm, Integral entspricht einem Proton; in rot dargestellt) erkennen.

Abbildung 2.5: NMR-Spektrum-Gegenüberstellung der Verbindungen 39 (schwarz) und von Verbindung 42 (rot). Entscheidende Signale für die entsprechenden Verbindungen sind mit einem Pfeil markiert.

Betrachtet man das aufgenommene IR-Spektrum von **40** (Abbildung 2.6), so ist deutlich die schmale Aminschwingung bei 3300 \tilde{v} und nicht die breite Hydroxyschwingung von 3500-3200 \tilde{v} zu erkennen. Daher lässt sich mit Sicherheit sagen, dass eine O-Acetylierung erreicht wurde.

Abbildung 2.6: IR-Spektrum von 40.

2.1.2.4. Synthese der Valdecoxib-Derivate

Die Analyse der COX-2 Kristallstrukuren mit cokristallisierten Coxiben hatte ergeben, dass eine günstige Position für die Einführung einer Acetoxygruppe die dem Sulfonamid abgewandte Seite des Heterozyklus darstellt (Vgl. Kapitel 2.1.1 Abbildung 2.2). Bei Valdecoxib (**43**) ist diese Stelle durch das Stickstoffatom des Isoxazolrings für eine Derivatisierung nicht zugänglich. In SAR-Studien zeigte sich jedoch,²⁷¹ dass Isoxazole mit reverser Ausrichtung der beiden Arylsubstituenten ebenfalls potente und selektive COX-2-

Inhibitoren liefern. Aus diesem Grund wurde die "inverse" Valdecoxib-Struktur (44) als Basis für die Derivatisierungen ausgewählt (s. Abbildung 2.7).

Abbildung 2.7: Zugänglichkeit für die Einführung einer Acetoxygruppe beim "inversen" Valdecoxib (44)

Um Nebenreaktionen zu vermeiden, wurde die Sulfonamidgruppe durch eine Methylsulfonylgruppe ausgetauscht. Zusätzlich wurden auch Derivate mit alternativem Heterozyklus (Pyrazol anstatt Isoxazol), unterschiedlicher Überträgergruppe (Amid anstatt Acetoxy) und unterschiedlicher Acylgruppe (Acryl anstatt Acetyl) dargestellt. Die Synthesen hierzu sind in Schema 2.8 abgebildet, welche in drei bis fünf Stufen erfolgten. Die Synthese für 50 das Valdecoxib-Derivat mit reverser Substitution ging von 4-Methylsulfonylbenzoesäure (45) aus, die mit Thionylchlorid in das Säurechlorid 46 umgewandelt und mit 4-Methylphenylessigsäureethylester (47) in THF mit Lithiumdiisopropylamid (LDA) zum 1,3-Diketon 48 umgesetzt wurde. Der Aufbau des Isoxazolrings erfolgte mit Hydroxylaminhydrochlorid in Ethanol und ergab das Isoxazolon 49. Dieses wurde mit Acetylchlorid zu 50 (ST-1836) derivatisiert. Die Synthese des Derivats mit Pyrrazolring als Heterozyklus 53 ging von 1,3-Diketon 48 aus. Der Heterozyklus wurde mit Hydrazinhydrat in Ethanol aufgebaut, sodass das Pyrazolon 51 erhalten wurde. Dieses wurde unter Verwendung einer Standardmethode mit Acetylchlorid in Pyrdin umgesetzt, wobei man ausschließlich die doppelt acetylierte Verbindung 52 (ST-1837) erhielt. Durch Verkürzung der Reaktionszeit, von zwei Stunden auf 30 Minuten, konnte auch das einfach acetylierte Derivat 53 (ST-1835) isoliert werden.

Schema 2.8: Synthese der Valdecoxib-Derivate. Reagenzien und Bedingungen: i) 1. 45, Thionylchlorid, Reflux; ii) 4-Methylphenylethylacetat, LDA, THF, -78 °C \rightarrow RT, 24 h; iii) NH₂OH·HCl, 48 h; EtOH; iv) NH₂·NH₂·H₂O, AcOH, Dioxan / Wasser, Reflux, 24 h; v) zu 50: Ac-Cl, kat. Pyridin, Et₃N, DCM, 24 h; vi) zu 53: Ac₂O, Pyridin, 0 °C, 0.5 h; vii) zu 52: Ac-Cl, Pyridin, RT, 5 h; vii) 54, NH₂OH·HCl, 33% ige NaOH, Eis / EtOH, 1 h; ix) NCS, DMF, 2.5 h; x) 4-Methylbenzylcyanid, *tert*-BuLi, THF, 24 h; xi) Ac-Cl, kat. DMAP, Et₃N, DCM, 2 h; xii) 1N HCl, EtOH.

Die Herstellung der Valdecoxib-Derivate mit unterschiedlicher Überträgergruppe bzw. Acylgruppe **59** und **60** ging von 4-Methylsulfonylbenzaldehyd (**54**) aus. Der Aldehyd wurde mittels Hydroxylaminhydrochlorid und Natronlauge in das Oxim **55** umgewandelt, welches durch *N*-Chlorsuccinimid in **56** überführt wurde. Verbindung **56** wurde dann mit 4-Methylbenzylcyanid (**57**) mit Hilfe von *tert*-Buthyllithium in Isoxazolamin **58** überführt. Der Mechanismus des Ringschlusses ist in Schema 2.9 dargestellt. Es wird zuerst das 4-Methylbenzylcyanid (**57**) an der benzylischen Position durch *tert*-Buthyllithium deprotoniert (**A**). Die negative Ladung ist in **A** mesomeriestabilisiert und kann **56** nukleophil angreifen. Es wird Chlorid als Abgangsgruppe aus dem Molekül entfernt (**B**) und es kommt zu einem intramolekularen Angriff des Oxims am Nitril (**C**). Nach einer Protonenumlagerung (**D**) erfolgt eine Aromatisierung (**E**) des gebildeten Fünfrings zu Isoxazolamin **58**.

Schema 2.9: Reaktionsmechanismus der Isoxazolaminbildung von 58

Dieses konnte mit Acetylchlorid oder Acryloylchlorid in Pyridin in die Derivate **59** (**ST-1646**) bzw. **60** (**ST-1649**) überführt werden. Bei der säulenchromatographischen Auftrennung von **60** kam es zu einer Acrylgruppenwanderung, sodass zusätzlich zu **60** das nicht-substituierte Isoxazolamin **58** und das doppelt substituierte Derivat **61** (**ST-1648**) erhalten wurden. Als alternative Syntheseroute kann das Isoxazolon **49** aus dem Isoxazolamin **58** durch Einwirkung von verdünnter Mineralsäure, z.B. 2N Salzsäure, in guten Ausbeuten erhalten werden.

2.1.2.5. Synthese COX-2-selektiver Derivate mit diversen zentralen Heterozyklen

In Kapitel 2.1.2.4 wurden bereits Synthesen (s. Schema 2.8) für selektive COX-2 Modulatoren durchgeführt, welche einen unterschiedlichen Heterozyklus oder eine unterschiedliche Überträgergruppe besitzen. In diesem Abschnitt werden weitere Derivate vorgestellt, welche sich im mittleren Heterozyklus und in der Überträgergruppe unterscheiden, sich jedoch nicht direkt von bereits bekannten bzw. zugelassenen Coxiben herleiten lassen. Als zentrale Heterozyklen wurden Benzofurane, Imidazole, Imidazolone, Indenone und Thiazole eingeführt. Das klassische Substitutions-Schema der Arylreste bei den Coxiben wurde jedoch zumeist beibehalten. Um Nebenreaktionen zu vermeiden und für eine leichtere präparative Zugänglichkeit, wurde die Sulfonamidgruppe durch einen bioisosteren Austausch durch eine Methylsulfonylgruppe ersetzt.

2.1.2.5.1 Synthese von Imidazol-Derivaten

Imidazole lassen sich einfach aus 1,2-Diketonen bzw. Benzil-Derivaten aufbauen. Asymmetrische 1,2-Diketone werden typischerweise durch eine Benzoin-Kondensation aus den entsprechenden Benzaldehyden und anschießender Swern-Oxidation dargestellt.²⁷² Problematisch dabei ist, dass bei der Kondensation giftiges Kaliumcyanid als Katalysator bzw. Umpolungsreagenz verwendet wird. Aus diesem Grund wurde das 1,2-Diketon **66** über eine Wittig-Reaktion mit anschließender Oxidation der Doppelbindung dargestellt (vgl. Schema 2.10).

Schema 2.10: Synthese der Imidazol-Derivate 69, 75, 79 und 82. Reagenzien und Bedingungen: i) DMF, Reflux, 4 h; ii) NaOEt / EtOH, 24 h; iii) HBr (48% in Wasser), DMSO, Reflux, 24 h; iv) Urotropin, NH₄OAc, AcOH, 25 min, 115 °C, μw; v) Ac-Cl, Et₃N, DCM, 1 h.

Die Synthese wird im Folgenden detailliert für das Derivat 69 beschrieben. Dafür wurde das für die Wittig-Reaktion nowendige Phosphonium-Salz 64 4zuerst aus Methylbenzylchlorid (62) und Triphenylphoshin (63) hergestellt. Das Phosphonium-Salz 64 wurde dann mit 4-Methylsulfonylbenzaldehyd (54) zum Stilben-Derivat 65 umgesetzt, wobei ein (E) / (Z)-Gemisch im Verhältnis 1 : 2 (E : Z) isoliert wurde. Anschließende Oxidation der Doppelbindung des Gemisches mit DMSO und Bromwasserstoff ergab Benzil-Derivat 66. Den vorgeschlagenen Mechanismus der Oxidation nach Yusubov et al.²⁷³ zeigt Schema 2.11. Demzufolge kommt es erst zu einer Bromierung der Doppelbindung. Das Brom wird in situ durch Oxidation von DMSO aus Bromwasserstoff generiert, wobei Wasser und Dimethylsulfid entstehen. Die Reaktion kann durch Zugabe von Hydrogenperoxid beschleunigt werden, welche die Bildung von Brom beschleunigt. Anschließend kommt es zu

einer Substitution, wobei DMSO das entstandene Benzylbromid **A** nukleophil angreift. Das dabei gebildete Alkoxysulfoniumsalz **B** eliminiert ein Proton und es entsteht Dimethylsuflid sowie das α -Bromketon **C**. Dieses wird unter gleichen Bedingungen zum 1,2-Diketon oxidiert. Dies ähnelt oberflächlich einer Kornblum-Reaktion, in welcher Benzylhalide zu Benzaldehyden in DMSO oxidiert werden, welche jedoch im basischen Milieu abläuft.²⁷⁴ Eine Durchführung der Reaktion unter basischen Bedingungen würde hier jedoch zu einer Dehydrohalogenierung des 1,2-Dihalogen-Intermediats **A** führen, also zurück zum Edukt (Benzil-Derivat).

Schema 2.11: Oxidationsmechanismus von Stilbenen zu Benzilen durch Brom und DMSO.

Die Synthese setzt sich fort, indem das hergestellte 1,2-Diketon **66** mit Urotropin (**67**) in Essigsäure zum Imidazol **68** umgesetzt wurde. Hierbei dient Urotropin (**67**) als sehr gut dosierbare Formaldehyd- und Ammoniakquelle, da es beim Erhitzen im Sauren mit Wasser in diese beiden Komponenten zerfällt (s. Abbildung 2.8). Zum Schluss wurde mit Acetylchlorid in Dichlormethan die Verbindung **69** (**ST-1857**) generiert.

$$\begin{array}{c} N \\ N \\ N \\ N \end{array} + 6 H_2 O \xrightarrow{\sim} H^+ 4 NH_3 + 6 H_2 H_3 + 6 H_2 H_3 + 6 H_2 H_3 + 6 H_3 H_3 + H_3 + 6 H_3 + H_3 + 6 H_3 + H_$$

Abbildung 2.8: Thermischer Zerfall / Rückreaktion von Urotropin (67) in seine Einzelkomponenten.

Für Derivat 75 wurde ebenfalls das Phosphonium-Salz 70 mit 4-Fluorbenzaldehyd (71) zum Stilben-Derivat 72 umgesetzt, mit dem beschriebenen Oxidationssystem DMSO-HBr zum Benzil-Derivat 73 oxidiert, und dann das Imidazol-Derivat 74 synthetisiert. Die Acetylierung von 74 zu 75 war zwar erfolgreich, konnte jedoch nicht sauber isoliert werden (vgl. nächster Absatz). Verbindung 79 wurde nach gleichem Schema erhalten: Kopplung von Benzyltriphenylphosphoniumbromid (70) mit 4-Methylsulfonylbenzaldehyd (54) zu 76, Oxidation zu 77 und Aufbau des Imidazols 78. Acetylierung ergab 79 (ST-1645). Für das nicht-substituierte Derivat wurde von Benzil 80 ausgegangen, das Imidazol 81 entsprechend synthetisiert und dann zu Derivat 82 (ST-1644) acetyliert.

Für alle acetylierten Imidazole lassen sich zwei allgemeine Zustände beobachten: Zum einen ist im NMR-Spektrum zu erkennen, dass die Verbindungen als Isomerengemisch der Formen **a** und **b** vorliegen (s. Schema 2.10), welche nicht voneinander getrennt wurden. Zum anderen entwickelt sich schon nach kurzer Zeit ein starker Essigsäuregeruch, insbesondere bei den weniger substituierten Derivaten **75**, **79** und **82**, was auf eine sehr reaktive Acetylgruppe hinweist.

Es wurden Versuche durchgeführt, die Imidazol-Derivate Celecoxib-ähnlicher zu designen durch Einführung einer Trifluormethylgruppe an den zentralen Heterozyklus. Hierfür wurden die Benzil-Derivate **73**, **77** sowie Benzil **80** (s. Schema 2.12) mit Trifluoracetaldehydethylhalbacetal (**83**) mit Ammoniumacetat in Essigsäure zu den Imidazolen **84a-c** umgesetzt. Jedoch scheiterten die unterschiedlichsten Acetylierungsversuche (z.B. Acetylchlorid in Dichlormethan oder Pyridin, erhitzten in Essigsäureanhydrid bzw. Acetylchlorid), um Verbindung **85a-c** zu erhalten. Vermutlich wird durch die direkte Nachbarschaft der Trifluormethylgruppe die Nukleophilie des Imidazol-Stickstoffs so weit gesenkt, sodass es zu keiner Reaktion mehr kommt.

Schema 2.12: Synthese von Verbindung 85. Reagenzien und Bedingungen: i) NH_4OAc , AcOH, 25 min, 115 °C, μ w; ii) Ac-Cl Reflux, 2 h.

2.1.2.5.2 Synthese von Imidazolon-Derivaten

Die Synthese von Imidazolonen kann durch Umsetzung von Benzoin-Derivaten mit Harnstoff erfolgen. Wie im vorigen Kapitel bei den Imidazolen erörtert, wurde hier auf die Herstellung durch eine asymmetrische Benzoin-Kondensation verzichtet. Das Benzoin-Derivat **86** wurden durch Reduktion mit Natriumdithionit in Ethanol / Wasser aus dem Benzil-Derivat **66** aus Schema 2.10 hergestellt. Der vermutete Mechanismus²⁷⁵ ist in Schema 2.13 abgebildet. Dabei findet ein Elektronentransfer statt, sodass das *cis*-Diol **B** als Reduktionsprodukt zu beobachten ist. Dieses wird dann mittels Keto-Enol-Tautomerie in das Benzoin-Derivat **86** umgewandelt.

Da die Tautomerie nicht-selektiv verläuft, liegt am Ende der Reaktion ein Isomerengemisch vor. Für den weiteren Reaktionsverlauf ist dies jedoch nicht relevant.

Schema 2.13: Reduktion von Benzilen zu Benzoinen durch Natriumdithionit.

Die dreistufige Synthese, ausgehend vom Benzil-Derivat **66**, beginnt in Schema 2.14 mit der beschriebenen Reduktion mit Natriumdithionit zum Benzoin-Derivat **86**, welches dann, durch Reaktion mit Harnstoff in Essigsäure, zum Imidazolon-Derivat **87** umgesetzt wurde. Das Imidazolon **87** sollte anschließend durch Behandlung mit Natriumhydrid im Überschuss in DMF in ein Hydroxyimidazol überführt werden, um mit Acetylchlorid umgesetzt werden zu können. Stattdessen wurde jedoch das zweifach *N*-acetylierte Imidazolon **88** (**ST-1858**) erhalten. Die Synthese wurde auch mit Benzoin (**89**) durchgeführt um Substituenteneffekte auszuschließen, wobei zuerst das Imidazolon **90** und dann erneut das zweifach *N*-acetylierte Imidazolon **91** (**ST-1647**) erhalten wurde.

Schema 2.14: Synthese von Imdazolonen 88 und 91. Reagenzien und Bedingungen: i) Harnstoff, AcOH, 120 °C, 1 h, μw; ii) Ac-Cl, NaH, DMF, 0 °C, 1 h.

Versuche mit Lithiumdiisopropylamid oder *tert*-Buthyllithium das Imidazolon **87** oder **90** zu deprotonieren, um den Heterozyklus in ein Hydroxyimidazol zu verwandeln und dann zu acetylieren, führten ebenfalls jeweils zum Imidazolon **88** oder **91**.

2.1.2.5.3 Synthese von Benzofuran-Derivaten und Indenon-Derivaten

In Patenten von Merck Canada²⁷⁶ wurden Benzofurane früh als selektive COX-2-Inhibitoren identifiziert. Die zweistufige Synthese für Benzofuran nach Japp *et al.*²⁷⁷ (Schema 2.15), ging von Benzoin **89** aus. Dies wurde mit Resorcin **92** in konzentrierter Schwefelsäure, in einer elektophilen aromatischen Substitution, zum Benzofuran **93** umgesetzt. Erhitzten in Essigsäureanhydrid ergab abschließend Benzofuran **94** (**ST-1730**).

Schema 2.15: Synthese des Benzfurans 94. Reagenzien und Bedingungen: i) Methansulfonsäure, 85 °C, 16 h; ii) Ac₂O, 100 °C.

Beim Indenon-Derivat **96** sollte die Celecoxib-Struktur auf ein Minimum reduziert werden, d.h. der zentrale Heterozyklus sollte eingespart werden und stattdessen an der zentralen Position ein (*E*)-Stilben-Element eingefügt werden, um die räumliche Konfiguration der Arylreste beizubehalten. Schon in vorrausgegangenen Untersuchungen wurde gezeigt, dass (*E*)-Stilben-Derivate eine COX-2-Präferenz aufweisen.²⁷⁸ Die Einführung der Acetoxygruppe für die COX-2 Modulation könnte durch die enolisierbare Ketogruppe (Hydroxyinden entsteht durch Einwirkung von Base) erfolgen. Methylierte Enolether von Hydroxyinden wurden z.B. von Cava *et al.*²⁷⁹ bereits hergestellt. Die Synthese verläuft in zwei Schritten und ist in Schema 2.16 gezeigt. Indan-2-on (**95**) wurde in Toluen mit angeschlossem Wasserabscheider mit Morpholin erhitzt, um ein Enamin als Intermediat zu erhalten, welches das Indan-2-on (**95**) für eine Aldolreaktion aktiviert.

Schema 2.16: Synthese von 96. Reagenzien und Bedingungen: i) 1. Morpholin, Toluen, p-TSA, Wasserabscheider, Reflux, 24 h, 2. 4-(Methylsulfonyl)benzaldehyd, Reflux, 24 h, 3. konz. HCl, RT, 8 h; ii) Acetonenolacetat, Reflux, Aceton abdestillieren.

Das Enamin-Intermediat wurde dann mit 4-Methylsulfonylbenzaldehyd (54) versetzt, um eine Aldol-Addition zu erreichen. Die Aldol-Kondensation (

Schema 2.17) wurde dann durch Zugabe von konzentrierter Salzsäure eingeleitet. Bei der Kondensation von Indan-2-on (**95**) mit aromatischen Aldehyden wird vorwiegend das (*E*)-Isomer gebildet.²⁷⁸ Bei der Aldol-Kondensation wird zuerst der entstandene tertiäre Alkohol **A** durch die Einwirkung der Säure als Wasser eliminiert (**B**). Beim Übergangszustand **C1** könnte es zu einem π -Stacking kommen, welches den Übergangszustand stabilisiert, sodass eine (*E*)-Konformation thermodynamisch bevorzugt wäre. Beim Übergangszustand **C2** ist dies nicht der Fall. Es entsteht das Stilben-Derivat **96** (**ST-1805**). Versuche durch Basen zu Enolisieren und das Enolat mit Acetylchlorid zu acetylieren sowie eine Acetylübertragung mit Acetonenolacetat zu **97** missglückten. Dies legt den Schluss nahe, dass die Acetylgruppe, im Vergleich zu den beschriebenen Methyl-Enolethern,²⁷⁹ zu labil ist um dauerhaft gebunden zu bleiben.

Schema 2.17: Aldol-Kondensation von 96 führt bevorzugt zum E-Produkt und nicht Z-Produkt

2.1.2.5.4 Synthese von Thiazol-Derivaten

Im Patent von Searle & CO.²⁸⁰ wurden substituierte Thiazole als selektive COX-2-Inhibitoren beschieben. Sie erhitzten Benzoin-Derivate mit Thionylchlorid und setzten anschließend direkt mit Thioharnstoff in Ethanol um, um die substituierten Thiazole zu erhalten. Im Gegensatz dazu, ging hier die Synthese von Deoxybenzoin (**98**) aus und das nicht-substituierte Derivat **100** wurde hergestellt (s. Schema 2.18). Deoxybenzoin (**98**) wurde in α -Stellung bromiert, mit Thioharnstoff zum Thiazol **99** umgesetzt und dann zu Verbindung **100** (**ST-1729**) acetyliert.

Schema 2.18: Synthese des Aminothizols 100. Reagenzien und Bedingungen: i) 1. Brom, Chloroform, RT, 2 h, 2. Thioharnstoff, EtOH, Reflux, 1 h; ii) Ac-Cl, Pyridin, 0 °C, 0.5 h.

In den Arbeiten von Rödl *et al.*²⁸¹ wurden 2-Aminothiazole identifiziert, welche sehr potent und selektiv die COX-2 inhibieren konnten. Darunter war Verbindung **103** die potenteste (s. Schema 2.19). Da diese bereits über eine Hydroxygruppe verfügt, war die Position der einzufügenden Acetoxygruppe quasi vorgegeben. Die zweistufige Synthese, in Schema 2.19 abgebildet, ging vom α -Bromketon **101** aus, welches mit *N*-(2-Hydroxyphenyl)thioharnstoff **102** in einer Mikrowellen-unterstützten Synthese zum 2-Aminothiazol **103** (**ST-1705**) umgesetzt wurde (mehr Details zur Synthese s. Kapitel 2.2.1).

Schema 2.19: Synthese von COX-2-selektiven 2-Aminothiazol-Derivaten. Reagenzien und Bedingungen: i) EtOH, 85 °C, 35 min μw; ii) Ac-Cl, Pyridin, 0 °C, 0.5 h; iii) Ac₂O, 100 °C, 1 h.

Das 2-Aminothiazol **103** wurde mit Acetylchlorid in Pyridin zu **104** (**ST-1838**) umgesetzt. Das 2-Aminothiazol **103** wurde zusätzlich durch Erhitzen in Essigsäureanhydrid *N*-acetyliert. Es stellte sich heraus, dass sich der Stickstoff im Thiazolring wie ein Enamin verhält, wodurch an der 5-Position des Thiazolrings eine zusätzliche Acetylierung stattfand und somit Derivat **105** (**ST-1839**) synthetisiert wurde. Die reaktive 5-Position des Thiazols, welche wie ein Enamin reagieren kann, wurde bereits in der Literatur von Thuring *et al.* beschrieben.²⁸² Dieses Problem wurde umgangen durch Einführung einer Methylgruppe an der 5-Position des Thiazolrings. Dadurch ist die Reaktion des Thiazols als ein Enamin blockiert. Die Synthese erfolgte aus dem α-Bromketon **106** und Verbindung **102**, sodass das 2-Aminothiazol **107** erhalten wurde, welches in Essigsäureanhydrid weiter zum *N*-acetylierten Thiazol-Derivat **108** (**ST-1840**) umgesetzt wurde. Zum Vergleich wurde **107** auch zum zweifachen acetylierten Derivat **109** (**ST-1841**) umgesetzt.

2.1.3. Modulatoren mit NSAR-Grundgerüst 2.1.3.1. Synthese der Diclofenac-Derivate

Das potenteste nicht-selektive NSAR zur Zeit auf dem Markt ist Diclofenac (110) (IC₅₀ $(COX-1 / COX-2) = 0.075 \mu M / 0.038 \mu M)$.⁹² Als Ausgangspunkt für den Einbau einer Acetoxygruppe ist es brauchbar, denn wie das Beispiel Lumiracoxib zeigt, kann durch kleine Variationen die Selektivität bzgl. der COX-2 gesteigert werden.⁹² Als Position für den Einbau einer übertragbaren Acetylgruppe eignet sich am besten der Carbonsäurerest (vgl. Kapitel 2.1.1). Außerdem ist das Hydroxamsäure-Derivat 111 (O-Acetylsalicylhydroxamsäure; Salicylsäure (112, Abbildung 2.9) bekanntermaßen AcSHA) von ebenso wie Acetylsalicylsäure (113) in der Lage, eine Acetylgruppe auf die COX zu übertragen.^{283,284} Deshalb soll die Einführung der übertragbaren Acetylgruppe über eine Hydroxamsäure erfolgen. Zusätzlich sollen Überträger auch in Form eines Amids und Hydrazids realisiert werden.

Abbildung 2.9: Literaturbekannte COX-Acetylierer^{283,285}

Die dreistufige Synthese für das Hydrazid-Derivat und das Hydroxamsäure-Derivat ist in Schema 2.20 dargestellt. Sie geht vom kommerziell erhältlichen Diclofenac-Natriumsalz (114) aus. Als Carboxylat ist das Molekül jedoch zu unreaktiv, um direkt in einer Reaktion verwendet zu werden. Deshalb wurde das Carboxylat 114 zuerst in Wasser gelöst und durch Ansäuern in die Säure 110 überführt. Nach Gefriertrocknung wurde Diclofenac (110) zum Methylester 115 verestert. Dieser diente als Vorläufer für Hydroxamsäure 116, welche durch Erhitzen in einer konzentrierten methanolischen Hydroxylamin-Lösung erhalten wurde, sowie für Hydrazid **117**, welches durch Reaktion mit Hydrazinhydrat erhalten wurde. Beide Derivate wurden abschließend mit Acetylchlorid in Pyridin umgesetzt. Für die Hydroxamsäure **116** erhielt man als Endstufe das *O*-acetylierte Derivat **118** (**ST-1833**). Hingegen erhielt man bei der Umsetzung des Hydrazids **117**, bei derselben Reaktionszeit von zwei Stunden, das *N*,*N*-diacetylierte Derivat **119** (**ST-1809**). Nach Verkürzung der Reaktionszeit auf 20 Minuten und sofortiger Aufarbeitung konnte das einfach acetylierte Derivat **120** (**ST-1832**), neben dem zweifach acetylierten **119**, isoliert werden.

Schema 2.20: Synthese von Diclofenac-Derivaten. Reagenzien und Bedingungen: i) 2N HCl; ii) konz. H₂SO₄, MeOH, Reflux 6 h; iii) NH₂OH·HCl, Et₃N, MeOH, Reflux, 5 h; iv) Ac-Cl, Pyridin, RT, 2 h; v) NH₂-NH₂·H₂O, MeOH, Reflux, 5 h; vi) Ac-Cl, Pyridin, 0 °C, 20 min; vii) Ac-Cl, Pyridin, 0 °C, 1 h.

Die zweistufige Synthese für das Amid-Derivat ging ebenfalls von Diclofenac **110** aus und ist in Schema 2.21 dargestellt. Versuche das Amid **121** durch vorige Aktivierung von **110** durch Thionylchlorid oder Oxalylchlorid und anschließende Reaktion mit wässrigem, oder methanolischem bzw. gasförmigem Ammoniak oder Ammoniumchlorid zu erhalten missglückten, obwohl diese Syntheserouten in der Literatur beschrieben sind.²⁸⁶ Beide Wege lieferten nur Verbindung **122**, bei welcher Diclofenac (**110**), unter Ausbildung eines stabilen Fünfrings, intramolekular ein Lactam schließt. Das Amid **121** konnte dennoch synthetisiert werden, indem Diclofenac **110** mit Carbonyldiimidazol in Dichlormethan aktiviert wurde und anschließend langsam gasförmiger Ammoniak durch die Reaktionslösung geleitet wurde. Die anschließende Umsetzung mit Acetylchlorid in Pyridin zum Acetamid **123** ergab jedoch erneut nur den Ringschluss **122**. Selbst mildeste Bedingungen wie Essigsäureanhydrid in Methanol mit Cäsiumcarbonat führten entweder zum Ringschluss **122**, oder es erfolgte keine Reaktion. Eine Literaturrecherche ergab, dass das Lactam **122** durch Erhitzten in reinem Essigsäureanhydrid *O*-acetyliert werden kann und in das Indol **124** überführt werden kann.²⁸⁷ Jedoch neigt die Acetylgruppe von Verbindung **124** bei Lagerung innerhalb weniger Stunden zu einer Art Fries-Umlagerung, sodass wieder das aliphatische Lactam gebildet wird und das Indolinon **125** entsteht.²⁸⁷

Schema 2.21: Synthese von Diclofenac-Amid-Derivaten. Reagenzien und Bedingungen: i) 1. CDI, DCM, 0 °C, 2 h, 2. NH₃-gas; ii) Ac-Cl, Pyridin, 0 °C, 1 h; iii) 1. Oxalylchlorid, kat. DMF, THF, 0 °C, 2 h, 2. ges. NH₃ MeOH; iv) ges. NH₃ MeOH, 60 °C, 5 h; v) Ac2O, 100 °C, 4 h.

Ein Diclofenac-ähnliches Derivat mit einem Amid als Überträger wurde über die Verbindungen **131** und **132** realisiert. Die vierstufige Synthese (Schema 2.22) der Verbindungen **131** und **132** ging von 2-Nitrophenylessigsäure **126** aus. Als erstes wurde das Amid **127**, durch Aktivierung der Säurefunktion von **126** mit Thionylchlorid und Behandlung mit konzentriertem Ammoniak aufgebaut. Durch die Wahl der Nitrogruppe konnte die Fünfring-Ausbildung vermieden werden. Das Amid wurde dann durch katalytische Hydrierung mit Palladium und Wasserstoff zum Amin **128** reduziert. Der Aufbau der benötigten Diphenylamin-Struktur erfolgte über eine Buchwald-Hartwig-Kreuzkupplung. Die Kupplung von Amin **128** mit Iodtoluen **129**, unter Kupferkatalyse in Dioxan und Zusätzen von Kaliumcarbonat und *N*,*N*-Dimethylethylendiamin, ergab das Diphenylamin **130** in moderaten Ausbeuten.

Schema 2.22: Synthese von Diclofenac-ähnlichen Amid-Derivaten. Reagenzien und Bedingungen: i) 1. Thionylchlorid, Reflux, 4 h, 2. konz. NH₃; ii) H₂, Pd/C (10%), EtOH, 24 h; iii) CuI, KI, *N*,*N*-Dimethylethylendiamin, K₂CO₃, Dioxan, 120 °C, 2 h μ w; ; iv) Ac-Cl, Pyridin, 0 °C, 1 h; v) Acryloylchlorid, kat. DMAP, Et₃N, DCM.

Der Katalysezyklus der Kupplung ist in Schema 2.23 dargestellt.²⁸⁸ Arbeiten über die Knüpfung von Kupfer-katalysierten Kohlenstoff-Stickstoff-Bindungen mit Amiden legen nahe, dass zunächst das Nukleophil (Amin **128**) an den Kupfer-Ligand-Komplex **A** bindet um Komplex **B** zu bilden.^{289,290} Der Komplex **B** vereinfacht bzw. ermöglicht die Deprotonierung zur Ausbildung von Komplex **C**, welcher der Aryl-Halogen Aktivierung vorrausgeht. Die oxidative Addition von Iodtoluen ergibt Komplex **D**, welcher nach reduktiver Eliminierung die Stickstoff-Kohlenstoff-Bindung ausbildetet und das Diphenylamin **130** freigibt. Der Kupferkomplex liegt dann wieder im Ausgangszustand **A** vor und kann eine neue Reaktion katalysieren. Durch die hohen Temperaturen von 160 °C, welche für die Kupplung benötigt werden, jedoch hauptsächlich bei der Aufarbeitung von **130**, konnte zu einem Teil wieder die Fünfring-Ausbildung zu **122** beobachtet werden. Durch Umsetzung in Acetylchlorid in Pyridin wurde dann aber doch ausschließlich das acetylierte Produkt **131** (**ST-1727**) erhalten. Verbindung **130** wurde parallel dazu mit einer weiteren bekannten, in Rezeptoren kovalent bindenden Gruppe derivatisiert: einer Acrylfunktion. Die Umsetzung von **130** erfolgte mit Acryloylchlorid in Pyridin zum Acrylamid **132** (**ST-1728**).

Schema 2.23: Reaktionsmechanismus der Kupfer-katalysierten Buchwald-Hartwig Kreuzkupplung nach²⁸⁸

2.1.3.2. Synthese der Nimesulid-Derivate

Nimesulid ist ein NSAR, das einen unsubstituierten Phenylrest enthält (s. Abbildung 2.10). Vorangegangene Arbeiten von Jain *et al.*²⁹¹ haben gezeigt, dass Derivatisierungen an diesem Ring von der COX toleriert werden, was eine gute Vorraussetzung darstellt, eine Acetoxygruppe bzw. ein Acetylsalicylsäure-Element dort zu integrieren. Um den Einfluss der *para*-Nitrogruppe aus Nimesulid zu bestimmen, sollten Derivate ohne und mit *para*-Nitrogruppe synthetisiert werden. Das Methylsulfonamid des Nimesulids hingegen trägt entscheidend zur COX-Aktivität bei und kann nicht verändert werden.

Abbildung 2.10: Geplante Variationen der Nimesulid-Grundstruktur.

Die Synthese der Nimesulid-Derivate ohne *para*-Nitrogruppe sollte in einer linearen fünfstufigen Synthese erfolgen (s. Schema 2.24). Im ersten Schritt wurde 2,4-Dihydroxybenzoesäure (**133**) unter klassischen Bedingungen zum Methylester **134** verestert. Dieser wurde in einer Mikrowellensynthese, mittels einer nukleophilen aromatischen Substitution,

mit 2-Fluornitrobenzol (135), durch den Einsatz von äquimolaren Mengen an Kalium-tertbutanolat in Acetonitril, zur Reaktion gebracht. Es resultierte der Diphenylether 136. Im nächsten Schritt wurde die Nitrogruppe in 136 durch katalytische Hydrierung durch Palladium und Wasserstoff zum Amin 137 reduziert. Die Aminfunktion wurde im vierten Schritt mit Mesylchlorid zum Methylsulfonamid 138 umgesetzt. Dieses wurde, zunächst unter Beibehaltung des Esters, mit Acetylchlorid in Pyridin umgesetzt. Man isolierte ausschließlich die diacetylierte Verbindung 139 (ST-1855) und nicht die einfach acetylierte Verbindung 140. Mehrere Versuche die Acetylierungsbedingungen anzupassen, durch Abänderung des Lösungsmittels (zu DMF, Dichlormethan oder Methanol), der Base (zu Natriumhydrid, Triethylamin, Kaliumcarbonat, Kaliumacetat oder Pyridin) oder des Acetylierungsreagenzes (zu Essigsäureanhydrid oder Acetonenolacetat), führten immer zu Verbindung 139. Schon im vierten Schritt, der Umsetzung von 137 mit Mesylchlorid, konnte die zweifache Substitution der Aminogruppe als bedeutende Nebenreaktion ebenfalls beobachtet werden, welche sich durch den starken aziden Charakter des entstehenden Amids erklären ließe. Im Rückblick wäre eine weitere Möglichkeit, zumindest um das einfach acetylierte Derivat 140 zu erhalten, die Acetylgruppe bereits nach dem zweiten Schritt einzuführen und die Reduktion und Mesylierung anschließend durchzuführen.

Schema 2.24: Syntheseroute für 139. Reagenzien und Bedingungen: i) kat. H₂SO₄, MeOH, Reflux, 6 h; ii) *tert*-KOBu, Acetonitril, 100 °C, 2 h μw; iii) H₂, Pd/C (10%), EtOH, 24 h; iv) Ms-Cl, Pyridin, 24 h; v) Ac-Cl, Pyridin, 0 °C, 30 min.

Die Synthese der Nimesulid-Derivate mit *para*-Nitrogruppe ging von Verbindung **138** bzw. **141** aus, wobei diese zwei Verbindungen in *para*-Position zum Methylsulfonamid nitriert werden sollten, wie bereits bei Vijayabhaskar *et al.*²⁹² beschrieben. Die beschriebenen Nitrierungsbedingungen führten jedoch bei **138** nicht zur *para*-Substitution (**142**). Stattdessen wurden **143** und **144** isoliert (Schema 2.25). Ausgehend von **141** wurden ebenfalls nur **145** und **146** isoliert, bei welchen ebenfalls nur der phenolische Arylrest nitriert wurde. Dieser Arylrest scheint sowohl als Ester (**138**) als auch Säure (**141**) elektronenreicher zu sein als der (linke) Aromat mit der Sulfonamidgruppe. Aus diesem Grund wurde auch versucht vom, Amin **137** ausgehend zu nitrieren. Bei der Isolierung wurden Mehrfachsubstitutionen beobachtet, jedoch konnten die genauen Positionen nicht identifiziert werden, da die unterschiedlichen Nitroverbindungen fast identische, nicht-unterscheidbare NMR-Spektren lieferten.

Schema 2.25: Nitrierung von Verbindung 138 und 141. Reagenzien und Bedingungen: i) Nitriersäure, 0 °C 1 h; ii) Nitriersäure, Chloroform, 0 °C, 3 h; iii) AcOH oder TFA, HNO₃, 0 °C, 2 h.

Daraufhin wurde die neue Synthesestrategie (Schema 2.26) so ausgewählt, dass die Nitrogruppe bereits im Ausgangsmolekül vorhanden ist. Beim Versuch, Verbindung 142 über eine nukleophile aromatische Substitution zu erhalten, wurde 2-Fluor-5-nitroanilin (147) mit Mesylchlorid zu Verbindung 148 umgesetzt und anschließend mit 134 in DMF und Kalium*tert*-butanolat in der Mikrowelle bis auf 200 °C erhitzt. Anschließend wurden nur die Edukte isoliert, da das Substitutionsmuster von 148 eine nukleophile Substitution nicht favorisiert. Als alternative Synthesestrategie (Schema 2.26) sollte Verbindung 142 über eine Buchwald-Hartwig-Kupplung synthetisiert werden. Hierfür wurde zuerst das benötigte Halogen eingeführt. 4-Nitroanilin (149) wurde zu 150 iodiert und anschließend zu 151 mesyliert Bei

der Kreuzkupplung konnte Verbindung **142**, weder unter Kupfer- noch unter Palladiumkatalyse, isoliert werden.

Schema 2.26: Synthese eines Nimesulid-Aspirn-Hybriden 142. Reagenzien und Bedingungen: i) NaI, H_2O_2 , MeOH, H_2SO_4 , 60 °C, 5 h; ii) Ms-Cl, Pyridin, RT, 24 h; iii) $Pd_2(dba)_3$, Xantphos, K_2CO_3 , Dioxan/Wasser, 90 °C, 18 h; iv) CuI, KI, *N*,*N*-Dimethylethylendiamin, K_2CO_3 , Dioxan, 120 °C, 2 h μ w.

Als weiterer neuer Ansatz wurden Nimesulid-Analoga synthetisiert. Zum einen wurde die Methylsulfonylgruppe durch eine Trifluormethylgruppe ersetzt, um das Problem der zweifachen Acetylierung zu vermeiden. Zum anderen wurde eine *meta*-Substitution, bezüglich der Trifluormethylgruppe, gewählt, sodass eine Synthese über eine nukleophile aromatische Substitution verlaufen kann. Als Analoga wurden Diphenylether (Acetyl-salicylsäure-Hybride) und Diphenylamin (Mesalzin-Hybride) synthetisiert.

Die Acetylsalicylsäure-Hybride 156 und 158. wurden ausgehend von 2.5-Dihydroxbenzoesäure 152 einer drei- bzw. zweistufigen Synthese hergestellt (Schema 2.27). Die Synthese wird detailliert nur an Verbindung 156 erörtert. Im ersten Schritt wurde die Säure 152 in Methanol unter Standardbedingungen zu 153 verestert. Der Ester 153 wurde dann in der Mikrowelle mit 2-Fluor-5-nitrobenzotrifluorid (154) zum Diphenylether 155 umgesetzt. Durch abschließende Acetylierung erhielt man das Acetylsalicylsäure-Hybrid 156 (ST-1845). 2,5-Dihydroxbenzoesäure 152 ließ sich auch direkt mit 154 in der Mikrowelle zum Diphenylether 157 umsetzen. Dieser wurde mit Acetylchlorid in das Acetylsalicylsäure-Hybrid 158 (ST-1844) umgewandelt. Auf die gleiche Weise wie die Acetylsalicylsäure-Hybride wurden die Nimesulid-Mesalazin-Hybride 162 und 164 hergestellt (Schema 2.27). Mesalazin (159) wurde in den Methylester 160 überführt, mit 154 in der Mikrowelle zum Diphenylamin 161 umgesetzt und zum Hybrid 162 (ST-1854) finalisiert. Aus Mesalzin 159 wurde auch direkt mit 154 das Diphenylamin 163 synthetisiert und anschließend das Mesalazin-Hybrid 164 (ST-1842) gewonnen.

Schema 2.27: Synthese von den Acetylsalicylsäure-Hybriden (oben) und den Mesalazin-Hybriden (unten). Reagenzien und Bedingungen: i) kat. H₂SO₄, MeOH, Reflux, 6 h; ii) *tert*-KOBu, Acetonitril, 100 °C, 2 h μ w; iii) Ac-Cl, Pyridin, 0 °C, 1 h.

Um eine weitere Position mit einer Acetoyxygruppe abzudecken bzw. das Fehlen der Esteroder der Säurefunktion zu beurteilen, wurde 2-Fluor-5-nitrobenzotrifluorid (**154**) auch mit Resorcin (**92**) zum Diphenylether **165** umgesetzt (Schema 2.28). Das Phenol wurde dann durch Acetylchlorid in das Acetoxy-Derivat **166** (**ST-1843**) überführt.

Schema 2.28: Synthese von 166. Reagenzien und Bedingungen: i) *tert*-KOBu, DMF, 100 °C, 2 h μw; ii) Ac-Cl, Pyridin, 0 °C, 1 h.

2.1.3.3. Synthese der Acetylsalicylsäure-Derivate

In vorausgegangen Arbeiten wurden bereits mehrere Versuche unternommen, Acetylsalicylsäure zu Derivatisieren, um eine COX-2 Selektivät zu erzeugen.^{293,294} Hier sollte der Versuch unternommen werden, durch Veresterung der Säuregruppe eine COX-2 Selektivät zu erzeugen. Hierfür wurden Alkohole unterschiedlicher Kettenlänge getestet, von Methanol bis Octanol, um die Selektivität zu beeinflussen, sowie die Einführung von Methylgruppen am Aromaten. Die Synthese erfolgte in zwei Stufen (vgl. Schema 2.29), ausgehend von Salicylsäure (112) bzw. 5-Methylsalicylsäure (167). Die Veresterung wurde unter klassischen Bedingungen durchgeführt, mit dem entsprechenden Alkohol als Lösungsmittel und katalytischen Mengen an konzentrierter Schwefelsäure, sodass die Salicylsäureester 168a-k erhalten wurden. Für 5-Methylsalicylsäure (167) wurde nur der Methylester 169 synthetisiert und nicht die gesamte Reihe. Die Acetylierung wurde mit Acetylchlorid und Triethylamin in Dichlormethan durchgeführt. Man erhielt die jeweiligen Acetylsalicylsäure-Ester 170a-h (ST-1650 bis ST-1659) und 171 (ST-1834).

Schema 2.29: Synthese von Acetylsalicylsäure-Estern 170a-h. Reagenzien und Bedingungen: i) Alkohol (a = Methanol, b = Ethanol, c = Propanol, d = Butanol, e = Pentanol, f = Hexanol, g = Heptanol, h = Octanol), kat. H₂SO₄, Reflux, 8 h; ii) Ac-Cl, Et₃N, DCM, RT, 2 h.

2.1.3.4. Synthese der *O*-Acetylsalicylhydroxamsäure-Derivate

In Arbeiten von Dooley *et al.*²⁸³ wurde neben Acetylsalicylsäure die *O*-Acetylsalicylhydroxamsäure (**111**, AcSHA) als acetylierender COX-Inhibitor identifiziert. AcSHA (**111**) wird als COX-1 selektiver Inhibitor beschrieben, welcher weniger affin ist als Acetylsalicylsäure. Ziel war es durch geringe Modifikationen die Potenz von AcSHA (**111**) zu erhöhen und eine COX-2-Präferenz zu generieren. Die phenolische Gruppe bot sich dabei für Derivatisierungen an. Es wurden eine Phenylgruppe und eine Methylgruppe eingefügt. Die Phenylgruppe sollte das Molekül Diclofenac-ähnlicher machen, sodass eine höhere Potenz an der COX erzielt wird. Die Methoxygruppe sollte zur Abklärung dienen, ob für eine gesteigerte oder verringerte Inhibition schon kleinere Modifikationen ausreichen.

Die zweistufigen Synthesen gingen von 2-Phenoxybenzoesäure (172) bzw. 2-Methoxyphenylessigsäure (173) aus. Die Säuren wurden zunächst mit Thionylchlorid aktiviert und dann in eine methanolische konzentrierte Hydroxylamin-Lösung gegeben und in die Hydroxamsäuren 174 und 175 überführt. Abschließende Acetylierung mit Acetylchlorid in Dichlormethan ergab die *O*-Acetylsalicylhydroxamsäure-Derivate 176 (ST-1808) und 177 (ST-1804).

Schema 2.30: Synthese von *O*-Acetylsalicylhydroxamsäure Derivate 176 und 177. Reagenzien und Bedingungen: i) NH₂OH·HCl, Et₃N, MeOH, Reflux, 5 h;; ii) Ac-Cl, Pyridin, 0°C, 1 h.

2.1.3.5. Synthese des Piroxicam-Derivats

Die NSAR-Gruppe der Oxicame, wie z. B. Piroxicam **178**, besitzen in ihrer Grundstruktur ein stabiles Enol, welches sich für eine Derivatisierung anbietet. Die Synthese hatte die Abwandlung dieses Enols **178** zum Ziel und bestand aus einem Schritt, jenes mit Acetylchlorid in Dichlormethan zum Piroxicam-Derivat **179** (**ST-1806**) zu acetylieren (s. Schema 2.31).

Schema 2.31: Synthese von acetyliertem Piroxicam 179. Reagenzien und Bedingungen: i) Ac-Cl, Et₃N, DCM, RT, 2 h.

2.2. Synthese der 5-Lipoxygenase Inhibitoren

In einem High-Throughput-Screening beschrieben im Jahr 2012 Suh et al.²⁵⁷ die Substanz **SKI-II** (Abbildung 2.11), welche zuvor im Jahr 2003 von French at al.²⁹⁵ als Sphingosinkinase-Inhibitor identifiziert wurde, als brauchbare Leitstruktur zur Entwicklung von 5-LO-Inhibitoren. In diesen Arbeiten von Suh et al.²⁵⁷ wurden daraufhin Derivate untersucht, welche im rechten Teil eine para-Hydroxygruppe oder para-Amingruppe besitzen (grün in Abbildung 2.11) und im linken Teil Halogene in para-Position (rot in Abbildung 2.11). In Arbeiten von Vogt et al.²⁸¹, welche die Inhibition von 2-Aminothiazolen auf verschiedene Enzyme der AA-Kaskade untersuchten, wurden ähnliche Variationen für eine Struktur-Wirkungsbeziehung (SAR) synthetisiert und im Rahmen der Studie auf 5-LO getestet. Aufbauend auf diesen beiden Arbeiten, in welchen von SKI-II die beiden Reste R² und R⁴ variiert wurden (Abbildung 2.11), sollte durch Derivatisierung des Thiazols-Rings durch die Reste R¹⁻⁴ die Einflüsse auf die Struktur-Wirkungsbeziehung vertieft werden. Die Reste sollten sich nach ihrer sterischen Ausdehnung unterscheiden sowie in ihrer Eigenschaft als Wasserstoffbrückenakzeptoren bzw. Donoren zu fungieren. Ferner wurde auch die Rolle des Stickstoffs in der 2-Position des Thiazols untersucht, indem der Stickstoff (X in Abbildung 2.11) durch Sauerstoff oder Kohlenstoff ausgetauscht wurde.

Abbildung 2.11: Struktur des 5-LO-Inhibitors SKI-II²⁵⁷ (links) und allgemeines Schema (rechts) der geplanten Variationen der Leitstruktur.

2.2.1. Allgemeine Synthese von substituierten 2-Aminothiazolen

Die Synthese der 2-Aminothiazole erfolgte nach den Arbeiten und etablierten Vorschriften von Rasmussen *et al.*²⁹⁶ (Schema 2.32). Bei dieser Syntheseroute handelt es sich um eine parallel verlaufende Synthese, in welcher erst im letzten Schritt, einer Hantzsch-Thiazol-Synthese, die Kopplung zweier synthetisierter "building blocks" zum Endprodukt (**VI**) stattfindet. Bei den "building blocks" handelt es sich um α -Bromketone (**II**) und N-

substituierte Thioharnstoff-Derivate (V). Die α -Bromketone (II) konnten aus kommerziell erhältlichen Ketonen (I) hergestellt werden, sofern sie nicht bereits selbst kommerziell erhältlich sind. Aromatische Bromketone wurden durch Zugabe von Brom in Chloroform hergestellt; aliphatische Bromketone wurden durch Zugabe von Brom und katalytischen Mengen an Kupferpulver in Methanol synthetisiert. Die Verwendung von Kupfer(I)bromid führt zu dem gleichen Ergebnis und kann anstatt den Brom / Kupferpulver-Bedingungen analog verwendet werden.

Schema 2.32: Allgemeine Syntheseroute von 2-Aminothiazolen nach Rasmussen *et al.*²⁹⁶. Reagenzien und Bedingungen: i) Brom, kat. Kupferpulver und Bromwasserstoff (33% AcOH), MeOH, 0 °C-RT, über Nacht; ii) Brom, Chloroform, bis Entfärbung eintritt; iii) Benzoylchlorid, NH₄SCN, Aceton, Reflux, 2 h; iv) NaOH (2M), 80 °C, 30 min; v) EtOH, 85 °C, 35 min μ w.

Die *N*-substituierten Thioharnstoff-Derivate (**V**) wurden aus kommerziell verfügbaren Aminen (**III**) hergestellt. In einzelnen Fällen, in denen die entsprechenden Amine (**III**) nicht verfügbar waren, ging die Synthese von einer Nitroverbindung aus, welche durch katalytische Hydrierung mit Wasserstoff in ein Amin überführt wurde. Die Amine (**III**) wurden mit Benzoylchlorid und Ammoniumthiocyanat in Aceton zu *N*-Aryl-*N*'-benzoylthioharnstoffen (**IV**) umgesetzt. Der Reaktionsmechanismus für die Herstellung von *N*-Aryl-*N*'-benzoylthioharnstoffen (**IV**) ist in Schema 2.33 dargestellt. Zunächst wird das Benzoylisothiocyanat **B** *in situ* gebildet, indem im ersten Schritt das Ammoniumthiocyanat über einen Additions-Eliminierungs-Mechanismus (**A**) reagiert. Das Benzoylisothiocyanat **B** kann durch ein Amin (**III** aus Schema 2.32) nukleophil angegriffen werden, sodass das mesomeriestabilisierte Zwischenprodukt **C1** bzw. **C2** entsteht. Nach einer Protonenumlagerung kann sich das Enol **D** bilden, welches zum *N*-Aryl-*N*'-benzoylthioharnstoff **IV** tautomerisiert.

Schema 2.33: Reaktionsmechanismus der Darstellung der N-Aryl-N'-benzoylthioharnstoffe (IV) aus Schema 2.32.

Die Benzoylgruppe in den *N*-Aryl-*N*'-benzoylthioharnstoffen **IV** kann durch Behandlung mit 2M Natronlauge abgespalten und somit die Thioharnstoff-Funktion (**V**) freigesetzt werden (Schema 2.32). Der letzte Schritt der Synthese ist, wie oben bereits erwähnt, die Kopplung eines α -Bromketons (**II**) mit einem Thioharnstoff-Derivat (**V**). Diese klassische Hantzsch-Thiazol-Synthese wurde, im Gegensatz zum konventionellem Erhitzten, durch Erhitzten des Reaktionsansatzes in der Mikrowelle durchgeführt.

Die mikrowellenunterstütze Synthese ist durch ihren direkten Energieübertrag eine sehr effiziente Methode. Die Energie kann rasch auf die Reaktanden übertragen werden, sodass die Reaktionstemperatur schnell erreicht wird und die Aktivierungsenergiebarriere schnell überwunden werden kann. Zusätzlich ist es möglich, da die Synthese in einem verschlossenen Gefäß durchgeführt wird, unter Druck zu arbeiten und somit Temperaturen über dem Siedepunkt der Lösungsmittel zu erreichen. Aus diesen zwei Gründen kann die Reaktionsgeschwindigkeit erhöht werden, sodass es zu kürzeren Reaktionszeiten kommt. Zusätzlich zu der Zeitersparnis werden meist auch weniger Nebenprodukte gebildet.

Der Reaktionsmechanismus der Hantzsch-Thiazol-Synthese ist in Schema 2.34 dargestellt. Dabei handelt es sich um einen zweistufigen Reaktionsablauf. Zuerst greift der Thioharnstoff (\mathbf{V}) das Bromketon (\mathbf{II}) nukleophil an unter Ausbildung von \mathbf{A} . Nach Protonenumlagerung entsteht das Imin \mathbf{B} , welches das protonierte bzw. aktivierte Keton intramolekular angreifen kann, wobei sich das Intermediat \mathbf{C} bildet. Dieses neigt dazu Wasser zu eliminieren und durch Protonenabspaltung zum Thiazol \mathbf{VI} zu aromatisieren.

Schema 2.34: Reaktionsmechanismus der Hantzschen-Thiazol Synthese für die Herstellung des 2-Aminothiazols (VI) aus Schema 2.32

Anstatt der parallel verlaufenden Synthese wäre auch eine Drei-Komponenten-One-pot Synthese durchführbar.²⁵⁷ Bei diesem Syntheseweg erspart man sich die Herstellung des Thioharnstoff-Derivats **V**, indem man ein α -Bromketon **II**, Ammoniumthiocyanat und ein Amin **III** direkt umsetzt. Der Syntheseweg ist jedoch mit Nebenreaktionen behaftet, bedarf einer aufwendigeren Auftrennung oder ergibt mit bestimmten Substitutionsmustern sehr schlechte Ausbeuten. Aus diesen Gründen wurde der dargestellte "Umweg" für die Synthese der nachfolgenden 2-Aminothiazole gewählt.

Die Bezeichnungen **I-VI** aus Schema 2.32 werden im Folgenden in allgemeinen Schemen für die entsprechenden Ketone, Thioharnstoffe und Endprodukte verwendet. Die Synthesebedingungen werden nur noch explizit für einzelne Synthesen beschrieben, welche nicht unter das allgemeine Schema fallen.

2.2.2. Variation von 2-Aminothiazolen an der 5-Thiazol-Position

Bislang wurde die Toleranz von Substituenten an der 5-Thiazolposition bei 2-Aminothiazolen für die Inhibition der 5-LO nicht untersucht. Zur gleichen Zeit stellt die 5-Position des Rings den metabolischen Schwachpunkt von Thiazolen dar. An dieser Stelle kann sich durch Metabolisierung ein toxisches 4,5-Epoxid bilden.²⁹⁷ Aus diesem Grund sollten Derivate mit elektronenziehenden sowie -schiebenden Eigenschaften, welche zeitgleich die metabolische angreifbare Position blockieren, hergestellt werden. Die allgemeine Syntheseroute ist in Schema 2.35 dargestellt. Im ersten Schritt der zweistufigen Synthese wurde Ketone **180a-c** in die entsprechenden α -Bromketone **181a-b** bzw. **106** überführt und anschließend mit 1-(4-

Hydroxyphenyl)thioharnstoff (182) zu 2-Aminothiazolen 183-185 umgesetzt. Die synthetisierten Derivate und deren Vorläufer sind in Tabelle 2.1 aufgelistet.

Schema 2.35: Allgemeines Syntheseschema zur Variation der 5-Thiazolposition (Derivatisierung von \mathbb{R}^1). Reagenzien und Bedingungen: i) Brom, Chloroform, RT, bis Entfärbung eintritt; ii) EtOH, 85 °C, 35 min μ w.

CI R ¹ 180a-c	CI	CI 183-185		
Nr.	Nr.	Nr.	\mathbf{R}^{1}	
180 a	181a	183 (ST-1733)	0_СН3	
180b	181b	184 (ST-1731)	V [−] C ^{=N}	
180c	106	185 (ST-1711)	✓ ^{CH} ₃	

Tabelle 2.1: Beschreibung des Rests R¹ gemäß Schema 2.35.

Für die Derivate mit einer Carbonsäure **186**, einem Alkohol **187** bzw. einem Amid **188** (**ST-1732**) an der 5-Thiazolposition waren keine kommerziell verfügbaren Ketone als direkte Vorläufer erhältlich, welche in das allgemeine Reaktionsschema passten (Schema 2.32). Diese Derivate wurden ausgehend von **183**, **SKI-II** (**ST-1083**) bzw. **184** synthetisiert. Die Synthesen sind im Schema 2.36 und Schema 2.37 abgebildet. Die Carbonsäure **186** konnte durch Verseifung des Methylesters **183** mit Natronlauge erhalten werden. Der Alkohol **187** hingegen konnte durch Reduktion des Esters **183** dargestellt werden. Als alternativer Weg, bei welchem weniger Nebenreaktionen zu beobachten waren, konnte der Alkohol **187** durch Behandlung von **ST-1083** durch Formalin-Lösung erhalten werden. Das Thiazol reagiert dabei wie ein Enamin, wie es bereits in Kapitel 2.1.2.5.4 beobachtet wurde. Amid **188** wurde durch eine Nitrilhydrolyse mit Natronlauge aus **184** hergestellt.

Schema 2.36: Synthese einer Carbonsäure und eines Alkohols an der 5-Thiazol-Position. Reagenzien und Bedingungen: i) 1M NaOH, 80 °C, 5 h, ii) LiAlH₄, THF, RT, 4 h; iii) Formalin, Et₃N, THF, 20 min, 115 °C μw.

Carbonsäure **186** und Alkohol **187** konnten jedoch nicht sauber isoliert werden. Bei Aufreinigung der farblosen Rohprodukte mit verschiedenen Methoden sowie beim Stehenlassen, zerfielen die Verbindungen und hinterließen einen braunen, mittels NMR, IR und Massenanalytik nicht zu charakterisierenden Rückstand.

Schema 2.37: Synthese von 188 aus 184. Reagenzien und Bedingungen: i) 1M NaOH, 80 °C, 5 h.

2.2.3. Variation von 2-Aminothiazolen an der 4-Thiazol-Position

In den vorausgegangenen Arbeiten^{281,257} wurden an der 4-Thiazolposition ausschließlich Derivate mit diversen aromatischen Ringen synthetisiert, jedoch nicht die Auswirkungen von aliphatischen Strukturen untersucht. Aus diesem Grund sollten kleine bis sperrige aliphatische Reste unter Beibehaltung der phenolischen Struktur an der linken Seite der Leitstruktur eingefügt werden. Die allgemeine Syntheseroute ist in Schema 2.38 dargestellt. Im ersten Schritt der zweistufigen Synthese wurden kommerziell erhältlichen Ketone **189a-k** in die entsprechenden α -Bromketone **190a-k** überführt und anschließend mit 1-(4-Hydroxyphenyl)- thioharnstoff (182) zu den entsprechenden 2-Aminothiazolen 191-200 gekoppelt. Die synthetisierten Derivate und deren Vorläufer sind in Tabelle 2.2 aufgelistet.

Schema 2.38: Allgemeines Syntheseschema zur Variation der 4-Thiazolposition (Derivatisierung von R²). Reagenzien und Bedingungen: i) Brom, kat. Kupferpulver und Bromwasserstoff (33% AcOH), MeOH, 0 °C-RT, über Nacht; ii) EtOH, 85 °C, 35 min μw.

0 R² ⊂ H₃ 189a-i	0 R ² → ^{Br} 190a-k	R ² NH 191-200		0 R ² CH₃ 189a-i	0 R ² ^{Br} 190a-k	R ² NH R ² 191-200	
Nr.	Nr.	Nr. R^2		Nr.	Nr.	Nr. \mathbf{R}^2	
189a	190a	191 (ST-1852)	V the	189b	190b	192 (ST-1851)	H ₃ C H ₃ C CH ₃
189c	190c	193 (ST-1903)	$\square^{\mathbf{h}}$	189d	190d	194 (ST-1875)	H ₃ C H ₃ C H ₃ C
189e	190e	195		189f	190f	196 (ST-1876)	H ₃ C H ₃ C
189g	190g	197 (ST-1865)	\bigcirc	189h	190h	198 (ST-1877)	F F
189 i	190i	199 (ST-1825)	N	189j	190j	200 (ST-1868)	но
	190k	201 (ST-1907)	CI				

Tabelle 2.2: Beschreibung des Rests R² gemäß Schema 2.38.

Um sterisch anspruchsvollere Derivate zu generieren, wurde an der 4-Thiazolposition zum einen ein 2,4-Dichlorbenzol-Rest (201) eingeführt. Durch das gewählte Substitutionsmuster tritt eine Torsion der zwei Aromaten ein. Zum anderen wurde ein Bizyklus (207) eingeführt. Hierfür musste zunächst das Keton 204 hergestellt werden. Die vierstufige Synthese mit dem verbrückten Rest ist in Schema 2.39 dargestellt. In einer Diels-Alder-Reaktion wurden im ersten Schritt Cyclopentadien (202) und 1-Buten-3-on (203) zu Keton 204 umgesetzt. Die

Diels-Alder bedingte Doppelbindung wurde mittels katalytischer Hydrierung entfernt, da diese zu Nebenreaktionen bei der Bromierung führen würde. Man erhielt den aliphatischen Bizyklus **205**, welcher in das α -Bromketon **206** überführt wurde und mit 1-(4-Hydroxyphenyl)thioharnstoff (**182**) zum 2-Aminothiazolderivat **207** gekoppelt wurde. Selbst unter verschiedensten Bedingungen kam es bei der Kopplung des Bizykluses immer zur Ausbildung einer Doppelbindung. Eine erneute Hydrierung der Doppelbindung mittels Palladium und Wasserstoff war aufgrund der auftretenden Vergiftung des Katalysators durch den Thiazol-Schwefel nicht möglich.

Schema 2.39: Synthese von 207 mit verbrückten Rest. Reagenzien und Bedingungen: i) kat. 2M LiCl-Lösung, 80 °C, 10 min, μ w; ii) H₂, Pd/C (10%), EtOH, RT, 8 h; iii) Brom, kat. Kupferpulver und Bromwasserstoff (33% AcOH), MeOH, 0°-RT, über Nacht; iv) EtOH, 85 °C, 35 min μ w.

2.2.3.1. Synthese von Coumarin-Derivaten an der 4-Thiazol-Position

Um die strukturelle Vielfalt zu erhöhen, sollte an der 4-Thiazolposition der aromatische Ring von **SKI-II** (vgl. Abbildung 2.11) durch einen aromatischen Bizyklus ersetzt werden. Hierfür wurden Coumarine im Gegensatz zu den naheliegenden Naphtalenen gewählt. Zum einen sind derivatisierte Coumarine leichter zugänglich als Naphtalen-Derivate und zum anderen bringt das Einführen der Coumarin-Struktur eine fluoreszenz-aktive Komponente in das Molekül. Es wurden neben dem unsubstituierten Coumarin auch an der 6- bzw. 7-Coumarin-Position Modifikationen wie Chlor-, Methoxy-, Hydroxy- und Diethylaminsubstitutionen eingeführt. Der allgemeine Syntheseweg ist in Schema 2.40 dargestellt. Der rechte Teil der Leitstruktur blieb unverändert. Im ersten Schritt wurden die Salicylaldehyd-Derivate **208a-g** in Acetessigester (**209**) mit katalytischer Menge an Piperidin zu den Coumarin-Ketonen **210a-g** umgesetzt und anschließend in die α -Bromketone **211a-g** überführt, um wiederum mit 1-(4-Hydroxyphenyl)thioharnstoff (**182**) zu den 2-Aminothiazolderivaten **212-218** gekoppelt zu werden. Die synthetisierten Derivate und deren Vorläufer sind in Tabelle 2.3 aufgelistet.

Schema 2.40: Allgemeines Syntheseschema zur Einführung eines fluoreszenzmarkierten Restes. Reagenzien und Bedingungen: i) kat. Piperidin, RT, 1 h; ii) Brom, Chloroform, bis Entfärbung eintritt; iii) EtOH, 85°C, 35 min μw.

	4	о R² Сн ₃	R ² Br	R ² NH	
208a-g		210a-g	211a-g	212-218	
R'	Nr.	Nr.	Nr.	Nr.	R ²
-H	208a	210a	211a	212 (ST-1871)	
5-Cl	208b	210b	211b	213 (ST-1881)	CI CI
5-OCH ₃	208c	210c	211c	214 (ST-1883)	H ₃ C ^O
4-Cl	208d	210d	211d	215 (ST-1882)	CI C
4-OCH ₃	208e	210e	211e	216 (ST-1872)	H ₃ C ₀
4-N(CH ₂ CH ₃) ₂	208f	210f	211f	217 (ST-1850)	H ₃ C N O O
ОН	208g	210g	211g	218 (ST-1873)	

Tabelle 2.3: Beschreibung des Rests R' und R² gemäß Schema 2.40.

2.2.4. Synthese von analogen Thiazolen ohne bzw. mit veränderter 2-Aminofunktion

Bis zu diesem Zeitpunkt wurde an 2-Aminothiazolen noch nicht der Einfluss einer Abstandsveränderung vom rechten Teil des Aromaten (grün in Abbildung 2.11) zum Thiazol

auf die 5-Lipoxygease Inhibitor-Eigenschaft hin untersucht. Außerdem wurde der Einfluss des sekundären exozyklischen Amins (2-Aminothiazolfunktion) noch nicht ausreichend geklärt (vgl. R³ in Abbildung 2.11). Aus diesen Gründen wurden Derivate mit Spacer zwischen Heteroaromat und rechten Aromat synthetisiert sowie Derivate mit einem neuen Rest R³ am Thiazolring. Hinzu kommen Derivate, in welchen der sekundäre exozyklische Stickstoff, an der 2-Position des Thiazols, entweder in Form eines Imins oder Imids, oder durch Sauerstoff oder Kohlenstoff ersetzt wurde.

Das allgemeine Reaktionsschema für die Derivate mit einem neuen Rest R³ am Thiazolring ist in Schema 2.41 dargestellt. In beiden aromatischen Ringen wurde das Substitutionsmuster der Leitstruktur **SKI-II** (Abbildung 2.11) beibehalten. Die zweistufige Synthese ging von 4'-Chlorpropiophenon (**219**) aus, welches nach Bromierung in Chloroform das α -Bromketon **106** ergab. Dieses wurde mit den beiden zweifach *N*-substituierten Thioharnstoff-Derivaten **220**, mit einem Methylrest, und **221**, mit einem Vinylrest, umgesetzt. Daraufhin konnten die zwei Derivate **222** (**ST-1815**) und **223** (**ST-1814**) isoliert werden. Durch die Einführung des Rests an der 3-Thiazolposition lag das Molekül nicht mehr als sekundäres Amin vor, sondern in einer tautomeren Form. Das Amin lag nun in einer Imin-ähnlichen-Struktur vor.

Schema 2.41: Allgemeines Syntheseschema zur Variation der 3-Thiazolposition (Derivatisierung von \mathbb{R}^3). Reagenzien und Bedingungen: i) Brom, Chloroform, bis Entfärbung eintritt; ii) EtOH, 85°C, 35 min μ w.

Für die Derivate mit Spacer zwischen Heteroaromat und dem rechten Aromaten der Leitstruktur wurde der linke Teil des Moleküls beibehalten. Das Syntheseschema ist in Schema 2.42 dargestellt. Für das Derivat **227** ging die vierstufige Synthese von 4'-Chloracetophenon (**224**) aus, das durch Bromeinfluss in 2-Brom-4'-chloracetophenon (**101**) umgewandelt wurde. Anschließend wurde das α -Bromketon **101** mit Thioharnstoff zur Reaktion gebracht, sodass das 2-Aminothiazol **225** mit freier Aminogruppe synthetisiert wurde. Dieses wurde zusammen mit Salicylaldehyd (**208a**) in Ethanol erhitzt, wobei das Imin **226** (**ST-1846**) isoliert wurde. Abweichend von der Leitstruktur wurde eine *ortho*-Hydroxy-Substitution gewählt, welche ähnlich aktiv ist wie die *para*-Hydroxy-Substitution von **SKI-II**.^{257,281} Die *ortho*-Hydroxy-Substitution stabilisiert jedoch das Imin **226** über

intramolekulare Wasserstoffbrücken. Eine abschließende reduktive Aminierung von **226** mit Natriumtriacetoxyborhydrid resultierte in Amin **227** (**ST-1870**). Für das Derivat **231** erfolgte die Synthese durch Umsetzung von 2-Aminothiazol **225** mit 4-Dimethylaminozimtaldehyd **228** in Ethanol.

Schema 2.42: Synthese von 226 und 229 mit Spacer zwischen Heteroaromat und rechten Aromat und von 234. Reagenzien und Bedingungen: i) Brom, Chloroform, bis Entfärbung eintritt; ii) Thioharnstoff, EtOH, Reflux, 4 h; iii) Salicylaldehyd, EtOH, Reflux, 2 h; iv) Natriumtriacetoxyborhydrid, EtOH, RT, 30 min; v) 1. Maleinsäureanhydrid, THF, RT, 8 h, 2. Essigsäureanhydrid, NaOAc, 85 °C, 3 h; vi) 2,3-Dimethyl-1,3-butadien, Toluen, 80 °C, 10 min μw.

Für die Derivate 229 (ST-1847) und 234 mit verdecktem Amin wurde das sekundäre Amin in ein Imid umgewandelt. Hierfür wurde das 2-Aminothiazol 225 mit Maleinsäureanhydrid (230) in THF umgesetzt. Dabei entstand zunächst ein Amid, welches mit Essigsäureanhydrid zum Pyrroldion 231 (ST-1848) zyklisiert. Bei dessen säulenchromatographischen Aufreinigung mittels Ethylacetat als Eluent wurde auch das Aufarbeitungsartefakt 232 (ST-1884) isoliert. Das Maleimid 231 konnte anschließend in einer Diels-Alder-Reaktion mit 2,3-Dimethyl-1,3-butadien (233) zu 234 (ST-1869) weiter umgesetzt werden.

Zusätzlich zur Maskierung der Aminfunktion sollte die Leitstruktur rigidisiert werden, um dadurch auf eine bevorzugte Ausrichtung des Moleküls in der Bindungstasche schließen zu können. Die angedachte Rigidisierung durch den Trizyklus **238** ist in Schema 2.43 dargestellt. Die dreistufige Synthese ging von 4-Amino-3-nitrophenol (**235**) aus, welches mittels

katalytischer Hydrierung mit Wasserstoff in das Diamin 236 verwandelt wurde. Dieses wurde in Pyridin mit 1,1'-Thiocarbonyldiimidazol zum Benzimidazolthion 237a umgewandelt. Dieses steht mit 237b im Tautomeren-Gleichgewicht und kann durch Baseneinfluss begünstigt werden. Die weitere Umsetzung erfolgte mit 2-Brom-4'-chloracetophenon (101) jedoch nicht zu dem gewünschten trizyklischen Derivat 238, sondern zur offenkettigen Form 239 (ST-1900). Abänderungen der Versuchsbedingungen durch Zusatzt von Basen, z.B. LDA oder Piperidin, oder von Säuren bzw. wasserentziehenden Reagenzien wie Schwefelsäure oder Essigsäureanhydrid, sowie der Einsatz mikrowellen-unterstützter Synthese, führten nicht zum Kondensationsprodukt 238. Dies gelang weder direkt von 237 aus noch von der bereits kondensierten Form 239 aus. Es scheint, dass der Benzoimidazol-Stickstoff in 237 nicht nukleophil genug ist, um mit dem Keton 101 mittels Kondensation zu zyklisieren.

Schema 2.43: Synthese eines rigiden trizyklischen SKI-II Derivats. Reagenzien und Bedingungen: i) H₂, Pd/C (10%), EtOH, RT, 8 h; ii) Thio-CDI, Pyridin, 70 °C, 1.5 h; iii) Piperidin, EtOH, 85-150 °C, 30-180 min μ w.

Nachfolgend wird der Austausch des sekundären exozyklischen Stickstoffs, an der 2-Position des Thiazols, erörtert. Der Syntheseweg für den Austausch der Stickstofffunktion durch Sauerstoff ist in Schema 2.44 dargestellt. Das Substitutionsmuster der beiden äußeren Aromaten wurde beibehalten, jedoch an der 5-Position ein methylierter Thiazolring gewählt, welcher diesen Schwachpunkt im Zellmetabolismus blockien soll.²⁹⁷

Schema 2.44: Austausch des sekundären exozyklischen Stickstoffs durch Sauerstoff. Reagenzien und Bedingungen: i) 1. Natriumthiocyanat, EtOH, Reflux, 4 h; 2. HBr (33% AcOH), AcOH, Reflux, 2 h; ii) Hydrochinon, NaH (60% ig in Mineralöl), DMF, 120 °C, 1 h μ w.

Die zweistufige Synthese ging von 2-Brom-1-(4-chlorphenyl)propan-1-on (**106**) aus. Das α -Bromketon **106** wurde mit Natriumthiocyanat und anschließender Einwirkung von Bromwasserstoff in das 2-Bromthiazol **240** umgewandelt. Der Reaktionsmechanismus ist in Schema 2.45 abgebildet. Zunächst findet eine nukleophile Substitution zum isolierbaren Intermediat **A** statt. Das Keton kann nun durch die Einwirkung von Bromwasserstoff am Carbonylsauerstoff (**B**) protoniert werden und einen intramolekularen Angriff des Nitrils ermöglichen. Das entstehende Carbokation **C** wird durch Bromid substituiert zu **D**. Abschließend findet eine Eliminierung des tertiären Alkohols durch den Säureeinfluss über **E** zu **240** statt. **240** wurde dann mit Überschuss an Hydrochinon (**241**) in der Mikrowelle zu Verbindung **242** (**ST-1849**) umgesetzt.

Schema 2.45: Reaktionsmechanismus der Umwandlung von 106 zum 2-Bromthiazol 240

Die fünfstufige Syntheseroute für den Austausch der Stickstofffunktion durch Kohlenstoff ist in Schema 2.46 dargestellt. Das Substitutionsmuster wurde wie bei 242 gewählt. Im ersten Schritt der Synthese wurde 4-Hydroxyphenylessigsäuremethylester (243) mit Benzylbromid (244) zu 245 *O*-benzyliert. Der Ester wurde dann durch Behandlung mit konzentriertem Ammoniak zum Amid 246 umgesetzt. 246 wurde dann mit Lawesson's Reagenz in das Thioamid 247 umgewandelt, welches nun anstelle eines Thioharnstoff-Derivats mit dem α - Bromketon 106 in der oben schon beschriebenen Hantz'schen-Thiazol-Synthese zum Thiazol 248 (ST-1811) umgesetzt werden konnte. Die phenolische Funktion wurde abschließend durch Erhitzten von 248 in einem Bromwasserstoff / Dioxan-Gemisch wieder freisetzt und 249 (ST-1810) isoliert. Klassische Debenzylierung durch katalytische Hydrierung über Palladium (10%ig auf Aktivkohle) im Autoklaven führte nicht zum Erfolg. Vermutlich erfolgte hier zu einer Vergiftung des Katalysators durch den Schwefel des Thiazols.

Schema 2.46: Austausch des sekundären exozyklischen Stickstoffs durch Kohlenstoff. Reagenzien und Bedingungen: i) Benzylbromid, K₂CO₃, KI, Aceton, RT, 24 h; ii) konz. NH₃, Reflux, 5 h; iii) Lawesson's Reagenz, THF, 70 °C, 3 h; iv) EtOH, 85 °C, 35 min μ w; v) HBr (48% in Wasser), Dioxan, Reflux, 5 h.

2.2.5. Variation von 2-Aminothiazolen an der 2-Thiazol-Position

Bei den Arbeiten von French *et al.*²⁹⁵ war eine teilweise Oxidation von **SKI-II** zu beobachten. Es wäre denkbar, dass diese oxidierte Form eventuell den aktiven Metaboliten durch den Zellstoffwechsel darstellt. Daher war es von Interesse, diese oxidierte Form zu synthetisieren. Die Oxidation von **SKI-II** (**ST-1083**) zeigt das Schema 2.47. Sie erfolgte durch Zugabe von Blei(IV)tetraacetat in Essigsäureethylester und man erhielt quantitativ das Chinon-Derivat **250** (**ST-1905**).

Schema 2.47: Oxidation von ST-1083 zu 250. Reagenzien und Bedingungen: i) Pb(OAc)₄, EtOAc, 45 °C, 10 min.

2.2.6. Synthese von 2-Aminothiazolen mit kombinierten Variationen

Es sollten Derivate synthetisiert werden, welche an den 2-, 4- und 5-Positionen eine Kombination der bisher beschriebenen Variationen aufweisen. Für den linken Teil \mathbf{R}^2 (rot in Abbildung 2.11) wurde eine Rigidisierung des Aromaten sowie die Substitution durch einen aliphatischen Zyklus durchgeführt. Für den rechten Aromaten \mathbf{R}^4 (grün in Abbildung 2.11) erfolgte die Substitution durch einen aliphatischen Ring und durch Bioisostere. Außerdem sollte durch die Einführung weiterer Substitutionsmuster am rechten Aromaten \mathbf{R}^4 die metabolische Phenolderivatisierung behindert werden oder Radikalfängereigenschaften integriert werden. An der 5-Thiazolposition \mathbf{R}^1 (gelb in Abbildung 2.11) wurde die Methylgruppe aus Kapitel 2.2.2 beibehalten, um den metabolischen Schwachpunkt zu blockien.²⁹⁷

Schema 2.48 zeigt die jeweils zweistufigen Synthesen der beiden Derivate 255 und 256 mit rigidisiertem Aromaten. Im ersten Schritt wurde aus α -Tetralon (251) bzw. 1-Indanon (252) das entsprechende α -Bromketon 253 bzw. 254 durch Bromierung in Chloroform hergestellt, welche dann mit 1-(4-Hydroxyphenyl)thioharnstoff (182) zu ihren entsprechenden 2-Aminothiazolen 255 (ST-1878) und 256 (ST-1879) umgesetzt wurden.

Schema 2.48: Rigidisierung des linken Aromaten der Leitstruktur. Reagenzien und Bedingungen: i) Brom, Chloroform, bis Entfärbung eintritt; ii) EtOH, 85 °C, 35 min μw.

Daneben wurde zusätzlich ein Substitutionsmuster gewählt, welches die Torsion der beiden anellierten Aromaten (linker Aromat \mathbf{R}^2 und Thiazolring) verstärkt. Die Synthese ist in Schema 2.49 dargestellt, und geht vom Keton 257 aus, welches wiederum zum α -Bromketon 258 bromiert und mit Thioharnstoff 182 zum Thiazol 259 (ST-1904) oder mit Thioharnstoff 260 zu 261 (ST-1906) umgesetzt wurde.

Schema 2.49: Substitutionen mit stärkerer Torsion des linken Aromaten. Reagenzien und Bedingungen: i) Brom, Chloroform, RT, bis Entfärbung eintritt; ii) EtOH, 85 °C, 35 min μw.

Für die Substitution des rechten Aromaten \mathbb{R}^4 durch einen aliphatischen Ring und durch bioisostere Gruppen ist die allgemeine Syntheseroute in Schema 2.51 dargestellt. Die Amine 264 und 266, deren Substitutionsmuster für eine geringere metabolische Phenolderivatisierung und Radikalfängereigenschaften ausgewählt wurden,²⁹⁸ waren nicht kommerziell erhältlich und wurden nach Schema 2.50 hergestellt. Dafür wurde Propofol (262)
durch Nitriersäure in die *para*-nitrierte Verbindung **263** überführt und durch katalytische Hydrierung erhielt man Amin **264**. Ebenfalls durch katalytische Hydrierung wurde 2,6-Dimethyl-4-nitrophenol (**265**) zum Amin **266** umgewandelt.

Schema 2.50: Herstellung von nicht komerziell verfügbaren Aminen. Reagenzien und Bedingungen: i) HNO₃, H₂SO₄, Chloroform, RT, 2 h; ii) H₂, Pd/C (10%), EtOH, RT, 24 h.

In der Syntheseroute erfolgte die Umsetzung der Amine **267a-f** mit Benzoylchlorid und Ammoniumthiocyanat in Aceton zu den *N*-Aryl-*N*'-benzoylthioharnstoffen **268a-f**. Diese wurden dann zu den Thioharnstoff-Derivaten **269a-f** mit 2M Natronlauge hydrolisiert und in der Mikrowelle mit dem α -Bromketon **106** zu den entsprechenden 2-Aminothiazolen **270-275** gekoppelt.^{281,296} Die synthetisierten Derivate und deren Vorläufer sind in Tabelle 2.4 aufgelistet.

Schema 2.51: Allgemeines Syntheseschema zur Variation der 2-Thiazolposition (Dervatisierung von R⁴). Reagenzien und Bedingungen: i) Benzoylchlorid, NH₄SCN, Aceton, Reflux, 2 h; ii) NaOH (2M), 80 °C, 30 min; iii) EtOH, 85 °C, 35 min μ w.

Tabelle 2.4: Beschreibung des Rests R⁴ gemäß Schema 2.51.

Für die beiden Derivate **281** und **288** sind die Synthesen im Schema 2.52 gezeigt. Das Phenol wurde durch ein Hydroxypyridin ersetzt. Durch die direkte Nachbarschaft des Pyridin-Stickstoffatoms zur Hydroxygruppe ist es ebenfalls möglich, dass eine Tautomerie vom Hydroxypyridin zum Pyridinon stattfindet. Im ersten Schritt in Schema 2.52 wurde 4-Amino-2-chlorpyridin (**276**) in einer Mikrowellen-unterstützten Synthese mit Natriummethanolat in den Ether **277** umgewandelt. Durch die Aminfunktion konnte **277** unter der allgemeinen Syntheseroute in Benzoylthioharnstoff **278** und dann in Thioharnstoff **279** überführt werden. Reaktion mit α-Bromketon **106** resultierte in 2-Aminothiazol **280** (**ST-1813**). Die anschließende Etherspaltung erfolgte in einem Bromwasserstoff / Dioxan-Gemisch und ergab Hydroxypyridin (**282**) und nicht vom Amin aus. Nur durch den entscheidenen -M-Effekt der Nitrogruppe war eine nukleophile aromatische Substitution mit Natriummethanolat zum Ether **283** möglich, welcher durch katalytische Hydrierung zum Amin **284** umgewandelt wurde. Der gewohnte Aufbau des Benzoylthioharnstoff ergab **285**, sowie die Hydrolyse den

Thioharnstoff **286**. Kopplung mit **106** resultierte in Thiazol-Derivat **287** (**ST-1812**) und die abschließende Etherspaltung erfolgte erneut in einem Bromwasserstoff / Dioxan-Gemisch und ergab das Hydroxypyridin **288** (**ST-1863**).

Schema 2.52: Synthese von 281 und 288. Reagenzien und Bedingungen: i) NaOMe, CuI, MeOH, 150 °C, 4 h μ w; ii) Benzoylchlorid, NH₄SCN, Aceton, Reflux, 2 h; iii) NaOH (2M), 80 °C, 30 min; iv) 2-Brom-1-(4-chlorphenyl)propan-1-on (106), EtOH, 85 °C, 35 min μ w; v) HBr (48% Wasser), Dioxan, Reflux, 5 h.

Es wurden mehrere 2-Aminothiazole mit einem Cyclohexylrest an der linken Position \mathbb{R}^2 (rot in Abbildung 2.11) synthetisiert. Die allgemeine Syntheseroute gibt das Schema 2.53 wieder. Das α -Bromketon 190g wurde mit 182 zu 293 umgesetzt. Aus 1-Cyclohexylpropan-1-on (289) wurde das α -Bromketon 290 hergestellt und mit verschiedenen Thioharnstoff-Derivaten (182, 260, 269a und 269f) zu den 2-Aminothiazolen 294-296 umgesetzt. Alternativ wurde das α -Chlorketon 291 verwendet, welches zuvor aus Cyclohexylmethylketon (189g) und Dimethylcarbonat in Toluen zunächst zu 292 umgesetzt wurde und durch anschließende Chlorierung mit Sulfurylchlorid synthetisiert wurde. Dieses wurde mit den Thioharnstoff-Derivaten 182 und 260 zu den 2-Aminothiazolen 297 und 298 umgesetzt Die synthetisierten Derivate und deren Vorläufer sind in Tabelle 2.5 zusammengestellt.

Schema 2.53: Allgemeines Syntheseschema zur Variation der 2-Thiazolposition mit Cyclohexylrest. Reagenzien und Bedingungen: i) Brom, kat. Kupferpulver und Bromwasserstoff (33% AcOH), MeOH, 0 °C - RT, über Nacht; ii) EtOH, 85 °C, 35 min μ w; iii) Dimethylcarbonat, NaH, Toluen, Reflux, 8h; iv) Sulforylchlorid, DCM, RT, 1h.

Tabelle 2.5: Beschreibung der Reste R¹ und R⁴ gemäß Schema 2.53.

2.3. Zusammenfassung der Synthesen

Im Rahmen dieser Arbeit wurden zahlreiche Modulatoren und Inhibitoren der Arachidonsäurekaskade synthetisiert, welche für eine anschließende biologische Charakterisierung zur Verfügung standen (Kapitel 4). Zum einen wurde ein breites Spektrum diverser COX-Modulatoren erfolgreich hergestellt, wie die Coxib-Derivate (von Celecoxib, Etoricoxib, Rofecoxib und Valdecoxib) mit integrierter Acetoxygruppe am zentralen Heterozyklus sowie NSAR-Derivate (von Acetylsalicylsäure, Diclofenac und Nimesulid) mit Acetoxygruppe. Zum anderen wurden über 60 Verbindungen (2-Aminothiazole) als direkte 5-LO-Inhibitoren mit unterschiedlichen Substitutionsmustern synthetisiert, welche für die Untersuchung der Struktur-Wirkungsbeziehung des 2-Aminothiazol-Grundgerüstes zur Verfügung standen.

Bei den bis zuweilen sechsstufigen Syntheserouten konnten zweckvoll Methoden, wie Mikrowellen-Synthese und heterogene Katalyse, integriert werden. Mittels Mikrowellen-Synthese gelang es die Reaktionszeit zu verkürzen, im Vergleich zur konventionellen Synthese, und gute Ausbeuten zu erzielen. Diese kam besonders bei der Synthese der 2-Aminothiazole via Hantzsch-Thiazol-Synthese zum Einsatz. Durch den gezielten Einsatz von heterogener Katalyse konnten die Syntheseschritte reduziert werden und die Syntheseabfolge auf geringere Nebenreaktionen hin optimiert werden.

Desweiteren wurden in dieser Arbeit weitere Heterozyklen wie Hydroxypyrrole, Imidazole, Imidazolone, Isoxazole, Pyrazole und Pyridine synthetisiert und die jeweilige Synthesestratgien dazu individuell erstellt.

3. Pharmakologischer Teil

3.1. Pharmakologische Charakterisierung der COX-aktiven Substanzen

3.1.1. In vitro und in vivo Testsysteme

Die im chemischen Teil vorgestellten potentiellen COX-Modulatoren wurden von Herrn Christoph Lehmann, unter Betreuung von Frau Dr. Astrid Kahnt aus dem Arbeitskreis von Herrn Prof. Dr. D. Steinhilber, in einem Assay mit intakten Thrombozyten auf ihre COX-1-Aktivität untersucht. Die Messungen für die COX-2-Aktivität in intakten Zellen (humanen THP-1) und die Auswaschungsversuche wurden von Herrn Thomas Ulshoefer von der Fraunhofer IME Projektgruppe "Translationale Medizin und Pharmakologie" durchgeführt. Die PGE₂-Bestimmung an der LC-MS/MS erfolgte unter Aufsicht von Frau Dr. Nerea Ferreiros-Bouzos. Zusätzlich bestimmte Herr Ulshoefer die Zytotoxizität der potentiellen COX-Modulatoren in einem WST-1-Assay und die M1-Makrophagen Polarisation von Stammzellen aus murinem Knochenmark (engl.: "mouse bone marrow-derived M1macrophage polarization") unter Aufsicht von Dr. Susanne Schiffmann. Das in vivo Schmerzmodell, das Zymosan-Hyperalgesie-Model in Mauspfoten, wurde von Dr. Natasja der Fraunhofer IME Projektgruppe "Translationale Medizin DeBruin von und Pharmakologie" durchgeführt. Die biochemischen Protokolle sind in Kapitel 5.5 wiedergegeben.

3.1.1.1. Bestimmung der COX-Aktivität

COX-1 Assay

Die Testsubstanzen wurden in intakten Zellen (Thrombozyten), also in einer physiologischen Zellumgebung, getestet. Die Thrombozyten im Blut sind nur in der Lage das COX-1 Enzym zu exprimieren. Die COX-2 kann nicht mehr induziert werden, da sie keinen Zellkern besitzen.

Die Thrombozyten wurden frisch aus Blutkonzentraten isoliert, dann mit Calciumchlorid stimuliert und mit den Testsubstanzen inkubiert. Nach Zugabe von AA wurde die COX-1-vermittelte Produktbildung von 12(*S*)-Hydroxyheptadeca-5*Z*,8*E*,10*E*-triensäure (12-HHT) mittels HPLC ermittelt und mittels internen Standard quantifiziert (s. Kapitel 5.5.1).²⁸¹

COX-2 Assay im intakten Zellsystem und Auswaschungsversuche

Mit intakten THP-1-Zellen wurden die Testsubstanzen auf ihre COX-2-Aktivität getestet. THP-1-Zellen sind in der Lage nach Zugabe von Phorbol-12-myristat-13-acetat (PMA), für 48 Stunden, die alleinige COX-2-Expression zu induzieren. Die Zellen wurden anschließend mit mit Lipidpolysaccharid (LPS) stimuliert, mit den Inhibitoren bei 100 μ M inkubiert und die COX-2-Restaktivität als PGE₂-Bildung im Überstand mittels LC-MS/MS bestimmt. Anschließend wurden die Zellen mit PBS-Puffer gewaschen, um reversibel-bindende Inhibitoren auszuwaschen, und die PGE₂-Bildung erneut ermittelt. Das Auswaschungsergebnis kann als Anhaltspunkt für eine beständige, irreversible Hemmung dienen (s. Kapitel 5.5.2).

Für die zeitabhängige Untersuchung wurden für die Inhibitoren entsprechend unterschiedlich lange Inkubationszeiten gewählt und dann die PGE₂-Bildung im Überstand erneut ermittelt.

COX-2 Assay am aufgereinigten Enzym

Um die Potenz der Testsubstanzen unabhängig von der Zellgängigkeit zu betrachten, wurden ausgewählte Verbindungen am aufgereinigtem humanen COX-2 Protein getestet (Cayman Screeing AssayKit Nr. 701080).

Das Enzym wurde mit Häm in Puffer gelöst und mit den Testsubstanzen vorinkubiert. Anschließend wurde AA hinzugegeben und die PGE₂-Bildung mittels ELISA quantifiziert und am Nullwert (inhibitorfreie Probe bzw. Vehikel) normalisiert (s. Kapitel 5.5.3).

3.1.1.2. Bestimmung der Zytotoxizität und Untersuchung im Schmerzmodell

WST-1 Assay

Zur Untersuchung auf anti-proliferierende Effekte wurden im water soluble tetrazolium (WST-1) Assay die aktivierten THP1-Zellen mit den Testsubstanzen bei 100 μ M (oder DMSO als Vehikel für den Nullwert), für 24 Stunden inkubiert. Anschließend wurde Tetrazoliumchlorid hinzugegeben, welches in lebenden Zellen durch die Succinat-Tetrazolium-Reduktase aus der Atmungskette in ein dunkelrotes Formazan umgewandelt wird. Der Umsatz wurde über zwei Stunden lang alle 20 Minuten kolorimetrisch gemessen. Die Formazanfreisetzung der einzelnen Proben wurde durch lineare Regression ermittelt

(Freisetzung entspricht der Steigung) und diese mit Hilfe der Nullwerte normalisiert (s. Kapitel 5.5.4).

Zymosan-Hyperalgesie-Schmerzmodell

Zunächst wird die Basisempfindlichkeit der Versuchsmäuse (C57Bl6) ohne Entzündung ermittelt, indem die Zeit (Sekunden) gemessen wird bis ein Zurückziehen der Pfote nach einem Hitzereiz erfolgt. Anschließend wird den Versuchstieren Zymosan A subkutan in die Unterseite der Pfote injiziert und die Zeit bis zum Zurückziehen der Pfote erneut gemessen. Vier Stunden nach der Zymosaninjektion wurde dann eine ausgewählte Verbindung intraperitoneal appliziert. Die Kontrolltiere erhielten zum gleichen Zeitpunkt inhibitorfreie Lösung (1% Tylose, 1% Sojalecithin in Wasser). In regelmäßigen Zeitabständen wurde dann die Zeitverzögerung bis zum Zurückziehen der Pfote nach dem Hitzereiz ermittelt.

3.1.2. Ergebnisse zur Inhibition der COX-1- und COX-2- vermittelten Produktbildung der synthetisierten Verbindungen

Alle synthetisierten Verbindungen (ausgenommen die lager-unstabilen Verbindung **82**, **79**, **75** und **27**; Vgl. Kapitel 2.1) wurden auf ihre Fähigkeit hin getestet die PGE₂-Bildung zu inhibieren. Es wurde jeweils die Hemmwirkung auf beide Isoenzyme, COX-1 sowie COX-2 (THP-1), im intakten Zellsystem überprüft, um Aufschluss über ihre Selektivität zu erhalten. Alle Verbindungen wurden im COX-2 Assay zuvor gescreent (n = 2) und der Wert ist in den nachfolgenden Tabellen als Mittelwert in Klammern angegeben. Für aktive Substanzen wurde anschließend die Hemmwirkung für n = 3 ± Standardfehler des Mittelwertes (SEM) bestimmt. Außerdem wurden bei der COX-2-Testung im intakten Zellsystem noch Auswaschungsstudien durchgeführt, um weiteren Aufschluss auf eine irreversible Wirksamkeit der synthetisierten Substanzen zu erhalten. Hierfür wurden die Zellen nach der Inkubation einmal mit PBS-Pufferlösung gewaschen, um Inhibitorrückstände zu entfernen, und anschließend erneut auf ihre PGE₂-Produktbildung hin untersucht. Die wirkungsvollsten Verbindungen wurden dann noch zusätzlich am aufgereinigten humanen COX-2-Enzym (hCOX-2) auf ihre Inhibitionsfähigkeit bei 10 μ M getestet. Als Referenzen dienten Acetylsalicylsäure, Celecoxib, Diclofenac und Rofecoxib. In Tabelle 3.1 sind die Restaktivitäten (RA) der beiden Isoenzyme in Gegenwart der synthetisierten Verbindungen mit (Z)-Diarylgrundgerüst aufgelistet. Die Inhibitoren lassen sich entsprechend ihrer Aktivität an den beiden Isoenzymen unterscheiden. Das Celecoxib-Derivat 13 zeigte bei 100 µM im intakten Zellsystem (Thrombozyten) eine starke Inhibition der COX-1-Aktivität. Das Etoricoxib-Derivat 21 ist hingegen an der COX-1 inaktiv. Eine moderate bis marginale Inhibition der COX-1-vermittelte Produktbildung (RA = 71.5% -85.1%) zeigten die Rofecoxib-Derivate 33 und 40. 50, eine Valdecoxib-Derivat, zeigte eine starke COX-1-Inhibition (RA = 36.3%). Im Gegensatz dazu hemmten die Valdecoxib-Derivate 52, 53 und 59 die COX-1-Aktivität nicht (RA = 88.1% - >95%). Hingegen das Valdecoxib-Derivat 60, mit angehängtem Michael-Akzeptor, ist COX-1 aktiv (RA = 14.9%) wie 50. Verbindung 60 ist somit zugleich der potenteste Inhibitor der Serie. Es ist an diesem Punkt zu beobachten, dass kleine Veränderung am Coxib-Grundstruktur bzw. am Heterozyklus zu einem vollständig unterschiedlichen Verhalten der COX-1-Aktivität führen. Vergleicht man 60 mit 59, ist letzeres nicht COX-1 aktiv und unterscheidet sich nur im Acylüberträger. Dies deutet darauf hin, dass durch die größere sterische Ausfüllung der Bindungstasche bei 60 eventuell ein anderer Bindemodus an der COX-1 ermöglicht wird, welcher zusätzlich durch die stärkere Acidität des Amidprotons in 60 noch verstärkt werden könnte.

Die Imidazole **69** und **88** sind inaktiv (RA \geq 95%) und **91** wies ebenfalls nur eine moderate COX-1-Aktivität auf (RA = 61.2%). Die unsubstituierten (*Z*)-Diarylderivate **94** und **100** waren im Vergleich zu den Imidazolen gleich potenter gegenüber der COX-1 (RA = 41.7% - 47.9%) und das Stilben-Derivat **96** war inaktiv (RA \geq 95%). Die 2-Aminothiazole **104**, **105**, **108** und **109** hatten eine sehr unterschiedliche Hemmwirkung gegenüber der COX-1. Das Derivat **105** wies eine äußerst potente Inhibition der PGE₂-Bildung in Thrombozyten auf (RA = kein Signal / unterhalb der Nachweisgrenze). Dagegen besaßen die Derivate **104**, **108** nur eine moderate COX-1-Aktivität (RA = 52.6% - 68.2%) und **109** erwieß sich als inaktiv (RA \geq 95%).

Tabelle 3.1: Inhibitoren mit selektiven Grundgerüsten und ihre prozentualen Restaktivität der PGE ₂ -
Bildung durch COX-1 und COX-2 sowie bei Auswaschungsexperimenten an COX-2 bei 100 µM (n = 3). In
Klammern sind Screeningergebnisse bei 100 µM angegeben (Mittelwerte aus n = 2). Die Restaktivitäten der
hCOX-2 wurden bei 10 μ M gemessen (n = 3).

Substanz	Struktur	% COX-1 (PMNL) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM nach Inhibitor- Auswaschung	Differenz der % COX-2 (THP-1) Restaktivitäten	% COX-2 (hCOX-2) Restaktivität bei 10 μM ± SEM
13	H ₂ N ₂ O O C C C H ₃ C H ₃ C H ₃	36.4 ± 3.6	49.0 ± 2.6 (35.0) [#]	61.9 ± 2.3 $(51.2)^{\#}$	+12.8 (+16.3)	56.6 ± 28.5
21	H ₃ C, U H ₃	> 95	(-)	(-)	(-)	> 98
33	H ₃ C, CH ₃	71.5 ± 10.0	94.5 ± 4.1 (14.7)	84.8 ± 1.6 (61.0)	-9.7 (+46.3)	> 98
40	H ₃ C V H ₃ C V C V H ₃ C V C V H ₃ C V C V C V C V C V C V C V C V C V C V	> 95	(-)	(-)	(-)	72.1 ± 13.3
50		36.4 ± 22.2	79.0 ± 1.0 (70.77)	93.4 ± 2.04 (> 95)	+14.4 (+25)	80.9 ± 8.3
52	H ₃ C	> 95	64.1 ± 0.6 (42.8)	69.8 ± 1.8 (77.1)	+5.7 (+34.3)	> 98
53	H ₃ C, SO O, SO H ₃ C, SO H ₃ C, SO H ₃ C, SO CH ₃	> 95	65.8 ± 1.8 (63.7)	91.0 ± 1.4 (87.0)	+25.1 (+23.3)	93.8 ± 7.4
59		88.1 ± 5.5	66.7 ± 2.6 (16.5)	77.7 ± 2.2 (62.3)	+11.1 (+45.7)	(-)

Substanz	Struktur	% COX-1 (PMNL) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM nach Inhibitor- Auswaschung	Differenz der % COX-2 (THP-1) Restaktivitäten	% COX-2 (hCOX-2) Restaktivität bei 10 μM ± SEM
60	H_3C , O O H_3C	14.9 ± 5.0	74.6 ± 1.5 (37.7)	> 95 (> 95)	+16 (+58)	(-)
69	H ₃ C, S O H ₃ C, N H ₃ C, N	> 95	(-)	(-)	(-)	> 98
88	H_3C O H_3C O H_3C $H_$	> 95	(-)	(-)	(-)	64.1 ± 2.3
91		61.2 ± 10.5	78.6 ± 3.3 (16.3)	> 95 (65.5)	+17 (+49.1)	(-)
94		41.8 ± 27.3	(60.6)#	(20.1)#	(-40.5)	(-)
96	H ₃ C v o	> 95	(>95)	(>95)	(-)	(-)
100	S NH CH3	47.9 ± 3.6	(71.2) [#]	(46.4)#	(-24.7)	(-)
104	CI CH3	68.3 ± 32.2	50.9 ± 0.2	42.9 ± 1.0	-8.0	> 98
105	H ₃ C N C	k.s.	52.4 ± 2.1	41.8 ± 1.1	-10.6	(-)
109	H ₃ C NHO CH ₃	> 95	55.2 ± 0.7	44.34 ± 0.6	-10.9	(-)

Tabelle 3.1: Fortsetzung

Substanz	Struktur	% COX-1 (PMNL) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM nach Inhibitor- Auswaschung	Differenz der % COX-2 (THP-1) Restaktivitäten	% COX-2 (hCOX-2) Restaktivität bei 10 μM ± SEM
108	H ₃ C S O CH ₃	52.63 ± 28.5	56.5 ± 0.5	46.57 ± 1.5	-9.9	(-)
Celecoxib		(-)	72.2 ± 1.2 (38.0)	54.2 ± 1.5 (20.8)	-17.9 (-17.2)	15.3 ± 5.4

Tabelle 3.1: Fortsetzung

k.s. = Kein Signal; # = bei 50 μ M gemessen; (-) nicht bestimmt.

Betrachtet man nun die Hemmwirkung der Verbindungen auf die COX-2-Aktivität (THP-1-Zellen), so kann man auf einen Rückschluss auf die jeweilige COX-Präferenz ziehen. Das Derivat 13 erwies sich als potenterer Inhibitor im intakten Zellsystem an der COX-2 (RA = 56.5%) als die Referenzsubstanz Celecoxib (RA = 72.2%). Die Tatsache, dass Celecoxib eine so hohe Restaktivität besitzt, mag darauf hindeuten, dass das Assaysystem bei diesem Test nicht sehr sensitiv war. Das Etericoxib-Derivat 21, welches nur an hCOX-2-Reinenzym bei 10 µM getestet wurde scheint inaktiv zu sein. Ebenso unauffällig an der COX-2 (THP-1) scheint zunächst 33 (RA = 94.4%) zu sein. Dies, obwohl es im Prescreening (RA = 14.7%) sogar besser als Celecoxib (RA = 38.0%) abschnitt. Bei den Auswaschungsversuchen jedoch konnte **33** die COX-2-Aktivität signifikant und auf nachhaltige Weise hemmen (RA = 84.7%; Diff.: -9.6%). Daher kann dieses zunächst inaktiv erscheinende Verhalten an einem zeitabhängigen Wirkmechanismus liegen, der bei vielen Coxiben vorkommt,⁹⁹ sodass 33 seine vollständige Hemmwirkung erst später entfalten könnte. Das andere Rofecoxib-Derivat 40 hemmte das hCOX-2-Reinenzym bei 10 μ M moderat (RA = 72.1%; RA (Celecoxib) = 15.3%). Aus der Valdecoxib-Serie hemmte 50 die Produktbildung durch COX-2 (RA = 79.0%) in intakten Zellen ähnlich gut wie Celecoxib, wogegen die Derivate 52, 53 und 59 sogar potenter waren (RA = 64.1% - 66.6%) als die Referenz. Beim Reinenzym entfalteten sie eine geringere Aktivität an der COX-2 als Celecoxib. Dies spricht für eine höhere Wirksamkeit im intakten Zellsystem. Hingegen Verbindung 60 hemmt die PGE₂-Bildung (RA = 74.6%) ähnlich wirksam wie das Derivat 50 und Celecoxib. Das Imidazol-Derivat 69 ist an COX-2-Reinenzym inaktiv und das 88 moderat aktiv (RA = 64.1% bei 10 μ M). Daneben besaß die Verbindung **91** einen moderaten Einfluss auf die COX-2-Aktivität im intakten Zellsystem. Dabei ist bemerkenswert, dass das Derivat **91** immerhin 78.6% Restaktivität erreichte, wenn man bedenkt, dass es an den (*Z*)-Diarylen nicht die typischen Substitutionsmuster aufweist. Man kann daher annehmen, dass **88** ebenfalls eine moderate Hemmwirkung im intakten Zellsystem, wenn nicht gar eine bessere, aufweisen könnte. Die unsubstituierten Derivate **94** und **100** besaßen im COX-2-Prescreeing eine moderate Hemmwirkung (RA = 60.6% sowie 71.2% bei 50 μ M) und **96** stellte sich dort als inaktiv heraus. Die 2-Aminothiazole **104**, **105**, **108** und **109** hemmten die PGE₂-Buildung alle gleichermaßen potent (RA = 50.9% - 56.5%) und wirksamer als Celecoxib.

Wenn man das Gesamtbild betrachtet, haben die Modifikationen an den Leitstrukturen teilweise zu Selektivitätseinbußen geführt und die COX-Präferenz verändert. Die Verbindungen 13, 50, 60 und 105 erwiesen sich zwar als potente, aber nicht-selektive COX-Inhibitoren, denen eine eindeutige COX-Präferenz abhanden kam. Eine geringe COX-1-Präferenz scheint 33 zu besitzen (s. oben), wohingegen den Verbindungen 40, 88, 91, 104 und 108 eine mäßige COX-2-Präferenz eigen ist. Eindeutig COX-2 selektiv sind aber die Verbindungen 52, 53, 59, 88 und 109, welche die COX-2-Aktivität ähnlich stark wie Celecoxib hemmen (RA = 66.6% - 55.2%) und die COX-1-Aktivität nicht beeinflussen (RA \geq 88%). Die Verbindungen 21, 69 und 96 erwiesen sich an beiden Isoenzymen als komplett inaktiv. Uneindeutig sind die Ergebnisse bei den unsubstituierten (Z)-Diarylen 94 und 100.

Zur Inhibitionsstärke lässt sich insgesamt feststellen, dass durch die Einführung der Acetoxygruppe die Verbindungen weniger potent sind als Celecoxib. Die potente COX-2-Inhibition durch **13** ist vermutlich auf die Sulfonamidgruppe zurückzuführen, denn alle anderen Coxib-Derivate, die hier eine Sulfonylmethylgruppe tragen, sind weniger potent. Die Sulfonamidgruppe kann zweifellos stärkere Wechselwirkungen mit den polaren Aminosäuren Arg⁵¹³, Ser³⁵³ und Gln¹⁹² im aktiven Zentrum des COX-2-Enzyms ausüben (vgl. Kapitel 2.1.1). Sie ist besser als die Sulfonylmethylgruppe für die Hemmung der COX-2 geeignet.

Die hier synthetisierten Abwandlungen des fünfgliedrigen zentralen Heterozyklus aus Celecoxib üben nur einen geringen Einfluss auf die COX-2-Aktivität aus. Stattdessen wird eine gesteigerte Wechselwirkung mit der COX-2 hauptsächlich durch die (*Z*)-Diaryl-substituenten erreicht (s. 13). Auch bei den 2-Aminothiazol-Derivaten 104, 105, 108 und 109 scheint die COX-1-Aktivität durch den zentralen Ring steuerbar zu sein. In der Reihe 109 < 104 < 108 < 105 nimmt die Inhibitorwirkung an COX-1 zu. In dieser gleichen Folge nimmt auch die berechnete Elektronendichte des zentralen Thiazolrings ab. Insgesamt beeinflussen

die polaren Verhältnisse am Heterozyklus ganz empfindlich die COX-1-Aktivität, was man am deutlichsten durch den Vergleich von **50** mit **53** bzw. von **59** und **60** erkennen kann.

Das Etoricoxib-Derivat **21** besitzt als einziges Derivat dieser Reihe einen sechsgliedrigen Heterozyklus. Obwohl die Aktivität der Coxibe am fünfgliedrigen Heterozyklus eine Acetoxygruppe toleriert, scheint dies geometriebedingt für Sechsringe nicht der Fall zu sein und führt zu einem vollständigen Aktivitätsverlust. Dieser ließe sich möglicherweise durch die Substituiton der *p*-Tolylgruppe durch einen kleineren Wasserstoff- oder Fluorrest beheben. Bei **96** liegt es nahe anzunehmen, dass die Inaktivität auf das Fehlen des Heterozyklus der Coxibe zurückgeht. Obwohl Stilbene bekannt sind COX-2 aktiv zu sein,²⁹⁹ ist durch das Indanon-Element die Torsion eines Aromaten behindert und der sterische Anspruch erhöht, was sich anscheinend beides auf die Aktivität negativ auswirkt.

In Tabelle 3.2 sind die Restaktivitäten an den beiden Isoenzymen für die synthetisierten Verbindungen mit (unselektivem) NSAR-Grundgerüst aufgelistet. Zunächst wurde untersucht, ob durch die Derivatisierung eine Selektivitätssteigerung dieser NSAR-Derivate eingetreten war. Bei der Mehrheit der Verbindungen blieb eine COX-1-Präferenz bestehen. Die Nimesulid-Analoga **139**, **156**, **162**, **164** und **166** beeinträchtigten zum einen die COX-1-Aktivität (RA = k.s. – 60.3%) und zum anderen verhinderten sie nur geringfügig eine COX-2-vermittelte Produktbildung (RA = 78.4% - 89.7%). An den Nimesulid-Analoga lässt sich erkennen, dass die Diarylamine **164** und **162** eine ausgeprägtere COX-1-Präferenz besitzten als die beiden Diarylether **156** und **166**. Auch scheint die Carbonsäurefunktion bei den Nimesulid-Analoga wichtig für die Inhibition der COX-2-Aktivität zu sein, da **164** (RA = 67.3%) im Vergleich zum Methylester-Derivat **162** (RA = 78.4%) eine signifikantere Hemmwirkung entfaltet. Außerdem besitzt **162** eine bessere Wirksamkeit gegenüber der COX-2, weil es sich nicht so leicht auswaschen lässt (Diff.: **162** = -2.0; **164** = +22.2).

Ebenfalls mit einer starken COX-1-Präferenz behaftet, sind die Diclofenac-Analoga **118**, **119**, **120** und **132** (RA = k.s. – 55.5%). Gleichzeitig sind die Derivate **118**, **119** und **132** auch sehr potente COX-2-Inhibitoren (RA = 55.9% - 69.7%), was an ihrem Diclofenac-Grundgerüst liegen dürfte. Vor allem **118** und **119** zeigten auch im zellfreien Assay so deutlich ausgeprägte Inhibitoreffekte auf die COX-2 (RA = 5.4% - 18.0%) wie Celecoxib (RA = 15.3%). Die Verbindung **120** ist hingegen viel weniger potent (RA = 74.9%) und das Diclofenac-Analogon **131** war sogar an beiden Isoenzymen inaktiv. Bei den Diclofenac-Derivaten wird deutlich, dass die Inhibitorwirkung umso stärker wird, je stärker die Acidität des Amidprotons ist. Dies mag daran liegen, dass die Derivate dadurch in der Lage sind stärker mit Arg¹²⁰ zu interagieren, das ein wichtiger Interaktionspartner des Diclofenac ist.

Außerdem erkennt man beim Vergleich der Aktivitäten von **118**, **119** und **120** mit **131** und **132**, dass der 2,6-Dichlorphenylrest wichtig für die potente Inhibition von Diclofenac ist und nicht durch andere Reste zu ersetzten ist. Dies wird bekräftigt durch **177**, bei welchem der Phenylrest durch einen Methylrest ersetzt wurde, und das nur noch eine moderate COX-1-Aktivität aufweist (RA = 67.9%) und gegenüber COX-2 inaktiv ist.

Bei **176** und **179** war die COX-1-Aktivität weiterhin sehr stark beeinträchtigt (RA = 58.1% - 60.5% bei 50 μ M) und die beiden Verbindungen inhibierten die COX-2-Aktivität im zellintakten System (RA = 55.2 - 74.9%) ähnlich deutlich wie Celecoxib. Bei der weiteren Untersuchung am aufgereinigten COX-2 Enzym bei 10 μ M, inhibierten sie die COX-2-Aktivität allerdings nur schwach bis gar nicht (RA = 79.6% - > 95%). **176** und **179** sind gut wirksam, weisen jedoch eine eindeutige COX-1-Präferenz auf.

Besondere Beachtung verdienen jedoch die beiden Acetylsalicylsäure-Derivate **170a** (**ST-1650**) und **171**. Im Vergleich mit Acetylsalicylsäure, fällt auf, dass durch die Veresterung die Aktivität von **170a** (**ST-1650**) (RA \ge 95%) bei der COX-1 vollständig verschwand und dafür eine COX-2 Selektivität eintrat. Dies war erstaunlich, da **171** eine ausgeprägte COX-1-Aktivität (RA = 79.7% bei 50 µM) besitzt und die COX-2 scheinbar im intakten Zellsystem nicht hemmt (RA \ge 95%). Im Prescreening hemmte **171** die COX-2 hingegen moderat (RA = 69.4%; RA (Celecoxib) = 38.0%). Die Verbindung **170a** (**ST-1650**) hingegen inhibiert die COX-2 deutlich (RA = 65.9%). Das Verhalten von **171** weist darauf hin, dass kleine unpolare Gruppen am Salicylring die COX-1-Präferenz steigern.

Tabelle 3.2: Inhibitoren mit NSAR-Grundgerüsten und und ihre prozentualen Restaktivität der PGE ₂ -
Bildung durch COX-1 und COX-2 sowie bei Auswaschungsexperimenten an COX-2 bei 100 μ M (n = 3). In
Klammern sind Screeningergebnisse bei 100 µM angegeben (Mittelwerte aus n = 2). Die Restaktivitäten der
hCOX-2 wurden bei 10 μ M gemessen (n = 3).

Substanz	Struktur	% COX-1 (PMNL) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM nach Inhibitor- Auswaschung	Differenz der % COX-2 (THP-1) Restaktivitäten	% COX-2 (hCOX-2) Restaktivität bei 10 μM ± SEM
164	O ₂ N H O CH ₃	68.1 ± 11.8	67.3 ± 0.2 (62.4)	90.0 (> 95)	+22.2 (+23)	> 98
162	O ₂ N CF ₃ H O O ₂ N CH ₃	57.6 ± 7.1	78.4 ± 1.1	76.3 ± 0.6	-2.0	> 98
156	O_2N CF_3 O_2N CH_3 O_2N CH_3	88.2 ± 9.4	79.3 ± 0.7 (62.60)	79.9 ± 0.9 (> 95)	+0.6 (+33)	61.5 ± 14.8
166		62.5 ± 3.2	89.7 ± 0.8	> 95	+6	(-)
139	$\overset{H_3C}{\underset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{O$	> 95	81.4 ± 2.33	> 95	+14	(-)
120		50.3 ± 3.2	74.9 ± 0.8 (55.8)	75.3 ± 1.3 (74.5)	-0.3 (+18.6)	> 98
119		k.s.	67.4 ± 2.5 (81.5)	59.0 ± 0.7 (59.3)	-8.4 (-22.2)	18.0 ± 5.5
118		11.4 ± 3.5	55.9 ± 0.8 (62.2)	51.2 ± 1.0 (55.4)	-4.7 (-6.6)	5.4 ± 1.0
131	NH O CH ₃	> 95	91.7 ± 1.1 (82.8) [#]	93.5 ± 2.1 (81.5) [#]	+1.8 (-1.3)	> 95
132		94.0 ± 4.8	69.7 ± 1.9 (62.0) [#]	> 95 (73.4) [#]	+16 (+11.4)	> 98

Substanz	Struktur	% COX-1 (PMNL) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM	% COX-2 (THP-1) Restaktivität bei 100 μM ± SEM nach Inhibitor- Auswaschung	Differenz der % COX-2 (THP-1) Restaktivitäten	% COX-2 (hCOX-2) Restaktivität bei 10 μM ± SEM
177	K O CH3	67.9 ± 26.9	> 95 (83.6)	> 95 (81.5)	- (-1.17)	84.2 ± 4.3
176		$58.11^{\#} \pm 8.9$	60.7 ± 3.4 (68.79)	68.7 ± 1.5 (68.8)	+7.9 (+0.1)	79.6 ± 11.2
170a (ST-1650)		> 95	65.9 ± 5.2	17.2 ± 2.9	-48.6	(-)
171	H ₃ C H ₃ C H ₃ C CH ₃	$79.7^{\#} \pm 4.3$	> 95 (69.4)	54.73 ± 1.67 (59.4)	-41 (-9.9)	86.4 ± 13.5
179	N N H ₃ C ^{-N} , S	$60.5^{\#}\pm9.7$	55.2 ± 2.6 (68.1)	75.7 ± 1.5 (69.3)	+20.5 (+1.2)	85.7 ± 10.2
Diclofenac		k.s.	65.7 ± 1.9	59.0 ± 0.5	-6.6	(-)
Aspirin®	O O O CHa	6.6 ± 1.1	> 95	> 95	(-)	(-)

Tabelle 3.2: Fortsetzung

k.s. = Kein Signal; # = bei 50 μ M gemessen; (-) nicht bestimmt.

Die Inhibitorauswaschung und erneute Messung der COX-2-Aktivitäten ergaben beim Vergleich der beiden Werte für die meisten Inhibitoren eine positive Differenz. Dies bedeutet, dass die meisten der synthetisierten Substanzen sich herauswaschen ließen und danach keine irreversible Hemmung der COX-2 zurückließen. Obwohl bei der Syntheseplanung durch Docking die Lage der Acetoxygruppe in den Molekülen berücksichtigt wurde, sodass sie in einer günstigen Lage nahe dem Ser⁵³⁰-Rest positioniert sein sollten (vgl. Kapitel 2.1.1), war eine dauerhafte Inhibition der COX-2 nicht so leicht zu realisieren. Dennoch bewirkten einige Substanzen trotz Auswaschung eine weitere, fortdauernde COX-2-Inhibition: **33**, **104**, **105**, **108**, **109**, **118** und **119** (Diff.: -4.7% bis -10.9%). Die Verbindungen **162** und **120**, wiesen eine

geringe dauerhafte COX-2-Inhibition auf (Diff.: -0.2% und -2.1%). Diese mögliche anhaltende Inhibition lag jedoch innerhalb des SEM der Messung, so dass diese Derivate für die weitere Entwicklung nicht mehr herangezogen wurden. Bei den Derivaten **100**, **94**, **170a** (**ST-1650**) und **171**, verblieben nach der Auswaschung Restaktivitäten der COX-2, welche (noch einmal um) 24%- bis 48%-Punkte (**170a** (**ST-1650**)) geringer waren als vor der Auswaschung und sie bewirkten damit eine sehr deutliche nachhaltige COX-2-Inhibition. Celecoxib lag in diesem Test bei -17% und Diclofenac bei -6.6%. Die nachhaltige Inhibition von Celecoxib ist offensichtlich auf die später festgestellte Zelltoxizität bei den THP-1-Zellen zurückzuführen (s. Tabelle 3.3).

	Substanz	WST-1 Zellviabilität (% der Kontrolle)	Substanz	WST-1 Zellviabilität (% der Kontrolle)
_	33	94.0	118	68.6
	100	60.8	119	100.0
	94	5.0	170a (ST-1650)	91.1
	104	11.5	171	129.5
	105	11.8	Celecoxib	6.6
	108	12.0	Diclofenac	101.5
	109	12.2	Acetylsalicylsäure	100.9

Tabelle 3.3: Toxizitätsbestimmung (n = 3) der COX-Inhibitoren mit anhaltender Hemmung nach der Auswaschung bei 100 μM

Um auszuschließen, dass die Potenz bzw. die Wirksamkeit der synthetisierten Substanzen an der COX-2, und die mögliche irreversible Hemmung des COX-2 Enzyms, auf einem antiproliferativen Effekt beruhte, wurden der Einfluss der Substanzen auf die Zellviabilität (WST-1 Assay) bei gleicher Konzentration (100 μ M) getestet. Die Ergebnisse sind in Tabelle 3.3 dargestellt. Die in der Tabelle 5.3 angegebenen Werte geben die Relation des Umsatzs des Tetrazoliums im Vergleich zu den hemmstofffreien, vermehrungsfähigen Kontrollzellen wieder. Die Substanzen 94, 104, 105, 108 und 109 sowie Celecoxib übten auf die THP-1-Zellen einen deutlichen zytotoxischen Einfluss aus (Zellviabilität = 5.0% - 12.2%). Aus 94 lässt sich schließen, dass das typische Coxib-Substitutionsmuster, die Sulfonamid- bzw. Methylsulfongruppe, außer für die COX-Aktivität auch für einen nicht-zytotoxischen Effekt wichtig ist. Verbindungen 100 und 118 zeigten dagegen eine geringe Zytotoxizität in dem Assay-System (Zellviabilität = 60.8% und 68.6%) und die Verbindungen 33, 119, 170a (ST-1650) und 171 hatten praktisch gar keinen negativen Einfluss (Zellviabilität > 90%).

Zusammenfassend lässt sich daher aus all dem schließen, dass die nicht-toxischen Verbindungen **33**, **118** und **119** das COX-2-Enzym auf sehr effiziente Weise hemmen können. Die Leitstrukturen dieser Inhibitoren sind bekannt einen zeitabhängigen Wirkungsmechanismus zuentfalten, sich lange im aktiven Zentrum der COX-2 aufzuhalten. Die Verbindungen **33**, **118** und **119** besitzen dazu eine übertragbare Acetoxygruppe, welche sich aufrund des Designs unter Verwendung der Docking-Simulation vermutlich in der räumlichen Nähe zum Ser⁵³⁰-Rest positioniert. Deshalb kann man die drei Verbindungen **33**, **118** und **119** als potentielle irreversible Inhibitoren der COX-2 einstufen.

Für die nicht-zytotoxischen Verbindungen **170a** (**ST-1650**) und **171** lässt sich ebenfalls eine sehr hohe Wirksamkeit erkennen. Beide Verbindungen sind Acetylsalicylsäure-Derivate, wobei **170a** (**ST-1650**) COX-2 aktiv ist (RA = 65%) und **171** inaktiv zu sein scheint (RA = >95%). Jedoch zeigten beide Verbindungen eine andauernde Inhibition der COX-2 (nach der Auswaschung 48% weniger PGE₂-Bildung als zuvor), so üben sie ihren inhibitorischen Effekt vermutlich durch einen irreversiblen Mechanismus aus. Da somit **170a** (**ST-1650**) als einzige Verbindung fast keine COX-1-Hemmung zeigt und dafür aber die COX-2-Aktivität deutlich beeinflusst, wurde diese Substanz weiter charakterisiert, ob sie eventuell dazu in der Lage ist, die Bildung von SPM anzuregen.

3.1.3. Weitere Charakterisierung von ST-1650

Da es zu diesem Zeitpunkt kein Assaysystem gibt, mit welchem man unter vergleichbaren Bedingungen mehrere Substanzen auf SPM-Bildung screenen kann, wurden mehrere Experimente durchgeführt, welche indirekte Anhaltspunkte für die SPM-Produktion liefern könnten. Zunächst wurde die PGE₂-Produktbildung im intakten Zellsystem (THP-1) in Abhängigkeit von der Zeit nach einmaliger Zugabe von **170a** (**ST-1650**) untersucht. Zum Vergleich wurde die PGE₂-Bildung auch unter Einfluss von DMSO (Kontrolle), Acetylsalicylsäure und Celecoxib gemessen. Hierfür wurde die PGE₂-Konzentration in den Überständen mittels HPLC/MS zu mehreren Zeitpunkten (verschiedene Inkubationszeiten) nach Stimulation bestimmt (Abbildung 3.1).

Abbildung 3.1: Zeitabhängige COX-2-Produktbildung (PGE₂-Konzentration) im Überstand von THP-1-Zellen nach angegebener Inkubation mit Inhibitoren im Vergleich zu Kontrollen.

Waren die Zellen keinem Inhibitor ausgesetzt (DMSO; blau), erreichte die PGE₂-Konzentration nach Stimulation bereits nach einer halben Stunde ihr Maximum.Der Kurvenverlauf zeigt dann ein Plateau, da für die weiteren fünfeinhalb Stunden ein konstantes Level von PGE₂ gebildet wurde. Unter Einfluss von Acetylsalicylsäure (Aspirin, rot) und Celecoxib (grün) stieg in der ersten Stunde nach Inkubaton die PGE₂-Konzentration nur langsam an. Für Aspirin setzte sich dieser Trend fort, indem seine Inhibitorwirkung nachlässt, bis nach sechs Stunden eine ähnliche PGE₂-Konzentration gemessen wurde wie bei den Kontrollen (DMSO). Bei Celecoxib jedoch verringerte sich die PGE₂-Konzentration nach der ersten Stunde wieder, anstatt wie bei Acetylsalicylsäure stetig zu steigen, da seine zytotoxische Wirkung (vgl. Tabelle 3.3) auf die THP-1-Zellen einsetzte. Bei **170a (ST-1650)** (lila) beobachtete man einen entsprechenden Kurvenverlauf wie bei Celecoxib. Aufgrund fehlender Zytotoxizität ließ sich dieser Effekt aber nicht durch Zellsterben erklärt. Möglicherweise beruht der Rückgang der PGE₂-Bildung hier auf der zeitversetzten Bildung von entzündungsauflösendem Lipoxin (bzw. SPM), was zu zwei weiteren Tests anregte.

Abbildung 3.2: Einfluss von 170a (ST-1650) auf die M1-Makrophagen-Polarisation von Stammzellen aus murinem Knochenmark.

Es wurde der Einfluss von **170a** (**ST-1650**) an Stammzellen aus murinen Knochenmark auf die Phänotypen-Verschiebung von Makrophagen hin überprüft. Makrophagen können in zwei Phänotypen vorliegen. Während M1-Makrophagen eher pro-inflammatorisch wirken, haben M2-Makrophagen eher anti-inflammatorische Effekte. In Abbildung 3.2 ist die Makrophagen-Polarisation von Stammzellen aus murinen Knochenmark unter Einfluss von **170a** (**ST-1650**) dargestellt. Der M1-Makrophagenphänotyp lässt sich durch den Oberflächenmarker CD86 detektieren. Sollten SPM gebildet werden, würde der M2-Makrophagenphänotyp aus den Stammzellen entstehen, da die SPM die Enzündungsauflösung fördern. Jedoch ist in den mit **170a** (**ST-1650**) behandelten Zellen nach der Stimulation durch LPS und IFN- γ ebenfalls ein deutlicher Anstieg an CD86 festzustellen, welcher der Menge in der Positivkontrolle entspricht. Zum Vergleich wird in der Negativkontrolle kaum CD86 detektiert. Dies bedeutet, dass nach der Behandlung mit **170a** (**ST-1650**) weiter pro-inflammatorische M1-Makrophagen bevorzugt gebildet werden. Dies spricht gegen die gezielte Bildung von SPM durch eine modifizierte COX-2 nach der Einwirkung von **170a** (**ST-1650**).

Als weiterer Test wurde **170a** (**ST-1650**) im Zymosan-Hyperalgesie-Schmerzmodell in der Mauspfote untersucht. Nach der subkutanen Sensibilisierung der Versuchsmäuse mit Zymosan A wurde vier Stunden nach der Zymosaninjektion **170a** (**ST-1650**) peroral (p.o.) appliziert. Die Kontrolltiere erhielten zum gleichen Zeitpunkt inhibitorfreie Lösung. Die unterschiedlichen Zeitverzögerungen in Sekunden bei den Kontrolltieren und den mit **170a** (**ST-1650**) behandelten Tieren sind in Abbildung 3.3 dargestellt.

Abbildung 3.3: Wirkung von 170a (ST-1650) im Zymosan-Hyperalgesie-Schmerzmodell in der Mauspfote gegenüber Vehikelkontrolle. Sensibilisierung erfolgt durch subkutane Injektion von 20 µl Zymosan A (12.5 mg/mL in PBS); Vehikel besteht aus 1% Tylose, 1% Soja-lecithin in Wasser gelöst.

Auffällig ist, dass die Zeitverzögerung bei mit **170a** (**ST-1650**) behandelten Tieren ab der **170a** (**ST-1650**)-Einwirkung langsam zunimmt, aber geringer ausfällt als bei Kontrolltieren, also dass die Schmerzreduktion / die Entzündungsauflösung bei den Kontrolltieren schneller erfolgt. Den gleichen Effekt beobachtet man auch bei Applikation von NSAR, welche den Wundheilungsprozess bzw. die Entzündungsauflösung verzögern. Dieser Befund spricht gegen die gezielte Bildung von SPM durch eine durch **170a** (**ST-1650**) modifizierte COX-2.

Abschließend lässt sich nicht mit Sicherheit feststellen, ob **170a** (**ST-1650**) in der Lage ist eine vermehrte Produktion von SPM zu fördern, da kein Assay zum endgültigen Beweis bzw. zur Widerlegung zur Verfügung steht. Die *in vitro* Versuche deuten eine irreversible Hemmung durch die klare nachhaltige Inhibition der PGE₂-Produktion an. Jedoch ließen sich korrelierende Effekte auf die Makrophagendifferenzierung und beim Schmerzmodell *in vivo* nicht nachweisen, sodass entweder keine Acetylierung der COX-2 stattfindet, oder sie nicht schnell oder vollständig genug stattfindet und daher nicht genügende Mengen SPM für einen anti-inflammatorischen Effekt gebildet werden. Somit ist ein therapeutischer Vorteil wahrscheinlich nicht gegeben.

3.2. Pharmakologische Charakterisierung der 5-LO-aktiven Substanzen

3.2.1. In vitro Testsysteme

Die im chemischen Teil vorgestellten 5-LO-Inhibitoren wurden von Herrn Simon B. Kretschmer, unter Betreuung von Frau Dr. Bettina Hofmann aus dem Arbeitskreis von Herrn Prof. Dr. D. Steinhilber, in zwei unterschiedlichen Testsystemen auf ihre 5-LO-Aktivität hin untersucht: In einem zellfreien Assay, am aufgereingtem 5-LO Protein, und in einem zellulären Assay mit intakten Polymorphonukleären Leukozyten (PMNL). Außerdem wurde die Zytotoxizität ausgesuchter 5-LO-Inhiboren ebenfalls in zwei Testsystemen bestimmt: Im WST-1-Assay und im LDH-Assay. Die weitere Charakterisierung von **295** (**ST-1853**) an Off-targets und im humanen Vollblut wurden ebenfalls von Herrn Simon B. Kretschmer durchgeführt. Die *in vitro* Metabolisierung durch Rattenlebermikrosomen wurde durch Frau Astrid Kaiser aus dem Arbeitkreis von Herrn Prof. Dr. Manfred Schubert-Zsilavecz durchgeführt. Die biochemischen Protokolle sind in Kapitel 5.5 wiedergegeben.

3.2.1.1. Bestimmung der 5-LO-Aktivität

5-LO-Assay:

Im zellfreien Assay am aufgereinigten humanen 5-LO-Enzym wurden die Testsubstanzen auf ihre Fähigkeit getestet, das 5-LO-Enzym direkt zu inhibieren. Durch die Abwesenheit anderer einflussnehmender Faktoren auf die 5-LO-Aktivität kann somit eine indirekte Inhibition des Enzyms ausgeschlossen werden.

Das rekombinante humane 5-LO-Protein wurde aus transformierten *E. coli* BL21 exprimiert und isoliert. Das Protein wurde mit den Testsubstanzen in PBS-Puffer vorinkubiert. Nach Stimulation mit Calciumionophor A23187 und Zugabe von Arachidonsäure wurde die 5-LO-Aktivität anhand der Metabolite (LTB₄, all-*trans*-LTB₄ und 5-HETE) mittels HPLC im Vergleich zu einer Kontrolle quantifiziert. Der Gehalt von LTB₄-Oxidationsprodukten und von CysLTen wurde hierbei außer Acht gelassen (s. Kapitel 5.5.6).²⁸¹

PMNL Assay:

Mit Polymorphonuklearen Leukozyten (PMNL) werden die Testsubstanzen in einer intakten Zellumgebung getestet. Dabei wird die Zellgängigkeit der Substanzen überprüft und es sind in diesem System alle regulierenden Faktoren (s. Kapitel 1.3.3) enthalten, sodass es zusätzlich zu einer indirekten Inhibition kommen kann.

Die PMNL wurden aus frischem humanem Blut von freiwilligen Spendern, aus den Städtischen Kliniken Frankfurt-Höchst sowie dem Deutschen Blutspendedienst Frankfurt, durch Zentrifugation isoliert. Die Zellen wurden anschließend in PBS-Glukose-Puffer (pH = 7.4) resuspendiert und mit den Testsubstanzen vorinkubiert. Die Stimulation, Inkubation und Quantifizierung der Produkte erfolgte wie im 5-LO WT-Assay (s. Kapitel 5.5.5 und 5.5.6).³⁰⁰

3.2.1.2. Bestimmung der Toxizität

WST-1 Assay:

Zur Untersuchung auf anti-proliferative Effekte wurden im WST-1-Assay U937-Zellen mit den Testsubstanzen bei unterschiedlichen Konzentrationen (oder Leerwert) für 48 Stunden zusammen inkubiert. Anschließend wurde Tetrazoliumchlorid hinzugegeben, welches in lebenden Zellen, durch die Succinat-Tetrazolium-Reduktase aus der Atmungskette, in ein dunkelrotes Formazan umgewandelt wird. Der Umsatz wurde kolorimetrisch bestimmt und am Leerwert normalisiert (s. Kapitel 5.5.7).²⁸¹

LDH-Assay:

Durch die LDH-Freisetztung lässt sich überprüfen, ob die Testsubstanzen die Integrität der Zellmembran auflösen. Die Lactatdehydrogenase (LDH) ist ein Enzym, das normalerweise im Zytoplasma vorliegt. Beim Zellsterben durch eine zytotoxische Substanz, welche zur Zellmembranschädigung führt, kann LDH aus der Zelle austreten.

Im LDH-Assay wurden die Testsubstanzen bei 30 μ M mit U937-Zellen für 48 Stunden inkubiert. Anschließend wurde die LDH-Freisetzung mittels Assaykit (Cytotoxicity Detection Kit, ROCHE Diagnostics, Mannheim) colorimetrisch bestimmt (s. Kapitel 5.5.8).³⁰¹

3.2.2. Hemmwirkung und SAR der 2-Aminothiazole als 5-LO-Inhibitoren

Aufbauend auf den Arbeiten von Suh *et al.*²⁵⁷ und von Vogt *et al.*²⁸¹ (vgl. Kapitel 2.2) wurden die bestehenden SAR von 2-Aminothiazolen erweitert bzw. vertieft. Um eine umfassende Aussage über die SAR zu treffen, wurden gleichzeitig kommerziell erhältliche Substanzen und im Arbeitskreis Stark synthetisierte Substanzen in die Diskussion mit einbezogen. Diese zusätzlichen Substanzen sind im Folgenden mit einem (*) hinter der bezeichnenden Nummer gekennzeichnet. Startpunkt für die Grundstruktur stellte der 5-LO-Inhibitor **ST-1083**^{*} dar. Diese wurde in drei Teile untergliedert: in einen linken Teil (R²), einen zentralen Teil (R¹, R³ und X und einen rechten Teil (R⁴; s. Abbildung 3.4).

Abbildung 3.4: Aufgliederung der 2-Aminothiazol-Grundstruktur in drei Teile

Diese gedankliche Aufteilung spiegelt sich in den folgenden Tabellen (Tabelle 5.3 - 5.7) wieder, welche die IC₅₀–Werte der 5-LO-Hemmung am aufgereinigtem 5-LO-Enzym (WT) und in intakten PMNL der Substanzen auflisten. In Klammern ist das berechnete Konfidenzintervall (KI) angegeben. Außerdem enthalten die Tabellen den berechneten *n*-Octanol-Wasser-Verteilungskoeffizient (clogP-Wert) und die Ligand-Lipophilität-Effektivität (LLE; engl.: *"lipophilic ligand efficiency*") aller Substanzen. Dieser korreliert die Potenz eines Inhibitors mit der Lipophilie und gibt Anhaltswerte auf die Löslichkeit und Membrandurchdringung der Verbindungen. Der clogP-Wert wurde mit dem Programm "OSIRIS Property Explorer" berechnet und die LLE aus der mittleren inhibitorischen Konzentration (IC₅₀) des jeweiligen Inhibitors auf PMNL, gemäß der Formel: *LLE* = pIC_{50} (PMNL) – clog P.³⁰² Als Kontrolle wurde der Inhibitor BWA4C verwendet (IC₅₀ [WT] = 0.095 μ M (0.061 – 0.15 95% KI); IC₅₀ [PMNL] = 0.099 μ M (0.076 – 0.13 95% KI); LLE = 4.20).

Zunächst wurde die Auswirkung auf die 5-LO-Enzymhemmung von Derivatisierungen am rechten Teil der Grundstruktur untersucht. Dafür wurden zuerst größere bzw. sperrigere Substituenten eingeführt (Tabelle 3.4). Im Vergleich zu **ST-1083**^{*} wird eine Vergrößerung des *p*-Chlor-Substituenten durch einen *p*-Brom-Substituenten (**ST-1721**^{*}) oder durch einen *p*-Ethoxy-Rest (**ST-1242**^{*}) bzw. eine Vergrößerung des Ringsystems durch ein Coumaringerüst (**212**) sehr gut toleriert (IC₅₀ [WT] = 0.02 - 0.09 μ M). Eine weitere Prolongation des Coumarins durch Substituenten an der 6- bzw. 7-Position des Coumarins (**212**, **213**, **214**, **215**, **217** und **218**) brachte nur eine geringe Verbesserung (IC₅₀ [WT] = 0.02 - 0.04 μ M) am gereinigten Enzym der 5-LO, jedoch keine Entscheidende in PMNL (0.39 - 1.62 μ M; **ST-1083** = 0.68 μ M). Dagegen ist ein deutlich besserer LLE-Wert in PMNL nachweisbar (1.56 – 2.86; **ST-1083** = 1.34).

		Inhibition 5-LC) [IC ₅₀ in μM]		TTE
Substanz	Struktur	(95% KI,	, n ≥ 3)	clog P	
		WT	PMNL		(PMNL)
ST-1083 [*]	CI NH OH	0.03 (0.024 – 0.045)	0.68 (0.56 – 0.82)	4.83	1.34
ST-1721 [*]	Br. NH	0.02 (0.017 – 0.022)	0.16 (0.09 – 0.29)	4.94	1.86
ST-1242*	H ₃ C ^O OH	0.03 (0.025 – 0.037)	0.76 (0.49 – 1.18)	4.56	1.56
212	S NH	0.09 (0.061 – 0.135)	1.62 (1.19 – 2.20)	3.62	2.28
213	CI CI NH	0.02 (0.016 – 0.028)	0.69 (0.48 – 1.00)	4.22	1.94

Tabelle 3.4: Inhibition der 5-LO-Aktivität durch Verbindungen mit variierter 4-Thiazolposition mit größeren bzw. sperrigeren Resten.

_

Tabelle 3.4: Fortsetzung

		Inhibition 5-LO [IC ₅₀ in μ M			TTE
Substanz	Struktur	(95% KI,	n ≥ 3)	clog P	LLE
		WT	PMNL		(PMNL)
214	H ₃ C ^{-O} CCC NH	0.03 (0.017 – 0.037)	0.39 (0.25 – 0.58)	3.55	2.86
215	CI C	0.03 (0.026 – 0.043)	0.90 (0.68 – 1.18)	4.22	1.83
217	CH ₃ H ₃ C	0.04 (0.03 – 0.06)	0.60 (0.42 – 0.85)	4.33	1.89
218	S S NH	0.04 (0.029 – 0.050)	18.57 ± 2.13	4.81	-
207	OH S-NH	0.17 (0.11 – 0.26)	0.70 (0.50 – 0.99)	3.80	2.35
ST-1253 [*]	OH S NH	0.07 (0.06 – 0.09)	0.85 (0.72 – 0.99)	5.15	0.92
201	CI S NH	0.02 (0.015 – 0.024)	0.37 (0.25 – 0.54)	5.43	1.00
255	OH S NH	0.10 (0.077 – 0.135)	0.36 (0.20 – 0.64)	4.77	1.67
256	S NH	0.22 (0.15 – 0.33)	0.66 (0.47 – 0.94)	4.66	1.52

* = fremde/gekaufte Substanzen.

Um den Einfluss des Aromaten zu erklären, wurden sperrige aliphatische Reste (**207** und **ST-1253**) eingeführt, welche zwar zu einer geringfügigen Erniedrigung der Aktivität führten (IC₅₀ [WT] = 0.07 - 0.17 μ M), was aber zeigt, dass eine Substituion des Aromaten möglich ist. Ein weiterer untersuchter Aspekt war die Orientierung des aromatischen Ringes. Wie an den Verbindungen **201, 255** und **256** zu erkennen ist, ist die planarere Struktur von **256** (0.22 μ M) halb so wirksam am aufgereinigten Enzym wie **255** (0.10 μ M). Eine gezielte Torsion der zwei benachbarten Ringe durch Einführen eines zusätzlichen *o*-Chlor-Restes (**201**) führt zu einer leichten Inhibitionssteigerung (IC₅₀ [WT] = 0.019 μ M), sodass eine verdrillte Konformation wahrscheinlich bevorzugt wird.

Da die Einführung von sperrigen Substituenten keinen ausschlaggebenden Effekt auf die 5-LO-Aktivität zeigte, wurden die Einflüsse von kleineren und flexibleren Resten untersucht (Tabelle 3.5). Der bioisostere Ersatz des p-Chlorphenyl-Restes durch einen p-Fluorphenyl-Rest (ST-1407^{*}) bzw. durch einen 5-Chlorthiophen-2-yl-Rest (ST-1785^{*}) wurde toleriert, denn die entsprechenden Derivate waren genauso potent (IC_{50} [WT] = 0.03 - 0.05 μ M; **ST-1083**^{*} = 0.03 μ M). Eine Verkleinerung des *p*-Chlorphenyl-Restes durch Austausch durch einen Phenylrest (ST-1355^{*}), oder sechs- oder fünfgliedrige Heteroaromaten (199 und **ST-1789**^{*}), erniedrigte die Inhibitor-Aktivität erheblich am Reinenzym (0.34 - 0.90 μM). In intakten Zellen (IC₅₀ [PMNL] = 0.36 μ M) war **ST-1355**^{*} jedoch leicht potenter und dessen LLE-Wert (2.25) höher als der von ST-1083^{*}. Im Vergleich dazu zeigte das aliphatische Äquivalent mit einem Cyclohexylring, **197**, diese Charakteristik nicht (IC_{50} [WT] = 0.08 μ M; IC_{50} [PMNL] = 0.92 μ M; LLE = 1.38). Die Serie schrumpfender aliphatischer Ringe bzw. Ketten (197, 195, 193, 191, 194, 196, 198 und 200 brachte ebenfalls keine Potenzsteigerung weder am Reinenzym noch in PMNL. Obwohl durch die Kettenverkürzung der clog P sinkt, stagniert der LLE-Wert. Ausnahmen bilden das Cyclohexyl- und das Cyclopent-2-ylderivat als wirksamste Derivate (IC₅₀ [WT] = 0.08 μ M; LLE-Wert = 1.38 und 2.68). Der Einbau eines aliphatischen Wasserstoffbrückendonors 200 führte fast zum vollständigen Aktivitätsverlust (Restaktiviät bei 10 μ M = 74.20 \pm 10.49).

Substanz	Struktur	Inhibition 5-LC (95% KI.	IC ₅₀ in μ M] $n \ge 3$	clog	LLE
Substanz	Struktur	WT	PMNL	Р	(PMNL)
ST-1083 [*]	CI NH NH	0.03 (0.024 – 0.045)	0.68 (0.56 – 0.82)	4.83	1.34
ST-1407 [*]	P P P P P P P P P P P P P P P P P P P	0.03 (0.02 – 0.04)	0.74 (0.55 – 0.98)	4.32	1.81
ST-1355*	S NH	0.11 (0.08 – 0.16)	0.34 (0.24 – 0.48)	4.22	2.25
199	OH S N N N	87.18 ± 15.76^{a}	36.38 ± 7.14^{b}	3.22	-
ST-1785 [*]	OH S S CI	0.05 (0.033 – 0.067)	1.10 (0.80 – 1.50)	3.22	2.74
ST-1789 [*]	S N N N N N N N N N N N N N N N N N N N	0.55 (0.15 – 1.97)	0.90 (0.49 – 1.65)	5.05	1.00
197	S NH	0.08 (0.058 – 0.119)	0.92 (0.81 – 1.04)	4.66	1.38
195	S NH	0.081 (0.063 – 0.104)	0.59 (0.50 - 0.69)	3.55	2.68
193	NH NH	0.24 (0.18 – 0.33)	0.39 (0.20 – 0.77)	3.98	2.43

Tabelle 3.5: Inhibition der der 5-LO-Aktivität durch Verbindungen mit variierter 4-Thiazolposition mit kleineren Resten.

-134-

3- und der 5-Position des Thiazolrings erfolgen sowie durch Änderung des 2-Aminolinkers,
sodass strukturähnliche Analoga vorliegen. Die Auswirkungen dieser Variationen verdeutlicht
Tabelle 3.6. Alkylierung der 3-Position des zentralen Thiazolstickstoffs (SK-13 [*] , SK-40 [*] , 223
und 222) stellte sich als verträglich mit dem Erhalt der 5-LO-Enzymaktivität-Hemmung
heraus (IC ₅₀ [WT] = 0.03 - 0.05 μ M) was vermuten lässt, dass der 2-Aminolinker nicht als
Wasserstoffbrückendonor fungiert, da dieser in diesen Verbindungen vornehmlich in einer
Iminstruktur vorliegt. Deutliche Auswirkungen hat die Alkylierung (SK-13 [*] , SK-40 [*]) jedoch
auf die Inhibitor-Aktivität in intakten Zellen (IC ₅₀ [PMNL] = $1.11 - 2.71 \mu$ M), welche durch
Einführung einer Methylgruppe in 5-Position (223) erhöht werden kann (IC_{50} [PMNL] = 0.46
μ M). Im Gegensatz dazu bewirkte eine Alkylierung des 2-Aminolinkers (SK-39 [*]) eine
Verminderung der Aktivität (IC ₅₀ [WT] = 0.27 μ M). Hier lässt sich wie zuvor eine leichte
Aktivitätssteigerung durch die verstärkte Torsion der anellierten Aromaten (SK-37 [*] ; IC ₅₀
$[WT] = 0.17 \mu M$) beobachten. Des Weiteren lässt sich ein starker Aktivitätsverlust
beobachten, wenn der 2-Aminolinker durch eine Methylengruppe (249) oder ein
Sauerstoffatom (242) ersetzt wird oder das sekundäre Amin in ein tertiäres umgewandelt wird

Das zentrale Strukturelement der 2-Aminothiazol-Grundstruktur kann durch Variationen der

		WT	PMNL	I	
191	S NH	0.24 (0.15 – 0.38)	2.80 (2.21 – 3.56)	3.63	1.92
194	H ₃ C CH ₃ NH H ₃ C NH	0.13 (0.08 – 0.20)	1.77 (1.38 – 2.28)	4.52	1.23
196	H ₃ C NH	0.23 (0.16 – 0.32)	2.30 (1.64 – 3.23)	3.96	1.68
198	F ₃ C NH	0.47 (0.28 – 0.78)	5.13 (4.38 – 6.01)	3.77	1.52
200	HO NH	74.20 ± 10.49^{a}	82.33 ± 4.26^{b}	2.36	-
* = fremde/gekaufte	Substanzen; ^a Restakti	vität bei 1 µM ± SEM	[[%]; ^b Restaktivität	bei 10 µ	$M \pm SEM [\%].$

Inhibition 5-LO [IC₅₀ in µM]

(95% KI, $n \ge 3$)

clog

Р

LLE

(PMNL)

Tabelle 3.5: Fortsetzung

Struktur

Substanz

wie bei Verbindung **231** und **234** (vgl. Auswirkung der Alkylierung). Eine Aktivitätsverringerung tritt ebenfalls ein, wenn der Linker um eine Methyleneinheit verlängert wird wie bei Verbindung **226** und **227**. Der Verzicht des Thiazolrings (**239**) an der zentralen Position führt ebenfalls zum totalen Aktivitätsverlust. Diese beiden Befunde unterstreichen die Wichtigkeit des zentralen Thiazolrings und des 2-Aminolinkers.

Die Maskierung, des in Kapitel 2.2.2 genannten metabolischen Schwachpunkts des Thiazolrings, durch Derivatisierung der 5-Position (185^* , $ST-1222^*$, 184 und 183) wird toleriert und führt zu einer ähnlich guten Wirksamkeit (IC_{50} [WT] = 0.03 – 0.08 µM), wenn die Reste keine Wasserstoffbrückendonor-Eigenschaften aufweisen. Bei vorhandensein einer Wasserstoffbrückendonor-Eigenschaft an der 5-Position, wie bei Verbindung 188, lässt sich eine deutliche Aktivitätserniedrigung beobachten. Als potenteste Modifikation sticht die Methylierung ($ST-1711^*$) mit 0.036 µM am Reinenzym hervor und wurde deshalb als neues Grundelement dem Bestehenden hinzugefügt.

Substanz	Struktur	Inhibition 5-LO [IC ₅₀ in μ M] (95% KL n > 3)		clog P	LLE
Substanz		WT	PMNL	ciug r	(PMNL)
ST-1083 [*]	CI C	0.03 (0.024 – 0.045)	0.68 (0.56 – 0.82)	4.83	1.34
SK-13 [*]	CI C	0.04 (0.030 – 0.046)	1.11 (0.80 – 1.54)	4.37	1.58
SK-40 [*]	OH CH ₂	0.05 (0.042 – 0.066)	2.71 (1.17 – 6.29)	4.04	1.53
223	H ₃ C S N CI CH ₂	0.03 (0.015 – 0.041)	0.46 (0.27 – 0.76)	5.07	1.27
222	H ₃ C CI	72.53 ± 13.76^{a}	26.17 ± 7.94^{b}	4.67	-
SK-39*	CI C	0.27 (0.17 – 0.43)	3.48 (2.51 – 4.82)	3.85	1.61
SK-37*	CI S CH3	0.17 (0.10 – 0.29)	1.05 (0.59 – 1.86)	4.46	1.52
249	H ₃ C S	> 90 ^a	3.27 (2.65 – 4.02)	4.74	0.75
242	H ₃ C S OH	> 90 ^a	2.56 (2.01 – 3.24)	5.12	0.47

Tabelle 3.6: Inhibition der 5-LO-Aktivität durch Verbindungen analoger Thiazole ohne bzw. mit geändertem 2-Aminolinkers und variierter 5-Thiazol-Position.

Tabelle 3.6: Fortsetzung

		Inhibition 5-LO [IC ₅₀ in μ M]		clog P	LLE (PMNL)
Substanz	Struktur	$(95\% \text{ KI}, n \ge 3)$			
		WT	PMNL		
231		10.37 ± 6.28^a	37.6 ± 2.36^b	2.72	-
234	CI	80.71 ± 7.88^{a}	66.52 ± 1.72^{b}	4.53	-
226	CI N N N N N N N N N N N N N N N N N N N	66.43 ± 4.87^{a}	42.07 ± 4.69^{b}	4.67	-
227	CI NH HO	3.11 (1.09 – 8.93)	57.77 ± 5.33^{b}	4.36	-
239	CI S S S S S S S S S S S S S S S S S S S	77.2 ± 7.5^a	> 90 ^b	3.29	-
ST-1711 [*]	H ₃ C S NH	0.03 (0.025 – 0.047)	0.40 (0.32 – 0.50)	5.25	1.15
ST-1222 [*]	H ₃ C CI	0.06 (0.047 – 0.072)	0.30 (0.26 – 0.34)	5.67	0.85
184	CI C	0.05 (0.03 – 0.07)	1.11 (0.93 – 1.32)	4.74	1.21
183	H ₃ C ₀ CI	0.08 (0.063 – 0.110)	0.62 (0.46 – 0.83)	4.82	1.39
188	OH H ₂ N CI	0.63 (0.39 – 1.02)	36.47 ± 5.36^b	4.00	-

* = fremde/gekaufte Substanzen; ^a Restaktivität bei 1 μ M ± SEM [%]; ^b Restaktivität bei 10 μ M ± SEM [%].

Die vorangegangenen Arbeiten von Vogt *et al.*²⁸¹ und Suh *et al.*²⁵⁷ konnten zeigen, dass der bioisostere Ersatz der *p*-Hydroxygruppe, deren Veretherung oder deren Wegfall zu einer deutlichen Aktivitätsverringerung führten. Sie ist offensichtlich entscheidend für die potente 5-LO-Hemmung und ist daher beizubehalten. Die Verschiebung der Hydroxygruppe hin zur *meta*-Stellung führte ebenfalls zum Inhibitionsverlust, während weitere Verschiebung zur *ortho*-Stellung die inhibitorische Potenz wieder herstellte. Die Einführung eines Spacers zwischen Hydroxygruppe und Phenylring, welche die Mesomeriefähigkeit bzw. die H-Brückenbildung herabsetzt, erwies sich ebenfalls als ungünstig. Diese Erkenntnisse konnten durch die Verbindungen in Tabelle 3.7 für den linken Teil verifiziert und vertieft werden.

Interessanterweise behält das oxidierte Produkt von **ST-1083**^{*}, das Chinonimin **250**, seine gute Potenz gegenüber der 5-LO-Aktivität am Reinenzym (IC₅₀ [WT] = 0.04 μ M), jedoch ist die Aktivität in intakten Zellen deutlich beeinträchtigt (IC₅₀ [PMNL] = 1.77 μ M), sodass die Aktivität der Substanzen dort vermutlich nicht von deren Oxidationsprodukt ausgeht. Der Einfluss des Aromaten lässt sich am aliphatischen Analogon **270** erkennen. Dieser hemmt weder am Enzym noch im intakent Zellsystem die 5-LO-Produktbildung, was einen Rückschluss auf die Bedeutung des Aromaten erlaubt. Auch beim bioisosteren Ersatz des Phenylrings durch die Einführung eines Pyridinylrestes (**271**) oder eines Pyridonylrestes (**288** und **281**) lässt sich die entscheidende Rolle der *p*-Hydroxygruppe erkennen, da die Einführung der Heteroaromaten im linken Teil zu einer Aktivitätserniedrigung am Reinenzym und in intakten Zellen führte. Selbst unter Beibehaltung der *p*-Hydroxygruppe in **288** wurde eine 10-fache Erniedrigung der Aktivität am Reinenzym beobachtet im Vergleich zu **ST-1083**^{*}. In PMNL wurden für beide Pyridonderivate (**288** und **281**) nur eine geringe Aktivität gemessen.

Ein weiterer Versuch die metabolische Oxidation des *p*-Aminophenol zu unterbinden, bestand in der Einführung von zwei 3,5-Dimethyl-Resten unter Beibehaltung der *p*-Hydroxygruppe. Damit konnte die Aktivität in PMNL erhalten werden ($IC_{50} = 0.58 \mu M$). Am Reinenzym war jedoch eine 10-fache Erniedriegung des IC_{50} zu beobachten ($IC_{50} = 0.27 \mu M$). Die Erweiterung der 3,5-Dimethylreste zu 3,5-Diisopropylgruppen, mit einem stärkeren induktiven Effekt, wurde im Vergleich, vermutlich Aufgrund der beginnenden sterischen Abschirmung der wichtigen *p*-Hydroxygruppe, nicht toleriert (IC_{50} [WT] = 0.46 μ M).

	Struktur	Inhibition 5-LO [IC ₅₀ in μ M]			LLE
Substanz		(95% F WT	$(I, n \ge 3)$ PMNL	clog P	(PMNL)
ST-1083 [*]	CI C	0.03 (0.024 – 0.045)	0.68 (0.56 – 0.82)	4.83	1.34
250	CI CI N	0.04 (0.025 – 0.074)	1.77 (1.104 – 2.834)	3.51	2.24
270	H ₃ C NH CI	> 90 ^a	86.98 ± 2.36^{b}	3.99	-
271	H ₃ C N CI	83.52 ± 9.77^a	69.67 ± 16.03^{b}	4.60	-
288	H ₃ C, S, NH	0.11 (0.06 – 0.20)	48.88 ± 5.06^{b}	4.60	-
281	H ₃ C S NH CI NH	54.13 ± 13.94 ^a	50.15 ± 6.31^{b}	4.60	-
ST-1761 [*]	H ₃ C OH C NH	0.27 (0.22 – 0.34)	0.58 (0.35 – 0.95)	5.51	0.73
275	H ₃ C H ₃ C	0.46 (0.,31 – 0.68)	0.97 (0.74 – 1.26)	7.63	-1.62

Tabelle 3.7: Inhibition der 5-LO-Aktivität durch Verbindungen mit variierter 2-Thiazol-Position.

* = fremde/gekaufte Substanzen; ^a Restaktivität bei 1 μ M ± SEM [%]; ^b Restaktivität bei 10 μ M ± SEM [%].

Nach der SAR-Untersuchung der drei Teile der Leitstruktur wurden die besten Strukturelemente ausgewählt und miteinander kombiniert. Die sich daraus ergebenden Substanzen sind in Tabelle 3.8 aufgelistet. Erneut lassen sich die bereits gefundenen Strukturbeziehungen
bestätigen. Der induktive Effekt der beiden 3,5-Dimethylreste im rechten Teil des Moleküls (ST-1794^{*}, 261 (ST-1906), ST-1763^{*}, 293, 295 (ST-1853) und 298) führt zu einer starken Aktivitätssteigerung im intakten Zellsystem (IC₅₀ = $0.047 - 0.29 \mu$ M) im Vergleich zu den *p*-Hydroxyphenyl-substituierten Verbindungen (IC₅₀ = $0.35 - 1.00 \mu$ M; **ST-1761^{*}**, **259**, **ST-**1759^{*}, 197, ST-1777^{*} und 297). Der stärkere induktive Effekt und die erheblich gesteigerte Raumerfüllung durch die 3,5-Diisopropyl-Substitution hatten negative Auswirkungen. Im linken Molekül-Teil sind Torsion bzw. sterisch anspruchsvolle Reste bevorzugt und führen zu leichten Potenzsteigerungen, wobei sich eine Reihe für das Grundgerüst ergibt: Cyclohexyl \approx Adamantyl < 2,4-Dichlorphenyl. Diese Reste können ungünstige Strukturelemente im rechten Teil (Cyclohexylrest, vgl. 270 und 294) teilweise kompensieren. Die besten drei Merkmale, Methylgruppe am zentralen Teil, 3,5-Dimethylreste im rechten Teil und sperriger Rest im linken Teil wurden in den Verbindungen **261 (ST-1906)** (IC₅₀ [WT] = 0.57 μ M; IC₅₀ [PMNL] = 0.047 μ M) und **295** (ST-1853) (IC₅₀ [WT] = 0.33 μ M; IC₅₀ [PMNL] = 0.05 μ M) kombiniert. Dies führte zu einer Potenzsteigerung um den Faktor 10 im intakten Zellsystem verglichen mit der Leitstruktur ST-1083^{*}. Durch das 3,5-Dimethyl-Substitutionsmuster weisen diese Substanzen einen recht hohen clogP-Wert auf und der LLE-Wert konnte dadurch nur minimal gesteigert werden (LLE für 295 (ST-1853) = 1.53; für ST-1083^{*} = 1.34). Versuche durch Einführen einer polaren Gruppe den LLE-Wert zu steigern (297 und 298) führten zu einem Aktivitätsverlust.

Substanz	Struktur	Inhibition 5-L (95% K	clog P	LLE (PMNL)	
		WT	PMNL		
ST-1083 [*]	OH NH	0.03 (0.024 – 0.045)	0.68 (0.56 – 0.82)	4.83	1.34
ST-1794 [*]	H ₃ C S OH CI	0.30 (0.21 – 0.41)	0.08 (0.077 – 0.100)	5.94	1.16
259		0.05 (0.038 – 0.069)	0.40 (0.24 – 0.66)	5.86	0.54

Tabelle 3.8: Inhibition der 5-LO-Aktivität durch Verbindungen mit kombinierten Variationen.

Tabelle 3.8: Fortsetzung

Substanz	Struktur	Inhibition 5-L	clog P	LLE	
Substanz	Struktur	WT	PMNL	clog r	(PMNL)
261 (ST-1906)	H ₃ C OH CH ₃ C OH CH ₃ C OH CH ₃ C OH	0.57 (0.36 – 0.89)	0.05 (0.033 – 0.067)	6.55	0.78
ST-1759 [*]	H ₃ C S NH	0.06 (0.04 – 0.10)	1.00 (0.78 – 1.28)	5.08	0.92
ST-1763 [*]	H ₃ C H ₃ C H ₃ C H ₃ C CH ₃ CH ₃ C	0.40 (0.27 – 0.60)	0.29 (0.21 – 0.40)	5.77	0.77
294	H ₃ C NH	0.08 (0.058 – 0.119)	0.92 (0.81 – 1.04)	4.25	1.79
ST-1777 [*]	H ₃ C N N N N N N	0.16 (0.12 – 0.20)	0.35 (0.26 – 0.48)	5.09	1.37
297	H ₃ C, O, S, NH	0.04 (0.038 – 0.054)	1.43 (0.92 – 2.22)	4.66	1.18
293	H ₃ C OH CH ₃ C-CH ₃	0.43 (0.30 – 0.62)	0.11 (0.07 – 0.18)	5.35	1.61
295 (ST-1853)	H ₃ C N H ₃ C N H ₃ C OH CH ₃ CH ₃	0.33 (0.21 – 0.51)	0.05 (0.039 – 0.066)	5.77	1.53
298	H ₃ C OH H ₃ C OH CH ₃ CH ₃ CH ₃	0.36 (0.29 – 0.46)	0.20 (0.12 – 0.33)	5.34	1.36
296	H ₃ C H ₃ C	0.65 (0.47 – 0.89)	0.78 (0.66 – 0.93)	7.46	-1.35

* = fremde/gekaufte Substanzen.

Die obige SAR-Untersuchung resultierte in den zwei Substanzen 261 (ST-1906) und 295 (ST-1853), welche eine Potenz von 0.05 μ M im relevanten zellbasierten 5-LO-Assay aufweisen. Ausgewählte Substanzen wurden anschließend auf anti-proliferierende Effekte untersucht. Sie wurden auf Zellviabilität (WST-1-Assay) und auf die Verletzung der Integrität der Zellmembran (LDH-Freisetzung) in U937-Zellen getestet, um auszuschließen zu können, dass ihre Potenz auf einem zytotoxischen Effekt beruht. Die Ergebnisse sind in Tabelle 3.9 festgehalten

Substanz	WST-1 IC ₅₀ [μM] (95 % KI)	% LDH Freisetzung [30 μM ± SEM]	Substanz	WST-1 IC ₅₀ [μM] (95 % KI)	% LDH Freisetzung [30 μM ± SEM]
ST-1083 [*]	8.68 (6.71 –11.22)	17.5 ± 1.9	ST-1794 [*]	> 30	9.64 ± 1.96
SK-40 *	> 30	n.t.	ST-1777 *	> 30	5.73 ± 1.32
184	5.41 (4.16 – 7.02)	1.33 ± 1.09	295 (ST-1853)	25.54 (19.02 - 34.29)	3.98 ± 0.73
183	13.61 (11.75 – 15.76)	n.t.	261 (ST-1906)	24.57 (19.65 - 31.47)	5.66 ± 0.53

Tabelle 3.9: Toxizitätsbestimmung (n ≥ 3) ausgesuchter 5-LO-Inhibitoren an U937 Zellen.

^a gemessen bei 100 µM; n.t. nicht getestet.

Die Grundstruktur **ST-1083**^{*} zeigt nur einen 10-fachen Sicherheitsspielraum zwischen dem IC₅₀-Wert am Target (PMNL) und dem IC₅₀-Wert für Toxizität (WST-1). Außerdem verursachte sie eine deutliche LDH-Freisetzung von 17.5% bei 30 μ M. Wie erwartet konnten diese ungünstigen Eigenschaften durch Substitution der 3-Position (**SK-40**^{*}) oder der 5-Position des zentralen Thiazolrings (**184** und **183**), stark verringert werden. Auch nach zusätzlicher Derivatisierung des rechten Teils bzw. des linken Teils (**ST-1794**^{*} und **ST-1777**^{*}) wurden die nicht-toxischen Eigenschaften beibehalten, da weder ein signifikantes Zellsterben (WST-1) noch LDH-Freisetzung gemessen wurde. Die zwei vielversprechendsten Substanzen, **295** (**ST-1853**) und **261** (**ST-1906**), besitzen einen über 100-fach höheren Schwellwert zwischen dem IC₅₀-Wert am Target (PMNL) und dem IC₅₀-Wert für Toxizität (WST-1) und weisen nur eine marginale LDH-Freisetzung auf, sodass man von einem ausreichenden Sicherheitsabstand bis zu cytotoxischen Effekten sprechen kann.

3.2.3. Weitere Charakterisierung von ST-1853

Aus der SAR-Untersuchung im intakten Zellsystem wurden **295** (ST-1853) und **261** (ST-**1906**) als potenteste Substanzen identifiziert (IC₅₀ (PMNL) = 0.05 μ M). Aufgrund des höheren LLE-Wertes (um den Faktor zwei) wurde **295** (ST-1853) weiter charakterisiert, weil dies eine vergleichsweise bessere Prognose der Bioverfügbarkeit und Druglikeness bedeutet. Außerdem kann **295** (ST-1853) im Gegensatz zu **261** (ST-1906) leichter in sein Hydrobromid-Salz übergeführt werden, sodass es im physiologischen Milieu eine bessere Löslichkeit besitzt. Verbindung **295** (ST-1853) wurde deshalb auf Off-targets innerhalb der AA-Kaskade getestet sowie auf die Wirksamkeit in humanem Vollblut. Seine Stabilität wurde in Rattenlebermikrosomen überprüft. Dafür wurde der Anteil an verbleibender Muttersubstanz nach Metabolisierung mittels HPLC bestimmt.

In Abbildung 3.5 ist die Off-target-Testung von **295** (**ST-1853**) im Vergleich zu anderen Enzymen der AA-Kaskade dargestellt, nämlich zu 12-LO, 15-LO1 und COX-1. COX-2 wurde zum Zeitpunkt der Arbeit noch nicht getestet.

Abbildung 3.5: Off-target-Validierung an Enzymen der AA-Kaskade.

Verbindung **295** (**ST-1853**) beeinträchtigt bereits im niedrigen zweistelligen nM-Bereich die 5-LO-Aktivität (IC₅₀ = 0.05 μ M; KI = 0.039 – 0.066 μ M), jedoch erst im einstelligen μ M-Bereich die Aktivität von 15-LO (IC₅₀ ~ 9.9 μ M) und COX-1 (IC₅₀ = 24.8 μ M; KI = 18.0 – 34.0 μ M). Die Selektivität für 5-LO gegenüber diesen Off-targets liegt bei einem Faktor 100, sodass man von einer 5-LO-selektiven Substanz bzw. 5-LO-spezifischer Hemmung sprechen kann. Die 12-LO-Aktivität wird dagegen bis zu einer Konzentration von 100 μ M gar nicht beeinflusst. Die zu beobachtende Aktivitätssteigerung der 15-LO rührt von den Assaybedingungen her, da die 5- und 15-LO-Aktivität im gleichen Zellsystem bestimmt werden. Es kommt dabei zu einem "Shunting"-Effekt, da die überschüssige AA vermehrt von der 15-LO metabolisiert werden kann, wenn die 5-LO bereits inhibiert wird.

Als Vorversuch zu den humanen Vollblutversuchen wurde die Inhibition mit **295** (**ST-1853**) in PMNL in Anwesenheit bzw. Abwesenheit von 10% fetalem Kälberserum (FCS) untersucht, um das Verhalten der Substanz in Gegenwart von Blutplasma zu simulieren (Abbildung 3.6). Zur Kontrolle diente Zileuton und **ST-1237**^{*}, welches eine starke Blutplasmabindung besitzt.

Abbildung 3.6: 5-LO Inhibition in PMNL durch verschiedene Derivate in Anwesenheit bzw. Abwesenheit von 10% fetalem Kälberserum (FCS).

Bei einer Konzentraion von 0.1 μ M **295** (**ST-1853**) findet mit (+) und ohne (-) Zusatz von FCS nur eine moderate 5-LO Inhibition statt (85%(-) und 63%(-)). Bei einer Konzentration 1 μ M bzw. 10 μ M sinkt die 5-LO Restaktivität auf 10%(-) / 17% (+) bzw. auf 4%(-) und 20%(+), wobei es zu keiner überdeutlichen Beeinflussung durch FCS kommt. Verbindung **295** (**ST-1853**) sollte daher keine nennenswerte Aktivitätsverringerung durch zu hohe Plasmaeiweißbindung erleiden.

Abbildung 3.7: Dosiswirkungskurve von 295 (ST-1853) in PMNL und humanen Vollblut

Die Versuche im humanen Vollblut (HWB) stehen im Einklang mit der obigen Schlussfolgerung. In der Abbildung 3.7 sind die beiden Dosiswirkungskurven von **295** (**ST-1853**) und **ST-1083**^{*} in PMNL (a) und humanen Vollblut (b) wiedergegeben. In beiden Fällen zeigt die Dosiswirkungskurve die 10-fache Potenzsteigerung von **295** (**ST-1853**) gegenüber **ST-1083**^{*}. Die Potenzsteigerung von **295** (**ST-1853**) (IC₅₀ (HWB) = 0.87 μ M; KI_{95%} = 0.56 - 1.36 μ M) ist zwar im Vollblut erhalten geblieben (**ST-1083**^{*}: IC₅₀ (HWB) = 6.15 μ M; KI_{95%} = 3.27 - 11.58 μ M), jedoch fand eine Verschiebung zu 10-fach höheren Konzentrationen statt.

Abbildung 3.8: 5-LO Inhibition im humanen Vollblutassay mit unterschiedlichen Vorinkubationszeiten.

Um einen ersten Eindruck zur Stabilität von 295 (ST-1853) im Blutplasma zu erhalten, wurden anschließend Versuche im humanen Vollblut mit unterschiedlichen Inkubationszeiten durchgeführt (Abbildung 3.8). Da es sich außerdem bei 295 (ST-1853) um eine recht lipophile Verbindung handelt, kann sich während längerer Inkubationszeiten ein besseres Gleichgewicht mit dem Blutplasma einstellen und es womöglich zu Aktivitätsänderungen kommen. Zum Vergleich wurden **ST-1761**^{*} und Zileuton mitgetestet. Nach einer Inkubationszeit von 30 Minuten mit Inhibitoren und nach einer Stimulation mit Calciumionophor (IO) ist in allen drei Fällen die 5-LO-Produktbildung (LTB₄ und 5-HETE) fast gleichermaßen reduziert (Zileuton: RA = 5% und 6%; 295 (ST-1853) und ST-1761^{*} jeweils RA = 1% und 2%) und entpricht dem Niveau unstimulierter Proben (DMSO ohne IO; RA= 1% und 2%). Die AA der stimulierten Proben wird zu 12- bzw. 15-HETE metabolisiert. Nach zweistündiger Inkubation mit Inhibitoren ist bei Zileuton und ST-1761^{*} eine geringe Zunahme der 5-LO-Produktbildung im Vergleich zur halbstündigen Inkubation zu beobachten (Zileuton RA [2h] = 9%; zuvor 5%; **ST-1761**^{*} RA [2h] = 21%; zuvor 2%). **295** (**ST-1853**) hingegen behält seine potente Inhibition der 5-LO-Produktbildung (RA [2h] = 1% und 2%) auch nach zweistündiger Inkubation im humanen Vollblut bei und scheint daher nicht wie

Zileuton oder **ST-1761**^{*} unter Stabilitätsproblemen oder im Laufe der Zeit an einer höheren Blutplasmabindung zu leiden.

Um die Stabilität von 295 (ST-1853) weiter zu untersuchen, wurde eine *in vitro* Metabolisierung mit Rattenleber-Mikrosomen (RT053B) durchgeführt (Abbildung 3.9). Dafür wurden die Substanzen ST-1083^{*}, ST-1761^{*} und 295 (ST-1853) und die Kontrollsubstanz 7-Ethoxycoumarin (7-EC) mit Cytrochrom P450 aus dem Leberhomogenat, von einem Gehalt von 0.319 nmol pro mg Protein, zusammengegeben und der wiedergefundene Gehalt der Inhibitor-Muttersubstanz nach 10 min, 30 min und 60 min bestimmt. Nach einer Stunde lag die wiedergefundene Menge von ST-1083^{*} bei 82.51% \pm 1.04%, von ST-1761^{*} bei 76.51% \pm 6.64% und von 295 (ST-1853) bei 70.77% \pm 1.74%. Die Kontrollsubstanz 7-EC wurde hingegen stets zur Hälfte metabolisiert (52.94% - 55.60%). Der Gehalt von 295 (ST-1853) nimmt also bei der *in vitro* Metabolisierung etwas schneller ab als der von ST-1083^{*}, aber das Derivat ist dennoch stabil genug, um auch unter physiologischen Bedingungen seine Wirkung entfalten zu können und ist daher geeignet weiter charakterisiert zu werden.

Abbildung 3.9: Stabilitätstest mit Rattenlebermikrosomen (RT053B) von ST-1083^{*}, ST-1761^{*}, 295 (ST-1853) und 7-Ethoxycoumarin (7-EC; Kontrollsubstrat).

4. Zusammenfassung

Die Pharmakotherapie chronisch entzündlicher Erkrankungen mit guter Wirksamkeit und verträglichem Profil bei Langzeiteinnahme stellt eine Herausforderung dar. Die weitest verbreiteten Wirkstoffe zur Behandlung von Schmerzen sind die nicht-steroidalen Antirheumatika (NSAR). doch die Einnahme von NSAR hemmt zwar den Entzündungsprozess, verzögert aber auch die Entzündungsauflösung, da NSAR die Bildung von entzündungshemmenden und entzündungsauflösenden Lipidmediatoren hemmen. Letztere sind jedoch essentiell für die Regeneration des Gewebes nach einer Entzündung, um eine vollständige Heilung zu erzielen. Die Bildung von solchen entzündungsauflösenden Mediatoren kann im Zellstoffwechsel einerseits über die 12-Lipoxygenase-Route erfolgen, andererseits aber auch von der durch geeignete Wirkstoffe acetylierten Cyclooxygenase-2 (COX-2) katalysiert werden. Die selektive Acetylierung der COX-2 stellt somit eine erstrebenswerte neue anti-entzündliche Therapiestrategie dar.

Diese Arbeit befasst sich mit der Entwicklung von COX-2-acetylierenden Substanzen mit dem Ziel, die endogene Lipoxin-Bildung durch Modulation des COX-2-Enzyms zu fördern. Hierfür wurden bekannte COX-bindende Inhibitoren mit einem Acetylgruppen-übertragenden Acetylsalicylsäure-Fragment fusioniert. Zunächst wurden bereits erprobte selektive Coxibe sowie auch einige nicht-selektive NSAR als Leitstrukturen ausgewählt. Damit wurden an der COX-2-Kristallstruktur in ihrem aktiven Zentrum Docking-Studien durchgeführt, wobei vor allem die Bedeutung des Ser⁵³⁰-Restes beachtet wurde. Dies führte zur Identifikation geeigneter Positionen für die Einführung labiler Acetylgruppen in die Inhibitormoleküle. Daraufhin gelang es, entsprechende Strukturen über neue Synthesewege aufzubauen. Es wurden 21 Derivate von Celecoxib, Valdecoxib, Rofecoxib und Etericoxib als Vertreter der (COX-2)-selektiven Inhibitoren erhalten, sowie auch 15 Derivate von Acetylsalicylsäure, Diclofenac und Nimesulid-Analoga als Vertreter der nicht-selektiven NSAR gezielt synthetisiert, die alle mit Acetylgruppen in günstiger Position versehen sind. Zusätzlich wurden Verbindungen mit Michael-Akzeptoren als kovalent bindender Komponente synthetisiert. Bei den bis zuweilen sechsstufigen Syntheserouten konnten zweckvoll Methoden, wie Mikrowellen-Synthese und heterogene Katalyse, integriert werden.

Alle neu gewonnnen Verbindungen wurden auf COX-Inhibition und auf COX-2-Selektivität hin getestet und dabei mehrere potente Verbindungen mit Coxib-Grundgerüst identifiziert, nämlich **52**, **53**, **59**, **88** und **109** (s. Abbildung 4.1), Sie hemmen die Enzymaktivität der COX-2 in vergleichbaren Maße wie Celecoxib (RA (COX-1) = 88% - >95%; RA (COX-2) = 66% - 55%).

Abbildung 4.1: COX-2 selektive Coxibe mit integrierter Acetylgruppe und Celecoxib zum Vergleich.

NSAR-basierte Derivate mit potenter COX-2-Aktivität wie z.B. **118**, **119** und **132**, behielten hingegen eine COX-1-Präferenz, mit Ausnahme von **170a** (**ST-1650**), welches selektiv an COX-2 aktiv war. Zur Untersuchung einer irreversiblen COX-2-Inhibition, die auf eine Modulation zur Lipoxin-Bildung hindeuten würde, wurden *in vitro* Auswaschungsversuche mit intakten THP-1-Zellen durchgeführt. Eine moderate anhaltende COX-2-Inhibition zeigten dabei die Verbindungen **33**, **104**, **105**, **108**, **109**, **118** und **119** (Diff.: -8.03% bis -10.91%). Eine deutlicher ausgeprägte stabile COX-2-Inhibition wurde mit **94**, **100**, **170a** (**ST-1650**) und **171** erzielt, bei denen nach ihrer Auswaschung Restaktivitäten des Enzyms von bis zu 48%-Punkten (**170a** (**ST-1650**)) unterhalb des Wertes vor der Auswaschung bestimmt wurden.

Um auszuschließen, dass der Nachweis der Wirksamkeit der Verbindungen, und der möglichen irreversiblen Hemmung des COX-2-Enzyms, auf einem anti-proliferativen Effekt beruht, wurde der Einfluss der Substanzen auf die Zellviabilität (WST-1 Assay) untersucht. Dabei erwiesen sich 94, 100, 104, 105, 108 und 109 als zytotoxisch. Für die Derivate 33, 118, 119 und 170a (ST-1650) ergaben sich jedoch keine Hinweise auf eine derartige unspezifische Wirkung, sodass bei ihnen die erniedrigten Werte der COX-2-Aktivität tatsächlich als direkte Inhibition angesehen werden können. Da bei der Erstellung dieser Arbeit jedoch kein Assay zur Lipoxinquantifizierung verfügbar war, steht die endgültige Verifizierung der COX-2-Modulation noch aus.

Wenn man die Daten zur Enzymhemmung (COX-1 und COX-2) und die Ergebnisse nach Inhibitor-Auswaschung (COX-2) gemeinsam betrachtet, lässt sich postulieren, dass die nichttoxischen Verbindungen **33**, **118** und **119** die COX-2 auf sehr effiziente Weise hemmen und eine über die Zeit stabile Inhibition bewirken. Wegen ihrer dauerhaften Wirkung ist anzunehmen, dass sie offenbar lange das aktiven Zentrum der COX-2 hemmen. Dabei besitzen sie eine übertragbare Acetoxy- bzw. Acetylgruppe, die durch Docking-Studien so designt wurde, dass sie sich in günstiger räumlicher Nähe zum Ser⁵³⁰-Rest des aktiven Zentrums im Enzym befindet. Daher können diese drei Verbindungen als potentielle irreversible Inhibitoren der COX-2 charakterisiert werden. Für die Acetylsalicylsäure-Derivate **170a** (**ST-1650**) und **171** lässt sich ebenfalls eine sehr hohe Effizienz erkennen. Beide Verbindungen weisen zwar eine relativ schwache COX-2-Inhibition auf, zeigen jedoch auch eine längere Zeit andauernde Inhibition (nach der Auswaschung 48% weniger PGE₂-Bildung als zuvor) und üben ihren inhibitorischen Effekt daher möglicherweise ebenfalls durch einen irreversiblen Mechanismus aus.

Im Rahmen dieser Arbeit wurden die Verbindungen mit nachgewiesenen positiven *in vitro* Effekten zusätzlich untersucht. Dazu wurde **170a** (**ST-1650**) ausgewählt, weil dieses Derivat selektiv ist und die potenteste andauernde Inhibition der COX-2 hervorrief. Daher wurden durch drei Tests versucht, indirekte Hinweise auf eine Lipoxinbildung zu erlangen. Als Testsysteme für den Effekt von **170a** (**ST-1650**) dienten die PGE₂-Produktbildung in intakten THP-1-Zellen in Abhängigkeit von der Zeit, sowie auch die Fähigkeit die M1-Makrophagen Polarisation zu beeinflussen und außerdem das Zymosan-Hyperalgesie-Schmerzmodell in der Mauspfote.

Als Ergebnisse deutete ein zeitversetzter Rückgang der PGE₂-Bildung an der COX-2 auf die Bildung von Lipoxinen hin. Eine Phänotypverschiebung zu entzündungsauflösenden M2-Makrophagen wurde jedoch nicht beobachtet und im Schmerzmodell ließen die Mäuse keine schnellere Schmerzauflösung im Vergleich zur Kontrollgruppe erkennen. Es läßt sich also nicht mit Sicherheit feststellen, ob **170a** (**ST-1650**) in der Lage ist, durch COX-2-Modulation die Lipoxin-Bildung zu fördern. Einerseits deuteten die Versuche zur PGE₂-Produktion an der COX-2 mit lebenden Zellen *in vitro* auf eine irreversible Hemmung hin, andererseits legte das Schmerzmodell *in vivo* nahe, dass entweder keine Acetylierung durch **170a** (**ST-1650**) stattfindet oder diese nicht schnell oder vollständig genug stattfindet. Somit wird die Bildung genügender Mengen an Lipoxin für einen anti-inflammatorischen Effekt am COX-2-Enzym nicht induziert. Ein therapeutischer Mehrgewinn bleibt daher fraglich. Die Abbildung 4.2 zeigt abschließend die Strukturen der vielversprechensten Derivate, welche bei der COX-2 eine nachhaltige Hemmung hervorrufen konnten.

Abbildung 4.2: Synthetisierte COX-Inhibitoren mit anhaltender Inhibition in vitro

Weitere große Herausforderungen bei der Behandlung chronisch entzündlicher Krankheiten stellen Asthma bronchiale und allergische Rhinitis dar, welchen unter anderem eine Dysregulation der Leukotriene zugrunde liegt. Die Biosynthese dieser wichtigen und potenten Entzündungsmediatoren wird durch die 5-Lipoxygenase (5-LO) vermittelt.

Diese Arbeit befasst sich daher mit der Untersuchung der Struktur-Wirkungsbeziehung (SAR) der 2-Aminothiazole als 5-LO-Inhibitoren, die im Jahr 2012 durch Suh *et al.*²⁵⁷ als Leitstrukturen (**SKI-II**^{*}) zur Entwicklung von 5-LO-Inhibitoren entdeckt wurden. Es wurde eine Optimierung der Grundstruktur als 5-LO-Inhibitor durchgeführt. Zu Beginn der Arbeit wurden die Einflüsse der Substituenten (R¹⁻⁴; vgl. Abbildung 4.3) des Thiazols-Rings und des Aminolinkers auf deren inhibitorische Potenz auf die 5-LO ermittelt, um die SAR initialer Arbeiten zu vertiefen.

Abbildung 4.3: Struktur-Wirkungsbeziehung der Substituenten R_{1-4} an 2-Aminothiazol als 5-LO-Inhibitor

Dafür wurden Derivate mit Wasserstoffbrückenakzeptoren bzw. –donoren sowie elektronenziehenden- oder donierenden Gruppen an der 5-Position (R_1) charakterisiert, wobei nur ein geringer Einfluss bei der Abwandlung verschiedener Substituenten auf die 5-LO-Inhibition beobachtet wurde. Substitution in 5-Position trägt aber zur vorteilhaften Torsion des Aromaten in 4-Position (R^2) bei und spielt dadurch eine wichtige Rolle für zytotoxischeund Redoxeigenschaften wie entsprechende *in vitro* Untersuchungen zeigten. Als wirkungsvollster Substituent in 5-Position (R^1) zur Steigerung der 5-LO-Inhibition in Polymorphonuklearen Leukozyten (PMNL), erwies sich eine Methylgruppe (**ST-1711**^{*}).

In 4-Position (\mathbb{R}^2) wurden verschiedene aromatische und aliphatische Ringsysteme mit unterschiedliche Raumerfüllung eingeführt, wobei sich zeigte, dass an dieser Position unterschiedliche Substituenten toleriert wurden, was die bislang in der Literatur bekannte SAR bestätigte.^{257,281} Neu konnte anhand von **197**, **ST-1253**^{*} und **201** abgeleitet werden, dass sperrige und verdrillte Ringe bevorzugt werden und zwar in der Reihenfolge Cyclohexyl \approx Adamantyl < 2,4-Dichlorphenyl. Durch die Wahl eines dieser Reste gelang eine weitere Potenzsteigerung in PMNL.

Um den Einfluss des zentralen Thiazols und des Aminolinkers (\mathbb{R}^3) auf die 5-LO-Produkthemmung zu charakterisieren, wurden der Aminolinker durch Sauerstoff (**242**) oder Kohlenstoff (**249**) ausgetauscht und Spacer zwischen Linker und dem Substituenten des Aminolinkers eingeführt. Es zeigte sich bei beiden Verbindungen, dass der Aminolinker wichtig für die inhibitorische Potenz ist und seine Derivatisierung nicht toleriert wird. Bei Einführung zusätzlicher Substituenten am Thiazolstickstoff (\mathbb{R}^3) wurde festgestellt, dass die Derivatisierung des zentralen Rings gut toleriert wird, was als Ansatz zur weiteren Optimierung der Leitstruktur dienen kann.

Der wichtige Einfluss der *p*-Hydroxygruppe am aromatischen Substituenten des Aminolinkers (R^4) , auf den vorangegangene Studien hinweisen, ließ sich bei den hier synthetisierten

Derivaten ebenfalls bestätigen.^{257,281} Tautomeriefähige Verbindungen (Pyridinone) stellten sich als deutlich weniger potent heraus. Um die Oxidation des verkappten Aminophenols zu toxischen Metaboliten zu verhindern, wurde ein 2,6-Dimethylhydroxyphenylrest (**ST-1761**^{*}) als günstig identifiziert. Dieses Substitutionsmuster hat sich schon bei Derivaten von Paracetamol als effektiv erwiesen, um die Oxidation zum hepatoxischen *N*-Acetyl-p-benzochinon-Imin (NAPQI) zu reduzieren.^{303,304} Im Zuge der biologischen Charakterisierung stellte sich heraus, dass dieses Substitutionsmuster außerdem die Potenz in PMNL fördert.

Nach der SAR-Untersuchung von 64 Verbindungen im intakten Zellsystem konnten durch Kombination der bevorzugten Strukturelemente (Methylgruppe an R¹, verdrillter Rest R² und 2,6-Dimethylhydroxyphenylrest an R⁴) die zwei Verbindungen **295** (**ST-1853**) und **261** (**ST-1906**), als neue potente 5-LO-Inhibitoren entwickelt werden (IC₅₀ [PMNL] = 0.05 μ M), die sich als nicht-toxisch herausstellten. Diese beiden 5-LO-Inhibitoren wirken um einen Faktor

10 potenter und sind weniger toxisch verglichen mit **ST-1083**^{*}. Leitstruktur Ihre der stufenweise Entwicklung ist in Abbildung 4.4 dargestellt. Aufgrund ihrer potenten 5-LO-Produkthemmung in PMNL wurde die Verbindung 295 (ST-1853) weiter in vitro charakterisiert. 295 (ST-1853) wurde innerhalb der AA-Kaskade auf Off-targets getestet, deren Aktivitäten sie erst bei 100-fach höherer Konzentration beeinflusst, sowie in humanem Vollblut. wo sie sich ihre 10-fach bessere Wirksamkeit im Vergleich zu ST-1083^{*} bestätigte. Darüber hinaus erwies sich 295 (ST-1853) bei den Überprüfungen seiner ersten Stabilität unter physiologischen Bedingungen wie bei der in vitro Metabolisierung durch Rattenlebermikrosomen als ausreichend stabil und daher zur weiteren Charakterisierung gut geeignet.

Abbildung 4.4: Stufenweise Entwicklung von 295 (ST-1853) und 261 (ST-1906) aus ST-1083^{*}

5. Experimenteller Teil

5.1. Analytische Methoden, Geräte und Materialien

Chemikalien

Die verwendeten Chemikalien wurden von den Firmen ABCR, Acros Organics, Alfa Aesar, Apollo Scientific, Fluka, FluoroChem, Grüssing, Maybridge, Merk, Sigma-Aldrich, VWR Chemicals und TCI Europe bezogen und ohne weitere Aufreinigung eingesetzt.

Lösungsmittel

Für die Synthesen wurden, wenn nicht anders angegeben, Lösungsmittel der Reinheit p.a. verwendet. Die Lösungsmittel wurden von den Firmen Acros Organics, Bernd Kraft, Fluka, Riedel de Haën, Roth und Sigma Aldrich bezogen. Für die Säulenchromatographie wurden, Lösungsmittel mit technischem Reinheitsgrad verwendet. Deuterierte Lösungsmittel wurden von der Firma Euriso-Top (St. Aubin Cedex/Frankreich) bezogen.

Mikrowelle

Für die Mikrowellen-unterstütze Synthese wurde das Gerät Biotage Initiator[™] 2.0 (400 Watt) verwendet von der Firma Biotage (Uppsala, Schweden). Die Mikrowellenvials wurden mit einem Septum versiegelt. Die Größe der dazugehörigen Vials, in den Größen 2-5 mL und 5-10 mL, wurden den jeweilig verwendeten Volumina angepasst.

Dünnschichtchromatographie

Für die Dünnschichtchromatographie wurden DC-Aluminiumfolien Kieselgel 60 F²⁵⁴ der Firma Merck verwendet. Zur Detektion wurden UV-Licht der Wellenlänge 254 und 366 nm, ethanolische Ninhydrin-Lösung zur Färbung von Aminen, schwefelsaure Vanillin-Lösung zur Färbung von Hydroxygruppen oder ethanolische Molybdatophosphorsäure-Lösung zur Färbung von rein aliphatischen Verbindungen verwendet.

Säulenchromatographie

Für die Säulenchromatographie wurde Kieselgel der Korngröße 63-200 μ m der Firma Merck verwendet. Das jeweils verwendete Fließmittel ist in den expliziten oder in den allgemeinen Synthesevorschriften angegeben.

Kernresonanzspektroskopie

NMR-Spektren wurden auf den Spektrometern *Bruker* AM 250 mit einem BBI-Probenkopf und *Bruker* AV 300 sowie *Bruker* AV 400 mit einem BBO-Probenkopf gemessen (Bruker, Rheinstädten). Die Messungen fanden bei Raumtemperatur statt. Das verwendete deuterierte Lösungsmittel ist für jede Verbindung explizit aufgeführt. Für ¹H- und ¹³C-Spektroskopie wurde das Lösungsmittel als interner Standard verwendet. Die ¹H-Spektren wurden ausgewertet durch die Angabe der chemischen Verschiebung δ in ppm, der Multiplizität des Signals, der relativen Protonenanzahl, der Kopplungskonstanten *J* in Hz und wurden entsprechend zugeordnet. ¹³C-Spektren wurden nur für Endverbindungen aufgenommen und werden nur unter Auflistung der chemischen Verschiebung δ in ppm angegeben ohne Zuordnung. Von als Salze gefällten Verbindungen wurden die Spektren von der freien Base aufgenommen. Die Auswertung der Spektren erfolgte mit der Software "MestReC" 4.8.6.0 von Mestrelab Research. Die Multiplizitäten wurden wie folgt Abgekürzt: s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = unbestimmtes Multiplett, br = breites Singulett, p = pseudo.

Massenspektrometrie

Elektronen-Spray-Ionisations-Massenspektrometrie (ESI-MS) wurden auf dem Massenspektrometer VG Platform II der Firma Fisons Instruments (Manchester,UK) gemessen bzw. auf dem Gerät Mariner Workstation TOF (Applied Biosystems, Carlsbad/USA). Die Ionisierungsart bei der Messung, Positiv-Modus oder Negativ-Modus, ist bei allen Verbindungen explizit aufgeführt.

Matrix-Assisted-Laser-Desorption/Ionisation-Massenspektrometrie (MALDI-MS) wurde auf dem Spektrometer VG TOF Spec der Firma Fisons Instruments (Manchester, UK) durchgeführt. Als Matrix wurde 2,5-Dihydroxybenzoesäure (DHB) verwendet.

Hochaufgelöste MALDI (HR-MS) Spektren wurden auf dem Gerät LTQ Orbitrap XL der Firma Thermo Scientific (Waltham/USA) gemessen. Als interner Standard diente die MALDI-Matrix. Verbindungen wurden als analysenrein betrachtet, wenn die praktisch ermittelte Masse maximal ± 2 ppm Abweichung zum theoretischen Wert aufwies. Die Berechnung erfolgt durch: $\left(\frac{theoretische Masse-gemessene Masse}{theoretische Masse}\right) \cdot 10^6$

Elementaranalyse

Zur Analyse der elementaren Zusammensetzung wurde das Gerät Vairo MicroCube der Firma Elementar (Hanau) verwendet. Die Verbindungen wurden als analysenrein betrachtet, wenn die praktisch ermittelten Werte (C,H,N,S) der CHN-Analytik maximal ± 0.4 % Abweichung zum theoretischen berechneten Wert aufwiesen. Dies entspricht einer Reinheit ≥ 95 %.

Anmerkungen

Die Verbindungen sind in der Reihenfolge nach ihrer Nummerierung im chemischen Teil aufgelistet. Die Syntheseausbeuten wurden nicht optimiert und beziehen sich bei mehrstufigen Synthesen auf die unmittelbar zuvor genannten Syntheseschritte. Die Ausbeuten der Endverbindungen beziehen sich auf die elementaranalytisch-reine Substanzmenge. Die Molmassen der Substanzen beziehen sich auf die angegebene Summenformel bzw. Strukturformeln. Übersichtshalber wurden die Strukturformeln auch von gefällten Salzen in ihrer deprotonierten Form dargestellt.

5.2. Allgemeine Synthesevorschriften

Darstellung von Acetylsalicylsäureestern (A)

Das Benzoesäurederivat (1.0 eq) wurde im entsprechenden Alkohol (20 eq) gelöst und mit konzentrierter Schwefelsäure (0.2 eq) versetzt und für acht Stunden zum Sieden erhitzt. Anschließend wurde der Alkohol unter vermindertem Druck entfernt und der Rückstand in Ethylacetat aufgenommen. Die organische Phase wurde mit Wasser gewaschen, getrocknet und entfernt. Der Rückstand wurde ohne weitere Aufreinigung nach allgemeiner Synthesevorschrift C Methode 3 weiter umgesetzt.

Darstellung von Hydroxamsäuren (B)

In Thionylchlorid wurde das Carbonsäure-Derivat (1 eq) für drei Stunden zum Sieden erhitzt. Anschließend wurde das überschüssige Thionylchlorid abdestilliert und der ölige Rückstand in eine eisgekühlte 4M Natronlauge (10 eq) mit Hydroxylaminhydrochlorid (10 eq) versetzte Lösung gegeben. Nach 30 Minuten wurde mit Ethylacetat extrahiert, mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen und abschließend die organische Phase getrocknet.

Acetylierungsvorschriften (C)

Methode 1:

In 20 mL Dichlormethan, mit katalytischen Mengen an 4-(Dimethylamino)pyridin, wurde die zu acetylierende Substanz (1.0 eq) und Triethylamin (1.5 eq) gelöst und für 30 Minuten gerührt. Anschließend wurde Acetylchlorid (1.2 eq) hinzugetropft und für fünf Stunden gerührt. Die Reaktionslösung wurde mit Dichlormethan verdünnt und mit gesättigter Ammoniumchlorid-Lösung gequencht. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, getrocknet und entfernt.

Methode 2:

In 5-10 mL trockenem Pyridin wurde die zu acetylierende Substanz (1.0 eq) gelöst, auf 0 °C gekühlt und für 30 Minuten gerührt. Anschließend wurde Acetylchlorid (1.2 eq) hinzugetropft und solang gerührt, bis sich der anfangs gebildete Niederschlag auflöste (ca. 2h). Anschließend wurde mit Ethylacetat verdünnt und 2N Salzsäure hinzugegeben. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, getrocknet und unter verminderten Druck bis zur Trockne eingeengt.

Methode 3:

Die zu acetylierende Substanz wurde in Essigsäureanhydrid gelöst und für eine Stunde auf 100 °C erhitzt. Es wurde auf Eis gegeben und mit Ethylacetat extrahiert. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und unter verminderten Druck bis zur Trockne eingeengt.

Darstellung von aromatischen Aminen aus Nitrogruppen (D)

Aromatische Nitroderivate (1 eq) wurden in der 50-fachen Menge an Ethanol oder Methanol gelöst und mit Palladium (10% auf Aktivkohle, 0.1 Gew.-%) versetzt. Der Lösung wurde unter Wasserstoffatmosphäre gestellt und über Nacht heftig gerührt. Die Reaktionsmischung wurde dann über Celite[®] 535 filtriert und mit dem entsprechenden Lösungsmittel großzügig nachgewaschen. Das Filtrat wurde abschließend bis zur Trockne eingeengt. Das Rohprodukt wurde, falls nicht anders erwähnt, ohne weitere Aufreinigung umgesetzt.

Darstellung von α-Bromketonen (E)

Methode 1: α-Bromierung von aromatischen Ketonen

Zu einem aromatischen Keton (1 eq), in 50 mL Chloroform gelöst, wurde Brom (1 eq), in 5 mL Chloroform gelöst, langsam bei Raumtemperatur hinzugetropft. Die Tropfgeschwindigkeit wurde so gewählt, dass sich die Lösung spontan entfärbt. Anschließend wurde die Reaktionslösung mit Dichlormethan verdünnt und mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Eventuelle Bromrückstände wurden durch Waschen mit 20% iger Natriumhydrogensulfit-Lösung beseitigt. Die organische Phase wurde über Magnesiumsulfat getrocknet und unter vermindertem Druck entfernt. Das Rohprodukt wurde, falls nicht anders erwähnt, ohne weitere Aufreinigung direkt umgesetzt.

Methode 2: a-Bromierung von aliphatischen Ketonen

Zu einem aliphatischen Keton (1 eq), in 5 mL Methanol gelöst, und Zusatz von katalytischer Menge an Kupferpulver wurde reines Brom (1 eq) langsam bei Raumtemperatur hinzugetropft und über Nacht rühren lassen. Ersatzweise wurde auch Kuper(II)bromid verwendet. Anschließend wurde die Reaktionslösung auf Wasser gegeben und mit Diethylether extrahiert. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und unter vermindertem Druck entfernt. Das Rohprodukt wurde ohne weitere Aufreinigung direkt umgesetzt.

Darstellung von N-Aryl-N'-benzoylthioharnstoffen (F) nach²⁹⁶

Zu einer Lösung aus Ammoniumthiocyanat (1.1 eq) in 80 mL Aceton wurde Benzoylchlorid (1.0 eq) gegeben und für 30 Minuten zum Sieden erhitzt. In der Siedehitze wurde, zu dem *in situ* generierten Benzoylisothiocyanat, ein Amin- oder Anilin-Derivat (1.0 eq), in Aceton

gelöst, hinzugegeben und für weitere drei Stunden erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde die Reaktionslösung auf Eis gegeben. Es entsteht ein feinpulvriger Niederschlag. Dieser wurde abfiltriert, mit Wasser nachgewaschen und ohne weitere Aufreinigung umgesetzt.

Darstellung N-substituierter Thioharnstoffe (G) nach²⁹⁶

Das nach der allgemeinen Synthesevorschrift F synthetisierte *N*-Aryl-*N*⁴-benzoylthioharnstoff-Derivat wurde in kleinen Portionen zu einer 85 °C warmen 2M Natronlauge gegeben und für 30 Minuten gerührt. Die Reaktionslösung wurde, nach Abkühlen auf Raumtemperatur, auf Eis gegeben und mit 2M Salzsäure schwach angesäuert. Der sich bildende Niederschlag wurde abfiltriert und mit Diethylether gewaschen. Das Rohprodukt wurde ohne weitere Aufreinigung umgesetzt. In der Regel wurde kein Massenspektrum aufgenommen, da die Thioharnstoff-Derivate in der ESI-MS sowie in der MALDI-MS zu starker Fragmentierung neigen.

Darstellung von 2-Aminothiazol-Derivaten (H) nach²⁸¹

Das nach der allgemeinen Synthesevorschrift E synthetisierte α -Bromketon (1 eq) und der nach der allgemeinen Synthesevorschrift G synthetisierte Thioharnstoff (1 eq) wurden in wasserfreiem Ethanol in der Mikrowelle bei 85 °C unter automatisch angepasstem Energieeintrag für 35 Minuten erhitzt. Die Reaktionslösung wurde mit Diethylether verdünnt und mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet, unter reduziertem Druck entfernt.

Darstellung von Coumarin-Derivaten (I)

Zu einem Salicylaldehyd-Derivat (1 eq) wurde, ohne Zusatz von Lösungsmitteln, Acetessigester (2 eq) hinzugefügt und gerührt. Die Reaktion wurde mit zehn Tropfen Piperidin gestartet und für eine Stunde gerührt. Die entstandene Suspension wurde mit wenig heißem Ethanol in Lösung gebracht und abgekühlt. Der entstandene Feststoff wurde abfiltriert und getrocknet.

5.3. Synthese und Charakterisierung der Cyclooxygenase-Modulatoren

5.3.1. Celecoxib-Derivate und ihre Vorstufen

1,3-Dioxo-1-phenylbutan-2-ylacetat (9)

In 2 mL Dichlormethan wurde Benzoylaceton (500 mg, 3.0 mmol, 1.0 eq) gelöst, in kleinen Portionen Diacetoxyiodobenzol (1.2 g, 3.6 mmol, 1.2 eq) hinzu gegeben und für vier Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wurde entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 5/2 Petolether (PE) / Ethylacetat). Man isolierte ein gelbes Öl.

Ausbeute:	465 mg (69%)
Summenformel:	$C_{12}H_{12}O_4$
Molekulargewicht:	220.22 g / mol
Rf-Wert:	0.41 (5/2; PE / EtOAc)
Substanzcode:	SW 201

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.00-7.96$ (m, 2H, *Ph*-2*H*,6*H*), 7.50-7.44 (m, 3H, *Ph*-3*H*,4*H*,5*H*), 6.24 (s, 1H, -CH-), 2.28 (s, 3H, O-C(O)-CH₃), 2.22 (s, 3H, CH-C(O)-CH₃).

ESI-MS: $m/z = 243.6 [M+Na^+]^+$

4-(4-Hydroxy-3-methyl-5-phenyl-1*H*-pyrazol-1-yl)benzensulfonamid (11)

In 5 mL Ethanol wurde 4-Hydrazinobenzen-1-sulfonamid Hydrochlorid (196 mg, 0.9 mmol, 1 eq) und 1,3-Dioxo-1-phenylbutan-2-ylacetat (**9**, 195mg, 0.9 mmol, 1 eq) für zwei Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wurde entfernt und der Rückstand in Ethylacetat erneut gelöst und mit Hexan trituriert. Man erhält einen gelben Feststoff.

Ausbeute:	149 mg (49%)
Summenformel:	$C_{16}H_{15}N_3O_3S$
Molekulargewicht:	329.37 g / mol
Rf-Wert:	0.43 (5/1; Hex / EtOAc +AcOH)
Substanzcode:	SW 202

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.72$ (d, 2H, J = 8.79 Hz, *Ph*-SO₂NH₂-3*H*,5*H*), 7.40-7.35 (m, 3H, *Ph*-3*H*,4*H*,5*H*), 7.29 (d, 2H, J = 8.78 Hz, *Ph*-SO₂NH₂-2*H*,6*H*), 7.25-7.22 (m, 2H, *Ph*-2*H*,6*H*), 2.25 (s, 3H, -CH₃).

ESI-MS: $m/z = 330.1 [M+H^+]^+$

3-Methyl-5-phenyl-1-(4-sulfamoylphenyl)-1H-pyrazol-4-ylacetat (13)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 4-(4-Hydroxy-3-methyl-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamid (**11**, 329 mg, 1 mmol, 1.0 eq) in 10 mL Pyridin. Der isolierte Rückstand wurde in einer Mischung aus 1/2 Hexan / Ethylacetat suspendiert und der Feststoff abfiltriert. Anschließend wurde aus Ethanol umkristallisiert. Man erhält einen gelben Feststoff.

Ausbeute:	78 mg (20%)
Summenformel:	$C_{18}H_{17}N_3O_4S$
Molekulargewicht:	371.41 g / mol
Rf-Wert:	0.65 (1/2; Hex / EtOAc)
Substanzcode:	SW 209 / ST-1726

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.78$ (d, 2H, J = 8.79 Hz, *Ph*-SO₂NH₂-3*H*,5*H*), 7.43-7.37 (m, 7H, -N*H*₂, *Ph*-SO₂NH₂-3*H*,5*H*, *Ph*-3*H*,4*H*,5*H*), 7.18-7.16 (m, 2H, *Ph*-2*H*,6*H*), 2.23 (s, 3H, Pyrazol-C*H*₃), 2.16 (s, 3H, C(O)-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.77, 142.30, 142.23, 141.65, 133.41, 132.33, 128.96, 128.91, 128.72, 127.31, 126.51, 124.14, 20.00, 10.52.

ESI-MS:	$m/z = 372.7 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 372.10125$	
	gefunden: $m/z = 372.10141$	Abweichung: 0.4 ppm

1-(4-(N-Acetylsulfamoyl)phenyl)-3-methyl-5-phenyl-1*H*-pyrazol-4-ylacetat (14)

4-(4-Hydroxy-3-methyl-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamid (**11**, 329 mg, 1 mmol, 1 eq) und Diisopropylethylamin (155 μ L, 0.9 mmol, 2 eq) wurde in 5 mL Dichlormethan gelöst und Essigsäureanhydrid (91 μ L, 0.9 mmol, 2 eq) dazu gegeben. Nach einer Stunde wurde mit Dichlormethan verdünnt und mit gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde getrocknet, reduziert und mit Hexan trituriert. Man erhält einen gelben Feststoff.

Ausbeute:	53 mg (31%)
Summenformel:	$C_{20}H_{19}N_3O_5S\cdot H_2O$
Molekulargewicht:	413.45 g / mol
Rf-Wert:	0.84 (1/2; Hex / EtOAc)

Substanzcode: SW 205 / ST-1725

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.14$ (br, 1H, -N*H*-) 7.86 (d, 2H, J = 8.70 Hz, *Ph*-SO₂NH₂-3*H*,5*H*), 7.44-7.41 (m, 5H, *Ph*-SO₂NH₂-3*H*,5*H*, *Ph*-3*H*,4*H*,5*H*), 7.19-7.17 (m, 2H, *Ph*-2*H*,6*H*), 2.23 (s, 3H, pyrazol-C*H*₃), 2.16 (s, 3H, Pyrazol-C(O)-C*H*₃), 1.92 (s, 3H, NH-C(O)-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.89, 168.72, 142.95, 142.71, 137.38, 133.52, 132.54, 129.07, 128.95, 128.70, 128.49, 127.17, 123.95, 23.23, 19.99, 10.55.

ESI-MS:	$m/z = 414.0 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 414.11182$	
	gefunden: $m/z = 414.11210$	Abweichung: 0.6 ppm

5.3.2. Etoricoxib-Derivate und ihre Vorstufen

2-(4-(Methylsulfonyl)phenyl)-1-(p-tolyl)ethan-1-on (16)

2-(4-(Methylsulfonyl)phenylessigsäure ((15, 2.6 g, 12.1 mmol, 1 eq) wurde in 20 mL Thionylchlorid gelöst und für drei Stunden zum Sieden erhitzt. Anschließend wurde das Lösungsmittel entfernt und der Rückstand in 50 mL Toluen und 50 mL Chloroform aufgenommen. Es wurde Aluminiumchlorid (3 g, 22 mmol, 2 eq) hinzugefügt und für fünf Stunden erhitzt. Dann wurde 200 g Eis hinzu gegeben, die Phasen geschieden und abgetrennt. Der Rückstand aus der organischen Phase wurde säulenchromatographisch aufgetrennt (Fließmittel: Dichlormethan). Man erhielt einen schwach gelben Feststoff.

Ausbeute:	698 mg (20%)
Summenformel:	$C_{16}H_{16}O_{3}S$
Molekulargewicht:	288.36 g / mol
Rf-Wert:	0.08 (DCM)
Substanzcode:	GA 02

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.97$ (d, 2H, J = 8.2 Hz, *Ph*-CH₃-3*H*,5*H*), 7.86 (d, 2H, J = 8.4 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.52 (d, 2H, J = 8.4 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.35 (d, 2H, J = 8.0 Hz, *Ph*-CH₃-2*H*,6*H*), 4.53 (s, 2H, -CH₂-), 3.20 (s, 3H, SO₂-CH₃), 2.38 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 289.3 [M+H^+]^+$

4-(4-(Methylsulfonyl)phenyl)-5-oxo-5-(p-tolyl)pentannitril (17)

Hergestellt gemäß der Vorschrift für 5-Oxo-4,5-diphenylpentannitril (**23**) aus 2-(4-(Methylsulfonyl)phenyl)-1-(*p*-tolyl)ethan-1-on (**16**, 700 mg, 2.4 mmol) in 20 mL THF / *tert*- Butanol. Säulenchromatographische Aufreinigung mit Fließmittel: 99/1 Dichlormethan / Methanol. Es wurde ein gelbes Pulver isoliert.

Ausbeute:419 mg (50%)Summenformel: $C_{19}H_{19}NO_3S$ Molekulargewicht:341.43 g / molRf-Wert:0.44 (DCM)Substanzcode:GA 03

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.91$ (d, 2H, J = 8.4 Hz, *Ph*-CH₃-3*H*,5*H*), 7.87 (d, 2H, J = 8.3 Hz, *Ph*-CH₃-3*H*,5*H*), 7.54 (d, 2H, J = 8.4 Hz, *Ph*-CH₃-2*H*,6*H*), 7.22 (d, 2H, J = 8.0 Hz, *Ph*-CH₃-2*H*,6*H*), 4.86 (t, 1H, J = 7.18 Hz, -C*H*-), 3.02 (s, 3H, SO₂-C*H*₃), 2.61-2.10 (m, 7H, -CH₂-CH₂-, Ph-CH₃).

ESI-MS: $m/z = 340.0 [M-H^+]^-$

5-(4-(Methylsulfonyl)phenyl)-6-(p-tolyl)-3,4-dihydropyridin-2(1H)-on (18)

Hergestellt gemäß der Vorschrift für 5,6-Diphenyl-3,4-dihydropyridin-2(1H)-on (**24**) aus 4-(4-(Methylsulfonyl)phenyl)-5-oxo-5-(*p*-tolyl)pentannitril (**17**, 420 mg, 1.7 mmol) in 15 mL Essigsäure, mit 5 mL konzentrierter Schwefelsäure. Der Niederschlag wurde säulenchromatographisch aufgetrennt (Fließmittel: 1/2 Hexan / Ethylacetat). Es wurde ein gelbes Pulver isoliert.

Ausbeute:	103 mg (24%)
Summenformel:	$C_{19}H_{19}NO_3S$
Molekulargewicht:	341.43 g / mol
Rf-Wert:	0.29 (1/2; Hex / EtOAc)
Substanzcode:	GA 08

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.62$ (d, 2H, J = 8.6 Hz, *Ph*-CH₃-3*H*,5*H*), 7.08 (d, 2H, J = 8.6 Hz, *Ph*-CH₃-2*H*,6*H*), 6.98 (d, 2H, J = 8.1 Hz, *Ph*-CH₃-3*H*,5*H*), 6.95 (d, 2H, J = 8.3 Hz, *Ph*-CH₃-2*H*,6*H*), 6.83 (br, 1H, -N*H*-), 2.95 (s, 3H, SO₂-C*H*₃), 2.81 (t, 2H, J = 8.1 Hz, C(O)-C*H*₂-), 2.64 (t, 2H, J = 7.9 Hz, CH₂-C*H*₂-), 2.26 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 340.0 [M-H^+]^-$

5-(4-(Methylsulfonyl)phenyl)-6-(p-tolyl)pyridin-2-ol (20)

Hergestellt gemäß der Vorschrift für 5,6-Diphenylpyridin-2-ol **26** aus 5-(4-(Methylsulfonyl)-phenyl)-6-(*p*-tolyl)-3,4-dihydropyridin-2(1*H*)-on (**18**, 100 mg, 0.3 mmol) in 5 mL Dowtherm $A^{\text{(B)}}$. Es wurde ein brauner Feststoff isoliert.

65 mg (63%)	
$C_{19}H_{17}NO_3S$	H ₃ C $^{\prime\prime}$
339.41 g / mol	o"
0.10 (9/1; DCM / MeOH)	N OH
GA 11	H ₃ C
	65 mg (63%) C ₁₉ H ₁₇ NO ₃ S 339.41 g / mol 0.10 (9/1; DCM / MeOH) GA 11

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.88$ (br, 1H, -OH), 7.74 (d, 2H, J = 8.4 Hz, *Ph*-CH₃-3*H*,5*H*), 7.58 (d, 1H, J = 9.3 Hz,), 7.28 (d, 2H, J = 8.38 Hz, *Ph*-CH₃-2*H*,6*H*), 7.12 (pseudo s, 4H, *Ph*-CH₃), 6.46 (d, 1H, J = 9.30 Hz, *py*-4*H*), 3.18 (s, 3H, SO₂-CH₃), 2.29 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 338.0 [M-H^+]^-$

5-(4-(Methylsulfonyl)phenyl)-6-(p-tolyl)pyridin-2-ylacetat (21)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 5-(4-(Methylsulfonyl)phenyl)-6-(*p*-tolyl)pyridin-2-ol (**20**, 62 mg, 0.2 mmol) in 4 mL Pyridin. Säulenchromatographische Aufreinigung (Fließmittel: 98/2 Dichlormethan / Methanol) und Umkristallisation aus Ethanol. Es wurde ein gelber Feststoff isoliert.

Ausbeute: 46 mg (60%)

Summenformel: $C_{21}H_{19}NO_4S$

Molekulargewicht: 381.45 g / mol

Rf-Wert: 0.50 (98/2; DCM / MeOH)

Substanzcode: GA 12 / ST-1859

¹**H-NMR** (300 MHz, DMSO-d₆): $\delta = 8.01$ (d, 1H, J = 8.2 Hz, py-3H), 7.87 (d, 2H, J = 8.5 Hz, Ph-CH₃-3H,5H), 7.49 (d, 2H, J = 8.5 Hz, Ph-CH₃-2H,6H), 7.31 (d, 1H, J = 8.2 Hz, py-4H), 7.16 (d, 2H, J = 8.2 Hz, Ph-CH₃-2H,6H), 7.09 (d, 2H, J = 8.1 Hz, Ph-CH₃-3H,5H), 3.23 (s, 3H, SO₂-CH₃), 2.35 (s, 3H, Ph-CH₃), 2.27 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 168.95, 156.61, 155.16, 144.02, 142.69, 139.56, 137.87, 135.27, 132.18, 130.29, 129.57, 128.57, 126.93, 115.02, 43.28, 20.82, 20.66.

ESI-MS:	$m/z = 383.0 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 382.11076$	
	gefunden: $m/z = 382.11037$	Abweichung: 1.0 ppm

5-Oxo-4,5-diphenylpentannitril (23)

Acrylnitril (2 mL, 30.6 mmol, 1.2 eq), in 1 mL THF gelöst, wurde langsam zu einer Lösung aus Deoxybenzoin (5 g, 25.5 mmol, 1 eq) und Kalium-*tert*-butanolat (1 g, 10 mmol, 0.4 eq),

in 10 mL *tert*-Butanol und 10 mL THF, gelöst. Das Gemisch wurde für 48 Stunden auf 40 °C erhitzt. Die Lösung wurde mit 2M Salzsäure gequencht und mit Ethylacetat extrahiert. Die organische Phase wurde gewaschen, getrocknet und entfernt. Der Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 5/1 Hexan / Ethylacetat) und man isolierte einen weißer Feststoff.

Ausbeute:	2.04 (32%)
Summenformel:	C ₁₇ H ₁₅ NO
Molekulargewicht:	249.31 g / mol
Rf-Wert:	0.20 (9/1; Hex / EtOAc)
Substanzcode:	SW 208

¹**H-NMR** (250 MHz, CDCl₃): δ = 7.92-7.89 (m, 2H, *Ph*-C(O)-3*H*,5*H*), 7.45 (m, 8H, *Ph*, *Ph*-C(O)), 4.68 (t, 1H, *J* = 6.7 Hz, -CH-), 2.43-2.10 (m, 4H, -CH₂-CH₂-).

ESI-MS: $m/z = 250.5 [M+H^+]^+$

5,6-Diphenyl-3,4-dihydropyridin-2(1H)-on (24)

In 20 mL Essigsäure, mit 8 mL konzentrierter Schwefelsäure, wurde langsam 5-Oxo-4,5diphenylpentannitril (**23**, 2.04 g, 8.2 mmol) dazu gegeben und für vier Stunden auf 60 °C erhitzt. Es wurde auf Eis gegeben und neutralisiert. Der ausgefallene Feststoff wurde abfiltriert. Man isolierte einen weißen Feststoff.

Ausbeute:	1.49g (73%)
Summenformel:	C ₁₇ H ₁₅ NO
Molekulargewicht:	249.31 g / mol
Rf-Wert:	0.31 (2/1; Hex / EtOAc)
Substanzcode:	SW 210

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.26-6-97$ (m, 10H, *Ph*), 6.88 (br, 1H, -N*H*-), 2.91-2.84 (m, 2H, C(O)-C*H*₂-), 2.73-2.66 (m, 2H, CH₂-C*H*₂-).

ESI-MS: $m/z = 272.1[M+Na^+]^+$

5,6-Diphenylpyridin-2-ol (26)

In 5 mL eines Biphenyl-Diphenylether-Gemisches (Dowtherm $A^{\text{(B)}}$) wurden 5,6-Diphenyl-3,4dihydropyridin-2(1*H*)-on (**24**, 500 mg, 2 mmol) gelöst und mit Palladium (10% ig auf Kohle, 100 mg) versetzt. Es wurde für 72 Stunden mit einem Sandbad auf 230 °C erhitzt.

Ausbeute: 496 mg (quantitativ)

Summenformel:	C ₁₇ H ₁₃ NO	
Molekulargewicht:	247.30 g / mol	
Rf-Wert:	0.08 (98/2; DCM / MeOH)	N [×] OH
Substanzcode:	SW 211	
¹ H-NMR (250 MHz, 7.30-7.00 (m, 10H, <i>P</i>	DMSO-d ₆): $\delta = 11.51$ (br, 1H, -OH), 7.54 (d, 1H, J = <i>h</i>), 6.45 (d, 1H, $J = 7.5$ Hz, <i>py</i> -4H).	7.5 Hz, <i>py</i> -3 <i>H</i>),
ESI-MS:	$m/z = 248.2 [M+H^+]^+$	

5,6-Diphenylpyridin-2-ylacetat (27)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 5,6-Diphenylpyridin-2-ol (**26**, 496 mg, 2 mmol) in 20 mL Pyridin. Es wurde ein klares Öl isoliert nach säulenchromatographischer Aufreinigung (Fließmittel: 1/1 Hexan / Ethylacetat).

Ausbeute:	212 mg (36%)
Summenformel:	$C_{19}H_{15}NO_2$
Molekulargewicht:	289.33 g / mol
Rf-Wert:	0.64 (1/1; Hex / EtOAc)
Substanzcode:	SW 212

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.97 (d, 1H, *J* = 7.5 Hz, *py*-3*H*), 7.34-7.18 (m, 11H, *Ph*, *py*-4*H*), 2.34 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.92, 156.04, 154.87, 142.48, 138.61, 138.45, 133.84, 129.43, 129.24, 128.27, 127.94, 127.68, 127.53, 115.01, 20.75.

ESI-MS: $m/z = 312.2 [M+Na^+]^+$

5.3.3. Rofecoxib-Derivate und ihre Vorstufen

4-Methylbenzoylameisensäureethylester (29)

Zu einer Lösung aus Oxalsäurediethylester (1.7 mL, 12.5 mmol, 1 eq) in 25 mL trockenem Diethylether wurde bei -70 °C eine 0.5M *p*-Tolylmagnesiumbromid-Lösung (25 mL, 12.5 mmol, 1 eq) langsam hinzugetropft. Die Reaktionslösung wurde für zwei Stunden bei -70 °C und anschließend bei Raumtemperatur gerührt. Die Reaktion wurde mit 15 mL gesättigter Ammoniumchlorid-Lösung gequencht, und die organische Phase mit 2N Salzsäure und gesättigter Natrimchlorid-Lösung gewaschen. Trocknen über Natriumsulfat und entfernen des Lösungsmittels ergab ein gelbes Öl. Ausbeute: 1.23 g (51%)

Summenformel: $C_{11}H_{12}O_3$

Molekulargewicht: 192.21 g / mol

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 7.85$ (d, 2H, J = 8.14 Hz, *Ph*-2*H*,6*H*), 7.43 (d, 2H, J = 7.99 Hz, *Ph*-3*H*,5*H*), 4.41 (q, 2H, J = 7.12 Hz, -C*H*₂-), 2.42 (s, 3H, -C*H*₃), 1.32 (t, 3H, J = 7.13 Hz, CH₂-C*H*₃).

ESI-MS: $m/z = 214.6 [M+Na^+]^+$

4-Methylbenzoylameisensäure (30)

4-Methylbenzoylameisensäureethylester (**29**, 1.23 g, 6.4 mmol) wurde in 5 mL 2M Natronlauge suspendiert und wurde in der Mikrowelle bei 110 °C für acht Minuten erhitzt. Die Reaktionslösung wurde mit 30 mL Wasser verdünnt und mit 50 mL Diethylether gewaschen. Die wässrige Phase wurde mit 2N Salzsäure angesäuert und dreimal mit je 50 mL Diethylether extrahiert. Die organische Phase wurde getrocknet und eingeengt. Das erhaltene Öl wurde ohne weitere Aufreinigung umgesetzt.

Ausbeute: 752 mg (72%)

Summenformel: $C_9H_8O_3$

Molekulargewicht: 164.16 g / mol

Ч3С ОН

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.82 (d, 2H, *J* = 8.14 Hz, *Ph*-2*H*,6*H*), 7.42 (d, 2H, *J* = 7.99 Hz, *Ph*-3*H*,5*H*), 2.41 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 162.5 [M-H^+]^-$

3-(4-(Methylsulfonyl)phenyl)-4-*p*-tolylfuran-2,5-dion (31)

4-Methylbenzoylameisensäure (**30**, 752 mg, 4.6 mmol, 1 eq), und 4-(Methylsulfonyl)phenylessigsäure (981 mg, 4.6 mmol, 1 eq) wurden in 15 mL Essigsäureanhydrid gelöst und für dreieinhalb Stunden zum Sieden erhitzt. Die Reaktion wurde in 50 mL Wasser gegeben und mit Natriumcarbonat neutralisiert. Es wurde mit EtOAc extrahiert, über Natriumsulfat getrocknet und eingeengt. Man erhält einen roten Feststoff.

Ausbeute:1.48 g (95%)Summenformel: $C_{18}H_{14}O_5S$ Molekulargewicht:342.36 g/mol

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.09$ (d, 2H, J = 8.43 Hz, *Ph*-

SO₂CH₃-3*H*,5*H*), 7.73 (d, 2H, *J* = 8.42 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.41 (d, 2H, *J* = 8.27 Hz, *Ph*-CH₃-2*H*,6*H*), 7.34 (d, 2H, *J* = 8.27 Hz, *Ph*-CH₃-3*H*,5*H*), 3.33 (s, 3H, SO₂-CH₃), 2.40 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 341.5 [M-H^+]^-$

1-Hydroxy-3-(4-(methylsulfonyl)phenyl)-4-(*p*-tolyl)-1*H*-pyrrole-2,5-dion (32)

3-(4-(Methylsulfonyl)phenyl)-4-*p*-tolylfuran-2,5-dion (**31**, 506 mg, 1.5 mmol, 1.0 eq), und Hydroxylaminhydrochlorid (240 mg, 3.4 mmol, 2.2 eq) wurden in 25 mL trockenem Pyridin für drei Stunden zum Sieden erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand in Chloroform aufgenommen. Die organische Phase wurde mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum entfernt. Man erhält einen orange-farbenen Schaum. H₃C₂ \downarrow^{O}

Ausbeute:515 mg (98%)Summenformel: $C_{18}H_{15}NO_5S$

Molekulargewicht: 357.38 g / mol

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.73$ (s, 1H, -OH), 7.96 (d, 2H, J = 8.39 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.62 (d, 2H, J = 8.37 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.28 (d, 2H, J = 8.21 Hz, *Ph*-CH₃-2*H*,6*H*), 7.24 (d, 2H, J = 8.22 Hz, *Ph*-CH₃-3*H*,5*H*), 3.26 (s, 3H, SO₂-CH₃), 2.32 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 356.5 [M-H^+]^-$

3-(4-(Methylsulfonyl)phenyl)-2,5-dioxo-4-(*p*-tolyl)-2,5-dihydro-1*H*-pyrrol-1-ylacetat (33)

Hergestellt gemäß allgemeier Synthesevorschrift C Methode 1 aus 1-Hydroxy-3-(4-(methylsulfonyl)phenyl)-4-(*p*-tolyl)-1*H*-pyrrole-2,5-dion (**32**, 250 mg, 0.7 mmol, 1 eq) in 5 mL Dichlormethan. Die Reaktion wurde mit Diethylether verdünnt und der ausfallende gelbe Feststoff wurde abfiltriert. Abschließend wurde aus Methanol umkristallisiert.

Ausbeute:	157 mg (56%)
Summenformel:	$C_{20}H_{17}NO_6S$
Molekulargewicht:	399.42 g / mol
Substanzcode:	ST-1454

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.94$ (d, 2H, J = 8.51 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.68 (d, 2H, J = 8.52 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.36 (d, 2H, J = 8.18 Hz, *Ph*-CH₃-2*H*,6*H*), 7.19 (d, 2H, J = 8.05 Hz, *Ph*-CH₃-3*H*,5*H*), 3.08 (s, 3H, SO₂-CH₃), 2.39 (s, 3H, Ph-CH₃), 2.30 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (62 MHz, CDCl₃): δ = 166.82, 164.46, 164.44, 142.05, 141.67, 137.00, 133.65, 130.77, 129.91, 129.82, 127.71, 124.07, 44.34, 21.58, 17.56.

ESI-MS:	m/z = 400.2 [N	$M+H^+]^+$			
Elementaranalyse:	berechnet:	C 60.14	H 4.29	N 3.51	S 8.03
	gefunden:	C 60.07	H 4.37	N 3.51	S 8.03

2-Brom-1-(4-(methylsulfonyl)phenyl)ethan-1-on (35) nach³⁰⁵

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 1-(4-(Methylsulfonyl)phenyl)ethan-1-on (2 g, 10 mmol) in 40 mL Chloroform. Man erhält einen pulvrigen weißen Feststoff

Ausbeute:	2.6 g (94%)
Summenformel:	C ₉ H ₉ BrO ₃ S
Molekulargewicht:	277.13 g / mol
Substanzcode:	SW 505

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.17$ (d, 2H, J = 8.6 Hz, *Ph*-3*H*,5*H*), 8.08 (d, 2H, J = 8.6 Hz, *Ph*-2*H*,6*H*), 4.45 (s, 2H, -CH₂-), 3.09 (s, 3H, -CH₃).

2-(4-(Methylsulfonyl)phenyl)-2-oxoethyl-2-p-tolylessigsäure (37) nach³⁰⁵

In 15 mL Acetonitril wurden *p*-Tolylessigsäure (1.5 g, 10 mmol, 1 eq), 2-Brom-1-(4-(methylsulfonyl)phenyl)ethan-1-on (**35**, 2.7 g, 9.4 mmol, 1 eq) und Triethylamin (2.7 ml, 20 mmol, 2 eq) für 30 Minuten zum Sieden erhitzt. Das Lösungsmittel wurde entfernt, der Rückstand in Ethylacetat aufgenommen und mit gesättigter Natriumhydrogencarbonat-Lösung, 10% iger Zitronensäure und gesättigter Natriumchlorid-Lösung gewaschen. Die organsiche Phase wurde entfernt und der Rückstand, ein brauner Feststoff, ohne weitere Aufreinigung umgesetzt.

Ausbeute:	2.71 g (78%)
Summenformel:	$C_{18}H_{18}O_5S$
Molekulargewicht:	346.40 g / mol
Rf-Wert:	0.43 (1/1; Hex / EtOAc)
Substanzcode:	SW 506

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.04$ (pseudo s, 4H, *Ph*-SO₂-CH₃), 7.23-7.13 (m, 4H, *Ph*-CH₃), 5.13 (s, 2H, C(O)-CH₂-O), 3.76 (s, 2H, C(O)-CH₂-Ph-CH₃), 3.07 (s, 3H, SO₂-CH₃), 2.34 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 347.7 [M+H^+]^+$

4-(4-(Methylsulfonyl)phenyl)-3-(p-tolyl)furan-2(5H)-on (38, Rofecoxib) nach³⁰⁵

In 15 mL Dimethylformaid wurde 2-(4-(Methylsulfonyl)phenyl)-2-oxoethyl-2-*p*-tolylessigsäure (**37**, 2.71 g, 7.8 mmol, 1 eq) und Diisopropylethylamin (6.6 mL, 39.0 mmol, 5 eq) gelöst und für zwei Stunden bei Raumtemperatur gerührt. Es wurde auf Eis gegeben, mit 2N Salzsäure schwach angesäuert und der ausfallende gelbe Feststoff abfiltriert. Nach säulenchromatographische Aufreinigung (Fließmittel: 1/1 Hexan / Ethylacetat) isolierte man einen orangenen Feststoff.

Ausbeute:	960 mg (37%)
Summenformel:	$C_{18}H_{16}O_4S$
Molekulargewicht:	328.38 g / mol
Rf-Wert:	0.22 (1/1; Hex / EtOAc)
Substanzcode:	SW 507

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.92$ (d, 2H, J = 8.2 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.51 (d, 2H, J = 8.2 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.28 (d, 2H, J = 8.0 Hz, *Ph*-CH₃-2*H*,6*H*), 7.19 (d, 2H, J = 7.9 Hz, *Ph*-CH₃-3*H*,5*H*), 5.17 (s, 2H, -CH₂-), 3.06 (s, 3H, SO₂-CH₃), 2.37 (s, 3H, Ph-CH₃).

4-(4-(Methylsulfonyl)phenyl)-3-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-on (39)

In ein Mikrowellenvial wurden Rofecoxib (**38**, 70 mg, 0.2 mmol) und Ammoniumacetat (100 mg, Überschuss) und 0.1 mL Essigsäure gegeben und für 15 Minuten auf 200 °C erhitzt. Die Schmelze wurde in 2N Salzsäure aufgelöst und mit Ethylacetat extrahiert. Die organische Phase wurde entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol). Man isolierte einen schwach gelben Feststoff.

Ausbeute:	50 mg (76%)
Summenformel:	$C_{18}H_{17}NO_3S$
Molekulargewicht:	327.40 g / mol
Rf-Wert:	0.10 (98/2; DCM / MeOH)
Substanzcode:	SW 525

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.63$ (s, 1H, -N*H*-), 7.87 (s, 2H, J = 8.5 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.56 (d, 2H, J = 8.5 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.16 (pseudo s, 4H, *Ph*-CH₃), 4.38 (s, 2H, -CH₂-), 3.22 (s, 3H, SO₂-CH₃), 2.31 (s, 3H, Ph-CH₃).

4-(4-(Methylsulfonyl)phenyl)-3-(p-tolyl)-1H-pyrrol-2-ylacetat (40)

In 3 mL DMF wurde 4-(4-(Methylsulfonyl)phenyl)-3-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-on (**39**, 50 mg, 0.1 mmol, 1.0 eq) gelöst und mit Natriumhydrid (60% ig in Mineralöl, 11 mg, 0.4 mmol, 3.0 eq) für 30 Minuten gerührt. Anschließend wurde Acetylchlorid (14 μ L, 0.1 mmol, 1.2 eq) hinzugegeben und für zwei Stunden gerührt. Das DMF wurde entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Das isolierte Öl wurde in Chloroform aufgenommen und mit Hexan trituiert. Man erhält einen weißen Feststoff.

Ausbeute:	28 mg (49%)
Summenformel:	$C_{20}H_{19}NO_4S\cdot H_2O$
Molekulargewicht:	369.43 g / mol
Rf-Wert:	0.64 (2/1; Hex / EtOAc)
Substanzcode:	SW 529 / ST-1860

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 11.57 (s, 1H, -N*H*-), 7.73 (d, 2H, *J* = 8.4 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.35 (d, 2H, *J* = 8.5 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.12 (d, 2H, *J* = 7.9 Hz, *Ph*-CH₃-2*H*,6*H*), 7.18 (m, 3H, *Pyrrol*-5*H*, *Ph*-CH₃-3*H*,5*H*), 3.17 (s, 3H, SO₂-CH₃), 2.29 (s, 3H, Ph-CH₃), 2.19 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.30, 141.20, 137.08, 135.10, 133.97, 129.94, 129.03, 128.77, 127.30, 126.83, 126.76, 119.20, 112.60, 108.05, 43.48, 20.65, 20.05.

ESI-MS:	$m/z = 368.0 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 62.00	H 5.46	N 3.62	S 8.28
	gefunden:	C 62.33	H 5-09	N 3.52	S 8.21

4-(4-(Methylsulfonyl)phenyl)-3-(p-tolyl)-1H-pyrrol-2-ol (42)

Das Tautomer von 4-(4-(Methylsulfonyl)phenyl)-3-(*p*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-on (**39**) wurde durch rühren in DMF und Triethylamin erhalten. Im Gegensatz zu **39** zeigt das Tautomer starke Fluoreszenz und Löslichkeit in deuteriertem Chloroform.

Summenformel:	$C_{18}H_{17}NO_3S$
Molekulargewicht:	327.40 g / mol
Rf-Wert:	0.75 (98/2; DCM / MeOH)
Substanzcode:	SW 526

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.93$ (s, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-3H,5H), 7.71 (s, 1H, *Pyrrol-5H*), 7.56 (d, 2H, J = 8.5 Hz, Ph-SO₂-CH₃-2H,6H), 7.34 (d, 2H, J = 8.1 Hz, Ph-CH₃-2H,6H), 7.18 (d, 2H, J = 8.0 Hz, Ph-CH₃-3H,5H), 3.07 (s, 3H, SO₂-CH₃), 2.38 (s, 3H, Ph-CH₃).

5.3.4. Valdecoxib-Derivate und ihre Vorstufen

3-(4-(Methylsulfonyl)phenyl)-3-oxo-2-*p*-tolylpropionsäureethylester (48)

4-Methylsulfonylbenzoesäure (2.05 g, 10.2 mmol, 1.0 eq) wurde in 20 mL Thionylchlorid gelöst, mit katalytischen Mengen an DMF versetzt und für fünf Stunden zum Sieden erhitzt. Überschüssiges Thionylchlorid wurde abdestilliert und der Rückstand kristallisiert mit der Zeit zu einem weißen Feststoff aus. Dieser wurde in 5 mL trockenem THF gelöst und zu einer auf -70 °C gekühlten Lösung bestehend aus 4 Methylphenylessigsäureehylester (2.2 mL, 12.3 mmol, 1.2 eq) und Lithiumdiisopropylamid (2M in THF, 10.2 mL, 20.4 mmol, 2.0 eq) langsam dazu getropft und für 16 Stunden bei Raumtemperatur gerührt. Dann wurden mit 40 mL gesättigter Ammoniumchlorid-Lösung gequencht und dreimal mit 50 mL Ethylacetat extrahiert. Nach dem Trocknen und Entfernen des Lösungsmittels wurde ein gelb/orange-farbenes Öl isoliert, welches säulenchromatographisch aufgetrennt (Fließmittel: 1/1 Hexan / Ethylacetat). Man erhält ein gelbes Öl, welches mit der Zeit erstarrt.

Ausbeute:	1.93 g (53%)
Summenformel:	$C_{19}H_{20}O_5S$
Molekulargewicht:	360.42 g / mol
Rf-Wert:	0.56 (1/1; Hex / EtOAc)
Substanzcode:	SW 372

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.22$ (d, 2H, J = 8.59 Hz, Ph-SO₂CH₃-3H,5H), 8.04 (d, 2H, J = 8.58 Hz, Ph-SO₂CH₃-2H,6H), 7.27 (d, 2H, J = 8.12 Hz, Ph-CH₃-3H,5H), 7.16 (d, 2H, J = 7.95 Hz, Ph-CH₃-2H,6H), 6.19 (s, 1H, -CH-), 4.14 (q, 2H, J = 7.08 Hz, $-CH_2$ -), 3.27 (s, 3H, SO₂-CH₃), 2.25 (s, 3H, Ph-CH₃), 1.17 (t, 3H, J = 7.11 Hz, CH₂-CH₃).

ESI-MS: $m/z = 359.5 [M-H^+]^-$

3-(4-(Methylsulfonyl)phenyl)-4-p-tolylisoxazol-5-ol (49)

<u>Methode 1:</u> In 20 mL wasserfreiem Ethanol wurde 3-(4-(Methylsulfonyl)phenyl)-3-oxo-2-*p*-tolylpropionsäureethylester (**48**, 660 mg, 1.8 mmol, 1 eq) und Hydroxylaminhydrochlorid (1.2 g, 18 mmol, 10 eq) für 48 Stunden zum Sieden erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand aus einem Wasser / Ethanol Gemisch umkristallisiert. Man isoliert einen schwach gelben Feststoff.

Ausbeute : 325 mg (54%)

<u>Methode 2:</u> In 5 mL wasserfreiem Ethanol wurde 3-(4-(Methylsulfonyl)phenyl)-4-(*p*-tolyl)isoxazol-5-amin (**58**, 353 mg, 1 mmol, 1.0 eq) und 1N Salzsäure (1 mL, 1 mmol, 1 eq)

für 24 Stunden zum Sieden erhitzt. Nach dem Abkühlen kristallisierte langsam ein schwach gelber Feststoff aus.

Ausbeute:	200 mg (62%)	
Summenformel:	$C_{17}H_{15}NO_4S$	H ₃ C S
Molekulargewicht:	329.37 g / mol	O' L
Rf-Wert:	0.08 (98/2; DCM / MeOH)	
Substanzcode:	SW 374	н _з с он
		-

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.01$ (d, 2H, J = 8.48 Hz, Ph-SO₂CH₃-3H,5H), 7.68 (d, 2H, J = 8.42 Hz, Ph-SO₂CH₃-2H,6H), 7.15 (pseudo s, 4H, Ph-CH₃), 3.27 (s, 3H, SO₂-CH₃), 2.28 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 328.0 [M-H^+]^-$

3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)isoxazol-5-ylacetat (50)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 3-(4-(Methylsulfonyl)phenyl)-4-*p*-tolylisoxazol-5-ol (**49**, 326 mg, 0.9 mmol, 1 eq) in 20 mL Dichlormethan. Der isolierte Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol). Abschließend wurde aus Ethanol / Wasser umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute:	100 mg (27%)
Summenformel:	$C_{19}H_{17}NO_5S$
Molekulargewicht:	371.41 g / mol
Rf-Wert:	0.62 (95/5; DCM / MeOH)
Substanzcode:	SW 378 / ST-1836

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.01$ (d, 2H, J = 8.48 Hz, Ph-SO₂CH₃-3H,5H), 7.74 (d, 2H, J = 8.49 Hz, Ph-SO₂CH₃-2H,6H), 7.12 (d, 2H, J = 8.16 Hz, Ph-CH₃-2H,6H), 7.08 (d, 2H, J = 8.29 Hz, Ph-CH₃-3H,5H), 3.31 (s, 3H, SO₂-CH₃), 2.40 (s, 3H, C(O)-CH₃), 2.26 (s, 3H, Ph-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 165.14, 164.70, 151.43, 142.03, 137.72, 132.96, 130.02, 129.00, 128.29, 126.76, 126.73, 123.99, 107.86, 43.05, 22.80, 20.63.

ESI-MS:	$m/z = 394.8 [M+Na^+]^+$				
Elementaranalyse:	berechnet:	C 61.44	H 4.61	N 3.77	S 8.63
	gefunden:	C 61.42	H 4.44	N 3.74	S 8.79
3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)-1H-pyrazol-5-ol (51)

Eine Mischung aus 3-(4-(Methylsulfonyl)phenyl)-3-oxo-2-*p*-tolylpropionsäureethylester (**48**, 700 mg, 1.9 mmol, 1.0 eq), Essigsäure (94 μ L, 2.1 mmol, 1.1 eq) und Hydrazinhydrat (107 μ L, 2.1 mmol, 1.1 eq) wurde in 40 mL Dioxan, mit 4 mL Wasser, über Nacht zum Sieden erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand in 15 mL Wasser aufgenommen. Es fällt ein leicht gelber Feststoff aus.

Ausbeute:	398 mg (62%)
Summenformel:	$C_{17}H_{16}N_2O_3S$
Molekulargewicht:	328.39 g / mol
Rf-Wert:	0.05 (98/2; DCM / MeOH)
Substanzcode:	SW 373

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.26$ (br, 1H, -N*H*-), 10.06 (br, 1H, -O*H*), 7.89 (d, 2H, J = 8.36 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.57 (d, 2H, J = 8.51 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.28 (pseudo s, 4H, *Ph*-CH₃), 3.23 (s, 3H, SO₂-CH₃), 2.28 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 327.6 [M-H^+]^-$

1-Acetyl-3-(4-(methylsulfonyl)phenyl)-4-(*p*-tolyl)-1*H*-pyrazol-5-ylacetat (52)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 3-(4-(Methylsulfonyl)-phenyl)-4-(p-tolyl)-1H-pyrazol-5-ol (**51**, 200 mg, 0.6 mmol, 1.0 eq) in 5 mL Pyridin. Der isolierte Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 DCM / MeOH). Man isoliert einen zitronen-farbigen Feststoff.

Ausbeute:	67 mg (26%)
Summenformel:	$C_{21}H_{20}N_2O_5S$
Molekulargewicht:	412.46 g / mol
Rf-Wert:	0.73 (95/5; DCM / MeOH)
Substanzcode:	SW 379A / ST-1837

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.95$ (d, 2H, J = 8.39 Hz, Ph-SO₂CH₃-3H,5H), 7.68 (d, 2H, J = 8.38 Hz, Ph-SO₂CH₃-2H,6H), 7.24 (d, 2H, J = 8.00 Hz, Ph-CH₃-2H,6H), 7.07 (d, 2H, J = 8.01 Hz, Ph-CH₃-3H,5H), 3.24 (s, 3H, SO₂-CH₃), 2.71 (s, 3H, N-C(O)-CH₃), 2.33 (s, 3H, Ph-CH₃), 2.29 (s, 3H, O-C(O)-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 169.74, 167.96, 148.79, 143.32, 141.06, 137.72, 136.16, 129.57, 128.80, 128.52, 127.34, 127.22, 127.18, 125.07, 113.39, 43.19, 22.82, 20.72, 19.96.

ESI-MS: $m/z = 414.1 \quad [M+2H^+]^+$

Elementaranalyse: berechnet: C 61.15 H 4.89 N 6.79 S 7.77

	Experiment	teller Teil		
gefunden:	C 60.86	H 5.02	N 6.50	S 7.72

3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)-1H-pyrazol-5-ylacetat (53)

In 5 mL Pyridin wurde 3-(4-(Methylsulfonyl)phenyl)-4-(*p*-tolyl)-1*H*-pyrazol-5-ol (**51**, 200 mg, 0.6 mmol, 1.0 eq) gelöst, auf 0 °C gekühlt und Essigsäureanhydrid (75 μ L, 0.7 mmol, 1.2 eq) dazu getropft. Es wurde exakt für 30 Minuten gerührt, dann das Lösungsmittel entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man isoliert einen blass-gelben Feststoff.

Ausbeute:	84 mg (37%)	H₃C、╱
Summenformel:	$C_{19}H_{18}N_2O_4S\cdot H_2O$	
Molekulargewicht:	370.42 g / mol	NH
Rf-Wert:	0.22 (98/2; DCM / MeOH)	
Substanzcode:	SW 379B / ST-1835	

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 13.35$ (br, 1H, -N*H*-), 7.95 (d, 2H, J = 8.46 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.62 (d, 2H, J = 8.51 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.18 (d, 2H, J = 7.94 Hz, *Ph*-CH₃-2*H*,6*H*), 7.05 (d, 2H, J = 8.08 Hz, *Ph*-CH₃-3*H*,5*H*), 3.26 (s, 3H, SO₂-CH₃), 2.31 (s, 3H, Ph-CH₃), 2.21 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 168.64, 153.09, 140.63, 138.19, 136.43, 133.94, 129.43, 128.86, 128.63, 127.90, 127.34, 127.22, 109.66, 43.14, 20.67, 20.14.

ESI-MS:	$m/z = 369.5 [M-H^+]^-$				
Elementaranalyse:	berechnet:	C 58.75	H 5.19	N 7.21	S 8.25
	gefunden:	C 58.67	H 5.10	N 7.23	S 7.96

4-(Methylsulfonyl)benzaldehydoxim (55)

In einem Gemisch aus 15 mL Wasser, 20 g Eis und 15 mL Ethanol wurde 4-Methylsulfonylbenzaldehyd (3 g, 16.3 mmol, 1.0 eq) gelöst, auf 0 °C gekühlt und mit Hydroxylaminhydrochlorid (1.6 g, 22.8 mmol, 1.4 eq) versetzt. Hinzu wurde 15 mL einer 33% ige Natronlauge langsam hinzugetropft (über eineinhalb Stunden), sodass die Reaktionslösung 10 °C nicht überschreitet. Es wurde dann auf Raumtemperatur erwärmt und nochmals eine Stunde lang gerührt. Anschließend wurde mit konzentrierter Salzsäure neutralisiert und der entstandene weiße Niederschlag mit Diethylether extrahiert. Die organische Phase wurde getrocknet und unter reduziertem Druck entfernt. Man isoliert einen schwach gelben Feststoff.

Ausbeute: 3.15 g (97%)

Summenformel: C₈H₉NO₃S Molekulargewicht: 199.22 g / mol Rf-Wert: 0.27 (98/2; DCM / MeOH) SW 142 Substanzcode: ¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.69$ (s, 1H, C(NOH)-*H*), 8.27 (s, 1H, -O*H*), 7.92 (d, 2H, *J* = 8.50 Hz, *Ph*-3*H*,5*H*), 7.86 (d, 2H, *J* = 8.52 Hz, *Ph*-2*H*,6*H*), 3.23 (s, 3H, -CH₃). **ESI-MS:** $m/z = 197.4 [M+H^+]^+$

N-Hydroxy-4-(methylsulfonyl)benzimidoylchlorid (56)

In 20 mL DMF wurde 4-(Methylsulfonyl)benzaldehydoxim (55, 1.5 g, 7.5 mmol, 1 eq) gelöst und N-Chlorsuccinimid (1.0 g, 7.5 g, 1 eq) in kleinen Portionen hinzu gegeben. Die Reaktionslösung wurde für zweieinhalb Stunden gerührt und dann auf Eis gegeben. Es wurde mit Diethylether extrahiert und anschließend die organische Phase mir Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Trockenen über Natriumsulfat und entfernen des organischem Lösungsmittels ergab einen weißen Feststoff, welcher ohne weitere Aufreinigung verwendet wurde.

Ausbeute:	1.42 (82%)	
Summenformel:	C ₈ H ₈ ClNO ₃ S	OH N
Molekulargewicht:	233.67 g / mol	o, CI
Rf-Wert:	0.67 (98/2; DCM / MeOH)	H ₃ C [']
Substanzcode:	SW 144	
¹ H-NMR (250 MHz, 3H, -С <i>H</i> ₃).	DMSO-d ₆): $\delta = 12.84$ (s, 1H, -OH), 8.03 (pseudo d,	4H, <i>Ph</i>), 3.26 (s,
ESI-MS:	$m/z = 231.4 [\text{M-H}^+]^-$	

3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)isoxazol-5-amin (58)

In 15 mL absolutem THF wurde 4-Methylbenzylcyanid (1.1 mL, 8.5 mmol, 4 eq) gelöst, auf -70 °C gekühlt und langsam eine 1.7M tert-Butyllithium-Lösung (5.0 mL, 8.5 mmol, 4 eq) hinzugetropft. Nach 30 Minuten wurde N-Hydroxy-4-(methylsulfonyl)benzimidoylchlorid (56, 500 mg, 2.0 mmol, 1 eq), in 2 mL THF gelöst, dazu getropft. Die Reaktion wurde nach 24 Stunden mit gesättigter Ammoniumchlorid-Lösung gequencht und mit Ethylacetat extrahiert. Nach Entfernung des Lösungsmittels wurde der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Man erhält einen weiß aufschäumenden Feststoff.

Ausbeute:	586 mg (83%)	
Summenformel:	$C_{17}H_{16}N_2O_3S$	H ₃ C O
Molekulargewicht:	328.39 g / mol	o' L
Rf-Wert:	0.53 (2/1; Hex / EtOAc)	
Substanzcode:	SW 182	H ₃ C NH ₂

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.88$ (d, 2H, J = 8.51 Hz, Ph-SO₂CH₃-3*H*,5*H*), 7. 66 (d, 2H, J = 8.52 Hz, Ph-SO₂CH₃-2*H*,6*H*), 7.19 (d, 2H, J = 7.85 Hz, Ph-CH₃-2*H*,6*H*), 7.05 (d, 2H, J = 8.09 Hz, Ph-SO₂CH₃-3*H*,5*H*), 4.64 (br, 2H, -NH₂), 3.05 (s, 3H, SO₂-CH₃), 2.37 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 351.5 [M+Na^+]^+$

N-(3-(4-(methylsulfonyl)phenyl)-4-(*p*-tolyl)isoxazol-5-yl)acetamid (59)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 3-(4-(Methylsulfonyl)phenyl)-4-(*p*-tolyl)isoxazol-5-amin (**58**, 100 mg, 0.3 mmol, 1.0 eq) in 5 mL Dichlormethan. Der isolierte Rückstand wurde mehrfach aus Chloroform / Hexan umkristallisiert, wobei man farblose Kristalle isolierte.

Ausbeute:	38 mg (34%)
Summenformel:	$C_{19}H_{18}N_2O_4S$
Molekulargewicht:	370.42 g / mol
Rf-Wert:	0.26 (98/2; DCM / MeOH)
Substanzcode:	SW 185 / ST-1646

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.57 (br, 1H, -N*H*-), 7.97 (d, 2H, *J* = 8.53 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.63 (d, 2H, *J* = 8.52 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.22 (d, 2H, *J* = 7.97 Hz, *Ph*-CH₃-2*H*,6*H*), 7.08 (d, 2H, *J* = 8.11 Hz, *Ph*-CH₃-3*H*,5*H*), 3.26 (s, 3H, SO₂-CH₃), 2.32 (s, 3H, Ph-CH₃), 2.03 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.38, 160.73, 158.94, 141.73, 137.46, 133.54, 129.33, 129.05, 128.92, 127.26, 124.92, 109.61, 43.10, 22.55, 20.69.

ESI-MS:	$m/z = 369.1 [\text{M-H}^+]^-$	
HR-MS:	berechnet: $m/z = 371.10600$	
	gefunden: $m/z = 371.10668$	Abweichung: 1.8 ppm

N-(3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)isoxazol-5-yl)acrylamid (60)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 3-(4-(Methylsulfonyl)-phenyl)-4-(*p*-tolyl)isoxazol-5-amin (**58**, 100 mg, 0.3 mmol, 1.0 eq) in 5 mL Dichlormethan. Anstatt Acetylchlorid wurde Acryloylchlorid (30 μ L, 0.4 mmol, 1.2 eq) hinzugegeben. Der Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und aus Chloroform / Hex umkristallisiert, wobei man farblose Kristalle isolierte.

Ausbeute:	11 mg (9%)
Summenformel:	$C_{20}H_{18}N_2O_4S\\$
Molekulargewicht:	382.43 g / mol
Rf-Wert:	0.25 (98/2; DCM / MeOH)
Substanzcode:	SW 191B / ST-1649

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.82$ (s, 1H, -N*H*-), 7.97 (d, 2H, J = 8.49 Hz, *Ph*-SO₂CH₃-3*H*,5*H*), 7.64 (d, 2H, J = 8.50 Hz, *Ph*-SO₂CH₃-2*H*,6*H*), 7.21 (d, 2H, J = 7.96 Hz, *Ph*-CH₃-2*H*,6*H*), 7.09 (d, 2H, J = 8.11 Hz, *Ph*-CH₃-3*H*,5*H*), 6.37 (d, 1H, J = 9.57 Hz, CH=CH₂), 6.31 (d, 1H, J = 2.33 Hz, CH=CH₂), 5.86 (dd, 1H, J = 9.56 Hz, 2.34 Hz, -CH=CH₂), 3.26 (s, 3H, SO₂-CH₃), 2.31 (s, 3H, Ph-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.87, 160.80, 158.65, 141.77, 137.51, 133.47, 129.49, 129.46, 129.44, 129.34, 129.07, 128.96, 127.28, 124.85, 109.70, 43.10, 20.69.

ESI-MS:	$m/z = 381.3 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 383.10600$	
	gefunden: $m/z = 383.10559$	Abweichung: 1.0 ppm

N-Acryloyl-*N*-(3-(4-(methylsulfonyl)phenyl)-4-(*p*-tolyl)isoxazol-5-yl)acrylamid (61)

Wurde als Nebenprodukt bei der säulenchromatographischen Auftrennungt von N-(3-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)isoxazol-5-yl)acrylamid (**60**) erhalten. Umkristallisation erfolgte aus Chloroform / Hexan.

Ausbeute:	27 mg (20%)
Summenformel:	$C_{23}H_{20}N_{2}O_{5}S$
Molekulargewicht:	436.48 g / mol
Rf-Wert:	0.75 (98/2; DCM / MeOH)
Substanzcode:	SW 191A / ST-1648

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.01$ (d, 2H, J = 8.52 Hz, Ph-SO₂CH₃-3H,5H), 7.71 (d, 2H, J = 8.52 Hz, Ph-SO₂CH₃-2H,6H), 7.21 (d, 2H, J = 7.93 Hz, Ph-CH₃-2H,6H), 7.01 (d, 2H, J = 8.09 Hz, Ph-CH₃-3H,5H), 6.62 (d, 1H, J = 10.13 Hz, CH=CH₂), 6.55 (d, 1H, J = 10.15 Hz, CH=CH₂), 6.40 (sd, 1H, J = 1.51 Hz, CH=CH₂), 6.36 (sd, 1H, J = 1.52 Hz, CH=CH₂),

5.97 (dd, 2H, *J* = 10.21 Hz, 1.49 Hz, 2x C*H*=CH₂), 3.27 (s, 3H, SO₂-C*H*₃), 2.30 (s, 3H, Ph-C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 165.98, 161.42, 156.97, 142.18, 138.63, 133.15, 132.70, 129.77, 128.97, 128.71, 128.52, 127.41, 123.33, 115.96, 79.07, 48.51, 43.09, 20.72.

HR-MS: berechnet: m/z = 437.11657

gefunden: m/z = 437.11640 Abweichung: 0.4 ppm

5.3.5. Derivate mit Imidazol-Grundgerüst und ihre Vorstufen

(4-Methylbenzyl)triphenylphosphoniumchlorid (64)

Hergestellt gemäß der Vorschrift für Benzyltriphenylphosphoniumbromid (**70**) mit 4-Methylbenzylchlorid (2 mL, 15 mmol). Es wurde ein weißer Feststoff isoliert.

Ausbeute: 6.0 g (quantitativ)

Summenformel: C₂₆H₂₄ClP

Molekulargewicht: 402.90 g / mol

Substanzcode: SW 491

¹**H-NMR** (300 MHz, DMSO-d₆): $\delta = 7.95-7.87$ (m, 3H, 3x P-*Ph*-4*H*), 7.77-7.63 (m, 12H, 3x P-*Ph*-2*H*,3*H*,5*H*,6*H*), 7.03 (d, 2H, J = 8.0, CH₂-*Ph*-2*H*,6), 6.85 (d, 2H, J = 8.1, CH₂-*Ph*-2*H*,6), 5.14 (d, 2H, J = 15.5 Hz, -CH₂-), 2.23 (s, 3H, -CH₃).

1-Methyl-4-(4-(methylsulfonyl)styryl)benzen (65)

Hergestellt gemäß der Vorschrift für 1-Fluor-4-styrylbenzen (**72**) mit 4-Methylsulfonylbenzaldehyd (**54**, 2.76 g, 15 mmol) und (4-Methylbenzyl)triphenylphosphoniumchlorid (**64**, 6.0g, 15 mmol). Es wurde ein weißer Feststoff isoliert.

Ausbeute:	1.22 g (30%)
Summenformel:	$C_{16}H_{16}O_2S$
Molekulargewicht:	272.36 g / mol
Rf-Wert:	0.91 (2/1; Hex / EtOAc)
Substanzcode:	SW 492

PPh₃⁺ Cl

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.80$ (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-3H,5H), 7.45 (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-2H,6H), 7.10 (pseudo s, 4H, Ph-CH₃), 6.77 (d, 1H, J = 12.3 Hz, -CH=), 6.65 (d, 1H, J = 12.3 Hz, -CH=), 3.20 (s, 3H, SO₂-CH₃), 2.27 (s, 3H, Ph-CH₃).

1-(4-(Methylsulfonyl)phenyl)-2-(p-tolyl)ethan-1,2-dion (66)

Hergestellt gemäß der Vorschrift für 1-(4-Fluorphenyl)-2-phenylethan-1,2-dion (**73**) mit 1-Methyl-4-(4-(methylsulfonyl)styryl)benzen (**65**, 1.22 g, 4.5 mmol). Es wurde mit reinem Dichlormethan aufgetrennt. Es wurde ein gelber Feststoff isoliert.

Ausbeute:	1.8 g (quantitativ)
Summenformel:	$C_{16}H_{14}O_4S$
Molekulargewicht:	302.34 g / mol
Rf-Wert:	0.95 (9/1; DCM / MeOH)
Substanzcode:	SW 493

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.16$ (d, 2H, J = 8.7 Hz, Ph-SO₂-CH₃-3H,5H), 8.10 (d, 2H, J = 8.6 Hz, Ph-SO₂-CH₃-3H,5H), 7.87 (d, 2H, J = 8.2 Hz, Ph-CH₃-2H,6H), 7.34 (d, 2H, J = 8.0 Hz, Ph-CH₃-3H,5H), 3.08 (s, 3H, SO₂-CH₃), 2.46 (s, 3H, Ph-CH₃).

5-(4-(Methylsulfonyl)phenyl)-4-phenyl-1*H*-imidazol (68)

Hergestellt gemäß der Vorschrift für 4,5-Diphenyl-1H-imidazol (**81**) mit 1-(4- (Methylsulfonyl)phenyl)-2-(p-tolyl)ethan-1,2-dion (**66**, 400 mg, 1.3 mmol) in 5 mL Essigsäure. Es wurde ein weißes Pulver isoliert.

Ausbeute:	221 mg (54%)
Summenformel:	$C_{17}H_{16}N_2O_2S\\$
Molekulargewicht:	312.39 g / mol
Rf-Wert:	0.16 (95/5; DCM / MeOH)
Substanzcode:	SW 503

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.81$ (d, 2H, J = 8.7 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.76 (d, 2H, J = 8.7 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.69 (s, 1H, *Imidazol*-2*H*), 7.30 (d, 2H, J = 8.1 Hz, *Ph*-CH₃-2*H*,6*H*), 7.21 (d, 2H, J = 8.0 Hz, *Ph*-CH₃-3*H*,5*H*), 3.04 (s, 3H, SO₂-CH₃), 2.16 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 311.0 [M-H^+]^-$

1-(5-(4-(Methylsulfonyl)phenyl)-4-(p-tolyl)-1H-imidazol-1-yl)ethan-1-on (69)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 5-(4-(Methylsulfonyl)phenyl)-4-phenyl-1*H*-imidazol (**68**, 221 mg, 0.7 mmol) in 10 mL Dichlormethan. Gefällt aus Ethylacetat mit Hexan. Man isolierte ein weißes Pulver (Isomerengemisch).

Ausbeute: 92 mg (37%)

Summenformel:	$C_{19}H_{18}N_2O_3S$	$H_3C \sim \frac{0}{10}$
Molekulargewicht:	354.42 g / mol	O CH ₃
Rf-Wert:	0.63 (95/5; DCM / MeOH)	
Substanzcode:	SW 512 / ST-1857	H ₃ C

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.32$ (s, 1H, *Imidazol-2H*), 7.76 (d, 2H, J = 8.7 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.62 (d, 2H, J = 8.7 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.30 (d, 2H, J = 8.0 Hz, *Ph*-CH₃-2*H*,6*H*), 7.23 (d, 2H, J = 8.2 Hz, *Ph*-CH₃-3*H*,5*H*), 3.00 (s, 3H, SO₂-CH₃), 2.56 (s, 3H, Ph-CH₃), 2.23 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 167.79, 139.95, 138.76, 138.61, 137.42, 131.66, 130.39, 130.15, 129.17, 127.60, 127.25, 44.50, 25.05, 21.48.

ESI-MS:	$m/z = 354.3 [\text{M-H}^+]^-$	
HR-MS:	berechnet: $m/z = 355.11109$	
	gefunden: $m/z = 355.11107$	Abweichung: 0.1 ppm

Benzyltriphenylphosphoniumbromid (70)

In 20 mL DMF wurde Benzylbromid (1.04 mL, 8.8 mmol, 1 eq) und Triphenylphosphin (2.3 g, 8.8 mmol, 1 eq) gelöst und für vier Stunden refluxiert. Im Anschluss wurde die Reaktion auf Eis abgekühlt, der ausfallende weiße Feststoff abfiltriert und mit Diethylether gewaschen.

PPh3⁺ Br

Ausbeute:	3.9 g (quantitativ)
Summenformel:	$C_{25}H_{22}BrP$
Molekulargewicht:	388.87 g / mol
Substanzcode:	SW 160

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.95-7.87$ (m, 3H, 3x P-*Ph*-4*H*), 7.78-7.61 (m, 12H, 3x P-*Ph*-2*H*,3*H*,5*H*,6*H*), 7.31-7.19 (m, 3H, CH₂-*Ph*-3*H*,4*H*,5*H*), 6.98-6.94 (m, 2H, CH₂-*Ph*-2*H*,6*H*), 5.15 (d, 2H, J = 15.7 Hz, -CH₂-).

³¹**P-NMR** (100 MHz, DMSO-d₆): δ = 23.12.

1-Fluor-4-styrylbenzen (72)

Benzyltriphenylphosphoniumbromid (**70**, 1.7 g, 4.5 mmol, 1 eq) und 4-Fluorbenzaldehyd ((**71**,430 μ L, 4.5 mmol, 1 eq) wurden in 15 mL wasserfreiem Ethanol gelöst. Zur Lösung wurde langsam 5 mL einer Natriumethanolat / Ethanol-Lösung, frisch hergestellt durch elementares Natrium (100 mg, 4.8 mmol, 1.2 mmol) und das ganze über Nacht bei Raumtemperatur gerührt. Die Reaktionslösung wurde eingeengt, in Wasser aufgenommen und mehrfach mit Ethylacetat extrahiert. Die organische Phase wurde getrocknet, entfernt und der

Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Man erhält ein farbloses Öl (*E*) und einen weißen Feststoff (*Z*).

Ausbeute:	790 mg (77%; Verhältnis (<i>E</i>)/ (<i>Z</i>): 1 : 2)	
Summenformel:	$C_{14}H_{11}F$	
Molekulargewicht:	198.08 g / mol	
Rf-Wert:	0.76 (E) und 0.87 (Z) (9/1; Hex / EtOAc)	F
Substanzcode:	SW 161	'
1		

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.30-7.17 (m, 7H, *Ph*, *Ph*-F-2*H*,6*H*), 7.12-7.05 (m, 2H, *Ph*-F-3*H*,5*H*), 6.63 (d, 2H, -C*H*=C*H*-).

1-(4-Fluorphenyl)-2-phenylethan-1,2-dion (73)

1-Fluor-4-styrylbenzen (**72**, 691 mg, 3.6 mmol, 1 eq) wurde in 20 mL DMSO (5 mL pro mmol Styren-Derivat) gelöst und mit Bromwasserstoffsäure-Lösung (48% Wasser, 724 μ L, 4.3 mmol, 1.2 eq) versetzt und über Nacht auf 110 °C erhitzt. Die Reaktionslösung wurde mit 2M Natriumcarbonat neutralisiert. Es wurde mit Ethylacetat extrahiert, das Lösungsmittel entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 5/1 Hexan / Ethylacetat). Man erhält ein gelbes Öl.

Ausbeute:	431 mg (54%)
Summenformel:	$C_{14}H_9F$
Molekulargewicht:	302.34 g / mol
Rf-Wert:	0.68 (3/1; Hex / EtOAc)
Substanzcode:	SW 162

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.06-8.00$ (m, 2H, *Ph*-F-3*H*,5*H*), 7.95-7.91 (m, 2H, *Ph*-3*H*,5*H*), 7.80 (t, 1H, *J* = 7.5 Hz, *Ph*-4*H*), 7.66-7.60 (m, 2H, *Ph*-F-2*H*,6*H*), 7.46 (t, 2H, *J* = 8.9 Hz, *Ph*-2*H*,6*H*).

4-(4-Fluorphenyl)-5-phenyl-1*H*-imidazol (74)

Hergestellt gemäß der Vorschrift für 4,5-Diphenyl-1*H*-imidazol (**81**) mit 1-(4-Fluorphenyl)-2phenylethan-1,2-dion (**73**, 200 mg, 0.9 mmol) in 5 mL Essigsäure. Es wurde ein weißes Pulver isoliert.

Ausbeute:	171 mg (82%)
Summenformel:	$C_{15}H_{11}FN_2$
Molekulargewicht:	238.27 g / mol

Rf-Wert: 0.04 (1/2; Hex / EtOAc)

Substanzcode: SW 165

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.49$ (br, 1H, -N*H*-), 7.78 (s, 1H, *Imidazol-2H*), 7.52-7.09 (m, 9H, *Ph*).

ESI-MS: $m/z = 239.1 [M+H^+]^+$

1-(Methylsulfonyl)-4-styrylbenzen (76)

Hergestellt gemäß der Vorschrift für 1-Fluor-4-styrylbenzen (72) mit 4-Methylsulfonylbenzaldehyd (54, 847 mg, 4.6 mmol). Es wurde ein farbloses Öl isoliert, welches mit der Zeit erstarrt.

Summenformel: C₁₅H₁₄O₂S

Molekulargewicht: 258.33 g / mol

Rf-Wert: 0.38 (3/1; Hex / EtOAc)

Substanzcode: SW 164

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.79$ (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-3H,5H), 7.44 (d, 2H, J = 8.1 Hz, Ph-SO₂-CH₃-2H,6H), 7.30-7.22 (m, 5H, Ph), 6.83 (d, 1H, J = 12.3 Hz, - CH=), 6.70 (d, 1H, J = 12.3 Hz, -CH=), 3.20 (s, 3H, -CH₃)

ESI-MS: $m/z = 281.1 [M+Na^+]^+$

1-(4-(Methylsulfonyl)phenyl)-2-phenylethan-1,2-dion (77)

Hergestellt gemäß der Vorschrift für 1-(4-Fluorphenyl)-2-phenylethan-1,2-dion (73) mit 1-(Methylsulfonyl)-4-styrylbenzen (76, 1.22 g, 15 mmol). Es wurde ein gelber Feststoff isoliert.

Ausbeute:	770 mg (81%)
Summenformel:	$C_{15}H_{12}O_4S$
Molekulargewicht:	288.32 g / mol
Rf-Wert:	0.57 (1/1; Hex / EtOAc)
Substanzcode:	SW 167

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.18$ (d, 2H, J = 8.6 Hz, Ph-SO₂-CH₃-3H,5H), 8.10 (d, 2H, J = 8.7 Hz, Ph-SO₂-CH₃-3H,5H), 8.00-7.96 (m, 2H, Ph-3H,5H), 7.58-7.52 (m, 2H, Ph-2H,6H), 7.43-7.39 (m, 1H, Ph-4H), 3.09 (s, 3H, -CH₃).

ESI-MS: $m/z = 311.1 [M+Na^+]^+$

5-(4-(Methylsulfonyl)phenyl)-4-phenyl-1*H*-imidazol (78)

Hergestellt gemäß der Vorschrift für 4,5-Diphenyl-1*H*-imidazol (**81**) mit 1-(4-(Methylsulfonyl)phenyl)-2-phenylethan-1,2-dion (**77**, 300 mg, 1.1 mmol) in 5 mL Essigsäure. Es wurde ein weißes Pulver isoliert.

Ausbeute:	205 mg (63%)
Summenformel:	$C_{16}H_{14}N_2O_2S$
Molekulargewicht:	298.08 g / mol
Rf-Wert:	0.05 (1/2; Hex / EtOAc)
Substanzcode:	SW 170

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.90-7.82$ (m, 3H, *Ph*-SO₂-CH₃-3*H*,5*H*, *Imidazol-2H*), 7.68 (d, 2H, J = 8.6 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.47-7.32 (m, 5H, *Ph*), 3.08 (s, 3H, -CH₃).

MALDI-MS: $m/z = 298.8 [M+H^+]^+$

1-(5-(4-(Methylsulfonyl)phenyl)-4-phenyl-1*H*-imidazol-1-yl)ethan-1-on (79)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 5-(4-(Methylsulfonyl)phenyl)-4-phenyl-1*H*-imidazol (**78**, 205 mg, 0.7 mmol) in 10 mL Dichlormethan. Gefällt aus Ethylacetat mit Hexan. Man isolierte ein weißes Pulver (Isomerengemisch).

Ausbeute: 12 mg (5%)

 $Summen formel: \qquad C_{18}H_{16}N_2O_3S$

Molekulargewicht: 340.40 g / mol

Substanzcode: SW 172 / ST-1645

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.32$ (s, 1H, *Imidazol-2H*), 7.75 (d,

2H, J = 8.6 Hz, Ph-SO₂-CH₃-3H,5H), 7.60 (d, 2H, J = 8.6 Hz, Ph-SO₂-CH₃-2H,6H), 7.53-7.7.48 (m, 2H, Ph-3H,5H), 7.39-7.32 (m, 2H, Ph-2H,6H), 7.24-7.7.22 (m, 1H, Ph-4H), 3.00 (s, 3H, SO₂-CH₃), 2.26 (s, 3H, C(O)-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 167.54, 156.41, 138.64, 137.47, 131.66, 130.57, 129.78, 129.37, 128.45, 127.66, 127.28, 44.45, 24.96.

 HR-MS:
 berechnet: m/z = 341.09544

 gefunden: m/z = 341.09531 Abweichung: 0.3 ppm

4,5-Diphenyl-1*H*-imidazol (81)

In ein Mikrowellen-Vial wurde Benzil (**80**, 1 g, 5 mmol, 5 eq), Urotropin (145 mg, 1 mmol, 1 eq), Ammoniumacetat (3.3 g, 40 mmol, Überschuss) und 10 mL Essigsäure gegeben und für 20 Minuten auf 120 °C erhitzt. Die Reaktionslösung wurde auf Wasser gegeben und anschließend mit konzentriertem Ammoniak versetzt. Der gebildete Niederschlag wurde abfiltriert und mit Wasser gewaschen. Man erhält ein gelbes Pulver.

Ausbeute:	802 mg (%)
Summenformel:	$C_{15}H_{12}N_2$
Molekulargewicht:	220.28 g / mol
Rf-Wert:	0.58 (9/1; DCM / MeOH)
Substanzcode:	SW 158

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.47$ (br, 1H, -N*H*-), 7.77 (s, 1H, *Imidazol-2H*), 7.44-7.31 (m, 10H, *Ph*).

ESI-MS: $m/z = 221.7 [M+H^+]^+$

1-(5-(4-(Methylsulfonyl)phenyl)-4-(*p*-tolyl)-1*H*-imidazol-1-yl)ethan-1-on (82)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus 4,5-Diphenyl-1*H*imidazol (**81**, 500 mg, 2.3 mmol) in 10 mL Dichlormethan. Aufreinigung erfolgte durch Umkristallisation aus Essigsäureanhydrid. Man isolierte weiße Nadeln.

Ausbeute:	87 mg (14%)	
Summenformel:	$C_{17}H_{14}N_2O$	O CH3
Molekulargewicht:	262.31 g / mol	
Rf-Wert:	0.60 (9/1; DCM / MeOH)	N
Substanzcode:	SW 159 / ST-1644	Ŷ
¹ H-NMR (250 MHz, 7.19 (m, 3H, <i>Ph</i>), 2.2	, CDCl ₃): $\delta = 8.30$ (s, 1H, <i>Imidazol-2H</i>), 7.48-7.37 (m, 5 (s, 3H, -CH ₃).	7H, <i>Ph</i>), 7.21-
¹³ C-NMR (62 MHz, 127.94, 126.93, 126.6	DMSO-d ₆): δ = 167.95, 139.06, 138.45, 133.15, 131.10, 51, 126.20, 24.32, 20.88.	130.36, 128.29,
HR-MS:	berechnet: $m/z = 263.11789$	

gefunden: m/z = 263.11791

Abweichung: 0.1 ppm

5.3.6. Derivate mit Imidazolon-Grundgerüst und ihre Vorstufen

2-Hydroxy-2-(4-(methylsulfonyl)phenyl)-1-(*p*-tolyl)ethan-1-on (86)

In 15 mL Ethanol wurde 1-(4-(Methylsulfonyl)phenyl)-2-(*p*-tolyl)ethan-1,2-dion (**66**, 640 mg, 2.1 mmol, 1 eq) gelöst und zum Sieden erhitzt. In der Siedehitze wurde Natriumdithionit (1.47 g, 8.4 mmol, 4 eq), in 5 mL Wasser gelöst, hinzugeben und das Ganze weitere 30 Minuten refluxiert. Die Reaktionslösung wurde eingeengt und mit Ethylacetat extrahiert. Säulenchromatographische Auftrennung (Fließmittel: 1/1 Hexan / Ethylacetat) ergab einen weißen Feststoff.

Ausbeute:	540 mg (85%)
Summenformel:	$C_{16}H_{16}O_4S$
Molekulargewicht:	304.36 g / mol
Rf-Wert:	0.26 (1/1; Hex / EtOAc)
Substanzcode:	SW 501

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.88$ (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-3H,5H), 7.78 (d, 2H, J = 8.2 Hz, Ph-CH₃-3H,5H), 7.54 (d, 2H, J = 8.3 Hz, Ph-SO₂-CH₃-2H,6H), 7.23 (d, 2H, J = 8.1 Hz, Ph-CH₃-2H,6H), 6.01 (d, 1H, J = 5.7 Hz, -CH-OH), 4.67 (d, 1H, J = 5.9 Hz, -CH-OH), 3.00 (s, 3H, SO₂-CH₃), 2.38 (s, 3H, Ph-CH₃).

4-(4-(Methylsulfonyl)phenyl)-5-(*p*-tolyl)-1,3-dihydro-2*H*-imidazol-2-on (87)

Hergestellt gemäß der Vorschrift für 4,5-Diphenyl-1,3-dihydro-2*H*-imidazol-2-on (**85**) aus 2-Hydroxy-2-(4-(methylsulfonyl)phenyl)-1-(*p*-tolyl)ethan-1-on (**86**, 240 mg, 0.7 mmol) in 3 mL Essigsäure. Es wurde ein gelbes Pulver isoliert.

Ausbeute: 20 mg (9%)

Summenformel: $C_{17}H_{16}N_2O_3S$

Molekulargewicht: 328.39 g / mol

Rf-Wert: 0.46 (1/2; Hex / EtOAc)

Substanzcode: SW 502

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.73 (br, 2H, -N*H*-), 7.86 (d, 2H, *J* = 8.5 Hz, *Ph*-SO₂-CH₃-3*H*,5*H*), 7.57 (d, 2H, *J* = 8.5 Hz, *Ph*-SO₂-CH₃-2*H*,6*H*), 7.32 (d, 2H, *J* = 8.2 Hz, *Ph*-CH₃-2*H*,6*H*), 7.26 (d, 2H, *J* = 8.2 Hz, *Ph*-CH₃-3*H*,5*H*), 3.27 (s, 3H, SO₂-CH₃), 2.38 (s, 3H, Ph-CH₃).

ESI-MS: $m/z = 328.0 [M-H^+]^-$

1,1'-(4-(Methylsulfonyl)phenyl)-2-oxo-5-(*p*-tolyl)-1*H*-imidazol-1,3(2*H*)-diyl)bis(ethan-1-on) (88) Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 3 aus 4-(4-(Methylsulfonyl)phenyl)-5-(*p*-tolyl)-1,3-dihydro-2*H*-imidazol-2-on (**87**, 20 mg, 0.06 mmol) in 2 mL Essigsäureanhydrid. Säulenchromatographische Auftrennung (Fließmittel: 2/1 Hexan / Ethylacetat) und Fällung aus Diethylether mit Hexan ergab einen gelben Feststoff.

Ausbeute:	23 mg (91%)
Summenformel:	$C_{21}H_{20}N_{2}O_{5}S\cdot 2\;H_{2}O$
Molekulargewicht:	412.46 g / mol
Rf-Wert:	0.80 (1/2; Hex / EtOAc)
Substanzcode:	SW 530 / ST-1858

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.75$ (d, 2H, J = 8.5 Hz, Ph-SO₂-CH₃-3H,5H), 7.26 (d, 2H, J = 8.5 Hz, Ph-SO₂-CH₃-2H,6H), 7.03 (d, 2H, J = 7.9 Hz, Ph-CH₃-2H,6H), 6.95 (d, 2H, J = 8.1 Hz, Ph-CH₃-3H,5H), 3.03 (s, 3H, SO₂-CH₃), 2.71 (s, 3H, C(O)-CH₃), 2.67 (s, 3H, C(O)-CH₃), 2.30 (s, 3H, Ph-CH₃).

ESI-MS:	m/z = 434.0	$[M+Na^+]^+$			
Elementaranalyse:	berechnet:	C 56.24	Н 5.39	N 6.25	S 7.15
	gefunden:	C 56.20	H 5.02	N 5.91	S 6.83

4,5-Diphenyl-1,3-dihydro-2*H*-imidazol-2-on (90)

In ein Mikrowellen-Vial wurde Benzoin (**89**, 400 mg, 1.9 mmol, 1 eq), Harnstoff (230 mg, 3.7 mmol, 2 eq) in 5 mL Essigsäure gelöst und in der Mikrowelle für eine Stunde auf 125 °C erhitzt. Beim Abkühlen fallen weiße Nadeln aus, welche abfiltriert wurden.

Ausbeute:	149 mg (33%)	
Summenformel:	$C_{15}H_{12}N_2O$	н
Molekulargewicht:	236.27 g / mol	
Rf-Wert:	0.47 (3/1; Hex / EtOAc)	N H
Substanzcode:	SW 186	
¹ H-NMR (250 MHz,	DMSO-d ₆): $\delta = 10.48$ (br, 2H, -NH-), 7.32-7.24 (m, 10H,	, <i>Ph</i>).
ESI-MS:	$m/z = 259.2 [M+Na^+]^+$	

1,1'-(2-Oxo-4,5-diphenyl-1*H*-imidazol-1,3(2*H*)-diyl)bis(ethan-1-on) (91)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 4,5-Diphenyl-1,3dihydro-2*H*-imidazol-2-on (**90**, 150 mg, 0.6 mmol) in 5 mL Pyridin. Das Rohprodukt wurde aus Ethanol umkristallsiert.

Ausbeute:	43 mg (21%)	H ₃ C
Summenformel:	$C_{19}H_{16}N_2O_3$	
Molekulargewicht:	320.35 g / mol	
Rf-Wert:	0.16 (3/1; Hex / EtOAc)	H ₃ C
Substanzcode:	SW 188 / ST-1647	

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.23-7.18$ (m, 6H, *Ph*-3*H*,4*H*,5*H*), 7.13-7.07 (m, 4H, *Ph*-2*H*,6*H*), 2.66 (s, 6H, -C*H*₃).

¹³**C-NMR** (62 MHz, CDCl₃): $\delta = 168.70$, 129.88, 128.96, 128.21, 127.69, 123.16, 105.00, 26.32.

HR-MS:	berechnet: $m/z = 343.10531$			
	gefunden: m/z	z = 343.10520	Abwe	ichung: 0.3 ppm
Elementaranalyse:	berechnet:	C 71.24	H 5.03	N 8.74
	gefunden:	C 71.51	H 5.12	N 8.67

5.3.7. Derivate mit Benzfuran-, Indenon- und Thiazol-Grundgerüst und ihre Vorstufen

2,3-Diphenylbenzofuran-6-ylacetat (94)

Benzoin (**89**, 600 mg, 2.8 mmol, 1 eq) und Resorcin (**92**, 968 mg, 8.5 mmol, 3 eq) wurden in 15 mL Methansulfonsäure suspendiert und auf 85 °C für 16 Stunden erhitzt. Die Reaktionslösung wurde auf das 7-fache Volumen Eis gegeben, der entstehende Feststoff abfiltriert und säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man erhält ein weißen aufschäumenden Feststoff. Dieser wurde nach allgemeiner Synthesevorschrift C Methode 3 umgesetzt. Der Rückstand wurde mehrmals aus Ethanol umkristallisiert. Man erhält einen gelb kristallinen Feststoff.

Ausbeute:	204 mg (25%)
Summenformel:	$C_{22}H_{16}O_3$
Molekulargewicht:	328.38 g / mol
Rf-Wert:	0.74 (98/2; DCM / MeOH)
Substanzcode:	SW 263 / ST-1730

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.59-7.37$ (m, 12H, *Ph*, *Benzofuran-4H,5H*), 7.08 (d, 1H, J = 8.4 Hz, *Benzofuran-7H*), 2.31 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.25, 153.00, 150.59, 148.25, 131.42, 129.53, 129.24, 129.10, 128.78, 128.63, 127.98, 127.07, 126.43, 119.74, 117.85, 116.91, 105.30, 20.74.

ESI-MS:	$m/z = 329.5 [M-H^+]^-$		
Elementaranalyse:	berechnet:	C 80.47	H 4.91
	gefunden:	C 80.22	H 4.91

(E)-1-(4-(Methylsulfonyl)benzyliden)-1,3-dihydro-2H-inden-2-on (96)

In 60 mL Toluen wurde 2-Indanon (1.5 g, 11.4 mmol, 1.0 eq), Morpholin (1 mL, 12.5 mmol, 1.1 eq) und katalytische Mengen an *p*-Toluensulfonsäure mit angeschlossenem Wasserabscheider für 24 Stunden zum Sieden erhitzt. Anschließend wurde 4-(Methylsulfonyl)benzaldehyd (**54**, 2 g, 11.4 mmol, 1.0 eq) hinzugegeben und für weitere 24 Stunden erhitzt. Anschließend wurde konzentrierte Salzsäure zugesetzt und für acht Stunden gerührt. Das Toluen wurde entfernt, der Rückstand in Dichlormethan aufgenommen und gewaschen, getrocknet und säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol gesättigt mit Ammoniak). Umkristallisation aus Ethanol ergab einen gelben Feststoff.

Ausbeute: 1.73 g (51%)

Summenformel: $C_{17}H_{14}O_3S$

Molekulargewicht: 298.36 g / mol

Rf-Wert: 0.86 (98/2; DCM / MeOH)

Substanzcode: SW 279 / ST-1805

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.03$ (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-3H,5H), 7.88 (d, 2H, J = 8.4 Hz, Ph-SO₂-CH₃-2H,6H), 7.52-7.35 (m, 4H, *Indanon*-3H,4H,6H, -CH=), 7.20 (t, 1H, J = 7.7 Hz, *Indanon*-5H), 3.66 (s, 2H, Indanon-7CH₂), 3.29 (s, 3H, -CH₃).

^{f13}C-NMR (75 MHz, DMSO-d₆): δ = 203.14, 140.78, 140.07, 139.69, 136.28, 136.19, 130.08, 129.48, 129.18, 127.30, 127.01, 125.79, 122.77, 43.30, 40.48.

ESI-MS:	$m/z = 296.9 [\text{M-H}^+]^-$			
Elementaranalyse:	berechnet:	C 68.44	H 4.73	S 10.75
	gefunden:	C 68.63	H 4.78	S 10.78

4,5-Diphenylthiazol-2-amin (99)

Das Keton Deoxybenzoin (2 g, 10 mmol, 1 eq) wurde gemäß allgemeiner Synthesevorschrift E Methode 1 bromiert. Der Rückstand wurde in Ethanol aufgenommen und mit Thioharnstoff (1.5 g, 15 mmol, 1.5 eq) eine Stunde zum Sieden erhitzt. Das Ethanol wurde entfernt und der Rückstand aus Wasser umkristallsiert. Man erhält schmutzig gelbe Nadeln.

860 mg (34%)	
$C_{15}H_{12}N_2S$	
252.34 g / mol	S NH ₂
0.65 (9/1; Hex / EtOAc)	
SW 249	~
DMSO-d ₆): $\delta = 7.39-7.18$ (m, 10H, <i>Ph</i>), 7.12 (br, 2H, -N	$(H_2).$
$m/z = 254.1 [M+H^+]^+$	
	860 mg (34%) $C_{15}H_{12}N_2S$ 252.34 g / mol 0.65 (9/1; Hex / EtOAc) SW 249 DMSO-d ₆): $\delta = 7.39-7.18$ (m, 10H, <i>Ph</i>), 7.12 (br, 2H, -N $m/z = 254.1 [M+H^+]^+$

N-(4,5-Diphenylthiazol-2-yl)acetamid (100)

4,5-Diphenylthiazol-2-amin (**99**, 480 mg, 1.9 mmol) wurde gemäß allgemeiner Synthesevorschrift C Methode 1 umgesetzt. Säulenchromatographische Auftrennung (Fließmittel: 95/5 Dichlormethan / Methanol) und Umkristallisation aus Ethanol / Wasser ergab schwach gelbe Plättchen.

Ausbeute:	240 mg (42%)

Summenformel: C₁₇H₁₄N₂OS

Molekulargewicht: 294.37 g / mol

Rf-Wert: 0.55 (95/5; DCM / MeOH)

Substanzcode: SW 251 / ST-1729

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.31$ (s, 1H, -N*H*-), 7.44-7.28 (m, 10H, *Ph*), 2.17 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.53, 155.67, 143.53, 134.60, 131.78, 129.15, 129.11, 128.80, 128.76, 128.30, 128.29, 128.25, 128.10 127.74, 127.51, 125.05, 22.75.

ESI-MS:	$m/z = 295.3 [M+H^+]^+$				
Elementaranalyse:	berechnet:	C 69.36	H 4.79	N 9.52	S 10.89
	gefunden:	C 69.12	H 4.79	N 9.23	S 10.77

2-((4-(4-Chlorphenyl)thiazol-2-yl)amino)phenol (103)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-4'-chloracetophenon (**101**, 580 mg, 2.5 mmol) und *N*-(2-Hydroxyphenyl)thioharnstoff (**102**, 349 mg, 2 mmol) in 8 mL Ethanol. Es wurde ohne weitere Aufreinigung umgesetzt.

Ausbeute: 530 mg (83%)

Summenformel: $C_{15}H_{11}CIN_2OS$ Molekulargewicht:302.78 g / molRf-Wert:0.81 (98/2; DCM / MeOH)Substanzcode:SW 381 Int

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 9.88$ (br, 1H, -N*H*-), 9.47 (s, 1H, -O*H*), 8.26-8.23 (m, 1H, *Ph*-OH-5*H*), 7.89 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.47 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.32 (s, 1H, *Thiazol*-5*H*), 6.89-6.82 (m, 3H, *Ph*-OH-3*H*,4*H*,6*H*).

2-((4-(4-Chlorphenyl)thiazol-2-yl)amino)phenylacetat (104)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-((4-(4-Chlorphenyl)-thiazol-2-yl)amino)phenol (**103**, 310 mg, 1 mmol, 1.0 eq) in 5 mL Pyridin. Der isolierte Rückstand wurde säuelenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Umkristallisation aus Ethanol / Wasser ergab isoliert einen weißen Feststoff.

Ausbeute:	160 mg (46%)
Summenformel:	$C_{17}H_{13}ClN_2O_2S$
Molekulargewicht:	344.81 g / mol
Rf-Wert:	0.32 (98/2; DCM / MeOH)
Substanzcode:	SW 381B / ST-1838

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 10.04$ (s, 1H, -N*H*-), 7.72 (s, 1H, *Thiazol-5H*), 7.63 (d, 2H, J = 8.59 Hz, *Ph*-Cl-2*H*,6*H*), 7.40-7.34 (m, 4H, *Ph*-Cl-3*H*,5*H*, *Ph*-O*H*-), 7.05 (d, 1H, J = 8.69 Hz, *Ph*-OH-6*H*), 6.98 (t, 1H, J = 7.63 Hz, *Ph*-OH-4*H*).

¹³**C-NMR** (100 MHz, DMSO-d₆): $\delta = 170.20$, 159.40, 152.93, 146.70, 132.98, 132.03, 130.38, 130.23, 128.54, 127.09, 127.05, 119.69, 116.76, 109.89, 22.67.

ESI-MS:	$m/z = 342.9 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 59.21	H 3.80	N 8.12	S 9.30
	gefunden:	C 59.37	Н 3.70	N 8.02	S 9.25

2-(N-(5-Acetyl-4-(4-chlorphenyl)thiazol-2-yl)acetamido)phenylacetat (105)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 3 aus 2-((4-(4-Chlorphenyl)-thiazol-2-yl)amino)phenol (**103**, 600 mg, 2 mmol) in 2 mL Essigsäureanhydrid. Säulenchromatographische Auftrennung (Fließmittel: 3/1 Hexan / Ethylacetat) und Umkristallisation aus Ethanol ergaben gelbe Nadeln.

Ausbeute: 407 mg (47%)

Summenformel:	$C_{21}H_{17}ClN_2O_4S$
Molekulargewicht:	428.89 g / mol
Rf-Wert:	0.39 (3/1; Hex / EtOAc)
Substanzcode:	SW 381A / ST-1839

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.71 (d, 1H, *J* = 7.71 Hz, *Ph*-OH-3*H*), 7.57 (t, 1H, *J* = 7.77 Hz, *Ph*-OH-5*H*), 7.47-7.39 (m, 6H, *Ph*-OH-4*H*,6*H*, *Ph*-Cl), 2.20 (s, 3H, Thiazol-C(O)-CH₃), 2.06 (s, 3H, O-C(O)-CH₃), 2.04 (s, 3H, N-C(O)-CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 191.19, 170.60, 168.17, 159.52, 151.78, 146.42, 133.88, 133.28, 131.21, 131.00, 130.67, 130.65, 128.41, 127.99, 127.00, 124.04, 29.64, 22.92, 20.19.

ESI-MS:	m/z = 429.8 [N	$(H^{+}H^{+})^{+}$			
Elementaranalyse:	berechnet:	C 58.81	H 4.00	N 6.53	S 7.48
	gefunden:	C 59.10	H 4.08	N 6.49	S 7.53

2-Brom-1-(4-chlorphenyl)propan-1-on (106)

Hergestellt gemäß allgemeiner Synthesevorschrift E nach Methode 1 aus 4'-Chlorpropiophenon (8.43 g, 50 mmol) in 150 mL Chloroform. Umkristallisation aus Petrolether ergab farblose Kristalle.

Ausbeute:	12.5 g (quantitativ)
Summenformel:	C ₉ H ₈ BrClO
Molekulargewicht:	247.51 g / mol
Rf-Wert:	0.71 (9/1; Hex / EtOAc)
Substanzcode:	SW 274

¹**H-NMR** (250 MHz, CDCl₃): δ = 7.97 (d, 2H, J = 8.6 Hz, *Ph*-2*H*,6*H*), 7.46 (d, 2H, J = 8.6 Hz, *Ph*-3*H*,5*H*), 5.22 (q, 1H, J = 6.6 Hz, -CHBr-), 1.90 (d, 3H, J = 6.6 Hz, -CH₃).

ESI-MS: $m/z = 245.1 [M+H^+]^+$

2-((4-(4-Chlorphenyl)-5-methylthiazol-2-yl)amino)phenol (107)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 290 mg, 1.1 mmol) und N-(2-Hydroxyphenyl)thioharnstoff (**102**, 175 mg, 1.0 mmol) in 8 mL Ethanol. Es wurde ohne weitere Aufreinigung umgesetzt.

Ausbeute: 229 mg (57%)

Summenformel: $C_{16}H_{13}CIN_2OS \cdot HBr$

Molekulargewicht:316.80 g / molRf-Wert:0.85 (98/2; DCM / MeOH)

Substanzcode: SW 385 Int

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.79$ (br, 1H, -N*H*-), 7.92 (d, 1H, J = 8.2 Hz, *Ph*-OH-3*H*), 7.63 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.52 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 6.98-6.78 (m, 3H, *Ph*-OH-4*H*,5*H*,6*H*), 2.35 (s, 3H, -CH₃).

2-((4-(4-Chlorphenyl)-5-methylthiazol-2-yl)amino)phenylacetat (109)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-((4-(4-Chlorphenyl)-5methylthiazol-2-yl)amino)phenol (**107**, 229 mg, 0.5 mmol, 1.0 eq) in 8 mL Pyridin. Der isolierte Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Mehanol). Man erhält einen weißen Feststoff.

Ausbeute:	40 mg (22%)
Summenformel:	$C_{18}H_{15}ClN_2O_2S$
Molekulargewicht:	358.84 g / mol
Rf-Wert:	0.44 (98/2; DCM / MeOH)
Substanzcode:	SW 385B / ST-1841

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.06$ (s, 1H, -N*H*-), 7.48 (pseudo s, 4H, *Ph*-Cl), 7.40-7.34 (m, 2H, *Ph*-OH-5*H*,6*H*), 7.08 (d, 1H, J = 8.4 Hz, *Ph*-OH-3*H*), 7.00 (t, 1H, J = 8.4 Hz, *Ph*-OH-4*H*), 2.52 (s, 3H, Thiazol-C*H*₃), 2.02 (s, 3H, C(O)-C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 170.16, 159,40, 152.91, 146.66, 132.95, 131.99, 130.35, 130.20, 128.50, 127.06, 127.02, 119.65, 116.74, 109.86, 22.65

ESI-MS:	$m/z = 357.0 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 57.37	H 4.55	N 7.43	S 8.51
	gefunden:	C 57.60	H 4.57	N 7.39	S 8.27

2-(N-(4-(4-Chlorphenyl)-5-methylthiazol-2-yl)acetamido)phenylacetat (108)

Wurde als Nebenprodukt bei der säulenchromatographischen Auftrennungt von 2-((4-(4-Chlorphenyl)-5-methylthiazol-2-yl)amino)phenylacetat (**109**) erhalten. Umkristallisation erfolgte aus Ethanol / Wasser. Man erhält einen weißen Feststoff.

Ausbeute:	95 mg (47%)
Summenformel:	$C_{20}H_{17}ClN_2O_3S$
Molekulargewicht:	400.88 g / mol

Rf-Wert: 0.84 (98/2; DCM / MeOH)

Substanzcode: SW 385A / ST-1840

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.67$ (d, 1H, J = 7.7 Hz, *Ph*-OH-6*H*), 7.58 (t, 1H, J = 7.7 Hz, *Ph*-OH-5*H*), 7.46 (d, 1H, J = 7.6 Hz, *Ph*-OH-3*H*), 7.43-7-37 (m, 5H, *Ph*-Cl, *Ph*-OH-4*H*), 2.47 (s, 3H, Thiazol-CH₃), 2.03(s, 3H, O-C(O)-CH₃), 1.98 (s, 3H, N-C(O)-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 169.89, 155.21, 152.99, 142.00, 133.64, 131.58, 130.22, 129.29, 128.19, 126.72, 122.86, 119.60, 116.71, 22.56, 11.55.

ESI-MS:	m/z = 401.1 [N	$M+H^+]^+$			
Elementaranalyse:	berechnet:	C 59.92	H 4.27	N 6.99	S 8.00
	gefunden:	C 59.82	H 4.20	N 6.98	S 7.92

5.3.8. Diclofenac Derivate mit und ihre Vorstufen

2-(2-((2,6-Dichlorphenyl)amino)phenylessigsäuremethylester (115)

Hergestellt gemäß der Veresterungsvorschrift wie in der allgemeinen Synthesevorschrift A beschrieben aus Diclofenac (**110**, 500 mg, 1.7 mmol) in Methanol. Man erhält ein gelbliches Öl, welches mit der Zeit erstarrt. Es wurde ohne weitere Aufreinigung direkt umgesetzt.

Ausbeute:	520 mg (quantitativ)
Summenformel:	$C_{15}H_{13}Cl_2NO_2$
Molekulargewicht:	310.17 g / mol
Rf-Wert:	0.96 (9/1; DCM / MeOH)
Substanzcode:	SW 336

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.53$ (d, 2H, J = 7.9 Hz, *Ph*-2,6Cl-3*H*,5*H*), 7.24-7.17 (m, 2H, -N*H*-, *Ph*-2-CH₂-5*H*), 7.08-7.03 (m, 2H, *Ph*-2-CH₂-4*H*,6*H*), 6.83 (t, 1H, J = 7.9 Hz, *Ph*-2,6Cl-4*H*), 6.24 (d, 1H, J = 7.4 Hz, *Ph*-2-CH₂-3*H*), 3.80 (s, 2H, -CH₂-), 3.65 (s, 3H, -CH₃).

2-(2-((2,6-Dichlorphenyl)amino)phenyl)-N-hydroxyacetamid (116)

In 50 mL Methanol wurde 2-(2-((2,6-Dichlorphenyl)amino)phenylessigsäuremethylester (**115**, 500 mg, 1.6 mmol, 1 eq), Hydroxylaminhydrochlorid (1.12 g, 16.2, 10 eq) und Triethylamin (2.23 mL, 16.2 mmol, 10 eq) gelöst und für fünf Stunden zum Sieden erhitzt. Die Reaktionslösung wurde eingeengt, der Rückstand in Dichlormethan aufgenommen und mehrmals mit 2N Salzsäure gewaschen. Es wurde noch mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, dann die organische Phase getrocknet und entfernt. Der

Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Man erhält einen weißen Feststoff.

Ausbeute:	390 mg (73%)
Summenformel:	$C_{14}H_{12}Cl_2N_2O_2\\$
Molekulargewicht:	311.16 g / mol
Rf-Wert:	0.40 (2/1; Hex / EtOAc)
Substanzcode:	SW 351

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.95 (s, 1H, -N*H*-OH), 9.06 (s, 1H, -O*H*), 8.53 (s, 1H, (Ph-2-CH₂)-N*H*-(Ph-2,6Cl)), 7.52 (d, 2H, *J* = 8.0 Hz, *Ph*-2,6Cl-3*H*,5*H*), 7.25-7.18 (m, 2H, *Ph*-2-CH₂-5*H*,6*H*), 7.04 (t, 1H, *J* = 7.5 Hz, *Ph*-2-CH₂-4*H*), 6.85 (t, 1H, *J* = 7.4 Hz, *Ph*-2-CH₂-3*H*), 6.30 (d, 1H, *J* = 7.6 Hz, *Ph*-2,6Cl-4*H*), 3.69 (s, 2H, -CH₂-).

2-(2-((2,6-Dichlorphenyl)amino)phenyl)acetohydrazid (117)

In 10 mL Methanol wurde 2-(2-((2,6-Dichlorphenyl)amino)phenylessigsäuremethylester (**115**, 500 mg, 1.6 mmol, 1 eq) gelöst, mit Hydrazinhydrat (800 μ L, 16 mmol, 10 eq) versetzt und für zwei Stunden zum Sieden erhitzt. Die Reaktionslösung wurde mit 20 mL Wasser verdünnt. Am nächsten Tag wurde der gebildete weiße Feststoff abfiltriert.

Ausbeute:	489 mg (97%)
Summenformel:	$C_{14}H_{13}Cl_2N_3O$
Molekulargewicht:	310.18 g / mol
Rf-Wert:	0.69 (9/1; DCM / MeOH)
Substanzcode:	SW 347

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.49$ (s, 1H, -N*H*-NH₂), 8.55 (s, 1H, (Ph-2-CH₂)-N*H*-(Ph-2,6Cl)), 7.51 (d, 2H, J = 8.0 Hz, *Ph*-2,6Cl-3*H*,5*H*), 7.18-7.11 (m, 2H, *Ph*-2-CH₂-5*H*,6*H*), 7.03 (t, 1H, J = 7.5 Hz, *Ph*-2-CH₂-4*H*), 6.84 (t, 1H, J = 7.3 Hz, *Ph*-2-CH₂-3*H*), 6.30 (d, 1H, J = 7.9 Hz, *Ph*-2,6Cl-4*H*), 4.32 (br, 2H, -N*H*₂), 3.51 (s, 2H, -C*H*₂-).

ESI-MS: $m/z = 332.4 [M+Na^+]^+$

N-Acetoxy-2-(2-((2,6-dichlorphenyl)amino)phenyl)acetamid (118)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-(2-((2,6-Dichlorphenyl)amino)phenyl)-*N*-hydroxyacetamid (**116**, 390 mg, 1.2 mmol) in 15 mL Pyridin. Es erfolgte eine säulenchromatographische Aufreinigung (Fließmittel: 2/1 Hexan / Ethylacetat) und Umkristallisation aus demselben Gemisch. Man erhält einen weißen Feststoff.

Ausbeute:	42 mg (10%)
Summenformel:	$C_{16}H_{14}Cl_{2}N_{2}O_{3}\\$
Molekulargewicht:	353.20 g / mol
Rf-Wert:	0.22 (9/1; Hex / EtOAc)
Substanzcode:	SW 363 / ST-1833

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.18$ (s, 1H, C(O)-NH-O), 7.69 (s, 1H, (Ph-2-CH₂)-NH-(Ph-2,6Cl)), 7.52 (d, 1H, J = 8.0 Hz, *Ph*-2,6Cl-3*H*,5*H*), 7.23-7.14 (m, 2H, *Ph*-2-CH₂-5*H*,6*H*), 7.06 (t, 1H, J = 7.7 Hz, *Ph*-2-CH₂-4*H*), 6.87 (t, 1H, J = 7.4 Hz, *Ph*-2-CH₂-3*H*), 6.30 (d, 1H, J = 7.8 Hz, *Ph*-2,6Cl-4*H*), 3.62 (s, 2H, -CH₂-), 2.17 (s, 3H, -CH₃).

¹³**C-NMR** (100 MHz, DMSO-d₆): $\delta = 168.28$, 168.19, 142.81, 136.98, 130.32, 129.66, 129.09, 127.51, 125.31, 124.03, 120.81, 116.08, 35.70, 17.96.

ESI-MS:	$m/z = 351.4 [\text{M-H}^+]^-$			
Elementaranalyse:	berechnet:	C 54.51	H 4.00	N 7.93
	gefunden:	C 54.12	Н 3.94	N 7.72

N',*N*'-Diacetyl-2-(2-((2,6-dichlorphenyl)amino)phenyl)acetohydrazid (119)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-(2-((2,6-Dichlorphenyl)amino)phenyl)acetohydrazid (**117**, 300 mg, 0.9 mmol) in 10 mL Pyridin. Säulenchromatographische Aufreinigung (Fließmittel: 1/1 Hexan / Ethylacetat) und Umkristallisation aus demselben Gemisch. Man erhält einen weißen Feststoff.

Ausbeute:	34 mg (10%)
Summenformel:	$C_{18}H_{17}Cl_2N_3O_3$
Molekulargewicht:	394.25 g / mol
Rf-Wert:	0.78 (95/5; DCM / MeOH)
Substanzcode:	SW 350A / ST-1809

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.92$ (s, 1H, -C(O)-NH-N), 7.54-7.48 (m, 3H, *Ph*-2,6Cl-3*H*,5*H*, (Ph-2-CH₂)-N*H*-(Ph-2,6Cl)), 7.29-7.15 (m, 2H, *Ph*-2-CH₂-5*H*,6*H*), 7.07 (t, 1H, J = 7.8 Hz, *Ph*-2-CH₂-4*H*), 6.88 (t, 1H, J = 7.4 Hz, *Ph*-2-CH₂-3*H*), 6.29 (d, 1H, J = 7.8 Hz, *Ph*-2,6Cl-4*H*), 3.77 (s, 2H, -CH₂-), 2.24 (s, 6H, 2x -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 170.81, 170.77, 142.68, 136.94, 130.43, 129.77, 129.05, 127.05, 125.39, 123.73, 120.78, 116.05, 36.67, 24.43.

ESI-MS: $m/z = 392.5 [M-H^+]^-$

Elementaranalyse: berechnet: C 54.84 H 4.35 N 10.66

	Experimente	eller Teil	
gefunden:	C 54.95	H 4.31	N 10.47

N'-Acetyl-2-(2-((2,6-dichlorphenyl)amino)phenyl)acetohydrazid (120)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-(2-((2,6-Dichlorphenyl)amino)phenyl)acetohydrazid (**117**, 168 mg, 0.5 mmol) in 10 mL Pyridin. Es wurde jedoch nur 20 Minuten gerührt (Niederschlag nicht komplett aufgelöst)! Säulenchromatographische Aufreinigung (Fließmittel: 1/1 Hexan / Ethylacetat) und Umkristallisation aus Ethylacetat. Man erhält einen weißen Feststoff.

Ausbeute:	95 mg (50%)
Summenformel:	$C_{16}H_{15}Cl_{2}N_{3}O_{2}$
Molekulargewicht:	352.22 g / mol
Rf-Wert:	0.53 (95/5; DCM / MeOH)
Substanzcode:	SW 350B / ST-1832

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.33 (s, 1H, -N*H*-NH-), 9.95 (s, 1H, -NH-N*H*-), 8.06 (s, 1H, (Ph-2-CH₂)-N*H*-(Ph-2,6Cl)), 7.51 (d, 1H, *J* = 8.0 Hz, *Ph*-2,6Cl-3*H*,5*H*), 7.25-7.13 (m, 2H, *Ph*-2-CH₂-5*H*,6*H*), 7.06 (t, 1H, *J* = 7.7 Hz, *Ph*-2-CH₂-4*H*), 6.86 (t, 1H, *J* = 7.4 Hz, *Ph*-2-CH₂-3*H*), 6.30 (d, 1H, *J* = 7.9 Hz, *Ph*-2,6Cl-4*H*), 3.63 (s, 2H, -CH₂-), 1.86 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.90, 167.64, 142.75, 137.03, 130.27, 129.39, 129.07, 127.27, 125.06, 124.79, 120.72, 116.00, 37.03, 20.35.

ESI-MS:	$m/z = 352.5 [\text{M-H}^+]^-$			
Elementaranalyse:	berechnet:	C 54.56	H 4.29	N 11.93
	gefunden:	C 54.41	H 4.38	N 11.70

2-(2-Nitrophenyl)acetamid (127)

Hergestellt gemäß allgemeiner Synthesevorschrift B, mit konzentriertem Ammoniak anstatt einer Hydroxylamin-Lösung, aus 2-Nitrophenylessigsäure (1 g, 5.6 mmol) in 10 mL Thionylchlorid. Säulenchromatographische Aufreinigung (Fließmittel: 95/5 Dichlormethan / Methanol) ergab einen weißen Feststoff.

Ausbeute:	640 mg (61%)
Summenformel:	$C_8H_8N_2O_3$
Molekulargewicht:	180.16 g / mol
Rf-Wert:	0.43 (95/5; DCM / MeOH)
Substanzcode:	SW 215

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.99$ (d, 1H, J = 8.1 Hz, Ph-3H), 7.66 (t, 1H, J = 7.5 Hz, Ph-5H), 7.55-7.46 (m, 3H, 1x -NH₂ Ph-4H,5H), 6.79 (br, 1H, 1x -NH₂), 3.85 (s, 2H, -CH₂-). **ESI-MS:** $m/z = 178.6 [M-H^+]^-$

2-(2-Aminophenyl)acetamid (128)

Hergestellt gemäß allgemeiner Synthesevorschrift D aus 2-(2-Nitrophenyl)acetamid (**127**, 640 mg, 3.5 mmol) in 50 mL Ethanol. Man erhält einen weißen Feststoff.

Ausbeute:	608 mg (quantitativ)	
Summenformel:	$C_8H_{10}N_2O$	NH ₂
Molekulargewicht:	150.18 g / mol	NH ₂
Rf-Wert:	0.21 (95/5; DCM / MeOH)	
Substanzcode:	SW 217	
¹ H-NMR (250 MHz	z, DMSO-d ₆): $\delta = 7.47$ (br, 1H, 1x C(O)-NH ₂), 7.	00-6.89 (m, 3H, 1x
C(O)-NH ₂ Ph-4H,5H	<i>I</i>), 6.63 (d, 1H, $J = 7.9$ Hz, <i>Ph</i> -3 <i>H</i>), 6.51 (t, 1H, $J = 7.9$	7.3 Hz, <i>Ph-5H</i>), 5.08
(br, 2H, Ph-NH ₂), 3.2	23 (s, 2H, -CH ₂ -).	

ESI-MS: $m/z = 173.8 [M+Na^+]^+$

2-(2-(p-Tolylamino)phenyl)acetamid (130)

In einem Mikrowellenvial wurden 2-(2-Aminophenyl)acetamid (**128**, 200 mg, 1.3 mmol, 1.0 eq), Iodtoluen (370 mg, 1.6 mmol, 1.2 eq), Kaliumcarbonat (460 mg, 3.3 mmol, 2.5 eq), Kupfer(I)iodid (13 mg, 0.07 mmo, 0.05 eq) und *N*,*N*-Dimethylethylendiamin (2 mL, 0.1 mmol, 0.1 eq) in 4 mL absolutem Dioxan gelöst und für eine Stunde auf 160 °C erhitzt. Die Reaktionsmischung wurde in 2N Salzsäure aufgenommen und mit Ethylacetat extrahiert. Die organische Phase wurde gewaschen, getrocknet entfernt und säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man isolierte ein gelbes Öl, welches mit der Zeit erstarrt.

Ausbeute:	51 mg (16%)	
Summenformel:	$C_{15}H_{16}N_2O$	NH ₂
Molekulargewicht:	240.31 g / mol	NHÖ
Rf-Wert:	0.77 (95/5; DCM / MeOH)	
Substanzcode:	SW 219	\downarrow CH ₃

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.04$ (s, 1H, -N*H*-), 7.46 (d, 2H, J = 8.4 Hz, *Ph*-CH₃-2*H*,6*H*), 7.11-7.04 (m, 3H, *Ph*-CH₃-3*H*,5*H*, *Ph*-CH₂-3*H*), 6.96 (t, 1H, J = 7.8 Hz, *Ph*-CH₂-

5*H*), 6.68 (d, 1H, *J* = 7.9 Hz, *Ph*-CH₂-6*H*), 6.56 (t, 1H, *J* = 7.3 Hz, *Ph*-CH₂-4*H*), 5.33 (br, 2H, -*NH*₂), 3.48 (s, 2H, -*CH*₂-), 2.23 (s, 3H, -*CH*₃).

ESI-MS: $m/z = 241.7 [M+H^+]^+$

N-Acetyl-2-(2-(p-tolylamino)phenyl)acetamid (131)

2-(2-(*p*-Tolylamino)phenyl)acetamid (**130**, 150 mg, 0.5 mmol) wurde nach allgemeiner Synthesevorschrift C Methode 1 umgesetzt. Der isolierte Rückstand wurde mehrmals aus Chloroform umkristallsiert.

Ausbeute:	24 mg (16%)
Summenformel:	$C_{17}H_{18}N_2O_2$
Molekulargewicht:	282.34 g / mol
Rf-Wert:	0.47 (98/2; DCM / MeOH)
Substanzcode:	SW 220 / ST-1727

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.12$ (s, 1H, Ph-N*H*-Ph-CH₃), 9.71 (s, 1H, C(O)-N*H*-C(O)) 7.52-7.44 (m, 3H, *Ph*-CH₃-2*H*,6*H*, *Ph*-CH₂-3*H*), 7.31-7.20 (m, 2H, *Ph*-CH₂-5*H*,6*H*), 7.15-7.08 (m, 3H, *Ph*-CH₃-3*H*,5*H*, *Ph*-CH₂-4*H*), 3.66 (s, 2H, -CH₂-), 2.24 (s, 3H, Ph-CH₃), 2.06 (s, 3H, C(O)-CH₃).

¹³**C-NMR** 75 MHz, DMSO-d₆): δ = 169.25, 138.21, 136.78, 136.32, 132.26, 130.18, 129.50, 129.00, 126.94, 124.85, 124.72, 119.21, 23.46, 20.33.

ESI-MS:	$m/z = 283.2 [M+H^+]^+$			
Elementaranalyse:	berechnet:	C 72.32	H 6.43	N 9.92
	gefunden:	C 72.07	H 6.43	N 9.87

N-(2-(2-(*p*-Tolylamino)phenyl)acetyl)acrylamid (132)

2-(2-(*p*-Tolylamino)phenyl)acetamid (**130**, 150 mg, 0.5 mmol) wurde nach allgemeiner Synthesevorschrift C Methode 1, mit Acryloylchlorid anstatt Acetylchlorid, umgesetzt. Der isolierte Rückstand, ein Öl, wurde in Chloroform aufgenommen und mit Hexan trituiert. Man erhält einen weißen Feststoff.

Ausbeute:	32 mg (16%)
Summenformel:	$C_{18}H_{18}N_2O_2\\$
Molekulargewicht:	294.35 g / mol
Rf-Wert:	0.21 (95/5; DCM / MeOH)
Substanzcode:	SW 236 / ST-1728

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.15$ (s, 1H, Ph-N*H*-Ph-CH₃), 9.99 (s, 1H, C(O)-N*H*-C(O)), 7.63 (d, 1H, *J* = 7.7 Hz, *Ph*-CH₂-3*H*), 7.45 (d, 2H, *J* = 8.4 Hz, *Ph*-CH₃-2*H*,6*H*), 7.34-7.23 (m, 2H, *Ph*-CH₂-4*H*,5*H*), 7.17 (d, 1H, *J* = 7.4 Hz, *Ph*-CH₂-6*H*), 7.10 (d, 2H, *J* = 8.2 Hz, *Ph*-CH₃-3*H*,5*H*), 6.51-6.40 (dd, 1H, *J* = 10.0 Hz, 17.0 Hz, -C*H*=CH₂), 6.24 (dd, 1H, *J* = 17.0 Hz, 2.0 Hz, 1x –C*H*₂), 5.76 (dd, 1H, *J* = 10 Hz, 2.0 Hz, 1x =C*H*₂), 3.69 (s, 2H, -C*H*₂-), 2.24 (s, 3H, -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 169.24, 163.27, 136.51, 136.24, 132.32, 131.88, 130.28, 129.29, 128.99, 127.04, 126.54, 125.06, 124.40, 119.27, 20.33.

ESI-MS:	$m/z = 329.2 [M+C1^-]^-$			
Elementaranalyse:	berechnet:	C 73.45	H 6.16	N 9.52
	gefunden:	C 73.11	H 6.15	N 9.47

5.3.9. Nimesulid-Derivate und ihre Vorstufen

2,4-Dihydroxybenzoesäuremethylester (134)

Hergestellt gemäß der Veresterungsvorschrift wie in der allgemeinen Synthesevorschrift A beschrieben aus 2,4-Dihydroxybenzoesäure (7 g, 45 mmol) in MeOH. Umsetzung ohne weitere Aufreinigung. Man erhält ein weißes Pulver.

Ausbeute:	6.7 (87%)
Summenformel:	$C_8H_8O_4$
Molekulargewicht:	168.15 g / mol
Substanzcode:	SW 430

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 11.00 (s, 1H, -O*H*), 7.71 (sd, 1H, *J* = 3.2 Hz, *Ph*-6*H*), 6.41-6.35 (m, *Ph*-3*H*,5*H*), 4.68 (s, 1H, -O*H*), 3.91 (s, 3H, -C*H*₃).

2-Hydroxy-4-(2-nitrophenoxy)benzoesäuremethylester (136)

Hergestellt wie für 2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (**163**) beschrieben aus 2-Fluornitrobenzol (310 μ L, 6 mmol) und 2,4-Dihydroxybenzoesäure-methylester (**134**, 1 g, 6 mmol). Man erhält ein braunes Öl.

Ausbeute:	1.16 g (67%)
Summenformel:	$C_{14}H_{11}NO_6$
Molekulargewicht:	289.24 g / mol
Rf-Wert:	0.50 (DCM)

Substanzcode: SW 433

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 10.95$ (br, 1H, -OH), 8.01 (d, 1H, J = 8.1 Hz, *Ph*-NO₂-6*H*), 7.83 (d, 1H, J = 8.7 Hz, *Ph*-COOH-6*H*), 7.62 (t, 1H, J = 8.1 Hz, *Ph*-NO₂-4*H*), 7.34 (t, 1H, J = 8.3 Hz, *Ph*-NO₂-5*H*), 7.64 (d, 1H, J = 8.2 Hz, *Ph*-NO₂-3*H*),), 6.54 (dd, 1H, J = 8.7 Hz, 2.4 Hz, *Ph*-COOH-5*H*), 6.45 (sd, 1H, J = 2.4 Hz, *Ph*-COOH-3*H*), 3.93 (s, 3H, O-CH₃).

4-(2-Aminophenoxy)-2-hydroxybenzoesäuremethylester (137)

 $C_{14}H_{13}NO_4$

0.37 (DCM)

Hergestellt gemäß allgemeiner Synthesevorschrift D aus 2-Hydroxy-4-(2nitrophenoxy)benzoesäuremethylester (**136**, 2.7 g, 9.3 mmol) in 180 mL Methanol. Es erfolgte eine säulenchromatographische Auftrennung (Fließmittel: Dichlormethan).

Ausbeute: 1.5 g (62%)

Summenformel:

Rf-Wert:

Molekulargewicht: 259.26 g / mol

Substanzcode: SW 436

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.91$ (br, 1H, -OH), 7.79 (d, 1H, J = 8.7 Hz, *Ph*-COOH-6H), 7.05 (t, 1H, J = 7.3 Hz, *Ph*-NH₂-4H), 6.95 (d, 1H, J = 7.9 Hz, *Ph*-NH₂-6H), 7.64 (d, 1H, J = 7.9 Hz, *Ph*-NH₂-3H), 6.75 (t, 1H, J = 7.2 Hz, *Ph*-NH₂-5H), 6.52-6.45 (m, 2H, *Ph*-COOH-3H,5H), 3.86 (s, 3H, O-CH₃), 3.71 (br, 1H, -NH₂).

ESI-MS: $m/z = 260.5 [M+H^+]^+$

2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)benzoesäuremethylester (138)

In 25 mL Pyridin wurde 4-(2-Aminophenoxy)-2-hydroxybenzoesäuremethylester (**137**, 1 g, 3.8 mmol, 1.0 eq) gelöst und auf 0 °C gekühlt. Nach 30 Minuten wurde Methylsulfonylchlorid (358 μ L, 4.6 mmol, 1.1 eq) hinzugetropft und über Nacht gerührt. Die Mischung wurde auf Eis / 2N Salzsäure gegeben und mit Dichlormethan extrahiert. Man erhält ein orange-farbenens Öl, welches ohne weitere Aufreinigung umgesetzt wurde.

Ausbeute:	1.4 (quantitativ)
Summenformel:	$C_{15}H_{15}NO_6S$
Molekulargewicht:	337.35 g / mol
Rf-Wert:	0.12 (3/1; Hex / EtOAc)
Substanzcode:	SW 440

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.69$ (br, 1H, -OH), 9.42 (s, 1H, -NH-), 7.79 (d, 1H, J = 8.7 Hz, *Ph*-COOH-6H), 7.51-7.46 (m, 1H, *Ph*-NH-3H), 7.27-7.23 (m, 2H, *Ph*-NH-4H,5H),

7.14-7.10 (m, 1H, *Ph*-NH-6*H*), 6.52 (dd, 1H, *J* = 8.7 Hz, 2.4 Hz, *Ph*-COOH-5*H*), 6.43 (sd, 1H, *J* = 2.4 Hz, *Ph*-COOH-3*H*), 3.86 (s, 3H, O-C*H*₃), 2.95 (s, 3H, SO₂-C*H*₃).

2-Acetoxy-4-(2-(N-(methylsulfonyl)acetamido)phenoxy)benzoesäuremethylester (139)

Hergestellt gemäß allgemeiner Synthesevorschrift B Methode 1 aus 2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)benzoesäuremethylester (**138**, 1.3 g, 3.8 mmol) in 40 mL Dichlormethan. Säulenchromatographische Auftrennung (Fließmittel: 1/1 Hexan / Ethylacetat). Man erhält einen weißen Schaum.

Ausbeute:	1.08 g (67%)
Summenformel:	$C_{19}H_{19}NO_8S$
Molekulargewicht:	421.41 g / mol
Rf-Wert:	0.36 (1/1; Hex / EtOAc)
Substanzcode:	SW 441 / ST-1855

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.00$ (d, 1H, J = 8.7 Hz, *Ph*-COOH-6*H*), 7.64 (d, 1H, J = 7.8 Hz, *Ph*-NH-3*H*), 7.55 (t, 1H, J = 7.5 Hz, *Ph*-NH-5*H*), 7.35 (t, 1H, J = 7.6 Hz, *Ph*-NH-4*H*), 7.19 (d, 1H, J = 8.2 Hz, *Ph*-NH-6*H*), 7.08 (dd, 1H, J = 8.7 Hz, 2.5 Hz, *Ph*-COOH-5*H*), 6.96 (sd, 1H, J = 2.4 Hz, *Ph*-COOH-3*H*), 3.79 (s, 3H, O-CH₃), 3.41 (s, 3H, SO₂-CH₃), 2.25 (s, 3H, O-C(O)-CH₃), 1.95 (s, 3H, N-C(O)-CH₃).

ESI-MS: $m/z = 444.9 [M+Na^+]^+$

2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)-6-nitrobenzoesäure (143

Hergestellt aus 2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)benzoesäuremethylester (**138**) durch Nitriersäure (1 eq) in Dichlormethan bei RT für drei Stunden. Es erfolgte eine säulenchromatographische Auftrennung (Fließmittel: Dichlormethan). Man erhält einen gelben Feststoff.

Summenformel:	$C_{15}H_{14}N_2O_8S$
Molekulargewicht:	382.34 g / mol
Rf-Wert:	0.60 (DCM)
Substanzcode:	SW 417 Fr. 9-12

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 11.08 (br, 1H, -O*H*), 9.40 (s, 1H, -N*H*-), 7.90 (sd, 1H, *J* = 3.1 Hz, *Ph*-OH-3*H*), 7.67 (sd, 1H, *J* = 3.1 Hz, *Ph*-OH-5*H*), 7.48-7.44 (m, 1H, *Ph*-NH-3*H*), 7.23-7.18 (m, 2H, *Ph*-NH-4*H*,5*H*), 7.04-7.00 (m, 1H, *Ph*-NH-6*H*), 3.89 (s, 3H, O-C*H*₃), 3.20 (s, 3H, SO₂-C*H*₃).

ESI-MS: $m/z = 381.6 [M-H^+]^-$

2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)-3-nitrobenzoesäure

Hergestellt aus 2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)benzoesäuremethylester (**138**) durch Nitriersäure (1 eq) in Dichlormethan bei RT für drei Stunden. Es erfolgte eine säulenchromatographische Auftrennung (Fließmittel: Dichlormethan). Man erhält einen gelben Feststoff.

Summenformel:	$C_{14}H_{12}N_2O_8S$
Molekulargewicht:	368.32 g / mol
Rf-Wert:	0.56 (DCM)
Substanzcode:	SW 417 Fr. 13-14

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.35$ (br, 1H, -OH), 9.58 (s, 1H, -NH-), 8.10-8.02 (m, 2H, *Ph*-OH-3H,5H), 7.82-7.73 (m, 4H, *Ph*-NH-3H,4H,5H,6H), 3.90 (s, 3H, O-CH₃), 3.20 (s, 3H, SO₂-CH₃).

4-(2-Aminophenoxy)-2-hydroxy-3-nitrobenzoesäuremethylester (145)

Hergestellt aus 4-(2-Aminophenoxy)-2-hydroxybenzoesäuremethylester (**137**) durch Nitriersäure (1 eq) in Dichlormethan bei RT für drei Stunden. Es erfolgte eine säulenchromatographische Auftrennung (Fließmittel: Dichlormethan). Man erhält einen gelben Feststoff.

Summenformel:	$C_{14}H_{12}N_2O_6$
Molekulargewicht:	304.26 g / mol
Rf-Wert:	0.51 (95/5; DCM / MeOH)
Substanzcode:	SW 439 Fr. 10-15

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.25$ (br, 1H, -O*H*), 7.90 (d, 1H, *J* = 9.1 Hz, *Ph*-OH-4*H*), 7.03 (t, 1H, *J* = 7.2 Hz, *Ph*-NH₂-4*H*), 6.95 (d, 1H, *J* = 7.9 Hz, *Ph*-NH₂-6*H*), 6.85 (d, 1H, *J* = 7.9 Hz, *Ph*-NH₂-3*H*), 6.60 (t, 1H, *J* = 6.6 Hz, *Ph*-NH₂-5*H*), 6.33 (d, 1H, *J* = 9.1 Hz, *Ph*-OH-4*H*), 5.03 (br, 2H, -NH₂), 3.90 (s, 3H, -CH₃).

4-(2-Aminophenoxy)-2-hydroxy-5-nitrobenzoesäuremethylester (146) nach

Hergestellt aus 4-(2-Aminophenoxy)-2-hydroxybenzoesäuremethylester (**137**) durch Nitriersäure (1 eq) in Dichlormethan bei RT für drei Stunden. Es erfolgte eine säulenchromatographische Auftrennung (Fließmittel: Dichlormethan). Man erhält einen gelben Feststoff.

Summenformel: $C_{14}H_{12}N_2O_6$

Molekulargewicht: 304.26 g / mol Rf-Wert: 0.60 (95/5; DCM / MeOH)

Substanzcode: SW 439 Fr. 7-9

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.52$ (s, 1H, *Ph*-OH-6*H*), 7.07 (t, 1H, *J* = 7.2 Hz, *Ph*-NH₂-4*H*), 7.00 (d, 1H, *J* = 7.9 Hz, *Ph*-NH₂-6*H*), 6.87 (d, 1H, *J* = 7.9 Hz, *Ph*-NH₂-3*H*), 6.61 (t, 1H, *J* = 6.6 Hz, *Ph*-NH₂-5*H*), 6.23 (s, 1H, *Ph*-OH-3*H*), 5.19 (br, 2H, -NH₂), 3.86 (s, 3H, -CH₃).

2-Iod-4-nitroanilin (150) nach³⁰⁶

In 20 mL Methanol wird konzentrierte Schwefelsäure (319 μ L, 6 mmol, 1.5 eq) gelöst und 4-Nitroanilin (552 mg, 4 mmol, 1.0 eq) sowie Kaliumiodid (664 mg, 4 mmol, 1.0 eq) hinzugegeben. Anschließend wurde Wasserstoffperoxid (30%ig, 906 μ L, 8 mmol, 2.0 eq) hinzugegeben und für fünf Stunden auf 60 °C erhitzt. Es wurde mit Wasser verdünnt und mit Dichlormethan extrahiert. Man erhält einen schmutzig gelben Feststoff.

Ausbeute: 1.15 g (80%)

Summenformel: $C_6H_5IN_2O_2$

Molekulargewicht: 264.02 g / mol Substanzcode: SW 437

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 8.38 (sd, 1H, *J* = 2.6 Hz, *Ph*-3*H*), 7.98 (dd, 1H, *J* = 9.1 Hz, 2.6 Hz, *Ph*-5*H*), 6.76 (d, 2H, *J* = 9.1 Hz, *Ph*-6*H*), 6.72 (br, 2H, -NH₂).

ESI-MS: $m/z = 262.8 [M-H^+]^-$

2,5-Dihydroxybenzoesäuremethylester (153)

Hergestellt gemäß der Veresterungsvorschrift wie in der allgemeinen Synthesevorschrift A beschrieben aus 2,5-Dihydroxybenzoesäure (**152**, 5 g, 32 mmol) in Methanol. Umsetzung ohne weitere Aufreinigung. Man erhält ein farbloses Öl, welches mit der Zeit erstarrt.

Ausbeute:	5.2 g (96%)
Summenformel:	$C_8H_8O_4$
Molekulargewicht:	168.15 g / mol
Rf-Wert:	0.23 (3/1; Hex / EtOAc)
Substanzcode:	SW 406

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.30$ (s, 1H, -OH), 7.25 (sd, 1H, J = 3.2 Hz, *Ph*-6H), 6.98 (dd, 1H, J = 8.9 Hz, 3.2 Hz, *Ph*-4H), 6.85 (d, 1H, J = 8.9 Hz, *Ph*-3H), 4.68 (s, 1H, -OH), 3.91 (s, 3H, -CH₃).

ESI-MS: $m/z = 166.6 [M-H^+]^-$

2-Hydroxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäuremethylester (155)

Hergestellt wie für 3-(4-Nitro-2-(trifluormethyl)phenoxy)phenol (**165**) beschrieben aus 2,5-Dihydroxybenzoesäuremethylester (**153**, 190 mg, 1.1 mmol) anstatt Resorcin in 8 mL Acetonitril mit Zusatz von Kupfer(I)iodid (9 mg, 0.1 mmol, 0.05 eq). Man erhält einen gelben Feststoff.

Ausbeute:	346 mg (90%)
Summenformel:	$C_{15}H_{10}F_3NO_6$
Molekulargewicht:	357.24 g / mol
Rf-Wert:	0.41 (5/1; Hex / EtOAc)
Substanzcode:	SW 407

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 10.50$ (1H, br, -O*H*), 8.50 (1H, sd, J = 2.5 Hz, *Ph*-NO₂-3*H*), 8.43 (1H, dd, J = 9.2 Hz, 2.6 Hz, *Ph*-NO₂-5*H*), 7.54 (1H, sd, J = 3.0 Hz, *Ph*-COOH-6*H*), 7.45 (1H, dd, J = 8.9 Hz, 3.0 Hz, *Ph*-COOH-4*H*), 7.14 (1H, d, J = 8.9 Hz, *Ph*-COOH-3*H*), 7.09 (1H, d, J = 9.2 Hz, *Ph*-NO₂-6*H*), 3.86 (s, 3H, -CH₃).

ESI-MS: $m/z = 357.9 [M+H^+]^+$

2-Acetoxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäuremethylester (156)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-Hydroxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäuremethylester (**155**, 344 mg, 1 mmol). Man erhält ein farbloses Öl nach säulenchromatographischer Auftrennung (Fließmittel: 3/1 Hexan / Ethylacetat), welches mit der Zeit erstarrt. Umkristallisation aus Ethanol / Wasser ergab einen weißen Feststoff.

Ausbeute:	368 mg (95%)
Summenformel:	$C_{17}H_{12}F_3NO_7$
Molekulargewicht:	399.28 g / mol
Rf-Wert:	0.43 (3/1; Hex / EtOAc)
Substanzcode:	SW 410 / ST-1845

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.54-8.48$ (2H, m, *Ph*-NO₂-3*H*,5*H*), 7.70 (1H, sd, J = 2.9 Hz, *Ph*-COOH-6*H*), 7.60 (1H, dd, J = 8.7 Hz, 3.0 Hz, *Ph*-COOH-4*H*), 7.42 (1H, d, J = 8.7

Hz, *Ph*-COOH-3*H*), 7.22 (1H, d, *J* = 9.0 Hz, *Ph*-NO₂-6*H*), 3.80 (3H, s, O-C*H*₃), 2.30 (3H, s, C(O)-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.01, 163.37, 159.32, 151.14, 147.22, 142.13, 130.14, 126.39, 125.92, 124.83, 123.41, 122.24, 118.61, 52.43, 20.53.

ESI-MS:	$m/z = 398.5 [\mathrm{M-H^+}]^-$			
Elementaranalyse:	berechnet:	C 51.14	H 3.03	N 3.51
	gefunden:	C 51.10	Н 3.42	N 3.51

2-Hydroxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäure (157)

Hergestellt wie für 2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (**155**) beschrieben aus 2-Fluor-5-nitrobenzotrifluorid (200 μ L, 1.4 mmol, 1.0 eq) und 2,5-Dihydroxybenzoesäure (185 mg, 1.2 mmol, 1.2 eq). Der Rückstand wurde über Kieselgel filtriert mit Dichlormethan und mi Ethanol hinunter gespült. Man erhält einen braunen Feststoff.

Ausbeute:	203 mg (30%)
Summenformel:	$C_{14}H_8F_3NO_6$
Molekulargewicht:	343.21 g / mol
Rf-Wert:	0.09 (3/1; Hex / EtOAc + AcOH)
Substanzcode:	SW 408

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.63 (1H, br), 9.13 (1H, br), 8.03 (1H, dd, J = 8.1 Hz), 7.62 (1H, td, J = 6.8 Hz), 7.42-7.29 (3H, m), 7.09-7.02 (2H, m).

ESI-MS: $m/z = 342.4 [M-H^+]^-$

2-Acetoxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäure (158)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-Hydroxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäure (**157**, 200 mg, 0.6 mmol). Man erhält ein Feststoff nach säulenchromatographischer Auftrennung (Fließmittel: 1/1 Hexan / Ethylacetat + 3% Essigsäure). Umkristallisation aus Ethanol / Wasser ergab einen weißen Feststoff.

Ausbeute:	77 mg (30%)
Summenformel:	$C_{16}H_{10}F_{3}NO_{7}$
Molekulargewicht:	385.25 g / mol
Rf-Wert:	0.86 (1/1; Hex / EtOAc + AcOH)
Substanzcode:	SW 411 / ST-1844

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.52$ (1H, br, COO*H*), 8.53-8.46 (2H, m, *Ph*-NO₂-3*H*,5*H*), 7.66 (1H, sd, J = 2.9 Hz, *Ph*-COOH-6*H*), 7.55 (dd, 1H, J = 8.7 Hz, 3.0 Hz, *Ph*-COOH-4*H*), 7.37 (d, 1H, J = 8.7 Hz, *Ph*-COOH-3*H*), 7.22 (1H, d, J = 8.9 Hz, *Ph*-NO₂-6*H*), 2.27 (3H, s, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 171.86, 169.05, 164.49, 159.41, 151.23, 147.39, 142.11, 130.14, 126.18, 126.06, 125.41, 123.41, 122.29, 119.53, 119.01, 118.65, 20.68.

ESI-MS: $m/z = 384.5 [M-H^+]^-$

5-Amino-2-hydroxybenzoesäuremethylester (160)

Hergestellt gemäß der Veresterungsvorschrift wie in der allgemeinen Synthesevorschrift A beschrieben aus Mesalazin (1 g, 6.5 mmol) in Methanol. Umsetzung ohne weitere Aufreinigung. Man erhält ein farbloses Öl, welches mit der Zeit erstarrt.

Ausbeute: 891 mg (81%)

Summenformel: $C_8H_9NO_3$

Molekulargewicht: 167.16 g / mol

Substanzcode: SW 419

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.74$ (s, 1H, -O*H*), 7.00 (sd, 1H, J = 2.8 Hz, *Ph*-6*H*), 6.82 (dd, 1H, J = 8.7 Hz, 2.8 Hz, *Ph*-4*H*), 6.70 (d, 1H, J = 8.7 Hz, *Ph*-3*H*), 4.82 (br, 2H, -N*H*₂), 3.85 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 168.9 [M-H^+]^-$

2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäuremethylester (161)

Hergestellt wie für 2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (**163**) beschrieben aus 2-Fluor-5-nitrobenzotrifluorid (**154**, 200 μ L, 1.4 mmol, 1.0 eq) und 5-Amino-2-hydroxybenzoesäuremethylester (**160**, 280 mg, 1.6 mmol, 1.2 eq). Man erhält einen gelben Feststoff.

Ausbeute:	490 mg (quantitativ)
Summenformel:	$C_{15}H_{11}F_{3}N_{2}O_{5}\\$
Molekulargewicht:	356.26 g / mol
Rf-Wert:	0.18 (2/1; Hex / EtOAc)
Substanzcode:	SW 420

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.46$ (sd, 1H, J = 2.7 Hz, *Ph*-NO₂-3*H*), 8.39 (dd, 1H, J = 9.2 Hz, 2.8 Hz, *Ph*-NO₂-5*H*), 7.18 (1H, sd, J = 2.7 Hz, *Ph*-OH-6*H*), 7.00 (1H, d, J = 8.6 Hz, *Ph*-OH-3*H*), 6.91-6.82 (m, 2H, *Ph*-COOH-4*H*, *Ph*-NO₂-6*H*), 3.58 (3H, s, -CH₃).

ESI-MS: $m/z = 397.9 [M+K^+]^+$

2-Acetoxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäuremethylester (162)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-Hydroxy-5-(4-nitro-2-(trifluormethyl)phenoxy)benzoesäuremethylester (**161**, 490 mg, 1.4 mmol). Man erhält ein farbloses Öl nach säulenchromatographischer Auftrennung (Fließmittel: 3/1 Hexan / Ethylacetat), welches mit der Zeit erstarrt. Umkristallisation aus Ethanol / Wasser ergab einen schwach gelben Feststoff.

Ausbeute:	273 mg (49%)
Summenformel:	$C_{17}H_{13}F_3N_2O_6$
Molekulargewicht:	398.29 g / mol
Rf-Wert:	0.46 (2/1; Hex / EtOAc)
Substanzcode:	SW 423 / ST-1854

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.60$ (sd, 1H, J = 2.6 Hz, *Ph*-NO₂-3*H*), 8.26 (dd, 1H, J = 9.2 Hz, 2.7 Hz, *Ph*-NO₂-5*H*), 8.03-8.00 (m, 2H, *Ph*-OH-3*H*,6*H*), 7.49 (br, 1H, -N*H*-), 7.14 (d, 1H, J = 9.4 Hz, *Ph*-COOH-4*H*), 6.70 (d, 1H, J = 9.2 Hz, *Ph*-NO₂-6*H*), 3.58 (3H, s, -CH₃).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 168.60$, 164.36, 161.43, 148.02, 141.42, 136.46, 128.76, 125.85, 124.40, 124.05, 123.98, 123.90, 123.82, 123.31, 115.31, 52.50, 24.47.

ESI-MS:	$m/z = 397.7 \ [\text{M-H}^+]^-$			
Elementaranalyse:	berechnet:	C 51.26	Н 3.29	N 7.03
	gefunden:	C 51.22	H 3.40	N 6.77

2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (163)

In 5 mL DMF wurden 2-Fluor-5-nitrobenzotrifluorid (**154**, 200 μ L, 1.4 mmol, 1.0 eq), Mesalazin (240 mg, 1.5 mmol, 1.1 eq) und Kaliumcarbonat (305 mg, 2.2 mmol, 2.2 eq) gelöst und in der Mikrowelle für eine Stunde auf 80 °C erhitzt. Die Mischung wurde auf Eis gegeben, mit Ethylacetat extrahiert. Die organsiche Phase wurde gewaschen, getrocknet und entfernt. Man erhielt einen schmutzig gelben Feststoff, welcher ohne Aufreinigung weiter umgesetzt wurde.

Ausbeute:	480 mg (quantitativ)
Summenformel:	$C_{14}H_9F_3N_2O_5$
Molekulargewicht:	342.23 g / mol
Rf-Wert:	0.26 (2/1; Hex / EtOAc + AcOH)
Substanzcode:	SW 393

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.65$ (s, 1H, -N*H*-), 8.31 (sd, 1H, J = 2.6 Hz, *Ph*-NO₂-3*H*), 8.17 (dd, 1H, J = 9.4 Hz, 2.6 Hz, *Ph*-NO₂-5*H*), 7.65 (sd, 1H, J = 2.7 Hz, *Ph*-COOH-6*H*), 7.44 (dd, 1H, J = 8.8 Hz, 2.7 Hz, *Ph*-COOH-4*H*), 7.05 (d, 1H, J = 8.7 Hz, *Ph*-COOH-3*H*), 6.84 (d, 1H, J = 9.4 Hz, *Ph*-NO₂-6*H*).

ESI-MS: $m/z = 340.9 [M-H^+]^-$

2-Acetoxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (164)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 2-Hydroxy-5-((4-nitro-2-(trifluormethyl)phenyl)amino)benzoesäure (**163**, 490 mg, 1.4 mmol) in 20 mL Pyridin. Der Rückstand wurde mehrfach aus Ethanol / Wasser umkristallisiert. Man erhält einen gelben Feststoff.

Ausbeute:	190 mg (34%)
Summenformel:	$C_{16}H_{11}F_3N_2O_6$
Molekulargewicht:	384.27 g / mol
Rf-Wert:	0.40 (2/1; Hex / EtOAc + AcOH)
Substanzcode:	SW 394 / ST-1842

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 8.74$ (s, 1H, -N*H*-), 8.35 (sd, 1H, J = 2.5 Hz, *Ph*-NO₂-3*H*), 8.25 (dd, 1H, J = 9.3 Hz, 2.5 Hz, *Ph*-NO₂-5*H*), 7.81 (sd, 1H, J = 2.6 Hz, *Ph*-COOH-6*H*), 7.56 (dd, 1H, J = 8.6 Hz, 2.6 Hz, *Ph*-COOH-4*H*), 7.26 (d, 1H, J = 8.6 Hz, *Ph*-COOH-3*H*), 7.11 (d, 1H, J = 9.3 Hz, *Ph*-NO₂-6*H*), 2.26 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 169.15, 164.94, 148.21, 147.14, 137.64, 137.10, 129.44, 128.99, 127.04, 124.95, 124.90, 115.81, 20.70.

ESI-MS:	$m/z = 383.4 [\text{M-H}^+]^-$			
Elementaranalyse:	berechnet:	C 50.01	H 2.89	N 7.29
	gefunden:	C 49.79	Н 3.25	N 7.03

3-(4-Nitro-2-(trifluormethyl)phenoxy)phenol (165)

Resorcin (**92**, 640 mg, 5.8 mmol, 4 eq), 2-Fluor-5-nitrobenzotrifluorid (**154**, 200 μ L, 1.4 mmol, 1 eq), und Kalium-*tert*-butanolat (152 mg, 1.4 mmol, 1 eq) wurden in 10 mL Acetonitril in der Mikrowelle auf 100 °C erhitzt. Der schwarze Rückstand wurde in 2N Salzsäure aufgenommen, mit Chloroform extrahiert und das Extrakt säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat). Man erhält einen weißen Feststoff.

Ausbeute: 490 mg (34%)

Summenformel: $C_{13}H_8F_3NO_4$
Molekulargewicht: 299.21 g / mol

Rf-Wert: 0.50 (2/1; Hex / EtOAc)

Substanzcode: SW 392

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.95$ (br, 1H, -OH), 8.50-8.44 (m, 2H, *Ph*-NO₂-3*H*,5*H*), 7.30 (t, 1H, J = 8.1 Hz, *Ph*-OH-5*H*), 7.13 (d, 1H, J = 8.9 Hz, *Ph*-NO₂-6*H*), 6.75 (dd, 1H, J = 8.2 Hz, 2.3 Hz, *Ph*-OH-6*H*), 6.62 (dd, 1H, J = 8.1 Hz, 2.3 Hz, *Ph*-OH-4*H*), 6.55 (st, 1H, J = 2.2 Hz, *Ph*-OH-2*H*).

ESI-MS: $m/z = 297.9 [M-H^+]^-$

3-(4-Nitro-2-(trifluormethyl)phenoxy)phenylacetat (166)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus 3-(4-Nitro-2-(trifluormethyl)phenoxy)phenol (**165**, 412 mg, 1.4 mmol) in 15 mL Pyridin. Der Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Man erhält ein farbloses Öl.

Ausbeute:	331 mg (64%)
Summenformel:	$C_{15}H_{10}F_{3}NO_{5}$

Molekulargewicht: 341.24 g / mol

Rf-Wert: 0.60 (2/1; Hex / EtOAc)

Substanzcode: SW 395 / ST-1843

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 8.53-8.48$ (2H, m, *Ph*-NO₂-3*H*,5*H*), 7.56 (1H, t, *J* = 8.1 Hz, *Ph*-OH-5*H*), 7.18-7.10 (4H, m, *Ph*-NO₂-6*H*, *Ph*-OH-2*H*,4*H*,6*H*), 2.26 (3H, s, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.77, 159.44, 154.30, 151.74, 141.96, 131.10, 130.07, 123.35, 123.26, 119.46, 118.52, 117.44, 114.27, 20.69.

ESI-MS:	$m/z = 340.5 [M-H^+]^2$			
Elementaranalyse:	berechnet:	C 52.80	H 2.95	N 4.10
	gefunden:	C 52.60	Н 3.37	N 4.28

5.3.10. Acetylsalicylsäure- und Derivate und ihre Vorstufen

2-Acetoxy-5-methylbenzoesäuremethylester (171)

Hergestellt gemäß allgemeiner Synthesevorschrift A aus 2-Hydroxy-5-methylbenzoesäure (2 g, 13.1 mmol). Säulenchromatographische Aufreinigung (Fließmittel: 9/1 Hexan / Ethylacetat). Man erhält ein klares Öl.

Ausbeute:	709 mg (26%)	
Summenformel:	$C_{11}H_{12}O_4$	H ₂ C \sim CH ₂
Molekulargewicht:	208.21 g / mol	
Rf-Wert:	0.18 (9/1; Hex / EtOAc)	H ₃ C O
Substanzcode:	SW 370 / ST-1834	

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.82 (sd, 1H), 7.35 (dd, 1H, *J* = 8.2 Hz), 6.98 (d, 1H, *J* = 8.2 Hz), 3.86 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 169.87$, 165.02, 148.44, 135.81, 134.44, 132.07, 123.47, 122.62, 52.09, 20.95, 20.72.

ESI-MS:	$m/z = 231.6 [M+Na^+]^+$		
Elementaranalyse:	berechnet:	C 63.45	H 5.81
	gefunden:	C 63.20	H 5.61

N-Hydroxy-2-phenoxybenzamid (174)

Hergestellt gemäß allgemeiner Synthesevorschrift B aus 2-Phenoxybenzoesäure (1.2 g, 0.6 mmol) in 5 mL Thionylchlorid. Säulenchromatographische Aufreinigung (Fließmittel: 1/1 Hexan / Ethylacetat). Es wurde ein beiger Feststoff isoliert.

Ausbeute:	860 mg (66%)
Summenformel:	$C_{13}H_{11}NO_3$
Molekulargewicht:	299,24 g / mol
Rf-Wert:	0.37 (1/1; Hex / EtOAc)
Substanzcode:	SW 319 Int

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.29$ (s, 1H, -N*H*-), 8.59 (br, 1H, -O*H*), 8.24 (dd, 1H, J = 7.8 Hz, 1.7 Hz, *Ph*-C(O)-6*H*), 7.49-7.33 (m, 3H, *Ph*-C(O)-3*H*,4*H*,5*H*), 7.28-7.16 (m, 2H, *Ph*-3*H*,5*H*), 7.09 (d, 2H, J = 8.9 Hz, *Ph*-2*H*,6*H*), 6.77 (d, 1H, J = 7.5 Hz, *Ph*-4*H*).

N-Acetoxy-2-phenoxybenzamid (176)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 2 aus *N*-Hydroxy-2phenoxybenzamid (**174**, 860 mg, 2.8 mmol) in 8 mL Pyridin. Säulenchromatographische Aufreinigung (Fließmittel: 3/1 Hexan / Ethylacetat) und Umkristallisation aus Ethanol. Es wurde ein Farbloses Öl isoliert, welches mit der Zeit erstarrt.

Ausbeute: 190 mg (54%)

Summenformel:	$C_{15}H_{13}NO_4$	0
Molekulargewicht:	271.27 g / mol	N O CH3
Rf-Wert:	0.77 (3/1; Hex / EtOAc)	
Substanzcode:	SW 319 / ST-1808	

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.01$ (s, 1H), 7.64 (d, 1H, J = 7.5 Hz), 7.50 (t, 1H, J = 8.4 Hz), 7.43-7.37 (m, 2H), 7.28-7.13 (m, 3H), 7.03 (d, 2H, J = 7.6), 6.91 (d, 1H, J = 8.1 Hz), 2.18 (s, 3H).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 168.25, 162.84, 156.17, 154.20, 132.54, 130.01, 129.86, 124.29, 123.74, 123.39, 118.95, 118.69, 17.96.

ESI-MS:	$m/z = 294.9 [M+Na^+]^+$			
Elementaranalyse:	berechnet:	C 66.41	H 4.83	N 5.16
	gefunden:	C 66.44	H 4.84	N 5.15

N-Acetoxy-2-(2-methoxyphenyl)acetamid (177)

Das Intermediat *N*-Hydroxy-2-(2-methoxyphenyl)acetamid (**175**) wurde gemäß allgemeiner Synthesevorschrift B hergestellt aus 2-Methoxyphenylessigsäure (600 mg, 3.6 mmol) in 5 mL Thionylchlorid. Es wurde ein gelber Feststoff isoliert (480 mg, 2.6 mmol, 73%). Dieser wurde ohne weitere Aufreinigung nach allgemeiner Synthesevorschrift C Methode 1 weiter umgesetzt. Säulenchromatographische Auftrennung (Fließmittel: 1/1 Hexan / Ethylacetat) und Umkristallisation aus dem gleichen Gemisch. Man erhält schwach gelbe Nadeln.

Ausbeute:	134 mg (23%)
Summenformel:	$C_{11}H_{13}NO_4$
Molekulargewicht:	223.23 g / mol
Rf-Wert:	0.17 (1/1; Hex / EtOAc)
Substanzcode:	SW 300 / ST-1804

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.73$ (s, 1H, -N*H*-), 7.27-7.20 (m, 2H, *Ph*-3*H*,5*H*), 6.97-6.85 (m, 2H, *Ph*-4*H*,6*H*), 3.75 (s, 3H, O-C*H*₃), 3.43 (s, 2H, -C*H*₂-), 2.14 (s, 3H, C(O)-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 167.56, 157.03, 130.50, 128.08, 122.84, 120.01, 110.58, 55.28, 33.04, 17.96.

ESI-MS: $m/z = 221.6 [M-H^+]^-$

Elementaranalyse:	berechnet:	C 59.19	H 5.87	N 6.27
	gefunden:	C 59.13	H 5.76	N 6.23

2-Methyl-1,1-dioxido-3-(pyridin-2-ylcarbamoyl)-2H-benzo[e][1,2]thiazin-4-ylacetat (179)

Hergestellt gemäß allgemeiner Synthesevorschrift C Methode 1 aus Piroxicam (**178**, 200 mg, 0.6 mmol) in 15 mL Dichlormethan. Säulenchromatographische Aufreinigung (Fließmittel: 98/2 Dichlormethan / Methanol; sehr kurze Säule wegen einsetztender Acetyl-Abspaltung!) und Umkristallisation aus Ethanol. Es wurde ein weißer Feststoff isoliert.

Ausbeute:	72 mg (30%)
Summenformel:	$C_{17}H_{15}N_3O_5S$
Molekulargewicht:	373.38 g / mol
Rf-Wert:	0.45 (98/2; DCM / MeOH + NH ₃)
Substanzcode:	SW 101 / ST-1806

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 9.02$ (s, 1H), 8.35 (sd, 1H), 8.28 (d, 1H, J = 8.4 Hz), 7.96-7.92 (m, 1H), 7.78-7.70 (m, 3H), 7.65-7.61 (m, 1H), 7.13-7.08 (m, 1H), 3.08 (s, 3H), 2.47 (s, 3H).

¹³**C-NMR** (62 MHz, CDCl₃): $\delta = 168.46$, 158.64, 150.36, 147.15, 144.14, 139.15, 133.81, 132.89, 131.87, 128.75, 127.19, 126.20, 124.16, 124.16, 120.54, 114.52, 38.29, 20.88.

ESI-MS:	m/z = 371.9	$[M-H^+]^-$			
Elementaranalyse:	berechnet:	C 54.68	H 4.05	N 11.25	S 8.59
	gefunden:	C 54.28	H 3.94	N 11.03	S 8.47

N-(2-Fluor-5-nitrophenyl)methansulfonamid (148)

Hergestellt wie für 2-Hydroxy-4-(2-(methylsulfonamido)phenoxy)benzoesäuremethylester (**138**) beschrieben aus 2-Fluor-5-nitroanilin (2 g, 12.8 mmol). Man erhält ein gelben Feststoff.

Ausbeute:	1.8 g (60%)
-----------	-------------

Summenformel: C₇H₇FN₂O₄S

Molekulargewicht: 234.20 g / mol

Rf-Wert: 0.20 (DCM)

Substanzcode: SW 459

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 8.50-8.47$ (m, 1H, *Ph*-NO₂-6*H*), 8.08-8.06 (m, 1H, *Ph*-NO₂-5*H*), 7.34-7.29 (m, 2H, *Ph*-NO₂-3*H*), 6.80 (br, 1H, -N*H*-), 3.16 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 232.4 [M-H^+]^-$

5.4. Synthese und Charakterisierung der 5-LO-Inhibitoren 5.4.1. 2-Aminothiazol-Derivate des zentralen Zyklus und ihre Vorstufen

2-Brom-3-(4-chlorphenyl)-3-oxopropionsäuremethylester (181a)

Hergestellt gemäß allgemeiner Synthesevorschrift E nach Methode 1 aus 4-Chlorbenzoylacetonitril (2 g, 9.4 mmol) in 50 mL Chloroform. Es wurde ein farbloses Öl isoliert.

Ausbeute:	2.9 g (quantitativ)

Summenformel: C₁₀H₈BrClO₃

Molekulargewicht: 291.5 g / mol

Substanzcode: SW 267 Int

¹**H-NMR** (250 MHz, CDCl₃) δ = 8.03 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.68 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 6.69 (s, 1H, -C*H*Br-), 3.74 (s, 3H, -C*H*₃).

2-Brom-3-(4-chlorphenyl)-3-oxopropanenitril (181b)

Hergestellt gemäß allgemeiner Synthesevorschrift E nach Methode 1 aus 4-Chlorbenzoylacetonitril (500 mg, 2.8 mmol) in 10 mL Chloroform. Es wurde ein braunes Öl isoliert.

Ausbeute:	720 mg (50% im NMR)
Summenformel:	C ₉ H ₅ BrClNO

Molekulargewicht: 258.49 g / mol

Substanzcode: SW 252 Int

¹**H-NMR** (250 MHz, CDCl₃) δ = 7.97 (d, 2H, *J* = 8.8 Hz, *Ph*-Cl-2*H*,6*H*), 7.42 (d, 2H, *J* = 8.8 Hz, *Ph*-Cl-3*H*,5*H*), 6.81 (br, 1H, -C*H*-).

1-(4-Hydroxyphenyl)thioharnstoff (182)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(4-Hydroxyphenylcarbamothioyl)benzamid (**182a**, 6.5 g, 24 mmol) in 70 mL 2M Natronlauge. Es wurde ein weißes amorphes Pulver isoliert.

Ausbeute:	3.4 g (84%)
Summenformel:	$C_7H_8N_2OS$
Molekulargewicht:	168.21 g / mol

Н

Rf-Wert: 0.19 (95/5; DCM / MeOH)

Substanzcode: SW 262

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.35$ (br, 2H, -N*H*-, -O*H*), 7.18 (br, 2H, -N*H*₂), 7.05 (d, 2H, *J* = 8.6 Hz, *Ph*-OH-3*H*,5*H*), 6.71 (d, 2H, *J* = 8.7 Hz, *Ph*-OH-2*H*,6*H*).

N-(4-Hydroxyphenylcarbamothioyl)benzamid (182a)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 2-Aminophenol (5 g, 53 mmol) in 200 mL Aceton. Es entsteht ein gelbes Pulver.

Ausbeute:	24 g (97%)
Summenformel:	$C_{14}H_{12}N_2O_2S$
Molekulargewicht:	272.32 g / mol
Rf-Wert:	0.69 (95/5; DCM / MeOH)
Substanzcode:	SW 250

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.39$ (s, 1H, C(O)-NH-C(S)), 11.46 (s, 1H, C(S)-NH-Ph-Cl), 9.56 (s, 1H, -OH), 7.95 (d, 2H, J = 7.3 Hz, *Ph-2H*,6H), 7.65 (t, 1H, J = 7.3 Hz, *Ph-4H*), 7.52 (t, 2H, J = 7.2 Hz, *Ph-3H*,5H), 7.42 (d, 2H, J = 8.7 Hz, *Ph*-OH-3H,5H), 6.78 (d, 2H, J = 8.7 Hz, *Ph*-OH-2H,6H).

ESI-MS: $m/z = 270.9 [M-H^+]^-$

4-(4-Chlorphenyl)-2-(4-hydroxyphenylamino)thiazol-5-carbonsäuremethylester (183)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-3-(4-chlorphenyl)-3oxopropionsäuremethylester (**181a**, 2.9 g, 9.4 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 1.6 g, 9.4 mmol) in 15 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man erhält einen schwach gelben Feststoff.

Ausbeute:	2.1 g (61%)
Summenformel:	$C_{17}H_{13}ClN_2O_3S$
Molekulargewicht:	360.81 g / mol
Rf-Wert:	0.25 (98/2; DCM / MeOH)
Substanzcode:	SW 267 / ST-1733

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.52$ (s, 1H, -N*H*-), 9.35 (s, 1H, -O*H*), 7.74 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.48 (d, 2H, J = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.35 (d, 2H, J = 8.9 Hz, *Ph*-OH-3*H*,5*H*), 6.76 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 3.66 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 166.17, 161.23, 157.00, 153.68, 133.45, 132.99, 131.53, 131.39, 131.37, 131.33, 127.50, 127.44, 120.99, 120.94, 115.52, 108.23, 54.74, 51.55.

ESI-MS:	$m/z = 359.3 [M-H^+]^-$				
Elementaranalyse:	berechnet:	56.59 C	3.63 H	7.76 N	8.89 S
	gefunden:	56.30 C	3.71 H	7.52 N	9.16 S

4-(4-Chlorphenyl)-2-(4-hydroxyphenylamino)thiazole-5-carbonitril (184)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-3-(4-chlorphenyl)-3oxopropanenitril (**181b**, 720 mg, 2.8 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 473 mg, 3 mmol) in 12 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen rötlichen Feststoff.

Ausbeute:	400 mg (44%)
Summenformel:	$C_{16}H_{10}ClN_3OS$
Molekulargewicht:	327.78 g / mol
Rf-Wert:	0.41 (9/1; DCM / MeOH)
Substanzcode:	SW 252 / ST-1731

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.80$ (s, 1H, -N*H*-), 9.43 (s, 1H, -O*H*), 8.00 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.64 (d, 2H, J = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.39 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.80 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 166.82, 159.26, 154.10, 154.08, 134.65, 131.10, 131.03, 129.06, 128.91, 121.17, 115.66, 114.59.

ESI-MS:	$m/z = 325.9 [M+H^+]^+$				
Elementaranalyse:	berechnet:	58.63 C	3.07 H	12.82 N	9.78 S
	gefunden:	58.42 C	3.16 H	12.53 N	9.62 S

4-(4-Chlorphenyl)-2-(4-hydroxyphenylamino)thiazole-5-carboxamid (188)

In 40 mL 1M Natronlauge wurde 4-(4-Chlorphenyl)-2-(4-hydroxyphenylamino)thiazole-5carbonitril (**184**, 550 mg, 1.5 mmol) gelöst und für fünf Stunden auf 80 °C erhitzt. Es wurde mit 2N Salzsäure neutralisiert und der entstandene Feststoff abfiltriert und säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol). Abschließend wurde aus Ethanol / Wasser umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute: 27 mg (5%)

Summenformel:	$C_{16}H_{12}ClN_3O_2S$
Molekulargewicht:	345.80 g / mol
Rf-Wert:	0.32 (95/5; DCM / MeOH)
Substanzcode:	SW 265 / ST-1732

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.14$ (s, 1H, -N*H*-), 9.22 (s, 1H, -O*H*), 7.70 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.47 (d, 2H, J = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.37 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 7.22 (br, 2H, -N*H*₂), 6.74 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 163.43, 162.78, 153.01, 149.92, 133.45, 132.78, 132.26, 130.65, 127.87, 120.17, 115.45, 115.01.

ESI-MS:	$m/z = 346.8 [M+H^+]^+$				
Elementaranalyse:	berechnet:	55.57 C	3.50 H	12.15 N	9.27 S
	gefunden:	55.31 C	3.50 H	11.76 N	9.63 S

5.4.2. 2-Aminothiazol-Derivate des variierten linken und ihre Vorstufen

2-Brom-1-cyclopropylethanon (190a)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 1-Cyclopropylethanon (500 μ L, 5 mmol) in 10 mL Methanol. Man erhält ein farbloses Öl, welches sehr leicht flüchtig ist.

Ausbeute: 288 mg (34%)

Summenformel: C₅H₇BrO

Molekulargewicht: 163.01 g / mol

Substanzcode: SW 389 Int

¹**H-NMR** (250 MHz, CDCl₃) δ = 4.01 (s, 2H, -CH₂Br), 2.26-2.16 (m, 1H, -CH-), 1.17-1.11 (m, 2H, 2x cyclopropyl), 1.05-0.98 (m, 2H, 2x cyclopropyl).

1-Brom-3,3-dimethylbutan-2-on (190b)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus Pinakolon (450 μ L, 3.6 mmol) in 10 mL Methanol. Man erhält eine gelbe Flüssigkeit.

Ausbeute:670 mg (quantitativ)

Summenformel: $C_6H_{11}BrO$

 Molekulargewicht:
 179.05 g / mol

 Substanzcode:
 SW 384 Int

 ¹H-NMR (250 MHz, CDCl₃) δ = 4.17 (s, 2H, -CH₂Br), 1.23 (s, 9H, 3x –CH₃).

1-Brom-4,4-dimethylpentan-2-on (190d)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 4,4-Dimethyl-2-pentanon (1 mL, 7.1 mmol) und Brom (360 μ L, 7.1 mmol) in 8 mL Methanol hergestellt.

Ausbeute: 371 mg (27%)

Summenformel: C₇H₁₃BrO

Molekulargewicht: 193.08 g / mol

Substanzcode: SW 469 Int

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 3.86$ (s, 2H, C(O)-CH₂-Br), 2.51 (s, 2H, C-CH₂-C(O)), 1.02 (s, 9H, 3x –CH₃).

2-Brom-1-cyclopentylethanon (

190e)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 1-Cyclopentylpropan-1on (250 μ L, 2.7 mmol) in 5 mL Methanol. Man erhält einen gelbliches Öl.

Ausbeute: 396 mg (75%)

Summenformel: C₇H11BrO

Molekulargewicht: 191.06 g / mol

Substanzcode: SW 559Int

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 4.45$ (s, 2H, -CH₂-Br), 2.40-2.21 (m, 4H, 2x -CH₂-), 2.70-1.76 (m, 4H, 2x -CH₂-).

1-Brom-4-methylpentan-2-on (190f)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 4-Methyl-2-pentanon (1 mL, 8 mmol) in 25 mL Methanol. Man erhält eine klare Flüssigkeit.

Ausbeute:1.0 g (70%)Summenformel: $C_6H_{11}BrO$ Molekulargewicht:179.05 g / mol

Substanzcode: SW 475 Int

¹**H-NMR** (400 MHz, CDCl₃) δ = 3.86 (s, 2H, -C*H*₂Br), 2.53 (d, 2H, *J* = 6.9 Hz, -C*H*₂-), 2.21-2.12 (m, 1H, -C*H*-), 0.94 (d, 6H, *J* = 6.6 Hz, 2x -C*H*₃).

2-Brom-1-cyclohexylethanon (190g)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 1-Cyclohexylpropan-1-on (300μ L, 2.2 mmol) in 5 mL Methanol. Man erhält ein gelb-stichiges Öl.

Ausbeute: 295 mg (80%)

Summenformel: C₈H₁₃BrO

Molekulargewicht: 205.09 g / mol

Substanzcode: SW 414 Int

¹**H-NMR** (400 MHz, CDCl₃) δ = 3.96 (s, 2H, -CH₂Br), 2.71 (tt, 1H, J = 11.0 Hz, 3.3 Hz, -CH-), 1.88-1.65 (m, 5H, 5x *Cy*), 1.44-1.65 (m, 5H, 5x *Cy*).

4-(4-Cyclopropylthiazol-2-ylamino)phenol (191

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclopropylethanon (**190a**, 288 mg, 1.7 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 326 mg, 1.9 mmol) in 8 mL Ethanol. Es wurde säulenchromatograühisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert wurden. Man erhält braune Kristalle.

Ausbeute:	110 mg (28%)
Summenformel:	$C_{12}H_{12}N_2OS$
Molekulargewicht:	232.30 g / mol
Rf-Wert:	0.18 (98/2; DCM / MeOH)
Substanzcode:	SW 389 / ST-1852

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 9.64$ (s, 1H, -NH-), 9.05 (s, 1H, -OH), 7.29 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.69 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 6.30 (s, 1H, *thiazol-5H*), 1.89-1.82 (m, 1H, -CH-), 0.82-0.73 (m, 4H, *cyclopropyl*).

¹³**C-NMR** (100 MHz, DMSO-*d*₆) δ = 164.17, 153.57, 152.07, 133.30, 119.05, 115.82, 114.74, 6.99.

$-H^{+}]^{-}$

Elementaranalyse:	berechnet:	C 62.04	H 5.21	N 12.06	S 13.80
	gefunden:	C 62.11	H 5.26	N 11.87	S 13.92

4-(4-tert-Butylthiazol-2-ylamino)phenol (192)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 1-Brom-3,3-dimethylbutan-2-on (**190b**, 288 mg, 1.7 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 326 mg, 1.9 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert wurden. Man erhält braune Kristalle.

Ausbeute:	156 mg (20%)
Summenformel:	$C_{13}H_{16}N_2OS$
Molekulargewicht:	248.09 g / mol
Rf-Wert:	0.36 (98/2; DCM / MeOH)
Substanzcode:	SW 384 / ST-1851

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.65$ (s, 1H, -N*H*-), 9.05 (s, 1H, -O*H*), 7.35 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.70 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 6.26 (s, 1H, *thiazol*-5*H*), 1.24 (s, 9H, 3x -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 163.89, 161.50, 152.01, 133.55, 119.03, 115.33, 97.83, 34.25, 29.57.

ESI-MS: $m/z = 246.6 [\text{M-H}^+]^-$

Elementaranalyse:	berechnet:	62.87 C	6.49 H	11.28 N	12.91 S
	gefunden:	62.90 C	6.50 H	11.12 N	12.90 S

4-(4-Cyclobutylthiazol-2-ylamino)phenol (193)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclobutylethanon und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 336 mg, 2 mmol) in 4 mL Ethanol. 2-Brom-1-cyclobutylethanon wurde gemäß allgemeiner Synthesevorschrift E Methode 2 als Intermediat aus 1-Cyclobutylethanon (300 μ L, 2.7 mmol) und Brom (141 μ L, 2.7 mmol) in 5 mL Methanol hergestellt. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen beigen Feststoff.

Ausbeute:	140 mg (28%)
Summenformel:	$C_{13}H_{14}N_2OS$
Molekulargewicht:	246.32 g / mol
Rf-Wert:	0.38 (98/2; DCM / MeOH)
Substanzcode:	SW 549 / ST-1903

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.68$ (s, 1H, -N*H*-), 9.05 (s, 1H, -O*H*), 7.35 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.71 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 6.32 (s, 1H, *thiazol-5H*), 3.40 (quint, 1H, J = 8.5 Hz, -C*H*-), 2.24-2.08 (m, 4H, *cyclobutyl*-2*H*,4*H*), 1.98-1.79 (m, 2H, *cyclobutyl*-3*H*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 164.42, 156.08, 152.104, 133.36, 119.15, 115.31, 99.39, 36.43, 27.97, 17.89.

ESI-MS:	$m/z = 245.1 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 63.39	Н 5.73	N 11.37	S 13.02
	gefunden:	C 63.13	Н 5.55	N 11.00	S 13.05

4-(4-Neopentylthiazol-2-ylamino)phenol (194)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 1-Brom-4,4-dimethylpentan-2-on (**190d**, 371 mg, 1.9 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 323 mg, 1.9 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Methanol umkristallisiert. Man erhält ein beiges Pulver.

Ausbeute: 272 mg (55%)

Summenformel: $C_{14}H_{18}N_2OS$

Molekulargewicht: 262.37 g / mol

Rf-Wert: 0.41 (95/5; DCM / MeOH)

Substanzcode: SW 469 / ST-1875

H₃C CH₃ NH

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 9.64$ (s, 1H, -N*H*-), 9.00 (s, 1H, -O*H*), 7.37 (d, 2H, J = 8.7 Hz, *Ph*-OH-3*H*,5*H*), 6.67 (d, 2H, J = 8.7 Hz, *Ph*-OH-2*H*,6*H*), 6.29 (s, 1H, *thiazol*-5*H*), 2.39 (s, 2H, -C*H*₂-), 0.94 (s, 9H, 3x –C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.16, 151.82, 150.44, 133.52, 118.67, 115.20, 102.46, 44.87, 31.14, 30.57, 29.50.

ESI-MS:	$m/z = 261.1 \ [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	64.09 C	6.91 H	10.68 N	12.22 S
	gefunden:	64.06 C	6.71 H	10.57 N	12.10 S

4-(4-Cyclohexylthiazol-2-ylamino)-2,6-dimethylphenol (195)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexylethanon (

190e, 193 mg, 1 mmol) und 1-(4-Hydroxy)thioharnstoff (**182**, 168 mg, 1 mmol) in 4 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält braune Kristalle.

Ausbeute:209 mg (81%)Summenformel: $C_{17}H_{22}N_2OS$ Molekulargewicht:258.33 g / molSubstanzcode:SW 559

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.75$ (s, 1H, -N*H*-), 9.06 (s, 1H, -O*H*), 7.42 (d, 2H, J = 8.8 Hz, *Ph*-3*H*,5*H*), 6.72 (d, 2H, J = 8.8 Hz, *Ph*-2*H*,6*H*), 6.52 (s, 1H, *thiazol*-5*H*), 6.20 (t, 1H, -C*H*-), 2.57-2.52 (m, 2H, -C*H*₂-), 2.48-2.43 (m, 2H, -C*H*₂-), 1.98-1.85 (m, 2H, -C*H*₂-).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 163.55, 152.12, 148.31, 137.64, 133.28, 126.99, 119.07, 115.30, 102.56, 32.37, 31.94, 22.89.

ESI-MS: $m/z = 303.4 [M+H^+]^+$

HR-MS: berechnet: m/z = 259.08996

gefunden: m/z = 259.09012

Abweichung: 0.8 ppm

4-(4-Isobutylthiazol-2-ylamino)phenol (196)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 1-Brom-4-methylpentan-2-on (**190f**, 250 mg, 1.4 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 235 mg, 1.4 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen beigen Feststoff.

Ausbeute:	79 mg (22%)
Summenformel:	$C_{13}H_{16}N_2OS$
Molekulargewicht:	248.34 g / mol
Rf-Wert:	0.56 (95/5; DCM / MeOH)

SW 475 / ST-1876

Substanzcode:

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 9.67$ (s, 1H, -NH-), 9.03 (s, 1H, -OH), 7.35 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.71 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 6.30 (s, 1H, *thiazol-5H*), 2.36 (d, 2H, J = 6.9 Hz, -C H_2 -), 1.99 (pquint, 1H, J = 6.7 Hz, -CH-), 0.90 (d, 6H, J = 6.6 Hz, -C H_3).

¹³**C-NMR** (100 MHz, DMSO-*d*₆) δ = 163.91, 151.96, 151.60, 133.40, 118.91, 115.27, 101.09, 40.52, 27.40, 22.24.

ESI-MS: $m/z = 249.5 [M+H^+]^+$

	Experimenteller Teil				
Elementaranalyse:	berechnet: gefunden:	62.87 C 62.76 C	6.49 H 6.18 H	11.28 N 11.12 N	12.91 S 12.77 S

4-(4-Cyclohexylthiazol-2-ylamino)phenol (197)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexylethanon (**190g**, 350 mg, 1.7 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 440 mg, 2.6 mmol) in 10 mL Ethanol. Es bildeten sich farblose Kristalle im abgekühlten Reaktionsgefäß, welche abfiltriert wurden und anschließend aus Aceton umkristallisiert wurden. Man erhält farblose Kristalle.

Ausbeute:	126 mg (16%)
Summenformel:	$C_{15}H_{18}N_2OS\cdot HBr$
Molekulargewicht:	274.38 g / mol
Rf-Wert:	0.51 (98/2; DCM / MeOH)
Substanzcode:	SW 414 / ST-1865

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.05$ (s, 1H, -N*H*-), 7.26 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.85 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 6.52 (s, 1H, *thiazol*-5*H*), 4.34 (br, 1H, -O*H*), 2.51 (m, 1H, -C*H*-), 1.94-1.64 (m, 5H, 5x *Cy*), 1.39-1.14 (m, 5H, 5x *Cy*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 168.45, 156.09, 129.46, 124.51, 119.68, 116.19, 115.42, 100.04, 37.21, 13.18 25.36, 25.23.

ESI-MS:	$m/z = 272.9 \ [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 50.71	H 5.39	N 7.88	S 9.02
	gefunden:	C 50.96	Н 5.37	N 7.97	S 9.14

4-(4-(2,2,2-Trifluorethyl)thiazol-2-ylamino)phenol (198)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 1-Brom-4,4,4-trifluorbutan-2-on und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 841 mg, 5 mmol) in 8 mL Ethanol. 1-Brom-4,4,4-trifluorbutan-2-on und wurde gemäß allgemeiner Synthesevorschrift E Methode 2 als Intermediat aus 4,4,4-Trifluorbutan-2-on (400 μ L, 3 mmol) und Brom (150 μ L, 3 mmol) in 10 mL Methanol hergestellt. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol). Man erhält einen braunes viskoses Öl.

Ausbeute:	163 mg (20%)
Summenformel:	$C_{11}H_9F_3N_2OS$
Molekulargewicht:	274.26 g / mol
Rf-Wert:	0.23 (95/5; DCM / MeOH)

Substanzcode: SW 474 / ST-1877

¹**H-NMR** (300 MHz, DMSO- d_6) $\delta = 9.84$ (s, 1H, -N*H*-), 9.10 (s, 1H, -O*H*), 7.34 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.68 (pd, 3H, *Ph*-OH-2*H*,6*H*, *thiazol*-5*H*), 3.57 (pq, 2H, -C*H*₂-).

¹³**C-NMR** (62 MHz, DMSO-d₆): $\delta = (75 \text{ MHz}, \text{DMSO-}d_6) \delta = 164.72, 152.36, 140.73, 133.00, 119.73, 119.35, 115.32, 105.94, 35.36.$

ESI-MS: $m/z = 275.4 [M+H^+]^+$

HR-MS: berechnet: m/z = 275.04604

gefunden: m/z = 275.04578 Abweichung: 0.9 ppm

4-(4-(Pyridin-3-yl)thiazol-2-ylamino)phenol (199)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(pyridin-3-yl)ethanon, 550 mg, 2 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 347 mg, 2 mmol) in 10 mL Ethanol. 2-Brom-1-(pyridin-3-yl)ethanon wurde aus 3-Acetylpyridin (1.36 mL, 12.4 mmol), hergestellt indem in 35 mL Eisessig langsam Brom (631 μ L, 12.4 mmol, 1 eq), in 5 mL Eisessig gelöst, hinzugetropft und anschließend für zwei Stunden auf 75 °C erhitzt. Dann wurde 100 mL Diethylether hinzugegeben und der ausfallende braune Feststoff (2.6 g; 75%) abfiltriert und getrocknet und ohne weitere Aufreinigung umgesetzt. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält braune Nadeln.

Ausbeute:	46 mg (5%)
Summenformel:	$C_{14}H_{11}N_3OS$
Molekulargewicht:	269.32 g / mol
Rf-Wert:	0.60 (9/1; DCM / MeOH)
Substanzcode:	SW 291 / ST-1825

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 9.98 (s, 1H, -N*H*-), 9.13 (s, 1H, -O*H*), 9.10 (sd, 1H, *J* = 2.0 Hz, *py*-2*H*), 8.49 (dd, 1H, *J* = 4.7 Hz, 1.5 Hz, *py*-4*H*), 8.22 (dt, 1H, *J* = 8.0 Hz, 2.1 Hz, *py*-6*H*), 7.49-7.41 (m, 3H, *Ph*-OH-3*H*,5*H*, *py*-5*H*), 7.40 (s, 1H, *thiazol*-5*H*), 6.76 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ =164.68, 152.38, 148.21, 147.08, 146.85, 133.04, 132.65, 130.18, 123.62, 119.32, 115.43, 103.35.

ESI-MS:	$m/z = 270.1 [M+H^+]^+$				
Elementaranalyse:	berechnet:	62.43 C	4.12 H	15.60 N	11.91 S
	gefunden:	62.21 C	4.11 H	15.30 N	11.99 S

4-(4-(2-Hydroxyethyl)thiazol-2-ylamino)phenol (200)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 1-Brom-4-hydroxybutan-2-on und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 841 mg, 5 mmol) in 8 mL Ethanol. 1-Brom-4-hydroxybutan-2-on (990 mg, 5.5 mmol) wurde gemäß allgemeiner Synthesevorschrift E Methode 2 als Intermediat aus 4-Hydroxybutanon (691 μ L, 8 mmol) und Brom (384 μ L, 7.5 mmol) in 8 mL Methanol hergestellt. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält einen beigen Feststoff.

Ausbeute:	161 mg (13%)
Summenformel:	$C_{11}H_{12}N_2O_2S$
Molekulargewicht:	236.29 g / mol
Rf-Wert:	0.60 (9/1; DCM / MeOH)
Substanzcode:	SW 390 / ST-1868

NH NH

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 9.66 (s, 1H, -N*H*-), 9.03 (s, 1H, Ph-O*H*), 7.34 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.69 (d, 2H, *J* = 8.8 Hz, Ph-OH-3*H*,5*H*), 6.34 (s, 1H, *thiazol-5H*), 4.57 (br, 1H, CH₂-O*H*), 3.66 (t, 2H, *J* = 6.8 Hz, CH₂-CH₂-thiazol), 2.65 (t, 2H, J = 6.9 Hz, O-CH₂-CH₂).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 164.14, 152.07, 149.78, 133.33, 119.09, 115.30, 101.24, 60.13, 35.15.

ESI-MS:	$m/z = 234.5 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	55.91 C	5.12 H	11.86 N	13.57 S
	gefunden:	55.94 C	4.92 H	11.63 N	13.41 S

4-(4-(2,4-Dichlorphenyl)thiazol-2-ylamino)phenol (201)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(2,4-dichlorphenyl)ethanon (300 mg, 1.1 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 207 mg, 1.2 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen dunkel-braunen Feststoff.

Ausbeute:	167 mg (45%)
Summenformel:	$C_{15}H_{10}Cl_2N_2OS\cdot 2\;H_2O$
Molekulargewicht:	337.22 g / mol
Rf-Wert:	(9/1; DCM / MeOH)
Substanzcode:	SW 428 / ST-1907

CI S NH

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.94$ (s, 1H, -N*H*-), 9.13 (s, 1H, -O*H*), 8.08 (sd, 1H, J = 1.9 Hz, *Ph*-Cl-3*H*), 7.86 (dd, 1H, J = 8.4 Hz, 2.0 Hz, *Ph*-Cl-5*H*), 7.65 (d, 1H, J = 8.4 Hz, *Ph*-Cl-6*H*), 7.43-7.40 (m, 3H, *thiazol*-5*H*, *Ph*-OH-3*H*,5*H*), 6.74 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 164.55, 152.45, 147.34, 135.09, 132.89, 131.24, 130.70, 129.44, 127.00, 125.61, 119.43, 115.39, 103.98.

ESI-MS:	$m/z = 335.3 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	48.27 C	3.78 H	7.51 N	8.59 S
	gefunden:	48.39 C	3.55 H	7.42 N	8.48 S

3-Acetyl-2*H*-chromen-2-on (210a)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus Salicylaldehyd (1 mL, 10 mmol). Man erhält einen weißen kristallinen Feststoff.

Ausbeute:	410 mg (21%)
Summenformel:	$C_{11}H_8O_3$
Molekulargewicht:	188.17 g / mol
Rf-Wert:	0.41 (2/1; Hex / EtOAc)
Substanzcode:	SW 451

¹**H-NMR** (400 MHz, CDCl₃) δ = 8.51 (s, 1H, *chromenon*-4*H*), 7.67-7-64 (m, 2H, *chromenon*-5*H*,7*H*), 7.39-7.32 (m, 2H, *chromenon*-6*H*,8*H*), 2.73 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 189.0 [M+H^+]^+$

3-Acetyl-6-chlor-2*H*-chromen-2-on (210b)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus 5-Chlor-2-hydroxybenzaldehyd (1.55 g, 10 mmol).

Ausbeute:	1.88 g (84%)

Summenformel: $C_{11}H_7ClO_3$

Molekulargewicht: 222.62 g / mol

Rf-Wert: 0.92 (98/2; DCM / MeOH)

Substanzcode: SW 467

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.40$ (s, 1H, *chromenon-4H*), 7.63 (sd, 1H, J = 2.4 Hz, *chromenon-5H*), 7.59 (dd, 1H, J = 8.8 Hz, 2.4 Hz, *chromenon-7H*), 7.32 (d, 1H, J = 8.8 Hz, *chromenon-8H*), 2.72 (s, 3H, -CH₃).

3-Acetyl-6-methoxy-2*H*-chromen-2-on (210c)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus 2-Hydroxy-5-methoxybenzaldehyd (1.1 g, 7.2 mmol). Es werden gelbe Nadeln isoliert.

Ausbeute:	1.39 g (88%)
Summenformel:	$C_{12}H_{10}O_4$
Molekulargewicht:	218.20 g / mol
Rf-Wert:	0. 36 (2/1; Hex / EtOAc)
Substanzcode:	SW 472

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.70$ (s, 1H, *chromenon-4H*), 7.56 (s, 1H, =CH-), 7.35 (d, 1H, J = 9.1 Hz, *chromenon-8H*), 7.30 (dd, 1H, J = 9.1 Hz, 2.7 Hz, *chromenon-7H*), 7.08 (sd, 2H, J = 2.7 Hz, *chromenon-5H*), 3.88 (s, 3H, -CH₃).

3-Acetyl-7-chlor-2H-chromen-2-on (210d)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus 4-Chlor-2-hydroxybenzaldehyd (1.13 g, 7 mmol).

Ausbeute:	1.1 g (68%)
Summenformel:	$C_{11}H_7ClO_3$
Molekulargewicht:	222.62 g / mol
Rf-Wert:	(9/1; Hex / EtOAc)
Substanzcode:	SW 468

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.46$ (s, 1H, *chromenon-4H*), 7.58 (d, 1H, J = 8.4 Hz, *chromenon-5H*), 7.39 (sd, 1H, J = 1.9 Hz, *chromenon-8H*), 7.31(dd, 1H, J = 8.3 Hz, 2.0 Hz, *chromenon-6H*), 2.71 (s, 3H, -CH₃).

3-Acetyl-7-methoxy-2H-chromen-2-on (210e)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus 2-Hydroxy-4-methoxybenzaldehyd (760 mg, 5 mmol).

Ausbeute:	906 mg (83%)
Summenformel:	$C_{12}H_{10}O_4$
Molekulargewicht:	218.20 g / mol
Rf-Wert:	0.21 (3/1; Hex / EtOAc)

Substanzcode: SW 455

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.49$ (s, 1H, *chromenon-4H*), 7.54 (d, 1H, J = 8.7 Hz, *chromenon-5H*), 6.90 (dd, 1H, J = 8.7 Hz, 2.4 Hz, *chromenon-6H*), 6.83 (sd, 1H, J = 2.3 Hz, *chromenon-8H*), 3.91 (s, 3H, O-CH₃), 2.70 (s, 3H, C(O)-CH₃).

2-Acetyl-3H-benzo[f]chromen-3-on (210g)

Hergestellt gemäß allgemeiner Synthesevorschrift I aus 2-Hydroxy-4-methoxybenzaldehyd (1.72 g, 10 mmol).

Ausbeute:	1.93 g (81%)
Summenformel:	$C_{15}H_{10}O_3$
Molekulargewicht:	238.23 g / mol
Rf-Wert:	0.1 (3/1; Hex / EtOAc)
Substanzcode:	SW 456

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.32$ (s, 1H, *chromenon-4H*), 8.37 (d, 1H, J = 8.4 Hz, *chromenon-5H*), 8.10 (d, 1H, J = 9.0 Hz, *chromenon-9H*), 7.93 (d, 1H, J = 8.0, *chromenon-8H*), 7.74 (t, 1H, J = 7.4 Hz, *chromenon-6H*), 7.62 (t, 1H, J = 7.4 Hz, *chromenon-7H*), 7.48 (d, 1H, *chromenon-10H*), 2.78 (s, 3H, -CH₃).

3-(2-Bromacetyl)-2H-chromen-2-on (211a)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-2*H*-chromen-2on (**210a**, 410 mg, 2.1 mmol) in 40 mL Chloroform. Man erhält einen braunen Feststoff.

Ausbeute:575 mg (quantitativ)

Summenformel: $C_{11}H_7BrO_3$

Molekulargewicht: 267.07 g / mol

Substanzcode: SW 453 Int

¹**H-NMR** 400 MHz, CDCl₃) $\delta = 8.51$ (s, 1H, *chromenon-4H*), 7.67-7-64 (m, 2H, *chromenon-5H*,7H), 7.39-7.32 (m, 2H, *chromenon-6H*,8H), 2.73 (s, 2H, -CH₂Br).

3-(2-Brom-1-hydroxyvinyl)-6-chlor-2H-chromen-2-on (211b)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-6-chlor-2*H*-chromen-2-on (**210b**, 510 mg, 2.2 mmol) in 40 mL Chloroform. Man erhält ein zitronengelber Feststoff.

Ausbeute: 660 mg (99%)

Summenformel: $C_{11}H_6BrClO_3$ Molekulargewicht:301.52g / molRf-Wert:0.97 (98/2; DCM / MeOH)Substanzcode:SW 470 Int

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.65$ (s, 1H, *chromenon-4H*), 7.70 (sd, 1H, J = 2.4 Hz, *chromenon-5H*), 7.66 (dd, 1H, J = 8.8 Hz, 2.4 Hz, *chromenon-7H*), 7.50 (s, 1H, =CH-), 7.37 (d, 1H, J = 8.8 Hz, *chromenon-8H*).

3-(2-Brom-1-hydroxyvinyl)-6-methoxy-2H-chromen-2-on (211c)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-6-methoxy-2*H*-chromen-2-on (**210c**, 400 mg, 1.8 mmol) in 40 mL Chloroform. Man erhält einen gelben Feststoff.

Ausbeute:	550 mg (99%)
Summenformel:	$C_{12}H_9BrO_4$
Molekulargewicht:	297.10 g / mol
Rf-Wert:	0. 36 (2/1; Hex / EtOAc)
Substanzcode:	SW 473 Int

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.70$ (s, 1H, *chromenon-4H*), 7.56 (s, 1H, =CH-), 7.35 (d, 1H, J = 9.1 Hz, *chromenon-8H*), 7.30 (dd, 1H, J = 9.1 Hz, 2.7 Hz, *chromenon-7H*), 7.08 (sd, 2H, J = 2.7 Hz, *chromenon-5H*), 3.88 (s, 3H, -CH₃).

3-(2-Bromacetyl)-7-chlor-2*H*-chromen-2-on (211d)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-7-chlor-2*H*-chromen-2-on (**210d**, 500 mg, 2.2 mmol) in 40 mL Chloroform. Man erhält einen weißen Feststoff.

255 mg (50%)
C ₁₁ H ₆ BrClO ₃
301.52g / mol
SW 471 Int

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.59$ (s, 1H, *chromenon-4H*), 7.63 (d, 1H, J = 8.4 Hz, *chromenon-5H*), 7.42 (sd, 1H, J = 1.9 Hz, *chromenon-8H*), 7.36 (dd, 1H, J = 8.3 Hz, 2.0 Hz, *chromenon-6H*), 4.72 (s, 2H, -CH₂-).

3-(2-Bromacetyl)-7-methoxy-2H-chromen-2-on (211e)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-7-methoxy-2*H*-chromen-2-on (**210e**, 910 mg, 4.1 mmol) in 40 mL Chloroform. Man erhält einen gelben Feststoff.

Ausbeute:	1.21 g (92%)
Summenformel:	$C_{12}H_9BrO_4$
Molekulargewicht:	297.10 g / mol
Rf-Wert:	0.90 (98/2; DCM / MeOH)
Substanzcode:	SW 458 Int

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.61$ (s, 1H, *chromenon-4H*), 7.56 (d, 1H, J = 7.6 Hz, *chromenon-5H*), 6.93 (dd, 1H, J = 8.4 Hz, 2.4 Hz, *chromenon-6H*), 6.85 (sd, 1H, J = 2.4 Hz, *chromenon-8H*), 4.74 (s, 2H, -CH₂-), 3.93 (s, 3H, -CH₃).

3-(2-Bromacetyl)-7-(diethylamino)-2H-chromen-2-on (211f)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 3-Acetyl-7-methoxy-2*H*-chromen-2-on (2 g, 7.7 mmol) in 40 mL Chloroform. Man erhält einen gelb-braunen Feststoff.

Ausbeute:	2.6 g (quantitiativ)
Summenformel:	C ₁₅ H ₁₆ BrNO ₃
Molekulargewicht:	338.19 g / mol
Rf-Wert:	0.25 (2/1; Hex / EtOAc)
Substanzcode:	SW 377

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 8.72$ (s, 1H, *chromenon-4H*), 7.72 (d, 1H, J = 9.3 Hz, *chromenon-5H*), 6.86 (d, 1H, J = 9.0 Hz, *chromenon-6H*), 6.63 (s, 1H, *chromenon-8H*), 4.77 (s, 2H, -CH₂Br), 3.53 (q, 4H, J = 7.2 Hz, 2x -CH₂-CH₃), 1.15 (t, 6H, J = 6.1 Hz, 2x -CH₃).

2-(2-Bromacetyl)-3H-benzo[f]chromen-3-on (211g)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 2-Acetyl-3*H*-benzo[f]chromen-3-on (**210g**, 691 μ L, 8 mmol) in 40 mL Chloroform. Man erhält ein gelbes Pulver.

2.6 g (quantitativ)
$C_{15}H_9BrO_3$
317.13 g / mol

Rf-Wert: 0.92 (95/5; DCM / MeOH)

Substanzcode: SW 457 Int

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.43$ (s, 1H, *chromenon-4H*), 8.38 (d, 1H, J = 8.4 Hz, *chromenon-5H*), 8.17 (d, 1H, J = 9.0 Hz, *chromenon-9H*), 7.95 (d, 1H, J = 8.0, *chromenon-8H*), 7.79 (t, 1H, J = 7.4 Hz, *chromenon-6H*), 7.64 (t, 1H, J = 7.4 Hz, *chromenon-7H*), 7.50 (d, 1H, *chromenon-10H*), 4.81 (s, 2H, -CH₂-).

3-(2-(4-Hydroxyphenylamino)thiazol-4-yl)-2H-chromen-2-on (212)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Bromacetyl)-2*H*-chromen-2-on (**211a**, 575 mg, 2.1 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 350 mg, 2.1 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Methanol umkristallisiert. Man erhält einen gelben Feststoff.

Ausbeute:	63 mg (9%)
Summenformel:	$C_{18}H_{12}N_2O_3S$
Molekulargewicht:	336.36 g / mol
Rf-Wert:	0.65 (9/1; DCM / MeOH)
Substanzcode:	SW 453 / ST-1871

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.97$ (s, 1H, -N*H*-), 9.15 (s, 1H, -O*H*), 8.64 (s, 1H, *chromenon*-4*H*), 7.94 (d, 1H, *J* = 7.6 Hz, *chromenon*-5*H*) 7.68 (s, 1H, *thiazol*-5*H*), 7.63 (t, 1H, *J* = 7.2 Hz, *chromenon*-7*H*), 7.50 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 7.45 (d, 1H, *J* = 8.2 Hz, *chromenon*-8*H*), 7.40 (t, 1H, *J* = 7.7 Hz, *chromenon*-6*H*), 6.79 (d, 2H, *J* = 8.7 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.53, 158.73, 152.44, 152.17, 143.51, 138.32, 132.93, 131.50, 128.86, 124.58, 120.28, 119.47, 119.21, 115.75, 115.50, 108.88.

ESI-MS:	$m/z = 336.9 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 337.06414$	
	gefunden: $m/z = 337.06379$	Abweichung: 1.0 ppm

6-Chlor-3-(2-(4-hydroxyphenylamino)thiazol-4-yl)-2H-chromen-2-on (213)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Brom-1-hydroxyvinyl)-6-chlor-2*H*-chromen-2-on (**211b**, 660 mg, 2.2 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 350 mg, 2.1 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Methanol umkristallisiert. Man erhält einen orange-braunen Feststoff.

Ausbeute:	104 mg (13%)	
Summenformel:	$C_{18}H_{11}ClN_2O_3S$	ОН
Molekulargewicht:	370.81 g / mol	s s
Rf-Wert:	0.58 (95/5; DCM / MeOH)	
Substanzcode:	SW 470 /ST-1881	

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 9.99$ (s, 1H, -N*H*-), 9.14 (s, 1H, -O*H*), 8.61 (s, 1H, *chromenon*-4*H*), 8.13 (sd, 1H, *J* = 2.5 Hz, *chromenon*-5*H*), 7.71 (s, 1H, *thiazol*-5*H*), 7.63 (dd, 1H, *J* = 8.8 Hz, 2.5 Hz, *chromenon*-7*H*), 7.51 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 7.48 (d, 1H, *J* = 8.8 Hz, *chromenon*-8*H*), 6.79 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ =163.43, 158.31, 152.39, 150.74, 143.27, 137.01, 132.89, 130.86, 128.33, 127.79, 121.20, 120.73, 119.36, 117.67, 115.48, 109.72.

ESI-MS:	$m/z = 369.6 [\text{M-H}^+]^-$	
HR-MS:	berechnet: $m/z = 371.02517$	
	gefunden: $m/z = 371.02608$	Abweichung: 2.4 ppm

3-(2-(4-Hydroxyphenylamino)thiazol-4-yl)-6-methoxy-2*H*-chromen-2-on (214)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Brom-1-hydroxyvinyl)-6methoxy-2*H*-chromen-2-on (**211c**, 550 mg, 1.9 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 302 mg, 1.8 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man erhält einen gelben Feststoff.

Ausbeute:	135 mg (19%)
Summenformel:	$C_{19}H_{14}N_2O_4S$
Molekulargewicht:	366.39 g / mol
Rf-Wert:	0.57 (95/5; DCM / MeOH)
Substanzcode:	SW 473 / ST-1883

¹**H-NMR** (300 MHz, DMSO-d₆): $\delta = 9.98$ (s, 1H, -N*H*-), 9.16 (s, 1H, -O*H*), 8.65 (s, 1H, *chromenon*-4*H*), 7.72 (s, 1H, *chromenon*-5*H*), 7.55-7.52 (m, 3H, *thiazol*-5*H*, *Ph*-OH-3*H*,5*H*), 7.42 (d, 1H, J = 9.0 Hz, *chromenon*-8*H*), 7.23 (dd, 1H, J = 9.0 Hz, 2.9 Hz, *chromenon*-7*H*), 6.82 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 3.88 (s, 3H, -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.42, 158.84, 155.72, 152.38, 146.60, 143.58, 138.23, 132.93, 120.44, 119.67, 119.40, 119.25, 116.78, 115.49, 110.76, 109.03, 55.70, 48.48.

ESI-MS:	m/z = 367.9	$\left[M{+}H^{+}\right]^{+}$
HR-MS:	berechnet: m/	z = 367.07470

gefunden: m/z = 367.07513 Abweichung: 1.1 ppm

7-Chlor-3-(2-(4-hydroxyphenylamino)thiazol-4-yl)-2H-chromen-2-on (215)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Bromacetyl)-7-chlor-2*H*chromen-2-on (**211d**, 255 mg, 0.8 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 250 mg, 1.5 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Methanol umkristallisiert. Man erhält einen gelben Feststoff.

Ausbeute:	204 mg (68%)
Summenformel:	$C_{18}H_{11}ClN_2O_3S$
Molekulargewicht:	370.81 g / mol
Rf-Wert:	0.55 (95/5; DCM / MeOH)
Substanzcode:	SW 471 / ST-1882

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 9.97$ (s, 1H, -N*H*-), 9.14 (s, 1H, -O*H*), 8.62 (s, 1H, *chromenon*-4*H*), 7.98 (d, 1H, J = 8.4 Hz, *chromenon*-5*H*), 7.68 (s, 1H, *thiazol*-5*H*), 7.63 (sd, 1H, J = 1.9 Hz, *chromenon*-8*H*), 7.49 (d, 2H, J = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 7.45 (dd, 1H, J = 8.3 Hz, 2.0 Hz, *chromenon*-6*H*), 6.78 (d, 2H, J = 8.8 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.48, 158.21, 152.49, 152.41, 143.32, 137.50, 135.53, 132.89, 130.20, 124.81, 120.30, 119.40, 118.28, 115.88, 115.47, 109.3

ESI-MS:	$m/z = 369.5 [M-H^+]^-$	
HR-MS:	berechnet: $m/z = 371.02517$	
	gefunden: $m/z = 371.02570$	Abweichung: 1.4 ppm

3-(2-(4-Hydroxyphenylamino)thiazol-4-yl)-7-methoxy-2H-chromen-2-on (216)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Bromacetyl)-7-methoxy-2*H*-chromen-2-on (**211e**, 445 mg, 1.5 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 252 mg, 1.5 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man erhält einen gelben Feststoff, welcher mit der Zeit eine schwarze Färbung annimmt.

Ausbeute:	73 mg (13%)	
Summenformel:	$C_{19}H_{14}N_{2}O_{4}S$	ОН
Molekulargewicht:	366.39 g / mol	s s
Rf-Wert:	0.25 (98/2; DCM / MeOH)	NH
		H ₃ C ₀

Substanzcode: SW 458 / ST-1872

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 9.93$ (s, 1H, -N*H*-), 9.13 (s, 1H, -O*H*), 8.59 (s, 1H, *chromenon*-4*H*), 7.85 (d, 1H, *J* = 8.8 Hz, *chromenon*-5*H*), 7.57 (s, 1H, *thiazol*-5*H*), 7.49 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 7.05 (sd, 1H, *J* = 2.4 Hz, *chromenon*-8*H*), 6.99 (dd, 1H, *J* = 8.8 Hz, 2.4 Hz, *chromenon*-6*H*), 6.78 (d, 1H, *J* = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 3.88 (s, 3H, -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.44, 162.29, 159.00, 154.06, 152.37, 143.75, 138.73, 133.00, 129.93, 119.39, 117.06, 115.47, 112.73, 112.69, 107.29, 100.13, 55.88, 48.50.

ESI-MS:	$m/z = 366.9 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 367.07470$	
	gefunden: $m/z = 367.07489$	Abweichung: 0.5 ppm

7-(Diethylamino)-3-(2-(4-hydroxyphenylamino)thiazol-4-yl)-2H-chromen-2-on (217)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 3-(2-Bromacetyl)-7-(diethylamino)-2*H*-chromen-2-on (**211f** 492 mg, 1.5 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 200 mg, 1.2 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol), mit Chlorwasserstoff-Lösung (4M in Dioxan) aus Ether gefällt und aus Acetonitril umkristallisiert. Man erhält einen dreckig-gelben Feststoff.

Ausbeute:	118 mg (24%)
Summenformel:	$C_{22}H_{21}N_3O_3S\cdot HCl$
Molekulargewicht:	407.48 g / mol
Rf-Wert:	0.20 (98/2; DCM / MeOH)
Substanzcode:	SW 380 / ST-1850

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.97$ (s, 1H, -N*H*-), H₃

9.15 (s, 1H, -O*H*), 8.64 (s, 1H, *chromenon*-4*H*), 7.94 (d, 1H, *J* = 7.6 Hz, *chromenon*-5*H*) 7.68 (s, 1H, *thiazol*-5*H*), 7.63 (t, 1H, *J* = 7.2 Hz, *chromenon*-7*H*), 7.50 (d, 2H, *J* = 8.8 Hz, 3*H*,5*H*-*Ph*-OH), 7.45 (d, 1H, *J* = 8.2 Hz, *chromenon*-8*H*), 7.40 (t, 1H, *J* = 7.7 Hz, *chromenon*-6*H*), 6.79 (d, 2H, *J* = 8.7 Hz, 2*H*,6*H*-*Ph*-OH).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 163.83, 159.48, 155.04, 152.75, 143.44, 139.39, 132.71, 129.91, 119.84, 115.56, 109.81, 105.26, 44.44, 12.15.

ESI-MS:	$m/z = 408.8 [M+H^+]^+$				
Elementaranalyse:	berechnet:	C 59.52	H 5.00	N 9.47	S 7.22
	gefunden:	C 59.40	H 5.01	N 9.21	S 7.05

2-(2-(4-Hydroxyphenylamino)thiazol-4-yl)-3H-benzo[f]chromen-3-on (218)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-(2-Bromacetyl)-3*H*benzo[f]chromen-3-on (**211g**, 634 mg, 2 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 336 mg, 2 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Methanol umkristallisiert. Man erhält einen gelben Feststoff.

Ausbeute:	27 mg (4%)
Summenformel:	$C_{22}H_{14}N_2O_3S\cdot H_2O$
Molekulargewicht:	386.42 g / mol
Rf-Wert:	0.36 (98/2; DCM / MeOH)
Substanzcode:	SW 457 / ST-1873

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.03$ (s, 1H, -N*H*-), 9.32 (s, 1H, -O*H*), 9.19 (s, 1H, *chromenon*-4*H*), 8.40 (d, 1H, J = 8.4 Hz, *chromenon*-5*H*), 8.20 (d, 1H, J = 9.0 Hz, *chromenon*-9*H*), 8.10 (d, 1H, J = 8.0, *chromenon*-8*H*), 7.84 (t, 1H, J = 7.6 Hz, *chromenon*-6*H*), 7.73 (s, 1H, *thiazol*-5*H*), 7.68-7.62 (m, 2H, *chromenon*-7*H*,10*H*), 7.51 (d, 2H, J = 8.7 Hz, *Ph*-OH-3*H*,5*H*), 6.84 (d, 2H, J = 8.7 Hz, *Ph*-OH-2*H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 163.95, 158.64, 152.67, 151.74, 143.71, 133.58, 132.92, 132.73, 129.96, 128.99, 128.54, 128.45, 126.06, 121.39, 119.80, 119.46, 116.34, 115.56, 113.09, 108.77.

ESI-MS:	$m/z = 386.9 [M+H^+]^+$				
HR-MS:	berechnet: $m/z = 387.07979$				
	gefunden: <i>m/z</i>	z = 387.07988	Abwei	chung: 0.2 ppr	n
Elementaranalyse:	berechnet:	65.33 C	3.99 H	6.93 N	7.93 S
	gefunden:	65.34 C	4.13 H	6.43 N	7.64 S

5.4.3. 2-Aminothiazol-Derivate des zentralen Aminolinkers und ihre Vorstufen

N-(4-(4-Chlorphenyl)-3,5-dimethylthiazol-2(3*H*)-ylidene)-4-methoxyanilin (222)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 120 mg, 0.5 mmol) und *N*-4-Methoxyphenyl-*N*'-methylthioharnstoff (80 mg, 0.4 mmol) in 4 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute: 101 (73%)

Summenformel:	C ₁₈ H ₁₇ ClN ₂ OS	O-CH ₃
Molekulargewicht:	344.85 g / mol	H ₃ C S
Rf-Wert:	0.64 (2/1; Hex / EtOAc)	
Substanzcode:	SW 331 / ST-1815	CI CH3

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.59$ (d, 2H, J = 8.4 Hz, *Ph*-Cl-2*H*,6*H*), 7.44 (d, 2H, J = 8.4 Hz, *Ph*-Cl-3*H*,5*H*), 6.89 (ps, 4H, *Ph*-OMe), 3.72 (s, 3H, O-CH₃), 3.10 (s, 3H, thiazol-CH₃), 1.91 (s, 3H, n-CH₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ =157.37, 154.77, 144.78, 133.72, 133.22, 131.83, 128.82, 128.64, 121.87, 114.63, 114.57, 105.50, 55.06, 32.98, 12.25.

ESI-MS:	$m/z = 345.2 [M+H^+]^+$				
Elementaranalyse:	berechnet:	62.69 C	4.97 H	8.12 N	9.30 S
	gefunden:	62.86 C	4.94 H	8.01 N	9.48 S

4-(3-Allyl-4-(4-chlorphenyl)-5-methylthiazol-2(3*H*)-ylideneamino)phenol (223)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 114 mg, 0.5 mmol) und 1-Allyl-3-(4-hydroxyphenyl)-2-thioharnstoff (80 mg, 0.4 mmol) in 3 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen schmutzig-grauen Feststoff.

Ausbeute:	105 mg (77%)
Summenformel:	$C_{19}H_{17}ClN_2OS$
Molekulargewicht:	356.86 g / mol
Rf-Wert:	0.08 (3/1; Hex / EtOAc)
Substanzcode:	SW 344 / ST-1814

¹**H-NMR** (400 MHz, DMSO-*d*₆) δ = 9.05 (s, 1H, -O*H*), 7.55 (d, 2H,

J = 8.5 Hz, Ph-Cl-2H,6H), 7.38 (d, 2H, J = 8.5 Hz, Ph-Cl-3H,5H), 6.76 (d, 2H, J = 8.8 Hz, Ph-OH-3H,5H), 6.70 (d, 2H, J = 8.8 Hz, Ph-OH-2H,6H), 5.77-5.68 (m, 1H, -CH=), 5.03 (dd, 1H, J = 10.4 Hz, 1.4 Hz, 1x =C H_2), 4.83 (dd, 1H, J = 17.2 Hz, 1.4 Hz, 1x =C H_2), 4.21 (sd, 2H, J = 4.7 Hz, -C H_2 -), 1.88 (s, 3H, -C H_3).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 156.24, 152.78, 143.22, 133.74, 132.98, 132.79, 131.87, 128.67, 128.64, 121.72, 115.94, 115.78, 105.82, 46.81, 12.21.

ESI-MS:	$m/z = 357.0 [M+H^+]^+$				
Elementaranalyse:	berechnet:	63.95 C	4.80 H	7.85 N	8.99 S
	gefunden:	63.66 C	4.83 H	7.68 N	9.13 S

4-(4-Chlorphenyl)thiazol-2-amin (225)

Zu einer Lösung aus 2-Brom-4'-chloracetophenon (5.27 g, 22.6 mmol) in 100 mL Ethanol wurde Thioharnstoff (1.72 g, 22.6 mmol) hinzugefügt und für zwei Stunden zum Sieden erhitzt. Nach dem Abkühlen wurde auf 100 mL Wasser gegossen und die Lösung mit konzentriertem Ammoniak auf pH = 10 eingestellt. Der entstandene weiße Feststoff wurde abfiltriert und mit Wasser gründlich gewaschen.

Ausbeute:	4.5 g (95%)
Summenformel:	$C_9H_7ClN_2S$
Molekulargewicht:	210.68 g / mol
Rf-Wert:	0.35 (2/1; Hex / EtOAc)
Substanzcode:	SW 416

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.80 (d, 2H, *J* = 8.6 Hz, *Ph*-3*H*,5*H*), 7.41 (d, 2H, *J* = 8.6 Hz, *Ph*-2*H*,6*H*), 7.08 (br, 2H, -N*H*₂), 7.06 (s, 1H, *thiazol*-5*H*).

ESI-MS: $m/z = 210.9 [M]^+$

2-((4-(4-Chlorphenyl)thiazol-2-ylimino)methyl)phenol (226)

In 5 mL wasserfreien Ethanol wurden 4-(4-Chlorphenyl)thiazol-2-amin (**225**, 470 mg, 2.2 mmol) und Salicylaldehyd (233 μ L, 2.2 mmol) für drei Stunden zum Sieden erhitzt. Es wurde abgekühlt und der gebildete gelbe Feststoff abfiltriert und mit kalten Ethanol nachgewaschen.

Ausbeute:	437 mg (68%)
Summenformel:	$C_{16}H_{11}ClN_2OS$
Molekulargewicht:	314.79 g / mol
Rf-Wert:	0.96 (98/2; DCM / MeOH)
Substanzcode:	SW 368 / ST-1846

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 12.26$ (s, 1H, -O*H*), 9.28 (s, 1H, N=C*H*-Ph-OH), 7.86 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.51-7.39 (m, 5H, *thiazol-5H*, *Ph*-Cl-3*H*,5*H*, *Ph*-OH-3*H*,5*H*), 7.06-6.96 (m, 2H, *Ph*-OH-4*H*,6*H*).

¹³**C-NMR** (62 MHz, CDCl₃): δ =169.62, 165.09, 161.66, 152.64, 134.83, 134.22, 133.79, 132.72, 128.96, 127.52, 119.71, 118.45, 117.53, 112.59.

ESI-MS:	$m/z = 313.0 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	61.05 C	3.52 H	8.90 N	10.19 S
	gefunden:	61.26 C	3.47 H	8.87 N	10.09 S

2-((4-(4-Chlorphenyl)thiazol-2-ylamino)methyl)phenol (227)

In 10 mL Ethanol wurde 2-((4-(4-Chlorphenyl)thiazol-2-ylimino)methyl)phenol (**225**, 314 mg, 1 mmol) gelöst und bei Raumtemperatur Natriumborhydrid (24 mg, 0.6 mmol, 0.6 eq) dazugegeben. Nach 30 Minuten wurde mit 2N Salzsäure gequencht, mit Ethylacetat aufgegossen und die Reaktionslösung mit gesättigter Natriumchlorid-Lösung gewaschen. Es wurde über Magnesiumsulfat getrocknet, das Lösungsmittel entfernt und der Rückstand aus Ethanol umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute:	32 mg (11%)
Summenformel:	$C_{16}H_{13}ClN_2OS$
Molekulargewicht:	316.80 g / mol
Rf-Wert:	0.55 (2/1; Hex / EtOAc)
Substanzcode:	SW 452 / ST-1870

¹**H-NMR** (300 MHz, DMSO- d_6) $\delta = 9.75$ (s, 1H, -OH), 8.05 (t, 1H, J = 5.8 Hz, -NH-), 7.82 (d, 2H, J = 8.7 Hz, *Ph*-Cl-2*H*,6*H*), 7.42 (d, 2H, J = 8.7 Hz, *Ph*-Cl-3*H*,5*H*), 7.24 (d, 1H, J = 7.5 Hz, *Ph*-OH-6*H*), 7.10 (s, 1H, *thiazol*-3*H*), 7.08 (t, 1H, J = 7.9 Hz, *Ph*-OH-5*H*), 6.81 (d, 1H, J = 8.0 Hz, *Ph*-OH-6*H*), 6.76 (t, 1H, J = 7.4 Hz, *Ph*-OH-4*H*), 4.45 (d, 2H, J = 5.8 Hz, -CH₂-).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 168.65, 155.06, 148.32, 133.56, 131.58, 128.88, 128.42, 128.07, 127.22, 124.87, 118.77, 115.14, 101.88, 43.00.

ESI-MS:	$m/z = 317.0 [M+H^+]^+$				
Elementaranalyse:	berechnet:	C 60.66	H 4.14	N 8.84	S 10.12
	gefunden:	C 60.96	H 4.12	N 8.76	S 9.96

4-(4-Chlorphenyl)-N-((E)-3-(4-(dimethylamino)phenyl)allylidene)thiazol-2-amin (229)

In 4 mL wasserfreien Ethanol wurden 4-(4-Chlorphenyl)thiazol-2-amin (**225**, 210 mg, 1 mmol) und 4-Dimethylaminozimtaldehyd (175 mg, 1 mmol) für drei Stunden zum Sieden erhitzt. Es wurde abgekühlt und der gebildete orangene Feststoff abfiltriert und mit kalten Ethanol nachgewaschen.

Ausbeute:	206 mg (56%)
Summenformel:	$C_{20}H_{18}ClN_3S$
Molekulargewicht:	367.90 g / mol
Rf-Wert:	0.51 (1/1; Hex / EtOAc)
Substanzcode:	SW 375 / ST-1847

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.73$ (d, 1H, J = 9.3 Hz, C=CH-Ph-N(CH₃)₂), 7.82 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.42 (d, 2H, J = 8.8 Hz, *Ph*-N(CH₃)₂-3*H*,5*H*), 7.33 (d, 2H, J = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.24-7.21 (m, 2H, *thiazol*-5*H*, N=CH-CH), 6.90 (dd, 1H, J = 15.5 Hz, 9.3 Hz, CH-CH=CH), 6.65 (d, 2H, J = 8.8 Hz, *Ph*-N(CH₃)₂-2*H*,6*H*), 3.00 (s, 6H, Ph-N(CH₃)₂).

¹³**C-NMR** (100 MHz, CDCl₃): δ =173.36, 165.51, 152.24, 151.90, 149.32, 133.74, 133.14, 129.92, 128.79, 127.46, 123.21, 122.41, 11.88, 111.00, 40.09.

ESI-MS:	$m/z = 368.8 [M+H^+]^+$				
Elementaranalyse:	berechnet:	65.29 C	4.93 H	11.42 N	8.72 S
	gefunden:	65.19 C	5.09 H	11.49 N	8.76 S

1-(4-(4-Chlorphenyl)thiazol-2-yl)-1*H*-pyrrole-2,5-dion (231)

Maleinsäureanhydrid (295 mg, 3 mmol) und 4-(4-Chlorphenyl)thiazol-2-amin (225, 632 mg, 3 mmol) wurden in 30 mL THF gelöst und über Nacht auf 50 °C erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand in 10 mL Essigsäureanhydrid aufgenommen und für drei Stunden auf 70 °C erhitzt. Die Reaktionslösung wurde dann auf gesättigte Natriumhydrogencarbonat-Lösung und Eis gegeben und solange gerührt bis die Hydrolyse des Essigsäureanhydrid abgeschlossen war und dann mit Ethylacetat mehrfach extrahiert. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, getrocknet und unter reduziertem Druck eingeengt. Der Rückstand, ein braunes Öl, wurde säulenchromatographisch aufgetrennt (Fließmittel: Dichlormethan). Man erhält einen farblosen Feststoff.

Ausbeute:	209 mg (24%)
Summenformel:	$C_{13}H_7ClN_2O_2S$
Molekulargewicht:	290.72 g / mol
Rf-Wert:	0.67 (1/1; Hex / EtOAc)
Substanzcode:	SW 376 / ST-1848

¹**H-NMR** (400 MHz, DMSO-d₆): $\delta = 8.13$ (s, 1H, *thiazol-5H*), 7.97 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.52 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.31 (s, 2H, -C*H*=C*H*-).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ =167.39, 151.47, 149.25, 135.21, 132.58, 132.44, 128.74, 127.45, 113.21.

ESI-MS:	$m/z = 291.5 [M+H^+]^+$					
Elementaranalyse:	berechnet:	53.71 C	2.43 H	9.64 N	11.03 S	
	gefunden:	53.86 C	2.54 H	9.40 N	11.05 S	

(Z)-4-(4-(4-Chlorphenyl)thiazol-2-ylamino)-4-oxobut-2-ensäureethylester (232)

Verbindung **232** wurde erhalten indem 1-(4-(4-Chlorphenyl))thiazol-2-yl)-1*H*-pyrrole-2,5-dion (**231**) säulenchromatographisch mit Hexan / Ethylacetat als Fließmittel getrennt wurde. Es wurde ein gelber Feststoff isoliert.

Ausbeute:	79 mg (7%)
Summenformel:	$C_{15}H_{13}ClN_2O_4S$
Molekulargewicht:	336.79 g / mol
Rf-Wert:	(1/1; Hex / EtOAc)
Substanzcode:	SW 376B / ST-1884

¹**H-NMR** (300 MHz, DMSO-d₆): $\delta = 12.63$ (s, 1H, -N*H*-), 7.91 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.73 (s, 1H, *thiazol*-5*H*), 7.49 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 6.60 (d, 1H, *J* = 11.8 Hz, -C*H*=CH-), 6.53 (d, 1H, *J* = 11.8 Hz, -CH=C*H*-), 4.16 (q, 2H, *J* = 7.1 Hz, -C*H*₂-), 1.19 (t, 3H, *J* = 7.1 Hz, -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 165.58, 162.56, 157.52, 147.78, 132.95, 132.24, 131.11, 129.50, 128.70, 127.31, 109.25, 60.41, 13.72.

ESI-MS:	$m/z = 335.0 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	53.49 C	3.89 H	8.32 N	9.52 S
	gefunden:	53.45 C	3.76 H	8.31 N	9.60 S

2-(4-(4-Chlorphenyl)thiazol-2-yl)-5,6-dimethyl-3a,4,7,7a-tetrahydro-1*H*-isoindole-1,3(2*H*)-dion (234)

In einem Mikrowellenvial wurden 1-(4-(4-Chlorphenyl)thiazol-2-yl)-1*H*-pyrrole-2,5-dion (**231**, 73 mg, 0.2 mmol) und 2,3-Dimethyl-1,3-butadien (110 μ L, 1 mmol) in 300 μ L Toluen gelöst für zehn Minuten auf 80 °C erhitzt. Anschließend wurde das Lösungsmittel entfernt und der Rückstand aus Diethylether umkristallisiert. Man erhält farblose Plättchen.

Ausbeute:	40 mg (42%)
Summenformel:	$C_{19}H_{17}ClN_2O_2S$
Molekulargewicht:	372.87 g / mol
Rf-Wert:	(1/1; Hex / EtOAc)
Substanzcode:	SW 418 / ST-1869

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.85$ (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.43 (s, 1H, *thiazol-5H*), 7.37 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 3.30-3.26 (m, 2H, 2x C(O)-CH-CH₂), 2.57 (d, 2H, J = 14.8 Hz, CH-CH₂-C), 2.35 (d, 2H, J = 14.6 Hz, CH-CH₂-C), 1.71 (s, 6H, 2x -CH₃).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 176.61, 151.73, 151.21, 134.12, 132.41, 128.88, 127.60, 127.05, 111.74, 39.94, 30.64, 19.27.

ESI-MS:	$m/z = 373.8 [M+H^+]^+$					
Elementaranalyse:	berechnet:	61.20 C	4.60 H	7.51 N	8.60 S	
	gefunden:	61.24 C	4.75 H	7.67 N	8.41 S	

3,4-Diaminophenol (236)

Hergestellt gemäß allgemeiner Synthesevorschrift D aus 4-Amino-3-nitrophenol (540 mg, 3.5 mmol) in 30 mL Methanol. Ein schwarz-brauner Feststoff wurde isoliert.

Ausbeute:	490 mg (quantitativ)	
Summenformel:	$C_6H_8N_2O$	H ₂ N OH
Molekulargewicht:	124.14 g / mol	H ₂ N
Rf-Wert:	0.04 (98/2; DCM / MeOH)	
Substanzcode:	SW 496	
1		

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.08$ (s, 1H, -OH), 6.31 (d, 1H, J = 8.1 Hz, *Ph*-5H), 6.01 (sd, 1H, J = 2.6 Hz, *Ph*-2H), 5.80 (dd, 1H, J = 8.1 Hz, 2.6 Hz, *Ph*-6H), 4.35 (br, 2H, -NH₂), 3.84 (br, 2H, -NH₂).

ESI-MS: $m/z = 126.8 [M+H^+]^+$

5-Hydroxy-1*H*-benzo[d]imidazole-2(3*H*)-thion (237)

In 8 mL trockenem Pyridin wurde 3,4-Diaminophenol (**236**, 304 mg, 2.4 mmol) gelöst und bei Raumtemperatur 1,1'-Thiocarbonyldiimidazol (517 mg, 2.9 mmol) in kleinen Portionen dazu gegeben und anschließend für 1.5 Stunden auf 70 °C erhitzt. Es wurde auf Eis gegeben, 15 mL konzentrierte Salzsäure hinzugefügt und mehrfach mit Ethylacetat extrahiert. Die organische Phase wurde über Magnesiumsulfat getrocknet und im Vakuum entfernt. Man erhält einen schwach gelben Feststoff.

Ausbeute:	251 mg (63%)
Summenformel:	$C_7H_6N_2OS$
Molekulargewicht:	166.20 g / mol
Rf-Wert:	0.16 (9/1; DCM / MeOH)
Substanzcode:	SW 497

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.20$ (ps, 2H, 2x –N*H*-), 9.27 (s, 1H, -O*H*), 6.91 (d, 1H, J = 9.2 Hz, *benzimidazol*-7*H*), 6.57-6.53 (m, 2H, *benzimidazol*-4*H*,6*H*).

ESI-MS: $m/z = 164.6 [M-H^+]^-$

1-(4-Chlorphenyl)-2-(6-hydroxy-1*H*-benzo[d]imidazol-2-ylthio)ethanon (239)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-4'-chloracetophenon (245 mg, 1.0 mmol) und 5-Hydroxy-1*H*-benzo[d]imidazole-2(3*H*)-thion (**237**, 150 mg, 0.9 mmol) in 5 mL Ethanol. Es wurde dreimal säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol). Man erhält einen creme-farbenen Feststoff.

Ausbeute:	23 mg (8%)
Summenformel:	$C_{15}H_{11}ClN_2O_2S$
Molekulargewicht:	318.77 g / mol
Rf-Wert:	0.36 (9/1; DCM / MeOH)
Substanzcode:	SW 498 / ST-1900

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.18$ (br, 1H, -N*H*-), 9.06 (br, 1H, -O*H*), 8.06 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.63 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.18 (d, 1H, *J* = 8.5 Hz, *benzimidazol*-7*H*), 6.73 (sd, 1H, *J* = 2.2 Hz, *benzimidazol*-4*H*), 6.58 (dd, 1H, *J* = 8.5 Hz, 2.3 Hz, *benzimidazol*-6*H*), 4.95 (s, 2H, -CH₂-).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 192.68, 138.44, 134.10, 130.24, 128.82, 110.58, 110.47, 39.29.

ESI-MS: $m/z = 316.8 [M-2H^+]^-$

2-Brom-4-(4-chlorphenyl)-5-methylthiazol (240)

Eine Suspension, bestehend aus 2-Brom-1-(4-chlorphenyl)propan-1-on (**106**, 2 g, 8 mmol), Natriumthiocyanat (1 g, 12.4 mmol, 1.5 eq) und 25 ml wasserfreiem Ethanol wurde für vier Stunden zum Reflux erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand in 10 mL Eisessig sowie 15 mL Bromwasserstoff-Lösung (33% Eisessig) aufgenommen und erneut für zwei Stunden zum Reflux erhitzt. Die Lösung wurde mit Natriumhydrogencarbonat-Lösung neutralisiert, mit Dichlormethan extrahiert und die organische Phase mit gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Trocknen wurde über Kieselgel filtriert. Man erhält ein braun-gelbes Öl.

Ausbeute:	2.08 g (94%)
Summenformel:	C ₁₀ H ₇ BrClNS
Molekulargewicht:	288.59 g / mol
Rf-Wert:	0.66 (98/2; DCM / MeOH)
Substanzcode:	SW 382

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.66 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.52 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 2.52 (s, 3H, -CH₃).

4-(4-(4-Chlorphenyl)-5-methylthiazol-2-yloxy)phenol (242)

Ein Lösung aus 2-Brom-4-(4-chlorphenyl)-5-methylthiazol (**240**, 300 mg, 1.0 mmol, 1 eq), Hydroquinon (346 mg, 3.1 mmol, 3 eq) and Natriumhydrid (60% ig in Mineralöl, 168 mg, 4.2 mmol, 4 eq) in 4 mL DMF wurden für eine Stunde in der Mikrowelle auf 120 °C erhitzt. Das Reaktionsgemisch wurde auf Eis gegeben und mit Ethylacetat extrahiert. Das Lösungsmittel wurde entfernt und der schwarze teerartige Rückstand mittels Säulenchromatographie aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat). Ein weiß-milchiges Öl würde isoliert, welches in Chloroform gelöst wurde. Bei Zugabe von Petrolether fiel ein weißer Feststoff aus.

Ausbeute:	144 mg (14%)
Summenformel:	$C_{16}H_{12}ClNO_2S$
Molekulargewicht:	317.78 g / mol
Rf-Wert:	0.65 (98/2; DCM / MeOH)
Substanzcode:	SW 387 / ST-1849

¹**H-NMR** (400 MHz, DMSO-*d*₆) δ = 9.64 (s, 1H, -O*H*), 7.60 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.48 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.18 (d, 2H, *J* = 8.9 Hz, *Ph*-OH-3*H*,5*H*), 6.82 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 2.41 (s, 3H, -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 169.86, 155.55, 147.33, 142.81, 133.11, 131.95, 129.62, 128.33, 122.14, 121.58, 116.17, 12.31.

ESI-MS:	$m/z = 318.8 [M+H^+]^+$				
Elementaranalyse:	berechnet:	60.47 C	3.81 H	4.41 N	10.09 S
	gefunden:	60.47 C	3.74 H	4.35 N	10.06 S

2-(4-(Benzyloxy)phenyl)essigsäuremethylester (245)

In 30 mL Aceton wurden 4-Hydroxyphenylessigsäuremethylester (1.7 g, 10.2 mmol), Benzylbromid (1.4 mL, 11.2 mmol, 1.1 eq), Kaliumcarbonat (2.1 g, 15.3 mmol, 1.5 eq) und Kaliumiodid (0.3 g, 2.0 mmol, 0.2 eq) gelöst und über Nacht bei Raumtemperatur gelöst. Das Lösungsmittel wurde entfernt und der Rückstand in 100 mL Wasser aufgenommen und dreimal mit Ethylacetat extrahiert. Anschließend wurde mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, die organische Phase über Magnesiumsulfat getrocknet und entfernt. Der Rückstand wurde säulenchromatographisch aufgetrennt (Fließmittel: 5/1 Hexan / Ethylacetat). Man erhält ein farbloses Öl.

Ausbeute: 2.44 g (92%)

Summenformel:	$C_{16}H_{16}O_3$
Molekulargewicht:	256.29 g / mol
Rf-Wert:	0.66 (5/1; Hex / EtOAc)
Substanzcode:	SW 335

¹**H-NMR** (250 MHz, CDCl₃) δ = 7.45-7.32 (m, 5H, O-*Bn*), 7.20 (d, 2H, *J* = 8.5 Hz, *Ph*-OBn-3*H*,5*H*), 6.93 (d, 2H, *J* = 8.6 Hz, *Ph*-OBn-2*H*,6*H*), 5.05 (s, 2H, O-C*H*₂-Ph), 3.69 (s, 3H, -CH₃), 3.57 (s, 2H, C(O)-C*H*₂-Ph).

ESI-MS: $m/z = 292.1 [M+C1^-]^-$

2-(4-(Benzyloxy)phenyl)acetamid (246)

2-(4-(Benzyloxy)phenyl)essigsäuremethylester (**245**, 2.44 g, 9.5 mmol) wurde für fünf Stunden in 50 mL konzentriertem Ammoniak zum Sieden erhitzt. Bei Abkühlen bildete sich ein brauner Feststoff aus, welcher abfiltriert wurde.

Ausbeute:1.35 g (58%)Summenformel: $C_{15}H_{15}NO_2$

Molekulargewicht: 241.28 g / mol

Rf-Wert: 0.46 (95/5; DCM / MeOH)

Substanzcode: SW 339

¹**H-NMR** (400 MHz, DMSO- d_6) δ = 7.45-7.31 (m, 5H, , O-Bn), 7.16 (d, 2H, J = 8.5 Hz, Ph-OBn-3H,5H), 6.92 (d, 2H, J = 8.6 Hz, Ph-OBn-2H,6H), 6.81 (br, 2H, -N H_2), 5.07 (s, 2H, O-C H_2 -Ph), 3.27 (s, 2H, C(O)-C H_2 -Ph).

2-(4-(Benzyloxy)phenyl)ethanethioamid (247)

Zu einer Lösung aus 2-(4-(Benzyloxy)phenyl)acetamid (**246**, 1.35 g, 5.6 mmol), in 10 mL THF, wurde Lawesson's Reagenz (2.49 g, 6.5 mmol) gegeben und für drei Stunden auf 70 °C erhitzt In die abgekühlte Lösung wurde 5 mL gesättigte Natriumhydrogencarbonat-Lösung gegeben und für 30 Minuten gerührt. Die Reaktionslösung wurde mit Ethylacetat verdünnt und mit gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde getrocknet, unter reduziertem Druck entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Ein beiger Feststoff wurde erhalten.

Ausbeute: 530 mg (37%)

Summenformel: C₁₅H₁₅NOS

Molekulargewicht:257.35 g / molRf-Wert:0.64 (1/1; Hex / EtOAc)

Substanzcode: SW 340

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.36$ (pd, 2H, -N*H*₂), 7.45-7.31 (m, 7H, *Ph*-OBn-3*H*,5*H*, O-*Bn*), 7.24 (d, 2H, J = 8.6 Hz, *Ph*-OBn-2*H*,6*H*), 5.07 (s, 2H, O-C*H*₂-Ph), 3.72 (s, 2H, C(S)-C*H*₂-Ph).

ESI-MS: $m/z = 258.6 [M+H^+]^+$

2-(4-(Benzyloxy)benzyl)-4-(4-chlorphenyl)-5-methylthiazol (248)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 248 mg, 1 mmol) und 2-(4-(Benzyloxy)phenyl)ethanethioamid (**247**, 200 mg, 0.7 mmol) in 5 mL Ethanol. Es wurde zweimal aus Ethanol / Wasser umkristallisiert. Man erhält farblose Kristalle.

Ausbeute:	170 mg (61%)
Summenformel:	C ₂₄ H ₂₀ ClNOS
Molekulargewicht:	405.94 g / mol
Rf-Wert:	0.70 (3/1; Hex / EtOAc)
Substanzcode:	SW 343 / ST-1811

¹**H-NMR** (400 MHz, DMSO- d_6) δ = 7.68 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.51-7.26 (m, 9H, *Ph*-Cl-3*H*,5*H*, *Ph*-OBn-3*H*,5*H*, O-*Bn*), 6.97 (d, 2H, J = 8.6 Hz, *Ph*-OBn-2*H*,6*H*), 5.08 (s, 2H, O-CH₂-Ph), 4.02 (s, 2H, -CH₂-Ph-OBn), 2.46 (s, 3H, -CH₃).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 166.52, 157.25, 148.04, 137.00, 133.47, 131.89, 130.27, 129.97, 129.72, 128.70, 128.33, 127.71, 127.53, 114.85, 69.10, 37.62, 12.20.

ESI-MS:	$m/z = 406.8 [M+H^+]^+$				
Elementaranalyse:	berechnet:	71.01 C	4.97 H	3.45 N	7.90 S
	gefunden:	70.72 C	4.97 H	3.29 N	8.27 S

4-((4-(A-Chlorphenyl)-5-methylthiazol-2-yl)methyl)phenol (249)

2-(4-(Benzyloxy)benzyl)-4-(4-chlorphenyl)-5-methylthiazol (**248**, 250 mg, 0.6 mmol) wurde in einem Gemisch aus 5 mL Dioxan und 3 mL Bromwasserstoff-Lösung (48% Wasser) gelöst. Es wurde für fünf Stunden zum Sieden erhitzt. Die Reaktionslösung wurde mit Ethylacetat verdünnt und mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen. Die organische Phase wurde getrocknet und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 3 / 1 Hexan / Ethylacetat). Ein farbloses Öl
wurde isoliert, welches mit der Zeit fest wird. Das Öl wurde aus Ethanol / Wasser umkristallisiert.

Ausbeute:	180 mg (92%)
Summenformel:	C ₁₇ H ₁₄ ClNOS
Molekulargewicht:	315.81 g / mol
Rf-Wert:	0.32 (3/1; Hex / EtOAc)
Substanzcode:	SW 345 / ST-1810

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 9.34$ (s, 1H, -OH), 7.67 (d, 2H, J = 8.5 Hz, Ph-Cl-2H,6H), 7.49 (d, 2H, J = 8.5 Hz, Ph-Cl-3H,5H), 7.13 (d, 2H, J = 8.8 Hz, Ph-OH-3H,5H), 6.72 (d, 2H, J = 8.8 Hz, Ph-OH-2H,6H), 4.14 (s, 2H, -CH₂-), 2.46 (s, 3H, -CH₃).

¹³**C-NMR** (100 MHz, DMSO-*d*₆) δ = 166.88, 156.12, 147.87, 133.40, 131.76, 129.79, 129.61, 128.51, 128.21, 128.10, 115.20, 37.64, 12.10.

ESI-MS:	$m/z = 314.0 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	64.65 C	4.47 H	4.44 N	10.15 S
	gefunden:	64.94 C	4.50 H	4.32 N	9.98 S

4-(4-(4-Chlorphenyl)thiazol-2-ylimino)cyclohexa-2,5-dienon (250)

In 70 mL Ethylacetat wurde SKI-II (500 mg, 1.6 mmol) gelöst und auf 45 °C erwärmt. Dazu wurde Blei(IV)tetraacetat (805 mg, 1.8 mmol) hinzugegeben. Die Lösung wurde augenblicklich kirschrot. Es wurde für zehn Minuten gerührt und dann Calciumcarbonat (1 g) hinzugegeben. Der gebildete Schwamm wurde abfiltriert und das Filtrat im Vakuum eingeengt. Es wurde aus säulenchromatographisch aufgetrennt (Fließmittel: Dichlormethan), wobei nur ein Bruchteil des Rückstandes eluiert wurde. Man isolierte einen braun-schwarzen Feststoff.

Ausbeute: 60 mg (12%)

Summenformel: $C_{15}H_9ClN_2OS$

Molekulargewicht: 300.76 g / mol

Rf-Wert: 0.54 (DCM)

Substanzcode: SW 546 / ST-1905

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 8.51$ (1H, s, *thiazol-5H*), 8.43 (dd, 1H, J = 3.0 Hz, 10.0 Hz, *dienon-5H*), 8.02 (d, 2H, J = 8.5 Hz, *Ph-2H*,6*H*), 7.54 (d, 2H, J = 8.5 Hz, *Ph-3H*,5*H*), 7.35 (dd, 1H, J = 2.9 Hz, 10.4 Hz, *dienon-3H*), 6.76 (d, 2H, J = 10.6 Hz, *dienon-2H*,6*H*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 187.06, 169.08, 157.65, 153.46, 141.82, 134.05, 133.22, 133.13, 132.19, 130.69, 128.87, 127.85, 120.113.

 $m/z = 300.9 [M+H^+]^+$ **ESI-MS:**

HR-MS: berechnet: m/z = 300.01241

SW 486 Int

gefunden: m/z = 300.01295Abweichung: 1.8 ppm

2-Brom-1-tetralon (253)

Hergestellt gemäß allgemeiner Synthesevorschrift E nach Methode 1 aus α -Tetralon (1 mL, 7.5 mmol) in 40 mL Chloroform. Man erhält ein braunes Öl.

Ausbeute: 1.5 g (89%) Summenformel: C₁₀H₉BrO Molekulargewicht: 225.08 g / mol Substanzcode:

¹**H-NMR** (400 MHz, CDCl₃) δ = 7.08 (d, 1H, J = 7.8 Hz, *tetralon-8H*), 7.50 (t, 1H, J = 7.5 Hz, tetralone-7H), 7.32 (t, 1H, J = 7.5 Hz, tetralon-6H), 7.26 (d, 1H, J = 7.3 Hz, tetralon-5H), 4.71 (t, 1H, J = 4.3 Hz, -CHBr-), 3.33-3.25 (m, 1H, 1x CHBr-CH₂-CH2), 2.96-2.91 (m, 1H, 1x CHBr-CH₂-CH₂), 2.51-2.41 (m, 2H, -CH₂-Ph).

2-Brom-1-indanon (254)

Hergestellt gemäß allgemeiner Synthesevorschrift E nach Methode 1 aus 1-Indanon (1 g, 7.5 mmol) in 40 mL Chloroform. Man erhält ein gelb-stichiges Öl.

Ausbeute:	1.24 g (78%)
Summenformel:	C ₉ H ₇ BrO
Molekulargewicht:	211.05 g / mol

SW 487 Int Substanzcode:

¹**H-NMR** NMR (400 MHz, CDCl₃) δ = 7.87 (d, 1H, J = 7.7 Hz, *indanon-7H-*), 7.71 (t, 1H, J = 7.7 Hz, indanon-6H), 7.53-7.46 (m, 2H, indanon-4H,5H), 4.69 (dd, 1H, J = 7.5 Hz, 3.2 Hz, -CHBr-), 3.88 (dd, 1H, J = 18.2 Hz, 7.5 Hz, 1x -CH₂-), 3.45 (dd, 1H, J = 18.1 Hz, 3.1 1x -CH₂-).

4-(4,5-Dihydronaphtho[1,2-d]thiazol-2-ylamino)phenol (255)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-tetralon (253, 500 mg, 2 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (182, 326 mg, 2 mmol) in 10 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat), mit Bromwasserstoff-Lösung (33% Eisessig) aus Diethylether gefällt und anschließend aus Aceton umkristallisiert. Man erhält Farblose Nadeln.

Ausbeute:	17 mg (6%)	
Summenformel:	$C_{17}H_{14}N_2OS\cdot HBr$	/
Molekulargewicht:	294.37 g / mol	s,
Rf-Wert:	0.27 (3/1; Hex / EtOAc)	
Substanzcode:	SW 486 / ST-1878	

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 9.79$ (s, 1H, -NH-), 9.07 (s, 1H, -OH), 7.66 (d, 1H, J = 7.4 Hz, hydronaphthyl-8H), 7.47 (d, 2H, J = 8.8 Hz, Ph-OH-3H,5H), 7.25 (t, 1H, J = 7.5 Hz, hydronaphthyl-7H), 7.21 (d, 1H, J = 6.7 Hz, hydronaphthyl-5H), 7.14 (d, 1H, J = 7.4 Hz, hydronaphthyl-6H), 6.74 (d, 2H, J = 8.8 Hz, Ph-OH-2H,6H), 2.98 (t, 2H, J = 8.0 Hz, Ph-CH₂-CH₂), 2.83 (t, 2H, J = 7.9 Hz, -CH₂-CH₂-thiazol).

¹³**C-NMR** (100 MHz, DMSO-*d*₆) δ = 162.49, 152.07, 144.46, 134.13, 133.31, 131.30, 127.63, 126.62, 126.38, 122.21, 119.01, 117.67, 115.33, 28.20, 24.61.

ESI-MS:	$m/z = 292.9 [M-H^+]^-$				
Elementaranalyse:	berechnet:	C 54.41	H 4.03	N 7.46	S 8.56
	gefunden:	C 54.66	H 3.97	N 7.23	S 8.84

4-(8H-Indeno[1,2-d]thiazol-2-ylamino)phenol (256)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-indanon (**254**, 450 mg, 2.1 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**,168 mg, 1 mmol) in 6 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält dunkel-lila Nadeln.

Ausbeute:	139 mg (49%)
Summenformel:	$C_{16}H_{12}N_2OS\cdot HBr$
Molekulargewicht:	280.34 g / mol
Rf-Wert:	0.40 (95/5; DCM / MeOH)
Substanzcode:	SW 487 / ST-1879

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 9.96$ (s, 1H, -NH-), 9.11 (s, 1H, -OH), 7.51-7.47 (m, 4H, *Ph*-OH-3*H*,5*H*, *inden*-4*H*,7*H*), 7.32 (t, 1H, *J* = 7.2 Hz, *inden*-6*H*), 7.18 (t, 1H, *J* = 7.3, *inden*-5*H*), 6.76 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 3.76 (s, 2H, *inden*-CH₂-).

¹³**C-NMR** (100 MHz, DMSO-*d*₆) δ = 168.67, 156.08, 152.32, 145.32, 137.44, 132.98, 126.56, 124.61, 124.14, 123.39, 119.33, 117.57, 115.39, 32.14.

ESI-MS: $m/z = 279.0 [M-H^+]^-$

Elementaranalyse: berechnet: C 68.55 H 4.31 N 9.99 S 11.44

	Experiment	teller Teil		
gefunden:	C 68.34	H 4.42	N 9.59	S 11.64

2-Brom-1-(2,4-dichlorphenyl)propan-1-on (258)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 1 aus 2,4-Dichlorpropiophenon (2 g, 9.9 mmol) in 30 mL Chloroform. Es wurde zusätzlich für zwei Stunden auf 50 °C erwärmt. Man erhält einen gelb-stichiges Öl, welches mit der Zeit erstarrt.

Ausbeute:	3.05 g (75% im NMR)
Summenformel:	C ₉ H ₇ BrCl ₂ O
Molekulargewicht:	281.96 g / mol
Rf-Wert:	0.89 (2/1; Hex / EtOAc)
Substanzcode:	SW 540 Int

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 7.48$ (d, 1H, J = 8.2 Hz, *Ph*-6*H*), 7.45 (sd, 1H, J = 1.9 Hz, *Ph*-3*H*), 7.34 (dd, 1H, J = 8.2 Hz, 1.9 Hz, *Ph*-5*H*), 5.22 (q, 1H, J = 6.6 Hz, -C*H*-), 1.90 (d, 3H, J = 6.6 Hz, -C*H*₃).

4-(4-(2,4-Dichlorphenyl)-5-methylthiazol-2-ylamino)phenol (259)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(2,4-dichlorphenyl)propan-1-on (**258**, 422 mg, 1.5 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 168 mg, 1.0 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 2/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen rosa-farbenen Feststoff.

Ausbeute:	92 mg (26%)
Summenformel:	$C_{16}H_{12}Cl_2N_2OS$
Molekulargewicht:	351.25 g / mol
Rf-Wert:	0.41 (2/1; Hex / EtOAc)
Substanzcode:	SW 540 / ST-1904

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.73$ (s, 1H, -N*H*-), 9.05 (s, 1H, -O*H*), 7.72 (sd, 1H, *J* = 1.5 Hz, *Ph*-Cl-3*H*), 7.49-7.86 (m, 2H, *Ph*-Cl-5*H*,6*H*), 7.35 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-3*H*,5*H*), 6.69 (d, 2H, *J* = 8.8 Hz, *Ph*-OH-2*H*,6*H*), 2.12 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ =160.91, 152.02, 142.42, 133.67, 133.20, 133.16, 133.15, 129.00, 127.14, 118.97, 117.54, 115.26, 11.36.

ESI-MS: $m/z = 350.7 [M-H^+]^-$

Elementaranalyse: berechnet: C 54.71 H 3.44 N 7.98 S 9.13

	Experimentel	ller Teil		
gefunden:	C 54.63	H 3.84	N 7.56	S 9.57

5.4.4. 2-Aminothiazol-Derivate des rechten Zyklus und ihre Vorstufen

1-(4-Hydroxy-3,5-dimethylphenyl)thioharnstoff (260)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(4-Hydroxy-3,5-dimethylphenylcarbamothioyl)benzamid (**260a**, 1.54 g, 5.1 mmol) in 15 mL 2M Natronlauge. Es wurde ein brauner Feststoff isoliert.

Ausbeute:	840 mg (84%)
Summenformel:	$C_9H1_2N_2OS$
Molekulargewicht:	196.26 g / mol
Rf-Wert:	0.28 (98/2; DCM / MeOH)
Substanzcode:	SW 388

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.30$ (s, 1H, -N*H*-), 7.12 (br s, 2H, -N*H*₂), 6.78 (s, 2H, *Ph*-3*H*,5*H*), 2.12 (s, 6H, 2x C*H*₃).

ESI-MS: $m/z = 197.1 [M+H^+]^+$

4-(4-(2,4-Dichlorphenyl)-5-methylthiazol-2-ylamino)-2,6-dimethylphenol (261 (ST-1906))

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(2,4dichlorphenyl)propan-1-on (**258**, 120 mg, 0.6 mmol) und 1-(4-Hydroxy-3,5-dimethylphenyl)thioharnstoff (**260**, 80 mg, 0.4 mmol) in 3 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen dunkel-braunen Feststoff.

Ausbeute:	21 mg (14%)
Summenformel:	$C_{18}H_{16}Cl_2N_2OS$
Molekulargewicht:	379.30 g / mol
Rf-Wert:	0.73 (98/2; DCM / MeOH)
Substanzcode:	SW 547 / ST-1906

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.73$ (s, 1H, -N*H*-), 9.05 (s, 1H, -O*H*), 7.72 (sd, 1H, J = 1.5 Hz, *Ph*-Cl-3*H*), 7.49-7.86 (m, 2H, *Ph*-Cl-5*H*,6*H*), 7.07 (s, 2H, *Ph*-OH-2*H*,6*H*), 2.12 (s, 9H, 3x -C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 161.13, 147.99, 142.43, 133.66, 133.15, 133.11, 129.07, 127.13, 124.75, 117.94, 11750, 16.80, 11.39.

Exr	berime	entel	ler ⁻	Гeil
Link		liter	101	

ESI-MS:	$m/z = 376.9 [M-H^+]^-$				
Elementaranalyse:	berechnet:	C 57.00	H 4.25	N 7.39	S 8.45
	gefunden:	C 57.28	H 4.24	N 7.37	S 8.38

2,6-Diisopropyl-4-nitrophenol (263)

In 30 mL Chloroform wurde Propofol (2 mL, 10.7 mmol, 1.0 eq), gelöst und auf 0 °C gekühlt. Dazu wurde Nitriersäure, bestehend aus konzentrierter Schwefelsäure (840 μ L, 16.1 mmol, 1.5 eq) und konzentrierter Salpetersäure (650 μ L, 12.9 mmol, 1.2 eq), dazugegeben und für zwei Stunden gerührt. Die Reaktionslösung wurde dann mit 70 mL Dichlormethan verdünnt und mit gesättigter Natriumchlorid-Lösung mehrfach gewaschen. Das organische Lösungsmittel wurde anschließend über Magnesiumsulfat getrocknet und unter reduziertem Druck entfernt. Man isolierte ein braunes Öl als Rückstand, welches mit der Zeit fest wird. Es wurde ohne weitere Aufreinigung umgesetzt.

2.68 g (quantitativ)
C ₁₂ H ₁₇ NO ₃
223.26 g / mol
0.78 (9/1; Hex / EtOAc)
SW 477

¹**H-NMR** (400 MHz, DMSO-*d*₆) δ = 7.99 (s, 2H, *Ph*-3*H*,5*H*), 5.95 (s, 1H, -O*H*), 3.18 (q, 2H, *J* = 6.8 Hz, 2x -C*H*-(CH₃)₂), 1.30 (d, 12H, *J* = 6.8 Hz, 4x -C*H*₃).

ESI-MS: $m/z = 221.5 [M-H^+]^-$

4-Amino-2,6-diisopropylphenol (264)

Hergestellt gemäß allgemeiner Synthesevorschrift D aus 2,6-Diisopropyl-4-nitrophenol (**263**, 2.68 g, 12 mmol) in 80 mL Ethanol. Man erhält einen braunes visköses Öl.

Ausbeute:	2.3 g (quantitativ)	
Summenformel:	C ₁₂ H ₁₉ NO	
Molekulargewicht:	193.28 g / mol	OH
Rf-Wert:	0.13 (9/1; Hex / EtOAc)	H ₂ N CH ₃
Substanzcode:	SW 479	

¹**H-NMR** (400 MHz, CDCl₃) δ = 7.99 (s, 2H, *Ph*-3*H*,5*H*), 5.95 (br, 1H, -O*H*), 3.17 (q, 2H, *J* = 6.8 Hz, 2x -C*H*-(CH₃)₂), 1.30 (d, 12H, *J* = 6.8 Hz, 4x -C*H*₃).

ESI-MS: $m/z = 194.7 [M+H^+]^+$

4-Amino-2,6-dimethylphenol (266)

Hergestellt gemäß allgemeiner Synthesevorschrift D aus 2,6-Dimethyl-4-nitrophenol (2 g, 11.9 mmol) in 30 mL Methanol. Es wurde ein fuchsin-farbener Feststoff isoliert.

Ausbeute:	1.7 g (quantitativ)	
Summenformel:	$C_8H_{11}O$	ОН
Molekulargewicht:	137.17 g / mol	Сн
Rf-Wert:	0.05 (5/1; Hex / EtOAc)	0113
Substanzcode:	SW 383	
¹ H-NMR (250 MHz,	CDCl ₃) $\delta = 6.37$ (s, 2H, <i>Ar</i> -3 <i>H</i> ,5 <i>H</i>), 3.30 (br, 2H, -N <i>H</i> ₂), 2.17 (s, 6H	H, 2x
-CH ₃).		

N-(trans-4-Hydroxycyclohexylcarbamothioyl)benzamid (268a)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus *trans*-4-Aminocyclohexanol (1.5 g, 13 mmol) in 70 mL Aceton. Es entsteht ein weißes Pulver.

Ausbeute:	2.34 g (64%)
Summenformel:	$C_{14}H_{18}N_2O_2S$
Molekulargewicht:	278.36 g / mol
Rf-Wert:	0.27 (98/2; DCM / MeOH)
Substanzcode:	SW 277

N

¹**H-NMR** (250 MHz, CDCl₃) δ = 10.66 (br, 1H, C(O)-N*H*-C(S)), 8.96 (s, 1H,C(S)-N*H*-Cy), 7.81 (d, 2H, *J* = 7.2 Hz, *Ph*-2*H*,6*H*), 7.64-7.48 (m, 3H, *Ph*-3*H*,4*H*,5*H*), 4.25 (br, 1H, C*H*-NH-), 3.72 (br, 1H, C*H*-OH), 2.28-2.02 (m, 4H, 4x *Cy*), 1.56-1.35 (m, 4H, 4x *Cy*).

1-(trans-4-Hydroxycyclohexyl)thioharnstoff (269a)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus *N-(trans-4-Hydroxycyclohexyl-carbamothioyl)*benzamid (**268a**, 2.34 g, 8.4 mmol) in 40 mL 2M Natronlauge. Es wurde ein weißes Pulver isoliert.

Ausbeute:	2.1 g (stark mit NaCl verunreinigt)
Summenformel:	$C_7H_{14}N_2OS$
Molekulargewicht:	174.26 g / mol
Rf-Wert:	0.13 (3/1; Hex / EtOAc)
Substanzcode:	SW 278

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 8.42 (br, 1H, -N*H*-), 7.17 (br, 2H, -N*H*₂), 4.55 (br, 1H, C*H*-NH₂), 3.81 (br, 1H, C*H*-OH), 1.81-1.68 (m, 4H, 4x Cy), 1.24-1.08 (m, 4H, 4x Cy). **ESI-MS:** m/z = 172.7 [M-H⁺]⁻

trans-4-(4-(4-Chlorphenyl)-5-methylthiazol-2-ylamino)cyclohexanol (270)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 425 g, 1.7 mmol) und 1-(*trans*-4-hydroxycyclohexyl)thioharnstoff (**269a**, 326 mg, 1.7 mmol) in 10 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 3/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen schwach gelben Feststoff.

Ausbeute:	65 mg (11%)
Summenformel:	C ₁₆ H ₁₉ ClN ₂ OS
Molekulargewicht:	322.85 g / mol
Rf-Wert:	0.42 (3/1; Hex / EtOAc)
Substanzcode:	SW 284 / ST-1861

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 7.58$ (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.43 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.28 (d, 1H, J = 7.4 Hz, -N*H*-), 4.51 (d, 1H, J = 4.4 Hz, -O*H*), 3.43-3.34 (m, 2H, C*H*-NH₂, C*H*-OH), 2.31 (s, 3H, -C*H*₃), 2.00-1.95 (m, 2H, 2x Cy), 1.83-1.77 (m, 2H, 2x Cy), 1.27-1.17 (m, 4H, 4x Cy).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 163.66, 143.69, 134.28, 131.11, 129.51, 128.05, 114.40, 68.06, 52.51, 33.69, 30.02, 11.99.

ESI-MS:	$m/z = 320.9 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	59.52 C	5.93 H	8.68 N	9.93 S
	gefunden:	59.33 C	5.90 H	8.38 N	9.63 S

4-(4-Chlorphenyl)-5-methyl-*N*-(pyridin-3-yl)thiazol-2-amin (271)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 422 mg, 1.7 mmol) und 1-(Pyridin-4-yl)thioharnstoff (263 mg, 1.7 mmol) in 4 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält weiße Nadeln.

Ausbeute:	157 mg (30%)
Summenformel:	$C_{15}H_{12}ClN_3S$
Molekulargewicht:	301.79 g / mol

Rf-Wert: 0.08 (9/1; DCM / MeOH)

Substanzcode: SW 304 / ST-1826

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.57$ (s, 1H, -N*H*-), 8.37 (d, 2H, J = 6.3 Hz, *py*-2*H*,6*H*), 7.72 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.58 (d, 2H, J = 6.3 Hz, *py*-3*H*,5*H*), 7.52 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 2.46 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 158.02, 150.04, 146.86, 144.18, 133.52, 131.73, 129.57, 128.33, 119.04, 110.87, 11.82.

ESI-MS: $m/z = 299.9 [M-H^+]^-$

Elementaranalyse:	berechnet:	59.70 C	4.01 H	13.92 N	10.62 S
	gefunden:	59.55 C	4.02 H	13.73 N	10.40 S

N-(Pyridin-3-ylcarbamothioyl)benzamid (268c)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 3-Aminopyridin (5 g, 53 mmol) in 100 mL Aceton. Es entsteht ein beiger Feststoff.

Ausbeute:	8.5 g (62%)
Summenformel:	$C_{13}H_{11}N_3OS$
Molekulargewicht:	257.31 g / mol
Rf-Wert:	0.69 (95/5; DCM / MeOH)
Substanzcode:	SW 281

N H

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.51$ (br, 1H, C(O)-N*H*-C(S)), 11.75 (br, 1H, C(S)-N*H*-py), 8.76 (sd, 1H, J = 2.3 Hz, py-2*H*), 8.48 (dd, 1H, J = 4.7 Hz, 1.3 Hz, py-4*H*), 8.13 (d, 1H, J = 8.3 Hz, 1.8 Hz, py-6*H*), 8.00 (d, 2H, J = 7.1 Hz, Ph-2*H*,6*H*), 7.69 (t, 1H, J = 7.3 Hz, Ph-4*H*), 7.59-7.50 (m, 2H, Ph-3*H*,5*H*), 7.47 (td, 1H, J = 8.1 Hz, 4.7 Hz, py-5*H*).

1-(Pyridin-3-yl)thioharstoff (269c)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(Pyridin-2-ylcarbamothioyl)benzamid (**268c**, 8.5 g, 33 mmol) in 40 mL 2M Natronlauge. Es wurde ein schwach gelber Feststoff isoliert.

Ausbeute:	2.66 g (52%)
Summenformel:	$C_6H_7N_3S$
Molekulargewicht:	153.20 g / mol
Rf-Wert:	(9/1; DCM / MeOH)
Substanzcode:	SW 287

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.84$ (br, 1H, -N*H*-), 8.88 (sd, 1H, J = 2.1 Hz, py-2*H*), 8.30 (dd, 1H, J = 4.7 Hz, 1.4 Hz, py-4*H*), 7.94 (ddd, 1H, J = 8.2 Hz, 2.5 Hz, 1.4 Hz, py-6*H*), 7.65 (br, 2H, -N*H*₂), 7.33 (td, 1H, J = 8.3 Hz, 4.7 Hz, py-5*H*).

4-(4-Chlorphenyl)-5-methyl-N-(pyridin-3-yl)thiazol-2-amin (272)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 542 mg, 2 mmol) und 1-(Pyridin-3-yl)thioharnstoff (**269c**, 335 mg, 2.2 mmol) in 12 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält ein weißes amorphes Pulver.

Ausbeute:	131 mg (22%)
Summenformel:	$C_{15}H_{12}ClN_3S$
Molekulargewicht:	301.79 g / mol
Rf-Wert:	0.41 (9/1; DCM / MeOH)
Substanzcode:	SW 290 / ST-1817

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.30 (s, 1H, -N*H*-), 8.79 (sd, 1H, *J* = 2.5 Hz, *py*-2*H*), 8.20-8.13 (m, 2H, *py*-6*H*,4*H*), 7.72 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.51 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.33 (td, 1H, *J* = 8.3 Hz, 4.7 Hz, *py*-5*H*), 2.43 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 158.74, 143.89, 14.68, 138.55, 137.72, 133.65, 131.56, 129.48, 128.24, 123.55, 122.87, 117.92, 11.81.

ESI-MS:	$m/z = 302.5 [M+H^+]^+$				
Elementaranalyse:	berechnet:	59.70 C	4.01 H	13.92 N	10.62 S
	gefunden:	59.50 C	4.07 H	13.64 N	10.40 S

N-(6-Chlorpyridin-3-ylcarbamothioyl)benzamid (268d)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 5-Amino-2-chlorpyridin (5 g, 39 mmol) in 90 mL Aceton. Es entsteht ein schmutzig weißer Feststoff.

Ausbeute:	10.17 g (89%)
Summenformel:	C ₁₃ H ₁₀ ClN ₃ OS
Molekulargewicht:	291.75 g / mol
Rf-Wert:	0.41 (95/5; DCM / MeOH)
Substanzcode:	SW 298

¹**H-NMR** (300 MHz, DMSO-d₆): $\delta = 12.46$ (s, 1H, C(O)-NH-C(S)), 11.78 (s, 1H, C(S)-NHpy), 8.60 (sd, 1H, J = 2.6 Hz, py-6H), 8.19 (dd, 1H, J = 8.5 Hz, 2.6 Hz, py-4H), 7.98 (d, 2H, J = 7.1 Hz, Ph-2H,6H), 7.67 (t, 1H, J = 7.2 Hz, Ph-4H), 7.59-7.52 (m, 3H, Ph-3H,5H, py-3H).

ESI-MS: $m/z = 289.8 [M-H^+]^-$

1-(6-Chlorpyridin-3-yl)thioharnstoff (269d)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(6-Chlorpyridin-3-ylcarbamothioyl)benzamid (**268d**, 780 mg, 2.6 mmol) in 5 mL 2M Natronlauge. Es wurde ein beige-farbener Feststoff isoliert.

Ausbeute:	470 mg (93%)
Summenformel:	C ₆ H ₆ ClN ₃ S
Molekulargewicht:	187.64 g / mol
Rf-Wert:	0.16 (95/5; DCM / MeOH)
Substanzcode:	SW 303

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.86$ (s, 1H, -N*H*-), 8.40 (sd, 1H, J = 2.6 Hz, py-6*H*), 8.03 (dd, 1H, J = 8.6 Hz, 2.6 Hz, py-4*H*), 7.75 (br, 2H, -N*H*₂), 7.46 (d, 1H, J = 8.6 Hz, py-3*H*).

ESI-MS: $m/z = 188.5 [M+H^+]^+$

4-(4-Chlorphenyl)-N-(6-chlorpyridin-3-yl)-5-methylthiazol-2-amin (273)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 616 mg, 2.5 mmol) und 1-(6-Chlorpyridin-3-yl)thioharnstoff (**269d**, 470 mg, 2.5 mmol) in 4 mL Ethanol. Es wurde aus Ethanol umkristallisiert. Man erhält einen schwach gelben Feststoff.

Ausbeute:	314 mg (37%)
Summenformel:	$C_{15}H_{11}Cl_2N_3S$
Molekulargewicht:	336.23 g / mol
Rf-Wert:	0.67 (95/5; DCM / MeOH)
Substanzcode:	SW 305 / ST-1818

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.46 (s, 1H, -N*H*-), 8.69 (sd, 1H, *J* = 2.6 Hz, *py*-6*H*), 8.17 (dd, 1H, *J* = 8.7 Hz, 2.9 Hz, *py*-4*H*), 7.70 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.51 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.44 (d, 1H, *J* = 8.7 Hz, *py*-3*H*), 2.44 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 158.43, 143.93, 140.86, 137.88, 137.28, 133.55, 131.67, 129.53, 128.30, 126.77, 124.05, 118.44, 11.85.

ESI-MS:	$m/z = 336.3 [M+H^+]^+$				
Elementaranalyse:	berechnet:	53.58 C	3.30 H	12.50 N	9.54 S
	gefunden:	53.54 C	3.40 H	12.29 N	9.37 S

N-(Pyridin-2-ylcarbamothioyl)benzamid (268e)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 2-Aminopyridin (5 g, 53 mmol) in 100 mL Aceton.

Ausbeute:	10.36 (76%)
Summenformel:	$C_{13}H_{11}N_3OS$
Molekulargewicht:	257.31 g / mol
Rf-Wert:	0.84 (95/5; DCM / MeOH)
Substanzcode:	SW 280

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 13.28$ (br, 1H, C(O)-NH-C(S)), 11.73 (br, 1H, C(S)-NH-py), 8.43 (d, 1H, J = 4.1 Hz, py-6H), 8.00-7.82 (m, 3H, Ph-2H,6H, py-4H), 7.71-7.47 (m, 4H, Ph-3H,4H,5H, py-3H), 7.28 (t, 1H, J = 5.3, py-5H).

ESI-MS: $m/z = 255.9 [M-H^+]^-$

1-(Pyridin-2-yl)thioharnstoff (269e)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus *N*-(Pyridin-2-ylcarbamothioyl)benzamid (**268e**, 10.36 g, 40 mmol) in 50 mL 2M Natronlauge. Es wurde ein weißer Feststoff isoliert.

Ausbeute:	4.72g (76%)
Summenformel:	$C_6H_7N_3S$
Molekulargewicht:	153.20 g / mol
Rf-Wert:	0.26 (9/1; DCM / MeOH)
Substanzcode:	SW 286

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.55 (br, 2H, -N*H*₂), 8.86 (br, 1H, -N*H*-), 8.23 (dd, 1H, *J* = 5.0 Hz, 1.1 Hz, *py*-6*H*), 7.76 (td, 1H, *J* = 6.4 Hz, 1.9 Hz, *py*-4*H*), 7.15 (d, 1H, *J* = 8.3 Hz, *py*-3*H*), 7.04 (td, 1H, *J* = 5.2 Hz, 0.9, *py*-5*H*).

4-(4-Chlorphenyl)-5-methyl-N-(pyridin-2-yl)thiazol-2-amin (274)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 505 mg, 2 mmol) und 1-(Pyridin-2-yl)thioharnstoff (**269e**, 313 mg, 2 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 9/1 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält farbloser Kristalle.

Ausbeute:	400 mg (66%)
Summenformel:	$C_{15}H_{12}ClN_3S$
Molekulargewicht:	301.79 g / mol
Rf-Wert:	0.68 (9/1; DCM / MeOH)
Substanzcode:	SW 289 / ST-1734

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 11.23$ (s, 1H, -N*H*-), 8.28 (d, 1H, *J* = 5.0 Hz, *py*-6*H*), 7.72-7.65 (m, 3H, *Ph*-Cl-2*H*,6*H*, *py*-4*H*), 7.48 (d, 2H, *J* = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 7.03 (d, 1H, J = 8.3 Hz, *py*-3*H*), 6.90 (t, 1H, J = 5.2 Hz, *py*-5*H*), 2.45 (s, 3H, -C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 155.53, 151.64, 146.29, 142.29, 137.70, 134.14, 131.30, 129.38, 128.16, 119.22, 115.66, 110.46, 11.64.

ESI-MS:	$m/z = 302.1 [M+H^+]^+$				
Elementaranalyse:	berechnet:	59.70 C	4.01 H	13.92 N	10.62 S
	gefunden:	59.81 C	3.95 H	13.90 N	10.54 S

N-(4-Hydroxy-3,5-dimethylphenylcarbamothioyl)benzamid (260a)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 4-Amino-2,6-dimethylphenol (**266**, 1.69 g, 12.3 mmol) in 80 mL Aceton. Es entsteht ein weißer Feststoff.

Ausbeute:	1.54 (42%)
Summenformel:	$C_{16}H_{16}N_2O_2S$
Molekulargewicht:	300.37 g / mol
Substanzcode:	SW 388 Int

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.39$ (s, 1H, C(O)-NH-C(S)), 11.42 (s, 1H,C(S)-NH-Ph-OH), 7.96 (d, 2H, J = 7.2 Hz, *Ph*-2H,6H), 7.56 – 7.49 (m, 3H, *Ph*-3H,4H,5H), 7.19 (s, 2H, *Ph*-OH-3H,5H), 2.17 (s, 6H, 2x –CH₃).

N-(4-Hydroxy-3,5-diisopropylphenylcarbamothioyl)benzamid (268f)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 4-Amino-2,6-diisopropylphenol (**264**, 1.9 g, 10 mmol) in 80 mL Aceton. Es entsteht ein orange-roter Feststoff.

Ausbeute: 2.5 g (70%)

 $Summenformel: \qquad C_{20}H_{24}N_2O_2S$

Molekulargewicht: 356.48 g / mol

Rf-Wert: 0.77 (2/1; Hex / EtOAc)

Substanzcode: SW 482

¹**H-NMR** (400 MHz, DMSO- d_6) $\delta = 12.49$ (s, 1H, C(O)-NH-C(S)), 11.40 (s, 1H,C(S)-NH-Ph-OH), 8.22 (br, 1H, -OH), 7.98 (d, 2H, J = 7.4 Hz, Ph-2H,6H), 7.65 (t, 1H, J = 7.4 Hz, Ph-4H), 7.53 (t, 2H, J = 7.5, Ph-3H,5H), 7.33 (s, 2H, Ph-OH-3H,5H), 3.30 (q, 2H, J = 6.8 Hz, 2x -CH-(CH₃)₂), 1.16 (d, 12H, J = 6.8 Hz, 4x –CH₃).

1-(4-Hydroxy-3,5-diisopropylphenyl)thioharnstoff (269f)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(4-Hydroxy-3,5-diisopropyl-phenylcarbamothioyl)benzamid (**268f**, 2.5 g, 7 mmol) in 60 mL 2M Natronlauge. Es wurde ein bordeaux-roter Feststoff isoliert.

Ausbeute:	1.15 g (65%)
Summenformel:	$C_{13}H_{20}N_2OS$
Molekulargewicht:	252.37 g / mol
Rf-Wert:	0.06 (5/1; Hex / EtOAc)
Substanzcode:	SW 489

¹**H-NMR** (400 MHz, DMSO-*d*₆) δ = 9.43 (s, 1H, -N*H*-), 8.10 (br, 1H, -O*H*), 7.15 (s, 2H, *Ph*-3*H*,5*H*), 7.03 (br, 2H, -N*H*₂), 3.35 (q, 2H, *J* = 6.8 Hz, 2x -C*H*-(CH₃)₂), 1.21 (d, 12H, *J* = 6.8 Hz, 4x -C*H*₃).

4-(4-(4-Chlorphenyl)-5-methylthiazol-2-ylamino)-2,6-diisopropylphenol (275)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 368 mg, 1.5 mmol) und 1-(4-Hydroxy-3,5-diisopropylphenyl)thioharnstoff (**269f**, 378 mg, 1.5 mmol) in 5 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 5/1 Hexan / Ethylacetat) und anschließend aus Chloroform / Petrolether umkristallisiert. Man erhält rosa-farbene Kristalle.

Ausbeute:	115 mg (19%)	
Summenformel:	$C_{22}H_{25}ClN_2OS$	н₃с— ⊂ сн₃ н₃с— ⊂ он
Molekulargewicht:	400.96 g / mol	CH ₃
Rf-Wert:	0.55 (5/1; Hex / EtOAc)	H ₃ C S CH ₃ NH
Substanzcode:	SW 490 / ST-1867	N
		cı 🗸 💛

¹**H-NMR** (250 MHz, DMSO- d_6) $\delta = 9.66$ (s, 1H, -NH-), 7.72-7.69 (m, 3H, *Ph*-Cl-2*H*,6*H*,-O*H*), 7.48 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.28 (s, 2H, *Ph*-OH- 3*H*,5*H*), 3.33 (q, 2H, J = 6.8 Hz, 2x -C*H*-(CH₃)₂), 2.40 (s, 3H, thiazol-C*H*₃), 1.15 (d, 12H, *J* = 6.8 Hz, 4x –C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 160.21, 145.22, 143.47, 135.97, 134.18, 134.11, 131.30, 129.27, 128.15, 115.79, 112.76, 26.17, 22.93, 11.93.

ESI-MS:	$m/z = 399.7 [\text{M-H}^+]^-$				
Elementaranalyse:	berechnet:	C 65.90	H 6.28	N 6.99	S 8.00
	gefunden:	C 65.77	H 6.44	N 6.87	S 7.74

2-Methoxypyridin-4-amin (277)

In ein Mikrowellenvial wurden 4-Amino-2-chlorpyridin (1.2 g, 9.6 mmol) und Kupfer(I)iodid (170 mg, 0.9 mmol, 0.1 eq) eingewogen. Hinzu wurde 5 mL einer frisch hergestellten Natriumethanolat- / Ethanol-Lösung, durch 400 mg elementares Natrium, gegeben. Das Vial wurde versiegelt und in der Mikrowelle für vier Stunden auf 150 °C erhitzt. Anschließend wurde in Wasser aufgenommen und mit Diethylether extrahiert. Man isoliert ein farbloses Öl.

Ausbeute:930 mg (80%)Summenformel: $C_6H_8N_2O$ Molekulargewicht:124.14 g/molRf-Wert:0.30 (95/5; DCM / MeOH)Substanzcode:SW 321

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 7.62 (d, 1H, *J* = 5.7 Hz, py-3*H*), 6.15 (dd, 1H, *J* = 5.7 Hz, 1.9 Hz, *py*-5*H*), 5.89 (br, 2H, -N*H*₂), 5.79 (sd, 1H, *J* = 1.8 Hz, *py*-3*H*), 3.70 (s, 3H, -C*H*₃).

N-(2-Methoxypyridin-4-ylcarbamothioyl)benzamid (278)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 2-Methoxypyridin-4-amin (**277**, 930 mg, 7.5 mmol) in 40 mL Aceton. Es entsteht einen schwach gelben Feststoff.

Ausbeute:	1.43 (66%)
Summenformel:	$C_{14}H_{13}N_3O_2S$
Molekulargewicht:	287.33 g / mol
Rf-Wert:	0.84 (95/5; DCM / MeOH)
Substanzcode:	SW 323

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.74$ (s, 1H, C(O)-N*H*-C(S)), 11.72 (s, 1H,C(S)-N*H*-py), 8.15 (d, 1H, J = 5.7 Hz, py-6*H*), 7.97 (d, 2H, J = 7.2 Hz, Ph-2*H*,6*H*), 7.67-7.40 (m, 4H, Ph-3*H*,4*H*,5*H*, py-3*H*), 7.30 (dd, 1H, = 5.7 Hz, 1.8 Hz, py-5*H*), 3.86 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 288.4 [M+H^+]^+$

1-(2-Methoxypyridin-4-yl)thioharnstoff (279)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(2-Methoxypyridin-4-ylcarbamothioyl)benzamid (**278**, 1.5 g, 5.2 mmol) in 15 mL 2M Natronlauge. Das Wasser / Eis wurde auf ein Viertel reduziert, da die Verbindung schwach wasserlöslich ist. Es wurde ein beige-farbener Feststoff isoliert.

Ausbeute:	0.9 g (97%)
Summenformel:	C7H9N3OS
Molekulargewicht:	183.23 g / mol
Rf-Wert:	0.26 (95/5; DCM / MeOH)
Substanzcode:	SW 325

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.48$ (br, 1H, -N*H*-), 8.04 (sd, 1H, J = 2.6 Hz, py-3*H*), 7.68 (dd, 1H, J = 8.7 Hz, 2.6 Hz, py-5*H*), 7.46 (br, 2H, -N*H*₂), 6.78 (d, 1H, J = 8.7 Hz, py-6*H*), 3.83 (s, 3H, -C*H*₃).

4-(4-Chlorphenyl)-N-(2-methoxypyridin-4-yl)-5-methylthiazol-2-amin (280 (ST-1813))

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 318 mg, 1.3 mmol) und 1-(2-Methoxypyridin-4-yl)thioharnstoff (**279**, 200 mg, 1.1 mmol) in 7 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält farblose Kristalle.

Ausbeute:	93 mg (25%)
Summenformel:	C ₁₆ H ₁₄ ClN ₃ OS
Molekulargewicht:	331.81 g / mol
Rf-Wert:	0.49 (95/5; DCM / MeOH)
Substanzcode:	SW 357 / ST-1813

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.53$ (s, 1H, -NH-), 7.96

(d, 1H, J = 5.7 Hz, *pyridine-6H*), 7.69 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.53 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.23 (sd, 1H, J = 1.7 Hz, *pyridine-3H*), 6.99 (dd, 1H, J = 5.8 Hz, 1.8 Hz, *pyridine-5H*), 3.80 (s, 3H, pyridine-CH₃), 2.45 (s, 3H, thiazole-CH₃)

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 164.73, 158.11, 149.14, 146.95, 144.18, 133.55, 131.77, 129.52, 128.38, 118.97, 106.49, 95.40, 52.86, 11.81

ESI-MS: $m/z = 330.0 [M+H^+]^+$

	Experimenteller Teil				
Elementaranalyse:	berechnet:	57.91 C	4.25 H	12.66 N	9.66 S
	gefunden:	57.85 C	4.24 H	12.55 N	9.96 S

4-(4-(4-Chlorphenyl)-5-methylthiazol-2-ylamino)pyridin-2-ol (281)

4-(4-Chlorphenyl)-*N*-(6-methoxypyridin-3-yl)-5-methylthiazol-2-amin (**280** (**ST-1813**), 137 mg, 0.4 mmol) wurde in einem Gemisch aus 3 mL Dioxan und 3 mL Bromwasserstoff-Lösung (48% Wasser) gelöst. Es wurde für fünf Stunden zum Sieden erhitzt. Die Reaktionslösung wurde mit Ethylacetat verdünnt und mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen. Die organische Phase wurde getrocknet und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 9 / 1 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute:	13 mg (10%)
Summenformel:	C ₁₅ H ₁₂ ClN ₃ OS
Molekulargewicht:	317.79 g / mol
Rf-Wert:	0.07 (95/5; DCM / MeOH)
Substanzcode:	SW 360 / ST-1862

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.95$ (br, 1H, -N*H*-), 10.35 (br, 1H, -O*H*), 7.68 (d, 2H, J = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.53 (d, 2H, J = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 7.25 (d, 1H, J = 7.2 Hz, *pyridine*-3*H*), 6.84 (sd, 1H, J = 1.8 Hz, *pyridine*-6*H*), 6.13 (dd, 1H, J = 7.7 Hz, 2.0 Hz, *pyridine*-4*H*), 2.46 (s, 3H, -CH₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 163.49, 157.78, 149.83, 144.22, 134.91, 133.48, 131.80, 129.54, 128.37, 119.51, 99.53, 98.33, 11.83.

ESI-MS:	$m/z = 318.1 [M+H^+]^+$				
Elementaranalyse:	berechnet:	56.69 C	3.81 H	13.22 N	10.09 S
	gefunden:	56.39 C	3.73 H	12.97 N	10.51 S

2-Methoxy-5-nitropyridin (283) nach³⁰⁷

In ein Mikrowellenvial wurden 2-Chlor-5-nitropyridin (2 g, 12.5 mmol) und Kupfer(I)iodid (200 mg, 1 mmol, 0.1 eq) eingewogen. Hinzu wurde 7 mL einer frisch hergestellten Natriumethanolat- / Ethanol-Lösung, durch 600 mg elementares Natrium, gegeben. Das Vial wurde versiegelt und in der Mikrowelle für eine Stunde auf 160 °C erhitzt. Anschließend wurde in Wasser aufgenommen und mit Diethylether extrahiert. Man isoliert einen dunkelgelben Feststoff.

Ausbeute: 5.8 g (99%)

Summenformel: $C_6H_6N_2O_3$ Molekulargewicht:154.12 g / molRf-Wert:0.85 (5/1; Hex / EtOAc)Substanzcode:SW 348

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.09$ (sd, 1H, J = 2.8 Hz, py-6*H*), 8.47 (dd, 1H, J = 9.1 Hz, 2.8 Hz, *py*-4*H*), 7.03 (d, 1H, J = 9.1 Hz, *py*-3*H*), 3.99 (s, 3H, -CH₃).

6-Methoxypyridin-3-amin (284) nach³⁰⁷

Eisenpulver (8.4 g, 150.5 mmol, 4 eq) in 50 mL Eisessig suspendiert, wurde unter Argon-Atmosphäre gesetzt und auf 80 °C erhitzt. Dazu wurde 2-Methoxy-5-nitropyridin (**283**, 5.8 g, 37.6 mmol), in 50 mL Eisessig gelöst, über 30 Minuten hinzugetropft. Es wurde eine weitere Stunde gerührt. Der gebildete Eisenschlamm wurde abfiltriert und das Filtrat gründlich mit Eisessig und Ethylacetat gewaschen. Das Lösungsmittel wurde unter reduziertem Druck und an der Lyophile getrocknet. Es wurde erneut in Ethylacetat aufgenommen und mi gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen. Das Lösungsmittel wurde getrocknet, entfernt und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol). Man isoliert eine braune Flüssigkeit.

Ausbeute:	2.4 g (51%)
Summenformel:	$C_6H_8N_2O$
Molekulargewicht:	124.14 g / mol
Rf-Wert:	0.30 (98/2; DCM / MeOH)
Substanzcode:	SW 349

H₂N CH₃

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 7.50$ (sd, 1H, J = 2.8 Hz, py-6*H*), 7.01 (dd, 1H, J = 8.6 Hz, 2.8 Hz, *py*-4*H*), 6.53 (d, 1H, J = 9.1 Hz, *py*-3*H*), 4.76 (br, 2H, -N*H*₂), 3.69 (s, 3H, -C*H*₃).

N-(6-Methoxypyridin-3-ylcarbamothioyl)benzamid (285)

Hergestellt gemäß allgemeiner Synthesevorschrift F aus 6-Methoxypyridin-3-amin (**284**, 2.5 g, 20 mmol) in 50 mL Aceton. Es entsteht ein gelber Feststoff.

Ausbeute:	4.74 g (82%)
Summenformel:	$C_{14}H_{13}N_3O_2S$
Molekulargewicht:	287.07 g / mol
Substanzcode:	SW 352

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 12.29$ (br, 1H, C(O)-N*H*-C(S)), 11.67 (s, 1H,C(S)-N*H*-pyridine), 8.27 (sd, 1H, J = 2.5 Hz, py-6*H*), 7.98-7.94 (m, 3H, *Ph*-2*H*,6*H*, py-4*H*), 7.69-7.50 (m, 3H, *Ph*-3*H*,4*H*,5*H*), 6.85 (d, 1H, J = 8.8 Hz, py-3*H*), 3.86 (s, 3H, -C*H*₃).

ESI-MS: $m/z = 286.0 [M-H^+]^-$

1-(6-Methoxypyridin-3-yl)thioharnstoff (286)

Hergestellt gemäß allgemeiner Synthesevorschrift G aus N-(6-Methoxypyridin-3-ylcarbamothioyl)benzamid (**285**, 4.74 g, 16.5 mmol) in 80 mL 2M Natronlauge. Es wurden farblose Kristalle isoliert.

Ausbeute:	2.2 g (64%)
Summenformel:	$C_7H_9N_3OS$
Molekulargewicht:	183.23 g / mol
Rf-Wert:	0.45 (95/5; DCM / MeOH)
Substanzcode:	SW 353

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.99$ (br, 1H, -N*H*-), 7.99 (d, 1H, *J* = 5.7 Hz, *py*-3*H*), 7.26 (sd, 1H, *J* = 2.7 Hz, *py*-6*H*), 7.05 (dd, 1H, *J* = 5.7 Hz, 1.7 Hz, *py*-4*H*), 3.81 (s, 3H, -C*H*₃).

4-(4-Chlorphenyl)-N-(6-methoxypyridin-3-yl)-5-methylthiazol-2-amin (287 (ST-1812))

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 325 mg, 1.3 mmol) und 1-(6-Methoxypyridin-3-yl)thioharnstoff (**286**, 200 mg, 1.1 mmol) in 7 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält farblose Kristalle.

Ausbeute:	255 mg (69%)
Summenformel:	C ₁₆ H ₁₄ ClN ₃ OS
Molekulargewicht:	331.81 g / mol
Rf-Wert:	0.91 (95/5; DCM / MeOH)
Substanzcode:	SW 355 / ST-1812

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.00 (s, 1H, -N*H*-), 8.54 (sd, 1H, *J* = 2.4 Hz, *py*-6*H*), 7.94 (dd, 1H, *J* = 8.9 Hz, 2.8 Hz, *py*-4*H*), 7.68 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-2*H*,6*H*), 7.49 (d, 2H, *J* = 8.6 Hz, *Ph*-Cl-3*H*,5*H*), 6.80 (d, 1H, *J* = 8.9 Hz, *py*-3*H*), 3.80 (s, 3H, py-C*H*₃), 2.41 (s, 3H, thiazol-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 159.46, 158.25, 143.78, 134.88, 133.78, 132.48, 131.47, 129.46, 129.11, 128.22, 117.04, 110.13, 25.93, 11.87.

ESI-MS:	$m/z = 332.3 [M+H^+]^+$						
Elementaranalyse:	berechnet: 57.91 C 4.25 H 12.66 N 9.						
	gefunden:	57.95 C	4.25 H	12.56 N	9.77 S		

5-(4-(4-Chlorphenyl)-5-methylthiazol-2-ylamino)pyridin-2-ol (288)

4-(4-Chlorphenyl)-*N*-(6-methoxypyridin-3-yl)-5-methylthiazol-2-amin (**287** (**ST-1812**), 123 mg, 0.3 mmol) wurde in einem Gemisch aus 3 mL Dioxan und 3 mL Bromwasserstoff-Lösung (48% Wasser) gelöst. Es wurde für fünf Stunden zum Sieden erhitzt. Die Reaktionslösung wurde mit Ethylacetat verdünnt und mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen. Die organische Phase wurde getrocknet und der Rückstand säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält einen sand-farbenen Feststoff.

Ausbeute:	84 mg (71%)
Summenformel:	C ₁₅ H ₁₂ ClN ₃ OS
Molekulargewicht:	317.79 g / mol
Rf-Wert:	0.08 (95/5; DCM / MeOH)
Substanzcode:	SW 364 / ST-1863

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.92$ (br, 1H, -N*H*-), 8.20 (sd, 2H, J = 2.8 Hz, *py*-6*H*), 7.65 (d, 2H, J = 8.5 Hz, *Ph*-Cl-2*H*,6*H*), 7.59 (dd, 1H, J = 9.6 Hz, 2.9 Hz, *py*-4*H*), 7.49 (d, 2H, J = 8.5 Hz, *Ph*-Cl-3*H*,5*H*), 6.54 (d, 1H, J = 9.6 Hz, *py*-3*H*), 2.39 (s, 3H, -CH₃).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 159.63, 145.89, 138.82, 138.01, 136.47, 130.08, 128.80, 125.29, 119.05, 117.70, 107.72, 104.80, 12.40.

ESI-MS:	$m/z = 316.0 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 318.04624$	
	gefunden: $m/z = 318.04655$	Abweichung: 0.9 ppm

1-(4-Chlorphenyl)-2-(4-(4-(4-chlorphenyl)-5-methylthiazol-2-ylamino)pyridin-2-yloxy)-propan-1-on

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-(4-chlorphenyl)propan-1on (**106**, 1.28 g, 5.2 mmol) und 1-(2-Methoxypyridin-4-yl)thioharnstoff (**279**, 950 mg, 5.2 mmol) in 8 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5

Dichlormethan / Methanol) und anschließend aus Ethanol umkristallisiert. Man erhält ein weißes Pulver.

Ausbeute:141 mg (6%)Summenformel: $C_{24}H_{19}Cl_2N_3O_2S$ Molekulargewicht:484.39 g / molRf-Wert:0.57 (95/5; DCM / MeOH)Substanzcode:SW 326 / ST-1816

¹**H-NMR** (250 MHz, DMSO-d₆): δ = 10.46 (s, 1H, -N*H*-), 7.87 (d, 2H, *J* = 8.6, *Ph*-thiazol-2*H*,6*H*), 7.67-7.49 (m, 7H, *Ph*-thiazol-3*H*,5*H*, *py*-6*H*, Cl-*Ph*-C(O)), 6.86 (sd, 1H, *J* = 2.3 Hz, *py*-3*H*), 6.28 (dd, 1H, *J* = 7.6 Hz, 2.3 Hz, *py*-5*H*), 5.98 (q, 1H, *J* = 6.9 Hz, C(O)-C*H*-CH₃), 2.44 (s, 3H, thiazol-C*H*₃), 1.47 (d, 3H, *J* = 6.9 Hz, CH-C*H*₃).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ =196.04, 161.60, 157.59, 149.10, 144.28, 137.75, 136.17, 133.95, 133.39, 131.83, 129.84, 129.58, 128.68, 128.35, 119.81, 99.72, 98.60, 56.35, 15.29, 11.82.

ESI-MS:	$m/z = 485.0 [M+H^+]^+$				
Elementaranalyse:	berechnet:	59.51 C	3.95 H	8.67 N	6.62 S
	gefunden:	59.31 C	3.91 H	8.67 N	6.98 S

5.4.5. 2-Aminothiazol-Derivate mit drei variierten Zyklen und ihre Vorstufen

2-Brom-1-cyclohexylpropan-1-on (290)

Hergestellt gemäß allgemeiner Synthesevorschrift E Methode 2 aus 1-Cyclohexylpropan-1-on (250 μ L, 1.6 mmol) in 5 mL Methanol. Man erhält einen bräunliches Öl.

¹ H-NMR (250 MHz,	DMSO-d ₆): $\delta = 4.47$ (q, 1H, J = 6.7, -CHBr-), 2.31-2.27 (
Substanzcode:	SW 400 Int
Molekulargewicht:	219.11 g / mol
Summenformel:	C ₉ H ₁₅ BrO
Ausbeute:	315 mg (90%)

GH₃

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 4.47$ (q, 1H, J = 6.7, -CHBr-), 2.31-2.27 (m, 1H, C(O)-CH-(CH₂)₂), 1.89 (d, 3H, J = 6.7 Hz, -CH₃), 1.86-1.78 (m, 5H, *Cy*), 1.53-1.49 (m, 5H, *Cy*).

3-Cyclohexyl-3-oxopropionsöuremethylester (292)

In 25 mL Toluen wurde Natriumhydrid (60% ig in Mineralöl, 1.6 g, 40.6 mmol, 2.8 eq) suspendiert. Dimethylcarbonat (2.44 mL, 29.0 mmol, 2 eq) wurden hinzugegeben und die Lösung wurde zum Sieden erhitzt. In die Siedehitze wurde 1-Cyclohexylpropan-1-on (2 mL, 14.5 mmol, 1 eq), in 5 mL Toluen gelöst, hinzugegeben und für weitere zwei Stunden erhitzt. Nach dem Abkühlen wurden vorsichtig 4 mL Eisessig und 10 mL Wasser hinzugefügt. Das Toluen wurde mit Ethylacetat verdünnt und die organische Phase mit gesättigter Natriumchlorid-Lösung gewaschen, getrocknet und im Vakuum eingeengt. Der flüssige Rückstand wurde destilliert. Man isolierte eine klare Flüssigkeit.

Ausbeute:	2.15 g (40%)	
Summenformel:	$C_{10}H_{16}O_3$	
Molekulargewicht:	184.23 g / mol	
Siedetemperatur:	87 °C bei 0.5 mbar	
Rf-Wert:	0.61 (95/5; PE / EtOAc)	
Substanzcode:	SW 534	
¹ H-NMR (400 MHz, (m, 1H, -C <i>H</i> -), 1.89-1	CDCl ₃) δ = 3.71 (s, 3H, -CH ₃), 3.48 (s, 2H, C(O)-CH 65 (m, 7H, Cy), 1.42-1.21 (m, 7H, Cy).	I ₂ -C(O)), 2.50-2.39

ESI-MS: $m/z = 184.9 [M+H^+]^+$

2-Chlor-3-cyclohexyl-3-oxopropionsäuremethylester (291)

In 20 mL trockenem Dichlormethan wurde 3-Cyclohexyl-3-oxopropionsöuremethylester (, 2.15 g, 11.6 mmol) gelöst und, bei Raumtemperatur mit Sulforylchlorid (996 μ L, 12.2 mmol, 1.1 eq) versetzt und für zwei Stunden gerührt. Es wurde auf Wasser gegeben und mit Dichlormethan extrahiert. Die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Man erhält ein schwach gelb-stichiges Öl, welches ohne weitere Aufreinigung umgesetzt wurde.

Ausbeute:	2.54 g (quantitativ)	
Summenformel:	$C_{10}H_{15}ClO_3$	o o ↓ ↓ .cHa
Molekulargewicht:	218.67 g / mol	
Rf-Wert:	0.79 (95/5; PE / EtOAc)	
Substanzcode:	SW 536 Int	
¹ H-NMR (400 MHz	$(CDCl_3) \delta = 4.92 (s, 1H, -CHCl-), 3.82 (s, 3H, -CH_3)$), 2.88-2.76 (m, 1H,

-CH-), 1.90-1.65 (m, 5H, Cy), 1.50-1.24 (m, 5H, Cy).

trans-4-(4-Cyclohexyl-5-methylthiazol-2-ylamino)cyclohexanol (294)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexyl-1-propanon (**290**, 260 mg, 1.2 mmol) und 1-(*trans*-4-hydroxycyclohexyl)thioharnstoff (**269a**, 250 mg, 1.4 mmol) in 6 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Chlorform / Petrolether umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute:	55 mg (15%)
Summenformel:	$C_{16}H_{26}N_2OS$
Molekulargewicht:	294.45 g / mol
Rf-Wert:	0.4 (95/5; DCM / MeOH)
Substanzcode:	SW 513 / ST-1864

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 5.01$ (br, 1H, -OH), 3.72-3.61 (m, 1H, (CH₂)₂-CH-thaizol), 3.14 (br, 1H, -NH-), 2.53-2.43 (m, 1H, (CH₂)₂-CH-OH), 2.19 (s, 3H, -CH₃), 2.14-2.09 (m, 1H, NH-CH-(CH₂)₂), 2.03-1.97 (m, 2H, Cy-4CH₂), 1.83-1.21 (m, 16H, Cy).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 165.94$, 111.31, 69.51, 54.63, 37.86, 33.62, 32.14, 30.53, 26.68, 25.85, 22.77, 10.67.

ESI-MS:	$m/z = 295.6 [M+H^+]^+$	
HR-MS:	berechnet: $m/z = 295.18386$	
	gefunden: $m/z = 295.18411$	Abweichung: 0.8 ppm

4-Cyclohexyl-2-(4-hydroxyphenylamino)thiazol-5-carbonsäuremethylester (297)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Chlor-3-cyclohexyl-3-oxopropionsäuremethylester (**291**, 202 mg, 1.1 mmol) und 1-(4-Hydroxyphenyl)thioharnstoff (**182**, 168 mg, 1 mmol) in 5 mL Methanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 95/5 Dichlormethan / Methanol) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält farblose Kristalle.

Ausbeute:	93 mg (29%)
Summenformel:	$C_{17}H_{20}N_2O_3S$
Molekulargewicht:	332.41 g / mol
Rf-Wert:	0.22 (95/5; DCM / MeOH)
Substanzcode:	SW 538 / ST-1901

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.35$ (s, 1H, -N*H*-), 9.30 (s, 1H, -O*H*), 7.32 (d, 2H, J = 8.8 Hz, *Ph*-3*H*,5*H*), 6.75 (d, 2H, J = 8.8 Hz, *Ph*-2*H*,6*H*), 3.69 (s, 3H, -C*H*₃), 3.55-3.43 (m, 1H, thiazol-C*H*-(CH₂)₂), 1.80-1.18 (m, 10H, *Cy*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 168.02, 166.92, 161.86, 153.52, 131.82, 120.80, 115.56, 105.74, 51.27, 38.33, 31.61, 25.91, 25.54.

ESI-MS:	$m/z = 332.9 [M+H^+]^+$				
Elementaranalyse:	berechnet:	61.42 C	6.06 H	8.43 N	9.65 S
	gefunden:	61.44 C	6.10 H	8.28 N	9.63 S

4-(4-Cyclohexyl-5-methylthiazol-2-ylamino)-2,6-dimethylphenol (295 (ST-1853))

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexyl-1-propanon (**290**, 167 mg, 0.7 mmol) und 1-(4-Hydroxy-3,5-dimethylphenyl)thioharnstoff (**260**, 150 mg, 0.7 mmol) in 4 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 1/1 Hexan / Ethylacetat), mit Bromwasserstoff-Lösung (33% Eisessig) aus Diethylether gefällt und anschließend aus Aceton umkristallisiert. Man erhält farblose Kristalle.

Ausbeute:	42 mg (18%)
Summenformel:	$C_{17}H_{22}N_2OS\cdot HBr$
Molekulargewicht:	316.46 g / mol
Rf-Wert:	0.73 (1/1; Hex / EtOAc)
Substanzcode:	SW 400 / ST-1853

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.54$ (s, 1H, -N*H*-), 7.01 (s, 2H, *Ph*-3*H*,5*H*), 2.76-2.63 (m, 1H, -*CH*-), 2.17 (pd, 9H, thiazol-*CH*₃, 2x Ph-*CH*₃), 1.80-1.51 (m, 5H, *Cy*), 1.41-1.07 (m, 5H, *Cy*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 151.99, 129.72, 125.67, 122.85, 111.53, 35.79, 30.56, 25.65, 25.05, 16.54, 10.28.

ESI-MS:	$m/z = 317.2 [M+H^+]^+$				
Elementaranalyse:	berechnet:	54.41 C	6.34 H	7.05 N	8.07 S
	gefunden:	54.81 C	6.00 H	6.81 N	8.46 S

4-Cyclohexyl-2-(4-hydroxy-3,5-dimethylphenylamino)thiazole-5-carbonsäuremethylester (298)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Chlor-3-cyclohexyl-3-oxopropionsäuremethylester (**291**, 219 mg, 1 mmol) und 1-(4-Hydroxy-3,5-dimethylphenyl)thioharnstoff (**260**, 200 mg, 1 mmol) in 5 mL Methanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 98/2 Dichlormethan / Methanol) und anschließend aus Chloroform / Petrolether umkristallisiert. Man erhält einen weißen Feststoff.

Ausbeute: 33 mg (9%)

Summenformel:	$C_{19}H_{24}N_2O_3S$
Molekulargewicht:	360.47 g / mol
Rf-Wert:	0.69 (98/2; DCM / MeOH)
Substanzcode:	SW 536 / ST-1885

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 10.27$ (s, 1H, -N*H*-), 8.13 (s, 1H, -O*H*), 7.06 (s, 2H, *Ph*-3*H*,5*H*), 3.69 (s, 3H, C(O)O-C*H*₃), 3.44-3.31 (m, 1H, -C*H*-), 2.15 (s, 6H, 2x –C*H*₃), 1.80-1.17 (m, 10H, *Cy*).

¹³**C-NMR** (75 MHz, DMSO-d₆): δ = 168.03, 161.88, 149.52, 131.78, 125.03, 119.65, 105.53, 51.24, 48.49, 38.28, 31.64, 30.58, 25.91, 25.63, 16.76

ESI-MS:	$m/z = 361.4 [M+H^+]^+$				
Elementaranalyse:	berechnet:	63.31 C	6.71 H	7.77 N	8.90 S
	gefunden:	63.03 C	6.57 H	7.63 N	8.91 S

4-(4-Cyclohexyl-5-methylthiazol-2-ylamino)-2,6-diisopropylphenol (296)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexylpropan-1-on (**290**, 262 mg, 1.2 mmol) und 1-(4-Hydroxy-3,5-diisopropylphenyl)thioharnstoff (**269f**, 252 mg, 1 mmol) in 7 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 5/1 Hexan / Ethylacetat) und anschließend aus Ether mit Chlorwasserstoff-Lösung (4M in Dioxan) gefällt. Man erhält einen kirschroten Feststoff.

Ausbeute:	51 mg (16%)
Summenformel:	$C_{22}H_{32}N_2OS$
Molekulargewicht:	372.56 g / mol
Rf-Wert:	(5/1; Hex / EtOAc)
Substanzcode:	SW 494 / ST-1880

¹**H-NMR** (300 MHz, DMSO-*d*₆) δ = 10.64 (br, 1H, -N*H*-), 8.22 (br, 1H, -O*H*), 7.09 (s, 2H, *Ph*-3*H*,5*H*), 3.31 (q, 2H, *J* = 6.8 Hz, 2x -C*H*-(CH₃)₂), 2.72-2.65 (m, 1H, thiazol-C*H*-(CH₂)₃), 2.18 (s, 3H, thiazol-C*H*₃), 1.79-1.55 (m, 7H, 7x *Cy*), 1.40-1.21 (m, 7H, 7x *Cy*), 1.14 (d, 12H, *J* = 6.8 Hz, 4x –C*H*₃).

¹³**C-NMR** (75 MHz, DMSO-*d*₆) δ = 163.62, 152.08, 146.30, 135.15, 134.35, 115.72, 112.27, 38.10, 32.54, 27.40, 26.88, 26.14, 22.86, 10.71

ESI-MS:	$m/z = 374.1 [M+H^+]^+$				
Elementaranalyse:	berechnet:	64.60 C	8.13 H	6.85 N	7.84 S
	gefunden:	64.22 C	8.09 H	6.65 N	7.63 S

4-(4-Cyclohexylthiazol-2-ylamino)-2,6-dimethylphenol (293)

Hergestellt gemäß allgemeiner Synthesevorschrift H aus 2-Brom-1-cyclohexylethanon (**190g**, 175 mg, 0.8 mmol) und 1-(4-Hydroxy-3,5-dimethylphenyl)thioharnstoff (**260**, 168 mg, 0.8 mmol) in 4 mL Ethanol. Es wurde säulenchromatographisch aufgetrennt (Fließmittel: 1/1 Hexan / Ethylacetat) und anschließend aus Ethanol / Wasser umkristallisiert. Man erhält rosa Kristalle.

Ausbeute:	36 mg (15%)
Summenformel:	$C_{17}H_{22}N_2OS$
Molekulargewicht:	302.43 g / mol
Rf-Wert:	0.56 (2/1; Hex / EtOAc)
Substanzcode:	SW 539 / ST-1902

¹**H-NMR** (250 MHz, DMSO-d₆): $\delta = 9.52$ (s, 1H, -N*H*-), 7.85 (s, 1H, -O*H*), 7.07 (s, 2H, *Ph*-3*H*,5*H*), 6.23 (s, 1H, *thiazol*-5*H*), 2.47-2.39 (m, 1H, -C*H*-), 2.13 (s, 6H, 2x –C*H*₃), 1.97-1.65 (m, 5H, 5x *Cy*), 1.49-1.11 (m, 5H, 5x *Cy*).

¹³**C-NMR** (62 MHz, DMSO-d₆): δ = 164.14, 157.72, 147.93, 133.46, 124.75, 117.94, 98.47, 39.92, 32.04, 25.80, 25.73, 16.87.

ESI-MS:	$m/z = 303.4 [M+H^+]^+$				
Elementaranalyse:	berechnet:	67.51 C	7.33 H	9.26 N	10.60 S
	gefunden:	67.26 C	7.35 H	9.06 N	10.57 S

5.5. Pharmakologische Testung

5.5.1. Bestimmung der COX-1-Produktbildung

Frisch isolierte Thrombozyten (1 x 10^8 Zellenpro mL) aus Thrombozyten-Konzentraten, welche von freiwilligen Spendern stammten, werden in 1 mL PBS-Puffer resuspendiert, mit 1 mM Calciumchlorid-Lösung versetzt und mit den Testsubstanzen, in DMSO gelöst, für 15 Minuten bei 37 °C vorinkubiert. Die Produktbildung wird durch Zugabe von 10 μ M Arachidonsäure stimuliert und die Reaktion nach zehn Minuten bei 37 °C durch Zugabe von 1 mL eiskaltem Methanol gestoppt. Nach erfolgter Festphasenextraktion wird die 12-HHT Konzentrationen mittels HPLC bestimmt. Jede Verbindung wurde mindestens dreimal vermessen und der Standardfehler des Mittelwertes (SEM) berechnet. Als Kontrolle der COX-1-Inhibition wurden Acetylsalicylsäure und Diclofenac verwendet.

5.5.2. Bestimmung der COX-2-Produktbildung in intakten Zellen vor und nach Auswaschung des Inhibitors

THP-1 Zellen werden im Zellkulturmedium RPMI1640 mit stabilisiertem Glutamin, 10% FCS und Penicillin Streptomycin gehalten. THP-1 Zellen (6 x 10⁵ Zellen pro mL; 400 µL) werden für 48 Stunden mit Phorbol-12-myristate-13-acetat (PMA; 50 ng/mL) differenziert und in eine 48-Well-Platte gesät. Anschließend werden die THP-1 Zellen mit PBS-Puffer einmal gewaschen und 24 Stunden lang ohne PMA gehalten, gefolgt von Stimulation / COX-2-Induktion mit LPS (1 µg/mL) für weitere 24 Stunden. Das Zellkulturmedium wird erneut gewechselt und mit Zellkulturmedium ersetzt, welches LPS (1 µg/mL) und die Testsubstanzen (0-100 µM), in DMSO gelöst, enthält. Die Proben werden für drei Stunden im Inkubator mit O₂/CO₂ bei 37 °C gehalten. Überstände werden mittels Multipipette entfernt und der PGE2-Gehalt mittels LC-MS-MS quantifiziert. Zur Bestimmung, ob die COX-2-Inhibition irreversible ist, werden die THP-1-Zellen erneut mit PBS-Puffer gewaschen, in Zellkultumedium aufgenommen und mit LPS (1 µg/mL) ohne Textsubstanzen versetzt. Nach zwei Stunden im Inkubator erfolgt die erneute PGE2-Gehaltsbestimmung (nach Inhibitorauswaschung) mittels LC-MS-MS. Jede Verbindung wurde mindestens dreimal vermessen und der Standardfehler des Mittelwertes (SEM) berechnet. Als Kontrolle der COX-2-Inhibition wurde Celecoxib verwendet.

5.5.3. Bestimmung der COX-2-Produktbildung im zellfreien Assay

Die Bestimmung erfolgte mittels einem gekauften Assaykits (No. 701080; Cayman Chemicals, USA).

Es wird 160 μ L Pufferlösung mit jeweils 10 μ L Hämlösung und humaner COX-2-Lösung versetzt und auf 37 °C equilibriert. Dazu werden 10 μ L Testsubstanz (10 μ M), in DMSO gelöst, hinzu gegeben und für 15 Minuten vorinkubiert. Die Produktbildung wird durch Zugabe von 10 μ L Arachidonsäurelösung initiiert und die Reaktion nach genau zwei Minuten durch Zugabe von 30 μ L saurer Zinnchlorid-Lösung gestoppt und nach fünf Minuten bei RT auf 0 °C gekühlt. Der PGE₂-Gehalt der Proben wird mittels ELISA quantifiziert. Jede Verbindung wurde mindestens dreimal vermessen und der Standardfehler des Mittelwertes (SEM) berechnet. Als Kontrolle der COX-2-Inhibition wurde Celecoxib verwendet.

5.5.4. Bestimmung der Zellviabilität via WST-1 Assay der COX-Modulatoren

THP-1 Zellen (6 x 10^5 Zellen pro mL; 100 µL) werden für 48 Stunden mit Phorbol-12myristate-13-acetat (PMA; 50 ng/mL) differenziert und in eine 96-Well-Platte gesät. Anschließend werden die THP-1 Zellen mit PBS-Puffer einmal gewaschen und 24 Stunden lang ohne PMA gehalten, gefolgt von Coinkubation mit LPS (1 µg/mL) und den Testsubstanzen (100 µM) für weitere 24 Stunden. Anschließend wurde 100 µL WST-1-Reagenz (zu 1:10 mit Zellkulturmedium verdünnt) hinzugefügt und die Absorption, in zehnminütigen Zeitabständen und zwei Stunden lang, bei 450 nm und 620 nm mit einem Perkin Elmer Enspire Spectrophotometer bestimmt. Die Datenpunkte (Absorption) zur Zellviabilität werden aufgetragen und die Steigung mittels linearer Regression ermittelt und ins Verhältniss zur Kontrolle gesetzt. Jede Verbindung wurde mindestens dreimal vermessen. Als Kontrolle wurde DMSO (Vehikel) verwendet.

5.5.5. Bestimmung der 5-LO-Produktbildung in polymorphonuklearen Leukozyten

Die PMNL stammten aus Konzentraten von freiweiligen Spendern entweder aus der Städtischen Klinik Frankfurt Höchst (Frankfurt) oder dem Deutschen Blutspendedienst (Frankfurt) und wurden nach Werz *et al.* präpariert.³⁰⁰ Für die Bestimmung der 5-LO-Produktbildung in intakten Zellen wurden 5×10^6 frisch isolierte PMNL mit 1 mg/ml Glukose sowie 1 mM CaCl₂ in PBS-Puffer (PGC Puffer) resuspendiert.Nach Vorinkubation mit den Testsubstanzen oder Vehikel (DMSO) in den angegeben Konzentrationen für 15 min bei 37°C, wurde die 5-LO-Produktbildung durch Vorinkubation mit Calciumionophor A23187 (2.5 μ M) und exogener AA (20 μ M) stimuliert. Zur Bestimmung des Einflusses von Serum auf die Aktivität der Testsubstanzen wurde außerdem 10% FCS zugesetzt. Alle Inkubationen wurden nach 10 min bei 37°C durch Zugabe von 1 mL eiskalten Methanol abgestoppt. Nach Zugabe von 500 μ l PBS, 30 μ l 1N HCl und 200 ng PGB₁ als internen Standard wurden die 5-LO-Metabolite über RP18 Festphasesäulen (Clean-Up® Extraction Colums, United Chemical Technologies, Bristol, USA) extrahiert und mittels HPLC analysiert wie bei Steinhilber *et al.* und Brungs *et al.* beschrieben.^{308,309} Die 5-LO-Metabolite wurden als ng pro 10⁶ Zellen

ausgewertet und beinhalten im einzelnen LTB₄, die all-*trans*-Isomere des LTB₄ sowie 5-H(P)ETE. Die Cysteinyl-LTen (LTC₄, D₄ und E₄) und Oxidationsprodukte des LTB₄ wurden nicht detektiert. Die Menge der 5-LO-Produkte wurde über die entsprechenden Peaks im Chromatogramm mit Hilfe des eingesetzten Standards (PGB₁, 200 ng) quantifiziert. Um die prozentuale Hemmung im Vergleich zur Kontrolle angeben zu können, wurden die errechneten Aktivitätswerte mit jenen der DMSO-Proben (auf 100% gesetzt) ins Verhältnis gebracht. Zur Berechnung der IC₅₀-Werte wurden fünf bis acht verschiedene Konzentrationen der entsprechenden Testsubstanz in drei unabhängigen Experimenten gemessen. Die Messungen jeder Konzentration wurden auf die DMSO-Kontrolle normalisiert und mittels einer nicht-linearen Regression das Konfidenzinterval (95%) bestmmt. Der direkte 5-LO-Inhibitor BWA4C (0.08 μ M) wurde als Kontrolle mitgeführt.

5.5.6. Bestimmung der 5-LO-Produktbildung im zellfreien Assay

E. coli BL21 wurde mit dem pT3-5LO Plasmid transformiert (Zellen stammen von Prof. Olof Rådmark, Karolinska Institutet, Stockholm, Schweden), das rekombinante 5-LO Protein wurde bei 37 °C exprimiert und aus der Kultur mittels ATP-Affinitätschromatographie aufgereinigt wie bei Hammarberg et al. und weiter aufgereinigt mittels einer Anionen-Austauschchromatographie wie Brungs *et al.* beschrieben.^{139,309} Die aufgereingte 5-LO (3 µg, Proteinbestimmung nach Bradford) wurde wurde in 1 mL Reaktionsmischung (PBS, 1 mM EDTA, 1 mM ATP) hinzugefügt und anschließend mit den Substanzen präinkubiert. Nach 15 min bei 4 °C wurden die Proben für 30 s bei 37 °C erwärmt und 2 mM CaCl₂ plus 20 µM Arachidonsäure wurden hinzugegeben, um die 5-LO Produktbildung zu starten. Die Reaktion wurde nach 10 min bei 37 °C durch die Zugabe von 1 mL eiskaltem Methanol gestoppt. Die gebildeten 5-LO Produkte (all-trans LTB₄, 5-H(P)ETE) wurden per HPLC analysiert, wie für die intakten Zellen beschrieben. Zur Berechnung der IC50-Werte wurden fünf bis acht verschiedene Konzentrationen der entsprechenden Testsubstanz in drei unabhängigen Experimenten gemessen. Die Messungen jeder Konzentration wurden auf die DMSO-Kontrolle normalisiert und mittels einer nicht-linearen Regression das Konfidenzinterval (95%) bestmmt.

5.5.7. Bestimmung der Zellviabilität via WST-1 Assay der 5-LO-Inhibitoren

Die Bestimmung erfolgte mittels einem gekauften WST-Assaykit (Roche Diagnostic GmbH, Mannheim, Deutschland). Es wurden jeweils U937 Zellen in einer Dichte von 10^4 Zellen/Well in einer 96-Well-Platte ausgesät und mit den ausgewählten Substanzen in steigenden Konzentrationen oder Vehikel (DMSO) in Anwesenheit von 10% hitzeinaktiviertem FCS für 48 h inkubiert. Die Zellviabilität wurde nach Herstellerangaben unter Verwendung eines Microplate Readers (Infinite M200, Tecan Group Ltd., Crailsheim, Deutschland) ermittelt. Alle Experimente wurden mindestens in Dreifachmessungen durchgeführt und die IC₅₀-Werte mit Konfidenzinterval berechnet.

5.5.8. Bestimmung der Zellmembranintegrität via LDH-Assay der 5-LO-Inhibitoren

Die Bestimmung erfolgte mittels einem gekauften Assaykit (Cytotoxicity Detection Kit, ROCHE Diagnostics, Mannheim). Es werden jeweils U937 Zellen (Humane Leukämie-Monozyten) in einer Zelldichte von 1.5×10^4 Zellen/Well in 96-Well-Platten ausgesät. Nach Inkubation für 48 Stunden mit ausgewählten Substanzen (30 µM) oder Vehikel (1% DMSO) werden die 96-Well-Platten zentrifugiert (250 × g, 4 min) und Aliquots der Überstände in saubere Platten übertragen. Die Zytotoxizität wird nach Herstellerangaben unter Verwendung eines Microplate Readers (Infinite M200, Tecan Group Ltd., Crailsheim, Deutschland) ermittelt. Das lytisches Kontrolldetergenz Triton-X 100 diente zur maximalen LDH-Freisetzung und wird als 100% gesetzt. Alle Experimente wurden mindestens in Dreifachmessungen durchgeführt. Es wurden jeweils die Mittelwerte von mindestens drei unabhängigen Messungen bestimmt.

6. Abkürzungsverzeichnis

δ	chemische Verschiebung	cPLA ₂	cytosolische Phospholipase A2
μw	Mikrowelle	Су	Cyclohexyl
μW	Mikrowellensynthese	CysLT 1/2	Cysteinyl Leukotrienrezeptor 1/2
AA	Arachidonic acid	d	Dublett
	(Arachidonsäure)	DC	Dünnschichtchromatographie
abs.	absolut (wasserfrei)	DCM	Dichlormethan
Ac	Acetyl	dd	Dublett-Dublett
Ac-Cl	Acetylchlorid	DHA	Docosahexaensäure
AcOH	Essigsäure	DIPEA	Diisopropylethylamin
Ac ₂ O	Essigsäureanhydrid	DMAP	4-Dimethylaminopyridin
AcSHA	O-Acetylsalicylhydroxamsäure	DMF	Dimethylformamid
ADP	Adenosindiphosphat	DMSO	Dimethylsulfoxid
AP-2	aktivierendes Protein 2	DP ₁₋₂	Prostaglandinrezeptor D ₁₋₂
Ar	Aryl	EET	Epoxyeicosatetraensäure
ATL	Aspirin-triggered Lipoxine	EGF	epidermalen Wachstumsfaktor
AT-NPD	Aspirin-triggered Neuroprotectin	EP ₁₋₄	Prostaglandin rezeptor E_{1-4}
ATP	Adenosintriphosphat	EPA	ω-3- Eicosapentaensäure
AT-Rv	Aspirin-triggered Resolvine	EPE	Eicosapentaensäure
BLT1/2	Leukotrien B ₄ Rezeptor 1/2	ERK2	extrazelluläre Signalkinase 2
Bn	Benzyl	ESI	Elektrospray-Ionisation
br	breites Singulett	Et ₂ O	Diethylether
cAMP	cyclisches Adenosinmonophosphat	Et ₃ N	Triethylamin
CDCl ₃	deuteriertes Chloroform	ETE	Eicosatetraensäure
cDNA	komplementäre DANN	EtOAc	Essigsäureethylester
CD86	Cluster of Differentiation 86	EtOH	Ethanol
	(Zelloberflächenmarker)	eq	Äquivalent
CDI	1,1'-Carbonyldiimidazol	FLAP	5-LO-Aktivierende Protein
clog P	berechneter Octanol-Wasser-	FLAPΔ	FLAP knockdown
	Verteilungskoeffizient	FCS	fetales Kälberserum
CLP	Coactosin-ähnliche Protein	FP	Prostaglandinrezeptor F
CML	chronisch myeloische Leukämie	GPCR	G-Protein-gekoppelter Rezeptor
COX-1	Cyclooxygenase Isoenzym 1	hCOX-2	humane COX-2
COX-1b	Cyclooxygenase Isoenzym 1b	HETE	Hydroxyeicosatetraensäure
COX-2	Cyclooxygenase Isoenzym 2	Hex	Hexan

HHT	Hydroxyheptadecatriensäure	MAP-KAP	Mitogen-aktivierte Proteinkinase
HPETE	Hydroperoxyeicosatetraensäure	MaR	Maresin
HPEPE	Hydroperoxypicosapentaensäure	MeOH	Methanol
HPLC	(Hochleistungsflüssigkeits-	MS	Massenspektrometrie
	chromatographie)	Ms-Cl	Mesylchlorid
HRMS	Hochaufgelöste Massenspektrometrie	NCS	N-Chlorsuccinimid
HWB	humanes Vollblut	NFAT	nuklearen Faktoren von
IC	inhibitorische Konzentration		aktivierten T-Zellen
ΙΟ	Ionophor	NF-κΒ	Nuklearfaktor-"kappa-light-
IP ₁₋₂	Prostacyclinrezeptor ₁₋₂		chain-enhancer"
IR	Infrarot	NMR	Nuclear magnetic resonance
J	Kopplungskonstante		(Kernspinresonanz)
kat.	Katalytisch	NPD	Neuroprotectin
kbp	Kilobasenpaare	NSAR	nicht-steroidale Antirheumatika
KI	Konfidenzintervall	OAG	1-Oleoyl-2-acetylglycerol
konz.	konzentriert	OAc	Acetat
LC	Liquid Chromatography	р	pseudo
	(Flüssigkeitschromatographie)	p.a.	pro analysi
LDA	Lithiumdiisopropylamin	PBS	phosphatgepufferte Salzlösung
LDH	Lactatdehydrogenase	PC	Phosphatidylcholin
LLE	Ligand-Lipophilität-Effektivität	PCOX-1	partielle COX-1
LO / LOX	Lipoxygenase	PD	Protectin
LOΔ	LO knockdown	PE	Petrolether
LPS	Lipidpolysaccharid	PG	Prostaglandin
LT	Leukotrien	PGD ₂ -G ₂	Prostaglandin D ₂ -G ₂
LTA ₄ -E ₄	Leukotrien A ₄ -E ₄	PGHS	Prostaglandin-H ₂ -Synthase
LX	Lipoxin	PGI ₂	Prostacyclin
LXA ₄ /B ₄	Lipoxin A ₄ /B ₄	Ph	Phenyl
m	Multiplett	РКА	Proteinkinase A
MALDI	Matrix-unterstützte Laser-	PMA	Phorbol-12-myristat-13-acetat
	Desorption/Ionisation	PMNL	Polymorphonukleare Leukozyten
MAPEG	Membran-assoziierten Proteinen	ppm	part per million
	im Eicosanoid- und	p.o.	per oral
	Gluthathionmetabolismus	ру	Pyridin

Pyr	Pyrazolyl	td	Triplett-Dublett
q	Quartett	tert-BuLi	tert-Butyllithium
quant.	quantitativ	tert-BuOH	tert-Butanol
R	beliebiger Rest	tert-KOBu	Kalium-tert-butanolat
RA	Restaktivität	TFA	Trifluoressigsäure
R _f -Wert	Retentionsfaktor	TGF-β	transformierender
RT	Raumtemperatur		Wachstumsfaktor-β
Rv	Resolvin	TH2-Zellen	Typ2-T-Helferzellen
S	Singulett	THF	Tetrahydrofuran
SAR	Struktur-Wirkunsgsbeziehung	TP	Thromboxanrezeptor
SEM	Standardfehler des Mittelwertes	TxA_2-B_2	Thromboxan A ₂ -B ₂
sd	Singulett-Dublett	WST	wasserlösliches Tetrazolium
SPM	specialized pro-resolution Mediator	WT	5-LO rekombinates Enzym
ST-1xxx	Arbeitskreis interner Substanzcode		
t	Triplett		

8. Literaturverzeichnis
- 1. Goldblatt, M. W. A depressor substance in seminal fluid. J Soc Chem Ind 52, 1056–1057 (1933).
- 2. von Euler, U. S. The specific blood pressure lowering substance in human prostate and seminal vesicle secretions. *Klin Wochenschr* **14**, 1182–1183 (1935).
- 3. Feldberg, W. & Kellaway, C. H. Liberation of histamine and formation of lysocithinlike substances by cobra venom. *J. Physiol.* **94**, 187–226 (1938).
- 4. Bergström, S., Danielsson, H. & Samuelsson, B. The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. *Biochim. Biophys. Acta Gen. Subj.* **90**, 207–210 (1964).
- 5. VAN DORP, D. A., BEERTHUIS, R. K., NUGTEREN, D. H. & VONKEMAN, H. Enzymatic Conversion of All-cis-Polyunsaturated Fatty Acids into Prostaglandins. *Nature* **203**, 839–841 (1964).
- 6. Smith, W. L., DeWitt, D. L. & Garavito, R. M. Cyclooxygenases: structural, cellular, and molecular biology. *Annu. Rev. Biochem.* **69**, 145–82 (2000).
- 7. Hamberg, M. & Samuelsson, B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* **70**, 899–903 (1973).
- 8. Hamberg, M., Svensson, J. & Samuelsson, B. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. *Proc. Natl. Acad. Sci. U. S. A.* **71**, 3824–8 (1974).
- 9. Dahlén, S. E., Hedqvist, P., Hammarström, S. & Samuelsson, B. Leukotrienes are potent constrictors of human bronchi. *Nature* **288**, 484–6 (1980).
- 10. Steinhilber, D., Schubert-Zsilavecz, M. & Roth, H. J. *Medizinische Chemie: Targets und Arzneistoffe.* (Deutscher Apotheker Verlag, 2010).
- 11. Abramovitz, M. & Metters, K. M. in Annu. Rep. Med. Chem. 33, 223–232 (1998).
- 12. Landino, L. M., Crews, B. C., Gierse, J. K., Hauser, S. D. & Marnett, L. J. Mutational analysis of the role of the distal histidine and glutamine residues of prostaglandinendoperoxide synthase-2 in peroxidase catalysis, hydroperoxide reduction, and cyclooxygenase activation. *J. Biol. Chem.* **272**, 21565–21574 (1997).
- 13. Smith, W. L. & Lands, W. E. Oxygenation of polyunsaturated fatty acids during prostaglandin biosynthesis by sheep vesicular gland. *Biochemistry* **11**, 3276–3285 (1972).
- Chandrasekharan, N. V, Dai, H., Roos, K. L. T., Evanson, N. K., Tomsik, J., Elton, T. S. & Simmons, D. L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. *Proc. Natl. Acad. Sci.* 99, 13926–13931 (2002).
- 15. Simmons, D. L., Botting, R. M. & Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. *Pharmacol. Rev.* **56**, 387–437 (2004).
- 16. Smith, W. L. & Dewitt, D. L. Prostaglandin endoperoxide H synthases-1 and -2. *Adv. Immunol. Vol 62* **62**, 167–215 (1996).
- 17. DeWitt, D. L. Prostaglandin endoperoxide synthase: regulation of enzyme expression. *Biochim. Biophys. Acta* **1083**, 121–134 (1991).

- 18. Kargman, S., Charleson, S., Cartwright, M., Frank, J., Riendeau, D., Mancini, J., Evans, J. & O'Neill, G. Characterization of prostaglandin G/H synthase 1 and 2 in rat, dog, monkey, and human gastrointestinal tracts. *Gastroenterology* **111**, 445–454 (1996).
- 19. Picot, D., Loll, P. J. & Garavito, R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. *Nature* **367**, 243–9 (1994).
- 20. Marnett, L. J. The COXIB experience: a look in the rearview mirror. Annu. Rev. Pharmacol. Toxicol. 49, 265–90 (2009).
- 21. Campbell, I. D. & Bork, P. Epidermal growth factor-like modules. *Curr. Opin. Struct. Biol.* **3**, 385–392 (1993).
- 22. Mizuno, K., Yamamoto, S. & Lands, W. E. Effects of non-steroidal anti-inflammatory drugs on fatty acid cyclooxygenase and prostaglandin hydroperoxidase activities. *Prostaglandins* **23**, 743–757 (1982).
- 23. Koshkin, V. & Dunford, H. B. Coupling of the peroxidase and cyclooxygenase reactions of prostaglandin H synthase. *Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.* **1430**, 341–348 (1999).
- 24. Flower, R. J. & Vane, J. R. Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). *Nature* **240**, 410–411 (1972).
- 25. Botting, R. M. Mechanism of Action of Acetaminophen: Is There a Cyclooxygenase 3? *Clin. Infect. Dis.* **31**, S202–S210 (2000).
- 26. Simmons, D. L. Variants of cyclooxygenase-1 and their roles in medicine. *Thromb. Res.* **110**, 265–268 (2003).
- 27. Dinchuk, J. E., Liu, R. Q. & Trzaskos, J. M. COX-3: In the wrong frame in mind. *Immunol. Lett.* **86**, 121 (2003).
- 28. Hla, T. & Neilson, K. Human cyclooxygenase-2 cDNA. *Proc. Natl. Acad. Sci. U. S. A.* **89,** 7384–7388 (1992).
- 29. Kaufmann, W. E., Worley, P. F., Pegg, J., Bremer, M. & Isakson, P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. *Proc. Natl. Acad. Sci.* **93**, 2317–2321 (1996).
- Harris, R. C., McKanna, J. A., Akai, Y., Jacobson, H. R., Dubois, R. N. & Breyer, M. D. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. *J. Clin. Invest.* 94, 2504–10 (1994).
- Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W. & Herschman, H. R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. *J. Biol. Chem.* 266, 12866– 72 (1991).
- 32. Sirois, J. & Richards, J. S. Purification and characterization of a novel, distinct isoform of prostaglandin endoperoxide synthase induced by human chorionic gonadotropin in granulosa cells of rat preovulatory follicles. *J. Biol. Chem.* **267**, 6382–6388 (1992).
- Véniant, M., Ménard, J., Bruneval, P., Morley, S., Gonzales, M. F. & Mullins, J. Selective Regulation of Cellular Cyclooxygenase by Dexamethasone and Endotoxin in Mice. J. Clin. Invest. 98, 1966–1970 (1996).

- 34. Xie, W. L., Chipman, J. G., Robertson, D. L., Erikson, R. L. & Simmons, D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. *Proc. Natl. Acad. Sci. U. S. A.* **88**, 2692–2696 (1991).
- 35. Smith, C. J., Zhang, Y., Koboldt, C. M., Muhammad, J., Zweifel, B. S., Shaffer, a, Talley, J. J., Masferrer, J. L., Seibert, K. & Isakson, P. C. Pharmacological analysis of cyclooxygenase-1 in inflammation. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 13313–13318 (1998).
- 36. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. & Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 12013–12017 (1994).
- Davies, P., Bailey, P. J., Goldenberg, M. M. & Ford-Hutchinson, A. W. The role of arachidonic acid oxygenation products in pain and inflammation. *Annu. Rev. Immunol.* 2, 335–357 (1984).
- 38. Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D. & Hwang, D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. *J. Biol. Chem.* **267**, 25934–25938 (1992).
- 39. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).
- 40. Ryseck, R. P., Raynoschek, C., Macdonald-Bravo, H., Dorfman, K., Mattéi, M. G. & Bravo, R. Identification of an immediate early gene, pghs-B, whose protein product has prostaglandin synthase/cyclooxygenase activity. *Cell Growth Differ.* **3**, 443–450 (1992).
- 41. Leahy, K. M., Ornberg, R. L., Wang, Y., Zweifel, B. S., Koki, A. T. & Masferrer, J. L. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. *Cancer Res.* **62**, 625–31 (2002).
- 42. Botha, J. H., Robinson, K. M., Ramchurren, N., Reddi, K. & Norman, R. J. Human esophageal carcinoma cell lines: prostaglandin production, biological properties, and behavior in nude mice. *J. Natl. Cancer Inst.* **76**, 1053–1056 (1986).
- 43. Morgan, G. Deleterious effects of prostaglandin E2 in oesophageal carcinogenesis. *Med. Hypotheses* **48**, 177–181 (1997).
- 44. Marnett, L. J. Aspirin and the potential role of prostaglandins in colon cancer. *Cancer Res.* **52**, 5575–5589 (1992).
- 45. Luong, C., Miller, A., Barnett, J., Chow, J., Ramesha, C. & Browner, M. F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. *Nat. Struct. Biol.* **3**, 927–33 (1996).
- Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., Gildehaus, D., Miyashiro, J. M., Penning, T. D., Seibert, K., Isakson, P. C. & Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by antiinflammatory agents. *Nature* 384, 644–8 (1996).
- 47. Gierse, J. K., McDonald, J. J., Hauser, S. D., Rangwala, S. H., Koboldt, C. M. & Seibert, K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. *J. Biol. Chem.* **271**, 15810–15814 (1996).

- 48. Malkowski, M. G. The Productive Conformation of Arachidonic Acid Bound to Prostaglandin Synthase. *Science* (80-.). **289**, 1933–1937 (2000).
- 49. Thuresson, E. D., Lakkides, K. M., Rieke, C. J., Sun, Y., Wingerd, B. a., Micielli, R., Mulichak, A. M., Malkowski, M. G., Garavito, R. M. & Smith, W. L. Prostaglandin endoperoxide H synthase-1: The functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. *J. Biol. Chem.* **276**, 10347–10357 (2001).
- Schneider, C., Boeglin, W. E., Prusakiewicz, J. J., Rowlinson, S. W., Marnett, L. J., Samel, N. & Brash, A. R. Control of prostaglandin stereochemistry at the 15-carbon by cyclooxygenases-1 and -2: A critical role for serine 530 and valine 349. *J. Biol. Chem.* 277, 478–485 (2002).
- 51. Rowlinson, S. W., Crews, B. C., Goodwin, D. C., Schneider, C., Gierse, J. K. & Marnett, L. J. Spatial requirements for 15-(R)-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid synthesis within the cyclooxygenase active site of murine COX-2. Why acetylated COX-1 does not synthesize 15-(R)-HETE. J. Biol. Chem. 275, 6586–6591 (2000).
- 52. Holtzman, M. J., Turk, J. & Shornick, L. P. Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. *J. Biol. Chem.* 267, 21438–21445 (1992).
- 53. Hamberg, M. & Samuelsson, B. On the mechanism of the biosynthesis of prostaglandins E-1 and F-1-alpha. *J. Biol. Chem.* **242**, 5336–43 (1967).
- Goodwin, D. C., Gunther, M. R., Hsi, L. C., Crews, B. C., Eling, T. E., Mason, R. P. & Marnett, L. J. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. *J. Biol. Chem.* 273, 8903–8909 (1998).
- 55. Tsai, A. L., Wu, G. & Kulmacz, R. J. Stoichiometry of the interaction of prostaglandin H synthase with substrates. *Biochemistry* **36**, 13085–13094 (1997).
- 56. Silva, P. J., Fernandes, P. a. & Ramos, M. J. A theoretical study of radical-only and combined radical/carbocationic mechanisms of arachidonic acid cyclooxygenation by prostaglandin H synthase. *Theor. Chem. Acc.* **110**, 345–351 (2003).
- 57. Blomberg, L. M., Blomberg, M. R. a, Siegbahn, P. E. M., Van der Donk, W. a. & Tsai, A. L. A quantum chemical study of the synthesis of prostaglandin G2 by the cyclooxygenase active site in prostaglandin endoperoxide H synthase 1. *J. Phys. Chem. B* 107, 3297–3308 (2003).
- 58. Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, a, Sugimoto, Y., Ichikawa, a, Aze, Y., Tanaka, T., Yoshida, N., Ueno, a, Oh-ishi, S. & Narumiya, S. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. *Nature* **388**, 678–682 (1997).
- Ushikubi, F., Segi, E., Sugimoto, Y., Murata, T., Matsuoka, T., Kobayashi, T., Hizaki, H., Tuboi, K., Katsuyama, M., Ichikawa, a, Tanaka, T., Yoshida, N. & Narumiya, S. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. *Nature* 395, 281–284 (1998).
- 60. Narumiya, S., Sugimoto, Y. & Ushikubi, F. Prostanoid receptors: structures, properties, and functions. *Physiol. Rev.* **79**, 1193–226 (1999).

- 61. Coleman, R. a, Smith, W. L. & Narumiya, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. *Pharmacol. Rev.* **46**, 205–229 (1994).
- 62. Kay, A. B., Barata, L., Meng, Q., Durham, S. R. & Ying, S. Eosinophils and Eosinophil-Associated Cytokines in Allergic Inflammation. *Int. Arch. Allergy Immunol.* **113**, 196–199 (1997).
- 63. Eguchi, N., Minami, T., Shirafuji, N., Kanaoka, Y., Tanaka, T., Nagata, a, Yoshida, N., Urade, Y., Ito, S. & Hayaishi, O. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 726–730 (1999).
- 64. Hayaishi, O. Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **355**, 275–280 (2000).
- 65. Norel, X., Walch, L., Labat, C., Gascard, J. P., Dulmet, E. & Brink, C. Prostanoid receptors involved in the relaxation of human bronchial preparations. *Br. J. Pharmacol.* **126**, 867–872 (1999).
- 66. Walch, L., Labat, C., Gascard, J. P., de Montpreville, V., Brink, C. & Norel, X. Prostanoid receptors involved in the relaxation of human pulmonary vessels. *Br. J. Pharmacol.* **126**, 859–866 (1999).
- Hirai, H., Tanaka, K., Yoshie, O., Ogawa, K., Kenmotsu, K., Takamori, Y., Ichimasa, M., Sugamura, K., Nakamura, M., Takano, S. & Nagata, K. Prostaglandin D2 Selectively Induces Chemotaxis in T Helper Type 2 Cells, Eosinophils, and Basophils via Seven-Transmembrane Receptor Crth2. J. Exp. Med. 193, 255–262 (2001).
- 68. Mutschler, E., Geisslinger, G., Kroemer, H., Menzel, S. & Ruth, P. *Mutschler Arzneimittelwirkungen: Pharmakologie - Klinische Pharmakologie - Toxikologie.* (Wissenschaftliche Verlagsgesellschaft Stuttgart, 2012).
- Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. a, Simon, L. S., Van De Putte, L. B. & Lipsky, P. E. Cyclooxygenase in biology and disease. *FASEB J.* 12, 1063– 1073 (1998).
- 70. Båtshake, B., Nilsson, C. & Sundelin, J. Molecular characterization of the mouse prostanoid EP1 receptor gene. *Eur. J. Biochem.* **231**, 809–14 (1995).
- 71. Ferreira, S. H. Prostaglandins, aspirin-like drugs and analgesia. *Nat. New Biol.* **240**, 200–3 (1972).
- 72. Bastien, L., Sawyer, N., Grygorczyk, R., Metters, K. M. & Adam, M. Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype. *J. Biol. Chem.* **269**, 11873–11877 (1994).
- Audoly, L. P., Ruan, X., Wagner, V. a, Goulet, J. L., Tilley, S. L., Koller, B. H., Coffman, T. M. & Arendshorst, W. J. Role of EP(2) and EP(3) PGE(2) receptors in control of murine renal hemodynamics. *Am. J. Physiol. Heart Circ. Physiol.* 280, H327–H333 (2001).
- 74. Sugimoto, Y., Narumiya, S. & Ichikawa, A. Distribution and function of prostanoid receptors: Studies from knockout mice. *Prog. Lipid Res.* **39**, 289–314 (2000).
- 75. Fabre, J. E., Nguyen, M., Athirakul, K., Coggins, K., McNeish, J. D., Austin, S., Parise, L. K., FitzGerald, G. A., Coffman, T. M. & Koller, B. H. Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. *J. Clin. Invest.* **107**, 603–10 (2001).

- 76. Horton, E. W. & Poyser, N. L. Uterine luteolytic hormone: a physiological role for prostaglandin F2alpha. *Physiol. Rev.* **56**, 595–651 (1976).
- 77. Hammond, D. & Matty, G. A farrowing management system using cloprostenol to control the time of parturition. *Vet. Rec.* **106**, 72–75 (1980).
- 78. Barnard, J. W., Ward, R. a & Taylor, a E. Evaluation of prostaglandin F2 alpha and prostacyclin interactions in the isolated perfused rat lung. *J. Appl. Physiol.* **72**, 2469–2474 (1992).
- Adams, J. W., Migita, D. S., Yu, M. K., Young, R., Hellickson, M. S., Castro-Vargas, F. E., Domingo, J. D., Lee, P. H., Bui, J. S. & Henderson, S. a. Prostaglandin F2 alpha stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. *J. Biol. Chem.* 271, 1179–1186 (1996).
- Nakajima, T., Matsugi, T., Goto, W., Kageyama, M., Mori, N., Matsumura, Y. & Hara, H. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents. *Biol. Pharm. Bull.* 26, 1691– 1695 (2003).
- 81. Müller, K., Krieg, P., Marks, F. & Fürstenberger, G. Expression of PGF(2alpha) receptor mRNA in normal, hyperplastic and neoplastic skin. *Carcinogenesis* **21**, 1063–1066 (2000).
- 82. Perry, C. M., McGavin, J. K., Culy, C. R. & Ibbotson, T. Latanoprost: an update of its use in glaucoma and ocular hypertension. *Drugs Aging* **20**, 597–630 (2003).
- 83. Bunting, S., Gryglewski, R., Moncada, S. & Vane, J. R. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. *Prostaglandins* **12**, 897–913 (1976).
- 84. Moncada, S., Higgs, E. a & Vane, J. R. Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. *Lancet* **1**, 18–20 (1977).
- 85. Smyth, E. M., Austin, S. C., Reilly, M. P. & FitzGerald, G. a. Internalization and sequestration of the human prostacyclin receptor. *J. Biol. Chem.* **275**, 32037–32045 (2000).
- 86. FitzGerald, G. a. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. *Am. J. Cardiol.* **68**, 11B–15B (1991).
- 87. Dorn, G. W., Sens, D., Chaikhouni, A., Mais, D. & Halushka, P. V. Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U46619-induced 45calcium efflux. *Circ. Res.* **60**, 952–956 (1987).
- 88. Pakala, R., Willerson, J. T. & Benedict, C. R. Effect of Serotonin, Thromboxane A2, and Specific Receptor Antagonists on Vascular Smooth Muscle Cell Proliferation. *Circulation* **96**, 2280–2286 (1997).
- 89. Ali, S., Davis, M. G., Becker, M. W. & Dorn, G. W. Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up-regulating the synthesis and release of endogenous basic fibroblast growth factor. *J. Biol. Chem.* **268**, 17397–17403 (1993).
- 90. Miggin, S. M. & Kinsella, B. T. Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. *Biochim. Biophys. Acta* **1425**, 543–559 (1998).

- 91. Needleman, P., Wyche, a. & Raz, a. Platelet and blood vessel arachidonate metabolism and interactions. *J. Clin. Invest.* **63**, 345–349 (1979).
- 92. Praveen Rao, P. N. & Knaus, E. E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. *J. Pharm. Pharm. Sci.* **11**, 81–110 (2008).
- 93. Marnett, L. J. & Kalgutkar, a S. Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. *Curr. Opin. Chem. Biol.* **2**, 482–490 (1998).
- 94. Selinsky, B. S., Gupta, K., Sharkey, C. T. & Loll, P. J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. *Biochemistry* **40**, 5172–5180 (2001).
- 95. Lei, J., Zhou, Y., Xie, D. & Zhang, Y. Mechanistic Insights into a Classic Wonder Drug—Aspirin. J. Am. Chem. Soc. 137, 70–73 (2015).
- 96. Aronoff, D. M., Boutaud, O., Marnett, L. J. & Oates, J. a. Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes. *J. Pharmacol. Exp. Ther.* **304**, 589–595 (2003).
- 97. Pierre, S. C., Schmidt, R., Brenneis, C., Michaelis, M., Geisslinger, G. & Scholich, K. Inhibition of cyclooxygenases by dipyrone. *Br. J. Pharmacol.* **151**, 494–503 (2007).
- Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., Gildehaus, D., Miyashiro, J. M., Penning, T. D., Seibert, K., Isakson, P. C. & Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by antiinflammatory agents. *Nature* 384, 644–8 (1996).
- 99. Gierse, J. K., Koboldt, C. M., Walker, M. C., Seibert, K. & Isakson, P. C. Kinetic basis for selective inhibition of cyclo-oxygenases. *Biochem. J.* **339** (**Pt 3**, 607–614 (1999).
- 100. GILROY, D. W. A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. *FASEB J.* **18**, 489–498 (2004).
- Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. *Nat. Immunol.* 2, 612– 619 (2001).
- 102. Vane, J. Towards a better aspirin. *Nature* **367**, 215–216 (1994).
- 103. Futaki, N., Yoshikawa, K., Hamasaka, Y., Arai, I., Higuchi, S., Iizuka, H. & Otomo, S. NS-398, a novel non-steroidal anti-inflammatory drug with potent analgesic and antipyretic effects, which causes minimal stomach lesions. *Gen. Pharmacol.* 24, 105–110 (1993).
- 104. Chan, C. C., Boyce, S., Brideau, C., Ford-Hutchinson, A. W., Gordon, R., Guay, D., Hill, R. G., Li, C. S., Mancini, J. & Penneton, M. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. 274, 1531–1537 (1995).
- Grösch, S., Maier, T. J., Schiffmann, S. & Geisslinger, G. Cyclooxygenase-2 (COX-2)independent anticarcinogenic effects of selective COX-2 inhibitors. J. Natl. Cancer Inst. 98, 736–747 (2006).

- 106. Cannon, C. P., Curtis, S. P., FitzGerald, G. A., Krum, H., Kaur, A., Bolognese, J. A., Reicin, A. S., Bombardier, C., Weinblatt, M. E., van der Heijde, D., Erdmann, E. & Laine, L. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. *Lancet* 368, 1771–1781 (2006).
- 107. Tegeder, I. & Geisslinger, G. Cardiovascular risk with cyclooxygenase inhibitors: General problem with substance specific differences? *Naunyn. Schmiedebergs. Arch. Pharmacol.* 373, 1–17 (2006).
- Schiffmann, S., Maier, T. J., Wobst, I., Janssen, A., Corban-Wilhelm, H., Angioni, C., Geisslinger, G. & Grösch, S. The anti-proliferative potency of celecoxib is not a class effect of coxibs. *Biochem. Pharmacol.* 76, 179–187 (2008).
- 109. Jaksch, W., Dejaco, C. & Schirmer, M. 4 Years after withdrawal of rofecoxib: Where do we stand today? *Rheumatol. Int.* 28, 1187–1195 (2008).
- 110. Mukherjee, D., Nissen, S. E. & Topol, E. J. Risk of cardiovascular events associated with selective COX-2 inhibitors. *JAMA* **286**, 954–959 (2010).
- 111. KLEGERIS, A. & MCGEER, P. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. *Neurobiol. Aging* **23**, 787–794 (2002).
- 112. Barbey, S., Goossens, L., Taverne, T., Cornet, J., Choesmel, V., Rouaud, C., Gimeno, G., Yannic-Arnoult, S., Michaux, C., Charlier, C., Houssin, R. & Hénichart, J. P. Synthesis and activity of a new methoxytetrahydropyran derivative as dual cyclooxygenase-2/5-lipoxygenase inhibitor. *Bioorganic Med. Chem. Lett.* **12**, 779–782 (2002).
- 113. Laufer, S. a, Augustin, J., Dannhardt, G. & Kiefer, W. (6,7-Diaryldihydropyrrolizin-5yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5lipoxygenase. J. Med. Chem. **37**, 1894–1897 (1994).
- 114. Alvaro-Gracia, J. M. Licofelone--clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. *Rheumatology* **43**, 21i–25 (2004).
- 115. Kulkarni, S. K. & Singh, V. P. Licofelone: The answer to unmet needs in osteoarthritis therapy? *Curr. Rheumatol. Rep.* **10**, 43–48 (2008).
- 116. Rådmark, O., Werz, O., Steinhilber, D. & Samuelsson, B. 5-Lipoxygenase: regulation of expression and enzyme activity. *Trends Biochem. Sci.* **32**, 332–341 (2007).
- 117. Rådmark, O., Werz, O., Steinhilber, D. & Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **1851**, 331–339 (2015).
- 118. Funk, C. D., Hoshiko, S., Matsumoto, T., Rdmark, O. & Samuelsson, B. Characterization of the human 5-lipoxygenase gene. *Proc. Natl. Acad. Sci. U. S. A.* 86, 2587–2591 (1989).
- 119. Boado, R. J., Pardridge, W. M., Vinters, H. V & Black, K. L. Differential expression of arachidonate 5-lipoxygenase transcripts in human brain tumors: evidence for the expression of a multitranscript family. *Proc. Natl. Acad. Sci. U. S. A.* **89**, 9044–9048 (1992).
- Brock, T. G. & Peters-Golden, M. Localization of 5-lipoxygenase to the nucleus of resting rat basophilic leukemia cells. *Adv. Prostaglandin. Thromboxane. Leukot. Res.* 23, 151–153 (1995).

- 121. Gilbert, N. C., Bartlett, S. G., Waight, M. T., Neau, D. B., Boeglin, W. E., Brash, A. R. & Newcomer, M. E. The Structure of Human 5-Lipoxygenase. *Science (80-.).* 331, 217–219 (2011).
- 122. Kulkarni, S., Das, S., Funk, C. D., Murray, D. & Cho, W. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. *J. Biol. Chem.* 277, 13167–13174 (2002).
- 123. Rizo, J. & Sudhof, T. C. C2-domains, structure and function of a universal Ca2+binding domain. J. Biol. Chem. 273, 15879–15882 (1998).
- 124. Allard, J. B. & Brock, T. G. Structural Organization of the Regulatory Domain of Human 5- Lipoxygenase. *Curr. Protein Pept. Sci.* **6**, 125–131 (2005).
- 125. Chasteen, N. D., Grady, J. K., Skorey, K. I., Neden, K. J., Riendeau, D. & Percival, M. D. Characterization of the non-heme iron center of human 5-lipoxygenase by electron paramagnetic resonance, fluorescence, and ultraviolet-visible spectroscopy: redox cycling between ferrous and ferric states. *Biochemistry* 32, 9763–9771 (1993).
- 126. Percival, M. D. Human 5-lipoxygenase contains an essential iron. J. Biol. Chem. 266, 10058–10061 (1991).
- Zhang, Y. Y., Rådmark, O. & Samuelsson, B. Mutagenesis of some conserved residues in human 5-lipoxygenase: effects on enzyme activity. *Proc. Natl. Acad. Sci. U. S. A.* 89, 485–489 (1992).
- 128. Corey, E. & Lansbury, P. J. Stereochemical course of 5-lipoxygenation of arachidonate by rat basophil leukemic cell (RBL-1) and potato enzymes. *J. Am. Chem.* ... 105, 4093–4094 (1983).
- 129. Knapp, M. J. & Klinman, J. P. Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. *Biochemistry* **42**, 11466–11475 (2003).
- Shimizu, T., Izumi, T., Seyama, Y., Tadokoro, K., Rådmark, O. & Samuelsson, B. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. *Proc. Natl. Acad. Sci. U. S. A.* 83, 4175–4179 (1986).
- 131. Jin, J., Zheng, Y., Boeglin, W. E. & Brash, A. R. Biosynthesis, isolation, and NMR analysis of leukotriene A epoxides: substrate chirality as a determinant of the cis or trans epoxide configuration. *J. Lipid Res.* **54**, 754–61 (2013).
- Hamberg, M. & Gunvor Hamberg. On the Mechanism of the Oxygenation of Arachidonic Acid by Human Platelet Lipoxygenase. *Biochem. Biophys. Res. Commun.* 95, 1090–1097 (1980).
- 133. Smyrniotis, C. J., Barbour, S. R., Xia, Z., Hixon, M. S. & Holman, T. R. ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid. *Biochemistry* 53, 4407–4419 (2014).
- 134. Katryniok, C., Schnur, N., Gillis, A., von Knethen, A., Sorg, B. L., Looijenga, L., Rådmark, O. & Steinhilber, D. Role of DNA methylation and methyl-DNA binding proteins in the repression of 5-lipoxygenase promoter activity. *Biochim. Biophys. Acta* - *Mol. Cell Biol. Lipids* 1801, 49–57 (2010).
- 135. Rådmark, O. & Samuelsson, B. 5-Lipoxygenase: mechanisms of regulation. J. Lipid Res. 50 Suppl, S40–S45 (2009).

- Busch, S., Auth, E., Scholl, F., Huenecke, S., Koehl, U., Suess, B. & Steinhilber, D. 5-Lipoxygenase Is a Direct Target of miR-19a-3p and miR-125b-5p. J. Immunol. 194, 1646–1653 (2015).
- 137. Bonventre, J. V & Swidler, M. Calcium dependency of prostaglandin E2 production in rat glomerular mesangial cells. Evidence that protein kinase C modulates the Ca2+-dependent activation of phospholipase A2. *J. Clin. Invest.* **82**, 168–76 (1988).
- 138. Alonso, F., Henson, P. M. & Leslie, C. C. A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. *Biochim. Biophys. Acta* 878, 273–280 (1986).
- 139. Hammarberg, T., Provost, P., Persson, B. & Rådmark, O. The N-terminal domain of 5lipoxygenase binds calcium and mediates calcium stimulation of enzyme activity. *J. Biol. Chem.* **275**, 38787–93 (2000).
- 140. Brock, T. G., McNish, R. W. & Peters-Golden, M. Translocation and leukotriene synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia cells and alveolar macrophages. *J. Biol. Chem.* **270**, 21652–21658 (1995).
- 141. Lepley, R. a., Muskardin, D. T. & Fitzpatrick, F. a. Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. *J. Biol. Chem.* **271**, 6179–6184 (1996).
- 142. Werz, O., Klemm, J., Samuelsson, B. & Rådmark, O. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. *Proc. Natl. Acad. Sci. U. S. A.* **97,** 5261– 5266 (2000).
- Lepley, R. a & Fitzpatrick, F. a. Inhibition of mitogen-activated protein kinase kinase blocks activation and redistribution of 5-lipoxygenase in HL-60 cells. *Arch. Biochem. Biophys.* 331, 141–144 (1996).
- 144. Werz, O., Szellas, D., Steinhilber, D. & Rådmark, O. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J. Biol. Chem. 277, 14793–14800 (2002).
- Mancini, J. a, Abramovitz, M., Cox, M. E., Wong, E., Charleson, S., Perrier, H., Wang, Z., Prasit, P. & Vickers, P. J. 5-lipoxygenase-activating protein is an arachidonate binding protein. *FEBS Lett.* 318, 277–281 (1993).
- 146. Evans, J. F., Lévillé, C., Mancini, J. a, Prasit, P., Thérien, M., Zamboni, R., Gauthier, J. Y., Fortin, R., Charleson, P. & MacIntyre, D. E. 5-Lipoxygenase-activating protein is the target of a quinoline class of leukotriene synthesis inhibitors. *Mol. Pharmacol.* 40, 22–27 (1991).
- 147. Miller, D. K., Gillard, J. W., Vickers, P. J., Sadowski, S., Léveillé, C., Mancini, J. a, Charleson, P., Dixon, R. a, Ford-Hutchinson, a W. & Fortin, R. Identification and isolation of a membrane protein necessary for leukotriene production. *Nature* 343, 278–281 (1990).
- 148. Jakobsson, P. J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A. & Persson, B. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG): A widespread protein superfamily. *Am. J. Respir. Crit. Care Med.* **161**, (2000).
- Mandal, A. K., Jones, P. B., Bair, A. M., Christmas, P., Miller, D., Yamin, T. D., Wisniewski, D., Menke, J., Evans, J. F., Hyman, B. T., Bacskai, B., Chen, M., Lee, D. M., Nikolic, B. & Soberman, R. J. The nuclear membrane organization of leukotriene synthesis. *Proc. Natl. Acad. Sci. U. S. A.* 105, 20434–20439 (2008).

- 150. Esser, J., Rakonjac, M., Hofmann, B., Fischer, L., Provost, P., Schneider, G., Steinhilber, D., Samuelsson, B. & Rådmark, O. Coactosin-like protein functions as a stabilizing chaperone for 5-lipoxygenase: role of tryptophan 102. *Biochem. J.* **425**, 265–274 (2010).
- 151. Haeggström, J. Z. & Funk, C. D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. *Chem. Rev.* **111**, 5866–5896 (2011).
- 152. Peters-Golden, M. Expanding roles for leukotrienes in airway inflammation. *Curr. Allergy Asthma Rep.* **8**, 367–373 (2008).
- 153. Brink, C., Dahlén, S.-E., Drazen, J., Evans, J. F., Hay, D. W. P., Nicosia, S., Serhan, C. N., Shimizu, T. & Yokomizo, T. International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. *Pharmacol. Rev.* 55, 195–227 (2003).
- 154. Wan, M., Sabirsh, A., Wetterholm, A., Agerberth, B. & Haeggström, J. Z. Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. *FASEB J.* **21**, 2897–2905 (2007).
- 155. Chen, M., Lam, B. K., Kanaoka, Y., Nigrovic, P. a, Audoly, L. P., Austen, K. F. & Lee, D. M. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. *J. Exp. Med.* 203, 837–842 (2006).
- 156. Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J. & Shimizu, T. Role of cytosolic phospholipase A2 in allergic response and parturition. *Nature* **390**, 618–622 (1997).
- Ferguson, A. D., McKeever, B. M., Xu, S., Wisniewski, D., Miller, D. K., Yamin, T., Spencer, R. H., Chu, L., Ujjainwalla, F., Cunningham, B. R., Evans, J. F. & Becker, J. W. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. *Science* 317, 510–2 (2007).
- Gillard, J., Ford-Hutchinson, A. W., Chan, C., Charleson, S., Denis, D., Foster, A., Fortin, R., Leger, S., McFarlane, C. S., Morton, H., Piechuta, H., Riendeau, D., Rouzer, C. A., Rokach, J., Young, R., MacIntyre, D. E., Peterson, L., Bach, T., Eiermann, G., Hopple, S., Humes, J., Hupe, L., Luell, S., Metzger, J., Meurer, R., Miller, D. K., Opas, E. & Pacholok, S. L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3- t -butyl-thio-5isopropylindol-2-yl]-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. *Can. J. Physiol. Pharmacol.* 67, 456–464 (1989).
- 159. Müller-Peddinghaus, R., Kohlsdorfer, C., Theisen-Popp, P., Fruchtmann, R., Perzborn, E., Beckermann, B., Bühner, K., Ahr, H. J. & Mohrs, K. H. BAY X1005, a new inhibitor of leukotriene synthesis: in vivo inflammation pharmacology and pharmacokinetics. *J. Pharmacol. Exp. Ther.* **267**, 51–7 (1993).
- Brideau, C., Chan, C., Charleson, S., Denis, D., Evans, J. F., Ford-Hutchinson, A. W., Fortin, R., Gillard, J. W., Guay, J., Guévremont, D., Hutchinson, J. H., Jones, T. R., Leger, S., Mancini, J. A., McFarlane, C. S., Pickett, C., Piechuta, H., Prasit, P., Riendeau, D., Rouzer, C. A., Tagari, P., Vickers, P. J., Young, R. N. & Abraham, W. M. Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2yl-methoxy)-indol-2-yl]-2,2-dimethyl propanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. *Can. J. Physiol. Pharmacol.* **70**, 799–807 (1992).

- 161. Bain, G., King, C. D., Rewolinski, M., Schaab, K., Santini, A. M., Shapiro, D., Moran, M., van de Wetering de Rooij, S., Roffel, A. F., Schuilenga-Hut, P., Milne, G. L., Lorrain, D. S., Li, Y., Arruda, J. M., Hutchinson, J. H., Prasit, P. & Evans, J. F. Pharmacodynamics and pharmacokinetics of AM103, a novel inhibitor of 5-lipoxygenase-activating protein (FLAP). *Clin. Pharmacol. Ther.* 87, 437–44 (2010).
- 162. Hutchinson, J. H., Li, Y., Arruda, J. M., Baccei, C., Bain, G., Chapman, C., Correa, L., Darlington, J., King, C. D., Lee, C., Lorrain, D., Prodanovich, P., Rong, H., Santini, A., Stock, N., Prasit, P. & Evans, J. F. 5-Lipoxygenase-activating protein inhibitors: Development of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl] -5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103). J. Med. Chem. 52, 5803–5815 (2009).
- 163. Lorrain, D. S., Bain, G., Correa, L. D., Chapman, C., Broadhead, A. R., Santini, A. M., Prodanovich, P., Darlington, J. V, Hutchinson, J. H., King, C., Lee, C., Baccei, C., Li, Y., Arruda, J. M. & Evans, J. F. Pharmacological characterization of 3-[3-tertbutylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1Hindol-2-yl]-2,2-dimethyl-propionic acid (AM103), a novel selective 5-lipoxygenaseactivating protein inhibitor that reduces acute . J. Pharmacol. Exp. Ther. 331, 1042– 1050 (2009).
- 164. Werz, O., Szellas, D., Henseler, M. & Steinhilber, D. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. *Mol. Pharmacol.* **54**, 445–451 (1998).
- 165. Summers, J. B., Gunn, B. P., Martin, J. G., Martin, M. B., Mazdiyasni, H., Stewart, A. O., Young, P. R., Bouska, J. B., Goetze, A. M. & Dyer, R. D. Structure-activity analysis of a class of orally active hydroxamic acid inhibitors of leukotriene biosynthesis. *J. Med. Chem.* **31**, 1960–1964 (1988).
- 166. Carter, G. W., Young, P. R., Albert, D. H., Bouska, J., Dyer, R., Bell, R. L., Summers, J. B. & Brooks, D. W. 5-lipoxygenase inhibitory activity of zileuton. J. Pharmacol. Exp. Ther. 256, 929–937 (1991).
- 167. Steinhilber, D. & Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. *Basic Clin. Pharmacol. Toxicol.* **114**, 70–77 (2014).
- 168. Werz, O. & Steinhilber, D. Pharmacological intervention with 5-lipoxygenase: new insights and novel compounds. *Expert Opin. Ther. Pat.* **15**, 505–519 (2005).
- Brooks, C. D. W., Stewart, A. O., Basha, A., Bhatia, P., Ratajczyk, J. D., Martin, J. G., Craig, R. A., Kolasa, T., Bouska, J. B., Lanni, C., Harris, R. R., Malo, P. E., Carter, G. W. & Bell, R. L. Preparation of (R)-(+)-N-[3-[5-[(4-Fluorophenyl)methyl]-2-thienyl]-1-methyl-2-propynyl]-N-hydroxyurea (ABT-761), a second-generation 5-lipoxygenase inhibitor. *J. Med. Chem.* 38, 4768–4775 (1995).
- 170. Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. *Planta Med.* **73**, 1331–1357 (2007).
- 171. Koshihara, Y., Neichi, T., Murota, S., Lao, A., Fujimoto, Y. & Tatsuno, T. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. *Biochim. Biophys. Acta - Lipids Lipid Metab.* **792**, 92–97 (1984).

- Yoshimoto, T., Yokoyama, C., Ochi, K., Yamamoto, S., Maki, Y., Ashida, Y., Terao, S. & Shiraishi, M. 2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis. *Biochim. Biophys. Acta* **713**, 470–473 (1982).
- 173. McMillan, R. M. & Walker, E. R. H. Designing therapeutically effective 5lipoxygenase inhibitors. *Trends Pharmacol. Sci.* **13**, 323–330 (1992).
- 174. Pergola, C. & Werz, O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. *Expert Opin. Ther. Pat.* **20**, 355–75 (2010).
- 175. Belanger, P., Maycock, A., Guindon, Y., Bach, T., Dollob, A. L., Dufresne, C., Ford-Hutchinson, A. W., Gale, P. H., Hopple, S. & Lau, C. K. L-656,224 (7-chloro-2-[(4-methoxyphenyl)methyl]-3- methyl-5-propyl-4-benzofuranol): a novel, selective, orally active 5-lipoxygenase inhibitor. *Can. J. Physiol. Pharmacol.* **65**, 2441–8 (1987).
- 176. Bruneau, P., Delvare, C., Edwards, M. P. & McMillan, R. M. Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity. *J. Med. Chem.* **34**, 1028–1036 (1991).
- Crawley, G. C., Dowell, R. I., Edwards, P. N., Foster, S. J., McMillan, R. M., Walker, E. R., Waterson, D., Bird, T. G., Bruneau, P. & Giroaeau, J. M. Methoxytetrahydropyrans. A new series of selective and orally potent 5-lipoxygenase inhibitors. *J. Med. Chem.* 35, 2600–2609 (1992).
- 178. Hutchinson, J. H., Riendeau, D., Brideau, C., Chan, C., Falgueyret, J.-P., Guay, J., Jones, T. R., Lepine, C. & Macdonald, D. Thiopyrano[2,3,4-cd]indoles as 5-Lipoxygenase Inhibitors: Synthesis, Biological Profile, and Resolution of 2-[2-[1-(4-Chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]-4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]butanoic Acid. J. Med. Chem. 37, 1153–1164 (1994).
- 179. Nasser, S. M., Bell, G. S., Hawksworth, R. J., Spruce, K. E., MacMillan, R., Williams, A. J., Lee, T. H. & Arm, J. P. Effect of the 5-lipoxygenase inhibitor ZD2138 on allergen-induced early and late asthmatic responses. *Thorax* **49**, 743–8 (1994).
- 180. Fischer, L. Phosphorylation- and stimulus-dependent inhibition of cellular 5lipoxygenase activity by nonredox-type inhibitors. *FASEB J.* **17**, 949–951 (2003).
- 181. Mano, T., Stevens, R. W., Ando, K., Nakao, K., Okumura, Y., Sakakibara, M., Okumura, T., Tamura, T. & Miyamoto, K. Novel imidazole compounds as a new series of potent, orally active inhibitors of 5-lipoxygenase. *Bioorganic Med. Chem.* **11**, 3879– 3887 (2003).
- 182. Ducharme, Y., Blouin, M., Brideau, C., Châteauneuf, A., Gareau, Y., Grimm, E. L., Juteau, H., Laliberté, S., MacKay, B., Massé, F., Ouellet, M., Salem, M., Styhler, A. & Friesen, R. W. The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. ACS Med. Chem. Lett. 1, 170–174 (2010).
- 183. Wasfi, Y. S., Villarán, C., De Tilleghem, C. L. B., Smugar, S. S., Hanley, W. D., Reiss, T. F. & Knorr, B. a. The efficacy and tolerability of MK-0633, a 5-lipoxygenase inhibitor, in chronic asthma. *Respir. Med.* **106**, 34–46 (2012).
- 184. Rudberg, P. C., Tholander, F., Andberg, M., Thunnissen, M. M. G. M. & Haeggström, J. Z. Leukotriene A4 hydrolase: Identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrates. *J. Biol. Chem.* 279, 27376–27382 (2004).

- 185. Orning, L., Krivi, G. & Fitzpatrick, F. A. Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. *J. Biol. Chem.* **266**, 1375–8 (1991).
- 186. Penning, T. D., Askonas, L. J., Djuric, S. W., Haack, R. A., Yu, S. S., Michener, M. L., Krivi, G. G. & Pyla, E. Y. Kelatorphan and related analogs: potent and selective inhibitors of leukotriene A4 hydrolase. *Bioorg. Med. Chem. Lett.* 5, 2517–2522 (1995).
- 187. Kachur, J. F., Askonas, L. J., Villani-Price, D., Ghoreishi-Haack, N., Won-Kim, S., Liang, C.-D. D., Russell, M. a & Smith, W. G. Pharmacological characterization of SC-57461A (3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid HCl), a potent and selective inhibitor of leukotriene A(4) hydrolase II: in vivo studies. *J. Pharmacol. Exp. Ther.* **300**, 583–587 (2002).
- 188. Tsuji, F., Miyake, Y., Enomoto, H., Horiuchi, M. & Mita, S. Effects of SA6541, a leukotriene A4 hydrolase inhibitor, and indomethacin on carrageenan-induced murine dermatitis. *Eur. J. Pharmacol.* **346**, 81–85 (1998).
- 189. Rao, N. L., Dunford, P. J., Xue, X., Jiang, X., Lundeen, K. a, Coles, F., Riley, J. P., Williams, K. N., Grice, C. a, Edwards, J. P., Karlsson, L. & Fourie, A. M. Antiinflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. 321, 1154–1160 (2007).
- 190. Sandanayaka, V., Mamat, B., Mishra, R. K., Winger, J., Krohn, M., Zhou, L. M., Keyvan, M., Enache, L., Sullins, D., Onua, E., Zhang, J., Halldorsdottir, G., Sigthorsdottir, H., Thorlaksdottir, A., Sigthorsson, G., Thorsteinnsdottir, M., Davies, D. R., Stewart, L. J., Zembower, D. E., Andresson, T., Kiselyov, A. S., Singh, J. & Gurney, M. E. Discovery of 4-[(2S)-2-{[4-(4-Chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl] butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. *J. Med. Chem.* 53, 573–585 (2010).
- 191. Martinez Molina, D., Wetterholm, A., Kohl, A., McCarthy, A. a, Niegowski, D., Ohlson, E., Hammarberg, T., Eshaghi, S., Haeggström, J. Z. & Nordlund, P. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. *Nature* **448**, 613–616 (2007).
- 192. Gupta, N., Nicholson, D. W. & Ford-Hutchinson, A. W. Pharmacological crossreactivity between 5-lipoxygenase-activating protein, 5-lipoxygenase, and leukotriene C4 synthase. *Can. J. Physiol. Pharmacol.* **75**, 1212–1219 (1997).
- 193. Welsch, D. J., Creely, D. P., Hauser, S. D., Mathis, K. J., Krivi, G. G. & Isakson, P. C. Molecular cloning and expression of human leukotriene-C4 synthase. *Proc. Natl. Acad. Sci. U. S. A.* 91, 9745–9749 (1994).
- 194. Ago, H., Okimoto, N., Kanaoka, Y., Morimoto, G., Ukita, Y., Saino, H., Taiji, M. & Miyano, M. A leukotriene C4 synthase inhibitor with the backbone of 5-(5-methylene-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid. *J. Biochem.* 153, 421–429 (2013).
- 195. Marder, P., Sawyer, J. S.-, Froelich, L. L., Mann, L. L. & Spaethe, S. M. Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a novel leukotriene B4 receptor antagonist. *Biochem. Pharmacol.* **49**, 1683–1690 (1995).

- 196. Koch, K., Melvin, L. S., Reiter, L. A., Biggers, M. S., Showell, H. J., Griffiths, R. J., Pettipher, E. R., Cheng, J. B., Milici, A. J. & Breslow, R. (+)-1-(3S,4R)-[3-(4phenylbenzyl)-4-hydroxychroman-7-yl]cyclopentane carboxylic acid, a highly potent, selective leukotriene B4 antagonist with oral activity in the murine collagen-induced arthritis model. *J. Med. Chem.* **37**, 3197–3199 (1994).
- 197. Birke, F. W., Meade, C. J., Anderskewitz, R., Speck, G. a & Jennewein, H. M. In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist. *J. Pharmacol. Exp. Ther.* **297**, 458–466 (2001).
- 198. Heise, C. E., O'Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., Williams, D. L., Zeng, Z., Liu, Q., Ma, L., Clements, M. K., Coulombe, N., Liu, Y., Austin, C. P., George, S. R., O'Neill, G. P., Metters, K. M., Lynch, K. R. & Evans, J. F. Characterization of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30531–30536 (2000).
- 199. Lynch, K. R., O'Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., Coulombe, N., Abramovitz, M., Figueroa, D. J., Zeng, Z., Connolly, B. M., Bai, C., Austin, C. P., Chateauneuf, a, Stocco, R., Greig, G. M., Kargman, S., Hooks, S. B., Hosfield, E., Williams, D. L., Ford-Hutchinson, a W., Caskey, C. T. & Evans, J. F. Characterization of the human cysteinyl leukotriene CysLT1 receptor. *Nature* **399**, 789–793 (1999).
- 200. Wang, D. & Dubois, R. N. Eicosanoids and cancer. *Nat. Rev. Cancer* **10**, 181–193 (2010).
- 201. McMahon, L. Imatinib Mesylate With or Without Hydroxychloroquine in Treating Patients With Chronic Myeloid Leukemia. *ClinicalTrials.gov* (2011). at https://clinicaltrials.gov/ct2/show/NCT01227135
- 202. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).
- 203. Serhan, C. N., Gotlinger, K., Hong, S. & Arita, M. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: An overview of their protective roles in catabasis. *Prostaglandins Other Lipid Mediat.* **73**, 155–172 (2004).
- 204. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. *Nature* **447**, 869–874 (2007).
- 205. Godson, C., Mitchell, S., Harvey, K., Petasis, N. a, Hogg, N. & Brady, H. R. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. *J. Immunol.* **164**, 1663–1667 (2000).
- 206. Savill, J. S., Wyllie, A. H., Henson, J. E., Walport, M. J., Henson, P. M. & Haslett, C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875 (1989).
- 207. Kohli, P. & Levy, B. D. Resolvins and protectins: Mediating solutions to inflammation. *Br. J. Pharmacol.* **158**, 960–971 (2009).
- 208. Bannenberg, G. & Serhan, C. N. Specialized pro-resolving lipid mediators in the inflammatory response: An update. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **1801,** 1260–1273 (2010).
- 209. Arita, M., Bianchini, F., Aliberti, J., Sher, A., Chiang, N., Hong, S., Yang, R., Petasis, N. a & Serhan, C. N. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. *J. Exp. Med.* **201**, 713–722 (2005).

- 210. Sun, Y. P., Oh, S. F., Uddin, J., Yang, R., Gotlinger, K., Campbell, E., Colgan, S. P., Petasis, N. a. & Serhan, C. N. Resolvin D1 and its aspirin-triggered 17R epimer: Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. *J. Biol. Chem.* 282, 9323–9334 (2007).
- 211. Serhan, C. N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S. P. & Petasis, N. a. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. *J. Immunol.* **176**, 1848–1859 (2006).
- 212. Serhan, C. N., Brain, S. D., Buckley, C. D., Gilroy, D. W., Haslett, C., O'Neill, L. a J., Perretti, M., Rossi, A. G. & Wallace, J. L. Resolution of inflammation: state of the art, definitions and terms. *FASEB J.* **21**, 325–332 (2007).
- 213. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. *Nat. Immunol.* **6**, 1182–1190 (2005).
- 214. Serhan, C. N., Hamberg, M. & Samuelsson, B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. *Proc. Natl. Acad. Sci. U. S. A.* **81**, 5335–5339 (1984).
- 215. Titos, E., Chiang, N., Serhan, C. N., Romano, M., Gaya, J., Pueyo, G. & Clària, J. Hepatocytes are a rich source of novel aspirin-triggered 15-epi-lipoxin A(4). *Am. J. Physiol.* **277**, C870–C877 (1999).
- 216. Lecomte, M., Laneuville, O., Ji, C., DeWitt, D. L. & Smith, W. L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. *J. Biol. Chem.* **269**, 13207–15 (1994).
- 217. Clària, J. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. *Proc. Natl. Acad. Sci. U. S. A.* **92**, 9475–9479 (1995).
- 218. Fiorucci, S., Distrutti, E., Mencarelli, A., Morelli, A., Laufor, S. a, Cirino, G. & Wallace, J. L. Evidence that 5-lipoxygenase and acetylated cyclooxygenase 2-derived eicosanoids regulate leukocyte-endothelial adherence in response to aspirin. *Br. J. Pharmacol.* **139**, 1351–1359 (2003).
- 219. Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual antiinflammatory and pro-resolution lipid mediators. *Nat. Rev. Immunol.* **8**, 349–61 (2008).
- 220. Takano, T., Clish, C. B., Gronert, K., Petasis, N. & Serhan, C. N. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. *J. Clin. Invest.* **101**, 819–26 (1998).
- 221. Birnbaum, Y., Ye, Y., Lin, Y., Freeberg, S. Y., Huang, M. H., Perez-Polo, J. R. & Uretsky, B. F. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. *Prostaglandins Other Lipid Mediat.* **83**, 89–98 (2007).
- 222. Chiang, N., Bermudez, E. a, Ridker, P. M., Hurwitz, S. & Serhan, C. N. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 15178–15183 (2004).
- 223. Fiore, S., Maddox, J. F., Perez, H. D. & Serhan, C. N. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. *J. Exp. Med.* **180**, 253–260 (1994).

- 224. Chiang, N., Arita, M. & Serhan, C. N. Anti-inflammatory circuitry: Lipoxin, aspirintriggered lipoxins and their receptor ALX. *Prostaglandins Leukot. Essent. Fat. Acids* **73**, 163–177 (2005).
- 225. Maddox, J. F. & Serhan, C. N. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. *J. Exp. Med.* **183**, 137–146 (1996).
- 226. Reville, K., Crean, J. K., Vivers, S., Dransfield, I. & Godson, C. Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. *J. Immunol.* **176**, 1878–1888 (2006).
- 227. Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N. & Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. *J. Exp. Med.* **192**, 1197–1204 (2000).
- 228. Arita, M., Clish, C. B. & Serhan, C. N. The contributions of aspirin and microbial oxygenase to the biosynthesis of anti-inflammatory resolvins: Novel oxygenase products from ??-3 polyunsaturated fatty acids. *Biochem. Biophys. Res. Commun.* **338**, 149–157 (2005).
- 229. Arita, M., Ohira, T., Sun, Y.-P., Elangovan, S., Chiang, N. & Serhan, C. N. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. *J. Immunol.* **178**, 3912–3917 (2007).
- 230. Bannenberg, G. L., Chiang, N., Ariel, A., Arita, M., Tjonahen, E., Gotlinger, K. H., Hong, S. & Serhan, C. N. Molecular circuits of resolution: formation and actions of resolvins and protectins. *J. Immunol.* **174**, 4345–4355 (2005).
- 231. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G. & Moussignac, R.-L. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. *J. Exp. Med.* **196**, 1025–1037 (2002).
- 232. Hong, S., Porter, T. F., Lu, Y., Oh, S. F., Pillai, P. S. & Serhan, C. N. Resolvin E1 metabolome in local inactivation during inflammation-resolution. *J. Immunol.* **180**, 3512–3519 (2008).
- 233. Connor, K. M., SanGiovanni, J. P., Lofqvist, C., Aderman, C. M., Chen, J., Higuchi, A., Hong, S., Pravda, E. a, Majchrzak, S., Carper, D., Hellstrom, A., Kang, J. X., Chew, E. Y., Salem, N., Serhan, C. N. & Smith, L. E. H. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. *Nat. Med.* 13, 868–873 (2007).
- 234. Jin, Y., Arita, M., Zhang, Q., Saban, D. R., Chauhan, S. K., Chiang, N., Serhan, C. N. & Dana, R. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. *Investig. Ophthalmol. Vis. Sci.* 50, 4743–4752 (2009).
- 235. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: Autacoids in anti-inflammation. *J. Biol. Chem.* **278**, 14677–14687 (2003).
- 236. Spite, M., Summers, L., Porter, T. F., Srivastava, S., Bhatnagar, a. & Serhan, C. N. Resolvin D1 controls inflammation initiated by glutathione-lipid conjugates formed during oxidative stress. *Br. J. Pharmacol.* **158**, 1062–1073 (2009).

- 237. Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N. & Chan, L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. *FASEB J.* **22**, 3595–3606 (2008).
- 238. Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C.-H., Yang, R., Petasis, N. a & Serhan, C. N. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 1660–1665 (2010).
- 239. Hong, S., Lu, Y., Yang, R., Gotlinger, K. H., Petasis, N. a. & Serhan, C. N. Resolvin D1, Protectin D1, and Related Docosahexaenoic Acid-Derived Products: Analysis via Electrospray/Low Energy Tandem Mass Spectrometry Based on Spectra and Fragmentation Mechanisms. J. Am. Soc. Mass Spectrom. 18, 128–144 (2007).
- 240. Serhan, C. N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S. P. & Petasis, N. a. Anti-Inflammatory Actions of Neuroprotectin D1/Protectin D1 and Its Natural Stereoisomers: Assignments of Dihydroxy-Containing Docosatrienes. J. Immunol. 176, 1848–1859 (2006).
- 241. Corey, E. J. & Mehrotra, M. M. A stereoselective and practical synthesis of 5,6(S,S)-epoxy-15(S)-hydroxy-7(E),9(E),11(Z),13(E)-eicosatetraenoic acid (4), possible precursor of the lipoxins. *Tetrahedron Lett.* **27**, 5173–5176 (1986).
- 242. Antony, R., Lukiw, W. J. & Bazan, N. G. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. *J. Biol. Chem.* **285**, 18301–18308 (2010).
- 243. Deng, B., Wang, C. W., Arnardottir, H. H., Li, Y., Cheng, C. Y. C., Dalli, J. & Serhan, C. N. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. *PLoS One* **9**, (2014).
- 244. Serhan, C. N., Fredman, G., Yang, R., Karamnov, S., Belayev, L. S., Bazan, N. G., Zhu, M., Winkler, J. W. & Petasis, N. a. Novel proresolving aspirin-triggered DHA pathway. *Chem. Biol.* **18**, 976–987 (2011).
- 245. Calandria, J. M., Marcheselli, V. L., Mukherjee, P. K., Uddin, J., Winkler, J. W., Petasis, N. a. & Bazan, N. G. Selective survival rescue in 15-lipoxygenase-1-deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. *J. Biol. Chem.* **284**, 17877–17882 (2009).
- 246. Marcheselli, V. L., Mukherjee, P. K., Arita, M., Hong, S., Antony, R., Sheets, K., Winkler, J. W., Petasis, N. a., Serhan, C. N. & Bazan, N. G. Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. *Prostaglandins Leukot. Essent. Fat. Acids* **82**, 27–34 (2010).
- 247. Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N. & Bazan, N. G. Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-mediated Leukocyte Infiltration and Proinflammatory Gene Expression. J. Biol. Chem. 278, 43807–43817 (2003).
- 248. Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N. & Bazan, N. G. From The Cover: Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. *Proc. Natl. Acad. Sci.* **101**, 8491– 8496 (2004).

- 249. Gronert, K., Maheshwari, N., Khan, N., Hassan, I. R., Dunn, M. & Schwartzman, M. L. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. *J. Biol. Chem.* **280**, 15267–15278 (2005).
- Serhan, C. N., Dalli, J., Karamnov, S., Choi, a., Park, C.-K., Xu, Z.-Z., Ji, R.-R., Zhu, M. & Petasis, N. a. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. *FASEB J.* 26, 1755–1765 (2012).
- 251. Dalli, J., Zhu, M., Vlasenko, N. a., Deng, B., Haeggstrom, J. Z., Petasis, N. a. & Serhan, C. N. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. *FASEB J.* **27**, 2573–2583 (2013).
- 252. Lee, J.-L., Wang, M.-J. & Chen, J.-Y. Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. *J. Exp. Med.* **206**, i12–i12 (2009).
- 253. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: Microparticles stimulate macrophage efferocytosis and pro-resolving mediators. *Blood* **120**, 60–73 (2012).
- 254. Ariel, A., Li, P. L., Wang, W., Tang, W. X., Fredman, G., Hong, S., Gotlinger, K. H. & Serhan, C. N. The docosatriene protectin D1 is produced by T H2 skewing promotes human T cell via lipid raft clustering. *J. Biol. Chem.* 280, 43079–43086 (2005).
- Serhan, C. N., Yang, R., Martinod, K., Kasuga, K., Pillai, P. S., Porter, T. F., Oh, S. F. & Spite, M. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. *J. Exp. Med.* 206, 15–23 (2009).
- 256. Woltersdorf, S. Synthese irreversibler selektiver COX-2-Inhibitoren. *Masterarbeit* 98 (2011).
- 257. Suh, J., Yum, E. K., Cheon, H. G. & Cho, Y. S. Synthesis and biological evaluation of N-aryl-4-aryl-1,3-thiazole-2-amine derivatives as direct 5-lipoxygenase inhibitors. *Chem. Biol. Drug Des.* **80**, 89–98 (2012).
- 258. Kalgutkar, a S. Aspirin-like Molecules that Covalently Inactivate Cyclooxygenase-2. *Science (80-.).* **280,** 1268–1270 (1998).
- 259. Abdur Rahim, M., Praveen Rao, P. . & Knaus, E. E. Isomeric acetoxy analogues of rofecoxib: A novel class of highly potent and selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* **12**, 2753–2756 (2002).
- Abdur Rahim, M., Praveen Rao, P. N., Bhardwaj, A., Kaur, J., Huang, Z. & Knaus, E. E. Isomeric acetoxy analogs of celecoxib and their evaluation as cyclooxygenase inhibitors. *Bioorg. Med. Chem. Lett.* 21, 6074–80 (2011).
- 261. Talley, J. J. in *Prog. Med. Chem.* **36,** 201–234 (ELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, http://www.elsevier.nl, 1999).
- Singh, S. K., Saibaba, V., Rao, K. S., Reddy, P. G., Daga, P. R., Rajjak, S. A., Misra, P. & Rao, Y. K. Synthesis and SAR/3D-QSAR studies on the COX-2 inhibitory activity of 1,5-diarylpyrazoles to validate the modified pharmacophore. *Eur. J. Med. Chem.* 40, 977–990 (2005).
- 263. Korb, O., Stützle, T. & Exner, T. E. Empirical Scoring Functions for Advanced Protein–Ligand Docking with PLANTS. J. Chem. Inf. Model. 49, 84–96 (2009).

- Penning, T. D., Talley, J. J., Bertenshaw, S. R., Carter, J. S., Collins, P. W., Docter, S., Graneto, M. J., Lee, L. F., Malecha, J. W., Miyashiro, J. M., Rogers, R. S., Rogier, D. J., Yu, S. S., Anderson, G. D., Burton, E. G., Cogburn, J. N., Gregory, S. A., Koboldt, C. M., Perkins, W. E., Seibert, K., Veenhuizen, A. W., Zhang, Y. Y. & Isakson, P. C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfona mide (SC-58635, Celecoxib). *J. Med. Chem.* 40, 1347–1365 (1997).
- 265. Böhme, H., Broese, R., Dick, A., Eiden, F. & Schünemann, D. Über Darstellung und Umsetzungen von Acylamido-chlormethanen. *Chem. Ber.* **92**, 1599–1607 (1959).
- Podolesov, B. Oxidation of beta-diketones with (diacetoxyiodo)benzene. J. Org. Chem. 49, 2644–2646 (1984).
- Penning, T. D., Talley, J. J., Bertenshaw, S. R., Carter, J. S., Collins, P. W., Docter, S., Graneto, M. J., Lee, L. F., Malecha, J. W., Miyashiro, J. M., Rogers, R. S., Rogier, D. J., Yu, S. S., AndersonGD, Burton, E. G., Cogburn, J. N., Gregory, S. A., Koboldt, C. M., Perkins, W. E., Seibert, K., Veenhuizen, A. W., Zhang, Y. Y. & Isakson, P. C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 40, 1347–1365 (1997).
- 268. Mao, B., Abrahim, A., Ge, Z., Ellison, D. K., Hartman, R., Prabhu, S. V., Reamer, R. A. & Wyvratt, J. Examination of rofecoxib solution decomposition under alkaline and photolytic stress conditions. *J. Pharm. Biomed. Anal.* 28, 1101–1113 (2002).
- 269. Harmon, P. A., Biffar, S., Pitzenberger, S. M. & Reed, R. A. Mechanism of the solution oxidation of rofecoxib under alkaline conditions. *Pharm. Res.* 22, 1716–26 (2005).
- 270. Moon, J. T., Jeon, J. Y., Park, H. A., Noh, Y. S., Lee, K. T., Kim, J., Choo, D. J. & Lee, J. Y. Synthesis and PGE2 production inhibition of 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives. *Bioorganic Med. Chem. Lett.* **20**, 734–737 (2010).
- 271. Ando, K., Kato, T., Kawai, A. & Nonomura, T. Preparation of heterocyclyl sulfonylbenzene compounds as anti-inflammatory/analgesic agents. *PCT Int. Appl.* 236 pp. (1999).
- 272. Lombardino, J. G. & Wiseman, E. H. Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. *J. Med. Chem.* **17**, 1182–1188 (1974).
- 273. Yusubov, M. S., Filimonov, V. D. & Ogorodnikov, V. D. Dimethyl sulfoxidehydrobromic acid as a novel reagent for convenient oxidation on a preparative scale of stilbenes and some derivatives of diphenylethane to benzils. *Bull. Acad. Sci. USSR Div. Chem. Sci.* 40, 766–770 (1991).
- 274. Kornblum, N., Powers, J. W., Anderson, G. J., Jones, W. J., Larson, H. O., Levand, O. & Weaver, W. M. A new and selective method of oxidation. J. Am. Chem. Soc. 79, 6562–6562 (1957).
- 275. Heilmann, S. M., Rasmussen, J. K. & Smith, H. K. Reduction of unsymmetrical benzils using sodium dithionite. *J. Org. Chem.* **48**, 987–992 (1983).
- 276. Prasit, P., Guay, D., Wang, Z., Leger, S. & Therien, M. Preparation of diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2. *PCT Int. Appl.* 72 pp. (1996).
- 277. Japp, F. R. & Meldrum, A. N. Furfuran derivatives from benzoin and phenols. J. Chem. Soc. Trans. **75**, 1035 (1899).

- 278. Kang, S. S., Cuendet, M., Endringer, D. C., Croy, V. L., Pezzuto, J. M. & Lipton, M. a. Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-κB. *Bioorganic Med. Chem.* **17**, 1044–1054 (2009).
- 279. Cava, M. P. & Mitchell, M. J. Condensed Cyclobutane Aromatic Compounds. XVI. Methylenebenzocyclobutene. J. Org. Chem. 27, 631–632 (1962).
- Talley, J. J., Carter, J. S., Collins, P. W., Kramer, S. W., Penning, T. D., Rogier Jr., D. J. & Rogers, R. S. Substituted thiazoles for the treatment of inflammation. *PCT Int. Appl.* 220 pp. (1996).
- 281. Rödl, C. B., Vogt, D., Kretschmer, S. B. M., Ihlefeld, K., Barzen, S., Brüggerhoff, A., Achenbach, J., Proschak, E., Steinhilber, D., Stark, H. & Hofmann, B. Multidimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. *Eur. J. Med. Chem.* **84**, 302–311 (2014).
- 282. Thuring, J. W. J. F., MacDonald, G. J., Grantham, C. J., Dinklo, T. & Lesage, A. S. J. Preparation of aminothiazole derivatives as modulators of alpha-7 nicotinic receptor. *PCT Int. Appl.* 122 pp. (2007).
- 283. Loll, P. J., Sharkey, C. T., O'Connor, S. J., Dooley, C. M., O'Brien, E., Devocelle, M., Nolan, K. B., Selinsky, B. S. & Fitzgerald, D. J. O-acetylsalicylhydroxamic acid, a novel acetylating inhibitor of prostaglandin H2 synthase: structural and functional characterization of enzyme-inhibitor interactions. *Mol. Pharmacol.* **60**, 1407–13 (2001).
- 284. Dooley, C. M., Devocelle, M., McLoughlin, B., Nolan, K. B., Fitzgerald, D. J. & Sharkey, C. T. A novel family of hydroxamate-based acylating inhibitors of cyclooxygenase. *Mol. Pharmacol.* **63**, 450–455 (2003).
- 285. Lecomte, M., Laneuville, O., Ji, C., DeWitt, D. L. & Smith, W. L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. *J. Biol. Chem.* **269**, 13207–13215 (1994).
- 286. Wester, M. R., Johnson, E. F., Marques-Soares, C., Dijols, S., Dansette, P. M., Mansuy, D. & Stout, C. D. Structure of mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1?? resolution: Evidence for an induced fit model of substrate binding. *Biochemistry* **42**, 9335–9345 (2003).
- 287. Duffey, T. a., Shaw, S. a. & Vedejs, E. AcOLeDMAP and BnOLeDMAP: Conformationally restricted nucleophilic catalysts for enantioselective rearrangement of indolyl acetates and carbonates. *J. Am. Chem. Soc.* **131**, 14–15 (2009).
- 288. Maiti, D. & Buchwald, S. L. Orthogonal Cu- and Pd-Based Catalyst Systems for the Oand N-Arylation of Aminophenols. *J. Am. Chem. Soc.* **131**, 17423–17429 (2009).
- 289. Strieter, E. R., Bhayana, B. & Buchwald, S. L. Mechanistic studies on the coppercatalyzed N-arylation of amides. J. Am. Chem. Soc. 131, 78–88 (2009).
- 290. Tye, J. W., Weng, Z., Johns, A. M., Incarvito, C. D. & Hartwig, J. F. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides. *J. Am. Chem. Soc.* **130**, 9971–9983 (2008).
- 291. Jain, R., Jindal, K. C. & Singh, J. Novel sulfonanilide derivatives, analgesic and antiinflammatory pharmaceutical compositions comprising the same, and process for their preparation. *PCT Int. Appl.* 39pp. (2007).

- 292. Vijayabhaskar, B., Purandhar, K., Reddy, L. A., Ramulu, A. & Sravanthi, V. An improved and industrially feasible process for the preparation of nimesulide. *Indian Pat. Appl.* 25pp. (2007).
- Chen, Q.-H., Rao, P. N. P. & Knaus, E. E. Design, synthesis, and biological evaluation of N-acetyl-2-carboxybenzenesulfonamides: a novel class of cyclooxygenase-2 (COX-2) inhibitors. *Bioorg. Med. Chem.* 13, 2459–68 (2005).
- 294. Chowdhury, M. a, Abdellatif, K. R. a, Dong, Y., Das, D., Yu, G., Velázquez, C. a, Suresh, M. R. & Knaus, E. E. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory ac. *Bioorg. Med. Chem. Lett.* **19**, 6855–61 (2009).
- 295. French, K. J., Schrecengost, R. S., Lee, B. D., Zhuang, Y., Smith, S. N., Eberly, J. L., Yun, J. K. & Smith, C. D. Discovery and evaluation of inhibitors of human sphingosine kinase. *Cancer Res.* **63**, 5962–9 (2003).
- 296. Rasmussen, C. R., Villani, Jr., F. J., Weaner, L. E., Reynolds, B. E., Hood, A. R., Hecker, L. R., Nortey, S. O., Hanslin, A., Costanzo, M. J., Powell, E. T. & Molinari, A. J. Improved Procedures for the Preparation of Cycloalkyl-, Arylalkyl-, and Arylthioureas. *Synthesis (Stuttg)*. **1988**, 456–459 (1988).
- 297. Kalgutkar, A. S., Gardner, I., Obach, R. S., Shaffer, C. L., Callegari, E., Henne, K. R., Mutlib, A. E., Dalvie, D. K., Lee, J. S., Nakai, Y., O'Donnell, J. P., Boer, J. & Harriman, S. P. A comprehensive listing of bioactivation pathways of organic functional groups. *Curr. Drug Metab.* 6, 161–225 (2005).
- 298. Fernando, C. R., Calder, I. C. & Ham, K. N. Studies on the mechanism of toxicity of acetaminophen. Synthesis and reactions of N-acetyl-2,6-dimethyl- and N-acetyl-3,5-dimethyl-p-benzoquinone imines. *J. Med. Chem.* **23**, 1153–1158 (1980).
- 299. Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T. & Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. *Bioorg. Med. Chem.* **12**, 5571–5578 (2004).
- 300. Werz, O. Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. *Blood* **99**, 1044–1052 (2002).
- 301. Barzen, S., Rödl, C. B., Lill, A., Steinhilber, D., Stark, H. & Hofmann, B. Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors. *Bioorg. Med. Chem.* **20**, 3575–83 (2012).
- 302. Ryckmans, T., Edwards, M. P., Horne, V. A., Correia, A. M., Owen, D. R., Thompson, L. R., Tran, I., Tutt, M. F. & Young, T. Rapid assessment of a novel series of selective CB2 agonists using parallel synthesis protocols: A Lipophilic Efficiency (LipE) analysis. *Bioorg. Med. Chem. Lett.* 19, 4406–4409 (2009).
- 303. van de Straat, R., de Vries, J., Debets, A. J. & Vermeulen, N. P. The mechanism of prevention of paracetamol-induced hepatotoxicity by 3,5-dialkyl substitution. The roles of glutathione depletion and oxidative stress. *Biochem. Pharmacol.* 36, 2065–2070 (1987).
- 304. Bessems, J. G. M., Gaisser, H. D., Te Koppele, J. M., Van Bennekom, W. P., Commandeur, J. N. M. & Vermeulen, N. P. E. 3,5-Disubstituted analogues of paracetamol. Synthesis, analgesic activity and cytotoxicity. *Chem. Biol. Interact.* 98, 237–250 (1995).

- 305. Abdur Rahim, M., Praveen Rao, P. . & Knaus, E. E. Isomeric acetoxy analogues of rofecoxib: A novel class of highly potent and selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* **12**, 2753–2756 (2002).
- 306. Iskra, J., Stavber, S. & Zupan, M. Nonmetal-Catalyzed Iodination of Arenes with Iodide and Hydrogen Peroxide. *Synthesis (Stuttg)*. **2004**, 1869–1873 (2004).
- 307. Morgentin, R., Pasquet, G., Boutron, P., Jung, F., Lamorlette, M., Maudet, M. & Plé, P. Strategic studies in the syntheses of novel 6,7-substituted quinolones and 7- or 6-substituted 1,6- and 1,7-naphthyridones. *Tetrahedron* **64**, 2772–2782 (2008).
- 308. Steinhilber, D., Herrmann, T. & Roth, H. J. Separation of lipoxins and leukotrienes from human granulocytes by high-performance liquid chromatography with a Radial-Pak cartridge after extraction with an octadecyl reversed-phase column. J. Chromatogr. 493, 361–6 (1989).
- 309. Brungs, M., Rådmark, O., Samuelsson, B. & Steinhilber, D. Sequential induction of 5lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor beta and 1,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. U. S. A. 92, 107–11 (1995).

9. Anhang

9.1. Publikationsliste

Original Arbeiten

S. B. M. Kretschmer¹, **S. Woltersdorf**¹, C. B. Rödl, D. Vogt, S. Barzen, D. Steinhilber, H. Stark, B. Hofmann. Synthesis, Structure-activity Relationship, and Development of Novel Aminothiazole-comprising 5-Lipoxygenase Inhibitors. *Future Medicinal Chemistry*. **2015**, *in press.* - ¹ geteilte Erstautorenschaft

Konferenzbeiträge

S. B. M. Kretschmer, C. B. Rödl, D. Vogt, **S. Woltersdorf**, H. Stark, D. Steinhilber, B. Hofmann. *Multi-dimensional target profiling of substituted 1,3-thiazole-2-amines with potent 5-lipoxygenase inhibitory activity* (Poster): Journée Jeunes Chercheurs (JJC), Montpellier, Frankreich 2014.

C. Lehmann, S. Woltersdorf, D. Steinhilber, G. Geisslinger, H. Stark, J. Homann, M. J. Parnham, N. Ferreirós, A. S. Kahnt. *Entwicklung von irreversiblen COX-2-acetylierenden Substanzen als neues anti-entzündliches und entzündungsauflösendes Prinzip* (Poster): LOEWE-Begutachtung, Frankfurt am Main 14. August 2014.

S. Woltersdorf, C. B. Rödl, D. Vogt, S. B. Kretschmer, S. Barzen, D. Steinhilber, H. Stark, B. Hofmann. *Study of N,4-diaryl-1,3-thiazol-2-amines as potent inhibitors of eicosanoid metabolism* (Poster): <u>XXIIIrd EFMC-ISMC</u>, Lissabon, Portugal 07.-11. September 2014.

S. Woltersdorf, S. B. Kretschmer, C. B. Rödl, D. Vogt, D. Steinhilber, H. Stark, B. Hofmann. *Multi-dimensional optimization of N,4-diaryl-1,3-thiazol-2-amines as potent 5-lipoxygenase inhibitors* (Poster): <u>DPhG-Jahrestagung</u>, Frankfurt am Main, 24.-26. September 2014.

S. B. M. Kretschmer, **S. Woltersdorf**, C. B. Rödl, D. Vogt, H. Stark, D. Steinhilber, B. Hofmann. *Multi-parameter optimization of 1,3-thiazole-2-amine derivatives with potent 5-lipoxygenase inhibitory activity* (Poster): <u>DPhG-Jahrestagung</u>, Frankfurt am Main, 24.-26. September 2014.

S. B. M. Kretschmer, C. B. Rödl, D. Vogt, **S. Woltersdorf**, H. Stark, D. Steinhilber, B. Hofmann. *Multi-parameter Optimization of 1,3-Thiazole-2-amine Derivatives with Potent 5-Lipoxygenase Inhibitory Activity* (Poster): <u>EU School on Bioactive Lipids</u>, Pescara, Italy November 2014.

S. Woltersdorf, C. Lehmann, N. Ferreiros, J. Homann, T. Ulshöfer, A. S. Kahnt, S. Schiffmann, K. Scholich, G. Geisslinger, D. Steinhilber, M. J. Parnham, H. Stark. *Potential modulators of the arachidonic acid cascade* (Poster): <u>TRIP-Begutachtung</u>, Frankfurt am Main 21. Januar 2015.

S. Woltersdorf, C. Lehmann, N. Ferreiros, J. Homann, T. Ulshöfer, A. S. Kahnt, S. Schiffmann, K. Scholich, G. Geisslinger, D. Steinhilber, M. J. Parnham, H. Stark. *Innovative approches on COX-2 selective modulators* (Poster): <u>GDCh Frontiers in Medicinal Chemistry</u>, Marburg 15.-18. März 2015.

S. Woltersdorf, S. B. Kretschmer, C. B. Rödl, D. Vogt, D. Steinhilber, B. Hofmann, H. Stark. *Impact of torsion of N,4-diaryl-1,3-thiazol-2-amines on 5-lipoxygenase inhibitory potency* (Poster): <u>DPhG-Jahrestagung</u>, Düsseldorf, 23.-25. September 2015.

S. B. M. Kretschmer, S. Woltersdorf, C. B. Rödl, D. Vogt, A. Kaiser, M. Wurglics, M. Schubert-Zsilavecz, C. Angioni, G. Geisslinger, H. Stark, D. Steinhilber, B. Hofmann. *Structure-Activity Relationships and Development of Novel Aminothiazole-Comprising 5-Lipoxygenase Inhibitors* (Poster): <u>DPhG-Jahrestagung</u>, Düsseldorf, 23.-25. September 2015.

9.3. Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit:

"Entwicklung neuartiger Modulatoren der Arachidonsäurekaskade"

selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate wörtlich oder sinngemäß als solche kenntlich gemacht habe.

Frankfurt am Main, 2015

(Stefano Woltersdorf)