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Abstract

Algorithms for the Maximum Cardinality Matching Problem which greedily add
edges to the solution enjoy great popularity. We systematically study strengths and
limitations of such algorithms, in particular of those which consider node degree
information to select the next edge.

Concentrating on nodes of small degree is a promising approach: it was shown,
experimentally and analytically, that very good approximate solutions are obtained
for restricted classes of random graphs. Results achieved under these idealized
conditions, however, remained unsupported by statements which depend on less
optimistic assumptions.

The KarpSipser algorithm and 1-2-Greedy, which is a simplified variant of
the well-known MinGreedy algorithm, proceed as follows. In each step, if a node of
degree one (resp. at most two) exists, then an edge incident with a minimum degree
node is picked, otherwise an arbitrary edge is added to the solution.

We analyze the approximation ratio of both algorithms on graphs of degree at
most ∆. Families of graphs are known for which the expected approximation ratio
converges to 1

2 as ∆→∞, even if randomization against the worst case is used. If
randomization is not allowed, then we show the following convergence to 1

2 : the 1-2-
Greedy algorithm achieves approximation ratio ∆−1

2∆−3 ; if the graph is bipartite, then
the more restricted KarpSipser algorithm achieves the even stronger factor ∆

2∆−2 .
These guarantees set both algorithms apart from other famous matching heuristics

like e.g. Greedy or MRG: these algorithms depend on randomization to break
the 1

2 -barrier even for paths with ∆ = 2. Moreover, for any ∆ our guarantees are
strictly larger than the best known bounds on the expected performance of the
randomized variants of Greedy and MRG.

To investigate whether KarpSipser or 1-2-Greedy can be refined to achieve
better performance, or be simplified without loss of approximation quality, we
systematically study entire classes of deterministic greedy-like algorithms for matching.
Therefore we employ the adaptive priority algorithm framework by Borodin, Nielsen,
and Rackoff: in each round, an adaptive priority algorithm requests one or more
edges by formulating their properties—like e.g. “is incident with a node of minimum
degree”—and adds the received edges to the solution. No constraints on time and
space usage are imposed, hence an adaptive priority algorithm is restricted only by
its nature of picking edges in a greedy-like fashion.

If an adaptive priority algorithm requests edges by processing degree information,
then we show that it does not surpass the performance of KarpSipser: our ∆

2∆−2 -
guarantee for bipartite graphs is tight and KarpSipser is optimal among all such



“degree-sensitive” algorithms even though it uses degree information merely to detect
degree-1 nodes.

Moreover, we show that if degrees of both nodes of an edge may be processed, like
e.g. the Double-MinGreedy algorithm does, then the performance of KarpSipser
can only be increased marginally, if at all.

Of special interest is the capability of requesting edges not only by specifying
the degree of a node but additionally its set of neighbors. This enables an adaptive
priority algorithm to “traverse” the input graph. We show that on general degree-
bounded graphs no such algorithm can beat factor ∆−1

2∆−3 . Hence our bound for
1-2-Greedy is tight and this algorithm performs optimally even though it ignores
neighbor information.

Furthermore, we show that an adaptive priority algorithm deteriorates to approx-
imation ratio exactly 1

2 if it does not request small degree nodes. This tremendous
decline of approximation quality happens for graphs on which 1-2-Greedy and
KarpSipser perform optimally, namely paths with ∆ = 2. Consequently, requesting
small degree nodes is vital to beat factor 1

2 .

Summarizing, our results show that 1-2-Greedy and KarpSipser stand out
from known and hypothetical algorithms as an intriguing combination of both
approximation quality and conceptual simplicity.
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1 Introduction

So called matching problems occur in a variety of applications such as computing block
triangular forms of sparse matrices [PF90], image feature matching [CWC+96], parti-
tioning graphs to set up compute clusters for large scale computation tasks [KK98],
kidney exchange [RSÜ05, Tri12], network traffic routing [HS07], protein structure com-
parison [BSX08], or empirical studies [LGXB11].

At the core of such applications lies the task to find an allocation of e.g. processors to
compute clusters, kidney donors to patients, incoming network packets to output ports
of networking switches, or matrix rows to matrix columns. Such tasks can be modeled
as finding large sets of node-disjoint edges, where the application at hand determines
properties of the underlying graph (e.g. whether it is bipartite or weighted).

In this thesis we study the fundamental Maximum Cardinality Matching Problem, to
which we refer as matching throughout. Given an undirected unweighted graph G=(V,E),
a maximum matching is to be determined, cf. Figure 1:

• if M ⊆ E is a set of edges and node v ∈ V is incident with an edge in M , then we
say that v is matched in M ;
• if each node in V is matched in at most one edge inM , thenM is called a matching;
• if no edge can be added to M without matching a node more than once, then M is
called a maximal (or non-extensible) matching;
• if M is at least as large as any other maximal matching in the graph, i.e. if M
is a matching of largest possible size, then M is called a maximum (or optimal)
matching.

Figure 1: A maximal matching (crossed edge) and a maximum
matching (double drawn edges)

Maximum matchings can be computed in polynomial time O(
√
|V | · |E|), see Sec-

tion 1.4.3 for an overview of algorithms. However, the employed techniques are sophisti-
cated and non-trivial to implement properly. When approximate matchings serve the
purpose good enough, some exact algorithms allow to stop computation prematurely to
obtain a (possibly sub-optimal) maximal matching. However, this approach still depends
on complex implementations of polynomial time techniques.

13



1 INTRODUCTION

Greedy Matching Algorithms. This thesis systematically studies greedy algorithms
for matching. Compared to the known polynomial time methods, greedy algorithms are
conceptually very simple. Motivation for a greedy approach also arises from the need to
compute matchings in scenarios where access to the input is restricted.

Typically, a greedy algorithm starts with an empty matching and repeatedly picks an
edge which contains only nodes that were not matched in a previously picked edge (refer
to Section 1.1 for a more formal description). Characteristically, once an edge is picked,
it is not removed from the matching later. The algorithm stops as soon as no further
edge can be picked without matching a node twice, i.e. a maximal matching is obtained.
Since the algorithm might pick unfavorable edges, the solution is not necessarily optimal.

Experiments suggest that greedy matching algorithms typically produce very large
matchings on random graphs and benchmark instances [KS81, Tin84, FRS95, MMH95,
Mag98, HS07, LMS10]1. Furthermore, due to their simplicity, greedy matching algorithms
are not hard to implement and mostly run in linear time [KS81, FRS95, Mag98, PS12,
BP15]. These qualities render greedy matching algorithms an attractive alternative to
exact polynomial time algorithms whenever speed and simplicity are of higher importance
than obtaining exact solutions.

Some scenarios impose restrictions on how the input can be accessed, and therefore
enforce the greedy construction of a matching. Goel and Tripathi [GT12] discuss the
pairwise kidney exchange problem, where pairs of incompatible kidney patients and
donors—e.g. family members or married couples—have to be matched such that both
patients are able to receive a kidney from the respective other donor. Here, testing two
pairs for compatibility is a time-consuming and costly procedure. Therefore once a match
is found, the transplant has to be performed. In terms of matching, this problem is
modeled as a graph whose nodes represent incompatible patient/donor pairs and edges
model mutual compatibilities between such pairs. The edge set is unknown at first, and
an algorithm has to “probe” for edges. Once an edge is found, it has to be added to the
matching irrevocably.

Besides being interesting in their own right, greedy matching algorithms are often
used for preprocessing in exact algorithms. Here, a greedy solution is used as input to an
algorithm which iteratively grows the matching. Thus, large greedy matchings can speed
up computation considerably [MMH95, LMS10].

1See Section 1.4.1 for an overview of experimental studies.

14



1.1 Greedy Algorithms for Matching

Rigorous Analyses of Greedy Matching Algorithms. Over three decades ago,
greedy matching algorithms gained popularity when researchers studied algorithmic (in-
stead of non-constructive) approaches to prove the existence of large matchings in random
graphs: the idea is to define an algorithm and to show that it almost surely computes a
large matching. This line of research was continued for various algorithms, showing that
random graphs are solved well [KS81, Tin84, GH90, DFP93, FRS95, AFP98]2.

Another fundamental question is how greedy matching algorithms perform for ar-
bitrary graphs. Since any maximal matching is at least half as large as a maximum
matching [KH78], the approximation ratio of any algorithm is in the interval [1

2 , 1]: the
factor 1

2 is a trivial approximation guarantee.
Some algorithms do not beat factor 1

2 , i.e. input graphs can be constructed such that
the solution is of size arbitrarily close to half of maximum [DF91, Pol12, BP15]. For
those algorithms which do beat factor 1

2 , tight performance bounds remain unknown to
date and even the best known bounds leave large gaps to be closed [ADFS95, CCWZ14].
Consequently, researchers also investigated restricted classes of graphs, e.g. trees, planar
graphs, graph of high girth, or degree bounded graphs. For these type of graphs stronger
bounds could be obtained [DF91, ADFS95, MP97], as we discuss in Section 1.2.

Besides the goal to fully understand particular greedy matching algorithms, there is
growing interest into which properties make an algorithm a successful one. Therefore,
inapproximability bounds for entire classes of restricted algorithms were established,
revealing limits to their approximation performance [GT12, Pol12, BP15]. In particular,
none of the most popular representatives computes maximum matchings on general
graphs [Pol12, BP15].

1.1 Greedy Algorithms for Matching

Greedy matching algorithms typically follow the scheme given in Algorithm 1, cf. [Tin84].
Starting with an empty matching M , an algorithm proceeds in steps, where each step
corresponds to one iteration of the loop in Line 2. When the algorithm adds an edge {u, v}
to M , then we say that the algorithm picks edge {u, v}. From the moment on that
edge {u, v} is picked, nodes u and v are called matched. After u and v are matched, all
edges incident with u and v are no longer eligible to be contained in M : therefore these
edges are removed from the graph, i.e. they are not contained in the graph in future
steps. As soon as all edges are removed from the graph, the algorithm outputs M as its
solution.

2See Section 1.4.2 for an overview of analytical results.
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1 INTRODUCTION

Algorithm 1 Scheme of a Greedy Matching Algorithm.
1. M ← ∅ . initialize empty matching
2. while E 6= ∅ do . as long as there are edges, proceed with next step
3. select an edge {u, v} ∈ E
4. M ←M ∪

{
{u, v}

}
. pick the selected edge

5. E ← E \
{
{x, y} : x ∈ {u, v}, y ∈ V

}
. remove edges incident with u and v

6. end while
7. return M

What distinguishes one algorithm from another is how the next edge is selected,
i.e. which heuristic is applied in Line 3. In List 1 we present the most popular greedy
matching algorithms, where names are taken from the literature.

We prepare the presentation with some basic notation.

The Reduced Graph. Consider the t-th step (t ≥ 1) of an algorithm, i.e. the t-th
iteration of the loop. At the beginning of step t, i.e. when Line 3 is executed for the t-th
time, the reduced graph Gt denotes the graph from which all edges incident with previously
matched nodes are removed. (The input graph is G1.) By the current degree of node v
in step t we refer to the degree of v in the reduced graph Gt, and we denote it as dt(v).
Node v is called isolated beginning with the step t′ when dt′(v) = 0 holds for the first
time. Before step t′ we call v non-isolated.

List 1 (Edge Selection Heuristics).

i. The Greedy algorithm, first analyzed by Tinhofer [Tin84], has no preference
among edges in the reduced graph and simply selects any one of these.

ii. The KarpSipser algorithm, named after its authors [KS81], proceeds like Greedy
unless a node with current degree one exists: in this case KarpSipser selects an
edge incident with an arbitrary node of current degree one.

For conciseness, we also call a node of current degree one a degree-1 node. For
every degree-1 node u there is a maximum matching M∗ in the reduced graph such
that the edge incident with u belongs to M∗, cf. Proposition 1 in Section 2. Hence
picking the edge of a degree-1 node is “optimal”.

iii. The MRG algorithm [Tin84] (“modified random greedy”, sometimes also called
“Simple Greedy”) selects the next edge by first selecting a node u and thereafter
selecting one of its neighbors v.

16



1.1 Greedy Algorithms for Matching

iv. The MinGreedy algorithm [Tin84] (sometimes also called “Dynamic MinDegree”)
is a variation of MRG which selects the first node u such that it has minimum
(but non-zero) current degree among all nodes.

This algorithm in a sense generalizes the approach of the KarpSipser algorithm:
since for any non-isolated node u there is a maximum matching M∗ in the reduced
graph such that u is matched in M∗, nodes are preferred for which the chance to
select an “optimal” incident edge is as large as possible.

Sometimes MinGreedy is implemented such that all nodes are sorted in ascending
order of degree once before the loop in Line 2. In the loop, nodes are then considered
in this order, see e.g. [MMH95]. This algorithm is also called “Static MinDegree”.
We denote it by Static-MinGreedy.

v. The Shuffle algorithm [GT12] computes a permutation π on all nodes in V before
the loop in Line 2. In Line 3 the algorithm selects the π-lexicographically first
edge: Shuffle selects the first non-isolated node u (according to π) and thereafter
selects the first non-isolated neighbor v of u (also according to π).

Compared with MRG, this algorithm does not select an arbitrary neighbor of u
but gives higher preference to those neighbors which in previous steps have been
tried to be matched without success.

In the literature, algorithms in List 1 are defined such that all ties are broken uniformly
at random, i.e. whenever more than one edge, node, or permutation satisfies the respective
“definition”, then each is chosen with equal probability. However, in this thesis we also
consider the deterministic versions of these algorithms, in which all ties are broken
towards the worst case.

The above (randomized) algorithms can be implemented in linear time O(|V |+ |E|),
see Appendix A. and [KS81, FRS95, Mag98, PS12]. In terms of runtime, this makes
them superior to all known exact algorithms3.

List 1 is not complete, since several variations of these algorithms were proposed. In
particular, two popular variants of MinGreedy consider the current degrees of both
nodes of an edge:

3See Section 1.4.3 for an overview of efficient algorithms.

17



1 INTRODUCTION

List 2 (Variants of MinGreedy).

vi. A folklore variant of MinGreedy is the MDS algorithm (“minimum degree sum”),
which selects the next edge {u, v} such that the sum of the current degrees of
nodes u and v is as small as possible among edges in the reduced graph.

vii. The “double-sided” (or “two-sided”) variant of MinGreedy [LMS10] (also for-
mulated in Heuristics 1 and 2 in [Mag98], or called eDSM for “enhanced Degree
Sequenced Matching” in [HS07]) first selects a node u of minimum current degree
and then a neighbor v of u of minimum current degree. We denote the double-sided
MinGreedy variant as Double-MinGreedy.

The “definitions” of algorithms in Lists 1 and 2 are for general graphs. They are
typically applied as is to bipartite input graphs, i.e. no attention is payed to the partition
from which a node is selected, see e.g. [LMS10].4

1.2 Focus of the Thesis

We systematically study deterministic greedy-like algorithms for matching. Our main
focus is on strengths and limitations of degree heuristics like e.g. the KarpSipser
algorithm or MinGreedy. Therefore we analyze their approximation ratio and compare
with the performance of well-known algorithms from the literature as well as with
hypothetical algorithms—both more complex ones and conceptually simpler ones.

Our key insight is that KarpSipser and (a relaxed version of) MinGreedy are the
conceptually most simple algorithms achieving a non-trivial approximation ratio, and
that they perform optimally even among much more sophisticated algorithms.

Gathering Information. How to measure the “sophistication” of an algorithm? The
more is known about the input graph, the more fine grained control over the next edge is
possible.

Any greedy matching algorithm gathers information about the input graph G = (V,E).
E.g. if an algorithm attempts to match nodes u and v but detects that {u, v} /∈ E holds,
then the algorithm infers that u and v have degree at most |V | − 2; the MinGreedy
algorithm determines node degrees before the first step and after each step updates

4We mention that there are bipartite online scenarios such as AdWord marketing [MSVV07] which
require an algorithm to always select a node in the same partition before matching it with a neighbor.
The Ranking algorithm of Karp, Vazirani, and Vazirani [KVV90] is one such algorithm, which also
inspired the definition of Shuffle. However, since the focus of this thesis is on greedy matching, we use
the “definitions” given in Lists 1 and 2 throughout.

18



1.2 Focus of the Thesis

current degrees of neighbors of newly matched nodes; when the Shuffle algorithm
probes for neighbors of the “active” node, call it u, then Shuffle implicitly learns about
edges not incident with u.

Typically, an algorithm does not utilize gathered information entirely. E.g. the
Greedy algorithm simply ignores all gathered information and picks the next edge
uniformly at random.

Moreover, in some scenarios only limited information can be obtained. E.g. an
algorithm for the pairwise kidney exchange problem (refer to Section 1 for a quick
introduction to this problem) has no access to node degrees: for any node the precise
number of compatible patient/donor pairs is never determined.

Utilizing Gathered Information. The amount of information gathered in each step
limits the “sophistication” of the implemented edge selection heuristic, which in turn
determines the approximation quality of a solution. We systematically study what type of
information allows for greedy matching heuristics with strong approximation performance,
and how well an algorithm can approximate if allowing only restricted information per
step. Primarily, we concentrate on two subjects.

What approximation guarantees can be achieved if allowing information on
current node degrees? Which “degree heuristic” performs best?

Does information on neighbors of matched nodes—which enables an algorithm
to “traverse” the graph—allow for better performance?

In Section 1.2.1 we review known results about “degree-sensitive” algorithms like
e.g. MinGreedy, point out what knowledge gaps remain to be closed, and present our
main results. In Section 1.2.2 we discuss algorithms using neighbor information and our
related results.

1.2.1 Degree Information

Known results on greedy matching algorithm are mainly for randomized implementations.
Even though we study deterministic algorithms in this thesis, in the following overview
we refer to randomized versions of the given algorithms. In particular, we highlight
strengths and limitations of degree heuristics.
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A Benefit on Random Graphs. The Greedy algorithm, MRG, KarpSipser, and
MinGreedy were proven to compute asymptotically optimal matchings on large random
graphs [KS81, Tin84, GH90, DFP93, FRS95, AFP98]5.

However, experiments suggest that MinGreedy commonly produces larger matchings
than Greedy and MRG [Tin84, MMH95, Mag98], even by orders of magnitude on
random 3-regular graphs [FRS95]6. Other experiments indicate that KarpSipser and
MinGreedy are capable to find the unique perfect matching7 in bipartite graphs whereas
Greedy is not [LMS10].

Performance on Arbitrary Graphs. The Greedy algorithm implicitly prefers
nodes of high degree, since a randomly selected edge is likely to be incident with such
a node. This property was exploited by Dyer and Frieze [DF91] in a construction of
general graphs: they defined a family of graphs for which Greedy computes matchings
of size arbitrarily close to 1

2 of optimum.
Giving less importance to high degree nodes allows to break the 1

2 -barrier. How? The
MRG algorithm selects each node with equal probability (and then an incident edge),
hence MRG does not prefer large degrees. Aronson, Dyer, Frieze, and Suen [ADFS95]
showed that MRG achieves expected approximation ratio at least 1

2 + 1
400.000 . (In

particular, they were the first to obtain a non-trivial bound on the expected approximation
ratio of a greedy matching algorithm.) Also, the Shuffle algorithm does not prefer
large degrees when it initially computes a total order on all nodes. Shuffle achieves
expected approximation ratio at least 2(5−

√
7)

9 ≈ 0.523, as was shown by Chan, Chan,
Wu, and Zhao [CCWZ14].

Going one step further and explicitly preferring small degrees, however, lets the
approximation performance degrade. Poloczek [Pol12, BP15] showed that MinGreedy
does not beat factor 1

2 . The same construction also shows that Double-MinGreedy
and MDS do not break the 1

2 -barrier.

Which type of degree information allows to beat factor 1
2?

(How) does one of MinGreedy and KarpSipser improve on the performance
of the other?

5See Section 1.4.2 for an overview of analytical results.
6See Section 1.4.1 for an overview of experimental studies.
7A matching is called perfect if every node is matched.
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Restricted Graphs. Hard instances, in particular constructions bounding the ap-
proximation ratio to 1

2 , typically contain dense subgraphs with nodes of large degree,
see e.g. [DF91, GT12, Pol12, BP15]. Stronger performances could be proven under the
assumption that degrees are bounded (as well as for planar graphs, trees, and graphs
with large girth) [DF91, ADFS95, MP97]8. In particular, both Greedy and MRG
achieve expected approximation ratio at least ∆

2∆−1 if the maximum degree in the graph
is bounded by at most ∆, as was shown by Dyer and Frieze in [DF91] resp. by Aronson,
Dyer, Frieze, and Suen in [ADFS95]. The bound for Greedy was improved by Miller
and Pritikin [MP97] to at least 1

2 +
√

(∆−1)2+1−(∆−1)
2 .

What is the approximation performance of KarpSipser, MinGreedy, or
Double-MinGreedy on degree bounded graphs?

Furthermore, we address these questions:

Can degree information be used in more sophisticated ways than e.g. Min-
Greedy to obtain stronger performance?

Is there an algorithm which does not utilize degree information and performs
as good as e.g. KarpSipser?

Main Results. For graphs of degree at most ∆ we analyze the approximation perfor-
mance of KarpSipser, MinGreedy, and Double-MinGreedy, thereby adding to the
previously known bounds for Greedy and MRG.

Worst Case Guarantees. We analyze deterministic variants of these algorithms, i.e. ties
are not broken uniformly at random but in worst case fashion. Our guarantees are strictly
larger than the best known bounds on the expected approximation ratio of Greedy and
MRG (which are 1

2 +
√

(∆−1)2+1−(∆−1)
2 resp. ∆

2∆−1 , see previous paragraph):

• Bipartite graphs

We show that the KarpSipser algorithm achieves approximation ratio at least

∆
2∆− 2 .

(The same guarantee is implied for MinGreedy, Double-MinGreedy, and any
algorithm which in each step selects a node of minimum degree.)

8See Section 1.4.2 for an overview of analytical results.
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• General graphs

Here, the performance of KarpSipser deteriorates to exactly 1
2 , since it might

pick the diagonal edge in the graph , which contains a maximum matching of
two edges.

We refine the KarpSipser algorithm by replacing its edge selection heuristic with
the following: if the reduced graph contains a node of degree at most two, select a
node of minimum degree and then one of its neighbors; otherwise select an arbitrary
edge.

This algorithm, we call it 1-2-Greedy, achieves approximation ratio at least

∆− 1
2∆− 3 .

(Observe that 1-2-Greedy generalizes the MinGreedy algorithm by relaxing the
requirement to select a minimum degree node in case all degrees are at least three.

Again, our guarantees also apply to MinGreedy, Double-MinGreedy, and any
algorithm which in each step selects a node of minimum degree.)

Tightness of Guarantees. We contrast both guarantees with tight inapproximability
bounds, i.e. the given guarantees cannot be improved. Our bounds also apply to
(deterministic versions of) algorithms in Lists 1 and 2 in Section 1.1 as well as further
hypothetical algorithms, showing that 1-2-Greedy and KarpSipser perform optimally.

In particular, we analyze classes of deterministic algorithms which are allowed to
utilize degree information in arbitrarily complex fashion. Therefore we employ the
framework of adaptive priority algorithms introduced by Borodin, Nielsen, and Rackoff.

In each round, an algorithm submits a priority order on edges by formulating
their characteristics (like e.g. “is incident with a node of minimum degree”),
then receives the highest priority edge contained in the graph, and irrevocably
adds the received edge to the solution.

There are no resource constraints on the required computations, i.e. the only limitation
of an algorithm is its greedy-like nature. Hence inapproximability results apply to
correspondingly large classes of algorithms, see Section 5.1 for a detailed discussion.

Further Results. We also investigate a class of more general deterministic adaptive priority
algorithms which are allowed to pick entire alternating paths instead of only a single edge.
Picking paths, however, does not fundamentally improve approximation performance for
general graphs: we show that any such algorithm is bounded by factor 1

2 for ∆→∞.
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1.2.2 Traversing the Graph

The Greedy algorithm does not utilize degree information to select an edge and might
pick—in the worst case—the middle edge of a length-three path, thereby producing a
matching with only one edge instead of two, i.e. its approximation ratio is only 1

2 .
Now consider an algorithm A which may (and is restricted to) use degree information

in its edge selection routine (as are most of the algorithms presented in Section 1.1).
Assume that A selects edge {u, v}. Since A does not have control over distance or
neighbor relationships between u or v and the nodes matched earlier, algorithm A is
prone to pick an unfavorable edge: each of u and v might be incident with an edge of
a maximum matching. Many unfavorable choices let the approximation performance
converge to 1

2 .

This danger is addressed by the following straightforward approach. “Grow” an
alternating path by repeatedly picking an edge at one of its ends; if the path cannot be
grown any longer, repeat with the next path. This algorithm “traverses” the graph and
for this purpose depends on information about neighbors of matched nodes.9

If an algorithm is allowed to process neighbor information in arbitrary fash-
ion (e.g. try to construct long alternating paths), can it achieve stronger
approximation performance than algorithms restricted to degree information?

Main Results. Our ∆−1
2∆−3 -inapproximability bound for general graphs applies not only

to “degree-sensitive” algorithms like e.g. 1-2-Greedy, but to an even larger class of
adaptive priority algorithms, namely with additional access to neighbors of selected nodes.
In particular, 1-2-Greedy is optimal within this class, demonstrating the power of using
degree information.

Moreover, we show that an algorithm with neighbor information deteriorates to ap-
proximation ratio exactly 1

2 if it does not request nodes of small degree. In particular, this
holds for graphs on which (deterministic versions of) KarpSipser and 1-2-Greedy com-
pute maximum matchings, namely paths.10 Consequently, processing degree information
is indispensable in order to surpass factor 1

2 .

Further Results. We also study a class of deterministic adaptive priority algorithms
with neighbor information for the more general k-uniform hypergraph matching problem

9Angluin and Valiant [AV79] proposed a similar algorithm. However, since their algorithm also removes
edges from the matching after they have been picked, we do not consider it a classical greedy algorithm.

10See Proposition 2 for a formal argument why KarpSipser and MinGreedy perform optimally on
paths.
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(conventional matching is contained as the special case k = 2). This problem is NP-
complete for k ≥ 3, therefore acceptable approximation performance is not to be expected.
We confirm this fact by showing that factor exactly 1

k cannot be beaten, even on most
simple instances. This performance is worst possible, since any maximal matching has
size at least 1

k times optimal.

1.3 Structure of the Thesis and Credits

Performance Guarantees. In Section 2 we present the fundamentals of our technique
to obtain approximation guarantees for 1-2-Greedy and the KarpSipser algorithm.

In Section 3 we develop guarantees of at least ∆−1
2∆−3 for 1-2-Greedy, where we

analyze graphs of maximum degree ∆ = 3 and ∆ ≥ 4 in Section 3.1 resp. Section 3.2.
These results improve our previous ∆−1/2

2∆−2 -bounds for the MinGreedy algorithm—first
publicly available in [Bes14] and published in [BP15]—in the following two ways. First,
1-2-Greedy is a “weaker” algorithm, in the sense that in the worst case it performs no
better than MinGreedy. Secondly, the new guarantees for 1-2-Greedy are larger than
the previous ones for MinGreedy.

In Section 4 we present our ∆
2∆−2 -guarantees for the KarpSipser algorithm on degree

bounded bipartite graphs. These results were first presented in [BW15].

Inapproximability Results. In Section 5.1 we discuss the adaptive priority algorithm
framework. In Section 5.2 we first give a rough overview of classes of algorithms analyzed
in this thesis and then define them.

Results are presented in Section 5.3. In particular, in Theorem 62 and Theorem 64
we show that algorithms in classes containing KarpSipser resp. 1-2-Greedy do not
achieve a stronger approximation performance.

• Theorem 62 improves a result by Bastian Werth presented in [BW15]: for any given
maximum degree ∆ our inapproximability bound is the same, namely ∆

2∆−2 , but
it applies to a larger class of algorithms. Similarly, Theorem 67 improves another
result by Werth.

• Theorem 64 improves joint work with Matthias Poloczek, which was presented first
in [Pol12]: for any given maximum degree ∆ we improve the inapproximability
bound to ∆−1

2∆−3 , thereby showing that our guarantees for 1-2-Greedy are tight.
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Further results show that processing degree information is indispensable in order to
achieve non-trivial approximation performance and that picking paths does not allow to
beat factor 1

2 in general.

Adaptive priority algorithms for k-uniform hypergraph matching fail with approxima-
tion ratio exactly 1

k , as we show in Theorem 70 at the end of Section 5.3.

1.4 Related Work

We present known experimental and analytical results on greedy matching algorithms in
Section 1.4.1 resp. Section 1.4.2. For completeness, we also give a brief overview of exact
polynomial time algorithms in Section 1.4.3.

1.4.1 Greedy Algorithms: Experimental Studies

Experiments from the literature show that good matching approximations can be obtained
with the use of greedy algorithms. However, approximation performance varies noticeably
between algorithms. Degree heuristics clearly stand out by commonly producing very
large matchings, as we summarize in this section.

Tinhofer [Tin84] compared Greedy, MRG, and MinGreedy on random graphs in
the Erdős-Rényi model, in which for a given set of nodes the edge between any pair of nodes
exists with equal probability p. Independently of the density parameter 0.05 ≤ p ≤ 0.75
and the number of nodes (up to 48), Greedy and MRG performed roughly the same.
MinGreedy performed noticeably better and produced almost optimal matchings.

The same algorithms were compared on random cubic graphs by Frieze, Radcliffe,
and Suen [FRS95]. On average, Greedy and MRG left about the same number of
nodes unmatched and MinGreedy performed best, outperforming the other algorithms
by orders of magnitude. In particular, in instances with 10k nodes both Greedy and
MRG left roughly 10k−1 nodes unmatched for k ∈ {2, 3, 4, 5, 6}, whereas MinGreedy
left only 10 out of 106 nodes unmatched.

MRG and MinGreedy were also compared by Magun [Mag98] as part of experiments
on Erdős-Rényi random graphs with up to 10.000 nodes. Graphs were generated to have
small constant average degree between 2 and 6 using edge probability p = c/|V | for
various c ∈ [2, 6]. Magun found that for c ≈ 3 the MRG algorithm produced a number
of “lost edges” proportional to the number of nodes (by “lost edges” Magun refers to the
difference of the sizes of the solution and a maximum matching). On the other hand,
the results indicate that MinGreedy loses a sub-linear number of edges. Figures in
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[Mag98] also suggest that MRG and MinGreedy perform the better the higher the
average degree is.

Möhring and Müller-Hannemann [MMH95] investigated algorithms MRG, Min-
Greedy, Static-MinGreedy, and KarpSipser when applied to sparse random graphs
with up to 215 nodes and average degree between 1 and 10. They found that Min-
Greedy and KarpSipser computed near optimal matchings of almost equal size.
Static-MinGreedy did not perform as well by far, but still noticeably better than
MRG.

Langguth, Manne, and Sanders [LMS10] conducted experiments on (sparse) bipartite
graphs with a few hundred thousand nodes, where they also investigated the approxima-
tion performance of MRG, MinGreedy, Static-MinGreedy, and the KarpSipser
algorithm. They investigated two sets of test instances:

• The first test set contained random bipartite graphs, where the model asserts that
edges are more evenly distributed than in the Erdős-Rényi model. Here, both
MinGreedy and KarpSipser clearly outperformed the other two algorithms and
computed very large matching, where on most instances MinGreedy left slightly
less nodes unmatched than the KarpSipser algorithm. MRG left roughly three
times as many nodes unmatched as Static-MinGreedy.

• On bipartite graphs with a unique perfect matching (a matching is said to be
perfect if every node is matched), MinGreedy and KarpSipser managed to
match every last node. MRG and Static-MinGreedy left about a tenth of the
nodes unmatched on average.

Summary. Experimental studies suggest that MinGreedy and the KarpSipser
algorithm generally produce very large, even near optimal, matchings. In particular, both
performed substantially better than other algorithms. Furthermore, the results indicate
that on sparse random graphs MRG and Greedy perform comparably. In another
experiment on sparse random graphs, the Static-MinGreedy algorithm produced
better solutions than MRG.

1.4.2 Greedy Algorithms: Analytical Studies

Factor 1
2 is a trivial guarantee for the approximation ratio of any reasonable matching

algorithm. It was studied in the literature how far from 1
2 and how close to 1 the

approximation ratio of particular algorithms is. Moreover, algorithms were compared
relative to one another instead of investigating their absolute performance.
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In [Tin84], Tinhofer substantiated experimental observations for Greedy, MRG,
and MinGreedy (on random graphs with constant edge probability p, cf. Section 1.4.1)
with analytical results on their performance. He showed that for each given number
of nodes |V | there exist intervals such that if 1− p is drawn from these intervals then
MinGreedy performs strictly better than MRG.11

Greedy. Dyer and Frieze [DF91] established the following monotonicity property for
the Greedy algorithm: if an arbitrary node is removed from the input graph, then the
expected size of the matching computed by Greedy does not increase, and it is decreased
by at most one. Using this property, they conducted an analysis depending on the density
of a given class of graphs. They showed that Greedy achieves expected approximation
ratio at least ∆

2∆−1 on graphs with degree at most ∆. Furthermore, Greedy’s expected
approximation ratio is at least 6

11 (and at most 11
15) on planar graphs. The expected

approximation ratio of Greedy on forests was determined exactly as 0.7690307...
The most fundamental result in [DF91] is that the expected approximation ratio

of Greedy on general graphs is at most 1
2 , i.e. there is a family of graphs for which,

asymptotically, the Greedy algorithm does not beat the trivial guarantee that holds for
any reasonable matching algorithm.

Miller and Pritikin [MP97] bounded the expected approximation ratio of the Greedy
algorithm on planar graphs to at least

√
26−4
2 and at most 0.68436349, thereby improving

the bounds in [DF91] at both ends. They also improved Dyer and Frieze’s bound for
graphs with degree at most ∆ to at least 1

2 +
√

(∆−1)2+1−(∆−1)
2 . Furthermore, they proved

bounds for graphs with girth12 at least 5: first, Greedy achieves factor at least 1
2 + 1

2∆
if any degree is at most ∆; secondly, Greedy achieves factor at least 5

8 if the graph is
planar.

Dyer, Frieze, and Pittel [DFP93] showed that on large sparse random graphs Greedy
has optimal expected approximation ratio; in particular, Greedy computes (near) perfect
matchings.

MRG. Goldschmidt and Hochbaum [GH90] analyzed the expected approximation ratio
of MRG on large random graphs. For constant edge probability 0 < p < 1 only very
few nodes are not matched: in particular, at most t|V | nodes are not matched w.h.p.
for an arbitrarily slowly growing function t|V | with lim|V |→∞ t|V | =∞. Moreover, if the

11As was pointed out in [DFP93], the proof of Tinhofer’s other theorem, stating that there is a large
interval for 1− p such that MRG performs strictly better than Greedy, is flawed.

12The girth of a graph is the minimum length of a contained cycle.

27



1 INTRODUCTION

edge probability lim|V |→∞ p = 1 grows arbitrarily slowly, i.e. if the number of edges is
super-linear, then MRG produces a perfect matching w.h.p.

Another result of Dyer et al. [DFP93] also shows that the expected approximation
ratio of MRG converges to 1 for large random graphs.

Aronson, Dyer, Frieze, and Suen [ADFS95] showed that MRG achieves expected
approximation ratio at least 1

2 + 1
400.000 on general graphs. While this bound might

seem very small at first glance, it was the first—and for almost two decades remained
the only—non-trivial bound on the expected approximation ratio of a greedy matching
algorithm.

Aronson et al. also showed, similar to [DF91], a bound on MRG’s expected approx-
imation ratio that depends on the density of a class of graphs. An implication of this
result is that, as for Greedy, the performance of MRG on graphs with degree at most ∆
is at least ∆

2∆−1 .

Shuffle. The expected approximation ratio of the Shuffle algorithm was bounded
by at least 2(5−

√
7)

9 ≈ 0.523 by Chan, Chen, Wu, and Zhao [CCWZ14]. For bipartite
graphs Poloczek [Pol12] gave a bound of at least 0.696. Goel and Tripathi [GT12] and
Poloczek [Pol12] showed a 0.727 inapproximability bound by utilizing a known bound for
the classical Ranking algorithm in the bipartite ROA model (random order arrival).

MinGreedy and Variants. For 3-regular random graphs Frieze, Radcliffe, and
Suen [FRS95] showed that, in expectation, the MinGreedy algorithm leaves only λ|V |
nodes unmatched, where c1|V |1/5 ≤ λ|V | ≤ c2|V |1/5 log |V | holds for constants c1, c2.
This result very accurately reflects their experimental observations in the same work, see
Section 1.4.1.

MinGreedy can be understood as a refinement of MRG, since the chance of picking
an edge which belongs to a maximum matching (in the reduced graph) is higher for nodes
of small degree. However, somehow surprisingly, MinGreedy performs worse than MRG,
as was shown by Poloczek [Pol12, BP15]: a family of bipartite graphs was constructed
such that for any ε > 0 the MinGreedy algorithm achieves expected approximation
ratio at most 1

2 + ε w.h.p.
The construction in [Pol12, BP15] also showed that algorithms MDS and Double-

MinGreedy are not an improvement over MRG or MinGreedy, since a 1
2 + ε-bound

on their expected approximation ratios is established as well. The 1
2 -bound for MDS

also follows from a construction presented by Hougardy [Hou09]; a slight modification of
Hougardy’s construction also implies the 1

2 -bound for Double-MinGreedy.
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Shapira [Sha97] claimed (without proof) the existence of graphs for which the Double-
MinGreedy algorithm computes matchings of size “only about half the size of a
maximum matching”. Shapira also showed that the solution of Double-MinGreedy
always contains at least min

(⌊
|V |+ 1

2 −
√
|V |2 − |V | − 2|E|+ 9

4

⌋
,

⌊
3
4 +

√
|E|
2 −

7
16

⌋)
edges. This bound applies to the variant of the algorithm in which all ties are broken in
worst-case fashion, i.e. it is a guarantee on the obtained matching size.

The KarpSipser Algorithm. Karp and Sipser [KS81] proposed a matching algo-
rithm based on node contractions. They analyzed a simplified version of this algorithm,
which became known as the KarpSipser algorithm. They showed that on large sparse
random graphs, KarpSipser asymptotically computes nearly optimal matchings. Aron-
son, Frieze, and Pittel [AFP98] improved error terms of the analysis in [KS81].

Inapproximability Results for Classes of Greedy-Like Algorithms. Rather
than analyzing limits on the approximation performance of particular algorithms, further
studies investigated how successful an algorithm can be given restrictions on the access
to the input graph.

Vertex Iterative Algorithms. The 3
4 -inapproximability bound for Shuffle on general

graphs also applies to the class of so called vertex iterative algorithms [GT12]. We denote
this class as VI. A randomized VI-algorithm considers one node at a time, and for
the current node probes for neighbors. The first successful probe determines the node
matched with the current node. The algorithm may also decide to stop probing for
neighbors of the current node, thereby declaring that the current node will never be
matched. The next node is chosen adaptively based on the outcomes of all previous
computations.

Which algorithms belong to VI? The Shuffle algorithm probes for neighbors in the
order determined by the permutation which is computed in the beginning. The MRG
algorithm belongs to VI as well, since it probes for neighbors in random order.

Algorithms for the Query Commit Problem. The class of algorithms for the query
commit problem is denoted as QC: unlike a VI-algorithm, a QC-algorithm does not have
to consider nodes one after the other but may probe for edges in an arbitrary randomized
fashion (e.g. the Greedy algorithm belongs to QC). Each found edge has to be picked.
The pairwise kidney exchange problem, discussed in the beginning of Section 1, is an
instantiation of the query commit problem, since after a successful probe the according
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cross-transplant has to be executed. The class QC contains all vertex iterative algorithms,
i.e. we have

VI ⊆ QC ,

as was pointed out in [GT12]. In the same work, an inapproximability bound of 0.7916
for general graphs was shown for QC-algorithms.

Fully Randomized Priority Algorithms. In [Pol12] it was shown that no algorithm
in the class of fully randomized priority algorithms in the node model can approximate
matching better than factor 5

6 , in expectation. This class contains all QC-algorithms as
well as MinGreedy and the KarpSipser algorithm [BP15].

Hypergraph Matching. In a k-hypergraph an edge contains up to k nodes; in a k-
uniform hypergraph each edge contains exactly k nodes. Note that graphs are included as
the special case k = 2. In the k-Hypergraph Matching Problem (also known as the k-Set
Packing Problem) the goal is to find a largest possible set of node disjoint edges. Unlike
matching for common graphs, the k-Hypergraph Matching Problem is NP-complete.13

A 1
k -approximation is easily obtained by greedily picking arbitrary edges [KH78].

Aronson et al. [ADFS95] adapted the Greedy heuristic to k-uniform hypergraphs
and showed that the expected approximation ratio is at least 1/(k − k−1

m ), where the
non-negative value of m depends on the graph.

Bennett and Bohman [BB12] showed the following bound on the expected performance
of Greedy on k-uniform D-regular hypergraphs with N nodes: if D →∞ as N →∞ and
co-degrees are at most L = o(D/ log5N), then a proportion of at most (L/D)

1
2(k−1) +o(1)

nodes remains unmatched w.h.p.

Also for k-uniform hypergraph matching, local search was shown to allow for non-
trivial approximation performance. Hurkens and Schrijver [HS89] gave, for any fixed ε>0,
a polynomial time local search algorithm with approximation ratio k

2 + ε. Using an
enhanced local search method, Cygan [Cyg13] improved the approximation ratio to k+1+ε

3 .
On the other hand, Hazan, Safra, and Schwartz [HSS06] showed that k-uniform hyper-
graph matching cannot efficiently be approximated within a factor of O( k

ln k ).

13The 3-dimensional matching problem, where each edge contains exactly three nodes and the graph is
tripartite, as well as the unrestricted hypergraph matching problem belong to Karp’s 21 NP-complete
problems. For an overview of problems closely related to hypergraph matching see [CL12].
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1.4.3 Exact Algorithms

For completeness of this thesis we include a brief overview of exact polynomial time
algorithms for matching. Also, the key concept of an augmenting path, which lies at the
core of many exact algorithms, is fundamental to some of our main results.

Given a maximal but non-maximum matching M , Berge’s Lemma [Ber57] shows
that there exists an augmenting path which can be used to “adjust” M and increase
its size by one.14 This fact is used in the following classical algorithms, which grow an
arbitrary initial matching by repeatedly finding augmenting paths: the algorithms of
Edmonds [Edm65], of Hopcroft and Karp [HK73] (this one is for bipartite graphs) and of
Micali and Vazirani [MV80, Vaz13, Gab14]. Berge’s Lemma also shows that the obtained
matching is of maximum size as soon as no further augmenting path can be found.

Edmond’s algorithm was implemented in time O(|V |3) by Gabow [Gab76] and im-
proved to time O(|V | · |E|) by Gabow and Tarjan [GT85].

Asymptotically faster implementations exist for the algorithms of Hopcroft and Karp
and of Micali and Vazirani, and both algorithms are among the fastest exact algorithms
in practice. In both algorithms, in each iteration the current matching is grown using
a largest possible set of node-disjoint augmenting paths of currently smallest size. In
particular, in each iteration the minimum length of an augmenting path increases, and it
can be shown that after O(

√
|V |) iterations a maximum matching is obtained [HK73].

Each iteration can be performed in linear time O(|E|), for both bipartite and non-bipartite
graphs. Therefore both algorithms run in time O(

√
|V | · |E|).15

Another algorithm with the same asymptotic runtime is that of Gabow and Tar-
jan [GT91], which is a modification of their algorithm for minimum-cost matching on
general graphs with integral edge weights.

On dense graphs, the above algorithms might take runtime as much as O(|V |2.5). Also
relying on augmenting path methods, this bound was improved by Alt, Blum, Mehlhorn,
and Paul [ABMP91]: using certain adjacency matrix scanning techniques, their algorithm
runs in time O(|V |1.5

√
|E|/ log |V |) on bipartite graphs. Based on flow techniques,

the algorithm of Goldberg and Karzanov [GK04] computes maximum matchings for
14To be concise we do not discuss blossoms, which are used to efficiently compute augmenting paths in

non-bipartite graphs. See [Blu15] for an outline of the history of efficient computations of augmenting
paths.

15A fast and straightforward approach to obtain an approximate matching is to iterate the algorithm of
Micali and Vazirani until the initial matching was grown “large enough”: once all augmenting paths are
longer than 2k + 1, the obtained matching has size at least k

k+1 times optimal, as was shown in [HK73].
Since each iteration takes linear time, for any fixed ε > 0 a matching within 1− ε of maximum size can
be computed in linear time, where the constant in the asymptotic runtime depends on ε.
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general graphs in time O
(√
|V | · |E| · log( |V |2/ |E| )

log |V |

)
. The randomized algorithm of Mucha

and Sankowski [MS04] builds upon algebraic methods and runs in time O(|V |ω) on
general graphs, where ω < 2.38 is the exponent of the fastest algorithm for multiplying
two |V | × |V |-matrices; this algorithm was simplified by Harvey in [Har09].
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2 Performance Guarantees: Basics

We develop the basics of our analysis of 1-2-Greedy and the KarpSipser algorithm.
Our approximation guarantees hold even under the assumption of worst case tie breaking.

In each step, either algorithm picks an arbitrary edge unless a node of degree at
most two resp. of degree one exists, in which case an arbitrary edge incident with a
node of minimum degree is picked. In our analysis, we consider the following equivalent
reformulation of these algorithms. Since we assume worst case tie breaking, picking
an arbitrary edge is equivalent with first selecting an arbitrary node, then an arbitrary
neighbor, and picking the edge connecting both nodes. Therefore, throughout Sections 2
to 4 we analyze 1-2-Greedy and KarpSipser as formulated in Algorithm 2. We
implicitly refer to current (non-zero) degrees in the reduced graph unless explicitly stated
otherwise. (Algorithm 2 is a refined version of Algorithm 1: Lines 3 to 8 implement the
selection routine of Line 3 in Algorithm 1.)

Algorithm 2 Algorithms 1-2-Greedy (d = 2) and KarpSipser (d = 1).
1. M ← ∅
2. while E 6= ∅ do
3. if there is a node of degree at most d then
4. let u be an arbitrary node of minimum degree
5. else
6. let u be an arbitrary node
7. end if
8. select neighbor v of u
9. M ←M ∪ {{u, v}}

10. E ← E \ {{x, y} : x ∈ {u, v}, y ∈ |V |}
11. end while
12. return M

Simple Guarantees Using Degree Information. Our analysis must be tailored to
algorithms whose edge selection routines utilize node degree information. Recall that
algorithms Greedy, MRG, and Shuffle (cf. List 1 on page 16) do not incorporate
degree information to select the next edge. The approximation ratio of these algorithms—
as well as of any other algorithm that does not utilize degree information—is exactly 1

2 ,
even in bipartite graphs of maximum degree two. Why? Since in the graph
the middle edge might be picked first.

As is well known, picking an edge incident with a node of degree 1 is “optimal” in
the following sense (see e.g. Corollary 3.1.6 in [LP86, p. 88]).
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2 PERFORMANCE GUARANTEES: BASICS

Proposition 1 (Folklore). If node u in edge {u, v} has degree one, then {u, v} belongs
to some maximum matching in the graph.

Proof. We construct a maximum matching which contains edge {u, v}. Assume that M∗

is a maximum matching with {u, v} /∈ M∗. Then v must be matched in M∗, since
otherwise {u, v} could be added to M∗, implying that M∗ is not optimal. Say v is
matched in edge {v, w} ∈M∗. We replace {v, w} with {u, v} and obtain a matching of
size |M∗| which includes {u, v}.

Picking an edge incident with a node of degree 1 whenever possible allows to easily
obtain maximum matchings in the following graphs.

Proposition 2 (Folklore). If every node has degree at most two, then algorithms
1-2-Greedy, Double-MinGreedy, MDS, and the KarpSipser algorithm compute a
maximum matching.

Proof. The connected components of such graphs are paths and cycles. Edges of a path
are always picked for a node of degree 1 at an end of the path—which is optimal. Once a
cycle is “cracked open” it becomes a path and is then solved optimally.

Proposition 3 (Folklore). Algorithms 1-2-Greedy, Double-MinGreedy, and Karp-
Sipser compute maximum matchings in forests.

(For forests, MDS is not an optimal algorithm, as the following example shows. The
bold edge in the graph has minimum degree sum, since all edges have
degree sum at least four. Hence the dotted edge might be picked first. Consequently, the
approximation ratio of MDS is at most 3

4 .)

Proof. In each step an edge incident with a node of degree one is picked.

Organization of the Section. Since optimality of 1-2-Greedy and the KarpSipser
algorithm is guaranteed if degrees are bounded by at most two (cf. Proposition 2), from
here on we focus on graphs in which every degree is at most ∆ for ∆ ≥ 3.

By A we denote 1-2-Greedy resp. the KarpSipser algorithm, and we discuss our
approach to prove that algorithm A achieves approximation ratio at least α > 1

2 , where α
will later be chosen appropriately.

In Section 2.1 we introduce the connected components of a certain graph H(A) defined
by A. In Section 2.2 we present our technique to bound the “local” approximation ratio
of each component of H(A) in order to obtain a bound on the (global) approximation
ratio of A.
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2.1 Alternating Paths and Cycles

2.1 Alternating Paths and Cycles

Let G = (V,E) be the input graph. W.l.o.g. we may assume that G is connected, since
our performance guarantees apply to each connected component separately.

Let M∗ be an arbitrary but fixed maximum matching in G. By M we denote the
matching computed by A on input G. In our analysis, we study the connected components
of the graph

H(A) = (V,M ∪M∗) .

Nodes in H(A) have degree at most two. Therefore any connected component is a se-
quence {v1, v2}, {v2, v3}, . . . , {vk−1, vk} of edges. In the following we present the different
types of sequences (in diagrams we depict an M∗-edge as and an M -edge as ).
In particular, we show that w.l.o.g. we may assume in our analysis that only two types
of edge sequences exist, namely singletons and paths.

3 Singletons.

A singleton is an edge contained in both M and M∗: .

• Alternating edge sequences.

An alternating edge sequence alternates between edges ofM andM∗. We distinguish
such sequences by their length.

7 Alternating edge sequences of even length.

Note that v1 = vk might hold, in which case the sequence is a cycle. For
convenience, throughout our analysis we assume w.l.o.g. that even-length
alternating edge sequences do not exist. We may do so, as we show next.

Lemma 4. There exists a maximum matching M∗ such that no component
of H(A) is an alternating edge sequence of even length.

Proof. Let some maximum matching N∗ be given. Assume that a component
of the graph (V,M ∪N∗) is an alternating edge sequence of even length, call
that component X. We modify N∗ appropriately without decreasing |N∗| such
that X is replaced by singletons only: e.g. becomes ,
where an unmarked edge belongs neither to M nor to N∗. After
repeating the process until there are no more even-length alternating edge
sequences left, set M∗ = N∗.
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2 PERFORMANCE GUARANTEES: BASICS

3 Alternating edge sequences of odd length, called paths for short.

A path is an alternating edge sequence which begins and ends with anM∗-edge:
. . . . In particular, both endpoints of a path are not

matched in M but only in M∗.

Note. In the literature, a path is often called augmenting, since swapping
the M -edges of a path with its M∗-edges increases the size of M by one.

7 Isolated nodes.

Throughout the analysis we conveniently ignore isolated nodes. In Section 2.3 we
argue why this is legal.

There does not exist a component X of H(A) which is an alternating edge sequence
beginning and ending with an M -edge. Why? Assuming that X exists, by swapping
the M∗-edges of X with the M -edges of X we obtain a matching larger than M∗. This
is impossible, since M∗ is a maximum matching.

2.1.1 Evolution of Components

In each step of algorithm A, the decision whether to pick an arbitrary edge or first select
a node and then one of its neighbors depends on the degrees in the reduced graph (cf.
the discussion of Algorithm 1 in Section 1.1): in the t-th step, the reduced graph Gt does
not contain edges incident with previously matched nodes.

Creation Steps. Assume that A picks edge e in step t. Let X be the component of e
in H(A). If e is the first edge of X picked by A, then we call step t the creation step
of X.

More formally, assume that an M -edge e is labeled with integer t if algorithm A
picks e in the t-th step. For any component X in H(A), algorithm A creates X in step t
if t is the smallest label of an M -edge in X. Observe that for each singleton there is only
one label to choose from, whereas for a path there might be more.

. . .

Figure 2: Steps for endpoints of a path (crossed edges)
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2.2 Amortization

Steps for Endpoints. For each path X we also define the first step for an endpoint
of X and the second step for an endpoint of X, see the crossed edges in Figure 2. The
first step for an endpoint of X is the earliest step in which algorithm A matches an M∗-
neighbor of an endpoint w of X. In the second step for an endpoint of X, algorithm A
matches an M∗-neighbor of an endpoint w′ of X with w′ 6= w.

Observe that the first step for an endpoint of X might also create X. For a path
with only one M -edge, the creation step and both steps for endpoints of X coincide.

2.2 Amortization

Based on the connected components of H(A) we discuss our approach for the proof of
performance guarantees for algorithm A.

2.2.1 Local Approximation Ratios

Let X denote a path or singleton of H(A). The numbers of M -edges and M∗-edges in
component X are denoted by mX resp. m∗X . (In particular, note that we have |M | =∑
X mX and |M∗| =

∑
X m

∗
X .) To motivate our approach, the fraction

mX

m∗X
(1)

is of central interest. Observe that we have 1
2 ≤

mX
m∗X
≤ 1 for any component X. Why?

First, for a shortest possible path X we have mX = 1 and m∗X = 2. Secondly, for longer
paths (1) converges to one (recall that m∗X = mX + 1 holds). Lastly, for a singleton X
we have mX = m∗X = 1.

In particular, for short paths (1) is smaller than α. This is especially true for each
path X with only mX = 1 edge of M , which we also call a 1

2 -path.

Our goal is to develop a charging scheme that allows to amortize small fractions mX
m∗X

with large ones such that all fractions are at least α. Intuitively, we redistribute “funds”
from “rich” to “poor” components without introducing new poverty. Therefore we move
(equally valuable) coins and bills between components.

Definition 5 (Balance). For node x in H(A) we denote the number of coins received
by x as rcvx and the number of coins payed by x as payx. The number of bills received
and payed by x is denoted as rcvx resp. payx .

Let ∈ { , }. For groups of nodes we denote composite payments as follows. For
edge {x, x′} in H(A) we let pay{x,x′} = payx + payx′. For any component X in the
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2 PERFORMANCE GUARANTEES: BASICS

graph H(A) we let payX =
∑
x payx , where we sum over all nodes x which belong to

component X. Analogously, we define rcv{x,x′} for edge {x, x
′} and rcvX for component X.

The balance of component X is defined as

balX = rcvX + rcvX − payX − payX .

No funds are wasted in the redistribution, i.e. summing over all components X we have

∑
X

rcvX =
∑
X

payX as well as
∑
X

rcvX =
∑
X

payX . (2)

Let X be a component. Using the amount balX of funds owned by X, we adjust the
portion of |M | in the fraction mX

m∗X
as follows (recall that |M | =

∑
X mX holds).

Definition 6 (Local Approximation Ratio). Let the coin and bill value κ > 0 be given.
The local approximation ratio of component X is

mX + κ · balX
m∗X

= mX + κ · rcvX + κ · rcvX − κ · payX − κ · payX
m∗X

.

If the balance balX is large enough for mX+κ·balX
m∗X

≥ α to hold, then X is called α-balanced.

Since the local approximation ratio of a component X grows with the balance of X, to
obtain lower bounds on local approximation ratios we have to come up with appropriate
lower bounds on the balance of singletons and paths. We allow negative balances for
singletons and long augmenting paths, since these components have large fractions mX

m∗X
,

i.e. they are rich enough to pay funds without harm.

If all components are α-balanced, then our proof is complete, as we show next.

Lemma 7. If each component X of H(A) is α-balanced, then algorithm A achieves
(global) approximation ratio at least α.

Proof. Rewriting (2) as
∑
X(rcvX − payX + rcvX − payX) =

∑
X balX = 0, we obtain

|M |
|M∗|

=
∑
X mX∑
X m

∗
X

=
∑
X mX + κ · balX∑

X m
∗
X

≥
∑
X α ·m∗X∑
X m

∗
X

= α .
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2.2 Amortization

2.2.2 Transfers

To redistribute funds, we utilize edges of the input graph G. In particular, our charging
scheme has to reflect that algorithm A selects a node v because of its degree: funds are
moved over edges being incident with v when v gets matched.

However, the M -edge or M∗-edge of v connects v with another node in the same
component and hence does not allow us to redistribute funds. Therefore, we utilize edges
which connect different components of H(A), namely edges in the set

F = E \ (M ∪M∗) .

Are F -edges guaranteed to be incident with nodes of poor paths? In Lemma 9 a)
we show that each endpoint of a path is incident with at least one F -edge. We prepare
Lemma 9 in Lemma 8.

Lemma 8. a) Assume that algorithm A creates path X in step t, say when selecting
node u with degree dt(u) in the reduced graph. Then we have dt(u) ≥ 2.
b) Let w be an endpoint of a path in H(A). The degree of w in the input graph G

is d1(w) ≥ 2.

Proof. We prove a). Let X be a path. In the creation step t of X all M -edges and M∗-
edges of X still belong to the reduced graph Gt. Consequently, the nodes of M -edges
in X have degree at least two. In particular, the node selected in step t by A has degree
at least two.

We prove b). Assume that w is endpoint of path X and that X is created in step t.
First, observe that the degree d1(w) of w in the input graph is at least d1(w) ≥ dt(w),
i.e. at least as large as the degree of w in step t, since algorithm A does not add edges
into the graph.

To prove that d1(w) ≥ 2 holds we show that we have dt(w) ≥ 2. Consider the creation
step t of path X and let v be an arbitrary non-isolated node. By a) and by definition of
algorithm A, node v has degree at least dt(v) ≥ 2. It suffices to show that endpoint w is
not isolated in step t. To see this, observe that w is incident with its M∗-edge when X is
created in step t.

Lemma 9. a) Let w be an endpoint of path X in H(A). In the input graph G, endpoint w
is incident with at least one F -edge.
b) If {w, u} is an F -edge incident with endpoint w, then u is an M -matched node.
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2 PERFORMANCE GUARANTEES: BASICS

Proof. Statement a) is a direct consequence of Lemma 8 b), since exactly one of at least
two edges incident with w in the input graph is not an F -edge, namely the M∗-edge of w.

To prove b), observe that if both w and u are endpoints, then M ∪
{
{u,w}

}
is a

matching, contradicting the fact that M is a maximal matching.

Note that moving funds over F -edges incident with path endpoints is natural in the
sense that such F -edges are the only F -edges guaranteed to exist, as the example in
Figure 3 shows.

Y

X

Figure 3: A 1
2 -path X and a singleton Y connected only by F -edges

incident with path endpoints (the algorithm selects bold nodes
from left to right)

Transfer Edges. We do not move funds over each F -edge incident with a path endpoint,
but we carefully choose only some of them. In the following definition we define transfer
edges: each transfer moves exactly one coin, but no bills.16 Thereafter, in Lemmas 12
and 13 we bound the number of coins payed and received by nodes. Eventually, in a
summary we combine our results to obtain basic bounds on the number of coins owned
by singletons and paths.

Definition 10 (Transfer). Let edge {v, w} be an edge in the set F = E \ (M ∪M∗),
where node v is M -matched and w is a path endpoint. Assume that v becomes matched
in step t (when {v, w} is removed from the reduced graph Gt).

If, after {v, w} is removed, the degree of w is at most dt+1(w) ≤ 1, then {v, w} is
called a transfer and one coin is moved from the component of v to the component of w.

We denote a transfer edge {v, w} as (v, w).

16Later we also introduce so-called donations. Donations are F -edges as well, but they move only
bills instead of coins. If an F -edge is a donation then it is not a transfer, and vice versa, i.e. the set of
transfers edges and the set of donation edges are disjoint.
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2.2 Amortization

Bounds On Coin Payments. How many coins does a given node v have to pay?
Since a transfer moves exactly one coin and a transfer is an F -edge, the number of coins
payed by v is bounded by the number of F -edges incident with v. Therefore we determine
bounds as functions of ∆ in Lemma 12. On the other hand, the number of coins received
by an endpoint w is not a function of ∆, since transfers only point to certain “small
degree” endpoints. First, we introduce necessary notation in the following definition.
Definition 11 (Bounds on Payments).
• Let x be an M-matched node in component X, and {x, x′} the M-edge of x.
By PAYx we denote an upper bound on the number of coins payed by node x:

payx ≤ PAYx .

The maximum number of coins payed by
– M -edge {x, x′} is defined as PAY{x,x′} = PAYx + PAYx′.
– component X is defined as PAYX =

∑
x PAYx, where we sum over all M-

matched nodes x in X.
• Let w and w′ be the endpoints of path Y . By RCVw we denote a lower bound on
the number of coins received by w, i.e. we have

rcvw ≥ RCVw .

Now define RCVY = RCVw+RCVw′ . (Note that a definition of RCVe for an edge e
is unnecessary, since there is no path edge which connects two path endpoints.)
• By BALX we denote a bound on the balance balX=(rcvX−payX)+(rcvX−payX)
of component X, i.e. we have

balX ≥ BALX .

Lemma 12. Let x be an M -matched node in component X, and {x, x′} the M -edge of x.
a) If X is a singleton, then

PAYx = ∆− 1

is an upper bound for payx and we have PAY{x,x′} = PAYX = 2 · (∆−1).
b) If X is a path, then

PAYx = ∆− 2

is an upper bound for payx. Also, we have PAY{x,x′} = 2 · (∆−2) as well as
PAYX = mX · 2(∆− 2).
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2 PERFORMANCE GUARANTEES: BASICS

Proof. Note that in a) as well as b) we only need to verify that payx ≤ PAYx holds
for node x, since PAY{x,x′} for edge {x, x′} and PAYX for component X follow by
Definition 11.

We bound the number of transfers leaving x. Each transfer is an F -edge in the input
graph G, hence it suffices to bound the number of F -edges incident with x in G.

a) If x belongs to a singleton, then x is incident with at most ∆− 1 many F -edges,
since x is also incident with its M -edge.

b) If x belongs to a path, then x is incident with at most ∆ − 2 many F -edges,
since x is also incident with its M -edge and its M∗-edge.

Lemma 13. Let w be an endpoint of path X. Then

RCVw = 1

and RCVX = 2 are lower bounds on rcvw and rcvX , respectively.

Proof. We only need to verify that rcvw ≥ RCVw holds for endpoint w, since RCVX for
path X follows by Definition 11. We show that w receives at least one transfer.

Since w is a path endpoint, node w never gets matched. By Lemma 8, the degree
of w in the input graph is at least d1(w) ≥ 2. Hence, algorithm A removes the M∗-edge
of w and the d1(w)− 1 ≥ 1 many F -edges of w.

Assume that in step t the degree of w drops from dt(w) to dt+1(w) = 0, and observe
that we have dt(w) = 1 or dt(w) = 2. In either case we show that w receives a coin.

First, assume that dt(w) = 2 holds. Two edges incident with w are removed from
the (reduced) graph in step t. Observe that at least one of the removed edges must be
an F -edge, call it e. By Definition 10 (Transfer), edge e is a transfer and one coin is
moved to w along e.

Now assume that dt(w) = 1 holds. The last edge incident with w, call it e, is either
an F -edge or an M∗-edge. If e is an F -edge, then e is a transfer and one coin is moved
to w along e. If e is an M∗-edge. Then in an earlier step t′ < t the degree of w dropped
to dt′+1(w) = 1 when an F -edge e′ incident with w was removed. Edge e′ is a transfer
along which one coin is moved to w.
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2.3 Isolated Nodes

Summary. We summarize Lemmas 12 and 13 to obtain basic bounds on the number
of coins owned by singletons and paths.

• A singleton X receives no transfers, since only path endpoints receive transfers.
Therefore we define rcvX = 0 = RCVX . By Lemma 12 a), singleton X pays at
most payX ≤ PAYX = 2(∆− 1) coins. Hence X owns at least

rcvX − payX ≥ RCVX − PAYX (3)
RCVX=0

= −2(∆− 1)

coins.

• A path X pays at most payX ≤ PAYX = 2mX(∆ − 2) coins by Lemma 12 b).
Moreover, path X receives at least rcvX ≥ RCVX = 2 coins by Lemma 13.
Therefore X owns at least

rcvX − payX ≥ RCVX − PAYX (4)

= 2− 2mX(∆− 2)

coins, see Figure 4 for an illustration.

. . .

. . . . . . . . . . . . . . . . . . . . . . . .
∆−2 ∆−2 ∆−2 ∆−2 ∆−2 ∆−2 ∆−2 ∆−2

Figure 4: A path X owns at least 2− 2mX(∆− 2) coins (transfers
are drawn as directed edges)

2.3 Isolated Nodes

We conclude the presentation of the basics and discuss our claim in Section 2.1 that
we may conveniently ignore isolated H(A)-nodes in the argument. We first give some
intuition and thereafter provide a formal description.

Implicitly, isolated nodes do take part in the system of movingM -funds. In particular,
we will see that an isolated node v might receive funds, but v does not pay funds.
Consequently, node v effectively “removes” funds from the system and hence does not
illegally increase the local approximation ratio of any other component in H(A).
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2 PERFORMANCE GUARANTEES: BASICS

We formalize why we may go without explicitly considering isolated nodes. Recall
that Definition 10 (Transfer) is formulated so as to focus attention to a path endpoint w
receiving a coin.

Throughout the analysis, the only crucial property of path endpoint w is
that w is not M -matched.

Now observe that generalizing Definition 10 from w being a path endpoint to w being a
non-M -matched node includes isolated nodes in the system of moving funds, since these
are non-M -matched as well (there are no further types of non-M -matched nodes).

Why does a non-M -matched node w pay no funds? By Definition 10, node w pays no
transfers. The same holds for our second type of funds-moving F -edges, called donations,
which we introduce in Definitions 26 and 41.

44



3 Performance Guarantees for 1-2-Greedy

In this section we present our ∆−1
2∆−3 performance guarantees for the 1-2-Greedy algorithm

on general degree bounded graphs. Recall that it suffices to show that all components
in the graph H(1-2-Greedy) are ∆−1

2∆−3 -balanced, i.e. that each component has local
approximation ratio at least ∆−1

2∆−3 . Therefore, our task is to establish appropriate bounds
on the balance of each component, cf. Definition 6 (Local Approximation Ratio).

We present appropriate bounds for singletons and paths in Lemma 14 below. Given
Lemma 14, it remains to verify both balance bounds.

Lemma 14. Let X be a component in the graph H(1-2-Greedy). Assume that the
balance balX of X is at least

BALX = −2(∆− 2) if X is a singleton and (5 Singleton)

BALX = 2(∆− 1)− 2mX(∆− 2) if X is a path. (6 Path)

Then there exists a coin and bill value κ such that X and all other components of
H(1-2-Greedy) are ∆−1

2∆−3 -balanced.

Proof. Choose κ = 1
2(2∆−3) . Using (5 Singleton), the local approximation ratio of a

singleton X is at least 1+κ·balX
1 ≥ 1 + κ · BALX = 1− 2κ(∆− 2), which in turn equals

1−2κ(∆− 2) = 1− 2(∆− 2)
2(2∆− 3) = 2(2∆− 3)− 2(∆− 2)

2(2∆− 3) = ∆− 1
2∆− 3 . (7)

Therefore each singleton is ∆−1
2∆−3 -balanced.

Using (6 Path), the local approximation ratio of a path X is at least

mX + κ · balX
m∗X

≥ mX + κ · BALX
m∗X

= mX − 2κmX(∆− 2) + 2κ(∆− 1)
mX + 1

= mX · (1− 2κ(∆− 2)) + 2κ(∆− 1)
mX + 1

= 1− 2κ(∆− 2) + 2κ(∆− 1)− (1− 2κ(∆− 2)
mX + 1

= 1− 2κ(∆− 2) + 2κ(2∆− 3)− 1
mX + 1

= 1− 2κ(∆− 2) ,

which by (7) is bounded by at least ∆−1
2∆−3 as well, i.e. all paths are ∆−1

2∆−3 -balanced.
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3 PERFORMANCE GUARANTEES FOR 1-2-GREEDY

Organization of the Proof of (5 Singleton) and (6 Path). We analyze graphs
of maximum degree ∆ = 3 in Section 3.1, where our proof relies only on coins moved in
transfers—no bills are used. In Section 3.2 we analyze graphs of maximum degree ∆ ≥ 4,
where we also move bills.

3.1 Maximum Degree ∆ = 3

This section contains the proof of

Theorem 15. The 1-2-Greedy algorithm achieves approximation ratio at least ∆−1
2∆−3=2

3
for graphs of maximum degree ∆ = 3.

By Lemma 14, in the proof it suffices to verify balance bounds (5 Singleton)
and (6 Path), which for ∆ = 3 reduce to

BALX = −2 if X is a singleton and (8 Singleton∆=3)

BALX = 4− 2mX if X is a path. (9 Path∆=3)

No Bills. We establish a proof of (8 Singleton∆=3) and (9 Path∆=3) that relies only
on coins moved in transfers, i.e. we do not move bills and we do not utilize F -edges other
than transfers to move funds. In particular, we assume that

payx = rcvx = 0 holds for any node x, which implies

pay{x,x′} = rcv{x,x′} = 0 for any edge {x, x′} and

payX = rcvX = 0 for any component X.

Consequently, the balance of a component X is now simplified to owning coins:

balX = rcvX + rcvX − payX − rcvX
= rcvX − payX .

Using this simplified definition of the balance, we introduce a more instructive
formulation of bounds (8 Singleton∆=3) and (9 Path∆=3). Therefore we utilize results
established after Definition 10 (Transfer), namely the lower bounds (3) and (4) on the
number rcvX − payX of coins owned by a component X, see page 43. Recall that we
denote the maximum number of coins payed by component X as PAYX and the minimum

46



3.1 Maximum Degree ∆ = 3

number of coins received by path X as RCVX . Since balX = rcvX − payX holds, the
balance of component X is at least

balX
(3)
≥ −PAYX

(3)= −2(∆−1) = −4 if X is a singleton and

balX
(4)
≥ RCVX−PAYX

(4)= 2−2mX(∆−2) = 2−2mX if X is a path.

Using these lower bounds, our reformulation of (8 Singleton∆=3) and (9 Path∆=3) is as
follows. We demand that the balance balX of component X is at least

BALX = −2 = −PAYX+2 if X is a singleton and

BALX = 4−2mX = RCVX−PAYX+2 if X is a path.

In particular, observe that we have to show that in our charging scheme the balance
of each singleton or path is increased by at least two above the known lower bound (3)
resp. (4).

3.1.1 Saving Coins

Recall that a singleton X only pays but does not receive coins. Our plan to ver-
ify (8 Singleton∆=3) is to show that the nodes of X save two coins:

Definition 16 (Saving Coins). Recall that anM -matched node x pays no more than PAYx

coins. If x pays at most payx ≤ PAYx − k coins, for k > 0, then we say that node x
saves k coins. We say that component X saves K coins (denoted as payX ≤ PAYX −K)
if the savings of all nodes of X sum up to at least K.

So, if singleton X saves two coins, then balX = −payX ≥ −PAYX + 2 = BALX holds,
as desired.

To show that node x saves a coin, we study x in the step when x becomes matched.
In particular, we study the F -edges which are incident with x in that step. We frequently
apply the following arguments, which are direct consequences of Definition 10 (Transfer).
For the sake of clarity, we formally verify each argument.

Lemma 17. Assume that node x becomes M -matched in step t.
a) Node x saves p coins if the degree of x in the input graph is d1(x) = ∆− p.
b) Let fi denote the number of F -edges incident with x in the reduced graph Gi. Node x

saves q coins if we have f1 − ft = q, i.e. if q many F -edges were removed from x

before x becomes matched.
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3 PERFORMANCE GUARANTEES FOR 1-2-GREEDY

Assume that F -edges {x, y1}, . . . , {x, yk} are incident with x in Gt.
c) Node x saves r coins if nodes yi1 , . . . , yir (ij 6= ij′ for j 6= j′) are M -matched.
d) Node x saves s coins if nodes yi1 , . . . , yis (ij 6= ij′ for j 6= j′) are endpoints but

their degrees are at least dt+1(yij )≥2 after x becomes matched (for 1≤j≤s).
e) In total, node x saves p+ q + r + s coins.

Proof. a) In the input graph all M -edges and M∗-edges of x are still incident with x.
Hence p many F -edges are “missing”. For each such missing F -edge node x saves one
coin.

b) By Definition 10 (Transfer), an F -edge can only be a transfer leaving x if it is
incident with x when x becomes matched in step t. Hence for each F -edge removed
before step t node x saves one coin.

c) By Definition 10 (Transfer), one node of a transfer is an endpoint. Hence for
each F edge {x, yij′} for 1 ≤ j′ ≤ r node x saves one coin.

d) By Definition 10 (Transfer), an F -edge {x, yij′} incident with x can only be a
transfer if endpoint yij′ has degree at most dt+1(yij′ ) ≤ 1 after x becomes matched.
Hence for each F edge {x, yij′} for 1 ≤ j′ ≤ s node x saves one coin.

e) The p saved coins in a) are for “F -edges” which are not contained in the input
graph in the first place. The q saved coins in b) are for F -edges which are contained in
the input graph but are removed before x becomes matched in step t. In c) and d) coins
are saved for F -edges still being incident with x in step t. However, in c) an F -edge
connects x with an M -matched node whereas in d) an F -edge connects x with a path
endpoint.

For paths we proceed similar as for singletons. The balance of a path X is never
smaller than balX ≥ RCVX − PAYX by (4), whereas (9 Path∆=3) requires balX ≥
BALX = RCVX −PAYX + 2. If the nodes of X save two coins, then X is balanced since
we have balX = rcvX − payX ≥ RCVX − PAYX + 2 = BALX .

However, in the proof of (9 Path∆=3) we have to deal with the case that path X

saves less than two coins. In this case we show that path X receives sufficiently many
additional coins.

Organization of the Proof. We start with the proof of two saved coins for singletons
in Lemma 18 c). This concludes the proof of (8 Singleton∆=3).

More generally, Lemma 18 also applies to paths and identifies those cases in which
paths save two coins. Lemma 18 also prepares the analysis of the case in which a path X
saves less than two coins. We argue in Lemma 19 that X saves at least one coin. Thus
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if X saves less than two coins then we have payX = PAYX − 1. If X saves only one coin,
then Lemma 20 shows that X receives an additional coin, i.e. we have rcvX ≥ RCVX + 1.
Hence by Lemmas 18 and 20 we have balX = rcvX−payX ≥ RCVX−PAYX+2 = BALX .
This concludes the proof of (9 Path∆=3).

Coins Saved in Creation Steps. Recall that a component X is created in the step
when 1-2-Greedy picks an M -edge of X for the first time. In the next result, we study
situations in which coins are saved by a node becoming matched in the creation step
of X. Intuitively, the argument proceeds as follows.

If 1-2-Greedy creates X when selecting a node u of degree one, then recall that this
step is “optimal”.17 Hence u should save many coins. Indeed, no F -edges are incident
with u when u is selected. Therefore u has no incident transfers and pays no coins.

On the other hand, if node u has large degree ∆ = 3 when u is selected, then the
next step of 1-2-Greedy makes sure that u saves a coin. Why? Assume that u pays a
coin over an incident transfer (u,w). Then by Definition 10 (Transfer) endpoint w has
degree one in the next step. Since the new minimum degree is one, 1-2-Greedy selects
a node y whose degree also dropped to one. Edge {u, y} is not a transfer, since both y
and u are M -matched. Therefore u saves a coin. By an analogous argument, the node
matched with u saves an additional coin.

We also show that if X is a singleton, then X saves two coins, no matter what the
degree of the node selected to create X is.

Lemma 18. Assume that degrees are bounded by at most ∆ = 3. Consider the creation
step t of component X, and assume that the 1-2-Greedy algorithm selects node u with
degree dt(u). Component X saves two coins

a) if we have dt(u) = 1, or
b) if dt(u) = ∆ = 3 holds, or
c) if component X is a singleton.

Proof. We prepare the argument. Assume that u becomes matched with v in step t. Recall
that by Lemma 12 a) and b) the maximum number of coins payed by u is PAYu = ∆−1 = 2
if X is a singleton resp. PAYu = ∆− 2 = 1 if X is a path. In particular, in both cases
node u might have to pay a coin. Analogously, node v might have to pay a coin. Now
observe that if neither u nor v pays a coin, then two coins are saved in total. In this case
we are done.

17The edge incident with a node of degree one belongs to some optimal matching in the reduced graph.
Note, however, that this optimal matching might be different from M∗.
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So for the rest of the proof we assume that at least one of u and v pays a coin, say
over transfer (x,w) for x ∈ {u, v}.

We prove a). Recall the following: if in a step before creation of component X an
edge {u, y} incident with node u is removed from the graph, then {u, y} must be an F -
edge. Since the degree of u is dt(u) = 1 when X is created, we obtain that d1(u)− dt(u)
many F -edges are removed from u before creation of X. Hence by Lemma 17 b)
node u saves d1(u) − dt(u) coins. Moreover, by Lemma 17 a) node u saves ∆ − d1(u)
coins. By Lemma 17 e), we may sum both numbers. Therefore, in total, node u
saves (∆− d1(u)) + (d1(u)− dt(u)) = 2 coins.

We prove b). Assume that dt(u) = 3 holds. Since (x,w) is a transfer, in step t

edge {x,w} is removed from Gt and after step t the degree of w is dt+1(w) ≤ 1. Observe
that in step t at most two edges incident with w are removed from the graph, since two
nodes become matched. Since the degree of w is at least dt(w) ≥ dt(u) = 3 in Gt, we have
dt+1(w) ≥ 1 in step t+1. Using dt+1(w) ≤ 1 and dt+1(w) ≥ 1 we obtain dt+1(w) = 1. But
since endpoint w never becomes matched, another node y 6= w with degree dt+1(y) = 1
is selected next in step t+ 1 and becomes M -matched then. But node y had degree at
least dt(y) ≥ dt(u) = 3 in the creation step t of X. Hence in step t the degree of y drops
from dt(y) = 3 to dt+1(y) = 1, namely when incident edges {u, y} and {v, y} are removed
from Gt.

• If y belongs to a component Y 6= X other than X, then both {u, y} and {v, y}
are F -edges. But edges {u, y} and {v, y} are not transfers, since nodes u, v, and y
are M -matched. Hence each of u and v saves a coin.

• Assume that y is a node of X. (Note that in this case X must be a path.)
Nodes u, v, and y form a triangle in Gt and hence one of edges {u, y} and {v, y} is
an F -edge, say edge {u, y}. But both u and y are M -matched, thus edge {u, y} is
not a transfer. Again, each of u and y saves a coin.

We prove c). In this case X is a singleton. We may assume that dt(u) = 2 holds in
the creation step X, since a) and b) apply in particular to singletons. Either the degree
of u in the input graph is d1(u) = 2, i.e. it did not drop before step t. Or the degree
of u is d1(u) = 3 in the input graph, in which case we have d1(u)− dt(u) = 1. We apply
Lemma 17 a) resp. Lemma 17 b) and obtain that u saves one coin.

Recall that we are done if X saves another coin besides the one saved by u. In order to
obtain a contradiction, we assume that u saves the only coin. Recall that for singleton X
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each of nodes u and v pays at most PAYu = PAYv = 2 coins. By our assumption, node u
pays exactly one coin, say to wu, and v pays exactly two coins, say to wv and w′v.

Recall that we assume that in the creation step of X node u has degree dt(u) = 2.
Therefore node u is adjacent to at most one of wv and w′v, since u is also adjacent to v.
Since edges {u,wu}, {v, wv}, and {v, w′v} are transfers, Definition 10 (Transfer) implies
that the degrees of wu, wv and, w′v are at most 1 after creation of X, i.e. in step t+ 1.
We distinguish the following two cases in step t.

• If node u is adjacent to neither wv nor w′v in step t, then endpoints wu, wv,
and w′v have degree exactly dt+1(wu) = dt+1(wv) = dt+1(w′v) = 1 after step t. Why?
Their degrees are at least the minimum degree of dt(u) = 2 in step t when {u, v} is
picked, and their degrees drop by exactly one in step t.

• Now consider the case that u is adjacent to wv or w′v in step t, say wu = wv

holds. Then the degree of w′v drops by at most one when edge {u, v} is picked.
Since we have dt(w′v) ≥ dt(u) = 2, endpoint w′v has degree exactly dt+1(w′v) = 1
afterwards.

In both cases, no other degrees than those of wu, wv, and w′v drop in step t. Since in
step t+ 1 one of these endpoints has degree exactly one, one of wu, wv, or w′v has the
new minimum degree and becomes matched next. A contradiction, since path endpoints
are never matched by 1-2-Greedy.

3.1.2 Amortization for Paths

To finish the proof of Theorem 15 it remains to verify (9 Path∆=3) for any given path X.
Recall that the minimum balance of X is at least balX = rcvX −payX ≥ RCVX −PAYX .
But for (9 Path∆=3) we have to verify a balance of at least

balX = rcvX − payX ≥ RCVX − PAYX + 2 .

We have already discussed that it suffices to show that X saves two coins, i.e. that payX ≤
PAYX − 2 holds. If X saves two coins then we are done. Consequently, in the rest of the
proof it remains to consider the case that X saves less than two coins.

In Lemma 19 below we prove that each path saves at least one coin. In Lemma 20
we show that if a path X saves only one coin, i.e. if payX = PAYX − 1 holds, then X
receives at least rcvX ≥ 3 = RCVX + 1 coins. Hence the balance of X is at least balX =
rcvX − payX ≥ RCVX − PAYX + 2, as required by (9 Path∆=3).
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Lemma 19. Let X be a path which saves less than two coins. In the creation step t
of X the 1-2-Greedy algorithm selects a node u of degree dt(u) = 2. Node u saves a
coin for X and we have payX = PAYX − 1.

Proof. Recall that by Lemma 8 a) step t selects a node u of degree at least dt(u) ≥ 2.
We analyze the cases that dt(u) = 2 or dt(u) = 3 = ∆ holds. We obtain a contradiction
in the latter case, since path X saves two coins by Lemma 18 b).

So u is selected with degree dt(u) = 2. Observe that no F -edge is incident with u
when u is selected. Consequently, either no F -edge is incident with u in the input graph,
or an F -edge incident with u is removed from the graph before creation of X. Thus
node u saves a coin by Lemma 17 a) resp. by Lemma 17 b).

Since u saves a coin but all nodes of X together save less than two coins by assumption,
we get that X saves exactly one coin, i.e. that payX = PAYX − 1 holds.

In the proof that a path X which saves only one coin receives at least three coins, we
analyze a step for an endpoint of X. In particular, we proceed as follows. Recall that
a node matched to create X saves the only coin for X. Hence each other node of X
pays a coin, in particular the nodes matched in the second step for an endpoint of X,
call these nodes x and x′ and the according endpoint w. Assuming that w receives only
one coin we show that after x and x′ become matched all minimum degree nodes are
path endpoints, and their degree is one. This implies a contradiction: 1-2-Greedy never
selects a path endpoint. Thus w receives at least two coins. The other endpoint of X
receives an additional coin, by Lemma 13.

Lemma 20. Assume that degrees are bounded by at most ∆ = 3. Let X be a path which
pays payX = PAYX − 1 coins. Then X receives at least rcvX ≥ RCVX + 1 coins.

Proof. We assume that rcvX < RCVX + 1 = 3 holds and show a contradiction.
We prepare the argument. Since each endpoint of X receives at least one coin by

Lemma 13, the assumption implies that each endpoint of X receives exactly one coin.
Moreover, by Lemma 19 the node u selected to create X has degree dt(u) = 2 in the
creation step t of X, and u saves the only coin for X. But each M -matched node x of X
pays up to PAYx = ∆− 2 = 1 coin, by Lemma 12 b). Consequently, each M -matched
node of X but u pays exactly one coin, since payX = PAYX − 1 holds.

To show the desired contradiction, assume that u is matched with node v.

Case 1: Path X is a 1
2-path, i.e. we have mX = 1. Let wu and wv be the endpoints

of X such that we have {u,wu}, {v, wv} ∈M∗, see Figure 5. Note that we have wu 6= wv.
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wu u v wv

y

Figure 5: A 1
2 -path X with a transfer out of v (not all edges are

drawn)

Since u and v are the only M -covered nodes of X and u pays no coin, node v pays the
only coin, say in transfer (v, y) to path endpoint y. Since in the creation step of X node u
is selected with degree dt(u) = 2, in step t the degrees of endpoints wu, wv, and y all
drop, and no other degrees drop.

Case 1.1: The degree of wv is at least dt+1(wv) ≥ 2 in step t + 1. Observe
that endpoint wv still has two incident F -edges in step t+ 1, since the M∗-edge of wv
is removed in step t. But the M∗-edge of wv is removed from the graph in step t,
hence both F -edges incident with wv in step t+ 1 eventually turn out the be transfers.
Therefore endpoint wv receives two coins for X. Since also wu receives at least one coin
by Lemma 13, we obtain rcvX ≥ 3. A contradiction to our assumption that rcvX < 3
holds.

Case 1.2: The degree of wv is at most dt+1(wv) ≤ 1 in step t + 1. When
edge {u, v} is picked the degree of u is exactly dt(u) = 2, i.e. endpoint wv is not incident
with u. Hence the degree of wv drops by at most one in step t. Consequently, endpoint wv
has degree exactly dt+1(w) = 1 after creation of X, which is the new minimum degree in
the reduced graph Gt+1. But since only the degrees of endpoints wu, wv, and y dropped
in the creation step t, one of wu, wv, and y becomes matched in step t+1. A contradiction
is obtained since path endpoints are never matched. The possible configurations are
depicted in Figure 6.

u vwu wv

y

u vwu wv

Figure 6: Creating a 1
2 -path which pays one coin and receives

exactly two coins: dashed endpoints have degree one after u and v
become matched (not all edges are drawn)
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Case 2: Path X has mX ≥ 2 edges of M . Since mX ≥ 2 holds, after edge {u, v}
is picked in the creation step of X, there is an M -edge {x, x′} of X with the following
properties, see Figure 7. One of x and x′, say x, is theM∗-neighbor of an endpoint w of X,
and {x, x′} is still contained in the graph. In particular, since {x, x′} is still contained in
the graph whereas {u, v} is already removed, we have u 6= x and u 6= x′.

· · · u v · · · x′ x w

y

Figure 7: Edge {x, x′} is picked in the step for endpoint w of X
(not all edges are drawn)

Observe that we may choose w, x, and x′ such that x and x′ become matched in the
second step for an endpoint of X. We denote this step as step s.

Recall that u saves the only coin for X and that x pays a coin, say over transfer (x, y)
to endpoint y. Note that both w and y are still connected with x when x becomes
matched in step s. Since x is also connected with x′ in step s, node x has degree at
least ds(x) ≥ 3 = ∆, i.e. we have

ds(x) = 3 .

To complete the argument, we distinguish cases based on the degree ds(w) of endpoint w
in step s.

Case 2.1: Assume that ds(w) = 3 = ∆ holds. Observe that two F -edges are
incident with w in the reduced graph Gs, call them e and e′. No matter in which step e
is removed from the graph (either in step s or later), the degree of w drops to at most
one in that step. The same holds for e′. Hence both e and e′ are transfers, with one coin
moved to w along each one. Thus w receives two coins, contradicting our assumption
that each endpoint of X receives exactly one coin.

Case 2.2: Assume that ds(w) ≤ 2 holds. Recall that u saves the only coin for X.
Since we have u 6= x′, node x′ pays a coin. Therefore node x′ is adjacent to a path
endpoint in step s, by Definition 10 (Transfer). Since x′ is also adjacent to x in step s,
node x′ has degree at least ds(x′) ≥ 2. But the degree of x′ cannot be larger than the
degree ds(w) of w, since otherwise w would have smaller degree than both x and x′, one
of which is selected with minimum degree. We obtain 2 ≤ ds(x′) ≤ ds(w) ≤ 2 and hence

ds(x′) = ds(w) = 2 .
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Recall that our goal is to show a contradiction. We prepare the rest of the argument.
Since u saves the only coin for X and we have u /∈ {x, x′}, both x and x′ pay a coin. In
step s, observe the following. By Definition 10 (Transfer), each of x and x′ is incident
with a transfer edge. Since node x′ has degree ds(x′) = 2 and x′ is both incident with a
transfer edge and adjacent to the M -neighbor x, we get that the M∗-edge of x′ is already
removed from the graph. Node x has degree ds(x) = 3, as discussed above, therefore x is
adjacent to x′, incident with a transfer edge, and incident with its M∗-edge {x,w}.

Consequently, in step s all neighbors of x and x′ are path endpoints, and only their
degrees drop when edge {x′, x} is picked in step s. The possible configurations are
depicted in Figure 8. We distinguish two cases in step s.

• If x′ is not adjacent to w in step s, then the degree of w drops by one
from ds(w) = 2 to ds+1(w) = 1 (the three leftmost configurations in Figure 8).
Hence either w or another path endpoint is selected in step s + 1 and becomes
matched. A contradiction, since a path endpoint is never matched.

• Lastly, assume that x′ and w are adjacent (the rightmost configuration in
Figure 8). Then w becomes isolated in step s.

Consider the recipient y of the coin payed by x. Since x′ is adjacent to w and x
and has degree exactly ds(x′) = 2, endpoint y is not adjacent to x′. Therefore the
degree of y drops by exactly one in step s. Since the degree of y drops from at
least ds(y) ≥ 2 to at most ds+1(y) ≤ 1, by Definition 10, we get that the degree
of y is exactly ds+1(y) = 1 in step s+ 1. Furthermore, endpoint y is the only node
with degree ds+1(y) = 1 in step s+ 1. Hence y is selected and matched next. A
contradiction, since y is a path endpoint.

x′ x w

y

x′ x w

y

x′ x w

y

x′ x w

y

Figure 8: Removing the last M∗-edge at an end of a path: dashed
endpoints have degree one after x and x′ become matched (not all
edges are drawn)
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3.2 Maximum Degree ∆ ≥ 4

This section contains the proof of

Theorem 21. The 1-2-Greedy algorithm achieves approximation ratio at least ∆−1
2∆−3

for graphs of maximum degree ∆ ≥ 4.

Recall that by Lemma 14 it suffices to verify bounds (5 Singleton) and (6 Path),
which demand that the balance of a component X is at least

balX ≥ BALX = −2(∆− 2) if X is a singleton and

balX ≥ BALX = 2(∆− 1)− 2mX(∆− 2) if X is a path.

Unlike the case ∆ = 3, only moving funds in transfers is insufficient for proving that all
local approximation ratios are at least ∆

2∆−3 . We demonstrate this fact in the following
example of an unbalanced 1

2 -path.

Example 22 (An Unbalanced Path). Consider the graph in Figure 9, which has maximum
degree ∆ for some large ∆. In the first n = ∆ − 4 steps 1-2-Greedy creates the 1

2 -
paths X1, . . . , Xn drawn on the left, each time selecting a node of degree two (drawn
in bold). Observe that in the next step, i.e. in step n + 1, all degrees in the reduced
graph Gn+1 are at least three: by definition, 1-2-Greedy picks an arbitrary edge in Gn+1.
In our example 1-2-Greedy creates the 1

2 -path Y drawn on the right. In the last step,
the reduced graph is a star centered at node z′, and 1-2-Greedy creates the singleton Z
when selecting node z with degree one.

x1

xn

z′ z

y

y′

X1

...

Xn

Z

Y

...

...

...

Figure 9: Transfers are insufficient in the proof for general ∆ (we
have n = ∆− 4 and 1-2-Greedy selects bold nodes)
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The purpose of this example is to demonstrate that the coins moved in transfers are
not sufficient for Y to be balanced. First, we argue that the set of transfers is exactly the
set of directed edges in the figure.

In step i for 1 ≤ i ≤ n the 1-2-Greedy algorithm picks the only M-edge in Xi.
Observe that the degree of the leftmost path endpoint of 1

2 -path Xi drops from two to zero.
Hence the F -edge incident with this endpoint is a transfer. We call this transfer “internal”
since it moves a coin from Xi to Xi. When the 1

2 -path Y is created, the degree of each
endpoint w ∈ {y, y′, x1, . . . , xn} drops from three to one: all F -edges removed from w

in this step are transfers. In the last step, the degree of w drops to zero: all F -edges
removed from w in this step are transfers as well.

The 1
2 -paths X1, . . . , Xn and singleton Z are ∆−1

2∆−3 -balanced. The number of coins
owned by each 1

2 -path Xi is as follows. Path Xi receives two coins from the nodes
matched to create Y , one coin from Z, and an “internal” coin from itself. Moreover,
path Xi pays an “internal” coin to itself. Hence the number of coins owned by Xi

is rcvXi
− payXi

= 4− 1
X
> 2 = 2(∆− 1)− 2(∆− 2)

mXi
=1

= BALXi, cf. bound (6 Path).
Thus X1, . . . , Xn need no more funds to be balanced. The same is true for singleton Z.
Why? Singleton Z pays a coin to each Xi and two coins to Y (and receives zero
coins), hence Z owns rcvZ − payZ = 0 − (∆ − 4) − 2

X
> −2(∆ − 2) = BALZ coins, cf.

bound (5 Singleton).
However, observe that the 1

2 -path Y does not own sufficiently many coins. Why?
Observe that Y receives two coins from Z as well as two “internal” coins from itself
and Y pays two coins to each Xi as well as two “internal” coins to its own endpoints.
Therefore we have rcvY − payY = 4 − 2(∆ − 3)

 
< 2 = 2(∆ − 1) − 2(∆ − 2) = BALY ,

cf. (6 Path).

Sketch of the Proof of Theorem 21. In Example 22, the 1
2 -paths Xi and singleton Z

have surpluses, whereas the 1
2 -path Y has incurred a debt. We show how to redistribute

funds to Y and motivate the two main ideas used in the proof of Theorem 21.

Which components should pay funds to Y ? We do not remove funds from the 1
2 -

paths Xi, for two reasons.
First, moving funds from an Xi to Y implies a circular flow of funds, since Xi also

receives coins from Y .
Secondly, observe that 1-2-Greedy “reacts” to the unfavorable creation of a 1

2 -path,
namely Y , by selecting node z of degree one in the next step. Since z has degree one
when being selected, no transfer edges leave z and z pays no coins, i.e. the surplus of Z

57



3 PERFORMANCE GUARANTEES FOR 1-2-GREEDY

is considerable. In general, selecting a node of degree one is “optimal” and, intuitively,
subtracting funds from nodes matched in an optimal step should be possible without their
component falling into poverty. To incorporate this “sensitivity” of 1-2-Greedy into an
appropriate definition, we move funds to Y from the nodes matched after creation of Y ,
namely the nodes matched to create singleton Z.

However, singleton Z does not own enough funds to be able to help Y . Why? Recall
that Y owns rcvY − payY = 4− 2(∆− 4)

 
< 2 = BALY coins, hence Y needs at least a =

BALY −(rcvY −payY ) = 2(∆−4)−2 additional coins in order for rcvY −payY +a ≥ BALY
to hold. But Z owns only rcvZ − payZ = 0− (∆− 4)− 2 coins, and supporting Y implies

that the balance of Z is no larger than rcvZ−payZ−a = −3(∆−4)
 
< −2(∆−2) = BALZ :

singleton Z cannot support Y without itself being unbalanced. Thus we need to gather
funds for Y also from the 1

2 -paths Xi.

We proceed with a strategy of two stages, namely by first canceling certain transfers
and thereafter inserting a donation. In the following two sections we first illustrate each
concept by applying it in the above example and then discuss its general properties.

3.2.1 Canceling Transfers

Example. In Example 22, we increase the balance of singleton Z by canceling certain
transfers leaving Z, i.e. in certain transfers as per Definition 10 we do not move coins.

Consider the 1
2 -path X1 and recall that X1 has a surplus. This surplus is caused

by endpoint x1 receiving three coins, namely two coins from path Y and an additional
“third” coin from singleton Z. We cancel the third transfer from Z to x1. (We show below
that, in general, each path endpoint receives at most three coins and the third transfer is
uniquely defined.) This reduces the surplus of X1, but x1 still receives two coins from Y

and now X1 owns rcvX1
− payX1

= 3− 1 = 2 = BALX1 coins in total. Hence, still X1

is balanced. We proceed analogously for each endpoint xi and path Xi. Consequently,
singleton Z pays only payZ = 2 coins to the endpoints of Y . Note that no other transfers
are canceled, since no other endpoint receives three coins in the first place. (Now each
path endpoint in Example 22 receives either one or two coins. These bounds are the
exact same bounds as in case ∆ = 3: there, each path endpoint receives at least one coin
by Lemma 13 and at most two coins since it has at most two incident F -edges in the
input graph. We show below that, after canceling transfers, these bounds hold for each
path endpoint.)
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Towards the Definition. The main aspects of transfer cancellations are the following.
We show first that, before cancellation, each endpoint w receives at most three coins
(see Lemma 23 a) below) and that the “third” incoming transfer is uniquely defined (see
Lemma 23 b) ii.).

Lemma 23. As a consequence of Definition 10 (Transfer),
a) each path endpoint w receives at most rcvw ≤ 3 coins, and
b) endpoint w receives rcvw = 3 coins if and only if the the following holds: there are

integers 1 ≤ t < s such that the degree of w drops
i. from dt(w)=3 to dt+1(w)=1 when two incident F -edges are removed and
ii. from ds(w)=1 to ds+1(w)=0 when the last incident F -edge is removed.

Proof. First we argue that w receives less than three coins if there is a step t2 when the
degree of w is dt2(w) = 2. By Lemma 17 b), no F -edge incident with w removed before
step t2 is a transfer. Moreover, in step t2 at most two F -edges are still incident with w,
i.e. endpoint w receives at most two coins.

Consequently, if endpoint w receives at least three coins, then w never has degree
two. This implies the following two facts. First, the degree of w in the input graph G
is d1(w) ≥ 3, since the degree of w in G is d1(w) ≥ 2 by Lemma 8. Secondly, there is a
step t3 when the degree of w is exactly dt3(w) = 3. Why? The degree of w never equals 2,
hence we get that there is a step t3 when the degree of w drops from larger than 2 to
below 2. This is only possible if the degree of w drops from exactly dt3(w) = 3, since in
each step at most two edges incident with w are removed.

We show a), i.e. that w receives at most three coins. In the step when dt3(w)=3
holds, by Definition 10 (Transfer) endpoint w still receives zero coins. Hence only the
remaining three incident edges can be transfer F -edges. Thus w receives at most 3 coins.

We show b). Assume that w receives three coins. In the step when dt3(w) = 3 holds,
all remaining edges incident with w must be F -edges, since otherwise w would receive
less than three coins. The statement follows (with t = t3 and s > t3), since we have
already argued that w never has degree 2.

If endpoint w receives the maximum of rcvw = 3 coins, then by the following definition
we cancel the “third” incoming transfer, i.e. the transfer coming from a node getting
matched in the step s when the degree of w drops from ds(w) = 1 to ds+1(w) = 0, cf.
Lemma 23 b) ii.
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Definition 24 (Cancel). Let w be a path endpoint with degree ds(w)=1 and one inci-
dent F -edge {v, w}. If w already receives two coins in step s, then we cancel transfer (v, w),
i.e. we do not move coins over edge {v, w}.

Properties. The final set of transfers is given by Definition 10 (Transfer) and Defini-
tion 24 (Cancel). In Lemma 25 below we give bounds on the number of coins received by
a path endpoint after cancellation of transfers: in particular, we do not cancel transfers
in a manner that produces paths without incoming coins, see Lemma 25 b).

Lemma 25. a) Each path endpoint w receives at most two coins. An endpoint for which
an incoming transfer was canceled receives exactly two coins.
b) Assume that endpoint w belongs to path X. The number rcvw and rcvX of coins
received by w resp. by X are bounded from below by at least

RCVw = 1 resp.

RCVX = 2 .

Proof. a) is a direct consequence of Lemma 23 and Definition 24 (Cancel), since w
receives at most three coins, and if so then the third incoming transfer is canceled.

We prove b). Assume that w receives less than two coins. By a), no transfer into w
was canceled. In particular, the number of coins received by w does not depend on
Definition 24 (Cancel) but only on Definition 10 (Transfer). Therefore we may apply
Lemma 13, which shows that w receives at least rcvw ≥ RCVw = 1 coin.

Like w, the other endpoint of X receives at least one coin. Hence path X receives at
least rcvX ≥ RCVX = 2 coins.

Using Lemma 25, we compare coin payments before and after cancellation of transfers.
By Lemma 25 a) and b) each path endpoint w receives

1 ≤ rcvw ≤ 2

coins. These bounds are the exact same bounds as in case ∆ = 3, where we have 1 =
RCVw ≤ rcvw by Lemma 13 resp. rcvw ≤ 2 since w is incident with at most two F -edges
in the input graph.

Moreover, since canceling transfers does not increase the number of coins payed by a
component X, we also have the following similarities to case ∆ = 3. Lemma 12, which
gives an upper bound PAYX on the coin payment of component X, continues to hold.
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Consequently, the lower bounds (3) and (4), see the summary of Section 2.2.2, continue
to hold as well: the number of coins owned by component X is at least

rcvX − payX ≥ RCVX − PAYX .

3.2.2 Donations

Example. In Example 22, recall that after canceling transfers singleton Z pays
only payZ = 2 coins. We are now prepared to move further funds to Y . How? The F -edge
connecting node z with the M -neighbor of the node selected to create Y is a donation
edge. In this donation we move an amount of funds to Y which allows both Y and Z to
be balanced.

For clarity, we refer to funds moved along donations as bills instead of coins—however,
each coin and bill has equal value κ.

Recall that Y pays payY = 2(∆− 4) + 2 coins to the 1
2 -paths Xi and to itself. If Z

compensates the payY coins payed by Y by donating

rcvY = payY

many bills to Y , then Y effectively pays nothing. But Y pays no bills itself and
receives rcvY =4 coins, hence Y is balanced with balance balY = rcvY + rcvY − payY −
payY = 4 + payY − payY − 0 = 4 > BALY , cf. bound (6 Path). Also, singleton Z

pays payZ = 2 coins to the endpoints of Y and donates payZ = payY = 2(∆− 3) bills,
thus Z is balanced with balance balZ = rcvZ+rcvZ−payZ−payZ = 0+0−2−2(∆−3) =
−2(∆− 2) = BALZ .

This stage completes our charging scheme, since all paths Xi are already balanced
after canceling transfers.

Towards the Definition. Intuitively, a path X does not depend on a donation if the
nodes of X save sufficiently many coins. In particular, path X does not need a donation
if the nodes matched in the creation step of X, call them u and v, pay pay{u,v} = 0 coins,
as we show in Section 3.2.4. If, however, nodes u and v do pay coins, i.e. if pay{u,v} > 0
holds, then these payments are compensated by a donation in which we move

rcv{u,v} ≥ pay{u,v} > 0
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bills to X, cf. Lemma 27 c) below. Thus, essentially, nodes u and v pay no coins at all
and again X turns out to be balanced.

So assume that pay{u,v} > 0 holds and that a coin is payed to endpoint w along
transfer (x,w) for x ∈ {u, v}. In the step after creation of X, say in step t+1, endpoint w
has degree at most dt+1(w) ≤ 1 by Definition 10 (Transfer).18

Our “trigger” to initiate a donation to X is the existence of an endpoint w with degree
exactly dt+1(w) = 1 after creation of X (we call w a degree-1 endpoint), see Figure 10.
Why? If a degree-1 endpoint exists after creation of X, then 1-2-Greedy selects a
node u′ of degree dt+1(u′) = 1 next, which is an optimal step by Proposition 1.19 (We
briefly note that pay{u,v} > 0 might hold even though there does not exist a degree-1
endpoint after creation of X. We characterize these cases in Lemma 33, towards the end
of our proof. In such a case we do not depend on the use of a donation: we show that
path X is balanced in Lemma 34.)

u v. . . . . .X

w

u′ v′. . . . . .Y

Figure 10: When to initiate a donation (not all edges are drawn,
the dashed endpoint w has degree exactly dt+1(w) = 1 after u
and v become matched)

We initiate a donation from node u′ to X only if u′ belongs to a component Y 6=X
other than X.20 Along which edge does the donation move funds to X? Since we
have X 6= Y , an F -edge incident with u′ is removed in the creation step t of X when
the degree of u′ drops from at least dt(u′) ≥ dt(u) ≥ 2 down to dt+1(u′) = 1. Moreover,
an F -edge incident with node v is removed in step t. Why? If u is selected with
degree dt(u) = 2 then no F -edge is incident with u in step t, and if dt(u) ≥ 3 holds then

18E.g. in Example 22 endpoints y, y′, x1, . . . , x∆−4 have degree one after creation of path Y .
19E.g. node z in our example has degree one after creation of path Y .
20If u′ belongs to X, then we show alter that the optimality of step t + 1 helps X in saving funds and

being balanced even without an incoming donation.
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an F -edge incident with each of u and v must be removed in order for the degree of u′ to
drop down to dt+1(u′) = 1. Hence, for the donation we choose edge

{u′, v} ∈ F .

We are now ready to present the definition of donations.

Definition 26 (Donation). Let X be a path created in step t when 1-2-Greedy selects
node u with degree dt(u), where dt(u) ≥ 2 holds, and matches u with v. Assume
that pay{u,v} > 0 holds and that a degree-1 endpoint exists after creation of X. Let
nodes u′ and v′ of component Y 6= X be matched in step t + 1, when 1-2-Greedy
selects u′ with degree dt+1(u′)=1.

• If dt(u) = 2 holds, then the F -edge {u′, v} is called a static donation and moves ∆−3
many bills to v.
• If dt(u) ≥ 3 holds, then the F -edge {u′, v} is called a dynamic donation and
moves pay{u,v} many bills to v.

We denote a donation edge {u′, v} as ((u′, v)) to indicate its direction and the fact that it
pays several bills (instead of only one coin, as for a transfer).

Our intention that ((u′, v)) compensates for coins payed v and u, i.e. that payu′ =
rcvv ≥ pay{u,v} holds, is verified as part of the next result, cf. Lemma 27 c). A crucial
fact is that the total “debts” of source node u′ and its M -neighbor v′ cannot become
arbitrarily large. In the subsequent section we show that pay{u′,v′}+ pay{u′,v′} ≤ 2(∆−2)
holds: intuitively, we generalize the bound pay{u′,v′} ≤ 2(∆− 2) on coin payments due
to Lemma 12 b), cf. Lemma 29 below. We prepare with a discussion of basic properties
of donations.

Properties. Observe that an edge cannot be both a transfer and a donation, since a
transfer connects an M -matched node with a path endpoint, whereas a donation connects
two M -matched nodes. Moreover, donations move funds in the same “direction” as
transfers, namely only to paths but never to singletons.

The following properties of a donation are crucial. As we show in Lemma 27 a) below,
each node pays coins or bills but not both. Furthermore, in Lemma 27 b) and c) we show
that, as claimed above, a donation is sufficient to compensate for the entire amount of
funds payed by nodes u and v. Also, both u and v pay only coins but no bills.

Lemma 27. Let x be an M -matched node.
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a) Node x does not pay transfers and donations at the same time, i.e. we have

payx > 0⇒ payx = 0 as well as

payx > 0⇒ payx = 0 .

Let nodes u and v be matched to create path X, when 1-2-Greedy selects node u.

b) Nodes u and v do not pay a donation, i.e. they pay pay{u,v} = 0 bills.
c) If u and v pay pay{u,v} > 0 coins and v receives a donation, then the number of

bills moved to v is at least
rcvv ≥ pay{u,v} .

Proof. We prove a). Assume that x pays a donation. It suffices to show that x does not
pay transfers. By Definition 26 (Donation), the 1-2-Greedy algorithm selects node x in
a step t+ 1 when x has degree dt+1(x) = 1. In particular, no F -edge is incident with x
in step t+ 1. Hence x pays no transfers by Definition 10 (Transfer).

We prove b). By Definition 26 (Donation), the 1-2-Greedy algorithm selects the
source node of a donation when this node has degree one. However, the nodes u and v
have degree at least two in the step when X is created. Therefore neither u nor v pays a
donation, i.e. we have pay{u,v} = 0.

We prove c). Denote the donation to v by ((u′, v)). We distinguish cases based on
whether ((u′, v)) is a static or a dynamic donation. Assume that X is created in step t.

If u has degree dt(u) ≥ 3 in the creation step of X, then by Definition 26 (Donation)
the dynamic donation ((u′, v)) moves exactly pay{u,v} many bills to v, i.e. we have rcvv ≥
pay{u,v}.

If u has degree dt(u) = 2 in the creation step of X, then by Definition 26 (Donation)
the static donation ((u′, v)) moves exactly ∆− 3 bills to v. We have to show that rcvv =

∆− 3
!
≥ pay{u,v} holds.

Since dt(u) = 2 holds, no F -edges are incident with u in step t. Therefore u

pays payu = 0 coins by Lemma 17 a) and b). But the F -edge {u′, v} of donation ((u′, v)) is
not a transfer. Consequently, node v saves a coin. In particular, we have payv ≤ PAYv−1,
where PAYv = ∆ − 2 is an upper bound on the number of coins payed by v, see
Lemma 12 b). Therefore nodes u and v pay at most pay{u,v} = payu+payv ≤ PAYv−1 =
∆− 3 coins.

64



3.2 Maximum Degree ∆ ≥ 4

3.2.3 Debts of an M-Edge

We continue our discussion of paths. We have already studied in Lemma 27 the payments
of the M -edge picked to create a path. Now we turn to analyze the payments of the
remaining M -edges. We start by providing some useful notation.

Definition 28. Let x be an M -matched node in M -edge {x, x′} in component X. Let χ ∈{
x, {x, x′}, X

}
be a node, an M -edge, or a component. We denote the number of coins

and bills payed by χ as

payχ = payχ + payχ .

By PAYχ we denote an upper bound on payχ, i.e. we have payχ ≤ PAYχ.

Lemma 29. Consider an M -edge {x, x′}. The number pay{x,x′} of coins and bills payed
by {x, x′} is bounded by at most

PAY{x,x′} = 2(∆− 2) .

Before the proof we emphasize that Lemma 29 applies to each M -edge, in particular to a
singleton: an immediate consequence is that balance bound (5 Singleton) holds, as we
show next. Thus after proving Lemma 29 it remains to verify balance bound (6 Path).

Corollary 30. If Lemma 29 holds, then a singleton X pays at most payX ≤ 2(∆− 2)
coins and bills. In particular, the balance bound (5 Singleton) holds.

Proof. Since a singleton X receives rcvX = 0 coins and bills (recall that transfers as well
as donations move funds only to paths), we have balX = rcvX−payX ≥ −PAYX

Lemma 29=
−2(∆− 2) (5 Singleton)= BALX .

Now consider an M -edge {x, x′} of a path. Lemma 29 generalizes Lemma 12 b),
which states that edge {x, x′} pays at most pay{x,x′} ≤ PAY{x,x′} = 2(∆− 2) coins, in
the following two ways. First, Lemma 29 additionally includes bills in the same bound.
Secondly, by Lemma 12 b) each of nodes x and x′ pays at most ∆ − 2 coins, whereas
Lemma 29 does not imply that the maximum share of funds payed by x resp. x′ is equal,
i.e. one of both nodes might pay all funds while the other pays nothing.

Proof of Lemma 29. Throughout the rest of this section we prove Lemma 29. We
distinguish two cases based on whether a node in edge {x, x′} pays a donation. If no
donation must be payed, then by means of previous results the argument reduces to the
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analysis of a singleton. Otherwise we have to investigate coin payments of both M -edges
involved in a donation.

Case 1: Paying no Donation. First, assume that nodes x and x′ do not pay a
donation, i.e. that pay{x,x′} = 0 holds. We have to show that

pay{x,x′} = pay{x,x′} ≤ 2(∆− 2)

holds. If edge {x, x′} belongs to a path, then by Lemma 12 b) we have pay{x,x′} ≤
PAY{x,x′} = 2(∆−2) and are done.

So assume that {x, x′} is the M -edge of a singleton, call it X. Recall that X pays at
most pay{x,x′} ≤ PAY{x,x′} = 2(∆− 1) coins by Lemma 12 a). It suffices to show that X
saves two coins, since then pay{x,x′} ≤ PAY{x,x′} − 2 = 2(∆− 2) holds, as desired.

Assume that singleton X saves at most one coin. We show a contradiction, which
we prepare with the following two facts. First, by assumption, nodes x and x′ pay at
least pay{x,x′} ≥ PAY{x,x′}− 1 = 2(∆− 1)− 1 coins. In particular, we have pay{x,x′} ≥ 1,
i.e. a transfer leaves one of x and x′. Secondly, when 1-2-Greedy creates singleton X,
say in step t, both x and x′ have degree at least ∆− 1. Why? Since otherwise one of x
and x′ has degree at most ∆ − 2 and by Lemma 17 a) and b) saves two coins, which
would contradict our assumption.

In the creation step t of X, consider an endpoint w receiving a transfer from x

or x′. Since both x and x′ have degree at least ∆ − 1 ≥ 3, endpoint w has degree at
least dt(w) ≥ 3 as well. Moreover, endpoint w has degree at least dt+1(w) ≥ 1 after
creation of X, since at most two edges incident with w are removed during step t. But w
also has degree at most dt+1(w) ≤ 1 in step t+ 1, since it receives a transfer from x or x′.
(Since the degree of w drops by two, an F -edge incident with each of x and x′ is removed.
Therefore w even receives a transfer from each of x and x′, see Figure 11.) So dt+1(w) = 1
holds. Since w never becomes matched, another node y of degree dt+1(y) = 1 is selected
in step t + 1. Since y had degree at least dt(y) ≥ 3 in the creation step of X as well,
two edges {x, y} and {x′, y} connecting x and x′ with y are removed in the creation step
of X. Both {x, y} and {x′, y} are not transfers, since nodes x, x′, and y are M -matched.
Consequently, each of x and x′ saves a coin by Lemma 17 c), a contradiction.
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x

x′

w y. . .

Figure 11: A singleton saves two coins (not all edges are drawn,
the “third” edge incident with w does not have to be an M∗-edge)

Case 2: Paying a Donation. Here, we do not distinguish if the component of
edge {x, x′} is a path or a singleton and conduct a unified analysis. For convenience, we
use the naming conventions introduced in Section 3.2.2, i.e. we let

{x, x′} = {u′, v′}

and assume that node u′ in component Y pays a donation ((u′, v)) to node v in path X,
cf. Figure 12. In order to prove Lemma 29, we have to show that nodes u′ and v′ pay at
most

pay{u′,v′} ≤ 2(∆− 2) (11)

coins and bills.

u v. . . . . .X

. . . . . .

u′ v′. . . . . .Y

. . .

Figure 12: Debts of an M -edge {u′, v′} (not all edges are drawn)

67



3 PERFORMANCE GUARANTEES FOR 1-2-GREEDY

We reformulate (11). Observe that node u′ pays only bills while neighbor v′ pays
only coins, i.e. that

pay{u′,v′} = payu′ + payv′

holds. Why? First, node u′ donates payu′ > 0 bills along ((u′, v)), hence node u′

pays payu′ = 0 coins by Lemma 27 a). Secondly, node v′ does not pay a donation by
Definition 26 (Donation), hence we have payv′ = 0.

Moreover, by Lemma 27 c) the payu′ = rcvv donated bills compensate for the pay{u,v}
coins payed by nodes u and v, i.e. we have pay{u,v} ≤ payu′ . Consequently we have

pay{u,v} + payv′ ≤ payu′ + payv′︸ ︷︷ ︸
= pay{u′,v′}

(11)
≤ 2(∆− 2) ,

where (11) is to be shown. The proof of (11) proceeds in two phases.

Phase 1: We ignore the middle term pay{u′,v′} and show pay{u,v} + payv′ ≤ 2(∆− 2).

This is a direct consequence of Lemma 31 below, which states a more general fact:
Lemma 31 does not require that v receives a donation from u′ or even that u′

belongs to another component than v. Instead, we merely assume that a degree-1
endpoint exists after creation of the path X of u and v, which is a “trigger” to
initiate a donation, cf. Definition 26.

The proof of Lemma 31 uses Lemma 312 and Lemma 313 analyzing cases dt(u)=2
resp. dt(u)≥3.

Phase 2: Assume that the inequality of the first phase holds. We show that replac-
ing pay{u,v} with payu′ does not violate the 2(∆− 2)-bound.

We carry out the second phase now.

Dynamic Donation. Recall that u′ donates payu′ bills to v. If ((u′, v)) is a dynamic
donation, then by Definition 26 we have payu′ = pay{u,v} and (11) follows.

Static Donation. So assume that ((u′, v)) is a static donation. By Definition 26,
the 1-2-Greedy algorithm selects node u with degree dt(u) = 2. We apply
Lemma 312 b) and obtain that pay{u,v} + payv′ ≤ (∆ − 3) + payv′ ≤ 2(∆ − 2)
holds. Since we move ∆− 3 = payu′ coins along ((u′, v)) by Definition 26, we may
replace (∆− 3) with payu′ and (11) follows.
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Lemma 31. Assume that in step t the 1-2-Greedy algorithm creates path X when
selecting node u and picking edge {u, v}. Furthermore, assume that a degree-1 endpoint
exists in step t+ 1, when 1-2-Greedy selects node u′ and picks edge {u′, v′}. We have

pay{u,v} + payv′ ≤ 2(∆− 2) .

In the proof we distinguish if 1-2-Greedy selects node u with degree dt(u) = 2 or with
degree dt(u) ≥ 3, see Lemma 312 resp. Lemma 313.

Lemma 312. Consider Lemma 31 and assume that 1-2-Greedy picks edge {u, v}
when u has degree dt(u) = 2. If edge {u′, v′} belongs to

a) path X then we have

pay{u,v} ≤ ∆− 2 and

payv′ ≤ ∆− 2 .

b) component Y 6= X then we have

pay{u,v} ≤ ∆− 3 and

payv′ ≤ ∆− 1 .

Proof. To prepare the proof, consider the creation step t of path X. Observe that u is
not incident with an F -edge, since u is incident with an M -edge and an M∗-edge and
has degree dt(u) = 2. Therefore node u pays payu = 0 coins by Lemma 17 a) and b).
Hence pay{u,v} = payv holds and it suffices to bound payv .

We prove a). Both v and v′ belong to path X, hence the number of coins payed by
node ν ∈ {v, v′} is at most payν ≤ PAYν = ∆−2 by Lemma 12 b). We obtain pay{u,v} =
payv ≤ ∆− 2 as well as payv′ ≤ ∆− 2.

We prove b). Edge ((u′, v)) is not a transfer, since both u′ and v are M -matched nodes.
Consequently, node v saves a coin by Lemma 17 c). Hence we obtain that v pays at
most payv ≤ PAYv − 1 ≤ ∆− 3 coins, cf. Lemma 12 b). Therefore we have pay{u,v} =
payv ≤ ∆− 3.

Now consider node v′ and recall that the M -edge incident with v′ is not a transfer as
well. By the degree constraint we get payv′ ≤ ∆− 1.

Observe that the proof of Lemma 312 could be established by analyzing each of
nodes u, v, and v′ individually. However, in case 1-2-Greedy selects node u with
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degree dt(u) ≥ 3, the analysis has to be more complex. Why? Since 1-2-Greedy picks
an arbitrary edge, we have less control over which transfers are incident with the three
nodes. In particular, bounds on pay{u,v} and on payv′ have to be chosen “dynamically”
depending on each other. We control dependencies by investigating endpoints neighboring
the three nodes (in the input graph). For convenience, we categorize these endpoints
using the following notation.

Definition 32 (Types of Endpoints). Consider the creation step t of path X, when
1-2-Greedy selects node u with degree dt(u) ≥ 3 and matches u with v. We denote by
(see Figure 13 for examples)

• W the set of path endpoints w with degree at least dt(w) ≥ dt(u) ≥ 3 in step t,
• W ⊆ W the set of W-endpoints neighboring u or v in step t,
• Wδ = {w ∈W : dt+1(w) = δ} the set of W-endpoints with degree δ in step t+ 1,
• W≥3 = W \ (W1 ∪W2) the set of W-endpoints with degree at least 3 in step t+ 1,
• W f

1 = {w ∈ W1 : |{ {w, u}, {w, v} } ∩ F | = f } the set of degree-1 endpoints in
step t+ 1 being connected (in G) with u or v by f ∈ {1, 2} edges in F , and
• E(W ) = { {x, y} ∈ E : x ∈ {u, v}, y ∈W } the set of all edges connecting nodes u
and v with all W-endpoints.

Note that W≥3, W2, and W1 form a partition of W and that W 2
1 and W 1

1 form a partition
of W1, i.e. sets W \W,W≥3,W2,W

2
1 , and W 1

1 are pairwise disjoint.

u v

W 1
1

. . .

W 2
1

W2 W2 W2

W≥3 W≥3 W≥3

. . . . . . . . .

Figure 13: Examples for types of endpoints (an endpoint is labeled
with the set it belongs to, endpoints in W \W are not drawn)
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Lemma 313. Consider Lemma 31 and assume that 1-2-Greedy picks edge {u, v}
when u has degree dt(u) ≥ 3. We have

pay{u,v} = 2|W 2
1 |+ |W 1

1 | and (a)

payv′ ≤ |W 1
1 |+ |W2| (b)

as well as

2|W 2
1 |+ 2|W 1

1 |+ |W2| ≤ |E(W )| (c)

≤ 2(∆− 2) . (d)

Proof. We prove (a), where we show that nodes u and v pay pay{u,v} = 2|W 2
1 |+ |W 1

1 |
coins. To count the number of coins payed by u and v, we first study which endpoints do
not receive a transfer from u or v.

7 An endpoint w ∈ (W \W ) ∪W≥3 has degree dt+1(w) ≥ 3 in step t+ 1 and hence
does not receive a transfer from u or v. Why? For w ∈W≥3 this follows directly
from Definition 32, for w ∈ W \W observe that w is not adjacent to u or v and
consequently the degree of w does not drop in step t.

7 Also, an endpoint w ∈ W2 receives no transfer from u or v, since its degree
is dt+1(w) = 2 in step t+ 1.

3 Hence only an endpoint w ∈W1 might receive a transfer from u or v, since its degree
is exactly dt+1(w) = 1 in step t+ 1. In the creation step t of X, either two F -edges
incident with w are removed, i.e. we have w ∈W 2

1 , or one incident F -edge and an
incidentM∗-edge is removed, i.e. we have w ∈W 1

1 . Since all these removed F -edges
are transfers, we get that nodes u and v pay exactly pay{u,v} = 2|W 2

1 |+ |W 1
1 | coins.

To show (b), we have to prove that node v′ pays at most payv′ ≤ |W 1
1 |+ |W2| coins.

We proceed similar to (a), i.e. we study which endpoints do not receive a transfer from v′.

7 An endpoint w ∈ (W \ W ) ∪ W≥3 does not receive a transfer from v′. Why?
Endpoint w has degree at least dt+1(w) ≥ 3 in step t+ 1. Hence when v′ becomes
matched, namely when 1-2-Greedy selects node u′ with degree dt+1(u′) = 1, the
degree of w drops by at most one and thus to at least dt+2(w) ≥ 2 (but degree at
most one would be required in order to receive a transfer from v′).
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7 Next, we study endpoints in W 2
1 . Here, Definition 24 (Cancel) comes into play. An

endpoint w ∈W 2
1 does not receive a transfer from v′, since w already receives two

transfers from u and v, namely over the f = 2 many F -edges removed in step t:
any additional transfer (v′, w) is canceled.

3 Hence v′ might pay a transfer only to endpoints in W 1
1 and W2, and (b) follows.

(We note that, in particular, an endpoint w ∈ W 1
1 ∪W2 receives less than two

credits from u or v, i.e. further credits are not canceled, and we have dt+1(w) ≤ 2,
i.e. the degree of w might drop to at most one when edge {v′, w} is removed.)

We prove (c), i.e. that 2(|W 1
1 |+ |W 2

1 |)+ |W2| ≤ |E(W )| holds.21 For each endpoint w ∈
W 1

1 ∪W 2
1 , recall that two edges connecting w with u and v are removed when in the

creation step t of path X the degree of w drops from at least dt(w) ≥ dt(u) ≥ 3
to dt+1(w) = 1. These two edges belong to E(W ). Moreover, each endpoint w ∈W2 is
connected with u or v by at least one edge in E(W ), since otherwise the degree of w
would not drop to 2 during step t.

We prove (d), i.e. that |E(W )| is bound from above by 2(∆− 2). To see this, observe
first that in the creation step of X two edges incident with the selected node u do not
connect u with an endpoint: edge {u, v} is an M -edge and edge {u, u′} is removed when
in the creation step t of X the degree of u′ drops from at least dt(u′) ≥ dt(u) ≥ 3
to dt+1(u′) = 1. Consequently, at most ∆ − 2 edges connect u with an endpoint.
Analogously, edges {v, u} and {v, u′} do not connect node v with an endpoint, i.e. at
most ∆− 2 edges connect v with an endpoint. The statement follows.

3.2.4 Amortization for Paths

Throughout this section we verify balance bound (6 Path), i.e. that the balance of a
path X is at least balX ≥ BALX = 2(∆− 1)−mX · 2(∆− 2).

As a consequence of Lemma 29, path X pays at most

PAYX = mX · 2(∆− 2)

coins and bills, since X has exactly mX edges in M . Also, the path endpoints of X
receive at least RCVX = 2 coins by Lemma 13. Thus X owns at least rcvX − payX ≥

21Note that pay{u,v} + payv′ ≤ |E(W )| does not trivially hold, since without further investigation we
can only make use of bounds pay{u,v} ≤ 2(∆−2) and payv′ ≤ ∆−1, whereas we have |E(W )| ≤ 2(∆−1).
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rcvX−payX ≥ RCVX−PAYX = 2−mX ·2(∆−2) coins and bills. To verify bound (6 Path)
we have to show that the balance of X is at least

BALX = 2(∆− 1)−mX · 2(∆− 2)

= RCVX − PAYX + 2(∆− 2) .

I.e. we have to show that in our charging scheme the balance of X is increased by at least

2(∆− 2)

above RCVX − PAYX .

The proof is organized in three parts as follows. Assume that in the creation step of X
the 1-2-Greedy algorithm selects node u and matches u with node v. We distinguish
if u and v pay no coins (part 1), if they do pay coins and v receives a donation (part 2),
or if they pay coins but do not receive a donation (part 3).

Part 1: Saving Coins. We show that—as we have claimed in Section 3.2.2—path X
is balanced if nodes u and v pay pay{u,v} = 0 coins. Recall that by Lemma 27 b) nodes u
and v pay pay{u,v} = 0 bills. We get pay{u,v} = 0 = PAY{u,v} − 2(∆ − 2), since both
nodes pay at most PAY{u,v} = 2(∆− 2) coins and bills in the first place, by Lemma 29.
Hence the “debts” of path X are at most payX =

∑
{x,x′} pay{x,x′} ≤ PAYX − 2(∆− 2),

where we sum over all M -edges {x, x′} of X. Consequently, the balance of X is at least

balX = rcvX − payX
≥ rcvX − payX
≥ RCVX − PAYX + 2(∆− 2)

= BALX

and we are done.

Part 2: Receiving Bills. Assume that nodes u and v pay pay{u,v} > 0 coins, and
that v receives a donation ((u′, v)). By Lemma 27 b) nodes u and v pay pay{u,v} = 0
bills, therefore we have pay{u,v} = pay{u,v}. By Lemma 27 c) in the donation we
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move rcvv ≥ pay{u,v} bills to X. Therefore the balance of X is at least (the sum is
over M -edges {x, x′} in X)

balX = rcvX − payX

=

 rcvX︸ ︷︷ ︸
≥ RCVX

+ rcvX︸ ︷︷ ︸
= rcvv

−
 pay{u,v}︸ ︷︷ ︸

= pay{u,v}

+
∑
{x,x′}6={u,v} pay{x,x′}︸ ︷︷ ︸
≤ (mX−1)·PAY{x,x′}


≥
(
RCVX + rcvv

)
−
(
pay{u,v} +

(
PAYX − 2(∆− 2)

))
= RCVX − PAYX + 2(∆− 2) +

(
rcvv − pay{u,v}

)
≥ BALX .

Part 3: No Compensation. Assume that nodes u and v pay pay{u,v} > 0 coins,
but that v does not receive a donation. Then, in particular, there does not exist a
degree-1 endpoint after creation of path X (recall that by Definition 26 the existence
of a degree-1 endpoint after creation is our “trigger” to initiate a donation). In the
next result we identify the exact “configuration” of endpoints neighboring u and v and
determine pay{u,v}, see i. to viii. of Lemma 33 b).

Lemma 33. Consider the creation step t of path X, where nodes u and v become matched
and 1-2-Greedy selects u with degree dt(u). Assume that u and v pay pay{u,v} > 0 coins
and let (x,w) for x ∈ {u, v} be a transfer.

a) If dt(u)≥3 holds, then a degree-1 endpoint exists after creation of X.
b) If dt(u)=2 holds, then a degree-1 endpoint exists after creation of X, unless the

following holds (see Figure 14 for an illustration of this exception):
i. after creation of X endpoint w has degree dt+1(w) = 0,
ii. in the creation step of X endpoint w has degree dt(w) = 2,
iii. no transfer leaves u, i.e. we have payu = 0,
iv. transfer (x,w) leaves v, i.e. we have (x,w) = (v, w),
v. we have {u,w} ∈M∗,
vi. in the creation step of X all other endpoints w1, . . . , wk neighboring v (i.e. we

have w /∈ {w1, . . . , wk}) have degree at least dt(wi) ≥ 3,
vii. node v pays no other transfer besides (v, w), i.e. we have payv = 1, and
viii. we have pay{u,v} = 1.
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w u v

w1 wk

. . . . . .

. . .

. . .

Figure 14: No degree-1 endpoint exists after creation of path X
(endpoint w could be one of the wi)

Proof. By Definition 10 (Transfer), endpoint w has degree at most dt+1(w) ≤ 1 in the
step after creation of X. Observe that in the creation step of X endpoint w is not isolated,
since (x,w) is an incoming transfer and hence edge (x,w) is still incident with w.

a) If dt(u) ≥ 3 holds, then the degree of w drops from at least dt(w) ≥ 3 to at
least dt+1(w) ≥ 1, since at most two edges incident with w are removed. Since we also
have dt+1(w) ≤ 1 by definition of transfer (x,w), endpoint w has degree exactly dt+1(w)=1
after creation of X, i.e. endpoint w is a degree-1 endpoint.

b) Now assume that dt(u) = 2 holds. Since we have dt+1(w) ≤ 1 after creation of X,
to prove the statement it suffices to study the case that no degree-1 endpoint exists after
creation. In particular, endpoint w has degree dt+1(w) = 0 after creation. Observe that i.
holds. It remains to verify ii. to viii.

ii. Endpoint w has degree dt(w) = 2 in the creation step, since the degree is dt(w) ≥ 2
by Lemma 8 a) and if the degree was at least dt(w) ≥ 3 then it could not drop
to dt+1(w) = 0 after creation, as is fact by i.

iii. Since u has degree dt(u) = 2 in the creation step of X, node u is not incident with
an F -edge, as would be required in order to pay a transfer.

iv. Since transfer (x,w) does not leave u by iii., transfer (x,w) leaves v.

v. Since during the creation step of X the degree of w drops by two (from dt(w) ≥
dt(u) = 2 to dt+1(w) = 0), an edge connecting w with each of u and v is removed.
One of both edges must be the M∗-edge incident with w. Since transfer (x,w) =
(v, w) is an F -edge, we obtain {u,w} ∈M∗.

vi. Observe that for each endpoint wi we have dt+1(wi) ≥ 1 after creation of X, since
in the creation step of X we have d(wi)t ≥ dt(u) = 2 and wi is not connected
with u. Since we assumed that after creation of X no degree-1 endpoint exists
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and wi is not isolated, we obtain dt+1(wi) ≥ 2. But an edge incident with wi is
removed in the creation step of X. Hence we get dt(wi) ≥ 3.

vii. This follows from vi. Why? If each wi has degree at least three dt(wi) ≥ 3 creation
of X, then no wi receives a transfer from v, since the degree of each wi drops by
exactly one (recall that u is adjacent only to v and w). Consequently, endpoint w
receives the only transfer from v.

viii. By iii. and vii. we have pay{u,v} = payu + payv = 1.

Recall that by Lemma 27 b) nodes u and v pay no bills. Hence we have pay{u,v} =
pay{u,v} + pay{u,v} = 1. Moreover, by Lemma 29 the total payments of u and v are
bounded by at most PAY{u,v} = 2(∆−2), thus we have pay{u,v} = PAY{u,v}−2(∆−2)+1.
Consequently, paths X pays at most

payX = pay{u,v} +
∑

{x,x′}6={u,v}
pay{x,x′} ≤ PAYX − 2(∆− 2) + 1

coins and bills and the funds owned by X are at least

rcvX − payX ≥ rcvX − payX
≥ RCVX − PAYX + 2(∆− 2)− 1

= BALX − 1 .

I.e. we have failed the required balance for X by exactly one.

How do we show that the balance of X is actually increased by at least one? We
show that X receives at least rcvX ≥ RCVX + 1 coins, i.e. at least one coin more
than assumed above. Or we show that there is an M -edge {x, x′} 6= {u, v} of X
with pay{x,x′} ≤ PAY{x,x′} − 1, which reduces the payments of X by at least one and
thus to at most payX ≤ PAYX − 2(∆ − 2). Hence the following result completes the
proof of Theorem 21.

Lemma 34. Assume that 1-2-Greedy creates path X in step t when selecting node u
and picking edge {u, v}. If no degree-1 endpoint exists in step t+ 1, then

a) path X receives at least rcvX ≥ RCVX + 1 coins or
b) there is an M -edge {x, x′}6={u, v} of X which pays at most pay{x,x′} ≤ PAY{x,x′}−1

coins and bills.

Proof. To prepare the proof, observe that to show that rcvX ≥ RCVX +1 holds it suffices
to identify an endpoint of X which receives at least two coins, since by Lemma 13 the
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other endpoint of X receives an additional coin. We distinguish cases by the number mX

of M -edges of X.

Case 1: mX = 1. We show that an endpoint of X receives at least two coins. First,
we consider the creation step t of X and argue that in the subsequent step t+ 1 there is
an endpoint of X which is not isolated. Since after creation of X there does not exist
a degree-1 endpoint, by Lemma 33 b) the 1-2-Greedy algorithm selects node u with
degree dt(u) = 2 to create X, see Figure 15. Observe that the M∗-neighbor of v, call
it w, has degree at least dt(w) ≥ dt(u) = 2 as well. Since mX = 1 holds, node w must be
an endpoint of X, and since we have dt(u) = 2 endpoint w is not adjacent to u in step t.
Thus during step t the degree of w drops by at most one and to at least dt+1(w) ≥ 1.

u v w

Figure 15: Case 1: An endpoint w of X receives two coins (not all
edges are drawn)

Moreover, in step t + 1 all non-isolated path endpoints have degree at least two,
since there does not exist a degree-1 endpoint after creation. This holds in particular
for w. But since after creation of X endpoint w is incident with at least two F -edges,
endpoint w eventually receives at least two coins, namely over those two F -edges of w
which are removed last.

Case 2: mX ≥ 2. Recall that no degree-1 endpoint exists after creation of X, hence
by Lemma 33 b) (in particular by v.) an M∗-edge {u,w} connects u with an endpoint w
of X. Consequently, the creation step of X is also the first step for an endpoint of X,
namely endpoint w.

Consider the second step for an endpoint of X, i.e. the step s when for the second
time an M∗-edge incident with an endpoint of X is removed from the (reduced) graph.
Denote by x the selected node and by x′ the neighbor matched with x. Since mX ≥ 2
holds we have {u, v} 6= {x, x′}, cf. Figure 16. We distinguish the cases that x does not
pay a donation, or x pays a static or a dynamic donation.

Case 2.1: No Donation. Since x pays no donation, both nodes pay pay{x,x′} = 0
bills. Thus they pay only coins, i.e. we have

pay{x,x′} = pay{x,x′} .
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w u v . . .

{x, x′}

Figure 16: Case 2: The 1-2-Greedy algorithm picks edge {x, x′}
in the second step for an endpoint of X; which of x and x′ is
the M∗-neighbor of the endpoint of X drawn right depends on the
sub-case (not all edges are drawn)

We show that x and x′ pay at most pay{x,x′} ≤ PAY{x,x′}−1 coins. Assume the opposite,
i.e. that pay{x,x′} = PAY{x,x′} holds. We show a contradiction.

First, we argue that a degree-1 endpoint exists after edge {x, x′} is picked. By
Lemma 29, we have pay{x,x′} = PAY{x,x′} = 2(∆−2). Thus each of x and x′ pays payx =
payx′ = ∆− 2 coins, since each is incident with at most ∆− 2 edges of F . In particular,
each of x and x′ is incident with exactly ∆−2 transfer F -edges in step s, by Definition 10
(Transfer). Hence each of x and x′ has degree at least ∆ − 1 in step s, since it is also
incident with M -edge {x, x′}. In particular, the 1-2-Greedy algorithm selects x with
degree ds(x) ≥ ∆− 1 ≥ 3 (recall that we assume ∆ ≥ 4).

Note that pay{x,x′} = 2(∆ − 2) ≥ 1 holds and hence a transfer leaves x or x′, say
to endpoint w′. By Definition 10 (Transfer), after step s endpoint w′ has degree at
most ds+1(w′) ≤ 1. In particular, endpoint w′ has degree exactly ds+1(w′) = 1, since
during step s the degree of w′ drops by at most two from at least ds(w′) ≥ ds(x) ≥ 3.22

A degree-1 node other than w′ is selected in step s + 1, call it y. But node y had
degree at least ds(y) ≥ ds(x) ≥ 3 in step s as well, consequently edges {x, y} and {x′, y}
are removed from the graph during step s. Both {x, y} and {x′, y} are not transfers,
since x, x′, and y are M -matched. Now observe that at least one of {x, y} and {x′, y} is
an F -edge: at most one of both edges can be an M∗-edge, since otherwise two M∗-edges
would be incident with y. Say {x, y} is an F -edge. Since {x, y} is not a transfer, node x
saves a coin and we get pay{x,x′} ≤ PAY{x,x′} − 1, the desired contradiction.

Case 2.2: Static Donation. Now assume that x pays a static donation. Recall
that, by Definition 26 (Donation), in this static donation we move payx = ∆− 3 bills
away from X. By Lemma 27 a), node x pays payx = 0 coins. Furthermore, node x′

22Here we make use of ∆ ≥ 4. In particular, our analysis does not work for ∆ = 3, since in this case
we cannot rely on the existence of a degree-1 endpoint in step s + 1.
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pays payx′ = 0 bills, by definition of donations, and at most payx′ ≤ PAYx′ = ∆ − 2
coins, by Lemma 12 b). Therefore we get pay{x,x′} ≤ (∆− 3) + (∆− 2) = 2(∆− 2)− 1 =
PAY{x,x′} − 1.

Case 2.3: Dynamic Donation. Lastly, assume that x pays a dynamic donation ((x, v̄))

to node v̄. By Definition 26 (Donation), node v̄ belongs to a path X̄ 6= X for which a
degree-1 endpoint exists after creation. Moreover, when v̄ becomes matched, say in step t̄,
the 1-2-Greedy algorithm selects a node ū with degree dt̄(ū) ≥ 3 to create a path X̄,
and in step s = t̄ + 1 the 1-2-Greedy algorithm selects x with degree dt̄+1(x) = 1.
Therefore x is not incident its M∗-edge and the situation is as depicted in Figure 17.

w u v . . . x x′ w′

t̄+ 1

ū v̄. . . . . .
t̄

X

X̄

. . . . . .

. . .

Figure 17: Case 2.3: The 1-2-Greedy algorithm picks node x with
degree dt̄+1(x) = 1 and node x′ is the M∗-neighbor of an endpoint
of X (not all edges are drawn)

First, we bound the payments of nodes x and x′. Assume that in step t̄ node ū
becomes matched with v̄, and let sets W,W1,W

1
1 , W 2

1 ,W2, and W≥3 be sets of endpoints
neighboring ū and v̄ as defined in Definition 32. By Lemma 313, nodes ū and v̄

pay pay{ū,v̄} = 2|W 2
1 |+ |W 1

1 | coins and node x′ pays at most payx′ ≤ |W 1
1 |+ |W2| coins.

Now recall that along ((x, v̄)) we move exactly payx = pay{ū,v̄} bills to v̄. Hence x and x′

pay at most pay{x,x′} = payx + payx′ = pay{ū,v̄} + payx′ , since we have payx = 0 by
Lemma 27 a) and payx′ = 0 Definition 26 (Donation).

In particular, by Lemma 313 we have pay{x,x′} ≤ 2(∆−2) = PAY{x,x′}. If pay{x,x′} ≤
PAY{x,x′}−1 holds then we are done.
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So assume from here on that x and x′ pay pay{x,x′} = PAY{x,x′} = 2(∆ − 2) coins
and bills. Next, we identify the endpoints which receive a coin from x′. As a consequence
of Lemma 313 we obtain the following equality:

pay{x,x′} = pay{ū,v̄}+payx′ = 2|W 2
1 |+2|W 1

1 |+|W2| = |E(W )| = 2(∆−2) = PAY{x,x′} .

Since pay{ū,v̄} = 2|W 2
1 |+ |W 1

1 | holds, we get that x′ pays exactly

payx′ = |W 1
1 |+ |W2|

coins. But which endpoints receive coins from x′? We argue that each endpoint in W 1
1

andW2 receives exactly one transfer from x′. Therefore we first determine which endpoints
do not receive transfers from x′.

• Node x′ pays zero coin to an endpoint w(∈ W \W ) ∪W≥3.

Why? In step t̄+ 1 when 1-2-Greedy picks edge {x, x′} endpoint w has degree
at least dt̄+1(w) ≥ 3. Since w is not adjacent to x when x is selected with
degree dt̄+1(x) = 1, the degrees of w drops by at most one and to at least dt̄+2(w) ≥ 2.
Hence w does not receive a transfer from x′.

Therefore x′ might only pay coins to endpoints in W2 ∪W1.

• But node x′ also pays no coins to nodes in W 2
1 .

Why? Since in the step when 1-2-Greedy picks edge {x, x′} each endpoint in W 2
1

already receives two coins from nodes ū and v̄ and any further coin from x′ is
canceled by Definition 24.

Consequently, node x′ might pay coins only to nodes in W2 or W 1
1 .

Since setsW\W,W≥3,W2,W
2
1 , andW 1

1 are pairwise disjoint and since payx′ = |W 1
1 |+|W2|

holds, we obtain that x′ pays exactly one coin to each endpoint in W 1
1 as well as to each

endpoint in W2.

In the rest of the proof we proceed as follows. We show that either an endpoint of X
receives at least two coins, which proves rcvX ≥ RCVX + 1, or we show a contradiction
to our assumption that nodes x and x′ pay pay{x,x′} = PAY{x,x′} coins and bills, which
proves pay{x,x′} ≤ PAY{x,x′} − 1.
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We prepare the argument. Consider step t̄+ 1 when 1-2-Greedy picks edge {x, x′}.
Recall that x has degree dt̄+1(x) = 1 and observe that the M∗-edge of x is already
removed from the graph. Recall also that the M∗-edge

{x′, w′}

connecting x′ with a path endpoint w′ of X is removed in this step.

Consider again the path X̄ receiving the donation from x, and the nodes ū and v̄
matched to create X̄. We conduct a case analysis based on the type of endpoint w′,
i.e. if w′ belongs to set W \W,W≥3,W2,W

2
1 , or W 1

1 (recall that above we defined these
sets for nodes ū and v̄ matched to create path X̄). The 1-2-Greedy algorithm creates
path X̄ in step t̄ when nodes ū and v̄ have degree at least dt̄(ū) ≥ 3 resp. dt̄(v̄) ≥ 3.
Since x pays a donation to v̄, after creation of X̄ the degree of x is exactly dt̄+1(x) = 1.
Since dt̄(x) ≥ dt̄(ū) ≥ 3 holds in step t̄, two edges {ū, x} and {v̄, x} are removed from
the graph in the creation step of X̄.

w′ ∈ (W \W ) ∪W≥3 : We show that w′ receives at least two coins due to its large
degree after creation of path X̄.

In step t̄ the degree of w′ is at least dt̄(w′) ≥ dt̄(u) ≥ 3. If we have w′∈W\W ,
then w′ is not adjacent to ū or v̄ and hence no edges incident with w′ are re-
moved in the creation step of X̄. Thus the degree of w′ is at least dt̄+1(w′)≥3
after creation of X̄. If w′ ∈ W≥3 holds, then the degree of w′ is at
least dt̄+1(w′) ≥ 3 after creation of X̄ by Definition 32.

In step t̄+ 1, when 1-2-Greedy picks edge {x, x′}, the degree of endpoint w′

drops by at most one, since w′ is not adjacent with node x, which is selected
with degree dt̄+1(x) = 1.

Consider the step after edge {x, x′} is picked, i.e. step t̄+ 2. The degree of w′

is at least dt̄+2(w′) ≥ 2 and the M∗-edge of w′ is removed from the graph.
Hence w′ is incident with at least two F -edges. Now observe that w′ eventually
receives at least two coins, namely over the two F -edges which are removed
last from the graph. Consequently, path X receives at least rcvX ≥ RCVX+1
coins.

w′ ∈W 1
1 : We show a contradiction to our assumption that pay{x,x′} = pay{ū,v̄}+payx′ =

2(∆− 2) holds.
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Consider step t̄ when 1-2-Greedy creates path X̄. By definition of W 1
1

(cf. Definition 32), two edges incident with w′ are removed during step t̄,
since w′ has degree at least dt̄(w′) ≥ 3 before and degree exactly dt̄+1(w′) = 1
afterwards. Also by definition of W 1

1 , only one F -edge incident with w′ is
removed, hence the M∗-edge incident with w′ is removed as well. Since
the M∗-edge of w′ is removed in the creation step of X̄, endpoint w′ belongs
to X̄.

Thus w′ belongs to each of paths X and X̄. A contradiction, since X 6= X̄

holds by definition of ((x, v̄)).

w′ ∈W 2
1 : By definition of set W 2

1 , two F -edges e1 and e2 incident with w′ are removed
when path X̄ is created in step t̄ and after creation of X̄ the degree of w′

is exactly dt̄+1(w′) = 1. In particular, edges e1 and e2 are transfers to w′.
But since both edges are removed from the graph in the same step, both
transfers are never canceled by Definition 24. Hence w′ receives at least two
coins, and path X receives at least rcvX ≥ RCVX + 1 coins.

w′ ∈W2 : Recall that payx′ = |W 1
1 |+ |W2| holds and that node x′ pays a coin to each

endpoint in W 1
1 and to each endpoint in W2. By the assumption w′ ∈ W2,

node x′ pays a coin to w′, namely in transfer (x′, w′). Since only F -edges
can be transfers, we have {x′, w′} ∈ F . A contradiction, since {x′, w′} ∈M∗

holds.
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4 Performance Guarantees for KarpSipser

For KarpSipser on bipartite graphs we prove a stronger performance guarantee than
for 1-2-Greedy on general graphs, cf. Theorems 15 and 21.

Theorem 35. The KarpSipser algorithm achieves approximation ratio at least ∆
2∆−2

for each bipartite graph of degree at most ∆, for ∆ ≥ 3.

As in the analysis of 1-2-Greedy in the proof we study the graph H(KarpSipser)
whose connected components are paths and singletons (w.l.o.g. we may assume that
other component types do not exist, cf. Lemma 4 and Section 2.3). However, whereas
the graph H(1-2-Greedy) = (V,M ∪M∗) is defined on node set V , here the graph is
defined on set L ∪R of nodes in the left resp. right partition, i.e. we have

H(KarpSipser) = ( L ∪R , M ∪M∗ ) .

A fundamental difference to general graphs is that degrees drop by at most one in each
step, since a bipartite graph does not contain triangles.

Organization of the Proof. To verify Theorem 35, by Lemma 7 it suffices to show
that all paths and singletons have local approximation ratio at least ∆

2∆−2 . Therefore we
present sufficient balance bounds in Section 4.1, where we also outline similarities and
differences to the analysis of 1-2-Greedy. In Section 4.2 we sketch the proof for paths.
In Section 4.3 we present details of the proofs for paths and singletons.

4.1 Overview of Modifications

We proceed as in the proof for 1-2-Greedy and bound the number of coins and bills
owned by each component, i.e. we bound balances, cf. Definition 5. However, the minimum
balances required by (5 Singleton) and (6 Path) for 1-2-Greedy are insufficient to obtain
the claimed ∆

2∆−2 -guarantee for KarpSipser, as follows from the ∆−1
2∆−3 -inapproximability

bound given in Theorem 64 in the second part of the thesis.

Modified Balance Bounds. For singletons we reuse bound (5 Singleton) as is: a
singleton X has to have balance at least balX ≥ BALX = −2(∆ − 2). However, we
slightly increase the required balance for a path X to

BALX = 2(∆− 1)− 2mX(∆− 2)︸ ︷︷ ︸
(6 Path)

+ 2 = 2∆− 2mX(∆− 2) . (6 PathKS)
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4 PERFORMANCE GUARANTEES FOR KARPSIPSER

Lemma 36. If bounds (5 Singleton) and (6 PathKS) hold for all singletons resp. paths,
then there is a coin and bill value κ such that all components are ∆

2∆−2 -balanced.

Proof. First, we bound local approximation ratios of singletons and paths parameterized
by κ. Then we choose κ such that both bounds are at least ∆

2∆−2 .
Using (5 Singleton) for a singleton X, i.e. that the balance of X is at least balX ≥

BALX = −2(∆− 2), the local approximation ratio of X is at least

1 + κ · BALX
1 ≥ 1− κ 2(∆− 2) .

By (6 PathKS) the balance of a path X is at least balX ≥ BALX = 2∆− 2mX · (∆− 2).
Hence the local approximation of X is at least

mX + κ · BALX
mX + 1 ≥ mX + κ (−2mX(∆− 2) + 2∆)

mX + 1

= mX · (1− κ 2(∆− 2)) + κ 2∆
mX + 1

= (mX + 1) · (1− κ 2(∆− 2))− (1− κ 2(∆− 2)) + κ 2∆
mX + 1

= 1− κ 2(∆− 2) + κ 2(2∆− 2)− 1
mX + 1 . (12)

We choose κ = 1
2(2∆−2) . Consequently, bound (12) can be rewritten as 1− κ 2(∆− 2).

Now observe that the bounds for both singletons and paths become

1− κ 2(∆− 2) = 2∆
2(2∆− 2) = ∆

2∆− 2 .

Modifications. The modified balance bounds cannot be verified without a revision
of the proof method applied for 1-2-Greedy. We proceed with a rough overview of
modifications.

Unified Case Analysis. Recall that by Proposition 2 both 1-2-Greedy and the
KarpSipser algorithm perform optimally if in the input graph any degree is bounded
by at most two. Therefore we restrict the proof to maximum degree ∆, for ∆ ≥ 3.

1-2-Greedy: Here we investigate the cases ∆ = 3 and ∆ ≥ 4 separately. For ∆ = 3
our analysis depends only on the use of transfers but not on donations.
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4.1 Overview of Modifications

KarpSipser: The proof for ∆ = 3 cannot be carried out using transfers only, as we
demonstrate in Example 37 below. Therefore we prove cases ∆ = 3 and ∆ ≥ 4
simultaneously, using both transfers and donations.

Example 37. Consider the graph depicted in Figure 18. All nodes have degree
at most ∆ = 3. The KarpSipser algorithm creates the 1

2 -path X in the first
step (when no degree-1 node exists). In the second step, KarpSipser creates
a singleton by selecting the bold degree-1 node. Similarly, KarpSipser creates
another 1

2 -path in step three and another singleton in step four. In the end,
KarpSipser creates three more singletons in steps five, six, and seven, each time
selecting a degree-1 node. A coin is moved along each indicated transfer.

2

4

6

Y

7

5

1

X

3

Figure 18: Transfers allow no tight approximation guarantee
for ∆ = 3 (KarpSipser picks edges in the order indicated by
numbers next toM -edges, where selected degree-1 nodes are drawn
bold)

To demonstrate that transfers are insufficient to prove approximation ratio at
least ∆

2∆−2 = 3
4 , ignore the two donations indicated by bills in the figure. We

argue that there does not exist a coin value κ such that all local approximation
ratios are at least 3

4 . Why? Path X receives three coins in total. To obtain local
approximation ratio at least 1+3κ

2 ≥ 3
4 for X, we have to choose κ ≥ 1

6 . On the
other hand, singleton Y pays two coins. To obtain local approximation ratio at
least 1−2κ

1 ≥ 3
4 for Y , we have to choose κ ≤ 1

8 . This contradicts κ ≥ 1
6 .

New Types of Donations. We develop a new system of donations, since Definition 26
cannot be applied to bipartite graphs. Why?

1-2-Greedy: Recall that a dynamic donation, cf. Definition 26, is initiated when a
node of degree at least three is selected in a path creation step and a degree-1
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endpoint exists in the subsequent step. In particular, the minimum degree drops
from at least three to one.

KarpSipser: In a bipartite graph, however, in each step degrees drop by at most
one since the graph does not contain triangles.

As for 1-2-Greedy, a source node of (one type of) a donation becomes matched
after creation of a path when it has degree one.

Example 38. In Figure 18, the 1
2 -path X receives a donation. In particular, in

this donation we move one bill. Therefore the local approximation ratio of X is
now 1+(3+1)κ

2 and a coin and bill value of κ = 1
8 is now sufficient for both X and

singleton Y to be 3
4 -balanced.

Compared with 1-2-Greedy, the most prominent difference of donations for
KarpSipser is the following. The maximum number of bills that we move in a
donation is smaller than for 1-2-Greedy, namely at most

∆− 2

instead of up to 2(∆− 2). However, in order to obtain sufficient funds, a path
might now receive up to two donations, which is not the case for 1-2-Greedy.

We formally define the new donation types in Definition 41 and thereafter give a
detailed comparison with 1-2-Greedy in Table 1.

No Transfer Cancellations. In the analysis of 1-2-Greedy we cancel certain trans-
fers as per Definition 24. For bipartite graphs, Definition 24 is not applicable. Why?

1-2-Greedy: A path endpoint w receives up to three transfers by Lemma 23. If w
receives three transfers, then by Definition 24 we cancel the “third” incoming
transfer, which is uniquely defined.

KarpSipser: On the other hand, the following result shows that for bipartite graphs
each path endpoint receives at most two transfers: there is no need to cancel a
third transfer. Hence, in the analysis of KarpSipser we use transfers exactly as
defined in Definition 10.

Lemma 39. In a bipartite graph, a path endpoint w receives 1 ≤ rcvw ≤ 2 coins.
A path X receives at least rcvX ≥ 2 coins.
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Proof. By Lemma 13 we have rcvw ≥ 1. As a direct consequence we get rcvX ≥ 2
and it remains to show that rcvw ≤ 2 holds. By Definition 10, an F -edge {v, w}
becomes a transfer to w when v becomes matched and the degree of w drops
below two. Initially, the degree of w is d1(w) ≥ 2 by Lemma 8 b) and it drops
by at most one in each step, since the graph is bipartite. Thus the degree of w
drops to below two in exactly two steps, namely when it drops to one and then
to zero.

4.2 Paths

To motivate the approach, we first determine an upper bound on the funds payed by a
path X, namely in (14) below. As for 1-2-Greedy, the following two facts hold. First,
path endpoints of X do not pay funds: a bound on the payments of X is implied from
a bound on the payments of an M -covered node x of X. Secondly, if node x pays a
donation then x becomes matched with degree one and consequently x does not pay a
transfer: node x pays coins or bills, but not both.

In particular, we have payx ≤ max{payx, payx }. Observe that payx ≤ PAYx = ∆−2
holds by Lemma 12 b). By Definition 41, at most one donation leaves x in which we
move at most payx ≤ PAYx = ∆− 2 bills. Consequently, each path node pays at most

PAYx = PAYx = PAYx = ∆− 2 (13)

coins or bills and we obtain the same upper bounds on edge payments and path payments
as for 1-2-Greedy, cf. Lemma 29, namely (denote the M -neighbor of x as x′)

PAY{x,x′} = 2(∆− 2) and

PAYX = mX · 2(∆− 2) . (14)

Using (14) we verify (6 PathKS), namely that balX = rcvX − payX ≥ BALX =
2∆−mX · 2(∆− 2) holds, as follows. We prove that “savings” and “revenues” of nodes
of X—which are not regarded in (14)—add up to at least

2∆ .

Therefore we identify two sets IL and IR of nodes such that savings and revenues of each
set add up to at least ∆. Since these nodes increase the “wealth” of path X, we call
nodes in IL and IR
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left increase nodes resp. right increase nodes

of X. To prove a total increase of at least 2∆ for both sets we show that IL ∩ IR = ∅
holds, see Lemma 49 in Section 4.3.

Sets IL and IR are subsets of gray resp. white nodes in Figure 19. (We do not formally
define both sets until Table 2 below, since the definition requires further preparation,
which is provided throughout the rest of Section 4.2.) PathX has odd length, hence a path
endpoint of X is contained in each of partitions L and R, call them wL resp. wR. Nodes
matched in the step for endpoint wR, cf. Section 2.1.1, are denoted as x′R and xL, where we
assume that {wR, xL} ∈M∗ holds. Nodes at the other end of X are defined analogously.
We denote the nodes matched by KarpSipser in the creation step of X as uL and uR,
where we assume uL ∈ L resp. uR ∈ R. (Note that we have {uL, uR} = {xL, x′R} if X is
created in the step for endpoint wR, that we have {uL, uR} = {x′L, xR} if X is created
in the step for wL, and that we have {uL, uR} = {xL, x′R} = {x′L, xR} if X is a 1

2 -path.)
Nodes vR and vL are M -matched neighbors of uL resp. uR (with vR 6= uR and vL 6= uL)
and each of vR and vL might belong to X, to another path, or to a singleton; the precise
definition of vR and vL is found after some more preparation in Definition 40.

In the rest of Section 4.2 we primarily focus on increase node in IL since the argument
for IR is symmetric.

wL xR x′L . . . uR uL . . . x′R xL wR

vL vR

ILIR

Figure 19: Naming convention for increase nodes (nodes vL and vR
are chosen as one of the indicated nodes)

4.2.1 New Types of Donations

As for 1-2-Greedy, in a donation we move bills to a node becoming matched in the
creation step of a path, e.g. node uL. Again, the basic idea is to move enough bills
in order to compensate for all coins payed by uL. Node vR plays a central role in the
argument.
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4.2 Paths

“vR /∈ X”: Either vR belongs to another component Y 6= X than uL. Then in a
donation from vR to uL we move payvR

= rcvuL
bills to X such that

rcvuL
≥ payuL

holds. We motivate, define, and discuss donations in the rest of this section.
In particular, the given “compensation inequality” is verified in Lemma 43.

“vR ∈ X”: Or vR is also a node of X. In this case we show that vR saves many coins
for X. We analyze this case later in Section 4.3.

Towards the Definition. First, we discuss crucial differences between the donation
types for 1-2-Greedy and KarpSipser. For 1-2-Greedy we initiate a donation only if
a node (matched to create a path Z) has to pay coins and for the following “trigger”, cf.
Definition 26:

we demand that in the step after creation of Z there exists a degree-1 path
endpoint.

For KarpSipser, the definition of a donation depends on this trigger as well, but not on
whether coins have to be payed, cf. Definition 41 below.

(We note that if uL pays coins, then the trigger occurs. Why? Recall that nodes uL
and uR have degree at least two in the creation step t of path X—this is a consequence of
Lemma 8 a). By definition of KarpSipser we have dt(w) ≥ 2 also for each endpoint w,
in particular for an endpoint w receiving a coin from uL. By Definition 10 (Transfer),
endpoint w has degree dt+1(w) ≤ 1 in the subsequent step. Now observe that degrees
drop by at most one in each step, since the graph is bipartite. Consequently, endpoint w
has degree exactly dt+1(w) = 1 after creation of X: a degree-1 endpoint exists.)

If the trigger occurs, then our plan is to initiate a donation to uL. The second crucial
difference is the definition of a donation source node. For 1-2-Greedy, such a node
becomes matched with degree one in the step following the creation of the receiving
path. This is also the case for KarpSipser, but only for the source node of the “first“
donation received by a path. The path might receive one additional donation, whose
source node might become matched even later, but also with degree one. After the
following definitions we argue in Lemma 42 that the given choice of node vR is valid, i.e.
that vR really exists.
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Definition 40 (The Node vR). Let X be a path created in step t when KarpSipser
matches node uL with degree dt(uL) ≥ 2. Assume that in step t+ 1 partition R contains
an endpoint w of degree dt+1(w) = 1.

Let R1 = {v ∈ R : dt+1(v) = 1, {uL, v} ∈ E} be the set of all degree-1 nodes in R in
step t+ 1. We choose vR as the node in R1 which becomes matched earliest. (Note that
KarpSipser does not necessarily select vR.)

Definition 41 (DonationKS). Let X be a path created in step t when KarpSipser
matches node uL with degree dt(uL) ≥ 2. Assume that in step t+ 1 partition R contains
an endpoint w of degree dt+1(w) = 1.

If node vR belongs to another component Y 6= X than uL, then edge {uL, vR} ∈ F is
called a donation and is denoted as ((vR, uL)). We move bills from vR to uL as follows.

• We move ∆− 3 bills and call ((vR, uL)) a small donation unless the following holds.
• When vR becomes matched, partition R contains exactly ∆ − 1 degree-1 nodes,
namely vR and ∆− 2 degree-1 path endpoints; in this case we move ∆− 2 coins
and call ((vR, uL)) a large donation.

The maximum number of bills payed by an M -matched node x is PAYx = ∆− 2.

To see that vR exists, recall that we demand that there is a degree-1 endpoint in R after
creation of X and apply the following result for s = t+ 1.

Lemma 42. Consider some step s and assume that R contains a degree-1 path endpoint w,
i.e. we have ds(w) = 1. Then R also contains an M -matched node v with ds(v) = 1.

Proof. Assume that in step s all degree-1 nodes in partition R are path endpoints, one
of which is w. Since path endpoints are never matched, an edge with a degree-1 node u
in partition L is picked next, say u becomes matched with u′. Observe that u′ is an M -
matched node in R and that all degrees in partition R, but that of u′, are not changed
when edge {u, u′} is picked. Hence the set of degree-1 endpoints in R and their degrees
remain unchanged. By repeating the argument we get that the degree of w is never
decreased to zero. A contradiction.

Similarities and Differences. In Table 1 we summarize similarities and differences
of donations used in the analysis of 1-2-Greedy resp. KarpSipser. We comment on
the rows of Table 1 in turn. Let ((y, x)) be an “old” or “new” donation.
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Table 1: Properties of a donation ((y, x)) to M -edge {x, x′} (dif-
ferences are marked gray, by t(z) we denote the step when the
algorithm matches node z)

Property 1-2-Greedy KarpSipser
1 {y, x} is a transfer no no
2 {y, x} ∈ F yes yes
3 A path is created in step t(x) yes yes
4 Node y becomes matched in step t(y) = t(x) + 1 t(y) > t(x)
5 Degree of y in step t(y) 1 1
6 Number payy of coins payed by y 0 0
7 Number payy = rcvx of bills moved to x ≤ 2(∆− 2) ≤ ∆− 2
8 Number of donations received per path ≤ 1 ≤ 2
9 Number of donations payed per M -edge ≤ 1 ≤ 2

10 Node y pays at most one donation yes yes
11 Node x receives at most one donation yes yes
12 Donated bills compensate payed coins rcv{x,x′}≥pay{x,x′} rcvx ≥payx

1. Both y and x are M -matched nodes, hence ((y, x)) is not a transfer.

2/3. Donation ((y, x)) is an F -edge and the destination node x becomes matched to
create a path X.

4. The source node y becomes matched later, namely in the subsequent step for
1-2-Greedy. For KarpSipser, the source node of at least one donation to X
(if any) also becomes matched in the step after creation; the source node of an
additional donation to X (if any) might become matched even later, cf. left
example in Figure 20.

5/6. For both algorithms node y becomes matched with degree one, therefore no
transfer leaves y and payy = 0 holds.

7. New donation types move smaller amounts of bills, namely at most ∆−2 instead
of up to 2(∆− 2).

8. However, for KarpSipser a path receives up to two donations instead of at
most one. Thus the maximum number of bills received per path is unchanged.

9. For KarpSipser, if source nodes of two donations to a path are matched in the
same step, then the according M -edge pays two donations, cf. right example in
Figure 20.
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10/11. In any case, each node pays and receives at most one donation.

12. For both algorithms, in a donation we move enough bills to compensate for
all coins payed by the “receiver”: for 1-2-Greedy the coins payed by the
receiving M -edge of x are compensated by Lemma 27 c), for KarpSipser the
coins payed by the receiving node x are compensated by the following result.

2 3

X

1

X ′

1

23 4

Figure 20: PathsX andX ′ receive two donations, where forX ′ both
donations come from the same M -edge (small numbers indicate
steps in which KarpSipser picks an edge, dashed endpoints have
degree one after creation of their respective paths)

Lemma 43. If node uL receives a donation ((vR, uL)), then rcvuL
≥ payuL

holds.

Proof. Since vR is an M -matched node, the F -edge {vR, uL} is not a transfer. Con-
sequently, node uL pays at most ∆ − 3 transfers and we get payuL

≤ ∆ − 3. Now
observe that in ((vR, uL)), whether ((vR, uL)) is a small or a large donation, we move at
least payvR

= rcvuL
≥ ∆− 3 bills to uL.

Revenues and Savings of uL. For the analysis of KarpSipser, we need fine-grained
control over revenues and savings of a path. Therefore we introduce the following
convenient notation for savings. Recall that an M -covered node x does not pay coins
and bills at the same time and that PAYX = PAYx = PAYx = ∆− 2 is an upper bound
on the number of coins resp. bills payed by x, cf. (13).

Definition 44. For an M -matched node x we denote by savx, savx , and savx the number
of coins, bills, resp. funds saved by x. In particular, we have

savx = PAYx = (∆− 2) if payx = payx = 0 ,

savx = savx = PAYx − payx = (∆− 2)− payx if payx > payx = 0 , and

savx = savx = PAYx − payx = (∆− 2)− payx if payx > payx = 0 .
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Lemma 45. If node uL pays payuL
> 0 coins and receives a donation, then revenues

and savings of uL are bounded by at least

rcvuL
+ savuL

≥ ∆− 2 .

Proof. By Lemma 43 and Definition 44 we get rcvuL
+savuL

≥ payuL
+savuL

= ∆−2.

In particular, since bound (14) on the payments of path X does not incorporate any
savings or revenues, we obtain that the balance of X is by at least ∆− 2 larger than (14).

4.2.2 Steps for Path Endpoints

Recall that our goal is to show that savings and revenues of left increase nodes add up to
at least ∆. By Lemma 45, it suffices to show additional revenues and savings of at least
two. Therefore we study endpoint wR as well as the nodes xL and x′R becoming matched
in the step for wR.

First, recall that by Lemma 39 endpoint wR receives either rcvwR
= 1 or rcvwR

= 2
coins. We refine Lemma 39 in the following result, where we precisely characterize the
conditions that wR receives one or two coins.

Lemma 46. Consider path X and assume that step s is the step for endpoint wR of X,
i.e. when nodes xL and x′R of X become matched. Endpoint wR receives rcvwR

= 2
coins if and only if wR has degree at least ds+1(wR) ≥ 2 in the subsequent step (when
the M∗-edge of wR is removed). Otherwise we have rcvwR

= 1.

Proof. We prepare the proof with general observations. By Lemma 8 b), endpoint wR has
degree at least d1(wR) ≥ 2 in the input graph G. Since G is bipartite, degrees drop by at
most one in each step. Hence there is a step s′ when wR has degree exactly ds′(wR) = 2.

By Definition 10 (Transfer), an edge is not a transfer to wR if it is removed before
step s′. Beginning with step s′, each F -edge removed from wR is a transfer to wR.

x′R xL wR. . .

Figure 21: Endpoint wR receives rcvwR
= 2 coins (not all edges

are drawn)

Assume that ds+1(wR) ≥ 2 holds after the step for wR. Since the M∗-edge {wR, xL}
is already removed from the graph, endpoint wR is incident with ds+1(wR) ≥ 2 many F -

93



4 PERFORMANCE GUARANTEES FOR KARPSIPSER

edges. In step s′ ≥ s endpoint wR is incident with exactly two F -edges, cf. Figure 21.
By the above considerations, both F -edges are transfers. Hence we get rcvwR

= 2.
Now assume that we have ds+1(wR) ≤ 1. The M -edge {wR, xL} is removed in step s,

and since degrees drop by at most one, it is the only edge removed from wR. Therefore
endpoint wR has at most two incident edges in step s, namely {wR, xL} and possibly
an F -edge. Therefore wR receives at most one transfer and we get rcvwR

≤ 1. Since wR
also receives at least one transfer by Lemma 13, we get rcvwR

= 1.

We are now ready to analyze revenues and savings of nodes wR, xL, and x′R involved
in the step for endpoint wR. In particular, in this section we focus on the case that
path X is created before the step for wR; the case that the creation step of X and the
step for wR are the same is analyzed in Section 4.3.

Observe that the next result applies whether or not x′R pays a donation. Node xL
does not pay a donation, since xL becomes matched when having an incident M -edge
and M∗-edge whereas a donation source node becomes matched with degree one.

Lemma 47. Assume that the step s for endpoint wR of path X happens after the creation
step of X. We have rcvwR

+ savxL
+ savx′R ≥ 2.

Proof. Recall that in the step for wR nodes xL and x′R become matched and that xL
does not pay a donation. We distinguish whether a donation leaves node x′R.

No Donation Leaves x′R. If wR receives rcvwR
= 2 coins, then we are done.

Otherwise wR receives exactly rcvwR
= 1 coin, by Lemma 46, which we assume from

here on. Recall that we have payxL
= payx′R = 0, since neither x′R nor xL pays a donation,

by assumption. We are done if one of xL and x′R saves at least one coin.
So assume that none saves a coin, i.e. that savxL

= savx′R = 0 holds. We show a
contradiction. Nodes xL and x′R pay

payxL
= PAYxL

− savxL
= ∆− 2 resp.

payx′R = PAYx′R
− savx′R = ∆− 2

coins, since the maximum number of coins payed by a path node x is PAYx = ∆− 2 by
Lemma 12 b). Consequently each of x′R and xL is incident with ∆ − 2 many F -edges
in step s, i.e. their degrees are at least ds(x′R) ≥ ∆ − 1 ≥ 2 resp. ds(xL) ≥ ∆ ≥ 3 in
the step for wR, see Figure 22. Hence, by definition of KarpSipser, all degrees in the
reduced graph Gs are at least 2.
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x′R xL wR

w1
R

w∆−2
R

. . . . . .

. . .

Figure 22: Both xL and x′R pay ∆ − 2 transfers, endpoint wR
receives one transfer (not all edges are drawn)

After x′R and xL are matched, i.e. in step s+ 1, the destination nodes of transfers
from xL, call them w1

R, . . . , w
∆−2
R , have degree exactly ds+1(w1

R) = · · · = ds+1(w∆−2
R ) = 1:

they have degree at least two in Gs and most one in step s+1 by Definition 10 (Transfer),
and their degrees are decreased by exactly one since the graph is bipartite. Also in
step s+ 1, endpoint wR has degree exactly ds+1(wR) = 1. Why? First, endpoint wR has
degree at least ds(wR) ≥ 2 in Gs, hence wR has degree at least ds+1(wR) ≥ 1 afterwards.
Secondly, to show that the degree is now exactly ds+1(wR) = 1, observe that ds+1(wR) ≥ 2
would imply—by Lemma 46—that wR receives rcvwR

= 2 coins, which contradicts our
assumption.

Consequently, in step s+ 1 all neighbors of xL but x′R, namely wR and w1
R, . . . , w

∆−2
R ,

are now degree-1 endpoints and they are the only degree-1 nodes in R. Thus R contains
no M -matched degree-1 node and we obtain a contradiction by Lemma 42.

A Donation ((x′R, yL)) Leaves x′R. No transfer leaves x′R and we have payx′R = 0,
since x′R becomes matched with degree one. If ((x′R, yL)) is a small donation and we
move ∆ − 3 bills, then x′R saves savx′R = 1 bill, by Definition 44. Since endpoint wR
receives at least rcvwR

≥ 1 coin by Lemma 46, we are done.
Now assume that ((x′R, yL)) is a large donation and we move ∆− 2 bills, i.e. that x′R

saves savx′R = 0 bills. We are done if wR receives rcvwR
= 2 coins. From here on we

assume that rcvwR
= 1 holds, which is the minimum number of coins by Lemma 46.

If xL saves savxL
= 1 coin, then we are done again. So assume that we have savxL

= 0,
i.e. that payxL

= PAYxL
= ∆− 2 transfers leave xL, say to endpoints w1

R, . . . , w
∆−2
R , see

Figure 23.
We show a contradiction. After x′R and xL become matched, i.e. in step s+ 1, each

endpoint wiR has degree at most ds+1(wiR) ≤ 1 by definition, and endpoint wR has degree
at most ds+1(wR) ≤ 1 due to Lemma 46, since we assumed that rcvwR

= 1 holds.
First, we claim that in step s+1 at least one of wR and the wiR is not isolated and has

degree exactly one. Why? Since ((x′R, yL)) is a large donation, in step s when x′R and xL
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x′R xL wR

w1
R

w∆−2
R

. . .

. . .

Figure 23: Node x′R pays a large donation, node xL pays ∆ − 2
transfers, endpoint wR receives one transfer (not all edges are
drawn)

become matched partition R contains exactly ∆− 2 degree-1 endpoints by Definition 41.
Since degrees drop by at most one in step s, at most ∆− 2 endpoints become isolated,
which holds in particular for wR and the wiR. Therefore at least one of wR and the wiR is
not isolated in step s+ 1 and consequently has degree exactly one.

Now observe that since ((x′R, yL)) is a large donation, in step s node x′R is the only
degree-1 node in R which is not an endpoint. Since x′R becomes matched in step s, in
step s+ 1 all degree-1 nodes in R are endpoints. This contradicts Lemma 42.

4.3 All Components are Balanced

To complete the proof of Theorem 35 we proceed as follows. First we formally define the
sets IL and IR of left resp. right increase nodes of a path. We may only add revenues
and savings of both sets, if one does not contain a node of the other: we show that both
sets are disjoint after the definition. Thereafter in Lemma 50 we complete the proof that
paths are balanced. Finally we show that singletons are balanced as well.

Definition 48 (Left Increase Nodes). Let X be a path created in step t. The set IL of
left increase nodes for X contains the following nodes, cf. Table 2.
• We have {uL, wR} ⊆ IL for node uL matched to create X and its “nearest” end-
point wR.
• If X is not created in the step for wR, then IL additionally contains the nodes x′R
and xL matched in the step for wR.
• If in step t+ 1 partition R contains an endpoint w with degree dt+1(w) = 1, then IL
additionally contains node vR (whether or not vR is a node of of X).

The set IR of right increase nodes is defined symmetrically, i.e. by swapping L and R.

Lemma 49. We have IL ∩ IR = ∅.

Proof. We discuss the left increase nodes wR, vR, x′R and uL, xL in turn and show for
each one: if it is contained in IL then it is not contained in IR.
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4.3 All Components are Balanced

Table 2: The set IL of left increase nodes for path X

Partition R contains a degree-1
endpoint after creation of X?

no yes

Path X cre-
ated in step for
endpoint wR?

yes
(
{uL, uR}={xL, x′R}

)
uL, wR uL, wR, vR

no
(
{uL, uR}6={xL, x′R}

)
uL, wR, xL, x

′
R uL, wR, xL, x

′
R, vR

Endpoint wR is not a right increase node, since wR 6= wL holds and all other nodes
in IR are M -matched whereas wR is not.

To show that vR is not a right increase node, we have to compare with all M -matched
nodes in IR ∩R, namely uR and xR: node vR becomes matched with degree one whereas
both uR and xR become matched when being incident with an M -edge and an M∗-edge.

Next, we show that x′R is not a right increase node. As for vR we only have to compare
with uR and xR. If {uL, uR} 6= {xL, x′R} holds, then observe that we have x′R 6= uR

as well as x′R 6= xR, since xR becomes matched in the step for endpoint wL 6= wR. If,
however, we have {uL, uR} = {xL, x′R}, then x′R is not a left increase node in the first
place.

To show that uL and xL are not right increase nodes, we have to compare with
nodes x′L and vL (all other nodes are not M -matched or belong to R). The result now
follows by applying the previous arguments for x′R and vR analogously to x′L and vL.

Completing the Proof. We are now ready to show that all paths and singletons are
balanced.

Lemma 50. Bound (6 PathKS) holds, i.e. a path X has balance at least

balX ≥ 2∆− PAYX = 2∆−mX2(∆− 2) = BALX .

In particular, revenues and savings of nodes in IL and IR add up to at least 2∆.

Proof. By (14), payments of X are bounded by at most PAYX = mX2(∆− 2) coins and
bills. Consequently, revenues and savings of at least 2∆ imply that balX ≥ BALX holds.

We show that revenues and savings of nodes in IL add up to at least ∆. The argument
for IR is symmetric. Since we have IL ∩ IR = ∅ by Lemma 49, total revenues and savings
add up to at least 2∆.
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4 PERFORMANCE GUARANTEES FOR KARPSIPSER

Assume that KarpSipser creates X in step t. We distinguish cases based on whether
partition R contains a degree-1 endpoint in step t+ 1.

No Degree-1 Endpoint. First, we argue that node uL ∈ IL, matched in step t,
pays payuL

= 0 coins. Why? No endpoint becomes isolated in step t, since in the reduced
graph Gt each endpoint w has degree at least dt(w) ≥ 2 (as have uL and uR) and in Gt+1

endpoint w has degree at least dt+1(w) ≥ 1 (since degrees drop by at most one). Since
we assume that no degree-1 endpoint exists in step t+ 1, each endpoint has degree at
least two. Hence by Definition 10 (Transfer), no transfer leaves uL.

Also, no donation leaves uL by definition, i.e. we have payuL
= 0. Consequently, by

Definition 44 the savings of uL are

savuL
= ∆− 2 .

Recall that in step t+ 1 all endpoints have degree at least two, in particular the end-
point wR of X. We distinguish whether step t is the step for wR, i.e. whether {uL, uR} =
{xL, x′R} holds. If so, then in step t+ 1 the M∗-edge {uL, wR} of wR is removed from the
graph and wR is incident with two F -edges. Therefore wR receives rcvwR

= 2 coins by
Lemma 46 and revenues and savings of IL-nodes sum up to savuL

+rcvwR
= ∆. Otherwise

the step for wR happens after creation of X and we have rcvwR
+ savxL

+ savx′R ≥ 2 by
Lemma 47: again, the total “increase” is savuL

+ rcvwR
+ savxL

+ savx′R ≥ ∆.

There is a Degree-1 Endpoint. Recall that in this case we have vR ∈ IL. We
distinguish the following four cases for node vR, which are restated below before their
respective analysis.

1.– 3. First, assume that X is created before the step for wR, i.e. that {uL, uR} 6=
{xL, xR} holds. We distinguish three cases for vR.

For cases 1. and 2. assume that vR is a node in X. We distinguish whether vR
becomes matched in the step for wR, i.e. if we have vR 6= x′R or vR = x′R.

Node vR has degree dt+1(vR) = 1 after creation of X and we have {uL, vR} ∈ E,
hence we get {vR, uL} ∈ M∗, since all other M -matched R-nodes of X have
degree at least two in step t+ 1.

In case 3. node vR belongs to a component Y 6= X.

4. Here we assume that {uL, uR} = {xL, x′R} holds.
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4.3 All Components are Balanced

In this case node vR belongs to a component Y 6= X. Why? First, observe
that there is only one M -matched node of X which could have degree one after
creation of X, namely the M∗-neighbor of x′R, which belongs to partition L.
However, node vR is defined to be the first degree-1 node becoming M -matched
after creation of X in partition R.

Observe that only in cases 3. and 4. node vR does not belong to X and we have to
consider vR paying a donation.

1. {uL, uR} 6= {xL, x′R}, vR belongs to X, vR 6= x′R. Node vR pays no transfer
or donation, since by definition vR has degree one when it becomes matched and since vR
belongs to the same path as uL. We get payvR

= payvR
= 0 and hence savvR

= ∆− 2.
By assumption, the step for endpoint wR happens after creation of X. Moreover, since
we have vR 6= x′R node vR does not become matched in the step for wR, see Figure 24.
Therefore we may sum savings of vR and revenues and savings of nodes x′R, xL, and wR,
which are at least rcvwR

+savxL
+savx′R ≥ 2 by Lemma 47. In total, savings and revenues

add up to at least ∆.

uR uL vR . . . x′R xL wR. . .

Figure 24: The path X in case 1 (not all edges are drawn)

2. {uL, uR} 6= {xL, x′R}, vR belongs to X, vR = x′R. Recall that {uL, vR} is
an M∗-edge of X, since vR is a neighbor of uL and belongs to X, cf. Figure 25. As in
the previous case, the savings of vR are savvR

= ∆− 2. So we are done with a total of ∆
if wR receives rcvwR

= 2 coins.
From here on, assume that wR receives rcvwR

= 1 coin, which is minimum by
Lemma 46. It suffices to show that uL or xL saves a coin, since then we have savvR

+
rcvwR

+ savuL
+ savxL

≥ ∆.

Assume that both uL and xL save savuL
= savxL

= 0 coins. Then both nodes
pay payuL

= payxL
= ∆− 2 coins, see Figure 25. We show a contradiction to Lemma 42.

Therefore we argue that, after vR and xL become matched, there is a degree-1 node in R
and all degree-1 nodes in R are path endpoints.

In step t+ 1, destination endpoints of transfers from uL have degree at most one, by
definition; moreover, these endpoint have degree exactly one in step t+1, since all degrees
are at least two in step t (when X is being created) and in a bipartite graph degrees drop
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uR uL vR xL wR
t t′

. . .

. . . . . .

Figure 25: The path X in case 2 (not all edges are drawn)

by at most one. We denote the step when vR becomes matched as step t′, for t′ ≥ t+ 1.
First, we argue that throughout steps t+ 1, . . . , t′ the set of degree-1 nodes in R does not
change. Why? Since vR has degree dt+1(vR) = · · · = dt′(vR) = 1 and vR is the first node
in R becoming matched after step t (by definition), in each of steps t+ 1, . . . , t′ − 1 a
degree-1 node in partition L becomes matched with an R-node of degree larger than one.

In steps t + 1 and t′ + 1, destination endpoints of transfers from uL resp. xL have
degree at most one, by definition. Node wR has degree at most dt′+1(wR) ≤ 1 after the
step for wR as well, by Lemma 46, since we have assumed that wR receives rcvwR

= 1
coin. Observe that the number of endpoints neighboring uL (in G) is ∆− 2, while xL
has ∆− 1 neighboring endpoints (in G), namely wR and the destination endpoints of
transfers from xL.

To obtain the desired contradiction, we study how many endpoints are neighbors
of both uL and xL. Recall that all endpoints neighboring uL and xL have degree at
least 2 in the creation step t of X, and that their degrees drop by at most one in each
of steps t and t′ (the set of degree-1 endpoints does not change in between these two
steps, as shown above). Consequently, after {vR, xL} is picked, i.e. in step t′+ 1, we have
the following. For at most ∆− 2 of the endpoints neighboring uL and xL the degree is
reduced to zero, since uL is incident with at most ∆− 2 endpoints. Therefore there is at
least one endpoint neighboring xL (in G) which still has degree exactly one. Moreover,
in step t′ + 1 all degree-1 nodes in partition R are endpoints, since both uL and xL have
a “maximum” number of neighboring endpoints (in G) and both uR and vR are now
matched. By Lemma 42 we obtain the desired contradiction.

3. {uL, uR} 6= {xL, x′R}, vR belongs to Y 6= X. We have rcvwR
+savxL

+savx′R ≥ 2
by Lemma 47, since X is not created in the step for wR. Therefore it remains to prove
additional savings and revenues of at least ∆− 2. If uL pays payuL

= 0 coins, then uL
saves savuL

= PAYuL
= ∆−2 coins and bills by Definition 44, since uL also pays payuL

= 0
bills by Definition 26 (Donation). So assume that uL pays payuL

> 0 coins. Then we
have rcvuL

+ savuL
≥ ∆ − 2 by Lemma 45. In both cases, revenues and savings of

nodes uL, x′R, xL, and wR sum up to at least ∆.
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4. {uL, uR} = {xL, x′R} (vR belongs to Y 6= X). Since both uL and vR are M -
matched, the F -edge {uL, vR} is not a transfer and uL saves at least savuL

≥ 1 coin. In
particular, we have savuL

≥ 1, since uL pays no donation by definition.
Recall that each endpoint has degree at least two in the creation step t of path X,

when uL becomes matched. Therefore a destination endpoint w of a transfer from uL

has degree exactly dt+1(w)=1 after creation of X, since degrees drop by at most one in
bipartite graphs, cf. Figure 26. Endpoint wR has degree dt+1(wR) = 1 if and only if wR
receives exactly rcvwR

= 1 coin, as a consequence of Lemma 46.

uR uL wR

vR

. . .

. . .

Figure 26: The path X in case 4, the gray transfer to wR is optional
(not all edges are drawn)

Consider the cases that wR receives rcvwR
= 2 coins or that uL saves savuL

≥ 2 coins.
In either case revenues and savings of wR and uL sum up to at least rcvwR

+ savuL
≥ 3,

since we have rcvwR
≥ 1 by Lemma 46 and savuL

≥ 1 as shown above. To push up
savings and revenues to at least ∆, we show that there is a small donation ((vR, uL)) in
which we move payvR

= rcvuL
= ∆− 3 bills to X. Therefore we have to argue that in

step t+ 1 there are at least one and at most ∆− 3 degree-1 endpoints in partition R,
cf. Definition 41. There is at least one degree-1 endpoint, by assumption. There are at
most ∆− 3 endpoints, for the following reasons. First, if we have rcvwR

= 2 then wR has
degree at least dt+1(wR) ≥ 2 by Lemma 46, i.e. neighbors uR, vR, and wR of uL are not
degree-1 endpoints. Secondly, if we have savuL

≥ 2 then at most ∆− 4 endpoints receive
a transfer from uL and have degree exactly one in step t+ 1: endpoint wR may also have
degree one without increasing the number of degree-1 endpoints too far.

Now consider the case that wR receives exactly rcvwR
= 1 coin and uL saves

only savuL
= 1 coin. We prove additional revenues of ∆−2. Node uL pays payuL

= ∆−3
coins, say to endpoints w1

R, . . . , w
∆−3
R . Observe that in step t+ 1 partition R contains

exactly ∆ − 2 degree-1 endpoints, namely wR and the wiR, and that vR is the only
degree-1 node in R which is not an endpoint. Therefore, by Definition 41, in a large
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donation ((vR, uL)) we move additional rcvuL
= ∆− 2 bills to X, which push total savings

and revenues up to at least ∆.

Lemma 51. Bound (5 Singleton) holds, i.e. a singleton Z has balance at least balZ ≥
BALZ = −2(∆− 2).

Proof. Singleton Z receives rcvZ = rcvZ = rcvZ = 0 coins and bills, since only path
nodes receive funds. The balance is defined as balZ = rcvZ − payZ = −payZ , hence it
suffices to show that Z pays at most payZ ≤ 2(∆− 2) coins and bills.

Recall that an M -matched node pays transfers or donations, but not both, and that
at most one donation leaves each node. Let zL and zR denote the nodes of Z. We
distinguish the following four cases: at most one of zL or zR pays funds, both zL and zR
pay a donation, both pay a transfer, or w.l.o.g. ((zL, uR)) is a donation and zR pays a
transfer.

At Most One Node Pays Funds. We are done if none of zL and zR pays funds. So
assume that zL pays funds and zR pays payzR

= payzR
= 0 coins and bills. Node zL pays

at most payzL
≤ PAYzL

= ∆−1 coins by Lemma 12 a), at most payzL
≤ PAYzL

= ∆−2
bills by Definition 41, and zL does not pay both coins and bills. We obtain payzL

≤
∆− 1 ≤ 2(∆− 2) and are done, since ∆ ≥ 3 holds.

Both Nodes Pay a Donation. Exactly two donations leave Z and Z pays no coins.
By Definition 41, in each donation we move at most ∆− 2 bills. We get payZ ≤ 2(∆− 2).

Both Nodes Pay a Transfer. It suffices to show that each of zL and zR pays at
most ∆−2 coins, since both pay no donation and hence payzL

= payzR
= 0 bills.

Assume that zL pays more coins, namely the maximum of payzL
= ∆− 1 coins, cf.

Lemma 12 a). We show a contradiction. When zL and zR become matched, say in step t,
then node zL has degree at least dt(zL) ≥ ∆ ≥ 3, since zL is incident with ∆− 1 transfers
and with edge {zL, zR}, see Figure 27. By assumption, each of zL and zR pays a transfer,
therefore both zL and zR are incident with an F -edge in step t and by definition of the
KarpSipser algorithm all nodes in Gt have degree at least two. Since degrees drop by
at most one in each step, after zL and zR become matched a destination endpoint w of a
transfer from zL has degree exactly dt+1(w) = 1. Furthermore, the ∆ − 1 destination
endpoints of transfers from zL are the only degree-1 nodes in partition R. A contradiction
to Lemma 42.
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The analogous argument applies to zR, i.e. we have payzR
≤ ∆ − 2. In total, we

get payZ = pay{zL,zR} ≤ 2(∆− 2).

zL zR
...

...∆− 1 ≥ 1

Figure 27: Node zL pays ∆− 1 transfers (not all edges are drawn)

A Donation ((zL, uR)) Leaves zL and zR Pays a Transfer. We are done if ((zL, uR))

is a small donation in which we move payzL
= ∆−3 bills. Why? Since zL pays payzL

= 0
coins and zR pays at most payzR

≤ PAYzR
= ∆− 1 coins and payzR

= 0 bills: in total,
we have pay{zL,zR} ≤ ∆− 3 + ∆− 1 = 2(∆− 2).

Assume that ((zL, uR)) is a large donation in which we move payzL
= ∆−2 bills. It

suffices to bound the number of coins payed by zR to at most payzR
≤ ∆− 2. (Note that

the argument of the previous case cannot be applied, since it depends on the assumption
that zL becomes matched with degree ∆. Here, however, node zL becomes matched with
degree one, since it pays a donation.)

zL zRuR ... ∆− 1

Figure 28: Node zL pays ∆− 2 bills in a large donation (not all
edges are drawn)

Assuming that zR pays payzR
= ∆ − 1 coins, say to endpoints w1

L, . . . , w
∆−1
L , we

show a contradiction, cf. Figure 28. Consider the step t when zL becomes matched. By
definition of ((zL, uR)), partition L contains exactly ∆− 2 degree-1 path endpoints and
no further degree-1 nodes but zL. In particular, at least one of the ∆− 1 many wiL has
degree at least dt(wiL) ≥ 2. Hence after zL and zR become matched, i.e. in step t+ 1, at
least one of the wiL has degree exactly dt+1(wiL) = 1, since the degree of wiL drops from
at least dt(wiL) ≥ 2 to at most dt+1(wiL) ≤ 1 (by definition) and by exactly one (since
the graph is bipartite). Furthermore, since zL is now matched, all degree-1 nodes in L
are path endpoints. This contradicts Lemma 42.
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5 Approximation Bounds for Greedy Matching

Throughout this section we systematically study limitations to the approximation per-
formance of greedy algorithms for matching. To obtain inapproximability results we
employ the framework of adaptive priority algorithms, introduced by Borodin, Nielsen,
and Rackoff [BNR03]. This framework enables us to define large classes of “greedy-like”
algorithms. For the obtained classes, the framework also provides methods for obtaining
bounds on their approximation performance.

In particular, our definitions allow us to obtain tight inapproximability bounds which
match the performance guarantees ∆

2∆−2 resp. ∆−1
2∆−3 proven for the KarpSipser algorithm

and 1-2-Greedy on graphs of degree at most ∆, cf. Section 3 resp. Section 4.
Moreover, we emphasize that KarpSipser and 1-2-Greedy are an intriguing com-

bination of both simplicity and approximation performance. Therefore we analyze
limitations of the following types of algorithms.

• Algorithms which are unable to incorporate degree information into the choice of
the next edge.

Such algorithms cannot beat factor 1
2 , even for most simple graphs.

• Algorithms which are able to utilize degree information of both nodes in the next
edge, which may pick several edges at a time, or which are even capable of exploiting
neighborhood relationships between nodes.

Such algorithm achieve approximation ratio only 1
2 for large graphs.

Organization of this Section. In Section 5.1 we present and discuss the adaptive
priority algorithm framework. The definitions of our classes of algorithms—and the
motivation for the respective definition—are given in Section 5.2. In Section 5.3 we first
present an overview of our inapproximability bounds and then show the constructions
used to obtain these bounds.

5.1 The Priority Algorithm Framework

To study limitations of greedy algorithms, Borodin, Nielsen and Rackoff [BNR03] intro-
duced the framework of adaptive priority algorithms.

An adaptive priority algorithm A is defined relative to the notion of a data item. The
definition of a data item depends on the problem at hand, and each data item represents
part of the input (e.g. an edge in a graph). An input instance I is modeled as a set of
data items.

105



5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

When A starts its computations, instance I is unknown to A. Algorithm A computes
in rounds, where in each round algorithm A processes a new data item i ∈ I in the input.
For each data item i algorithm A has to commit to an irrevocable decision for part of its
solution based on an irrevocable decision for i (e.g. whether to pick an edge or not).

Algorithm A follows the scheme given in Algorithm 3, cf. [BBLM10]. Before compu-
tations start, algorithm A is given a priori knowledge K on the input instance I (e.g. the
number of nodes in the input graph). However, the data items in I remain unseen, as
indicated by renaming I to U in Algorithm 3.

In a given round, how does A acquire the next data item i? Algorithm A determines a
total priority order π of all possible data items, see Line 5; then A receives an unseen data
item i ∈ U of highest priority in π (all data items in U \{i} remain unseen). In particular,
the function f which computes π has no access to I or U . However, function f may
access the given a priori knowledge K. Moreover, function f may access all knowledge
gathered in previous rounds, which is encoded in the history of previous decisions H.
(We discuss the properties of function f in more detail in Section 5.1.) Since algorithm A

may incorporate all knowledge gathered in earlier rounds into a “request” for the next
data item, algorithm A reacts adaptively to previous computations.

For the current data item i, algorithm A has to make an irrevocable decision in
Line 7 (e.g. whether to include an edge in a matching or not). This decision is made by
a function g, which has to respect all constraints on legal solutions for the problem at
hand (e.g. in a matching no node may be matched more than once). As for f , function g
may consider a priori knowledge and all gathered knowledge. (We discuss the properties
of function g in more detail in Section 5.1.)

Data item i and the according decision d are remembered by appending (i, d) to the
history H of computations: this way algorithm A gathers knowledge about I.

After data item i has been inspected and a decision for i has been made, data item i

is removed from the set of unseen data items U , see Line 9.

As soon as no more unseen data items are left, algorithm A returns the solution,
which is fully encoded in the history H of received data items and their decisions.

The notion of being “greedy” is captured by two properties of priority algorithms,
namely by irrevocable decisions as well as by allowing to submit priority orders. In
particular, the latter property distinguishes greedy algorithms from online algorithms:
online algorithms have no control over which data item is received next.
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Algorithm 3 Scheme of an adaptive priority algorithm A on input I.
1. K ← a priori knowledge on I
2. U ← I . data items in I are unseen23

3. H ← empty list . “history” of data items and their irrevocable decisions
4. while U 6= ∅ do . proceed with next round23

5. π ← f(H,K) . determine total priority order
6. i← minπ U . the highest priority unseen data item23

7. d← g(i, π,H,K) . make an irrevocable decision d for i
8. H ← H · (i, d) . remember data item and decision
9. U ← U \ ({i}) . remove now non-eligible data items23

10. end while
11. return H . solution is fully encoded in H

Introductory Examples. The framework of adaptive priority algorithms was adapted
to graph problems by Davis and Impagliazzo [DI09] and Borodin, Boyar, Larsen and
Mirmohammadi [BBLM10]. To tailor the scheme given in Algorithm 3 to a particular
graph problem, one has to specify a type of data items and possible irrevocable decisions. A
particular priority algorithm for the given graph problem is then obtained by implementing
functions f and g.

First, we briefly bring to mind Kruskal’s algorithm for the Minimum Spanning Tree
Problem. Given an undirected weighted input graph G, this algorithm first sorts all
edges of G by weight in ascending order. All structural information about G obtained in
this preprocessing phase is ignored throughout the rest of the algorithm. Then, Kruskal’s
algorithm repeatedly picks the cheapest edge which does not close a cycle in the forest of
previously picked edges.

To implement Kruskal’s algorithm as an adaptive priority algorithm, the graph G
can e.g. be modeled as a set of weighted edges 〈u, v;w〉, where u and v are neighbors
in G and w is the weight of edge {u, v}. The possible decisions are to include the
edge of a data item in the spanning tree or not. Function f computes a total or-
der . . . , 〈u1, v1;w1〉, 〈u2, v2;w2〉, . . . on all possible data items such that wi ≤ wj ⇔ i < j

holds. Observe that the actual set of edges in G does not need to be known to compute π.
The decision function g tests whether the nodes in the current edge belong to the same
tree or not (note that the forest can be constructed from H at any time). Based on the
outcome of g, the current edge is included in the spanning tree or not.

23The algorithm may not look at data items in I or U .
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Fixed Priority Algorithms. The function f in the implementation of Kruskal’s
algorithm as a priority algorithm does not depend on previously gathered knowledge,
since it outputs the same priority order in each round. This type of priority algorithm is
called a fixed priority algorithm, since it does not adaptively use its current knowledge.

In contrast, Prim’s minimum spanning tree algorithm chooses a cheapest possible edge
out of those edges which connect a new node to the previously computed “sub-spanning
tree”. Therefore, function f adaptively depends on the outcome of prior computations
when determining priorities for possible next edges. Hence Prim’s algorithm cannot be
implemented as a fixed priority algorithm.

Fixed priority algorithms are a subclass of adaptive priority algorithms. Generally,
the power of fixed and adaptive priority algorithms is not the same. Whereas Dijkstra’s
shortest paths algorithm can be implemented as an adaptive priority algorithm and
computes exact results, fixed priority algorithms cannot even give approximate solutions
[DI09].

In this thesis we focus on adaptive priority algorithms only. Why? Since algorithms
such as MinGreedy or KarpSipser cannot be implemented as fixed priority algorithms.
Intuitively, in each step node degrees change depending on which edge is picked, therefore
the next edge to be picked cannot be determined in advance.

Approximation Algorithms. Kruskal’s algorithm, Prim’s algorithm, and Dijkstra’s
algorithm compute optimal solutions. Approximate greedy algorithms can be implemented
as priority algorithms as well. Consider e.g. the nearest neighbor heuristic for the metric
traveling salesman problem: starting with an arbitrary city s, a tour is constructed by
repeatedly visiting an unvisited city closest to the current city, and eventually returning
to s. This heuristic has approximation ratio Θ(log2 n) on n-node instances [RSL77]. It
can be implemented as an adaptive priority algorithm as follows. We use data items
of the form 〈i; d1, . . . , di−1, 0, di+1, . . . , dn〉 where i is a city and the dj are the distances
from i to the other cities. A nearest neighbor of the current city c has highest priority in
the total order on all possible data items sorted ascending by dc.

Discussion. Adaptive priority algorithms are not constrained in the use of time or
space for their computations of priority orders and decisions. The only restriction on
functions f and g is that, in each step, future data items may not be considered in the
computation (in fact, these function may be non-computable, see [DI09] for a discussion,
and f may compute non-finite orders, e.g. for real-valued data items like weighted edges).
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Hence, the only limitation of an adaptive priority algorithm is the requirement to unveil
an input instance piece by piece, i.e. one data item per round, and to construct a part of
the solution once and forever for each new data item.

Since adaptive priority algorithms are limited solely by this property of “greedily”
constructing a solution, inapproximability results apply to correspondingly large classes
of algorithms.

Data Items. For any given optimization problem, the definition of data items (e.g. a
data item might specify an edge in a graph, it may additionally state the degrees of both
nodes, or it may contain the entire set of neighbors of both nodes) has strong impact on
the range of algorithms captured in the obtained class.

Therefore, data items have to be chosen carefully for the following reasons. Assume
that the definition of data items allows an algorithm to acquire a large amount of
knowledge about the input (per round). The obtained class contains algorithms whose
computations of priority orders and decisions process this vast knowledge in sophisticated
ways: such algorithms do not comply with the common understanding of a simple
greedy heuristic. Moreover, giving such “absurd” power to an algorithm implies that
inapproximability bounds are difficult to prove and that obtained bounds do not reflect
limitations of reasonable algorithms but rather those of artificial algorithms.

Furthermore, if the problem at hand has polynomial time methods to compute
exact solutions, then allowing powerful data items introduces the following additional
complication. We can only obtain inapproximability bounds which are not informative:
they are meaningful only for algorithms with larger resource demands than those of
known efficient algorithms with approximation factor 1.

Applications from the Literature. The model of adaptive priority algorithms was
successfully applied to obtain inapproximability bounds for e.g. Scheduling [BNR03],
Facility Location and Set Cover [AB04], Max-Sat [Pol11], Sum-Coloring [BIYZ12], graph
problems like Steiner-Tree or Independent-Set [DI09], or randomized matching in general
graphs [Pol12, BP15].

5.1.1 Obtaining Inapproximability Results

Let a formulation of an optimization problem P in terms of data items and possible
irrevocable decisions be given. If functions f and g are left unspecified, then we obtain
an entire class AP of adaptive priority algorithms for P . Inapproximability results are
obtained similar to the adversarial arguments found in the analysis of the competitive
ratio of online algorithms. Let A be an algorithm in AP . In the adaptive priority game,
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algorithm A plays against an adversary B. The adversary processes the submitted orders
and the irrevocable decisions of A to construct a hard input instance for A. In particular,
adversary B takes control over Lines 2 and 6 in Algorithm 3 (marked with bold line
numbers):

Line 2: Observe that before the game starts adversary B is free to construct any
instance which is consistent with the given a priori knowledge: if e.g. the number n
of nodes in the input graph is announced to A before the first round, then B is free
to construct any graph with n nodes. This gives B freedom to react to the various
moves of A. We denote the set of possible instances as I and note that |I| ≥ 1
holds in general.

Line 6: This is where adversary B pursues its plan to construct a hard instance. The
goal of adversary B is to present a data item i which only allows poor decisions
by A.

Consistency. Of course, adversary B has to act consistently. Consider the priority
order π of the current round. Since the presented data item i has to have highest
priority in π (among unseen data items), adversary B may not present a data item
of higher priority than i (in π) in a later round.

Intuitively, if B acts consistently then the following holds: giving the final instance
as input to A—without an adversary being involved—produces the same sequence
of submitted priority orders, received data items, and irrevocable decisions.

Therefore, the set of possible instances I must be reduced to those instances I
for which i ∈ I holds and which are consistent with the previous game. In the
end, set I is reduced to one instance I = {I}, namely an instance I for which the
approximation performance of A is poor.

5.2 Adaptive Priority Algorithms for Matching

We only study deterministic algorithms. Whenever we discuss an algorithm whose
definition depends on the use of randomization, like e.g. MinGreedy, then we implicitly
refer to the modified definition in which each random choice is replaced by a deterministic
choice.

Throughout this section we present the hierarchy of classes of algorithms given in
Figure 29. In the figure we indicate inclusion relations between classes and show to
which classes the algorithms introduced in Section 1.1 belong. All our classes include the
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class QC of algorithms for the query commit problem, and therefore also the class VI of
vertex iterative algorithms.24 Classes shaded with the same color are closely related and
are therefore discussed together, as we outline next.

VI QC
DS DS01

DSE01 DSP01⊆

VA VAk⊆
⊆
⊆

⊆

DI
⊆
⊆

⊆

MRG
Shuffle

Greedy

KarpSipser

1-2-Greedy

MinGreedy

Static-MinGreedy

Double-
MinGreedy

MDS

Figure 29: Inclusion relations between classes of algorithms (ar-
rows point to smallest classes containing given algorithms, shades
indicate closely related algorithms)

• In Section 5.2.1 we introduce the central class DS in the hierarchy, which is called
degree sensitive algorithms. Intuitively, each data item represents an edge in the
graph and states the current degree of one of both nodes. Therefore algorithms
KarpSipser and 1-2-Greedy are contained in this class.

We build the definition of other classes upon the definition of DS by varying the type
of data items used (the rest of the definition of DS remains unchanged). First, we
introduce additional information on one node of an edge. Algorithms in class DS01

may specify either the current degree of a node or its degree in the input graph.
The entire neighborhood of one node may be specified by algorithms in class VA.
These algorithms have more fine-grained control than DS-algorithms over which
edge is picked next.

For bipartite graphs, we show that the KarpSipser algorithm has optimal
performance among all DS01-algorithms. For general graphs, we show
that 1-2-Greedy has optimal performance even among all VA-algorithms.

24See Section 1.4.2 for a discussion of QC and VI as well as for the corresponding inclusion and
membership relations indicated in the figure.
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• In Section 5.2.2 we discuss data items providing degree information on both nodes
of an edge. Algorithms in class DSE01 contain “double-sided” algorithms such as
the minimum degree sum algorithm MDS.

Such algorithms achieve an approximation ratio scarcely better than KarpSipser
or 1-2-Greedy.

DSP01 is a class of algorithms with greater capabilities to construct a matching: in
each step an entire set of edges belonging to one or several paths may be picked,
instead of just one single edge. At first glance, a matching consisting only of long
alternating paths constitutes a good approximation to a maximum matching. We
will see, however, that DSP01-algorithms perform poorly on large graphs.

• In Section 5.2.3 we define the class DI of degree ignorant algorithms which do
not incorporate degree information into the choice of the next edge. Despite DI-
algorithms having much finer control over the next edge to be picked than QC-
algorithms (e.g. neighbor relationships may be specified), no stronger approximation
ratio is achieved: algorithms in DI fail with factor exactly 1

2 .

Consequently, using degree information is an indispensable requirement for a greedy
matching algorithm to achieve a non-trivial approximation ratio.

• In Section 5.2.4 we study adaptive priority algorithms for the k-Hypergraph Match-
ing Problem, which generalizes the standard matching problem. An algorithm in
the class VAk achieves approximation factor exactly 1

k , which is worst possible.

Therefore the success of greedy approaches for matching does not carry over to
hypergraph matching.

5.2.1 Degree Sensitive Algorithms

First, in Definition 52 we present the central class DS of degree sensitive algorithms, upon
which we build the definitions of other classes. In Lemma 53 we show that DS includes
most of the popular greedy matching algorithms; in particular, DS contains algorithms
which depend on degree information such as MinGreedy as well as algorithms like
Greedy which do not incorporate degree information into the choice of the next edge.

The class DS was defined in [BW15]. Since DS is the basis of further generalizations
and several results in Section 5, we repeat its definition. Furthermore, we supplement
the definition with basic properties of this class.
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Definition 52 (Degree Sensitive Algorithm). An adaptive priority algorithm A for the
matching problem belongs to the class DS of degree sensitive algorithms if the following
holds:

a) A priori, algorithm A is allowed to read the set of nodes in the input graph.
b) Algorithm A computes on data items

〈u, du, v〉

which state two nodes u and v and an integer du ≥ 1. If algorithm A receives data
item 〈u, du, v〉 in round t, then node u has
• current degree du and
• the neighbor v

in the reduced graph Gt (the reduced graph does not contain edges incident with
nodes matched before round t).

c) If A receives data item 〈u, du, v〉 then edge {u, v} must be picked.

The definition of DS extends the so-called edge model of Davis and Impagliazzo [DI09]
by introducing the degree of a node into each data item.

Modification of the Framework. The following two slight modifications of the original
definition of an adaptive priority algorithm have to be taken care of.25 (We denote
by A an algorithm which adheres to the definition given in Algorithm 3, and by A′ an
algorithm in DS.) Consider the update of the set U of unseen data items in Line 9.

1. When a data item received by A is removed from the set U of unseen data items,
no other data item is removed. In particular, algorithm A receives each data item
in the input instance.

Modification. In general, an algorithm A′ ∈ DS does not receive every data item.
Why? Whenever A′ receives a data item 〈u, du, v〉, then edge {u, v} is contained in
the reduced graph (and must be added to the solution). Therefore edge {u, v} is
not incident with a node matched in a previous round. In particular, algorithm A′

does not receive further data items representing edges incident with previously
matched nodes.

We formalize this modification as follows. In the update of set U of unseen data
items we do not only remove the current data item 〈u, du, v〉 but also each data
item 〈x, dx, y〉 with {x, y} ∩ {u, v} 6= ∅.

25These modifications require an according adjustment of the adaptive priority game. In particular, we
have to tailor the definition of a consistent adversary. We do this in Section 5.3.1, before we prove our
inapproximability bounds.
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2. When a data item received by A is removed from the set U of unseen data items,
the remaining data items are not changed.

Modification. For an algorithm A′ ∈ DS, however, certain remaining data items
might change. Why? In the (non-reduced) input graphG = G1, data item 〈u, du, v〉 ∈
G1 states the initial degree du = d1(u) of node u. However, in round t > 1 the
data item 〈u, du, v〉 received by A states the current degree du = dt(u) of node u in
the reduced graph Gt. In particular, we might have dt(u) < d1(u) since the degree
of u decreased during rounds 1, . . . , t− 1.

This modification is formalized as follows. Consider any round round t ≥ 1. In the
update of set U we replace each remaining unseen data item 〈x, dt(x), y〉 with its
updated version 〈x, dt+1(x), y〉.

Lemma 53. We have

KarpSipser ∈ DS,

1-2-Greedy ∈ DS,

MinGreedy ∈ DS, as well as

QC ⊆ DS .

Proof. We assume that the set of nodes in the input graph is V = {v1, . . . , vn}. Also,
we use the following notation: a data item d with an asterisk ∗ in the middle position
represents an (arbitrarily ordered) list of data items in which ∗ is replaced with all
possible integers greater than zero, i.e. we have 〈vj , ∗, vk〉 = 〈vj , d1, vk〉, 〈vj , d2, vk〉, . . .
where

⋃
i≥1{di} =

⋃
i≥1{i} holds.

To implement the KarpSipser algorithm as a degree sensitive algorithm, in each
round we first construct the temporary order

〈vi1 , ∗, vi2〉, 〈vi1 , ∗, vi3〉, . . . , 〈vi1 , ∗, vin〉, 〈vi2 , ∗, vi3〉, . . . , 〈vin−1 , ∗, vin〉

for arbitrary i1, . . . , in with
⋃n
j=1{ij} = {1, . . . , n}. Each data item 〈vij , ∗, vij′ 〉 represents

a possible edge, where we do not make a difference for the degree of node vij . Therefore
this order represents an arbitrary order of preferences for the choice of the next edge.

Now we move all data items 〈vij , 1, vi′j 〉 to the front of the order such that the relative
order of the moved data items is unchanged.

Therefore, an arbitrary node of current degree 1 and its incident edge are preferred
over any other edge, and if no degree-1 node exists an arbitrary edge is picked.
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For 1-2-Greedy we proceed analogously: we move data items 〈vij , 1, vij′ 〉 to a
“degree-1-block” in the front of the order and data items 〈vij , 2, vij′ 〉 between the initial
degree-1 block and the remainder of the order.

Analogously, to implementMinGreedy we build a “degree-i block” for each possible
current degree i and order the resulting blocks ascending by degree.

Lastly, to verify the inclusion QC ⊆ DS we use standard simulation arguments and
show how to implement an algorithm A ∈ QC for the query commit problem as a degree
sensitive algorithm A′ ∈ DS. This simulation has to obey the following property, since
then A′ computes the same solution as A. For every input graph, if the i-th edge picked
by A is {u, v}, then in round i algorithm A′ computes a priority order from which A′

receives a data item such that nodes u and v are matched.
Recall that A probes for edges in the graph one by one and picks each edge for which

the probe is successful, i.e. for which the edge is contained in the graph. One round of A′

implements a series of unsuccessful probes and ends with an edge picked by A.
By ei we denote the i-th edge picked by A (not the i-th probed edge). Assume

that edges e1, . . . , ei were picked in the 1st, 2nd, . . . , i-th round of A′, respectively. In
round i+1, algorithm A′ has to construct the i+1-th priority order, call it πi+1, such
that edge ei+1 is picked.

Algorithm A′ initializes an empty order πi+1 = ε which contains zero data items. In
order to fill πi+1, algorithm A′ simulates A beginning with (but not including) picking
edge ei. Denote by {vj1 , vk1} the edge probed by A after picking edge ei. Algorithm A′

appends the order 〈vj1 , ∗, vk1〉 to πi+1.

• Assume that edge {vj1 , vk1} is in the graph. Since A picks this edge we have ei+1 =
{vj1 , vk1}. No matter how the rest of πi+1 is constructed, algorithm A′ receives a
data item 〈vj1 , d, vk1〉, since a data item with the current degree d of vj1 is contained
in the sub-order 〈vj1 , ∗, vk1〉 in the beginning of πi+1. But when receiving data
item 〈vj1 , d, vk1〉, then algorithm A′ has to pick edge {vj1 , vk1} = ei+1, i.e. the same
edge as A. Thereafter, algorithm A′ proceeds with round i+2, where a new priority
order has to be constructed.

• Assume that the graph does not contain edge {vj1 , vk1}. We have to show the
construction of the remainder of πi+1. Note that A does not pick edge {vj1 , vk1} and
that A′ does not receive a data item from 〈vj1 , ∗, vk1〉. Therefore we can proceed
recursively as follows. Assume that algorithm A probes for edge {vj2 , vk2} next.
Then algorithm A′ appends the order 〈vj2 , ∗, vk2〉 to πi+1. The argument that if the
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graph contains edge {vj2 , vk2} algorithm A′ receives a data item from 〈vj2 , ∗, vk2〉
and picks the same edge ei+1 = {vj2 , vk2} as A is analogous as above.

To repeat the argument, assume that if A has probed for edges {vj1 , vk1}, . . . , {vj` , vk`
}

without success, then A probes for edge {vj`+1 , vk`+1} next. Algorithm A′ constructs the
priority order

πi+1 = 〈vj1 , ∗, vk1〉, 〈vj2 , ∗, vk2〉, . . .

We obtain the following. If edges {vj1 , vk1}, . . . , {vj` , vk`
} are not contained in the graph

but edge {vj`+1 , vk`+1} is, then A picks edge ei+1 = {vj`+1 , vk`+1} and A′ receives a data
item 〈vj`+1 , d, vk`+1〉 and picks edge ei+1 as well.

Thereafter, algorithm A′ proceeds with the next round i+ 2, where a new priority
order has to be constructed.

Note. W.r.t. the data items for the class DS, algorithms Greedy, MRG, and
Shuffle also belong to the class of so called fixed priority algorithms. Such an algorithm
may compute a priority order π = d1, d2, . . . on data items di only once, namely before
the first round. Only one “pass” over the order π is allowed, cf. [DI09]: in each round,
only data items in π are regarded which have lower priority than all previously received
data items.

Observe that Greedy regards edges in an arbitrary order, MRG uses an arbitrary
order on nodes and their incident edges, and Shuffle computes an “edge probe order”
in form of a permutation of the nodes. All these orders on edges can be initialized before
the first round. To transform an edge probe order into a priority order on data items,
each edge {u, v} is replaced with a sub-order containing a data item 〈u, du, v〉 for each
possible degree du.

However, MinGreedy is not a fixed priority algorithm: to give higher priority to
nodes of small degree, data items containing small degrees have to be located in the
beginning of a priority order. Similarly, 1-2-Greedy and the KarpSipser algorithm
are not fixed priority algorithms.
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Generalizing Degree Sensitive Algorithms. To allow for more fine-grained edge
selection routines, we generalize the definition of data items of degree sensitive algorithms.
In particular, a data item

〈u, du, v〉

is extended such that it exposes more information on node u than only its current
degree. The rest of Definition 52 remains unchanged. In particular, for each received
data item 〈u, . . . , v〉 the algorithm has to pick edge {u, v}.

i. For the class DS01 a data item

〈u, du, bu, v〉

contains an additional bit bu ∈ {0, 1}.

Bit bu determines the “reference” of degree du.

• If bu = 0 holds, then du refers to the current degree of u in the reduced graph
(as for DS).

• If bu = 1 holds, then du refers to the initial degree of u in the input graph.

When receiving data item 〈u, du, 0, v〉 the degree of u in the input graph may be
larger than the current degree du; when receiving data item 〈u, du, 1, v〉 the current
degree of u might be smaller than the original degree du (but the current degree is
at least one, since u is incident with v).26

Discussion. Compared with DS, class DS01 also contains the Static-MinGreedy
algorithm, see Lemma 56 below. More generally, using the original degree, an
algorithm can e.g. prefer a node whose degree is small not because it dropped
during the course of the algorithm but because it was small from begin on. This is
impossible for DS-algorithms.

We show an inapproximability bound for DS01 which matches the bound for the
more restricted class DS presented in [BW15].

26During an execution of an algorithm in DS01, unseen data items with bit bu = 1 remain unchanged
until being removed from set U (since the original degree of a node remains the same), whereas unseen
data items with bu = 0 are updated as discussed after Definition 52.
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ii. For the class VA (cf. the vertex adjacency formulation in [BBLM10] or the node
model in [DI09]) a data item

〈u, v1, . . . , vDu , v〉

states a node u along with all neighbors v1, . . . , vDu of u in the input graph, i.e.
the degree of u in the input graph is Du. Furthermore, the data item contains a
distinguished neighbor v ∈ {v1, . . . , vDu} to be matched with u.27

Discussion. Using this type of data items, an algorithm A is able to detect neighbor
relationships between nodes: in any round algorithm A may remember all node
names processed so far, hence A can give high priority to nodes adjacent with nodes
processed in previous rounds. Selecting neighbors of previously matched nodes
allows A to “traverse” the graph (e.g. to construct alternating paths), which is not
possible for algorithms in DS01. Moreover, these data items allow to infer distance
information between nodes. E.g. given a data item 〈u, v1, . . . , vDu , v〉 an algorithm
can conclude that nodes v1 and v2 are at distance at most two to each other. Such
distance information is not exposed for algorithms in DS01.

Furthermore, recall that an algorithm in DS01 may specify the current degree of
node u or the degree of u in the input graph, but not both. As we show next,
a VA-algorithm is able to specify both degrees, since it can infer the current degree
of a node from its data item. (In particular, data items are not updated as e.g. in
class DS01 in order to reflect current degrees.)

Lemma 54. Assume that a VA-algorithm receives data item 〈u, v1, . . . , vDu , v〉.
Node u has current degree Du − mu , where mu is the number of those nodes
of v1, . . . , vDu which have already been matched in previous rounds.

Proof. We have to show that in the reduced graph each neighbor vi of u in the
input graph is either already matched or still adjacent with u. This is a consequence
of the following two facts. First, node vi cannot already be matched and still be
adjacent with u at the same time. Secondly, if vi is not yet matched and not
adjacent with u anymore, then we obtain a contradiction, since also u is not yet
matched and edge {u, v} is still contained in the graph.

27Note that in [BBLM10] the vertex adjacency formulation is defined slightly different. There, a data
item 〈u, v1, . . . , vDu〉 does not contain a distinguished neighbor v but only the list of neighbors of u.
Therefore, when receiving a data item, a matching algorithm has to select one of the neighbors of u first
and thereafter has to pick the edge connecting both nodes.
Our formulation is equivalent, since the choice of the neighbor v ∈ {v1, . . . , vDu} of u for data

item 〈u, v1, . . . , vDu〉 is deterministic: the data item 〈u, v1, . . . , vDu , v〉 can be “precomputed”.
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To verify the inclusion relations in Lemma 56 below (and the remaining inclusion
relations claimed in Figure 29) we use standard simulation arguments. Specifically,
for each pair of classes their definitions are the same except for the data items used.
Therefore it suffices to provide a suitable transformation of a priority order.

Lemma 55. Let A and B be classes of adaptive priority algorithms for the matching
problem which differ only in the type of data items used.

So show that A ⊆ B holds it suffices to prove that for every algorithm A ∈ A there is
an algorithm B ∈ B such that the following holds for each graph and every round:

Algorithm A submits a priority order πA and receives a data item 〈u, . . . , v〉 if and
only if B computes a transformation πB of πA such that B receives a data item 〈u, . . . , v〉,
where dots indicate additional information on nodes u and v specific to class A resp. B.

Proof. In each round algorithm B picks the same edge as A.

Lemma 56. We have

Static-MinGreedy ∈ DS01 as well as

DS ⊆ DS01 ⊆ VA .

Proof. We show that Static-MinGreedy ∈ DS01 holds. Recall that the algorithm
begins with computing an arbitrary order on nodes which is sorted ascending by degree
(in the input graph) and then processes nodes in this order. For each non-isolated
node Static-MinGreedy picks an arbitrary incident edge (and then removes all edges
incident with both matched nodes).

To implements Static-MinGreedy as a DS01-algorithm, we compute the priority
order π = 〈∗, 1, 1, ∗〉, 〈∗, 2, 1, ∗〉, 〈∗, 3, 1, ∗〉, . . . , 〈∗, |V | − 1, 1, ∗〉 before the first round: we
denote by 〈∗, d, 1, ∗〉 a (total) order on “edges” with a node of degree d in the input graph
(the bit is set to 1), where we assume that 〈∗, d, 1, ∗〉 is ordered lexicographically by node
names. Order π is submitted in each round, i.e. we receive a data item 〈u, d, 1, v〉 of a
non-isolated node u with smallest possible degree d in the input graph, i.e. we pick an
arbitrary edge incident with u.

We show that DS ⊆ DS01 holds. Let A ∈ DS. We have to show that there is an
algorithm A′ ∈ DS01 which simulates A. By Lemma 55 it suffices to give a transformation
of a priority order π of A into a priority order π′ of A′ such that both algorithms receive
data items 〈u, . . . , v〉 for the same edge {u, v}.
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We replace each data item 〈u, du, v〉 in π with 〈u, du, 0, v〉 in π′. All data items in π
as well as in π′ refer to current degrees in the reduced graph. Thus both algorithms
receive a data item for the same edge.

To show that DS01 ⊆ VA holds, let A ∈ DS01. We have to show that there is
an algorithm A′ ∈ VA which simulates A. In each round, algorithm A′ transforms the
priority order π of A by replacing each data item 〈u, du, bu, v〉 with several consecutive
data items, depending on bit bu.

• First, assume that bu = 1 holds, i.e. that the degree of u in the input graph
is Du = du. Recall that a VA-data item for node u contains all Du neighbors in
the input graph. Algorithm A′ replaces 〈u, du, bu, v〉 with several consecutive data
items, namely one data item 〈u, v1, . . . , vDu , v〉 for all possible sets {v1, . . . , vDu} of
size Du which contain v.

Observe that a data item 〈u, v1, . . . , vDu , v〉 is contained in the graph if and only if
there is a node u of degree du = Du in the input graph which is adjacent with v.

• Now assume that we have bu = 0, i.e. that du is the current degree of u in the reduced
graph. As a consequence of Lemma 54, when inserting a data item 〈u, v1, . . . , vDu , v〉
into a priority order, algorithm A′ can request current degree du of node u by
choosing Du − du neighbors of u as already matched nodes (the set of already
matched nodes is tracked throughout the course of the algorithm).

How does A′ transform a data item 〈u, du, bu, v〉 with bu = 0? The degree Du of u
in the input graph is du ≤ Du ≤ |V | − 1, where V denotes the set of all nodes.
Algorithm A′ replaces 〈u, du, bu, v〉 with several consecutive data items, namely one
data item 〈u, v1, . . . , vdu , vdu+1, . . . , vDu , v〉 for each possible choice

– of the initial degree Du of u in the input graph,
– of du many nodes v1, . . . , vdu adjacent to u (where v = vi for some i), and
– of Du − du many nodes vdu+1, . . . , vDu which are already matched.

Observe that a data item 〈u, v1, . . . , vdu , vdu+1, . . . , vDu , v〉 is contained in the input
if and only if there is a node u of current degree du which is adjacent with v.

Combining both cases, algorithm A′ receives a data item from the replacements for
data item 〈u, du, bu, v〉 if and only if A receives that data item.
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5.2.2 Degree Sensitivity for Multiple Nodes

Again, we only change the definition of data items and leave the rest of the Definition 52
unchanged.

iii. For the class DSE01 a data item exposes degree information on both nodes of an
edge. In particular, a data item

〈(u, du, bu), (v, dv, bv)〉

contains the same information as for DS01 and additionally states the degree dv
of node v and a bit bv which decides whether dv is the degree of v in the reduced
graph (bv = 0) or in the input graph (bv = 1).

Discussion. As we point out in Lemma 57, algorithms Double-MinGreedy
and MDS belong to DSE01. However, both algorithms are not contained in DS,
since to select the next edge Double-MinGreedy and MDS incorporate degree
information of both nodes.

Lemma 57. We have

MDS ∈ DSE01 ,

Double-MinGreedy ∈ DSE01 , as well as

DS01 ⊆ DSE01 .

Proof. To implement MDS as a DSE01-algorithm, in each round the priority order
contains all possible data items 〈(u, du, 0), (v, dv, 0)〉 sorted ascending by current degree
sum du + dv.

To implement Double-MinGreedy as a DSE01-algorithm, in each round the
priority order contains all possible data items 〈(u, du, 0), (v, dv, 0)〉 sorted lexicographically
by (du, dv), i.e. such that for any given du all data items of current degree du are next to
each other within the same “block”, blocks are sorted ascending by du, and within each
block data items are sorted ascending by the current degree dv of v.

To prove that DS01 ⊆ DSE01 holds, we show that an algorithm A ∈ DS01 can be
simulated by an algorithm A′ ∈ DSE2. Since DS01 and DSE01 differ only the definition
of data items, we only have to show how A′ transforms a priority order computed
by A into a priority order of “double degree sensitive” data items, cf. Lemma 55.
Each data item 〈u, du, bu, v〉 is replaced with several consecutive data items, namely
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

one data item 〈(u, du, bu), (v, dv, bu)〉 for all possible choices of dv and bv. A data
item 〈(u, du, bu), (v, dv, bu)〉 exists in the input if and only if the graph contains a node u
of degree du according to bu with neighbor v. Consequently, algorithm A′ picks the same
edge as A.

Picking Paths. All algorithms defined so far may pick only a single edge at a time.
As we will see, there are instances for which they perform poorly. This gives rise to the
question whether better approximation performance can be achieved by picking several
edges at a time. As before, we build upon Definition 52 by modifying the type of data
items (only).

iv. Let k ≥ 1 be a constant integer. For the class DSP01 a data item

〈P1, . . . , Pk〉

contains k paths, where a path

Pi =
(

(vij , dij , bij)
)ni

j=1

is a sequence of ni nodes vij together with their degree dij and a bit bij deciding
whether dij is the degree of vij in the reduced graph (bij = 0) or in the input graph
(bij = 1).

In a data item 〈P1, . . . , Pk〉 received by an algorithm node vij has degree dij in the
reduced graph or in the input graph, depending on bij . Moreover, for path Pi the
edges

{vi1, vi2}, {vi2, vi3}, . . . , {vini−1, v
i
ni
}

are contained in the reduced graph and the algorithm picks edges

{vi1, vi2}, {vi3, vi4}, . . . , {vini−1, v
i
ni
} ,

where we assume that ni is an even non-negative integer.

We demand that the total number of edges being picked (in all paths) is at
most 1

2
∑k
r=1 nr≤k. Hence, if a path Pi contains more than one edge, then another

path Pj must be empty.
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Discussion. Why is the number of edges per round bounded by k? Allowing to pick
an arbitrary number of edges enables an algorithm to prefer sets of b |V |2 c edges—
which constitute perfect matchings—over sets of b |V |2 c−1 edges, over sets of b |V |2 c−2
edges, etc. Therefore an algorithm can compute a maximum matching in only one
round. This definition would be too liberal to model the greedy construction of a
matching.

Lemma 58. We have

DSE01 ⊆ DSP01 .

Proof. Let A ∈ DSE01. We have to show that there is an algorithm A′ ∈ DSP01 which
simulates A. By Lemma 55 we only have to provide a transformation of a prior-
ity order π of A. In each round, algorithm A′ transforms π by replacing each data
item 〈(u, du, bu), (v, dv, bv)〉 with a data item 〈P1, . . . , Pk〉 in which paths P2, . . . , Pk

contain n2 = · · · = nk = 0 edges and we have P1=(u, du, bu), (v, dv, bv).

5.2.3 Degree Ignorance

We introduce an additional modification of Definition 52. Using the new class we prove
in Section 5.3 that a greedy matching algorithm must select nodes of small degree in
order to achieve a non-trivial approximation guarantee.

v. For the class DI of degree ignorant algorithms a data item

〈u,Nu, v,Nv〉 ,

specifies two nodes u and v and sets of nodes Nu and Nv. If the algorithm receives
data item 〈u,Nu, v,Nv〉, then for w ∈ {u, v} each node in Nw is a neighbor of w in
the reduced graph. However, not every neighbor of w has to be contained in Nw:
if N(w) is the complete set of neighbors of w in the input graph, then we only
demand that Nw ⊆ N(w) holds. For convenience, we assume u ∈ Nv and v ∈ Nu.

Discussion. In each data item, an algorithm in DI may specify arbitrarily detailed
requirements about the sets of neighbors of both matched nodes. This sets DI
apart from VA, for which requirements for only one node can be formulated, or
from DSE01, for which only degrees but no neighbor names can be specified. (In
particular, note that assuming Nw = N(w) for w ∈ {u, v} would imply VA ⊆ DI
as well as DSE01 ⊆ DI.)

As we show as part of the next result, common algorithms which request small degree
nodes are not members of DI.
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

Lemma 59. We have

QC ⊆ DI .

Algorithms MinGreedy, 1-2-Greedy, KarpSipser, Double-MinGreedy, and MDS
are not contained in DI.

Proof. The proof that QC ⊆ DI holds proceeds analogously to the proof of QC ⊆ DS in
Lemma 53. In particular, the simulation of an algorithm A ∈ QC by an algorithm A′ ∈ DI
proceeds like follows. In each round, algorithm A′ simulates a sequence of probes for
edges which ends with a successful probe. After A′ has picked the same edge as A,
the simulation is continued in the next round of A′. To obtain the probe order for one
round, algorithm A′ simulates A under the assumption that no probe is successful: this
allows to correctly simulate the behavior of A on the reduced graph. The obtained probe
order {u, v}, {w, x}, . . . is transformed into the priority order 〈u, ∗, v, ∗〉, 〈w, ∗, x, ∗〉, . . .
where for probe {y, z} the sub-order 〈y, ∗, z, ∗〉 contains data items for all possible choices
of sets of neighbors in the ∗-ed positions. If a probe for edge {y, z} is not successful,
then no data item in 〈y, ∗, z, ∗〉 is contained in the input. If A successfully probes for
edge {y, z}, then one of the data items in 〈y, ∗, z, ∗〉 is contained in the input and received
by A′. Thus A′ picks the same edge as A.

To prove the second statement, we argue that an algorithm A ∈ DI is unable to
request nodes of small degree. In particular, we show that in the first round algorithm A

cannot request a node u of small degree d in the input graph. Why? Since therefore in a
data item 〈u,Nu, v,Nv〉 the set Nu of neighbors of u must be of size at most d. But the
definition of DI only requires Nu ⊆ N(u) for the set N(u) of neighbors of u in the input
graph: thus we might have |N(u)| > d for the received data item, i.e. node u has larger
degree in the input graph than d.

5.2.4 Hypergraph Matching

To study limits of greedy algorithms for the k-Hypergraph Matching Problem (cf. page
30), we generalize VA to the class VAk, for which we use data items of the form

〈u,W1, . . . ,WDu ,Wi〉 .

Each Wj is a set of k − 1 nodes and Wi ∈ {W1, . . . ,WDu} holds. If an algorithm
receives data item 〈u,W1, . . . ,WDu ,Wi〉, then u has Du incident edges in the input graph,
namely {u} ∪W1, . . . , {u} ∪WDu , and edge {u} ∪Wi must be picked.
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Lemma 60. We have

VA ⊆ VAk .

Proof. Observe that k-dimensional hypergraph matching becomes the standard matching
problem for k = 2. In particular, consider data item 〈u,W1, . . . ,WDu ,Wi〉. For k = 2
an “edge” Wi is a set of size |Wi| = 1. Therefore 〈u,W1, . . . ,WDu ,Wi〉 is merely another
notation of data item 〈u, v1, . . . , vDu , v〉 for class VA. The simulation of a VA-algorithm
by a VAk-algorithm is now straight-forward.

5.3 Inapproximability Results

For the classes of adaptive priority algorithms defined in Section 5.2 we show the
inapproximability bounds given in Table 3. We consider bipartite and non-bipartite
graphs as well as k-uniform hypergraphs (in which every edge contains k nodes). We
frequently refer to the largest degree of a node in the graph, which is either a constant
(top rows), given as a variable ∆ (middle rows), or we assume arbitrarily large degrees
(bottom rows). (Note that bounds for empty cells are implied from bounds in cells above
and to the left.) First, we give an overview over the results and discuss implications.

Table 3: Inapproximability bounds by graph type (columns), maxi-
mum degree (rows), and type of algorithm (classes are shaded like
in Figure 29)

bipartite
graphs

general
graphs

k-uniform
hypergraphs

co
ns
ta
nt 2 DI : 1

2 (15)

3 DSE01 : 3
4 (16)

4 VAk : 1
k (17)

bo
un

de
d

∆

DS01 : ∆
2∆−2 (18) VA : ∆−1

2∆−3 (19)

MDS : ∆
2∆−2 (20)

DSE01 : ∆+1
2∆−2 (21)

la
rg
e

∆
→
∞ DSP01 : 1

2 (22)

VA : 3
4 (23)
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Maximum Cardinality Matching. We study VA-algorithms for general and for bi-
partite graphs. By (19), on general degree bounded graphs no VA-algorithm achieves
better approximation ratio than 1-2-Greedy, cf. our performance guarantees in The-
orems 15 and 21. Consequently, the ability to traverse the graph gives no advantage
over the ability to exploit degree information. Our construction crucially relies on the
existence of triangles in the graph.

Since triangles do not exist in bipartite graphs, tailoring our construction to the
bipartite scenario yields only weaker bounds. In particular, if degrees are unbounded
then by (23) no VA-algorithm performs better than factor 3

4 . Whether there exists
a VA-algorithm achieving approximation factor larger than 1

2 remains an open question.

Bipartite Graphs. We analyze the worst case performance of the remaining classes
on bipartite graphs. By (15), algorithms in DI, which are able to exploit neighbor
relationships but are unable to request nodes of small degree, fail to achieve a non-
trivial approximation guarantee, even on paths. Consequently, to obtain a non-trivial
approximation guarantee, a greedy matching algorithm must incorporate nodes of small
degree into the choice of the next edge.

Thus we compare with the approximation performance of the KarpSipser algorithm.
If degrees are bounded by ∆, then (18) implies that DS01-algorithms perform no better
than the KarpSipser algorithm, cf. our performance guarantee in Theorem 35, even
though they are equipped with the additional capability to access node degrees in the
input graph.

Moreover, the MDS algorithm does not perform better than KarpSipser, even
though it uses degree information on both nodes of the next edge, as (20) shows. By (16),
if degrees are bounded by at most ∆ = 3, then no DSE01-algorithm performs better
than KarpSipser, since ∆

2∆−2 = 3
4 holds. The class DSE01 also contains the Double-

MinGreedy algorithm.
We conjecture that noDSE01-algorithm achieves better performance than KarpSipser,

namely factor ∆
∆−2 for arbitrary ∆. If the conjecture holds, then utilizing degree

information for two nodes instead of only one does not yield a benefit for bipartite graphs.
To support our conjecture we show in (21) that DSE01-algorithms perform only scarcely
better than KarpSipser, namely with factor at most ∆+1

2∆−2 .

Algorithms in DSP01 may specify the same information on each node as DSE01-
algorithms, but instead of being restricted to picking one edge in each step they may
pick multiple edges (arranged in alternating paths) at the same time. However, even
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this power does not allow for a fundamental change in approximation quality: for large
graphs the trivial guarantee 1

2 cannot be beaten, as (22) shows.

Altogether, our results show that among greedy matching algorithms achieving non-
trivial approximation guarantees 1-2-Greedy and the KarpSipser algorithm stand out
as an exceptional combination of conceptual simplicity and performance.

k-Hypergraph Matching. For a complete picture we also study the greedy approach
when applied to the k-Hypergraph Matching Problem. As it turns out, factor 1

k cannot
be surpassed by VAk-algorithm, as (17) shows. This performance is worst possible, since
any maximal matching in a k-uniform hypergraph has size at least 1

k times optimal (each
picked edge touches at most k optimal edges). Thus the success of greedy algorithms for
matching does not carry over to hypergraph matching.

5.3.1 Proof Techniques

To verify the inapproximability bounds claimed in Table 3, we analyze an algorithm A in
the adaptive priority game against an adversary B. Adversary B has to play a consistent
game, i.e. given the final construction as input to A (without an adversary being involved)
must result in the same sequence of submitted priority orders, received data items, and
decisions and hence produce the same solution.

The fundamental idea is to force algorithm A to perform 1
2 -rounds: in a 1

2 -round two
edges of a maximum matching are removed from the graph. Since algorithm A picks
only one edge, a large number of 1

2 -rounds implies that the approximation ratio tends
to 1

2 . Our constructions vary in how a 1
2 -round is enforced. Before we present details,

we discuss adversarial strategies common to algorithms of various classes and how these
strategies relate to one another. The following overview is arranged (roughly) from simple
to complex strategies.

• For algorithms in classes DI and VAk consistency of B is easiest to achieve.

Fixed Construction. For either class, the structure of the graph does not depend
on the actions of algorithm A, i.e. constructions for different algorithms yield
isomorphic graphs. Node labels are chosen by B depending on A. In particular,
from the first priority order submitted by A adversary B presents the highest
priority data item i with a degree present in the graph and establishes consistency
by labeling nodes according to the names given in i.
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A Game of one Round. The construction asserts that the edge picked by A is
a poor choice. In particular, the first round turns out to be a 1

2 -round (for DI)
resp. a 1

k -round (for VAk). Adversary B ends the game after the first round, hence
consistency does not have to be maintained over subsequent rounds.

• A bound for DS is implied from our construction for DS01, which is closely related
with the construction for DSE01. Both are more complex than the constructions
for DI and VAk in the following two ways. First, consistency of B must be main-
tained over more than one round. Secondly, constructions for different algorithms
are not isomorphic graphs, but the set of edges depends on the actions taken
by algorithm A. However, all constructions share an isomorphic subgraph (the
“skeleton” or “backbone”) to which edges are added depending on A.

Allowed Degrees. Adversary B controls the game by limiting the possible moves
of algorithm A. Therefore B makes use of a set D of allowed degrees: in the
input graph G1 the degree of each node w satisfies d1(w) ∈ D. In particular, we
have 1 /∈ D to prevent A from performing optimally by picking an edge incident
with a node of degree 1.

A 1
2 -round t occurs when also the reduced graph Gt contains only allowed

degrees, i.e. each node w has a degree dt(w) ∈ D. (Observe that this is
the case in the first round.)

How does the construction of B proceed in a 1
2 -round t? Among data items with

degrees in D in the order submitted in round t, it is consistent to present the one
with highest priority (and relabel nodes accordingly). Assume that data item i is
presented and that in i node w has degree d. The construction asserts that node w
has degree d = d1(w) = dt(w) in both the input graph as well as in the reduced
graph. This is consistent with any value of the degree bits given in i.

Fragments of the Reduced Graph. If in round t the reduced graph Gt contains a
node w of degree dt(w) /∈ D, then no 1

2 -round can be enforced. Has B lost control
over the game? No, since the construction of B asserts that node w belongs to a
connected component C of Gt with the following crucial property:

algorithm A may pick an optimal number of edges in C without surpassing
the desired inapproximability bound.

Edges in C are picked independently of the rest of the game: the restricted type of
data items asserts that, first, during previous rounds algorithm A could not gather
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knowledge about neighbors of already matched nodes, in particular about such
neighbors in C, and, secondly, algorithm A is unable to do so in future rounds.
Hence we may w.l.o.g. assume that A picks edges in C instantly, and we proceed
with the adversarial construction after all edges in C are removed. At this time the
construction of B asserts that, again, all current degrees belong to set D, i.e. the
next 1

2 -round occurs.

• For VA-algorithms, the adversary has to take into account that an algorithm is able
to detect neighbor relationships. In order to maintain consistency, adversary B has
to proceed more carefully and therefore introduces the following modifications to
the “game plan”.

The game begins with a large number of rounds in which algorithm A does not solve
any fragments and each round is a 1

2 -round (again, a 1
2 -round t occurs when the

reduced graph Gt contains only the same allowed degrees as the input graph G1).
Adversary B keeps up the following crucial invariant during each of these rounds.

All nodes which occurred in a data item presented in an earlier round
cannot be matched.

(Observe that the invariant holds in the first round.) Thus it is consistent of B
to present the data item of a node which was not processed before—in particular,
the highest priority such data item with an allowed degree in the submitted order.
Since A could not gather knowledge about the received node, adversary B has no
commitments to satisfy and thus has sufficient freedom to enforce the next 1

2 -round
while keeping up the invariant.

As soon as the adversary cannot keep up the invariant and cannot enforce further 1
2 -

rounds, the algorithm is free to solve the remaining fragment of the graph optimally.

5.3.2 Proofs

An overview of the proof order is given in Table 4.

Theorem 61. Let A ∈ DI be a degree ignorant algorithm. There is an input graph for
which A computes a matching of size exactly 1

2 times optimal. In particular, this input
graph is a path on four nodes.

Proof. We describe the adaptive priority game of A against an adversary B. Since the
structure of the hard instance is fixed, only node labels are chosen depending on the
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Table 4: Proof order of inapproximability results (related groups
of related proofs are separated by double horizontal lines)

Result (cf. Table 3) Statement Page
(15) DI Theorem 61 129
(18) DS01 Theorem 62 130
(19) VA (general graphs) Lemma 63 135

Theorem 64 139
(23) VA (bipartite graphs) Theorem 65 142
(20) MDS Theorem 66 145
(16) DSE01 (∆ = 3) Theorem 67 145
(21) DSE01 (∆ ≥ 4) Theorem 68 147
(22) DSP01 Theorem 69 149
(17) VAk (k-uniform hypergraphs) Theorem 70 151

actions taken by A. From the first priority order submitted by A, adversary B presents
the highest priority data item 〈u,Nu, v,Nv〉 with 1 ≤ |Nu| ≤ 2 and 1 ≤ |Nv| ≤ 2. (Recall
that we have u ∈ Nv as well as v ∈ Nu.) Then B relabels nodes in the path such
that {u, v} is the middle edge. This is consistent, since the middle nodes have degrees at
least one and at most two. In particular, since A picks the middle edge, algorithm A

cannot pick the edges incident with the degree-1 nodes of the path, which constitute a
maximum matching of size two.

Note. The same construction allows to show the same bound if an algorithm may
additionally choose the partition of each node.

Degree Sensitive Algorithms. First, we discuss “one-sided” degree sensitive algo-
rithms, like e.g. KarpSipser or MinGreedy.

Theorem 62. Let A ∈ DS01. For any ∆ ≥ 3 and ε > 0, there is a bipartite input graph
of degree at most ∆ (and with a perfect matching) for which A computes a matching of
size at most ∆

∆−2 + ε times optimal.

Proof. First, we prove the result for graphs of degree at most ∆ ≥ 4 and without a
perfect matching. Thereafter, we modify the construction such that the statement also
holds for ∆ = 3 and a perfect matching.

We describe the adaptive priority game between A and an adversary B, who processes
priority orders submitted by A in order to construct a hard input instance. Adversary B
constructs a graph which contains k traps T1, T2, . . . , Tk, cf. Figure 30. Trap Ti contains
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a left cycle on nodes ci1, ci2, ci3, ci4 which is connected via an edge {ci1, pi1} to a left path
on nodes pi1, pi2. Trap Ti also contains a right cycle on nodes di1, di2, di3, di4 connected
via {di1, qi1} to a right path on nodes qi1, qi2. The left path is connected to the right cycle
via edges {pi2, di1}, {pi2, di3}, and analogously the right path of Ti is connected to the
left cycle of the next trap Ti+1 via edges {qi2, ci+1

1 }, {qi2, c
i+1
3 }; the right path of the last

trap Tk is connected to an extra cycle on nodes e1, e2, e3, e4 via edges {qk2 , e1}, {qk2 , e3};
an extra node e0 connects to the left cycle nodes c1

1, c
1
3 of the first trap. The left and right

cycles in Ti are connected by Λ = ∆−4 many length-three paths on nodes wij , xij , yij , zij
via edges {ci1, wij}, {ci3, wij} and {zij , di1}, {zij , di3} for 1 ≤ j ≤ Λ.

e0

c1
1

c1
2

c1
3

c1
4

p1
1

p1
2

d1
1

d1
2

d1
3

d1
4

q1
1

q1
2

e1

e2

e3

e4T2, . . . , Tk

w1
1 x1

1 y1
1 z1

1

w1
Λ x1

Λ y1
Λ z1

Λ

...

T1

Figure 30: The construction of adversary B: algorithm A receives
data items for bold nodes (partitions are marked with white and
gray nodes, gray edges form fragments of the graph in rounds Λ+2
resp. Λ+4 of the adaptive priority game)

This constitutes the “backbone” of the construction, to which B adds further edges
during the game depending on the actions taken by A. The game proceeds as follows.
For each trap Ti algorithm A picks ∆ edges to include in the solution (crossed edges in
Figure 30), whereas Ti contains 2∆−2 edges of a maximum matching (double edges).
Furthermore, only a constant number of edges incident with nodes e0, . . . , e4 can be scored
by A. Hence for large k algorithm A achieves approximation ratio at most ∆

2∆−2+ε.

To start the game, adversary B announces the number k·(12 + 4Λ)+5 of nodes. The
construction of B proceeds such that after the first ∆ rounds node e0 and all nodes
in T1 but q1

2 are isolated. The graph to be constructed thereafter is one trap “shorter”
with q1

2 instead of e0 connected to the leftmost trap. Adversary B repeats its strategy
for T2, T3, . . . , Tk. After all edges in Tk are removed, algorithm A scores at most two
edges in the “fragment” consisting of nodes qk2 , e1, e2, e3, e4 and edges connecting these
nodes, cf. Section 5.3.1.
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We discuss the first Λ = ∆− 3 rounds. Observe that in the first round the minimum
degree is two. Adversary B chooses the set

D = {2, . . . ,∆}

of allowed degrees, cf. Section 5.3.1. In each of rounds 1 ≤ j ≤ Λ, adversary B presents
the highest priority data item 〈u, du, bu, v〉 with du ∈ D in the respective priority order
submitted by A, ignoring the value of bit bu. Adversary B then relabels nodes in the
graph such that u = x1

j and v = y1
j holds, i.e. algorithm A picks the crossed edges in the

length-three paths.

In each round B has committed to node u = x1
j having degree du, either in the reduced

graph or in the input graph depending on bit bu. To act consistently, adversary B asserts
that both degrees are equal to du. How? Degree du might be larger than two, therefore B
inserts additional edges incident with x1

j into the graph in Figure 30. The du−2 additional
edges connect x1

j with arbitrary nodes in the set

{w1
1, . . . , w

1
Λ, c

1
2, c

1
4, q

1
2} \ {w1

j} .

This set has cardinality Λ + 3− 1 = ∆− 4 + 2 = ∆− 2 ≥ du − 2 and only contains nodes
outside the partition of x1

j .

The additional edges are consistent: in previous rounds A could not gather knowledge
about the neighborhood of u = x1

j , or any other still unmatched node, therefore the
additional edges do not have effect on previous actions taken by A.

Edges incident with u and v—including additional edges—are removed from the
graph, hence in round j + 1 the minimum degree is two, again.

The degrees of nodes receiving additional edges are increased to at most

∆− 1 (24)

during rounds 1≤j≤Λ: the w1
j have degree at most 3+Λ−1=∆−2, both c1

2 and c1
4 have

degree at most 2+Λ=∆−2, and q1
2 has degree at most 3+Λ=∆−1.

After rounds 1, . . . ,Λ, recall that the minimum degree is two. In round Λ + 1
adversary B again presents the highest priority item 〈u, du, bu, v〉 with 2 ≤ du ≤ ∆ in the
submitted order. This time B relabels nodes such that u=p1

1 and v=c1
1 hold (hence A
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picks the crossed edge connecting the left cycle and path), and inserts du − 2 ≤ ∆− 2
additional edges connecting u with arbitrary nodes in the set

{z1
1 , . . . , z

1
Λ, d

1
2, d

1
4} .

The degrees of nodes receiving an additional edge are increased by only one, i.e. they do
not exceed 4 ≤ ∆.

In round Λ+2 a star centered at node c1
3 forms a fragment of the graph. Since A

computes a maximal matching, these star nodes become isolated when A matches c1
3.

W.l.o.g. we assume that A isolates these nodes in round Λ+2. Observe here, that for
the selected node the current and original degree might in fact be different, however,
algorithm A cannot take any advantage since at most one edge can be picked in the star
centered at c1

3.
Similarly, the game proceeds for the right cycle and path. In round Λ+3, algorithm A

matches nodes u=q1
1 and v=d1

1, where additional du − 2 edges connect q1
1 with arbitrary

nodes in the set

{w2
1, . . . , w

2
Λ, c

2
2, c

2
4} (25)

of left path and cycle nodes in trap T2. In round Λ+4=∆ a star centered at d1
3 forms a

fragment of the graph. W.l.o.g. again, algorithm A scores one edge in this round, when
isolating all nodes in this fragment.

Adversary B repeats its strategy for trap T2. We have to pay attention to the
following subtlety. Adversary B might previously have constructed edges connecting
some of nodes w2

1, . . . , w
2
Λ, c

2
2, c

2
4 with q1

1, cf. (25). Therefore, additional edges in T2 might
increase the degrees of these nodes up to ∆, instead of up to ∆− 1, cf. (24). This applies
analogously to T3, T4, . . . , Tk.

∆ = 3. We modify the above construction as illustrated in Figure 31. Paths on
nodes wij , xij , yij , zij and edges incident with these nodes do not exist. Left and right paths
now have four nodes pi1, . . . , pi4 resp. qi1, . . . , qi4 instead of two, and are still connected
to cycles via {pi1, ci1} resp. {qi1, di1}. Edges {pi2, di1}, {pi2, di3} and {qi2, ci+1

1 }, {qi2, c
i+1
3 },

which connect paths with nodes of the “next” cycle, are replaced by {pi4, qi2}, {pi4, di3},
resp. {qi4, pi+1

2 }, {qi4, c
i+1
3 }. During the game adversary B does not insert any additional

edges. All nodes have degrees two or three. In particular, nodes p1
2, p

1
3 have degree

three resp. two: in the first round B presents the highest priority data item 〈u, du, bu, v〉
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

and relabels nodes such that A picks edge {p1
2, p

1
3}, for any degree du ∈ {2, 3} and any

bit bu ∈ {0, 1}. The remainder of the left cycle and path in T1 now forms a fragment of the
graph (see gray edges in the figure). Therein A can pick at most two edges: algorithm A

scores three out of four edges for the left cycle and path of T1. Analogously, adversary B
repeats this strategy for the remaining paths and cycles containing edges {q1

2, q
1
3}, {p2

2, p
2
3},

{q2
2, q

2
3}, . . . , {qk2 , qk3}. Hence we obtain the claimed convergence to 3

4 = ∆
2∆−2 .

pi4

pi3

pi2

pi1

ci1

ci2 ci4

ci3

qi4

qi3

qi2

qi1

di1

di2 di4

di3

. . .. . .

Figure 31: The i-th trap Ti for ∆ = 3 (gray edges form fragments
of the graph during the game)

Perfect Matching. Similar to the cycle on nodes e1, . . . , e4, adversary B replaces the
extra node e0 with a length-four cycle C. Nodes c1

1, c
1
3 of the first cycle (resp. nodes p1

2, c
1
3

for ∆ = 3) are connected to different nodes of C such that degrees in C are two and
three and the graph is bipartite. As discussed above, the construction starts with the left
cycle and path of trap T1. However, when the star centered at node c1

3 is disconnected
from the rest of the traps, node c1

3 is still connected with the nodes in C. W.l.o.g. we
assume that A instantly isolates all nodes in the star and in C. (To compensate for the
two additional edges scored by A in C, adversary B increases k accordingly.) Thereafter
the construction proceeds as shown above.

Note. Theorem 62 carries over to graphs in which the average degree is at most ∆.
However, bounding the average degree gives an adversary more freedom to construct a
hard instance, since the maximum degree may be larger than ∆. Therefore stronger inap-
proximability bounds might apply. Indeed, even if the average degree is a constant then
all QC-algorithms, the “one-sided” algorithms KarpSipser, 1-2-Greedy, MinGreedy,
and Static-MinGreedy, as well as the “double-sided” algorithms MDS and Double-
MinGreedy do not beat factor 1

2 . Why? Similar to the construction in the proof of
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5.3 Inapproximability Results

Theorem 62, consider the graph which consists of only one trap, call it T1, and observe
that no edges have to be added to make an algorithm pick edges {x1

1, y
1
1}, . . . , {x1

Λ, y
1
Λ} in

the first Λ = Θ(∆) rounds. Thereafter, only a constant number of additional edges can
be picked, hence the approximation ratio converges to 1

2 for ∆→∞. Only four nodes
have degree ∆, namely the cycle nodes c1

1, c
1
3, d

1
1, and d1

3. All other Θ(∆) many nodes
have constant degree. Consequently, for ∆→∞ the average degree is constant.

Note. We compare the class DS01 with the class of degree-based adaptive priority
algorithms [BBLM10]. In each round a degree-based algorithm submits a priority order
of degrees, i.e. an order of positive integers, and receives a node whose degree has highest
priority (the algorithm additionally receives the neighbors of a node in the input graph,
similar as in the definition of the class VA).

Poloczek [Pol12] gave a construction showing that degree-based adaptive priority
algorithms fail with approximation ratio 1

2 on bipartite graphs. However, degree based
algorithms request nodes w.r.t. their degree in the input graph, i.e. an algorithm cannot
request current degrees. Therefore the result does not apply to e.g. MinGreedy or the
KarpSipser algorithm, as does Theorem 62.

Node Adjacencies. We proceed with results on algorithms capable to detect node
adjacencies. In particular, we study VA-algorithms for general graphs (Lemma 63
and Theorem 64) and bipartite graphs (Theorem 65). For general graphs, the proof
is arranged in two parts. Recall that the set of nodes is given to the algorithm as a
priori knowledge. However, an adversary committing to a fixed number of nodes has
limited flexibility to react to the moves of the algorithm as opposed to a variable number
of nodes. Therefore, as a first step we show in Lemma 63 that factor ∆−1

2∆−3 cannot be
beaten if the set of nodes is not known in advance. Thereafter, in Theorem 64 we show
how to adapt the construction to a priori knowledge on the full set of nodes.

Lemma 63. Let A ∈ VA, and assume that A does not receive the set of nodes in advance.
There is an input graph of degree at most ∆ for which A computes a matching of size at
most ∆−1

2∆−3 times optimal.

Proof. We describe the adaptive priority game against an adversary B. The game consists
of the regular game, which lasts for the first s = ∆− 3 rounds, followed by the endgame,
which has two rounds and ends with the last round.

During the regular game, adversary B maintains the following invariant: each node v
that is not yet isolated has a data item of one of the following types.
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

Type 1: In data item 〈u, v1, . . . , vDu , v〉 nodes u and v1, . . . , vDu are unknown, i.e. they
did not occur in a previously received data item, and 3 ≤ Du ≤ ∆ holds.

Type 2: In data item 〈u, v1, v2, v〉 nodes u and v1, v2 are unknown.

Type 3: In data item 〈u, v1, v2, v3, v〉 nodes u and v1, v2 are unknown and v3 is known,
i.e. node v3 was received by A in a data item of a previous round.

In particular, all nodes in G have degree at least two, i.e. the set of allowed degrees
is D = {2, . . . ,∆}, cf. Section 5.3.1.

Consider the very first round. Since all nodes are still unknown, all nodes have data
items of type 1 or 2. Hence the invariant holds. Consider round i and assume that the
invariant holds. Adversary B presents the highest ranked data item that is of type 1, 2,
or 3. Call that data item ai.

u v1

v2 v3 vDu
. . .

Figure 32: A connected component of a hard instance (the algo-
rithm receives a type-1 data item for the bold node u)

Case 1: ai = 〈u, v1, . . . , vDu , v〉 is a type-1 data item. Since all nodes in ai are
unknown, we may w.l.o.g. assume that A matches u with v = v1. Adversary B
constructs the connected component C depicted in Figure 32 which consists only
of nodes of types 1 and 2, since all nodes in C are unknown and have degree at
least two. All nodes of C are isolated in the next round, hence the invariant is
maintained. Observe that within component C the maximum matching scores two
edges (the double edges {u, v2}, {v1, vDu} in Figure 32) whereas A scores only one
edge (the crossed edge {u, v1}).

Since in Case 1 algorithm A requests only unknown nodes, adversary B is able to
trick A into unveiling part of G from which A cannot gather knowledge about the rest
of G, namely component C.

Can A act smarter? Assume that A has already received the data items of the middle
nodes m1, . . . , mk of the triangles {lj ,mj , rj} of known nodes connected by frontier
nodes rj and unknown nodes uj to the still unknown center of G, see Figure 33. If A
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5.3 Inapproximability Results

requests an unknown node with two unknown neighbors, then B tricks A by constructing
a new triangle {li,mi, ri}.

m1 r1l1 u1

...
...

mj rjlj uj

...
...

mk rklk uk

mi rili ui

a

c

b

d

ce
nt
er

Figure 33: The center of a hard instance (gray nodes are unknown,
the algorithm receives data items for bold nodes, the dashed edge
is an example for {mi = v, rj = v3} in case 3)

Case 2: ai = 〈u, v1, v2, v〉 is a type-2 data item. Again, all nodes of ai are unknown
and we may assume that A matches u with v = v1. Adversary B constructs a
triangle {li,mi, ri} with li = v2,mi = u, ri = v1 and inserts edge {ri, ui}, with a
new unknown node ui, to connect the triangle to the unknown center. Observe that
before nodes mi, ri are matched, nodes mi, li are of type 2 and ri, ui are of type 1.
After matching mi, ri, nodes li,mi, ri are isolated and ui turns into a type-3 node.
Hence the invariant still holds. Again, a maximum matching scores two edges,
namely {li,mi}, {ri, ui}, and A scores the edge {mi, ri}.

Now assume that A tries to explore the neighborhood of known nodes. Observe that
the only data items with a known node are of type 3 and have exactly one unknown
node: since the known nodes lj ,mj , rj are already isolated, an unknown node can only
be explored in the neighborhood of frontier nodes. Again, adversary B tricks A with a
new triangle {li,mi, ri}.

Case 3: ai = 〈u, v1, v2, v3, v〉 is a type-3 data item. Since v3 is known, v3 occurred in
a previously presented data item. Observe that in our construction so far, the only
type-3 nodes are unknown neighbors of known frontier nodes. So u is the neighbor
of a frontier node rj = v3 with j < i.

Is algorithm A successful in exploring the unknown neighbor uj of rj , i.e. does u = uj

hold? Not necessarily, since B may on the fly construct further neighbors of rj .
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

Why? Since rj gets matched as soon as it becomes known, algorithm A never gets
to see the data item of rj and consequently A can never tell if it already knows all
neighbors of rj . (Adversary B uses this trick here as well as in the end game.)

Since v3 = rj is matched and v1, v2 are unknown, we may assume that A matches u
with v = v1. Adversary B behaves exactly as in case 2 and constructs the triangle
{li = v2,mi = u, ri = v1} and inserts the edge {ri, ui} where ui is a new unknown
node. To complete its trick, adversary B also inserts the edge {mi = u, rj = v3}
(see e.g. the dashed edge in Figure 33). Before mi, ri are matched, node li is of
type 2, nodes ri, ui are of type 1 and mi = u is of type 3. After matching mi, ri,
nodes li,mi, ri are isolated and ui turns into a type-3 node. Node uj is still of
type 3. Hence the invariant still holds. As in case 2, a maximum matching scores
edges {li,mi}, {ri, ui} whereas A scores {mi, ri}.

This concludes the regular game. We show later that in the first round of the endgame
adversary B makes algorithm A match the center nodes a and b. Hence in the next and
last round algorithm A matches node c. So algorithm A scores two edges in the center,
whereas three edges are optimal. As claimed, we get

|M | = s+ 2 = ∆− 1 and |M∗| = 2s+ 3 = 2∆− 3 ,

where M∗ and M denote a maximum matching resp. the matching computed by A.
Observe that our invariant still holds in the first round of the endgame. Again,

adversary B presents the highest ranked data item of type 1, 2, or 3. Nodes a and c are
the only type-1 nodes left, since nodes uj have known neighbors and are of type 3 and
all other nodes have degree two and are of type 2. The degree of a and c is δ ≤ 3 + s,
since both a and c have three center neighbors and in each round of the regular game
at most one neighbor is added to a resp. c. Let a∆−2 be the data item received in
round s+ 1 = ∆− 2.

Case 4a: a∆−2 = 〈u, v1, . . . , vδ, v〉 is a type-1 data item. Since all nodes of a∆−2 are
unknown we may assume that A matches u with v = v1. Adversary B sets u = a,
v1 = b and v2, . . . , vδ as the remaining neighbors of a.

Case 4b: a∆−2 = 〈u, v1, v2, v〉 is a type-2 data item. Since all nodes of a∆−2 are
unknown we may assume that A matches u with v = v1. Adversary B sets u = b,
v1 = a and v2 = d.
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Case 4c: a∆−2 = 〈u, v1, v2, v3, v〉 is a type-3 data item. As in case 3, the known node v3

is some matched frontier node rj , j < ∆− 2 and we may assume that A matches u
with v = v1, since v1, v2 are unknown. As in case 3, adversary B does not present
the data item of the unknown node uj . Instead, B makes b a neighbor of rj by
inserting the edge {v3=rj , b}—now b has three neighbors—and sets u=b, v1=a,
and v2=d.

Adversary B does not violate degree constraints. Each node u introduced in case 1
has degree at most Du ≤ ∆. All other degrees are at most three, but for nodes a and c
and for frontier nodes rj . As discussed, nodes a and c have degree at most δ = 3 + s ≤ ∆.
Frontier node have degree at most 3 + (s− 1) + 1 = ∆, since in each but the first round
of the regular game and in round s+ 1 at most one incident edge is added.

Theorem 64. Let A ∈ VA. For any ε > 0, there is an input graph of degree at most ∆
for which A computes a matching of size at most ∆−1

2∆−3 + ε times optimal.

Proof. We modify the adversary who constructs hard inputs in the proof of Lemma 63.
The basic idea is to construct a large number connected components, each of which is a
graphs like in Lemma 63 with a variable number of nodes and “local” approximation ratio
at most ∆−1

2∆−3 . Thereafter, to commit to the announced number of nodes, the adversary
constructs a small portion of the graph which may be solved optimally by the algorithm.
The number of edges scored by the algorithm in this portion is only constant. Thus the
overall approximation ratio converges to ∆−1

2∆−3 for a large number of nodes.
Before the first round, the modified adversary B′ announces the number t ·∆2 of

nodes, where t ≥ 1 is integer. Throughout the proof we frequently refer to the data item
types and cases found in the proof of Lemma 63 (types 1, 2, and 3 and cases 1, 2, 3,
and 4a-c). Again, the game between A and B′ is split up into the regular game and the
endgame. In each round of the regular game, again, the construction of B′ keeps up the
invariant that all non-isolated nodes in the graph have data items of type 1, 2, or 3, and,
again, adversary B′ returns the highest priority data item having one of these types.

However, depending on the requests of A, not only one but several centers C1, C2, . . .

might be constructed, each in its own connected component of G. Each center Ci is
defined as in the proof of Lemma 63, with nodes ai, bi, ci, and di and two more nodes
unique to Ci, see Figure 33. Each Ci gets attached to it some triangles which are not
connected to any other center. Thereafter, the nodes of Ci are matched in the same
order as in the proof of Lemma 63, i.e., when no more triangles are attached, nodes ai
and bi are matched to each other before ci is matched. Once ci is matched, all edges in
the connected component of Ci are removed.
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

As we shall prove, the large number of nodes enables B′ to construct a large number
of connected components, each of which is like the graph constructed in Lemma 63 with
approximation ratio exactly ∆−1

2∆−3 . A negligible portion of the graph may be solved
optimally by A. This does not increase the overall approximation ratio, asymptotically.

Assume that B′ has already created the centers C1, . . . , Cl. Call Ci active if ai is not
yet matched with bi, and inactive otherwise. The construction asserts that C1, . . . , Cl−1

are inactive; Cl might still be active. (We note here that after center Cl becomes inactive,
nodes in the fragment (cf. Section 5.3.1) consisting of the star centered at node cl do
not have data items of types 1, 2, or 3. However, as in Lemma 63 we may assume that
algorithm A scores an optimal number, namely one, of edges in this fragment. Therefore,
the additional data item types do not have effect on the rest of the construction and we
do not discuss these types explicitly.)

• Assume that in the next round A receives a type-2 data item of a node with two
unknown neighbors. Assume that Cl is already inactive, then B′ creates the next
center Cl+1 and connects a new type-2 triangle to al+1, cl+1 as described in case 2.

If otherwise Cl is still active, let δ be the number of neighbors of al, cl constructed
so far and recall that we demand δ ≤ ∆. If δ < ∆ holds, then B′ connects a new
type-2 triangle to al, cl as described in case 2. If δ = ∆, then B′ makes A match al
with bl as described in case 4b, thereby inactivating Cl.

• Assume that in the next round A receives a type-3 data item. By construction,
the received node is unknown and among its three neighbors there is exactly one
known node v3, where v3 = r is a frontier node r in the connected component of
the still active center Cl. Let δ be the number of neighbors of al, cl constructed
so far. If δ < ∆, then B′ connects a new type-3 triangle to al, cl as described in
case 3. If δ = ∆, then B′ makes A match al with bl as described in case 4c, and
inactivates Cl.

• Assume that in the next round A receives a type-1 data item. If the degree of the
received node is smaller than ∆, then B′ proceeds as in case 1 and creates a new
type-1 connected component.

Now assume that the received node has degree ∆. If nodes al, cl have degree less
than ∆, then again B′ creates a new type-1 connected component. If nodes al, cl
have degree δ = ∆, then B′ makes A match al with bl as described in case 4a, and
thereby inactivates Cl.
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Why is Cl inactivated before B′ constructs the next active center? In type-2 and
type-3 rounds an increasing number of triangles is connected to Cl until the degrees
of al, cl are ∆. (In intermediate type-1 rounds only type-1 connected components are
constructed.) Thereafter, Cl is inactivated in the first type-2 or type-3 round or the
first type-1 round in which a data item of a degree-∆ node is received. (In intermediate
type-1 rounds with nodes of degree less than ∆ only type-1 connected components are
constructed.)

The endgame begins as soon as B′ has constructed k ≥ t ·∆2 − 6∆ nodes. Let ν =
t ·∆2 − k be the number of nodes still to be constructed. We have 6∆ ≥ ν ≥ 2∆, since
in each round no more than 4∆ nodes are introduced (e.g. when ∆ = 3 holds and a new
triangle is connected to a new center).

Since B′ has committed to a number of exactly t · ∆2 nodes, in the first round
of the endgame B′ utilizes all remaining ν nodes to create additional connected com-
ponents Γ1, . . . ,Γc, each a complete bipartite graph with nr = 2 nodes on the right
side and 2 ≤ nl ≤ ∆ nodes on the left. Adversary B′ constructs large left sides such
that c = O(1) is constant and all nodes have degree at least two. All nodes in Γ1, . . . ,Γc
are still unknown, in particular all nodes have data items only of types 1 or 2. Since nr = 2,
each Γi has at most two edges in a maximum matching, making an additional constant
number 2c of optimal edges in total. We assume that A performs optimally in all Γi,
thereby scoring 2c edges.

Also during the endgame, A matches still unmatched nodes in the already inactive
centers C1, . . . , Cl−1, if they were not matched during the regular game. Moreover, we
assume that A performs optimally also in the connected component of the last center Cl.

We bound the approximation ratio of A. Recall that A scores only one out of two
edges in each type-1 connected component, therefore to bound the performance of A we
may assume that no type-1 components were constructed. Since each center Ci and each
triangle has a constant number of nodes and Ci is connected with at most ∆−3 triangles,
the connected component of Ci has O(∆) nodes. The inactive centers C1, . . . , Cl−1 each
have a maximum number of triangles, hence their components have Θ(∆) nodes each.
Since only Cl might be active at the end of the regular game, there are at least

l − 1 = Ω(t∆)
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

centers being inactivated. But A scores ∆− 1 out of 2∆− 3 edges in the component of
an inactive center, hence the approximation ratio of A is at most

(l − 1) · (∆− 1) + (2∆− 3) + 2c
(l − 1) · (2∆− 3) + (2∆− 3) + 2c ,

since A performs optimally in Cl and in Γ1, . . . ,Γc. Letting t→∞ we get l →∞ and
this ratio is dominated by (l−1)·(∆−1)

(l−1)·(2∆−3) . The statement follows.

Next, we adapt the construction used for for VA-algorithms to bipartite graphs.

Theorem 65. Let A ∈ VA. For any ε > 0, there is a bipartite input graph for which A
computes a matching of size at most 3

4 + ε times optimal.

Proof. We describe the adaptive priority game between A and an adversary B who
proceeds very similar to the adversary in the proofs of Theorem 64 and Lemma 63. The
set of ∆2 + 4 nodes is known in advance to algorithm A, and all degrees are bounded by
at most ∆. Here, the center of the graph has four nodes. We reuse the notation from
the proof of Lemma 63: in particular, we use the same types of data items.

In each round during the regular game adversary B keeps up the invariant that all
known nodes are matched (recall that a node is called known as soon as A has received
its name in a data item). Adversary B presents the highest priority data item which has
one of the following types.

Case 1: In a type-1 data item 〈u, v1, . . . , vDu , v〉 all nodes are unknown and u has
degree 3 ≤ Du ≤ ∆. W.l.o.g. we may assume that A matches u with v = v1.

Adversary B constructs an extra connected component which is not connected to
the center. Since the graph is bipartite, the extra component may not contain
triangles and hence B cannot proceed as in Lemma 63. Instead, adversary B

constructs the extra connected component depicted in Figure 34.

Observe that the extra component contains four edges in a maximum matching
(the double edges), and that besides edge {u, v1} algorithm A can pick at most two
more edges in the extra component. W.l.o.g. we assume that A picks two more
edges instantly, i.e. these rounds of the game do not need to be analyzed explicitly.
Thereafter all known nodes are matched.

Case 2: In a type-2 data item 〈u, v1, v2, v〉 all nodes are unknown. W.l.o.g. we may
assume that A matches u with v = v1.
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v1 u v2

v3

vDu

...

Figure 34: An extra component (the algorithm receives a type-1
data item for the bold node u)

Adversary B constructs part of the graph which is connected to the center. However,
since the graph must be bipartite, adversary B may not construct a triangle as in
Lemma 63, but rather constructs the gadget in Figure 35. Nodes are relabeled such
that we have u = mi, v = ri, and v2 = li.

li mi ri ui

a

c

ce
nt
er

...

...

Figure 35: A gadget connected to the center (the dashed edge
illustrates case 3)

Again, algorithm A instantly scores two more edges in the gadget, whereas the
gadget contains four edges in a maximum matching. Node ui remains unknown
throughout the rest of the regular game, as follows from the next case.

Case 3: In a type-3 data item 〈u, v1, v2, v3, v〉 nodes u, v1, and v2 are unknown and v3

is known. Since known nodes are already matched, w.l.o.g. we may assume that A
matches u with v = v1.

Nodes are relabeled such that we have u = mi, v = ri, and v2 = li. By construction,
node v3 is a frontier node rj of some previously constructed gadget, i.e. we have j < i,
since frontier nodes are the only known nodes with neighbors which are not yet
matched. Adversary B adds the required edge to the construction (the dashed edge
in Figure 35 illustrates such an additional edge): this is possible, since algorithm A

never gets to know the complete set of neighbors of rj .
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Again, we assume that A instantly scores two more edges in the gadget. As in case
2, node ui remains unknown.

Since each extra component and each gadget contains at most ∆ + 6 nodes and
the graph contains ∆2 + 4 nodes in total, the above construction can be repeated at
least k = Ω(∆) times. Hence the approximation ratio of A is bounded by at most

lim
∆→∞

3k +O(1)
4k +O(1) = 3

4 ,

where constants account for the following edges scored by A.

• A constant number of edges incident with center nodes a and c, illustrated by
double drawn edges in Figure 35.

• Edges connecting nodes which B introduces in the endgame to deliver on its promise
that the graph contains ∆2 + 4 nodes: once too few nodes are left to construct
another gadget or extra component, adversary B puts the remaining nodes in their
own connected component. This component is complete bipartite with exactly two
nodes in one of the partitions: algorithm A scores two edges.

For consistency, adversary B enforces a minimum degree of two for all nodes in the
extra component by including sufficiently many nodes. Therefore B asserts that
adding the last gadget or extra component does not leave to few nodes, namely by
limiting the size of the last extra component accordingly (the size of a gadget is
always limited by a constant).

Note. The inapproximability bound in Theorem 65 also holds for algorithms which
may choose the partition of the nodes. Therefore the construction is changed slightly
such that the graph contains two centers instead of one, and each gadget is connected to
one of the centers depending on which partition the node u matched first in the gadget
belongs to.

“Double-Sided” Algorithms. The MDS algorithm does not perform better than
the KarpSipser algorithm, as we show next. Thereafter we show that also the Double-
MinGreedy algorithm as well as all otherDSE01-algorithms perform no better than Karp-
Sipser if degrees are bounded by ∆ = 3.
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Theorem 66. For each ∆ ≥ 3 there is a bipartite graph of degree at most ∆ for which
MDS computes a matching of size at most ∆

2∆−2 times optimal.

cL

u1
L u1

R

ukL ukR

cR...

Figure 36: A hard instance for MDS

Proof. Choose k = ∆ − 2. The hard instance is depicted in Figure 36. Observe that
the degree sum of any edge is at least 4, since nodes cL and cR have degree at least 3.
Hence we may assume that in the first step MDS picks edge {u1

L, u
1
R} (the top crossed

edge). Assume that edges {u1
L, u

1
R}, . . . , {uiL, uiR} with i < k have already been picked.

The minimum degree sum is still four, and edge {ui+1
L , ui+1

R } is picked next. In the end,
for each of nodes cL and cR an incident edge is picked.

Hence the computed matching has k + 2 = ∆ edges, whereas a maximum matching
consists of the 2k + 2 = ∆− 2 double drawn edges.

Theorem 67. Let A ∈ DSE01. For any ε > 0, there is a bipartite input graph of degree
at most ∆ = 3 for which A computes a matching of size at most 3

4 + ε = ∆
2∆−2 + ε times

optimal.

Proof. We slightly change the adversary B from the proof of Theorem 62 to obtain an
adversary B′ for A. Adversary B′ removes right paths and cycles and their incident edges
from all traps, and connects the path node pi4 to nodes ci+1

3 , pi+1
2 of the next cycle and path.

Cycle C and the cycle on nodes e1, e2, e3, e4 along with all their incident edges are replaced
by two edges in the first and the k-th cycle and path, namely edges {c1

3, p
1
1}, {c1

2, p
1
2}

resp. {ck4, pk4}, {pk1, pk4}, see Figure 37. The length k of the chain is be determined by B′

during the game based on the actions taken by A.
Before the first round, adversary B′ announces that the number of nodes is 8n, for

some large integer n. Besides the chain of paths and cycles, the graph has n−k additional
connected components, each with two length-four cycles connected by two edges like in
Figure 38. Observe that any edge in any connected component is incident either with a
degree-2 node and a degree-3 node or with two degree-3 nodes. No edge is incident with
two degree-2 nodes.

The following Invariant holds at the beginning of each round 3i + 1 (for i ≥ 0)
throughout the adaptive priority game: so far, the chain contains 0 ≤ k∗ ≤ i paths and
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Figure 37: The construction of adversary B′: no additional edges
are inserted during the game

Figure 38: An additional component

cycles and there are i − k∗ additional connected components. In particular, all nodes
in these parts of the graph are isolated, but node pk∗4 of the currently “rightmost” path
(if any). Observe for i = 0: in the first round no nodes are isolated and the Invariant
holds.

Consider round 3i+1. Observe that the minimum degree is two (adversary B does not
allow degree 1, cf. Section 5.3.1), and that every edge is incident with at least one node of
degree three. Adversary B′ presents the highest priority data item 〈(u, du, bu), (v, dv, bv)〉
in the order submitted by A with du, dv ∈ {2, 3} and at least one of du, dv equals three.
The original degree bits may take on any value, since the construction of B asserts that
for each received data item the current and original degrees of both nodes are the same.

If du=dv=3, then B′ constructs the next additional component and relabels nodes
such that u and v are the two topmost nodes in Figure 38. Observe that A scores at
most three out of four edges in this component, since in the remaining fragment (cf.
Section 5.3.1) only gray edges are left. W.l.o.g. we assume that A scores the additional
two edges in the next two rounds. Since k∗ is not increased, the Invariant continues to
hold. Here, current and original degrees of the received nodes might in fact be different,
however, since this part of the graph is disconnected from the rest algorithm A cannot
take any advantage.
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5.3 Inapproximability Results

If du 6= dv, then w.l.o.g. let du = 3 and dv = 2. By the Invariant, algorithm A

has already matched nodes p1
2, p

1
3, p

2
2, p

2
3, . . . , p

k∗
2 , p

k∗
3 in previous rounds. Adversary B′

relabels nodes such that u=pk∗+1
2 and v=pk∗+1

3 hold. After pk∗+1
2 and pk∗+1

3 are matched,
the remainder of the k∗+1-th path and cycle forms a fragment of the graph, see gray
edges in Figure 37. In this fragment A scores at most two more edges. W.l.o.g. we assume
that A does so in the next two rounds. (Again, algorithm A cannot take advantage
of differing current and original degrees.) Hence k∗ is incremented by one and the
Invariant holds before round 3(i+ 1) + 1.

We assume that the last path and cycle resp. the last additional component is solved
optimally, i.e. algorithm A scores four out of four edges. In each other path and cycle
and in each other additional component, algorithm A scores three out of four edges.
Hence B′ can choose sufficiently large n such that the approximation ratio of A is at
most (n−1)·3+4

4 ≤ 3
4+ε.

For bipartite graphs, “double-sided” algorithms in class DSE01 (like e.g. Double-
MinGreedy) perform only scarcely better (if at all) than DS01-algorithms, as we show
next.

Theorem 68. Let A ∈ DSE01. There is a bipartite input graph of degree at most ∆≥3
for which A computes a matching of size at most ∆+1

2∆−2 times optimal.

Proof. The adaptive priority game between A and an adversary B lasts for ∆ + 1 rounds.
Let δ = ∆ − 3. The final construction G contains the graph G′ depicted in Figure 39
as a subgraph. In particular, graph G contains additional edges which are not depicted
in G′, but G does not have any additional nodes.

The construction of B proceeds such that in rounds 1, . . . , δ algorithm A picks
edges {u1, v1}, . . . , {uδ, vδ} and after round δ the reduced graph consists only of gray
nodes and of edges connecting gray nodes. Observe that all remaining edges touch exactly
four gray nodes, namely the unlabeled ones in the figure. We assume that in this reduced
graph algorithm A scores four edges in four rounds, which is optimal. Since G′ contains
a perfect matching of size 2∆− 2 and A scores one edge in each of δ + 4 = ∆ + 1 rounds,
the approximation ratio is ∆+1

2∆−2 , as claimed. In the rest of the proof it remains to discuss
the first δ rounds.

Recall that A does not receive identifiers of neighbors of the nodes in a data item.
As a consequence, in each round adversary B is free—without being inconsistent—to
relabel nodes in G′ according to the data item presented to A.
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a

a′

b

b′

a1 u1 v1 b1

ai ui vi bi

aδ uδ vδ bδ

...

...

Figure 39: The subgraph G′ of the final construction (the algorithm
receives data items for bold nodes)

We proceed inductively. Assume that A has picked edges {u1, v1}, . . . , {ui−1, vi−1}
and consider round i. The minimum degree in the reduced graph Gi is 2. Adversary B uses
the set D = {2, . . . ,∆} of allowed degrees, cf. Section 5.3.1. From the order submitted
by A in round i adversary B presents the highest priority data item 〈(u, du, bu), (v, dv, bv)〉
with du ∈ D and dv ∈ D. Bits bu and bv are ignored: the construction asserts that the
degrees of nodes u and v have not changed since the beginning of the game, as we show
below. Adversary B relabels nodes such that u = ui and v = vi hold: algorithm A picks
edge {ui, vi}, as desired.

Now B delivers on its promise that both nodes have degree du resp. dv. There-
fore B inserts additional edges into the graph. In particular, since ui already has two
incident edges in G′, adversary B adds du − 2 edges, each incident with ui and one of
nodes a, a′, a1, . . . , aδ. Analogously, adversary B adds dv − 2 edges incident with vi and
one of nodes b, b′, b1, . . . , bδ.

It remains to show that B does not violate degree constraints when inserting new
edges. Since we have du ≤ ∆ and thus du− 2 ≤ ∆− 2, for all u-nodes at most δ(∆−2) =
(∆− 3)(∆−2) = (∆−3)2 + (∆−3) edges are inserted. Since all a-nodes can receive up
to δ(∆−3) + 2(∆−2) = (∆−3)2 + 2(∆−2) edges, their degrees are increased to at most ∆
if new edges are distributed evenly. Analogously, degrees of b-nodes are at most ∆.

Note. This construction also allows to show the same bound if an algorithm may
additionally choose the partition of each node.
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5.3 Inapproximability Results

Degree Sensitivity for Paths. We continue with a result on algorithms picking entire
paths instead of single edges.

Theorem 69. Let A be a DSP01-algorithm. For each ε > 0 there is a bipartite graph on
which A computes a matching of size at most 1

2 + ε times optimal.

Proof. We present the adaptive priority game between A and an adversary B. The family
of graphs constructed by B will be such that the approximation ratio achieved by A
degrades as the maximum degree ∆ is increased.

u1

u2

u∆

...

w1

w2

w∆

...

Figure 40: Hard input instances
for DSP01-algorithms: the subgraph G′

u1

u∆

...

...

...

w1

w∆

...

...

...
vi1 vi2

vi3 vi4

vini−1 vini

Figure 41: A path P i is added (optimal
edges are drawn double, edges picked
by A are crossed, deferred edges con-
necting path nodes with u-nodes resp.
w-nodes are not drawn)

The final construction has 4∆ + 6 nodes and contains the subgraph G′ of 2∆ + 6
nodes depicted in Figure 40 (node labels given there are not actual node names, but
rather used to discuss the construction). Further 2∆ nodes and incident edges are added
to G′ depending on the actions taken by A. In particular, further ∆ nodes are added to
each partition.

We first give an overview over the game and argue the claimed approximation ratio.
Thereafter we discuss the construction in detail.

During the regular game, which begins with the first round, data items received by A
contain solely newly added nodes which are not contained in G′ (this can be accomplished
by relabeling nodes accordingly). The same number of nodes is added to the left as well
as to the right side of the bipartition, where at most ` nodes are added to each partition
per round since A may pick at most ` edges at a time. Denote by `i the total number of
nodes added to each side after round i (we have `0 = 0). The regular game ends after
the first round i for which ∆− `− 1 ≤ `i ≤ (∆− `− 1) + (`− 1) holds.
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5 APPROXIMATION BOUNDS FOR GREEDY MATCHING

Next, we discuss additional edges. The final construction asserts that each of the
nodes matched by A during the regular game is incident with a distinct optimal edge in
a maximum matching. Hence A rules out twice as many optimal edges as it picks. In
favor of A, we assume that only ∆− `− 1 edges are picked during the regular game and
thereafter A scores an optimal number in the reduced graph.

The end game starts when the regular game is over. Adversary B adds r nodes to each
partition, where `+ 1 ≥ r ≥ 2 is chosen such that ∆ nodes are added to each partition
in total. More edges are added only incident with these new 2r nodes. We assume that
in the reduced graph A computes an optimal matching, which has at most 2`+ 2 + 6
edges. Why? At most 2r ≤ 2`+ 2 nodes are added, all new edges are incident with the
newly added nodes, and all other edges (which are contained in G′) are incident with the
three leftmost nodes and the three rightmost nodes in Figure 40.

Consequently, since ` is a constant and hence lim∆→∞
`
∆ = 0 holds, algorithm A

achieves approximation ratio at most

lim
∆→∞

(∆− `− 1) + (2`+ 8)
2(∆− `− 1) + (2`+ 8) = lim

∆→∞

∆ + `+ 7
2∆ + 6 = 1

2 .

It remains to show the detailed construction of B during the regular game and the end
game. We start with the regular game, where we proceed inductively. Consider round i
and assume that previously only nodes not contained in G′ have been matched by A. (The
assumption holds in the first round.) All nodes in G′ have degree at least three. Adver-
sary B chooses the set of allowed degrees D = {3, . . . ,∆}, cf. Section 5.3.1, and presents
the highest priority data item 〈P1, . . . , Pk〉 for which in each path Pi =

(
(vij , dij , bij)

)ni

j=1
all degrees dij are contained in D. Bits bij are ignored, since the construction asserts that
no edges incident with nodes in the data item have been removed earlier, as we show
below.

For each path Pi adversary B adds the nodes vij and edges {vij , vij+1} contained in Pi
as well as an edge connecting the last node vini

with the first node vi1, see Figure 41.
Furthermore, an edge connects each “odd” v-node vi1, vi3, . . . , vini−1 with a u-node and
each “even” v-node vi2, vi4, . . . , vini

with a w-node, see double drawn edges in the figure.
These edges are contained in a maximum matching, and each such edge connects with
a u-node resp. with a w-node which does not yet have an incident optimal edge. Observe
that, after edges are picked, the inductive hypothesis holds in the next round.

Adversary B has to deliver on its promise that node vij has degree dij . We only
discuss an “odd” v-node, the argument is analogous for “even” v-nodes. Since vij has two
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5.3 Inapproximability Results

incident path edges and one incident optimal edge, adversary B inserts dij − 3 additional
edges incident with vij . In particular, these edges connect vij with u-nodes. The degree
constraint is maintained for u-nodes. Why? At most dij − 3 ≤ ∆− 3 edges are added for
each v-node, at most ∆− r ≤ ∆− 2 many v-nodes need additional edges, there are ∆
many u-nodes, each u-node can accept ∆− 4 additional edges, and for sufficiently large ∆
we have

(∆− 3)(∆− 2) = ∆2 − 5∆ + 6 ≤ ∆2 − 4∆ = ∆(∆− 4) .

In the end game, adversary B adds a complete bipartite subgraph of 2r new nodes.
Each new “odd” node is connected with an optimal edge to a distinct u-node. The
degree constraint holds for u-nodes. Why? Since r many u-nodes did not receive an
optimal edge during the regular game and we assumed above that each u-node receives
at most ∆− 4 edges from v-nodes. Analogously, each new “even” node is connected with
an optimal edge to a distinct w-node without violating the degree constraint.

Since the subgraph is complete with at least r ≥ 2 nodes in each partition and
each node has an incident optimal edge, all added nodes have degree at least three.
Consequently, adversary B acts consistently when presenting only nodes of degree at
least three during the regular game.

Note. This construction also allows to show the same bound if an algorithm may
additionally choose the partition of each node.

Hypergraph Matching. We conclude the proof section and show that the greedy
approach fails for hypergraph matching.

Theorem 70. Let A ∈ VAk be an algorithm for matching on k-uniform hypergraphs.
There is a graph on which A computes a matching of size exactly 1

k times optimal. In
particular, in this graph degrees are bounded by at most four.

Proof. In the adaptive priority game, the instance constructed by an adversary B is illus-
trated in Figure 42. White vertical edges constitute a maximum matching {e0, . . . , ek−1}
of size k. By labeling nodes in adversarial fashion, depending on the first priority order
submitted by A, adversary B forces A to pick the topmost horizontal white edge e. We
call a node an e-node if it belongs to e and a non-e-node otherwise. Further edges—see
below—all contain an e-node. Hence no edge besides e can be picked by A and the
approximation ratio is exactly 1

k .
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Figure 42: A hard k-uniform hypergraph matching instance

The graph also contains the k − 1 shaded edges in the figure. For 0 ≤ i ≤ k − 2,
the i-th shaded edge contains the e-node of edge ei and k − 1 non-e-nodes, namely one
non-e-node of each edge ej 6= ei, such that the following holds. Each node is contained in
at most one shaded edge. Observe that the e-node of ek−1 and one non-e-node of each
of e0, . . . , ek−2, call these nodes v0, . . . , vk−2 respectively, are not contained in a shaded
edge.

S0 = { 1, 2, 3, 4, . . . , k − 2 }
S1 = { 1, k − 1, k, k + 1, . . . , 2k − 5 }
S2 = { 2, k − 1, 2k − 4, 2k − 3, . . . , 3k − 9 }
S3 = { 3, k, 2k − 4, }

...
...

...
. . .

Sk−2 = { k − 2, 2k − 5, 3k − 9, K }

Figure 43: Definition of Sets Si

The graph contains k−1 more edges, indicated by bold black lines connecting two nodes
in the figure. Besides the two nodes in each black edge, adversary B uses K = (k−1)(k−2)

2
additional nodes to assert that each black edge has k nodes in total. These additional
nodes, call them 1, . . . ,K, are arranged in sets S0, . . . , Sk−2 of size k − 2 each such that

• every node is contained in exactly two of the Si and

• we have |Si ∩ Sj | = 1 for i 6= j.
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5.3 Inapproximability Results

Observe that these requirements are satisfied by the construction given in Figure 43: the
“matrix” is composed of an “upper triangular matrix” U , which contains nodes 1, . . . ,K in
row-wise ascending order, and a “lower triangular matrix” L, whose j-th column contains
all nodes in the j-th row of U . Now, the i-th new edge, with 0 ≤ i ≤ k − 2, contains
node vi, the e-node of e(i+1) mod (k−1), and all nodes in Si.

We discuss the strategy of B. Therefore we first observe the following properties of
the construction:

i. The e-nodes of e0, . . . , ek−2 have degree four.

ii. All other nodes, including nodes in S0, . . . , Sk−2, have degree two.

iii. Any two edges have at most one node in common.

iv. Edge e shares exactly one node with any other edge.

In the first round, from the order submitted by A adversary B presents the highest
priority data item 〈u,W1, . . . ,WDu ,Wi〉 with Du ∈ {2, 4} (which are the only degrees
present in the graph, by i. and ii.), Wj ∩Wl = ∅ for j 6= l (node u is the only node
common to all incident edges, by iii.) and |Wj | = k − 1 for all j (the graph is k-uniform).
Algorithm A picks edge {u} ∪Wi.

First assume that Du = 4 holds. Then B relabels nodes such that u is the e-node
of e0. This is consistent, since this is the first data item revealed to A. Furthermore,
adversary B relabels nodes such that we have e = {u}∪Wi, i.e. algorithm A picks edge e.
The matching is maximal by iv. In case Du = 2 holds, adversary B relabels nodes such
that u is the e-node of ek−1, which has degree two by construction, and again lets the
picked edge be e = {u} ∪Wi.

Note. It would be desirable to know if a 1
k -bound can also be shown for k-partite uniform

hypergraphs.
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6 Conclusions

We studied greedy algorithms which compute maximal matchings by repeatedly adding
edges to the solution, in particular deterministic algorithms which pick edges incident with
nodes of current minimum degree. The KarpSipser algorithm and 1-2-Greedy, though
conceptually very simple, achieve optimal approximation ratio on bipartite resp. general
graphs of bounded degree. Optimality holds w.r.t. large classes of resource-unconstrained
adaptive priority algorithms.

Proof Method. In the proof of the approximation guarantees for both algorithms
we use a charging scheme based on connected components of the graph (V,M ∪M∗),
where M is the solution of the algorithm and M∗ is a maximum matching.

A downside of the analysis is a quite detailed argument. Is there another approach
which allows to prove the same bounds in a more concise analysis? If not, are there
algorithms on par with KarpSipser and MinGreedy which allow a simpler analysis?
This might be achieved for algorithms with more fine-grained control over which edge to
pick next.

Stronger Data Items. For an adaptive priority algorithm, control over the next edge
is restricted by the type of data items: a data item for node u might expose a neighbor
of u, the degree of u, or even the entire set of neighbors of u. We have shown that
even algorithms using the latter data items, namely VA-algorithms, cannot beat the
approximation performance of 1-2-Greedy on general graphs, even though they are
able to “traverse” the graph.

Our construction inherently depends on picking edges in triangles. If a VA-like data
item exposes the neighbors of both nodes of an edge, then an algorithm is able to prevent
picking edges in triangles by requesting nodes with disjoint sets of neighbors. Is there an
algorithm avoiding triangles which attains at least equal approximation performance?
Can it even beat the performance of 1-2-Greedy?

For bipartite graphs, a similar question remains to be answered. Here, we show
that among degree sensitive DS01-algorithms the KarpSipser algorithm is optimal with
approximation ratio ∆

2∆−2 , if degrees are bounded by ∆. However, our inapproximability
bound for VA-algorithms merely converges to 3

4 in our construction for ∆→∞.
Is there a VA-algorithm with stronger approximation performance than algorithms

in DS01? Are VA-algorithms limited by factor 1
2 as well?
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6 CONCLUSIONS

Approaches to Randomization. If all ties in 1-2-Greedy are broken uniformly at
random, and degrees are bounded by at most ∆, is an expected approximation ratio
larger than ∆−1

2∆−3 achieved? Does this algorithm beat factor 1
2 for ∆→∞?

The randomized MRG algorithm achieves approximation ratio at least 1
2 + 1

400.000 ,
see [ADFS95]. What is the expected performance of an algorithm which picks an edge
like 1-2-Greedy if there is a node of degree at most two and like MRG otherwise?
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Appendix A. Linear Time Implementations

Literature on randomized greedy matching frequently states that a given algorithm can
be implemented in linear time O(|V | + |E|) for input graph G = (V,E), but does not
present such an implementation. In this section we devise data structures for several
algorithms.

In any case, we do not claim to be the first to present such an implementation, and
we provide references to the literature to the best of our knowledge. For MRG and
Shuffle, see [PS12].

Preparations. We assume that the input graph G = (V,E) is defined on node set V =
{0, 1, . . . , n− 1} and that G is given in the default adjacency list representation, i.e. for
any node x a list Lx contains all neighbors of x.

In a linear time preprocessing step, we compute linked adjacency arrays. Their
purpose is to allow the removal of any given edge from the graph in constant time. The
linked adjacency array Ax for node x stores all neighbors of X and has the same initial
length as Lx. During the course of the algorithm the number of cells in Ax does not
shrink but we assert that in each step the remaining neighbors of x are stored in a
consecutive prefix of Ax, and the rest of Ax is empty. We track the size of the non-empty
part of Ax using a counter.

How can an edge be removed in constant time? Let a node x and an index of a cell
in Ax be given, say containing neighbor y. The array cell in Ax containing node y also
stores a link to x in Ay, i.e. the index of the array cell in Ay containing node x, see
Figure 44. In order to remove the edge {x, y}, we move the entry of the last non-empty
cell in Ax to the position of y, and proceed analogously for Ay and x. We also update
the links of the two moved entries accordingly; this is done in constant time using the
links stored inside the moved entries.

To initialize linked adjacency arrays in linear time O(|V | + |E|), we first initialize
empty arrays A0, . . . , An−1 of lengths |L1|, . . . , |Ln−1|, respectively. Then we scan each
of L0, . . . , Ln−1 in this order from beginning to end. When edge {x, y} occurs for the
first time then we save a linked pair of entries in the currently first empty cells in Ax
and Ay. We ignore the second occurrence of edge {x, y} like this: when we are scanning
list Lx and encounter {x, y} with x < y, then we process {x, y} as described above; when
we scan list Ly and encounter {x, y} when y > x holds, then {x, y} was already processed
earlier and we ignore the edge.
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Figure 44: Linked adjacency arrays with an example edge {x, y}:
the gray sub-arrays are already empty

A.1 Greedy

Additional to linked adjacency arrays, we use an edge array of length |E|. In a linear
time preprocessing phase, the edge array is filled with all edges {i, j} ∈ E, in arbitrary
order (when scanning adjacency lists we ignore the second occurrence of each edge like
we do in the construction of linked adjacency arrays). For any given edge {i, j}, both
representations of {i, j} in the linked adjacency arrays of nodes i and j as well as the
representation of {i, j} in the edge array also contain a link to the other representations
of {i, j}.

During the course of the algorithm, a counter m initialized with m = |E| tracks the
number of edges left in the graph, where the edge array stores the m remaining edges in
a consecutive sub-array beginning at the first cell.

In each step, a random edge {i, j} is picked from the first m non-empty cells in the
edge array.

When removing edges incident with nodes i and j by scanning their respective linked
adjacency arrays, the edge array representation of each edge can be removed by following
a link. Each time that an edge is removed from the edge array, the empty cell is filled
by moving the currently last edge in the edge array. Links towards the moved edge are
updated by following links from the moved edge.

Runtime. As discussed above, building linked adjacency arrays and the edge array
takes linear time O(|V |+|E|). During the Greedy algorithm, at most |M | = O(|V |)
edges are picked and removed from the edge array (each in constant time), the adjacency
array of each node is scanned at most once, and each of the |E| edges is removed at most
once from the linked adjacency arrays and from the edge array (each in constant time).
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A.2 MinGreedy and Double-MinGreedy

Implementations of MinGreedy based on priority queues were sketched in [LMS10]
and [Sha97]. However, using a heap to maintain lists of nodes—one list for each degree
in the current graph—uses time log2 |V | in each iteration. Therefore the runtime is at
least Ω(|V | log2 |V |+ |E|).

A brief description of a linear time implementation of MinGreedy can be found
in [Mag98]. We present in detail an O(|V |+ |E|) time implementation of MinGreedy.
Furthermore, we also discuss how to use our data structure to implement Double-
MinGreedy in O(|V |+ |E|) time.

Runtime. Our data structure can be initialized in linear time O(|V |+|E|) by scanning
through the adjacency lists of G a constant number of times. At any time during
MinGreedy, the data structure supports each of the following operations in constant
time: selection of a random node of minimum (non-zero) degree, selection of a random
neighbor of a given node, and the deletion of a given edge. Hence MinGreedy can be
implemented in linear time since a minimum degree node and a neighbor are selected at
most |V |2 times and each of the |E| edges is removed exactly once.

Implementation. How can a minimum degree node u be selected in constant time?
Consider a step of MinGreedy and let d0 < d1 < · · · < dk be the different degrees
currently present in the graph, where d0 = 0 is the degree of already isolated nodes. We
use an array S which is partitioned into sub-arrays Si with 0≤i≤k such that Si precedes
all Sj with i < j. Each Si contains all nodes with current degree di in contiguous cells of S.
A doubly linked list D stores, from head to tail, the borders (l0, r0), (l1, r1), . . . , (lk, rk)
of S0, S1, . . . , Sk, respectively, see Figure 45. A minimum degree node u is selected by
reading the second entry in D, which stores nodes of minimum degree d1, and choosing a
random cell in S1. A random neighbor of u can be selected in constant time from the
non-empty part of the adjacency array Au of u.

How to update S and D when removing an edge {x, y}? Since the degrees dx and dy
of x resp. y are decreased by exactly one, these nodes are moved from sub-array Sdx to
sub-array Sdx−1 respectively from Sdy to Sdy−1. We proceed analogously for x and y: to
move x to its new sub-array, we utilize two helper arrays PD and PS . The cell PD[x]
stores a pointer to the D-entry of the sub-array of S containing x, the cell PS [x] holds the
index of the cell in S containing x. The entry of node x in the sub-array Sdx is replaced
by the “leftmost” node in Sdx , call it z, i.e. node z moves from the smallest index in Sdx

to the now empty cell of x, and x is appended to the “right” of Sdx−1. In particular,
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Figure 45: The “degree-tracking” data structure with an example
node x of degree di

array S is still partitioned into sub-arrays S0, . . . , Sk If Sdx is now empty, we remove it
from D in constant time using the pointer PD[x]. If Sdx−1 does not yet exist, i.e. node x
is now the only node of degree dx − 1, then we create Sdx−1 at the now cleared position
in S and insert Sdx−1 before Sdx (or before the successor of Sdx , if Sdx was removed),
also in constant time. The pointers in PD and the addresses stored in PS are updated
accordingly, for x as well as for z.

To construct S,D, PS , and PD during a linear time preprocessing phase, we first scan
the linked adjacency arrays to compute, for each possible degree d in G, a list of nodes
having degree d. There are at most |V | such lists. Scanning these lists from smallest to
largest degree, we can fill S and D from beginning to end and set pointers in PS and PD
accordingly.

Double-MinGreedy. After picking a random minimum degree node u, to find a
random minimum degree neighbor we scan the neighbors of u in the linked adjacency
list Au once. Therefore we employ reservoir sampling, see Algorithm R in [Vit85]. In
particular, using a reservoir of size one, we sample only from the minimum degree
neighbors of u, where we reinitialize the reservoir as well as the sampling process each
time that we encounter a neighbor with degree smaller than the currently known minimum
degree of a neighbor of u. The sampling takes time O(|Au|). This time is asymptotically
not larger than the time needed to remove the edges incident with node u from the graph,
therefore the total time remains linear.
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A.3 The KarpSipser Algorithm and 1-2-Greedy

We combine our implementations for Greedy and MinGreedy, i.e. we use linked adja-
cency arrays, the edge array defined for Greedy, as well as the arrays and lists S,D, PS ,
and PD defined for MinGreedy.

In each round we can decide in constant time if a node of current degree one exists
by inspecting the second element in the doubly linked list D. If so, then we can pick the
edge incident with a random degree-1 node as described for MinGreedy. If not, then we
pick an edge as described for Greedy. The update of all data structures is accomplished
by removing edges incident with the newly matched nodes one by one. Since for each
data structure the removal of a single edge is an encapsulated transformation, which
brings the respective data from one consistent state into the next, both implementations
can be combined without effort. Moreover, linear runtime carries over to the combined
data structure.

To implement 1-2-Greedy, we proceed analogously but in each step we test for the
existence of a node of degree at most two.
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Degree Heuristics for Matching

von
Bert Besser

Sogenannte Matching-Probleme finden sich in einer Vielzahl von Anwendungen wie z. B.
der Bilderkennung [CWC+96], der Partitionierung von Rechenclustern [KK98], der Suche
nach kompatiblen Organspendern [RSÜ05, Tri12], dem Routing von Netzwerkverkehr
[HS07] oder dem Vergleich von Proteinstrukturen [BSX08].

Im Kern solcher Anwendungen wird beispielsweise nach einer Zuweisung von
Prozessoren zu Rechenclustern, Organspendern zu Patienten oder eingehendem
Netzwerkverkehr zu Ausgabeports gesucht. Diese Zuweisungen können als Mengen
von knotendisjunkten Kanten modelliert werden, wobei die Anwendung die Eigenschaften
des zugrundeliegenden Graphen bestimmt (z. B. Bipartitheit oder Gewichtung).

In dieser Arbeit untersuchen wir das grundlegendste aller Matching-Probleme, das so-
genannte Maximum Cardinality Matching Problem: In einem ungerichteten ungewichteten
Graphen soll eine größtmögliche Menge von knotendisjunkten Kanten identifiziert werden.

Greedy-Algorithmen. Zur Approximation dieses Problems existiert eine Vielzahl
sogenannter Greedy-Algorithmen. Solche Algorithmen sind konzeptionell ungleich
einfacher als bekannte Polynomialzeitverfahren und in Szenarien mit beschränktem
Zugriff auf den Eingabegraphen [RSÜ05, Tri12] alternativlos.

Ein Greedy-Algorithmus startet mit einem leeren Matching, welchem wiederholt eine
Kante hinzufügt wird, die zwei bis dahin ungematchte Knoten miteinander verbindet:

M ← ∅ . initialisiere ein leeres Matching
while E 6= ∅ do . wiederhole solange noch Kanten existieren

wähle eine Kante {u, v} ∈ E . Kantenwahl-Heuristik hier einsetzen
M ←M ∪

{
{u, v}

}
. nimm Kante {u, v} ins Matching auf

E ← E \
{
{x, y} : x ∈ {u, v}, y ∈ V

}
. entferne mit u und v inzidente Kanten

end while
return M
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Wird dem Matching eine Kante hinzugefügt, so wird sie später nicht wieder entfernt. Der
Algorithmus terminiert, sobald keine Kante mehr aufgenommen werden kann, ohne dass
ein Knoten zweimal gematcht wird. Im Allgemeinen ist das ausgegebene Matching nicht
größtmöglich.

Bekannte Resultate. Einige Greedy-Ansätze für das Matching-Problem wurden für
den algorithmischen Nachweis großer Matchings in Zufallsgraphen entwickelt: Anders
als in einem nicht-konstruktiven Beweis wird gezeigt, dass ein gegebener Algorithmus
fast sicher ein großes Matching errechnet. Für große Zufallsgraphen liefern Greedy-
Algorithmen in der Regel sehr gute bis optimale Approximationen [KS81, Tin84, GH90,
DFP93, FRS95, AFP98].

Hingegen bestehen für allgemeine Graphen deutliche Leistungsunterschiede: Da alle
Greedy-Algorithmen mindestens Approximationsfaktor 1

2 erreichen [KH78], stellt sich
die Frage, welche Algorithmen die 1

2 -Schranke zu durchbrechen vermögen.
Für einige Greedy-Algorithmen können Familien von Graphen konstruiert werden,

welche den Approximationsfaktor beliebig nahe nach 1
2 konvergieren lassen [DF91, Pol12,

BP15]. Für Algorithmen, die Faktor 1
2 übertreffen, sind scharfe Ergebnisse nicht bekannt

und große Lücken müssen geschlossen werden [ADFS95, CCWZ14]: Beispielsweise
weiß man über den Approximationsfaktor des MRG-Algorithmus nur, dass er im
Interval [1

2+c , 2
3 ] für eine kleine Konstante c liegt.

Folglich wendete sich die Forschung eingeschränkten Graphklassen zu, wie
beispielsweise Bäumen, planaren Graphen oder Graphen mit großem Girth. Insbesondere
für gradbeschränkte Graphen wurden stärkere Resultate erzielt [DF91, ADFS95, MP97];
Jedoch waren Schranken für “Grad-Heuristiken” wie KarpSipser oder 1-2-Greedy
lange unbekannt.

Neben dem Bestreben, einen gegebenen Algorithmus vollständig zu verstehen, wird
erforscht, welche Eigenschaften eines Algorithmus seine Stärke ausmachen. Dafür
wurden für ganze Klassen von Algorithmen Schranken der Approximationskraft
ermittelt [GT12, Pol12, BP15]. Insbesondere ist mit dem Greedy-Ansatz die Erzeugung
optimaler Matchings im Allgemeinen nicht möglich [Pol12].

Fokus der Arbeit. In einer systematisch Studie untersuchen wir deterministische
Greedy-Algorithmen für das Maximum Cardinality Matching Problem. Dabei legen wir
unser Hauptaugenmerk auf die Stärken und Schwächen von Grad-Heuristiken, unter
denen wir uns insbesondere den folgenden widmen.
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• Der sogenannte KarpSipser-Algorithmus ist benannt nach seinen Autoren [KS81].
KarpSipser wählt, falls möglich, eine Kante mit einem Knoten von Grad Eins:
eine solche Kante gehört zu einem optimalen Matching, daher ist ein solcher Schritt
“optimal”. Andernfalls wird irgendeine Kante gewählt.

• Der 1-2-Greedy-Algorithmus ist eine Spezialisierung von KarpSipser. Falls ein
Knoten mit Grad höchstens Zwei existiert, wählt 1-2-Greedy zuerst einen Knoten
minimalen Grades und anschließend einen beliebigen Nachbarn. Andernfalls wird
irgendeine Kante gewählt.

1-2-Greedy kann auch als vereinfachte Variante des bekannten MinGreedy-
Algorithmus [Tin84] verstanden werden.

Wir analysieren die Approximationsleistung beider Ansätze und vergleichen sie mit
bekannten Algorithmen aus der Literatur wie auch mit konzeptionell einfacheren und
komplexeren hypothetischen Algorithmen: 1-2-Greedy erreicht Approximationsfaktor

∆− 1
2∆− 3

wenn Grade durch höchstens ∆ beschränkt sind; Wenn der Graph bipartit ist, dann
erreicht der eingeschränktere KarpSipser-Algorithmus sogar den Faktor

∆
2∆− 2 .

Insbesondere übertreffen diese Garantien die besten bekannten Schranken für den
erwarteten Approximationsfaktor randomisierter Greedy-Algorithmen.

Informationen über die Eingabe. Im Vergleich von KarpSipser und 1-2-Greedy
mit hypothetischen Algorithmen konzentrieren wir uns auf die Kantenwahl-Heuristik.
Die Kantenwahl-Heuristik kann umso ausgereifter sein, je mehr Informationen über den
Eingabegraphen G = (V,E) vorliegen. Das Wissen über die Eingabe wird in jedem
Schritt eines Algorithmus erweitert: Wenn beispielsweise festgestellt wird, dass die
Kante {u, v} nicht existiert, dann kann geschlussfolgert werden, dass die Knoten u und v
Grad höchstens |V | − 2 haben; Der MinGreedy-Algorithmus berechnet anfangs die
Grade aller Knoten und aktualisiert diese in jedem Schritt nachdem Kanten aus dem
Graphen entfernt wurden; Wenn der Shuffle-Algorithmus einen Knoten auf Nachbarn
testet, dann gewinnt Shuffle Kenntnis über nicht im Graphen enthaltene Kanten.
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Typischerweise verarbeitet ein Algorithmus nicht alle gewonnenen Informationen.
Beispielsweise ignoriert der Greedy-Algorithmus jegliche Information und wählt in jedem
Schritt irgendeine der verbleibenden Kanten.

Darüber hinaus ist in einigen Szenarien nur eingeschränkter Zugriff auf die Eingabe
möglich und der Informationsgewinn entsprechend begrenzt. Beispielsweise kann
ein Algorithmus für das sogenannte Query Commit Problem [RSÜ05, Tri12] keine
Knotengrade lesen, da stets die Existenz nur genau einer Kante getestet wird.

Informationen nutzen. Die Menge und Art der über den Eingabegraphen gewonnenen
Informationen limitiert die Stärke der Kantenwahl-Heuristik, welche wiederum die
Approximationsgüte der Lösung bestimmt. Wir untersuchen systematisch, welche
Informationen für eine starke Approximationsgüte unerlässlich sind; Weiterhin erforschen
wir, welche Güte erreicht werden kann, wenn die pro Schritt zu gewinnenden Informationen
beschränkt sind. Hierzu konzentrieren wir uns in erster Linie auf zwei Fragestellungen.

1. Welche Approximationskraft ist erreichbar, wenn Informationen über
Knotengrade auf beliebige Weise verarbeitet werden dürfen? Welche
solche “Grad-Heuristik” liefert die stärksten Resultate?

2. Steigt die Approximationskraft unter Verwendung von Informationen über
Nachbarn von gematchten Knoten? Anders als Grad-Heuristiken sind
solche Algorithmen in der Lage den Eingabegraphen zu “traversieren”.

Zur Klärung dieser Fragen verwenden wir das Framework der Adaptive Priority
Algorithms von Borodin, Nielsen und Rackoff [BNR03]: In jeder Runde fragt ein
adaptiver Priorityalgorithmus eine oder mehrere Kanten an, indem deren Eigenschaften –
beispielsweise “ist inzident mit einem Knoten kleinsten Grades” – formuliert werden. Die
erhaltenen Kanten werden zur Lösung hinzugefügt. Es gelten keine Beschränkungen für
Rechenzeit und Speicherplatz; Daher sind adaptive Priorityalgorithmen ausschließlich
durch ihre Eigenschaft limitiert Kanten “greedy-artig” zu wählen.

1. Wir zeigen, dass keine Grad-Heuristik auf Graphen mit Grad höchstens ∆ den
Approximationsfaktor ∆−1

2∆−3 übertrifft. Also ist unsere Garantie für 1-2-Greedy
scharf und 1-2-Greedy optimal unter allen Grad-Heuristiken.

Analog wird der Faktor ∆
2∆−2 auf bipartiten Graphen nicht übertroffen und

KarpSipser erweist sich als optimal. Selbst “doppelseitige” Strategien wie
Double-MinGreedy oder MDS übertreffen Faktor ∆

2∆−2 , wenn überhaupt, nur
geringfügig.
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Neben der Suche nach der besten Grad-Heuristik beschäftigen wir uns auch mit
der folgenden grundlegenden Frage.

Gibt es eine Heuristik, die keine Grad-Informationen nutzt und
hinsichtlich ihrer Approximationskraft MinGreedy oder KarpSipser
ebenbürtig ist?

Wir zeigen, dass selbst auf Pfaden (für die KarpSipser und 1-2-Greedy optimale
Matchings berechnen) der Faktor 1

2 nicht übertroffen wird. Die Verarbeitung von
Grad-Informationen ist also unverzichtbar, um nicht-triviale Schranken zu erreichen.

2. Algorithmen, welche auf die Verwendung von Grad-Informationen beschränkt
sind, haben bei der Wahl einer Kante {u, v} keine Kontrolle über Distanz oder
Verbindung der Knoten u und v zu vorher gematchten Knoten. Es besteht daher
die Gefahr, dass {u, v} zwei Kanten eines optimalen Matchings “berührt”: viele
solcher ungünstigen Wahlen bedeuten eine Konvergenz der Approximationsrate
gegen 1

2 .

Dieser Gefahr wird in der folgenden Strategie begegnet. “Erzeuge” einen
alternierenden Pfad, indem wiederholt eine Kante an einem seiner Enden ins
Matching aufgenommen wird; falls der Pfad nicht vergrößert werden kann, erzeuge
den nächsten Pfad. Für diese “Traversierung” des Graphen ist der Algorithmus auf
Informationen über die Nachbarn gematchter Knoten angewiesen.

Kann ein Algorithmus, der Nachbars-Informationen in beliebiger Weise
verarbeiten darf, die Approximationsleistung von Grad-Heuristiken
übertreffen?

Unsere Nichtapproximierbarkeitsschranke von ∆−1
2∆−3 für nicht-bipartite Graphen

gilt auch in dieser größeren Klasse von Algorithmen. Insbesondere ist 1-2-Greedy
optimal, obwohl Nachbars-Informationen nicht ausgenutzt werden.

Unsere Resultate zeigen also, dass unter Algorithmen mit nicht-trivialer
Approximationsgarantie KarpSipser und 1-2-Greedy durch ihre Vereinigung von
konzeptioneller Einfachheit und optimaler Approximationsleistung herausstechen.

Weitere Ergebnisse. Klassische Greedy-Strategien ergänzen das Matching in jedem
Schritt um eine einzelne Kante. Wir untersuchen auch den Ansatz, statt einzelner Kanten
ganze (alternierende) Pfade zu wählen. Auch hier untersuchen wir entsprechende Klassen

173



von adaptiven Priorityalgorithmen und zeigen, dass trotz dieser Verallgemeinerung der
Approximationsfaktor von KarpSipser und 1-2-Greedy nicht grundlegend verbessert
wird: für ∆→∞ gilt weiterhin die 1

2 -Schranke.

Der Erfolg von Greedy-Algorithmen für Matching überträgt sich nicht auf das
allgemeinere Matching-Problem in k-uniformen Hypergraphen (auch als k-Set Packing
Problem bekannt). Wir zeigen, dass für ∆ = O(1) der triviale Faktor 1

k nicht übertroffen
wird, selbst wenn Nachbars-Informationen ausgenutzt werden dürfen.
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