
Practical Memory Checkers for

Stacks� Queues and Deques

Marc Fischlin

Fachbereich Mathematik �AG ���� � Informatik
Johann Wolfgang Goethe�Universit	at Frankfurt am Main

PSF 


���

���� Frankfurt�Main� Germany

e�mail� marc� informatik�uni�frankfurt�de
URL� http���www�uni�frankfurt�de��roessner�group�marc�marc�html

Abstract� A memory checker for a data structure provides a method
to check that the output of the data structure operations is consistent
with the input even if the data is stored on some insecure medium� In
��� we present a general solution for all data structures that are based
on insert�i� v� and delete�j� commands� In particular this includes stacks�
queues� deques �double�ended queues� and lists� Here� we describe more
time and space e�cient solutions for stacks� queues and deques� Each
algorithm takes only a single function evaluation of a pseudorandomlike
function like DES or a collision�free hash function like MD� or SHA for
each push�pop resp� enqueue�dequeue command making our methods
applicable to smart cards�

� Introduction

A memory checker guarantees that the data that is retrieved from memory is
consistent with the data inserted before� Consider for example a stack and the
sequence push�a�� push�b�� pop� push�a�� push�c�� pop� pop� Then the expected
output is �� �� b� �� �� c� a� where � denotes �no output�� Assume that the
elements are kept on some insecure memory� Then an adversary� e�g� a virus�
might tamper the content of the stack and thus produce a wrong output� Another
source for errors can be a buggy program implementing the data structure�
Using a memory checker� one will detect errors with high probability� regardless
whether the errors are malicious or accidently�

We give some applications of memory checkers� Assume that a bank customer
withdraws money from an automatic teller machine using his smart card� The
bank keeps track of the operations by enqueuing every transaction� while the
smart card contains only a small hash value for the memory checker� At the end
of a month� the customer prints this sequence of transactions at the machine
�using the smart card�� Then the memory checker gives a fast method to verify
that the output is correct and no further unauthorized transactions have been
made�



In the previous example� all operations are enqueued before they are de�
queued again� Consider a job queue on a computer system� e�g� the printer
schedule queue� Here� insertions and deletions may alternate� Suppose that a
clever user has found a possibility to manipulate the job queue and to make his
jobs to be processed before others 	 or even to cancel other jobs� If the system
runs a memory checker for queues �in a secure part�� it can detect such errors�

Note that error detection with a memory checker is one�sided in the following
sense
 If the bank customer detects some error� he cannot use the faulty output
protocol to accuse the bank of fraud� because he could have produced such a
protocol himself� So the checker model can only be used to detect errors and to
perform some countermeasures for the future�

At �rst glance� cryptographic signature or authentication schemes seem to be
su�cient for designing memory checkers� Nevertheless� given a signature or mes�
sage authentication code �MAC� z for the current content �v�� � � � � vn� of a queue
and some element v that shall be enqueued� in some settings the cryptographic
scheme must be able to compute the signature �or MAC� for �v�� � � � � vn� v� from
z and v without accessing v�� � � � � vn� Consider for example the data structure
queue and the cipher block chaining mode of DES 
������ i�e� the message au�
thentication code for x�� � � � � xn � f�� �g�� is

CBC�MACa�x�� � � � � xn� 
�

�
DESa�x�� if n � �

DESa
�
CBC�MACa�x�� ���� xn����xn

�
else

Here� DESa denotes the DES function with secret key a and x� y denotes the
bitwise exclusive�or of x and y� Inserting an element at one end of the queue and
deleting at the other isn�t possible without reading all elements inserted so far�
Even if it were possible� this would cause a large overhead�

Related work� The memory checker model was introduced by Blum et al� in 
��
and re�ned in 
��� Blum et al� present checkers for stacks and queues� but their
solution is based on ��biased hash functions �see 
��� for a de�nition�� We use
their ideas� but we don�t exploit special properties of the underlying function
family� That is� one can use any family inluding practical families like DES� In
particular� the small and fast memory checker algorithm can be easily added to
a smart card where algorithms for such a family are already implemented�

Recently� so called incremental schemes were introduced by Bellare� Gold�
reich and Goldwasser 
����� Informally� an M�incremental signature or authen�
tication scheme allows to produce a signature �or MAC� to some document M
very fast� given a signature to document M � where M is obtained by applying
a text modi�cation in M to M �� The similarity to memory checkers is obvious�
Hence� we derive e�cient memory checkers if an M�incremental scheme full�ls
the following conditions


� The modi�cations correspond to the data structure operations� e�g� for stacks
we have text modi�cations �append�at�the�end� and �delete�from�the�end��

� As explained above� to update a signature the scheme merely needs the
element that is inserted or deleted�



� The scheme is secure against so called message substitution attacks� i�e� one
cannot produce a forgery even if one is allowed to tamper the message before
an update step�

Incremental authentication schemes that support single block insertion and dele�
tion were given in 
�� and a more space and time e�cient one in 
��� The latter
one full�ls the abovementoned properties� but it produces about n logn bits
authentication code� where n is the number of elements�

Exact security� We follow the paradigm of 
�� presenting results in terms of exact
security� The notion of exact security can be roughly described as follows
 Let
A be an adversary for the checker model with parameters t �running time���
q �number of data operations� and � �success probability�� From A we derive
a distinguisher with running time t�� number of oracle queries q� and success
probability �� for the function family used by the checker� Here� t�� q�� �� are
determined by t� q� �� So� if you consider the function family to be �t�� q�� ����
secure� you can immediately derive the checker�s security level exactly�

� Notations and Definitions

First� we de�ne function families� Let F be a set of functions with the same
domain f�� �gl and the same range f�� �gL� Each function f � F is associated
to a key� We write fa for the function f speci�ed by key a� Choosing a function
f from F at random means choosing at random with equal probability a key a

from the set of all keys and setting f 
� fa� For example� the DES family consists
of the DES function with input and output length ��� where each functions is
speci�ed by some �� bit DES key� Given a function f with domain f�� �gl and n

strings x�� � � � � xn we sometimes write f�x�� � � � � xn� instead of f�x� � x� � � �xn��
Let Map�X�Y � denote the family of all functions mappingX to Y where the

key describing a function is the concatenation of all jXj function values in some
�xed order� Let F � Map�X�Y � be a function family� Informally� a family F is
pseudorandom� if a random function f � F behaves almost like a true random
function and f�x� can be evaluated fast for all x � X� It is widely believed that
DES has this property� More formally� let F � Map�X�Y � be a function family
and D a probabilistic algorithm�We write Df � f�� �g for the output of D with
oracle access to a function f � F � Given two families F�G � Map�X�Y �� the
advantage of algorithm D distinguishing F and G is de�ned as

AdvD�F�G� � Probf�F
�
Df � �

�
� Probg�G 
D

g � �� �

where the probabilities are taken over the internal coin tosses of D and the
random choice of f � F resp� g � G� AlgorithmD is called a �t� q� ���distinguisher
if it makes at most t steps in the standard RAM model� makes at most q oracle

� Formally� t includes the running time and the description size of the adversary�s
algorithm� For simplicity� in this paper we only consider the running time �measured
in terms of number of RAM steps��



queries and achieves AdvD
�
F�Map�X�Y �

�
� �� A family is called �t� q� ���secure

if there is no �t� q� ���distinguisher for this family�
Finally� we give an informal de�nition of collision�free hash functions� See


�� for a formal treatment� A function h 
 f�� �gb � f�� �gk with b � k � � is
a collision�free hash function� if it is infeasible to �nd x �� x� such that h�x� �
h�x��� Candidates in practice include MD� and SHA� where b � ��� and k � ���
resp� k � ���� It is well known 
����� that given a collision free hash function h�
one can easily derive a collision�free iterated hash function H 
 B� � f�� �gk for
B 
� f�� �gb�k��� Namely� let x�� � � � � xn � B and set

H�x�� � � � � xn� 
�

�
h��k� �� x�� if n � �

h�H�x�� � � � � xn���� �� xn� else

Finding a collision for H implies �nding a collision for h�

� Memory Checkers

We brie�y review the de�nition of a memory checker 
����� A memory checker
�lters the interaction between a user and a data structure storing the data to
some insecure memory� See �gure �� An execution is divided into rounds� At the
beginning of each round� the checker gets the next user operation� e�g� a push�v�
command� and performs some local computation� including arbitrary interaction
with the data structure� Our checkers presented below only compute a function
value� increment and decrement counters and pass the operation �perhaps adding
some time stamp� to the data structure� At the end of the round� the checker shall
return the output to the user before reading the next operation �or return ��� if
the operation doesn�t produce an output�� The execution ends� when there are
no more input operations left and the checker has �nished its �postprocessing��
If some error occurs the checker shall output BUGGY with high probability
during or immediately after the execution� Conversely� if the execution is correct
the checker shall never output BUGGY�

U

�

� �

CheckerUser Memory�Data Structure

�

C

Fig� �� The memory checker model

We stress that the local memory of the checker cannot be read or tampered
neither by the user nor the adversary� From a theoretical point of view� our



checkers remain valid if we allow the adversary to read the checker�s memory
except for the secret key specifying the function� Though in practice� in this case
a DES checker producing a �� bit check code might be for example vulnerable
to birthday attacks�

To capture the worst case for the checker� we assume that the adversary
totally controls the insecure memory and the input�output behaviour of the
data structure� Furthermore� he controls the user and therefore chooses the user
operations passed to the checker� The adversary works adaptively� i�e� he bases
his decision on the previous steps of the protocol� A checker is called on�line if it
detects an error immediately after it occured� i�e� before reading the next input
operation� Otherwise it is called o��line� All our checkers presented below are o��
line� Furthermore� a checker is called noninvasive if the insecure memory contains
only values speci�ed by the user operations �assuming that the adversary doesn�t
tamper this content and that the data structure works correctly�� Else it is called
invasive� Our checkers for stacks and deques are invasive as they add some time
stamp� while our checkers for queues are noninvasive�

De�nition �� A memory checker C for a data structure D is �t� q� ���secure
i� for every adversary A making at most t steps and passing at most q user
operations to C� the probability that A returns a wrong value and C doesn�t
output BUGGY is less than �� Additionally� the checker never outputs BUGGY
if the output is correct for all operations�

We assume that all values are from f�� �gn and for stacks and deques we
suppose that these data structures are capable of storing pairs from f�� �gn 	
f�� �gN� Our checker will use the N extra bits to append a time stamp to every
value� The inital con�gurations of stacks� queues and deques are empty�

� Checkers for Stacks� Queues and Deques based on DES

In this section we de�ne checkers for stacks� queues and deques� i�e� queues
that allow to enqueue and dequeue at both sides� The checkers are all based on
pseudorandomlike functions like DES� If the value length exceeds �� bit DES
input length� one can use for example the CBC construction 
�� to stretch the
input length to some multiple of �� bits�

For the rest of this section� let F be an arbitrary family of functions mapping
f�� �gl to f�� �gL with key length k�

��� A Checker for Stacks

We de�ne an o��line checker for stacks� The private memory of the checker
contains the following values


� an N �bit time counter s� which is initialized with �
� an N �bit position counter p� which is initialized with �
� a k�bit key a of a function family F specifying a function fa in F



� an L�bit value � � which is initialized with �L

The key a is chosen at random in a preprocessing phase� The code � will be
updated every time an element is pushed or popped� If all retrieved values are
correct� we will have � � �L at the end of the execution�

For an user command push�v� the checker works as follows
 It pushes the
values �v� s� to the memory� computes � 
� � � fa�v� p� s� and increments s and
p� For a pop command� the checker pops a pair �v� sv� from the memory and
veri�es that s � sv� If not� it outputs BUGGY� Otherwise it passes v to the
user� decrements p and computes � 
� � � fa�v� p� sv��

As the checker maintains a counter p for the number of elements in the stack�
we may presume wlog� that the adversary never outputs �empty� unless the stack
really is� If no more user operations are left� the checker empties the memory in
a veri�cation phase� It pops all elements and proceeds as above �without passing
values to the user�� until p � � and the stack is empty� We�ll discuss the practical
consequences of this overhead caused by the veri�cation phase in section ��

Note that the checker is deterministic 	 except for the random choice of
the key a� The following lemma states that for F � R � Map�f�� �gl� f�� �gL��
errors will be detected with high probability


Lemma �� Let fa be a random function in R � Map�f�� �gl� f�� �gL�� l � n�
�N � If an error occurs� we have � � �L at the end of the execution with probability

��L� where the probability is taken over the random choice of fa and the coin

tosses of the adversary� If every output is correct� the �nal value of � will be �L

for any function family F � Map�f�� �gl� f�� �gL��

Proof� If no error occurs� every pushed value �v� s� is retrieved from the memory
again �at the same position�� so xoring these function values equals �L� In this
case we have � � �L at the end of the execution regardless of the function family�

Assume that an error occurs� We sort the sequence of push and pop commands
according to the position� Namely� let vj�i be the value that the ith push command
for position j inserts� Let wj�i the value that is returned the next time a value is
read from position j� Let the corresponding time values be svj�i resp� swj�i

� Then
for every position j we have a sequence of mj pairs� on which the function fa is
evaluated


�vj��� j� svj���� �wj��� j� swj��
�� � � � � �vj�mj

� j� svj�mj
�� �wj�mj

� j� swj�mj
�

Since an error occured� there exists i� j such that �vj�i� j� svj�i� �� �wj�i� j� swj�i
��

We show that there must be a tuple that appears an odd number of times �or
the checker detects an error immediately��

As the time stamps svj�x for x � �� � � � �mj are in increasing order� we
have �vj�x� j� svj�x� �� �vj�y� j� svj�y� for all x � y� Hence� the triples �vj�x� j� svj�x�
can only appear for an even number of times� if there�s a permutation � over
f�� � � � �mjg implying a bijection between

�
�vj�x� j� svj�x�

�� x � �� ����mj

�
and�

�wj�y� j� swj�y
�
�� y � ����� � � � � ��mj�

�
� Assume for contradiction that x � y 
�

��x� for some x� Then �vj�x� j� svj�x� � �wj�y� j� swj�y
�� As the checker veri�ed



that swj�y
was less than the current counter s at the time wj�y was returned� we

derive the contradiction svj�x � s � swj�y
� Hence� ��x� � x for all x� but this

is a contradiction to our assumption �vj�i� j� svj�i� �� �wj�i� j� swj�i
�� Thus� there

exists some tuple that appears an odd number of times�
Let M � f�v�� p�� s��� � � � � �vm� pm� sm�g be the set of all triples that appear

an odd number of times� Since there is such a triple� we havem � �� At the end of
the execution� � equals �L� fa�v�� p�� s��� � � �� fa�vm� pm� sm�� The probability
that

fa�vm� pm� sm� � fa�v�� pm� s��� � � �� fa�vm��� pm��� sm���

and therefore � � �L is equal to the probability that some random value from
f�� �gL equals a �xed element in f�� �gL� This probability is ��L� ut

Theorem �� Let F � Map�f�� �gl� f�� �gL�� l � n � �N � be a function family

which is �t� q� ���secure� Then the checker for stacks described above is �t�� q�� ����
secure� where t� � t � cq� q� � �

�
q and �� � � � ��L for some small constant

c � IN�

Suppose that we use DES� As cq will be small in comparison to t� we have
t 
 t�� Additionally� q� and q di�er only by a factor � and ��L � ���� is almost
zero� Thus� the checker is roughly speaking as secure as DES�

Proof� Assume that there is an adversary A with running time t� that passes at
most q� user operations to C and achieves success probability at least ��� From A

we construct a distinguisher D for F and R � Map�f�� �gl� f�� �gL� with running
time t� making at most q oracle queries and advantage at least �� Wlog� we
presume that A never returns a timer value that is equal to or greater than the
timer value of the checker 	 since such errors will be detected immediately�
Furthermore� we assume wlog� that A never returns �empty� though the stack
isn�t �because the checker maintains the number of elements in the stack�� but
returns at least one wrong value during the execution�

D is given oracle access to a random function g in F or R� It performs
a black�box�simulation of A by running the checkers program using the oracle
access to g� That is� it maintains two counters s� p �initialized with �� and a code
� �initialized with �L�� Whenever the checker would have updated � by xoring it
with fa�v� p� s�� D computes � � � � g�v� p� s� and updates p� s accordingly� At
the end of the execution� D outputs � i� � � �L� Therefore�

AdvD�F�R� � Probg�F 
D
g outputs ��� Probg�R 
D

g outputs ��

� Probg�F
�
� � �L at the end

�
� Probg�R

�
� � �L at the end

�
� Probg�F 
A is successful�� Probg�R 
A is successful�

� �� � ��L

The running time of D equals the running time of A plus the time to increment
and decremement the counters resp� to compute the new � in every step� As the
checker empties the stack after having answered the last user operation� D needs
at most q� additional oracle queries� ut



��� A Checker for Queues

Our checker for queues is noninvasive� i�e� it doesn�t append a time stamp� The
local memory of the checker contains two N �bit position counters ptop and pbot
�both initialized with ��� a random k�bit key a specifying a function fa in F and
an L�bit code � initialized with �L� Whenever we enqueue a value� we increment
ptop� If we dequeue a value� we increment pbot� Thus� ptop�pbot is the number of
elements currently in the queue To be more precise� if the checker shall enqueue
an element v� it enqueues v� computes � 
� � � fa�v� ptop� and increments ptop� If
the checker shall dequeue a value� it dequeues v� returns v to the user� computes
� 
� � � fa�v� pbot� and increments pbot� At the end� the checker dequeues all
elements in the veri�cation phase updating pbot and � as above� Security is
proven as in Lemma � and Theorem ��

Lemma �� Let fa be a random function in R � Map�f�� �gl� f�� �gL�� l � n�N �

If an error occurs� we have � � �L at the end of the execution with probability

��L� where the probability is taken over the random choice of fa and the coin

tosses of the adversary� If no error occurs� at the end � � �L holds for any

function family F � Map�f�� �gl� f�� �gL��

Proof� At the end of the execution� the function has been evaluated for �m �
��ptop � �� tuples �vj � j�� �wj� j�� j � �� � � � �m� where vj is the jth enqueued
element and wj is the jth value dequeued� If vj � wj for all j we obviously have
� � �L at the end� If vj �� wj for some j we derive that � �� �L with probability
��L as in Lemma �� ut

Theorem �� Let F � Map�f�� �gl� f�� �gL�� l � n�N � be a function family that

is �t� q� ���secure� Then the checker for queues described above is �t�� q�� ����secure�
where t� � t� cq� q� � �

�
q and �� � �� ��L for some small constant c � IN�

��� A Checker for Deques

To derive a checker for deques� we introduce time stamps again� as stacks can be
viewed as special deques� Let enqueueL� enqueueR� dequeueL and dequeue

R be the
commands to enqueue resp� dequeue elements at the left or right side� Let F be
function familywith input length l � n��N��� The checker maintains �ve N �bit
counter values s� pLtop� p

R
top� p

L
bot and pRbot� all initialized with �� Additionally� it

initializes � with �L� If the checker gets an enqueueL�v� or enqueueR�v� command�
it computes � 
� � � fa��� v� pLtop� s� �for enqueueL� or � 
� � � fa��� v� pRtop� s�

�for enqueueR�� enqueues the pair �v� s� at the corresponding side and increments
s and pLtop resp� p

R
top�

To process a dequeueL command� the checker works as follows
 If pLtop �

pLbot it dequeues a pair �v� sv�� If sv � s� it outputs BUGGY� Otherwise� it
decrements pLtop and sets � 
� � � fa��� v� p

L
top� sv�� Now assume that pLtop � pLbot

�the case pLtop � pLbot will never occur�� If p
R
top � pRbot the deque is empty and

the checker outputs �empty�� Else pRtop � pRbot� and we dequeue a pair �v� sv��



output BUGGY if sv � s and otherwise compute � 
� � � fa��� v� pRbot� sv� and
increment pRbot� Note that though we dequeue from left� we update � as we would

dequeue from the right side� A dequeueR command is processed similar with roles
of left and right �ipped�

At the end of the execution the checker dequeues elements in a veri�cation
phase via dequeue

L commands as long as �pLtop�p
L
bot���p

R
top�p

R
bot� � �� Security

follows as before� since arguments for the function fa are prepended by � or �
depending on the side on which the elements are enqueued or dequeued� If all
values are correct� we�ll have � � �L� while an error will be detected with high
probability� The proof of the following Theorem is similar to the proofs of Lemma
� and Theorem ��

Theorem 	� Let F � Map�f�� �gl� f�� �gL�� l � n��N��� be a function family

that is �t� q� ���secure� Then the checker for deques described above ist �t�� q�� ����
secure� where t� � t � cq� q� � �

�
q and �� � � � ��L for some small constant

c � IN�

� Checkers for Queues based on Iterated Hash Functions

In this section� we present a simple checker based on iterated hash functions
de�ned in section �� Recall that H 
 B� � f�� �gk for B 
� f�� �gb�k�� for
the underlying hash function h 
 f�� �gb � f�� �gk� For notational convenience
let b� � b � k � �� Our checker doesn�t need a position or time counter� nor
does it append a time stamp to each value� Unfortunately� security cannot be
stated in terms of exact security until we use families of hash functions� A formal
treatment based on the results of 
�� will be given in the �nal version�

To check a queue we maintain two hash values e� d � f�� �gk� both initialized
with h��k� �� �b

�

�� To enqueue a value v � B� let e 
� h�e� �� v�� To dequeue a
value v� compute d 
� h�d� �� v� and pass v to the user� If the data structures
claims that the instance is empty� we verify that e � d and output BUGGY
if not� If e � d we return �empty� to the user� If no more operations are left�
we dequeue all elements in a veri�cation phase until the data structure returns
�empty�� In this phase� we update d for each element as above without returning
values to the user� Finally� the checker veri�es that e � d and outputs BUGGY
if not�

We always have e � H��b
�

� v�� � � � � vn� for the sequence v�� � � � � vn � B of
elements enqueued� Additionally� it always holds d � H��b

�

� w�� � � � � wm� for the
sequence w�� � � � � wm � B of elements dequeued�

Proposition 
� The checker presented above is secure unless one can �nd a

collision for the hash function h�

Proof� Let v�� � � � � vn resp� w�� � � � � wm be the sequence of enqueued resp� de�
queued elements� If no error occurs� we have n � m and vi � wi for all i� since
queues are FIFO systems� Hence� e � d at the end of the execution� Assume
that an adversary fools the checker� There are two possibilities
 First� at some



point the adversary outputs �empty� though the queue isn�t� In this case� the
checker immediately veri�es that e � d� As the adversary is successful� we have
e � H��b

�

� v�� � � � � vn�� � H��b
�

� w�� � � � � wm�� � d for m� � n� and the adver�
sary has found a collision for H� On the other hand� if the adversary never lies
about the number of elements� we have n � m and there exists some i such
that wi �� vi� Then e � H��b

�

� v�� � � � � vn� � H��b
�

� w�� � � � � wn� � d� and the
adversary has found a collision for di�erent messages of the same length� ut

� How to proceed in practice

Suppose that we want to implement a checker on a multi user computer system
like Unix� All the checkers presented above are o��line checkers� To verify the
correctness of the memory content the checker must empty the instance� How�
ever� in most settings the data mustn�t be deleted because we need it for further
use�

���

�

�
��

��

��

Users Checker Memory�data structure

Fig� �� A memory checker for queues

We suggest the following solution
 The checker is maintained by the system
administrator� and the users can access the common data structure only via the
checker �see �gure �� 	 assuming that no read�write con�icts occur� Whenever
the access frequency drops� e�g� at night� the checker temporarily forbids any
operation and performs a check� Consider for example stacks� To verify� the
checker empties one instance and immediately inserts each element again in
another instance� To be more precise� let � be the current check value for that
instance� The checker initializes new counter values p� with � and s� with s and
sets � � � �L� Then we pop the �rst element from the old stack �updating s� p� �
as above�� and insert it again in the new instance �this time updating p�� s� and
� � instead of p� s� � �� We repeat this for the other elements� When all elements
are deleted from the old instance� the checker veri�es that � � �L 	 and outputs
BUGGY if not� Note that all values in the new instance are in reverse order� so
we do the same again swapping the roles of the old and new instance resp� p� s� �
and p�� s�� � � to get the correct order again� For queues and deques the veri�cation
phase is done similar though we don�t have to reverse the order again�

Refreshing the key for DES based checkers can be done in the veri�cation
phase� At the beginning of such a phase� we choose a new random DES key a�

and reset s� to � �instead of setting s� � s�� Then we work as described above



but we compute � � via the function fa� speci�ed by a� though � is still updated
using fa� For stacks the key refreshment may be done in the reverse order phase�

Our experimental results �Appendix A� show that the overhead caused by the
checker for each user operation is insigni�cant� In contrast to that� the veri�ca�
tion phase of an o��line checker is very expensive 	 if there are many elements in
the instance� But as the examples of the bank customer and the printer schedule
queue show� in some settings it is very likely that the user empties the instance
anyway� making the veri�cation phase fast� In particular� for smart cards it is
preferable that �if possible� the underlying data structure is a queue and that
the checker is based on iterated hash functions� The lower bounds for on�line
checkers given in 
�� and the algorithms for on�line stack checkers in that work
indicate that we probably cannot �nd checkers that work on�line� have small
private memory and do not store much extra data on the insecure memory� We
leave it as an open problem to prove this conjecture or to develop such checkers�

References


� ANSI X��
�
� American National Standard for Information Systems � Data En�
cryption Algorithm �Modes of operation� American National Standards Institute�

����

�� Bellare� M�� Goldreich� O�� Goldwasser� S�� Incremental cryptography� The case of
hashing and signing� In Crypto��� �
����� vol� ��� of Lecture Notes in Computer
Science� Springer�Verlag� pp� �

�����

�� Bellare� M�� Goldreich� O�� Goldwasser� S�� Incremental cryptography and appli�
cation to virus protection� In Proceedings of the ��th Annual Symposium on the
Theory of Computing �
����� pp� ����
�

�� Bellare� M�� Gu�erin� R�� Rogaway� P�� XOR MACs� New methods for message
authentication using �nite pseudorandom functions� In Crypto��� �
����� vol� �
�
of Lecture Notes in Computer Science� Springer�Verlag� pp� 
�����

�� Bellare� M�� Kilian� J�� Rogaway� P�� On the security of cipher block chaining� In
Crypto��� �
����� vol� ��� of Lecture Notes in Computer Science� Springer�Verlag�
pp� ��
�����


� Blum� M�� Evans� W�� Gemmell� P�� Kannan� S�� Naor� M�� Checking the correctness
of memories� Algorithmica �� �
����� pp� ��������

�� Damg�ard� I�� A design priciple for hash functions� In Crypto��� �
����� vol� ��� of
Lecture Notes in Computer Science� Springer�Verlag� pp� �

�����

�� Fischlin� M�� Incremental cryptography and memory checkers� In Eurocrypt���
�
����� Lecture Notes in Computer Science� Springer�Verlag�

�� Goldreich� O�� Goldwasser� S�� Micali� S�� How to construct random functions�
Journal of ACM ����� �
��
�� pp� ��������


�� Merkle� R�� One way hash functions and DES� In Crypto��� �
����� vol� ��� of
Lecture Notes in Computer Science� Springer�Verlag� pp� ������
�



� Naor� J�� Naor� M�� Small�bias probability spaces� E�cient constructions and ap�
plications� Journal on Computing �� �
����� pp� ������
�


�� National Bureau of Standards� Data Encryption Standard� Federal Information
Processing Standard� Publication �
� US Department of Commerce� 
����


�� National Bureau of Standards� Secure Hash Standard� Federal Information Pro�
cessing Standard� Publication 
��� US Department of Commerce� 
����




�� Rivest� R�� The MD� message�digest algorithm� IETF Network Working Group�
RFC 
��
� 
����

A Experimental Results

In this section we present some experimental results for stacks with DES based
checkers and for queues with SHA�� based checkers� The algorithms were imple�
mented in ANSI�C using the cryptlib package �available at site http���www�cs�
auckland�ac�nzl��pgut����cryptlib�index�html� on a Linux system run�
ning on a DOS computer with Intel Pentium ��� chip� For the stack checker
we use the CBC construction of DES to stretch the input length 
��� allowing
di�erent element sizes with ���� ���� ����� ���� bit� The counter values are each
restricted to �� bit� For a �xed element size� the experiments showed that the
running time grows proportional to the number of elements� Furthermore� re�
peating the exeperiment didn�t change the time signi�cantly� Thus� we only give
the average results for ���� ��� elements�

element size ��� bit ��� bit ���� bit ���� bit

��� eval� of CBC�DES ��� sec ��� sec ���� sec ���� sec
��� stack commands ��� sec ��� sec ��� sec ��� sec
��� insertions ��� sec ���� sec ���� sec ���� sec
Veri�cation phase ���� sec ���� sec ���� sec ����� sec

The �rst row shows how fast we can evaluate a CBC�DES on the system� We�ve
applied the CBC�DES function ��� times for the zero string �of corresponding
size� without processing the function output� The second row shows how fast
we can do ��� stack commands� of which a half are push resp� pop commands�
For simplicity� we�ve chosen an array representation of the data structure stack
supporting a push and pop function� The following rows present the running
time of the checker� The �rst one shows the time to insert ���� ��� elements�
Note that this time is greater than the sum of the two proceeding rows� since
we also have to maintain two counter values and must process the DES output�
As expected� the running time of the veri�cation phase is about four times the
time to insert the elements� This follows from the fact that we have to pop every
element� push it in another instance and do the same again to reverse the order�

For queues� we�ve used the construction based on iterated hash function with
SHA��� For simplicity� we�ve used ��� bit values� prepending it with the previous
hash value and � bit representing the � or � bit as a character� such that the
total length adds up to ��� bits� Again� we�ve chosen an array implementation
of the data structure�

��� eval� of SHA�� ��� sec
��� enqueue�dequeue ��� sec
��� insertions ��� sec
Veri�cation phase ��� sec

As the table con�rms� the checker is much faster than a DES based one�


