
Goethe-Universität Frankfurt

Master Thesis

Implementation of an External-Memory Diameter
Approximation

Submitted to

Prof. Dr. Ulrich Meyer

Professorship for Algorithm Engineering

by

David Veith

February 09, 2012

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung

anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt

übernommenen Gedanken sind als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt

und auch nicht veröffentlicht.

Frankfurt, den 09.02.2012

—————————

(David Veith)

iii

Acknowledgement

“Thank you!”:

Andreas Beckmann. He never got tired of debugging STXXL, helping me when my code was not

efficient and with other questions.

Deepak Ajwani. From the first minute he always had a good advice that pushed my work into the

right way. He has always been a good listener regarding my issues and problems.

And, of course, Ulrich Meyer. He gave me the chance to write this thesis. And I really enjoyed the

time we worked together.

Also thanks to:

Andrei Negoescu and Volker Weichert.

Special thanks to:

Sarah Voß, David Weiß and all the others. They have been very good colleagues for several years. I

have learned a lot from them.

Also a special thanks to my family, my friends and to my girlfriend Nadine Nienberg. You all sup-

ported me a lot.

A very special thank to Alexander Zech.

iv

Contents

Abstract xi

1 Introduction 1

1.1 Purpose and aim of this thesis . 2

1.2 Structure of this thesis . 3

2 Basics 5

2.1 Graphs . 5

2.2 Diameter of a graph . 5

2.3 Breadth-First Search . 6

2.4 BFS as a method to approximate the diameter . 6

2.5 External-memory model . 7

2.6 Scanning in external-memory . 7

2.7 Sorting and permutation of data in external-memory 8

2.8 STXXL . 9

2.9 External-memory BFS . 10

2.10 Minimum Spanning Tree . 11

2.11 Euler-Tour . 12

2.12 SSSP . 12

2.13 Semi external-memory SSSP . 14

2.14 Probability theory . 15

2.15 Summary . 17

3 State of the Art 19

3.1 Double sweep lower bound . 19

3.2 Heuristics for computing an upper bound . 20

3.3 Fringe: improved upper bound heuristic . 21

3.4 External-memory spanning tree heuristics . 22

4 Parallel clustering growing approach 23

4.1 Theory . 23

v

vi CONTENTS

4.1.1 Euler-Tour based approach . 23

4.1.2 Parallel clustering growing approach . 24

4.2 Implementation details . 25

4.3 Internal-memory implementation . 27

4.3.1 Aims . 27

4.3.2 The implementation details . 27

4.4 External-memory implementation . 31

4.5 Recursive approach . 34

5 Experiments and Results 41
5.1 Graph classes . 41

5.2 Configuration . 44

5.3 Results . 45

5.3.1 EM_BFS_DSLB, SPAN and DSLB_UP_BOUND 45

5.3.2 Internal-memory prototype of PAR_APPROX 46

5.3.3 PAR_APPROX with internal-memory SSSP 51

5.3.4 PAR_APPROX with semi external-memory SSSP 53

5.3.5 Internal-memory prototype of PAR_APPROX_R 54

5.3.6 An addition to the input size for the second step of PAR_APPROX_R 58

5.3.7 PAR_APPROX_R . 60

6 Conclusion and perspective 63

A I/O Volume of EM_BFS_DSLB and SPAN 65

B I/O Volume of PAR_APPROX 67

C File size of the different graphs 69

References 71

List of Tables

5.1 Diameters computed by EM_BFS_DSLB, DSLB_UP_BOUND and SPAN. 45

5.2 Running time (in hours) of EM_BFS_DSLB and SPAN 45

5.3 Results for sk-2005 (internal-memory prototype). 47

5.4 Results for
√

n-level graph (internal-memory prototype). 48

5.5 Results for Θ(n)-level graph (internal-memory prototype). 49

5.6 Results for worst_PAR_APPROX (internal-memory prototype). 50

5.7 Results for sk-2005 (PAR_APPROX with internal-memory SSSP). 51

5.8 Results for
√

n-level graph (PAR_APPROX with internal-memory SSSP). 52

5.9 Results for Θ(n)-level graph (PAR_APPROX with internal-memory SSSP). 52

5.10 Results for worst_PAR_APPROX (PAR_APPROX with internal-memory SSSP). . . 52

5.11 Results PAR_APPROX with semi external-memory SSSP. 53

5.12 Results for sk-2005 (internal-memory prototype of PAR_APPROX_R). 54

5.13 Results for
√

n-level graph (internal-memory prototype of PAR_APPROX_R). 55

5.14 Results for Θ(n)-level graph (internal-memory prototype of PAR_APPROX_R). . . . 56

5.15 Results for worst_PAR_APPROX (internal-memory prototype of PAR_APPROX_R). 57

5.16 Size of the output of the two clustering phases. 58

5.17 Results for sk-2005 (PAR_APPROX_R). 60

5.18 Results for
√

n-level graph (PAR_APPROX_R). 60

5.19 Results for Θ(n)-level graph (PAR_APPROX_R). 61

5.20 Results for worst_PAR_APPROX (PAR_APPROX_R). 61

5.21 Results for the second test scenario for PAR_APPROX_R. 62

A.1 I/O-volume of a single external-memory BFS with EM_BFS_DSLB. 65

A.2 I/O-volume of two BFS (double sweep lower bound) with EM_BFS_DSLB. 65

A.3 I/O-volume of SPAN. 65

B.1 I/O-volume of the real world graph sk-2005 for reading. 67

B.2 I/O-volume of the real world graph sk-2005 for writing. 67

B.3 I/O-volume of the
√

n-level graph for reading. 67

B.4 I/O-volume of the
√

n-level graph for writing. 67

vii

viii LIST OF TABLES

B.5 I/O-volume of the Θ(n)-level graph for reading. 68

B.6 I/O-volume of the Θ(n)-level graph for writing. 68

B.7 I/O-volume of the graph worst_PAR_APPROX for reading. 68

B.8 I/O-volume of the graph worst_PAR_APPROX for writing. 68

C.1 Size of the different graph files on the disk. 69

List of Figures

2.1 A picture of the structure in the EM-model . 8

2.2 A worst case for diameter approximation with MST. 11

2.3 Shortest paths in weighted graphs . 13

2.4 Transformed graph as input for BFS. 13

2.5 Diagram of the semi-external SSSP implementation [1]. 15

3.1 One possible input for which the bound of dslb is not tight [2]. 20

4.1 Visual proof sketch for the necessity of adding d twice (1) 26

4.2 Visual proof sketch for the necessity of adding d twice (2) 26

4.3 Flowchart of the external-memory implementation. 33

4.4 A weighted graph as an input where the clustering approach produces an error of Θ(k). 35

4.5 Weighted graph as input for PAR_APPROX. 35

4.6 The x-fan. 36

4.7 The x-doublefan. 36

4.8 A possible shape for the Ω(x)-fan. 37

4.9 A side chain block. 37

4.10 A basic block. 37

4.11 The shape of the graph after the first iteration. 38

4.12 A possible shape for the graph after the second clustering. 39

5.1 Possible shape of the k-level graph. 42

5.2 Sketch of the worst case graph for PAR_APPROX. 44

5.3 The ratio of the graph size after the first and the second clustering. 59

ix

x LIST OF FIGURES

Abstract

Computing the diameter of a graph is a fundamental part of network analysis. Even if the data fits into

main memory the best known algorithm needs O(n2) [3] with high probability to compute the exact

diameter. In practice this is usually too costly. Therefore, heuristics have been developed to approxi-

mate the diameter much faster. The heuristic “double sweep lower bound” (dslb) has reasonably good

results and needs only two Breadth-First Searches (BFS). Hence, dslb has a complexity of O(n+m).

If the data does not fit into main memory, an external-memory algorithm is needed. In this thesis

the I/O model by Vitter and Shriver [4] is used. It is widely accepted and has produced suitable re-

sults in the past. The best known external-memory BFS implementation has an I/O-complexity of

Ω(n√
B
+ sort(n)) for sparse graphs [5]. But this is still very expensive compared to the I/O complex-

ity of sorting with O(N/B · logM/B (N/B)). While there is no improvement for the external-memory

computation of BFS yet, Meyer published a different approach called “Parallel clustering growing

approach” (PAR_APPROX) that is a trade-off between the I/O complexity and the approximation

guarantee [6].

In this thesis different existing approaches will be evaluated. Also, PAR_APPROX will be imple-

mented and analyzed if it is viable in practice. One main result will be that it is difficult to choose

the parameter in a way that PAR_APPROX is reasonably fast for every graph class without us-

ing the semi external-memory Single Source Shortest Path (SSSP) implementation by [1]. How-

ever, the gain is small compared to external-memory BFS using this approach. Therefore, the ap-

proach PAR_APPROX_R will be developed. Furthermore, a lower bound for the expected error of

PAR_APPROX_R will be proved on a carefully chosen difficult input class. With PAR_APPROX_R

the desired gain will be reached.

Initial results on PAR_APPROX have been published in [7].

xi

Chapter 1

Introduction

A graph can be used for modeling many different things from the real world, e. g. for social network

research [8]. For network analysis the computation of the diameter of the network is an important

part [8]. The diameter is related to the time that is needed to communicate between two arbitrary

points in a network.

But not only in the networks analysis the diameter is important. Graphs are also used for modeling

biological structures like viruses, RNA and DNA, chemical processes or in computer graphics for

creating a scene and many other examples. The complexity of many approaches in these fields also

depends on the diameter. And the diameter is also important in many other applications in computer

science. The execution time of many algorithms depends on the diameter. The execution time of

parallel approaches as the Parallel Shortest Path are bounded by the diameter [9, 10, p. 92].

However, the computation of the diameter is very expensive. The best known algorithm needs O(n2)

operations [3], where n denotes the number of vertices in the network. As mentioned before, there

already exists an algorithm, which can compute the diameter in O(n2). But this is very complex com-

pared to other algorithms used in practice for analyzing a graph. Especially when there is a time limit

as in real-time applications, this is too costly. Therefore, some heuristics were developed which will

be presented in Chapter 3.

There is another aspect which makes computation difficult. Many networks are very complex and

therefore large, e. g. road networks. That leads to a size of data, which does not fit into the main

memory (here: DDR SDRAM) of many standard computers. The main memory is very expensive

and in practice it is very difficult to upgrade a machine to an arbitrary size.

Another difficulty is that the size of graph files is growing. But the latency of I/O will not get better.

The opposite is happening. The speed of the CPU is increasing much faster than the speed of the main

memory – especially the ratio between the main memory and a single core of the CPU (see [11]). This

is also happening to the other hardware components as to the latency between the main memory and

the external-memory devices [11, 12, 13].

Data, which does not fit into the main memory has to be stored on an external-memory device. Usu-

1

2 CHAPTER 1. INTRODUCTION

ally this external-memory device is a hard disk (short: HDD for hard disk drive) or sometimes a solid

state drive (SSD). Such devices transfer data in blocks of size B. That means, that each data transfer

contains B data elements (compare to Section 2.5 or [4]). The random access to an element on the

hard disk is time-consuming compared to a random access to the main memory. While a random

access to an element on a hard disk takes around 8.4ms in worst case1 or at best around 2.7ms (read) /

3.1ms (write) in worst case on very expensive hardware for enterprise2, reading a whole block or only

one element from a disk does not make a big difference. This is because of the way such a device

is constructed. The read/write head has to be in the right position. The disk has to rotate until the

right block is under the head. Both usually take milliseconds, while the reading of the data in the

block takes a few nanoseconds. A random access to the main memory takes only around 40 to 100

nanoseconds3. Thus, a random access to a disk is around 100,000 times slower than a random access

to the main memory. Otherwise, with one access to the disk B elements can be fetched.

Hence, it is better to use the whole information from the block for current computation than using

only one specific element from the read block. In other words: The main target is to minimize the

number of random accesses to the hard disk since this takes a lot of time. If B is reasonably large, and

all B elements are used for following computation, this is not too bad. But there is still a slowdown,

that cannot be avoided.

However, the existing different implementations of Breadth-First Search using external-memory de-

vices (e. g. [17, 5]) have an I/O complexity of Ω(n/
√

B) for sparse graphs. Reading all data in a

sequence would be much faster. This kind of reading is called scanning (see Section 2.6). There

is a gap of O(
√

B) between external-memory BFS and scanning. Until today there is no published

idea how to fill this gap. One computation of an external-memory Breadth-First Search usually takes

several hours or longer, depending on the size of the data4, if the data does not fit into main memory.

For some heuristics one thousand Breadth-First Searches and more are needed (compare Section 3.3).

That would lead to a computation time of months or years. Because that is not feasible, other ap-

proaches are needed. A trade-off has to be found between the I/O complexity and quality of the

computation.

1.1 Purpose and aim of this thesis

This thesis is an experimental study about efficient heuristics for diameter approximation. One aim

is to find mechanisms, which guarantee a fast heuristic – with reasonable quality for the resulting

diameter.

Another aim is to implement an approach which needs as few random accesses to the hard disk as

possible. This external-memory approach should be more efficient than the existing implementations

1E. g. disks from the “WD VelociRaptor R©” series, produced by Western Digital [14]
2E. g. “Savvio R©15K.3 SAS” series from Seagate [15]
3For example a memory module from Kingston: “2GB 1066MHz DDR3 Non-ECC CL7 DIMM Single Rank x8” with

a latency of approximately 60ns [16]
4In this thesis data sets with a size between about 8 and 40 Gigabyte will be considered.

CHAPTER 1. INTRODUCTION 3

for Breadth-First Search. One trade-off will be analyzed in greater detail in Chapter 4. This trade-off

is based on the ideas in: “On Trade-Offs in External-Memory Diameter-Approximation” [6].

Also an improvement of the ideas in [6] will be developed in Section 4.2. In [6] it was mentioned

that a recursive approach can also reduce the I/O complexity a lot. The problem is, that after the first

shrinking of the graph, the edges are not unweighted any more. These weights make it difficult to

find a reasonable bound for the expected error of the recursive approach. That will be discussed in

Section 4.5.

In the end of this thesis a reasonable trade-off between I/O complexity and quality of the resulting

diameter should be found.

1.2 Structure of this thesis

In the second chapter background information will be presented which is needed to understand the

following chapters. A commonly used model for computation with accesses to disk will be introduced.

Also, basic algorithms, which are related to the basic ideas, will be introduced.

In the third chapter related work will be introduced. This will be heuristics for a lower and an upper

bound for the diameter based on Breadth-First Search and others. Also, an existing approach for using

hard disks, based on Minimum Spanning Tree (see Section 2.10) will be introduced.

In chapter four the concept behind the new approach will be introduced. Also for an implementation

with low I/O complexity the different possibilities will be discussed and rated. At the end of this

chapter a recursive idea of this approach will be developed. Also the quality of this new approach will

be discussed in more detail.

In chapter five the experiments and their results will be presented. Many results were predicted by

theory, others were explored during the experiments. The explored results will be discussed in more

detail.

In the sixth chapter the conclusion will be presented. A perspective of the results will be discussed

and also possible work for the future.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

2.1 Graphs

A graph G = (V,E) is a pair of sets [18, 19, p.529]. The set V contains the vertices v and the set E

contains the edges e. E ⊆ {{u,v}|u,v ∈V}, or in other notation: E ⊆V ×V .

The notation n denotes the cardinality of the set |V | and m the cardinality of the set |E|. The cardi-

nality m is less than or equal1 to O(n2) unless duplicates are allowed. A graph without any duplicate

edges is called a simple graph. In this thesis the focus will be on simple undirected sparse graphs. If

a considered graph has different properties, it will be mentioned.

In graphs with undirected edges an edge {u,v} can be used in both directions: from u to v and vice

versa. An edge with notation (u,v) instead of {u,v} shows that the edge is directed, what means that

v can be reached by u but not vice versa. Only, if also (v,u) ∈ E then the connection between u and v

is bidirectional.

2.2 Diameter of a graph

To define the diameter, the concept of a path in a graph G has to be defined first. “A walk in a graph

G is a finite sequence of vertices v0,v1, ...,vn and edges e1,e2, ...,en of G. The endpoints of an edge ei

are vi−1 and vi for each i.” (adapted from [20]). A path is a sequence of vertices v ∈V like a walk but

each vertex in this sequence appears only once.

The distance between a pair of vertices vi,v j ∈ V (i 6= j) is the shortest path from vi to v j in G. The

diameter of G is defined as the longest path among all shortest paths.

In this thesis it is assumed that G is connected. If G is not connected the largest connected component

will be selected to calculate the diameter of G (compare [21]). To calculate the diameter of G for

each vertex in G the distance to all other vertices has to be calculated. The best known expected

1for example a complete graph

5

6 CHAPTER 2. BASICS

running time for this problem is O(n2) with high probability [3]. In worst case2 Θ(n3) is possible,

if m = Ω(n2). Calculating the exact diameter is possible in reasonable time if needed but it is very

expensive. Some heuristics are known to estimate the diameter with less running time. A heuristic

with a single BFS will be introduced in this chapter. Other heuristics will be introduced in Chapter 3.

2.3 Breadth-First Search

Breadth-First Search (short: BFS) is a fundamental algorithm for the traversal of graphs. BFS is an

uninformed search method which means that a priori there is no information, except the graph itself,

that can be used to traverse the graph. Beginning in a start vertex s ∈ V BFS visit each reachable

vertex v ∈ V level wise. Vertices in the same level are combined to a so-called “BFS-Level”. In

implementations for main memory BFS usually uses a standard Queue (or Array + Pointers with

similar meaning) as data structure for searching.

The complexity of BFS is O(|V |+ |E|). Each reachable vertex v ∈ V will be inserted only once into

the queue and each edge will be considered around two times.

Algorithm 1 Pseudo code of Breadth-First Search according to [19, p. 536]
mark all vertices as unvisited
select a start vertex s ∈ G
mark vertex s as visited
distance[s] = 0
Queue Q = Queue();
Q.enqueue(s);
while !Q.isEmpty() do

u = Q.dequeue();
for all v adjacent to u do

if v has not been visited before then
mark v as visited
distance[v]=distance[u]+1
Q.enqueue(v);

end if
end for

end while

2.4 BFS as a method to approximate the diameter

The height of a BFS tree T is limited through the diameter D of the graph G. Furthermore, there is a

bound for the diameter which can be deduced by the height of a BFS tree: DBFS ≤ D≤ 2 ·DBFS.

Proof. DBFS ≤D: If the diameter D is smaller than the height of the BFS tree, there must be a shorter

2In worst case in each iteration every single vertex and edge have to be regarded at least once. The number of iterations
is the number of vertices.

CHAPTER 2. BASICS 7

way from the source s of the BFS tree to the vertex v with the longest distance to s in the original

graph. But then the output of BFS was not correct because BFS calculates the distances for each

vertex v ∈V which can be reached by the start vertex s.

D≤ 2 ·DBFS: Let u and v be two arbitrary vertices of the graph G. Then the length of the path between

these two vertices is bounded by the length of the path from u to s and from s to v. The distance of u

and v to s is bounded by the height of the BFS tree DBFS. Therefore, the distance of any two vertices

and therewith the diameter in G is bounded by 2 ·DBFS.

2.5 External-memory model

Vitter and Shriver defined a model for external-memory which is widely accepted in the commu-

nity [4]. Their model defines a simple memory hierarchy. There is an internal-memory device with

size M (main memory). This can be accessed by the CPU through its controller / cache very fast

within one computation step (idealized for this model).

Then there is the external-memory device (e. g. hard disk) which has no direct limit but it must be

sufficient to store the input of size N and intermediate results during the algorithm execution. It is

assumed that N � M. The communication between the internal and the external memory, respec-

tively main memory and hard disk, does not transport only one element per communication step but

B elements. B is the block size, defined by the number of elements which can be transferred in each

step. On real world devices, the block size of a device is not defined by elements directly. Hard disks

have default sizes for their internal structures, but consecutive physical blocks from the hard disk or

similar structures can be summarized into one logical block. The number of disks is denoted with D.

The main goal of this scheme is to model the I/O complexity ignoring the internal-memory computa-

tion. The I/O complexity is comparable for different algorithms in this model. Thus, this model can

be used to find an approach with reduced I/O complexity. But this cannot be done for each cost. If the

internal computation begins to dominate the complexity, there is no gain in the terms of running time.

Also usually the external-memory devices (and operating systems) do not allow full control of the I/O

operations. For optimization of an algorithm M and B have to be known in many cases. Nevertheless,

the results since the development of this model showed that it has as practical value.

2.6 Scanning in external-memory

As shortly mentioned in the introduction in Chapter 1, the time to access data on an external-memory

device like a hard disk is very slow compared to an access to the main memory. Depending on the

device the access time can typically be between around 10,0003 and 100,000 times slower [22].

A direct access from the CPU to a hard disk has a slowdown factor of around 1,000,000. But caches

3This access time is reachable with modern hardware devices as Solid State Disks which did not exist when the model
was developed.

8 CHAPTER 2. BASICS

B B B B

di
sk

1

di
sk

2

di
sk

D
−

1

di
sk

D

internal memory with size M

CPU with Cache

...

Figure 2.1: A picture of the EM-model after description of [4] with D disks. Each disk can send/re-
ceive B items in each I/O step to/from the internal memory.

are very small and thus this thesis concentrates on the gap between main memory as internal memory

and hard disks as external memory.

In order to accelerate the transfer of data from the external-memory device it is assumed that the

data is organized in blocks of size B on the device, where B is the number of elements which can be

saved in a block.

Considering a stripe of data on a disk of length N the time to read in the data is the time to access

each block plus reading the block itself. Typically reading a block is very fast. The access time dom-

inates the process. Hence, scan has the I/O complexity O(N/B) (short: scan(N)) with one disk and

O(N/(B ·D)) with D disks. Scanning a file is the fastest operation which can be done in external-

memory, if all elements have to be read at least once in given order.

2.7 Sorting and permutation of data in external-memory

External-memory sorting is based on the idea of merge sort. To improve the running time the following

adaptions have been realized: runs have the size of initially Θ(M) elements instead of one.4 The

size of a run increases during the recursion. Also, not only two runs are merged in each step but k

runs.5 This leads to a I/O complexity of O(N/B · logM/B (N/B)) (short: sort(N)) with one disk and

O(N/(B ·D) · logM/B (N/B)) with D disks [4].

4Each run of size Θ(M) will be sorted with an internal-memory sorter to create sorted runs.
5Not the whole run is kept in internal memory but a fraction of its blocks. Following blocks of a run will be loaded on

the fly, when the data from the loaded blocks is consumed, until the whole run has been read.

CHAPTER 2. BASICS 9

The combination of scanning and sorting can be used to solve the problem of permuting data6:

Algorithm 2 Pseudo code for a typical access problem in external-memory
ARRAY[1 to N] X,Y,Z //N >> M
initialize X[i]=i, Y[i] and Z[i]=i for each i ∈ 1, ...,N
create a permutation of Z and assign it to Z
for (i=1;i<=N;i++) do

X[i]=Y[Z[i]]
end for

Algorithm 2 has an I/O complexity of (N) in worst case, because the element Y[Z[i]] and Y[Z[i+1]]

can be in different not consecutively following blocks with a high probability depending on which

permutation was created. Assuming that only one block can be hold in internal-memory for simplicity,

for each random access O(1) I/O has to be done in worst case. This is a loss of the factor B. The

solution is not to assign the values of Y[Z[i]] directly to X[i] but to build tuples and do a few scanning

and sorting operations. After that each value Y[Z[i]] will have received its right position in the array

X.

Algorithm 3 Solution for the access problem in external-memory
ARRAY[1 to N] X,Y,Z //N >> M
initialize X[i]=i, Y[i] and Z[i]=i for each i ∈ 1, ...,N
create a permutation of Z and assign it to Z
SCAN Z and build a sequence of tuples T with T[i] = (Z[i],i) //(value, position)
SORT T by value
SCAN Y and T in parallel and do
for (i=1;i<=N;i++) do

T[i].value=Y[i]
end for
SORT T by position
SCAN T and X in parallel and do
for (i=1;i<=N;i++) do

X[i]=T[i].value
end for

By using sorting as access pattern in Algorithm 3, the best case I/O complexity is not O(N/B) as

in Algorithm 2, but the worst case complexity shrunk down to sorting complexity, what is the best

reachable I/O complexity for a computation based on comparison [23]. The same procedure was used

to adapt the semi external-memory SSSP implementation (compare Section 4.4).

2.8 STXXL

STXXL is a software library developed in C++ by Dementiev, Kettner, Sanders [24] and later main-

tained and extended by many researchers.7 STXXL is thought as an implementation of the C++ STL
6The example is based on lecture notes of “Efficient Algorithms” held in summer term 2009 by Meyer.
7The current (2011) main developers of the STXXL are: Beckmann and Singler.

10 CHAPTER 2. BASICS

(Standard Template Library) for huge data sets. The library works on various operating systems as

Linux, Microsoft Windows, Mac OS X and FreeBSD.

The STXXL supports sorting, stack, queue, dequeue, vector, search trees and priority queues based

on a sequence heap. Matrix operations were not supported in the past [24].

As a special feature, STXXL also supports pipelined algorithms. TPIE and LEDA-SM, two compara-

ble external-memory libraries did not support that feature when the previous mentioned article about

STXXL was published.8 “The original purpose of pipelining in the STXXL was to save I/Os by pass-

ing between algorithmic components without writing them to disk in between.” [25]. In [25] the idea

of pipelining in STXXL was improved to create a task parallelism. In some special cases the library

ensures automatically that the specific code segment will be parallelized. For the other operations in

the pipeline the programmer is able to define the parallelism with inserting asynchronous nodes [25].

2.9 External-memory BFS

Internal-memory BFS has two parts where it randomly accesses data: Extract all neighbors of u if

u was the last element from Q and check if these neighbors have been visited before (compare Sec-

tion 2.3). The problem of determining if a neighbor has been visited before can be solved by consid-

ering the neighbors of vertices in current level t−1 along with the vertices in level t−2.

The following has been proved in [17]: L(t) = {N(L(t−1)) − duplicates} \ {L(t−1) ∪ L(t−2)},
where N(L(t)) is the multiset of neighbors of vertices in level t.

This fact was used by Munagala and Ranade in [17] to implement a BFS algorithm for external-

memory. In this thesis, this algorithm will be referred to as MR-BFS. The I/O complexity of MR-BFS

is O(min{n+sort(n+m),sort(n+m)+L ·scan(n+m)}), where L denotes the number of BFS levels.

For dense graphs or graphs with short diameter this can be acceptable but it is very slow for sparse

graphs with large diameter.

Mehlhorn and Meyer [5] improved the I/O complexity of BFS computation for sparse graphs by ad-

dressing the problem of extracting neighbors without spending Ω(1) I/O for each access. Their BFS

algorithm reorganizes the graph data on the disk for this purpose. In this thesis their approach will be

called MM-BFS according to the notation used in other publications (e. g. [26, 27]). The adjacency

lists are organized in clusters such that if one list of a cluster is required for BFS, the others are also

required in a short time. If adjacency lists are used while they are in the main memory, they will not

be reloaded. Otherwise, they are stored in an efficiently data structure (hotpool). This reduces the

I/O-complexity.

However, scanning the hotpool produces extra costs. That leads to the trade-off that the I/O-complexity

is not dominated by O(n) any more but by O(n/
√

B). The resulting total complexity is O(n/
√

B+

sort(n)) for sparse graphs, with m = O(n).

BFS can sometimes be computed faster if the diameter is known. This was validated with experiments

8Even today this feature is not supported. In the library TPIE are some features for streaming, which were developed for
streaming algorithms and not for pipelining as a method to save I/Os in many cases with a generic structure.

CHAPTER 2. BASICS 11

in [27]. But in many heuristics one or more BFS computations are used to approximate the diameter.

But in the external-memory case, even this is not viable. The diameter is needed to choose a better

access pattern for BFS computation. Hence, approaches with better I/O complexity are needed to

approximate the diameter.

2.10 Minimum Spanning Tree

A spanning tree T is a subgraph of a connected graph G with the properties that T has |V |−1 edges

e⊆ E and T is connected. The set of vertices of T is equal to the set of vertices from G. A minimum

spanning tree (short: MST) has the additional property that the sum of edge weights is minimum.

Early algorithms for spanning tree computation in internal memory were developed by Borůvka

(1926) [28], Jarník (1930) [29] / Prim (1957)9 [30] and Kruskal (1956) [31]. An algorithm for

minimum spanning tree computation with complexity of O(n+m) has been developed in [32] for

a specific computation model. For the usual used computation model for internal memory the bound

of Θ(n log(n)+m) can be reached with Prim’s algorithm.

Minimum spanning trees or in general spanning trees are used to create a tree out of a given graph G

for solving problems which are easy to solve on trees but difficult on general graphs. In many external-

memory approaches (MM-BFS, semi-external SSSP,. . .) a spanning tree is used for the preprocessing

steps to organize data in a way that it can be accessed much faster in the following computation step,

for example an Euler-Tour technique.

The randomized implementation for minimum spanning tree in external-memory has an I/O complex-

ity of O(sort(n)) [33].

MST is used in some approaches for finding the diameter of a graph.10 In general the resulting MST

can have an arbitrary depth. Also the MST of a graph G is not necessarily unique. Figure 2.2 shows

an example.

... ...

x

1 2 n

x

1 2 n

MST

Figure 2.2: The left part of this figure shows a list graph with an extra vertex x. This extra vertex is
connected to all n vertices in the list. One possible MST of this graph has one connection from x to
the fist vertex of the list and then all edges from the list. The actual diameter of this graph is 2. The
diameter of this possible MST is n−1+1 = n.

For the fully connected graph with n vertices, Rényi and Szekeres showed that the expected diameter

of a random spanning tree is O(
√

n) while the actual diameter is 1 [34]. Nevertheless in Section 3.4 a

9Prim rediscovered the algorithm from Jarník
10For example for upper bound computation. See Section 3.2

12 CHAPTER 2. BASICS

heuristic will be presented which is based on work by Brudaru in [35]. Her work is based on the idea

that a MST can be improved iteratively with some local rules.

2.11 Euler-Tour

The Euler-Tour algorithm is based on the Euler circuits or Eulerian trail. Leonhard Euler used this

technique first to solve the “Seven Bridges of Königsberg” problem in 1736 [36]. The statement of this

problem was to use each of the seven bridges once and finally reach the starting region again. Euler

transformed it into a graph problem: All regions of Königsberg which are connected via a bridge are

vertices and the bridges are edges. For the “Seven Bridges of Königsberg” problem Euler showed,

that it is not possible to find a path without a detour through a visited bridge with his new invented

Euler circuits.

To find such a circle or tour can be difficult in general11 but it is comparatively easy for trees.

Trees with edges in both directions for every vertex always have an Euler-Tour. This is based on the

fact that all vertices have an equal in- and out-degree and this is one requirement that needs to be

fulfilled for the existence of an Euler-Tour (or even Euler circuits).

In the external-memory model, an Euler-Tour for trees can be computed with Θ(sort(N)) I/Os [38].

The algorithm builds a list of edges which represents the tour through the tree. The task is to find

the successor of an edge as a list element. This can be done by using a cyclic order and list ranking.

Details are explained in [39, p. 108–118] for RAM model algorithms and in [38] for external-memory

approaches.

2.12 SSSP

Single source shortest path is the problem of finding the shortest path from a single start vertex s to

all other reachable vertices v ∈V . The edges e ∈ E are weighted with edge weights c(e) ∈ R+.12 The

weights are the main difference from the BFS, that can compute the distance of all vertices v ∈ V to

s for unweighted graphs. Reaching a vertex v from the source s via a second possible path of more

vertices may lead to a smaller sum of weights on the path than e. g. a direct connection from s to v.

See Figure 2.3 as example.

11In [37] it is mentioned that computing an Euler-Tour on a tree is equivalent to computing DFS on the same tree. For
general graphs finding an Euler-Tour is linear in the number of edges with the algorithm from Carl Hierholzer.

12Negative edge weights are not allowed. For negative edge weights the correctness of the invariant of the algorithm is
not guaranteed. For such a case an algorithm like Bellman-Ford would be an option. But this is not a topic of this thesis.

CHAPTER 2. BASICS 13

s

v

x

u w

1

1

1

1

5

Figure 2.3: The direct path from s to v has not the shortest path length. SSSP finds the path from s to
v with p = {s,u,w,x,v}.

If for some reason, the distances in a weighted graph G have to be calculated with BFS, this is possible

if G is transformed to an unweighted graph G′, where an edge {u,v,c(e)} is replaced by a path with

length c(e) with dummy vertices in the path between u and v, which are ignored from the final output.

See Figure 2.4 for an example. For a c ∈N it is not too difficult to transform G into G′ but very costly.

The complexity of the computation is now depending on the edge weights. The complexity of BFS

could grow up to Θ(w · (n+m)), where w denotes the heaviest edge weight in G. For small w this

might be acceptable but for growing w, BFS is not a feasible alternative.

s

v

x

u w

y1 y2 y3 y4

1

1

1

1

1

1 1 1 1

Figure 2.4: Transformed graph G from Figure 2.3 into a graph G′ on which BFS can be used. Vertices
y1, ...,y4 are inserted to replace the edge {s,v} with weight 5.

In 1959 Dijkstra published the underlying ideas for his solution of the SSSP problem [40]. Starting

from a single vertex s as source, the distance from s to all other reachable vertices is computed itera-

tively. In each iteration the vertex v with the shortest tentative distance to all vertices in the set S with

final distance is added to the set S. After v has final distance, the distances to its non-final neighbors

is updated. Because of the fact that the distance of a vertex with final distance will not be changed

again, v iteration steps are needed.

Since the first publication, solutions for solving SSSP have developed a lot.13 With a priority queue

(e. g. a heap) as data structure, SSSP can be solved with a complexity of O(n · log(n+m)). It is not

13Dijkstra used a linked list as data structure.

14 CHAPTER 2. BASICS

possible to achieve a better complexity by comparison based algorithms [41, p. 180–193]. In the past

few years some algorithms have been developed which can solve SSSP in O(n) in average case [42].

Algorithm 4 Basic algorithm for Single Source Shortest Path
distance[1...n] = ∞

select a start vertex s
distance[s] = 0
PriorityQueue PQ;
for all neighbors u of s do

//tentative distance is the weight of the edge between s and u
distance[u] = c(s,u)
//vertex u is inserted into the PQ with its tentative distance as priority
PQ.insert(u);

end for

while !PQ.empty() do
//get the next element
vertex u = PQ.del_min()
for all neighbors v of u do

if (distance[v] > distance[u] + c(u,v)) then
distance[v] = c(u,v)
PQ.insert(v)

end if
end for

end while

2.13 Semi external-memory SSSP

In “Design and Implementation of a Practical I/O-efficient Shortest Paths Algorithm ” Meyer and Os-

ipov published a semi external-memory implementation of the SSSP algorithm with I/O complexity

of O(
√

n m K
B +MST (n,m)).14 [1]. In the previous work of Meyer and Zeh [43] some basic ideas of

the implementation by [1] were developed. The main problem of [43] is that the constants of their

approach are too big that it can be executed in realistic time in practice with known development tools

and algorithms. Hence, Meyer and Osipov changed the side conditions in a way that their implemen-

tation would have better constants but their implementation is not fully independent from the size of

the main memory.

• For each vertex there is at least one bit memory free in internal memory. This bit is a flag if the

vertex has reached final distance.

• The clustering of the input graph is done ignoring the edge weights. The consequence is that

clusters cannot be organized as efficiently as they would have been if the edge weights were

14This I/O bound depends on the interval [1,K] of the edge weights. MST (n,m) is the I/O-complexity of a minimum
spanning tree computation. It can be sort(m) randomized or sort(m) · log(log(nB/m)) deterministically.

CHAPTER 2. BASICS 15

considered.

With these two assumptions Meyer’s and Osipov’s approach reaches reasonable I/O complexity in

many cases. In [1] the edge weights for the experiments were generated randomly from an interval

[0,k]. For an input graph with given edge weights this implementation needs to be adapted.

Figure 2.5 shows the main stages of the semi-external SSSP implementation.

Figure 2.5: Diagram of the semi-external SSSP implementation [1]. The implementation uses k
hotpools to keep some elements with edge weights from interval 1 to k in internal memory. The
priority queue also considers k intervals for relaxing tentative edge weights.

2.14 Probability theory

For the proof of a lower bound in Section 4.5 some basics from probability theory are needed.

A probability P(E) for an event E has a value between 0 and 1, so 0≤ P(E)≤ 1. P(E) = 0 means that

the event E will never happen. If P(E) = 1, then E will always happen. The subset E of the sample

space Ω contains elements from the sample space and only from this space.15 If E = Ω then P(E) = 1

15It is possible to have many sample spaces. But in this thesis it is assumed that each probability is based on a single
sample space.

16 CHAPTER 2. BASICS

and if E ∩Ω = /0 then P(E) = 0.

It is allowed to have many events Ei, where the events can be pairwise disjointed. Disjointed means

that the intersection of two different events Ei and E j is empty. For dependent events the probability

of an event Ei can depend on the fact that another event E j happened or not. This is the conditional

probability P(A|B) = P(A∩B)
P(B) . If two events A and B are independent it holds that P(A|B) = P(A).

Two important parts of the probability theory for this thesis are the Bernoulli process respectively the

Bernoulli distribution and the Chernoff bound.

The idea behind the Bernoulli distribution B(n; p;k) is to determine the probability of occurrence of

k hits for an experiment within n trials. In one experiment, the probability for such a hit is p. The

probability for a miss is q = 1− p. Different experiments are independent of each other. The for-

mula that describes this distribution is B(n; p;k) =
(

n
k

)
· pk · (q)n−k with

(
n
k

)
= n!

(n−k)!·k! and n ≥ 0.

n! = n · (n−1) · ... ·2 ·1 is a notation for factorial. A special case is 0! = 1.

The expectation E[X] = n · p of the Bernoulli distribution with the random variable X is a value

that tells how many hits are expected in mean.16 For the expectation of two Bernoulli processes,

E[X +Y] =E[X]+E[Y], holds the so-called linearity of expectation.

The Chernoff bound [44, 45] describes the probability for a sequence of independent Bernoulli pro-

cesses X1,X2, ...,Xn to be a multiplicative factor (1+δ) away from the expectation µ . The probability

for a hit is P[Xi = 1] = p for each Xi (i = 1, ...,n).The probability for a miss is P[Xi = 0] = 1− p = q.

The expectation value is µ = p ·n which describes the number of expected hits (Xi = 1).

Chernoff bound
Let X1,X2, ...,Xn be a sequence of n independent Bernoulli processes (or random variables).

P[Xi = 1] = p, P[Xi = 0] = q and µ = p ·n = E[
n
∑

i=1
Xi].

Then it holds for all δ > 0 : P[
n
∑

i=1
Xi ≥ (1+δ) ·µ]≤ e−

min{δ ,δ2}
3 ·µ .

Furthermore it holds for all δ ∈ [0,1] the following can be occurred: P[
n
∑

i=1
Xi ≤ (1−δ) ·µ]≤ e−

δ2
2 ·µ .

The Chernoff bound is often used in computer science to analyze randomized algorithms. The Xi

are random variables which can happen with a probability p (Xi = 1) and do not happen otherwise

(Xi = 0). This will also be the case in the proof in Section 4.5.

16It is also possible to construct distributions where the expectation will never show up. In this thesis this is not explained
in detail because it will be of no interest in the proof in Section 4.5.

CHAPTER 2. BASICS 17

2.15 Summary

Graphs are a useful abstraction to model many problems. Because of the diversity of the graph model

many applications and algorithms have been developed for this model in the past: BFS, SSSP, MST,

Euler-Tour and others. In many cases it is possible to use more than one algorithm on a given graph

to compute the information which should be extracted in a few more computation steps. One example

will be the approach in this thesis which will be based on BFS and SSSP.

Due to the fact that an access to the disk is very costly, the external-memory model has been developed

by Vitter and Shriver, which is widely accepted. Two important basic algorithms are used as access

pattern for external-memory algorithms: scanning with I/O complexity O(n/B) and sorting with I/O

complexity O(n/B · logM/B (n/B)), where B is the block size and M the size of main memory. Many

of the presented algorithms have been implemented in this model in a efficient way. But for other

popular algorithms like DFS there are no implementations that are faster than I/O-complexity of Θ(n)

for spare graphs [46].

18 CHAPTER 2. BASICS

Chapter 3

State of the Art

In this chapter various techniques will be described to approximate the diameter of a graph. As basic

concepts double sweep lower bound and other simple BFS based heuristics will be described briefly

for lower bound. Then a heuristic for an upper bound by Crescenzi et al. [2] will be introduced. Fi-

nally, an existing external-memory diameter approximation will be presented. The approach presented

in Chapter 4 will have to compete with the existing external-memory heuristic (see Chapter 5).

3.1 Double sweep lower bound

As described in Section 2.4, with a single BFS the diameter can be approximated in the interval

DBFS ≤ D ≤ 2 ·DBFS. The diameter DBFS of the BFS tree depends on the randomly chosen start

vertex s. To improve the diameter of the BFS tree a second BFS is executed with a new start vertex s′.

s′ is a vertex at farthest distance from s. This heuristic is called double sweep lower bound, or short

dslb [47, 21].

Crescenzi et al. [2] showed that the error of the resulting diameter of the second BFS can also be bad,

but not as bad as the trivial bound calculated with one BFS. Their results show that for many practical

cases the dslb is, in fact, very tight. There are many existing graph classes for which the dslb is equal

to the exact diameter. This is the case for lists, grids and many other regular structures.

A worst case graph in [2] is constructed in the following way (see Figure 3.1):

• Grid with k rows and 1+ 3
2 k columns. All vertex pairs with Euclidean distance at most

√
2 are

connected.

• p additional vertices x1,x2, ...,xp with p� k. These vertices are connected to all neighbors of

the middle point of the upper row.

• One additional vertex y which is connected to the middle point of the lower row.

With a high probability one vertex out of the set x1,x2, ...,xp is chosen as start vertex for large p. y

will be the vertex with highest distance to any xi. The height of the BFS tree of y will be k+1, but the

diameter is in fact 3
2 k.

19

20 CHAPTER 3. STATE OF THE ART

Figure 3.1: One possible input for which the bound of dslb is not tight [2].

3.2 Heuristics for computing an upper bound

In this section three heuristics to find an upper bound for the diameter of a graph G are presented.

These three heuristics are described in [21].

Tree upper bound: As noticed before, the diameter of a spanning tree T can be a very bad ap-

proximation of the actual diameter of a graph G. Nevertheless, the diameter of a spanning tree T can

not be smaller than the diameter of G. A spanning tree can be computed very fast in internal-memory

as well as in external-memory. [21] claim that this bound is always better than the corresponding

trivial upper bound by computing a single BFS and taking the upper bound as two times the height of

the BFS tree.

Highest degree tree upper bound: Vertices with a high degree are likely to produce BFS trees with

a small diameter. The vertices are sorted in descending order and the vertex with highest degree is

chosen as source for a BFS. By using more and more high degree vertices as start vertex for a BFS

the upper bound gets more tight. “This is motivated by the fact that real-world complex networks are

known to have some vertices with very high degree[...]” [21].

The quality of this approach depends on the number of iterations. The results of the experiments

from [21, Table 1] show that highest degree tree upper bound needs less iterations for tight bounds

compared to tree upper bound, e. g. 34 iterations versus 1572 for a web graph.

Random tree upper bound: Similar to highest degree tree upper bound. Iteratively BFS from differ-

ent sources are computed. Sources are not chosen by a special criterion but randomly. In many cases

CHAPTER 3. STATE OF THE ART 21

this method needs more iterations than using the degree as selection criterion.

3.3 Fringe: improved upper bound heuristic

Crescenzi et al. developed a new heuristic to compute an upper bound of the diameter, which was

implemented as an internal-memory approach in [2]. In the beginning some definitions are required:

• G = (V,E) is an unweighted and undirected graph. Also, it is assumed that G is connected.

Otherwise the largest component of G is considered.

• Let ecc(u) = maxv6=udistance(u,v) be the eccentricity of u ∈V . If u is the source of a BFS tree,

ecc(u) is the height of the tree.

• Tu is the BFS tree rooted at u and 2 · ecc(u)≥ diameter(G).

• The fringe of u, denoted as F(u), is the set of vertices v ∈V such that distance(u,v) = ecc(u).

• B(u) = maxz∈F(u)ecc(z)

• The upper bound is defined as U(u), computed by the fringe algorithm.

• U(u) =


2 · ecc(u)−1 i f |F(u)| > 1 and B(u) = 2 · ecc(u)−1

2 · ecc(u)−2 i f |F(u)| > 1 and B(u)< 2 · ecc(u)−1

diameter(Tu) otherwise

• Let r be a random source of a BFS. Furthermore let a be a source for a second BFS with

maximum distance to r. Finally, let b be is a vertex with farthest distance to a.

With these components the Fringe algorithm works the following way:

1. Let r, a, and b be the vertices identified by double sweep method (using two BFS).

2. Find the vertex u that is halfway along the path connecting a and b inside the BFS-tree Ta.

3. Compute the BFS tree Tu and its eccentricity ecc(u).

4. If |F(u)|> 1, find the BFS trees Tz ∈ F(u), and compute B(u):

– If B(u) = 2 · ecc(u)−1, return 2 · ecc(u)−1.

– If B(u)< 2 · ecc(u)−1, return 2 · ecc(u)−2.

5. Return the diameter diam(Tu).

Crescenzi et al. noticed that in practice |F(u)| is reasonable small. One iteration of the fringe algo-

rithm needs |F(u)|+3 times BFS [2, Theorem 1]. In internal-memory this might be acceptable but for

disk-based algorithms this is not feasible. Nevertheless, in many cases the fringe algorithm can help

to find the exact diameter with less iterations BFS than brute force with a BFS for each vertex. During

their experiments Crescenzi et al. discovered that in many cases the lower bound (dslb) is equal to

22 CHAPTER 3. STATE OF THE ART

their upper bound (Fringe), which can be only be the case if the lower bound is tight (compare Sec-

tion 3.1).

The only disadvantage is that Fringe probably needs many Breadth-First Searches if |F(u)| is large

and sometimes Fringe does not find a tight upper bound. In fact there have been cases, in which about

one thousand iterations were needed to find a tight bound equal to the dslb. However, the results of

Fringe are usually better compared to the results of the heuristics in Section 3.2.

In this thesis the Fringe algorithm will be applied to compute an upper bound on graphs used for

testing.

3.4 External-memory spanning tree heuristics

In her thesis, Brudaru developed [35] heuristics based on the idea of computing a spanning tree first

and then refining it. The target was to develop an external-memory approach with less than O(n/
√

B)

I/Os that BFS would need for a single computing step. Computing a minimum spanning tree can be

done with an I/O complexity of O(sort(n)) for sparse graphs (m = O(n)). The problem is that the

diameter of the MST can be arbitrarily bad compared to the actual diameter (compare Section 2.10).

However, a MST can be used as starting point for the approximation of a BFS tree for the chosen

source with less I/Os.

There are two main possibilities to refine the tree iteratively:

• lazy refinement of the tree: search for better local connections and update the information in

the end of each iteration.

• Greedy refinement of the tree: search for better local connections and update the information

during the iteration.

The greedy refinement is implemented as follows: the height hi+1(u) of a vertex u in the iteration

i+ 1 is initialized with the height hi(u) from the previous. Then, the height is updated by scanning

the edges of the original graph and the heights from the previous iteration in ascending order to

update the subgraph downwards and then in descending order the update the graph upwards. To send

the information of an update to another vertex, the time-forward-processing strategy [48] and the

external-memory priority queue from STXXL is used.

A possible way to improve this approach for diameter approximation, is to use a technique similar

to dslb by finding a source with farthest distance to the randomly chosen source of the MST with an

Euler-Tour in sorting complexity to improve the height of the tree and therefore the approximation

ratio.

Chapter 4

Parallel clustering growing approach

In the previous chapter, some approaches like double sweep lower bound or the Fringe algorithm

by [2] based on BFS have been introduced. As mentioned before, these approaches are not viable for

large data sets, because in the worst case they would lead to an I/O complexity of Ω(n√
B
) for sparse

graphs. The heuristic in Section 3.4, based on spanning tree computation, also has high constants.

Furthermore, it is unclear how many iterations of refinement are needed for an input graph G.

Therefore, this chapter will introduce a new heuristic. This heuristic is based on the ideas in [6].

In this paper two approaches are introduced, which will be presented in the following section. The

second approach will be used later for implementation.

4.1 Theory

4.1.1 Euler-Tour based approach

In this subsection, the approach in [6] based on the preprocessing of MM-BFS will be presented. The

preprocessing is used to shrink the graph before a BFS is executed on the shrunken graph.

The implementation of MM-BFS (refer to Section 2.9) uses the following steps as preprocessing:

• Compute a MST.

• Build an Euler-Tour on the MST.

• Split the vertices into sets of length k (chunk size) on the Euler-Tour output and remove dupli-

cates.

• Use this information to create files for the hotpool.

These steps can also be used for shrinking the graph and doing a BFS on the shrunken graph after that.

Instead of building files for the hotpool, all vertices in the same set can be shrunken to one vertex. The

number of vertices is reduced from n to Θ(n/k). On sparse graphs with m = Θ(n) and k = Θ(B), an

23

24 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

I/O complexity of sorting can be reached if the randomized MST algorithm is used.

Afterwards BFS is computed on the condensed graph. The approximated diameter is twice the height

of the BFS tree. Generally, an I/O complexity of O
(√

n
k · (

n
k +m)
B + sort(n

k +m)+ST (n
k ,m)

)
can be

obtained for the BFS computation. ST (n
k ,m) is the I/O complexity of the spanning tree.

The weakness of this approach is the expected multiplicative error of this approach. It is Θ(k) in the

worst case. This is because BFS only computes distances on unweighted graphs. Each chunk could

have a length of Θ(k). This is reduced to an edge with weight 1. The sum of the diameter determining

path length would be smaller by a factor Θ(k). Hence, the parallel clustering growing approach

has been developed to shrink the input to a weighted condensed graph for a better approximation

guarantee.

4.1.2 Parallel clustering growing approach

This approach uses a parallel BFS computation to shrink the graph G into a graph G′.1 The shrunken

graph G′ has weighted edges. After condensing the graph, a SSSP is computed to determine the

distances between the vertices.

• Choose master vertices uniformly and independently with probability 1/k.

• Build an Euler-Tour of graph G and choose each k-th vertex being a master (if the vertex has

not been selected as a random master yet).

• Run a local BFS from each master vertex “in parallel”. This can be done by O(k) scanning and

sorting steps. The vertices of the level t − 1 are stored in a sorted vector. The edges will be

scanned and for each unexplored vertex v being a neighbor of a vertex u in the level t− 1, the

vertex v will be marked as a member to the cluster of u. Note that the I/O complexity depends

on the size of k.

• When all vertices have been reached by a master vertex through the local BFS, compute the

weight of the edges between clusters. The clusters are represented by their masters and therefore

the weight of an edge is the shortest path between the two master vertices.

• Compute the distances between the master vertices with SSSP.

This approach has an expected multiplicative error of O(
√

k) instead of O(k). The ideas of the proof

in [6] will be discussed at the end of this section. The random master vertices are chosen to guarantee

this bound. The deterministic chosen masters guarantee that there is no vertex left with a distance

greater than k to a master vertex.

The parallel BFS step to construct G′ with deterministically and randomly selected master vertices

has an I/O complexity of O(k · scan(n+m)+ sort(n+m)+ST (n,m)).2 The spanning tree is needed

1In [6] G′ is named G′′k
2Compare lemma 2 in [6]

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 25

to determine the set of deterministic master vertices.

The parallel cluster growing itself has an I/O complexity of O(k · scan(n+m)+ sort(n+m)). Each

non-master vertex has distance of at most k− 1 to a master vertex. Thus, the adjacency lists have to

be scanned k−1 times. During the scanning of the adjacency lists, O(sort(n+m)) I/Os are needed in

total for fringe vertices and to sort neighbor vertices. The Euler-Tour is hidden in the sorting term as

an additional constant.

After producing the weighted graph G′ with a few more sorting and scanning steps the final distances

between the master vertices can be computed. Now G′ can be used as input for SSSP with which

the diameter can be computed. The I/O complexity over all including the SSSP is O(n ·
√

log(k)
(k·B) +

k · scan(n)+ sort(n)) for sparse graphs. For this bound, the I/O complexity of the SSSP by Meyer

and Zeh is assumed [43].

In Section 4.2, its predicted implications will be discussed. Also, the choice of a start vertex s for the

SSSP will be described.

Sketch of the proof of the expected approximation bound O(
√

k):

The proof in [6] was split into two parts, the case that diameter DG is smaller or equal 2 ·
√

k and

the case that it is greater than 2 ·
√

k.

For the case DG ≤ 2 ·
√

k, the argument is that each shortest path P = w0, ...,wDG in G has at most

2 ·
√

k edges. Each vertex Wi could be matched to a different cluster in G′. Even if each master is as

far away from the respective vertex on P as possible, it can be at most a distance of 2
√

k as that is the

bound on diameter in G. Hence, the diameter in G′ is bounded from above by 4 ·
√

k ·DG.

For the case DG > 2 ·
√

k the argument is as follows. Now, the path P is split into sub-paths P′i .

Each sub-path has between
√

k and 2 ·
√

k edges. In [6] each sub-path is considered separately. With

the argument that each sub-path will be reached by the nearest master in at least t ≤ k steps, the argu-

ment is that the length of a detour for a sub-path is bounded by O(k) and the linear expectation of the

sum over the expected detours of all sub-paths, the ratio of the diameter in G and G′ is bounded by

O(
√

k) with high probability. Hence, the diameter can be increased by a factor of O(
√

k) with high

probability.

4.2 Implementation details

In transforming this algorithm into a practical implementation, the following issues needed to be

solved:

1. Which master vertex should be the start vertex s for the SSSP?

2. Is one execution of SSSP with one start vertex s enough? Is a set of start vertices v ∈V needed?

26 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

Due to the fact that no information about the input graph or the condensed graph is available, a ran-

domly selected start vertex s is used first.

The answer to the second question is implied by the answer to the first one. The height of the SSSP

tree with the random source s as root is at least half of the diameter of the condensed graph. Never-

theless, a deeper (SSSP) tree can often be found by using the double sweep lower bound technique as

for BFS (compare Section 3.1). Hence, a second SSSP with a start vertex s′ is executed. s′ is a vertex

in V with largest distance to the randomly chosen start vertex s. This is affordable because the SSSP

is executed on a significant smaller graph.

Note that the resulting largest path is not the final result. An error correcting variable d has to be

added twice. The value of d is the largest distance of any vertex v ∈ V to its master vertex. If all

vertices are selected as master vertices, the value of d = 0. Otherwise d is between 1 and k, if the

deterministic master vertices ensures the largest distance of at most k for each vertex v∈V to a master

vertex. Without the correcting factor d the result would be smaller than the height of the BFS tree

with s′ as root in the original graph G.

The Figures 4.1 and 4.2 give a visual proof sketch for the necessity of adding d twice to the result of

the condensed graph G′.

0 1 2 3 4 5 6 7

Figure 4.1: The blue colored vertices should be master vertices. The value of d is 2 in this case.

2 3 4 5

Figure 4.2: The condensed graph has a diameter of 3.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 27

4.3 Internal-memory implementation

4.3.1 Aims

Before the implementation of an external-memory version, an internal-memory prototype has been

developed. This prototype had the task to check if the ideas in [6] are practically viable. Working with

hard disks makes testing very difficult and slow. Therefore the prototype does not use the STXXL and

is not designed for arbitrary large data sets but to work on the HPC cluster at Goethe Universität. The

acronym HPC stands for “High Performance Computing”. The prototype is written in C++3.

4.3.2 The implementation details

The prototype works with the same input type as the Fringe algorithm presented in [2]. Their appli-

cation accepts two types of inputs: nde-text-file and nde-binary.4 The first entry in a nde file is the

number of vertices n. Then follows for each vertex v0,v1, ...,vn−1 a pair of values (vi, degree of vi).

The degree is the number of connections from the vertex to other vertices. After that the rest of the

file stores pairs of vertices u and v with u,v ∈ V as the edges. A graph stored in a nde-file does not

guarantee that the graph is connected.

To work with other test data than the graphs collected in [2], a converter converting graph data, gen-

erated by the external-memory BFS implementation presented in [27], into the above format has been

written.

After reading the input the prototype tests the connectivity of the input graph. In the case that the

graph is not connected the largest component is selected (compare Section 2.2). Afterwards the mas-

ter vertices are selected on the regarded input data G uniformly and independently with the probability

µ = w/n, where w denotes the number of desired master vertices.

In the implementation, no deterministic master vertices are selected. Therefore, the maximum dis-

tance between master vertices is not bounded. There are two reasons for this decision. Firstly, the

probability that the maximum distance between randomly chosen master vertices differs much from

the distance ensured by the deterministic masters is not very large. Secondly, it is of interest if this

preprocessing step can be saved in practice. Also, the size of the condensed graph is smaller. This is

also important for the external-memory implementation.

The selected master vertices are used as starting points for a parallel clustering of the graph G. This

is implemented similar to BFS. Each master vertex is marked and queued in a queue Q. All other ver-

tices are unmarked. After that each master vertex is dequeued again in one loop step. All neighbors

v of the dequeued master vertex, which have not been marked before, are marked as a member of the

3Compiled with g++-4.4 in C++0x mode. More details in Section 5.2.
4The graphs in the nde-files are collected by the authors of [2] and can be found on

http://diameter.algoritmica.org/networks

28 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

cluster of the related master vertex. After that the newly marked vertices are stored in the queue. If

two vertices can add the same vertex v to different clusters, the vertex with smaller index marks v as a

member of its cluster.5 After all master vertices have been dequeued, the vertices with distance 1 are

dequeued and so on until the queue is empty which means that all vertices have been marked.

Algorithm 5 Parallel clustering code in C++ of the prototype
//visit neighbors and build cluster

while (!Q.empty()) do

//ClusterNode contains the label of the vertex and its references to the adjacency list

ClusterNode tmpNode = Q.front();

Q.pop();

if (tmpNode.begin <= tmpNode.end) then

unsigned int new_master = whoIsMaster [tmpNode.node];

unsigned int neighbor_distance = Master_distance[tmpNode.node];

//consider neighbors of element: if anyone has no cluster => add to cluster of element

for (unsigned long i=tmpNode.begin; i<=tmpNode.end; i++) do

unsigned tmp_target = inputEdges[i].target;

if (Master_distance[tmp_target] == 0 && isMaster[tmp_target] == false) then

//neighbor gets the same master and distance + 1

whoIsMaster[inputEdges[i].target] = new_master;

Master_distance[inputEdges[i].target] = neighbor_distance+1;

Q.push(inputNodes[inputEdges[i].target]);

end if

end for

end if

end while

After each vertex v ∈ V belongs to a cluster C(v), the distances between the connected clusters are

computed. Each neighbor u of v is checked if it belongs to a different cluster C(u). If this is the case

the distance between C(u) and C(v) is the distance from u to its master d(u) plus the distance from v

to its master d(v) plus one for the edge between u and v. Hence, the distance between C(u) and C(v)

is d(C(u),C(v)) = d(u)+1+d(v). After the distances between the clusters are computed, duplicates

are removed. Only the connection between two clusters with shortest distance is kept. The related

C++ code to the distance calculation is listed in Algorithm 6.

5In [6] it was mentioned that an arbitrary master wins if there is a conflict.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 29

Algorithm 6 Calculate the distances between all connected clusters. During the calculation the largest
distance of a vertex to its master is stored in max_distance.

//go through all vertices V

for (unsigned long i=0; i<inputNodes.size(); i++) do

//take the biggest distance of the distances between a vertex and its master

max_distance = std::max(max_distance,Master_distance[i]);

//consider neighbors of v

for (unsigned long j=inputNodes[i].begin;j<=inputNodes[i].end;j++) do

unsigned int neighbor = inputEdges[j].target;

//if master nodes differ

if (whoIsMaster[i]!=whoIsMaster[neighbor]) then

//insert tuple (Master_smaller, Master_bigger, Dist) into vector

ClusterEdge tmpM_Edge;

if (whoIsMaster[i]<whoIsMaster[neighbor]) then

tmpM_Edge.source = whoIsMaster[i];

tmpM_Edge.target = whoIsMaster[neighbor];

else

tmpM_Edge.source = whoIsMaster[neighbor];

tmpM_Edge.target = whoIsMaster[i];

end if

tmpM_Edge.weight = Master_distance[i]+1+Master_distance[neighbor];

masterDistances.push_back(tmpM_Edge);

end if

end for

end for

After the clustering and the calculation of the distance the cardinality of the number of vertices is not

n but approximately the desired number of master vertices w = Θ(n/k). The labels of the remaining

vertices are mapped into the new interval (1 to Θ(w)) with two scanning and sorting steps. For a

more efficient use of memory the edges in Algorithm 6 were only stored in one direction. The other

direction to construct an undirected graph is added before doing the SSSP computation, which means

that the edge list has to be sorted again. The last step, before the SSSP can be computed, is to build

an address list for the adjacency lists for each master vertex. The adjacency list of each vertex v starts

in the position where an entry (v,?) occurs first and ends where (v,?) occurs last in the sorted edge list.

In a final step the SSSP algorithm is executed with a random start vertex s and then with a second

30 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

start vertex s′ with farthest distance to s.6 Because of the fact that the priority queue of the STL (Stan-

dard Template Library) in C++ does not support the operation decrease key each new shorter tentative

distance is inserted into the queue. If the delete min operation returns a distance value d(v) that is

taller than the current saved tentative (or final) distance for a vertex v, d(v) will be ignored.

To verify the distances, computed by the SSSP algorithm, a method has been written to check the

correctness of the output with the following rules (similar to [49]):

1. The source s has distance d(s) = 0.

2. ∀e = {u,v} ∈ E : |d(u)−d(v)| ≤ c(e). With c() the edge weight is denoted.

3. ∀u ∈ V with u 6= s: There is at least one edge {u,v} with v adjacent to u so that the distance

d(u) of u is equal to the edge weight c({u,v}) plus the distance d(v) of v. This only holds if the

graph G is connected. Vertices which are not connected to the subgraph including s will have

an infinite distance to s.

The distance d(s) of s is zero by assumption.

For the second rule: if difference of the distance of two adjacent vertices u and v to s is greater than

the edge weight c({u,v}), the computed final distance of d(u) or d(v) is not as small as possible.

Proof. Without loss of generality let d(u) < d(v). Assume the distances d(u) and d(v) are final and

that the distance d(v) of v is greater than d(u)+ c({u,v}). Then the path from s over u to v with the

edge {u,v} would result in a smaller path length. That is a contradiction to the assumption that the

distances of u and v are final. Therefore, the final distances of u and v cannot differ by more than the

edge weight c({u,v}).

While the second rule checks that there is no obvious option to shrink the length of a path by using an

edge to a neighbor, the third rule ensures that each vertex u ∈V has a neighbor v on the path from s to

u with distance d(u) = d(v)+ c({u,v}). If the shortest path from s to u is the edge {s,u} this rule is

correct, too. It holds that d(s) = 0 and then d(u) = c({u,s}). The third rule ensures the existence of a

vertex v ∈V with {u,v} ∈ E so that the distance of u is the distance of v to the source s (if v is not the

source itself) plus the edge weight c({u,v}) of the edge {u,v}.

Although it is very simple to see that these rules are necessary, here is a proof to show that its also

sufficient.

Proof. Set d(s) = 0. Compute the distances d(v) for all vertices v∈V with v 6= s. Also for each vertex

v, save its shortest path from s to v. These paths can be saved in a SSSP tree ST .

Construct ST in the following way:

6Compare description in Section 4.2.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 31

Each vertex v has an entry (parent_id,distance) in an array parent. The entry parent[s] is the pair

(s,0) that marks s being the root of ST . For every other vertex, create an entry in the parent array

(null,∞). During the execution of the SSSP algorithm replace the entry of a vertex v in the parent

array with the pair (u,d(v)), when the tentative distance d(v) of v is decreased by vertex u with the

edge {u,v} ∈ E.

After the construction of ST , it holds for each vertex v that the corresponding entry in parent is the

pair (u,d(v)) where u is the vertex before v on the path from s to v and d(v) is the shortest possible

path length from s to v.

The path from s to v can be constructed backwards now via pi = parent[v] until an i where pi is

parent[pi] which means that pi = s. The distance between each consecutive pair of vertices (pi, pi+1)

on the path backwards from v to s is c({pi, pi+1}) = |d(pi+1)−d(pi)|.
That means that there is at least one vertex u ∈ V such that d(v) = d(u)+ c({u,v}). This is ensured

by rule three.

As a final step it has to be checked if there is no other possible parent p′ for each vertex v 6= s which

has shorter distance to s. By construction the distance of v to its parent should be the smallest possible.

It has to be verified that with testing each other possible parent p′. Only vertices u that are adjacent to

v ({u,v} ∈ E) could be such a parent p′ of v. If there exists such a parent p′ the SSSP tree ST is not

correct. If there exists no p′ for any vertex v the SSSP tree is correct.

The argument of correctness can be easily proved by induction. If the children of s in ST have no better

parent and if the grandchildren of s have no better parent etc., ST represents an optimal solution. But

this is the case when there exists no parent p′ for any vertex v. The second rule ensures that.

The result of the SSSP algorithm as a set of distances is equivalent to the result of the SSSP tree

ST .7 With the presented set of rules for ST it is possible to verify if ST is correct. Therefore these rules

are sufficient to verify that the output of an arbitrary SSSP algorithm is correct as long as the weights

are not negative.

4.4 External-memory implementation

For the development of the external-memory application the structure of the prototype was taken as

a pattern. For reading the input data existing methods of the BFS implementation by [27] were used.

The structure of the input file is a binary edge list. That means that two consecutive entries of x bytes

are defined as an edge. The value of x depends on the corresponding type for the vertices. For example

if the node type is an integer, then x = 4 which means that 8 consecutive bytes are an edge.

The graph is stored in an instance of the graph class which was also used in the implementation

by [27]. The edges are stored in ascending order in an adjacency list, the STXXL vector edgeVec

7Construction: ∀v ∈V : create a pair (u,d(v)) with u being an adjacent vertex with d(v) = d(u)+ c({u,v})

32 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

*_adj_vec. To access its adjacency list each vertex needs to know where its edges are stored in this

vector. Hence, there is a second STXXL vector nodeVec *_node_vec that stores the position where

the adjacency list of the corresponding vertex starts. The end of the adjacency list of vertex vi is the

start of the adjacency list of vertex vi+1. For i = n− 1 the end of its adjacency list is marked by a

dummy vertex at the end of the vector.

Thereafter the clustering method is called. In this method the graph will be condensed.

The method for shrinking the graph was implemented by Ajwani et al. earlier. It is based on the

preprocessing method for external-memory implementation of BFS [27]. It works as follows: Each

vertex is a master vertex with probability µ = w/n, where w is the number of desired master vertices

and n the total number of vertices. Each master vertex is assigned now to its own cluster. This is saved

in an extra information – a label for the cluster. Thereafter the remaining vertices will be scanned

until each vertex, not being a master, has a cluster label. Every time a cluster label is assigned to a

vertex, an edge (cluster label source, cluster label destination, distance) is added to the output vector.

No deterministic master vertices are selected for the same reasons as explained in Subsection 4.3.2.

The output of the clustering is not sorted, contains duplicates with different weights and edges are

not necessarily saved in both directions. Therefore, two scanning and two sorting steps are needed to

sort the data, remove duplicates and then ensure that only the smallest edge weight is used. The sorted

vector with edges is the edge list for the SSSP.

After creating an input for SSSP there are two choices: use internal memory SSSP like in the proto-

type or the semi external-memory SSSP by [1]. The SSSP implementation of the prototype has the

advantage that it is fast compared to the semi external-memory SSSP. But it is unclear if the condensed

graph is small enough to fit into main memory. Therefore, both possibilities have been implemented.

If the condensed graph fits into main memory, the internal-memory SSSP is used. Otherwise, the semi

external-memory SSSP is used.

If the data does not fit into main memory, it is saved into two files for executing the semi external-

memory SSSP. One contains the edges without the weights and the other file contains only the edge

weights. The file with the edges will be load by the external-memory BFS code [27] and only the first

phase will be executed. In this phase each vertex is assigned to a cluster. The cluster label is saved

into a new output file with the edge information.

As a last step the semi external-memory SSSP is executed with the output file from the first phase

of external-memory BFS and the edge weight file. The semi external-memory SSSP has been adapted

to work with the second file. In the original version the edge weights were generated randomly in an

interval [1,k]. Now each edge weight has to be assigned to its corresponding edge again. This is done

with a few scanning and sorting steps.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 33

The edges are stored in the order of the clusters. To assign the weights to their corresponding edges a

temporary vector is created. Each entry of this vector looks as follows: (vi, v j, weight, position). First

the edges are read. They will be copied with their position in the clustered order. Then the temporary

vector is sorted by the first two entries Vi and v j. The weights are assigned with a scan. After that the

temporary vector is sorted by the position. As a last step, the temporary vector is scanned again and

the weights are inserted into the vector for weights. The idea is equivalent to the idea of Algorithm 3

in Section 2.7.

The semi external-memory SSSP is executed two times like the internal-memory SSSP with two dif-

ferent sources s and s′ with d(s′) maximal to s.

Input: edges stored
in a binary file.

Mark each
vertex being

a master with
probability w/n.

Shrink graph
until only master
vertices are left.
Save value of d.

Shrunken graph fits
into main memory?

Execute an
internal-memory

SSSP with random
source s. Choose

a new source
s′ with largest
distance to s.

Execute a second
internal-memory

SSSP with s′.

Largest distance
d(v) of a vertex
v to s′ + 2 · d
is the approxi-

mated diameter.

Save weights
and edges in

separated files.

Execute the first
phase of EM-BFS

(deterministic
approach with

Euler-Tour). Save
edges in the order

of clustering.

Execute semi
external-memory

SSSP with a
random source

s. Choose a new
source s′ with

largest distance
to s. Execute a
second SSSP in
semi external-

memory with s′.

yes

no

Figure 4.3: Flowchart of the external-memory implementation.

34 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

4.5 Recursive approach

Switching between the internal-memory SSSP or the semi external-memory SSSP version is not sat-

isfying because the semi external-memory SSSP increases the I/O complexity much. If it would be

possible to shrink the condensed graph again at reasonable cost, the new approach could be applied

recursively. Unfortunately, the condensed graph has weighted edges. Considering the edge weights

for clustering would lead to a similar problem as using BFS for weighted graphs instead of SSSP

(see Section 2.12). The benefit of the recursive approach is that the sum of the I/O complexity of all

recursion steps is smaller than the I/O compliexty of one huge clustering step. The I/O complexity of

a clustering step is related to the size of d. Θ(d) sorting and scanning steps have to be done. During

the clustering, the data is shrunken. Therefore, the next clustering step will be computed faster and so

forth. The I/O complexity can be reduced to Θ(log(B) · (scan(n)+ sort(n))) with recursion.

A way to construct a recursive approach, is to ignore the edge weights while shrinking the graph again.

Select about w′ master vertices, where w′ denotes the desired number of master vertices for the next

step, and apply the clustering like before. The distance of a new cluster member v reached by u is

not d(v) = d(u)+1 any more but d(v) = d(u)+ c({u,v}). The same rule is applied for the distance

between the clusters: d({C(u),C(v)}) = d(u)+ c({u,v})+d(v).

As a proof of concept, the prototype of the internal-memory implementation was adapted first. After

the first results were promising, the external-memory BFS preprocessing was adapted so that it can

shrink a graph with arbitrary edge weights. Thereafter, the external-memory approach was improved

to a 2-step approach. To this end, a method for building a new graph instance out of the clustering

output was written. After the clustering is done, the two scanning and sorting steps are computed to

organize the output of the clustering again as after the first clustering step (compare 4.4). The rest of

the code is similar to the single step external-memory approach.

While the implementation of the recursive approach itself was not that difficult, identifying a non-

trivial upper bound for the expected error for this approach was difficult. It is easy to see that in worst

case the expected error for this approach is O(k) for the second step. The expected error of the first

step stays O(
√

k) like before.

Before the proof of a lower bound for the expected error of the recursive approach is discussed in

more detail, first a proof of an upper bound for the expected error of a weighted graph as input for the

first phase is presented.

Proof. Assume a graph G being a linked list of the length k. All edges have the weight 1, except those

edges at the beginning and at the end of the list, which have weight k. Now add to each vertex of the

list except at the beginning and the end of the list a new vertex and an edge with an edge weight k (see

Figure 4.4). The diameter of G is now 2 · k+ k−2 = 3 · k−2.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 35

If such a graph is shrunk with around a half of the vertices being selected as a master vertex, the

diameter of G will be O(k2) with high probability. This is because a constant fraction of the added

vertices will be selected as master vertices with high probability and then the distance to other clusters

could be Θ(k) with high probability. The expected multiplicative error is Θ(k) instead of Θ(
√

k) for

this example. Figure 4.5 visualizes such a case.

...1 1k k

k k k k

Figure 4.4: A weighted graph as an input where the clustering approach produces an error of Θ(k).

v0 v1 v2 v3 v4 ... vn−5 vn−4 vn−3 vn−2 vn−1

v′1 v′2 v′4 v′4 v′n−5 v′n−4 v′n−3 v′n−2

1 1 1 1 1 1k k

k k k k k k k k

Figure 4.5: The colored vertices are selected as master vertices. A fraction of the vertices v′i connected
to the list are selected as master vertices. If the related vertex vi in the list is not selected as a master
vertex, the master vertex at v′i blows up the diameter by the edge weight k.

For a lower bound of the worst case scenario for the recursive approach the fact that the expected error

for the first iteration is bounded by O(
√

k) has to be regarded. Therefore a graph structure has to be

found that is bad in the first iteration and also in the second. The best non-trivial lower bound for two

consecutive clustering steps which was found so far is O(k4/3−ε) with high probability.

Theorem: A lower bound for two consecutive clustering steps is O(k4/3−ε) with high probability.

Proof. The graph construction for the lower bound is based on a few subgraphs which will be reused

several times.

• x-fan: a vertex v is connected to x vertices, so that {v,vi} ∈ E with 0 ≤ i ≤ x− 1. These x

vertices are only connected to v. See Figure 4.6.

• x-doublefan: similar to the x-fan. But now each vertex vi with 0 ≤ i ≤ x−1 is also connected

to another vertex wi and each wi is connected to a set of vertices zi j with 0 ≤ j ≤ x− 1. See

Figure 4.7.

36 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

• side chain block: the vertex u in the middle of the horizontal line is connected to a list of k1/3

vertices vi to the right and to the left. Each vi has x children (x-fan). Vertex u is also connected

to another list of length k5/3−ε . The last vertex of the latter list is the root v′ of an x-doublefan.

See Figure 4.9.

• basic block: The basic block is constructed via connecting k1/3 side chain blocks. The first side

chain block is also connected to a list of k2/3 x-fans to the left. The end of this list is connected

to an x-doublefan. The last side chain block on the right is similar. See Figure 4.10.

• Ω(x)-fan: The Ω(x)-fan is the x-doublefan after it was shrunken in the first phase. Although

the structure of this subgraph is randomly determined, it will be similar to an x-fan with high

probability. See Figure 4.8 for a possible shape of the Ω(x)-fan.

v

v0 v1 ... vx−2 vx−1

Figure 4.6: The x-fan.

v

v0 ... vx−1

w0 wx−1

z0,0 ... z0,x−1 zx−1,0 ... zx−1,x−1

Figure 4.7: The x-doublefan.

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 37

v

...

Figure 4.8: A possible shape for the Ω(x)-fan. The shape of the Ω(x)-fan is not fixed.

... u ...

...

x-fan x-fan x-fan x-fan

x-doublefan

k1/3 k1/3

k5/3−ε

connection edge

Figure 4.9: A side chain block.

x-doublefan x-doublefan

x-fan x-fan x-fan x-fan

k2/3 k2/3

...

k1/3 side chain blocks

Figure 4.10: A basic block.

The input graph G is obtained by connecting y basic blocks for global diameter O(y · k2/3 + k5/3−ε).

For sufficiently large y the first term dominates. Let x be Ω(k · log(n)). Choose master vertices with

probability 1/k for the first round. Note that an x-doublefan will turn into an Ω(x)-fan with probability

38 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

pxd ≥ 1−P(“root of the x-doublefan is selected as a master”) = 1− 1
k = k−1

k . For sufficiently large k

the probability that the root of an x-doublefan is selected as a master is almost zero.

After the first shrinking with high probability each basic block will have the following shape:

Ω(x)-fan

Ω(x)-fan Ω(x)-fan Ω(x)-fan

Ω(x)-fan

...
k2/3 k1/3

L1

2k1/3

L2

2k1/3

Lk1/3

k1/3 k2/3

Figure 4.11: The shape of the graph after the first iteration.

Each chain L j (j = 1,2, ...,k1/3) has an accumulated weight of k5/3−ε . The average number of vertices

for any L j is µ = k5/3−ε ·1/k = k2/3−ε . By Chernoff bounds, the actual number of vertices on a chain

L j is outside the range k2/3−ε ± k1/3 with a probability of at most 2 · e−k1−ε/3 with ε < 1.

Lemma: The length of any chain L j (j = 1, ...,k1/3) is outside the range k2/3−ε±k1/3 with probability

2 · e−k1−ε/3.

Proof. The random variables Xi will denote the vertices in a chain. The variance is denoted by δ .

Case δ =+k1/3:

It holds that P
[

n
∑

i=1
Xi ≥ (1+δ) ·µ

]
≤ e−

min{δ ,δ2}
3 ·µ (compare Section 2.14).

P

[
k5/3−ε

∑
i=1

Xi ≥ (1+ k1/3) · (k5/3−ε · 1
k)

]
≤ e−

min{k1/3 ,k2/3}
3 ·(k5/3−ε · 1k)

P

[
k5/3−ε

∑
i=1

Xi ≥ (1+ k1/3) · k2/3−ε

]
≤ e−

k1/3
3 ·k

2/3−ε

= e−
k1−ε

3

Case δ =−k1/3:

It holds that P
[

n
∑

i=1
Xi ≤ (1−δ) ·µ

]
≤ e−

δ2
2 ·µ .

P

[
k5/3−ε

∑
i=1

Xi ≤ (1− k1/3) · (k5/3−ε · 1
k)

]
≤ e−

k2/3
2 ·(k

5/3−ε · 1k)

CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH 39

P

[
k5/3−ε

∑
i=1

Xi ≤ (1− k1/3) · k2/3−ε

]
≤ e−

k2/3
2 ·k

2/3−ε

= e−
k4/3−ε

2 ≤ e−
k1−ε

3

Therefore with a probability p ≥ 1− k1/3 · 2e−k1−ε/3−O(1
kε) ≥ c for sufficiently large k and a con-

stant c. The term O(1
kε) stands for the probability

pch = 1− (1− 1
k
)k1−ε︸ ︷︷ ︸

No master appears in a chain

≥ 1− (1− 1
k
· k1−ε) = 1− (1− k−ε) =

1
kε

that a master appears on any of the chains L j, too. These conditions will hold simultaneously and

masters for the second phase only appear in the fans with a high probability.

But then clusters for L j grow towards the horizontal baseline and only meet there in the buffer spaces

of 2k1/3 vertices between them. See Figure 4.12 for an example.

Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε)

Figure 4.12: A possible shape for the graph after the second clustering. The largest path is determined
by the horizontal baseline.

Thus, each basic block can produce a path weight of Ω(k1/3 ·k5/3−ε) = Ω(k2−ε), with constant proba-

bility, essentially independent of the other basic blocks because of the separation by the x-doublefans

at the connection points.

Therefore, the expected approximated diameter of the graph after the second shrinking is E[diam(G′′)]=

Ω(y · k2−ε) while the actual diameter of G is y · k2/3 for sufficiently large y with y > k.

The diameter has been blown up by a factor of k4/3−ε which is worse than (
√

k)2 if the 2 phases were

just independent.

Remark: The proof does not yet consider the effects of deterministic masters. On the other hand, since

G is a tree, the positions of deterministic masters are rather predictable, at least for the first clustering.

Therefore the shape of the graph after the first phase will be similar to Figure 4.11. However, it is still

unclear how strong the shape after the second phase will differ from the random case.

A trivial upper bound would be O(
√

k · k). The edge weights cannot be taller than O(k) after the first

step because each vertex has at most distance of k to a master vertex. And from the unweighted sce-

nario it is known that the expected multiplicative error is at most (
√

k). Combining both facts leads to

the trivial upper bound.

It is an open question if this lower bound is tight. The problem is to find a structure which is bad in

40 CHAPTER 4. PARALLEL CLUSTERING GROWING APPROACH

both steps. The distances between master vertices cannot be arbitrarily large with high probability.

Furthermore, the expected error for the first phase is bounded by O(
√

k).

Nevertheless the experiments have shown that the error for the 2-step approach is not that bad as in

theory. Details will be shown in Section 5.3.7.

Chapter 5

Experiments and Results

In this chapter the results of the experiments with the implementation of the “Parallel clustering grow-

ing approach” (short: PAR_APPROX) and the recursive one (short: PAR_APPROX_R) will be pre-

sented. Also, PAR_APPROX and PAR_APPROX_R are compared to the existing approaches as a

study: the external-memory BFS implementation (short: EM_BFS_DSLB) [27], the external-memory

MST based heuristic (short: SPAN) which was presented in Section 3.4 and the Fringe algorithm

(short: DSLB_UP_BOUND) [2] (refer to Section 3.3).

The various data sets, which were used for experiments, are introduced in Section 5.1. Subsequently

the configuration of the machines which have been utilized will be described. During the presentation

of the results, some observations will be reported, which were made during the initial tests. Based on

these observations, PAR_APPROX_R has been developed.

A subset of the findings were also presented in “I/O-efficient approximation of graph diameters by

parallel cluster growing – a first experimental study.”. This publication was written by Ajwani, Beck-

mann, Meyer and Veith at the end of the year 2011 [7]. It was accepted at “PASA 2012” (10th

Workshop on Parallel Systems and Algorithms).

5.1 Graph classes

Four different graphs were chosen to create four different test scenarios:

• sk-2005: This graph is a real world graph and belongs to the class of web graphs. Web graphs

typically have a small diameter. This web graph was used as input for the Fringe heuristic in [2].

It has 50,634,118 vertices, 1,810,050,743 edges and the diameter is 40. The web graph sk-2005

was chosen as input because real world graphs typically have different structures compared to

synthetic graphs. Also, sk-2005 was the biggest data set used for tests in [2] and sk-2005 which

is larger than the main memory of a typical workstation.

•
√

n-level graph: This graph is a synthetic graph. It has 268,435,456 vertices, 1,127,310,556

41

42 CHAPTER 5. EXPERIMENTS AND RESULTS

edges and the diameter is 16,385. It was generated to check the behavior of different approaches

for graphs with diameter Θ(
√

n).

• Θ(n)-level graph: This graph is also synthetically. It has 268,435,456 vertices, 903,876,452

edges and the diameter is 67,108,864. The behavior of different approaches to large diameter

will be checked with this graph.

• worst_PAR_APPROX: It is expected that this graph will elicit a bad approximation with the

approach PAR_APPROX. It has 268,435,420 vertices, 268,435,419 edges and the diameter is

2,440,341.

While sk-2005 is based on real data1,
√

n-level graph, Θ(n)-level graph and worst_PAR_APPROX

are synthetic.
√

n-level graph and Θ(n)-level graph were generated with the same generator, only the

parameters differed. The EM_BFS_DSLB implementation by [27] contains a set of various graph

generators.2 This set of generators also contains a so-called “k-level” generator which generates a

graph similar to a tree with k-levels. The diameter of such a k-level graph is O(k). The output of the

k-level graph generator in the EM_BFS_DSLB code often generates a disconnected graph. Usually a

few vertices are singletons because edges are generated randomly. With a small probability vertices

will not be part of any generated edge. A possible shape of a k-level graph is shown in Figure 5.1.

...

Figure 5.1: A possible shape of the k-level graph. The number of vertices in the last level can differ
from the number of vertices in the previous levels.

SPAN does not work on disconnected input graphs. Therefore an additional generator has been writ-

ten to generate connected k-level graphs. This generator works in the the same way as the generator

in the EM_BFS_DSLB implementation, but it ensures that each vertex is connected using a simple

trick: each vertex of the subsequent level x is connected to an arbitrary vertex in the previous level

x−1. After the connection is ensured some random edges might be added between these levels. The

1See http://law.dsi.unimi.it/webdata/sk-2005 for further information.
2During the work on this thesis the code basis of the generators used by EM_BFS_DSLB was improved. Also a new

method was added to read existing graphs and the argument management was improved so that the graph does not have to
be in a special folder.

CHAPTER 5. EXPERIMENTS AND RESULTS 43

number of random edges depends on computed parameters.

After the generation of the graph the indices of the vertices are permuted.3 The generator has some

special options. One of them is to connect vertices inside the same level. For the
√

n-level graph this

option has been used. Two vertices in the same level with adjacent indices were connected with a

probability of 0.2.4 For Θ(n)-level graph this option was not used.

The synthetic graphs
√

n-level and Θ(n)-level are similar to the B–level random graphs in [26].

The graph worst_PAR_APPROX was generated with a new generator, which was added to the set of

graph generators in the external-memory BFS implementation. The graph structure was defined to

produce a worst case scenario for PAR_APPROX. An input for PAR_APPROX is difficult if many

master vertices can reach the diameter determining path Pd . If many master vertices can reach the

path Pd , this will blow up the path length and therefore the diameter very much.

To amplify this effect a special graph structure was created (Figure 5.2). It might not be the worst

possible case but it generates bad results:

• The graph has three parameters: k1, k2 and k3 satisfying n = k3 · (k1 + k2).

• k3 =
⌊

n
k1+k2

⌋
is the length of the main chain C0.

• k1 is the length of the side chains Ci with 1 ≤ i ≤ k3. Each chain is connected to one vertex of

C0 and on the other end there is a K2-fan.

• k2 is the size of the fan-out at the end of the side chain Ci.

• The diameter is k1 + k3 + k1−1 = 2 · k1 + k3−1.

• In worst case the diameter can be blown up to O(k1 · k3) because the path Pd is connected to

Θ(k3) side chains of length k1.

3For this a lookup table is computed which contains the new index for each vertex. The new index is computed through
generating a random number for each vertex. The vertices are sorted by their random number and then the position of the
vertex in this sorted sequence is the new index.

4This option was used for the
√

n-level graph to study the influence of connections inside a level. Later tests with
different probabilities (e. g. 0 and 0.5) showed that this does not make a big difference for the behavior of PAR_APPROX.
It only influenced the number of generated edges by a little. The diameter of the graphs was similar.

44 CHAPTER 5. EXPERIMENTS AND RESULTS

...

...

...

...

...

...
... ...

... ...

...

...

k1

k2 k2 k2

k3

Figure 5.2: Sketch of the worst case graph for PAR_APPROX.

Note, that for fixed values of the parameters k1, k2 and k3 the behavior of PAR_APPROX cannot be

worse in each case. There is a relationship of the behavior to worst_PAR_APPROX in the master-

probability. The parameters of worst_PAR_APPROX have the values n = 268,435,420, k1 = 10,

k2 = 100 and k3 = 2,440,322. These values are arbitrarily chosen. However, a small k1 ensures that

the worst case can also be occurred for a huge number of master vertices.

5.2 Configuration

The experiments were performed on two different architectures:

1. As architecture for the external-memory experiments a relatively cheap workstation was used

with an Intel dual core E6750 processor @ 2.66 GHz, 4 Gigabyte main memory (around 3.5

Gigabyte was available for the application) and four hard disks with 500GB in a RAID-0. From

each of these four disks only the 250GB from the outer tracks were used as STXXL hard disks

(as four parallel disks). Hence, only around one Terabyte was available as external-memory for

STXXL. The inner tracks were used as storage for graph files, log files etc. The reason for this

is that the data transfer rate of the disk is larger in the outer tracks.

The operation system was Debian GNU/Linux amd64 ‘wheezy’ (testing) with kernel 3.0. The

code was compiled using GCC 4.4 in C++0x mode with optimization level 3 was used.

CHAPTER 5. EXPERIMENTS AND RESULTS 45

2. For applications which were designed for main memory usage, a machine (Ino) from the HPC

(High Performance Computing) cluster at Goethe Universität was used. The machine hosts

four quad-core AMD OpteronTM processor 8384 @ 2.7 GHz, but only one core has been

used at all. The internal-memory prototype of PAR_APPROX ran on this machine and also

DSLB_UP_BOUND. As the running time of an approach on this machine is no indication of

its respective running time in an external-memory setting these times are not mentioned in the

results.

5.3 Results

5.3.1 EM_BFS_DSLB, SPAN and DSLB_UP_BOUND

The implementation of EM_BFS_DSLB was modified to use double sweep lower bound. For that rea-

son the second phase of the implementation was executed twice. DSLB_UP_BOUND was executed

with the default settings (one experiment with ten iterations, double sweep lower bound and Fringe).

The result of DSLB_UP_BOUND is the exact diameter for the tested graphs classes (see Table 5.1).

That means that the computed lower bound is equal to the computed upper bound. For SPAN two

iterations were executed.

EM_BFS_DSLB SPAN DSLB_UP_BOUND
sk-2005 39 60 40√

n-level graph 16,385 46,262 16,385
Θ(n)-level graph 67,108,864 86,488,096 67,108,864

worst_PAR_APPROX 2,440,341 3,982,472 2,440,341

Table 5.1: Diameters computed by EM_BFS_DSLB, DSLB_UP_BOUND and SPAN. Exact diame-
ters are marked in boldface.

For sk-2005 EM_BFS_DSLB did not compute the exact diameter of 40 with source 0 as first source

and 519,830 as source for the second BFS computation. With the sources 1,000,000 and 16,307,150

the exact diameter was found but this result was not used for Table 5.1, because in practice the user

would usually not execute it with a special source. This was only done to check that the diameter of

40 can be found and if it makes a difference in the execution time. The difference was only a few

minutes.

EM_BFS_DSLB SPAN
sk-2005 5.27 7.65√

n-level graph 10.64 7.74
Θ(n)-level graph 4.75 4.81

worst_PAR_APPROX 1.66 3.34

Table 5.2: Running times (in hours) of EM_BFS_DSLB and SPAN.

The times of SPAN in Table 5.2 can be improved by using a bucket based MST algorithm in the

46 CHAPTER 5. EXPERIMENTS AND RESULTS

preprocessing instead of the MST algorithm using a priority queue. Also the results are closer to the

actual diameter.5

The results of EM_BFS_DSLB and DSLB_UP_BOUND are close to the actual diameter or in many

test cases the exact diameter. As mentioned in Section 3.3 an external-memory approach similar to

DSLB_UP_BOUND is too costly because many BFS computations would be needed to get the exact

diameter. Even if the number of Breadth-First Searches could be reduced to a small fraction of the

currently executed number of Breadth-First Searches it would be too costly. The target to select the

best algorithm for EM_BFS_DSLB would be lost and also no speedup would be gained which was

the second purpose of PAR_APPROX6.

5.3.2 Internal-memory prototype of PAR_APPROX

As mentioned before the internal-memory prototype of PAR_APPROX was developed to have a look

at the behavior of the new approach without the restrictions that can show up during external-memory

experiments - especially the larger execution time.

The results in the Tables 5.3, 5.4, 5.5 and 5.6 are showing that the expectation that the diameter is

decreasing with a growing number of master vertices is almost true. For sk-2005 the resulting diam-

eter fluctuates much. One reason for this behavior may be that d is very close the half of the actual

diameter in many cases until the number of master vertices is 16777216. Another reason is that many

master vertices reach the same path and thus blow up the length of this path.

For the graphs
√

n-level graph and Θ(n)-level graph the results are also promising for a small fraction

of vertices as masters. The ratio between the approximated diameter and the actual diameter is less

or equal to 1.5. For 1024 and more master vertices the ratio between the approximated and the actual

diameter is around 1.02.

For worst_PAR_APPROX the results show that there are cases in which the results are close to the

actual diameter but there also is an interval where the approximated diameter is growing and it seems

that between 1,048,576 and 4,194,304 a maximum φ can be found. The occurred error in between

is as big as possible. At φ the computed diameter is in the order of O(k1 · k3).

5These results are not presented in this thesis in more detail because the improvement of SPAN is a current research
topic.

6compare Section 1.1

CHAPTER 5. EXPERIMENTS AND RESULTS 47

number of masters d computed diameter
2 23 53
4 21 49
8 21 53
16 18 57
32 20 56
64 20 54
128 20 55
256 20 59
512 20 66
1024 20 69
2048 20 74
4096 20 75
8192 20 75

16384 20 82
32768 20 89
65536 20 95
131072 20 93
262144 20 111
524288 20 103
1048576 20 104
2097152 20 117
4194304 19 125
8388608 19 119
16777216 13 101
33554432 7 61
50634118 0 39

Table 5.3: Results for sk-2005. The resulting diameter is fluctuating much. Either for a few or many
master vertices the results are close.

48 CHAPTER 5. EXPERIMENTS AND RESULTS

number of masters d computed diameter
2 11703 24611
4 5310 18218
8 3158 17792

16 2037 16671
32 1376 16456
64 467 17114
128 274 16771
256 149 16711
512 119 16720
1024 69 16711
2048 43 16662
4096 21 16480
8192 10 16403
16384 8 16399
32768 8 16400
65536 7 16398

131072 7 16398
262144 7 16398
524288 6 16396
1048576 6 16397
2097152 5 16396
4194304 5 16396
8388608 5 16397
16777216 5 16397
33554432 4 16395
67108864 4 16395
134217728 3 16393
268435456 0 16385

Table 5.4: Results for
√

n-level graph. The resulting diameter is close to the actual diameter.

CHAPTER 5. EXPERIMENTS AND RESULTS 49

number of masters d computed diameter
2 26415603 80048947
4 26415603 93205163
8 8827267 75616827
16 8827267 75616827
32 7141510 67359763
64 1912297 69979907

128 2079249 68783184
256 895936 68594997
512 415970 67864213
1024 228249 67546538
2048 149286 67388623
4096 77638 67255072
8192 33069 67167702
16384 18401 67138713
32768 11980 67128199
65536 6900 67121749
131072 3103 67116317
262144 1698 67115306
524288 897 67118032

1048576 439 67127687
2097152 253 67156088
4194304 121 67233693
8388608 73 67419470
16777216 31 67718582
33554432 17 67848160
67108864 8 67515774
134217728 3 67168412
268435456 0 67108864

Table 5.5: Results for Θ(n)-level graph. The resulting diameter is close to the actual diameter in many
cases.

50 CHAPTER 5. EXPERIMENTS AND RESULTS

number of masters d computed diameter
2 1528273 3686550
4 421159 2727959
8 315012 2515745
16 282092 2464484
32 125644 2560355
64 125644 2560935
128 47005 2498841
256 23544 2489948
512 13907 2475624

1024 7626 2472742
2048 4277 2485446
4096 3157 2521684
8192 1332 2596264
16384 900 2750204
32768 476 3052952
65536 249 3639200
131072 124 4746736
262144 78 6726590
524288 50 9822432
1048576 38 13436852
2097152 28 14945315
4194304 24 11316021
8388608 22 6071011

16777216 21 4399106
33554432 11 4108649
67108864 8 3770069
134217728 7 3269382
268435420 0 2440341

Table 5.6: Results for worst_PAR_APPROX. The resulting diameter is very close in many tested
cases. But there are cases in which the resulting diameter is growing until it reaches a maximum.
After this maximum the resulting diameter is shrinking again close to the actual diameter.

CHAPTER 5. EXPERIMENTS AND RESULTS 51

5.3.3 PAR_APPROX with internal-memory SSSP

In this subsection the results from PAR_APPROX with internal-memory SSSP will be presented. The

results from sk-2005 (see Table 5.7) are promising. The execution time is increasing with increas-

ing number of master vertices because the preprocessing step of the internal-memory SSSP needs

more time with an increasing number of vertices. Nevertheless, also the slowest case needed 47

Minutes which is very fast compared to the 5.27 hours of EM_BFS_DSLB (see Table 5.2). Only

considering this case, PAR_APPROX seems to be a good preprocessing step for selecting the right

external-memory BFS algorithm.

However, the results of the experiments for
√

n-level graph (Table 5.8), Θ(n)-level graph (Table 5.9)

and worst_PAR_APPROX (Table 5.10) are showing a different behavior. The time for cases with a

small fraction of vertices being masters is even taller than the execution time of EM_BFS_DSLB.

Using the Θ(n)-level graph for a tall number of master vertices the execution time reaches an ac-

ceptably small duration of 1.26 hours for 16,774,408 master vertices. For the
√

n-level graph it was

not possible to use more than around O(218) master vertices with internal-memory SSSP. But then

PAR_APPROX would need about two days to compute the diameter of the Θ(n)-level graph. This

reasoned by the fact that d is very large for the Θ(n)-level graph if only a small fraction of the ver-

tices is chosen as a master and then the I/O complexity of the condensing the graph is very huge as

described in Subsection 4.1.2.

A solution would be to tune the parameters that are related to the diameter for each graph class. But

this is a contradiction. The tuning can only be done if the diameter is known. Therefore another

approach has been tried: PAR_APPROX with semi external-memory SSSP. If the input is too big that

the internal-memory SSSP can be used, the semi external-memory SSSP is used instead. The results

are presented in Subsection 5.3.4.

masters diameter ratio time[h] d
233 42 1.05 0.46 12
987 51 1.28 0.51 13

4,103 68 1.70 0.62 17
16,385 79 1.98 0.68 17
65,457 106 2.65 0.73 17
261,723 113 2.83 0.76 22

1,047,527 98 2.45 0.78 18
4,193,085 119 2.98 0.77 16

Table 5.7: Results for sk-2005.

52 CHAPTER 5. EXPERIMENTS AND RESULTS

masters diameter ratio time[h] d
1,020 16,836 1.0275 4.29 156
4,051 16,519 1.0082 1.30 35
16,511 16,413 1.0017 0.87 15
65,794 16,409 1.0015 0.87 13
262,215 16,408 1.0014 0.85 12

Table 5.8: Results for
√

n-level graph.

masters diameter ratio time[h] d
262,215 67,118,479 1.00014 41.60 3,444

1,048,506 67,128,342 1.00029 12.33 814
4,195,701 67,233,297 1.00185 3.68 233
16,774,408 67,717,702 1.00907 1.26 60

Table 5.9: Results for Θ(n)-level graph.

masters diameter ratio time[h] d
65,794 3,643,615 1.49 5.12 449

262,215 6,729,783 2.76 1.87 144
1,048,506 13,461,919 5.52 0.92 50
4,195,700 11,265,297 4.62 0.73 28
16,774,407 4,399,657 1.80 0.58 22
67,105,245 3,774,597 1.55 0.39 17

Table 5.10: Results for worst_PAR_APPROX.

CHAPTER 5. EXPERIMENTS AND RESULTS 53

5.3.4 PAR_APPROX with semi external-memory SSSP

As mentioned in Subsection 5.3.3 the input for the SSSP phase can be too big for the internal-memory

SSSP. So the semi external-SSSP is used instead. The semi external-memory SSSP was tested for

three graphs: sk-2005,
√

n-level graph and Θ(n)-level graph.

In fact, the duration is lower but not as much in order to use this approach as an additional prepro-

cessing step for EM_BFS_DSLB. Nevertheless, in order to compute the diameter it is faster to use

PAR_APPROX with semi external-memory SSSP than EM_BFS_DSLB (Table 5.11). However, the

gain is so small that the recursive approach was tried to lower the computation time.

graph sk-2005 sk-2005
√

n-level
√

n-level
√

n-level Θ(n)-level Θ(n)-level Θ(n)-level
masters ∼ 222 ∼ 224 ∼ 222 ∼ 224 ∼ 226 ∼ 222 ∼ 224 ∼ 226

diameter 119 90 16,407 16,403 16,401 67,233,297 67,717,702 67,515826
ratio 2.98 2.25 1.0013 1.0011 1.0010 1.00185 1.00907 1.00606

time[h] 1.09(0.32) 2.78(1.73) 6.96 (5.51) 8.38 (6.80) 9.41 (7.72) 3.94 (0.06) 1.6 (0.29) 2.47 (1.68)
d 16 13 10 8 7 233 60 16

Table 5.11: Results for sk-2005,
√

n-level graph and Θ(n)-level graph with PAR_APPROX with semi
external-memory SSSP.

54 CHAPTER 5. EXPERIMENTS AND RESULTS

5.3.5 Internal-memory prototype of PAR_APPROX_R

Similar to the implementation of PAR_APPROX a prototype has been developed for PAR_APPROX_R.

This prototype had the task to check if the recursive approach is viable and if the results are promising

enough to implement an external-memory approach. The proof in Section 4.5 showed that the ex-

pected multiplicative error of the recursive approach can be worse than O(k) / O(d). Nevertheless the

results of the recursive approach are not as bad as expected. Only for sk-2005 (Table 5.12) the result-

ing diameter is off by a factor of 5.4 in one case while for the graphs
√

n-level graph (Table 5.13) and

Θ(n)-level graph (Table 5.14) promising results have been reached. Also for worst_PAR_APPROX

(Table 5.15) the results varied only by a small amount compared to PAR_APPROX.

In the tables the number of master vertices in the first and in the second step are mentioned and

also the the tallest distance of a vertex to a master vertex in the second step as d2.

#masters 1st step #masters 2nd step d2 diameter difference
2 2 0 53(53) 0
4 2 5 59(49) 10
8 2 5 61(53) 8
16 6 9 61(57) 4
32 12 8 73(56) 17
64 25 13 86(54) 32
128 41 7 69(55) 14
256 71 10 76(59) 17
512 128 10 86(66) 20

1024 262 16 115(69) 46
2048 509 20 130(74) 56
4096 997 19 117(75) 42
8192 2037 22 132(75) 57
16384 4091 20 127(82) 45
32768 8251 30 179(89) 90
65536 16423 75 215(95) 120
131072 32849 26 180(93) 87
262144 65812 25 180(111) 69
524288 131267 24 192(103) 89
1048576 262364 27 201(104) 97
2097152 524179 26 187(117) 70
4194304 1047326 29 192(125) 67
8388608 2094977 21 202(119) 83

16777216 4192099 20 194(101) 93
33554432 8384647 18 154(61) 93
50634118 12657770 15 107(39) 68

Table 5.12: Results for sk-2005.

CHAPTER 5. EXPERIMENTS AND RESULTS 55

#masters 1st step #masters 2nd step d2 diameter difference
2 2 0 24611(24611) 0
4 3 1205 20628(18218) 2410
8 3 3543 22146(17792) 4354

16 5 4170 22772(16671) 6101
32 4 3211 17864(16456) 1408
64 19 2415 19218(17114) 2104
128 31 933 18171(16711) 1400
256 65 611 17726(16711) 1015
512 129 357 17372(16720) 652
1024 293 281 17358(16711) 647
2048 540 104 17089(16662) 427
4096 1076 72 16812(16480) 332
8192 2166 33 16563(16403) 160
16384 4169 24 16466(16399) 67
32768 8288 13 16429(16400) 29
65536 16611 13 16424(16398) 26

131072 33146 12 16422(16398) 24
262144 65800 11 16419(16398) 21
524288 131438 11 16417(16396) 21
1048576 262348 11 16420(16397) 23
2097152 525006 13 16422(16396) 26
4194304 1048206 13 16424(16396) 28
8388608 2097875 13 16427(16397) 30
16777216 4195291 13 16427(16397) 30
33554432 8392344 11 16424(16395) 29
67108864 16777624 11 16424(16395) 29

134217728 33548348 9 16417(16393) 24
268435456 67090630 4 16395(16385) 10

Table 5.13: Results for
√

n-level graph.

56 CHAPTER 5. EXPERIMENTS AND RESULTS

#masters 1st step #masters 2nd step d2 diameter difference
2 2 0 80048947(80048947) 0
4 3 22657921 115863084(93205163) 22657921
8 3 15455762 99957044(75616827) 24340217

16 5 18281627 87327147(75616827) 11710320
32 4 13160133 75244586(67359763) 7884823
64 19 8260457 78240364(69979907) 8260457
128 31 4464271 76958620(68783184) 8175436
256 65 2686227 73948270(68594997) 5353273
512 129 1789819 70865737(67864213) 3001524
1024 293 1046698 69635908(67546538) 2089370
2048 540 433612 68031441(67388623) 642818
4096 1076 293517 67840590(67255072) 585518
8192 2166 134209 67341868(67167702) 174166
16384 4169 66063 67267671(67138713) 128958
32768 8288 38278 67201587(67128199) 73388
65536 16611 23254 67164811(67121749) 43062

131072 33146 15767 67144337(67116317) 28020
262144 65800 7454 67130379(67115306) 15073
524288 131438 3035 67122135(67118032) 4103
1048576 262348 1858 67133664(67127687) 5977
2097152 525006 1186 67168330(67156088) 12242
4194304 1048206 496 67273492(67233693) 39799
8388608 2097875 271 67573199(67419470) 153729
16777216 4195291 139 68266382(67718582) 547800
33554432 8392344 71 69364210(67848160) 1516050
67108864 16777624 40 70183784(67515774) 2668010

134217728 33548348 22 69813122(67168412) 2644710
268435456 67090630 8 67515718(67108864) 406854

Table 5.14: Results for Θ(n)-level graph.

CHAPTER 5. EXPERIMENTS AND RESULTS 57

#masters 1st step #masters 2nd step d2 diameter difference
2 2 0 3686550(3686550) 0
4 2 842299 4412557(2727959) 1684598
8 2 842319 2625216(2515745) 109471
16 4 740115 3379768(2464484) 915284
32 7 479196 3278833(2560355) 718478
64 23 219444 2974775(2560935) 413840
128 27 182914 2623624(2498841) 124783
256 62 115318 2656341(2489948) 166393
512 130 83046 2616367(2475624) 140743
1024 292 48360 2568060(2472742) 95318
2048 540 18465 2518312(2485446) 32866
4096 1085 10666 2542502(2521684) 20818
8192 2158 5087 2603951(2596264) 7687

16384 4168 3297 2757352(2750204) 7148
32768 8285 2249 3058353(3052952) 5401
65536 16609 1281 3649638(3639200) 10438
131072 33146 711 4773474(4746736) 26738
262144 65797 600 6824253(6726590) 97663
524288 131440 457 10149434(9822432) 327002
1048576 262351 369 14331503(13436852) 894651
2097152 525005 320 16966513(14945315) 2021198
4194304 1048203 235 14911235(11316021) 3595214
8388608 2097884 128 11085230(6071011) 5014219
16777216 4195295 64 10233633(4399106) 5834527
33554432 8392347 52 10169386(4108649) 6060737
67108864 16777634 38 8710221(3770069) 4940152

134217728 33548345 28 5832304(3269382) 2562922
268435456 67090613 8 3772310(2440341) 1331969

Table 5.15: Results for worst_PAR_APPROX.

58 CHAPTER 5. EXPERIMENTS AND RESULTS

5.3.6 An addition to the input size for the second step of PAR_APPROX_R

Before the results from PAR_APPROX_R will be presented, it will be shown that after two clustering

phases the input size is reasonably small so that the internal-memory SSSP can use it for more cases

as PAR_APPROX. Table 5.16 shows results with a probability of p = 1/4 for a vertex being a master

in the second clustering step. Until ∼ 223 master vertices for the first phase the output of the second

phase is small enough to fit into main memory. So the internal-memory SSSP on the test machine

can compute a result in reasonable time.7 With PAR_APPROX this was possible for each graph class

only until around 218 master vertices.8 Thus it can be expected that the running time over all graphs

for a carefully selected number of master vertices should be smaller for PAR_APPROX_R than for

PAR_APPROX.

∼ 218 ∼ 219 ∼ 220 ∼ 221 ∼ 222 ∼ 223 ∼ 224 ∼ 225 ∼ 226

sk-2005 91.5 196.2 390.2 737.9 1379.7 2795.8 7223.5 21393.7 42201.4
second: 10.5 22.6 46.2 99.5 199.8 385.4 908.5 2357.0 4867.6
Ratio: 0.11 0.11 0.12 0.13 0.14 0.14 0.13 0.11 0.12
√

n-level 711.9 2239.9 5906.6 11188.6 16128.3 18802.5 19910.7 20830.7 22189.1
second: 47.9 147.9 389.4 780.5 1353.1 2629.8 5253.4 9551.2 16050.1
Ratio: 0.07 0.07 0.07 0.07 0.08 0.14 0.26 0.46 0.72

Θ(n)-level 10.0 20.0 40.0 80.3 162.5 337.4 745.7 1806.6 4584.0
second: 2.5 5.0 10.0 20.0 40.1 80.6 164.0 345.8 770.7
Ratio: 0.25 0.25 0.25 0.25 0.25 0.24 0.22 0.19 0.17

worst_PAR_APPROX 10.0 20.0 40.0 80.0 160.0 320.0 640.0 1280.0 2560.0
second: 2.5 5.0 10.0 20.0 40.0 80.0 160.0 320.1 640.0
Ratio: 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 5.16: Size of the output of the two clustering phases in Megabyte for all four graph classes. The
size of the output of the first clustering phase is in the line with the name of the graph.

7Compare Section 5.2.
8Compare Section 5.3.3.

CHAPTER 5. EXPERIMENTS AND RESULTS 59

10 12 14 16 18 20 22 24 26 28

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.3: The ratio (y-value) of the graph size after the first and the second clustering (second
f irst). The

curve of sk-2005 is blue, the cure of
√

n-level graph red, the curve of Θ(n)-level graph black and the
curve of worst_PAR_APPROX green. The scale on the x-axis is logarithmic in the number of master
vertices.

The curves in Figure 5.3 are showing why it is difficult for
√

n-level graph with many master vertices

to find parameters so that the output fits into the main memory. Together with the sizes of the graphs

after the first clustering phase in Table 5.16 it is obvious why it is difficult or perhaps not possible

for PAR_APPROX to use many master vertices for all graph classes with internal-memory SSSP.

It seems that the graph classes are varying in complexity. While trees (worst_PAR_APPROX) and

graphs with a small (sk-2005) or tall diameter (Θ(n)-level graph) produce a small output graph after

each clustering phase, the output of the graph with a diameter of Θ(
√

n) is still very tall after a single

clustering phase compared to the other graphs. Even after the second phase the output stays tall if the

number of vertices is only reduced by a small fraction.

60 CHAPTER 5. EXPERIMENTS AND RESULTS

5.3.7 PAR_APPROX_R

The first results of PAR_APPROX_R (Tables 5.17, 5.18, 5.19 and 5.20) were produced with probabil-

ity p1 for the first phase equal to the probability p2 of the second phase. So p1 = p2 = p = w
n , where

w denotes the number of master vertices which should be selected in the first phase and n denotes the

number of vertices of the input graph.

With this test scenario it was possible to grow the number of master vertices in the first phase up to

around 223. After the second shrinking step the graph fit into the main memory and it was possible to

use internal-memory SSSP in reasonable time.

The slowest case needed 2.805 hours instead of 6.96 hours with around 222 master vertices with the

semi external-memory SSSP. Also the resulting diameters are close to the real diameter in many cases

for
√

n-level graph and Θ(n)-level graph. For the web graph sk-2005 and for worst_PAR_APPROX

the approximated diameter differs from the actual diameter by a factor of 5. This factor is not much

taller than the expected error in the single clustering approach PAR_APPROX (compare Subsec-

tions 5.3.3 and 5.3.4).

masters step 1 edges step 1 d1 masters step 2 edges step 2 d2 diameter time[h]
32,639 360,192 16 23 149 17 88 0.857
65,457 773,037 17 91 1,395 21 108 0.866

130,995 1,696,456 22 386 9,608 21 128 0.902
261,723 3,799,995 22 1,387 43,953 26 148 0.905
523,308 8,239,006 22 5,403 145,946 37 199 0.912

1,047,527 16,473,867 18 21,611 416,804 33 180 0.926
2,095,915 31,420,311 18 86,570 1,375,518 37 203 0.933
4,193,085 58,008,681 16 34,5904 4,545,748 32 188 0.967
8,387,274 119,281,920 15 1,388,209 17,084,801 26 195 1.090
16,774,091 298,868,555 13 5,554,394 68,158,602 19 185 1.490

Table 5.17: Results for sk-2005.

masters step 1 edges step 1 d1 masters step 2 edges step 2 d2 diameter time[h]
33,061 729,414 14 8 7 7,680 27,070 1.054
65,794 2,607,862 13 18 17 2,752 19,885 1.039
131,451 9,242,749 12 65 64 1,499 18,476 1.040
262,215 30,958,592 12 258 275 324 16,910 1.056
523,572 97,330,056 12 1,036 1,770 115 16,886 1.101

1,048,506 257,456,401 11 3,999 18,584 37 16,615 1.339
2,096,782 487,552,860 10 16,303 249,082 23 16,451 1.691
4,195,701 702,067,655 10 65,751 3,189,088 21 16,448 2.062
8,387,968 815,926,322 9 262,338 36,086,645 19 16,445 2.283

Table 5.18: Results for
√

n-level graph.

CHAPTER 5. EXPERIMENTS AND RESULTS 61

masters step 1 edges step 1 d1 masters step 2 edges step 2 d2 diameter time[h]
1,048,506 1,050,414 814 3,999 3,998 135,605 67,339,400 16.170
2,096,782 2,111,432 543 16,303 16,302 43,734 67,234,760 9.096
4,195,701 4,305,371 233 65,751 65,750 10,613 67,259,278 4.737
8,387,968 9,145,224 135 262,338 262,366 3,254 67,469,729 2.805

16,774,408 21,392,325 60 1,048,450 1,050,660 914 67,978,215 1.751
33,554,608 56,559,377 34 4,193,477 4,321,309 259 68,959,950 1.246
67,105,247 155,525,706 16 16,775,155 21,701,263 63 70,255,824 1.141

Table 5.19: Results for Θ(n)-level graph.

masters step 1 edges step 1 d1 masters step 2 edges step 2 d2 diameter time[h]
65,794 65793 449 18 17 834,516 5,096,489 6.418

131,451 131450 223 65 64 385,387 5,406,272 3.770
262,215 262214 144 258 257 174,046 7,062,013 2.443
523,572 523571 84 1,036 1035 61,419 9,926,627 1.611

1,048,506 1048505 50 3,999 3998 38,184 13,577,505 1.219
2,096,782 2096781 37 16,303 16302 9,636 15,234,203 1.014
4,195,700 4195699 28 65,752 65751 3,370 12,557,505 0.892
8,387,969 8387968 24 262,337 262,336 626 10,118,415 0.852
16,774,407 16774406 22 1,048,449 1,048,448 275 11,506,548 0.782

Table 5.20: Results for worst_PAR_APPROX.

62 CHAPTER 5. EXPERIMENTS AND RESULTS

graph masters step 1 edges step 1 d1 masters step 2 edges step 2 d2 diameter time[h]
sk-2005 4,193,085 58,008,681 16 41,763 729,662 31 174 0.980
sk-2005 8,387,274 119,281,920 15 83,592 1,300,219 34 191 1.062
sk-2005 16,774,091 298,868,555 13 167,467 2,479,420 27 159 1.412
√

n-level 4,195,701 702,067,655 10 42,174 1,427,737 21 16,447 2.059√
n-level 8,387,968 815,926,322 9 84,122 4,990,673 20 16,445 2.266√
n-level 16,774,408 858,741,691 8 168,573 17,027,083 20 16,443 2.334

Θ(n)-level 4,195,701 4,305,371 233 42,174 42,173 17,389 67,269,876 4.948
Θ(n)-level 8,387,968 9,145,224 135 84,122 84,122 8,520 67,460,611 3.019
Θ(n)-level 16,774,408 21,392,325 60 168,573 168,582 5,076 67,827,503 2.319

worst_PAR_APPROX 4,195,700 4,195,699 28 42,175 42,174 3,386 121,52,755 0.884
worst_PAR_APPROX 8,387,969 8,387,968 24 84,123 84,122 1,432 7,915,132 0.875
worst_PAR_APPROX 16,774,407 16,774,406 22 168,574 168,573 495 7,687,867 0.796

Table 5.21: Results for the second test scenario for PAR_APPROX_R.

In a second test scenario it was tested if the gain can be improved for PAR_APPROX_R if p1 and

p2 differ and p2 < p1. In this scenario p1 was still w
n but now p2 = 0.01. The results in Table 5.21

show that w could be improved. With a taller w the output of the first clustering phase is computed

in a reasonable time. With an improved W ∼ 224 and 2.319 hours for the slowest case for this w the

execution time has been improved by 17.3% compared to the first scenario.

Chapter 6

Conclusion and perspective

Different approaches have been investigated during the work on this thesis. The existing external-

memory implementation for diameter approximation with STXXL, SPAN (see Chapter 3) gives re-

sults comparable to EM_BFS_DSLB regarding the execution time.

The approaches PAR_APPROX and PAR_APPROX_R are faster than EM_BFS_DSLB and SPAN.

Compared to EM_BFS_DSLB a speedup between 51 and 78 percent is achieved.1

However, PAR_APPROX and PAR_APPROX_R behave differently for varying graph classes. For

small diameter graphs the execution time does not depend on the number of master vertices as much

as for large diameter graphs. This is because of the fact that the size of d (e. g. for the Θ(n)-level

graph with large diameter) influences the I/O complexity. Hence, for large diameter graphs many

master vertices are needed to be faster than EM_BFS_DSLB. This is mitigated by using recursion.

However, the constants of the recursive approach PAR_APPROX_R are greater than the constants of

PAR_APPROX. For small diameter graphs such as web graphs, PAR_APPROX is a better choice.

For general graphs with a priori unknown diameter PAR_APPROX_R is the better choice. However,

a tight bound on the expected error for PAR_APPROX_R is still an open question. The lower bound

proof in Section 4.5 constitutes a first important step on worst-case inuputs but it is still unclear if

this lower bound is tight or if not how many types of inputs are covered by this bound. However, the

results of the experiments in Chapter 5 showed that in practice the results of PAR_APPROX_R are

viable.

The graph class which led to the greatest problems in quickly finding a viable approximation of the

diameter is the
√

n-level graph. The
√

n-level graph has the property that for many master vertices

the size of the condensed graph is very big so that it does not fit into main memory. Therefore, in the

future it should be tried to improve PAR_APPROX_R with adaptive rules as a mechanism to estimate

1Refer to Tables 5.2 and 5.21. For PAR_APPROX_R the results for approximately 224 master vertices for the calculation
of the gain were considered.

63

64 CHAPTER 6. CONCLUSION AND PERSPECTIVE

the probability of being a master in the following clustering step to improve the behavior for each

graph class. Then, the gain should be also improved.

Appendix A

I/O Volume of EM_BFS_DSLB and
SPAN

sk-2005
√

n-level graph Θ(n)-level graph worst_PAR_APPROX
read 384.024 GiB 539.618 GiB 298.521 GiB 207.169 GiB
write 292.671 GiB 347.481 GiB 253.741 GiB 172.263 GiB

Table A.1: I/O-volume of a single external-memory BFS with EM_BFS_DSLB.

sk-2005
√

n-level graph Θ(n)-level graph worst_PAR_APPROX
read 560.372 GiB 786.473 GiB 330.762 GiB 221.550 GiB
write 384.711 GiB 405.914 GiB 258.400 GiB 177.160 GiB

Table A.2: I/O-volume of two BFS (double sweep lower bound) with EM_BFS_DSLB. Phase 2 is
executed two times. Phase 1 (preprocessing) was executed once.

sk-2005
√

n-level graph Θ(n)-level graph worst_PAR_APPROX
read 1.733 TiB 1.381 TiB 647.126 GiB 339.666 GiB
write 1.736 TiB 1.378 TiB 642.146 GiB 333.823 GiB

Table A.3: I/O-volume of SPAN.

One Gigabyte (GiB) are 230 Byte.

One Terabyte (TiB) are 210 Gigabyte.

65

66 APPENDIX A. I/O VOLUME OF EM_BFS_DSLB AND SPAN

Appendix B

I/O Volume of PAR_APPROX

∼ 28 ∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218 ∼ 220 ∼ 222

144 151 166 183 198 198 187 170

Table B.1: I/O-volume in Gigabyte for different number of master vertices of the real world graph
sk-2005 with diameter 40 for reading.

∼ 28 ∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218 ∼ 220 ∼ 222

44 49 55 60 63 66 67 67

Table B.2: I/O-volume in Gigabyte for different number of master vertices of the real world graph
sk-2005 with diameter 40 for writing.

∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218

2,777 669 310 285 257

Table B.3: I/O-volume in Gigabyte for different number of master vertices of the
√

n-level graph with
diameter 16358 for reading.

∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218

339 106 70 68 68

Table B.4: I/O-volume in Gigabyte for different number of master vertices of the
√

n-level graph with
diameter 16358 for writing.

67

68 APPENDIX B. I/O VOLUME OF PAR_APPROX

∼ 218 ∼ 220 ∼ 222 ∼ 224

23,098 7,164 2,114 642

Table B.5: I/O-volume in Gigabyte for different number of master vertices for different number of
master vertices of the Θ(n)-level graph with diameter 67,108,864 for reading.

∼ 218 ∼ 220 ∼ 222 ∼ 224

4,309 1,264 375 123

Table B.6: I/O-volume in Gigabyte for different number of master vertices of the Θ(n)-level graph
with diameter 67,108,864 for writing.

∼ 216 ∼ 218 ∼ 220 ∼ 222 ∼ 224 ∼ 226

2,135 833 401 291 233 103

Table B.7: I/O-volume in Gigabyte for different number of master vertices of the
worst_PAR_APPROX with diameter 2,440,341 for reading.

∼ 216 ∼ 218 ∼ 220 ∼ 222 ∼ 224 ∼ 226

770 292 139 101 83 43

Table B.8: I/O-volume in Gigabyte for different number of master vertices of worst_PAR_APPROX
with diameter 2,440,341 for writing.

One Gigabyte are 230 Byte.

Appendix C

File size of the different graphs

graph size[Bytes]
sk-2005 14,480,405,944√

n-level graph 18,036,968,896
Θ(n)-level graph 14,462,023,232

worst_PAR_APPROX 4,294,966,704

Table C.1: Size of the different graph files on the disk. Note that the graphs were stored such that only
one direction of an edge is stored in this file. The other direction will be generated while reading the
graph. Therefore, at least twice the size of the file as free memory is needed.

69

70 APPENDIX C. FILE SIZE OF THE DIFFERENT GRAPHS

Bibliography

[1] U. Meyer and V. Osipov, “Design and implementation of a practical I/O-efficient shortest paths

algorithm,” in Proceedings of the annual conference on Algorithm Engineering and Experiments

(ALENEX), pp. 85–96, SIAM, 2009.

[2] P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino, “Finding the diameter in real-

world graphs - experimentally turning a lower bound into an upper bound,” in Proceedings of the

18th annual European Symposium on Algorithms (ESA), vol. 6346 of Lecture Notes in Computer

Science, pp. 302–313, Springer, 2010.

[3] Y. Peres, D. Sotnikov, B. Sudakov, and U. Zwick, “All-pairs shortest paths in o(n2) time

with high probability,” Foundations of Computer Science, Annual IEEE Symposium on, vol. 0,

pp. 663–672, 2010.

[4] J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel memory i: Two-level memories,” in

Algorithmica, vol. 12(2/3), pp. 110–147, 1994.

[5] K. Mehlhorn and U. Meyer, “External-memory Breadth-First Search with sublinear I/O,” in

Proceedings of the 10th annual European Symposium on Algorithms (ESA), vol. 2461 of LNCS,

pp. 723–735, Springer, 2002.

[6] U. Meyer, “On trade-offs in external-memory diameter-approximation,” in Proceedings of the

11th Scandinavian Workshop on Algorithm Theory (SWAT), pp. 426–436, 2008.

[7] D. Ajwani, A. Beckmann, U. Meyer, and D. Veith, “I/o-efficient approximation of graph diame-

ters by parallel cluster growing – a first experimental study.,” 2011.

[8] C. Stegbauer and R. Häußling, eds., Handbuch Netzwerkforschung. VS Verlag für Sozialwis-

senschaften, 2010.

[9] K. Madduri, D. Bader, J. Berry, and J. Crobak, “An experimental study of a parallel shortest

path algorithm for solving large-scale graph instances.,” in In Proc. 9th Workshop on Algorithm

Engineering and Experiments (ALENEX 2007), ACM-SIAM, 2007.

[10] U. Meyer, Design and analysis of sequential and parallel single-source shortest-paths algo-

rithms. PhD thesis, Universität des Saarlandes & Max-Planck Institute (MPI), 2002.

71

72 BIBLIOGRAPHY

[11] C. Bell, S. Clark, and R. Radcliff, “Mastering eda environments with high performance memory

technology,” 2011.

[12] Hewlett-Packard Development Company, Memory technology evolution: an overview of system

memory technologies, 9 ed., 2010.

[13] Texas Memory Systems, Texas Memory Systems, Inc. 10777 Westheimer Rd., Suite 600 Hous-

ton, TX 77042, USA , Increase Application Performance with Solid State Disks, april 2008 ed.,

2008.

[14] Western Digital, “http://www.wdc.com/wdproducts/library/SpecSheet/ENG/

2879-701284.pdf,” 2011. Visited: 01.12.2011.

[15] Seagate, “http://www.seagate.com/staticfiles/support/docs/manual/

enterprise/savvio/Savvio%2015K.3/100629381c.pdf,” 2011. Visited: 01.12.2011.

[16] Kingston, “http://www.valueram.com/datasheets/KVR1066D3S8N7_2G.pdf,” 2011.

Visited: 01.12.2011.

[17] K. Munagala and A. Ranade, “I/O-complexity of graph algorithms,” in Proceedings of the 10th

Annual Symposium on Discrete Algorithms (SODA), pp. 687–694, ACM-SIAM, 1999.

[18] R. Diestel, Graph Theory. pringer Berlin Heidelberg, 2010.

[19] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Algorithmen - Eine Einführung.

München, Deutschland: Oldenbourg Wissenschaftsverlag GmbH, 2007.

[20] W. D. Wallis, A Beginner’s Guide to Graph Theory. Birkhäuser Boston, 2007.

[21] C. Magnien, M. Latapy, and M. Habib, “Fast computation of empirically tight bounds for the

diameter of massive graphs,” Journal of Experimental Algorithmics, vol. 13, pp. 1.10–1.9, 2009.

[22] J. S. Vitter, “External memory algorithms and data structures: dealing with massive data,” ACM

Comput. Surv., vol. 33, pp. 209–271, June 2001.

[23] L. Arge, M. Knudsen, and K. Larsen, “A general lower bound on the i/o-complexity of

comparison-based algorithms,” in Algorithms and Data Structures (F. Dehne, J.-R. Sack, N. San-

toro, and S. Whitesides, eds.), vol. 709 of Lecture Notes in Computer Science, pp. 83–94,

Springer Berlin / Heidelberg, 1993. 10.1007/3-540-57155-8_238.

[24] R. Dementiev, L. Kettner, , and P. Sanders, “Stxxl: standard template library for xxl data sets,”

Software: Practice and Experience, vol. 38, pp. 589–637, 2008.

[25] A. Beckmann, R. Dementiev, and J. Singler, “Building a parallel pipelined external memory

algorithm library,” IPDPS, 2009.

http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701284.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701284.pdf
http://www.seagate.com/staticfiles/support/docs/manual/enterprise/savvio/Savvio%2015K.3/100629381c.pdf
http://www.seagate.com/staticfiles/support/docs/manual/enterprise/savvio/Savvio%2015K.3/100629381c.pdf
http://www.valueram.com/datasheets/KVR1066D3S8N7_2G.pdf

BIBLIOGRAPHY 73

[26] D. Ajwani, R. Dementiev, and U. Meyer, “A computational study of external memory bfs al-

gorithms,” in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pp. 601–610, 2006.

[27] D. Ajwani, U. Meyer, and V. Osipov, “Improved external memory BFS implementation,” in

Proceedings of the workshop on Algorithm Engineering and Experiments (ALENEX), pp. 3–12,

2007.

[28] O. Borůvka, “O jistém problému minimálním,” Práce Mor. Přírodověd. Spol. v Brně, vol. 3,

pp. 37 –58, 1926.

[29] V. Jarník, “O jistém problému minimálním,” Práce Mor. Přírodověd. Spol. v Brně, vol. 6, pp. 57

–63, 1930.

[30] R. C. Prim, “Shortest connection networks and some generalizations,” THE BELL SYSTEM

TECHNICAL JOURNAL, pp. 1389–1401, November 1957.

[31] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,”

Proc. Amer. Math. Soc., vol. 7, pp. 48–50, 1956.

[32] M. L. Fredman and D. E. Willard, “Trans-dichotomous algorithms for minimum spanning trees

and shortest paths,” Journal of Computer and System Sciences, vol. 48, no. 3, pp. 533 – 551,

1994.

[33] J. Abello, A. Buchsbaum, and J. Westbrook, “A functional approach to external graph algo-

rithms,” in Algorithms - ESA’ 98 (G. Bilardi, G. Italiano, A. Pietracaprina, and G. Pucci, eds.),

vol. 1461 of Lecture Notes in Computer Science, pp. 1–1, Springer Berlin / Heidelberg, 1998.

10.1007/3-540-68530-8_28.

[34] A. Rényi and G. Szekeres, “On the height of trees,” Journal of the Australian Mathematical

Society, vol. 7, pp. 497–507, 1967.

[35] I. I. Brudaru, “Heuristics for average diameter approximation with external memory algorithms,”

Master’s thesis, Universität des Saarlandes, October 2007.

[36] S. Singh, Fermats letzter Satz: Die abenteuerliche Geschichte eines mathematischen Rätsels.

München, Deutschland: Deutscher Taschenbuch Verlag, 2000.

[37] M. Bender and M. Farach-Colton, “The lca problem revisited,” in LATIN 2000: Theoretical

Informatics (G. Gonnet and A. Viola, eds.), vol. 1776 of Lecture Notes in Computer Science,

pp. 88–94, Springer Berlin / Heidelberg, 2000. 10.1007/10719839_9.

[38] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter,

“External-memory graph algorithms,” in Proceedings of the sixth annual ACM-SIAM sympo-

sium on Discrete algorithms, SODA ’95, (Philadelphia, PA, USA), pp. 139–149, Society for

Industrial and Applied Mathematics, 1995.

74 BIBLIOGRAPHY

[39] J. JáJá, An introduction to parallel algorithms. Addison-Wesley Pub. Co., 1992.

[40] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nummerische Mathematik

1, pp. 269–271, 1959.

[41] D. E. Knuth, The Art of Computer Programming Volume 3: Sorting and Searching - Second

Edition, vol. 3. Addison-Wesley, June 2008. Second Edition.

[42] U. Meyer, “Single-source shortest-paths on arbitrary directed graphs in linear average-case

time,” in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,

SODA ’01, (Philadelphia, PA, USA), pp. 797–806, Society for Industrial and Applied Math-

ematics, 2001.

[43] U. Meyer and N. Zeh, “I/O-efficient undirected shortest paths,” in Proceedings of the 11th annual

European Symposium on Algorithms (ESA), vol. 2832 of Lecture notes in Computer Science

(LNCS), pp. 434–445, Springer, 2003.

[44] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations,” Ann. Math. Statist., vol. 23, no. 4, pp. 493–507, 1952.

[45] A. Klenke, Wahrscheinlichkeitstheorie. Springer, 2008.

[46] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook, “On external

memory graph traversal,” in Proceedings of the eleventh annual ACM-SIAM symposium on Dis-

crete algorithms, SODA ’00, (Philadelphia, PA, USA), pp. 859–860, Society for Industrial and

Applied Mathematics, 2000.

[47] D. G. Corneil, F. F. Dragan, M. Habib, and C. Paul, “Diameter determination on restricted graph

families,” Discrete Applied Mathematics, vol. 113, no. 2-3, pp. 143–166, 2001.

[48] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S. Vitter, “External

memory graph algorithms,” in Proceedings of the 6th annual Symposium on Discrete Algorithms

(SODA), pp. 139–149, ACM-SIAM, 1995.

[49] M. Metzler, “Ergebnisüberprüfung bei graphenalgorithmen.,” Master’s thesis, Universität des

Saarlandes, 1997.

	Cover
	Contents
	List of tables
	List of Figures
	Abstract
	Introduction
	Purpose and aim of this thesis
	Structure of this thesis

	Basics
	Graphs
	Diameter of a graph
	Breadth-First Search
	BFS as a method to approximate the diameter
	External-memory model
	Scanning in external-memory
	Sorting and permutation of data in external-memory
	STXXL
	External-memory BFS
	Minimum Spanning Tree
	Euler-Tour
	SSSP
	Semi external-memory SSSP
	Probability theory
	Summary

	State of the Art
	Double sweep lower bound
	Heuristics for computing an upper bound
	Fringe: improved upper bound heuristic
	External-memory spanning tree heuristics

	Parallel clustering growing approach
	Theory
	Euler-Tour based approach
	Parallel clustering growing approach

	Implementation details
	Internal-memory implementation
	Aims
	The implementation details

	External-memory implementation
	Recursive approach

	Experiments and Results
	Graph classes
	Configuration
	Results
	EM_BFS_DSLB, SPAN and DSLB_UP_BOUND
	Internal-memory prototype of PAR_APPROX
	PAR_APPROX with internal-memory SSSP
	PAR_APPROX with semi external-memory SSSP
	Internal-memory prototype of PAR_APPROX_R
	An addition to the input size for the second step of PAR_APPROX_R
	PAR_APPROX_R

	Conclusion and perspective
	I/O Volume of EM_BFS_DSLB and SPAN
	I/O Volume of PAR_APPROX
	File size of the different graphs
	References

