A New Term-Based Approach to Project
Scheduling
The Scheduling Language RCPSV

Pok-Son Kim

Institut fiir Wirtschaftsinformatik / Informationsmanagement
Johann Wolfgang Goethe-Universitét
Frankfurt am Main, Germany
{kim}Qwiwi.uni-frankfurt.de

Abstract We introduce a new logic-based scheduling language called
RCPSV which may be used to model a new general class of resource-
constrained project scheduling problems for minimizing the project com-
pletion time. Similar to the scheduling language RSV ([5]), RCPSV
makes scheduling problems possible to be represented as terminological
descriptions and permits not only each atomic activity but also each sub-
project to be accomplished in one of several different ways. We define
a calculus for RCPSV-expressions that offers an effective approach for
solving the scheduling problem RCPSV. In addition a diagram-based,
nonredundant enumeration algorithm similar to that of RSV is devel-
oped.

Though RSV and RCPSV have a different syntax, we show that they
are equally expressive. From a complexity point of view, RCPSV permits
more compact representations than RSYV. We argue that the difference
may be exponential.

1 Introduction

Although [9] early suggested the possibility of generalization to “OR” activities
for the classical resource-constrained project scheduling (RCPS) ([2], [6]), there
were only a few publications ([4], [10]) which deal with such generalized RCPS-
problems. Further, the generalization has been mostly restricted such that only
for each ground activity a set of several alternative ways of accomplishing the
activity could be considered.

Newly, [5] has applied the terminological methods of KL-ONE based knowl-
edge representation systems ([3], [7]) to project scheduling in order to formulate
and solve a new general class of RCPSV (resource-constrained project schedul-
ing with variants)-problems. RCPSV -problems have been described as activity-
terms of a terminological scheduling language called RSV, in which the alterna-
tive processing possibilities not only for each ground activity but also for each
subproject can be formulated. For each activity-term optimal active schedules



have been determined. A schedule is a set of starting times for all atomic ac-
tivities in a complex activity-term, such that there are no resource conflicts, i.e.
there is no moment in time with double usage of a resource. A schedule is de-
fined to be active in the sense that no atomic activity in it can be started earlier
without changing other start times.

The vocabulary of RSV consists of a set of ground activities {(i,r(2),d(i))|i =
1,---,n(n € N),r(i) € R,d(i) € IN} and 3 operators ‘seq’ ‘xor’ and ‘pllI’ where
R is a finite set of resources. Each ground activity ¢ is atomic and it is associated
with a resource r(i) and an activity time d(i) needed for completing it.

The operators are used for constructing activity-terms and describing further
constraints (e.g. precedence constraint by means of ‘seq’). Activity-terms are
given inductively, just as in KL-ONE based, terminological knowledge represen-
tation languages (see e.g. ALC[8]), as follows:

1. Each ground activity is an activity-term.
2. If t1,ts, -+ ,tg are activity-terms, then

(seqt17t27"' 7tk)7
(xor ty,ta,--- ,tk),
(pllty, ta, -+ k)

are activity-terms.

Instead of the set-wise interpretation being usual in knowledge representation
systems, the interpretation function defined in RSV assigns to every term ¢t some
subset that consists of all active schedules derived from ¢. Based on this seman-
tics, a calculus is defined which can transform each term ¢ into a semantically
equivalent, normalized term s. It follows from the semantical equivalence of ¢
and s that a schedule which is optimal for ¢ is optimal for s too and vice versa.
But a normalized term is structurally simpler, i.e. in s all nonredundant reduced
terms included in ¢ that represent classical RCPS-problems (scheduling prob-
lems without considering “OR” activities) and take partially different paths but
complete the same project are described separately. So, for every reduced term,
schedules with the minimal makespan can be computed using an algorithm for
solving the classical RCPS-problem. Among all these computed schedules, those
that have the minimal value correspond then to the optimal schedules for the
RSV-term t.

In this paper we introduce a further logic-based terminological language called
RCPSV which may be used to model a class of RCPSV -problems. The way of
construction of the language RCPSV and the applied methods for representing
and solving the RCPSV -problem are similar to those of RSV.

Though RSV and RCPSV have a different syntax, we show that they are equally
expressive, i.e. each RCPSV -expression can be represented as a RSV-expression
and vice versa. But from a complexity point of view, RCPSV permits more
compact representations than RSV.



2 The Scheduling Language RCPSV

Let T be a set of vertices (terms) and E = {(t1,t2), (t3,t4), -, (tn—1,tn)} C
T x T a set of precedence edges. Further let (T, E) be a directed acyclic graph
having no edge of type (t,t) for any ¢t € T that we call a scheduling network
on T. If in (T, E) there exists no isolated vertex ¢, (T, E) can be described
exclusively only through the specification of E, because T' can be derived from
E (T ={t1,t2} U{ts,t4} U---U{tpn_1,t,}). When in (T, E) there is an isolated
vertex ¢, we take a dummy vertex 0 and form the pair (0,¢) for each isolated
vertex t. Then we add (0, 1) to E. So we get E'(D E) which T can be derived from.
So any scheduling network (7', E) can be described exclusively only through the
set of precedence edges (E or E'). This always existing simplification possibility
makes a new general class of RCPSV -problems possible to be modeled through
a terminological scheduling language that we call RCPSV.

2.1 The syntax of the language RCPSV

Definition 1. The vocabulary of RCPSV consists of two disjoint sets of sym-
bols. These sets are:

— A finite set of ground activities {(0,eu,0)} U {(i,r(i),d(@))|i =1,--- ,n(n €
IN),r(i) € R,d(i) € IN} where (0,eu,0) corresponds to a dummy ground
activity and R is a finite set of resources. Each ground activity is atomic
and is associated with a resource and an activity time needed for completing
it. Except for the unlimited available dummy resource eu, each resource can
be assigned to only one activity at a time (resource constraint). Activity
splitting is not allowed (nonpreemptive case).

— A set of two structural symbols (operators) xor’ and ‘hnet’.

The activity-terms of RCPSV are given inductively as follows :
1. Each ground activity is an activity-term.
2. If ty,ta,- - ,tr are activity-terms, then all terms
(xorty,ty, -+ ,tg)
and
hnet[letny =t1, - ,ng = tg; (n11,n12), -+, (51, n52)]

are activity-terms where ny,--- ,ng are distinct constant symbols (names)
and [(n11,m12), -, (nj1,nj2)] corresponds to a scheduling network on

{n1,"' ,nk}(: {tl,"' ,tk})-

The dummy ground activity (0, eu, 0) corresponds to the above described dummy
vertex. The operators ‘xor’ and ‘hnet’ are used for constructing activity-terms
and have the following meaning:



— ‘xor’: This operator can be used to select an activity-term among several
different alternative activity-terms. Ezactly one activity-term among alter-

natives must be selected and executed.
— ‘hnet’: This operator specifies the arrangement of activity-terms corre-

sponding to the given precedence relations (precedence constraint). In term

hnet[letn, = t1, - ,ng = tg; (R11,n12),- -, (nj1,n52)], the operator hnet
forces [(n11,n12),-- ,(nj1,nj2)] to specify a directed acyclic graph with
Ny # ne for each i = 1,---k for the set of vertices {ni;,ni2} U--- U
{nklankQ}-

2.2 The semantics of the language RCPSV

Similar to RSV, a RCPSV-term s is called a reduced (activity-)term of a
RCPSV-term t, if s can be derived from t by replacing each term of the form
(xorly,---,l,) in t by exactly one [; (i = 1,--- or n) so that s is xor-free.
Associated with any RCPSV -term t, there exist finitely many different reduced
terms which can be derived from t. These reduced terms take partially different
paths but complete the same project.

An active schedule derived from a RCPSV-term t can be defined just as that
of RSV. Further it can be shown in the same way as in RSV that the set of
active schedules derived from any RCPSV -term t is finite. Now, the semantics
of RCPSV can be defined as follows:

Definition 2. The model-theoretic semantics of RCPSV -activity-terms is given
by an interpretation T which consists of the set D (the domain of Z) and a
function - (the interpretation function of 7). The set D consists of all active
schedules derived from activity-terms in RCPSV . The interpretation function
I assigns to every activity-term t some subset of D that consists of all active
schedules derived from t.

2.3 The scheduling problem RCPSV

The objective is minimizing the project makespan. So, we define the scheduling
problem RCPSV as follows:

For a given activity-term of RCPSV an active schedule which has the minimal
project makespan (project completion time) has to be determined.

3 A Calculus for the Scheduling Language RCPSV

There are terms which are syntactically different, but semantically equivalent.
Based on the semantics of RCPSV, we can define a calculus called RCPSV -
calculus, which transforms a term into another semantically equivalent term of
it.



Definition 3. Ifti,ta,--- ,tg, 51, ,S1,tkt2, by are activity-terms, the cal-
culus has the associative rule (1) and distributive rules (2, 3) (see figure 1).
The associative rule (1) describes a subexpression combined by xor’ which is
an argument of the operator xor’ may be flattened. The distributive rules (2,
3) describe if a suberpression combined by xor’ occurs as an argument of the
operator ‘hnet’, the operator or’ may be moved to the leftmost position.

(xortlat27"' ,tk,(XOI‘Sl,SQ,"' ,Sl),tk+2,tk+3,"' )tn) (1)
(XOI‘thtz,"' Uy S1, 82, -, Sty thy2, kg3, - 7tn)
(hnet[letnl =t1, M+l = (XOI‘Sl,Sz,"' 781)7"' M = tn; (n117n12)7"' 7(nh17nk+1)7' o 7(nj17nj2)])
(xor hnet[letny =t1,- -+, nkg1 = s1,+ i = tnj (11, n12), 7+, (M1, Meg1), -+, (g1, my2)],
hnet[letnl =t1, -, Mk+1 = S1, "+ ;N = tn; (n117n12)7"' 7(nh17nk+1)7' o 7(nj17nj2)])
(2)
(hnet[letny =t1,- -+ ,nkq1 = (XOrs1, 82, -+, 81), -+, = tnj (11, R12), -+, (Mg, Ma2), -+, (M1, ny2)])
(xor hnet[letny =t1, -+, nkg1 = S1,+ i = tnj (11, n12), 7+, (Meg1, Ma2), -+, (g1, ny2)],
hnet[letni =t1,--- ,npy1 =51, M = bnj (W11, m12), -+, (Mht1, Pa2), - -+, (251, 52)])
3)

Figurel. Rules (1), (2), (3)

In the following we formalize the correctness of the RCPSV-calculus and a
transformation possibility for activity-terms. But we omit their proof here since
they can be proved very similar to those of RSV.

Lemma 1. The RCPSV -calculus is a correct calculus.

The correctness of the RCPSV -calculus permits to formalize the following the-
orem:

Theorem 1. For any RCPSV -term t all operators xor’ in the interior of t
always may be moved to the leftmost position, so that t is transformed to a
semantically equivalent, normalized term s in which all nonredundant reduced
terms derived from t are being combined by the uniquely occurring operator xor’.

In theorem 1, it follows from semantical equivalence of a term ¢ and its nor-
malized term s that a schedule which is optimal for ¢ is optimal for s too and
vice versa. But for a normalized term we can consider the arguments (reduced



activity-terms) of the ‘xor’-operator separately in order to compute optimal
schedules. So, because of theorem 1 the RCPSV -problem can be solved, while
first transforming each term ¢ into a semantically equivalent, normalized term s
and then computing the schedules with the minimal project makespan for every
reduced term of s separately using a solution algorithm for solving the classical
RCPS-problem. The schedules among all these computed schedules that have
the minimal value correspond then to the optimal schedules of ¢.

4 Solving the RCPSV-problem using diagram-based
calculation

Many varieties of implicit enumeration methods ([9], [2], [6], [1]) for solving the
RCPS-problem which may be also used for determining the optimal schedules
for each reduced activity-term of RCPSV have been reported. Further [5] has
recently presented new diagram-based methods for representing and solving re-
duced activity-terms of RSV . In this section we describe an algorithm for solving
reduced activity-terms of RCPSV which is similar to her method Az sy of RSV.

4.1 Solution algorithm Agcpsy based on a scan-line principle

Figure2. A network

In Agcpsy, another diagram than the RSV-diagram is used as a repre-
senting method because RSV-diagram is unsuitable to solve the RCPSV-
problem. Otherwise the same scan-line principle and the other working meth-
ods applied in Arsy are used again. For this reason, instead of a for-
mal description for Agrcpsy, we only consider an example. We take the
reduced activity-term represented by the network (X,P) of figure 2 with
X = {(1,a,2),(2,b,1),(3,0,1),(4,¢,1),(5,¢,3),(6,a,2),(7,d, 1)} and P =
{(174)7(175)7(276)7(37 7)7(57 7)7(67 7)}'

In the beginning the diagram which has a time axis and a scan-line is empty and
the scan-line is found at the time ts; = 0. In the diagram each ground activity



-t e
L L |
2ty 2 |0
a a
3 3 | H
4 4|
5 5
6 6
7 | | | | | | 7 | | | | |
T T T T T T T T T T T
o 5 t o ™ 5 t
(D1,3) + (D12,6) 4
T L2y
2 |2y 2 oy
3 - 3 | P
4| — 4| c
5_ C 5_ C
6 —t— 6 —
7 | | | | | 7 | | | | 'L
T T T T T T T T T T
0 - 5 t 0 5 T ¢

Figure3. A RCPSV -diagram based calculation

has a left and right end point. The left and right end point of any ground ac-
tivity 7 denoted by LE(i) and RE(i) are referred to as the stopping times of the
scan-line. (D, t) with ¢ > 0 denotes the scan-line is found at the stopping time
tsy = t in the diagram D. Instead of a continuous moving, the scan-line jumps
from a stopping time into the next right stopping time while determining and
then resolving resource conflicts.

Step 1: Attaching start ground activities to the scan-line: First all start activi-
ties out of X such as 1,2 and 3 which have no predecessors are attached to the
scan-line. “Attaching an activity ¢ to the scan-line” means that i is placed in
the diagram so that the time at which the scan-line is found is assigned to i as
its start time. The diagram (D, 0) of figure 3 shows the resulting diagram after
applying this step 1, in which the scan-line time 0 has been assigned to these
start activities 1,2 and 3 as their start time.

Step 2: Mowving the scan-line: The scan-line jumps to the next stopping time
tsr = 1.

Step 3: Determining and resolving resource conflicts (Multiplying the diagram by



the number of the existing conflict combinations); Freezing all definitely placed
ground activities: There is one 1-time conflict free activity 2, i.e. 2 is an unique
activity requiring the resource b in the time interval [0,¢sz] = [0,1]. In addi-
tion, an 1-time resource conflict occurs since there is an activity ¢ such that
RE(i) = tsp(= 1) (e.g. the activity 3) and the resource r(4) is required by more
than one activity in the time interval [tsr — 1,tsz]. So there exist two 1-time
conflict combinations [1] and [3]. The diagram (D, 1) is duplicated in order to
assign to each conflict combination a diagram, let these be D1, D2 and [1], [3]
are assigned to D1, D2 respectively. In each diagram, the 1-time conflict free ac-
tivity 2 and the assigned 1-time conflict activity are frozen in order to mark that
these activities must not be moved. The other 1-time conflict activity is moved
behind the frozen conflict activity. Subsequently we proceed with the next step
4 in each diagram.

If we pursue (D1,1) to which the combination [1] is assigned, we have the dia-
gram (D1,1) of figure 3 where 1 and 2 have been frozen and 3 has been moved
behind 1.

Step 4: Attaching further ground activities to the scan-line: Further activities
out of X which can be attached to the scan-line are determined in order to
place them. For an actual diagram (D, tsy,) and a network (X, P) a ground ac-
tivity ¢ € X can be attached to the scan-line iff 1. ¢ isn’t from the diagram
(D,tsr), 2. in (D,tsy,) there exists no frozen activity j with r(i) = r(j) for
which LE(j) < tsr, and RE(j) > tsr, hold and 3. all immediate predecessors e of
i, i-e., for e and i (e, i) € P holds, are already elements of (D,tsy,) and for all e
RE(e) < tgy, holds in (D, tsr). In (D1,1) of figure 3, the activities 4 and 5 can
not be attached since it holds RE(1) > tgr (= 1) for their immediate predecessor
1. The activity 6 can not be attached too since in (D1, 1), there exists a frozen
activity 1 with 7(1) = r(6) = a for which RE(1) > tgz (= 1) holds. The resource
a is being blocked until the time 2. So there is no activity to be attached to the
scan-line.

Furthermore the steps 2, 3, 4 are recursively applied until all ground activities
have been placed in the diagram and all activities in the diagram have been
frozen so that a schedule is completed. Among all computed schedules, those
that have the minimal project makespan are delivered as the optimal schedules
for the network (X, P).

After applying the following steps 2, 3, 4 and 2 to the diagram (D1,1) of the
last step 4, we have the diagram (D1, 3) of figure 3 in which the activities 4,5
and 6 have been attached to the scan-line. Now, there are two 3-time conflict re-
sources a and c. So there exist four 3-time conflict combinations [3,4], [3, 5], [6, 4]
and [6,5] altogether. The diagram (D1,3) is multiplied 4 times, let these be
D11,---,D14 and [3,4],[3, 5], [6,4], [6,5] are assigned to D11,---, D14 respec-
tively. If we pursue the diagram D12, and apply the further steps recursively, one
complete active schedule is finally generated that the diagram (D12, 6) of figure
3 shows. In this way, 8 nonredundant active schedules are computed altogether
and there are two optimal schedules with the project makespan 6.



4.2 Proving correctness of Agrcpsy

We omit the proof of the following theorem, because it can be shown similar to
Arsy too.

Theorem 2. For any given reduced RCPSV -activity-term s, Arcpsy generates
all active schedules nonredundantly which may be derived from s.

5 RSV and RCPSV are equally powerful

First we will prove formally that each RCPSV -expression can be represented
as a RSV-expression and vice versa. It is obvious that any RSV-expression
can be represented as a RCPSV -expression. Before showing that any RCPSV -
expression can be also represented as a RSV-expression, we first show that any
active schedule o delivered by Arcpsy can be represented as a reduced RSV-
term t(o).

We consider the active schedule o = (D12,6) of figure 3. With the aid of the
working method of Agcpsy, a reduced RSV-term t(o) = t(o5) representing o,
where 5 corresponds to the number of all recursive calls of the step 3 “ Freezing”
during calculating o = (D12,6), can be constructed. After each ith call of the
step 3 “Freezing”, a part o; of the active schedule o = (D12,6) is obtained. For
each o;(i = 1,---5), a RSV-activity-term ¢(o;) representing o; and consisting
of all frozen activities only can be formed so that t(o) representing o finally is
obtained.

After the 1st call of the step “Freezing”, we get the diagram oy = (D1,1) of
figure 3. The RSV-expression t(o1) consists of the both frozen activities 1 and
2 (Only the frozen activities are considered.). Since it is still unknown whether
the activities 1 and 2 will take successors, they are combined by ‘seq’ and so we
obtain seq 1 and seq2. These activities are carried out parallel each other. So,
they are combined by ‘pll’ again and the following RSV-expression finally can
be obtained as t(o):

(pll (seql),
" (eq2) )

For t(o2), it obviously holds t(o2) = t(o1). At the 3rd call, the both activities 3
and 5 are frozen for which it holds LE(3) = LE(5) = 2. For each activity k frozen
at the ¢th call, it holds that either k is a start-activity such as the activities 1 and
2, i.e.in o; it holds LE(k) = 0 or in o; there exists at least one frozen immediate
predecessor v of k with RE(v) = LE(k). For the both activities 3 and 5 frozen at
the 3rd call, there exists such a frozen activity 1 with RE(1) = LE(3) = LE(5).
First, the following subactivity is constructed:

(pll (seq3),
(seq5))



Then this subactivity is added to (4) behind the activity 1. So, for t(o3) we get

(pll (seql, (pll (seq3),
(seqb))),
(seq2))

If, at the 3rd call, a further activity k¥ with LE(k) = 0 had been frozen, k was
combined by ‘seq’ and then seqk was added to t(o2) as an argument of the
operator ‘pll’ of (4). At the 4th call, the activity 6 is added and after the last
(5th) call we get the schedule ¢ = (D12,6) and the following RSV-expression
t(o) representing o can be constructed:

(pll (seql, (pll (seq3,6),
(seq5, (pll4,7)))),
(seq2))

The activities 6,4,7 have not been combined by ‘seq’ because they take no
Successor.

Lemma 2. For a network (X, P) of a given RCPSV -expression, let o be any
complete active schedule delivered through Arcpsy and n be the number of re-
cursive calls of the step 3 “Freezing all definitely placed ground activities” of
Arepsy during calculating o. Further let o1, - ,0, = o be the sequence of
partial schedules delievered after every call of the step 3 “Freezing”, where, for
every o;, only all frozen activities until the i-th call are considered. Then a se-
quence t(og),t(o1),- - -t(on) of RSV-expressions representing o1, - -+ , 0, respec-
tively can be constructed and so t(o,) exactly represents the schedule o.

Proof. Tt can be shown easily by induction on the term ¢(o;) of the sequence
t(oo),t(o1), - - t(oy,). At the extension of the activity ¢(o;) to the activity ¢(o;41)
(see the example described above), the semantics of the operators ‘pll’ and ‘seq’
make it possible to force the activities dy,ds, - - - , dy, frozen at the (i + 1)th call
to have exactly the same time intervals for carrying out just as in ;1. O

Theorem 3. For any RCPSV -activity-term s there exist a RSV -activity-term
t with s* =t%.

Proof. For any RCPSV-activity-term s all nonredundant active schedules can
be derived by means of Arcpsy. In Lemma 2 we showed any active schedule
derived from s can be represented as a RSV-expression. Let 71, -7, be all
nonredundant active schedules derived from s and t(r),- - ,t(7,) be all RSV-
expressions representing these schedules 7, -- 7, respectively. For the RSV-
expression

xort(ry), - ,t(1y)

it obviously holds s* = (xort(r), -+ ,t(m,))%. O



It may be noticed that in theorem 3 the expression (xort¢(r),--- ,¢(7,)) pre-
sumably can have an exponentially larger space demand than the activity-term
s. So, if we compare the languages RSV and RCPSV from the viewpoint of a
syntactical representation ability of problems, we can show that RCPSV permits
more compact representations than RSV.

Figured4. A RCPS-problem

We consider the RCPS-problem which figure 4 shows. This problem can be rep-
resented by the RCPSV -activity-term (5) in a compact form which we can con-
struct simply and directly formulating precedence edges, e. g. ((1,a,1),(3,0,2)),
and then combining them with the operator ‘hnet’.

(hnet[((1,a,1),(3,b,2)), ((1,a,1), (4,d, 1)), 5)
27 a’? 2)7 (47 d7 1))])

(«

In order to represent this problem as a RSV-activity-term, first, for the prob-
lem all nonredundant active schedules should be computed and then, with the
aid of the construction rule described above, a corresponding RSV-expression
such as (6) can be described where each computed schedule is represented as a
RSV-reduced activity-term and all these RSV-reduced activity-terms are then
combined by ‘xor’.

(xor (seq(1,a,1), (pll(3,b,2), (seq(2,a,2), (4,d,1))), (6)
(seq(2,a,2),(1,a,1),(pll(3,0,2),(4,d,1))))

It can be examined easily that there is no more compact RSV-expression rep-
resenting the RCPS-problem of figure 4 than the expression (6).

Figureb. A RCPS-problem



Obviously, any RCPS-problem can be translated into a RCPSV - term in poly-
nomial size. But we presume that there are RCPS-problems which can be trans-
lated into RSV-terms only in an exponential size. For example, figure 5 presum-
ably shows such a problem.

6 Summary and Future Work

Another terminological scheduling language RCPSV, similar to RSV ([5]), has
been presented which may be used to formulate and solve a new general class
of RCPSV-problems. The terminological logic RCPSV has offered an effective
approach for solving the RCPSV -problem. A solution algorithm Az¢psy based
on a scan-line principle has been introduced, through which all active schedules
could be generated nonredundantly for any reduced activity term. It has been
formally shown that each RCPSV-expression can be represented as a RSV-
expression and vice versa but, from a complexity point of view, RCPSV permits
more compact representations than RSV.

For the future work, we can concentrate on a generalization of resource availabil-
ity such that multiple units of resources and multiple number of resource types
may be required by a ground activity. Such general problems may be formulated
easily while only the syntax (i,7(4),d(i)) of constructing each ground activity is

generalized to (¢, (r1 (i), -+ ,r,(7)),d(7)), where n corresponds to the number of
resource types and ri(i)(k = 1,--- ,n) with 0 < rg(i) < by describes required
units of resource type k by i. Here, each resource type k(k = 1,--- ,n) is as-

sumed to be available in a constant amount by, throughout the duration of the
project. Otherwise the two structural symbols (operators) ‘hnet’ and ‘xor’ and
the inductive rules for constructing activity-terms may be applied unchanged.
Therefore, the subject of future work might be to adapt the algorithm Agcpsy
to this more general problem formulation and to optimize the algorithm using
additional bounding or heuristic rules so that it may be used practically for large
projects.

References

1. P. Brucker, S. Knust, and O. Schoo, A. Thiele. A Branch and Bound Algorithm
for the Resource-constrained Project Scheduling Problem. FEuropean Journal of
Operational Research, 107:272—-288, 1998.

2. E. Demeulemeester and W. Herroelen. New Benchmark Results for the Resource-
constrained Project Scheduling Problem. Management Science, 43(11):1485-1492,
1997.

3. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The Complexity of Concept
Languages. Information and Computation, 134(1):1-58, 1997.

4. S. E. Elmaghraby. Activity Networks: Project Planning and Control by Network
Models. Wiley, New York, 1977.



10.

P. S. Kim. Terminologische Sprachen zur Reprisentation und Ldsung von
ressourcenbeschrankten Ablaufplanungsproblemen mit Prozefvarianten. PhD the-
sis, Institut fiir Wirtschaftsinformatik, Universitit Frankfurt, 2001.

A. Mingozzi, V. Maniezzo, and L. Ricciardelli, S. Bianco. An exact Algorithm
for Project Scheduling with Resource Constraints based on a New Mathematical
Formulation. Management Science, 44(5):714-729, 1998.

B. Nebel and K. von Luck. Hybrid Reasoning in BACK. In Z. W. Ras and
L. Saitta, editors, Methodologies for Intelligent Systems, pages 260-269. North
Holland, Amsterdam, Netherlands, 1988.

M. Schmidt-Schauf and G. Smolka. Attributive Concept Descriptions with Unions
and Complements. Technical Report SEKI Report SR-88-21, FB Informatik, Uni-
versitat Kaiserslautern, D-6750, Germany, 1988.

L. Schrage. Solving Resource-Constrained Network Problems by Implicit
Enumeration-Nonpreemptive Case. Operations Research, 10:263-278, 1970.

F. B. Talbot. Resource-Constrained Project Scheduling with Time-Resource Trade-
offs: The Nonpreemptive Case. Management Science, 28(10):1197-1210, 1982.



