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Abstract
We analyse the problem to approximate a plane by two linearly indepen-
dent vectors bi,bs € Z™. We show that given z; := (argl), .. .,xﬁjll, 1), zo :=
(mf), e ,mfll, 1) € R™ our algorithm computes under a reasongble hypot.hesis for
i=1,2,... a sequence of linearly independent vectors b§’) = (pgl”), . ps_’?, ),
b;z) = §2’Z), . ,pf_’?, q(2’i)) € Z™ such that the distance between the planes z; R +

2o R and b R + b R is bounded by

1/2
3n/4 ! + !
q(l,z) n—2 q(2,z) n—2

This generalizes the one-dimensional case where we seek to find for a
given vector z =(z1,...,%Zn-1,1) € R® good simultaneous diophantine approxima-

tions, i.e., a sequence of vectors (py), ... ,ps)_l,q(i)) €Z™, 1=1,2,... such that
maxi <j<n [¢¥ z; — p;(?)| becomes arbitrarily small for increasing integers |¢()|. Our
result can be extended in a straightforward manner to the r—dimensional case where
we seek to approximate an r—dimensional subspace with 1 <7 < |[Z].

1 Introduction

We present an algorithm which computes for real z1, 22 € R” simultaneous diophantine
approximations to the plane spanned by the vectors z1,z2. Given linearly independent
1,22 € R our algorithm constructs a sequence of lattice bases of the lattice Z™ consisting
of vectors that approximate span(zi,x2) := 1 R+ 29 R. For given € > 0, our algorithm
either finds a simultaneous integer relation m € Z™ — 0 for z1,z2 with <m,z; >=0,
7 = 1,2 of Euclidean length at most 2n/2 ¢=1 or it proves that no simultaneous integer
relation exists having length less than ! . For this the algorithm uses O(n* (n + |log ¢|))
arithmetic operations on real numbers with exact arithmetic.

For rational input vectors z :=(q§1),...,q,(zl))/q§b1), Z :=(q§2),...,q§b2))/q£2), with
qgj), . ,qr(lj ) e Z, 7 = 1,2 the algorithm has polynomial bit complexity in the input size

* 1 [log \qgl)ﬂ + > [log |q§2)H + |log €| . Our analysis relies on the dual lattice basis
which we show to consist of very short vectors, see Theorems 1, 2. From this we greatly



improve the known bounds for the primary lattice basis and diophantine approximation.
The crucial role of the dual basis escaped in all previous studies.

Our algorithm is a generalization of the Stable Continued Fraction Algorithm proposed
in [RS96] which in turn is a variant of the HJLS-algorithm of Hastad, Just, Lagarias,
Schnorr [HJLS89] incorporating ideas of Just [Ju92] and Réssner, Schnorr [RS95].

2 Preliminaries

Let R” be the n—dimensional real vector space equipped with the ordinary inner product
< .,. > and Euclidean length ||y|| :=< y,y >'/2. We let [y1,...,ym] denote the matrix
with column vectors y1, . .., ym and det(yi, . . . , ym) denote the volume of the paralleepiped
spanned by the vectors yi,...,yn. Moreover, [ . | is the nearest integer function to a real
number 7, [r| =[r+0.5].

A non—zero integral vector m € Z" is called a simultaneous integer relation for x1, o
if <m,z; >=0, j=1,2. We let A\(z1,z2) denote the length ||m|| of the shortest simul-
taneous integer relation m for 1,z , A(z1,22) = 0o if no relation exists.

Throughout this paper, bi,...,b, is an ordered basis of the integer lattice Z" and
its dual basis ai,...,a, is defined by [a1,...,a,]" :=[b1,...,bs] !. Let 21,20 € R" be

two linearly independent vectors, set b; o :=x; for j =1,2. Let 7y, , j = 1,2 denote
the orthogonal projection onto (z; R)1, j = 1,2 and m, 4, the orthogonal projection onto
(1 R + o R)* . We associate with the basis by, ..., b, and the vectors z1, z3 the orthogonal
projections
Tigize : KR'—>span(b_i, by, b1,... ,bi_l)L for 1=-1,...,n ,
iz, ° R”—>span(xj,b1,...,bi_1)J‘ for i=1,...,n, j=1,2 and
m : R*—sspan(by,...,bi_)T for i=1,...,n,

where span(bj,...,,bi—1) denotes the linear space generated by b;,...,bi—1 and
span(bj, . ..,bi—1)* its orthogonal complement in R*. We abbreviate b; 4, z, =i 21,25 (bi) 5

big; =miz;(bi) and b; :=m;(b;). The vectors b1 g zy---5>0n21,0, (TesSp. b1,...,bp)
are pairwise orthogonal. They are called the Gram—Schmidt orthogonalization of
x1,%2,b1,...,b, (resp. bi,...,b,). The Gram-Schmidt coefficients p;; of the factor-
ization [a?l,fg,bl, .. .,bnA] = [.’Ifl,ﬂ'ml(ilfg),/gl,zl,zw e ,?)\n,zl,m] (,ui,j)l—lg,an are defined as
Pij =< biy 0j 21 5 > [10jw1msl|? - I bjz0,20 =0, weset p; ; = 0for i # jand pjj = 1. The
matrix (@i j)—1<i j<n is lower triangular with all diagonal elements 1. Finally we note that
an = Zn/||?b\n||2 since both a,, and Bn are orthogonal to by,...,b,_1.

The (ordered) projected vectors m; g, 4, (), - - - , Wi 21 2, (bs) are size-reduced if |py ;| < %
holds for i < j <k <t and L3-reduced if they are size-reduced and the inequality
3 11,2029 (Br—1) |2 < [|7%—1,21,20 (b)) ||? holds for k=i +1,...,¢.

If L3-reduced the projected vectors Ti g ,00(Di)s -« - s Ti gy 0o (be) satisfy ||3-7951,z2||2 <
2(1bj 11,21, for j =id,...,t—1.

Models of computation. We distinguish three models of computation for our algo-
rithm.

Ezact real arithmetic. For real input z1,z9 € R” we use exact arithmetic over real numbers.
Our algorithm can use either Gram—-Schmidt orthogonalization or Givens Rotation with
square roots. The analysis of the HJLS—algortihm applies.



Ezact integer arithmetic. For rational input z1, x2 € Q" we can use exact arithmetic over
the integers. The rational numbers p; ;, ||5m1,$2||2 are represented by their numerator
and denominator. This version of our algorithm uses Gram—-Schmidt orthogonalization.
The analysis of the L3-algorithm [LLL82] for lattice basis reduction applies.
Floating point arithmetic. For rational input z1,x2 we can speed up our algorithm in
that we replace the exact arithmetic on the rationals pu; ;, ||53m112|| by floating point
arithmetic. The vectors z1,x2,b1,...,b, , a1,...,a, are kept in exact representation. In
order to minimize floating point errors we use, instead of the y; ; , the normalized coeffi-
cients 7; j 1=p; ; ||7)\-7%17952 || . We call the entities 7; ; for —1 <, j < n the orthonormalization
of x1,22,b1,...,by. Note that 7i; = |[biz, 4,/ - The L3property 3 |7 121 2, (bs_1)[> <
|Tk—1,21,20 (bk)||* is expressed by %T,?ﬂ,kfl < T,?Jc + T,ikfl . The 7; ; are not rational but
require square roots, we compute them in floating point arithmetic using Givens Rotation.
A complete analysis of the numerical stability of the orthonormalization process can be
found in [RS96].

We present our algorithm in its floating point version. From this description the details
for the other models of computation are straightforward and left to the reader.

3 The algorithm description

Our algorithm is a variant of the HJLS-algorithm [HJLS89] for finding simultaneous
integer relations for real vectors. Our algorithm improves the HJLS-algorithm [HJLS89]
towards numerical stability. Given real vectors 1,22 € R” and € > 0, the HJLS-algorithm
either finds an integer relation m for z,zo with |m|| < 2%/2~' min{ X(z1,z3), €'} or
it proves A(z1,z2) > e~!. The HJLS-algorithm performs reduction and exchange steps
on the linearly dependent system of vectors x1,xs, b1, ..., b, where initially by,...,b, are
set to the unit vectors in R”. We iteratively swap vectors by 1, bx, 2 < k < n for which
the index k — 1 maximizes 2°() ||Zi,z1,z2||2 where o(i) denotes the number of non—zero

orthogonal vectors in {El,mlm, ..., bi g, 2, } . Before each swap by_14+by, the vector by is
size-reduced with respect to its preceding vector by .
The vectors z1, z3 remain unchanged and the vectors by, ...,b, remain a basis of the

lattice Z™. The HJLS—algorithm uses exact arithmetic on real numbers. Its reduction and
exchange steps minimize max;<;<n ||Zi,m1,z2|| .

The HJLS-algorithm terminates if either zi,z9 € span(by,...,b,_1), i.e., if a swap
bp—1 ¢ b, results in ?)\n,zl,m # 0, or if max;<;<p |\Bzzl$2|| < €. In the first case, the last
vector a, of the dual basis is a simultaneous integer relation for z1, o . In the latter case,
we have A(z1,22) > € ! which follows from

HJLS89] Proposition 5.2 Fvery basis b1, ...,b, of Z" satisfies
[ P Y yeees

A1, 2) > 1/ mase By ] 1)

Our main modifications of the HJLS-algorithm are as follows:

1. Before swapping vectors b; 1,b; and b, 1,b, with /I;t,zl,m = Bn,mhm =0 the pro-
jected vectors 101,22 (01)y -y T z1,29 (/{)t_l) and 41 21,20 (0441)y - - - » Tt 120,20 () are L3—
reduced such that |[bs—1 2, 25> < 2[[bt41.21 21 -

2. We apply reduction in size, i.e. we reduce by so that |pug;| <1/2fori=1,...,k—1.

Reduction in size has been neglected in [HJLS89] since it is pointless for the exact real
arithmetic.

3. In the floating point version orthonormalization of the vectors z1,z9,b1,..., b, is done



by Givens Rotation with a floating point error that is linear in n and max_i1<;<n ||b;||, see
[HT93, Jo93, RS96].

The test on 7,5, # 0 actually checks whether 7,, > 27" where r is the number of
precision bits of the floating point arithmetic.

In this paper we consider only the approximation of a two—dimensional subspace of
the R". The algorithm and the analysis given below can be modified in a straightforward
manner to the r—dimensional case where we seek to approximate an r—dimensional sub-
space with 1 <r < | Z].

Stable diophantine approximation algorithm (SDAA)

INPUT Linearly independent x1,z2 € R*-0, ¢ > 0.

1. Initiation. Let b; € Z™ be the i—th unit vector. Compute the orthonormalization
(7i,5) —1<i j<n of Z1,Z2,b1,...,by using Givens Rotation (see [RS96]).
si=1,t:=min{l <j<n: 7,;=0}.

2. L3-reduction of the projected wectors T gy zy(b1)s-ey Ty 2(bi—1) and
Tettm1,00 (Ot+1) -+ Tt 121,20 (bno1) such that |[by—1, 25 [1* < 21[ber1,20,0,] -

WHILE s <n —1 DO:

While there exists k with 1 < k£ <t and %T,?fl’kfl > T,?’k + T,?,kfl size-reduce by with re-
spect to by_1 by setting by, := by, — [Tk x—1/Tk—1,k—1] bk—1, swap b1 and by, and update
the orthonormalization using Givens Rotation.

Reduce by, ..., b; in size. While |7 ;| < € increment s to s + 1.

e 2 2
While ;7,1 > 2744 44, do

While there exists k with t +2 <k <n and 372, , | > 7%, +7%,_, size-reduce by
with respect to by_1 by setting by := by, — [T k—1/Th—1,,k—1] bk—1, swap bgy_; and by and
update the orthonormalization using Givens Rotation.

Reduce byy1, ..., b, in size.

Swap b,—1 and b, , and update the orthonormalization using Givens Rotation.

od
Swap b;—1 and b; , and update the orthonormalization using Givens Rotation.

While |7, 4| < € increment s to s + 1.
OD

Output (pgl), e ,pgll, qW) :=by, (p?), - ,pgll’ q@) :=by, the next approximation for

span(z1,2) , see Theorem 4.

3. Termination. Compute [a1,...,a,]" :=[b1,...,by] 7 ".
If 7, , > 0 a simultaneous relation for zi, x> is found. Output the relation a, for z;,zs.
If s =n then 7;; < € holds for i = 1,...,n. Output “A(z1,z2) > € 7.

Note that the L3-reduction of the second block i1 x4 .20 (bt41)s-- - s Tttt 21,25 (bn1)
is embedded in the L3-reduction of the first block T,z1,20(01)s -« o T 21,20 (bt—1) . This
guarantees the condition ||?)\15,1,m17952||2 <2 ||7;t+1,z1,z2||2 before exchanging both b, 1,b,
and bt—l; bt .

If e =0 then SDDA produces a possibly infinite sequence of vectors by, bs that are good
diophantine approximations to span(z1,z3) .



Correctness properties.

1. Upon termination of step 2 we have 7;; < efori=1,...,5s -1, Zt,zl,m = 0 and the pro-
jected vectors w4, a, (b1)y -y 1,2y ,20 (br—1) and 7rt+1,m1f2(bl), e ,7rt+1,m1f2(bn_1) satisfy
||bk,$1,$2||2 <2 ||bk+1,z1,$2||2 ) ke {2’ .- ’n} \ {t} and Hbt*1,11,$2l|2 <2 ||bt+1,z1,$2||2 .

2. Before swapping b,—; and b, we have s <n (note that s # n since 7,, =0) and

-1 -1
Ts,s <e€
Therefore the L3-reducedness of the projected
vectors 71 gy xy (bl), cea, T T1,T2 (bt 1) and Ti4+1,21,20 (bl), ey Tl 31,20 (bn_1) implies that

< 2(n=1-t)/2 < 9(n—2-s)/2 1

||bn71,m1,z2||_1 Hbt 1,zy, mz” !

4 Analysis of SDDA in exact real arithmetic

Theorem 1. Throughout the computation we have |a,| < 20=1D/2
min{ e !, A\(wz1,22)}.

Proof. As long as ?;n 1,21,z = 0 no swap b,_14>b, will occur within the computation
of SDDA. This leaves the vector a, = e, unchanged So, we may assume bn Lo,z 7 0.

If the first swap b,,_14>b,, which results in bn 1,71,22 7 0, also produces bn 21,00 7 0 We
are done since ap = e, is a simultaneous relation with length llan]] = 1. So, we may
further assume bn z1,00 = 0. We let bi,...,bn, @1,...,a, denote the dual bases before and
biy...,by, a1,...,a, after an arbitrary swap bn_1<—>bn of SDDA. Let p; ; be the Gram-

Schmidt coefficients and Ei7$17z2 be the orthogonal vectors of x1,T9,b1,...,b,. We have

~

bn_l’zl’IQ :ﬁnanfl En_lamth With |ﬁn,nfl| S % .
From the characterization of a,_1 as < ap—1,b; >= d,—1;, which holds throughout the
algorithm, we infer that

o bnfl,zl,:@ < bn;bnfl,ml,z2 >
Ap—1 = —= 2 — = 2 Qg .
11,21, | 11,12

Applying this equation to the vectors by,...,b, , @1,...,a, and [y n—1| < % implies the
recursion formula

lanll = l[@n-1] = lba-1,21,02lI"" + [En o ll@n]
< Bn—t,1,00 /7t + 5 @]l -
From the correctness property 2 and inequality (1) we see that

201 bty 0ol 2 max 27O/ |[bi gy g l| 2 212 Mar,@2) 7"
1<i<n

where o(i) :== {1 <j <i: bigyas 7 0. Using  [|bp_1,0,.2,]| 7" < 207=3/2 X(z1, 29) and
1br—1,21,2, |7 < 2(n=3)/2 =1 " which follows from correctness property 2, we can rewrite
the recursion formula to

lan|l < 20792 min{e !, Ma1,22) } + 5 [[@n] -

This inequality holds for every exchange b,,_1<>b, of SDDA. Suppose that there are exactly
r such exchanges and using that initially ||a,|| = 1 we obtain:

llan|l < 2(n—3)/2 min{ e~!, Az, 72) 22 )

< 2D min{et, Awy,an)) )



Since the inequality ||a,| < 2(n—1)/2 min{e~!, \(z1,z2)} holds after any swap b, 1<+b,
it must always hold because a,, does not change between two swaps. O

Theorem 2. The dual bases by, ... by and ai,...,an, occuring after the L3-reduction
step of SDDA, satisfy for by gz, z, =0

la. ||a;]| < 1.5™ Z(glag 1 21,257 4+ 207972 min{e™! ) Ma1,29)}), i=t+1,...,n,
17
Lb. flaill < 1.5 (max 120,25 F 45 - 20772 min{e™! ) A(@1,22)}) , i =1,...,¢,
lyj#
2. bl < 2%7V/2 min{e !, A(z)}

min{s,t—1} t—1

(4-1.571_#'_1 Z H ||blcac1,m2|| b4 Z H | km1,m2|| 1 +Z||b]$1,z2”

j=t4+1 k=t+1
k;éJ k#j

Proof. 1. Since SDDA did not terminate previously we know that Zn,mlm =0, and thus
bj e 2. # 0 holds for all indices j = 1,...,n —1, j #t. Let y; ; be the Gram—Schmidt co-

efficients of T1,T2, b1, . ,bn and define the Vij by (Vi,j)lgi,jgn = (Hi7j)1_<1i,j<n . We observe
that -
. b _ 7T, r2
Z Vjit=" = T Vit + Vn,iln (3)
=i ||b J,T1,T2 ||

o

holds for ¢ = 1,...,n. In fact, since py; = 0 for all k # ¢, this formula implies

n—1 7 k
b ~
_ 51,22 § :
<abpy > =< E Vi =5 +wiar+Vngian, Pk,j bjar,es >
j=i Hbj,zl,m H j=0
jAt

n
= Z Vjillkj + Vi < g, b > +vp; < ap,bp >
=1
i#tm
= ik — Uik Otk + Vti < Qpbg > —Unifikn + Vni < anybgp > = ik -
The L3-reduction step terminates with i gl < % for 1 < j <i<n. Hence
lvijl <1577 for 1<j<i<n.
Now, equation (3) yields fori =¢t+1,...,n

P < L0 max gyl 2 + 15700 a2,

and using the correctness property 2 we also have for : =1,...,¢

n—1
lail> < 31520792972 minfe=! | Az1,22)} + 152070 | + 152779 ||, | .
7
A straightforward induction on the number of decrementations of the index ¢ for which
bt z,,z, = 0 occurs for the first time shows the following:

lagl? < 415070 2=D/2 minfe=1 | \(z1,29)}). (4)



Using the inequality ||a,| <2=Y/2 min{e~!, A(z1,z2)} of Theorem 1 proves the first
claim:

laill < 1.5"7 (max bz 7" + 2072 min{e™!, Az, 22)}) s i =t 41,0 ,n,

1<j<n
HaiH < 15" (%aé}'r(z HZJ',ELMH_I +5- 2(n=1)/2 min{€_1 ) )\(xlaf@)}) s i=1,...,1.
J#t

2. We rewrite the equations (3) as

[a1,...,a,] =

~

bl,:ﬂl,zg bt—l,zl,mz bt—|—1,zl,zz bn—l,zl,zg

=~ yemey s Wiy T= ety ’
161,21, 12 1be-1.21,2 17 [1Bt41,21,201 1b5-1,21,, 12

an] (Vi,5)1<i,j<n -

~

Since the vectors Bl,ml,m, <+« ybp_1,2, 2, are pairwise orthogonal there exist orthogonal ma-
trices Uy, i.e. U ' =U,", I = 1,2 such that

b17zlyz2 bt*lyzlal? ‘| _
_— 1= _ = t =

= yeeny == ,
161,21, I 1B6-1,21,22 11

1 0 a;,l ||51,z1,z2|\_1 0
Ul 0 - 1 ’ : - O ’
a = _
b1 0 1b6—1,01,2 |7
0 ... 0 ay 0 1
with (af1,...,at )T :=Urar, ap; =[b1z, wsll -+ - [IBr1,21,25] and
bt+1,z1,z2 bﬂ*l,.’L‘l,IQ o
5 CTRRRENTS S5 On| =
|| t+1,m1,12|| || nfl,zl,m“
1 0 ap; 141,122 [ 0
U2 0 B 1 ’ : O b
a -~ _
0 0 Z;nil 0 Hbﬂ—l,zl,IQH !

n,n 0 1
with (a}, 11,---, ) ,)" :=Uszay and a, ,, =612yl - - - - |Bn1,21,2, || - From the previous
equations and [by,...,b,]" =[a1,...,a,]"" we see that

[b1,...,bp] =
1 0
0 0
0 1 : 0
U ai1  --- Qi1 Gt
1 0
0 0
0 0 1
L an,t—|—1 an,nfl an,n A




[ Hbl,.’tl,IQH 0 —
' 0
||bt71,1‘1,z2||
1 0 T
~ i) e
166411, | (Hig)1<ij<n -
O .
° Btz
i ... 0 ... 1
where @y := aé}l, ari = —ay;/ay;, for 1<i<t, @y := a;;l, Gng = —d/dly,, for

t < i < n,respectively, and U := [U; Us] is the n x n—-blockmatrix consisting of one n x ¢
block U; and one n x (n — t)-block U, . Note, that by the orthogonality of U;, [ = 1,2
the matrix U is orthogonal, too. Thus ||b;| is the length of the i—th column vector of
the cofactor of U in this matrix product. From @, =H51,m1,m2||*1 et ||3,5_1,,31’m2||*1 and
G =|brs1212sll Lo+ Bnot12y.0, ]|t and since the matrix (l‘i,j)ngi,jgn is upper trian-
gular with |p; ;| < 1 we have fori=1,...,n—1

min{i,t—1} t—1

ill* < el D2 TT IBkrasll ™

j=1 k=1

k#j
+ ||an||2 Z H “bkm,mH 2+Z||bj$1,$2||2 (5)
j=t+1k jjl #
J

Now the claimed upper bound of ||b;|| follows from inequality (4) and from the inequality

lan|| < 2=D/2 min{ A\(z1,x2), €' } of Theorem 1. O
Lemma 3. For real input 1 := (LL‘gl), een, S)l, 1), zo: (:vgz), wfﬁl, 1) € R" every

pair of vectors by == (p{",...,p 1, q®), byi= (2,...,pP |, ¢@) € 2" occuring after

the L®-reduction step of SDDA satisfies

—~ n—t41 n+4 =2 __1
Brares| < 155 22605 |y (6)
~ n—t41 n+45 =2 1
Bomrasll < 155 2700t | (7)

where t :==min{l < j <mn : Ej,zl,m =0}.

Proof. If gl,zl,m = ( for either [ =1 or [ = 2 the claim is trivial. Thus, we may assume
t>3andn>4.
From Theorem 2 and the correctness property 2 we see that

t—1

lorfl - < 157 202 U TGy 0 |+ B0
Jj=2

< 1.5 t+1 o(n+4)/2 —1 ||82 I ||—(t—2) o(t=2) (t-3)/4

?
and, analogously,

t—1
ool < 1.5 22 e TT b0y 17 (12,200 | + [P0, 117
i=3



+ (b2l + 131 [B1,00,2 1)

(t—3) (t—2) (t=2) (t—1)
1 + 2 1

< 1.5~ t+1 (n+3)/2 -1 ||b1 _%)—f- 9

(t-2)
2 (2 y

71;2|

< 1.5 tt1 o(n+4)/2 1 ||51,Z1, —(t—2) 2W+1 .

o |

A look into the proofs of Theorem 1 and 2 shows that all inequalities, in particular in-
equality (2), hold with ™! replaced by (v/2 ||b2.z; 1) 7" - Using [[b121.25]1% < 2 62,21 .2, ]|
inplies the claim. O

For our main result we will use the following
Hypothesis: Let by, by be the pair of vectors occuring after the L?—reduction step of SDDA.
For linearly independent x1,zo € R the vectors bl,gg are independent in the following
sense: The probability that the cosine of the angle 6 := arccos % 18 in the interval
[a,b] C[-1,0] is (b—a).
The hypothesis means that given linearly 1ndependent input vectors z1,z9 € R® SDDA
computes a sequence of vectors b() (Z) ; = 1,2,... where every bg) and b() linearly
independently converge to span(a:l, xz)

The hypothesis, although not proven, seems reasonable since the approximation of
the plane span(z1,x2) amounts to approximating two arbitrary distributed vectors in
span(z1,z2) . We will use the hypothesis in the following form:

< bg,bl >

o > (L= Ve) [< b, b >< 0] < Ve (8)
[[62]] 1|61 ]|

P?"Obb2 b1€EL

) 40

We measure the qualtiy of approximation of the plane span(z1,z2) by the vectors bgz 057,
i =1,2,... in terms of the sine of the angle (¥} between the planes span(b @, bgz)) and
span(zy,x32), i.e.,

Sinn(i) = ||7TI1,I2(U(i))||a

where v(®) ¢ span(bgi),bg)) is a vector orthogonal to the cutting plane span(bgi),bg)) N
span(z1,x2) with unit length 1.

Theorem 4. Given 1 := (a:gl),...,wgzl,l), T : (:c§2), .,:vgzl,l) € R* SDDA
computes under the above hypothesis a sequence of linearly independent wvectors

by == (pgl’i), ,pg Ziaq(l’i)), by = (pgu), ,pg_’i),q@ )y ezm, i =1,2,... such that the
following holds with probability (1 — 21/* ||bgz)gg1 o)

1/2
) . 1 1
<t (A L)

gL g2

Proof. Let v(¥) =: )\gi) bgi) + )\g) bg) with ,\5"), M er. By the sine-formula we have
sin® ) = ||y 5 (v1)]|?
= 1A o (07) + 257 s (85
O+ 153 X 1,02 12 252 B 7

where [u$)] = | < 65,880 > 1/ <50 B

1 Z1,T2 ,T1,T2" 1 ,L1,T2
(%) (Z))

Tz1,25(by ) With respect to g, g, (b]

><1/2 by the size-reduction of



From the hypothesis we see that

e p@ @
Sl < 1=V
1627 {1 [[617]

holds with probability greater than (1—+/€) . Hence for a normalized vector v(*) =: Aﬁi) b@ +
)\(z) (z) and < b( 2 b( " > < 0 we must have
)\(Z) )\(Z)
L < 5
with probability greater than (1 — /).
In the case < b() () >> 0 we clearly have |A z)| |)\ | < 1/+/2. Thus
. i i 1
si? g < (G 1B+ 5 I ) 2

€

holds with probability greater than (1 — /€). Setting € := /2 ||5g)$ \ 2| implies

. 1~
st 1 < (Gl + 55 Bl

with probability greater than (1 — 2!/ ||b(z)

2,x1,x2

||) - From Lemma 3 it follows with prob-
ability greater than (1 — ||b(Z) ||) that

2,z1,T2

sin?n® < 15" 2ENHE ()00 4 o /)

Since 2 < ¢t — 1 < n — 2 and either ) or b is linearly independent to the n—th unit
vector

LIS N—1/(n—2) N—1/(n—2)
+2 (q(l, ) (2,9) )

sin?n® < 15°7 +q
N—1/(n—2 N—1/(n—2
< 371/2 (q(l,z) /(n—2) +q(2,z) /( ))

holds with probability greater than (1 — 21/4 ||b2 mzoll) fori=1,2,.... O

Running time. We refer to the models of computation introduced in section 2. Arith-
metic operations are +, —, -, /, [ | (the nearest integer function) and < (comparison).
In the floating point version, which has been completely analysed in [RS96], we also use
/~ (square root).

Ezact real arithmetic. For real input € R* SDDA performs O(n* (n + |log ¢|)) arithmetic
operations on real numbers and O(n? (n + |log ¢|)) many swaps by,_1¢3b; with 2 < k <n.
This follows from the analysis of the HJLS-algorithm [HJLS89]. The algorithm either
uses Gram-Schmidt orthogonalization via the y; ; and ||?)\-,z17z2 |2 or Givens Rotation with
square roots via the 7; ;.

Ezact integer arithmetz’c For rational z; = (q§ ) - ,qn )/q eqQ', j = 1,2 SDDA
performs at most O(n* (n + |loge|)) arithmetic operatlons on integers of bit length
O(n + max 1Si<n | log qz(] | + |loge|). Arithmetic steps use the coordinates of the vectors

b;, a; and the numerators and denominators of the rational numbers y; ; ||3j,z1,$2 ||2. The
algorithm uses Gram—Schmidt orthogonalization. The claimed upper bound on the bit
length of all integers follows by adjusting the analysis of the L3-algorithm in [LLL82] to
our algorithm.
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Computation of a Highly Regular Nearby Plane. SDDA either computes an in-
teger simultaneous relation for z1, o or proves A(z1,z2) > e~!. The algorithm essentially
generalizes the Stable Continued Fraction Algorithm (SCFA) of [RS96] which either com-
putes a short integer relation for one input vector z or proves A(x) > €. In the latter
case SCFA outputs a point z’' # x and a short integer relation for z’. Moreover, the point
z' is highly regular in the following sense:

For every T € R with ||T — z|| < ||z’ — z||/2 there does not exist an integer relation
with Euclidean length less than or equal to 1/(2¢€), i.e., A(T) > 1/(2¢€).

It is not clear how to modify SDDA in order to compute points z} # z;, i = 1,2 and
a short simultaneous integer relation for z), z) such that the plane span(z,z%) is highly
regular in the following sense: distortions of 1,z which are (in the Euclidean norm)
smaller than ¢ max;— 2 ||z; — z}|| for some 0 < ¢ < 1/2 do not significantly destroy the
lower bound on the length of the smallest simultaneous integer relation.

Assume, that SDDA stops with the terminal bases by,...,b, and a1, ..., a, satisfying
Maxi<i<n ||3”1m2|| < e. Setting 7} := zj — my(z;), j = 1,2 yields a short simultaneous
integer relation a,, for the nearby points z, 25, . However, these points need not to be highly
regular in either sense. (Note that we cannot prove an upper bound on max 1<i<n ||5i,z;_ I

=1,

in terms of € and a constant factor alone.)

In order to construct highly regular nearby points z/,z% admitting a short simulta-
neous integer relation m we choose as a candidate solution m = \,—_1a,-1 + A\, a, €
span(gn,l,gn) with A,_1,A, € Z and derive the corresponding conditions for ‘nearby
points—candidates’ z}, =}, :

Since an = b/ |bnll? and an 1 = by 1/|bn1l1>— < buybn1 > /l[bn_1]|? by the condi-
tion < m,x >=10, 5 = 1,2 implies

0 = < XM—1Gp_1+ A an,a:>
[ A <bp,bp_1 >\ bn
)\n1<An1+<n_ znl)/\ 3>
Bt Pt a2 )T
< bn 1,.73 > A\n < bn,?)\n_l > ns ; .
= n—1 - = =~ y J = 1a2
17112 An—1 1117 [1bn |
and hence
An < bnagn—l > . < m;’b\”*l > /H?‘\R*IH2 =12 (9)
An—1 [[bn—1]I? < @b > /[Bn]l? ’
Thus we must have
. b1 ? _ b
< 21,01 > /HA" | = = 75, bn n1> /llbn—1]* , in particular m,_1(z}) || mn1(x}) .
< 21,60 > /bn]l? <z, by > /|bn?
Moreover, it follows that the relation m must satisfy
b <a:'v,5_> boil?2 B
m _ An 1 _ 7 TLAI /HA’IZ 1|| An EZ”, j:1,2. (10)
1bn-1l* <500 > /[[ball> [1ba]]?

Now assume that |71 4, (z2)|| < ||Tn—1,2,(z1)||. Otherwise we interchange the roles of
z1 and o :
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For rational z1,z2 we define the nearby points z, 2 by setting

Ty = m
< fL'Q,’/Tn_l(fL'l) > - (.’E )
—1(x1) .
[Tn—1(z)[Z "

Ty = Ty — Tn—1,20:(2) = xg — Tp_1(z2) +

For irrational z1, x5 we have to take sufficiently close approximations to z},z) . It is easy
to see that from this definition the projections m, 1(z}), m,_1(x4) of =}, x4 are parallel,
Le. My 14 (23) = Tp—12,(23) =7y 10 (21) =Ty 14, (21) = 0. Moreover, the previously
defined vector m is a simultaneous integer relation for z}, z if

b1 <ai,bp1> [|ba ol ba n
n=l \ '\ 2 7 72 2 €z .
b1 < 21,0y > /|[bal2 |[Bnl]

(11)

From the definition of the dual basis vectors we see that
< bn,gn_l > /||/l;n_1]|2 = —<ap_1,a, > [|las]|* and
gn—1/||gn—1||2 = an_1— < @n_1,an/|an]| > an/llas] -
It follows that

( Enfl _ < -rlagnfl > /||En71||2 ?;n > _ < Z1,0n—-1 >

= 5 = =~ =~ ap 1 — ———————ap, -
[[br—1]] <@1,bn > /]|ball? |bn]] < Ty, a0 >

We thus set
— <Zi,Qp-1 >
== ——————— and compute
< x1,0n >

a sufficiently close rational approximation A, /An_1 to A via the Euclidean algorithm. Then

m = Ap_1an_1 + A ay is the desired simultaneous integer relation for z, 5 .

For rational z1 =: (qgl), .. ,q;Ql,qgl))T/qgl) with q§1’, . .,q,(zl) € Z the simultaneous

integer relation m satisfies

Iml < llan-alll < 21,00 > |+ llanll| < 21,an-1 > | < 2]|z1]| g llan—1]|[lan]

n 1/2
< 2 (Z q§1)2> min{e™, Mz1,z2)}2200"1/2 .15 (2(n—3)/2 15. 2(n_1)/2)
i=1

n 1/2
< 9.2" (Z q§1)2> min{e~!, Az, )}
=1

We now prove that the points z},z} are highly regular:

Proposition 5. Let 27,2, € Q" be defined as above. Then A(T1,T2) > 1/(3¢€) holds for
all points 71,72 € R" with

_ 1 1
le; =%l < §lmnotm (@)l = 7 male; — all

Proof. We use the following
[RS95] Lemma 5(2). The terminal basis by, ...,b, of SDDA satisfies the inequalities
i,z || [|ri (z — )|

max{ |74 1(Z;)I 5 i1 (zi)I}

Big; —biz;|| < 2 i=1,...,n—1, j=1,2.(12)
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This implies for 2 =1,...,n —2

2 [|bi 35 || |17 25 (21 — Z1) |
max{|| 41,2, (T [|Tit1,25 (1)}
2|biz1 @5 || |71 — Z1 |

701,25 (1)l

~ ~
||b'i71'171'2 - bi,il@z” >

L i=1,...,n—2. (13)

and by the same argument

i (21 — 70|

17,21 (22) — iz (22)] < 2|2 (22)]] , i=1...,n—1.

(17,25 (1)
Since ||7p—1,2, (21)|| < || 7izo (z1)]] , [|7Ti(z1 —Z1)|| < |Jz1 — T4 fori =1,...,n — 1 we have
1 — X .
7,21 (T2) — 3 g1 (22) ]| < 2|7i 0, (z2)] Nz zml L...,n—1.
[7n—1,25 (z1) ]

Thus for every Z; satisfying ||z1 — Z1|| < ||Tp—1,2,(@1)]|/r1 with an 7 > 2

r1+ 2

0 < lmiz, (z2)l] < [ Tiai (@)l 5 i=1,...,n—1.
Furthermore
~ r+2 ~ r1+ 2
0< Hbi@l,wzn ||bi,$1,z2|| < €. (14)
r r
By an analogous analysis we obtain for i =1,...,n — 2

2{1b; 7y 5 || ||z, (22 — T2 ||
max{||mit 1.z (z2)||, |Tit1z (T2)|}

~ ~
Hbi,il,mz - bi,ilﬁz” >

211 |[bigy s |l 122 — 23| < 211 [bigy |l llz2 — 7o
T =2 mpa@)l T =2 |lmao1z (@)l
r1/r2 o r1+2 |z =T o
< 2 b; = < 2 b;
= r— 2 || Z,thzH = ry—2 ||7Tn71,z1 (1_2)” || Z,$171'32||

for every T satisfying ||zo — Ta|| < ||Tpn—1,4, (22)||/r2 With an ro > T21r_12 .
Inequality (9), (10) and (11) and the choice of ro imply

- - 2 - 2 +2 -
||bi,2)1,232 - biailai2|| S E ||bi7217$2|| + E r— 2 ||bi,231,232|‘
2 42\ 2 ri+4 -
< (2422 Pl = 22 Bl
1 r1

and [[bizy,z,|| > 0for i =1,...,n — 2. This yields [[b;z, 7,| <222 efori=1,...,n—2
and every pair of vectors T, To satisfying

lz1 =71l < 7n1z,(z1)ll/r1 and
7‘1—2
27"1

lze — T2l < |Tn—1,2, (x2)|| with an r; > 2.

For ry := 4 it follows from lz1 — Z1]| < |"n—1,2,(1)]|/4 and ||z2 — Ta|| < ||7n—1,2, (z2)]|/4

that ||b;z, 7,|| <3eholds fori =1,...,n —2.

Using Proposition 5.2 of [HJLS89] and m,_; , (z3) = 0 completes the proof of the claim.
O
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5 Open Problems

A still open problem and challenging task is to prove Theorem 4 without using the hy-
pothesis. Also replacing the right hand side of the Theorem’s inequality with a term

. . 1
1/ (qgl’z) qéZ’Z))Nn—l) ¢" for some constant ¢ > 0 is desirable with respect to the Dirichlet

bound [Di1842].

As mentioned above SDDA can be modified in that it computes a highly regular
nearby plane span(z},z4), where the spanning vectors z/, =, admit a simultaneous integer
relation.

In order to generalize the result of [RS96] (Theorem 1) we would have to prove an
upper bound of the Euclidean length of the relation which is linear in min{e !, \(x1, )}
and A(z!,2%) . It is even still open whether such a bound holds for rational input vectors
T1,T2 .

We would be rather interested in helpful comments and/or joint work in order to
improve this preliminary draft to a comprehensive paper.
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