
A Fast Variant of the
Gaussian Reduction Algorithm

Michael Kaib∗

FB Mathematik, Universität Frankfurt, 60054 Frankfurt, Germany

January 1994

Abstract

We propose a fast variant of the Gaussian algorithm for the reduction of two–
dimensional lattices for the l1−, l2− and l∞−norm. The algorithm runs in at most
O(nM(B) log B) bit operations for the l∞−norm and in O(n log n M(B) log B) bit
operations for the l1− and l2−norm on input vectors a, b ∈ ZZn with norm at most
2B where M(B) is a time bound for B-bit integer multiplication. This generalizes
Schönhages monotone Algorithm [Sch91] to the centered case and to various norms.

1 Introduction

The Gaussian algorithm computes a reduced basis for a lattice of rank 2, or, in other
terms, a reduced binary quadratic form out of a set of equivalent positive forms [Ga1801].
This algorithm is a natural generalisation of the centered Euclidean algorithm to dimen-
sion 2. Lehmer [Le38] gave a fast gcd–algorithm for integers by performing most of the
arithmetic on the leading bits. Schönhage [Sch71] modified this method to achieve an
asymptotically low bit complexity. Recently Schönhage [Sch91] extended this techniques
to a fast reduction algorithm for binary quadratic forms. Yap [Ya92] published an outline
of a similar result in the language of lattice basis reduction. This research considered
monotone reduction algorithms reducing to the smallest nonnegative integers. However
the Gaussian algorithm is more efficient with centered reduction steps [Va91, Da93]. Our
basic idea is, that the core of the Gaussian algorithm operates stable until the approxima-
tion error exceeds 1

12 of the norm of the actual vector. This is valid for arbitrary norms.
Recently Kaib and Schnorr gave a sharp worst case analysis for the number of interations
of the Gaussian algorithm for arbitrary norms [KS93]. We use their explicit formulas for
the transformation matrices in the centered algorithm to bound the approximation errors.

∗e-mail: kaib@cs.uni-frankfurt.de

1

2 Preliminaries

Let a, b ∈ IRn be a basis of the lattice ZZa + ZZb. We denote by ‖ . ‖ an lp−norm for
p ∈ {1, 2,∞} on IRn and by succ : IRn × IRn −→ IRn a Gaussian reduction function, i.e. a
function satisfying

1. succ (a, b) = ε(b− µa) for some µ ∈ ZZ, ε = ±1 ,

2. ‖ succ (a, b) ‖ = minµ∈ZZ ‖ b− µa ‖ ,

3. ‖ succ (a, b)− a ‖ ≤ ‖ succ (a, b) + a ‖ .

The Gaussian algorithm iterates the reduction function on the input basis:

REPEAT (a, b) := (succ (a, b) , a) UNTIL ‖ b ‖ ≤ ‖ a− b ‖ .

We call a single application of the Gaussian reduction function (a, b) := (succ (a, b) , a)
a Gaussian reduction step (Gaußstep). Defining a lattice basis (a, b) as

reduced if ‖ a ‖ , ‖ b ‖ ≤ ‖ a− b ‖ ≤ ‖ a + b ‖ and

well–ordered if ‖ a ‖ ≤ ‖ a− b ‖ < ‖ b ‖ ,

we obtain the following:

Proposition 1.

1. Any basis obtained by a Gaussian reduction step is either well–ordered or reduced.

2. The algorithm terminates after finitely many iterations.

For an abstract norm it might be hard to compute the Gaussian reduction function.
However, the computation is easy in the interior steps where (succ (a, b), b) is well–ordered.
In this case we can compute succ (a, b) in O(nM(B)) bit operations where a, b ∈ ZZn with
max (‖ a ‖, ‖ b ‖) ≤ 2B for the l1−, l2− and l∞−norm. For simplicity we restrict the
norm to be one of those lp−norms. Nevertheless the results of this paper hold for any
lp−norm for which we can compute succ (a, b) in O(nM(B)) bit operations.

Kaib and Schnorr recently proved a sharp worst case bound for the number of iterations
of the Gaussian algorithm for any norm. They observed that the transformation matrices
defined by (succ (a, b), a) = (a, b)M−1 are of the form

M =

[
0 ε
1 µ

]
∈ SL2(ZZ) where either ε = 1, µ ≥ 2 or ε = −1, µ ≥ 3 .

We call such a matrix M a stepmatrix and we call a product of stepmatrices a reduction
matrix. Note that the Gaussian reduction step is performed by the inverse of the step-
matrix. The central point in the proof of the sharp bound on the number of iterations is
that the following Lemma holds for any norm:

2

Lemma 2. Let (α, β) be well–ordered, M a stepmatrix and (a, b) = (α, β) M . Then (a, b)
is well–ordered and (α, β) = (succ (a, b), a).

Proof. See [KS93], Lemma 9. 2

The goal of this work is to achieve an asymptotically low bit complexity by using approx-
imate arithmetic. We will show that the Gaussian algorithm operates stable until the
approximation error exceeds some threshold. Therefore we need a property of the bases
that preserves well–orderness if the approximation error is bounded. We define

Definition 3. A lattice basis (a, b) is called

1. strictly well–ordered (swo) if

• 5
4 ‖ a ‖ ≤ ‖ a− b ‖ < ‖ b ‖ − 1

2 ‖ a ‖ and

• 2 ‖ a ‖ ≤ ‖ b ‖ ,

2. σ–minimal for some threshold σ ∈ IR if (a, b) is strictly well–ordered with ‖ a ‖ ≥ σ
and either

• ‖ succ (a, b) ‖ < σ or

• (succ (a, b), a) is not strictly well–ordered

where σ-minimality is the appropriate porperty for the output of the fast algorithm: The
approximation error is controlled by the threshold σ and we will prove that all bases in
the core of the Gaussian algorithm are strictly well–ordered.

Lemma 4. Let (a, b), (b, c) be well–ordered bases, a = succ (b, c) = ε(c− µb). Let ∆ < 1
satisfy ‖ succ (a, b) ‖ ≤ ∆ ‖ b ‖ . Then

1. ‖ c ‖ − ‖ c− b ‖ ≥ ‖ b ‖ − ‖ a ‖
2. ‖ c− b ‖ − ‖ b ‖ ≥ 1−∆

2 ‖ b ‖ .

This Lemma implies that in a run of the Gaussian algorithm all except the last three bases
are strictly well–ordered:

Corollary 5. Let (b0, b1), (b1, b2), (b2, b3) be successive well–ordered bases with bi =
succ (bi+1, bi+2). Then (b2, b3) is strictly well–ordered.

Proof. Since (b0, b1) is well–ordered we have ‖ b1 ‖ ≤ 1
2 ‖ b2 ‖ and thus

‖ b3 ‖ − ‖ b3 − b2 ‖ ≥ ‖ b2 ‖ − ‖ b1 ‖ ≥ 1
2
‖ b2 ‖ .

On the other hand ‖ b0 ‖ < ‖ b1 ‖ ≤ ‖ b2 ‖ and hence, with ∆ = 1
2 the Lemma implies

‖ b3 − b2 ‖ − ‖ b2 ‖ ≥ 1
4
‖ b2 ‖ . 2

3

A more careful analysis shows: If (a, b) is swo and (succ (a, b), a) is not swo, we have

‖ succ (a, b) ‖ ≤ 2λ2(La,b).

This inequality in particular holds for a 0-minimal basis of an integer lattice.

Proof of Lemma 4. Ad 1: Let ρ := ‖ b ‖/‖ a ‖. We distinguish two cases:

ε = 1:

‖ c− b ‖ = ‖ (µ− 1)b + a ‖
≤ (µ− 1) ‖ b ‖ +

1
ρ
‖ b ‖

≤ (µ− 1 +
1
ρ
)
1
µ
‖ c ‖

= (1− ρ− 1
ρµ

) ‖ c ‖

Hence

‖ c ‖ − ‖ c− b ‖ ≥ ρ− 1
ρµ

‖ c ‖ ≥ ρ− 1
ρµ

µ ‖ b ‖ = ‖ b ‖ − ‖ a ‖ .

ε = −1: Let η = µ− 1− 1
ρ and G(ξ) = (1− ξ)ηρa + ξηb .

We have ‖ G(0) ‖ = ηρ ‖ a ‖ = η ‖ b ‖ = ‖ G(1) ‖ . Hence ηρ ‖ a ‖ ≤ ‖ G(µ−1
η) ‖ =

‖ c− b ‖ . Let H(ξ) = (1 − ξ)(−ηρa) + ξ(c − b). We have ‖ H(0) ‖ = ηρ ‖ a ‖ ≤
‖ c− b ‖ = ‖ H(1) ‖ . Hence ‖ c− b ‖ ≤ ‖ H(µρ

µρ−1) ‖ = (1− ρ−1
µρ−1) ‖ c ‖ . Hence

‖ c ‖ − ‖ c− b ‖ ≥ ρ− 1
µρ− 1

‖ c ‖ ≥ ρ− 1
µρ− 1

(µ− 1) ‖ b ‖ ≥ ‖ b ‖ − ‖ a ‖ .

Ad 2: Let x := succ (a, b) = ε̃(b − µ̃a). We use the line G(ξ) = (1 − ξ)λb + ξc where
λ = (2µ̃+1)/∆−1

µ̃/∆ . Lemma 11 of [Ka91] yields G(1) = ‖ c ‖ ≥ λ ‖ b ‖ = G(0) . Hence

λ

λ− 1
‖ c− b ‖ = ‖ G(λ

λ−1) ‖ ≥ ‖ G(0) ‖ = λ ‖ b ‖

and finally

‖ c− b ‖ − ‖ b ‖ ≥ (λ− 2) ‖ b ‖ ≥ 1−∆
2

‖ b ‖ .

2

A strictly well–ordered basis remains well–ordered if the approximation error is bounded
reasonably:

Lemma 6. Let (a, b) be strictly well–ordered and max {‖ ∆a ‖, ‖ ∆b ‖} ≤ 1
12 ‖ a ‖ .

Then (a + ∆a, b + ∆b) is well–ordered.

4

Proof. We immediately see:

‖ b + ∆b ‖ − ‖ a + ∆a − (b + ∆b) ‖ ≥ 1
2
‖ a ‖ − 2 ‖ ∆a ‖ − ‖ ∆b ‖ > 0

‖ a + ∆a − (b + ∆b) ‖ − ‖ a + ∆a ‖ ≥ 1
4
‖ a ‖ − 2 ‖ ∆a ‖ − ‖ ∆b ‖ ≥ 0 .

2

The preceding considerations lead to the following:

Central stability observation. Denote b0, b1, b2, . . ., where bi := succ (bi+1, bi+2), the
tail of the vectors generated by a run of the Gaussian algorithm. Let (b0, b1) be reduced,
(bi, bi+1) swo for i ≥ t but (bt−1, bt) not swo. From Corollary 5 we know that t ≤ 3. Let ϕ
be a linear mapping with ‖ ϕ(bi)− bi ‖ ≤ 1

12 ‖ bi ‖ for i = t, t + 1. Let b̄i := ϕ(bi) for
i ≥ t and b̄i := succ (b̄i+1, b̄i+2) for i < t.

Then (b̄i, b̄i+1) is well–ordered for i ≥ t and (b̄t+2, b̄t+3) is swo. Furthermore the Gaussian
algorithm on (b̄t, b̄t+1) terminates after at most 3 Gaußsteps.

3 The fast algorithm

As a consequence of the central stability consideration, throughout the fast algorithm we
will care that

• if a basis is well–ordered but not swo, we cancel (at most 2) preceding Gaußsteps to
obtain a swo basis,

• if in (a, b) := (a + ∆a, b + ∆b) some precision bits are ingored ore recovered their
norm satisfies max(‖ ∆a ‖, ‖ ∆b ‖) ≤ 1

12 ‖ a ‖ .

For the first point we need to protocol the transformation matrices M1, . . . , Mt for all
Gaußsteps. The fast algorithm performs two recursive calls of low accuracy. The full
reduction Matrix M = Mt · . . . ·M1 is protocolled for the recovering of the full accuracy.
In our notation, the procedures performing and cancelling Gaußsteps are:

Gaußstep: t := t + 1, Mt := Stepmatrix(α, β), (α, β) := (α, β)M−1
t , M := MtM .

Backstep: (α, β) := (α, β)Mt , M := M−1
t M, t := t− 1.

For approximative arithmetic on the leading bits of vectors we need to generalize some type
of “next ineger” function to vectors. Let b.e : IRn −→ ZZn be a function that minimizes
‖ x− bxe ‖ . We denote the worst approximation by

Γ := sup
x∈IRn

inf
ω∈ZZn

‖ x− ω ‖

For lp−norms we have Γ = 1
2n1/p by taking the next integer in every coordinate. In the

fast algorithm Γ will appear in form of the technical constant z = d1
2 log2 Γ/τ − 1e ≈

d 1
2p log2 n + 1.31e where τ =

√
13
12 − 1.

5

Algorithm FG(a, b, m).
Input: Well–ordered basis (a, b) , m ∈ IN.

1. M := I , t := 0, (α, β) := (a, b)
IF ‖ a ‖ ≤ 2m+z+1 THEN GOTO 8 .

2. Choose d minimal with ‖ b ‖ ≤ 2m+d , m′ := min (m, d),
z = d 1

2p log2 n + 1.31e , h := m′ + bd+z
2 c , h′ := dm′ + ze

IF m ≤ d THEN GOTO 4.

3. k := m− d + 1, (α, β) := (b2−k ae, b2−k be) ,
IF (α, β) is not swo THEN [(α, β) := (a, b) , GOTO 8] .

4. IF ‖ α ‖ ≥ 2h THEN (α, β, t, M, M1, . . . , Mt) := FG(α, β, h) .

5. WHILE ‖ β ‖ > 2h and ‖ α ‖ ≥ 2h′ and (α, β) swo DO Gaußstep
IF ‖ α ‖ < 2h′ or (α, β) not swo THEN [Backstep, GOTO 7],

6. (α, β, t′, M ′, Mt+1, . . . ,Mt+t′) := FG(α, β, h′) , M := M ′M , t := t + t′ .

7. IF m > d THEN (α, β) := (a, b) M−1

8. WHILE (α, β) swo and ‖ a ‖ ≥ 2m DO Gaußstep
WHILE (α, β) not swo DO Backstep

Output: (α, β, t, M, M1, . . . , Mt) where
(α, β) is a 2m–minimal basis, M is the reduction Matrix (α, β)M = (a, b) and
M1, . . . , Mt are the stepmatrices for the performed Gaußsteps satisfying M = Mt ·. . .·M1 .

It is easy to check the output conditions recursively. The general idea for the time bound
is that the integer d chosen in Step 2 is a measure for the descent of the algorithm. The
recursive calls in Steps 4 and 6 have descent less than d/2. We state:

Theorem 7. Algorithm FG terminates after at most O(n (1+ log n1/p) M(B) log B) bit
operations on an input basis a, b ∈ ZZn with ‖ a ‖, ‖ b ‖ ≤ 2B where M(B) denotes a bit
complexity bound for B-bit integer multiplication.

The proof will be given in the next section. We remark that for the l2−norm we can always
run algorithm FG with n = 2, since we can perform all operations by use of the Gram–
matrix (a, b)>(a, b) instead of the vectors a, b ∈ ZZn. The initial and final transformation
requires O(nM(B)) bit operations. For reduction of bases in other lp−norms it is helpful
in many cases to perform an initial pre–reduction of the basis in the l2−norm.

4 Proof of the time bound

Notation. Let (α3, β3) = (b2−kae, b2−kbe) = (2−ka − ∆a, 2−kb − ∆b) denote the
trunctated basis obtained from Step 3, let (α6, β6) denote the output basis of the recursive
call in Step 6 and let (α, β) denote the full–bit basis obtained from Step 7. Let M be the

6

reduction Matrix satisfying (α6, β6) = (α3, β3)M−1. Thus we write the recovering of the
full bits in Step 7 as

(α, β) = (a, b)M−1

= 2k [(α3, β3) + (∆a,∆b)]M−1

= 2k
[
(α6, β6) + (∆a, ∆b)M−1

]

=: 2k [(α6, β6) + (∆α,∆β)] .

Bounds on M . To give upper bounds on the size of the error vectors ∆α, ∆β we use
properties of the reduction Matrix M , derived from analysis of the generalized continuants
for the centered euclidean algorithm. These properties have been proved by Kaib and
Schnorr in [KS93]. The Matrix M has the form

M =

[
εp εq
r s

]

where ε = ±1 is the sign of the last reduction coefficient and p, q, r, s are the positive
integral values of the continuant polynomials satistying s ≥ 2r, 2q ≥ 4p ≥ 0 and ε(ps −
qr) = detM = ±1. We have

‖ β3 ‖ = ‖ εqα6 + sβ6 ‖ ≥ (s− q

2
) ‖ β6 ‖ ≥ 4

3
s ‖ β6 ‖ .

Other bounds. We have

(∆α, ∆β) = (∆a, ∆b) M−1 = ± (s∆a − r∆b, ε (q∆a − p∆b))

where the latter inequalities imply r + s ≤ 2‖ β3 ‖
‖ β6 ‖ and p + q ≤ ‖ β3 ‖

‖ β6 ‖ . By definition of

Γ we have ‖ ∆a ‖, ‖ ∆b ‖ ≤ Γ. Hence ‖ ∆α ‖ ≤ 2‖ β3 ‖
‖ β6 ‖ Γ and ‖ ∆β ‖ ≤ ‖ β3 ‖

‖ β6 ‖ Γ .

By Step 1 we have z < d− 2 and, by Step 2, Γ ≤ τ22z+2 where τ = (
√

13
12 − 1). Hence

‖ β3 ‖ ≤ 2−k ‖ b ‖ + Γ ≤ 22d−1 + Γ ≤ (1 +
τ

2
) 22d−1.

The 2h′-minimality of (α6, β6) implies 2h′ ≤ ‖ α6 ‖ ≤ 1
2 ‖ β6 ‖ . Using the latter

inequalities it is easy to pove the final error bounds:

‖ ∆α ‖ ≤ 1
12

‖ α6 ‖ and ‖ ∆β ‖ ≤ 1
24

‖ α6 ‖ .

Lemma 8. Algorithm FG performs at most

• 2 Gaußsteps in Step 5

• z + 3 Gaußsteps in Step 8

• 2 Backsteps in Step 8

7

Proof for Step 5. Every Gaußstep decreases the norm of the vectors at least for a
factor 2. Denote (α5, β5) the basis upon entry of Step 5 and ω5 its successor vector. We
have ‖ ω5 ‖ < 2h since (α5, β5) is 2h–minimal. Hence ‖ β ‖ ≤ 2h after at most two
iterations. 2

Proof for Step 8. We distinguish the cases that the algorithm enters Step 8 from Steps
1, 3 or 7. We my assume m > d since otherwise Step 3 and Step 7 is omitted and the
output of Step 6 is already 2m+z–minimal.

Step 1: We have ‖ α ‖ < 2m+z+1. The norm decreases at least by a factor 2 in each
iteration. Hence (α, β) is 2m–minimal after at most z + 1 iterations.

Step 3: (α3, β3) is not swo. We first prove that max {‖ ∆a ‖, ‖ ∆b ‖} ≤ 1
12 ‖ a ‖ :

12Γ
‖ a ‖ ≤ 12 τ22z+2−m−z < 12 τ2z+d−m−z−1 ≤ 3τ < 1

(we used d < m). Hence (α3, β3) is well–ordered. The central stabylity consideration
shows that in this case the algorithm takes at most 2 Gaußsteps on (a, b).

Step 7: Let ω6 = succ (α6, β6) = ε(β6 − µα6). Assume we are in the non–terminal case,
i.e. the 2h′-minimality of (α6, β6) implies ‖ ω6 ‖ < 2h′ . Since (α6, β6) is swo and
‖ ∆α ‖ ≤ 1

12 ‖ α6 ‖ the same µ, ε satisfy

ω = succ (α, β) = ε(β − µα) = 2k[ω6 + ε(∆β − µ∆α)] .

We use
µ =

‖ β6 − εω6 ‖
‖ α6 ‖ ≤ 3

2
‖ β6 ‖
‖ α6 ‖

to bound the norm of the error tails:

‖ ∆β ‖ + µ ‖ ∆α ‖ ≤ ‖ β3 ‖
‖ β6 ‖ Γ +

3 ‖ β6 ‖
2 ‖ α6 ‖ 2

‖ β3 ‖
‖ β6 ‖ Γ

≤ 7
2

Γ
‖ β3 ‖
‖ α6 ‖

≤ 7
2

τ 22z+2 (1 +
τ

2
) 22d−1 · 2−d−z

=
7
24

2d+z ,

and hence
‖ ω ‖ ≤ 2k[2d+z +

7
24

2d+z] =
31
12

2m+z .

Hence the algorithm takes at most z + 1 + log2
31
12 iterations in Step 8. 2

8

Proof of the bit complexity bound. The descent d chosen in Step 2 is the crucial
parameter for the time analysis. The descent d6 of the recursive call in Step 6 is

d6 = h− h′ = bd− z

2
c .

For m > d the descent d4 of the recursive call in Step 4 is

d4 = dlog2 ‖ β3 ‖ e − h ≤ 2d− 1 + log2(1 +
τ

2
)− d− bd + z

2
c <

d

2
,

and for m ≤ d

d4 = m + d− (m + bd + z

2
c) = bd− z

2
c .

Hence the two recursive calls have less than half descent size. The bit complexity for the
other operations is bounded O(z n M(B)) in the following way: By Lemma 8 Algorithm
FG performs at most d 1

2p log2 n+1.307e+3 Gaußsteps. Each Gaußstep takes O(n M(B))
bit operations. Note that in Step 7 the tails can be updated very efficiently by computing

(α, β) := 2k (α, β) + (a− 2k b2−k ae, b− 2k b2−k be) M−1 .

Denote T (d) the number of bit operations required by a call of algorithm FG of descent d
and input size O(d). For the important case we have m > d and thus d < B < 2d holds.
Hence the recursion yields

T (d) ≤ 2T (
d

2
) + O(z n M(d))

= O(z n M(d) log d)

2

Acknowledgment

I am grateful to Claus Schnorr for proposing the subject and for helpful comments and
suggestions.

References

[Da93] H. Daudé: Des fractions continues a la réduction des réseaux: Analyse en
moyenne. Thèse de doctorat, Université de Caen 1993.

[Ga1801] C.F. Gauss: Disquisitiones Arithmeticae. Leipzig 1801. German translation:
Untersuchungen über die höhere Arithmetik. Springer, Berlin 1889. (reprint:
Chelsea, New York, 1981.)

[Ka91] M. Kaib: The Gauß Lattice Basis Reduction Algorithm Succeeds With Any
Norm. Proceedings of the FCT’91, Springer Lecture Notes on Computer Science,
vol. 529 (1991), pp. 275-286.

9

[KS93] M. Kaib and C.P. Schnorr: The Generalized Gauß Reduction Algorithm.
Technical Report, Universität Frankfurt (1993). To appear in J. Algorithms.

[Le38] D.H. Lehmer: AMM, vol. 45, (1938), pp. 227-233.

[LS92] L. Lovász, H. Scarf: The Generalized Basis Reduction Algorithm. Mathe-
matics of Operations Research, vol. 17, No. 3 (1992), pp. 754-764.

[Sch71] A. Schönhage: Schnelle Berechnung von Kettenbruchentwicklungen. Acta In-
formatica 1, (1971), pp. 139-144.

[Sch91] A. Schönhage: Fast Reduction and Composition of Binary Quadratic Forms.
In: Proc. ISSAC 1991, Ed. S.M. Watt, ACM 1991, pp. 128-133.

[Va91] B. Vallée: Gauss’ Algorithm Revisited. Journal of Algorithms 12 (1991), pp.
556-572.

[VF90] B. Vallée, Ph. Flajolet: The Lattice Reduction Algorithm of Gauss: An
Average Case Analysis. Proc. 31st IEEE Symposium on Foundations of Com-
puter Science, 1990, pp. 830-842.

[Ya92] C.K. Yap: Fast Unimodular Reduction: Planar Integer Lattices. 33rd IEEE
Symposium on Foundations of Computer Science (1992), pp. 437-446.

10

