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1 Introduction

The study of random constraint satisfaction problems (CSPs) looks back on a long history and, during
this time, has been approached from different points of view. Extensive investigations were underta-
ken in the mathematical field of combinatorics as well as in computer science and, more recently, in
statistical mechanics. The motivation for this interdisciplinary research originates in a wide range of
applications, namely, among others, in the fields of optimization, coding theory, artificial intelligence

and spin glasses.

In a constraint satisfaction problem variables are related via constraints that determine which com-
binations of value assignments to the variables form a solution. The decision version of the problem
aims at establishing whether or not an instance admits a solution. In the search version algorithms
are applied to try and find concrete solutions. If the problem exhibits a solution, a canonical question
will relate to the fotal number of solutions. Prominent examples of CSPs are the well-known k-SAT

problem, the graph k-colouring problem and the hypergraph 2-colouring problem!.

The focus of this thesis is on random constraint satisfaction problems, meaning that the underlying
structures (the boolean formulas or (hyper)graphs) are generated randomly. Studying random pro-
blems is of great interest as random instances exhibit phenomena that deterministically construc-
ted instances do not. Indeed, in many problems it seems to be impossible to generate determini-
stic instances that are as hard as random ones picked according to some appropriate distribution
(cf. [BHVMWO09, CM97] and the references therein for more details).

When speaking of the evolution of the random structures, we mostly refer to the setting where the
constraint-to-variables density (the ratio between constraints and variables, often only called cons-
traint density or average degree) increases, thus making it more and more unlikely for a random
instance to exhibit a solution. Almost exclusively, the objects to be studied will be sparse, meaning

that the average degree will be bounded when the number of variables tends to infinity.

The persistent study of random CSPs in different disciplines during the last three decades has led to
a series of hypotheses and results, highlighting in particular their striking similarities. A prominent
hypothesis states that when the constraint density passes through a critical threshold, the probability
for a random instance of the problem to be solvable drops very rapidly from 1 to O, thus the problem
appears to undergo a phase transition. Although a wealth of research has been dedicated to under-

standing the behaviour of random CSPs, it has turned out very difficult to rigorously approach any

'In the colouring problems variables correspond to vertices and constraints to (hyper)edges. The expressions will be used
synonymously further on.
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of the hypotheses. In particular, for most random CSPs a proof of the existence, let alone the precise

location, of the critical threshold remains elusive.

However, some progress has been made in shedding light on the various phenomena over the years.
A great part of this success is owed to physicists from statistical mechanics who brought about new
inspiring insights into the combinatorial nature of the problems. They developed non-rigorous but
sophisticated methods to make very precise predictions about the location of the critical threshold
(cf. [MMO09, KMRTSZ07] for detailed information and references). Maybe even more importantly,
they illuminated the impact of the geometry of the set of solutions, thereby explaining a variety of

peculiarities that had been observed before, but had not been understood.

In the last years, several of the predictions could be proven by mathematicians from probabilistic com-
binatorics and up to now none has been falsified. Mathematicians benefited a lot from the physicists’
insights and the knowledge of statements they had to prove. However, it still required developing some

completely new techniques.

The results in this thesis take their place alongside a range of other contributions on the long way
of solving this puzzle piece by piece. They pertain to two different random CSPs, namely random
graph k-colouring and random hypergraph 2-colouring. On these models, they relate to two different
objectives. The first is determining the distribution of the number of solutions in these CSPs in the
limit when the number of vertices becomes large. The second consists in establishing the existence

and location of yet another phase transition predicted by the physicists called “condensation”.

The thesis will be structured as follows: The next two sections provide a brief overview of the historical
evolution of the research in this area and a short outline of the physics approach to these problems.
After that, a short summary of the results in this thesis will be given. Chapter 2 is devoted to formally
introducing the models under consideration and defining essential concepts and the questions we are
dealing with. In Chapter 3 the techniques and proof methods are explained. Chapter 4 presents the
main results of the thesis and puts them in relation to other relevant work. The subsequent Chapters 5
up to 8 as well as Appendices A and B comprise the proofs of the results. Finally, Chapter 9 provides
a conclusion and an outlook to further research questions and challenges.

1.1. Historical background

The graph k-colouring problem, asking whether it is possible to colour the vertices of a given graph
with k different colours such that no two adjacent vertices share the same colour, has been of central
interest in discrete mathematics for more than one century. It had its beginnings in the “four co-
lour problem” posed by De Morgan in 1852 and for randomly generated graphs it constitutes one

of the longest-standing challenges in probabilistic combinatorics since the seminal paper [ER60]



1.1. Historical background

of Erd6s and Rényi, which started the theory of random graphs (cf. [BolO1, JLROO] for a compre-
hensive survey of this field of research). This impressive paper laid the foundation for engagement in
the theory of phase transitions as it illuminated many aspects of the evolution of random graphs and
established the critical point for the emergence of a giant component as well as the one for a random
graph being connected (which they had already investigated in [ER59]). From a number of intriguing
questions posed in this paper, the one concerning the typical chromatic number of a random graph is

the last that still remains unanswered.

Also the hypergraph 2-colouring problem has a long history: In the early 1900s, the mathematician
Bernstein [Ber(Q7] considered a question which can be rephrased in the following way: Is it possible to
colour the vertices of a given hypergraph with two colours such that no hyperedge is monochromatic?
A hypergraph for which this is possible possesses ‘“Property B” as it was later called in honour of
Bernstein. In the 1960s, Erd6és popularized this problem [Erd63, Erd64] and proposed bounds on
the smallest number of hyperedges in non-2-colourable k-uniform hypergraphs. Indeed, according to
[AMO6], determining this smallest number remains one of the most important problems in extremal

graph theory up to these days.

The problems of k-colouring graphs and 2-colouring hypergraphs belong to the aforementioned set
of constraint satisfaction problems, just as for example the well-known boolean satisfiability problem
k-SAT or the independent set problem. In 1971, the renowned computer scientist and mathematician
Cook [Coo71] proved that k-SAT is NP-complete for all k& > 3. One year later, Karp [Kar72] sho-
wed that by reduction a whole bunch of combinatorial and graph theoretical computational problems,
including k-colourability, can also be found to be NP-complete and thus cannot be solved by determi-
nistic polynomial time algorithms unless the classes P and NP coincide. Lovasz [Lov73] derived the

same result for hypergraph 2-colouring.

Since the 1990s, random CSPs, involving randomly chosen constraints on the variables, have been
intensely studied in the field of probabilistic combinatorics. The beginnings of this work were of ex-
perimental nature and the findings resulted in two hypotheses [CKT91, MSL92]: First, that in many
random CSPs there exists a satisfiability threshold, a certain constraint-to-variables density below
which random instances of the problem have solutions and above which they have not with high pro-
bability?. And second, that the difficulties of algorithmically computing a solution near this threshold

go hand in hand with this threshold phenomenon.

While it turned out extremely difficult to verify any conjectures concerning the algorithmic performan-
ce, and until now we only have a very vague idea about the true connections, regarding the threshold
behaviour some progress could be achieved. Indeed, in a breakthrough paper in 1999, Friedgut [Fri99]

proved the existence of a non-uniform satisfiability threshold sequence in random k-SAT, i.e. a se-

We say that a sequence of events .A,, occurs with high probability (w.h.p.) if lim,, o P [A,] = 1.
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quence depending on the number n of variables that marks the point where the probability of being

solvable drops from 1 to 0:

Theorem 1.1.1. Let Fj,(n,dn) be a k-CNF ° formula on n variables and dn constraints chosen
uniformly at random from all such formulas. Then for each k > 3, there exists a sequence dsa(n),

such that for every € > 0,

1 ifd=(1—-¢e)dsat(n),
lim P [Fy(n,dn) is satisfiable | = 4 ( Jdsar ()
oo 0 ifd= (14 ¢)dsat(n).

Achlioptas and Friedgut [AF99] could prove the same for random graph k-colouring for £ > 3
and it also holds for random hypergraph 2-colouring and other monotone random CSPs [Fri05]. The
non-uniformity of the threshold sequence left open the possibility that the threshold value might va-
ry with growing n. Only for a very small number of problems, the existence of the limit dgyy =
lim,, oo dsat () has been proven and its location been determined. The most prominent example pre-
sumably is the result for random k-SAT for large & [DSS15]. However, it is widely conjectured that
the sequence converges in other problems as well*. For this reason and as per common practice in the
study of random CSPs, we will take the liberty of speaking of “the threshold” dg,¢, or more specifically
dco1 for the colouring problems. Proving this conjecture and determining the location of the threshold

in random CSPs (as Theorem 1.1.1 is a pure existence result) is a major open problem.

A wealth of research has since been devoted to finding upper and lower bounds on the threshold in the
different problems. While upper bounds can rather easily be derived via the first moment method, for
a long period of time the best lower bounds were of algorithmic nature [FS96], later on they stemmed
from the second moment method. However, in most cases the first and second moment method do
not yield matching lower and upper bounds (cf. Section 3.2 for an explanation of the methods and
Sections 4.2 and 4.3 for a discussion of their application in different problems). So, efforts were
started to learn about the nature of this gap, but for a couple of years it was not clear how to get a
handle on that.

Interestingly and - as might be said - fortunately, physicists doing research in the field of statistical me-
chanics have been working on random CSPs for the past decades as well. In the early 2000s, they put
forward a “symmetry-breaking” version of the so-called cavity method, a non-rigorous but very sophi-

sticated tool that allowed them to make very precise conjectures as to the location of the thresholds in

3CNF stands for “conjunctive normal form”. In the k-SAT problem, the boolean formula is expressed in k-CNF, which is
a conjunction of disjunctions, each encompassing k literals.

“Not in all problems, however, as e.g. the problem of 2-colouring random graphs does not exhibit sharp threshold behaviour,
because the probabilities of G(n, dn) having an odd cycle and not having an odd cycle are both bounded away from 0
forevery d € (0,1).
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different problems. But maybe even more intriguing were the insights into the combinatorial nature of
the problems and the prediction of yet another phase transition called condensation that occurs shortly
before the satisfiability threshold [KMRTSZ07] and that seems to be the reason why identifying the

precise threshold for the existence of solutions is such a challenging task.

1.2. The physics perspective

In this section we want to outline the picture that has been painted by physicists from statistical me-
chanics about the combinatorial and structural properties of the solution space® in many random CSPs.
This picture gives hints, albeit in a non-rigorous way, to questions such as why there seems to be a
mysterious barrier in the constraint density that all rigorously analysed algorithms prove unable to
pass or what is the nature of the gap between the first moment upper and the second moment lower
bound in these kinds of problems. As will be described in detail in Section 4.3, some of the conjectures

made by the physicists have meanwhile been proven, but a major part still evades a rigorous analysis.

In the language of statistical physics, random CSPs like hypergraph 2-colouring and graph k-colouring
on sparse random (hyper)graphs are examples of diluted mean-field models of disordered systems. Re-
solving this term into its components reveals some very important common characteristics of these
problems. The term diluted refers to the fact that the average degree in the underlying graph is boun-
ded, while mean-field indicates that there is no underlying lattice geometry. Moreover, the concept of
disordered systems reflects that the model involves randomness, which in our case comes in the form
of the sparse random (hyper)graph that determines the geometry of interactions between individual

“sites”.

Diluted mean-field models have been studied thus intensely because they are considered a better ap-
proximation to “real” disordered systems than models where the underlying graph is complete, in the
sense that they have a more realistic geometry. A prominent example for a model basing on a comple-
te graph is the Sherrington-Kirkpatrick model [SK75], which is a fully-connected mean-field model,
where each variable interacts with any other via randomly chosen couplings. Examples for these real
disordered systems are glasses and spin-glasses, which attracted attention because of their peculiar
magnetic properties. Already in the 1980s, Mézard and Parisi [MP85, MP87] as well as Fu and An-
derson [FA86] made first attempts on adapting heuristics from the study of spin glasses to explain the
CSP solution space. Unfortunately, unlike for example in the Sherrington-Kirkpatrick model, where

the free energy is captured by the “Parisi formula” [Par80, Tal06], and in general in fully-connected

3To be concrete, the solution space of a distinct problem is a simple graph where every vertex represents a solution and
vertices are connected if the solutions differ on exactly one variable. In the literature it is also common to connect vertices
if the solutions differ only on a sub-linear number of variables. However, in most cases this yields asymptotically the
same statements. The graph representing the solution space should not be confused with the underlying graph of the
random CSP.
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models, where every pair of vertices interacts in the same way, statistical mechanics models of dis-
ordered systems exhibit a non-trivial geometry and their analytical study turned out to be notoriously
difficult.

However, more than 30 years ago, physicists introduced the so-called replica method, an analytic but
non-rigorous approach for attacking these kinds of problems [MPV87]. It was originally developed
to deal with the Sherrington-Kirkpatrick model and generalized former attempts of understanding its
behaviour [SK75, Par79, Par80]. As an alternative approach, yet similar in spirit, the cavity method
was presented around the same time. After having been applied to sparse random graphs [MP85]
and coding theory, since the late 1990s the replica symmetric (RS) variants of these methods have
been further developed into the more intricate one-step replica symmetry breaking (1RSB) versions
[Mon98, MP0O1, MPO03]. The one-step replica symmetric cavity method is a very sophisticated and
powerful but still non-rigorous tool and originated in the context of spin glasses, where it was designed
to work with models on locally tree-like graphs (cf. [MMO09] for details and references).

As sparse random (hyper)graphs are locally tree-like and only possess a bounded number of short
cycles with high probability, the cavity method can be used to put forward precise conjectures on
diluted mean-field models of disordered systems. Its application to constraint satisfaction problems,
first in [MPZ02], led to a huge amount of work in the physics literature (cf. [KMRTSZ07] for a survey).

The cavity method has been used to put forward conjectures in a variety of areas, during the last years
mainly in compressive sensing and most recently in machine learning. Many of its predictions are
given in terms of a distributional fixed point problem. Among the various predictions, perhaps the most
exciting ones relate to the existence and location of phase transitions. Typically, the replica symmetric
cavity method gives upper and lower bounds on the location, while the 1RSB version is conjectured
to yield precise results. In particular, there exist conjectures on the exact location of the satisfiability
threshold ds,¢ in many problems. What is more, according to the cavity method there occur other
transitions prior to dg,t [KMRTSZ07] and when crossing them, the geometric properties of the solution
space dramatically change. In the next paragraph an overview of this predicted development of the
solution space will be given. The most important transition for our purposes in this thesis is the so-
called condensation phase transition. It occurs very shortly before dg,y [KMSSZ12a] as the result of
an “entropy crisis”. It is a phenomenon that is ubiquitous in physics, holding the key to a variety of
problems, for instance it seems to be closely related to the difficulty of proving precise results on the
satisfiability threshold and in particular to the demise of the second moment method (cf. e.g. [COZ12]).
Furthermore, it seems to be responsible for the difficulty of analysing the performance of certain
message passing algorithms, although it turned out extremely challenging to rigorously get a handle on
this prediction. In contrast to the satisfiability transition, the condensation phase transition is a genuine
thermodynamic transition persisting in models with finite inverse temperature (that we introduce in
Section 2.3). Its role in the context of structural glasses goes back to the work of Kauzmann in the

1940s [Kau48]. It has been established in a variety of models, ranging from the random energy model
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[Der81] to the fully-connected p-spin-glass [Tal03, KT87]. However, there are only a few rigorous

results on the condensation phase transition in diluted mean-field models.

The cavity method yields substantial insights into the geometry of the solution space and makes pre-
dictions on the free entropy density lim,, . %E [In Z].° The conjectured evolution of the geometry of
the solution space is as follows:

For very low constraint densities, when the (hyper)graph is still very sparse and typically many soluti-
ons exist, the solution space is - more or less - a single connected component and is described as being
replica symmetric [KMRTSZ07]. In this regime, in many problems the typical value or quenched ave-
rage lim,, o %E [In Z] equals the so-called annealed average lim,,_,oo % InE [Z] (which is often a
well-behaved analytical function) .

As the density increases, at some point called the clustering transition, which is quite a distance from
the conjectured satisfiability threshold (for example for hypergraph 2-colouring it is about a factor
of k below d.)), the set of solutions starts to “shatter” into a multitude of well-separated clusters
and every cluster only contains an exponentially small fraction of all solutions. The clustering tran-
sition is called dynamic one-step replica symmetry breaking in physics language. It is purely com-
binatorial, i.e. it marks no phase transition in the sense defined later in Section 2.5 because still
lim,, oo %E [In Z] ~ lim;, 00 % In E [Z] holds. This clustering phenomenon has been rigorously pro-
ven [ART06, ACOO0S] for some of the most important random CSPs. After the clustering threshold, in
a typical cluster (i.e. the cluster of a solution picked uniformly at random) all solutions agree on most
variables, which are then called frozen variables. As the constraint density increases, a further transiti-
on takes place, the freezing transition, rigorously established by Molloy [Mol12]. After this transition,
in almost every cluster a constant fraction (converging to one as k tends to infinity) of variables take
on the same value.

As the constraint density evolves further, both the overall number of solutions and the sizes of the
clusters decrease. But, according to the prediction, the number of all solutions drops at a faster rate, a
phenomenon referred to as “entropy crisis”, and thus we end up at a point, typically only a constant
factor below the satisfiability transition, where the number of solutions in the largest cluster equals (up
to sub-exponential terms) the number of all solutions: the condensation phase transition d.q,q. This
marks a further change in the geometry of the solution space, a sub-exponential number of “large”
clusters now contain a constant fraction of the entire set of solutions. As a consequence, while in the
clustering phase typical solutions can be considered as being nearly independent, according to the pre-
diction they have non-trivial correlations in the condensation phase and thus the combinatorial nature
of a typical solution becomes significantly more complicated. The condensation transition is a ther-
modynamic phase transition that is called static one-step replica symmetry breaking in physics terms
and in the condensation phase it should be true that lim,, %IE [In Z] < limy, 00 % InE [Z]. At least

some parts of this picture have been established rigorously, especially the existence and location of a

SHere, Z is the number of solutions, or, more general, the partition function (cf. Sections 2.2 and 2.3) and the expectation
is taken over the choice of the random (hyper)graph.



1. Introduction

condensation phenomenon (cf. e.g. [COP12, DSS16, DSS16+, BCO15+] as well as Section 4.1).
Finally, as the average degree approaches the satisfiability threshold, the number of clusters drops

down, until none survives.

In general, 1IRSB [KMRTSZ07, ZK07, MRTSO08] can be understood as RS at cluster level and suggests
that there is no extra structure in clusters. There are other problems, like for instance the Sherrington-
Kirkpatrick model or the problem of finding extremal cuts of sparse random graphs, that are predicted
to have a full RSB structure [Par80, DMS16+], meaning that inside the clusters the solutions shatter
again into smaller clusters, which shatter again and so on and so forth. This phenomenon is, however,

very far from being verified rigorously.

Concerning the failure of algorithms, there seems to be a connection between clustering and the com-
putational difficulty of finding a solution [ACO0S8, Mol12, Zde09]: Efficient algorithms provably find
solutions up to (roughly) the density at which frozen clusters come into existence. On the basis of
insights from the cavity method, in the past years physicists have developed new message passing al-
gorithms, the most prominent examples being Belief Propagation Guided Decimation and Survey Pro-
pagation Guided Decimation [BMZ05, MZ02]. They were originally developed to deal with the clus-
tered geometry of the solution space [BMPWZ03, MPZ02] and experimental evaluation suggests that
for small values of & these algorithms yield good results even in a clustered phase. However, while a
satisfactory analysis remains elusive, meanwhile there is some (rigorous) evidence that the algorithms
break down below the clustering barrier for large k in the limit of large n [RTS09, CO11, Het16+]
(cf. Subsection 4.3.2 for a more in-depth discussion).

Beside the algorithmic question, based on the cavity method a Survey Propagation-inspired first and
second moment method have been developed [MS08, CO13, COP16]. The essence of these methods
is that instead of determining the moments of the number of solutions, the arguments are executed
for the number of clusters. So-called covers are used, such that each cluster corresponds to a single
cover and the internal entropy of the clusters can completely be ignored. This yields improvements
over the “classical” application of the first and second moment methods (cf. Section 4.2), as close to
the satisfiability threshold the cluster sizes are conjectured to vary significantly. This phenomenon has
in part been established rigorously [COP16, DSS15].

Apart from models of inherent physical interest, the cavity method has been applied to a wide variety
of problems in probabilistic combinatorics, computer science, coding theory and, more recently, com-
pressed sensing [KMSSZ12a, KMSSZ12b]. It seems to be crucial to deepen our understanding of the
behaviour of random CSPs. Several of its most important predictions have been confirmed rigorously
through alternative approaches [MMO09]. In effect, it has become an important research endeavour to
provide a rigorous mathematical foundation for the cavity method. The results in this thesis contribute
to this effort.



1.3. Summary of results

1.3. Summary of results

This PhD thesis deals with two different types of questions on random graph and random hypergraph
structures. One part is about the proof of the existence and the determination of the location of the
condensation phase transition. This transition will be investigated for large values of k in the problem
of k-colouring random graphs and in the problem of 2-colouring random k-uniform hypergraphs,
where in the latter case we investigate a more general model with finite inverse temperature. The other
part deals with establishing the limiting distribution of the number of solutions in these structures in

density regimes below the condensation threshold.

The thesis comprises four main results from four papers of which two are already published and the
other two are submitted. This section provides a very short summary of the results of these papers
as well as an assessment of the contribution of this thesis’ author. A more detailed description and

discussion of the results can be found in Sections 4.1 and 4.2.

The first main result is from the paper The condensation phase transition in random graph coloring
by Bapst, Coja-Oghlan, Hetterich, RaBmann and Vilenchik published in Communications in Mathe-
matical Physics 341 (2016) and cited in this thesis as [BCOHRV16]. In this paper we establish the
existence and determine the precise location of the condensation phase transition in random graph
k-colouring for large k. The result is in terms of a distributional fixed point problem and rigorous-
ly verifies the prediction of the cavity method. The detailed proof can be found in Chapter 5 and
Appendix A. The author of this thesis contributed primarily to the analysis of the branching process
presented in Section 5.2 as well as to the determination of the cluster size using Warning Propagation
and to establishing a connection between the random tree process and the graph with planted colouring

presented in Section 5.3.

The second result is from the paper A positive temperature phase transition in random hypergraph
2-coloring by Bapst, Coja-Oghlan and RaBBmann published in the Annals of Applied Probability 26
(2016) and cited here as [BCOR16]. The main result in this paper proves the existence and determines
the location of the condensation phase transition in random k-uniform hypergraph 2-colouring with
additional temperature parameter 3 for large values of k. The proof can be found in all details in
Chapter 6. The author of this thesis contributed primarily to the investigation of the first and second
moment presented in Section 6.2, to the calculations in the planted model performed in Section 6.3
and to the proof of the existence of ®,4 () in Section 6.5. Furthermore she carried out revision work

of all the proofs and statements presented in Chapter 6.

The third result is from the paper On the number of solutions in random hypergraph 2-colouring
by RaBBmann submitted to The Electronic Journal of Combinatorics and cited as [Ras16a+]. In this
paper, the asymptotic distribution of the logarithm of the number of 2-colourings of random k-uniform

hypergraphs is determined for all £ > 3, concentration of this number is established and the random
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1. Introduction

colouring model is shown to be contiguous to the planted model. All proofs can be found in Chapter 7.
As this is a single-author paper, the question regarding the contribution of this thesis’ author does not

arise.

The last result is from the paper On the number of solutions in random graph k-colouring by Ralmann
submitted to Combinatorics, Probability and Computing and cited as [Ras16b+]. We determine the
asymptotic distribution of the number of k-colourings for random graphs in a low density regime for
all £ > 3, and in a density up to the condensation transition for all k¥ > kg for some constant ky. The
proof will be presented in Chapter 8 and Appendix B. As this is a single-author paper, the question

regarding the contribution of this thesis’ author does not arise.
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2 Definition of the problems

7 In this thesis the focus is on two random constraint satisfaction problems, namely random graph
k-colouring and random k-uniform hypergraph 2-colouring (for £ > 3). These models are famous
benchmark problems in the study of random CSPs and stand out from other standard examples for
different reasons:

As mentioned previously, random graph k-colouring has a long history and is one of the most po-
pular random CSPs. In particular, it is the most famous model having k& spins. Random hypergraph
2-colouring is also a common CSP and one of the most widely studied models with 2 spins. It can
be seen as the prototype of a symmetric CSP, where the inverse of each solution is a solution itself,
and is closely related to NAE-kK-SAT (cf. Section 4.3). Studying it offers the advantage of not having
to deal with technically too involved calculations (e.g. in regards to the second moment calculations),
yet it shares interesting qualitative phenomena with other commonly studied problems. The model
can consequently be used to develop and test proof techniques that might also be applicable to models

exhibiting more complicated combinatorics.

2.1. Graph and hypergraph models

There is a variety of different models for generating graph and hypergraph structures randomly. In
this thesis, the focus will be on Erd8s-Rényi random graphs and hypergraphs. To be precise, we con-
sider three slightly different, but essentially very similar models, such that with the right choice of

parameters the results proven for one model can be transferred easily to the other models.

The random graph models used to state the results are the Erdds-Rényi random graphs G(n, p), which
was originally introduced by Gilbert [Gil59], and G(n, m). Both graphs are defined on the vertex set
[n] = {1,...,n}. G(n,p) is obtained by connecting any two vertices with probability p € [0, 1] in-
dependently, while G(n,m) is a graph chosen uniformly at random from all graphs with exactly n
vertices and m edges. By setting p = m/ (;L) these two models are equivalent with respect to mono-
tone properties [Jan95, AF99].

Furthermore, for the sake of simplicity, we choose to prove most of the statements in Chapter 8 using
the auxiliary random graph model G(n, m). This is a random (multi-)graph on the vertex set [n] obtai-
ned by choosing exactly m hyperedges ey, ..., ey, of the complete graph on n vertices uniformly and

independently at random (i.e. with replacement). This model yields the advantage of having mutually

7 At some points in this chapter the phrasing is a verbatim copy of text passages from the papers included in this thesis:
[BCOHRV16, BCOR16, Ras16a+, Ras16b+].
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independent edges, which simplifies calculations significantly. In this model we may choose the same
edge more than once, however, for sparse random graphs the probability of this event is bounded away

from 1:

Fact 2.1.1. Assume that m = m(n) is a sequence such that m = O(n) and let A,, be the event that

G(n, m) has no multiple edges. Then there is a constant ¢ > 0 such that lim,, o P[A,] > c. 8

Regarding hypergraph models, we consider the k-uniform random hypergraph Hy(n, p) on the vertex
set [n], in which each of the (Z) possible hyperedges, comprising of k£ > 3 distinct vertices, is present
with probability p € [0, 1] independently. Additionally, we let Hy(n, m) denote the random k-uniform
hypergraph on the vertex set [n] with exactly m hyperedges consisting of k distinct vertices and cho-
sen uniformly at random without replacement from all possible subsets of [n] of size k.

For the proofs in Chapters 6 and 7, we use the auxiliary random hypergraph model #(n, m), a random
k-uniform (multi-)hypergraph (with £ > 3) on the vertex set [n], obtained by choosing exactly m hy-
peredges ey, . .., e, of the complete hypergraph on n vertices uniformly and independently at random
(i.e. with replacement). This model yields the advantage of having mutually independent edges, which
simplifies calculations. Although in this model we may choose the same edge more than once, the

following analogue to Fact 2.1.1 shows that in the case of sparse random hypergraphs this is unlikely.

Fact 2.1.2. Assume that m = m(n) is a sequence such that m = O(n) and let A,, be the event that
H(n, m) has no multiple hyperedges. Then P [~ A,] = O(n?>7F).

Throughout the thesis we consider the case m = O(n) as n — oo, resulting in so-called sparse
random graphs and hypergraphs. For these densities the phenomena described in the previous section
are conjectured to happen. More explicitly, in G(n, p) we set p = d/n for a real number d > 0 that we
call the edge density or average degree. In Hy(n,p) we setp = d/(}~]), where d > 0 is again a fixed
real number. We refer to d (or sometimes to d/k) as the hyperedge density. Analogously, in G(n, m)
and G(n,m) we let d = 2m/n and in Hy(n,m) and H(n,m) we set d = km/n. As for some of
our results we need very precise computations (especially in Chapters 7 and 8 and Appendix B), we
additionally introduce the parameter d’, which is such that m = [d'n/2] in the random graph models
and m = [d'n/k] in the random hypergraph models. We distinguish this quantity from d, which arises
naturally in the computations of the first and second moment. We note that d’ ~ d, although d = d(n)

might vary with n, whereas d’ is assumed to be fixed as n — oo.

As in the following chapters some results and phenomena will be stated in relative generality, in these
cases we will use the symbol G under the tacit assumption that it refers to either a random graph or

a random hypergraph (from one of the models introduced above). Sometimes the statements are even

8This is the best we can hope for: IP [.4] does not converge to 0 as there exist multiple edges with constant probability.
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valid for other random structures (such as CNF formulas). In that case, we will not always explicitly
state this fact.

Note that there exist other random graph models [JLROO] like for instance random graphs with non-
uniform degree distributions or random regular graphs, which are usually generated via the configu-
ration model. These graph models partly exhibit properties similar to the Erd6s-Rényi random graphs

and some of the results may be comparable to ours.’

2.2. Colouring (hyper)graphs

Having introduced the random graph and hypergraph models, the two random CSPs of interest can be
formalized as follows: In the graph k-colouring problem we are interested in the number Z (G(n,m))
or Zi(G(n,p)) of k-colourings, also called solutions, of G(n,m) or G(n,p) respectively. A k-
colouring is a valid colouring of the vertices, i.e. amap o : [n] — [k], such that for two adjacent verti-
ces v, w € [n] we always have o(v) # o(w). Analogously, in the hypergraph 2-colouring problem, we
consider the number Z (Hy,(n, m)) or Z(Hy(n,p)) of 2-colourings of H(n, m) and Hy(n, p) respec-
tively, which are maps o : [n] — {%1} that generate no monochromatic hyperedges (i.e. hyperedges
e such that [o(e)| = 1).

In the following, we adopt the notion of just writing Z for the number of solutions if the problem in
question is obvious from the context or if we aim at making generic statements that are valid for all

considered problems.

Often, to simplify calculations, we just consider a special type of colourings, namely balanced co-
lourings. For the random graph k-colouring problem, we call a map o : [n] — [k] balanced if
llo™1(@)| — %] < /nfori € [k]. Most k-colourings of the random graph G have this property
with probability tending to 1 as n — oo [AF99, CO13].!° For the random hypergraph 2-colouring
problem, we call o : [n] — {£1} balanced if ||c = (i)| — %| < /n fori € {£1}.

A graph or hypergraph colouring problem admitting at least one solution instantly exhibits an expo-
nential number of solutions w.h.p.. One reason for this is that in the sparse regime the (hyper)graph

possesses a linear number of isolated vertices w.h.p.!!: The degrees of the vertices!?

are approximately
Poisson distributed with parameter d. For d as defined in Section 2.1, the probability for each of them

to take the value 0 is constant and independent of n.

% A short overview (without a claim to completeness) of some results on regular random graphs is given in Section 4.3. For
graphs with general degree distributions, we are not aware of results concerning the study of phase transitions.

10This has been proven to hold in density regimes up to the condensation transition. For larger densities it might be suspected
to be true but has to our knowledge not been proven yet.

1Of course, this is not the only reason as otherwise we could greatly simplify the problem by deleting all isolated vertices.

2When we speak of the degree of a vertex v € [n] in a (hyper)graph, we refer to the number of all (hyper)edges of this
(hyper)graph that contain v.
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Therefore, the correct scaling of Z to obtain a limit consists in taking the n-th root. As we are always
interested in asymptotic statements and as most proof techniques inherently require large values of n
anyway, we define the following quantity which we call the free entropy density: '3

®y(d) = lim E [Zl/”} 2.2.1)

n—oo

The expectation is over the choice of the random (hyper)graph. With the n-th root sitting inside the
expectation, ®(d) is difficult to calculate for general values of d. It is widely conjectured that in
most interesting random CSPs the limit ®;(d) exists for all d and k, but this has not been proven
in general. In fact, the existence of the limit for all d and k£ would imply that the sequence dg,¢(n)
from Theorem 1.1.1 converges, which is an open problem in the theory of random graphs. However,
Theorems 4.1.5 and 4.1.9 presented in Section 4.1 determine the typical value of In Z and show that

it converges in a broad density regime.

Influenced by predictions from statistical physics [MMO09], it has turned out that properties of typi-
cal colourings have a considerable impact on combinatorial and algorithmic aspects of the random
(hyper)graph colouring problem. To make this precise, when speaking of a typical 2-colouring (k-
colouring), we mean a 2-colouring (k-colouring) of the random hypergraph H (the random graph G)
chosen uniformly at random from the set of all its 2-colourings (k-colourings), provided that this set

is non-empty.

2.3. Finite inverse temperatures

Particularly in the context of applications in physics, it is sometimes necessary to generalize the above
framework and the definition of Z. Rather than only working with the (hyper)edge density d as pa-
rameter, we introduce a second parameter 5. Following physics diction, we refer to 3 as the inverse
temperature.

Theorem 4.1.4 is a result in terms of both of these parameters. As we only consider finite inverse
temperatures in the hypergraph 2-colouring problem, we introduce the following notation solely in
this context. However, we like to emphasize that an analogue definition would be possible as well for
random graph k-colouring (which is called k-spin Potts antiferromagnet in the physics literature) and

various other random CSPs.

In the following, H is a k-uniform hypergraph and for a map o : [n] — {£1} we let Ey (o) be the
number of monochromatic hyperedges e of H (i.e. either all vertices of e are set to —1 or to 1 under

o). The Hamiltonian Eg gives rise to the so-called Boltzmann distribution or Gibbs measure Ty g on

"In the physics literature the free entropy density is usually defined as @y (d) = lim, o0 1E [In Z] (cf. [MMO09)), i.e. in-
stead of taking the n-th root, the logarithm of Z is taken and the whole expression is normalized by n. Here, we choose
to take the n-th root as in general the random variable Z may be zero and this is exactly the quantity considered in
Chapter 5.
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the set of all maps o : [n] — {£1} in the following way: We let

xp |—CBF
T plo] = W, where Z3(H) = T;[n];ﬂ} exp [—BEx(7)], (2.3.1)

where we note that the distribution is randomly generated as the underlying hypergraph H is random.
This means that in this model we deal with two layers of randomness, as in a first step the randomness
comes in through the choice of the hypergraph and in a second step a random colour assignment for
the chosen hypergraph is selected. The Boltzmann distribution weights every colour assignment o
according to the number of monochromatic edges it generates. For every “violated” edge, a “penalty”
of exp [—[] has to be paid. The parameter /3 plays an important role in this definition because it
determines the influence of the penalty imposed by Ey (o). If 5 = 0, the penalty factor vanishes
and 7 g is just the uniform distribution over all colour assignments, regardless of their number of
monochromatic edges. Clearly, as 3 — oo the Boltzmann distribution 77 g will place more and more
weight on maps o with fewer and fewer monochromatic edges. For infinite 3, we recover the setting
from the previous section because in this case Zg(H ) equals the number of solutions Z(H ) and thus
7, 1s the uniform distribution over all solutions. We call the normalisation constant Z in (2.3.1) the
partition function. In statistical mechanics, one of the main objectives is to study 7 g as n — oo and
to try and understand the behaviour of Zj as it supplies detailed information on basic properties of the

system [MMO9]. In general, however, computing Zg is #P-hard [Pap94].

Similar to (2.2.1), we also define the free entropy density for the partition function Zg:

Byp(B) = lim ~E[In Zs(H)] . (2.32)

n—oo N

Obviously, the question arises whether the limit (2.3.2) exists for all d, k and 5. Indeed this is the case,
as follows from an application of the combinatorial interpolation method from [BGT13]. Details will
be provided in Section 6.5. Furthermore, a standard application of Azuma’s inequality shows that for
any d, k, 3 and H as defined in Section 2.1, the sequence {X In Zz(H )}, converges to ®,(f) in
probability.

Naturally, the physics picture of the evolution of the solution space as well as the prediction that the
condensation phase transition results from an “entropy crisis”, as described in Section 1.2, are also
valid in this extended scenario. We present it again, albeit from a slightly different point of view,
namely instead of varying d, we keep varying /3. From a “classical” statistical physics point of view, it
seems less natural to vary the parameter d, which governs the geometry of the system, and fix /5 than
to fix d and vary /3. Thus, Theorem 4.1.4 encompasses the latter case. Our explanations concerning
the evolution of the geometry will be a little more formal than in Section 1.2 because we build upon

this intuition later in the proofs presented in Chapter 6.
Based on the cavity method, it is predicted that already for densities d/k beyond about 2~ In k/k
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and for large enough S, the Boltzmann distribution can w.h.p. be approximated by a convex combi-
nation of probability measures corresponding to “clusters” of 2-colourings. That is, there exist sets
Cs1,-..,Ca N C {£1}" and small numbers 0 < £ < ¢ such that

e if 0,7 € Cg,; for some %, then (o, 7) > (1 —¢)n,
o ifoc € Cg;, 7 € Cg; withi # j, then | (o, 7) | < dn,

and if we denote by Zg; = ) exp [—BEy(7)] the volume of Cg ;, we have

TEC@Z-

< exp [-Q(n)],
TV

N
Zgi
mal = ngﬁ) a8 Ca,il
=1

where ||.||Tv is the total variation distance. Given a hypergraph, the construction of the “clusters” Cg ;

will be formalised in Section 2.4.

With the cluster decomposition in place, the physics story of how the condensation phase transition
comes about goes as follows. If /3 is sufficiently small, we have max;<n In Zg; < InZg(H) — Q(n)
w.h.p.. That is, even the largest cluster only captures an exponentially small fraction of the overall mass
Zg(H). Now, as we increase 3 (while d/k remains fixed), both Zg(H) and max;<y Zg, decrease.
But in compliance with the the concept of the “entropy crisis”, Zg(H ) drops at a faster rate. In fact, for
large enough densities d/k there might be a critical value 8,,nq Where the gap between max;<y In Zg ;
and In Zg(H) vanishes. This Sconq should mark a phase transition. This is because max;<y In Zg ;
and In Zg(H) cannot both extend analytically to 8 > Scond, as otherwise we would arrive at the

absurd conclusion that max;<y Zg; > Zg.

To distinguish the refined version of the colouring problems from the simpler case where only solutions

are considered, we will speak of proper graph colouring in case “8 = o0”.

2.4. Clusters and cluster size

In this section we formally introduce the notion of clusters, which we already touched upon in Secti-
ons 1.2 and 2.3. With respect to random graph k-colouring, we again let G be a graph on n vertices.
If o, 7 are k-colourings of &, we define their overlap as the k x k-matrix p(o, 7) = (pij(0,7)); je[k
with entries

et (@) NG

pij(aa T) = n )

i.e. pij(o, 7) is the fraction of vertices coloured ¢ under o and j under 7. Now, define the cluster of o

in G as

C(G,0) = {7 : 7 is a k-colouring of G and p;; (o, 7) > 0.51/k for all i € [k]}.
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Suppose that o, T are balanced colourings. Then 7 € C(G, o) means that a little over 50% of the ver-
tices with colour 7 under o also have colour ¢ under 7. To this extent, C(G, o) comprises of colourings
“similar” to o. In fact, for large k£ and densities close to the condensation phase transition (formally
introduced in Section 2.5), this definition exhibits w.h.p. the same asymptotics as other, more combi-
natorial concepts (e.g. colourings that can be reached from o by iteratively altering the colours of o(n)

vertices at a time) [Mol12].

That the clusters defined in this way are indeed well-separated in the interesting density regimes can
be formalised by the notion of separability. Roughly speaking, separable colourings are defined by
the property that two colour classes overlapping by little more than 50% of their variables are nearly
identical. This implies that the clusters of two separable colourings are either disjoint or identical. The
notion has been used e.g. in [COV13], where it is essentially shown that balanced colourings are also

separable.

With respect to random hypergraph 2-colouring a completely analogue definition is possible. However,
as we are going to work with the finite temperature case of the problem and thus do not only consider
solutions, but have to take into account all possible colour assignments, just counting the number of
assignments “near” some specific colouring o does not make sense. Instead, for a hypergraph H on n

vertices and a map o : [n] — {41} we define the cluster size of o in H as

Cs(H,0) = > exp [—BEx(7)], (2.4.1)
Te{x1}":(o,7)>2n/3

where F(7) denotes the number of monochromatic hyperedges in H under the colour assignment
7. Thus, we sum up the contribution to the partition function of all 7 whose “overlap” (o, 7) =
Zve[n] o(v)7(v) with the given o is big. Indeed, we will show in Chapter 6 that w.h.p. for typical o

almost all the contribution comes from colourings with overlap (o, 7) > (1 — k~5)n.

2.5. Phase transitions

In mathematical physics, a phase transition usually describes a point where the functions ®(d) from
(2.2.1) or ®44(B) from (2.3.2) are non-analytic. As already explained in detail in Section 1.2, the
points where phase transitions occur play a very important role in understanding the evolution of the

geometry of the set of solutions or, more generally, the set of weighted colour assignments.

As elaborated on in Section 2.2, the limit ®(d) is currently not known to exist for all d and k. In order
to circumvent this problem, for a fixed £ > 3 we call dy € (0, c0) smooth if there exists € > 0 such
that

e forany d € (dy — ¢,do + ¢) the limit ®;(d) exists, and
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e the map d € (dy — e,dy + €) — Pi(d) has an expansion as an absolutely convergent power

series around d.

If dy fails to be smooth, we say that a phase transition occurs at dy. Using a concentration result
from [ACOO08], it follows that for smooth d; the sequence of random variables { Zj, (G(n, do/n))"/"},,
converges to ®x(dp) in probability. Thus, up to a sub-exponential factor, @y (d) captures the “typical”
value of the number Zj,(G(n,d/n)). A similar statement also holds for the number of 2-colourings of

random hypergraphs.

The above definition of phase transitions is in compliance with its common use in combinatorics. For
instance, the classical result of Erdés and Rényi [ER60] implies that the function that maps d to the
expected fraction of vertices belonging to the largest component of G(n, d/n) (in the limit as n — 00)
is non-analytic at d = 1. Similarly, if there actually is a sharp threshold d..; for (hyper)graph colouring,
then d.) is a phase transition in the above sense. This can easily be understood: By definition, for
d < dco, the random (hyper)graph G has a colouring w.h.p. and thus the number of colourings is, in
fact, exponentially large in n (as explained in Section 2.2). Hence, if ®(d) exists for d < d,, then
®i(d) > 0. By contrast, for d > d the random (hyper)graph G fails to be colourable w.h.p. and
therefore @4 (d) = 0. Thus, 4 (d) cannot be analytic at d).

In the case of finite 5, we choose an analogue definition: We call Sy > 0 smooth if there exists € > 0
such that the function 5 € (8y—¢, Bo+¢) — P41 () admits an expansion as an absolutely convergent

power series around y. Otherwise, we say that a phase transition occurs at 3.

The condensation phase transition

The phase transition we will be mostly concerned with in this thesis is the condensation phase tran-
sition. As we noted in Section 2.2, ®(d) is not known to exist for general values of d. However, for
d € [0, 1) this quantity is easily understood.

With respect to random graphs, it is known that G(n, d/n) decomposes for d € [0, 1) into tree com-
ponents and a bounded number of connected components with precisely one cycle w.h.p. [ER60].
Moreover, the number of k-colourings of a tree with v vertices and v — 1 edges is well-known to be
k¥(1 — 1/k)*~1 and thus w.h.p. we obtain

Z(G(n,d/n)Y™ ~ k(1 —1/k)Y?  ford < 1. (2.5.1)
As Z;,(G)Y/™ < k for any graph G on n vertices, (2.5.1) implies that
®i(d) = lim E[Z4(G(n, d/n)" = k(1 —1/k)%?  ford < 1. (2.5.2)

Since d +— k(1 — 1/k)¥? is analytic, the least d > 0 for which the limit ®,(d) either fails to exist or
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d/2

strays away from k(1 — 1/k)%/ “ is going to be a phase transition. Hence, for £ > 3 we let

deyit = inf {d > 0 : the limit 4 (d) does not exist or Py (d) < k(1 — 1/k)d/2} . (2.5.3)

It will become evident in Chapter 5 that this is exactly the right definition for the condensation transiti-
on dconq non-formally introduced in Section 1.2. Furthermore, we show that d.,; can also be expressed
as sup {d > 0 : the limit ®,(d) exists and @4 (d) = k(1 — 1/k)¥/?}.

With respect to random hypergraphs, there is an analogue definition of the condensation transition
dconq and it was shown in [COZ12] that indeed @ (d) is non-analytic around dong if the limit exists
because P (d) coincides with the linear function lim,,_, - E [Z ]1/ " for d < deond-

For the case of finite 5 in the random hypergraph 2-colouring problem, we show in Section 6.2 that

for any 5 we have

Byp(B) <2+ %m (1 — 9k (1 —exp [—ﬁ])) (2.5.4)

and that there is a regime where equality holds in this equation. Since the function 5 € [0, 00) + In 2+
90 (1 — 21k (1 — exp [-f])) is analytic, it follows that the least 3 > 0 for which the inequality in

(2.5.4) is strict, marks a phase transition. Hence, we define

Borit(d, k) = inf {,8 >0 Byp(B) < In2+ %m (1 — 917K (1 —exp [—B]))} . (2.5.5)

In Chapter 6 we will show that indeed [t (d, k) coincides with the condensation phase transition

Beond that we non-formally introduced in Section 2.3.

2.6. Notation and further remarks

Throughout the thesis, we are concerned with asymptotic statements in the number n of vertices.
Therefore, we always tacitly assume that n > ng is sufficiently large for the various statements to
hold. Moreover, to avoid floor and ceiling signs, we assume that n is either even or divisible by k,

depending on the situation. As mentioned above, we denote by [n] the set {1, ..., n}.

For k, the uniformity parameter or the number of colours respectively, it is sometimes necessary to
have a lower bound to carry out sufficiently accurate analyses, especially in the proofs presented in
Chapters 5 and 6. Hence, we often assume that k£ > kg for some large enough constant ky. Thus, &
may be arbitrarily large but fixed while n — oo. In many cases it may not be impossible to optimize
or at least calculate kg, but so far no attempt has been made.

Furthermore, it might be interesting to note that for small values of & various properties of random

CSPs that are proven for big k, are not even conjectured to hold. In particular, the solution space is
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expected to have a completely different structure, which may also be a reason why certain algorithms
work well for small k£ but can be proven to fail for larger k (cf. Subsection 4.3.2). For example, as
k increases, typical satisfying assignments get closer and closer to being balanced as the number of
occurences of the variables in the constraints approach their expectation.

In Chapter 7 and in most parts of Chapter 8, however, the statements and proofs do not require large

values of k£ and we assume that k > 3.

We use the standard O-notation when referring to the limit n — oo. Thus, f(n) = O(g(n)) means
that there exist C' > 0, ng > 0 such that for all n > ng we have |f(n)| < C - |g(n)|. In addition,
we use the standard symbols o(+), (), ©(-). In particular, o(1) stands for a term that tends to 0 as
n — 0o. We adopt the common notation that for the symbol €2(+) the sign matters, i.e. f(n) = Q(g(n))
means that there exist C' > 0, ng > 0 such that for all n > ng we have f(n) > C - g(n), whereas
f(n) =—Q(g(n)) implies — f(n) > C - g(n) for all n > ny.

Additionally, we use asymptotic notation with respect to k. To make this explicit, we insert k as an
index. Thus, f(k) = Og(g(k)) means that there exist C' > 0 and ko > 0 such that for all & > ko we
have | f(k)| < C - |g(k)|. Further, we write f(k) = Ox(g(k)) to indicate that there exist C' > 0 and
ko > 0 such that for all k& > ko we have |f(k)| < k¢ - |g(k)|. An analogous convention applies to
or(+), Q(-) and O (-). Notice that here as well we have Q. (-) # —Q(-).

Furthermore, the notation f(n) ~ g(n) stands for lim,_,~, f(n)/g(n) = 1 or equivalently f(n) =
g(n)(1 + o(1)). Besides taking the limit n — oo, at some point we need to consider the limit

v — oo for some number v € N. Thus, we additionally introduce f(n,v) ~, g¢(n,r) meaning

that lim,, o0 lim,, o0 f(n,v)/g(n,v) = 1.

Moreover, if p = (p1,...,p;) is a vector with entries p; > 0, then we let
l
H(p)=—> pilnp;.
i=1

Here and throughout, we use the conventions that 0ln 0 = 0 and consistently 0 ln% = 0. Hence, if
Zé:l p; = 1, then H(p) is the entropy of the probability distribution p. As a special case, if z € [0, 1]
is just a number, then the entropy function (z) is defined as H(z) = —zIlnz — (1 — 2) In(1 — 2).
Further, for a number z and an integer h > 0, we let (z), = z(x — 1) --- (2 — h + 1) denote the hth

falling factorial of x.

Concerning the distribution of random variables, if X follows the Poisson distribution with parameter
A, we write X ~ Po(A). If X is Bernoulli-p-distributed, we denote this by X ~ Be(p) and if it is
binomially distributed with parameters n and p, we write X ~ Bin(n, p).
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3 Techniques

14 There is a variety of techniques that have become standard tools in the rigorous study of random
CSPs over the years. Some of them will be introduced in detail in this chapter, namely the planted
model and the moment methods. Furthermore, a short summary of small subgraph conditioning will
be given. Others will be brought in “on the fly” in the following chapters when needed. Among them
are the core, the backbone and the notion of free vertices. The core [PSW96] will be introduced in
Chapter 6. It is, roughly speaking, a set of vertices such that every vertex has many neighbours'>,
which belong to the core themselves. Vertices in the core do not contribute to the cluster size because
they can only take a specific colour (cf. e.g. [COV13]). Otherwise, they would initiate an avalanche of

colour changes ending up at a colouring outside the initial cluster.

3.1. Planted model

In many random CSPs and for a wide range of constraint densities (namely those where the number
of solutions is sufficiently concentrated), it has turned out that typical properties of random solutions
as well as the geometry of the solution space can be studied by way of the so-called planted model.
This is an easily accessible distribution, often very convenient to work with. It can be used to study
rigorously the various phase transitions in random CSPs, in particular it enables us to get a handle on

the size of the cluster introduced in Section 2.4.

The idea of “planting” a property inside a random structure is very old and has for example been
used to investigate the performance of algorithms [DF89, AK97]. Juels and Peinado [JPOO] were, to
our knowledge, the first to investigate the relationship between the “planted model” and the “random

colouring model” for the clique problem in dense random graphs.

In this chapter, we present the planted model only in its common setup for the case of proper graph
colouring (meaning that we do not have an additional parameter [3). For finite inverse temperatures in
random hypergraph 2-colouring, the planted model is refined in Chapter 6. Analogously, it can also be

used for the study of other random CSPs, e.g. random k-SAT.

As already mentioned in Section 2.2, when investigating the properties of random CSPs, it is often

14 At some points in this chapter the phrasing is a verbatim copy of text passages from the papers included in this thesis:
[BCOHRV 16, BCOR16, Rasl6a+, Ras16b+].
15The set of neighbours of a vertex v consists of all vertices which are connected to v via an edge.
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essential to have the notion of typical colourings at hand. To be precise, for a random (hyper)graph
G = G(n,m) let Ay, be the set of all pairs (G, o) with o being a colouring of G. Let N = (3)
for random graph k-colouring and N = (Z) for random k-uniform hypergraph 2-colouring. Now we

rc
k,n,m

define a probability distribution 7 |G, o] on Ay, 5, by letting

-1
ThnmlG, 0] = [Z (G) (i) PP [G is colourable]

We call this distribution the random colouring model or Gibbs distribution. It can also be described as

the distribution produced by the following experiment.

RC1 Generate a random (hyper)graph G = G(n,m) given that Z(G) > 0.

RC2 Choose a colouring o of G uniformly at random. The result of the experiment is (G, o).

For densities below the colouring threshold, this experiment is key to studying the combinatorial nature
of the (hyper)graph colouring problem as it corresponds to randomly picking solutions of random
(hyper)graphs. However, up to now, there is no known method to implement this experiment efficiently
for a wide range of (hyper)edge densities. In fact, the first step RC1 is easy to process because we
are only interested in values of d where GG is colourable w.h.p. and consequently the conditioning

on Z(G) > 0 does not cause problems because the probability PP [G is colourable] is close to 1. In

rc
k,n,m

the interesting density regimes we cannot even find one colouring algorithmically, let alone sample

fact, what turns the direct study of the distribution 7 into a challenge is step RC2 because in
one uniformly: The currently best-performing algorithms for sampling a colouring of GG are known to
succeed up to a density about a factor of 2 below the colouring threshold for random graph k-colouring
[AM97, GM75, KS98] and about a factor of k below the threshold for random k-uniform hypergraph
2-colouring [AKKTO2].

To circumvent these difficulties, we consider an alternative probability distribution on Ay, ,, ,,, cal-
led the planted model, which is much easier to approach. To describe this experiment, for a colour
assignment o let F (o) be the number of (hyper)edges of the complete (hyper)graph that are mono-
chromatic under o.'¢ Then the planted distribution is induced by the following experiment:

PL1 Choose a colour assignment o uniformly at random provided that (o) < N — m.
PL2 Generate a (hyper)graph G on [n] consisting of m (hyper)edges that are bichromatic under o

uniformly at random. The result of the experiment is (G, o).

1To be precise, for graph k-colouring we have o : [n] — [k] and F(o) = S°F_, (“’_21(”‘) and for k-uniform hypergraph

i=

2-colouring we have o : [n] — {£1} and F(o) = (‘07116(71”) + (|07;(1>‘).
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3.1. Planted model

Thus, the probability that the planted model assigns to a pair (G, o) is

N ~1
Trg,ln,m[Gﬂ al ~ {Qn <m> P[0 is a colouring of G]

We observe that step PL1 is easy to handle, as the conditioning on F (o) < N —m does not cause any

difficulties. Additionally, in contrast to the “difficult” step RC2, step PL2 is much easier to implement.

3.1.1. Quiet planting

rc

re ., and ﬂ,fln ,, differ. Under 7}

Of course, the two probability distributions 7 e

the (hyper)graph is
chosen uniformly at random, whereas under ﬂi}mm its probability depends on its number of solutions
in such a way that (hyper)graphs exhibiting many colourings are ‘“favoured” by the planted model (or,
put differently, in the planted model there exist more solutions because there is a solution - and its

whole cluster - built into the problem).

However, the two models are related if m = m(n) is such that w.h.p.
InZ(G) =IE[Z(G)] + o(n). (3.1.1)

For the problems of k-colouring random graphs and 2-colouring random hypergraphs, Coja-Oghlan
and Achlioptas showed in [ACOO0S] that the following is true if (3.1.1) is satisfied:

If (£,) is a sequence of events &, C Ay, such that Fglnm[gn] < exp[—(n)], then

T2, mlEn] = 0(1).
(3.1.2)

The statement (3.1.2) was baptised quiet planting by Krzakala and Zdeborovd [KZ09] and has ever
since been used to study the behaviour of the set of colourings and its geometrical structure in various
random constraint satisfaction problems [ACO08, BCOHRV16, Mol12, MR13, MRT11]. Although
work has been greatly simplified by (3.1.2), yet a significant complication in its use is caused by the
fact that £, not only has to be unlikely but is required to be exponentially unlikely in the planted model.
This has caused substantial difficulties in several applications (e.g. [BCOR16, BCOHRV 16, Mol12]).

3.1.2. Contiguity and silent planting

In [ACOO08] it has been proven that for random graph k-colouring and random hypergraph 2-colouring,
in a certain density regime (well below the condensation transition) the number of solutions is con-

centrated around its expectation in the sense that for all ¢ > 0 w.h.p.

1
—|InZ -ImE[Z]| <e.
n
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This leaves open the possibility that In Z has fluctuations of order e.g. \/n, which appears plausible be-
cause the core fluctuates on this scale and it seems reasonable to expect that its behaviour influences the
number of solutions. Rather surprisingly, Bapst, Coja-Oghlan and Efthymiou proved in [BCOE14+]
that for the problem of k-colouring random graphs indeed In Z fluctuates by less than w(n) for any

w(n) — oo, which is equivalent to saying that for all ¢ > 0 w.h.p.
1
—|InZ -InE[Z]|<e. (3.1.3)
w

The key tool in [BCOE14+] is the method of small subgraph conditioning (cf. Section 3.3). The proof
works because the fluctuations in the number of solutions are due to the fluctuations in the number of
short cycles in the factor graph!” and because this is the only important structure contributing to the

fluctuations.

Our result Corollary 4.1.7 establishes this behaviour for random hypergraph 2-colouring. To obtain
this result, it is an essential necessary condition that the number of colourings of an arbitrary tree does
only depend on its number of vertices, as in sparse random (hyper)graphs most components either
are trees or contain short cycles [ER60]. Thus, we have to make sure that the tree components do not
contribute to the variance of the number of solutions. Indeed, in the random k-colouring problem, for
every tree with n nodes (and consequently m = n — 1 edges), the number of k-colourings of this
tree is deterministic and given by k™ (1 — 1/k)™ = k(k — 1)"™. For hypergraph 2-colouring, every
k-uniform hypergraph being a tree with m edges has exactly k£ + (m — 1)(k — 1) vertices and its

number of 2-colourings is, independently of the tree structure, given by (2"3 — 2) (2’“_1 — l)m.

A consequence of (3.1.3) concerns the following notion of contiguity. Suppose that p = (f1,,)p>1 and
v = (vp)n>1 are two sequences of probability measures such that i, v, are defined on the same
probability space €2, for every n. Then (i, )n>1 18 contiguous with respect to (1, ),,>1, in symbols g <

v, if for any sequence (&,,),>1 of events such that lim,,_, v, (€,) = 0, we have lim,, o0 1, (E5) = 0.

Our result Corollary 4.1.8 establishes that the random colouring model is contiguous with respect to
the planted model, a fact that we refer to as silent planting. Thus, instead of an exponentially small
probability in (3.1.2) we only need a probability decaying to zero arbitrarily slowly in the planted
model to obtain a probability decaying to zero in the random colouring model.

"The factor graph is an auxiliary graph, representing the original (hyper)graph in a slightly different way by directly
internalising the constraints: It is a bipartite graph with variable nodes corresponding to the vertices in the original
(hyper)graph and factor nodes corresponding to the (hyper)edges. In the factor graph a variable node is connected to a
factor node if in the original (hyper)graph the variable was contained in the corresponding edge.
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3.2. Moment methods

3.2. Moment methods

For several years, in many random constraint satisfaction problems the best bounds on the threshold
for the existence of solutions derived from the first and second moment method (cf. Sections 4.2 and
4.3). These methods are non-constructive, meaning that they do not yield concrete solutions for the
respective problem, but rather are probabilistic methods to prove the (non-)existence of a solution. In
most cases, applied to random CSPs these simple techniques do not yield matching upper and lower
bounds on the satisfiability threshold. However, one often obtains at least its exponential order and in

many analyses the results from these methods form the basis for advanced calculations.
3.2.1. First moment method

The first moment method is a very simple technique to obtain an upper bound on the satisfiability
threshold d.,; by showing that above a certain density the first moment (which is nothing but the
expectation) of the number of solutions tends to zero. If GG is a random (hyper)graph on n vertices to

be coloured and Z its number of colourings, then Markov’s inequality yields
P[G is colourable] =P [Z > 1] < E[Z]

and consequently if E [Z] = o(1) for some density d, then d > d. for large enough n. For many
random CSPs, it is easy to compute a critical density dg,gt, such that E [Z] = o(1) for d > dg,s; while
E[Z] = exp [Q(n)] for d < dge;."®

3.2.2. Second moment method

Unfortunately, having E [Z] = exp [2(n)] for d < dgs; does not mean that in this density regime
the random (hyper)graph admits a colouring w.h.p.. It could simply be the case that the first moment
is pushed up by a small number of (hyper)graphs with excessively many solutions. To eliminate this
possibility, a lower bound on the threshold d., can be derived via the second moment method. The
use of this method in the context of random CSPs was pioneered by Achlioptas and Moore [AMO06]
and Frieze and Wormald [FWO05]. Based on the Paley-Zygmund inequality

[P[G is colourable] = P[Z > 1] >

'8 A5 stated in Section 2.2, in sparse random graphs there exists a linear number of isolated vertices w.h.p. and thus, if the
problem exhibits at least one solution, it immediately exhibits an exponentially (in n) large number of solutions.
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where G is again a random (hyper)graph on n vertices, we conclude that if
E[z*] <C-E[Z] (3.2.1)

for some density d and some constant C' = C(k,d) > 0, then P [G is colourable] > 1/C. Thus, the
second moment lower bound dg is a (hyper)edge density such that (3.2.1) holds for d < dse. but is
violated for d > dge.. Here, it is important that C' does not depend on n because this ensures that the
probability that GG is colourable is bounded away from 0 as n tends to infinity. There exist different
possibilities for pushing the probability from 1/C up to 1 — o(1) (to obtain d., > d). The method of
choice depends on the specific problem. For k-SAT and for models on Erdés-Rényi graphs, like e.g. the
presented problems graph k-colouring and hypergraph 2-colouring, Friedgut’s sharp threshold result
Theorem 1.1.1 can be applied [Fri99, AF99, Fri05]. In other cases, the small subgraph conditioning
technique (cf. Section 3.3) by Robinson and Wormald [RW94] can be used [KPGW10, COEH16,
Wor99]. This includes scenarios like for example regular graph problems, where Friedgut’s result
does not hold, or other random CSPs, for which Friedgut’s result has not been proven yet. In this case,
it might seem more suitable to apply small subgraph conditioning because the required machinery is

not as huge and a more precise bound on the required density can be obtained.

Applying the second moment method to the number Z of solutions of the (hyper)graph problem is
sometimes referred to as the “vanilla” application of the second moment method. In practice, often a
random variable only counting the number of solutions with (nearly) balanced colour classes is used
[ANOS, AMO06] with the goal of reducing the variance relative to the expectation. For asymmetric
problems, this has been done by using a random variable that weights assignments cleverly [AP04]
or only counts colourings whose complement is also satisfying [AMO06]. In fact, we can use every
random variable Z such that Z(G) > 0 implies that G is colourable.

Nevertheless, in all these cases (except for some very easy problems touched upon in Section 4.3),
when comparing the best first moment upper bound dg,; and the best second moment lower bound
dsec, it turns out that they differ in the limit of large k£ by at least a constant additive. For several
problems, e.g. for hypergraph 2-colouring, it has been shown [AMO06] that the second moment analysis
is tight. That means just putting more effort into the calculations or increasing their accuracy does not
help to squeeze out the missing constant. On the contrary, Achlioptas and Moore even proved that
E [2?] > exp [Q(n)] E [Z]? for d > dec, implying that the second moment method fails drastically.

3.2.3. To the condensation threshold and beyond

The reason for this failure is twofold, as has been explicitly shown for random hypergraph 2-colouring
[COZ12] and random graph k-colouring [COV13]: For densities between dgec and dcopq (the conden-
sation transition introduced in Section 2.5), the random variable Z is close to E [Z] w.h.p., but without

being sufficiently concentrated for (3.2.1) to hold. In fact, it was shown that there is a constant ky > 3
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and a sequence €, — 0 such that for all £ > kg and d < d¢onq — € the random (hyper)graph is

colourable w.h.p. and
InZ ~InE[Z].
Thus, below deong, Z is w.h.p. of the same exponential order as E [Z].

For densities above d¢onq, however, the expectation E [Z] is driven up by a very small number of
(hyper)graphs possessing a vast number of colourings resulting in non-concentration of Z: W.h.p. there
is some €5 — 0 such that for d.onq + € < d < dcg it is true that

InZ <InE[Z] — Q(n).

This means that the expected number of 2-colourings exceeds the actual number by an exponential
factor w.h.p.. In this case, this small number of “crazy” (hyper)graphs is responsible for an explosion

of the second moment E [Z 2] .

Zooming in on the reasons for this phenomenon reveals the following picture. By the definition of the

second moment of Z, we have

E[Z?%] = Z PP (o is a colouring) PP (7 is a colouring|o is a colouring)

o,T

This implies that the second moment method works as long as, roughly speaking, the main contribu-
tion to the second moment comes from uncorrelated colourings because in this case E [Z 2} is of the
same order of magnitude as E [Z]*.

Seen from another angle, calculating > ©_IP (7 is a colouring|o is a colouring) for fixed o amounts to
calculating the expected number of colourings in the planted model (cf. Section 3.1) with planted
colouring o. As we noticed above, under the distribution Wg}n,m, (hyper)graphs exhibiting many co-
lourings are chosen excessively often, or, in other words, the typically chosen (hyper)graph possesses
a lot more solutions than the one chosen uniformly according to 7", ... As a consequence, the ex-
pected number of solutions is over-estimated. At dg. this over-estimation becomes significant in the

second moment and the second moment method breaks down.

A slightly different perspective yields yet another explanation and paves the way for improving the
second moment bound up to the condensation transition: It was shown in [AMO06] that we can find a
function 1 : (0,1) — R such that ¢)(1/2) ~ 1 InE[Z]. Furthermore, if and only if ¢(z) takes its
global maximum at z = 1/2, then E [Z?] < C-E [Z)? for some constant C' > 0 and the second
moment method works. On the other hand, there exists a 0 < a < 1/2 such that the maximum of
¥ in (0, «) can be interpreted as the normalized logarithm of the expected size of the local cluster.

Thus, the second moment argument breaks down at ds.. because at this point the expected cluster size
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exceeds the total expected number of solutions.

It can, however, be proven that up to d.onq the expected size of the local cluster in the planted model
exaggerates its typical size. Below d.oq this typical size is indeed not bigger than the total number of
solutions (cf. [COZ12, Proposition 4.6]).

Thus, the second moment argument can be pushed up to the condensation transition by investigating
the internal structure of the clusters and excluding solutions with huge clusters. This has for example
been done in [COV13].

Ultimately, beyond d.onq the size of the typical local cluster in the planted model is by an exponential
factor bigger than the expected number of 2-colourings. In this regime, the planted model fails to be a
good approximation for the random colouring model as a pair chosen from the planted distribution cor-
responds to a pair chosen from the Gibbs distribution only with exponentially small probability. Two
randomly chosen colourings strongly correlate as they belong to the same cluster with non-vanishing
probability. This explains intuitively that the second moment method cannot be extended to densities
beyond dcond, as a necessary condition for the second moment method to work is that a random pair
of colourings decorrelate (cf. e.g. [ANPOS]). Thus, it proves difficult to obtain mathematically precise

results for densities beyond d.q,q, especially concerning the satisfiability threshold d,.

3.3. Small subgraph conditioning

Small subgraph conditioning is a method developed by Robinson and Wormald in [RW92, RW94].
It was originally used to show that random regular graphs of degree three or more are Hamiltonian
w.h.p. and has since been applied in many different settings. Essentially, the method is used to study
a sequence of random variables depending on a graph G, which are not concentrated around their
means, but become concentrated conditioned on the presence of small sub-structures in G, in our case
short cycles. Janson used the method in [Jan95] in order to obtain limiting distributions and to prove
contiguity. In this process, small subgraph conditioning was developed into a comfortably applicable
tool, only requiring the calculation of some joint moments and a very accurate analysis of the variance.
In Section 4.2, we give a more thorough overview of work in this field (additionally we recommend
the survey [Wor99] for a detailed discussion.) For the moment, we content ourselves with stating that

the core idea of the method consists in showing the following:

When we consider the variance of the random variables in question, in our case the number of sa-
tisfying assignments with some additional properties, we can divide the set of all (hyper)graphs into
groups according to the small cycle counts and decompose the variance into the variance of the group

mean plus the expected value of the variance within a group.

We then proceed to show that conditioning on the number of small cycles reduces the variance signi-
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ficantly. More precisely, it can be proven that the contribution of the second summand is negligible
and thus the limiting distribution of the logarithm of the number of satisfying assignments can be

determined by the joint distribution of the number of short cycles.

The following theorem by Janson is typically the main tool when using small subgraph conditioning.

Theorem 3.3.1 ([Jan95]). Suppose that (6;);>2 and (\;);>2 are sequences of real numbers such that
0 > —land N\ > 0 for all . Moreover, assume that (C} y,)i1>2 n>1 and (Zy,)n>1 are random variables
such that each Cy,, takes values in the non-negative integers. Additionally, suppose that for each n
the random variables Ca,,, . ..,Cy n and Z, are defined on the same probability space. Moreover,
let (X;);>2 be a sequence of independent random variables such that X; has distribution Po(\;) and

assume that the following four conditions hold.

SSC1 for any integer L > 2 and any integers xa,...,xy, > 0

L
lim P[V2 <1< L:Cpp =] = [[P[X; =

n—00
=2

SSC2 for any integer L > 2 and any integers xa, ..., x5, >0

E[Z, V2 <1< L:Cyy = 2y B H

L
lim (1 + 51)11 exp [—)\151] .
=2

SSC3 3, \io2 < .
SSC4 lim,, oo B[Z2)/E[Z,]2 < exp [325%, Ai62] .

Then the sequence (Z, /E|Zy,))n>1 converges in distribution to [[72,(1 + &) %t exp [-\d)] .

The random variable [[;°, (1 + )% exp [—\;0] has been studied in [Jan95], where it was shown that
it has a bounded first and second moment. Unfortunately, in our context it is not possible to explicitly
use Theorem 3.3.1 for reasons which will be elaborated on in Sections 4.2 as well as 7.1 and 8.1. We

therefore have to refine the analysis similar to the one done in [COW16+].
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4 Results and related work

4.1. Results

The results presented in this thesis are manifold and touch upon a variety of models and questions
related to the study of random CSPs. Integrated are four papers, whose results will be presented in
the chronological order of their creation. Two of them are already published, while the other two are
submitted and preprints can be found online. Large parts of this chapter are a verbatim copy or a close
adaption of the content of these papers.

The proofs of the results will be unfolded in full detail in Chapters 5 to 8 and in Appendices A and B.
4.1.1. Condensation in random graph k-colouring

The first result is from the paper
The condensation phase transition in random graph coloring

by Bapst, Coja-Oghlan, Hetterich, RaBmann and Vilenchik published in Communications in Mathe-
matical Physics 341 (2016) [BCOHRV 16]. It deals with proving the existence and exactly determining
the location of the condensation phase transition in random graph k-colouring provided that k exceeds
a certain constant kq. The solution is given in terms of a distributional fixed point problem and verifies

the conjecture obtained via the cavity method.

To state the result, we need a bit of notation. Let € be the set of probability measures on [k]. We
identify 2 with the k-simplex, i.e. the set of maps u : [k] — [0, 1] such that Zl;izl p(h) =1, equipped
with the topology and Borel algebra induced by R¥. Moreover, we define a map B : Ui’;l QY — Q,
(15 .oy poy) = Blpa, . . ., f1y] by letting

. 1/k if 3 e =1 (1 —p;(R)) =0,
Blpt, .. pq)(i) = 7 (1= (3)) S

=1

Sonep 121 (115 (R))

for any i € [k].
otherwise,

In physics language this would be called the Belief Propagation operator. Further, we let P be the set
of all probability measures on €2 and for each 1 € € we let §,, € P denote the Dirac measure that

puts mass one on the single point p. In particular, §;,-1; € P is the measure putting mass one on the
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uniform distribution k=11 = (1/k,...,1/k). For € P and v > 0 let

k

v
Zy(m)=>_ (1 —/u(h)dw(u)> . (4.1.1)
h=1 &
Further, define a map Fy 5, : P — P, m — Fq[m] by letting
d” exp ua—. 2
Farlr] =exp [—d] dp-11 + Z Z H (1= 5 (R)) | 0By, ®dﬂ(ﬂj)-
—1j=1 j=1

4.1.2)

Thus, in (4.1.2) we integrate a function with values in P, viewed as a subset of the Banach space
of signed measures on 2. The normalising term Z,(w) from (4.1.1) ensures that Fgy (] really is
a probability measure on €. In physics terms, .,  represents a distributional version of the Belief

Propagation operator.

The main theorem is given in terms of a fixed point of the map F, i.e. a point 7* € P such that
Fai|m*] = 7*. In general, the map F,, has several fixed points. Hence, we need to single out the
correct one. For h € [k] let 05, € € denote the vector whose hth coordinate is 1 and whose other
coordinates are 0 (i.e. the Dirac measure on h). We call a measure 7 € P frozen if w({01,...,0k}) >
2/3; in words, the total probability mass concentrated on the k vertices of the simplex €2 is at least
2/3.

As a final ingredient, we need a function ¢4 : P — R. To streamline the notation, for 7 € P and
h € [k] we write 7, for the measure drrj, (1) = kp(h)dm(p). With this notation, ¢4, is defined as

> Yh exp [— _
¢d,k(ﬂ):¢2,k(ﬂ)+%z Z &4 k(T V1, k) H <ki1> pl—d/(k 1)]7

|
i€ [k] V15e--r VK =0 helk) Th

where

Gan(m) = k_ Z > /ln llzm )ia )]@dm(ui), (4.13)

h1 1 ho€[k\{h1} helk)
Ink if 8 v =0,
Gk (T3 8571, %) = . D) (h & Gy if yF
Tty In Z H H 1= ( ® ®d7rh' (uyr’) i 325y 7 > 0.
QrYr—T- k

h=1h'€[k]\{i} j=1 r'€lk] j=1
(4.1.4)

The integrals in (4.1.3) and (4.1.4) are well-defined because the set where the argument of the loga-

rithm vanishes has measure zero.
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The above formulas are derived systematically via the cavity method [MMO09]. The functional ¢ j, is
an instalment of a generic formula, the so-called “Bethe free entropy”. Generally speaking, the “Bethe
free entropy” yields a good approximation of the free entropy of the system if we insert the right

distribution - on trees e.g. this distribution can be determined as the fixed point of Belief Propagation.

Now, the main theorem can be stated.

Theorem 4.1.1. There exists a constant kg > 3 such that for any k > kg the following holds. If
d> (2k — 1)Ink — 2, then Fq, has precisely one frozen fixed point 7); .. Further, the function

Yp:d—Ink+ gln(l —1/k) = ¢ar(mys) (4.1.5)

has a unique zero deonq in the interval [(2k — 1)Ink — 2, (2k — 1) Ink — 1]. For this number donq,

the following three statements are true.

(i) Any 0 < d < deonq is smooth and ®y(d) = k(1 — 1/k)¥/2.
(ii) There occurs a phase transition at dggpng.
(iii) If d > dcong, then
lim sup E[Z;(G(n, d/n))Y"] < k(1 — 1/k)¥/2.

n—oo

Thus, if d is smooth, then ®y,(d) < k(1 — 1/k)%/2.

Remark 4.1.2. We observe that the first part of Theorem 4.1.1 implies that G(n,d/n) has a k-
colouring w.h.p. for any 0 < d < deong. Indeed, if d < deopa, then ®p(d) = k(1 — 1/k)¥? > 0
and thus Zj,(G(n,d/n)) > 0 w.h.p. because (Z,(G(n,d/n))"/™) converges to ®;,(d) in probability.

The key strength of Theorem 4.1.1 is that we identify the precise location of the phase transition.
Given the intricate combinatorics of the random graph colouring problem, it does not seem surprising

that the answer is not exactly simple.

In the proof of Theorem 4.1.1 the nature of the condensation phase transition is brought to light.
For instance, the fixed point 7T:;3’ ;. turns out to have a nice combinatorial interpretation, and, perhaps
surprisingly, 77227 ;. €merges to be a discrete probability distribution. Furthermore, in the course of the
proof the prediction of the evolution of the solution space up to d.onq as described in Section 1.2 will

be verified. We will present the proof in Chapters 5 and Appendix A.

With the definition of the cluster of a colouring o from Section 2.4, we obtain the following corollary:

Corollary 4.1.3. With the notation and assumptions of Theorem 4.1.1, the function Y is conti-

nuous, strictly positive and monotonically decreasing on the interval ((2k — 1)Ink — 2,dconq), and
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limg_q,, , Xr(d) = 0. Further, given that Z,(G(n,d/n)) > 0, let T be a uniformly chosen random
k-colouring of this random graph. Then, for any d € ((2k — 1)Ink — 2,dconq),

- 1. [C(G(n,d/n),T)| _
il\INI(l)nh_}H;OP [nln Ze(G . d/m)) < Sk(d) + €| ZK(G(n,d/n)) > O} =1, and

. 1. |C(G(n,d/n), T
;%llyrisogpP [n In | Z(k((G(n,/d/)n)))‘ > Yi(d) — €| Zk(G(n,d/n)) > 0} > 0.

We emphasise that conditioning on Z;(G(n,d/n)) > 01is necessary to speak of a random k-colouring
T but otherwise harmless, as Theorem 4.1.1 implies that G(n,d/n) is k-colourable w.h.p. for any
d < deond-

In other words, Corollary 4.1.3 shows that there is a certain function X > 0 such that the total number
of k-colourings exceeds the number of k-colourings in the cluster of a randomly chosen k-colouring
by at least a factor of exp [n(2x(d) + o(1))] with probability tending to one. On the other hand, with
a non-vanishing probability the total number of k-colourings surpasses the size of a single cluster by
at most a factor of exp [n(Xx(d) + o(1))]. As d approaches d.onq, the function ¥ (d) tends to 0 and

thus the corollary formalizes the prediction of an entropy crisis (cf. Section 1.2).
4.1.2. Condensation in finite temperature random hypergraph 2-colouring

The second result is from the paper

A positive temperature phase transition in random hypergraph 2-coloring

by Bapst, Coja-Oghlan and RaBmann [BCOR16] published in the Annals of Applied Probability 26
(2016). In this paper we establish the existence and approximate location of the condensation phase
transition in random hypergraph 2-colouring for finite inverse temperatures 3. More specifically, we
obtain a formula that determines the location of the condensation phase transition up to an error €,
that tends to O for k& — oo. This is the first (rigorous) result that determines the condensation phase

transition within such accuracy in terms of finite 3.

With the definition of a phase transition from Section 2.5, we have the following result.

Theorem 4.1.4. For any fixed number C' > 0, there exists a sequence €5, > 0 with limy_, e = 0
such that the following is true. Let

Yra(B) = (B+1)exp[-B+kIn2]In2 —2 <Z —2k—11n2+1n2> .
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1. Ifd/k < 2¥71In2 — In2 — &y, then any B > 0 is smooth and

Dyp(f) =In2+ %m (1 — 917k (1 — exp [—5])) . (4.1.6)

2. If2F ' In2 —In2+4 ¢, < d/k < 2871 In2 + C, then Y1.a(B) has a unique zero Beona(d, k) >
kln2 and
o any 3 € (0, Beond(d, k) + €i) is smooth and @4 1) is given by (4.1.6),
e there occurs a phase transition at Beond(d, k) + €k
e for 8 > Beond(d, k) + e we have

Q45(8) <In2+ %ln (1 — 27k (1 —exp [—B])) .

In summary, Theorem 4.1.4 shows that in random hypergraphs with density d/k less than about
2F=11n2 — In?2 there does not occur a phase transition for any finite 3. By contrast, for slightly
larger densities there is a phase transition. Its approximate location is given by Sconq(d, k). While in
Theorem 4.1.4 this value is determined implicitly as the zero of £, 4(/3), it is not difficult to obtain the
expansion

Beond(d, k) = (k—1)In2+1Ink+2Inln2 — Inc + &,

where ¢ = d/k— 2F=11n 24 1n 2 and limy,_, o 0}, = 0. Furthermore, the proof of Theorem 4.1.4 shows
that there exists ¢; > 0 such that e, < k127, Thus, Theorem 4.1.4 determines the critical density
from that on a phase transition starts to occur and the critical S¢onq(d, k) up to an error term decaying

exponentially with k.

The proof of the theorem is carried out in full detail in Chapter 6.
4.1.3. Number of solutions in random hypergraph 2-colouring

The third result is from the paper
On the number of solutions in random hypergraph 2-colouring

by RaBmann [Rasl6a+] submitted to The Electronic Journal of Combinatorics. We determine the
limiting distribution of the logarithm of the number of satisfying assignments in the random k-uniform
hypergraph 2-colouring problem in a certain density regime essentially up to the second moment lower
bound dg for all £ > 3. As a direct consequence, we obtain that in this regime the random colouring
model is contiguous with respect to the planted model, a result that helps simplifying the transfer of

statements between these two models.

While studying random constraint satisfaction problems, for a long time a main focus has been on
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determining the expected value of the number of solutions and understanding how this number evolves
when the constraint density changes. Despite the efforts, up to now the distribution of the number
of solutions has remained elusive in any of the standard examples of random constraint satisfaction

problems.

Theorem 4.1.5. Letk > 3 and d'/k < 2¥"11n2 — 2 as well as

_ k= D)Yf _ =
)\l = T and (5[ = m

forl > 2. Further let (X)), be a family of independent Poisson variables with E[X] = \;, all defined

on the same probability space. Then the random variable

W= [X;In(1+6) — \d]
l

satisfies E|W| < oo and In Z(Hy(n,m)) — InE[Z(Hy(n, m))] converges in distribution to W.

Remark 4.1.6. By definition, W has an infinitely divisible distribution. It was shown in [Jan95]
that the random variable W' = exp [W|] converges almost surely and in L* with E[W'] = 1 and
E {W’ﬂ = exp [Zl /\1512}. Thus, by Jensen’s inequality it follows that E [W] < 0. Furthermore, by

basic calculations it is easy to verify that also E [WZ] is finite.
As a direct consequence of Theorem 4.1.5, we obtain the following.

Corollary 4.1.7. Assume that k > 3 and d'/k < 2¥~'1n2 — 2. Then

lim lim P[|InZ(Hg(n,m)) —InE[Z(Hg(n,m)|| <w]=1. (4.1.7)

wW—00 N—00

On the other hand, for any fixed number w > 0 we have

lim P[|In Z(Hg(n,m)) — InE[Z(Hg(n,m))]| <w] < 1.

n—oo

The first part of Corollary 4.1.7 shows that for the covered range of d’ and k, In Z;(G(n, m)) actually
fluctuates w.h.p. by no more than w = w(n) for any w(n) — oo. Moreover, the second part shows that

this is best possible.

Furthermore, Theorem 4.1.5 enables us to establish a very strong connection between the random
colouring model and the planted model. To state this, we recall the definition of contiguity from Sub-

section 3.1.2 and show that as a consequence of Theorem 4.1.5 the statement (3.1.2) can be sharpened
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in the strongest possible sense. Roughly speaking, we show that in a density regime nearly up to the
second moment lower bound the random colouring model is contiguous with respect to the planted
model, i.e. that in (3.1.2) it suffices that 7 [€,] = o(1).

k,n,m

Corollary 4.1.8. Assume that d/k < 28=11n2 — 2. Then (Thnm)n>1 < (W;f,ln,m)nzb

As done in [BCOE14+], we refer to this contiguity statement as silent planting. We will elaborate on
the proofs of Theorem 4.1.5 and Corollaries 4.1.7 and 4.1.8 in Chapter 7.

4.1.4. Number of solutions in random graph k-colouring

The last result is from the paper
On the number of solutions in random graph k-colouring
by RaBBmann [Ras16b+] submitted to Combinatorics, Probability and Computing.

We show that under certain conditions the number Z;(G(n, m)) of k-colourings of the random graph
is concentrated tightly and determine the distribution of In Z;(G(n, m)) — InE[Z;(G(n,m))] asym-

ptotically in a density regime up to the condensation transition.

Theorem 4.1.9. There is a constant kg > 3 such that the following is true. Assume that either k > 3
and d < 2(k —1)In(k — 1) or that k > ko and d’ < deonq. Further, let

d (_1)l
)\l = a and 51 = m

forl > 2. Let (X); be a family of independent Poisson variables with E[X;] = N, all defined on the

same probability space. Then the random variable

W= [X;In(1+6) — \dy] — d?/(4(k — 1))
>3

satisfies E|W| < oo and In Z,(G(n,m)) — InE[Z,(G(n, m))] converges in distribution to W.

Analogously to Remark 4.1.6, it is known that W has a bounded first and second moment.

By obtaining an exact expression for the asymptotic distribution of the logarithm of the partition
function up to the condensation threshold d.,q, in the present paper we give a definite and complete
answer to the question about the relationship between the planted model and the Gibbs distribution.

Furthermore, we show that the fluctuations in the number of solutions can completely be attributed to
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the presence of short cycles, thereby eliminating the possibility of other influencing factors.

4.2. Discussion and former work

In this section, we discuss the relevance and impact of the results presented above, i.e. explain how
they compare to other relevant work, relate to various questions that have come up in the literature and

find their place alongside other existing results.

4.2.1. On phase transitions in random graph £-colouring

As already outlined in Section 1.1, graph colouring is one of the most fundamental problems in combi-
natorics and has attracted a great deal of attention since it was first posed by Erd6s and Rényi [ER60].
Much effort has been devoted to studying the typical value of the chromatic number of the Erd&s-
Rényi random graph [Bol88, Luc91a, Mat87, AN05, COPS08, COV13] and its concentration [SS87,
AK97, Luc91b]. With Theorem 4.1.1 we contribute to the endeavour of thoroughly understanding
this problem by identifying the precise location of the condensation phase transition d.o,q for the
Erd6s-Rényi random graph model. In effect, Theorem 4.1.1 is the first result that pins down the exact
condensation phase transition in a diluted mean-field model, thereby verifying the prediction from the
cavity method derived in [KMRTSZ07, ZK07].

A simple asymptotic expansion of d.qnq in the limit of large k yields
deond = (2k — 1) Ink — 21In 2 + &,

where €, — 0 as k — oo. This asymptotic formula had already been obtained by Coja-Oghlan and
Vilenchik in [COV13], although by means of a much simpler argument that does not quite get to the
bottom of the condensation phenomenon and could therefore not be applied to establish the exact

location of the condensation transition.

Essentially, our proof of Theorem 4.1.1 builds upon the second moment argument from [COV13].
Furthermore, it uses some of the techniques developed to study the geometry of the set of k-colourings
of the random graph and adds to this machinery. Among the techniques that we use are the planted
model introduced in Section 3.1, the notion of a core [ACO08, Mol12, COV13], techniques for proving
the existence of “frozen variables” (or “hard fields” in physics jargon) [ACO08, CO13, Mol12], and
a concentration argument from [COZ12]. Beyond that, the cornerstone of the present work is a novel
argument that allows us to establish an explicit link between the combinatorics of the graph colouring
problem and the cavity formalism, more precisely to connect the geometry of the set of k-colourings
rigorously with the distributional fixed point problem from [ZK07].
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Furthermore, Theorem 4.1.1 yields a small improvement over the best lower bound on the colouring
threshold sequence dco(n) from Theorem 1.1.1. Prior to Theorem 4.1.1, the best bounds on dcq)(n)
had been

(2k—1)Ink —2In2+ ¢ < hnn_l)io%fdcol<n> < liqurisolip deoi(n) < (2k —1)Ink — 1+ 6, (4.2.1)
where €, 0, — 0 as k& — oo. The upper bound in (4.2.1) was obtained by the first moment me-
thod [CO13], while the lower bound rests on a second moment argument [COV 13], which improved a
landmark result of Achlioptas and Naor [ANOS5]. In particular, the proofs of the bounds (4.2.1) exploit
structural properties such as the “clustering” of the set of k-colourings and the emergence of “frozen

variables”.

Theorem 4.1.1 improves the lower bound in (4.2.1) by determining the precise “error term” . Indeed,
Remark 4.1.2 implies that lim inf,, oo dco1(1) > deond- In fact, deopg is the best-possible lower bound
that can be obtained via the kind of second moment argument developed in [ANO5, COV13] because
a necessary condition for the success of the second moment argument is that ®,(d) = k(1 — 1/k)%/2.
While Theorem 4.1.1 allows for the possibility that d.,q is equal to the k-colouring threshold dco (if
it exists), the physics prediction is that these two are different. More specifically, the cavity method
yields a prediction as to the precise value of d.. in terms of another distributional fixed point problem.
An asymptotic expansion in terms of k leads to the conjecture d.,) = (2k — 1)Ink — 1 + 1, with
N — 0 as k — oo [KPWO04]. Thus, the upper bound in (4.2.1) is conjectured to be asymptotically
tight in the limit k¥ — oo.

In effect, the predictions regarding the condensation phase transitions in other problems look very
similar to the one in random graph colouring. Consequently, it seems reasonable to expect that the

proof technique developed in [BCOHRV16] carries over to many other problems.

4.2.2. On phase transitions in random hypergraph 2-colouring for finite inverse
temperatures

As discussed in Section 1.1 and Chapter 2, the problem of hypergraph 2-colouring stands out from
other random CSPs because of the symmetry it exhibits and its technically not too involved calculati-
ons (for instance in the second moment analysis). With the work [BCOR16] we contribute to investi-
gating an extension of this problem, namely its finite temperature version, meaning that we deal with a
two-dimensional phase diagram governed by d and, additionally, the inverse temperature 3. Our result
is the first to identify the condensation phase transition in such a finite temperature problem rigorously

up to an error term that decays to 0 when k£ — oo.

The first rigorous result on a genuine condensation phase transition in a diluted mean field model is
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due to Coja-Oghlan and Zdeborova [COZ12], who dealt with proper hypergraph 2-colouring (i.e. the
B = oo case of the problem considered here). Thus, the only parameter in [COZ12] is d. The main
results of [COZ12] are that there occurs a condensation phase transition at d/k = 2k=11n2—-1n?2 + Vs
where limy_,, 71 = 0 and that the condensation phase is not empty. Up to the error term ~y, the result
confirms a prediction from [DRZ08]. Moreover, as Theorem 4.1.4 shows, the result from [COZ12]
matches the smallest density for which a condensation phase transition occurs for finite 5. In this
sense, [COZ12] determines the intersection of the “condensation line” in the two-dimensional phase

diagram of Theorem 4.1.4 with the d-axis.

As proper hypergraph 2-colouring has been an active area of research, there is a variety of rigorous
results concerning the geometry and the evolution of the solution space [ACO08, AMO02], for example
the proof of the “shattering” of the solution space into small, well-separated clusters up to the conden-
sation threshold [AMO06, COZ12]. Although the existence and location of a sharp colouring threshold
has not been proven yet, Friedgut’s Theorem 1.1.1 can be applied. The best current bounds on the

threshold sequence d¢q(n) are
2P 1n2 —In2+4¢; < liminf dcoi(n)/k < limsup deoi(n)/k < 28=1In2 —1n2/2 + 6y,
Lamate n—o00

where e, 0 — 0 as k — oo. The upper bound was obtained by Achlioptas and Moore [AMO06] via
the first moment method. The lower bound is the location of the condensation phase transition shown
in [COZ12], which represents an improvement over the former second moment lower bound from
[AMO6].

Furthermore, there is a prediction for the location of the colouring threshold d.. by statistical physi-
cists [DRZ08, KMRTSZ07], suggesting that

deot/k =2F"1In2 —1n2/2 —1/44 ¢, with lim g, — 0.
k—o00

This prediction was proven by Coja-Oghlan and Panagiotou [COP12] for the problem of NAE-k-SAT,
which is almost equivalent to hypergraph 2-colouring, and it should be possible to transfer the result

without major difficulties.

In a Paper by Ayre, Coja-Oghlan and Greenhill [ACOG15+], the generalized problem of random
k-uniform hypergraph g-colouring has lately been investigated and a lower bound on the colouring
threshold has been obtained. This bound matches the prediction for the condensation phase transition
[KMRTSZ07].

Up to now, work on problems with finite 5 has concentrated mostly on the k-spin Potts antiferromagnet
at zero temperature, which is the physics name for the k-colouring problem. It has been studied on
lattices [ZKO08] and on the Erd6s-Rényi random graph, where the condensation line at finite S was

investigated by Krzakala and Zdeborova [KZ08] by means of non-rigorous techniques. They predict
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the location of the condensation line in terms of an intricate fixed-point problem.

The only prior rigorous paper that explicitly deals with the positive temperature case is the recent
work of Contucci, Dommers, Giardina and Starr [CDGS13]. They also study the k-spin Potts anti-
ferromagnet on the Erd6s-Rényi random graph with finite 3 and show that for certain values of the
average degree a condensation phase transition exists. To the extent to which the results are com-
parable, [CDGS13] is less precise than Theorem 4.1.4. Indeed, a direct application of the approach
from [CDGS13] to the present problem would determine S.onq(d, k) only up to an additive error of
In £, rather than an error that diminishes with k. This is due to two technical differences between the
present work and [CDGS13]. First, the second moment argument required in the case of the k-spin
Potts antiferromagnet is technically far more challenging than in the present case. In effect, an enhan-
ced version of the second moment argument along the lines of [COZ12] (with explicit conditioning on
the cluster size) is not available in the Potts model. Second, [CDGS13] employs a conceptually less
precise estimate of the cluster size than the one we derive. This originates from the fact that they es-
sentially neglect the entropic contribution to the cluster size, with the consequence of under-estimating
the typical cluster size significantly.

Very recently, Coja-Oghlan and Jaafari [COJ16+] determined the free entropy in the Potts antiferro-
magnet with finite 3 rigorously for all temperatures and small average degrees and specified a regime

where surely no phase transition occurs.

Theorem 4.1.4 is perfectly in line with the picture sketched by the non-rigorous cavity method. Indeed
its proof is inspired by the physicists’ notion that the condensation phase transition results from an
“entropy crisis” [KMRTSZ07, MMO09] (cf. Section 2.3). The proof of Theorem 4.1.4 is based on
turning this scenario into a rigorous argument. To this end, we establish a rigorous version of the cluster
decomposition summarized in Section 2.3 and, crucially, an estimate of the cluster volumes Zg ;. The
arguments that we develop for these problems partly build upon prior work from [ACO08, AMO02,
COZ12]. In particular, we provide a “finite-3” version of the second moment arguments from [ACO08,
COZ12]. The argument that we develop for inferring the condensation transition from the second
moment method and the estimate of the cluster size draws upon ideas developed for the 8 = oo case
in [ACO08, BCOHRV 16, COZ12]. Dealing with finite 5 requires substantial additional work and

ideas, especially with respect to the estimate of the cluster size.

4.2.3. On the asymptotic distribution of partition functions

Determining the distribution of the number of solutions in random graph k-colouring and random

hypergraph 2-colouring has been an open problem for a very long time.

For colouring random regular graphs, where each vertex appears in exactly the same number of edges,

it had been implicitly known for a while that the fluctuations in the number of colourings can be
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attributed to the presence of short cycles [Wor99]. As in the random d-regular graph for any fixed
number s the neighbourhood of depth s of all but a bounded number of vertices is a d-regular tree,
there are only extremely limited fluctuations in the local graph structure. Thus, it seemed reasonable to
expect that the random variable In Z is more tightly concentrated in random regular graphs than in the
Erd6s-Rényi model, where the depth-s neighbourhoods can be of varying shapes and sizes (although
all but a bounded number will be acyclic), and also the number of vertices and edges in the largest
connected component as well as the core fluctuate. Thus, it did not seem obvious that small subgraph
conditioning could be applied in the case of Erds-Rényi random graphs. However, in [BCOE14+] it
was established that also when k-colouring random Erd6s-Rényi graphs, the fluctuations of In Z are

merely due to the appearance of short cycles.

The ideas for the proofs of the results from [Rasl6a+] and [Ras16b+] follow the way beaten in
[BCOE14+], where statements analogue to Corollary 4.1.7 and Corollary 4.1.8 are shown for the pro-
blem of k-colouring random graphs. However, Theorems 4.1.5 and 4.1.9 are stronger than the results
obtained in [BCOE14+] because we determine the exact distribution of In Z — E [In Z] asymptotically.
The proofs are mainly based on the observation that the variance in the logarithm of the number of
2-colourings can be attributed to the fluctuations in the number of cycles of bounded length and that
conditioning on this number reduces the variance dramatically. The same phenomenon was observed
in [BCOE14+] and also in [COW16+], where a combination of the second moment method and small
subgraph conditioning was applied to derive a result similar to ours for the problem of random regular
k-SAT.

Small subgraph conditioning was originally developed by Robinson and Wormald in [RW92, RW94]
to investigate the Hamiltonicity of random regular graphs of degree at least three. Janson showed in
[Jan95] that the method can be used to obtain limiting distributions. Small subgraph conditioning has
frequently been used in random regular graph problems (see [Wor99] for an enlightening survey). In
e.g. [KPGW10] and [COEH16] it was applied to upper-bound the chromatic number of the random
d-regular graph, as the sharp threshold result Theorem 1.1.1 does not hold for this problem. More
recently, is has also been used to establish a result on non-distinguishability of the Erd&s-Rényi model
and the stochastic block model [BMNN16] and to determine the satisfiability threshold for positive
1-in-k-SAT, a Boolean satisfiability problem, where each clause contains k variables and demands that

exactly one of them is true [Moo15+].

Similar to [Jan95], we aim at obtaining a limiting distribution. Unfortunately, Janson’s result Theo-
rem 3.3.1 does not apply directly in our case for the following reason. In contrast to [BCOE14+],
where only bounds on the fluctuation of In Z;, were proven, we aim at a statement about its asymptotic
distribution. Thus, for our approach it does not suffice to consider colourings with balanced colour
classes (with a deviation of o(n~'/2) from their typical value), but we have to get a handle on all
colourings providing a positive contribution. To this aim, we collect together colourings exhibiting

similar colour class sizes. This results in the need to not only consider one random variable, but break
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it into a large number of smaller random variables. However, it is not evident how to apply Janson’s
result simultaneously to these variables, whose number grows with n. Instead, we choose to perform a
variance analysis along the lines of [RW94]. The same approach was pursued in [COW16+], and thus
our proof technique is similar to theirs in flavour, yet we have the advantage of only having to deal

with a very moderately growing number of variables, which simplifies matters slightly.

We expect that it is possible to apply a combination of the second moment method and small sub-
graph conditioning to a variety of further random CSPs, such as e.g. random k-NAESAT, random
k-XORSAT or random hypergraph k-colourability. However, for asymmetric problems like the well-
known benchmark problem random k-SAT, we expect that the logarithm of the number of satisfying

assignments exhibits stronger fluctuations and we doubt that a result similar to ours can be established.

4.3. Related work

In this section we provide a short overview of (mostly) rigorous work on random CSPs related to those

we deal with, without raising a claim to completeness of the presented work.
4.3.1. Related constraint satisfaction problems

Random £-XORSAT, which is an ensemble of random linear systems over the field of integers mo-
dulo 2, is an example of a very simple random CSP which does not exhibit a condensation phase due
to its algebraic nature: all clusters are simply translations of the kernel. The precise threshold for the
existence of solutions is known [DMO02, PS16] and is obtained by applying the second moment me-
thod to the number of solutions after “stripping” the instance down to a certain core, ending up with a
set of variables independent of the assignment which the process started from (a fact which simplifies

the second moment analysis substantially).

Random k-SAT, a special case of Boolean Satisfiability where (almost) all clauses have the same size
k, has been one of the benchmark problems in computer science, ever since Cook proved that it is
NP-complete in the worst case for all £ > 3 [Coo71]. The problem can be stated as follows: Given
a Conjunctive Normal Form (CNF) formula F/, is it possible to assign truth values to the variables of
F so that it evaluates to true? While for instance hypergraph 2-colouring is a symmetric problem in
the sense that the inverse of each solution is a solution again, random k-SAT is not. Satisfying assi-
gnments tend to “lean” towards the majority vote truth assignment: truth assignments satisfying many
literal occurrences in the random formula have significantly greater probability of being satisfying.
Furthermore, they tend to be correlated and to agree with each other and the majority truth assignment
on more than half of the variables. It was shown in [AMO06, AP04] that as a consequence in random
k-SAT the bound E [Z%] = O (E Z ]2) does not hold for any density.
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Franco and Paull [FP83] were the first to mathematically investigate random k-SAT and to observe
that the problem is w.h.p. unsatisfiable if ¢ > 2¥In 2. In 1990, Chao and Franco [CF90] invented a
simple algorithm called “unit clause” that finds satisfying truth assignments with uniformly positive
probability!® for d < 2F /k. Frieze and Suen [FS96] later improved this lower bound to d > ¢;2% /k
with limy_, . ¢ = 1.817... and this remained the best lower bound for a long time.

In [AMO6], Achlioptas and Moore tackled the problem by considering a special case of the k-SAT
problem, namely the symmetric version NAE-£K-SAT (see below), and by focusing on balanced assign-
ments. By this means, they could significantly improve the lower bound by applying the second mo-
ment method and were able to determine the threshold for random k-SAT within a factor of two.
Later on, the second moment lower bound was improved by Achlioptas and Peres [AP04], matching
the first moment upper bound up to an exponentially small second-order term, only leaving a gap of or-
der (k). Their result was the first rigorous proof of a replica method prediction for any NP-complete
problem at zero temperature. They coped with the asymmetry and the tendency of the majority vote
by cleverly weighting the truth assignments and concentrating the weight on balanced ones.

After that, the gap was narrowed to an additive constant (independent of k) via improved second mo-
ment arguments [COP13] and soon afterwards closed up to an error vanishing for & — oo [COP16].
This was done by using a second moment argument inspired by the physicists’ concept of “Survey
Propagation”, counting the number of clusters rather than solutions.

Finally, Ding, Sly and Sun [DSS15] could eliminate this last error term and exactly determine the
satisfiability threshold in k-SAT for large £ via a second moment argument that fully rigorizes the

notion of Survey Propagation.

Two special cases of the random k-SAT problem had been tackled before: For the 2-SAT problem,
which was proven to belong to the class P, meaning that it is computationally tractable, Chvatal and
Reed [CR92] and independently Goerdt [Goe96] found the do_gaT threshold to occur at the density
m/n ~ 1. There is no condensation phase in this problem. Secondly, in random k-SAT with & >
log, n, where the clause length is growing with n, there too is no condensation phase. The precise
threshold has been obtained via the second moment method [FWO0S5, COFO08].

Random regular k-SAT is a version of the k-SAT problem where each variable appears exactly d
times positively and d times negatively in the random formula. This regularity condition leads to a
relatively simple structure of the resulting factor graph because the neighbourhoods of all variables
look structurally the same, and w.h.p. the total number of cycles of a fixed length is bounded. Rathi,
Aurell, Rasmussen and Skoglund [RARS10] were the first to study instances of this problem. They
applied the second moment method to prove that near ds,¢ random instances are satisfiable w.u.p.p.. A
few years later, Coja-Oghlan and Panagiotou [COP16] used an enhancement of this method, namely

a Survey Propagation-based second moment method, to exactly determine dg,¢. In [BCO15+], Bapst

'We say that a sequence of events .A,, occurs with uniformly positive probability (w.w.p.p.) if lim inf,,_, o, P[A4,] > 0.
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and Coja-Oghlan determined the existence and location of the condensation phase transition in this
problem.

In [COW16+], Coja-Oghlan and Wormald combined the second moment argument from [COP13]
with small subgraph conditioning to obtain the asymptotic distribution of the number of solutions in

random regular k-SAT.

Random NAE-£-SAT is the symmetric version of random k-SAT, where NAE stands for 'not all
equal’, meaning that a clause is satisfied if and only if it contains at least one satisfied and one unsatis-
fied literal, or, in other words, the inverse of a satisfying assignment is satisfying as well. Like random
k-SAT, random NAE-k-SAT is known to be NP-complete in the worst case for any k£ > 3. It is closely
related to hypergraph 2-colouring, which can be interpreted as a special case of NAE-£-SAT without
negations. Thus, results, e.g. the ones from [COZ12] for hypergraph 2-colouring, carry over without
much effort. Coja-Oghlan and Panagiotou determined the threshold for the existence of solutions in
[COP12] up to an error that vanishes in the limit of large k using a Survey Propagation-inspired second

moment method.

Random regular NAE-£-SAT is again the regular version of random NAE-£-SAT, where each varia-
ble appears exactly d times positively and d times negatively. Ding, Sly and Sun [DSS16] investigated
this problem via a second moment argument and determined the satisfiability threshold for large va-
lues of k. This was the first result exactly locating the threshold in a problem exhibiting condensation.
Around the same time, they also determined the asymptotics of the independence number of random
d-regular graphs [DSS16+] for large d. Very recently, Sly, Sun and Zhang [SSZ16+] showed that for
large k the free entropy is well defined and determined the number of solutions of a typical instance,

thereby verifying the physicists RSB prediction.

Random regular graph k-colouring is the regular version of the graph colouring problem. Coja-
Oghlan, Efthymiou and Hetterich [COEH16] determined the chromatic number on a set of density
1, thereby improving over a result of Kemkes, Péres-Giménez and Wormald [KPGW10], who had
previously succeeded in locating the chromatic number for about half of all degrees d. In both papers,
a second moment argument is used and combined with small subgraph conditioning. The enhanced
result in [COEH16] matches the one obtained in [COV13] for Erd6s-Rényi random graphs. Indeed,
it uses the Survey Propagation-inspired second moment argument from [COV13] as a “black box”.
Combining this with small subgraph conditioning is crucial to obtain the required high probability as

for regular graphs Friedgut’s sharp threshold result Theorem 1.1.1 cannot be applied.

Stochastic block models were introduced in the 1980s as models for random graphs exhibiting com-
munity structures.

In these models the vertices are divided into different classes and edges are added between them with
probabilities depending on the classes. This construction can be interpreted as a generalisation of the

planted model corresponding to the Potts antiferromagnet with finite 5. An extensively studied pro-
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blem in stochastic block models is the community detection problem. It investigates in which regime
it is possible to recover the allocation of vertices to classes by only looking at the structure of the
graph. Related is the question of distinguishability, asking whether a stochastic block model can be

distinguished from an Erd6s-Rényi model with the same average degree.

While for a long time research mostly concentrated on dense models (with high average degree),
recently sparse models received a lot of attention. This was triggered by conjectures from statistical
physicists [DKMZ11] concerning the existence and location of different bounds separating regimes

where community detection is possible, possible but computationally hard, or not possible at all.

These conjectures were rigorously proven in the special case of having two classes with equal sizes
[MNS16+, MNS13+, Mas14]. Recently, [ BMNN16] addressed the problem of community detection
for more than two classes. They gave upper and lower bounds on the information-theoretic thres-
hold, which corresponds to the condensation threshold in spin glasses and separates regimes where
successful detection is possible from ones where it is not. Their bounds are tight for some values of
the edge-probabilities. Additionally, they established contiguity of the stochastic block model and the

Erd6s-Rényi model in a certain density regime.
4.3.2. Algorithmic questions

A short overview of the literature concerning the algorithmic point of view in the presented problems

will complete this chapter.

Since the second moment method is non-constructive, there is a separate algorithmic question: For
which densities can solutions of random CSPs be constructed in polynomial time w.h.p.? An abun-
dance of research has been invested in studying random CSPs by means of efficient algorithms. Unfor-
tunately, the best known combinatorial algorithms asymptotically do not work better than extremely
naive ones: For random k-SAT, the simple algorithms “unit clause” and “shortest clause” were ana-
lysed more than 20 years ago and could be proven to find solutions for densities up to O (2’“ / k:)
[CF90, CR92, FS96]. A few years ago, Coja-Oghlan [CO10] presented an algorithm provably suc-
ceeding up to d = 2¥In k/k. However, up to now, no polynomial-time algorithm is known to find
satisfying assignments for d = 2% f(k)/k for any function f(k) = ws(Ink). For the problem of
colouring random graphs, analyses can be found in [AM97, GM75]. They show that a certain list-
colouring algorithm finds colourings if d < klnk. Up to now, no polynomial time algorithms are
known that are able to colour a random graph with average degree (1 + ¢) k In k for some fixed € > 0

and arbitrarily large k.

In [ACOOS8] Achlioptas and Coja-Oghlan proved that the point where the geometry of the soluti-
on space changes, the dynamical phase transition predicted by statistical physics [KMRTSZ07] and
discussed in Section 1.2, coincides with the point where the best known analysed algorithms cease
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to work. In [ACOO0S] the ““shattering” point for k-SAT, k-colouring and hypergraph 2-colouring was
rigorously determined for large values of k. In general, however, no causal relation between the clus-
tering of the solution space and the breakdown of the investigated algorithms could be proven to this

day.

Following insights from the cavity method, new “message passing” algorithms for these problems have
been developed. These algorithms are supposed to act more “far-sighted” than simpler combinatorial
ones. When assigning a variable, instead of basing their decision only on the graph structure at a fixed
small distance around this variable, they take into account constraints and variables in a much larger ra-
dius. The algorithms are called Belief/Survey Propagation Guided Decimation [BMPWZ03, MPZ02]
and sequentially fix variables to satisfy the constraints while message passing is run after each step
to provide a heuristic for the choice at the next step. During message passing vertices send messages
back and forth, updating their belief about their marginals in a sequence of rounds. The key tool in this
process is an approximate fixed point computation on a finite random graph. Essentially, the challenge
when analysing these algorithms consists in investigating whether the fixed point computation pro-
vides a good approximation to the marginals of the Boltzmann distribution (in the case of the Belief
Propagation algorithm) or a certain modified distribution (in the case of Survey Propagation).

Experiments on random graph k-colouring instances for small values of & indicate an excellent per-
formance [BMPWZ03, Zde09, ZK07]. However, while a comprehensive rigorous analysis remains
elusive, sophisticated evidence is given in [RTS09] that for random k-SAT Belief Propagation Guided
Decimation succeeds for d = ©(2" /k) but not for higher densities (and an analogue is also supposed
to hold for the colouring problems). More precisely, the physics prediction is that the performan-
ce of Belief Propagation Guided Decimation hinges on the location of the “condensation line” in a
two-dimensional phase diagram parametrised by d and a value ¢/n that measures the progress of the
algorithm [RTS09]. This line promises to separate the regime where the algorithm succeeds in appro-
ximating the correct marginal distribution from the one where this is not possible. The idea behind it
is that in each decimation step clauses are shortened and become more and more difficult to satisfy.
In other words, successive decimation of variables has a similar effect as increasing the density of the

formula.

However, this is far from being understood rigorously, although there are contributions attempting to
analyse message passing algorithms along these lines. For the problem of random k-SAT, Coja-Oghlan
[CO11] proved that a basic version of Belief Propagation Guided Decimation does not succeed for den-
sities beyond d = ©(2F /k) for large k. Very recently, Hetterich [Het16+] proved that a similar basic
version of Survey Propagation Guided Decimation cannot overcome the dynamical phase transition,
ie.d = ©(2¥Ink/k) for large k in the limit of large n. Yet, it is not obvious how to generalize their

results to more involved variants of the algorithms.

Thus, the rigorous understanding of the presented algorithms is still in its early stages and there is an

amount of work to do in this field.
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5 Condensation phase transition in random graph £-colou-

ring

This chapter is dedicated to proving Theorem 4.1.1, which establishes the existence and determines
the precise location of the condensation phase transition in random graph k-colouring for large values
of k. The result is in terms of a distributional fixed point problem and rigorously verifies the prediction

of the cavity method.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper The
condensation phase transition in random graph coloring [BCOHRV16] that is joint work with Victor
Bapst, Amin Coja-Oghlan, Samuel Hetterich and Dan Vilenchik and is published in the Communica-
tions in Mathematical Physics 341 (2016).

This chapter only presents parts of the proof, namely the parts where the author of this thesis mainly
contributed. The other parts can be found in the appendix, Chapter A. The first section of this chapter
describes an outline of the proof of Theorem 4.1.1 and gives a short introduction to the proof ideas.
In Section 5.2, a first step to the analysis of a certain branching process is presented. Section 5.3
deals with determining the cluster size of a planted colouring in the random graph using Warning

Propagation and establishing a connection between the random tree process and the random graph.

5.1. Outline of the proof

In this section, we sketch the steps of the proof of Theorem 4.1.1, thereby explaining the main ideas

and introducing the most important concepts.

The proof of Theorem 4.1.1 is composed of two parallel threads. The first thread is to show that
there exists a density, namely the density d., defined in (2.5.3), where a phase transition occurs and
statements (i)-(iii) of the theorem are met. The second thread is to identify the frozen fixed point 7'[‘;;’ i
of F4 and to interpret it combinatorially. Finally, the two threads intertwine to show that dci; =
dcond, 1.€. that the “obvious” phase transition d.i; is indeed the unique zero of equation (4.1.5). The
first thread is an extension of ideas developed in [COZ12] for random hypergraph 2-colouring to the
(technically more involved) random graph colouring problem. The second thread and the intertwining

of the two require novel arguments.
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5.1.1. First thread

We recall the critical density d,i¢ defined in (2.5.3):
derit = Inf {d > 0 : the limit ®(d) does not exist or P (d) < k(1 — l/k:)d/2} .

We rather directly obtain the following bounds:

Fact 5.1.1. We have doiy < (2k — 1) Ink.

Proof. The upper bound on the k-colouring threshold stated in (4.2.1) implies that Z,(G(n,d/n)) = 0
w.h.p. for d > (2k — 1) In k. By contrast, k(1 — 1/k)%2 > 0 for any d > 0. O

Thus, d.it is a well-defined finite number, and there occurs a phase transition at d..i;. Moreover, the
following proposition yields a lower bound on d.,i; and implies that d.,; satisfies the first condition in
Theorem 4.1.1. The proposition will be proven in Section A.1 via calculating the first moment of Zj,
and second moment of Zj, ;ame, which is a random variable only counting separable k-colourings that

have an appropriately bounded cluster size.

Proposition 5.1.2. For any d > 0, we have

lim sup E[Z,(G(n, d/n))"/"] < k(1 — 1/k)¥/2.

n—oo

Moreover,

derit = sup {d >0: hnrggfla[zk((;(n,d/n))l/n] > k(1 — 1/k)d/2} > (2k—1)Ink — 2.

Thus, we know that there exists a number d.;; that satisfies conditions (i) and (ii) in Theorem 4.1.1.
Of course, to actually calculate this number we need to unearth its combinatorial “meaning”. As
we saw in Section 1.2, if dg; really is the condensation phase transition, then the combinatorial
interpretation should be as follows. For d < d.,it, the size of the cluster that a randomly chosen k-
colouring 7 belongs to is smaller than Z;(G(n, d/n)) by an exponential factor exp [©2(n)] w.h.p.. But
as d approaches d.it, the gap between the cluster size and Z(G(n,d/n)) diminishes. Hence, dcyit

should mark the point where the cluster size has the same order of magnitude as Zi(G(n,d/n)).

But how can we possibly get a handle on the size of the cluster that a randomly chosen k-colouring 7 of
G(n,d/n) belongs to? As explained in Section 3.1, no “constructive” method is known for obtaining a
single k-colouring of G(n, d/n) for d anywhere close to d..}, let alone for sampling one uniformly at
random. Nevertheless, in the case that @y, (d) = k(1—1/k)¥?, i.e. for d < deyit, the experiment of first
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choosing the random graph G(n,d/n) and then sampling a k-colouring 7 uniformly at random can
be captured by the planted model: We first choose a map o : [n] — [k] uniformly at random, then we
generate a graph G(n, p’, o) on [n] by connecting any two vertices v, w € [n] such that o (v) # o (w)
with probability p’ independently. If p’ = dk/(n(k — 1)) is chosen so that the expected number of
edges is the same as in G(n, d/n) and if ®(d) = k(1 — 1/k)%?, then the planted model should be a
good approximation to the random colouring model. In particular, with respect to the cluster size we
expect that
E[IC(G(n,p, @), )] "/"] ~ E[IC(G(n, dfn), 7)[/"],

i.e. that the suitably scaled cluster size in the planted model is about the same as the cluster size in
G(n, d/n). Hence, deyi; should mark the point where E[|C(G (n, p', ), o)|*/™] equals k(1 — 1/k)%/2
The following proposition verifies that this is indeed so. Let us write G = G(n, p’, o) for the sake of

brevity.

Proposition 5.1.3. Assume that (2k — 1)Ink — 2 < d < (2k — 1) Ink and set

P =d/n withd = %. (5.1.1)
L If
BT n < i1 a2 _ ] _
lim Jim inf P [\C(G,a)\ < k(1 —1/k) s} 1, (5.1.2)
then d < dit.
2. Conversely, if
o n s 1.(1 _ d/2 _
lim lim inf P (G, o) = k(1= 1/k)"2 4 2] =1, (5.1.3)

then lim sup,,_, . E[Z(G(n,d/n))"/"] < k(1 — 1/k)%2. In particular, d > dei;.

To show the first part of Proposition 5.1.3 we observe that below d..; a typical k-colouring is separable
and has bounded cluster size and use this to bound E [Z}] from below. The second part of the proof
cleverly uses a variant of the “planting trick” argument from [ACO08] combined with temporarily
introducing a finite temperature parameter in order to use concentration of the partition function. The

proof can be found in Section A.2.
5.1.2. Second thread

Our next aim is to “solve” the fixed point problem for the map F; ; to an extent that gives the fixed
point an explicit combinatorial interpretation. This combinatorial interpretation is in terms of a certain

random tree process, associated with a concept of “legal colourings”. Specifically, we consider a multi-
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type Galton-Watson branching process. Its set of types is
T={0GL):i€lk],lC[k],icl}.

The intuition is that ¢ is a “distinguished colour” and that ¢ is a set of “available colours”. The bran-
ching process is further parameterized by a vector ¢ = (qi, ..., qx) € [0,1]* such that g; + - - - + g1 <
1.Letd =dk/(k — 1) and

1 .
%t =73 | H exp [_qjd’] H (1 —exp [—qjd/]) for (i,0) € T.
Je{3} JERI\L

Then

Z gie =1
(3,0)eT
Further, for each (¢,¢) € 7 such that [¢| > 1, we define 7; ¢ as the set of all (¢/,¢') € T such that
N ¢ # (Qand || > 1. 1In addition, for (i, £) € T such that |¢| = 1 we set T; ; = ().

The branching process GW(d, k, q) starts with a single individual, whose type (i,¢) € T is chosen
from the probability distribution (g;¢)(; )7 In the course of the process, each individual of type
(i,£) € T spawns a Poisson number Po(d’g; /) of offspring of type (7', ¢') for each (¢/,¢') € T; ¢. In
particular, only the initial individual may have a type (7, £) with |¢| = 1, in which case it does not have
any offspring. Let 1 < A < oo be the progeny of the process (i.e. the total number of individuals

created).

We are going to view GW(d, k, q) as a distribution over trees endowed with some extra information.
Let us define a decorated graph as a graph T' = (V, E') together with a map ¥ : V' — 7T such that for
each edge e = {v,w} € E we have J(w) € Ty(,). Moreover, a rooted decorated graph is a decorated
graph (T, 19) together with a distinguished vertex vy, the root. Further, an isomorphism between two
rooted decorated graphs 7" and 7" is an isomorphism of the underlying graphs that preserves the root

and the types of the vertices.

Given that /' < oo, the branching process GW (d, k, q) canonically induces a probability distribution
over isomorphism classes of rooted decorated trees. Indeed, we obtain a tree whose vertices are all the
individuals created in the course of the branching process and where there is an edge between each
individual and its offspring. The individual from which the process starts is the root. Moreover, by
construction each individual v comes with a type ¥(v). We denote the (random) isomorphism class of
this tree by T'g 1, 4. (It is most natural to view the branching process as a probability distribution over

isomorphism classes as the process does not specify the order in which offspring is created.)

To proceed, we define a legal colouring of a decorated graph (G, ¥) asamap 7 : V(G) — [k] such that
T is a k-colouring of G and such that for any type (i, ) € T and for any vertex v with ¥(v) = (i, ¢)
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we have 7(v) € £. Let Z(G, 9) denote the number of legal colourings.

Since Z(G,19) is isomorphism-invariant, we obtain the integer-valued random variable Z(T'y 1, ). We
have Z(T 41 q) > 1 with certainty because a legal colouring 7 can be constructed by colouring each
vertex with its distinguished colour (i.e. setting 7(v) = 7 if v has type (i, £)). Hence, In Z(T'g 1 q) is a
well-defined non-negative random variable. Additionally, we write |T'q 1, 4| for the number of vertices

in Td,k,q-

Finally, consider a rooted, decorated tree (7,1, v) and let T be a legal colouring of (7,9, vy) chosen

uniformly at random. Then the colour 7(vg) of the root is a random variable with values in [k]. Let

HT,9,0, € §2denote its distribution. Clearly, ji1 9 ., is invariant under isomorphisms. Consequently, the

distribution ., ,  of the colour of the root of a tree in the random isomorphism class T'g i, 4 is a well-
sR,q )Yy

defined (2-valued random variable. Let 74 4 € P denote its distribution. Then we can characterise

the frozen fixed point of F j as follows.

Proposition 5.1.4. Suppose that d > (2k — 1)Ink — 2.

1. The function
g €[0,1] = (1 —exp[—dq/(k —1))*" (5.1.4)

has a unique fixed point q* in the interval [2/3, 1]. Moreover, with
g =k"q",...,q") €[0,1]* (5.1.5)

the branching process GW (d, k, q*) is sub-critical. Thus, PN < oo] = 1.
2. The map Fq, has precisely one frozen fixed point, namely 74 i, g+
In Z(Ty 1 q*)
3. We have ¢4 (7gp.q+) =E [ﬁ} )

4. The function Xy, from (4.1.5) is strictly decreasing and continuous on [(2k — 1)Ink — 2, (2k —

1)Ink — 1] and has a unique zero d.onq in this interval.

The function (5.1.4) and its fixed point explicitly occur in the physics work [ZK07]. The proof of
Proposition 5.1.4 incorporates an analysis of the Galton Watson process GW and of the fixed points
of F . The main work consists in showing that indeed F ;. has exactly one frozen fixed point 7y j ¢+
and that the Bethe free entropy ¢ evaluated at this fixed point is related to the number of legal

colourings of Ty . ¢+. The proof of Proposition 5.1.4 can be found in Sections 5.2 and A.3.
5.1.3. Tying up the threads

To prove that deong = derit, We establish a connection between the random tree T’y g« and the

random graph G with planted colouring o. We start by giving a recipe for computing the cluster size
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5. Condensation phase transition in random graph k-colouring

|C(G, o)|, and then show that the random tree process “cooks” it.

Computing the cluster size hinges on a close understanding of its combinatorial structure. As hypothe-
sised in physics work [MMO09] and established rigorously in [ACO08, CO13, Mol12], typically many
vertices v are “frozen” in C(G, o), i.e. 7(v) = 7/(v) for any two colourings 7, 7" € C(G, o). More

generally, we consider for each vertex v the set
Lv)={1(v): 7 €C(G,0o)}

of colours that v may take in colourings 7 that belong to the cluster. Together with the “planted” colour
o (v), we can thus assign each vertex v a type ¥(v) = (o (v), £(v)). This turns G into a decorated graph
(G, 9).

By construction, each colouring 7 € C(G, o) is a legal colouring of the decorated graph G. Con-
versely, we will see that w.h.p. any legal colouring of (G, ) belongs to the cluster C(G, o). Hence,
computing the cluster size |C(G, o)| amounts to calculating the number Z(G, ¥) of legal colourings
of (G, 7).

This calculation is facilitated by the following observation. Let G be the graph obtained from G by
deleting all edges e = {v, w} that join two vertices such that £(v)N¢(w) = (). Then any legal colouring
7 of G is a legal colouring of G, because 7(v) € £(v) for any vertex v. Hence, Z(G, ) = Z(G, ).

Thus, we just need to compute Z(G,9). This task is much easier than computing Z(G, 9) directly
because G turns out to have significantly fewer edges than G' w.h.p.. More precisely, w.h.p. G (most-
ly) consists of connected components that are trees of bounded size. In fact, we shall see that in an
appropriate sense the distribution of the tree components converges to that of the decorated random

tree T’y 1, 4, - In effect, we obtain

Proposition 5.1.5. Suppose thatd > (2k—1)Ink—2 and let p' be as in (5.1.1). Let ¢* be as in (5.1.5).
In Z(Td,k:,q*)
1T a,k,q*]

Then the sequence {In|C(G,o )|}, converges to E { } in probability.
The proof of Proposition 5.1.5, that connects the geometry of the set of k-colourings rigorously with
the distributional fixed point problem, is based on the precise analysis of a further, combinatorial fixed

point problem called Warning Propagation. It can be found in all details in Section 5.3.

Proof of Theorem 4.1.1. Combining Propositions 5.1.3 and 5.1.5, we see that d..i; is equal to dcond,
which is well-defined by Proposition 5.1.4. Further, (2.5.2) implies that d¢i; > 0. Assume for con-
tradiction that dg¢ is smooth. Then there is € > 0 such that the limit ®(d) exists for all d €
(derit — €,derit + €) and such that the function d — ®p(d) is given by an absolutely convergent
power series on this interval. Moreover, Proposition 5.1.2 implies that ®;(d) = k(1 — 1/k)%¥/?
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5.1. Outline of the proof

for all d € (deit — €, deit). Consequently, the uniqueness of analytic continuations implies that
Oi(d) = k(1 -1/ k)d/ 2for all d € (derit — €, derit + €), in contradiction to the definition of deis.
Thus, d.rit is a phase transition. O

Proof of Corollary 4.1.3. Corollary 4.1.3 follows rather easily from the above and the following lem-
ma establishing a connection between the planted model and the Boltzmann distribution on G(n, d/n).

As in Corollary 4.1.3, we let 7 denote a random k-colouring of G(n, d/n).

Lemma 5.1.6 ((BCOE14+]). Assume that d < dcong. Let € be a set of pairs (G, o), where G is a
graph and o is a k-colouring of G. Further, given that Zi(G(n,d/n)) > 0, let T be a uniformly
random k-colouring of G(n,d/n).

Then P [(G, o) € &] = o(1) implies that P [(G(n,d/n), T) € E|ZKk(G(n,d/n)) > 0] = o(1).

The statements about the properties of the function X, follow readily from Proposition 5.1.4. Now,
assume that d € ((2k — 1)Ink — 2, dcona). Propositions 5.1.4 and 5.1.5 show that 1 In |C(G, o)

converges to ¢q 1,(7q,k,q+) in probability. Hence, Markov’s inequality shows that for any € > 0,
1
P - In|C(G,0)| > ¢pair(Tarqe)+e| =o(1). (5.1.6)
In combination with Lemma 5.1.6, (5.1.6) entails that
1
P [n In|C(G(n,d/n), T)| > ¢pair(Tarq) + €| Zk(G(n,d/n) > 0} = o(1). (5.1.7)
Further, Propositions 5.1.4 and 5.1.5 imply that for any fixed € > 0,
1
P |- |C(G. o) < dap(Targ) —¢| = o(l).
Hence, Lemma 5.1.6 yields
1
P |0 C(G /), 7)| 2 dunlrasa) — ] = 00 (5.18

Thus, Corollary 4.1.3 follows from (5.1.7), (5.1.8) and the fact that Zj(G(n, d/n))"/™ converges to
®y(d) = k(1 — 1/k)%? in probability. O
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5. Condensation phase transition in random graph k-colouring

5.2. The fixed point problem

5.2.1. The branching process

Throughout this section we assume that (2k — 1)Ink — 2 < d < (2k — 1) In k. Moreover, we recall
that d’ = kd/(k — 1).

Lemma 5.2.1. Suppose thatd > (2k — 1)Ink — 2.

1. The function

1
Fyp - [0, 1]k — [0, 1]1"” (q1y- -, qr) — (k H 1—exp (—d/qj)> 5.2.1)
jelkI\{i} i€[k]

has a unique fixed point q¢* = (qf, ..., q;) such that Zje[k] qj > 2/3. This fixed point has the
property that i = - - - = q.. Moreover, ¢* = kqy is the unique fixed point of the function (5.1.4)
in the interval [2/3,1], and ¢* = 1 — O (1/k).

2. The branching process GW (d, k, q*) is sub-critical.

In Z(T * A —
3. Furthermore, %E [W} = Op(k72).

The proof of Lemma 5.2.1 requires several steps. We begin by studying the fixed points of Fy j.

Lemma 5.2.2. The function I, maps the compact set [3%, %]k into itself and has a unique fixed point

q" in this set. Moreover, the function from (5.1.4) has a unique fixed point ¢* in the set [2/3,1] and
q* = (q*/k,...,q" k). Furthermore,

¢ =1-1/k+ ox(1/k). 5.2.2)
In addition, if q € [0, 1]’“ is a fixed point of Iy, then
Q="' = Gk (5.2.3)

Proof. Let I = [%, %}k As a first step, we show that F}; (1) C I. Indeed, let g € I. Then for any
i€ [k
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5.2. The fixed point problem

On the other hand, as d > (2k — 1) Ink — 2 we see that d’ > 1.99% In k. Hence,

st = It = § (1= (5))
-

> |

21— k—l.l)k _ 1 - Zk(l)_

v

Thus, Fd7k(I) c 1.

In addition, we claim that F}; ; is contracting on I. In fact, as d >1.991Ink and ¢; > 2/3 for all I,
for any 4, j € [k] we have
0 11'7gj 0

1753
— (F, = 1-— 1-—
- (Fuk(q); K dq exp(—d'q;) = Foxp(dq) || exp(—d'q)
4 I#1 ] I#1,j

1,zd
=(1 1)) 797 < L3,
(14 ox( ))k‘eXp(d/qj) <

Therefore, for g € I the Jacobi matrix DFy ;,(q) satisfies

0

2
) o <k? 20 <1
8(]] (de( ))> <k“-k <1

IpFa@lt < X (5

i,j€[k]

Thus, F}; 1 is a contraction on the compact set I. Consequently, Banach’s fixed point theorem implies

that there is a unique fixed point q. € 1.

To establish (5.2.3), assume without loss that ¢ = (qi,...,qx) € [0,1]* is a fixed point such that
q1 < --- < gg. For the trivial fixed point ¢; = ... = g = 0, the equation (5.2.3) obviously holds. So
we assume ¢q; > 0. Because q is a fixed point and as q; < qx, we find that

_ g
@ _ Fap(@)r _ 1=exp(=d'qr)

e (Far(q@)1 1 —exp(—d'q)

whence (5.2.3) follows.

Further, we claim that the function f; 5, : [0,1] — [0, 1], ¢ — (1 —exp(—dg/(k—1)))*~! maps the in-
terval [2/3, 1] into itself. This is because for ¢ € [2/3, 1] we have 0 < exp(—dgq/(k—1)) < k=3 due
to our assumption on d. Moreover, the derivative of fq works out to be f;;(q) = dexp(—dg/(k —
1))(1 — exp(—dq/(k — 1)))*=2. Thus, for ¢ € [2/3,1] we find 0 < far(a) < 1/2. Hence, fiy
has a unique fixed point ¢, € [2/3,1]. Comparing the expressions fz(q) and Fy;(q), we see that
(g+/k, ..., q:/k) is a fixed point of F}; ;. Consequently, g, = (g«/k, ..., q:/k).

Finally, since f/;,(¢) > 0 for all g, the function fq, is strictly increasing. Therefore, as d = (2 —
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5. Condensation phase transition in random graph k-colouring

op(1)k ln k,
¢s = far(@) < far(1) = (1 —exp(=d/(k = 1)) " =1 = 1/k + o (1/k). (5.2.4)
Similarly, g. > f4%(2/3) > 1 — k=93, Hence, because d > (2k — 1) Ink — 3, we obtain

@ = far(a) > far(l— k%) = <1 — exp [_d(l_ko'g)Dkl

kE—1
= 1=k 240k 2 =1 = 1k + 0 (1/K). (5.2.5)
Combining (5.2.4) and (5.2.5), we conclude that ¢, = 1 — 1/k + ox(1/k), as claimed. O

Remark 5.2.3. The proof of Lemma 5.2.2 directly incorporate parts of the calculations outlined in
the physics work [ZK07] that predicted the existence and location of d.onq. We redo these calculations

here in detail to be self-contained and because not all steps are carried out in full detail in [ZKO7].

From here on out, we let ¢* denote the fixed point of Fy, in [2/(3k), 1/k]* and we denote the fixed
point of the function (5.1.4) in the interval [2/3, 1] by ¢*. Hence, ¢* = (¢*/k, ..., q¢"/k). If we keep
k fixed, how does ¢* vary with d?

Corollary 5.2.4. We have 9L = ©,, (k~2).

Proof. The map d — ¢* is differentiable by the implicit function theorem. Moreover, differentia-

ting (5.1.4) while keeping in mind that ¢* = ¢*(d) is a fixed point, we find

dq* d k—1
= —(1—- —dq*/(k—1
L= S (1 exp(—dg” /(5 ~ 1))
_ DO -ew(dg /-0 (0 d dg
exp (dg*/(k — 1)) k—1 k—14dd /"
Rearranging the above using d = 2k In k + Oy (In k) and (5.2.2) yields the assertion. d

Corollary 5.2.5. We have q;, = Oy, (k=@=Y) for all (i, £) € T. Moreover, % = Oy, (J¢|k=2) .
Proof. Lemma 5.2.2 shows that ¢j = g./k for all j € [k]. Hence, due to (5.2.2) and because d’ =
2kInk + Og(In k) we obtain

1

Gp = % H 1 —exp (—d’q}‘) H exp (—d’q}f):ék(k*(mlfl))'
JelkI\E je\{i}
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5.2. The fixed point problem

Furthermore, applying Corollary 5.2.4, we get

dq;k,f 1d ! x /%
W rad H 1—exp(—dqj) H exp(—dqj)
jelk]\e jet\{i}
= 1011~ exp (~d'q./R)) M exp (~d'a. k) 7]
kdd
1/ g d’ dg. k— /| / k—le]—1
- il — (1 —d'g./k
% (k— 1% dd> [exp(d’q*/k‘)( exp(=d¢./k))

~(le] ~ D)1~ exp (—d'q*/k»“'} exp (~d'(|¢] ~ 1)g./k)

= [0k (k™) exp (=d/(|6] = D)g./k) = Op(|elk21).

Lemma 5.2.6. The branching process GW (d, k, q.) is sub-critical.

Proof. We introduce another branching process GW'(d, k, g*) with only three types 1,2, 3. The idea
is that type 1 of the new process represents all types (h,{h}) € T with h € [k], that 2 represents
all types (h,{j,h}) € T with h,j € [k], j # h, and that 3 lumps together all of the remaining
types. More specifically, in GW’(d, k, ¢*) an individual of type i spawns a Poisson number Po(M;;)
of offspring of type j (i,7 € {1,2,3}), where M = (M;;) is the following matrix: If either i = 1 or
J = 1, then M;; = 0. Moreover,

/ /
My = > a; Ma3 = > i ed',
(1,0)€T(1,{1,2}):1¢1=2 (1,0 €T(1,{1,2)):1¢1>2
/ /
My = > a;od M3z = > a4 d -
(60T 1,1k :1€|=2 (GOET (1, k) :1€]>2

Due to the symmetry of the fixed point ¢* (i.e. g* = (¢* /k, ..., q*/k)), Mag is precisely the expected
number of offspring of type (i, ¢) with |¢| = 2 that an individual of type (ig, ¢y) € T with |{y| = 2
spawns in the branching process GW (d, k, ¢*). Similarly, Mag is just the expected offspring of type
(¢,£) with |¢| > 2 of an individual with |¢y| = 2. Furthermore, M35 is an upper bound on the expected
offspring of type (', ¢') with |¢/| = 2 of an individual of type (ig,¢y) with |[¢g| > 2. Indeed, Mso
is the expected offspring in the case that {y = [k], which is the case that yields the largest possible
expectation. Similarly, M33 is an upper bound on the expected offspring of type (', ¢') with [¢/| > 2
in the case |{y| > 2. Therefore, if GW’(d, k, g*) is sub-critical, then so is GW(d, k, ¢*).

To show that GW(d, k, g*) is sub-critical, we need to estimate the entries )/;;. Estimating the ¢}, via
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5. Condensation phase transition in random graph k-colouring

Corollary 5.2.5, we obtain

. k -
* ! -1 § : * ! —2
M22 S 2kq1’{1’2}d S Ok(k} ), M23 S 2 - l<l _ 1) qumd S Ok(k} ),
- k -
* ! * / -1
M32 S k;(k - 1)q17{172}d S Ok(l), M33 S k l>§ - l(l _ 1>q1,[l]d S Ok(k )

The branching process GW'(d, k, g*) is sub-critical if and only if all eigenvalues of M are less than
1 in absolute value. Because the first row and column of M are 0, this is the case if and only if the
eigenvalues of the 2 x 2 matrix M, = (M;;)2<; j<3 are less than 1 in absolute value. Indeed, since the
above estimates show that M, has trace Oy (k~') and determinant Oy,(k~2), both eigenvalues of M,
are Oy (k). O

Lemma 5.2.7. We have SB[ Ty q+| ™ In Z(Typ.q+)] = Op(k™2).

Proof. Fix anumber d € [(2k—1)Ink—2, (2k—1)In k] and a small number ¢ > 0 and let d = d+¢.
Let g* be the unique fixed point of F}; ;. in [2/(3k), 1/k]* and let §* be the unique fixed point of F’ ik
in [2/(3k),1/k]*. Setd’ = dk/(k—1) and d’ = dk/(k—1). Moreover, let us introduce the shorthands
T =1T,}q and T = T&,k,q*' We aim to bound

e InT,T the type (7o, {p) respectively (%0, 20) of the root v is chosen from the distribution

In Z(T)

A:E[M(T)]_ i

T

To this end, we couple T" and T as follows:

Q = (qi0),0eT respectively  Q = (Gie)(io)eT

We couple (ig, £o), (i0, o) optimally.
o If (ig, o) # (io, o), then we generate T', T independently from the corresponding conditional
distributions given the type of the root.
e If (ig, {o) = (io, {o), we generate a random tree T by means of the following branching process.
— Initially, there is one individual. Its type is (i, £o).
— Each individual of type (4, £) spawns a Po(A;s ») number of offspring of each type (i, ¢') €
Ti ¢, where
Ay p = max {Q;,E’d,a Q;,z/d/} :

— Given that the total progeny is finite, we obtain T by linking each individual to its off-
spring.
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5.2. The fixed point problem

e For each type (i, /), let
Aig =1—min {d,QZZa d’@ie} [N

For every vertex v of T, let s, be a random variable with distribution Be(Ai, ¢, ), where (i, ¢,)
is the type of v. The random variables (s, ), are mutually independent.

e Obtain T from T by deleting all vertices v such that d’ ql’-‘mgv <d q;;,ﬁv and s, = 1, along with
the pending sub-tree.

e Similarly, obtain T from T by deleting all v and their sub-trees such that d’ a4 0, > d q;, 4, and

Sy = 1.

Let A be the event that the type of the root satisfies £y = {io} and let A be the event £y = {io}. If
AN A occurs, then both T', T consist of a single vertex and have precisely one legal colouring. Thus,
|T|~*In Z(T) = |T'|" In Z(T) = 0. Consequently,

A<E AV -A -P[ﬂAvﬁA}.

~

|T| T

mZ(T) Z(T) ‘

Further, since |T|~' In Z(T'), |T|~' In Z(T) < In k with certainty, we obtain
A< (IP [ﬂAAA} +P [AAleD Ink

mZ(T) WnZ(T)

+E

~

T 7|

—|A/\—|/l] P [~AN-A].
Because (ig, £o) and (ig, o) are coupled optimally and P[A] = kqt, P[A] = kg*, Corollary 5.2.4
implies that P[~A A AJ, P[A A =A] < Oy (k~2). Hence,

InZ(T) InZ(T)

A <eOp(k™?) +E

~

T T

—AN ﬁA] P [ﬁA A —uéq . (5.2.6)

Now, let £ be the event that £y # {ig}, £y # {io} and (io, %) = (io, o). Due to Corollary 5.2.5 and

because (i, {p), (io, éo) are coupled optimally, we see that
P [ﬂA A=A ﬁe} < O (k72). (5.2.7)

Combining (5.2.6) and (5.2.7), we conclude that

A~

mZ(T) WZ(T)
|T| T

A< eOp(k2) +E P [ﬁA A ﬁA} . (5.2.8)

G

61



5. Condensation phase transition in random graph k-colouring

Further, since P [ﬁA A —Jl} <P[~A] < 1— kgt < Og(1/k) by Lemma 5.2.1, (5.2.8) yields

‘

< c0y(k™2) + Oy (Ink/k) - P [T ] Tyg} . (5.2.9)

mZ(T) WmZ(T)
T T

A < eOn(k™2) + Ok(1/k) -E

Thus, we are left to estimate the probability that T # T, given that both trees have a root of the same
type (7o, £p) with |¢y| > 1. Our coupling ensures that this event occurs if and only if s, = 1 for some

vertex v of T. To estimate the probability of this event, we observe that by Corollary 5.2.5

Or(1/k) if|¢| =2,
i < 6]“( /k) i (5.2.10)
c0x(1) if [£] > 2.

Now, let ] be the number of vertices v # vg of T such that |¢,] = 2, and let N3 be the number of
v # v such that |¢,| > 2. Then (5.2.9), (5.2.10) and the construction of the coupling yield

AJe < Op(k™?) + Ok(k™Y) (K 'E[M €] + ‘E[N3[E]) . (5.2.11)

To complete the proof, we claim that
EN[E] < OR(k™Y),  E[N3|E] < Ox(k72). (5.2.12)

Indeed, consider the matrix M = (Mij)i,j=l,2 with entries

My = > Aig, My = > Aie,

(i7€)€7'1,{1,2}1|€\:2 (i:e)€7—1,{1,2}5|é|>2
May = > Aig, My = > Aip.
(4,0) €71, [k):1€]=2 (8,0) €T, [:1€]>2

Then Corollary 5.2.5 entails that
My = Op(k™Y), Mg =Ok(k™2), My = O(1),  Mpn=0kk1). (5213

In addition, let ¢ = (g) where &1 = 1 — & = P[|{g| = 2|&]. Then Corollary 5.2.5 shows that
& = Oy, (k~2). Furthermore, by the construction of the branching process and (5.2.13) we have

(e = omre= (g6
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which implies (5.2.12).

Finally, (5.2.11) and (5.2.12) imply that A < sék(k_Q). Taking ¢ — 0 completes the proof. U

Proof of Lemma 5.2.1. The first assertion is immediate from Lemma 5.2.2. The second claim follows

from Lemma 5.2.6, and the third one from Lemma 5.2.7. OJ

5.3. The cluster size

The objective in this section is to prove Proposition 5.1.5. For technical reasons, we consider a variant
of the “planted model” G(n,p’, o) in which the number of vertices is not exactly n but n — o(n).
This is necessary because we are going to perform inductive arguments in which small parts of the
random graph get removed. Thus, let » = n(n) = o(n) be a non-negative integer sequence. Throug-
hout the section, we write n’ = n — n(n). Moreover, we let G = G(n',p, o), where p’ = d'/n’
with ' = kd/(k — 1) as in (5.1.1). By a slight abuse of notation we do not distinguish between o
and its restriction to the vertices in [n]. Unless specified otherwise, all statements in this section are

understood to hold for any sequence n = o(n).
5.3.1. Preliminaries

Assume that G = (V| E), let o be a k-colouring of G, let v € V and let w > 1 be an integer. We write
0¢&(v) for the subgraph of G consisting of all vertices at distance at most w from v. Moreover, |0&(v)|
signifies the number of vertices of 9 (v). Where the reference to G is clear from the context, we omit

it. We begin with the following standard fact about the random graph G.

Lemma 5.3.1. Letw = 10[Inlnlnn|.

1. With probability 1 — exp(—Q(In® n)) the random graph G is such that |9%(v)| < n%%! for all
vertices 0.

2. Wh.p. all but o(n) vertices v of G are such that 0g(v) is acyclic.

In addition, we need to know that the “local structure” of the random graph G endowed with the

colouring o enjoys the following concentration property.

Lemma 5.3.2. Let S be a set of triples (Go, 00, v0) such that Gy is a graph, oy is a k-colouring of
Go, and v is a vertex of Go. Let w = 10]InInInn] and define a random variable S, = S,(G, o) by
letting

So = L(04(v),01o, () v)€S-
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5. Condensation phase transition in random graph k-colouring

Further, let S = )", S,. Then S = E[S] 4 o(n) w.h.p..

The proof of Lemma 5.3.2 is based on standard arguments. The full details can be found in Subsection
5.34.

5.3.2. Warning Propagation

The goal in this section is to prove Proposition 5.1.5, i.e. to determine the cluster size |C(G, o)|. A

key step in this endeavor will be to determine the sets
lv)={1(v): T €C(G, o)}

of colours that vertex v may take under a k-colouring in C(G, o). In particular, we called a vertex
frozen in C(G, o) if £{(v) = {o(v)}. To establish Proposition 5.1.5, we will first show that the sets
¢(v) can be determined by means of a process called Warning Propagation, which hails from the
physics literature (see [MMO9] and the references therein). More precisely, we will see that Warning
Propagation yields colour sets L(v) such that L(v) = ¢(v) for all but o(n) vertices w.h.p.. Crucially,
by tracing Warning Propagation we will be able to determine the number of vertices of any type (i, £).
Moreover, we will show that the cluster C(o) essentially consists of all k-colourings 7 of G such that
7(v) € L(v) for all v. In addition, the number of such colourings 7 can be calculated by considering
a certain reduced graph Gwp (o). This graphs turns out to be a forest (possibly after the removal of
o(n) vertices), and the final step of the proof consists in arguing that, informally speaking, w.h.p. the
statistics of the trees in this forest are given by the distribution of the multi-type branching process

from Section 5.1.

Let us begin by describing Warning Propagation on a general graph G endowed with a k-colouring
o. For each edge e = {v, w} of G and any colour 7, we define a sequence (fty—sy (i, t|G, 0))¢>1 such
that 11—, (1, |G, 0) € {0, 1} for all 4, v, w. The idea is that i, (7, t|G, o) = 1 indicates that in the
tth step of the process vertex v “warns” vertex w that the other neighbours v # w of v force v to take
colour ¢. We initialize this process by having each vertex v emit a warning about its original colour
o(v)att=0,ie.

IU’U—WJ(Z‘? O’G7 U) = 11’:0’(1}) (5.3.1)
for all edges {v,w} and all ¢ € [k]. Letting v = J¢(v) denote the neighbourhood of v in G, for t > 0
we let
po—sw (i, t+1|G,0) = H max {fy—v(J, t|G,0) 1 u € Ov \ {w}}. (5.3.2)
JERIN{i}

That is, v warns w about colour % in step ¢ + 1 if and only if at step ¢ it received warnings from its

64



5.3. The cluster size

other neighbours u (not including w) about all colours j # i. Further, for a vertex v and ¢t > 0 we let
L(v,t|G,0) = {j € [k] : max py—v (4, t|G,0) = 0} and
u€V

o0
L(v|G,0) = | L(v, t|G, 0).
t=0
Thus, L(v, t|G, o) is the set of colours that vertex v receives no warnings about at step ¢. To unclutter

the notation, we omit the reference to (G, 0 where it is apparent from the context.

To understand the semantics of this process, observe that by construction the list L(v, |G, o) only de-
pends on the vertices at distance at most ¢+ 1 from v. Further, if we assume that the ¢th neighbourhood
O'vin G is a tree, then L(v, t|G, o) is precisely the set of colours that v may take in k-colourings 7 of
G such that 7(w) = o(w) for all vertices w at distance greater than ¢ from v, as can be verified by a
straightforward induction on ¢. As we will see, this observation together with the fact that the random
graph G contains only few short cycles (cf. Lemma 5.3.1) allows us to show that for most vertices v we
have {(v) = L(v|G, o) w.h.p.. In effect, the number of k-colourings 7 of G with 7(v) € L(v|G, o)

for all v will emerge to be a very good approximation to the cluster size |C(G, o)|.

Counting these k-colourings is greatly facilitated by the following observation. For a graph G together
with a k-colouring o, let us denote by Gyp(t|o) the graph obtained from G by removing all edges
{v,w} such that either |L(v,t)| < 2, |L(w,t)| < 2 or L(v,t) N L(w,t) = (. Furthermore, obtain
Gwp (o) from G by removing all edges {v, w} such that L(v) N L(w) = (). We view Gwp (t|o) and
Gwp (o) as decorated graphs in which each vertex v is endowed with the colour list L(v, t) and L(v)
respectively. As before, we let Z denote the number of legal colourings of a decorated graph. Thus,
Z(Gwe(0)) is the number of colourings 7 of G'wp (o) such that 7(v) € L(v|G, o) for all v. The key

statement in this section is
Proposition 5.3.3. W.h.p. we have In Z(Gwp (o)) = In|C(G, )| + o(n).

We begin by proving that Z(Gwp (o)) is a lower bound on the cluster size w.h.p.. To this end, let us
highlight a few elementary facts.

Fact 5.3.4. The following statements hold for any G, o.

1. Forallv,w,iandallt > 0, we have iy (i,t + 1) < piy—say (i, ).
2. We have o(v) € L(v,t) for all v,t. Moreover, if jiy—,(i,t) = 1 for some w € Ov, then
i=o(v).

3. There is a number t* such that for any t > t* we have iy, (1, 1) = py— (2, t*) for all v, w, i.
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Proof. We prove (1) and (2) by induction on ¢. In the case ¢ = 0 both statements are immediate
from (5.3.1). Now, assume that ¢ > 1 and gy (i,t) = 0. Then there is a colour j # ¢ and a
neighbour u # w of v such that iy, (j,t — 1) = 0. By induction, we have y,—,(j,t) = 0. Hence,
(5.3.2) implies that jy—(i,t + 1) = 0. Furthermore, if fty—(i,¢ + 1) = 1 for some i # o(v),
then v has a neighbour u # w such that i, (c(v),t) = 1. But since o(u) # o(v) because o is a
k-colouring, this contradicts the induction hypothesis. Thus, we have established (1) and (2). Finally,
(3) is immediate from (1). ]

Fact 5.3.5. If for some t > 0, T is a colouring of Gwp(t|o) such that 7(v) € L(v,t) for all v, then
T is a k-colouring of G. Moreover, if T is a k-colouring of Gwp (o) such that T(v) € L(v) for all v,

then T is a k-colouring of G.

Proof. Let {v, w} be an edge of G. Clearly, if L(v,t) N L(w,t) = 0, then 7(v) # 7(w). Thus, assume
that L(v,t) N L(w,t) # (. Then |L(v,t)| > 1. Indeed, if |L(v,t)| = 1, then by Fact 5.3.4 we have
L(v,t) = {o(v)} and thus o(v) ¢ L(w,t) by (5.3.2). Similarly, |L(w,t)| > 1. Hence, the edge
{v,w} is present in Gwp(t|o), and thus 7(v) # 7(w). This implies the first assertion. The second

assertion follows from the first assertion and Fact 5.3.4, which shows that there is a finite ¢ such that
L(v,t) = L(v) for all v. O

To turn Fact 5.3.5 into a lower bound on the cluster size, we are going to argue that in G there are a
lot of frozen vertices w.h.p.. In fact, w.h.p. the number of such frozen vertices will turn out to be so

large that all colourings 7 as in Fact 5.3.5 belong to the cluster C(G, o).

To exhibit frozen vertices, we consider an appropriate notion of a “core”. More precisely, assume
that o is a k-colouring of a graph G. We denote by core(G, o) the largest set V' of vertices with the
following property.

Ifv € V' and j # o(v), then [V N o~1(5) N dv| > 100.

In words, any vertex in the core has at least 100 neighbours of any colour j # o(v) that also belong
to the core. The core is well-defined: If V/, V" are two sets with this property, then so is V' U V", The
following is immediate from the definition of the core.

Fact 5.3.6. Assume that v € core(G, o). Then L(v,t) = {o(v)} for all t.
The core has become a standard tool in the theory of random structures in general and in random graph

colouring in particular. Indeed, standard arguments show that w.h.p. G has a very large core. More

precisely, we have
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Proposition 5.3.7 ((COV13]). W.h.p. G, o are such that the following two properties hold for all sets
S C [n'] of size |S| < v/n.

1. Let G' be the subgraph obtained from G by removing the vertices in S. Then
lcore(G', o) N o (3)| > %(1 k23 foralli € [K]. (5.3.3)

2. Ifv € core(G', ), then o(v) = 7(v) forall T € C(G, 7).
Corollary 5.3.8. Wh.p. we have |C(G, )| > Z(Gwp(0)).

Proof. By Proposition 5.3.7 we may assume that (5.3.3) is true for S = (). Let 7 be a k-colouring
of Gwp (o) such that 7(v) € L(v) for all v. Then Fact 5.3.5 implies that 7 is a k-colouring of G.
Furthermore, Fact 5.3.6 implies that 7(v) = o(v) for all v € core(G, o). Hence, (5.3.3) entails that
pii(o,7) > 1— k=23 > 0.51 forall i € [k]. Thus, 7 € C(G, o). O

While Z(Gwp (o)) provides a lower bound on the cluster size, the two numbers do not generally
coincide. This is because for a few vertices v, the list L(v) produced by Warning Propagation may be
a proper subset of £(v). For instance, assume that the vertices v1, vo, v3, v4 induce a cycle of length
four such that o(v1) = o(v3) = 1 and o(ve) = o(v4) = 2, while vy, vy, v3, v4 are not adjacent to any
further vertices of colour 1 or 2. Moreover, suppose that for each colour j € {3,4,...,k}, each of
v1, ...,V has at least one neighbour of colour j that belongs to the core. Then Warning Propagation
yields L(v1) = L(vs) = {1} and L(v2) = L(v4) = {2}. However, vy, v2, v3, v4 are actually unfrozen
as we might as well give colour 2 to vy, v3 and colour 1 to va,v4. (A bipartite sub-structure of this

kind is known as a “Kempe chain”, cf. [Mol12].)

The reason for this problem is, roughly speaking, that we launched Warning Propagation from the
initialization (5.3.1), which is the obvious choice but may be too restrictive. Thus, to obtain an upper
bound on the cluster size we will start Warning Propagation from a different initialization. Ideally, this
starting point should be such that only vertices that are frozen emit warnings. By Proposition 5.3.7, the
vertices in the core meet this condition w.h.p.. Thus, we are going to compare the above installment
of Warning Propagation with the result of starting Warning Propagation from an initialization where

only the vertices in the core send out warnings.

Thus, given a graph G together with a k-colouring o, we let

M;Hw (Z7 O’Gv U) = 1i:a(v) ) 1U€Core(G,a)7
oy (i, t +1|GL o) = H maX{ﬂ;—w(jat‘GvU) :uéav\{w}}
JelkN\{i}
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for all edges {v, w} of G, all i € [k] and all ¢ > 0. Furthermore, let
L%’U,t‘G,O’) = {.7 € [k] . max,u;%v(j,ﬂG, J) = 0} and
u€dv

L'(v|G,0) = (L' (v, |G, 0).
t=0

As before, we drop G, o from the notation where possible.

Similarly as before, we can use the lists L'(v,t) to construct a decorated reduced graph. Indeed,
let Gy p(t|o) be the graph obtained from G by removing all edges {v,w} such that [L'(v,t)] < 2
or |L'(w,t)| < 2or L'(v,t) N L'(w,t) = (. We decorate each vertex in this graph with the list
L'(v,t). In addition, let G{yp(0) be the graph obtain from G by removing all edges {v, w} such that
L'(v) N L'(w) = 0 endowed with the lists L' (v).

Fact 5.3.9. The following statements hold for all G, o.

1. For all v, we have o(v) € L'(v). Moreover, if there are j,t,w such that i, (j,t) = 1, then
j=o(v).

2. Ifv € core(G, o), then L' (v,t) = {o(v)} for all t.

3. We have il (i,t +1) > pl ., (i,1).

4. There is a number t* such that for any t > t* we have p,_,,,(i,t) = pl,_,,,(i,t*) for all v, w, .

Proof. This follows by induction on ¢ (cf. the proof of Fact 5.3.4). O

Lemma 5.3.10. W.A.p. for all vertices v we have £(v) = {7(v) : 7 € C(G, o)} C L'(v|G, o).
Proof. Proposition 5.3.7 shows that w.h.p.
7(v) = o(v) forallv € core(G, o). (5.3.4)
Assuming (5.3.4), we are going to prove by induction on ¢ that
{(v) C L'(v,t) forallv € [n],t > 0. (5.3.5)

By construction, for any vertex v and any colour j we have j € L/(v,0), unless v has a neighbour
w € core(G, o) such that o(w) = j. Moreover, if such a neighbour w exists, (5.3.4) implies that
w.h.p. 7(w) = j and thus 7(v) # j for all 7 € C(o). Hence, (5.3.5) is true for t = 0.

Now, assume that (5.3.5) holds for ¢. Suppose that j ¢ L'(v,t+1). Then v has a neighbour u such that
My (J; t+1) = 1. Therefore, for each | # j there is w; # v such that y;,, (I, t) = 1. Consequently,
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L'(u,t) = {j}. Hence, by induction we have 7(u) = j and thus 7(v) # j forall 7 € C(G, o). O

As an immediate consequence of Lemma 5.3.10, we obtain
Corollary 5.3.11. Wh.p. we have |C(G,0)| < Z(Gyp(0)).

Combining Corollary 5.3.8 and Corollary 5.3.11, we see that w.h.p.
Z(Gwr(a)) < [C(G,0)| < Z(Gyyp(0)).

To complete the proof of Proposition 5.3.3, we are going to argue that w.h.p. In Z(G'yp(0)) =
In Z(GWP(O')) + O(n)

To this end, we need one more general construction. Let GG be a graph and let ¢ be a k-colouring of G.
Let t > 0 be an integer. For each vertex v of GG, we define a rooted, decorated graph T'(v,t|G, o) as

follows.

e The graph underlying 7'(v, t|G, o) is the connected component of v in Gwp (v, t|G, o).
e The root of T'(v, t|G, o) is v.
e The type of each vertex w of T'(v,t|G, o) is (o(w), L(w, t|G, 0)).

Analogously we obtain rooted, decorated graphs T'(v|G, o) from Gwp (o) as well as T"(v, t|G, o)
from Gy p(t|o) and T"(v|G, o) from Gy p(0).

Of course, the total number Z(Gwp (o)) of legal colourings of Gwp (o) is just the product of the
number of legal colourings of all the connected components of Gywp (o). The following lemma shows

that w.h.p. for all but o(n) vertices the components in Gwp (o) and Gy p (o) coincide.

Lemma 5.3.12. Wh.p. G, o is such that T (v|G, o) = T (v|G, o) for all but o(n) vertices v.

The main technical step towards the proof of Lemma 5.3.12 is to show that w.h.p. most of the com-
ponents 7" (v|G, o) are “small” by comparison to n. Technically, it is easier to establish this state-

ment for 7" (v, 0|G, o), which contains 7"(v|G, o) as a subgraph due to the monotonicity property
Fact 5.3.9, (3).

Lemma 5.3.13. Forany ¢ > 0, there is a number w = w(e) > 0 such that w.h.p. for at least (1 — )n

vertices v the component T (v, 0|G, &) contains no more than w vertices.

The proof of Lemma 5.3.13, which we defer to Subsection 5.3.4, is a bit technical but based on known

arguments. Lemma 5.3.1 shows that w.h.p. for most vertices v such that 7"(v,0|G, o) contains at
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most, say, w = [Inlnlnn] vertices, 7"(v,0|G, o) is a tree. In this case, the following observation

applies.

Lemma 5.3.14. Let G be a graph and let o be a k-colouring of G. Assume that T' (v, 0|G, o) is a tree
on w vertices for some integer w > 1. Then for any vertex y in T'(v,0|G, ) we have L(y|G,0) =
L'(y|G, o). Moreover, if T'(v,0|G, o) has w vertices, then L(y|G,0) = L(y,w + 1|G,0) and
L'(y|G,o) = L'(y,w + 1|G, 0).

Proof. To get started, let us recall some basic properties of the warnings:

P1 If for an edge {z,y} in G we have p;,(4,0) = 1 or p;_,,(4,0) = 1 then i = o ().
P2 For each vertex v € G, we have o(v) € L(v,t) and o(v) € L'(v,t) forall ¢ > 0.
P3 For all edges {x, y} in G, we have p, (i, t) > i, (i,t) for all i € [k].

As a first step we are going to show that for each edge {x,y} in T"(v, 0|G, o) we have
fo—y(i,t) = piy_y, (i,t) =0 forallt > wand all i € [k]. (5.3.6)

To do so, pick and fix an arbitrary vertex y in 7" (v, 0). We define the y-height h, () of a vertex = # y
in 7"(v,0) as follows. Since T"(v,0) is a tree, there is a unique path from x to y in 7”(v,0). Let
P,(z) be the neighbour of = on this path. Then h,(x) is the maximum distance from z to a leaf of

T'(v,0) that belongs to the component of z in the subgraph of 7”(v, 0) obtained by removing the edge

{z, Py(2)}-

Let U be the set of all neighbours u of x that do not belong to 7" (v, 0), and let U’ be the set of all
neighbours v’ # Py(x) of z in T"(v, 0). We compute

Wospy @) = [ max{u,.(j,0):ueU} =0 forallie [k
JEBING)

where we omitted the vertices in U’ since by construction of core(G, o) we conclude that for all
u € U wegetpl,  (i,0) =0foralli € [k]. Foreach j € [k] \ L'(z,0), there exists a neighbour
w € U such that o(u) = j and p,_,,(7,0) = 1;—; and let Uc be the set of all such neighbours. By
Fact 5.3.9 and P3 for all u € Up, we find

fru—sa (i, t) = py 0 (i,8) = 1,2y, foralli € [k] forall ¢ > 0. (5.3.7)

By construction of 7"(v, 0), for all u € U the lists L'(z,0) and L'(u,0) are disjoint and by P1, P2
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and (5.3.7), we obtain

For any u € U \ U¢ we find o(u) € L'(u,0) C [k] \ L'(x,0) and
thus there exists a u’ € Ug such that pu,—,(7,0) = py . (4,0) =

o (5.3.8)
1i—s(u) and in particular fi,—z(i,t) < fiyr—4(4,0) = Li_g(, for
allt > 0.
We conclude by (5.3.8) that
W s p () (65 1) H max {4, ,,(j,0):u€Uc} =0 forallie [k] (5.3.9)
jelk\{i}
To prove (5.3.6), we show by induction on h,(z) that for all i € [k]
Hzspy(2) (15 1) = Wy yp (1) =0 forallt > hy(x) + 1. (5.3.10)

To get started, suppose that h,(z) = 0. Then z is a leaf of T"(v, 0). We compute

Mx%Py(x) i, 1 H max {,Ufu—m(]; ) u < U}
ek}
[T max{pu-z(4,0):ueUs} [by (5.3.8)]
Jelk\}
= J] max{u,.(,0):ueUs} [by (5.3.7)]
jElR\{i}
= 1y p () (5,1) = 0 by (5.3.9)]

for all i € [k]. By Fact 5.3.4 and P3, we conclude that p,_, p, () (i,1) = ,um_”) (i )(', t) = 0 for all
t>1.

Now, assume that hy(z) > 0. Then all v’ € U’ satisfy hy,(u') < hy(z). Moreover, Py(u') = .

Therefore, by induction

P~z (15 1) = par—2 (1, hy(x)) =0 = /‘;/ex(iv hy(x)) = :ui/—m(i’ t) (5.3.11)

forallw € U',i € [k], t > hy(x).
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We compute

Ha—s Py () (75 1) H max{uu_m Jyt—1):ue€ UUU’}

IEENG:

I max{pu-z(4,0):ueUs} [by (5.3.8) and (5.3.11)]
jelk\{i}

= [ mex{u,_.,(.0):uecUc}  [by(53.7)]
jElR\{i}

= u;%Py(x)(i, 1) = Oforall i € [k],t > hy(z) + 1.

Again by Fact 5.3.4 and P3, we conclude that i, p, () (i, t) = uz_m (z)( t) =0 foralli € [k] and
t> hy(x) + 1.

Finally, we observe that h,(z) < w = |T"(v,0)| for all z. Hence, applying (5.3.10) to the neighbours
z of y in T'(v,0), we obtain fiy—yy(j,t) = pasy(i,w +1) = pyy, (Gw+1) =0 = pyy, (4,t)
for all i € [k] and all ¢ > w. Together with (5.3.7) which states that for any € 7"(v,0) and
for any j € [k] \ L'(z,0) there exists a vertex u ¢ T"(v,0) that is adjacent to x in G such that
Pu—sa (4, 1) = il (4, ) = 1 forall ¢ > 0 and with (5.3.8) which states that for any j € L'(x,0)
there exists no vertex u ¢ 7" (v, 0) that is adjacent to = in G such that p,—,(j,t) = pl,_,.(j,t) =1
for any ¢t > 0 we conclude that L(z) = L(z,w + 1) = L'(x,w + 1) = L'(x) as desired. O

Proof of Lemma 5.3.12. Lemma 5.3.13 implies that for all but o(n) vertices v we have |T'(v,0)| <
InInlnn w.h.p.. Together with Lemma 5.3.1, this implies that w.h.p. 7"(v, 0) is a tree for all but o(n)

vertices v. Thus, assume in the following that v is such that 7”(v, 0) is a tree.

It is immediate from Facts 5.3.4, 5.3.6 and 5.3.9 that L(w) C L'(w) C L'(w,0) for all vertices w.
Therefore, Gwp (o) C Gyyp(o) C Giyp(0|o) and thus

T(v) C T'(v) C T'(v,0). (5.3.12)

Conversely, Lemma 5.3.14 shows that L(x) = L'(z) for all vertices x in T"(v,0). Together with
equation (5.3.12), this implies that 7'(v) = T"(v). O

Proof of Proposition 5.3.3. By Corollary 5.3.8 and Corollary 5.3.11, w.h.p. we have Z(Gwp(0)) <

IC(G,0)| < Z(Gp(0o)). Thus, it suffices to show that In Z(Gwp (o)) = In Z(Giyp(o)) + o(n)

w.h.p.. Indeed, because the various connected components of Gwp (o) can be coloured independently,
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we find that
In Z(T(v|G, o))
G = 2 TG
vE[n’] ’
(TG o) (5.3.13)
In Z(T'(v|G, o
vE[n/] ’
Clearly, for any vertex v we have In ‘ZT((Z %gﬁ)), In IZT(’:(F;\(gi’)T)) < In k. Hence, Lemma 5.3.12 shows
that w.h.p.
In Z(T(v|G, o)) In Z(T'(v|G, 7))
~ . 5.3.14
2 TTuGel " 2 TG, G319
vE[n’] vE[n’]
Finally, the assertion follows from (5.3.13) and (5.3.14). ]

5.3.3. Counting legal colourings

Proposition 5.3.3 reduces the proof of Proposition 5.1.5 to the problem of counting the legal colou-
rings of the reduced graph Gwp (o). Lemma 5.3.13 implies that w.h.p. Gwp (o) is a forest consisting
mostly of trees of size, say at most In In In n. In this section we are going to show that w.h.p. the “sta-
tistics” of these trees follows the distribution of the random tree generated by the branching process
from Section 5.1. To formalise this, let T' = Ty ;. o= with g* from (5.1.5) denote the random isomor-
phism class of rooted, decorated trees produced by the process GW (d, k, ¢*). Moreover, for a rooted,
decorated tree 7" let Hy be the number of vertices v in Gwp(o) such that T'(v|G, o) = T In this

section we prove:

Proposition 5.3.15. If T'is such that P[T" € T] > 0, then (X Hry),>1 converges to P [T € T in
probability.

We begin by showing that the fixed point problem q* = Fy ;(q*) with F;;, from (5.2.1) provides a
good approximation to the number of vertices v such that L(v|G, o) = {i} for any i. To this end, we
let

¢ =(1/k,...,1/k) and q'=Fyx(q"™") fort>1.

In addition, let Q;(t|G, o) be the set of vertices v of G such that L(v,t|G, o) = {i}.

Lemma 5.3.16. For any i € (k] and any fixed t > 0, we have 1|Q;(t|G, )| = ¢! + o(1) w.h.p..

Proof. We proceed by induction on ¢. To get started, we set Q;(—1|G, o) = o~'(i) and ¢; * = 1/k.
Then whp. 1|Q;(—1|G,0)| = ¢; ' + o(1).
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Now, assuming that ¢ > 0 and that the assertion holds for ¢ — 1, we are going to argue that
E[|Q:(t|G,o)|/n] = ¢} + o(1). (5.3.15)

Indeed, let v = n’ be the last vertex of the random graph, and let us condition on the event that

o(v) = i. By symmetry and the linearity of expectation, it suffices to show that
P[L(v,t|G, o) = {i} |o(v) = i] = kq! + o(1). (5.3.16)

To show (5.3.16), let G signify the subgraph obtained from G by removing v. Moreover, let Q' (¢)
be the event that
In~HQ;(t — 11G,0)| — q;_ll < e forallj € [k].

Since G is nothing but a random graph G(n’ — 1,p', ) with one less vertex and as ' — 1 = n— o(n),
by induction we have
P[Q"1(e)]=1—0(1)  foranye > 0. (5.3.17)

Let A(i) be the event that for each j € [k]\ {i} there is w € dg(v) such that L(w, ¢t — 1|G, o) = {j}.
Given o (v) = 4, we can obtain G from G by connecting v with each vertex w € [n/ — 1] such that
o (w) # i with probability p’ independently. Therefore,

P A(z’)\é,a(v) = z] = H 1-(1 _p/)‘Qj(t*”é,a'H

JF
~TI1 - o710, - 1E.0))
J#
kd =
IT-ew [ - 16l
J#

Furthermore, for any fixed § > 0 there is an (n-independent) ¢ > 0 such that given that Q'~!(¢)

occurs, we have

kd ~
q - H 1 —exp <_k — nHQ;(t — 1|G,a)|> < 0. (5.3.18)
ji
Combining (5.3.17) and (5.3.18), we see that for any fixed § > 0 we have
|P[A(i)|o(v) = i] — kq}| < &+ o(1). (5.3.19)

If v is acyclic and o (v) = ¢ as well as A(7) occurs, then L(v,t|G, o) = {i}. Therefore, (5.3.16)
follows from (5.3.19) and Lemma 5.3.1.

Finally, the random variable |Q!(G, o)| satisfies the assumptions of Lemma 5.3.2. Indeed, the event

v € Q;i(t|G, o) is determined solely by the sub-graph of G encompassing those vertices at distance
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at most ¢ from v. Thus, (5.3.15) and Lemma 5.3.2 imply that 1|Q;(¢|G, o)| = ¢! + o(1) wh.p., as
desired. t

As a next step, we consider the statistics of the trees T'(v,w|G, o) with w > 0 large but fixed as
n — 00. Thus, for an isomorphism class 7" of rooted, decorated graphs we let Hr , be the number of
vertices v in Gwp (w|o) such that T'(v,w|G, o) € T.

Lemma 5.3.17. Assume that T is an isomorphism class of rooted decorated trees with P [T' = T'] > 0.
Then for any € > 0 there is w > 0 such that

1
lim P H]P’ T =T)~ * Hr,,

n—oo

>5] =0.

Proof. We observe that P [T' = T is a number that depends on 7" but not on n. Furthermore, if 7 is
the isomorphism class of a rooted sub-tree of 7', then P [T' = T},] > P [T = T].

The proof is by induction on the height of the trees in 7T". In the case that T" consists of a single vertex

v of type (7, {i}) for some i € [k], the assertion readily follows from Lemma 5.3.16.

Let (ig, £y) be the type of the root and v = n’. To this end, consider the graph G obtained by removing
v. By Lemma 5.3.16 the number of vertices w of G with L(w, w|G, o) = {j} is n(g; +o,(1)) w.h.p.
for all j, where o,,(1) signifies a term that tends to 0 in the limit of large w. Let A be the event that

this is indeed the case. Moreover, let 3 be the following event:

e o(v) =ijg.
e for each colour j & £y, vertex v has a neighbour w in G such that L(w, w|G, o) = {j}.
e v does not have a neighbour w with L(w, w|G, &) = {h} for any h € /.

Then

P[B|A] = HIP’ [Bin(n(qj + 0u,(1)),p") > 0] - H P [Bin(n(qj + 0,(1)),p") = 0]
J&Zfo j€lo\{io}

~ % L1 ® [Po(rp'(gj +0u(1)) > 0] - [T P[Po(np'(g] + (1)) = 0]
jto j€lo\{io}

= q;o,fo + OUJ(]‘)‘

Since P [A] ~ 1, we find
PB] = gi, 4, + 0 (1)- (5.3.20)

Let T3, be the unique tree of the isomorphism class of rooted decorated trees consisting only of
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5. Condensation phase transition in random graph k-colouring

the root vg. Let )/, be the event that v has no neighbour of any type (¢/,¢') € T;, s, Therefore let
q8 = Z(i’,f/)ETi’g ql‘7g. We find

PGB = (1= p) o) = o, (1) + exp(—np'ay)
= 0,(1) +exp(—d'qp) = 0,(1) + P [Ty, € Tiy) - (5.3.21)
Combining (5.3.20) and (5.3.21), we find that
PBNY,]| =P[Ty, € T]+ 0,(1).

As for the inductive step, pick and fix one representative Ty € T'. If we remove the root vy from Tp,
then we obtain a decorated forest Ty — vg. Each tree T” in this forest contains precisely one neighbour
of the root of Tj, which we designate as the root of 7”. Let V(T') be the set of all isomorphism classes
of rooted decorated trees 7" obtained in this way. Furthermore, for each T e V(T) let y(T) be the
number of components of the forest Ty — vy that belong to the isomorphism class T.

We are going to show that for v = n and for w = w(T, ¢) sufficiently large we have
|P[T(v,w|G,o) =Ty —P[T=T]| <e.

Furthermore, for each tree 7/ € V(T) we let Q(T") be the set of all vertices w of G such that
T(w,w|G,o) = T'. In addition, let Qg be the set of all vertices w of G that satisfy none of the

following conditions:

o w € Upey QT).
o J(w) ¢ Tig to-
o L(w,w|G, o) ={j} for some j € [k].

Further, let ¢(T7") = P [T = T"] and let

(T =q)— > o).

T'eV(T)

Let Q be the event that |Q(T")|/n = ¢(T") + 0,(1) for all T’ € V(T) and that |Qy|/n = ¢4(T) +
0,,(1). Then
P[Q] ~ 1

by induction. Letting again v = OJg(v) and Y be the event that for each 77 € V(T') we have
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y(T') = [0v N Q(T")| and dv N Qg = 0. Then

PYIB] ~PY|B, Q

=(1-9p) N(Qm‘i‘Ow H P Bln (q(T") + 0,(1)),p") = y(T’)}

T'ev(T
= 0,,(1) + exp(—np'qy) H P [Po(npq(T")) = y(T")]
T'eV(T)
=0,(1) +exp(~d'qy) [[ P[Po(d'q(T"))=y(T")]
T'eV(T)
= 0u,(1) + P[Tp € Ty, 4] (5.3.22)

The last equality sign follows from the fact that in tree T';, 4, the root has a Poisson number of children
of possible “shape” T". Combining (5.3.20) and (5.3.22), we find that

P[BNY] =P[Ty € T] + 0,(1). (5.3.23)

Let R be the event that 9¢(v) is acyclic. By Lemma 5.3.1 we have P [R] ~ 1. Furthermore, given R,
we have T'(v,w|G, o) € T if and only if the event B N ) occurs. Thus, (5.3.23) implies that

P[T(v,w|G,o) e T|=P[BNY]+0(l) =P[T =T] + o,(1). (5.3.24)
Moreover, (5.3.24) shows that
%E[HT,W] =P[T =T]+o,(1). (5.3.25)

Finally, because the event T'(v,w|G, o) € T is governed by the vertices at distance at most |T'| + w

from v, Lemma 5.3.2 implies together with (5.3.25) that for any € > 0 there is w such that
Pl|Hry, —P[T =T]| <en]=1-o0(1).

This completes the induction. 0

Lemma 5.3.18. Forany ¢ > 0, there is w > 0 such that w.h.p. all but en vertices v satisfy T (v|G, o) =
T(v,w|G, o).

Proof. Lemma 5.3.14 implies that T'(v|G, o) = T(v,w + 2|G, o), unless 7" (v, 0|G, o) contains at

least w vertices. Furthermore, Lemma 5.3.13 implies that for any fixed ¢ > 0 there is w = w(e) such

that this holds for no more than en vertices w.h.p.. O
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5. Condensation phase transition in random graph k-colouring

Finally, Proposition 5.3.15 is immediate from Lemmas 5.3.17 and 5.3.18 and Proposition 5.1.5 follows
from Propositions 5.3.3 and 5.3.15.

5.3.4. Remaining proofs
Proof of Lemma 5.3.13.

Set § = [Inlnn]. Moreover, for a set S C V let Cg denote the o-core of the subgraph of G obtained
by removing the vertices in S. Further, for any vertex w € S let A(w, S) be the set of colours j € [k]
such that in G vertex w does not have a neighbour in = (5) N Cs. In addition, let us call S wobbly

in G if the following conditions are satisfied.

W1 |S| =6.
W2 We have [A(w, S)| > 2forallw € S.
W3 The subgraph of GG induced on S has a spanning tree 7" such that

A(u, S) N A(w,S) #( for each edge {u,w} of T

Assume that 7"(v, 0|G, o) contains at least 6 vertices. If T = (.S, E) is a sub-tree on 6 vertices
contained in 7"(v, 0|G, &), then S is wobbly. Therefore, it suffices to prove that the total number W

of vertices that are contained in a wobbly set S satisfies

EW]< > 0-P[Sis wobbly] = o(n). (5.3.26)
ScV:|S|=0

To prove (5.3.26), we need a bit of notation. For a set S, let £g be the event that
ICs No1(i)| > %(1 —k72/3) foralli € [k].
Then Proposition 5.3.7 implies that for any set S of size # we have

P[Es] > 1 —exp(—Q(n)). (5.3.27)

Further, for a vertex w € S and aset Jy, C [k]\{o(w)}, let L(w, J,,) be the event that A(w, S) D Jy.
Crucially, the core Cg of the subgraph of G obtained by removing S is independent of the edges
between S and Cg. Therefore, w is adjacent to a vertex z in C's with o(x) # o(w) with probability

p/, independently for all such vertices x. Consequently,

PL(w, J,)|Es] < [ (1 —p) RO < 1901l (5.3.28)
jer
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Moreover, due to the independence of the edges in G, the events L(w, J,,) are independent for all
weS.

Let S C V be a set of size 6. Let us call a vertex w € S rich if [A(w, S)| > Vk. Further, let Rg be
the set of rich vertices in S. To estimate the probability that S is wobbly, we consider the following

events.

e Let Ag be the event that |Rg| > k~'/36 and that G contains a tree T with vertex set S.
o Let .A’S be the event that and that G contains a tree 1" with vertex set .S such that

Y lop(w) > 6/2.

wERg

(In words, the sum of the degrees of the rich vertices in 7" is at least 6/2.)

o Let Ag be the event that G contains a tree 1" with vertex set .S such that

> |or(w)] < 6/2.

wERg

e Let WWg be the event that condition W2 is satisfied.

e For a given tree 1" with vertex set .9, let W&T be the event that condition W3 is satisfied.
If S is wobbly, then the event Ag U (Ws N Ag) U (Ws N Wg N AG) for a tree T occurs. Therefore,
P [S is wobbly] < P[Ag] +P [Ws N Ag\ As] +P [Ws N W NAG\ (As U A5)] . (5.3.29)
In the following, we are going to estimate the three probabilities on the r.h.s. separately.
With respect to the probability of Ag, (5.3.27) and (5.3.28) yield

P [|Rg| > k30| <P[-Eg] + P [HR C S,|R| = [k~130] :Yw € R : [A(w, §)| > \/%155]

ceooon () (]

<exp(—Vkb).

Furthermore, by Cayley’s formula there are §~2 possible trees with vertex set S. Since any two
vertices in S are connected in G with probability at most p’, and because edges occur independently,

we obtain
PAg] < 0927 P [|R5\ > k*l/?’e] < 072" exp(— k). (5.3.30)
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To bound the probability of Wg N A \ Ag, let R C S. Moreover, let e(.S) denote the total number
of edges spanned by S in G, and let e(R, S) denote the number of edges that join a vertex in R with
another vertex in S. Let Ax(R,t) be the event ¢(S) > 6 — 1 and e(R, S) = ¢. If A} \ Ag occurs,
then there exist R C S, |R| < r = [k~1/30], and t > 0/4 such that A4(R, t) occurs. Therefore, by

the union bound,

PWsNAs\As] < Y D P[WsnAg(R,t)]. (5.3.31)

RCS:|R|<rt>0/4

Further, because the event Wy is independent of the subgraph of G induced on S, (5.3.31) yields

PWsN A\ As] < PWs]- > ) P[AG(R,t)] (5.3.32)

RCS:|R|<rt>0/4

Because any two vertices in S are connected with probability at most p’ independently, the random

variable e(R, S) is stochastically dominated by a binomial distribution Bin(r6, p’). Therefore,

PMRSLJhﬂw&mme_ﬂg<Tyﬁ (5.3.33)

Similarly, we find

Ple(S) > 0 — 1]e(R, S) = ] <P [Bin<(§>,p'> Zﬁ—t—l]

92/2 0—t—1
< . 3.34
_<9_t_1)p (5.3.34)
Combining (5.3.33) and (5.3.34), we get
6 62 /2
P [ A, < (" 6-1, 3.
[AS(R,t)] < <t><0—t—1>p (5.3.35)

Further, plugging (5.3.35) into (5.3.32), we obtain

P [Ws 0 A5\ Ag] <P W] - 21 Y (rf> (9 i/i 1)

t>0/4

< 2P P Wy <9T/94> <399/24/i 1>

< 9l+0 0-1p erv
R [VVS]<9/4 30/4

< 0% KB P g (5.3.36)
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Finally, if the event Wg occurs, then for each w € S there is j € [k] \ {o(w)} such that j € A(w, S).
Thus, (5.3.27) and (5.3.28) yield

PWs] <P[-&s]+ [ D PlL(w,{j})|€s]
weS j#£o(w)
< exp(—Q(n)) + k0999 < ;—0-980 (5.3.37)

Combining (5.3.36) and (5.3.37), we arrive at

P[WsnAg\ As] < 6% 1k 10%. (5.3.38)

To bound the probability of A, suppose that 7" is a tree with vertex set S, let U C .S and denote by
A4(T,U) the event that the followmg statements are true:

(i) T is contained as a subgraph in G.
(ii) Let sp = min S and consider sg the root of 7'. Then for each u € U the parent P(u) satisfies

P(u) € Rgs.

If the event A% \ (Ag U Al) occurs, then there exist a tree 7" and a set U of size |U| > 6/3 such that
A(T, U) occurs. Therefore,

P [Ws N Wgp N AG\ (As U AS)] < Z Z P [WsnWsrNAST,U)].  (53.39)
T U:|U|>0/3

Fix atree T on S and a set U C S, |U| > 6/3. Since any two vertices are connected in G with
probability at most p’ independently, the probability that (i) occurs is bounded by p’ =1, Furthermore,
if (ii) occurs and u € U, then |A(P(u), S)| < vk because P(u) is not rich. In addition, W3 requires
that A(P(u),S) N A(u, S) # 0. There are two ways how this can come about: first, it could be that
A(P(u),S) N A(u,S) \ {o(u)} # (. Then the event L(u, {j}) occurs for some j € A(P(u),S) \
{o(u)}. Hence, due to (5.3.28)

P [A(P(u), S) N A, )\ {o(u)} £ 0Es, [A(P(w), S)| < VE| < k149 (5.3.40)
forany u € U.

Alternatively, it could be that o(u) € A(P(u), S). Given that A(P(u), S) has size at most vk, the
probability of this event is bounded by k~'/2 because o (u) is random. Additionally, by W2 there is
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another colour j € A(u), j # o(u). Hence, the event L(u, {j}) occurs and (5.3.28) yields

Plo(u) € A(P(u),S), A(u,S)\ {o(u)} # 0|Es, |A(P(u),S)| < \/%] < 149 (5.3.41)
forany u € U.
Combining (5.3.27), (5.3.40) and (5.3.41), we find

P [Vu e U:A(Pu),S) N A(u,S) # 0 A|A(P(u),S)| < \/%] < exp(—Q(n)) + k148U,
(5.3.42)

In addition, if w € S\ U, then W2 requires that the event L(w, {j}) occurs for some j # o(w)
and (5.3.28) yields

Plvw e S\ U :3j € [k]\ {o(w)}: L(w,j)|Es] < k9NN, (5.3.43)
Combining (5.3.42) and (5.3.43), we obtain

P [Ws N Wi NAST,U)|T C G] < exp(—Q(n)) + k090D 148101 < j=110,

(5.3.44)
Further, the probability that 7" is contained in G is bounded by p’ o-1, Thus, (5.3.44) implies
P [Ws N Wi N ALT,U)| < k11007 (5.3.45)
Finally, combining (5.3.39) and (5.3.45) and using Cayley’s formula, we obtain
P [Ws N Wi N A%\ (As U A%)] < 20072511007
< 902071 ;1,090 (5.3.46)

Plugging (5.3.30), (5.3.38) and (5.3.46) into (5.3.29), we see that
0P [S is wobbly] < 209+1pf—1f=1:020,

Hence, (5.3.26) yields

E[W]

IN

0
209+1p/971k_1.029 ) <Z> <2 (%) 99+1p/071k_1.029

< nBnp)? k1% < n(TkInk)?k=1920 = o(n),
as desired.
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Proof of Lemma 5.3.2.

The following large deviations inequality known as Warnke’s inequality facilitates the proof of Lem-
ma 5.3.2.

Lemma 5.3.19 ((Warl6]). Let X1,..., Xy be independent random variables with values in a finite
set A. Assume that f : AN — R is a function, that T C AN is an event and that c, ¢ > 0 are numbers

such that the following is true.

If v,2' € AN are such that there is k € [N such that x; = = for all i # k,

then
/ ¢ ifxel, (5.3.47)
|f<w>—f<x>|s{c, o
Then for any v € (0,1] and any t > 0 we have
t2
PHf(Xl""’XN)_E[f(Xl"”’XN)”>t]SQeXp<_2N(c+fy(c’—c))2>

+2iVIP’[(X1,...,XN)¢F].

Proof of Lemma 5.3.2. The proof is based on Lemma 5.3.19. Of course, we can view (G, o) as chosen
from a product space Xs,..., Xy with N = 2n’ where X; is a 0/1 vector of length ¢ — 1 whose
components are independent Be(p') variables for 2 < i < n’ and where X; € [k] is uniformly
distributed for i > (Z,) (“vertex exposure”). Let I' be the event that [N (v)| < A = n%O! for all

vertices v. Then by Lemma 5.3.1 we have
P[] > 1—exp(—Q(In%n)). (5.3.48)

Furthermore, let G’ be the graph obtained from G by removing all edges e that are incident with a

vertex v such that [0&(v)| > X and let
§' =38 o) = |{ve [1]: 9 (v), ol w.0) € S}|.

If " occurs, then S = S’. Hence, (5.3.48) implies that

E[S] = E[S]+ o(1). (5.3.49)

Moreover, the random variable S’ = f(Xo, ..., Xy ) satisfies (5.3.47) with ¢ = X and ¢/ = n’'. Indeed,

altering either the colour of one vertex u or its set of neighbours can only affect those vertices v that
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are at distance at most w from u, and in G’ there are no more than \ such vertices. Thus, Lemma 5.3.19
applied with, say, t = n?/3 and 4y = 1/n and (5.3.48) yields

P[|S" —E[S]| > t] < exp(—Q(In*n)) = o(1). (5.3.50)

Finally, the assertion follows from (5.3.49) and (5.3.50). ]
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6 Condensation phase transition in random hypergraph 2-

colouring for finite inverse temperatures

This chapter is dedicated to proving Theorem 4.1.4, which establishes the existence and determines
the location of the condensation phase transition in random k-uniform hypergraph 2-colouring with

additional temperature parameter /3 for large values of k.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper A
positive temperature phase transition in random hypergraph 2-coloring [BCOR16] that is joint work
with Victor Bapst and Amin Coja-Oghlan and is published in the Annals of Applied Probability 26
(2016).

The first section of this chapter presents an outline of the proof of Theorem 4.1.4 and gives a short
introduction to the proof ideas. Subsequently, the first and second moment of Zg are determined in
Section 6.2. Calculations in Section 6.3 are performed in the planted model and the expected cluster
size is established in Section 6.4. The last section can be seen as a kind of appendix where we prove

the existence of the free entropy density ® 1 (/3) for finite 5.

The author of this thesis contributed primarily to the investigation of the first and second moment
presented in Section 6.2, to the calculations in the planted model performed in Section 6.3 and to
the proof of the existence of ®, () in Section 6.5. Furthermore she carried out revision work of all

presented proofs and statements.

Throughout the whole chapter we assume that 0 < d/k < 2¥711n2 4 O(1). We let m = [dn/k].

6.1. Outline of the proof

The proof of Theorem 4.1.4 is based on establishing the physicists’ notion of an “entropy crisis”
(cf. Section 2.3) rigorously. To this end, we are going to trace two key quantities. First, the free entropy

density ®, () defined in (2.3.2), which we examine here for the random hypergraph Hy(n, p), i. e.

Dar(B) = lim ~E[ln Zs(Hy(n,p))]

n—oo n

Thus, @4 (3) mirrors the typical value of the partition function Zz(Hj,(n, p)). Second, the size of the
cluster of a typical o chosen from the Boltzmann distribution. More specifically, we are going to argue
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that it is sufficient to study the cluster size defined in (2.4.1) in the planted model. Ultimately, it will
emerge that the condensation phase transition marks the point where the cluster size in the planted

model equals the typical value of Zg(Hy(n,p)).

To implement this strategy, we begin by deriving upper and lower bounds on ® () via the first and

the second moment method. More precisely, in Subsection 6.2.1 we are going to prove the following.

Proposition 6.1.1. For any (5, we have

Q4,(8) <In2+ gln (1 —217F (1 —exp [—B])) .

Moreover, if either d/k < 28"1In2 —2and > 0ord/k > 2*"1In2 — 2and f < kIn2 — Ink, we

have J
ar(B) =2+ In (1 — 217k (1 —exp [—5])) .

We remember the quantity Seit(d, k) defined in (2.5.5). Then Proposition 6.1.1 readily implies the

following lower bounds on St (d, k).
Corollary 6.1.2. We have Beit(d, k) > kIn2 —Ink. If d/k < 28"1In2 — 2, then Bei(d, k) = oc.
It is well-known that In Z3 enjoys the following “Lipschitz property”.

Fact 6.1.3. Let H be a hypergraph and H' obtained from H by either adding or removing a single
edge. Then |In Zg(H) —In Zg(H')| < B.

This Lipschitz property implies the following concentration bound for In Zg(Hy(n, p)).

Lemma 6.1.4. For any o > 0 there is § = §(«) > 0 such that
P[|In Zg(Hg(n,p)) — E[ln Zg(Hi(n,p))]| > an] < exp [—on].
Proof. This is immediate from Fact 6.1.3 and McDiarmid’s inequality [McD98, Theorem 3.8]. O

The second main component of the proof of Theorem 4.1.4 is the analysis of the cluster size in the
planted model. First, we observe that for the cluster size in Hy(n,p) we have a concentration bound

analogous to Lemma 6.1.4:
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Lemma 6.1.5. Forany o : [n] — {£1} and o > 0, there is 6 = §(«,0) > 0 such that
P{|InCs(Hg(n,p),0) — E[lnCg(Hi(n, p),o)]| > an] < exp [—on].

Proof. This follows from McDiarmid’s inequality [McD98, Theorem 3.8] and because it holds that
|InCs(H,0) —InCs(H',0)| < S for any o if the hypergraph H' is obtained from the hypergraph H
by either adding or removing a single edge. O

Ideally, we would like to compare the cluster size of an assignment o chosen from the Boltzmann
distribution on Hy,(n, p) with the partition function Zg(Hy(n,p)). Then according to the physicists’
prediction of the “entropy crisis”, the condensation phase transition should mark the point 3 where
Cs(Hy(n,p),0) is of the same order of magnitude as Zz(Hj(n,p)). However, it seems difficult to
calculate Cg(Hy(n, p), o) directly, as the Boltzmann distribution on a randomly generated hypergraph
is a very difficult object to approach directly.

We explained this phenomenon in detail in Section 3.1, where we introduced the planted model. It will
emerge that the planted model is sufficient to pin down the condensation phase transition. However,
we have to refine the definitions from Section 3.1 in the following way to adapt them to the case of
finite 3:

Let o : [n] — {£1} be a map chosen uniformly at random. Moreover, given d, k, 3, set

exp [—f] d 1 d

PET o 0 —ep-a) (0) P I 2 F O —ep-8) ()

Now, obtain a random k-uniform hypergraph H by inserting each hyperedge that is monochromatic
under o with probability p; and each hyperedge that is bichromatic under o with probability po
independently. In symbols, for any hypergraph H with vertex set [n] we have

P[H = Hlo] = py "7 (1 = py)™py D@ (1 pyymz,

where e(H ) denotes the total number of hyperedges of H and m; (respectively mz2) the numbers of

hyperedges that are monochromatic (respectively bichromatic) under o and are not in H.

The following proposition, which we will prove in Section 6.3, reduces the problem of determining
Berit(d, k) to that of calculating Cg(H , o).

Proposition 6.1.6. Assume that d/k = 2¥"'In2 + Oy (1) and By > kIn2 — Ink. If for all kIn2 —
Ink < B < By we have

1 d
lim liminfP | —InCs(H,o) <In2+ Eln (1 — 217k (1 —exp [—ﬁ])) - 5} =1, (6.1.1)
n

e\,0 n—oo

87



6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

then By < Beit(d, k). Conversely, if

lim lim inf P | InCy, (F[, o) > In2 + %m (1 — 917k (1 — exp [—50])) + g] =1, (612
n

eN\,0 n—oo

then 50 > ﬂcrit(da k)

Finally, in Section 6.4 we are going to estimate the cluster size Cg(H, o) to derive the following

result.

Proposition 6.1.7. Assume that d/k = 2¥"1In2 + Ox(1) and B > kIn2 — Ink. Then w.h.p. the

cluster size in the planted model satisfies

1 W2 2 -,
~InCs(H,0) = - 7exp[,8]+0k(4 ).

Proof of Theorem 4.1.4. The result of the theorem in the case d/k < 2¥~11n2 — 2 follows from Co-
rollary 6.1.2. Let us thus assume that d/k = 2°=11n 24+ O (1). Because we will use Proposition 6.1.6,
we can also assume that § > kIn2 — In k. We write ¢, = d/k — 2F-1In2+In2and by, = B —kIn2.
With Proposition 6.1.7, we have w.h.p.

%ch(H, o) — (ln2 + %ln (1 27 (1 —exp [—5])))
_ (1;3 — (kIn?2 +bk)1n2(”q’2[,:l”“]> — (1121,3 — Q,ffl + 1n2e>;12 [_bk]> + 047
:2% (2ex — (KIn2 + by + 1) In2exp [—by]) + O (47F)
5 (~Zha(8) + 0u27).

The equation X, 4(3) = 0 has exactly one solution Bcona(d, k) > kIn2 —Ink ford/k > 2F"1In2 —
In2, and no such solution for d/k < 2¥"1In2 — In2. Moreover %, 4(3) is smooth for d/k >
2F=11n2 — In2 + 2%, with derivatives of order Q(k~*). Consequently there is 5, = Ok(Q_k) such

that the following is true.

1. Ifd/k < 2F=11n2 — In2 — ¢4, then w.h.p. forall 8 > kIn2 — In k,
1 d 1—k
~InCy(H,0) < (In2+ - 1n (1 — 9217k (1 — exp [—5])) — (1)
n

2. Ifd/k > 2¥"'In2 — In2 4 ¢, then w.h.p. forall 3 > kIn2 — Ink:
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6.2. The first and the second moment

o if 5 < Beond(d, k) — & then
%mcﬁ(ﬂ,a) < <ln2 + %m (1 — 217k (1 — exp [-5}))) —Q(1)
i lfﬁ > 5cond(d7 k) + € then

%mcﬁ(ﬂ, o) > <ln2 + %ln (1 27 (1 —exp [5]))) +Q(1).

The proof of the theorem is completed by using Proposition 6.1.6. O

6.2. The first and the second moment

In this section we prove Proposition 6.1.1 and also lay the foundations for the proof of Propositi-
on 6.1.6. We let m = [dn/k]| and recall that Hy(n, m) signifies the hypergraph on [n] obtained
by choosing m edges uniformly at random without replacement while to create H(n,m) we choose
m edges ey, ..., e, with replacement uniformly and independently at random, thereby allowing for

multiple edges.

6.2.1. The first moment

We begin with the following estimate of the first moment of Zg in H(n, m).
Lemma 6.2.1. We have E [Zg(H(n,m))] = 0O (2" (1 — 2" (1 —exp [-5]))™).

The proof of Lemma 6.2.1 is straightforward, but we carry it out at leisure to introduce some notation
that will be used throughout. For a map o : [n] — {£1}, let

7o) = (77D ¢ (77,00

be the number of “forbidden k-sets” of vertices that are identically coloured under o. The function

x> (7) + (") is convex and takes its minimal value at = %. Therefore,

Flo) > 2<”£2> =2'"FN(1+0(1/n)) =2""*N + O(N/n),  withN=(}). (6.2.1)

As introduced in Section 2.2, we call o balanced if ||o~*(1)| — %| < \/n. Let Bal = Bal(n) be the
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

set of all balanced maps o : [n] — {£1}. Stirling’s formula yields |Bal| = Q(2"). If o € Bal, then

Flo) < (”/ 2 Z ﬁ) + <”/ 2 . ﬁ) = 21"k N + O(N/n). (6.2.2)

For a hypergraph H, let
Zgpal(H) = Z exp [-BEu(0)].

o€Bal

Proof of Lemma 6.2.1. By the independence of edges in the random hypergraph #(n, m) we have

E [exp [_BEH(n,m) (O-)H =E Hexp [_Bleie]:(a)]] = HE [exp [_5161‘6}—(0’)]]
=1

=1

= (1= N"'F(o) (1 —exp[-4]))"
< (1=2"Fa+o/m) (1 - exp[-4)) "
Consequently,
E[Zs(H(n,m))] = O (2" (1= 27 (1 - exp [—5]))m> . (6.2.3)

If o € Bal, by (6.2.2) we have E [exp [—8E3(nm)(0)]] = Q ((1 —27% (1 —exp[-4]))") . The-

refore,
E[Zs(H(n,m)] = [Bal - @ ((1-2'% (1 - exp[-4])) ")
o (2n (1 — 217k (1 — exp [-5]))’") . (6.2.4)
Thus, Lemma 6.2.1 follows from (6.2.3) and (6.2.4). O

The following lemma relates the expectation of the partition functions of the models Hy(n,m) and
H(n,m).

Lemma 6.2.2. We have E [Zg(H}(n,m))] = © (E[Zg(H(n,m))]).
Proof. Let A be the event that H(n, m) has no multiple edges. Then, using Fact 2.1.2 we get
E[Zg(H(n,m))] = E[Zg(H(n, m))| A P[A] = E[Zg(H(n,m))](1 = o(1)),

implying that
E[Z5(Hi(n,m))] < O(L)E[Z5(H(n, m))]. 6.2.5)
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6.2. The first and the second moment

On the other hand let mg = 1_2211::(?2 [);)’?}_ a7y and

f(#) = 2B —zlnz— (1) ln(l - 2) + xIn(2'7%) + (1 - 2) In(1 - 2'75).

We observe that f is strictly concave and attains its maximum at x = =% where it is equal to
In (1 —2'% (1 —exp[—p])). For o € Bal, we get with Stirling’s formula

E [eXp [_BEHk(n,m) (U)H = ZP [EHk(n,m) = :UJ] €xp [_B:UJ]
o

" F(e)H(N — F(o))m™ H
oY el WP -T)
peE[mo—v/m,mo+v/m]|

- E el ()]e0

LE[mo—+/m,mo++/m

o ((1-21-ewm[-4)")

Therefore,

E[Zs(Hy(n,m))] = [Ball - E [exp [~ BB, nm ()] = € (27 (1= 27 (1 — exp[-8)™) ).
(6.2.6)
Combining (6.2.5), Lemma 6.2.1 and (6.2.6) proves the assertion.

As a further consequence of Lemma 6.2.1, we obtain

Corollary 6.2.3. 1. We have ®44,(8) <In2+ 41In (1 — 2% (1 — exp [-A])) forall d, B.
2. Assume that d, 3 are such that

lim sup %E[ln Zg(H(n,m))] <In2+ %ln (1 — 2% (1 —exp [—ﬁ])) .

n—0o0

Then ®44,(8) <In2+ ¢1In (1 — 2% (1 —exp [-4])) .

To prove this corollary, we need the following installment of the Chernoff bound on the tails of a

binomially distributed random variable.

Lemma 6.2.4 ([JLROO, p.29]). Assume that X1, ..., X, are independent random variables such that
X has a Bernoulli distribution with mean p;. Let A\ = E[X]| and set ¢(z) = (1 + z)In(1 4+ z) — x.
Then

P[X > A+t] <exp[-Ap(t/N)], P[X <A—t] <exp[-Ap(—t/N)] foranyt > 0.
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

In particular, P[X > t\] < exp [—tA1In(t/e)] forany t > 1.

Proof of Corollary 6.2.3. Let & be the event that |e(Hy(n,p)) — m| < v/nlnn. Then we can couple
the random hypergraphs #(n, m) and Hy(n, p) given & as follows.

1. Choose a random hypergraph Hy = H(n, m).
2. Lete = Bin ((Z), p) be a binomial random variable given that e — m| < y/nlnn.
3. Obtain a random hypergraph H; from Hj as follows.
o If e > m, choose a set of e — m random edges from all edges not present in Hy and add
them to Hy.

e If e < m, remove m — e randomly chosen edges from H.

The outcome H; has the same distribution as Hy(n, p) given &£, and Hy, Hy differ in at most \/nInn
edges. Therefore, noting that %] InZg| < % B + In 2 with certainty, we obtain with Fact 6.1.3

%Eln Zs(Hi(n.p) < %E[ln Z5(H) + <Zb’ +ln 2) P[-£]

Blnn
\/ﬁ

- %}E[ln Z5(H(n,m))] + <Z,@ +In 2) P[] +o(1). (62.7)

< %E[ln Zs(Ho)) + P22 4 (Zﬁ +In 2> P[]

Since e(Hy(n,p)) is a binomial random variable with mean m + O(1), Lemma 6.2.4 implies that
P[=€] = o(1). Thus, by (6.2.7) and Jensen’s inequality,

1 1 1
EIEln Zg(H(n,p)) < EEDH Zg(H(n,m))] +o(1) < - InE[Zg(H(n,m))] + o(1).
Thus, the assertions follow by Lemmas 6.2.1 and 6.2.2 and by taking n — oc. O

We conclude this section by observing that the contribution to Zg of certain “exotic” o is negligible.

We begin with ¢ that are very imbalanced.

Lemma 6.2.5. For any ¢ > 0, there is § > 0 such that the following is true. Let B, be the set of all
o : [n] = {£1} such that Ha_l(l)\ - %‘ > en. Moreover, let

Zgp.(H) = exp[-BEpu(0)].

c€B:

Then E[Z 3 g_(Hg(n,m))] < exp [=0n] E [Zg(Hg(n,m))].

Proof. Stirling’s formula implies that for any € > 0 there is 6 > 0 such that %111 |B:| < In2 — 6.
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6.2. The first and the second moment

Hence, (6.2.1) and the independence of the edges imply that

E [ZB,B’E (H(nvm))] = Z E [exp [_BEH(n,m) (U)]]

UEBE
— 1 k m
< Bl (1= 270 (1~ exp[-4)))
1-k m
< exp[—dn] 2" (1 — 27" (1 —exp [—B])) .
The assertion then follows from Lemma 6.2.2 and by observing that (as in (6.2.5))

E[Zg 5. (Hy(n,m))] = O(E[Zg 5 (H(n, m))]).

Next, we consider o having an untypically high number of monochromatic edges.

Lemma 6.2.6. For any ¢ > 0, there is 6 > 0 such that the following is true. Let

2! % exp [ 3]
1—21=F(1 —exp[-f])’

Zg(H)= Y exp[-BEu(0)] - 1ig,(0)—mo|>em-
o:[n]—{£1}

mo =

Then E[Zg .(H(n,m))] < exp [—dn|E [Zz(H(n,m))].

Proof. Let My = {u € [m] : |u — mg| > em}. Moreover for a > 0 let B, be the set of all o : [n] —
{1} such that ||c~*(1)| — 2| < an. By Lemma 6.2.5 there exists § > 0 such that

E[Zp(H(n,m))]

< exp [-0n] E [Z5(H + > > exp[-BulP [Bypm(o) =p] . (6.2.8)

pneEMp o€ Bq

As in the proof of Lemma 6.2.2 we define f(z) = —28 — rInz — (1 — z)In(1 — ) + x In(2' %) +
(1 — ) In(1 — 2'7%) and find that for any > 0 we can choose o > 0 small enough so that

%ln(exp[ Bul P [Ey(nm) (o) = ,u])ﬁ’y—kf(%) forall o € B,.

Because f is strictly concave and attains its maximum at z = 72, there is ¢’ > 0 such that

Z Z exp [—Bu] PlEy(nm)(0) = 1] < exp [=6'n] E[Zg(H(n,m))]. (6.2.9)
pneEMo c€Bq
Finally, the assertion follows from (6.2.8) and (6.2.9). ]
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6.2.2. The second moment

In Subsection 6.2.1 we derived an upper bound on @4 () by calculating the expectation value of
Zg(H(n, m)). Here we obtain a matching lower bound for certain values of /5 and d by estimating the

second moment E[Z3 ,.1(H(n,m))?]. To this end, we define for o € [—1,1],

Zﬁ(a) = Z exp [*B (E’H(n,m) (U) + EH(n,m) (7—))] : (6.2.10)

o,7€Bal:(o,7)=an

Thus, in (6.2.10) we sum over balanced pairs o, 7 : [n] — {+1} that agree on precisely n((1 + «)/2)

vertices. Hence, we can express the second moment as

E [Zgpa(H(n,m)*] = Y E[exp [=B (Ernm) (@) + Ergnm)(1))]]

o,7€Bal
=Y E[Zs(2v/n—1)].
v=0

Consequently, we need to bound Zg(a) for o € [—1,1]. To this aim, recall the function #H(z) =
—zInz — (1 — z)In(1 — 2) from Section 2.6.

Lemma 6.2.7. For a € [£1], we have

%mE[zﬁ(a)] — 2+ Ag(a) - 1;7" +O(1/n),  where
Agla) = H (1 ; a> + %m [1 — 97k (1 — exp[-8))

(1+a)’“+(1a)k” '

J2-a- e S

Proof. Let e be a randomly chosen edge of H(n,m). Let 0,7 : [n] — {£1} be two balanced maps
with overlap (o, 7) = an. Letus write o = e if e € F (o) (i.e. e is bichromatic under ). By inclusion-

exclusion,
Ploke],P[rEel=1-21"%4+0(1/n),

Plo,7Ee] =1 227k 4 ol-2 ((1 Fa) (- a)k> +O(1/n).
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6.2. The first and the second moment

Hence, by the independence of edges,

E [Zﬁ(a)] = Z E H exp [—B(Lope, + Lrie, )]

o,m:{o,m)y=an =1

= Z (Eexp [=B(Lore, + Lrze, )™

o,7:{o,T)=an

= ((1 + oe)n/2> (- FlomEel= e =)

(PloFe,TEel] +PloE e, TEe])+exp[—28] Plo, 7 ¥ er])™

::2n<(1+-a>n/2>(1*‘c“1/“J>[1“22k(l"exp“‘ﬁb
+2'72 (1 —exp [-A) (L + o) + (1 — a)k)}m . (621D

Furthermore, by Stirling’s formula,

((1 + Z)n/2) =0(n™'?)exp [“H (1 J; aﬂ : (6.2.12)

The assertion follows by combining (6.2.11) and (6.2.12). ]

Hence, we need to study the function Ag. Since Ag(a) = Ag(—«), o = 0 is a stationary point.

Moreover, with

<1+a>’“+(1—a>’“]

s=s(a,8) =127 (1—exp 6] [2 - (1 - exp-g) T

the first two derivatives of A 3 work out to be

In(l—a)-In(14+a«) 2d

Aj(a) = 5 + Jrgmexp (5] - P(1+a) =1 -k, (62.13)
A(a) = a21_ -+ 2d(k ~ 1) ﬁii A=) (14 )24+ (1-a)2)
_dk( ;L,fffs[z_ﬁw [(1 +a)k - (1— Q)HF_ (6.2.14)
In particular,
A%(0) = =1+ 0(27%) < 0. (6.2.15)

Hence, there is a local maximum at o = 0. As a consequence, if Ag takes its strict global maximum
at o = 0, then E[Zg(H (n,m))?] = O(E[Zs(H(n,m))]?). More generally, we have
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Lemma 6.2.8. Assume that f > 0 and J C [—1,1] is a compact set such that Ag(c)) < Ag(0) for all
a € J\ {0}. Then

Y E1Zs(2v/n = 1)) 1oym 1es = OE[Zs(H(n,m))P).
v=0

In 24+A5(0)

Proof. We start by observing that 3

=In2+ ¢In (1 — 2% (1 —exp[—/])) . Hence, Lem-
ma 6.2.1 yields
exp [n(In2 + Ag(0))] = O(E[Zg(H(n,m))]?). (6.2.16)

Now, by (6.2.15), there exist 7, ¢ > 0 such that Ag(a) < Ag(0) — ca? forall a € Jo = J N (—n, 7).
Hence, by Lemma 6.2.7 and (6.2.16),

> E[Zs(2v/n — 1)) 12y jn1eq, = O(n™72") Y " exp nAz(2v/n — 1)] 1oy n_1c.,
v=0 v=0

exp [—nc(2v/n — 1)?]
vn

= 0O (2" exp [nA3(0)]) Z

v:|2v/n—1|<n

= 02" exp [nA4(0)]) = O <E [zﬁ(H(n,m))P) . (62.17)

Further, let J; = J \ (—n,7n). Then J; is compact. Hence, there exists 6 > 0 such that Ag(a) <
Ag(0) — d for all & € J;. Therefore, Lemma 6.2.7 and (6.2.16) yield

Y E[Zs(2v/n = )] Loy m 15 = O(n2") sup exp [nAp ()]

=0 agJy
= 0(n2") exp [n (A5(0) — 6)] = O(E[Zs(H(n, m))]*).
(6.2.18)
Finally, the assertion follows from (6.2.17) and (6.2.18). O

Now we prove that [—1 + 273%/4 1 — 273k/4]  J for all 8 > 0 and J as defined in Lemma 6.2.8.

Lemma 6.2.9. Ford/k = 2""11n2 + Ok (1) and B > 0, we have Ag(a) < Ag(0) for all a # 0 with
la| <1 — 27304,

Proof. We know that there is a local maximum at &« = 0. Moreover, we read off of (6.2.14) that
A%(a) <0if [a| <1—61Ink/k, and thus

Ag(0) > Ag(a) foralla e (—(1 —6Ink/k),1 —6Ink/k).
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Further, for |« > 1 — 61n k/k we obtain from (6.2.13)

A%(a) < In(l1—a) 2d(1—exp[-4])* (1k+ o)k

5 (1 + 0p(2 7))
In(1 — ) _ d(1— exp[- B2 exp[(1 +a)(k — 1)/2
STt (1 + Op(2F)) :

Hence, Ajy(a) < 0if |a| < 1 —2.01Ink/k and k large enough and a similar estimate yields

Ag(a) >0 iffa] >1—-1.99Ink/k.

Thus, to proceed we need to evaluate Ag at || = 1 — yInk/k for v € [1.99,2.01] and at |a| =
1 —273k/4 We find

Ag(a) = —1In2 + 0x(1)
for |a| = 1 —vInk/k withy € [1.99,2.01] and Ag(a) = — In2+o0(1) for || = 1 —273%/4 proving

the assertion. 0

Lemma 6.2.10. The function 5 — Ag(a) — Ag(0) is non-decreasing for a # 0. In particular, if
d > 0and By > 0 are such that Ag,(c) < Ag,(0) for all « # 0, then Ag(a) < Ag(0) for all

a#0,0< 8 < Po.

Proof. The derivative of Ag with respect to 3 works out to be

OAg g 2272k (1 + )k + (1 — a)*) exp [-B] (1 — exp [-8]) — 22 Fexp [ ]
08k 1-22F(1—exp[-f])+2'"%* (1 —exp[-B)* (1 + )% + (1 — o))’

Substituting z = (1 + @) 4 (1 — a)¥ and b = 1 — exp [~ 3] in the above, we obtain

d 2272kp(1 —b)z — 227k (1 — b)

9G) = T Ry 2R
Because the function z — gj;g with a, b, ¢, d > 0 is non-decreasing, this completes the proof. O

With these instruments in hand, we identify regimes of d and 5 where A g(«) takes its global maximum

ata = 0.

Lemma 6.2.11. Assume that d/k = 2871 In2 + Oy(1) and 8 < kIn2 — Ink. Then Ag(0) > Ag(a)
forall a € [—1,1] \ {0}.

Proof. For |a| < 1 — 273%/4 this is the statement of Lemma 6.2.9. We write « = 1 — § with
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6 € 0,273/, Let

(2 —0)F + ok

o ] € [0,2].

f5(6) = (1 — exp [~ ) {2 S (- exp[-8)

For § = kIn2 — In k, we have the expansion

fs(0) = (1 - 2’2) {2 ~ (1 —~ 2’2) <1 —~ kg + @(4’“)” =1+ kg + O(475).

Therefore,

w(2)- (- D)n(-2)
+ (2" m2+ 04(1) ) In (1 —gl-k <1 + k% + Ok(4k)>)

1) 6 6 _k

The function ¢ — —g Ind + % — (k- 1)% In 2 is easily studied: it takes its maximum at 6y = 2! %

for which it is equal to 2=, Hence for « = 1 — § with § € [0, 273+/4],
Ag(oz) <—-In2+ Ok(27k).

By symmetry this also holds for o« = —1 4 & with § € [0, 273%/4]. By comparison,

As(0) =In2+ (Qk—l In2+ Ok(1)> In (1 _ 92k g il,f + Ok(4_k)>

= —In2+ 2 kIn2 + O (275).

Therefore Ag(0) > Ag(c) forall o # 0 if § = kIn2 — In k. Using Lemma 6.2.10 we can expand the
resulttoall 5 < kIn2 — In k. O

Lemma 6.2.12. Assume that d/k < 2*"1In2 — 2 and B > 0. Then Ag(0) > Ag(a) for all o €
(=1, 1]\ {0}.

Proof. Letr, = Oy(1) such that d/k = 2~ 1n 2 4 7. Define the function

1 d
Aw:[-1,1] >R, amH ( J;O‘) + 2 (1—22*’“+21*2’“ <(1+a)k+(1—a)k>> .
Analogously to the proof of Lemma 6.2.11 we get Ao (@) < —In2— (In2+ 21, — 1)27F 4 Oy (47)
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for all @ and Ao (0) = — In2 —2(In 2+ 27,)2~% + O (4*), which implies that for 7, < —2 we have
Aoo(@) < Ao (0) for all o € [—1,1] \ {0}. Because the continuous functions A converge uniformly
to Ay as 3 — oo, we conclude that there is Sy > 0 such that for all 3 > [,

Ag(a) < Ag(0) foralla € [-1,1] \ {0}. (6.2.19)
Hence, Lemma 6.2.10 implies that (6.2.19) holds for all 5 > 0, as desired. ]

Proof of Proposition 6.1.1. The first assertion follows directly from Corollary 6.2.3. Moreover, if d, 8

are such that for some n-independent number C' > 0 we have
E[Zg(H(n,m))?] < C - E[Zs(H(n, m)))?, (6.2.20)

then the Paley-Zygmund inequality implies that

n,m 2
P%ﬁ%MDMMMWWMZE@$@$%2£>& (62.21)

Let A be the event that 7 (n, m) has no multiple edges. Since A occurs w.h.p. by Fact 2.1.2, equation
(6.2.21) implies that

P (Z5(H(n, m)) > E [Z5(H(n,m)] /214) >~ AL, (6222)

Further, since the number e(Hy(n, p)) of edges in Hy(n, p) is binomially distributed with mean m +
O(1), Stirling’s formula implies that P [e(Hy(n,p)) = m] > Q(n~'/?). As Hy(n,p) is identically
distributed to H(n, m) given e(Hy(n,p)) = m and A, (6.2.22) implies that

P (Zs(Hy(n,p)) > E[Zg(H(n,m))]/2] > Q(n~'/?). (6.2.23)
Thus, the concentration bound from Lemma 6.1.4 and (6.2.23) yield
In E[Z5(H(n, m))] — Elln Z5(Hi(n, p))] — In2 = o(n).
Hence, if (6.2.20) is true, then
1 1
ﬁE [In Zg(Hg(n,p))] > - InE[Zg(H(n,m))] — o(1). (6.2.24)
Finally, Lemma 6.2.8 and Lemma 6.2.12 imply that (6.2.20) holds for all 3 > O and d/k < 2*~1In2—

2. Moreover, by Lemma 6.2.8 and Lemma 6.2.11 the bound (6.2.20) is true if d/k = 2¥~1In 2+ 04, (1)
and 8 < k1n2 — In k. Thus, the assertion follows from (6.2.24). ]
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

6.3. The planted model

The aim of this section is to prove Proposition 6.1.6. Throughout the section we let m = [dn/k]. For
e > 0, we let B. be the set of all o : [n] — {1} such that ||c~*(1)| — 2| < en. Further, the map
o : [n] — {£1} is assumed to be a map chosen uniformly at random and H the random hypergraph
obtained by inserting each edge that is monochromatic under o with probability p; and each edge that

is bichromatic with probability po.

6.3.1. Quiet planting

We begin with the second part of Proposition 6.1.6. The following statement relates the planted mo-
del to the random hypergraph Hj(n,m). A similar statement has been obtained independently by

Achlioptas and Theodoropoulos [AT+].

Lemma 6.3.1. Let d > 0 and 3 > 0. Assume that there is a sequence (E,,)n>1 of events such that
limsup,,_,. P[H € &,]"" < 1. Then E[Z3(Hy(n,m))1g,] < exp [—Q(n)] E[Zs(Hy(n,m))].

Proof. Fix @ > 0 such that limsup,, ,. P[H € &,]"/" < exp|—al. For any ¢ > 0, we have the

decomposition
E[Zs(He(n,m))le,] = Y E[exp [-BEx, (um(0)] 1e,]
o:[n]—{£1}
< Z E [exp [_/BEHk(n,m) (U)] 15n] + Z E [exp [_6EHk(n,m) (J)]] :
o€B. oZBe

(6.3.1)

21 F exp[—f]

TR (1 —exp[—B]) """ and define

To bound the first summand in (6.3.1), we let mg =
M. ={p€[m]:|p—mo| <en}.
Now, for any 1 € [m] we have

Z IED[{E‘Hk(n,m) (U) = :u} N {Hk(nam) € 5n}]
oc€B:

oE€B:

Under the conditions e(H) = m and Ey, (nm)(0) = En(0) for o : [n] — {£1}, the two random
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6.3. The planted model

hypergraphs Hy(n, m) and H are identically distributed. Therefore,

B{Hi(1, 1) € En| Bt m0(0) = 1] = PLH € E1| B (0) = s, () = ]

< P[H € &,]
= P[Enlo) = p,e(H) = m]’

By standard concentration results there is & > 0 such that
P[Em(o) = p,e(H) =m] > exp [—% n} forany o € B, ju € M..
Hence, for any p € M.,

Z IP)[{EH;C(n,m)(U) = :u} N {Hk(n’ m) € gn}]

o€EB:

< exp [ } 3" PH € &P [Epynm)(0) = 4]
o€B;

and therefore, letting A = 2" (1 — 217F (1 — exp [-8]))", we get

S 3T E [exp [~BEm, () (0)] 1e,]

pnEM: c€B,
= > Y e [P By, nm)(0) = p} N {Hi(n,m) € &,}]
pneEM: c€B,
< eXp [_*n} Z Z eXp B,u EHk (n,m) ( ) = :u]
pneM, c€B,
< Aexp [—%n} . (6.3.2)

Furthermore, Lemma 6.2.6 shows that there is § > 0 such that

Z Z exp [—Bu|P [Ep, (nym)(0) = 1] < Aexp[—én]. (6.3.3)

ug€M. c€B;

To bound the second summand in (6.3.1) we get from Lemma 6.2.5 that there is 8’ > 0 such that

Z E [exp [_BEHk(n,m) (O‘)H < Aexp [—5'71] . (6.3.4)
0c¢B;

Combining the estimates (6.3.2), (6.3.3) and (6.3.4) in the decomposition (6.3.1) yields
E[Zs(Hg(n,m))1g,] < Aexp [— max («/2,6,6') n] .
Thus, the assertion follows with Lemmas 6.2.1 and 6.2.2. UJ
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Corollary 6.3.2. Let d > 0 and 3 > 0. Assume that there exists a sequence (Ey,)n>1 of events such
that
lim P[Hg(n,m) € &) =1 while limsupP[H € gn}l/n <1

n—oo n—o0
Then ®q1,(8) <In2+ ¢1In (1 — 2% (1 —exp [-5])).
Proof. Since Zg(Hy(n,m))™ < 2 and P[Hy(n,m) € £,] = 1 — o(1), Jensen’s inequality yields
E | Zs(Hy(n,m)"/"| = B | Zs(Hi(n,m))"/"1g, | + 0(1) < E[Zs(Hy(n,m))1¢,]"" + o(1).
Hence, under the assumptions of the corollary we obtain with Jensen’s inequality and Lemma 6.3.1
Q4,(08) < hm_)sup InE [Zﬁ(Hk(n, m))l/”} < exp [-Q(1)] lirrisup InE[Zg(H(n, m))|V".

The result then follows from Lemmas 6.2.1 and 6.2.2. O
6.3.2. An unlikely event
As a next step, we establish the following.

Lemma 6.3.3. Assume that (6.1.2) holds for some 5 > kIn 2 —In k. Then there exists z > 0 such that

n—oo n—oo

1 1 1/n
lim P |—InZg(Hg(n,m)) <z| =1 while limsupP [anB(H) < 2} <1
n n

The proof of Lemma 6.3.3, to which the rest of this subsection is dedicated, is an extension of the
argument from [BCOHRV 16, Section 6] to the case of finite 3. We need the following concentration

result.

Lemma 6.3.4. For any fixedd > 0, $ > 0, a > 0, there are § > 0, &' > 0 such that the following is
true. Suppose that (oy,)n>1 is a sequence of maps [n] — {£1}. Then for all large enough n,

P[|In(Zs(H)) — Elln Zg(H)|o = 0,]| > anlo = 0,] < exp [—0n]

and
P[|In(Cs(H, o)) —E[InCs(H,0)|o = 0,]| > anlo = 0,)] < exp [-d'n].

Proof. This is immediate from the Lipschitz property and McDiarmid’s inequality [McD98, Theo-
rem 3.8]. O
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6.3. The planted model

We further need several statements about quantities in the planted model conditioned on o being some

fixed (balanced) colouring.

Lemma 6.3.5. Assume that (6.1.2) is true for some 8 > kIn2 — In k. Then there exist a fixed number
e > 0 and a sequence oy, of balanced maps [n] — {£1} such that

n—00 n

1 d
lim P|—InCs(H,o)>1n2+ z In (1 —217F (1 —exp [—B])) +elo = O'n:| =1.

Proof. By Stirling’s formula there is an n-independent number § > 0 such that for sufficiently large
n we have
P[o € Bal] > 4. (6.3.5)

Let A=1In2+ %In (1 —ol-k (1 —exp[—5]) ) Using (6.1.2) we know there is € > 0 such that
liminf, oo P [% InCs(H,o) > A+ 35] > 0.9. With the concentration bound from Lemma 6.1.5

we get

lim P {1 InCs(H,o) > A+25] =1
n

n—oo

Thus, setting p,, = liminf, , max,, cpa P [% InCg(H,o) > A+ 2¢|o = an} and using (6.3.5)

implies

1<liminf | > P [mcﬁ(ﬂ U)>A+25|U—Jn] a+ > P

n—00
onE€Bal on¢Bal

< liminf p, Plo € Bal] + P[o ¢ Bal| < lini)infpn +1-96

n—oo
and consequently lim inf,,_,, p, > d. Thus the concentration bound from Lemma 6.3.4 yields
. 1

lim max P [ InCg(H,o) > A+c¢lo = an] =1,

n—oo g, €Bal n
thereby completing the proof. O
Lemma 6.3.6. For any n > 0, there is § > 0 such that

hmsup lnIP’ [lo™ Y1) —n/2| > nn] < —4.
n—oo

Proof. This is immediate from the Chernoff bound. O

Foraset S C V, let Vol(S|H ) be the sum of the degrees of the vertices in S in the hypergraph H.
Lemma 6.3.7. For any v > 0, there is « > 0 such that for any set S C [n] of size |S| < an and any
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

o : [n] = {£1} we have limsup L InP [Vol(S|H) > yn|o = o] < —a.

Proof. Let (X, )yc[y) be a family of independent random variables with distribution Bin ((Zj), 2p>.
Then for any o and any set S C [n] the volume Vol(S|H) is stochastically dominated by Xg =
2k ), cg Xo. Furthermore, E[Xs] = 4dk|S|. Thus, for any v > 0 we can choose an n-independent
a > 0 such that for any S C [n] of size |S| < an we have E[Xg] < yn/2. In fact, the Chernoff bound
shows that by picking o > 0 sufficiently small, we can ensure that P [Vol(S|H) > yn|o = o] <
P[Xg > yn] < exp [—an], as desired. O

Lemma 6.3.8. Let d > 0 and 8 > 0. Assume that there exist numbers z > 0, € > 0 and a sequence
(0n)n>1 of balanced maps [n] — {£1} such that

1
lim —E[InZg(H)|o = 0,] > z +¢.

n—oo N

1/n

Then limsup,,_,,, P [ InZg(H) < 2] /" < 1.

Proof. Suppose that n is large enough so that 1 E [In Zg(H)|o = 0y,] > 2 + /2. Set n; = |0, (i)
and let T be the set of all 7 : [n] — {£1} such that |[r71(i)| = n; for i = 1. As Zj is invariant

under permutations of the vertices, we have
1 1
—E[lnZg(H)|o =71] = —E[lnZg(H)|o = 0,] > 2+¢/2 forany T € T. (6.3.6)
n n

Let v = ¢/(48) > 0. By Lemma 6.3.7 there exists « > 0 such that for large enough n for any set
S C V ofsize | S| < anandany o : [n] — {£1} we have

P |Vol(S|H) < %b =o|>1—exp[—an]. (6.3.7)

Fix such an o > 0 and pick and fix a small 0 < 7 < «/3. By Lemma 6.3.6 there exists an (n-
independent) number § = §(f3,,n) > 0 such that

Plo € B, > 1 —exp[—dn]. (6.3.8)

As oy, is balanced, we have |n; — n/2| < y/n for i = £1. Therefore, if o € B,,, amap 7, € T can
be obtained from o by changing the colours of at most 2nn vertices. Hence, if o € B;), we let H
be the random hypergraph with planted colouring 7. Further, let H, be the hypergraph obtained
by removing from H . each edge that is monochromatic under o but not under 7, with probability
1 — exp [ /3] independently and inserting each edge that is monochromatic under 7, but not under o

with probability (1 — exp [—/3]) p2 independently. Then H, = H in distribution.

For the set S, of vertices v with o(v) # 75(v), our choice of 1 ensures that |[S,| < an. Let A
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6.3. The planted model

be the number of edges present in H . but not in H, or vice versa. Then A < Vol(Sy|H ) +
Vol(S|H &). Hence, with (6.3.7) there exists a constant ¢ > 0 such that

P[A < vn|o € By] > 1 —cexp[—an]. (6.3.9)

Using (6.3.8), (6.3.9) and the fact that removing a single edge can reduce % In Z3 by at most 3/n, we
obtain

1
P [ In Zs(H) < z]
n
1 1
=P [ InZg(Hy) < z} <exp[-on]+P [ang(Ha) <zlo € Bn]
n n
1
< exp|[—0n] + cexp[—an| + P [n InZg(Hy) < z|lo € By, A < fyn}

1
< exp|[—0n] + cexp[—an| + P [ InZg(H;,) —vB8 < zlo € By, A < vn] . (6.3.10)
n
By the choice of 7, (6.3.8), (6.3.9) and (6.3.6) we have

1
P|-InZ3(H;,)—v8 < zlo € By, A < ’yn]
n
1
<2P|-InZg(H,,) < z+¢e/d|lo € Bn]
n

1
<3P |-InZg(H) < z+¢e/d|o :o'n}
n

1 1
<3P |-InZg(H) < -E[lnZg(H)|o = 0,] — /4o = 04| . (6.3.11)
n n
The assertion follows by combining (6.3.10) and (6.3.11) with Lemma 6.3.4. ]

Proof of Lemma 6.3.3. Lemma 6.3.5 shows that there exist £ > 0 and balanced maps o,, : [n] —
{£1} such that

. 1 d 1-k
- > - - - - — — . oI

Clearly, (6.3.12) implies that

lim P [1 In Zs(H) > In2 + %m (1 — 97k (1 —exp [—B])) telo = on} =1 (63.13)

n— 00 n
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Hence, with 2 = In2 + ¢1n (1 — 217% (1 — exp [-])) + £/2, Lemma 6.3.8 and (6.3.13) yield

1 1/n
limsup P [ InZg(H) < z] < 1. (6.3.14)
n

n—oo

By comparison, Lemma 6.2.1 and Lemma 6.2.2 imply

1
. 1 S
HILIEOP [n In Zg(Hy(n,m)) < z} 1 (6.3.15)
and the assertion follows from (6.3.14) and (6.3.15). ]

6.3.3. Tame colourings

To facilitate the proof of the first part of Proposition 6.1.6 we introduce a random variable that explicit-
ly controls the “cluster size” Cg(H},(n,m), o). The idea of explicitly controlling the cluster size was
introduced in [COZ12] in the “zero temperature” case, and here we generalise it to the case of finite
. More precisely, we call o : [n] — {£1} tame in H if o is balanced and if Cg(H,0) < E[Z3(H)].
Now, let

ZB,tame(Hk(n> m)) = Z €xXp [_BEHk(n,m) (0)] ' ]-o' is tame-
o:[n]—{£1}

- 7 3 3 E[Z3 tame(Hi(n,m
Lemma 6.3.9. Let 0 < d/k < 2F"1In2 + O (1) is such that liminf,, . [E?Zg(Hi(;,(m))}))] > 0.
Then

lim inf > 0.

n—oo ]E[Zﬂ,tame(Hk (n

E[Zﬁ,tame(Hk (TL, m))]2
,m))?]

Proof. The proof is based on a second moment argument. Mimicking the notation of Section 6.2.2,

we let

Zﬁ,tame((w = Z exp [_6 (EHk(n,m)(U) + EHk(n,m)(T))] 15 is tame * 17 is tame-

o,7:{o,T)=an

Then it is clear that

E[Z3 tame (Hi(n, m))Q] = ZE [Z3 tame (2v/n — 1)] .

v=0
Furthermore, we have Zg jame(@) < Zg(a) for any a. Let I = [—1 + 2738/4 1 — 273k/4] Then
Lemma 6.2.9 and Lemma 6.2.8 yield
> E[Zs(a)] = O(E[Zs(Hy(n,m))]?). (6.3.16)

acl
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By the definition of “tame” we have

Z E [Zﬁ,tame(@)] <E ZeXp [_BEHk(n,m) (U)] 15 is tame C,B(Hk(nv m), U)]

Oc>1—273k/4

<E Z €xp [_ﬁEHk(n,m) (U)] ‘E [Zﬁ,tame(Hk(ny m))]]
= O(E [Zs tame(Hi(n, m))]?). (6.3.17)

Moreover, 1 o-31/4 B [Z5 tame(@)] = D o o1_9-38/4 E[Z5 tame(a)] by symmetry. Hence, equa-
tions (6.3.16) and (6.3.17) yield E[Z3, ¢ame(Hi (n, m))2] = O(E[Zs(Hy,(n, m))]?).

Finally, the assertion follows from our assumption E[Zg tame(Hy(n,m))] = Q(E[Zg(Hi(n, m))]).
O

Lemma 6.3.10. Let d > 0 and > 0 and assume that lim sup,,_, . P [ is not tame in H ]1/ "< 1
Then there is ¢ > 0 such that E[Z3 same (Hi(n,m))] > E[Zg(Hy(n, m))]/c.

Proof. The proof is very similar to the proof of Lemma 6.3.1. We fix o > 0 such that
lim sup P [o is not tame in H]|/™ < exp [—a] < 1.
n—oo
For any € > 0, we have
E[ZB(Hk(na ’I’)’L)) - Z,B,tame(Hk(n> m))]

= Z E [exp [7BEHk(n,m)(U)] 15 is not tame in Hk(n,m)]

o:[n]—={£1}
= Z E [exp [_/BEHk(TL,m) (U)] 14 is not tame in Hk(n,m)} + Z E [eXp [_ﬂEHk(mm) (O’)H .
oc€B: oZBe

We set mg and M. as in the proof of Lemma 6.3.1 and let A(c, 11) be the event { Egr (o) = p,e(H) =
m,lo~1(1)] = |e~1(1)|}. Further, we fix an £ > 0 such that P[A(c,n)] > exp [—$n] for all

107



6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

o € B, € M,. Then for any u € M;:

Z P[{EHk(mm) (o) = p} N {o is not tame in Hy(n, m)}]

c€B:
= > Plois not tame in Hy,(n, m)| Egy, (nm)(0) = pl P [Eg, (n,m)(0) = 1]
o€EB:
= Z Plo is not tame in H|A(o, u)] P [EHk(nﬂn) (o) = ]
o€B:
Plo is not tame in H |
= P\ Eny,(nm)(o) = p
2 By P (@) =]
«
< exp [_gn} Z P [EHk(n,m)(U) = M} :
o€B;

Letting A = 2" (1 — 217 (1 —exp [-3]))", we get

Z Z exp BEHk(n,m)(U)] 10 is not tame in Hk(n,m)]

pneEM.: c€B,

Z Z exp [—=Bu] P [{ Eg, (n,m) (o) = p} N {o is not tame in Hy,(n,m)}| < Aexp {—%n} :

HEM: c€B:
(6.3.18)
Furthermore, Lemma 6.2.6 shows that there is § > 0 such that
Z Z exp [—Bul P [Eg, (nm)(0) = p] < Aexp [—dn)] (6.3.19)
ug€M. c€B;
and Lemma 6.2.5 implies that there is 8’ > 0 such that
> E [exp [~BEp,(nm)(0)]] < Aexp [-'n]. (6.3.20)

o Be

Combining the estimates (6.3.18), (6.3.19) and (6.3.20) and using Lemmas 6.2.1 and 6.2.2 yields

E[Zs(Hg(n,m)) — Z3 tame(Hi(n, m))] < Aexp [— max(a/2,6,6")n]

<exp[-Q(n)]E [Zg(Hk(n,m))],

which proves the assertion. 0

Corollary 6.3.11. Assume that d/k = 2110240y (1) and that By > k1n2—1In k is such that (6.1.1)
holds for all kln2 — Ink < 8 < fBy. Then Beit(d, k) > Po.
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The proof of this corollary extends a “zero temperature” argument from [BCOHRV 16, Section 5] to
the case of 8 € [0, 00).

Proof. Assume for contradiction that Sy is such that (6.1.1) holds forall kIn2 —Ink < 8 < g but
Berit(d, k) < Bo. By Corollary 6.1.2 we have Seit(d, k) > kln2 — In k. We pick and fix a number
Berit(d, k) < B < Bo. If welet A =12+ %1In (1 — 277 (1 — exp[—/])), then there exists ¢ > 0
such that

lim lIE[ln ZgHi(n,m)] < A—e. (6.3.21)

n—oo N

On the other hand, (6.1.1) and Lemma 6.1.5 ensure that we can apply Lemma 6.3.10 and find a number
¢ > 0 such that

E[Z3 tame(Hr(n,m))] > ¢ - E[Zg(Hp(n,m))]. (6.3.22)
Hence, Lemma 6.3.9 implies that E[Zg tame (Hi(n,m))?] = O(E[Z3 tame(Hy(n,m))]?). Using the
Paley-Zygmund inequality there is a number C' > 0 such that
hnn_ligfp [Zﬁ,tame(Hk(na m)) > E[Z/B,tame(Hk(na m))]/2] > 1/C > 0.
With (6.3.22) and because ¢/2 - E[Zg(Hy(n,m))] > exp [nA — ne /3], we see that
lirginf[P’ [Z8 tame(Hi(n,m)) > exp [nA — ne/3]] > 0.
n—oo
With Lemma 6.1.4 it follows that
lim P [Z3 tame(Hk(n,m)) > exp [nA — 2ne/3]] = 1.
n—oo
With (6.3.21) we get the contradiction
1
A — e > liminf —E[In Z3 tame (Hi(n,m))] > A — 2¢/3,
n—oo N

which refutes our assumption that Bt (d, k) < fo. O

Proof of Proposition 6.1.6. The assertion is immediate from Corollary 6.3.2 combined with Lem-
ma 6.3.3 and from Corollary 6.3.11. O

6.4. The cluster size

In this section we prove Proposition 6.1.7. Throughout the section we assume that d/k = 2F~11n2 4
Ok(1) and that 5 > kIn2 — In k.
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

In order to analyse the cluster size, we will show that there is a large set of vertices (the “core”)
whose value cannot be changed without creating a large number of monochromatic edges. Hence, the
contribution of these vertices to the cluster size can be controlled. Then we analyse the contribution of

the remaining vertices.

The proof strategy broadly follows the argument for estimating the cluster size in the “zero tempe-
rature” case from [COZ12]. However, the fact that we are dealing with a finite 3 causes significant
complications. More precisely, one of the key features of the “zero temperature” case is the existence
of “frozen variables”, i.e. vertices that take the same colour in all colourings in the cluster. Indeed, in
the zero temperature case the problem of estimating the cluster size basically reduces to estimating
the number of “frozen variables”. By contrast, in the case of finite 3, frozen variables do not exist. In

effect, we need to take a much closer look.

We let o : [n] — {£1} be a map chosen uniformly at random conditioned on the event that o € Bal
and H be the random hypergraph obtained by inserting each edge that is monochromatic under o with

probability p; and each edge that is bichromatic with probability ps.

We say that a vertex v supports an edge e > v under o if o(e \ {v}) = {—o(v)}. In this case, we call
e critical. Moreover, if U C [n], then we say that an edge e of H is U-endangered if |o(U Ne)| = 1

(i.e. the vertices in U N e all have the same colour).

For the first three subsections of this section, it will be convenient to introduce a slightly more ge-
neral construction. Let w > 0 be fixed and let vy, ..., v, be vertices chosen uniformly at random
without replacement from all vertices in H. Let H' be the hypergraph obtained from H by removing
v1,...,0, and edges e involving one of these vertices. Without loss of generality we can assume that
{v1,...,0u} ={n—w-+1,...,n}. The edge set of H' is thus [n], with n’ = n — w.

6.4.1. The core

Let core(H , o) be the maximal set V/ C [n] of vertices such that the following two conditions hold.

CR1 Each vertex v € V' supports at least 100 edges that consist of vertices from V"’ only,

CR2 No vertex v € V’ occurs in more than 10 edges that are V'-endangered under o
If V', V" are sets that satisfy CR1-CR2, then so does V' U V", Hence, the core is well-defined.
Proposition 6.4.1. W.h.p.|core(H,o)| = n(1 — Ok(27F))

To prove this proposition, we consider the following whitening process on the graph H’ whose result
U is such that its complement U = [n’] \ U is a subset of core(H', o).
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WHI1 Let W contain all vertices of H' that either support fewer than 200 edges or occur in more than
2 edges that are monochromatic under o.
WH2 Let U = WV initially. While there is a vertex v € [n/] \ U such that
e v occurs in more than 5 edges that are [n] \ U-endangered and contain a vertex from U,
or
e v supports fewer than 150 edges containing vertices in [n’] \ U only,
addv to U.

Proposition 6.4.1 will be a consequence of the following lemma by taking w = 0 and noticing that

core(H', o) is a superset of the set U.

Lemma 6.4.2. Let U be the outcome of the process WHI-WH2 on H'. Then |U| = n'O(27%)
w.h.p..

The rest of this subsection is dedicated to the proof of this lemma. We first bound the size of the set
W generated by WHI.

Lemma 6.4.3. W.h.p. the set W contains n' Oy (27%) vertices.

Proof. Our assumptions on 3 and d ensure that the number of monochromatic edges containing a
fixed vertex v is binomially distributed with mean Ok(2*k). Therefore, the probability that v occurs
in more than 2 monochromatic edges is bounded by Ok(2_2k ). Furthermore, the number of edges
supported by v is binomially distributed with mean & In 2 + Og(1). Hence, by the Chernoff bound the
probability that v supports fewer than 200 edges is bounded by Ok(2_k). Consequently,

E[[W]] = n'Or(27). (6.4.1)

Finally, either adding or removing a single edge from the hypergraph can alter the size of W by at most
k. Therefore, (6.4.1) and Azuma’s inequality imply that || = n/O;(27%) w.h.p., as desired. O

In the next step we state two results excluding some properties of small sets of vertices in H'.

Lemma 6.4.4. W.h.p. the random hypergraph H' enjoys the following property.

There is no set T # () of vertices with |T'| < n’/k® such that at least 0.9|T| vertices
from T occur in two or more [n'] \ T-endangered edges that contain another vertex (6.4.2)
fromT.

Proof. ForasetT C [n'], we define ¢ = |T'|/n and we let X;(T") for i € {2, ...k} be the number of

edges that are [n/] \ T-endangered and contain exactly i vertices from T'. Then X;(7T') is stochastically
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)

dominated by a binomial random variable Bin ((1 + 0(1))2i+1-F (”?/) (k"LZ), 2p>. Indeed, there are

(E?/) ways to choose ¢ vertices from 7" and at most ((1;2.”,) < (k”:l) ways to choose k& — i vertices
from [n/] \ T. Moreover, these k — i vertices are required to have the same colour and because we
assumed that o is balanced, this gives rise to the (1 + o(1))2""!~*-factor. Let X (T') = Z§:2 X;(T)
be the total number of edges that are [n’] \ T-endangered and contain at least two vertices from 7.

Then using the rough upper bound (Z) 2p < n2F1n 2 we obtain

k
E[X(T)] = ) E[X;(T)] < kE[X5(T)] < 3.6k (6.4.3)
i=2
Let £(T) be the event that X (T") > 1.8|T'|. If the set T" satisfies (6.4.2) then £(T") occurs. The Chernoff
bound from Lemma 6.2.4 and the above upper bound (6.4.3) on E[X (7T')] yield

P[E(T)] < exp [—1.857"/ In <2€;36)] .

Hence, the probability of the event & that there is a set T of size |T'| < n//k® such that £(T) occurs is
bounded by

s ¥ rems 3 (")eo[ern(pi)]

T:|T|<n! /K8 1/n/<e<1/k8

< Z 2en”\ exp |—1.8en’In !
- en’ b ' 2ek3e

1/n'<e<1/k8

< Z exp [en’ (5 +5.61n(k) + 0.81n(e))] = o(1),
1/n/<e<1/k8

as claimed. O

Lemma 6.4.5. W.h.p. the random hypergraph H' enjoys the following property.

There is no set T # () of vertices of size |T| < n'/k® such that at least 0.09|T|

(6.4.4)
vertices from T support at least 20 edges that contain another vertex from T.

Proof. ForasetT C [n'] and a set Q@ C [T], we let £(T, Q) be the event that each vertex v € @
supports at least 20 edges that contain another vertex from 7'. Let ¢ = |T'|/n’. Then for each vertex
v the number X, of edges that v supports and that contain another vertex from 7' is stochastically

dominated by a binomial random variable Bin ((1 +0(1))2% Fen/ (1;1/2) : pz) . Indeed, there are en’ —

1 ways to choose another vertex v/ # v from 7', and at most (l:iZ) ways to choose k — 2 further
vertices to complete the edges. Moreover, these k — 2 vertices are required to have colour —o (v), and

because we assumed that o is balanced this gives rise to the (1 + o(1))22~*-factor. Furthermore, the
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random variables X, are mutually independent, because the edges in question are distinct as they are
supported by the distinguished vertex v. Therefore, using the rough upper bound (Z) p2 < n2FIn2,

we obtain

PIE(T, Q)]

IN

[IPX, > 20]
vEQR

/

n QI
2>,p2> > 20] < (K%e)?IRl (6.4.5)

IN

P [Bm ((1 + 0(1))22k5n/(k

Now, let £(T") be the event that there is a set Q C [T'] of size |Q| > 0.09|T| such that £(T, Q) occurs.
Then (6.4.5) implies that

B[£(T)] < 271 (2T /n') 57,

Hence, the probability of the event & that there is a set T of size |T'| < n’/kS such that £(T') occurs is
bounded by

Ple] < Z P[E(T)] < Z <2/> of (K2t /n/) 1t

T:|T|<n’ /K6 1<t<n’ /K6

2en’\ " 2,/ 1.8t 110.81.3.67%
< X (B @yt S el )=o),

t
1<t<n’ kS 1<t<n’ /kS

as claimed. O

Proof of Lemma 6.4.2. By Lemmas 6.4.4 and 6.4.5 we may assume that H' enjoys the properties
(6.4.2) and (6.4.4). We are going to argue that |U| < k|W| w.h.p.. Indeed, assume for contradiction
that |U| > k|W| and let U’ be the set obtained by WH2 when precisely (k — 1)|W]| vertices have been
added to U; thus, |U’| = k|W/|. Then by construction each vertex v € U’ has one of the following

properties.

1. v belongs to W, or
2. v occurs in two or more [n'] \ U’-endangered edges, or

3. v supports at least 20 edges that contain another vertex from U’.

Let Uy C U’ be the set of all v € U’ that satisfy (1), let Uy C U’ \ Uy be the set of all v € U’ \ U that
satisfy (2) and let Uy = U’ \ (Up U Uy). There are two cases to consider.

Case 1: |U;| > 0.9|U’| then (6.4.2) implies that |U’| > n’ /K8,
Case 2: |U;| < 0.9|U’| then |Uy| + |Uz| > 0.1|U’| and since |Up| = |W| and |U’| = k|W| we have
|U| > 0.09|U’| for k large enough. Thus, (6.4.4) entails that |U’| > n’/kS.
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Hence, in either case we have k|W| = |U’| > n//k® and thus |[W| > n//k°. But by Lemma 6.4.3 we
have |[W| = n/Oy(27%) w.h.p.. Thus, we conclude that |U| < k|W| = n/Ox(27%) w.h.p.. O

6.4.2. The backbone

We define the backbone back(H , o) as the set of all vertices v € [n] \ core(H, o) such that the
following two conditions hold.

BB1 v supports at least one edge e such that e \ {v} C core(H, o) and
BB2 v does not occur in a {v} U core(H, o)-endangered edge.

Given H’, we simply reconstruct H (in distribution) by adding for each i € [w] each monochromatic
edge involving v; with probability p;, and each bichromatic edge involving v; with probability ps. We
let A be the event that

e no vertex v € [n'] is incident with more than one edge containing a vertex from {v1,...,v,},
and
e there is no edge containing two vertices from {v1,...,v,}.

With the notation from the previous subsection we let U be the complement of the set of vertices
produced by the whitening process WH1-WH2 applied to the hypergraph H’. We note that |U| =
n/(1 — Ox(27%)) w.h.p. by Lemma 6.4.2. In addition, if A occurs, then U C core(H o). In this case

the following lemma states the probabilities for some events concerning the vertices v;, i € [w].

Lemma 6.4.6. Assume that A holds. Let | > 0 be fixed. Then the following statements are true for all

i€ |wl:
1. The probability that v; supports exactly | edges is (1 + 0(1))% where
A= —— d = kIn2+ Ox(27%).
2k=1 — 1+ exp [f]
2. The probability that v; occurs in exactly | monochromatic edges is (1 + 0(1))% where

N = Op(275).
3. The probability that there exist exactly | edges blocking v; and containing at least one vertex
outside {v;} UU is (1 + 0(1))% where N = Op(27F).
4. The probability that exactly | edges are {v;} U U-endangered is (1 + o(1))
N = Op(27F).

P,

TexpV7] where

Proof. For each i € [w], the number of edges supported by v; is Bin ((2:})(1 + 0(1))21_k,p2)

114



6.4. The cluster size

21_k>p1)

distributed. Indeed, because we assumed that o is balanced, there are (7_1)(1 + 0(1))2'* edges e

distributed and the number of monochromatic edges involving v; is Bin ((Zj) (I1+o0(1))

involving v; such that o(v) = —o(v;) (respectively o(v) = o(v;)) for all v € e\ {v;} and each
of them is added independently at random with probability ps (respectively p;). Hence the Poisson
approximation of the binomial distribution shows that the probability that v; supports precisely [ edges
is (1+ (1)) gy with

\ = n—1\ pa d
\k—1)2k1 " 2k=1 1 texp[-f]’

which proves assertion (1). Moreover, since § = Q(kIn2) and d = Ok(Zk), the probability that v;
IAY)

occurs in precisely [ monochromatic edges is (1 + 0(1))% with

n_]. pl ~ —k ~ —k

This implies assertion (2).

The probability that in an edge blocking v; at least one of the vertices is outside {v;} U U is Oy (27%)
by Lemma 6.4.2. Using (1), the number of edges blocking v; and containing at least one vertex outside
{v;} U U is stochastically dominated by a Bin ( (+=1) Ok (4*k),p2) random variable. (3) then follows

by the Poisson approximation.

If an edge e is {v;} U U-endangered it is either monochromatic or such that |(e \ {v;}) NU| < k — 2.
Given H’, these two events are independent and the numbers of edges of each type are binomially
distributed. The expected number of edges of the first type is Ok(Q_k) by (2). The expected number
of edges of the second type is O~k(2*k) by Lemma 6.4.3. Thus (4) follows again from the Poisson

approximation. 0
6.4.3. The rest
Letrest(H,o) = [n] \ (core(H, o) Uback(H,o)).

Proposition 6.4.7. Wh.p. [rest(H,o)| = n27%(1 + O,(27F))

Proof. rest(H o) contains at least all vertices that do not support an edge. As the number of edges
that a vertex supports is binomially distributed with mean % In 2 + Og(1), by the Chernoff bound we
have [rest(H, )| > n27%(1 + Ox(27%)) w.h.p.. Now let Y = rest(H, o) and let w = w(n) be a
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

slowly diverging function. Let € = O~k(2*k ). We are going to show that

1 +€+0(1))n)w.

EY(Y —1)-...- (Y —w+1)] < <( o (6.4.6)

This bound implies the assertion; indeed,

IN

P [Y > 1+ 25)n2_k} P [Y(Y 1) (Y —wt1) > (142 — 0(1))n2_k)w}

V(Y — 1) (Y =t 1) _ (Do) \*
: (14 2e —o(1))n2=F)w §<1_|_25_0(1)) =o(1).

To prove (6.4.6), we observe that Y (Y —1)-...- (Y —w+1) is just the number of ordered w-tuples of
vertices belonging to neither the core nor the backbone — that is, belonging to Y. Hence, by symmetry

and the linearity of expectation,

EY(Y —1)-...- (Y —w+1)] <n*Pluy, ..., v, € Y],
Thus, we are left to estimate P [vq, ..., v, € Y]. If A occurs, then U C core(H, o). Furthermore, if
U C core(H,o)and vy, ...,v, €Y, then for any i € [w] one of the following must occur.

1. There is no edge blocking v; that consists of vertices in {v;} U U only.

2. v; occurs in more than 10 edges that are {v;} U U-endangered.

3. There are at least 200 edges blocking v; but fewer than 100 of them consist of vertices in {v; } UU
only.

4. There are at most 200 edges blocking v; and one edge e such that v; € e and that is {v;} U U-

endangered.

Indeed, if a vertex v; is in rest(H, o) then it violates one of the conditions CR1 and CR2 and one of
BB1 and BB2. Therefore we have to consider several cases. If v; violates BB1, then (1) is true. If it
violates CR1 and BB2, then either (3) or (4) is true. If v; violates CR2 and one of BB1 and BB2, then

(2) is true.

Let B; be the event that one of the above is true for ¢ € [w]. By the principle of deferred decisions we
have P [A] = 1 — O(w?/n) and therefore we get

Plv,...,v0 € Y] <Plvy,...,v, € Y|A] +0(1) < PN B;| Al + o(1).

Given that there is no edge containing two vertices from vy, ..., v, the events By, . .., B, are mutually
independent. Therefore, P [N, B;|.A] = P [B1|.A]*. Given that A occurs, by Lemma 6.4.6 the proba-
bility of event (1) is asymptotically equal to 27% + O, (47*) and the probabilities of events (2), (3) and
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(4) are asymptotically equal to Oy (4~%). Hence, P [B1|A] = 2% 4O (4 %) and P [v1, ..., v, € Y] <
(27F 4+ Or(47%) +o(1))* = (L + e +o(1))27F)~. O

We define free( H, o) as the set of all vertices v € rest(H, o) such that v occurs only in edges e such

that e N core(H, o) is bichromatic.

Proposition 6.4.8. Wh.p. |rest(H, o) \ free(H,o)| = nO,(47%). In particular,
n(27% + Or(47F)).

free(H,o)| =

Proof. We introduce Y = [rest(H, o) \ free(H, )| and proceed just as in the proof of Propositi-
on 6.4.7. To estimate P [v1, . .., v, € Y] we observe thatif U C core(H, o) and vq,...,v, € Y then

for any 7 € [w] one of the following must occur.

1. There is no edge blocking v; that consists of vertices in {v;} U U only and v; occurs in at least
one edge that is {v; } U U-endangered.

2. v; occurs in more than 10 edges that are {v;} U U-endangered.

3. There are at least 200 edges blocking v; but fewer than 100 of them consist of vertices in {v; } UU
only.

4. There are at most 200 edges blocking v; and one edge e such that v; € e and that is {v;} U U-

endangered.

Events (2), (3) and (4) are as in the proof of Proposition 6.4.7 and their probabilities are asymptotically
equal to Oy (4~%). By Lemma 6.4.6 the probability of (1) is Oy (4~%) and the assertion follows. ~ [J

In the following three subsections we calculate the cluster size C3(H, o) up to a small error term.
We proceed by first eliminating the contribution of the vertices in the core and in a second step the

contribution of the vertices in the backbone. Finally we calculate the contribution of the vertices in
rest(H, o).

6.4.4. Rigidity of the core

In the following we let 2 = k5. We first show that the cluster of o under H mostly consists of

configurations at distance less than 2x from o.

Lemma 6.4.9. Wh.p.

Cs(H, o) ~ > exp [~fEw(T)]

Te{x1}":(o,7)>(1—2)n
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To prove this result we recall the notation from Section 6.2. We need the following technical lemma:

Lemma 6.4.10. Letd/k = 2¥"1In2+ Ok(1) and B > kIn2 — In k. Then SUPqe[2/3,1—k—5) Apla) <
As(1) — (k).

Proof. We observe that fora € [1 — k=21 — k~7],

In(1 — d -
Ny(a) = D(QO‘) + g5 +Ok(27) = kIn2 4 Op(nk) 2 1. (6.4.7)

An expansion of Ag(«) near o = 1 gives Ag(1 —k~7) < Ag(1) + Ok (k~°) and together with (6.4.7)
this implies

Ap(1 — k%) < Ag(1) — (k7). (6.4.8)

Further, using that A’B(a) > 0ifa>1—1.991nk/k (as in the proof of Lemma 6.2.9) and (6.4.8) we
obtain

S Ag(e) < Mgl = k77) < As(1) = (k™). (64.9)
a€[1-1.99In k/k,1 k]

A study of Ag(a) also gives

sup  Ag(l —yInk/k) < Ag(1) — Qu(k™) (6.4.10)
7€[1.99,2.01]

and Ag(a) — Ag(1l — 2.01lnk/k) = H (1) + Oy, ((L)’“) < 0fora € [2/3,1 —2.011lnk/E],
which leads to

1 - 2 \"
sup Ag(a) <H < +a> + Oy, <> +Ag(1 —2.011nk/k)
a€[2/3,1-2.01In k/k] 2 2.01
< Ag(1) — (k7). (6.4.11)
Combining (6.4.9), (6.4.10) and (6.4.11) completes the proof of the assertion. ]

Proof of Lemma 6.4.9. Given o and a € [—1, 1] and using Lemma 6.2.2 we have
E > oxp [~BEp(7)]|[e(H) —m| < m*?
Te{£1}":(o,T)=an

_ E |:ZTZ<0’,T>:O£TL exp [_ﬁEHk(n,p) (U)] exp [_/BEHk(n,p) (T)]‘ |6(Hk(nﬂp)) - m‘ < m?/3
E [exp [~BEp, (ny)(0)]| le(Hk(n, p)) — m| < m?/3]

“g [iiiﬁ&afi@m exp [0 (m®*)].
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In order to derive the last line, we used an observation similar to equation (6.2.5) and Lemma 6.2.2.
We observe that we have w.h.p. Cg(H,0) > exp [-fEm(0)] ~ exp [—nék@_k)} by Lemma 6.2.6.
Hence,

E > exp [~BEu(7)]| le(H) —m| < m*/?
Te{£1}":2/3n<(o,7)<(1—z)n
21/ n—1
< Z / )))}] 1oy /n—1€[2/3,(1—2)) €XP [O (m2/3)}

< exp [n ( sup  Ag(a) — Ag(l) + Ok(2_k)>] Cs(H, o)

a€(2/3,1—x]

< exp [-nQ(k™%)] Cs(H, o)
by Lemmas 6.2.7 and 6.4.10. It follows from Markov’s inequality that w.h.p.

> exp [~BEwR(T)] = o(Cs(H, o).

Te{x1}":2/3n<(o,7)<(1—z)n

O]

We now approximate Cg(H , o) based on the previous decomposition of the vertex set V. Given a
k-uniform hypergraph H, o : [n] — {£1}, and three maps Tcore : core(H,o) — {£1}, Thack :
back(H,o) — {£1} and Tyest : rest(H, o) — {1}, we define Err(Teores Thack, Trest) a8 Err(7)
for the unique 7 whose restriction to core(H , o) (respectively back(H , o), rest(H, o)) is given by

Tcore (reSp€CtiVely Thack Trest)-

We introduce the “restricted” cluster size

CgaCkJrreSt(Ha U) = Z €Xp [_BEH(O-COI“ea Thack Trest)] .

ThacksTrest

The summation is over Th,ck : back(H, o) — {£1} and Tyegt : rest(H, o) — {£1}. The aim of this
section is to prove the following.

Proposition 6.4.11. W.h.p.

El nCyPHeN(H, o) < 1ncﬁ(H o) < 1ncback+rest(H o) + exp [—880]

In order to proceed we first need a few additional results. We introduce the set g7 (7, o) of edges that
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e are supported by a vertex v such that Tcore (V) # O core(v) and

e contain two or more vertices v such that 7ore (V') # T core (V).

The following lemma is reminiscent of [COZ12, Lemma 5.9].

Lemma 6.4.12. W.h.p. for all T : [n] — {£1} satisfying (o, ) > (1 — x)n it holds that
1€a (7, 0)] < 2|{v : Gcore(v) # Teore (V) }-

Proof. We claim that w.h.p. H has the following property. Let 7' C V be a set of size |T| <
n/(2e3k?A?). Then there are no more than 2|T'| edges that are supported by a vertex in T’ and contain
a second vertex from 7. Indeed, by a first moment argument, with |7'| = ¢n the probability that there

is a set 1" that violates the above property is bounded by

() (o Y < oyt (5) wf]

< ((1+o(1)t (2X2K2))™ = o(1).

tn

With T = {v : Ocore(v) # Teore(v)} and z = k=5, we have |T| < 2zn < n/(2¢3k%\?), which
completes the proof. O

Lemma 6.4.13. W.h.p. for all 7 : [n] — {£1} satisfying (o, 7) > (1 — x)n it holds that
by (Tcorey Thack 7’rest) > EH(O'core7 Thack Trest) + 88 diSt(Tcorea Crcore) .
Proof. Denote for a vertex v € V and 7 : [n] — {£1} by

e X (v) the number of critical (under o) edges e supported by v such that e \ {v} C core(H, o),
e Y (v) the number of core( H, o)-endangered edges containing v,

e M, (v) the number of edges containing v that are monochromatic under (& core; Thack, Trest )-

We can lower bound E'gg (Tcore, Thacks Trest) in terms of Frr (6 cores Thack, Trest) @S

En (Tcore7 Thack 7-rest) > EH(UCor67 Thack 7—rest) + Z (X(U) - My (U)) B |gH (7-7 U)|
(O Tcore(v)io'core(v)

(6.4.12)

Only edges that were core(H , o)-endangered can be monochromatic under (6 core, Thacks Trest)» iMp-
lying that M, (v) < Y (v). In particular

Vv € core(H,o), X(v)— M(v) > 90. (6.4.13)
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On the other hand, we can upper bound |Eg (7, 0)| with Lemma 6.4.12. Replacing in (6.4.12) and
using (6.4.13) gives

EH(Tcorea Thack Trest) > Enx (Ucoreu Thack 7—rest) + 88 diSt(Tcorea Ucore)

w.h.p., thereby completing the proof. O

Proof of Proposition 6.4.11. We first establish the lower bound on C3(H , o). With Proposition 6.4.1
we have (o, (G cores Thack, Trest)) > (1 — x)n w.h.p. for all (Thack, Trest). Hence with Lemma 6.4.9

w.h.p.
Cﬁ(H, 0') > Z exp [718EH(UCOI‘67 Thack> Trest)] = CEaCk+reSt(Ha U)'

Thack,Trest

To derive the upper bound we write

C,B(H7 U) < Z Z [_5EH (TCOI‘EH Thack Trest)]

Tcore * TbackTrest
<0'core yTcore > > ( 1 *I)n

< > exp [~888dist(0 core; Teore)] C T (H , 0), (6.4.14)

(Ucore 7Tcore>2(1_1')n

where the second inequality holds w.h.p. by Lemma 6.4.13. Finally

xn/2 n
TZ exp [—88Adist (0 coreTeore)| = ; <?> exp [—886i] < 2 (?) exp [—88i]

<0'core 7Tcore>2(17$)n

= (1+exp[—8803])" < exp [nexp [—883]].
(6.4.15)

Replacing with (6.4.15) in (6.4.14) completes the proof. O
6.4.5. Rigidity of the backbone

We proceed one step further by eliminating the vertices in the backbone and consequently comparing
CE,aCkHeSt (H,o)toCy™(H, o), where

CEeSt (H, U) = Z €xXp [_5EH (Ucorea Oback 7_rest)] .

Trest

The sum is over Tyegt : rest(H, o) — {£1}. We prove the following result.
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Proposition 6.4.14. W.h.p.

1 1 1 -
ﬁlncfgeSt(H,a') <- InCPH Y (H, o) < ;lnC}"f’St(H,a) +Or(47")

Proof. The left inequality is obvious. To prove the right inequality we observe that, by definition of
the backbone, for any Tp,ack : back(H, o) — {41} and Tyest : Test(H, o) — {£1}, the following is

true:

Exg (Ucorea Thack 7—rest) > Enx (Ucorea O back; 7—rest) + diSt(o'backa 7-ba»ck)- (6.4.16)
Indeed for any vertex v € back(H , o) with o,k (V) # Thack(v) and any edge e 3 v,

e cither v supports e and e \ {v} C core(H, o), in which case it is bichromatic under the assi-
gnment (& core; Tback, Trest) and monochromatic under (6 core, Thacks Trest )
e oreisnot {v}Ucore(H,o)-endangered and is bichromatic both under (o core, Oback, Trest) and

under (o'corev Thack 7—rest) .

Moreover, by the definition of back(H, o), there is at least one edge of the first type for any v €
back(H , o) with pack (V) # Thack (V).

Using the definition of cgack“est (H, o) and (6.4.16) yields

CgaCk—HGSt (H7 U) < Z exp [_ﬁdiSt(Ubackv Tback)] exp [_BEH(O'corm Oback; Trest)]

Thack;Trest

< > exp [~ Adist(Tpack, Thack)] C5* (H , ). (6.4.17)

Thack

The remaining sum can easily be upper-bounded:

|back(H ,o)|
. back(H, o .
E €xp [_Bdlst(o'backa 7-back)] = § <| (’L )|> €xp [_52]
Thack =0

= (1 + exp [ B))P*HAN < exp [exp [ 5] [back(H , o))
(6.4.18)

The upper bound of Proposition 6.4.14 then follows from (6.4.17) and (6.4.18) combined with Propo-
sition 6.4.1. L]

6.4.6. The remaining vertices

We finally deal with the vertices that belong neither to the core nor to the backbone. As anticipated in

Proposition 6.4.8, most of them are free. This yields the following result.
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6.4. The cluster size

Proposition 6.4.15. W.h.p.

In2 EH(O')
n

1 res S -
~InCy™(H,0) = o — 8 +OR(47")

To prove this, we need the following result. Let M/ (v) be the number of monochromatic edges invol-

ving v in the configuration o.

Lemma 6.4.16. W.h.p.
> M (v) = nOx(47")

verest(H o) \free(H o)

Proof. We start with the following observation:

Z M (v) < Z M/ (v) + 2|rest(H, o) \ free(H, o)
verest(H ,o)\free(H,o) veEV:M! (v)>2

The number of monochromatic edges involving a vertex v is a Bin ((Z:%) (1+o(1))2~ 1 p1> ran-
dom variable. Hence -, cy.1pr ()2 Mg (v) = nOy,(47F). Applying Proposition 6.4.8 completes the

o

proof. 0

Proof of Proposition 6.4.15. By the definition of free(H , o), the number of monochromatic edges

Er (0 cores Oback, Trest) does not depend on the values Tyest (v) for v € free( H, o). Consequently,

Céost(H’ 0') > 2\froc(H,o')\ exp [—ﬁEH(O')] )

rest

Together with Proposition 6.4.8, this gives the lower bound on % InC 3 (H, o). For the upper bound,
we start with the general inequality

1 In2 .
-~ lnCEeSt(H, o) < T|rest(H, o)l — s inf Frr (0 cores Oback, Trest )-

T Trest

As the number of monochromatic edges does not depend on the values of the vertices in free(H, o),

we have

7i-nf EH(Ucore7 Oback; Trest) > EH(U) B Z M;.(U)-
Test verest(H,o)\free(H,o)

Hence, we obtain

1 In2 E
- InCy*'(H, o) < %]rest(H, o)| — 512(”) 48 > M. (v).  (6.4.19)
verest(H ,o)\free(H,o)
The upper bound follows by combining (6.4.19) with Proposition 6.4.7 and Lemma 6.4.16. O
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Proof of Proposition 6.1.7. Combining Propositions 6.4.11, 6.4.14 and 6.4.15 we obtain that w.h.p.

1 In2
“InCs(H,0) = —~ —
~nCs(H, o) = -5 —

EHn(a) + Op(47h). (6.4.20)

The number of monochromatic edges in the planted model is tightly concentrated by Chernoff bounds.

Therefore, we get w.h.p.

n

Eu(o) = <k>21_kp1(1 +o(1)) ~

exp [—/] d.
2k=1 —1+exp[—flk

Ford/k = 2" In2+ O(1) and 8 > kIn2 — Ink, we have Egz (o) = In2exp [—3] n+ O (4 %)n.
Inserting this in (6.4.20) yields w.h.p.

1 In2 ~
- InCs(H,o) = 27 — BIn2exp [-fB] + Ox(47F),

thereby proving Proposition 6.1.7. O

6.5. Existence of ¢, (/)
Theorem 6.5.1. The limit ®4,(53) exists for any d > 0, k > 3, > 0.

We prove the existence of the limit using the so-called interpolation method. The proof is very similar
to and adapted from [BGT13]. Let us first shortly summarize the idea of the interpolation method.
Given Hy(n,m) and ni,ny such that n = n; + ny and M; 4 Bin(m, ni/n), we can construct a
sequence of hypergraphs interpolating between Hy(n,m) and a disjoint union of Hy(n1, M;) and
Hy(n2,m — M), where we have split the set of nodes [n] into two sets [n1] = {1,...,n1} and

{n1+1,...,n} which we denote, with some abuse of notation, as [ng).

To realize this interpolation, for any 0 < r < m, let Hx(n, m,r) be the random graph on nodes
[n] obtained as follows: It contains m hyperedges, where the first r hyperdeges ey, ..., e, are selected
independently and uniformly at random from all possible hyperedges on Hy(n,m). The remaining
m — r hyperdeges are generated independently and uniformly at random from all possible hyperedges
on nodes [n1] with probability n; /n and from all possible hyperedges on nodes [ng] with probability
na/n .

We observe that Hy(n,m,m) = Hg(n,m) and that Hy(n,m,0) is a disjoint union of the graphs
Hy.(n1, My), Hi(n2, Ma2) conditioned on My + My = m, where M; = Bin(m, n;/n).

A centerpiece of the interpolation method is the following lemma:
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6.5. Existence of ®4 ()

Lemma 6.5.2. Foreveryr =1,....m,
Elln Zg(Hg(n,m,r))] > Elln Zg(Hy(n, m,r — 1))].

Proof. Welet Hi(n, m,r—1) be obtained from Hy(n, m,r) by deleting a hyperdege chosen uniform-
ly at random from all ey, ..., e, and adding a hyperedge e to nodes [n;] or [ng] with the appropriate
probabilities. Let H ,g be the hypergraph obtained in this interpolation process from Hy(n,m,r) after
deleting but before inserting a hyperedge. We let Zg and 7rg, be the corresponding partition function

and Gibbs measure respectively.
We now show that conditional on any realization of the graph H?, we have
Elln Zg(Hy.(n, m,r))|HY] > E[ln Zg(Hg(n,m,r — 1))|Hy).

Note that since we fix H ,8 , the only randomness underlying the expectation arises from choosing the

hyperedge e = (n;,, ..., n;, ). We have

Elln Zs(Hg(n, m,r))|HY] — In Z]

Zg(Hy(n,m,r))

=E (In 0 — |H}]
L B
) _] Zo’ 1{n0t all o identical} €XP [_6E(J)] + exp [_ﬁ] Zg 1{O'i1:...:0'ik} eXp [_BE(J)] 770
=E >, exp [ BE(@) i)
Since 8 < oo, we have 0 < (1 — exp [—f]) ﬂg(ail = ... = 0y, ) < 1. Using the expansion In(1—z) =
— 2> al/j, we get
Elln Zg(Hj(n,m,r))|Hy] — In Z}
2 (1 —exp|—B8)) 7% = ... =0y, )7
- _E Z( p[—0]) ﬁ( 1 k) ‘H}E;)
j=1 J
< (1 - exp|-AlY exp | -8 Xl B0V :
- Z ; E (29)i 1{g§~“>=...=a(s>v56[j]}‘Hk
j=1 J o),....ol) B 1 e |
= (1 exp[-A)’ exp | -8 %), E(0) ,
- _Z ; (29)i E 1{0(3):...20(3)Vs€[j]}’Hk ’
i=1 J et 5 i i ]

where the sum ) ) () is over j-tupels of colour assignments. We now introduce equivalency

classes on [n] for each such j-tupel for all j € {1,...,00}. For t,7 € [n], we say that ¢ is equiva-
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

lent to r, denoted by ¢t ~ r, if Ufs) = 07(!9) for all s € [j]. Let O;,1 < [ < J be the correspon-

ding equivalency classes. For an edge (n;,,...,n;,) generated uniformly at random, it follows that

k
J 0
E I{Ugf)Zu-:UEZ)Vse[j]}|Hl(c):| =22 (%) and thus

E [In Zs(Hi(n, m,r))|H}] — In Z}

o~ (1~ exp[—4])’ exp | -8 B L rjog\*
RO - <Zg> }ZU)'

=1 J o o) =

77777

A similar calculation for E[ln Zg(Hy(n, m,r — 1))| H] obtained by adding a hyperedge to nodes [n1]
with probability n/n or to nodes [ng] with probability n/ng gives

exp |81, B(oW)]

Elln Zs(Hy(n,mr — )Y~ 2 =~ 3 Lo A 5

. 0 s
=1 J o), o) (Z5)
J
Z \Om [n4]] k+@ 00N [n2]\*
P n Ny '
Using the convexity of the function f(z) = 2*, the claim follows. O

Lemma 6.5.3. For every 1 < ny,ne < n — 1 such that ny + no = n and every 5 < 00,
Elln Zg(Hy(n,m))] = Elln Zg(Hy,(n1, M1))] + E[ln Zg(Hg(n2, M2))]
where My 2 Bin(m, ny/n) and My =m — My 4 Bin(m,na/n).

Proof. For a disjoint union of two graphs H = Hy + Hy with H = (V, E) and H, = (V1, Ey), Hy =
(Va, Ey), we always have In Zg(H) = In Zg(H,) +1n Z3(H>). Knowing that, the claim follows from
Lemma 6.5.2. O]

Lemma 6.5.4 ([BGT13], Proposition 5). Given o € (0, 1), suppose a non-negative sequence (an)n>1
satisfies
ap > ap, + ap, — O(n%)

for every ny,ng such that n = ni + na. Then the limit lim,,_, % exists.

Proof of Theorem 6.5.1. Since M1, M5 have a binomial distribution, we obtain

E[ln Zg(Hy(n,m))] > E[ln Zg(Hy(n1, M1))] + E[ln Zg(Hy(n2, M2))] — O(v/n).
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6.5. Existence of ®4 ()

by Fact 6.1.3 and Lemma 6.5.3. With Lemma 6.5.4, we conclude that 1 lim,,_, E[ln Z(Hjy(n, m))]
exists. Completely analogue to the proof of Corollary 6.2.3, we find that

—_

%E[ln Zg(Hy(n,p))] < gE[ln Zg(H(n,m))] + o(1)

and with Lemma 6.2.2 the assertion follows. O
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7 Number of solutions in random hypergraph 2-colouring

This chapter contains the proof of Theorem 4.1.5, where the asymptotic distribution of the logarithm
of the number of 2-colourings of random k-uniform hypergraphs is determined for all £ > 3. Fur-
ther the proofs of Corollaries 4.1.7 and 4.1.8 are presented, in which concentration of this number is

established and the planted model is shown to be contiguous to the random colouring model.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper On
the number of solutions in random hypergraph 2-colouring [Rasl6a+] submitted to The Electronic

Journal of Combinatorics.

The first section of this chapter contains an outline of the proof of Theorem 4.1.5, introduces import-
ant notation and states the main steps of the proof. In the following section the first moment of the
number of solutions is explicitly calculated. After that, the number of short cycles is determined and
in Section 7.4 the second moment is calculated very precisely. The last section contains the sketch of

an alternative approach for tackling the second moment calculation.

As the paper is a single-author paper, the question of the contribution of this thesis’ author does not

arise.

From here on out we always assume that m = [d'n/k]|, where d' remains fixed as n — oo. We also

require that k > 3.

7.1. Outline of the proof

We classify the 2-colourings according to their proportion of assigned colours: For a map o : [n] —
{£1}, we define

p(o) = o (1)|/n (7.1.1)

and call this value the colour density of o. We let A(n) signify the set of all possible colour densities
p(o) for o : [n] — {£1}. We will later show that when bounding the moments of Z(H(n,m)) we
can confine ourselves to colourings such that the proportion of the two colours does not deviate too

much from 1/2. Formally, we say that p € [0,1] is (w, n)-balanced for w € N if

1 w 1 w

he 2—\/7?2+\/ﬁ>
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7. Number of solutions in random hypergraph 2-colouring

and we denote by A, (n) the set of all (w, n)-balanced colour densities p € A(n). For a hypergraph
H on [n], we let Z,,(H) signify the number of (w, n)-balanced colourings, which are 2-colourings o
such that p(o) € A, (n). As we will see, it will turn out useful to split up the set A, (n) into smaller

sets in the following way. For v € N and s € [wv], let

R _1_i+25—1
Por =5 " nn

Let A7, ,(n) be the set of all colour densities p € .A(n) such that

(7.1.2)

c S fi S +L
p Puw,v V\/ﬁva,u y\/ﬁ .

For a hypergraph H, let Z;, ,(H) denote the number of 2-colourings o of H such that p(c) € A7, ,(n).
The strategy is to apply small subgraph conditioning to the random variables Z;, , rather than directly
to Z. We observe that for each fixed v we have Z,, = Y o~ Z3 - In Section 7.2 we will calculate the

first moments of Z and Z,, to obtain the following.

Proposition 7.1.1. Let k > 3,d’ € (0,00) and w > 0. Then

=1.

E[Z(H(nm)] =0 (2" (1-2"*)") and  Jim liminf E(Z(H(n,m))]

As outlined in Section 4.2, our basic strategy is to show that the fluctuations of In Z can be attributed
to fluctuations in the number of cycles of a bounded length. Hence, for an integer [ > 2 we let Cl,n
denote the number of cycles of length (exactly) [ in H(n,m). Let
d(k —1)]' —1)!
PV CC.hullD) P S Gt (7.1.3)
21 (2]?71 _ 1)l

We will see that \; denotes the expected number of cycles of length [ in a random k-uniform hyper-
graph, whereas d; is a correction factor that takes into account that we only allow for bichromatic
edges. It is well-known that Cs ,, . . . are asymptotically independent Poisson variables [BolO1, Theo-

rem 5.16]. More precisely, we have the following.

Fact 7.1.2. Ifca,...,cr are non-negative integers, then
L
lim P[V2<I<L:Cip=c) = [[PPon) =al.
=2

Next, we investigate the impact of the cycle counts Cj ,, on the first moment of Zj;l,. In Section 7.3

we prove the following.
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7.1. Outline of the proof

Proposition 7.1.3. Assume that k > 3 and d' € (0,00). Then
[e.9]
> Mo} < oo (7.1.4)
1=2

Moreover, let w,v € N. If ca, . .., c[, are non-negative integers, then for any s € [wv|:

E [Zf}v’/(%(n’ m))’VQ S l S L: Clm = Cl} L

E (2, (H(n,m))] ~ E L+8) exp[-GiN].  (7.15)

Additionally, we need to know the second moment of Z7, , very precisely. The following proposition
is the key result of our approach and the one that requires the most technical work. Its proof can be
found at the end of Section 7.4.

Proposition 7.1.4. Assume that k > 3 and d'/k < 2¥711n2 — 2 and let w,v € N. Then for every

s € [wv] we have

~y €Xp )‘l6l2
E [Z5,(H(n,m))]’ lz

We now derive Theorem 4.1.4 from Propositions 7.1.1-7.1.4. The key observation we will need is that
the variance of the random variables Z7, , can almost entirely be attributed to the fluctuations of the
number of short cycles. As done in [COW16+], the arguments we use are similar to the small subgraph
conditioning from [Jan95, RW94]. But we do not refer to any technical statements from [Jan95, RW94]
directly because instead of working only with the random variable Z we need to control all Z§, ,, for
fixed w, v € N simultaneously. In fact, ultimately we have to take v — oo and w — oo as well. Our
line of argument follows the path beaten in [COW 16+] and the following three lemmas are an adaption

of the ones there.

For L > 2, let 71, = Fr,(d, k) be the o-algebra generated by the random variables C,, with
2 <1 < L.Foreach L > 2, the standard decomposition of the variance yields

Var [Zf)’l,(’l-[(n, m))] = Var [E [ZS,Z,(H(n,m))LFLH +E [Var [Zi,,(?—l(n,m))]]—",;” .

The term Var [E [Z5 ,(#(n,m))|FL]] accounts for the amount of variance induced by the fluctuati-
ons of the number of cycles of length at most L. The strategy when using small subgraph conditioning

is to bound the second summand, which is the expected conditional variance
E [Var [25, (H(n,m)|F1]] = B [E |25, (H(n,m))|F| — B [25,(Hnm)|F)?].

In the following lemma we show that in fact in the limit of large L and n this quantity is negligible.
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7. Number of solutions in random hypergraph 2-colouring

This implies that conditioned on the number of short cycles the variance vanishes and thus the limiting
distribution of In Z§, , is just the limit of In E [ij\]: L] as n, L — oo. This limit is determined by the

joint distribution of the number of short cycles.

Lemma 7.1.5. For d’ € (0,00) and any w,v € Nand s € [2wv], we have

E |25, (H(n,m))*|FL] = E[Z5, (H(n,m) 7]

; =0.

limsup limsup E
L—oo  n—00 E[Zg,(H(n,m))]

Proof. Fix w,v € Nand set Zs = Z; ,(H(n,m)). Using Fact 7.1.2 and equation (7.1.5) from Propo-
sition 7.1.3 we can choose for any ¢ > 0 a constant B = B(e) and L > Ly(¢) large enough such that

for each large enough n > ng(e, B, L) we have for any s € [wv]:

E [IE [ZslfL]Q] > Y E[ZNM2<I<L:C=afPV2<I<L:Cpp=cl

c1,.-cL <B

L
>exp[—¢]E[Z7 > ]I+ 8)%exp[-Na]] P[Po(N) = ¢
C1,...,c,.<B =2

L 2
[(1+6)2N]7
= exp [—€] E [Z,)?
exp [—¢] E [Z] Z Hcl|exp [2Xi61 + A

Cl,...,c,<B l=

> E|[Z,)? exp

—2¢ + Z 5; )\l] : (7.1.6)

The tower property for conditional expectations and the standard formula for the decomposition of the

variance yields
E (23] E [E[22|71]] = E [E[22|72) — E[Z,|7.| + E [E[Z,|72P]
and thus, using (7.1.6) we have

E[E[Z2\F] -EZIFP] B[z
<
E (Z,]’ " E[Z)

— exp

—2 + Z 5; A,] (7.1.7)

Finally, the estimate exp[—z] > 1 — z for |z| < 1/8 combined with (7.1.7) and Proposition 7.1.4

implies that for large enough v, n, L and each s € [wr] we have

E |E[Z2|F1] — E[Zs|F1)? <
[ B 2] } < 2eexp [Z 0 )\l] .

=2
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7.1. Outline of the proof

As this holds for any € > 0 and by equation (7.1.4) the expression exp [Z}ﬁz (5l2)\l] is bounded, the
proof of the lemma is completed by first taking n — oo and then L — oo. O

Lemma 7.1.6. For d € (0,00) and any o > 0, we have

limsup limsup P [|Z(H(n,m)) — E[Z(H(n,m))|FL]| > aE [Z(H(n,m))]] = 0.

L—o0 n— 00

Proof. To unclutter the notation, we set Z = Z(H(n,m)) and Z,, = Z,,(H(n, m)). First we observe
that Proposition 7.1.1 implies that for any o > 0 we can choose w € N large enough such that

liminfE[Z,] > (1 - o*)E[Z]. (7.1.8)

n—oo

We let v € N. To prove the statement, we need to get a handle on the cases where the random
variables Z$ ,(H(n, m)) deviate strongly from their conditional expectation E [Z5 ,(H(n,m))|FL].
We let Zs = Z7, ,(H(n, m)) and define

Xs =|Zs —E|Zs|FL] | - 1{)2,-E[2.|FL]|>E[Z.]}
and X = 27, X,. Then these definitions directly yield
P[X < aR[Z,]] < P[|Zs — E[Z|FL]| < 20E[Z)]] . (7.1.9)

By the definition of the X’s and Chebyshev’s inequality it is true for every s that

AVar [Zs| F1)

E[XulF2] <) 2B [Z]P (|Z: — E[Z:|FL)| > PoE (4] < = Z T

j=>0

Hence, using that with Proposition 7.1.1 there is a number 8 = [(«,w) such that E[Z,] /E[Z] <

B/(wv) for all s € [wr] and n large enough, we have

4Var Z ny 26E [Z] <& Var [Z,| Fr)
E[X|F] < < .
’]:L g - avw S_Zl E [Zs]2

Taking expectations, choosing ¢ = £(«, 3, w) small enough and applying Lemma 7.1.5, we obtain

28E [Z] <X E [Var [Z, 4BeE [Z
E[X] = E[E[x|F] < 222 }Z [Var | ’fL” <R gz @110
avw = E[ZS} o
Using (7.1.9), Markov’s inequality, (7.1.10) and (7.1.8), it follows that
P[|Z, — E[Z,|FL]| < 2aE[Z,]] > 1 — 2¢. (7.1.11)
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7. Number of solutions in random hypergraph 2-colouring

Finally, the triangle inequality combined with Markov’s inequality and equations (7.1.8) and (7.1.11)

yields
P[|Z —E[Z|FL]| > ok [Z]
IP)HZ - Zw’ + |Zw - E[Zw|fL” + |E[Zw’]:L] _E[ZLFL” > alE [ZH
<3a+a/3+3a < Ta,
which proves the statement. O

Lemma 7.1.7. Let

L
U, =Y Cinln(l+3) - \d. (7.1.12)
=2

Then limsup;_, . limsup,,_, . E[|UL|] < oo and further for any € > 0 we have

limsuplimsupP[|InE [Z(H(n,m))|FL] —InE[Z(H(n,m))] —UL| > €] =0 (7.1.13)

L—oo n—00

Proof. In a first step we show that E [|Uy|] is uniformly bounded. As z — 2% < In(1 + x) < x for
|x] < 1/8 we have for every | < L:

E [|ClnIn(1 4 6;) — Ndi[] < SE[|Crn — M) + 67E [Cr] -

Therefore, Fact 7.1.2 implies that

L
E(UL <> av/N+62A (7.1.14)
1=2

Proposition 7.1.3 ensures that ) , (52 A\ < oo. Furthermore, as we are in the regime d’/k < 2¥~11n2,
we have 37, v/ < 32, k27 *=DI/2 < o0 and thus (7.1.14) shows that E [|U;|] is uniformly boun-
ded.

To prove (7.1.13), for given n and a constant B > 0 we let Cg be the event that C;,, < B for all
I < L. Referring to Fact 7.1.2, we can find for each L,e > 0 a B > 0 such that

P[Cp] >1—e. (7.1.15)

To simplify the notation we set Z = Z(H(n,m)) and Z,, = Z,,(H(n, m)). By Proposition 7.1.1 we
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7.1. Outline of the proof

can choose for any o > 0 a w > 0 large enough such that E [Z,] > (1 — «)E [Z] for large enough
n. Then Propositions 7.1.1 and 7.1.3 combined with Fact 7.1.2 imply that for any ¢y, ...,c;, < B and
small enough o = «a(g, L, B) we have for n large enough:

E[ZV2<I<L:Cp=¢|>E[Z,V2<I<L:Cp,=d]
L
> exp[—¢] E[Z] [[(1+ 6)% exp [~aA] . (7.1.16)
=2

On the other hand, for « sufficiently small and large enough n we have

E[ZWQ << L:Cl,n :Cl] :E[Z—ZWWQ <Ii< L:CLnZCl]—HE[ZdVQ SZSLZCl,n:Cl]

< 20K [Z] N
T [ P[Po(N) = ¢

E[Z,V2<I<L:Cp,=c]

L
< exple] E[Z] [J(1+ 6) exp [-5A] (7.1.17)
=2

Thus, the proof of (7.1.13) is completed by combining (7.1.15), (7.1.16), (7.1.17) and taking loga-
rithms. =

Proof of Theorem 4.1.5. For L > 2, we define

L
Wi =Y XiIn(1+6;) = \d.
1=2
Then Fact 7.1.2 implies that for each L the random variables Uy, defined in (7.1.12) converge in distri-
bution to Wy, as n — oco. Furthermore, because Y, §;v/A;, >_; 62\, < oo, the martingale convergence
theorem implies that W is well-defined and that the W}, converge to W almost surely as L — oo. The-
refore, from Lemmas 7.1.7 and 7.1.6 it follows that In Z(H (n, m)) — InE [Z(H(n, m))] converges to
W in distribution, meaning that for any € > 0 we have

lim P[|InZ(H(n,m)) —InE[Z(H(n,m))] — W|>¢e] =0. (7.1.18)

n—oo

To derive Theorem 4.1.5 from (7.1.18) let S be the event that #(n, m) consists of m distinct edges.
Given that S occurs, H(n, m) is identical to Hy(n, m). Furthermore, Fact 2.1.2 implies that P [S] =
Q(1). Consequently, (7.1.18) yields

0= lim P[|In Z(H(n,m)) — nE [Z(H(n,m))] — W| > £|8]

= lim P[|In Z(Hg(n,m)) —InE[Z(H(n,m))] — W| > ¢]. (7.1.19)

n—oo
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7. Number of solutions in random hypergraph 2-colouring

Furthermore, Lemma 7.2.1 implies that E [Z(#(n,m))],E [Z(Hy(n,m)] = © (2" (1 —21=F)™).
Thus, it holds that E [Z(H (n,m))] = ©O(E [Z(Hk(n, m)]) and with (7.1.19) it follows that

lim P[|In Z(Hg(n,m)) — InE[Z(Hg(n,m)))] — W| > €] =0,

n—oo

which proves Theorem 4.1.5. O

Proof of Corollary 4.1.7. The first part of the proof follows directly from Theorem 4.1.5 and the pro-

perties of W. By the definition of convergence in distribution and Markov’s inequality we have

_EWI

nli_{g()IP’Han(Hk(n,m)) —nE[Z(Hp(n,m)]| <w]=P[|[W| <w]>1 "

and (4.1.7) follows.

To prove the second part, we construct an event whose probability is bounded away from 0 and that
is such that conditioned on this event, the number of solutions of the random hypergraph Hy(n, m) is
not concentrated very strongly.

We consider the event 7; that the random hypergraph Hy(n, m) contains ¢ isolated triangles, i.e. ¢
connected components such that each component consists of 3k — 3 vertices and 3 edges and the
intersection of each pair of edges contains exactly one vertex. It is well-known that for ¢ > 0 there
exists € = e(d, t) > 0 such that

liminf P [T;] > e. (7.1.20)

n—oo

Given T;, we let H} (n,m) denote the random hypergraph obtained by choosing a set of ¢ isolated
triangles randomly and removing them. Then H}(n,m) is identical to Hy(n — (3k — 3)t,m — 3t) and
with Proposition 7.1.1 there exists a constant C' = C(d, k) such that

m—3t

E[Z(H} (n,m))] = E[Z(Hy(n — (3k — 3)t,m — 3t))] < C - 2"~ Bk=3)t (1 - 21—’f)

A very accurate calculation of the number of 2-colourings of a triangle in a hypergraph yields that this
number is given by (2’“_2 — 1) (2%_1 —2k 4 2). Thus, we obtain

E [Z(Hy(n, m))| ] < EZ(Hy(n — (3k — 3)t,m —30)] (272 — 1) (22— 28 ¢ 2))t

<o (1 B 21_k>m—3t (1 _ 22—k>t (1 gl 22—2k)t

<o (1-2)" (1-s(2-2)”)

< O (E[Z(Hy(n,m))]) (1 -8(2°-2) 3) :
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7.1. Outline of the proof

implying that for any w > 0 we can choose ¢ large enough so that
E[Z(Hy(n, m))|T:] < E[Z(Hg(n,m))] /(2 exp [w]).
Using Markov’s inequality, we obtain

Pln Z(Hg(n,m)) > mE[Z(Hg(n,m))] — w|Ti]

— P[Z(Hy(n,m))/E[Z(Hy(n,m))] = exp [~] T3] < 1/2. (7.121)

Thus, combining (7.1.20) and (7.1.21) yields that for any finite w > 0 there is € > 0 such that for large

enough n we have

P{|InZ(Hi(n,m)) — E[ln Z(Hg(n, m))][ > ]
>P[lnZ(Hi(n,m)) <E[lnZ(Hg(n,m))] — w]
> BIn Z(Hy(n,m)) > WE [ Z(Hy(n, m))] — | T BT

>e/2,
thereby completing the proof of the second claim. O

Proof of Corollary 4.1.8. This proof is nearly identical to the one in [BCOE14+]. Assume for con-
tradiction that (Ay,),>1 is a sequence of events such that for some fixed number 0 < ¢ < 1/2 we
have

. 1
lim #?
n—yoo  Fm.m

[A,] =0 while limsupmy, ,, [Ax] > €. (7.1.22)

n—oo

Let Hy(n,m, o) denote a k-uniform hypergraph on [n] with precisely m edges chosen uniformly at

random from all edges that are bichromatic under o. Let V(o) be the event that o is a 2-colouring of
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7. Number of solutions in random hypergraph 2-colouring

Hy(n,m). Then

E(Z(Hi(n,m))1a,) = > P[V(0)and (Hp(n,m),0) € Ay
o:[n]—={£1}

= > P[(Hg(n,m),0) € A[V(0)]P[V(0)]

o:[n]—{£1}

= Z P[Hg(n,m,o0) € A,|P[V(0)]

o:[n]—{£1}

<O ((1 — 21_k)m) Z P[Hk(n,m,o) € Ay
oin]—{+1}
(

—o (2 (1 - 21*’<?>m> P [Hy(n,m, o) € Ay] = o (2" (1 - 21*’€>m) .
(7.1.23)

By Theorem 4.1.4, for any € > 0 there is 6 > 0 such that for all large enough n we have
P[Z(Hi(n,m)) < 0E [Z(Hg(n,m))]] < /2. (7.1.24)
Now, let £ be the event that Z(Hy,(n,m)) > 0E[Z(Hg(n,m)] and let ¢ = m}, . [Ay|E]. Then
E[Z(Hk(n,m))14,] > OE[Z(Hg(n,m))|P[((Hk(n,m), o) € Ap,¢E]

> 6qE[Z(Hy(n, m))]P[€] = 0qE[Z(H}(n,m))]/2

_ 6q n 1—k\"

- 5-9(2 (1—2 ) ) (7.1.25)
Combining (7.1.23) and (7.1.25), we obtain ¢ = o(1). Hence, (7.1.24) implies that

Thnm [An] = Tnm [An| €] - P[2€] + ¢ - PE] S P[] + ¢ < e/2 4+ o(1),

in contradiction to (7.1.22). O]

7.2. The first moment

The aim in this section is to prove Proposition 7.1.1 and a result that we need for Proposition 7.1.4.
For a hypergraph H, let Z,(H) be its number of 2-colourings with colour density p. We set p = %
For p € [0, 1], we define

fizp=Hp)+91(p)  with gi(p) = %m (1 —pF—(1- p)’“) : (7.2.1)
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7.2. The first moment

The next lemma shows that f1(p) is the function we need to analyse in order to determine the expec-

tation of Z,.

Lemma 7.2.1. Let d' € (0,00). There exist numbers C; = Ci(k,d),Cy = Cy(k,d) > 0 such that

for any colour density p:
Cin~ Y2 exp [nfi(p)] < E[Z,(H(n,m))] < Caexp [nfi(p)] . (7.2.2)

Moreover, if |p — p| = o(1), then

B2, (4, m)] ~ |2 exp s | e, (7123)

Proof. The edges in the random hypergraph # (n, m) are independent by construction, so the expected

number of solutions with colour density p can be written as

E[Z,(H(n,m))] = <"> <1 - W)m where N = (Z) (1.2.4)

pn

Further, the number of “forbidden” edges is given by

(-
() () o ()

=N (p’“ +(1- p)’“) — k(];,; D) (pk‘l(l —p) +p(1 - p)"“‘l) +0 (HH)
yielding

o Ra o)
N

Mk~ 1) (p’“‘l(l —p)+p(1— p)'“_1> +0(n7?).

To proceed we observe that In (:c + %) = In(x) 4+ In (1 + %) for z > 0,y < xn and consequently

- (1 NGE (“;f’”))

N

= % <ln (1 —p =1 P)k) +In (1 — k(g; 2 pk_lil_—pg)_—f—(f(i ;)Z)k_l + 0O (n_2))>

N%lﬂ(lfpkf(l—p)k>+

d(k —1) (p’“‘l(l —p)+pd—p)*!

2 1—ph— (1= p)F ) +0(n ). (125)
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7. Number of solutions in random hypergraph 2-colouring

Equation (7.2.2) follows from (7.2.4), (7.2.5) and Stirling’s formula applied to ( ) Moreover, equa-
tion (7.2.3) follows from (7.2.4) and (7.2.5) because |p — p| = o(1) implies that

n 2 P = p) +p(1 = p)*! 1
(pn> /e lnH(p)  and e A T

The following corollary states an expression for E [Z(H (n, m))]. Additionally, it shows that when
w — 00, this value can be approximated by E [Z,,(H (n, m))].

Corollary 7.2.2. Let d' € (0,00). Then

d(k —1 d(k—1)\ 2
B (2(H(nm)] ~ exp | =g +nsi(p)] (1+ 5 ) (1.26)
Furthermore, for w > 0 we have
lim lim CZe(tnm)] (7.2.7)

w—oon—oo I, [Z(H(ny m))]

Proof. The functions p — H(p) and p — g1(p) are both concave and attain their maximum at p = p.
Consequently, setting B(d, k) = 4 (1 + dk1)

oF—T 1) and expanding around p, we obtain

B(d, k)
2

B(d, k)
2

f1(p) - (0=5?=0 (=) < filp) < fi(p) - (p—p?. (128

Plugging the upper bound from (7.2.8) into (7.2.2) and observing that the number of all colour densi-
ties for maps o : [n] — {£1} is bounded from above by n = exp[o(n)], we find

B(d, k
Sy = Y E[Z,(H(n,m))] < Cyexp [n f1(p) — (2)n1/4 : (7.2.9)
p: lp—p|>n=3/8
On the other hand, equation (7.2.3) implies that
So= Y E[Z(H(n,m))]
p: |p—p|<n=3/8
2 d(k—1) d k) 2
~ A\ o exp [2’“—2] +exp[nfi(p Zexp [ (p—p)|. (7.2.10)

The last sum is in the standard form of a Gaussian summation. Using ffooo exp [—a(x + b)Q] dr =

V2, we get
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7.2. The first moment

> em[—ntgm(p—ﬁf}“ﬂ{/eMJLﬂﬁyim(p—ﬁf]dp

pEA(n)
1
2 ™m dk—1)\ 2
~ ——— =/ = 14+ 2.11
"\ B k) "V 2< +2k—-1—1) (72.11)
Plugging (7.2.11) into (7.2.10), we obtain

d(k —1 d(k—1)\ 2
&mmm{§h4;+nﬁ@4<y+;4_i> . (7.2.12)

Finally, comparing (7.2.9) and (7.2.12), we see that S; = 0(S2). Thus, S1 + S2 ~ S and (7.2.6)
follows from (7.2.12).

To prove (7.2.7), we find that analogously to (7.2.9), (7.2.10) and the calculation leading to (7.2.12),
it holds that

. B(dk
Si= X Bz 0nm)] < Coew [aflp) - Z5H.
p: |p—p|>wn=1/2
and
1
d(k—1) _ dlk—1)\ 2
= % B~ e [ eane] (1+ 55
p: |p—p|<wn=1/2
Thus, we have lim, oo lim,, oo Si%ésé = 1, yielding (7.2.7). ]

Proof of Proposition 7.1.1. The statements are immediate by Corollary 7.2.2 and the fact that

f1(p) :1n2+%1n (1721—1@)'

O

Finally, we derive an expression for [ZZ}V(H(n, m))] that we will need to prove Proposition 7.1.4.

Lemma 7.2.3. Let d’ € (0,00),w,v € N,s € [wv] and p € A}, (n). Then with p;, , as defined in
(7.1.2) we have

B (25 ()] o LS, 0y 2 exp | G5 e [ (22,).
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7. Number of solutions in random hypergraph 2-colouring

Proof. Using a Taylor expansion of fi(p) around p = Pay.s WE get

w

NG

As |p = p,| < o for p € Aj(n), we conelude that fi(p) = fi(p,,) + O (
independent of p the assertion follows by inserting (7.2.13) in (7.2.3) and multiplying with |A¢, ,(n)|.
O

R0 = 1102+ 0 (22 ) o= tul + 0 (0= 1£)°) 72.13)

Vﬁ) and as this is
n

7.3. Counting short cycles

We recall that for [ € {2,...,L} we denote by Cj,, the number of cycles of length [ in H(n,m).
Further we let ca, . . ., ¢, be a sequence of non-negative integers and S be the event that Cj ,, = ¢; for
[ = 2,..., L. Additionally, for an assignment ¢ : [n] — {1} we let V(o) be the event that o is a
colouring of the random graph #(n,m). We also recall \;, ¢; from (7.1.3).

Proof of Proposition 7.1.3. First observe that from the definition of A\; and ¢; in (7.1.3) and the fact
that 300 | £° = —In(1 — z) we get

—-1/2
exp | Y N0} | = exp [—d(k_ D) 1 ] (1 _ d(k_l)> . (7.3.1)

_ 2 _ 2
1>2 2 (Qk t— 1) (2k 1— 1)

Together with (7.3.1), Proposition 7.1.3 readily follows from the following lemma about the distribu-

tion of the random variables C ,, given V(o).

Lemma 7.3.1. Let y; = (d(k;ll))l [1 + (216(_11)2)1} Then P [S|V(0)] ~ TIE, %_,M],ulcl for any o
with p(c) € Ay (n).

Cr:

Before we establish Lemma 7.3.1, let us point out how it implies Proposition 7.1.3. By Bayes’ rule,

we have
E[Z5,(H(n,m))|S] = P[ls] > PY()]PSV(T)]. (73.2)
TEAS, ,(n)
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7.3. Counting short cycles

Inserting the result from Lemma 7.3.1 into (7.3.2) yields

expl—pul] |
Hz 2 ot M

E[Z5,(H(n,m))|S] ~ P[S]

> BV

TEAS ,(n)

Hl ) eXpCl'M]lu;ll
P[S]

E (25, (H(n,m))] .

From Lemma 7.3.1 and Fact 7.1.2 we get that

H exp[—m] , ¢ L
=2

Cl Ml C,
~ 1+ 9" —O A
& | GO

and Proposition 7.1.3 follows. O

Proof of Lemma 7.3.1. We are going to show that for any fixed sequence of integers myq, ..., mp > 0,

the joint factorial moments satisfy

E[(Con)ms - (Crm)m. V(0 Hu : (73.3)

Then Lemma 7.3.1 follows from [BolO1, Theorem 1.23].

We consider the number of sequences of mg + - - - + my, distinct cycles such that ms corresponds to

the number of cycles of length 2, and so on. Clearly this number is equal to (C2)m, - - - (CLn)m, -

We call a cycle good, if it does not contain edges that overlap on more than one vertex. We call a
sequence of good cycles good sequence if for any two cycles C' and C” in this sequence, there are no
vertices v € C and v € C” such that v and v’ are contained in the same edge. Let Y be the number of

good sequences and Y be the number of sequences that are not good. Then it holds that
E[(Con)ms - (CLn)m,[V(0)] = E[Y [V(0)] + E[Y [V(0)]. (7.3.4)

The following claim states that the contribution of E[Y'[V(0)] is negligible. Its proof follows at the

end of this section.

Claim 7.3.2. We have E [Y|V(0)] = O (n71).

Thus it remains to count good sequences given V(o). We let o € A, (n) and first consider the number
D, ,, of rooted, directed, good cycles of length [. This will introduce a factor of 2/ for the number
of all good cycles of length I, thus D;,, = 2IC} ,. For a rooted, directed, good cycle of length [, we
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7. Number of solutions in random hypergraph 2-colouring

need to pick [ vertices (v1, ..., v;) as roots, introducing a factor (1+ o(1)) (%) ' and there have to exist

!
edges between them which generates a factor [(")UMM] . To choose the remaining vertices in the
(-

participating edges we have to distinguish between pairs of vertices (v;, v;4+1) that are assigned the
same colour and those that are not, because if o(v;) = o(v;41) we have to make sure that at least one
of the other k& — 2 vertices participating in this edge is assigned the opposite colour. This gives rise to

the third factor in the following calculation.

E [Dl,n|v(0)]

() [aemn] 22 [OGD 162 ()] o]
i e s I O | R RO

() C Kldn )y [[(le ek (_nH)’] _

2/ |knk (1 —21=F [26=2(k — 2)1]'
1)
P L I G
(251 - 1)
Hence, recalling that C; ,, = zilDl,n’ we get
[d(k — 1) (=1
E[Cin ~ 1 . 7.3.5
e A (735)
In fact, since Y considers only good sequences and [, mo, ..., my, remain fixed as n — oo, (7.3.5)
yields
L l 1 my
[d(k —1)] (=1
E[Y ~ — = (14— .
Y[V(0)] 1132 ( 5 =

Plugging the above relation and Claim 7.3.2 into (7.3.4) we get (7.3.3). The proposition follows. [

Proof of Claim 7.3.2: The idea of the proof is to find an event, namely that there exists an induced
subgraph with too many edges, that always occurs if Y > 0 and whose probability we can bound from
above. To thisaimlet A = {i e Rli = (I —1)(k— 1) + jforsome! < L,j € {0,...,k — 2}}. For
every subset R of (I — 1)(k — 1) + j vertices, where [ < L and j € {0,...,k — 2} let I be equal to
1 if the number of edges that only consist of vertices in R is at least [. Let the H, be the event that
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7.3. Counting short cycles

> Ri|Rjea 1r > 0. Itis direct to check that if Y > 0 then H, occurs. This implies that
PY > 0[V(o)] <P[HLV(0)].

The claim follows by appropriately bounding P [H,|V(c)]. For this, we are going to use Markov’s

inequality, i.e.
L k-2
PIH V()] < E| S gV ZZ S ELVo).
R:|R|€A 1=2 j=0 R:|R|=(1—1)(k—1)+j

For any set R such that |R| = (I — 1)(k — 1) + j, we can put [ edges inside the set in at most
(((l_l)(%_l)HD ways, which obviously gets largestif j = k—2 and thus (I—1)(k—1)+j = l(k—1)—
Clearly conditioning on V(o) can only reduce the number of different placings of the edges.

We observe that for a colouring o and two fixed vertices v and v’ with o(v) # o(v") the probability
m

that e(v, v’) does not exist is (1 - ﬁf—(ﬂ) . Using inclusion/exclusion and the binomial theorem,

with N = (}) and F (o) ~ 2'7FN, for a fixed set R of cardinality (I — 1)(k — 1) + j we get that

E(llV(o)] < ((“k_?)ﬂ»zl%(i)(‘”i (-5 @)

1=

1) m I o . !
< (D) (5m) ~ (T (atem)
Withm = d?n and since (;) (ie/ j) it holds that
- n I(k—1)-1 m :
= <l(l€ —-1) - 1) <( i >) ((”k)(l_gl—k)>

>

=2

PIHL|V(0)] < (1 +0(1))

B imlekll (k—1)— 1)l+1
=2

l ni+1l (1 — 21-k)!

140(1) & -\ k-1 -1
_ + Z< 1_21)k) )> ( ) :O(n_l),

(&
=2

where the last equality follows since L is a fixed number. 0

145



7. Number of solutions in random hypergraph 2-colouring

7.4. The second moment

In this section we prove Proposition 7.1.4. To this end, we need to derive an expression for the second
moment of the random variables Z; , for s € [wr] that is asymptotically tight. As a consequence,
we need to put more effort into the calculations than done in prior work on hypergraph-2-colouring
(e.g.[COZ12]), where the second moment of Z is only determined up to a constant factor. Part of
the proof is based on ideas from [BCOE14+], but as we aim for a stronger result, the arguments are

extended and adapted to our situation.
7.4.1. The overlap

For two colour assignments o, 7 : [n] — {£1}, we define the overlap matrix

plo,7) = (/)1,1(0,7) p1,-1(0,T) )

P—1,1(U77') P—1,—1(U7 T)

with entries )
pis(@,7) = o ) NG| ford,j € {21},

Obviously, it holds that
p11(0,7) + p1,—1(0,7) + p_11(0,7) + p—1,—1(0,7) = L.

If we further remember the definition from (7.1.1), we can alternatively represent p(o, 7) as

oo T):< pri(0.7) p() = pra(0,7) )
o) = pralenr) 1= plo) = p(r) + prafo,)

To simplify the notation, for a 2 x 2-matrix p = (p;;) we introduce the shorthands
Pix = Pil + Pi—1, Pox = (P1x> P=1,%)s Pxj = P1,j+ P-13, Pr,- = (Pa,1, Pr—1)-

We let B(n) be the set of all overlap matrices p(o, 7) for o, 7 : [n] — {£1} and B denote the set of
all probability distributions p = (pi ;)i jef+1} on {-£1}2. Further, we let p be the 2 x 2-matrix with
all entries equal to 1/4.

For a given hypergraph H on [n], let Z,(,Q)(H ) be the number of pairs (o, 7) of 2-colourings of H

whose overlap matrix is p. Analogously to (7.2.1), we define the functions fa, g2 : B — R as

f2:p= H(p)+g2(p)  with g2(p)=%ln(l—zpﬁ*—Zp’iferﬁj)-
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The following lemma states a formula for E [Z,gz) (H(n, m))] for p € B(n) in terms of f(p).

Lemma 7.4.1. Let d’ € (0,00) and set

32 dlk—1) 2F-3
(k) = |2 . 41
Cr(d, k) DL exp [ > (1o 1)2] (7.4.1)
Then for p € B(n) we have
o o
E |2 ((n,m)| ~ /55 T @rpi) 2 explnfa(p)
ij=1
oxp | A=) PN DY D DY D DR DY D D
2 DD D DI
(7.4.2)
Moreover, if p € B(n) satisfies ||p — pl|3 = o(1), then
E [ZISQ) (H(n, m))} ~ Cy(d, k) exp[nfa(p)]. (7.4.3)
Proof. Let p = PLL PL-L ) o B(n). Then
p-11 P-1,-1
(2) : ./_'.(0', 7—) "
E [Zp (H(n,m))} = Z P[0, T are colourings of H(n, m)] = Z 1-— N
o,1:p(0,7)=p o,1:p(0,7)=p
- ( " ) <1 _ HUT)) . (7.4.4)
PLAT, P1,—1T0 P—11M, P—1,—170 N

where N = (Z) and F (o, 7) is the total number of possible monochromatic edges under either o or

7. In the last line, o and 7 are just two arbitrary fixed 2-colourings with overlap p and the equation is
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valid because the following computation shows that (o, 7) only depends on p:

Fon= 3 (") 2 () - 2 ()

ie{£1} je{£1} i,je{£1}
k(k—1) ,_
=N | D0 ph+ D - D e+ (le i,
ie{£1} je{£1} ije{*1} '
k k—1 k k—1 k k—1
Z Pix — Z Pi x + Z Pxj — Z Pej — Z Pij T Z Pij
ie{x1} e{x1} je{£1} je{£1} i,je{£1} i,je{£1}
+@(nk*2),
yielding
F(o, 7 k(k—1
YD WIS R~
ie{+1} je{£1} i,5€{£1}

DO DI DI R N S B S

ie{x1} e{x1} je{£1} je{£1} i,j€{£1} i,7e{£1}

+0 (n*Q) .

We proceed as in the proof of Lemma 7.2.1 by using that In (m - %) = In(z) + In (1 — %) for

x>0, % < x and consequently

(1100

- %” [ (1= ok =" ok + >0 65)

UER DIV LNED DY AR S ATED DY AFSED DY LI Syt L
2n L= pie = 2Py + 2 pi

k—1 k—1 k—1
L dlk—1) POV DD DY AEED DY AR DY LD Dy
2 L= 3" pF, = >0k + 300k

+0(nh).  (145)

As F(o,7) does only depend on p, (7.4.4) becomes Using Stirling’s formula, we get the following
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7.4. The second moment

approximation for the number of colour assignments with overlap p:

( " >~\/ﬂn3/2 I @rpi)  Pexpnt(p)]. (746

n —_1n, p— n,p—1.-1M
PN, P1,—1T, P—1170, P—1,—1 ije{t1}

Inserting (7.4.5) and (7.4.6) into (7.4.4) completes the proof of (7.4.2). Equation (7.4.3) follows from
(7.4.2) because if || p — p||5 = o(1), then
2
4
IT @rpiy) % ~ =

4 72
t,j=1

and

k-1 k— k—
DD DY LD D D DY AT D DY D DY ok _3
L= pk =k 4+ 3ok (2k—1 — 1)2

7.4.2. Dividing up the interval

Letw,v € Nand s € [wr]. Analogously to the notation in Section 7.1 we introduce the sets

1 w 1 w

R

) forie{j:l}}

and
B}, (n) = p € Bu(n) : pis, pxi € | PL —Lps L fori € {+1}
w,v x0 Pk, w,v V\/ﬁ7 w,v I/\/ﬁ )

imposing constraints on the overlap matrix p insofar as the colour densities resulting from its projec-
tion on each colouring must not deviate too much from 1/2 in the set B,,(n) and from p, ,, in the set

B;, ,(n). By the linearity of expectation, for any s € [wv] we have

E[Z5,(Hnm)?) = Y E|Z2(Hnm).

pEBE, (1)

We are going to show that the expression on the right hand side of this equation is dominated by
the contributions with p “close to” p in terms of the euclidian norm. More precisely, for n > 0 we

introduce the set

Bl n(n) = {p €B;,n):llp—plly <n}
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7. Number of solutions in random hypergraph 2-colouring

and define
Z52) MHmnm) = > ZP(H(n,m)).

UJ,]/,T]
PEBE, , n(n)

The following proposition reveals that it suffices to consider overlap matrices p such that |[p — pl|, <

n~3/8. Here, the number 3 /8 is somewhat arbitrary, any number smaller than 1/2 would do.

Proposition 7.4.2. Let k > 3 and w,v € N. Ifd' /k < 2¥=11n2 — 2, than for every s € [wv] we have

E (25, (H(n,m))?] NIE[ZS(z) (H(n,m))] .

w,v,n—3/8
To prove this proposition, we need the following lemma.

Lemma 7.4.3. Letd/k < 28=11n2 — 2 and C,,(d, k) as defined in Lemma 7.4.1. Set

a1 (1- 2670,

1. If p € B, (n) satisfies ||p — plla < n=%/® then

B(d, k)
2

E [29 (H(n, m))} ~ C(d, ) exp [n fa2(p) — lp — ﬁug] . (7.4.7)

2. There exists A = A(d, k) > 0 such that if p € B,,(n) satisfies ||p — plla > n~>/%, then
E |22 (H(nm)| = O (exp [nfa () — An'/4]). (7.4.8)

Proof. To prove (7.4.7), we observe that if p € B,,(n) satisfies ||p— || < n~3/%, by Taylor expansion
around p (where H and g» are maximized) we obtain
H(p) =H (p) —2|lp—pl3+o(n""!) and (74.9)

2d(k — 1)

~ S le=plz+o(n"). (7.4.10)

92(p) = 92 (P)
Inserting this into (7.4.3) yields (7.4.7).

To prove (7.4.8), we distinguish two cases.

Case 1: ||p — p|l2 = o(1): We observe that similarly to (7.4.9) and (7.4.10) there exists a constant
A = A(d, k) > 0 such that
fa(p) < f2(p) = Allp — pll3-
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7.4. The second moment

Hence, if ||p — pll2 > n~3/% and ||p — pl|2 = o(1), then

E [ZgQ) (H(n,m))} =0 (n_3/2) exp [nfa(p)] < exp |nf2(p) — An1/4] . (7.4.11)

Case 2: ||p — pl|l2 = c where ¢ > 0 is a constant independent of n: We consider the function f5 :

[0, %] — R that results from fy by setting p; ., = p.; = 1/2. This function was introduced by

Achlioptas and Moore [AMO6] and has been studied at different places in the literature on random

hypergraph 2-colouring. The following lemma quantifies the largest possible deviation of f and fo.

Lemma 7.4.4. Let fo : [0,1] — R be defined as

_ d 1 k
Fa(p) =2+ (20) + T In <1—22_k+2pk+2(2—p> )

Then for p = (p; ;) € B, (n) we have

exp [nfa(p)] ~ exp [nfa(p11) + O (w?)] -

Proof. For p € B, (n), we consider the function

C(p) = fa(p) — fa(p1,1)

and approximate ((p) by a Taylor expansion around p = p. As fa(p) = f2(p1.1) and ;pf 2 (p) = 0 for
¥

i,7 € {0,1} and f}(p11) = 0, we have ((p) =C - ||[p—pll3 = O (%) for some constant C'. Thus,

mu|«m=0<“),

pEBL(n) n
yielding the assertion. O

In [BCOR16, Lemma 4.11] the function f5 is analysed and it is shown that in the regime d/k <

2F=11n2 — 2 it takes its global maximum at p = p and fo(p) < fo(p) for all p € [O, %] with

p # p independent of n. Combining this with Lemma 7.4.4 we find that there exists a constant
A" = A'(d, k) > 0 such that

W

(o) = ) - 4 +0 (),

where we used that f>(p) = f2(p).
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7. Number of solutions in random hypergraph 2-colouring

Thus,

E [Zg) (H(n, m))} =0 (n_3/2) exp [nfa(p)] < exp [nfa (p) — A'n + O (W?)]. (7.4.12)

As exp [nfz (p) — A'n+ O (w?)] = o(exp [nf2(p) — An1/4]), equation (7.4.12) together with
(7.4.11) completes the proof of (7.4.8). ]

Proof of Proposition 7.4.2. We let s € [wv]. Forap € B®  _;(n), we have [|p — pl2 = O (
and obtain from the first part of Lemma 7.4.3 that

%)
E[22® i m)?] 2 B[ 28700, m)| ~ Culd, k) exp [nfa () + OWH)] . (7.413)

w,v,n=3/8

On the other hand, because | B, ,(n)] is bounded by a polynomial in 7, the second part of Lemma 7.4.3
yields

Z E [Z;Q) (H(n, m))} =0 (exp [nfg (p) — An'/* + O(In n)]) . (7414

pEBs, , (n):]lp—pll2>n3/5

Combining (7.4.13) and (7.4.14), we obtain

E[Z5,(Hmm)? ~ > E[ZOMmm)| =E |20 . (n,m)]

pEB® —3/8 (n)

w,v,m

as claimed. O
7.4.3. The leading constant

In this section we compute the contribution of overlap matrices p € B° . o(n). In a first step we
w,y,n—3/8

show that for p € B 5 (n) we can approximate f, by a function f5 that results from fy by

(approximately) fixing the marginals p; ., py,; for i, j € {£1}.

Lemma 7.4.5. Let k > 3,w,v € Nand Cy,(d, k) as in (7.4.1). For s € [wv|, remember p, , from
(7.1.2). Let f5 : B — R be defined as

s d s s
f3 i p=Hip) + % In{1- 2pw,l/k —2(1- pw,u)k + Z Pi,j
i,je{£1}

Then for p € B® 5 5(n) it holds that

E 2 (H(n, m))] ~ Cn(d, k) exp [n £(0)+0 (%)} .
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7.4. The second moment

Proof. Equation (7.4.3) of Lemma 7.4.1 yields that
E [Z,@ (H(n,m))| ~ Culd, k) exp [nfa(p)] . (7.4.15)
Analogously to the proof of Lemma 7.4.4 we define
¢*(p) = falp) = f3(p).

To bound ¢*(p) from above for all p € B*

o n—3/8 (n), we observe that we can express the function f

by setting p1,. = p;,, + @ and p,1 = p, , + 3, where |al, |B] < ﬁ and thus

faip—=H(p)

d
o (1= (o +a) = (2, +8) = (1=l —) = (=2 =9+ D piy
i,je{x1}

As we are only interested in the difference between f; and f5, we can reparametrise ¢* as

¢*(av, B)
S k s k s k s k
d, (L= (pip+0)" = (plp+8)" = (L=pip =) = (1= plp = B)" + Xijereny Pis
= In s k s k :
k 1- 2pw7y - 2(1 - pw,y) + Zi,jg{il} Pi,j

Differentiating and simplifying the expression yields %(a, B), %—Cﬁs(a, B) = O (%) As we are

. . 2 .
interested in p € BZMWS ss(n) and |Bz7y,n,3 s(n)| < NG according to the fundamental theorem of

calculus it follows for every s € [wv] that
(vvi)™!
max  |¢3(p)| = / 0 (“) da = O (i) :
PEBS 55 —(vva) " Vn nv
Combining this with (7.4.15) yields the assertion. O

Proposition 7.4.6. Letk > 3,w,v € Nand d'(k — 1) < (2"! — 1)2. Then for all s € [wv] we have

2
E[2:%) (i, m))] ~ <|A;z,y<n> = oxp [ (p;z,y)]) -

| s

—1/2
dik—1) 2+F-3 ) d(k —1)
P [ 2 (21 1)2] ( - M) ~
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7. Number of solutions in random hypergraph 2-colouring

Proof. By Lemma 7.4.5 we know that for p € BZ n—3/8 (n) we have

E {Z},?) (H(n, m))] ~ Cn(d, ) exp [nfg‘”(p) +0 (%)} . (7.4.16)

A Taylor expansion of f5(p) around

ps — ( piz,l/2 pij,u(l - pi,y))

1- pi},u) pi},y (1 - pi),y)2

while setting D(d, k) = 4 (1 - d(k_l)> yields

E=;
w d, k
750 = £ )+ 0 (2) o= ol ~ 2L o 113 40 (0.

Combining this with (7.4.16) we find that

B 262 (4t )] ~ ol ) exp 05 () + © @) o= =5 o= .0 ()]

(7.4.17)

For p¥, pt € B;, ,(n), we introduce the set of overlap matrices

B s’ ) ={p € B, ss(n):p =0 pu. = p'}.

In particular, B® ., (n, p°, p') contains the “product” overlap p° ® p' defined by (p° @ pl)ij =
p?p]l. With these definitions we see that

E[z7°® (H(n,m))}: 3 3 E[Z,@(H(n,m))}. (7.4.18)

w,y,n=3/8
pOp EBE , (n) peB® 4 o (n,p%p")
w,v,n

Let us fix from now on two colour densities p?, p! € B, ,(n). We simplify the notation by setting
B:BZ’V’TL—:S/S(n?vapl)v ﬁ:p0®p1
Thus, we are going to evaluate

S$1=Y E [Zf) (H(n, m))] .

peB
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7.4. The second moment

We define the set £, = {e = (e,—¢,—¢,¢e),e € %Z, 0<e< 1}. Then for each p € B we can find
€ € &, such that

p=p+e
Hence, this gives ||p — p®||, = ||p + € — p®||, and the triangle inequality yields
lelly = o =p°lla < o+ e = p°lly < llelly + I — 7l -
As |lp—pfll, < ﬁ and for v — oo it holds that ﬁ = o(n~'/2), in this case we have
lo = p*lla = llelly + o(n™"/2). (7.4.19)

Observing that f5 (p*) = ( fl(pf)’y))Q and inserting (7.4.19) into (7.4.17), we find

D(d, k
Stve X Cald e (15 (07) = 12 G el 4 o(n!”) el + o)
peB
D(d, k
e Cald R exp [20f7 (2,)) S oxw | -n 2 G el + ot el 420

p€l§

It follows from the definition of 53 that

{ﬁ+e e & llells < n—3/8/2} c {p c E} Clpte.ect).

As
S Cold e () X e |-n G el (4 o))
€E€EER, ||ell2>n—3/8/2
< Cp(d,k)expnf; (p°)] O(n) exp [—D(C;’k)nwl] ,

equation (7.4.20) yields lim, o lim,, ;00 S2/S; = 0 and we see that e € &, with |[e]|o > n~%/8/2 do

only contribute negligibly. Thus, we conclude, using the formula of Euler-Maclaurin and a Gaussian
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integration, that

D(d, k
St CaldsRyexp [205 (02)] 35 exp | -n G el 4 o(n”) e

ecén
~V0M¢kymppnﬁ(@Wﬂn/}q{_nD%J08+omV%4da
ak-1 \ "
~ Culd k) exp [2nf7 (p5)] 4 5 (1 - (2k(—1_—1))2) . (7.4.21)

In particular, the last expression is independent of the choice of the vectors p°, p! that defined B.

Therefore, substituting (7.4.21) in the decomposition (7.4.18) completes the proof. O

Proof of Proposition 7.1.4. From (7.3.1) we remember that

~1/2
dk—1) 1 d(k — 1)
N2 | = — 1-— . 7.4.22
exp ; 10; exp [ 5 @1 1)2] ( (2b1 1)2> ( )

To prove Proposition 7.1.4 we combine Lemma 7.2.3 with Propositions 7.4.2 and 7.4.6 yielding

E [Zj},u(%(nvm))z] ~ e Cl(k‘ - 1) Qk -3 B 2 . M —1/2
E [Z05J7,,(7‘-[(7”L,m))]2 v P 2 (261 — 1)2 ok—1 _ 1 (251 — 1)2

—1/2
B dk—1) 1 d(k —1)

Combining equations (7.4.22) and (7.4.23) completes the proof. O

7.5. Excursion: Colour patterns - A different approach

In the course of proving Proposition 7.1.4, it was not clear from the beginning that we could guarantee
the second moment of the total number of solutions to be small enough for small subgraph conditio-
ning to work. An idea going beyond a straightforward calculation of the second moment was to split
the number of all colourings and to group colourings exhibiting the same “pattern”, i.e. colourings
satisfying the edges of the hypergraph in the same prescribed way. The purpose behind that was to be
able to get a handle on the “cross-terms” emerging from pairs of colour assignments that colour the
edges of a hypergraph in different ways, because we suspected pairs of colourings having “untypical”
patterns to push up the variance.

Fortunately, it turned out that we did not need to pursue this more complicated approach. Nevertheless,

as it might be interesting and might potentially be useful in further applications, we shortly sketch it
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here without going into too much detail.

To begin, we decompose the number of solutions Z into a sum of contributions that are tractable. To
this aim, let © = {£1}*\{(1,...,1) U (—1,...,—1)} be the set of all 2¥ — 2 valid combinations to
colour a k-uniform hyperedge. We call a vector 9 = (¥, ..., ¥,,) wWith ¥; € © for all ¢ € [m] a colour
pattern. Given H(n, m) and a colouring o, let y1(¥) = fi3/(n,m),+ (V) for ¥ € © denote the number of
edges e of H(n, m) such that o). = ¥ (the number of occurences of ¥J in #H(n, m) under o). Let M
be the set of all vectors . = (11(0))yee such that ) g p(9) = m. Finally, let Z,,(H(n, m)) be the

number of colourings o of H(n,m) “fitting” . Then obviously we have

Z(H(n,m)) = Y Zu(H(n,m))
peM
The strategy is to apply small subgraph conditioning to the random variables Z,, rather than directly
to Z. To calculate the second moment of Z,,, the key tool will be the following result of Hoeffding
[Hoe51] establishing a limiting normal distribution for the sum of real functions of random permuta-

tions.

Let (Y1, ..., Ynp) be a random vector which takes on the n! permutations of (1,...,n) with equal
probabilities. Let ¢, (¢, 7) for i, j = 1,...,n be real numbers and S,, = > ;" | ¢y (i, Yy;). We say that
Sy, 18 asymptotically normal distributed if

i (i) = v Lo )

for —oo < x < oo. Then the following holds.

Theorem 7.5.1 ([Hoe51]). The mean and variance of Sy, = > i, ¢n(i, Yin) are

:%chn(i,j) and  Var [S,] Znilzzflj

i=1 j=1 i=1 j=1

with dp,(i,7) = cn(i,§) — 1 72 g=16n(9:7) — L (i h) + 5 > g=1 2h=1Cn(g,h). Further-
more, the distribution of S,, is asymptotically normal if

lim maxi<i j<n d2 (i, 7)

n_mOZz 12]1 n( ):0

A main observation is that only Z,, with p close to some “canonical” f contribute to Z. We assume
that 2 — 2 divides m and let o = (m /(2% — 2),...,m/(2" — 2)) and M., be the set of all p € M
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7. Number of solutions in random hypergraph 2-colouring

with ||y — f]|2 < wm /2. Then it can be shown that

=1.

Jim liminf 3 g

E[Z,]
e, ElZ)

The proof will not be stated here as it is very similar to the proof of 7.1.1.

The rest of this section deals with giving an idea how to prove the following statement.

Proposition 7.5.2. For every w > 0, we have

lim sup max 5
n—oo MEMo E [ZN}

Elzz) [, _ak-» 1"
T

However, we will leave out some of the technical details and just perform the computations for certain

canonical choices of p and under certain conditions on the colourings.
7.5.1. Random permutations

In a first step we show that the distribution of the overlap of two random colour patterns satisfying

some balanced condition is asymptotically normal.

Weletp = (p1,...,pm) With p; € O for i € [m]. Additionally , we let 7 be a random permutation of

[m] and p™ be the permuted sequence, i.e. p; = pr(,). For r, s € [m], we define

k m
C(Pr,Ps) = Z 1{pm-:1}1{p51':1} and C(pr) = Z c(pr’ps)-
i=1 s=1

Further, let
m
X =Y clprpy)
r=1

be the overlap of p and p™. Then X = X(p) is a random variable and its distribution depends on the
choice of p. We let a(i, j) for all 4, j € [k] be defined as

a(i.§) = > Lpim1yLip,-1}-

r=1
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In order to simplify calculations, in the following we choose p such that

ali,j) =14 2 = (7.5.1)
’ m(2F—2-1) i
ok 17 # J-

This condition is for instance satisfied if Y ;" 1y, —gy = m/ (2% — 2) for all ¥ € ©. What is the

asymptotic distribution of X in this case?

Proposition 7.5.3. The random variable X is asymptotically normal with

km _km [ k-1
(

Proof. Using Theorem 7.5.1 we can calculate the expected value of X as

m m m m k
)= 373 et = 33 S 1t
r=1 s=1 r=1s=1 Li=1
A - 1 <am?  km
= 2 | 2 e 2 b | = 2T =T (7.52)

To calculate the variance of X, for r, s € [m] we define d(p,, ps) as

1 | < 1
d(pr.ps) = c(pr.ps) = — [Z c(pusps) + Y c(propo) | + —E[X]
u=1 v=1
and the symmetry of the functional ¢ combined with (7.5.2) yields
A(pr,ps) = clprp) — —clp) + (7:5.3)
Pr;Ds) = C(Pr,Ps mC br 1 ..
According to Theorem 7.5.1, the variance of X is then given by
1 m m
- 2
Var[X] = —— z; Z; d(p,,ps)?. (7.5.4)
r=1 s=
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With the decomposition of d(p,., ps) from (7.5.3) we have

m m

Z d(praps)2 = Z |:C(pr7ps)2 - %C(pmps) [C(pr) + C(ps)] + % [C(pr) + C(ps)}2
r,s=1 r,s=1
2
+§c(pr,ps) - % [c(pr) 4 c(ps)] + lfﬁ]
= 30 (el = e pdelon) + 20+ el el
r,s=1
2
+§C(praps) - %c(pr) + ];:6:|

(7.5.5)

because Y " c(py) = km and thus 3 ", c(pr)e(ps) = %@4. As we chose p such that (7.5.1)
holds, we have

m m m m k
2 crps) =33 | 20 L=ty o=ty Lpai=1) Lips=1)
r=1 s=1 r=1s=1 |ij=1
k m 2
=y [Z 1{%:1}1{%:1}] = ka(1,1)% + k(k — 1)a(1,2)?
i,5=1 Lr=1
km? 2
ST [k (2’“ _ 4) 4ok (3 Lok 8)] . (1.5.6)
Moreover,
9 m 9 m m k 2 m m k 2
5 WIEES9]) ) SITNENTNE] S ol ol
r=1 r=1 Ls=1 i=1 r=1 Li=1
m2 km?
=75 kel 1)+ kk = Da(1,2)] = gor ((zk - 4) k+ 2’“) . (157
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Combining (7.5.5) and (7.5.4) and the equations (7.5.6) and (7.5.7) yields

[ 2 — )2
Var[X]:m Z c(prsps) _%ZC

r,s=1 r=1

— ml—l 16(5’?2—22)2 [k(zk_4)2+2k (3.2k_8)]

m2 m 2
sty (1)) + O

_ km? k-l 1] km[ k-1
Com—1 |42k —2)? 16| 16 [(2"1—1)2

+ 1} . (7.5.8)

Theorem 7.5.1 provides that the distribution of X is asymptotically normal because

ma.X1<7’ 5<m d(pT‘7p5)2

lim =0
m=—00 727‘ 125 1 (p37p5)2
Together with (7.5.2) and (7.5.8) this completes the proof of the proposition. 0

7.5.2. The configuration model

To proceed, we introduce the so-called configuration model, which is an alternative model to create
random hypergraphs. For each ¢ € {1, ...,n} independently, we consider a Po(d)-distributed random
variable and collect the realisations in a vector d = (dy, ..., d,,), to which we refer as the degree

sequence of the hypergraph. We then proceed as follows:
e Create d; ‘clones’ of each vertex i:
~ (4,1), .., (3, dy)

foralli € [n]. Let D = {(i,1), ..., (¢,d;), 1 <i <n}.
e Choose a random bijection 7 : [m] x [k] — D.

e Set y1;; = (7, j) where p;; is the j’th vertex of the i’th hyperedge.

This model actually generates random hypergraphs where d; is the degree of vertex v;. We can think
of the clones as a deck of cards. To create the hypergraph, we just shuffle the deck randomly and put

the cards down in the resulting order to “fill in” the k-hyperedges one by one.
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7.5.3. Entropy

In a next step we show that the distribution of the overlap of two random assignments satisfying a

certain balanced condition in the configuration model is asymptotically normal.

For a given hypergraph, we let p, be the number of vertices of degree o for p € [0, 00). To simplify
calculations, in the following we only consider 2-colourings ¢ that are balanced on every degree,

meaning that for all p € [0, c0) we have

{v:o(v) = 1,deg(v) = o} = [{v: o(v) = —1,deg(v) = o},

where deg(v) denotes the degree of vertex v. For two randomly chosen colourings o and 7, which are
balanced on every degree, we let Y be the “overlap” in the configuration model, i.e. the number of

vertices where both colourings evaluate to 1 weighted with their degree:

Y = Z deg(v) Lo (v)=r(v)=1}-

vE[n]

Then the following holds.

Proposition 7.5.4. The random variable Y is asymptotically normal with

1
E[Y]:%” and Var[Y]:dn((fg—).

Proof. The strategy is to prove this statement by applying Theorem 7.5.1. For two colourings o and 7

and a vertex v, we define

C(U(U), T(w)) = 1{0(7)):1}1{7(1”):1} and C(O‘(U)) = 1{0(1)):1}.

We decompose Y into a sum of contributions Y, for ¢ € [0, c0). We let

Vo= Y Lpwetmdrw=1y = »_ co(©),7(v)).

v:deg(v)=p v:deg(v)=p

Thus, Y, can be interpreted as the overlap of o and 7 restricted to the vertices of degree o. Then

Theorem 7.5.1 implies that the Y, are asymptotically normal distributed.

We have

Y = Z 0Y,. (7.5.9)
0=0
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7.5. Excursion: Colour patterns - A different approach

Therefore, also Y is asymptotically normal and we use Theorem 7.5.1 to calculate the expectation and
variance of Y. We begin with the expectation. Conditioned on the vertices of degree o, we interpret 7

as a random permutation of o. We have

2

Bl =— 3 Z ot = o S c(o(v)

n
Pe v:deg(v)=0 w:deg(w

1 (npg)Q_npg
npe \ 2 4

Inserting this into (7.5.9) and applying the linearity of the expectation as well as the fact that the
degrees of the vertices are Po(d) distributed, yields

o0 o0 d
ZQZ:%@E[YQ]ZZ@%ZZ-

0=0

As Y, are independent random variables, the variance of Y decomposes in the following way:
Var [V Z o*Var[Y, (7.5.10)

Thus, analogously to (7.5.5) we find that

n 2
V= Y Y o) @) - o Y o)+ P

"Pe — 1 v:deg(v)=p w:deg(w)=p Pe v:deg(v)
_ 1 () (7.5.11)
16np, — 1 o
Inserting (7.5.11) into (7.5.10) that the degrees of the vertices are Po(d) distributed yields
© 9 2
0° (np,) n 5 dn(d+1)
V. Y| = — ~ — =
ar[y)=3 - Dy — 1 1§ 2 Pet 6
0=0 1Y
thereby completing the proof. O

7.5.4. Matchings

The penultimate step consists in connecting the number of colourings in the configuration model to
the number of patterns. More specifically, we count in how many ways two random colourings having

overlap p in the configuration model can be mapped to a bi-pattern also having overlap p. This number
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7. Number of solutions in random hypergraph 2-colouring

is given by

_ (kmp)!? (k‘m (
f(p) = (o)

L= o)

_ 2ekmp- 2km (3 = p) (kmp)** ™ (km (3 — p))*" ()

= (varkm)'y <; - p) p2hme (1 >2’“m(5’))
)

2_P

1 1
5 P )exp [k:m <2pln(p) +2 <

| 1

o\ (==

9 p 5 p )
where we used Stirling’s approximation. We let g(p) = km (2pIn(p) +2 (3 — p) In (

the exponential part of this function. As can be easily verified, we have

g (p) = km <2 In(p) — 2111% - ,0> and ¢"(p) = km (2

L2
po5-r)
Thus, expanding f around p = % gives

2 —p)) denote

Vo)’
f(p)z(Qk)

e ()b ()6

)

16km 1\?
47Fm e | 25 (2
16 eXp[ 2 (p 4)]

7.5.5. Putting things together

(7.5.12)

We now have all the pieces in place to give a sketch of the proof of Proposition 7.5.2. More precisely,
we are going to prove the following:
~1/2
E[(Z3")°] d(k — 1)
limsup ——r5H~ = |1 - ———— , 7.5.13
n—)oop E[ZB&I]Z (Qk_l - 1)2 ( )

where ZBal is the number of colourings that are balanced on every degree and whose colour pattern

fits o and p is chosen such that (7.5.1) is satisfied. If we write p = ((9))ygco, the total number of
allowed colour patterns is equal to

((/Z)ﬂ) '
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7.5. Excursion: Colour patterns - A different approach

Furthermore, such patterns can be sampled simply by permuting some ‘“canonical pattern” randomly.
Analogously, in order to create a legal “bi-pattern” (two rows of patterns), we merely choose two

permutations independently. Of course, the total number of pairs of patterns is ((#’:)19) 2,

Let A(p) be the probability that a legal bi-pattern has overlap p. Proposition 7.5.3 yields that for

n — oo we have

1 1 1\?
Ap) = ——(p—=) (km)? 7.5.14
(v \/ﬁexp[%(p 4)<m>], 7:5.19
where £ = "i—%”” (2,651;_11)2 + 1. Further, let {(p) be the probability that two randomly chosen colou-
rings have overlap p in the configuration model. Then Proposition 7.5.4 yields that for n — oo we
have
1 1 1\?
= ——(p—=) (km)? 7.5.15
(o) mexp[ 5 (7= 1) <m>], (7515
where y = km(ld;rl). Then the number of triples (H(n, m), o, T) of hypergraphs (n, m) and colou-
rings o, 7 with overlap p comes to
2
n m
M) =< ) ) Ao
(ko)

The first two factors account for the entropy (number of ways of choosing the assignments o, 7).
The next two factors are the number of patterns as desired. The last factor is the number of ways
of matching the vertex clones to the edges. By comparison, the number of pairs (H(n,m),o) of

hypergraphs and colourings o comes to

sarr ()

Therefore, integrating over all “possible” p gives

m \2 km \2
E[(Zzal)g] A(p)(klfn/z) /A(P) (km/2) < km )2/
B S ke [ dp =k A d
Rz " w0 ] T T mgz) ] SN0
(7.5.16)
By Stirling,
km km 2
<km/2> ~ 2 o (7.5.17)
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7. Number of solutions in random hypergraph 2-colouring

Furthermore, inserting (7.5.14), (7.5.15) and (7.5.12) gives

/C@MU&ﬂM@?
P

oA

_16€x
§+X£x Fm >] dp

Using the formula | _OOOO exp [—a (x + b)z] dr = \/g for a Gaussian integral, this transforms to

Ld@MMﬂM@
= gzr’“” :(2]::__11)2+1+(d+1)—
- g(m - (2i(k1__11))2]_§

Plugging (7.5.18) and (7.5.17) into (7.5.16), we get

E[Zbal]2 wkm 2

and thus we have proven (7.5.13).
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E Zbal 2 92 1
p© (2571 —1)

_d(k—1)
(251 —1)?

N

:F

NI

k—1
T
(7.5.18)
dk—1) | 2
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8 Number of solutions in random graph k-colouring

This chapter contains the proof of Theorem 4.1.9 establishing the limiting distribution of the loga-
rithm of the number of k-colourings of a random graph. The result is obtained up to the condensation

threshold for large values of k and in lower density regimes for all k£ > 3.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper On the
number of solutions in random graph k-colouring [Ras16b+] submitted to Combinatorics, Probability

and Computing.

The first section of this chapter presents an outline of the proof of Theorem 4.1.9 and gives a short
introduction to the proof ideas. In Section 8.2 the first moment of the number of solutions is explicitly
calculated and further on the number of short cycles is determined in Section B.3. To apply small
subgraph conditioning, the second moment of some auxiliary random variables is calculated very

precisely in different density regimes. This is done in Section 8.3.

As the paper is a single-author paper, the question of the contribution of this thesis’ author does not

arise.

Throughout the chapter we assume that m = [d'n/2], where d' remains fixed as n — oo. We also
require that k > 3.

8.1. Outline of the proof

To determine the distribution of In Z(G(n, m)), it will be necessary to control the size of the colour

classes. To formalize this, we introduce the following notation. For a map o : [n] — [k], we define
plo) = (p1(0),...,pr(c)), where p;i(c) = o~ (i)|/n fori=1...k.
Thus, p(o) is a probability distribution on [k], to which we refer as the colour density of o.

Let Ay (n) signify the set of all possible colour densities p(c) for o : [n] — [k]. Further, let A4 be
the set of all probability distributions p = (p1, ..., pg) on [k], and let p* = (1/k, ..., 1/k) signify the
barycentre of Ay.

In order to simplify the notation, for the rest of this chapter we assume that w, v are odd natural
numbers, formally we define N = {2i —1:4 € N} and letw, v € N. We say that p = (p1,...,pr) €
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8. Number of solutions in random graph k-colouring

Ag(n) is (w, n)-balanced if

1

oL w
pzk\/ﬁ’

i)

and let Ay, ,,(n) denote the set of all (w, n)-balanced p € Aj(n). As we will see, in order to prove state-

for all i € [k]

ments about the number Z, of all solutions, it suffices to consider solutions o with p(o) € Ay ,(n).
We let Zj,,(G) signify the number of (w,n)-balanced k-colourings of a graph G on [n], i.e. k-
colourings o such that p(o) € Ay, (n).

Since verifying the required properties to apply small subgraph conditioning directly for the random
variable Z,, is very intricate, we break Z,, down into smaller contributions, for which we determine

the first and second moment in the following sections.

To this aim, we decompose the set Ay, ,,(n) into smaller sets. We define

—1
Sk,w,,,:{sez’“: Is|l1 = 2i,i € N,i < wy2 } (8.1.1)

Skw,» contains vectors that we use as centres of disjoint "balls’ to partition the set .Ak,w(n): For

s =(51,...,5) € Skw, We let pk’“’”’s € R” be the vector with components

kwuys 1 Sq

Pi _E+V\/ﬁ'

(8.1.2)

Further, we let A} (n) be the set of all colour densities p € Ay, ,,(n) such that

k.wv,s 1 k,w,v,s + 1 > .

pl pz l/\/ﬁ?ﬁz V\/ﬁ

For a graph G, we denote by Z;  (G) the number of 2-colourings ¢ such that p(o) € A} (n).
For each fixed v, we have Zj,, = Zseskw R
conditioning to the random variables Z g’w ,, rather than directly to Zj. But first, we will calculate the

and our strategy is to apply small subgraph
first moments of Z;, and Z, ,, in Section 8.2 to obtain the following.
Proposition 8.1.1. Fix an integer k > 3 and a number d' € (0, 00). Let w > 0. Then

E [Z4(G(n,m))] = O(K™(1 — 1/K)") and  lim liminf = 2ke(&(nm))

S EZGmm)]

The key observation the proof is based on is that the fluctuations of Z;(G(n,m)) can be attributed
to fluctuations in the number of cycles of a bounded length. Hence, for an integer [ > 2 we let Cj ,
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8.1. Outline of the proof

denote the number of cycles of length exactly [ in G(n, m). Let

d' (—1)!

)\l — and 5[ = W (813)

~ 9

The following fact shows that C5 ,, . . . are asymptotically independent Poisson variables (e.g. [BolO1,
Theorem 5.16]):

Fact 8.1.2. Ifco,...,cy are non-negative integers, then
L
lim Pv2<1<L:Cip=c]= [TPPo(X) = al.
1=2

In Section B.3 the impact of the cycle counts C7 ,, on the first moment of Z;, ,(G(n,m)) is investigated.
As this was already done in [BCOE14+], we carry it out in the present work only for the sake of

completeness. The result is the following:

Proposition 8.1.3. Assume that k > 3 and d' € (0,00). Then

Z )\55? < 0.
=2

Moreover, let w,v € N and co, . . ., cy, be non-negative integers. Then

E|Z;, (G(n,m)¥2<I<L:Cp,=c L
[ b, : l} ~ 1+ 6 exp[—6n]. (8.1.4)
E |Z},.,(G(0,m))] =

Additionally, to apply small subgraph conditioning, we have to determine the second moment of
ZS

i w1 (G(n,m)) very precisely. This step constitutes the main technical work in this chapter. We con-

sider two regimes of d’ and k separately. In the simpler case, based on the second moment argument

from [ANOS5], we obtain the following result.

Proposition 8.1.4. Assume that k > 3 and d' < 2(k — 1) In(k — 1). Then

E [, (G(n,m))?

l ~ exp Z)\lézz

E [ngwvy(g(n, m))} 1>2

The second regime of d’ and k is that k > kg for a certain constant kg > 3 and d’ < dconq (With
dcond = derit the number defined in (2.5.3)). In this case, we replace Z;  , by the slightly tweaked
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8. Number of solutions in random graph k-colouring

random variable Z ,‘::W, used in the second moment arguments from [BCOHRV 16, COV13].

Proposition 8.1.5. There is a constant ky > 3 such that the following is true. Assume that k > ko and
2(k—1)In(k—1) < d' < deona. Then for eachw,v € N and s € Sk w,v there exists an integer-valued
random variable 0 < Z,i oy < 2} ., Such that

E[Z‘;wjy(g(n,m)) ~E[Zi,,(Gnm))]  and (8.1.5)

il L S o
E [zg,w,y(g(n, m))} =

The proofs of Propositions 8.1.4 and 8.1.5 appear at the end of Section 8.3. In order to apply small
subgraph conditioning to the random variable Z k. We need to investigate the impact of C},n on the
first moment of Zﬁmu. Thus, we need a similar result as Proposition 8.1.3 for Z,i,ww. Fortunately,
instead of having to reiterate the proof of Proposition 8.1.3, we obtain the following by combining

Proposition 8.1.3 with (8.1.5):

Corollary 8.1.6. Let ca,. .., cy be non-negative integers. With the assumptions and notation of Pro-

position 8.1.5 we have

E |2,

Gm)V2<I<L:Cp=a| L
P : l] ~ H [1 + 5[]01 exp [—(51/\1] .
E[Z4,,,(G(n,m))] o

As the proof is nearly identical to the analogous proof in [BCOE14+], we defer it to Appendix B.

The aim is now to derive Theorem 4.1.9 from Propositions 8.1.1-8.1.4. The key observation is that the

variance of the random variables Z;7

is affected by the presence of cycles of bounded length and that
this is the only significant influence. As a consequence, conditioning on the small cycle counts up to
some preselected length reduces the variance of Z;; . What is maybe surprising is that conditioning
]2

on the number of enough small cycles reduces the variance to any desired fraction of E[Z}

As done in [COW 16+, Ras16a+], the arguments we use are similar to the small subgraph conditioning
from [Jan95, RW94]. But we do not refer to any technical statements from [Jan95, RW94] directly
because instead of working only with the random variable Z;, we need to control all Z;  , for fixed
w,v € N simultaneously. In fact, ultimately we have to take v — oo and w — oo as well. Our line of
argument follows the path beaten in [COW 16+, Ras16a+] and the following three lemmas are nearly
identical to the ones derived there.
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8.1. Outline of the proof

For L > 2, let 71, = Fr,(d, k) be the o-algebra generated by the random variables C,, with
2 <[ < L. The set of all graphs can be divided into groups according to the small cycle counts: For

each L > 2, the decomposition of the variance of Z}  yields
Var [Z,,(G(n,m))] = Var [E [Z; , ,(G(n,m))|FL]] +E [Var [Z,, ,(G(n,m))|FL]],

meaning that the variance can be written as the variance of the group mean plus the expected value
of the variance within a group. The term Var [IE [Z b (G(n,m))|F, LH accounts for the amount of
variance induced by the fluctuations of the number of cycles of length at most L. The strategy when
using small subgraph conditioning is to bound the second summand, which is the expected conditional

variance
E [Var [ 2, ((n, m)|F2]] = E [E | 24, (G(n,m))*|Fe| = E 2, (G(n.m))|Fe]?].

In the following lemma we show that in fact in the limit of large L and n this quantity is negligible.
This implies that conditioned on the number of short cycles the variance vanishes and thus the limiting
distribution of In Z}}  is just the limit of In[E [ how | F, L} as n, L — oo. This limit is determined by

the joint distribution of the number of short cycles.

Lemma 8.1.7. Let k > 3 and d' € (0,00). For any w,v € N and s € Sk w,» We have

2

E |20, (G0, m)1FL] — E |23, (G0, m))| P
limsuplimsup E

Lo oo E |2}, ,,(g(n,m))}2

= 0.

Proof. Fix w,v € N and set Z; = Z} , ,(G(n,m)). Using Fact 8.1.2 and equation (8.1.3) from
Proposition 8.1.3 we can choose for any ¢ > 0 a constant B = B(e) and L > Ly(¢c) large enough

such that for each large enough n > ng(e, B, L) we have for any s € Sy, ,,:

E[E[Zslﬁ]“’]z > E[ZV2<I<L:Cp=c’PV2<1<L:Cly, =
Cl,...7CLSB

L

>exp (€| E[Z)° > ]I +6)"exp[-N6]]PP[Po(\) = ¢
cl,....cp,<B [=2

1 +07) 2)\[]
= —¢|E[Z,)?
eXP[ 5] [ ] Z<B H Cl'GXp 2)\l51 + >\l]
cl,..,cp,<B l=
> E[Z)?exp | —2¢ + Z 5; )\l] : (8.1.6)

The tower property for conditional expectations and the standard formula for the decomposition of the
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8. Number of solutions in random graph k-colouring

variance yields
E (23] =E [E[22|71]] = E [E[23|72) — E[Z,|7.| + E [E[Z,|72P]
and thus, using (8.1.6) we have

E|E[22|7]) —E(ZJ7)] B[z
< 55 —exp
E (Z,]* T EZ)

L
2+ ) 5§A,] : (8.1.7)
=2

Finally, the estimate exp[—z] > 1 — z for |z| < 1/8 combined with (8.1.7) and Proposition 8.1.4

implies that for large enough v, n, L and each s € Sy, ,, we have

E |E[Z2|FL] — E[Zs|F1)? o
[ EZ] } < 2eexp [Z 512)\11 .

=2

As this holds for any € > 0 and by equation (8.1.3) the expression exp [Z;ﬁQ 512)\1] is bounded, the
proof of the lemma is completed by first taking n — oo and then L — oo. O

Lemma 8.1.8. For any o > 0, we have

lim sup lim sup P [| Z, (G (n, m)) — E [Zk(G(n,m))|FL] | > o [Zk(G(n,m))]] = 0.
L—oo n—00
Proof. To unclutter the notation, we set Z, = Z(G(n,m)) and Zy,, = Zj,(G(n,m)). First we
observe that Proposition 8.1.1 implies that for any o« > 0 we can choose w € N large enough such
that

liminf B [Z; ] > (1 - AE[Zy]. (8.1.8)

We let v € N. To prove the statement, we need to get a handle on the cases where the variables

S

(G(n,m)) deviate strongly from their conditional expectation E [Z ki (G(n,m))|FL|. We let

k,w, v
Zs =%} ,,(G(n,m)) and define
Xs =|Zs — E|Zs|FL] | - 1{)2,~E[Z.|FL)|>0E[Z.]}
and X =) Si.,., Xs- Then these definitions directly yield

PIX < aE[Z,]] <P|Zkw — E[Zko|FL]| < 2aE[Zk]] - (8.1.9)
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8.1. Outline of the proof

By the definition of the X’s and Chebyshev’s inequality it is true for every s that

4AVar [Zs|Fr)

E[X|FL) < Y 2aE[Z]P[|Z, ~ E[Z,|FL]| > YeE[Z)] < — Z,]

320

Hence, using that with Proposition 8.1.1 there is a number 8 = [(«,w) such that E [Z,] /E [Z] <
B/(|Skwy|) forall s € Sk, ,, and n large enough, we have

AVar [Z,|FL] _ 4PE 2] 3 Var [Z,|FL]

oB[Z] T alSkevl S E [Z,)?

EX|F < )

SES}C’W,V

Taking expectations, choosing ¢ = £(«, 3, w) small enough and applying Lemma 8.1.7, we obtain

ABE [ Zy) 3 E[Var [Z|Fp]] _ 48E[Z]

E[X]ZE[E[XU:LHSa|Sk,w,u|S€ Elzf T e

<a’E(Zy]. (8.1.10)

Sk,w,u

Using (8.1.9), Markov’s inequality, (8.1.10) and (8.1.8), it follows that

P(|Zkw — E[Zk | FL]| < 2aE [Zy,]] > 1 — 20 (8.1.11)
Finally, the triangle inequality combined with Markov’s inequality and equations (8.1.8) and (8.1.11)
yields

P[|Zy, — E[Zg|FL]| > oF [Zg]]
<SP Zk = Ziwl + 1 Zkw — E[Zgw| FLl| + |E[Zkw| FL] — E[Zk]| FL]| > aE[Z]]

<3a+a/3+3a < Ta,

which proves the statement. O
Lemma 8.1.9. Let

L
U, =Y Cinln(l+3) - \d. (8.1.12)
=2

Then limsup;_, . limsup,,_, . E[|UL|] < oo and further for any € > 0 we have

limsup limsup P [| InE [Z;(G(n,m))|FL] —InE[Zk(G(n,m))] —UL| >¢€] =0 (8.1.13)

L—oo n—o00

Proof. In a first step we show that E [|UL|] is uniformly bounded. As z — 22 < In(1 + z) < x for
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8. Number of solutions in random graph k-colouring

|z| < 1/8 we have for every [ < L:
E[|CrpIn(1+ &) — Midi] < GE[|Crn — Aif] + 6B [Cran] -

Therefore, Fact 8.1.2 implies that

L
E(UL <6/ + 62N (8.1.14)
=2

Proposition 8.1.3 ensures that Y, 67\, < oo. Furthermore, as d’ < (2k—1)In k, we have Y, §v/ A <
S k2~ (=12 < o6 and thus (8.1.14) shows that E [|Uy|] is uniformly bounded.

To prove (8.1.13), for given n and a constant B > 0 we let Cp be the event that Cj,, < B for all
I < L. Referring to Fact 8.1.2, we can find for each L,e > 0 a B > 0 such that

P[Cp] >1—e. (8.1.15)

To simplify the notation we set Zj, = Z,(G(n, m)) and Z, ., = Zj, ,,(G(n, m)). By Proposition 8.1.1
we can choose for any o > 0 aw > 0 large enough such that E [Z, ,,] > (1—a)E [Z}] for large enough
n. Then Propositions 8.1.1 and 8.1.3 combined with Fact 8.1.2 imply that for any ¢y, ...,c;, < B and

small enough o = «a(g, L, B) we have for n large enough:

E[Z]JVQ S l S L: Cl,n = Cl] 2 E[ZkM’VQ S l S L: Cl,n = Cl]

L
> exp [—¢] E [Zy] [ (1 + 6)% exp [-a1A] . (8.1.16)
=2

On the other hand, for « sufficiently small and large enough n we have

E[ZyV2 <1< L:Cpp = ¢

=E[Z; — Zk,wW2 <I<L:Cpy = l "‘E[Zk,MW2 <I<L:Cpy= )

20K [Z
< 2] +YE[ZuwlV2 <1< L:Cpy =
[T P [Po(N) =
L
<exple H (1 4+ 6;)% exp [—0\] (8.1.17)
=

Thus, the proof of (8.1.13) is completed by combining (8.1.15), (8.1.16), (8.1.17) and taking loga-
rithms. O
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Proof of Theorem 4.1.9. For L > 2, we define

L
= ZX[ ln(l + (5[) —X\90; and W' = ZX[ ln(l + (51) — N0y
=2 1>2

Then Fact 8.1.2 implies that for each L the random variables Uy, defined in (8.1.12) converge in distri-
bution to W, as n — co. Furthermore, because Y, §;v/A;, >, 62\, < oo, the martingale convergence
theorem implies that W' is well-defined and that the W, converge to W’ almost surely as L — oc.
Hence, from Lemmas 8.1.9 and 8.1.8 it follows that In Z;.(G(n,m)) — InE [Zi(G(n, m))] converges

to W' in distribution, meaning that for any e > 0 we have

lim P [|1In Z,(G(n,m)) — InE[Z,(G(n,m))] — W'| > £] =0. (8.1.18)

n—oo

To derive Theorem 4.1.9 from (8.1.18), we denote by S the event that G(n, m) consists of m distinct
edges, or, equivalently, that no cycles of length 2 exist in G(n, m). Given that S occurs, G(n,m) is
identical to G(n,m) and W’ is identical to W. Furthermore, Fact 2.1.1 implies that P [S] = Q(1).
Consequently, (8.1.18) yields

0= TLILH;O]ID [[In Z(G(n,m)) — InE [Zy(G(n,m))] — W'| > €|S]

= nh_g)loIP’ [[InZk(G(n,m)) —InE[Zy(G(n,m))] — W| > ¢]. (8.1.19)

As Lemma 8.2.1 implies that E [Z;(G(n,m))],E[Z(G(n,m)] = © (k" (1 —1/k)™), we have
E[Zk(G(n,m))] = O(E [Zr(G(n,m)]) and with (8.1.19) it follows that

nh_)rrololP’ [[In Zk(G(n,m)) —InE[Zp(G(n,m)))] — W| > ] =0,

which proves Theorem 4.1.9. O

8.2. The first moment

The aim in this section is to prove Proposition 8.1.1. The calculations that have to be done follow the
path beaten in [ANO5, COV13, KPGW 10, Ras16a+] and are in fact very similar to [BCOE14+]. Thus,
most of the proofs are deferred to Section B.1. Furthermore, at the end of the section we state a result

that we need for Proposition 8.1.4.

Let Z ,(G) be the number of k-colourings of the graph G with colour density p. Let p* be a k-
dimensional vector with all entries set to 1/k. We define

k
d
flzpeAkHH(p)—i—zln(l—;p?).
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8. Number of solutions in random graph k-colouring

In order to determine the expectation of Z, ,, we have to analyse the function fi(p). The following

lemma was already obtained in [BCOE14+] and its proof can be found in Section B.1.

Lemma 8.2.1. Letk > 3andd' € (0,00). Then there exist numbers C; = Cy1(k,d), Cy = Co(k,d) >
0 such that for any p € Ay (n) we have

Cin'z exp[nfi(p)] < B2y, (G(n,m))] < Coexpnfi(p)]. 8.2.1)
Moreover, if ||p — p*|l2 = o(1) and d = 2m//n, then

E [Z), p(G(n,m))] ~ (21n) 2 k2 exp [d/2 + nfi(p)]. (8.2.2)

We can now state the expectation of Z. The proof will be carried out in detail in Section B.1.

Corollary 8.2.2. Forany k > 3,d € (0,00) and d = 2m/n, we have

k-1

d T2
E [Z4(G(n. m))] ~ exp [d/2 + nfy (o) <1+-k;1> |
Proof of Proposition 8.1.1. The first assertion is immediate from Corollary 8.2.2. Moreover, the se-

cond assertion follows from Corollary 8.2.2 and the second part of Lemma 8.2.1. O

Finally, as our approach requires the analysis of the random variables Z} (G (n,m)), we derive an

expression for E [Z how

(G(n,m))| that we will need to prove Proposition 8.1.4.

Lemma 8.2.3. Let k > 3,w,v € N,d € (0,00) and d = 2m/n. For s € S, and p*“"* as
defined in (8.1.2), we have

E (20, m))] ~ [ 4G ()] (270) 7 K2 exp [d/2 + m fa ()

k.w,v,s

Proof. Using a Taylor expansion of fi(p) around p = p , we get

.MMZﬁ(“”ﬂ+@< )w Pt +0 (o= = E). 23)

NZD

As |p — ) for p € A, ,(n) and [|p — pF"#||3 = O (3z;), we conclude
that f1(p ) fr(phevss) + O (i) and as this is independent of p, the assertion follows by inserting
(8.2.3) in (8.2.2) and multiplying by |AF , ,(n)]. O
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8.3. The second moment

The aim of this section is to prove Proposition 8.1.4, which constitutes the main technical contri-
bution of this work and Proposition 8.1.5, which is done in the last subsection and is based on and
an enhancement of results derived in [ANOS5]. The crucial points in our analysis are that, similar to
[BCOE14+, Ras16a+], we need an asymptotically tight expression for the second moment and instead
of confining ourselves to the case of colourings whose colour densities are (O(1),n)-balanced, as
done in most of prior work [ANO5, BCOHRV16, COV13, KPGW10], we need to deal with (w,n)-
balanced colour densities for a diverging function w = w(n) — oo. However, our work has to extend
the calculations from [BCOE14+] following the example of [Ras16a+], because we aim for a state-
ment about the whole distribution of In Z;(G(n, m)). Our line of argument follows that of [Ras16a+],
where analogue statements are proven for the problem of hypergraph 2-colouring.

8.3.1. Classifying the overlap

To standardise the notation, we define the overlap matrix p(o,7) = (pij(o,T)); je[r for two colour

assignments o, 7 : [n] — [k] as the doubly stochastic k& x k-matrix with entries

pilo) = o @) n e G

We let By (n) denote the set of all overlap matrices and By, denote the set of all probability measures
p = (pij)i jex) on [k] x [k]. Moreover, we let p signify the k x k-matrix with all entries equal to k=2,

the barycentre of By,. For a k x k-matrix p = (p;;), we introduce the shorthands

k k
P =D Pigs  Px = (Pin)icin; P =Y pigs Pee = (paidich
J=1 i=1
With the notation from Section 8.1, we observe that for any 0,7 : [n] — [k] we have p..,p.. €
Ag(n). We introduce the set

1 w 1 w .
B w(n) = {p € Br(n) : pix, pxi € [k VA + \/ﬁ> foralli € [k:]} ,
which corresponds to Ay, ., () insofar as for p € By, ,,(n) we have piy, pei € Ap(n) forall i € [K].

We remember Sy, , , from (8.1.1). Then for s € Sy, ,, , we define

1 1 .
BZ,W,V(H) = {p S Bk,w(n) D Pixs Pxi € |:pif37w71/,s . - nvp;ﬂ,w,u,s + V\/ﬁ) forall 7 € [k?]} .

Thus, for any fixed v, By, (n) is a disjoint union of all B;  (n) for s € Sk, For a given graph G

on [n], we let Z IgQ’?(G) be the number of pairs (o, 7) of k-colourings of G whose overlap is p. By the
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8. Number of solutions in random graph k-colouring

linearity of expectation,

pEB; , (1)

k,w,v

To proceed calculating this quantity, we first need the following elementary estimates whose proofs

can be found in Section B.2.

Fact 8.3.1. Forany k > 3, d’ € (0,00) and d = 2m/n, the following estimates are true.

1. Let p € Bi(n). Then

1—k2
2mn 2

%
Hz’,j:l V27 pij

E[2)(Gn,m))] ~

. exp [d/2 +nH(p) +mIn(l = [lp..ll3 = llpe- I3+ lIoll3)]| -

(8.3.2)

2. Forany p € By(n) with ||p — p||3 = o(1), we have

2

(2) k2 1=k 2 2 2
E 12, ,(G(n,m))| ~ k% (2mn) 2~ exp |d/2 + nH(p) + mIn(1 = [lp|l5 = llos- Iz + [ll2)] -
(8.3.3)

To simplify the notation, we introduce the function f5 : By — R defined as

d
fa(p) = H(p) + 5 (1 = [lo-llz = llow- I3 + loll2). (83.4)

A direct consequence of Fact 8.3.1 that will be used in the sequel is that for every p € By (n) we have

AR

rp(G(n,m))| = exp [nfa(p) + O(lnn)]. (8.3.5)

8.3.2. Dividing up the hypercube

To proceed, we refine equation (8.3.1). For each w,v € N, s € S, , and > 0, we introduce

Bz,w,u,n<n> = {p € Bz,w,u(n) : ”p - ﬁH2 < 77} .

We are going to show that the r.h.s. of (8.3.1) is dominated by the contributions with p “close to” p in
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8.3. The second moment

terms of the euclidean norm. More precisely, for a graph G let

ZZ,S,)M<G) = Z Z,S[))(G) for any n > 0.
pEBz’w’Vﬁ(n)

Then the second moment argument performed in [ANOS5] fairly directly yields the following statement
showing that overlap matrices that are far apart from p do asymptotically not contribute to the second

moment.

Proposition 8.3.2. Assume that k > 3 and d' < 2(k — 1) In(k — 1). Further, let w,v € N. Then for
any fixed n > 0 and any s € Sk, ., it holds that

E (2w (Gnm)?] ~E |22, (Gn.m))] .

To prove this proposition, we first define a function
_ d 2 2
f2:p €Brw(n) 2R, p=rHp)+5ln (1= 4ol ) -
The following lemma shows how f5 defined in (8.3.4) relates to fo.

Lemma 8.3.3. For p = (pi;) € By w(n), we have

exp [nfa(p)] ~ exp [nfa(p) + O (w?)] .

Proof. We define the function
¢(p) = f2(p) = f2(p)

and derive an upper bound on ((p). By definition, for each p € By, (n) there exist & = (;);c[r) and

B = (Bj) ek such that p;, = 2+ a;and p,; = 1 + B; forall i, j € [k] with |a;], |8;] < ﬁ Thus,

d _ _
falp) = H(p) + 5 (1= p.x+ all3 = l15s- + Bl + lloll3) -

As we are only interested in the difference between f» and fs, we can reparametrise ¢ as

d 1—|ps+a 2 — _*-+B 2+ 2
(o) = i (LBl 1+ 15 + )
1—%+lell3

Differentiating and simplifying the expression yields 8%(04, B), %j(a, Bg) =0 <ﬁ> for all i,j €

[k]. According to the fundamental theorem of calculus, it follows that
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8. Number of solutions in random graph k-colouring

o= [0 () m=o (%)
ma; = — | dag = —,
PGBk,:((n) ol —w/\/n Vn ' n

completing the proof. O

Proof of Proposition 8.3.2. Equation (8.3.5) combined with Lemma 8.3.3 reduces our task to studying
the function f5(p). For the range of d covered by Proposition 8.3.2, this analysis is the main technical

achievement of [ANOS5], where (essentially) the following statement is proved.

Lemma 8.3.4. Assume that k > 3,w € N aswell as d' < 2(k — 1)In(k — 1) and d = 2m/n. For

any n > 0 and any overlap matrix p € By, ,,(n), we have

(o) < fap) — 2=

(K*|lpll3 — 1) + o(1). (8.3.6)

Proof. For psuchthat 3% | pii = S°F | pii = 1/k, the bound (8.3.6) is proved in [ANO3, Section 3].
This implies that (8.3.6) also holds for p € By, (n), because fo is uniformly continuous on the
compact set By, ., (). O

Now, assume that k and d satisfy the assumptions of Proposition 8.3.2 and let v € N and n > 0 be any
fixed number. Then, for any p € B}, (n), we have [[p — pll2 = O (ﬁ) Consequently, we obtain
with (8.3.5) that

S E [Z,f;(g(n, m))} >E [Z,f},(g(n,m))] > exp [nfa2(p) + O(Inn)] . (8.3.7)
peEB; (1)

k,w,v

llp—pll2<n

On the other hand, the function B — R, p — k?||p||2 is smooth, strictly convex and attains its global
minimum of 1 at p = p. Consequently, there exist (cx)x > 0 such that if ||p — p|l2 > 7, then
(K*||pll2 — 1) > cx. Hence, Fact 8.3.1, Lemma 8.3.3 and Lemma 8.3.4 yield

S E[20G0,m)] < explnfa(p) — nendi +o(n)] (8338)
pEBi,w,y(”)
lo=pll2>n

2(k—1) In(k—1)—d

iz >0

where d, =

Combining (8.3.8) and (8.3.7), we conclude that E Zg’w’y(g(n,m))ﬂ ~ E [Zz (j)yn(g(n, m))]
thereby completing the proof of Proposition 8.3.2. O

Having reduced our task to studying overlaps p such that ||p — p||, < 7 for a small but fixed n > 0,
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8.3. The second moment

in this section we are going to argue that, in fact, it suffices to consider p such that ||p — p||, <

n~3/® (where the constant 3/8 is somewhat arbitrary; any number smaller than 1/2 would do). More

precisely, we have

Proposition 8.3.5. Assume that k > 3 and that d' < dcong. Let v,w € N and s € Sy, . There exists
a number ng = no(d', k) such that for any 0 < n < ng we have

E [zs (2) (g(n,m))} ~E [zﬁ ) (g(n,m))] .

k7w7’/777 k,w,z/,n_3/8

The key to proving this proposition is the following lemma. It specifies the expected number of pairs

of solutions in the cases where the overlap matrices p € By, (n) satisfy [[p — pll2 < n=3/8 or
lp = pll2 € (0%, m).

Lemma 8.3.6. Letk > 3,d' < (k—1)? and d = 2m/n. Set

Co(d, k) = expd/2 K (27n) % and  D(d, k) = K (1 - (k:jll)2> . (8.3.9)

o Ifp€ By, ,(n) satisfies || p — pll2 < n=3/%, then

" D(d, k _
E [Z;f,i(g(n, m))} ~ Cn(d, k) exp [2nf1(p ) — n(2)||p — pug] . (8.3.10)
e There exist numbers n = n(d, k) > 0 and A = A(d, k) > O such that if p € By , , . (n) satisfies
lp = pll2 € (n=3/8,7), then
E [22)(G(n,m)] = exp [20f:(5%) — ant/1]. 8311

Proof. As Fact 8.3.1 yields E [Z,gzg(g(n,m))} ~ Cy(d,k)exp[nfa(p)], we have to analyse fo.
Expanding this function around p yields

D(d, k)

falp) = o(p) = —5=llp = pllz + Ollp = pll2)- (8.3.12)

Consequently, for ||p — pl|s < n=3/8,

D(d, k)

5 llo=pl3 +0(n™"%)

exp [nfa(p)] = exp |nfa(p) — n
As fo satisfies fa(p) = 2f1(p*), the statement in (8.3.10) follows.

To prove (8.3.11), we observe that similarly to (8.3.12) and because f> is smooth in a neighbourhood
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8. Number of solutions in random graph k-colouring

of p, there exist » > 0 and A > 0 such that for ||p — plj2 < 7,

f2(p) < f2(p) — Allp — pll3.

Hence, if ||p — pl|2 € (n=%/8,7), then

)

E Zﬁkg@um»}=c>cf?’>amhwxpnzemppnﬁuf»—An“4,
as claimed. O

Proof of Proposition 8.3.5. We fix s € S, ,. Further, we fix > 0 and A > 0 as given by Lem-
ma 8.3.6. For each p € B} , . (n), we have [[p — pll2 = O (%) and obtain from the first part of
Lemma 8.3.6 that

E |28, s (0nm)| = E|Z() (Gn.m)| ~ Ou(d. k) exp [2nfi(p") + 0 (+?)] . 83.13)

k,w,v,n=3/8
On the other hand, because |5} (n)| is bounded by a polynomial in n, the second part of Lem-

kw,vn
ma 8.3.6 yields

S E [z,g,;@(n,m))} < exp [anl(p*) — AnY/S 4+ O(In n)] . (8.3.14)
peBIz,w,u,n(n)
lo—plla>n—/8

Combining (8.3.13) and (8.3.14), we obtain

E z;fj}m(g(n,m))] ~ Y E [z,ﬁ(g(n,m))} NE[Z;(j’)l/’nfg/S(g(n, m))},
peB ()

k,w,v,n

as claimed. O
8.3.3. Calculating the constant

This section is dedicated to computing the contribution of the overlap matrices p € B _as5(n).
kyw,v,n—3/8

To this aim, we first show that in each region of the hypercube we can approximate f> by a function
where the marginals are set to those of the centre of this region as defined in (8.1.2). More formally,
let f5 : B — R be defined as

S d w,V,S
f3 59 Hip)+ Sn (1= 201" 3+ 1pl3)

Then the following is true
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8.3. The second moment

Lemma 8.3.7. Letk > 3,w,v € N and Cy,(d, k) as in (8.3.9). Then for p € B;  _;,(n) it holds
that

2) s w
E [Zk,p(g(n,m))} ~ Cy(d, k) exp [nf2 (p) + O (;)] ‘
Proof. Equation (8.3.3) of Fact 8.3.1 yields that

E[2)(G(n,m)| ~ Culd k) explnfa(p)] (83.15)

For s € Sj ., we define the function

¢*(p) = f2(p) — f5(p)-

s
kw,v,n—3/8

exist @ = (a;);er) and B = (B;)jex) such that the function fa can be expressed by setting p; =

To derive an upper bound on (*(p) for all values p € B (n), we first we observe that there

P + o and o = "% + B; forall i, j € [k] with |ag), 85| < o Thus,

d
Fo s Hp)+ 5 (1= 1054 4 alld 1054 + B3 + 1ol

As we are only interested in the difference between fo and f5, we can reparametrise ¢* as

¢*(a, B) =

dy, (1 — " + ol — [lp" + B3 + ||p||§)
2 1= 2] kw513 + | pll3

Differentiating and simplifying the expression yields g%;(oz, B), %(a, B) =0 (%) forall i,j €
[k]. According to the fundamental theorem of calculus it follows for every s € Sj ., that

PEBZ,wmaX . 1C5(p)| = /_((”\/\;))11 1) (;ﬁ) day = O (%) .

wn—3/8 vy/n

Combining this with (8.3.15) yields the assertion. O

Now we are able to give a very precise expression for the second moment.

Proposition 8.3.8. Assume that k > 3,w,v € N,d' < (k—1)?> and d = 2m/n. Let s € Sk, Then

E[Z)%), (@ m))]

(k=12

d 2

o (1] )3 B2 exp [nfa ()] ) expla2 (1 R
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The rest of this subsection will be dedicated to proving this proposition. In due course we are going to

need the set of matrices with coefficients in %Z whose lines and columns sum to zero:

o 1 .
Sn = {(ei,j)lgigka \V/l,j c [k], € j S EZ, V] S [k], Zei]‘ = ZGji = O} . (8.3.16)

l<j<k =1 =1

The following result regards Gaussian summations over matrices in &y,.
Lemma 8.3.9. Letk > 2, d < (k—1)? and D > 0 be fixed. Then

D (k=1)? k-2
Z exp [—n2|]e||g+o(nl/2)|€”2] ~ ( 27m) D5 (k-1
e€ln

Lemma 8.3.9 and its proof are very similar to an argument used in [KPGW10, Section 3]. In fact,

Lemma 8.3.9 follows from

Lemma 8.3.10 ((KPGW10, Lemma 6 (b) and 7 (c)]). There is a (k — 1) x (k — 1)?-matrix H =

(H(i,j),(k,l))i,j,k,le[k—l] such that for any € = (5ij)i,je[k] € &, we have

2
ST Haugwgciery = llell3-

i?jvilvjle[kil]

This matrix H is positive definite and det H = k21,

Proof of Lemma 8.3.9. Together with the Euler-Maclaurin formula and Lemma 8.3.10, a Gaussian

integration yields

D
> exp | g el + ol el

€ES,

D
= X ew|ong > Hagpwaeusiy +oln)el

EG(Z/TL)<I€71)2 i,j,i,,jle[k)—l]

_ D
~ n(k 1)2 / .. /exp —77,5 Z H(i,j),(i/,j/)gijgi’j’ deqp--- dE(kfl)(kfl)
4,5,¢,5' €lk—1]

(k=1)% k-1 (k=1)2 (12
N( 27m> p~5" (det?—l)fl/2~< 27m) 5 e~ k=),

as desired. O
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Now we are ready to prove Proposition 8.3.8.

s
kw,vn—3/8

Proof of Proposition 8.3.8. Lemma 8.3.7 states that for every p € B (n) we have

E [Z,f;(g(n,m)) ~ Cp(d, k) exp [nfzs(p) +0 (%)] . 8.3.17)

Thus, all we have to do is analysing the function f5 for s € Sy, ,. To this aim, we expand f5(p)
around p = p® where p* = (pj;);,; with p;; = pf’“””’s . p?’“””’s. Then with D(d, k) as defined in
(8.3.9) we have

D(d, k
750 = 53+ (£) o= plla = 2Ly - 5212 4 o(n ). (8.3.18)

n 2

Combining (8.3.18) with (8.3.17), we find that

E[2)(Gn,m))]

D(d, k)
2

~ Co(d, k) exp [nﬁ 0*) +0 W) o'l —n 2L 1310 (‘j)} 83.19)

For two vectors of “marginals” p¥, p! € B; ,,(n), we introduce the set of overlap matrices

By w3500t ) ={p € By, sys(n) o = o = p'}

and observe that with this definition we have

E ZZ,S,)y,n-s/s(g(n,m))} = ) > E[Z,fp’(g(n,m)) . (8.3.20)

p.preB; , , (n) PEB) -3/ (n,0%,p1)

In particular, the set B;w%n,g ss(n, p%, pt) contains the “product” overlap p° ® p' defined by (p° ®
pL)ij = p?pjl- for i, € [k]. To proceed, we fix two colour densities p°, p! € B;  (n) and simplify

the notation by writing

B=B;, s, p=p"0p.

Thus, the inner sum from (8.3.20) simplifies to

S51=3E [Z,g?g(g(n,m)) .

peB

and we are going to evaluate this quantity. We observe that with &, as defined in (8.3.16), for each
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pE Bwecanfinde € &y, such that
p=p+e.
Hence, this gives ||p — p®||, = ||p + € — p®||, and the triangle inequality yields
lelly =l = p°lly < Mlo+e = p°lly < llelly + 2= 27l -

By definition of p and p®, we have |p — p°||, < \f and consequently

s 1
o= o°lly = llell, + O (ﬁ) | $8320)

Observing that f5 (p®) = (!)"1(p’“7"“’7$))2 and inserting (8.3.21) into (8.3.19) while taking first n — oo

and afterwards v — oo, we obtain

S1 v Culds Ry exp [2nf7 (57) ] 3 exp [ PR o+ o) el | . ®322)

pEB
To apply Lemma 8.3.9, we have to relate p € Btoe € &n. From the definitions we obtain
{ﬁ+e ee el < n—3/8/2} c {p c é} Cl{pteccé&).

We show that the contribution of ¢ € &, with ||e]|2 > n~3/8/2 is negligible:

( k)

S = CulaByew [2ot (4<0)] 5 e [-nZ T ez + o)

EESn
llell2>n=3/8/2

= Cy(d, k) exp [2nff (pk’w’”"g)} Z Z exp [—leD(;l’k)(l + 0(1))]

leZ/n €€Sn
=N

= Chp(d, k) exp [anf (pk’w’”’s)} O (nk2> exp [—D(;l’k)nl/zl]

Consequently, (8.3.22) yields Y9 = o(3J1). Thus, we obtain from Lemma 8.3.9 that

St Caldbyexp [20f7 (50)] - exp [0 G el + o))
peB
) eey?
~u Cald. K exp [2n 7 (05°)] ( 2m)(’“’” k1) <1—(kfll>2> © (8323
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In particular, the last expression is independent of the choice of the vectors p°, p! that defined B.
Therefore, substituting (8.3.23) in the decomposition (8.3.20) completes the proof of Proposition 8.3.8.
O

Proof of Proposition 8.1.4. First observe that
(k—1)2

exp | S N7 :<1_(kjl1)2>_ ©exp [—ﬂ.

1>2

Proposition 8.1.4 is immediately obtained by combining Lemma 8.2.3 with Propositions 8.3.2, 8.3.5
and 8.3.8. O

8.3.4. Up to the condensation threshold

In this last subsection we prove Proposition 8.1.5. In the regime 2(k — 1)In(k — 1) < d’ < deond
for k > kg for some big constant kg, we consider random variables Z k., instead of Zp . To prove
the proposition we show the following result by adapting our setting in a way that we can apply the
second moments argument from [COV13] and [BCOHRV16].

Proposition 8.3.11. Let w,v € N. There is a constant ko > 3 such that for k > ko and 2(k —
)In(k — 1) < d < deond the following is true. For each s € Sk, ,, there exists an integer-valued
random variable 0 < Z,;’ wr <45, that satisfies

E (2710600, m)] ~ E [27,.,(Gn,m))]
and such that for any fixed n > 0 we have E [Zg’w’y(g(m m))Q} < (140(1)E [Z;,f,)um(g(”, m))] .

In this section we work with the Erd6s-Rényi random graph model G(n, p), which is a random graph
on [n] vertices where every possible edge is present with probability p = d/n independently. We

further assume from now on that k divides n.

The use of results from [COV13, BCOHRV16] is complicated by the fact that we are dealing with
(w, n)-balanced k-colourings that allow a larger discrepancy between the colour classes than [COV 13,
BCOHRV16], where balanced colourings are defined such that in each color class only a deviation of
at most y/n from the typical value n/k is allowed. To circumvent this problem, we introduce the

following:

Choose a map o : [n] — [k] uniformly at random and generate a graph G(n, p’, o) on [n] by connec-

ting any two vertices v, w € [n] such that o(v) # o(w) with probability p’ = dk/(n(k — 1)) indepen-
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dently.

Given o and G(n,p’, o), we define
o = |o7 (i) — n/k| fori € [k]
and let o = max;c[g) ;. Thus, by definition v < w+/n. We set n’ = n + k[«]. Further, we let
Bi = lo (i) — (n+ k[a])/k| fori € [k].
We then construct a coloured graph G;L,W,J, from G(n,p’, o) in the following way:

e Add k[a] vertices to G(n, p) and denote themby n + 1,n+2,...,n + k[«a].

e Define a colouring ¢’ : [n/] — [k] by setting o’(i) = o(i) for i € [n], o(i) = 1 fori €
n+1,.,n+prando(i) =jforj e {2,...,k}andi e n+ ;1 +1,...,n+ ;.

e Add each possible edge (7, j) with o/ (i) # o’(j) involving a vertex i € {n + 1,....,n + k[a]}
with probability p’ = dk/(n(k — 1)).

We call a colouring 7 : [n] — [k] of a graph G on [n] perfectly balanced if |7~*(i)| = |7~1(5)| for all
i,7 € [k] and we denote the set of all such perfectly balanced colourings by gk (n). Then the following

holds by construction:

Fact8.3.12. &/

%
n7p7o—

k is perfectly balanced.

, has the same distribution as G(n', p', T) conditioned on the event that T : [n'] —

Let G”

n,p’,0’|
and the incident edges.

in] denote the graph obtained from G;’L/,p', ,» by deleting the vertices n + 1,...,n + k[«

Fact 8.3.13. G

. .. has the same distribution as G(n p T) conditioned on the event that T is
n,p’ 0’ |n R

(w,n)-balanced.

To proceed, we adopt the following notation from [COV13]: Let p € By, be called s-stable if it has
precisely s entries bigger than 0.51/k. Further, let By, be the set of all p € By, such that

k k
> pij=> pji=1/k forallie [k].
j=1 j=1

Then any p € By, is s-stable for some s € {0,1,...,k}. In addition, let & = In? k/k and let us call
p € By, separable if kp;; ¢ (0.51,1 — &) for all 4,j € [k]. A k-colouring o of a graph G on [n] is
called separable if for any other k-colouring 7 of G the overlap matrix p(o, 7) is separable. We have
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the following result:

Lemma 8.3.14. Let s € Si,,. There is ko > 0 such that for all k > ko and all d' such that
2(k—1)In(k —1) < d < (2k — 1) Ink the following is true. Let Z,g,w?y(g(n, m)) denote the number
of (w,n)-balanced k-colourings of G(n, m) that fail to be separable. Then E[Zi,w,y(g(n,m))] =
o(E[Z5 (G (n,m))]).

To prove this lemma, we combine Fact 8.3.12 with [COV 13, Lemma 3.3]. This yields the followingzo.

Lemma 8.3.15 ([COV13]). There is ko > 0 such that for all k > ko and all d’ with 2(k — 1) In(k —
1) < d < (2k —1)Ink each T € By(n') is separable in Gy 7 Whp..

Proof of Lemma 8.3.14. Choose a map o : [n|] — [k] uniformly at random and generate a graph
G(n,p’, o) on [n] by connecting any two vertices v, w € [n] such that o(v) # o(w) with probability

p’ independently. Construct G;L,,p,7 o from G(n,p’, o) in the way defined above. Then o’ € By(n).
/
n'.p'.o

"

, ., if we define
n,p',0’|n

By Lemma 8.3.15, ¢’ is separable in G » w.h.p.. Thus, o is separable in G
separability using k' = @ By choosing kg large enough and applying Fact 8.3.13, the assertion

follows. [

For the next ingredient to the proof of Proposition 8.3.11, we need the following definition. For a graph
G on [n] and a k-colouring o of G, we let C(G, o) be the set of all 7 € By, that are k-colourings of G
such that p(o, 7) is k-stable.

Lemma 8.3.16. Let s € Sy, . There is ko > 0 such that for all k > ko and all d' such that (2k —
D Ink—2 < d < dconq the following is true. There exists an € > 0 such that ifZ,iw’V(Q(n, m)) deno-
tes the number of (w,n)-balanced k-colourings o of G(n,m) satisfying |C(G(n,m),o)| >
E[2},,(Gnm)| [ explen] then B [ Z3,,(G(n.m))] = o (E |2, (G(n,m))]).

To prove this lemma, we combine 8.3.12 with [BCOHRV 16, Corollary 1.1] and obtain the following:

Lemma 8.3.17 (IBCOHRV16]). Let s € Sy, .. There is ko > 0 such that for all k > ko and all d'
such that (2k — 1) Ink — 2 < d’ < deong the following is true. Let T € By, (n') be a perfectly balanced

colour assignment. Then there exists € > 0 such that if Z F(C

n/7p,7T) denotes the number of (w,n)-

balanced k-colourings T of G/ satisfying |C(Gy, . T)| > E Z,j’w’y(G;L,’p,,T)] / exp [en], then

!l
n7p 7T

E Zg7w’y(G;1,7p,,T)} —0 (E [Z,gW(G;L,,p,,T)D.

2 As a matter of fact, Lemma 3.2 in [COV13] also holds for densities 2(k — 1) In(k — 1) < d’ < 2(k — 1) Ink — 2, as all
steps in the proof are also valid in this regime.
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Proof of Lemma 8.3.16. Choose a map o : [n| — [k] uniformly at random and generate a graph

G(n,p', o) on [n] by connecting any two vertices v, w € [n] such that o(v) # o(w) with probability

1
/

p’ independently. Construct G;l,7 .o from G(n, 9/, o) in the way defined above. To construct G

n,p 70"/[71]
from G/, ' o> W€ have to delete O(4/n) many vertices. By [BCOHRV 16, Section 6], for each of these

vertices v we can bound the logarithm of the number of colourings that emerge when deleting v by
O(Inn). Thus,

In|C(G” g ],Jll[n])| =In|C(G] o)+ O0(/nlnn) =1n|C(G] )|+ o(n). (8.3.24)

/ !l T
n7p 70 n 7p ’O— ’ n 7p 70 )

Then Lemma 8.3.16 follows by combining Lemma 8.3.17 with (8.3.24) and Fact 8.3.13. O

To complete the proof, we have to analyse the function fo defined in (8.3.4), as we know from (8.3.5)
that

E |Z2)(G(n,m))| = explnfa(p) + O(nn)].

)

The following lemma shows that we can confine ourselves to the investigation of the function fy
defined in (8.3.2).

Lemma 8.3.18. Let lim,, o (pn)n = po. Then lim,, o InE [Z,g;n(g(n, m))} < fa(po).
Proof. Lemma 8.3.3 yields that

exp [nfa(p)] ~ exp [nfa(p) + O (w?)] .

Together with the uniform continuity of f; this proves the assertion. O

We use results from [COV 13] where an analysis of f was performed. The following lemma summa-
rizes this analysis from [COV 13, Section 4]. The same result was used in [BCOE14+].

Lemma 8.3.19. For any ¢ > 0, there is ko > 0 such that for all k > ko and all d such that (2k —
DInk — ¢ < d < (2k — 1) Ink the following statements are true.

1. If 1 < s < k, then for all separable s-stable p € B, we have fa(p) < f2(p).
2. If p € By, is O-stable and p # p, then f2(p) < fa(p).
3. Ifd = (2k — 1)Ink — 2, then for all separable, k-stable p € Bj, we have f2(p) < f2(p).

Proof of Proposition 8.3.11. Assume that k > kg for a large enough number kg and that d’ > 2(k —

1) In(k — 1). We consider two different cases.
Casel: d' < (2k —1)Ink — 2: Let Z,iw’y be the number of (w, n)-balanced separable k-colourings
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of G(n, m). Then Lemma 8.3.15 implies that E[Z,iw’,/(g(n, m))| ~E|Z; ,,(G(n,m))|. Fur-
thermore, in the case that d = (2k — 1) In k — 2, the combination of the statements of Lem-
ma 8.3.19 imply that f2(p) < f2(p) for any separable p € By, \ {p}. As fa(p) is the sum of the
concave function p — #(p) and the convex function p — 4 In(1 —2/k ||p\|§), this implies that,
in fact, for any d’ < (2k — 1) Ink — 2 we have fa(p) < f2(p) for any separable p € By \ {p}.
Hence, the uniform continuity of f5 on By, and (8.3.5) yield

E[Z}.,(G(n.m))Y] < A+0(1) 7 E[Z(Gnm)]. (83.25)
pEB} , (1)

k,w,v

p is O-stable

Additionally, as B}, is a compact set, with the second statement of Lemma 8.3.19 it follows that

for any 17 > 0 there exists € > 0 such that

peéglax(n) exp [nfa(p)] < exp [n(f2(p) —€)] . (8.3.26)

k,w,v
p is O-stable
lo—pll2>n

As on the other hand it holds that
E (22, (Gn.m)]| > exp [1£2(0)] /poly(n) (8.3.27)

combining (8.3.26) and (8.3.27) with (8.3.5) and the observation that |B; (n)| < nk*, we see
that for any 1 > 0,

Z E [Z,(f;(g(n,m))} < Z exp [nfa(p) + O(lnn)| = o (E [Z,‘::S’)V’n(g(n,m))b .

pEBzyw’V(n) pEBZM’V(n)
p is O-stable p is O-stable
lo—pll5>n lp—plla>n

(8.3.28)

Case 2: (2k — 1)Ink — 2 < d’ < dcong: For an appropriately chosen ¢ > 0, we let Z,fw ,, be the
number of (w, n)-balanced separable k-colourings o of G(n, m) satisfying |C(G(n,m),o)| <
E {ZS (G(n, m))] / exp [en]. Then Lemmas 8.3.15 and 8.3.16 imply thatE[Zﬁw L(G(n,m))]

k,w,v

NE[ZS

k,w,v

(G(n, m))] . Furthermore, the first part of Lemma 8.3.19 and equation (8.3.5) entail

that (8.3.25) holds for this random variable Z i . Moreover, as in the previous case (8.3.26),
(8.3.27), (8.3.5) and the second part of Lemma 8.3.19 show that (8.3.28) holds true for any fixed
n > 0.

In either case the assertion follows by combining (8.3.25) and (8.3.28). L]

Proof of Proposition 8.1.5. The assertion is obtained by combining Proposition 8.1.1 with Propositi-
ons 8.3.11, 8.3.5 and 8.3.8. O
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9 Conclusion and open questions

With the results presented in this thesis we provide an important contribution to the endeavour of un-
derstanding and rigorously verifying the various phenomena arising in random constraint satisfaction
problems.

As to condensation, a phase transition thoroughly changing the geometry of the solution space and
posing a serious obstacle to locating the satisfiability threshold, we rigorously established its existence
and exactly determined its location in random graph colouring. It was the first time that the conden-
sation phase transition could be located in a rigorous manner within such accuracy in a random CSP.
Our result verifies predictions made by the cavity method, a sophisticated tool of statistical physics.
Furthermore, we also investigated a non-zero temperature model, which is commonly used in the phy-
sics literature but has so far been given only scant attention to in mathematics. In this model, instead of
only considering solutions, each colour assignment is weighted according to its number of monochro-
matic edges. We located the condensation transition in finite inverse temperature k-uniform random
hypergraph 2-colouring up to an error tending to O when the uniformity k grows to infinity. This is the
first result pinning down the condensation phase transition within such accuracy in terms of the finite
temperature parameter.

Apart from this, we investigated the distribution of the number of solutions in a regime where it can be
proven that w.h.p. solutions exist. We determined this distribution asymptotically in the limit of large
n for random graph k-colouring and random hypergraph 2-colouring using the method of small sub-
graph conditioning. From this it follows that in the covered problems the random colouring model is
contiguous with respect to the planted model, a statement that simplifies transferring results between

these two models.

We expect that it is possible to apply similar methods and techniques to a variety of further random
constraint satisfaction problems.

In particular, it seems reasonable to expect that the proof technique developed for locating the conden-
sation phase transition in random graph k-colouring carries over to many other problems, especially
because the physics predictions look very similar in many of them.

It would furthermore be interesting to explore to what extent the approach for determining the con-
densation phase transition for finite inverse temperatures can be transferred from random hypergraph
2-colouring to other random CSPs. Indeed, Coja-Oghlan and Jaafari [COJ16+] already started inves-
tigating non-zero random graph k-colouring.

It still is an open question whether the method for determining the condensation phase transition as

precisely as we did for random graph k-colouring can be applied to models with finite inverse tem-
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perature. One problem occuring for these models is that the “cut up” decorated graph we investigated
in order to determine the cluster size in Section 5.3 does not essentially consist of bounded tree com-
ponents in the case of finite inverse temperatures. To us it is not clear how to solve this problem.

As a matter of course, apart from the condensation transition, it is also of considerable interest to ob-
tain results on the actual satisfiability threshold in zero temperature problems. Up to now, there only
exist rigorous proofs of its location for large values of & in random k-SAT [DSS15], in random regular
k-SAT [COP16], in random regular NAE-k-SAT [DSS16] and for large values of d in the independent
set problem on d-regular random graphs [DSS16+]. It would complete the picture to also establish its
location in further random CSPs. In many problems, it is even still not verified that the satisfiability
threshold is different from the condensation threshold as predicted by the cavity method. In any way, it
remains an important research endeavour and an outstanding mathematical challenge to fully rigorize
the predictions made by this method.

Concerning the distribution of the number of solutions, we believe that a combination of the second
moment method and small subgraph conditioning could be used to obtain the limiting distribution
of the number of solutions in e.g. random NAE-k-SAT, random k-XORSAT, random hypergraph k-
colouring or in random regular models. However, for asymmetric problems like the well-known bench-
mark problem random k-SAT, we expect that the logarithm of the number of satisfying assignments
exhibits stronger fluctuations and we doubt that a result similar to ours can be established.

In general, a complete description of all problems for which a limiting distribution can be found might
be achievable and it possibly covers all models where the partition function on a tree on n vertices is
constant. In this case, the proof technique might be generalized to develop a generic proof suitable for
all these models.

Going in a slightly different direction, the investigation could be extended to regimes beyond the con-
densation transition. [SSZ16+] enhanced the second moment method and analysed a certain Survey
Propagation model in the case of random regular NAE-£-SAT. In this way, they were able to determine

the total number of solutions for a typical instance in the whole satisfiable regime.

Additionally, it would certainly be of considerable interest to advance the rigorous study of algorithms,
especially of certain message passing algorithms, as there is plenty of experimental work, but so far

precise rigorous results are scarce.

To summarise, we can say that in the last decades much has been achieved in thoroughly understanding
the various aspects and phenomena in random constraint satisfaction problems. The results in this
thesis contribute to this endeavour. But investigation is in every respect far from being complete and

the process will go on, offering new and exciting perspectives along the way.
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A Complementary proofs: Condensation phase transition
in random graph £-colouring

This chapter presents the remaining parts of the proof of Theorem 4.1.1. They are not part of this

thesis’ author’s achievement and are only included here for the sake of completeness.

In section Section A.1 the first and second moment method are applied to prove bounds on dc,it.
In Section A.2 calculations are performed in the planted model to prove Proposition 5.1.3. The last
section Section A.3 is devoted to determining the frozen fixed point 74, g of Fg 1, to show that it is

unique and that it describes the expected number of vertices in a certain tree process.

The chapter is a verbatim copy of parts of the paper The condensation phase transition in random
graph coloring [BCOHRV16] that is joint work with Victor Bapst, Amin Coja-Oghlan, Samuel Hette-
rich and Dan Vilenchik and is published in the Communications in Mathematical Physics 341 (2016).

A.1. Groundwork: the first and the second moment method

In this section we prove Proposition 5.1.2 and also lay the foundations for the proof of Propositi-
on5.1.3.

A.1.1. The first moment

We start by deriving an upper bound on @ (d) by computing the expected number of k-colourings. To

avoid fluctuations of the total number of edges, we work with the G(n, m) model.
Lemma A.1.1. We have E[Z(G(n,m))] = O(k™(1 — 1/k)™).

Lemma A.1.1 is folklore. We carry the proof out regardless to make a few observations that will be

important later. For a map o : [n] — [k], let

o3 (710

1=
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A. Complementary proofs: Condensation phase transition in random graph k-colouring

be the number of “forbidden pairs” of vertices that are coloured the same under o. By convexity,
N—-F(o)>(1—-1/k)N,  with N = (3). (A.1.1)

Hence, using Stirling’s formula, we find

m m

N — N
P[0 is a k-colouring of G(n, m)] = < ]:(U)>/< ) <O((1=1/K)™). (A.1.2)
As there are k™ possible maps ¢ in total, the linearity of expectation and (A.1.2) imply
E[Z(G(n,m))] = O(K" (1 = 1/k)™).

To bound E[Z;(G(n,m))] from below, call o : [n] — [k] balanced if |0~ (i) — | < /n for all
i € [k]. Let Bal = Bal,, j, be the set of all balanced o : [n] — [k]. For o € Bal, we verify easily that
N — F(o) = (1 —=1/k)N 4 O(n). Thus, (A.1.2) and Stirling’s formula yield

P[0 is a k-colouring of G(n,m)] = Q((1 — 1/k)™) for any o € Bal. (A.1.3)

As |Bal| = Q(k™) by Stirling, the linearity of expectation and (A.1.3) imply E[Z;(G(n,m))] =
Q(k™(1 —1/k)™), whence Lemma A.1.1 follows.

Letting Z}, ,a1 denote the number of balanced k-colourings, we obtain from the above argument
Corollary A.1.2. For any d > 0, we have E[Z};, v.1(G(n,m))] = ©(k™(1 — 1/k)™).
As a further consequence of Lemma A.1.1, we obtain

Corollary A.1.3. For any c > 0, we have

lim sup E[Z;(G(n, ¢/n))/™] < k(1 — 1/k)*/2.

n—00

Proof. Lemma A.1.1 and Jensen’s inequality yield
E[Zk(G(n,m))"/"] < E[Z4(G(n,m)]"™ < k(1 = 1/k)¥? + o(1). (A.1.4)

Now, let ¢ > 0 and set d = ¢ — ¢ for some € > 0. The number of edges in G(n, c/n) is binomially
distributed with mean (1 + o(1))en/2 = m + Q(n). Hence, by the Chernoff bound the probability
of the event A that G(n, c/n) has at least m edges tends to 1 as n — oco. Because adding further

edges can only decrease the number of k-colourings and since the number of k-colourings is trivially
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A.1. Groundwork: the first and the second moment method

bounded by £", we obtain from (A.1.4) that

E[Z(G(n, ¢/n)Y"] <E[Zi(G(n,c/n))Y™ - 14] + P[A does not occur] - k

<E[Z,(G(n,m))™] + o(1) < k(1 — 1/k)¥? 4 o(1).

Consequently, lim sup E[Z;(G(n,c/n))*/"] < k(1 — 1/k)%2. This holds for any d > c. Hence,
letting e = d — ¢ — 0, we see that

lim sup E[Z,(G(n, ¢/n))"/™] < k(1 — 1/k)/?,
as desired. ]

We conclude this subsection with the following crucial observation.

Lemma A.1.4. Let

D, = {d > 0 : liminf E[Z,(G(n, d/n))Y/"] < k(1 — 1/;<;)d/2} ,

Dt = {d > 0 : limsup E[Z4 (G (n, d/n))"/"] < k(1 — 1/k)d/2} .
Ifdy € D, and dy > dy, then do € D,. Similarly, if di € D* and do > dy, then dy € D*.

Proof. Let0 < d; < dy and let ¢ ~ (d2 — dyi)/n be such that dy/n + (1 — di/n)q = da/n. Let us
denote the random graph G(n, d;/n) by G;. Furthermore, let G5 be a random graph obtained from
(71 by joining any two vertices that are not already adjacent in (G; with probability ¢ independently.
Then G is identical to G(n,ds/n), because in G2 any two vertices are adjacent with probability
di/n+ (1 = dy/n)q = da/n independently. Set N = (3).

Let e(G;) signify the number of edges in G; for i = 1, 2. Because e((;) is a binomial random variable
with mean p; = % - N = nd;/2 + O(1), the Chernoff bound implies that

P[le(Gr) = ml| > n**| = o(1),

(A.1.5)
Pura(G1, G2) = B [[e(Ga) — e(Gh) = (2 — )| > n*] = o(1).
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Further, since Z ,1/ " < k with certainty, (A.1.5) implies that

E[Z(G2)"/™ | Zk(G1)] = E[Zk(G2) " | Z(Gh), |e(Ga) — e(G1) — (2 — )]
< n2/3](1 = Pura(G1,G2)) + k- Py n (G1, G2)

< E[Zk(GQ)l/n1|€(G2)—6(G1)—(#2—u1)|S7L2/3 | ZK(G1)] +o(1). (A.16)

Suppose that we condition on e(G1), e(Gy) and |e(G1) — p1| < n?/3, |e(Ga) —e(G1) — (2 — )| <
n?/3. Assume that o is a k-colouring of G. What is the probability that o remains a k-colouring of
G2? For this to happen, none of the e(G2) — e(G1) additional edges must be among the F (o) pairs
of vertices with the same colour under ¢. Using Stirling’s formula, we see that the probability of o

remaining a k-colouring in GG is bounded by

= N=Flo) —elG) N —e(Gh) _ (d2—d1+o(1))n/2
T < e(Ga) — e(G) >/<e(G2) _e<Gl>> < @-yRETirEOnz AL

Hence, by (A.1.6), Jensen’s inequality and (A.1.7)

T/n

E[Z1(G2)'" | Z1(G1)] < E [Zk(G2) “Lie(Ga)—e(Gr)—(ua—pin)|<n2/? | Zk(G1) | +o(1)

<A Z(G)YM + 0(1) < (1= 1/k) D2 Z,(G) Y + 0(1).
(A.1.8)

Averaging (A.1.8) over (71, we obtain
E[Z4(G(n, da/n))"/"] = E[Z4(G2)"/"]
< (1= 1/k) PR Z(GO)Y™ 1, 6y)— | <n2rs]
+ kP L6y fsnzis | +o(1)
< (1 —1/k)\ 2R [ 7, (G(n, d1 /n))™] + o(1)  [due to (A.1.5)].
Thus, if E[Z),(G(n,dy/n))"/"] < k(1 —1/k)%/2 — § + o(1), then
E[Z,(G(n,da/n)""] < k(1 — 1/k)®2/% — ¢ + o(1)

for some ¢ = (4, k, d1,dy) > 0. Taking n — oo yields the assertion. O
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A.1. Groundwork: the first and the second moment method

A.1.2. The second moment

The main technical step in the article [COV13] that yields the lower bound (4.2.1) on d. is a second
moment argument for a random variable Zj, (e related to the number of k-colourings. We are going

to employ this second moment estimate to bound Zj(G(n, d/n)) from below.

The random variable Zj, ;ame counts k-colourings with some additional properties. Suppose that o is
a balanced k-colouring of a graph G on [n]. We call ¢ separable if for any balanced 7 € C(G, o) and
any i € [k] we have

pii(0,7) > (1 — k) /k, where & = In? k /.

Thus, if o is a balanced, separable k-colouring, then for any colour ¢ and for any other balanced k-
colouring 7 in the cluster of o, a 1 — k + o(1)-fraction of the vertices coloured i under o are coloured

7 under 7 as well. In particular, the clusters of any two such colourings are either disjoint or identical.

Definition A.1.5. Let G be a graph with n vertices and m edges. A k-colouring o of G is tame if

T1 o is balanced,
T2 o is separable, and
T3 |C(G,0) N Bal| < k™"(1 —1/k)™.

Let Z, tame(G) denote the number of tame k-colourings of G.

Lemma A.1.6 ((COV13]). Assume that d > 0 is such that

E[Zk,tame(G(nv m))]

lim inf . A.l.
R Iy I (19
Then 2
lim inf E[Zk,tame(G(na m))] > 0.

n—=0 E[Zk tame(G (0, m))?]
Furthermore, there exists €, = o (1) such that (A.1.9) is satisfied if d < (2k — 1) Ink — 2In2 — .

As fleshed out in [COV13], together with the sharp threshold result from [AF99], Lemma A.1.6 im-
plies that G(n,d/n) is k-colourable w.h.p. if d < (2k — 1)Ink — 2In2 — ¢;. Here we are going
to combine Lemma A.1.6 with the following variant of that sharp threshold result to obtain a lower

bound on the number of k-colourings.

Lemma A.1.7 ([ACOO08]). For any k > 3 and for any real { > 0, there is a sequence dy, ¢(n) such
that for any € > 0 the following holds.
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1. Ifp(n) < (1 —¢e)die(n)/n, then Zi(G(n,p(n))) > £ w.h.p..
2. Ifp(n) > (1 +e)die(n)/n, then Zi,(G(n,p(n))) < £ w.h.p..

Lemmas A.1.6 and A.1.7 entail the following lower bound on dyit.

Lemma A.1.8. Assume that d* > 0 and € > 0 are such that (A.1.9) holds for any d € (d* — e, d*).
Then depit > d*.

Proof. Assume for contradiction that d* is such that (A.1.9) holds for all d € (d* — &,d*) but deiy <
d*. Pick and fix a number
max{d" —e,duit} < d. < d*.

Corollary A.1.3 implies that lim sup E[Z;,(G (n, ds/n))"/"] < k(1 — 1/k)%/2. Therefore, since d, >
dcrit, there exists e, > 0 such that

lim inf E[Z,(G(n, dy /n))"] < k(1 — 1/k)™/? —¢,. (A.1.10)

n—oo
Further, pick and fix d, < d < d* such that k(1 — 1/I€)Cz/2 > k(1 —1/k)%/2 — ¢, and ¢ such that
k(1 —1/k)%/% — e, < € < k(1 —1/k)¥2. (A.1.11)
We are going to use Lemmas A.1.6 and A.1.7 to establish a lower bound on Z;(G(n,d./n)) that

contradicts (A.1.10). By the Paley-Zygmund inequality and because (A.1.9) holds for any d* — ¢ <
d < d*,

E[Zk,tame (g(?’L, m))]Q

1
P | Zk tame , > —E[Zk tame , > A.l1.12
k,t (g(n m)) 9 [ k,t (g(n m))] 4. ]E[Zk,tame(g(nym))z] ( )
for any d* — e < d < d*. Moreover, Lemma A.1.6 and (A.1.12) imply
1
liniinf]P’ Zk tame(G(n, m)) > §E[Zk’tame(g(n, m))| >0 (A.1.13)

forany d*—e < d < d*. Further, because (A.1.9) is true forany d* —¢ < d < d* and ¢ < k(1—1/k)%/?
forany d < d < d*, we see that

1 R
iE[mee(g(n,m))] =Qk"(1-1/k)™) >&" for any d < d.
Hence, (A.1.13) implies

lim inf P [Zg tame (G (n,m)) > €7 >0 forany d < d. (A.1.14)

n—oo
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A.2. The planted model

Since the number of edges in G(n, d/n) has a binomial distribution with mean m, with probability at

least 1/3 the number of edges in G(n, d/n) does not exceed m. Therefore, (A.1.14) implies that

1 R
lini)ianP’ [Zr(G(n,d/n)) > "] > 3 lirgianP’ [Zk tame(G(n,m)) > "] >0 forany d < d.
n—od n—oo
(A.1.15)

Moreover, (A.1.15) entails that the sequence dj, ¢ (n) from Lemma A.1.7 satisfies lim inf dj, ¢(n) > d.
Therefore,
lim P[Z,(G(n,d/n)) > €"] =1 foranyd < d. (A.1.16)
n—oo

Since d, < d, (A.1.16) entails that

lim inf E | Zp came(G (1, d*/n))l/“} > ¢, (A.1.17)

n—oo

Combining (A.1.10), (A.1.11) and (A.1.17) yields a contradiction, which refutes our assumption that
dcrit <d*. O]

Proof of Proposition 5.1.2. The first assertion follows from Corollary A.1.3. Hence, the second asser-
tion
dexie = sup {d > 0 : lim inf E[Z4(G(n, d/n))Y"] > k(1 — 1/k:)d/2} .
n—oo

18 immediate from Lemma A.1.4. The third assertion follows from Lemma A.1.6 and Lemma A.1.8.
O

A.2. The planted model

A.2.1. Overview

The aim in this section is to prove Proposition 5.1.3. The proof of the first part is fairly straightforward.

More precisely, in Subsection A.2.2 we are going to establish

Lemma A.2.1. Assume that (2k — 1)Ink — 2 < d < (2k — 1) Ink is such that (5.1.2) holds. Then
dcrit > d.

The more challenging claim is that d > d.,; if typically the cluster in the planted model is “too big”.
To prove this, we consider a variant of the planted model in which the number of edges is fixed. More
precisely, for a map o : [n] — [k] we let G(n, m, o) denote a graph on the vertex set V' = [n] with
precisely m edges that do not join vertices v, w with o(v) = o(w) chosen uniformly at random. In

other words, G(n, m, o) is just the random graph G(n, m) conditioned on the event that o is a k-
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colouring. The following lemma, which is a variant of the “planting trick” from [ACO08], establishes

a general relationship between G(n, m) and G(n, m, o).

Lemma A.2.2. Let d > 0. Assume that there exists a sequence (E,)n>1 of events such that

lim P[G(n,m) € &) =1 while limsupP[G(n,m,o) € &Y™ < 1. (A.2.1)

n—oo n—o0

Then for any ¢ > d we have lim sup E[Z},(G(n, ¢/n))"/"] < k(1 — 1/k)/2. In particular, deyi; < d.

We prove Lemma A.2.2 in Subsection A.2.2. Hence, assuming that the typical cluster size in the
planted model is “too big” w.h.p., we need to exhibit events &, such that (A.2.1) holds. An obvious

choice seems to be
Enle) = {Z,i/” < k(1 —1/k)¥2 4 g} :

But (A.2.1) requires that the probability that &, occurs in G(n,m, o) is exponentially small, and
neither the cluster size nor Zj, are known to be sufficiently concentrated to obtain such an exponentially

small probability.

Therefore, we define the events £, by means of another random variable. For a graph G = (V, E) and
amap o : V — [k], let Hi (o) be the number of edges {v, w} of G such that o(v) = o(w). In words,

He (o) is the number of edges of G that are monochromatic under o. Furthermore, given 8 > 0 let

Zgr(G)= Y exp(—B-Ha(0)),

o:V—k]

the partition function of the k-spin Potts antiferromagnet on G at inverse temperature 3.

For large (3, there is a stiff “penalty factor” of exp(—/3) for any monochromatic edge. Thus, we expect
that Zg . becomes a good proxy for Zj, as 3 — oo. At the same time, In Zg ; enjoys a Lipschitz
property. Namely, suppose that we obtain a graph G’ from G by either adding or removing a single
edge. Then

|In(Zsx(G)) — In(Zs 1(G"))] < B. (A2.2)

Due to this Lipschitz property, one can easily show that In Zg j, is tightly concentrated. More precisely,

we have

Lemma A.2.3. For any fixed d > 0, € > O there is o« > 0 such that the following is true. Suppose that

(0n)n>1 is a sequence of maps [n] — [k]. Then for all large enough n,

P U ln(Zg,k(G(n,p’, on))) — E[ln Zgyk(G(n,p', on))]| > en] < exp(—an).
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Proof. This is immediate from the Lipschitz property (A.2.2) and McDiarmid’s inequality [McD98,
Theorem 3.8]. O]

Furthermore, in Subsection A.2.2 we show that Lemma A.2.3 implies

Lemma A.2.4. Assume that d is such that (5.1.3) holds. Then there exist z, 3 > 0 such that

lim P {1 InZg 1,(G(n,m)) < z} =1

n—o0 n

1 1/n
while limsup P [ln Zgk(G(n,m, o)) < z} <1
n

n—o0

Finally, Proposition 5.1.3 is immediate from Lemmas A.2.1, A.2.2 and A.2.4.
A.2.2. Remaining proofs

Proof of Lemma A.2.1

We use the following observation from [COV13].

Lemma A.2.5 ((COV13]). Suppose that (2k —1)Ink—2 < d < (2k—1)Ink. Let p' be as in (5.1.1).

Then the planted colouring o is separable in G(n,p', o) w.h.p..
Proof of Lemma A.2.1. 1f (5.1.2) holds, then there exists ¢ > 0 such that with p’ from (5.1.1) we have
lim P [|C(G(n,p/,0),0)] < k"(1 —1/k)™ exp(—en)] = 1. (A2.3)
n—oo
Pick a number d* > d such that with m* = [d*n/2] we have
EM(1—1/k)™ > k™(1 —1/k)™ exp(—en/2).
We claim that if we choose o : [n] — [k] uniformly at random and independently a random graph
G(n,m"), then
lim inf P [o is tame|o is a k-colouring of G(n, m™)] > 0. (A2.4)
n—oo

To see this, let £ be the event that the random graph G(n, p’, o) has no more than m* edges. Because

the number of edges in G(n, p’, o) is binomially distributed with mean m < m* — Q(n), the Chernoff
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bound implies that P[] = 1 — o(1). Therefore, (A.2.3) implies
lim P[|C(G(n,p',0),0) <k"(1—1/k)™exp(—en) | €] = 1. (A.2.5)

n—oo

Further, set d’ = kd*/(k — 1) and let p” = d”/n > p’. Then we can think of G(n,p”, o) as being
obtained from G(n,p’, o) by adding further random edges. More precisely, let .4 be the event that
G(n,p”, o) contains precisely m* edges and set

ph =P |[C(Gn, 1", 0), )| < K" (1 = 1/k)™" | A]
Since adding edges can only decrease the cluster size, (A.2.5) entails
lim p), > lim P[|C(G(n,p,0),0)| < k"(1—1/k)™ exp(—en)|&] = 1. (A.2.6)
n—oo n—oo
Similarly, let p!! = P [o is separable in G(n,p”, o) | A]. Then Lemma A.2.5 implies

lim p}, > lim P [o is separable in G(n,p’, o) | E] = 1.

n—oo n—o0
Further, consider p!” = IP [o is balanced]. Then by Stirling’s formula,
lim inf p',i’ > 0. (A2.7)
n—oo

Finally, let p,, = P [o is a tame k-colouring of G(n, p”, o)|.A]. Given the event A, G(n,p”, o) is just

a uniformly random graph with m* edges in which o is a k-colouring. Hence,
pn, = P[0 is tame|o is a k-colouring of G(n, m")].
As (A.2.6)—(A.2.7) yield lim inf,,_,oc py, > 0, we obtain (A.2.4).

The estimate (A.2.4) enables us to bound E[Z}, tame(G(n, m*))] from below. Indeed, by the linearity
of expectation

E{Zk,tame(G(n’ m*))]

= Z P[0 is a tame k-colouring of G(n, m")]
o:[n]— k]

= k" - P[o is a tame k-colouring of G(n, m*)]
= k" P[o is a k-colouring of G(n,m*)| P [o is tame| o is a k-colouring of G(n, m*)]
= k" P[o is a k-colouring of G(n,m*)] - py,

= E[Zx(G(n, m™))] - pn-
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Thus, Lemma A.1.1 and (A.2.4) yield

liminf E[Zk,tame(G(na m )]

- e Y

As this holds for all d* in an interval (d + 7, d + 2n) with n > 0, Lemma A.1.8 implies that d;; >
d. O

Proof of Lemma A.2.2

Lemma A.2.6. Assume that d > 0 is such that lim sup E[Z}.(G(n, m))Y™] < k(1 — 1/k)%2. Then
for any ¢ > d we have lim sup E[Z},(G(n, ¢/n))Y/™] < k(1 — 1/k)%/2.

Proof. Assume that d,§ > 0 are such that lim sup E[Z},(G(n, m))"/"] < k(1 —1/k)¥? —§. We claim
that

d* € D* = {c >0 : limsup E[Z4(G(n, ¢/n))Y/"] < k(1 — 1/k)0/2} forany d* > d. (A.2.8)

Indeed, the number e(G(n,d*/n)) of edges of G(n,d*/n) is binomially distributed with mean (1 +
o(1))d*n/2. Since d, d* are independent of n and d* > d, the Chernoff bound implies that

Ple(G(n,d*/n)) < m] < exp(—(n)). (A.2.9)

Further, if we condition on the event that m* = e(G(n, d* /n)) > m, then we can think of G(n, d* /n)
as follows: first, create a random graph G(n, m); then, add another m* — m random edges. Since the

addition of further random edges cannot increase the number of k-colourings, by (A.2.9) we find that

E[Z(G(n, d* /n))™] < E[Zi(G(n,d* /o) m* > m] + k- P [e(G(n, d*/n)) < m)]

< E[Z4(G(n,m))"/"] + o(1).
Taking n — oo, and assuming that d* > d is sufficiently close to d, we conclude that

lim sup E[Z4 (G (n, d* /n)) /"] < k(1 — 1/k)% — § < k(1 — 1/k)%/2.

n—oo

Hence, for any ¢ > 0 there is d* € (d,d + ¢) such that d* € D*. Thus, (A.2.8) follows from
Lemma A.1.4. ]

Proof of Lemma A.2.2. Assuming the existence of d and (&,,),,>1 as in Lemma A.2.2, we are going to

argue that
lim sup E[Z, (G (n, m))V/"] < k(1 — 1/k)%/2. (A.2.10)
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Then the assertion follows from Lemma A.2.6.

Since Z,i/ " <k with certainty and P[G(n,m) € &,] = 1 — o(1), Jensen’s inequality yields
E[Zk(G(n,m))"/"] =E[Z1(G(n,m))"/" - 1g,] + o(1) < E[Zk(G(n,m)) - 1¢,]//" + o(1).

Furthermore, by the linearity of expectation,

E[Zk(G(n,m)) - 1¢,] = Z P [€,, occurs and o is a k-colouring of G(n, m)]

o:[n]—[k]

= Z P[]0 is a k-colouring of G(n, m)]

o:[n]—[k]
- P[o is a k-colouring of G(n, m)]

= Z P[G(n,m,o) € &,]

o:[n]—[k]

-P[o is a k-colouring of G(n, m)] . (A.2.11)

To estimate the last factor, we use (A.1.1) and Stirling’s formula, which yield

P[0 is a k-colouring of G(n, m)] < <(;) B F(U)>/((§3> <O((1—=1/k)™).

m

Plugging this estimate into (A.2.11) and recalling that o is a random map [n| — [k], we obtain

E[Z,(G(n,m))-1g,] < O(L-1/k)™) Y P[G(n,m,o) € &)

o:[n]—[k]

= O((1—-1/k)™)-k"P[G(n,m, o) € &,]
= O(E[Zk(G(n,m))]) - P[G(n,m,o) € &,]. (A2.12)

1/n

Finally, using our assumption that limsup P [G(n, m, o) € &,]’" < 1 and combining (A.2.11) and

(A.2.12), we see that

limsup E[Z (G (n, m))Y/"] < k(1 — 1/k)2 - limsup P [G(n, m, &) € E,]"/"

< k(1 —1/k)%?

thereby completing the proof of (A.2.10). O
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Proof of Lemma A.2.4

Lemma A.2.7. Let d > 0. For any € > 0, there exists 5 > 0 such that
1 d
—InE[Zg(G(n,m))] <Ink + 3 In(1 —1/k) +e.
n

Proof. For any fixed number v > 0, we can choose 3(y) > 0 so large that Ink — 8y < 0. Now, let
M(G(n,m)) be the set of all o : [n] — [k] such that at least yn edges are monochromatic under o,
and let M(G(n,m)) contain all ¢ ¢ M(G(n,m)). Then

Zg(G(n,m)) < IM(G(n,m))| - exp(—pyn) + [M(G(n,m))|

< k"™ - exp(—Byn) + [M(G(n,m))| < 1+ |M(G(n,m))|. (A2.13)

Further, if ¢ € M(G(n,m)), then o is a k-colouring of a subgraph of G(n, m) containing m — yn
edges. Hence, we obtain from Stirling’s formula that for v = v(¢) > 0 small enough,

P[0 € M(G(n,m))] < ((jg) : <(3731__fff)>/((§3>
< (1—1/k)™ - exp(en/2).

Hence,
E[M(G(n,m))] < E"(1 —1/k)™ - exp(en/2). (A.2.14)

Combining (A.2.13) and (A.2.14), we obtain
E[Zsk(G(n,m))] <14+ Ek"(1—1/k)™ -exp(en/2) < k" (1 —1/k)™ - exp(en).

Taking logarithms completes the proof. O

Lemma A.2.8. Assume that (5.1.3) is true. Then there exist a fixed number ¢ > 0, a sequence oy, of

balanced maps [n| — [k| and a sequence i, of numbers satisfying |y, — dn/2| < \/n such that

lim P [[C(G(n,un,an),anﬂl/” > k(1—1/k)%2 +¢| =1.

n—o0

Proof. Let A be the event that the number of edges in the random graph G(n,p’, o) differs from
dn/2 by at most \/n. Let N = (3). For any balanced o : [n] — [k], the expected number of edges in
G(n,p, o) is

(N —F(o)p' = (1 —1/k)Np +O(1) = dn/2 + O(1). (A.2.15)

Since the number of edges in G(n, p’, o) is a binomial random variable, (A.2.15) shows together with
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the central limit theorem that there exists a fixed v > 0 such that for sufficiently large n
P [G(n,p',0c) € A] >~  forall balanced o. (A.2.16)

Furthermore, by Stirling’s formula there is an n-independent number § > 0 such that for sufficiently
large n we have
P[o € Bal] > 4. (A.2.17)

Combining (A.2.16) and (A.2.17), we see that
P[0 € Bal, G(n,p,0) € A] =P[o € Bal] - P [G(n,p/,0) € Alo € Bal] >~§ >0. (A.2.18)
Thus, pick o,, € Bal and u,, € [dn/2 — \/n,dn/2 + \/n] that maximize
D(Ons i) = P [|C(G(n,,un,an), o) |7 > k(1 — 1/k)¥2 + e} .

Then (5.1.3) and (A.2.18) imply that lim,, oo p(oy, in) = 1. O

Lemma A.2.9. For any n > 0, there is § > 0 such that

< .

k

.1 1.

Jim ~InP [2; o1 (i)| — n/k| > nn
1=

Proof. For each i € [k], the number |o—1(7)| is a binomially distributed random variable with mean

n/k. Moreover, if S, ||o=1(i)|—n/k| > 1n, then there is some i € [k] such that ||o~(i)|—n/k| >

nn/k. Thus, the assertion is immediate from the Chernoff bound. O

Let Voli(S) be the sum of the degrees of the vertices in .S in the graph G.

Lemma A.2.10. For any v > 0, there is o > 0 such that for any set S C [n] of size |S| < an and
any o : [n] — [k] we have

1
lim sup - InP [VO]G(n7p/7U)(S) > yn] < —a.

Proof. Let (Xy),e[n) be a family of independent random variables with distribution Bin(n,p’). Then
for any set S the volume Vol(S) in G(n,p’, o) is stochastically dominated by Xg = 23" o X,.
Indeed, for each vertex v € S the degree is a binomial random variable with mean at most np’, and
the only correlation amongst the degrees of the vertices in .S is that each edge joining two vertices in
S contributes two to Vol(.S). Furthermore, E[Xg] < 2d’|S|. Thus, for any v > 0 we can choose an
n-independent o > 0 such that for any S C [n] of size |S| < an we have E[Xg] < yn/2. In fact, the
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Chernoff bound shows that by picking o > 0 sufficiently small, we can ensure that
P[Vol(S) > yn] < P[Xg > yn| < exp(—an),

as desired. O

Lemma A.2.11. Assume that there exist numbers z > 0, € > 0 and a sequence (0,,),>1 of balanced

maps [n] — [k] such that

1
lim —E [InZgx(G(n,p',00))] > 2z +e.

n—oo N

Then limsup,,_,. P [In Zg 1 (G(n,p',0)) < nz]l/n <L

Proof. LetY = %ln Z3 ) for the sake of brevity. Suppose that n is large enough so that we have
E[Y(G(n,p',04))] > 2 +¢/2. Set n; = |0,,1(i)| and let T be the set of all 7 : [n] — [k] such that

|771(i)| = nj fori =1,...,k. As Zg is invariant under permutations of the vertices, we have

E[Y(G(n,p',7))] =E[Y(G(n,p',0,))] >2+¢/2 forany T e T. (A.2.19)

Lety = ¢/(48) > 0. By Lemma A.2.10 there exists o > 0 such that for large enough n for any set
S C Vofsize | S| < an and any o : [n] — [k] we have

P [Volg (.01 (S) > n] > 1 — exp(—an). (A.2.20)

Pick and fix a small 0 < n < «/3 and let A be the event that Zle l|[o=t(i)| — n/k| < nn. Then by
Lemma A.2.9 there exists an (n-independent) number 6 = §(f3, e,7n) > 0 such that for n large enough

P[A] > 1 — exp(—dn). (A.2.21)

Because o, is balanced, we have |n; — n/k| < y/n for all i € [k]. Therefore, if A occurs, then it
is possible to obtain from o a map 7, € T by changing the colours of at most 2nn vertices. If A
occurs, we let G1 = G(n,p’, 7). Further, let G2 be the random graph obtained by removing from
G all edges that are monochromatic under o. Finally, let G'3 be the random graph obtained from
G by inserting an edge between any two vertices v, w with o (v) # o(w) but 75 (v) = 74 (w) with
probability p’ independently. Thus, the bottom line is that in G'3, we connect any two vertices that are

coloured differently under o with probability p’ independently. That is, Gs = G(n,p’, o).

Let S, be the set of vertices v with o (v) # 75 (v) and let A be the number of edges we removed to
obtain G from G1. Then A is bounded by the volume of S, in G; = G(n,p’, 7). Hence, (A.2.20)
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implies that
P[A <vn|A] > 1 — exp(—an). (A.2.22)

Since removing a single edge can reduce Y by at most 3/n, we obtain
PIY(G(n,p',0)) < 2]
= P[Y(G3) < 2] < exp(—dn) + P[Y(G3) < 2| A]  [by (A.2.21)
< exp(—on) + exp(—an) + P[Y (G3) < z|A, A < yn] [by (A.2.22)]
< exp(—dn) + exp(—an) + P[Y(G1) — 78 < z|A, A < yn]
< exp(—dn) + exp(—an) + 2P[Y (G1) < z + /4| A] [by the choice of v and (A.2.22)]
< exp(—dn) + exp(—an) + 3P[Y(G(n,p’,0,)) < z +¢/4] [by (A.2.21)]

< exp(—dn) +exp(—an) + 3PY(G(n,p’,0,)) < E[Y(G(n,p',0,))] — /4] [by (A.2.19)].
Finally, the assertion follows from Lemma A.2.3. O

Proof of Lemma A.2.4. Lemma A.2.8 shows that there exist ¢ > 0, balanced maps oy, : [n] — [k] and
a sequence i, satisfying |u, — dn/2| < \/n such that

1 d
lim P [ In |C(G(n, in,0n),0n)| > Ink+ - In(1 —1/k) + €:| =1 (A.2.23)
n—00 n 2
By the definition of Z3 1, (A.2.23) implies that
_ 1 d
lim P |—InZgk(G(n, pin,0n)) > Ink+ -In(1 —1/k)+e| =1 forall 5>0. (A.224)
n—00 n ’ 2
By comparison, Lemma A.2.7 yields 5 > 0 such that with z = Ink + %l In(1 —1/k) + ¢/8 we have
lim P ! InZg (G <zl =1
Jim P Zg o (G(n,m)) < 2| = 1.

Thus, we aim to prove that there is o > 0 such that for sufficiently large n

P [i InZg 1 (G(n,m,o)) < z+ 5/8] < exp(—an). (A.2.25)
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Indeed, since | In Zg 1,(G(n, pin, 0m))| < Bun = O(n), (A.2.24) implies that for large enough n

1
EEUH Zg i (G(n, pin, 00))] > Ink + gln(l —1/k)+e—0(1)

d
>Ink + §ln(1 —1/k) +¢/2.

Thus, since the number of edges in G(n,p’, 0,,)) is binomially distributed with expectation dn/2 +
O(1), equation (A.2.25) follows from Lemma A.2.11. O

A.3. Determining the fixed point

A.3.1. The ‘hard fields”

In this section we make the first step towards proving that 7, 4+ is the unique frozen fixed point of
Fa,- More specifically, identifying the set {2 with the k-simplex, we show that every face of ) carries
the same probability mass under any frozen fixed point of F ;. as under the measure 7 i, o+ . Formally,
let us denote the extremal points of 2 by 65, = (1;=p)ic[x]> i-€. dp, is the probability measure on [k]
that puts mass 1 on the single point 4 € [k]. In addition, let {2, be the set of all u € 2 with support
¢ (i.e. p(i) > O forall i € £ and pu(i) = 0 for all i € [k] \ ¢). Further, for a probability measure
m € P we let pp(m) = w({dn}) denote the probability mass of §;, under 7. In physics jargon, the
numbers pp, (7) are called the “hard fields” of 7. In addition, recalling that d7; (1) = ku(i)dm(u), we
set p; ¢(m) = m;(Qy) for any (i, ¢) € T. The main result of this section is

Lemma A.3.1. Suppose that d > (2k — 1)Ink — 2. Let ¢* € [2/3,1] be the fixed point of (5.1.4). If
7 € P is a frozen fixed point of Fq, then p;(m) = ¢*/k and p; ¢(7) = kq; , for all (1,0) € T.

Remark A.3.2. The proofs of several statements in this section (Lemmas A.3.1, A.3.3, A.3.4 and
Corollary A.3.5) directly incorporate parts of the calculations outlined in the physics work [ZK07]
that predicted the existence and location of d.onq. We redo these calculations here in detail to be

self-contained and because not all steps are carried out in full detail in [ZKO7].

To avoid many case distinctions, we introduce the following convention when working with product
measures. Let us agree that Q° = {()}. Hence, if B : Q° — Q is a map, then B((}) € Q. Furthermore,
there is precisely one probability measure 7y on 2°, namely the measure that puts mass one on the
point § € Q°. Thus, the integral [,y B(p)dmo(p) is simply equal to B(0). If 71, 72, . . . are probability

measures on {2, what we mean by the empty product measure ®9/:1 . 18 just the measure m on 0o,
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Further, for a real A > 0 and an integer y > 1 we let

pa(y) = N exp(—=A)/y!.

Moreover, for i € [k] we let I'; be the set of all non-negative integer vectors v = (7;) je[x]\{s} and for

~ € I'; we set

pi(y) = H Pkigl(’Yh)-
helk\{i}

We also let Q7 = Hhe[k]\{i} Hje['m} Q2 for v € T';. The elements of {27 are denoted by py =

(uh7j)h€[k]\{i}7je['yh]- Moreover, let

T~ = ® ® Th-

helk\{i} j€[va]

Thus, with the convention from the previous paragraph, in the case v = 0 the set Q7 = {(}} contains
only one element, namely 119 = (). Moreover, 7;  is the probability measure on Q2 that gives mass one
to the point (). We recall the map B : Uwzl QY — Q from (4.1.1) and extend this map to 2° by letting

B(0) = %1 be the uniform distribution on {2. We start the proof of Lemma A.3.1 by establishing the

following identity.
Lemma A.3.3. If 7 is fixed point of Fy i, then for any i € [k] we have

Ti= /m 08[1,)Pi (V) A7 (1)

~verly

To establish Lemma A.3.3 we need to calculate the normalising quantities Z- (7).
Lemma A.3.4. If 7 is fixed point of Fyy, then Z(7) = (k — 1)7 /K71,
Proof. Assume that 7 is fixed point of F ;.. We claim that

/ u(h)dr(p) = 1/k  forall h € [K]. (A3.1)
Q

Indeed, set v(h) = [, (h)dm(p). Then v is a probability distribution on [k]. Since 7 is a fixed point
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of Fy4 ., we find

=
=
[
S~

WAl = > 245 [ SSTT0 - ()| Blar i
'y:O

1®-
g

h=1j=1
— pa(7) U il o
- ;0 Zoy(m) /m jI;[l 1—p;(h) gdﬂ(ug‘) [plugging in (4.1.1)]
_ o Pa(y) B i ’Y_ (1= v(h))" pa(v) e
=2 Zm [/Ql p(h)d (u)} —;Ozhlem T o) [dueto (4.1.1)].  (A3.2)

Now, assume that iy, hy € [k] are such that v(h;) < v(hg). Then (A.3.2) yields

1—Vh1 1_Vh2 (7) -
ZZh’ 1—Vh/ 7 _ZZh’e[k] I—V(h’)) - (hl).

>0 >0
Hence, v(hy) = v(hg) for all hy,hy € [k], which implies (A.3.1). Finally, the assertion follows
from (A.3.1) and the definition (4.1.1) of Z (7). d

Proof of Lemma A.3.3. 1f 7 is a fixed point of F 1, then by Lemma A.3.4 and the definition (4.1.1) of
the map B we have

)

Eu(i)B () = /Q kpa(8)8,dF ) (1)

Q
2 pa(y) g !
= Z / ZHI—,U,J kB[/j,l,...,,Uq 53[#17 ’/’L’Y ®
y=0 V(F) h=1j=1 j=1
k7pd Y Y
= 2 [ TT = 500 Gy @070
7=0 j=1 j=1

Further, for any p € 2 we have 1 — (i) = >, ; u(i'). Hence,

™ = Z (kzid(lzi Z /m H'uj 75) | " OBlus i ®d7r 1)

=0 1. 7176 \{} Jj=1

/ P ®dmg (15)- (A3.3)

MG N\ {4}
In the last expression, we can think of generating the sequence 41, .. .,1%, as follows: first, choose ~y
from the Poisson distribution Po(d). Then, choose the sequence i1, . . ., iy by independently choosing

i; from the set [k] \ {7} uniformly at random. Thus, in the overall experiment the number of times
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that each colour h occurs has distribution Po(d/(k — 1)), independently for all & € [k] \ {i}, whence
(A.3.3) implies the assertion. O]

Corollary A.3.5. If m is fixed point of Fy , then (pi(7));c|x) is a fixed point of the function Fy y from
Lemma 5.2.1.

Proof. Invoking Lemma A.3.3, we obtain for any i € [k]

pi(m) = m({di}) =

— i 2 [ lcmpdma ). A3

~er;

A glimpse at the definition (4.1.1) of B reveals that §; = B|ju] if and only if for each h € [k] \ {3}
there is j € [y such that y15, j = 6. Further, in (A.3.4) the 11, j are chosen independently from the
distribution 7, and 7, ({0 }) = kpn (7). In effect, the r.h.s. of (A.3.4) is simply the probability that
if we choose numbers 7}, independently from the Poisson distribution with mean d/(k — 1) for h # i
and then perform ~;, independent Bernoulli experiments with success probability kpp (), then there
occurs at least one success for each h # i. Of course, this is nothing but the probability that £ — 1

independent Poisson variables (Po(pp (m)dk/(k — 1)))n-; are all strictly positive. Hence,

H P[Po(pp(m)dk/(k — 1)) > 0]

hE[k]\{l}
1 .
=z H 1 —exp(—pp(m)d’) foranyi € [k].
helk\{i}
Consequently, (p;(7))ick) = Far((pi(7))ic[k])- O

Proof of Lemma A.3.1. Assume that 7 € P is a frozen fixed point of F. Then p;(r) > 2 for
all i € [k]. Hence, Corollary A.3.5 yields (p1(7),...,pp(7)) € [, £]* is a fixed point of Fyy.
Therefore, Lemma 5.2.1 implies that p;(7) = ¢*/k for all i € [k].

To prove the second assertion, let (7, £) € 7. Then Lemma A.3.3 yields

pie(m) = / 15} 1e0,Di(7) iy (fiy ) (A.3.5)

~el;

Now, the definition (4.1.1) is such that B[z ] € € if and only if

1. foreach h € [k] \ £ there is j € [y;] such that p, ; = Jj, and
2. foreach h € £\ {i} and any j € [v;,] we have uyp, ; # Op.

Given -, the distributions /1, ; are chosen independently from 7, for all h # 4, j € [v3]. Hence, for a
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given -y the probability that (1) and (2) occur is precisely

n(v) = ] (0 —m({6n}) H 1= (1 —mp({dn}))

hel\{i} helk]\e
= JI @=kpn(m)y™- J] 11— kpn(m)" (A.3.6)
he\{i} helk]\¢

Thus, combining (A.3.5) and (A.3.6), we see that

pie(m) =Y n(V)pi(v)

vl

= II [ D —kon@)p o (w)| T | D~ A~ kpn(m)™)p_a ()

hel\{i} | =0 helk\¢ [vn=>0

II PPoldkpn(z)/(k—1)=0)] [] P[Po(dkpn(r)/(k—1)>0)]
hel\{i} he[k]\ﬁ

= [ exo(~dpn(m)) ] 1- exp(~dpn(r)). (A.3.7)
hel\{i} helk]\e

Finally, as we already know from the first paragraph that py (7) = ¢*/k, (A.3.7) implies that p; ,(7) =
kq; ,. O

A.3.2. The fixed point
The objective in this section is to establish

Lemma A.3.6. Suppose that d > (2k — 1)Ink — 2. Then g, o+ is the unique frozen fixed point of
Fd k-

To prove Lemma A.3.6, let P, be the set of all probability measures 7w € P whose support is contained

in Q; (i.e. m(€2) = 1). For each m € P and any (4, () € T, we define a measure 7; ¢ by letting

1,c0 w(e
mia() = ) = A1, ().
i,0 1,0

In addition, let P = H(i,Z)GT P be the set of all families (7; ¢); ¢c7 such that 7; o € Py for all (i, £).
Lemma A.3.7. If 7 if a frozen fixed point of Fy, then T = (7; ) i.0)eT € P.
Proof. Let (i,¢) € T. By construction, the support of m; , is contained in §2y. Furthermore, Lem-
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ma A.3.1 implies that

1 mi(Qe)  pie(m)
TG0 Q[ = */ 1 9} dm; n) = - = : * =1.
? ( ) kq%g Q HELly l( ) kq%K kq%e
Thus, 7; ¢ is a probability measure. O

Let I'; o be the set of all non-negative integer vectors ¥ = (Yyr.¢/) (i ¢rye; ,- For 4 € Ty g, we let

pie® = II »aa,Gie)-
(@ 0)€Ti e

Moreover, we let 07 = [T iner: , [1jeps, 0 Qand by pg = (ire )i )€, vici ) We denote its
points. In addition, if 7 is a probability measure on 2 and 7 € I'; 4, we set

it et

= Q) Qmie

(¢ 0)ET; ¢ J=1

Further, we define for any non-empty set ¢ C [k] a map

Bo: [ = Q (m,-. o pm9) = Belpa, ..., iy, where (A.3.8)
y=1
1 : _
By = if Pwee [z 1 - w5() =0,
el sy ](R) Ve Ty 145 (h)

Zh’ez H;Yzl 1_Mj(h/) if Zh’ez Hy:l 1= 'uj(h/) > 0.

Additionally, to cover the case v = 0 we define B,[(](h) = I&T’f. Thus, B[()] is the uniform distribu-

tion on 4.

Lemma A.3.8. Let X' be the set of all frozen fixed points of Fq 1. Moreover, let X be the set of all
fixed points of

Faj: P =P, (i) aoer = | D / 0B, (s )Pt (V)dmi 0 5 (15)
Feri,. " G0eT

Then the map @ € X +— T = (T ¢) ;.0)eT induces a bijection between X and X.

Proof. Suppose that m € X. Let (i, £) € T. Then Lemma A.3.3 yields

§ 15(,)e0,08
i = / Phdmi(u) = ) / medm(w (A3.9)
Q Rl g ~eT, i
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Now let us fix a pair (¢,¢) € T and (v, f1). We denote, for h # 4, by 7, = 73 (/) the number of
occurrences of ¢y, in the tuple /. The event B[u~] € € occurs if and only if

1. foreach h € [k] \ £ thereis j € [y] such that i, j = 0, 1.e. 5}, > 0,
2. foreach h € £\ {i} and all j € [y;,] we have pup, j = 5, 1.e. 7, =0,

Thus, Lemma A.3.1 implies that

> [ e i) = ke T #[Potia) >0) T P [Potaie) =0] =1.

= kg, il helk)\e heo\{i}
(A.3.10)

Furthermore, given that the event B[uy] € € occurs, the measure B[] is determined by tho-
se components j ¢ j with (i',¢") € T, only. Thus, defining ¥ = (Jir )it 0ye7;, and py =
(pir o0 3) (it VET; 0j€Fy ] WE obtain from (A.3.9) and (A.3.10)

me= 3 | Gngu i@ ).
7€Fzé

Thus, if 7 is a frozen fixed point of F; 1, then 7 is a fixed point of ]?C“g.

Conversely, if 7 = (m; ¢) is a fixed point of ]-N'd7k, then the measure 7 defined by
qz f
=2 m Z e
LC[k] zef
is easily verified to be a fixed point of F ;. Moreover, for i € [k], p;(7) = ¢ o =4 /k > 2/(3k)

and 7 is thus a frozen fixed point of F . [

Corollary A.3.9. The distribution mq . ¢+ is a fixed point of Fg .

Proof. To unclutter the notation we write m = g  o+. Moreover, we let T' = T g ;. o+; by Lemma 5.2.1
we may always assume that 7" is a finite tree. Recall that 7 is the distribution of pg, which is the
distribution of the colour of the root under a random legal colouring of T'. In light of Lemma A.3.8 it

suffices to show that 7 = (m; ¢) is a fixed point of fdk. Thus, we need to show that for all (i,¢) € T,

az’ e

7TZ"€ = Z /A(gBZ[(ui/,[/7j)] H pd’q, o "yl Nz ®d7’l’z/ Vi /J,Z/ f',j (A311)

Fery, Y (i 0T 0
Let us denote by T'; , the random tree T" given that the root has type (7, ¢). We claim that ; ¢ is the
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distribution of ur, ,. Indeed, let £ C [k]. If the root vo of T has type (i, ¢) for some i € ¢, then
the support of the measure p7 is contained in ¢ (because under any legal colouring, vy receives a
colour from ¢). Moreover, all children of vy have types in 7; ¢, and if (¢/,¢') € T;, then |[¢/| > 2.
Hence, inductively we see that if v has type (i, ¢), then for any colour h € ¢ there is a legal colouring
under which vy receives colour h. Consequently, the support of ur is precisely £. Furthermore, the
distribution p7 is invariant under the following operation: obtain a random tree T” by choosing a
legal colour 7 of T randomly and then changing the types ¥(v) = (i, ¢, ) of the vertices to ¢ (v) =
(1(iy), £y); this is because the trees T" and T" have the same set of legal colourings. These observations

imply that for any measurable set A we have
P lug € A, 9(vo) = (i, )]
P[9(vo) = (i, 0)]

P [NT € ANy, 19(1)0) = (i, E)]
QZg

P [ur € Al9(vo) = (i,0)] =

1

= 5 H(i)luemdﬂ(ﬂ) = Wi,ﬁ(A)-
40 JA

To prove that 7 is a fixed point of ]T"dJc, we observe that the random tree T'; y can be described by
the following recurrence. There is a root vy of type (i, ¢). For each (', ¢'), vy has a random number
Vit = Po(d'q; ) of children (v ¢ j)j=1,..5, , of type (i, £). Moreover, each v;s ¢ ; is the root of a
random tree Ty o ;. Of course, the random variables (’yz-@g/)(i/’g/)eﬁ , and the random trees T’y ¢/ ; are

chosen independently.

This recursive description of the random tree T'; ; leads to a recurrence for the distribution 7; ;. Indeed,
given the numbers (7; ¢) ¢, the distribution BTy of the colour of the root of the random tree
Ty ¢ is an p-valued random variable with distribution 7y o for each j = 1,...,~; . Moreover,
the random variables (MT,, g/,j)iﬂf’,j are mutually independent. In addition, we claim that given the

distributions ( HTy )it j» the colour of the root vy of the entire tree T'; » has distribution

pr,, = Bel(pr, )i e 5. (A.3.12)

Indeed, given that v has type (i, £), vg receives a colour from ¢ under any legal colouring. Further, for
any h € { the probability that vy takes colour i under a random colouring of T’; ¢ is proportional to
the probability that none of its children vy 4/ ; takes colour A in a random colouring of the tree Ty ;

whose root vy ¢ ; is.

Finally, we recall that 7; ¢ is the distribution of ur, ,. Hence, (A.3.12) implies together with the fact
that the ;¢ ; are independent Poisson variables that 7; , satisfies (A.3.11). ]
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Lemma A.3.10. The map .7?d7k has at most one fixed point.

Proof. As before, we let T' denote the random tree T'g i, o+ . Moreover, T'; ¢ is the random tree T given
that the root has type (i, ¢).

Lett > 0 be an integer and let 7 = (7, ¢) € P. We define a distribution 7; = (miee) € P by means of
the following experiment. Let (z,¢) € 7. Let vg denote the root of T'; y and let ¥(v) signify the type

of each vertex v.

TR1 Let T'; s ; be the tree obtained from T'; ; by deleting all vertices at distance greater than ¢ from
0.
TR2 Let V; be the set of all vertices at distance exactly ¢ from vg. For each v € V; independently,
choose p,, € ) from the distribution my,).
TR3 Let y; ¢ be the distribution of the colour of vy under a random colouring 7 chosen as follows.
e Independently for each vertex v € V; choose a colour 74(v) from the distribution z,,.
e Let 7 be a uniformly random legal colouring of T'; ¢4 such that 7(v) = 7(v) for all

v € V;; if there is no such colouring, discard the experiment.

Step TR3 of the above experiment yields a distribution p; o € ). Clearly j; ¢, is determined by the
random choices in steps TR1-TR2. Thus, let we let 7; ¢ ; be the distribution of y; ¢ ; with respect to
TR1-TR2.

We now claim that for any integer ¢ > 0 the following is true.
If 7 is a fixed point of fd,k, then ™ = 7. (A.3.13)

The proof of (A.3.13) is by induction on ¢. It is immediate from the construction that m; oo = ;¢
for all (i,¢) € T. Thus, assume that ¢ > 1. By induction, it suffices to show that 7, = 7;_;. To this
end, let us condition on the random tree T'; s ;1. Consider a vertex v € V;_1 of type ¥(v) = (iy, £y).
We obtain the random tree T'; ; ; from T'; o ;1 by attaching to each such v € V;_1 a random number
Yir o1 = Po(d’ qf’,é’) of children of each type (', ¢') € T;, ¢, where, of course, the random variables
it ¢ » are mutually independent. Further, in step TR2 of the above experiment we choose fi;7 ¢/ ., j €

Q independently from 7y ¢ foreach v € Vi1, (', 0') € Tipand j =1,... 7 ¢ .

Given the distributions fi; ¢ ,, ;, suppose that we choose a legal colouring 7, of the sub-tree consisting

of v € V;_; and its children only from the following distribution.

e Independently choose the colours 7, (u; ¢ ;) of the children w;y ¢ ; of v of type (', ¢") from

Mi/7él 7/U7j °
e Choose a colour 7,(v) for v uniformly from the set of all colours 2 € ¢ that are not already

assigned to a child of v if possible.
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Let 11, denote the distribution of the colour 7, (v). Then by construction,

fio = Bel(ir,0/0.5) (i1 00T jelr o 1)

Hence, the distribution of p, with respect to the choice of the numbers ~; ¢ ,, and the distributions

it ¢ o 5 18 given by

Vil 0! v
/ il 1] paa, oo ® drir o (pir o1 ,0.5) = it

YET; 4 (' 0)ET; 0

because 7 is a fixed point of }V—d,k- Therefore, the experiment of first choosing T'; » ;, then choosing
distributions 41, independently from 7y, for the vertices at distance ¢, and then choosing a random
legal colouring 7 as in TR3 is equivalent to performing the same experiment with ¢ — 1 instead. Hence,

T = T¢—1.

To complete the proof, assume that 7, 7" are fixed points of fd,k. Then for any integer ¢ > 0 we have
T = T, © = 7. Furthermore, as 7, 7, result from the experiment TR1-TR3, whose first step TR1

can be coupled, we see that for any (i,¢) € T,
Imie = ol oy = ITiet = Tigill gy < 2P [Tl >8] (A.3.14)
Because Lemma 5.2.1 shows that T results from a sub-critical branching process, we have
lim P[|T;, >t =0
t—0o0
for any (i, /) € T. Consequently, (A.3.14) shows that 7 = 7. O

Finally, Lemma A.3.6 follows directly from Lemma A.3.8, Corollary A.3.9 and Lemma A.3.10.
A.3.3. The number of legal colourings

The final step of the proof of Proposition 5.1.4 is to relate ¢4 (7qk q+) to the number of legal co-
lourings of T’y j, 4+. The starting point for this is a formula for the (logarithm of the) number of legal
colourings of a decorated tree 1", ¢. To write this formula down, we recall the map B, from (A.3.8).

Moreover, suppose that £ C [k] and fi1, . . ., jt € §2 are such that:

3h e V) ey pi(h) < 1. (A3.15)
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Then we let

1
(b@(:ulv s 7”’7) - (pg(/*[/l? : '7/’6’)/) - §¢2(M17 s 7“’7)7 where

Y
d)z(lula--'nu'y) = lnznl _:uj(h)a

hel j=1

2
d)g(:ulu"'vu’y) = Zln 1_Zﬂj(h)BZ[/lly---,/ij—l)/ij—i-la.--aﬂ'y](h) ;
j=1 hel

the condition (A.3.15) ensures that these quantities are well-defined (i.e. the argument of the logarithm

is positive in both instances). Additionally, to cover the case v = 0 we set ¢y (0)) = In |£].

Further, suppose that 7',1, v is a rooted decorated tree that has at least one legal colouring o. Let
v1, ...,y be the neighbours of the root vertex v and suppose that ¥(v) = (4, ) and ¥(v;) = (i;,¢;)
for j = 1,...,7. If we remove the root v from 7', then each of the vertices vy,...,v, lies in a
connected component 7; of the resulting forest. By considering the restrictions 1J; of ¥ to the vertex
set of T;, we obtain decorated trees 715, ©;. Recall that WT;,9; 0 denotes the distribution of the colour
of the root in a random legal colouring of T}, 9;, v;. Since o is a legal colouring, for h = o(v) for all

J € [7] we have ur, 9. »,(h) < 1. Thus, we can define
(T, 9,v) = ¢€(NT171917U17 ) ,UTy,ﬂwvy)'

Fact A.3.11. Let T,9 be a decorated tree such that Z(T,9) > 1. Then we have In Z(T,?¥) =
Z’UGV(T) ¢(T7 197 /U)'

Proof. This follows from [DM10, Proposition 3.7]. More specifically, let (i, ¢,) = ¥(v) be the type
of vertex v. In the terminology of [DM10] (and of the physicists “cavity method”), ¢(T, ¥, v) is the

Bethe free entropy of the Boltzmann distribution

1
v kYD =001, w(r) = [T trwee II twzw
Z(T,9) weV(T) e={uw}eE(T)

Thus, v is simply the uniform distribution over legal k-colourings of T',4J, and Z(T', 99) is its partition

function. O]

Let T' denote the random rooted decorated tree T'g 1, 4+. Moreover, for (i,£) € T we let T'; ; denote
the random tree 7" given that the root has type (7, £). The starting point of the proof is the following
key observation. Furthermore, if (7', ¢, v) is a rooted decorated tree, then we let (7,9, v)* signify the
isomorphism class of the random rooted decorated tree (7', 9, u) obtained from (7', 7, v) by choosing

a vertex u of 7" uniformly at random and rooting the tree at w. In other words, (7°,1,v)* is obtained
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by re-rooting (7', 7, v) at a random vertex.

Lemma A.3.12. Let T be the random rooted decorated tree obtained by re-rooting T at a random
vertex. Then the distribution of T™ coincides with the distribution of T.

Proof. This follows from the general fact that Galton-Watson trees are unimodular in the sense of
[BCI15]. O

Corollary A.3.13. We have E [ln lz,_,(‘T)} E[6(T)).

Proof. Letting (T, 9, v) range over rooted decorated trees, we find

nZ(T)] _ ~ o m2(T,9,v)
2[5 ]‘%U)P[T*T’ﬁ’ Vv
S i < L0 LG [by Fact A.3.11]
(T9,v) ueV(T) |V( )‘
-y Z Tﬁ(;ﬁ))]’qs(ﬂﬁ’“) [by Lemma A.3.12]
(T, 9v) ueV (T
= Y P[T = (T,9,v)] ¢(T,0,v) = E[$(T)],
(T,9,v)
as claimed. -

Lemma A.3.14. We have

Proof. Writing m = g}, o« for the distribution of p7, we know from Corollary A.3.9 that ;¢ is
the distribution of jur, , for any type (7, £). Furthermore, the distribution of T’; ; can be described by
the following recurrence: there is a root vy of type (i, ), to which we attach for each (¢/,¢') € T,
independently a number ;1 ¢ = Po(d'q}; 1) of trees (Tiy v ;) j=1

...y o that are chosen independently

from the distribution T »». By independence, the distribution of the colour of the root of each T}/ pr ;
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is just an independent sample from the distribution 7 »». Therefore, we obtain the expansion

Z/ be( H'y Pie(y )dﬂ—y(ﬁ“y)

’YGFZ £

Substituting in the definition of ¢,, we obtain

1
7*]1‘,[7

El¢(Ti0)] = Lie — 5

where Iip = 37 cr,, Pie(Y) Jon 87 (1y)dmy (py) and Jig = 37 e, Pie(Y) Jon 9G (1) dmy (1)
Further, by the definition of ¢; we have

Jie= Y piev) > Z/ [ _Z,uijj(h)B[(Mz”,E’,j)(y}ggﬁ#(%jj)](h)] Ay (1)

‘Yeri,l (7, 6)67— P j 1 het
g
D 2P 9> D Py g
(,0)eT; 921 j=17€li.

. /Q o 111 [1 - Z M(h)B[(Mi,vZ,J)(i/,@/,j);ﬁ(i,é,l)](h’)] dﬂ-{j(u) X dﬂ-’)’(lu”‘/)
X

hel

Z qu* a( )Z Z Pi,e(’)’)lw;,g:g—l

(,0)eT; ¢ 921 g=17€li
. In|1-— wu(h dm; ® dmr~ (i~ )-
| [ > u(hs ] (1) ® sy (i)

To simplify this, we use the following elementary relation: if X : Z — R is a function and g is a

Poisson random variable, then E[1,>19X (g — 1)] = E[g]E[X (g)]. Applying this observation to

= Z pi,é(')’)lvi,z:gl/g In ll_ZM ]dﬂ' i(1) @ dmy (py )

~ET; 4 X hel

we obtain

Je= Y g; o4 > pie)

(i,0)€T; 0 velie

' /me " [1 2B [“'th)] dm; () ® A (j1s).

hel
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Now, since 7 is a fixed point of Fy ;, the distribution of the measure B[z~ ] is just m; ». Hence,

Je= > gd// In [1 - Zﬂ(h)ﬂ(h)] dme(p) ® drm; 5(f1).-

(4,6)ET; het

Thus, we obtain the assertion. ]

Lemma A.3.15. We have E [d’(Td,k,q* )] = ¢d,k(ﬂ'd,k,q*)-
Proof. Summing over all (¢, ¢) € T, we obtain from Lemma A.3.14 that

E[¢(T)] = I — %J, where

Z qZZ Z pzﬁ / ng M~y dﬂ'.y /‘L,},)

ZZ eT ’YGFzg

k
J=d Z Z qzﬁqlg/ ln[ Z ]dmg(ﬂ)@w (ﬂ)

GOET (i,0)eTi,

lucq,

lpca,
Recalling that dm; ,(1) = R, dm;(p) and drr; ;(f1) = :q?z dm:(f1), we get
2, ? 2,0

=12 Z > / ln[ _h—l (h)ﬂ(h)] Luca,dpeo,dmi(p) © m; (i)

GOET (i,0)€Ti e
4 k
@',%e[k]:i;ﬁz GOET b:G,0eT h=1
10,1 pe0,dmi(p) ® (i)

k
w2, 1n[ —Zﬂ(h)u(h)] dmi(k) & (i) = ().
h=1

i€ k]

It finally remains to simplify the expression for I. To this aim, we introduce 7; = {(¢/,¢') € T,i’ #
i} and let T; be the set of non-negative vectors 7y = (Yir o) (i 4)eT;- Moreover, we define Q7 =

i eyer Hje[%,el] 2 and denote its points by p5 = (Mi’l/,j)(i’,f’)eﬁ,jem/,y}- We note that if v €
I'ivand 7 € T; are such that:

(a) Vi S E\ {7:},71'/7{7;/} =0,
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(C) v(ilv gl) € 7;,37 ’Yi’,é’ - 7’5"7@’
and that p, fiz satisfy

(d) V(' ') € Tie, V5 € [vro], it e j = Tir o0 s
) Y(&',0') € Ti,Vj € T o], v o j € Qs

then
0if h & ¢,
II II -7t ,
(i! £)ET; G€F 4] H(i',ﬂ’)eﬁe HJ‘G[%,M 1 — py g j(h)ifh €l
Consequently

$i(py) =l | > I I 1-mwe;m)|. (A.3.16)

helk] (@ 0)eTi 5€F ]

Moreover, choosing the Vit o from a Poisson distribution of parameter ¢;; ,/ d’, the event “(a) and (b)”

happens with probability exactly kq; ,. This allows us to write:

Z e Z H Pqy (yir,er) / b (Hy) ® dmy e (pir o7 5)

(i,0)eT RIS EWAC ’f')ET@ 'W)GT[]E[’YZ/ Z’]
Z Z H bg, o4 (i E’ H 15, {i1y=0 H 15, {i13>0
(z OET el (7 £)€T; irel\{i} i'€[k]\L

RN DN I (N QRS0

helk] (' 0)ET; 5€F ]

H H w o € ® ® dmyr (B g ;)

G OT jebn ) P er sy o)

=S T v e

i€lk] 7T, (I 0)€T;

Jm|E T I 1=

helk] (! €T 5€F1 ]

H H w o i1 €Qy ® ® dﬂi’(ﬁi’,éﬂj)

(' 0)ET; JEFsr o] ’f’ (i, 0)ET; jE[Fsr o]

We used (A.3.16) to go from the first to the second line, and summed over £ > ¢ to go from the second

to the third. Re-indexing the vector fiz in a vector u~, v € I'; (with v = ZZ,:W MeT i o), We
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obtain with Lemma A.3.1:

ZZHP

elk]vel; i/ #i
/ In Z H H 1—M2 J ) ® ® dmr(ui/,j)
helk] 7' #i je[vy/] v#Ljely]

%z > IIretw

€[k] v15--7=04'€[k]

'/Q“/1+~»+Wh n Z H H L= ’J ® ® dﬂ‘i/('ui/vj)‘

helk] @/ #i je[v,/] i'e[k] j€[v;/]

O

Proof of Proposition 5.1.4. The first assertion is immediate from Lemma 5.2.1, while the second as-
sertion follows from Lemma A.3.6. The third claim follows by combining Corollary A.3.13 with Lem-
ma A.3.15. With respect to the last assertion, we observe that for d = (2k — 1)Ink — 21n2 + o0x(1)

we have
In2+ or(1)

k
Moreover, as ¢* = 1 — 1/k + ox(1/k) by Lemma 5.2.1, one checks easily that

d
Ink + 5 In(1 — 1/k) =

. {IDZ(Td,k,q*)] _ In2+0,(1) (A3.17)

T kg k
Further, by Lemma 5.2.1

0 [ln Z(Taxr(q"))
)

- A (=2 . g d B
9d" | Tur(@) ]_O’f(’“ ) while - Ink+ZIn(l—1/k) = Qu(1/k).  (A3.18)

od

Combining (A.3.17) and (A.3.18) and using the third part of Proposition 5.1.4, we conclude that >,

has a unique zero dgong, as claimed. ]
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B Complementary proofs: Number of solutions in random

graph £-colouring

This chapter presents the remaining parts of the proofs of statements in Chapter 8. It is a verbatim copy
of parts of the paper On the number of solutions in random graph k-colouring [Ras16b+] submitted
to Combinatorics, Probability and Computing.

Proof of Corollary 8.1.6. We fix s € S, ,, and let £ denote the event {V2 <[ < L: C},, = ¢;}. Let
Z, = Z,ﬁ . (G(n,m)) for the sake of brevity. Since Z,, < Z}  ,(G(n,m)), equation (8.1.5) yields
the upper bound

E[z.e] B {Z’iw(g(”’m))"ﬁ] T NpAC SIA
< ~ exp [=G\] . (B.0.1)
E[Z] ™ (14 01)E [Z,f:vwvy(g(n,m))} g[ e

We show the following matching lower bound:
E[2,/€] > (1 = o(1))E [Z;,,(G(n,m))|E] - (B.0.2)

Indeed, assume for contradiction that (B.0.2) is false. Then we can find an n-independent £ > 0 such

that for infinitely many n,
E[Z.]€] < (1 —e)E[Z{,,,(G(n,m))|E] . (B.0.3)

By Fact 8.1.2 there exists an n-independent £ = £(c, ..., cr) > 0 such that P [£] > £. Hence, (B.0.3)
and Bayes’ formula imply that

E|[Z,] = E [2,/€] P €] + E[Z,|-€] P [€]
< (1-©)E [Z},,,(G(n,m))|€] PE] + E [}, (G(n,m))|~€] P[-€]

< E[Zz,w,u(g(n7 m))] - €§ : E[Zlg,w,u(g<n’ m))|g]

L
= E[Z{ . (G(n,m))] - <1 +o(1) —e€ [Tt + 6] exp [—&M])

=2

= (1= QM)E [Z;,,,(G(n,m))], (B.0.4)
where the last equality holds since §;, \; and ¢; remain fixed as n — oo. As (B.0.4) contradicts (8.1.5),

237
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we have established (B.0.2). Finally, combining (B.0.2) with (8.1.4) and (8.1.5), we get

E(z,/5) (L= [Z, @mmis] b
> ~ exp [— ) (B.0.5)
EE] T (14 o(0)E [2,,(G(nm)] Heortes Fon

and the assertion follows from (B.0.1) and (B.0.5). ]

B.1. Calculating the first moment

The following proofs are very close to analogous proofs in [BCOE14+].

Proof of Lemma 8.2.1. As the edges in G(n, m) are independent by construction, the expected number

of k-colourings with colour density p is given by

E[Zk,(G(n,m))] = <p1n’ ” 7pkn> (1 - ;]Zk: <p;”>>m, where N = (Z) (B.1.1)

Further, the number of forbidden edges is given by

- k .
> <p; ) =N (ZP?) t3 (ZP? - 1) +0(1)

=1

and thus

k
d d

=n;n (1—2&) + 5 +o(1), (B.1.2)
Equation (8.2.1) follows from (B.1.1), (B.1.2) and Stirling’s formula. Moreover, (8.2.2) follows from

(B.1.1) and (B.1.2) because ||p — p*||, = o(1) implies that Zle p? ~ 1/k and

n 1—k

~ (2n) 2 KF? exp [nH .
(" ) ~ 20 b [H(p)

O

Proof of Corollary 8.2.2. The functions p € A — H(p) and p € Aj — %ln(l - Zle p?) are
both concave and attain their maximum at p = p*. Consequently, setting B(d, k) = k(1 + %) and
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B.1. Calculating the first moment

expanding around p = p*, we obtain

(d, k)

B
filp) = =5 le =l =0 (o= p*l2) < filp) < f1 (p") =

B(d, k)

5 llp=pllz (B.13)

Plugging the upper bound from (B.1.3) into (8.2.1) and observing that |A(n)| < n* = exp [o(n)],

we find
B(d, k
Si= Y E[Zuy(Gm) < Crexplfi (o) exp {—(Q)nl/ﬁ] . B14)
pEAR(n)
llo—p*|l2>n=3/8
On the other hand, (8.2.2) implies that
1—k
Sy = > E[Ziy(G(n,m))] ~ > (2mn) 2 K2 exp[d/2] exp [nf1(p)]
pEAL(n) pEAL(n)
llo—p*[l2<n=3/8 llo—p*|l2<n=3/8
- B
~ @rn) T R exp a2+ nfi ()] S exp [—n“‘;”“)w PR (B.15)

pEAR(n)

The last sum is nearly in the standard form of a Gaussian summation, just that the vectors p € Ax(n)
that we sum over are subject to the linear constraint p; + --- 4+ pr = 1. We rid ourselves of this
constraint by substituting pp, = 1 — p; — - -+ — px_1. Formally, let J be the (k — 1) x (k — 1)-matrix

with diagonal entries equal to 2 and remaining entries equal to 1. We observe that det J = k. Then

> exp [—nB(i’k)Hp—p*H%] ~ > exp [—nB(d’k) <Jy,y>]

2
pEAL(n) yelzk
k—1
k=1 _k d R
~ (2mn) Z k2 <1 + ) . (B.1.6)
kE—1
Plugging (B.1.6) into (B.1.5), we obtain
d _k=1
— — 2
Sy~ (2mn) 2 K2 exp[d/2+ nfi(p7)] (27m) 7 k7 (1 + H)
k—1
d T2
=exp [d/2 +nfi(p")] <1+k‘—1> . (B.1.7)

Finally, comparing (B.1.4) and (B.1.7), we see that S = 0(S2). Thus, E[Z;(G(n,m))] = S1 + Sa ~
S5, and the assertion follows from (B.1.7). ]

239



B. Complementary proofs: Number of solutions in random graph k-colouring

B.2. Calculating the second moment

The following proof is very close to an analogous proof in [BCOE14+].

Proof of 8.3.1. To calculate the expected number of pairs of colourings o, 7 with overlap p € By (n),

we first observe that

Zony",

P[0, T are k-colourings of G(n, m)] = <1 -5

where F (o, 7) is the number of “forbidden” edges joining two vertices with the same colour under

either c or 7 and N = (g) We have

- $07) £05) ()

i=1 j=1 ij=1
k k k n [ F k k

S DILED RS V) REY D 9L RS o3 o et RRl
i=1 j=1 i,j=1 i=1 j=1 ij=1

and thus, the probability that o and 7 are both colourings of G(n,m) only depends on their overlap p
and is given by

k k k
d
P [o, T are k-colourings of G(n, m)] ~exp |mln | 1 — Z i Z pzj + Z p?j + 3
i=1 j=1 ij=1
(B.2.1)

It remains to multiply this by the total number of o, 7 with overlap p € By (n). By Stirling’s formula,

this number is given by

n K21 1
<p11n, o o 7pkkn> ~ \/%n : H eXp [nH(P)] . (B22)

iy V2mPij

Equation (8.3.2) is obtained by combining (B.2.1) and (B.2.2). To prove (8.3.3), we observe that if
o= pl13 = o(1). we have

5 1-k2 )
n- 2 1—k
kﬂ— ~ kR (2mn) 2
Hi,j:l V2T pij
and the statement follows. O

240



B.3. Counting short cycles

B.3. Counting short cycles

In this section we count the number of cycles of a short fixed length in order to prove Proposition 8.1.3.
The results in this section were already obtained in [BCOE14+] and the proofs are a very close ad-
aption of the ones in [BCOE14+]. We recall that for [ = 2,..., L we denoted by Cj ,, the number of
cycles of length exactly [ in G(n, m). We let co, . . ., cr, be a sequence of non-negative integers and £
the event that C;,, = ¢; for [ = 2,..., L. We recall \;, §; from (8.1.3). For amap o : [n] — [k], we
define V(o) as the event that o is a k-colouring of the random graph G(n, m). Our starting point is the
following lemma concerning the distribution of the random variables Cj ,, given V(o).

Lemma B.3.1. Let y; = g—; [1 + (,6(_7171))11,1} Then P[E|V(0)] ~ Hlez %ﬁ“l]u?l for any o with
p(o) € Agw(n).

Proof. All we have to show is that for any fixed sequence of integers ma,...,my > 0, the joint

factorial moments satisfy

L
E [(OQ,n)mg T (CL,n)mL |V(U)] ~ H ,U;nl' (B.3.1)
=2

Then Lemma B.3.1 follows from [BolO1, Theorem 1.23].

To establish (B.3.1), we interpret (C2 5, )y, - - - (CLn)m,, as the number of sequences of mo+- - - +mp,
distinct cycles such that mg is the number of cycles of length 2, and so on. We let Y be the number
of those sequences of cycles such that any two cycles are vertex-disjoint and Y’ be the number of

sequences having intersecting cycles. Obviously, we have
E[(Com)ms -+ (Crn)m, V(@) =E[Y|[V(0)] +E[Y'|V(o)]. (B.3.2)

For E [Y'|V(0)], we use the following claim that we prove at the end of this section.

Claim B.3.2. It holds that E[Y'|V(0)] = O(n™1).

Thus, it remains to count the number of vertex disjoint cycles conditioned on V(o). The line of argu-
ments we use is similar to [KPGW 10, Section 2]. To simplify the calculations, we define D, ,, as the

number of rooted, directed cycles of length [ in G(n,m), implying that D; ,, = 2IC} ,,.

For a rooted directed cycle (v1,...,v;) of length [, we call (o(vy),...,0(v;)) the type of the cycle
under 0. Let D} denote the number of rooted, directed cycles of length [ and type t = (¢1, ..., ;). We
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claim that

E [D},|V(c)] ~ (%)l w E@EU))I ~ (k f 1)l with N = (Z) (B.3.3)

Indeed, as o is (w,n)-balanced, the number of ways of choosing [ vertices (v1,...,v;) such that
o(v;) = t; for all i is (1 + o(1))(n/k)" and each edge {v;, v;+1} of the cycle is present in the graph
with a probability asymptotically equal to m /(N — F(o)). This explains the first asymptotic equality
in (B.3.3). The second one follows because m = dn/2 and F (o) ~ N/k.

In particular, the r.h.s. of (B.3.3) is independent of the type ¢. For a given [, let 1; signify the number
of all possible types of cycles of length [. Thus, 7; is the set of all sequences (t1,...,%;) such that
tir1 #t; forall 1 <i < [andt; # t1. Let 77 = 0. Then T; satisfies the recurrence

T+ Ty = k(k— 1)L, (B.3.4)

To see this, observe that k(k — 1)/~ is the number of all sequences (t1, ... ,%;) such that t;, 1 # t; for
all 1 <4 < [. Any such sequence either satisfies ¢; # t;, which is accounted for by 7, or t; = ¢; and

t;_1 # t1, in which case it is contained in 7;_1.

Hence, iterating (B.3.4) gives Tj = (k — 1)! + (—1)(k — 1). Combining this formula with (B.3.3), we

obtain

1\l
E [Din[V(0)] ~ T - E (D}, V() ~ d! (1 " (k(_ﬂ,) |

Recalling that C; ,, = D;,,/(21), we get

ECaPo) ~ % (14D ®35)
Ll PO g (k—1)—1)" >
Since Y considers only vertex disjoint cycles and [, mao, ..., my, remain fixed as n — oo, equation

(B.3.5) yields

il =1 (2 (1 20 )) ™

=2

Plugging the above relation and Claim B.3.2 into (B.3.2), we get (B.3.1) and the assertion follows. [
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Proof of Proposition 8.1.3: Let s € S, ,. By Bayes’ rule and Lemma B.3.1 we have

E [Z; 0,(G(n,m))[E] = P[lg] Y. PVOIPEWV(r)]
TEAL b, (1)

N HlL ) eXpC[l M]Iulcz Z

. PV(r)]

TEA;, w, ,(n)

L expl—m]
| ol My

E [Z; 0, (G(n,m))] -

PlE]
From Lemma B.3.1 and Fact 8.1.2 we get that
Hl ) BXPCl M]MCl L
~ [1+§)° A
e~ et
whence Proposition 8.1.3 follows. U

Proof of Claim B.3.2: For every subset R of [ < L vertices, let [ be equal to 1 if the number of edges
with both ends in R is at least |[R| + 1. Let Hy, be the event that {3_ . pj<, Iz > 0}. By definition, if
Y’ > 0 then the event H, occurs. This implies that

PY' > 0[V(o)] <P[HL|V(0)].

Thus, it suffices to appropriately bound P[H, |V (o)]. Markov’s inequality yields

PHL V(o) <E| > IgV(o Z > ElgV(e

R:|R|<L =2 R:|R|=l

For any set R such that |R| = [, we can put [ + 1 edges inside the set in at most (l(+)1) ways. Clearly
conditioning on V(o) can only reduce the number of different placings of the edges. For a fixed set

R of cardinality [, we get, using inclusion/exclusion and the Binomial theorem as well as the fact that
F (o) ~ N/k:

E [Iz|V(0)] < (l(é)l)li;( 1) - (1_]\[_;(0))’”
l

l —l— (
() G5e) ~ (%) Gatom)

IN
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As (;) < (ie/j), it follows that

el < 1o 3 (1) (2) (i)
v () (5) (i)
1+0 EL:

ed ! _
2 1—1/l<: ( (11/k)> =0(n™),

where the last equality holds since L is a fixed number. The proves the claim.
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Deutsche Zusammenfassung

Die vorliegende Doktorarbeit beschiftigt sich mit zwei Fragestellungen im Bereich der Erforschung
von zufilligen Graph- und Hypergraphstrukturen.

Zum einen geht es um den Beweis der Existenz und die Bestimmung der Lage des sogenannten
Kondensations-Phaseniibergangs. Dieser wird fiir grole Werte von k sowohl im Problem der k-Firb-
barkeit von zufilligen Graphen als auch im Problem der 2-Férbbarkeit von zufilligen k-uniformen
Hypergraphen untersucht, wobei in letzterem ein erweitertes Modell mit sogenannter endlicher Tem-
peratur betrachtet wird.

Zum anderen beschiftigt sich die Arbeit mit der asymptotischen Bestimmung der Verteilung der
Anzahl der Losungen in ebendiesen Strukturen in Dichtebereichen unterhalb des Kondensations-
Phaseniibergangs.

Die prasentierten Ergebnisse resultieren aus vier Artikeln, die eingereicht und teilweise bereits verof-
fentlicht sind.

Zunichst folgt nun ein kurzer historischer Uberblick iiber die Entwicklung der Erforschung von Pha-
seniibergiingen in zufélligen Bedingungserfiillungsproblemen. Anschliefend werden die verwende-
ten Modelle kurz vorgestellt und danach die Hauptresultate prisentiert und eingeordnet. Es folgt ein
weiterer Abschnitt {iber die verwendeten Methoden, bevor am Ende ein kurzer Ausblick zukiinftige

Forschungsfragen erlautert.

Historischer Uberblick

Die Untersuchung von zufilligen Graphen geht zuriick auf die einflussreiche Arbeit von Erd6s und
Rényi aus dem Jahr 1960 [ER60]. Seit diesem Zeitpunkt ist die Erforschung von zufilligen diskreten
Strukturen, insbesondere von Bedingungserfiillungsproblemen, ein aktives und breites Forschungsge-
biet. In den 1990ern entwickelten sich, gestiitzt durch Computersimulationen, mehrere Hypothesen
zum Verhalten dieser zufilligen Probleme bei wachsender Kantendichte?!.

Eine wesentliche Hypothese besagte, dass bei vielen zufilligen Bedingungserfiillungsproblemen die
Wahrscheinlichkeit, eine Losung zu besitzen, rapide von 1 auf 0 abfillt, sobald die Kantendichte einen
gewissen “kritischen Punkt’ passiert, das Problem also einen ’scharfen Erfiillbarkeits-Phaseniibergang’
aufweist.

Viele Jahre versuchte man, diese und andere Hypothesen zu verifizieren, scheiterte aber weitgehend,

2IDie Kantendichte bezeichnet das Verhiltnis von Kanten zu Knoten oder allgemeiner von Bedingungen zu Variablen.
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und konnte zumeist weder die Existenz des Phaseniibergangs beweisen, noch seine genaue Lage be-
stimmen. Seit Anfang der 2000er jedoch erméglichten von Physikern aus der statistischen Mechanik
entwickelte Methoden, insbesondere die ’cavity method” [KMRTSZ07], die kombinatorische Struktur
besagter Probleme besser zu verstehen. Mit Hilfe dieser Methoden lieBen sich Vorhersagen zum Auf-
treten des Erfiillbarkeits-Phaseniibergangs machen und zusétzlich entfaltete sich ein differenziertes
Bild iiber die Entwicklung der Struktur des Raums der Losungen. Zu diesem Bild gehort unter ande-
rem das Auftreten eines weiteren Phaseniibergangs, Kondensations-Phaseniibergang genannt, an dem
sich die Geometrie des Raums der Lésungen grundlegend dndert und den man verantwortlich macht
fiir die Schwierigkeiten, die sich bei der Untersuchung der Probleme ergeben hatten. Da die physi-
kalischen Methoden allerdings mathematisch nicht rigoros sind, 6ffnete sich fiir Mathematiker ein
neues Betétigungsfeld. Die Resultate der vorliegenden Arbeit tragen dazu bei, mathematisch exakte

Grundlagen fiir diese Methoden zu entwickeln.

Verwendete Modelle

Als zufillige Graphenmodelle betrachten wir die Erdés-Rényi Graphen G(n, p) und G (n, m) mit Kno-
tenmenge [n] und Kantenmenge E. Eine k-Férbung dieser Graphen ist eine Abbildung o : [n] — [k]
mit (i) # o(j) fiir alle {4, j} € E. Die Kantendichte ist definiert als d = pn bzw. d = 2m/n und
bestimmt die Schwierigkeit des Problems.

Analog dazu untersuchen wir die k-uniformen Hypergraphen Hy(n,p) und Hy(n, m) mit Knoten-
menge [n] und Kantenmenge E und die 2-Firbungen o : [n] — {£1} mit |o(e)| = 2 firallee € E
(d.h. Farbungen der Knoten, so dass keine monochromatischen Kanten entstehen). Hier ist die Kan-
tendichte definiert als d = p(’,;‘j) bzw. d = km/n.

Zumeist sind wir an asymptotischen Resultaten in n interessiert, setzen also stillschweigend voraus,
dass n beliebig grofl wird. Wir betrachten diinn besetzte Graphen und Hypergraphen, also solche, bei
denen die Kantendichte beschriankt bleibt, wihrend n ins Unendliche wichst. In allen vorgestellten

Problemen bezeichnen wir mit Z die Anzahl der Fiarbungen.

Ergebnisse

Das erste Ergebnis der Doktorarbeit (aus The condensation phase transition in random graph co-
loring [BCOHRV16] zusammen mit Bapst, Coja-Oghlan, Hetterich und Vilenchik, veroffentlicht in
Communications in Mathematical Physics 341 (2016)) beinhaltet den Beweis der Existenz sowie ei-
ne exakte, mathematisch rigorose Lokalisierung des Kondensations-Phaseniibergangs im Graph-k-
Farbbarkeitsproblem fiir gro3e k. Der Phaseniibergang wird nicht explizit, sondern als Losung eines
Fixpunktproblems angegeben, was der sehr komplizierten kombinatorischen Struktur des Problems
geschuldet ist. Es ist das erste Resultat dieser Art fiir eine breite Klasse von Problemen und es stimmt

mit der Vorhersage der ’cavity method’ iiberein.
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Zunichst ein paar grundlegende Definitionen: Wir betrachten die n-te Wurzel der Anzahl der Losun-
gen des k-Firbbarkeitsproblems im Grenzwert fiir grof3es n:
®,(d) = lim E [Zl/"]
n—oo
Die Skalierung ist sinnvoll, da Z liblicherweise von exponentieller Grolenordnung ist. Im Allgemei-

nen ist nicht bewiesen, dass der Grenzwert ®(d) fiir alle Werte von d und k existiert. Fiir gegebenes

k nennen wir dy € (0, co) daher glatt, falls es ein € > 0 gibt, so dass

e fiir jedes d € (dy — &, dp + €) der Grenzwert @y (d) existiert und
e die Abbildung d € (dy —¢,dp +¢) — Pi(d) eine Entwicklung als absolut konvergente Potenz-
reihe um dj hat.

Falls dy nicht glatt ist, sagen wir, dass ein Phaseniibergang bei dy auftritt.

Im folgenden Theorem bezeichnet die Funktion F; . : P — ‘P die Verteilungsversion eines Operators,
der in der Physik als ’Belief Propagation’-Operator bekannt ist und vom Raum P aller Verteilungen
auf einem k-Simplex in sich selbst abbildet. Im Allgemeinen hat diese Abbildung mehrere Fixpunkte,
also Punkte 7* € P, so dass Fy ;[7*] = 7*. Wir nennen einen solchen Fixpunkt gefroren, falls die
Masse auf den k Ecken des Simplex zusammen mindestens 2/3 betragt.

Das Funktional ¢ j ist eine Darstellung einer generischen Formel, der sogenannten *Bethe free entro-
py’. Die ’Bethe free entropy’ liefert eine gute Approximation der freien Entropie des Systems, falls
wir als Argumente Verteilungen verwenden, deren Marginale *nah’ an den Marginalen der korrekten
Verteilung iiber die Fiarbungen der Knoten liegen.

All diese Konzepte wurden systematisch mit Hilfe der ’cavity method’ hergeleitet [MMO09]. Sie wer-
den in Abschnitt 4.1 ausfiihrlich dargestellt.

Theorem. Es existiert eine Konstante ky > 3, so dass fiir jedes k > kg folgendes gilt: Falls d >
(2k — 1)Ink — 2, so hat Fy , genau einen gefrorenen Fixpunkt 7r:§’ i Weiterhin hat die Funktion

d
Ek cd—Ink + §1n(1 — 1/k) — de,k(ﬂ';,k)

eine eindeutige Nullstelle d.onq im Intervall [(2k — 1) Ink — 2, (2k — 1) In k — 1]. Fiir diese Zahl d.onqg
gelten die folgenden drei Aussagen:

(i) Jedes 0 < d < dconq ist glatt und @ (d) = k(1 — l/k)d/Q.
(ii) Es gibt einen Phaseniibergang bei dcqnq.
(iii) Falls d > d.ong, so gilt

lim sup E[Z;,(G(n, d/n))"/"] < k(1 —1/k)%2.

n—oo
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Deutsche Zusammenfassung

Das bedeutet, falls d glatt ist, gilt ®.(d) < k(1 — 1/k)%/2,

Im zweiten Resultat (aus A positive temperature phase transition in random hypergraph 2-coloring
[BCOR16], zusammen mit Bapst und Coja-Oghlan, veroffentlicht in Annals of Applied Probability 26
(2016)) wird fiir groie k die Existenz des Kondensations-Phaseniibergangs im 2-Férbbarkeitsproblem
fiir k-uniforme Hypergraphen mit endlicher Temperatur bewiesen und die Lage des Phaseniibergangs
wird asymptotisch exakt in k& bestimmt.

Die Erweiterung des klassischen Modells auf endliche Temperatur wird in der physikalischen Litera-
tur oft betrachtet und bedeutet im Wesentlichen, dass man sich nicht nur fiir giiltige Firbungen des
Problems interessiert, sondern alle moglichen Zuweisungen von Farben zu Knoten betrachtet und die-
se proportional zur Anzahl der erzeugten monochromatischen Kanten gewichtet. Man definiert die

sogenannte Boltzmann-Verteilung fiir einen Hypergraphen H und Parameter S als

exp [-BEw (o))

T M) = Y e,

Ti[n]—={x1}

Thplo] =

wobei (o) die Anzahl der monochromatischen Kanten in H unter der Farbzuweisung o bezeichnet.

Wir definieren dann )
@d,k(ﬁ) = lim —E[ln ZB(H)] .

n—oo n
Die formale Definition eines Phaseniibergangs in diesem Szenario ist wie folgt: Wir nennen 5y > 0
glatt, falls es ein € > 0 gibt, so dass die Funktion 8 € (fy — €, Bo + €) — Pq () eine Entwicklung
als absolut konvergente Potenzreihe um 3y hat. Ansonsten sagen wir, dass ein Phaseniibergang bei 5

eintritt.

Theorem. Fiir jedes feste C > 0 existiert eine Folge €, > 0 mit limy_, o, e, = 0, so dass folgendes
gilt: Sei
d
Yra(B)=(B+1)exp[—f+kIn2]In2 -2 <k‘ —2Flng 4+ ln2> .

1. Fallsd/k < 2¥"'In2 —In2 — &, ist jedes B > 0 glatt und

Bgr(B) =2+ %m (1 — 21k (1 —exp [—ﬂ])) . (B.3.6)

2. Falls 27'In2 —In2 + &, < d/k < 28"'In2 + C, hat Y1.a(B) eine eindeutige Nullstelle
Beond(d, k) > k1n2 und
o jedes 5 € (0, feond(d, k) + €i) ist glatt und @41, (B) ist gegeben durch (B.3.6),
e es gibt einen Phaseniibergang bei Peong(d, k) + €k
o fiir > Beond(d, k) + e gilt

Dyp(B) <In2+ %m (1 — 917k (1 — exp [—5])) .
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Dieses Resultat ist das erste, das den Kondensations-Phaseniibergang in Bezug auf S mit solcher
Genauigkeit bestimmt. Bis auf den Fehler €, bestitigt es die Vorhersage der nicht-rigorosen ’cavity

method’.

Die letzten beiden Hauptresultate beschéftigen sich mit der asymptotischen Verteilung der Anzahl der
Losungen in zwei verschiedenen Farbbarkeitsproblemen. In der Doktorarbeit werden die folgenden
Resultate aus On the number of solutions in random hypergraph 2-colouring [Ras16a+], eingereicht
bei The Electronic Journal of Combinatorics und On the number of solutions in random graph k-
colouring [Ras16b+], eingereicht bei Combinatorics, Probability and Computing présentiert: Ist Z
die Anzahl der Losungen im zufilligen Hypergraph-2-Férbbarkeitsproblem oder im zufélligen Graph-
k-Férbbarkeitsproblem, so zeigen wir, dass In Z — InE[Z] in Verteilung gegen eine Zufallsvariable
konvergiert, die wir explizit angeben koénnen.

Fiir das 2-Farbbarkeitsproblem von k-uniformen Hypergraphen lautet das Resultat:
Theorem. Sei k > 3 und d' eine feste Zahl, so dass m = [d'n/k] und d'/k < 2¥~11n2 — 2 sowie

(=1’

[d(k — D
(21 -1)"

M=

und O =

Ist dann (X;); eine Familie von unabhéingigen Zufallsvariablen mit E[X;] = \;, alle auf dem gleichen
Wahrscheinlichkeitsraum definiert, so gilt fiir die Zufallsvariable

W= XIn(1+6)— Ndy,
l

dass E|W| < oo und In Z — InE[Z] in Verteilung gegen W konvergiert.

Aus diesem Resultat folgt, dass die Fluktuation des Logarithmus der Anzahl der Losungen in n diver-
giert, allerdings beliebig langsam. Zusitzlich zeigen wir eine Aussage iiber das qualitative Verhalten
des ’planted model’, einer Wahrscheinlichkeitsverteilung iiber Paare von Graph und Firbung, die oft

alternativ zur ’natiirlich auftretenden’ Verteilung untersucht wird, da sie leichter zu handhaben ist.
Fiir das Graph-k-Farbbarkeitsproblem lautet das Resultat:

Theorem. Es gibt eine Konstante ky > 3, so dass folgendes gilt: Sei d’ eine feste Zahl, so dass
m = [d'n/2] und sei entweder k > 3 sowie d' < 2(k — 1)In(k — 1) oder k > kg sowie d’ < dconq.
Sei weiterhin

dl (_1y

Ist dann (X;); eine Familie von unabhéingigen Zufallsvariablen mit E[X;] = \;, alle auf dem gleichen



Deutsche Zusammenfassung

Wahrscheinlichkeitsraum definiert, so gilt fiir die Zufallsvariable

W = ZX[ ln(l + 51) - )\lél - d2/(4(k - 1))’
>3

dass E|W| < oo und In Z — InE[Z] in Verteilung gegen W konvergiert.

Methoden

Ubliche Werkzeuge bei der Untersuchung von Phaseniibergingen in zufilligen Bedingungserfiillungs-
problemen sind die erste und zweite Moment-Methode, die obere und untere Schranken an den Erfiill-
barkeits-Phaseniibergang liefern und die auch bei allen hier préasentierten Resultaten verwendet wer-
den. Insbesondere die zweite Moment-Methode kann entweder in ihrer klassischen Form Anwen-
dung finden, oder in einer von den physikalischen Methoden inspirierten erweiterten Form (wie in
[COP16])).

Des Weiteren benutzen wir das ’planted model’, das uns erlaubt, die Struktur des Losungsraums von
zufilligen Bedingungserfiillungsproblemen unterhalb des Kondensations-Phaseniibergangs zu unter-
suchen. Wir verwenden Konzentrationsargumente sowie Aussagen iiber die Eigenschaften des "core’,
einer dicht-verlinkten Menge von ’gefrorenen’ Knoten, die aufgrund der geometrischen Strukturen im

Wesentlichen auf eine Farbe fixiert sind.

Fiir den Beweis des ersten Resultats finden wir eine explizite Verbindung zwischen der kombinatori-
schen Struktur des Graph-Firbbarkeitsproblems und dem Verteilungs-Fixpunktproblem aus [ZKO07].
Wir benutzen dazu den in der physikalischen Literaur eingefiihrten *message-passing’-Prozess War-
ning Propagation (vgl. [MMO09]) und zeigen, dass wir mit seiner Hilfe einen detaillierten Einblick in

die Geometrie der Komponenten des Losungsraums erhalten.

Im Falle endlicher Temperatur entwickeln wir eine rigorose Version der vorhergesagten Zerlegung des
Raums der Losungen in sogenannte ’cluster’, wie es sie fiir das klassische Modell (ohne Temperatur-
Parameter) schon gab [ACO08, COZ12] und beschiftigen uns mit der Bestimmung der Gré8e dieser

’cluster’.

Die Resultate zur asymptotischen Verteilung der Anzahl der Losungen erhalten wir mit einer Vari-
ante der Methode ’small subgraph conditioning’, die von Robinson und Wormald [RW94] eingefiihrt
wurde und von Janson [Jan95] weiterentwickelt. Der Beweis beruht auf der Beobachtung, dass die
Fluktuationen in der Anzahl der Losungen zuriickgefiihrt werden konnen auf die Fluktuationen in der
Anzahl der kurzen Kreise in den zugrundeliegenden Graph- und Hypergraphstrukturen. Die Verwen-
dung dieser Methode erfordert eine sehr exakte Berechnung des zweiten Moments und eine Analyse
der Varianz nach dem Vorbild von [RW94].
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Ausblick

Die in dieser Arbeit entwickelten und verwendeten Methoden lassen sich vermutlich auf eine ganze
Reihe weiterer Probleme und Fragestellungen anwenden.

Da sich die Vorhersagen der Physiker in vielen Bedingungserfiillungsproblemen dhneln, ist es plausi-
bel, dass sich z.B. die Beweistechniken zur Lokalisierung des Kondensations-Phaseniibergangs im
k-Férbbarkeitsproblem auf andere Probleme iibertragen lassen. Ebenso ist zu erwarten, dass auch
Modelle mit endlicher Temperatur analog zur Hypergraph 2-Farbbarkeit untersucht werden konnen.
Selbstverstindlich ist neben der Frage zum Kondensations-Phaseniibergang auch die Frage nach der
Existenz und Lage des Erfiillbarkeits-Phaseniibergangs (zumindest in Problemen ohne den Tempe-
raturparameter) wegweisend. Bis jetzt existieren nur wenige rigorose Ergebnisse zur Bestimmung
dieses Ubergangs [DSS15, DSS16, DSS16+, COP16]. Tatséchlich ist in vielen Problemen nicht ein-
mal die Vorhersage der ’cavity method’ bewiesen, dass sich der Kondensations-Phaseniibergang vom
Erfiillbarkeits-Phaseniibergang unterscheidet. In jedem Fall wird die vollstindige mathematische Pris-
zisierung der ’cavity method’ auf absehbare Zeit eine spannende Herausforderung bleiben.

Was die Verteilung der Anzahl der Losungen betrifft, so liegt die Annahme nahe, dass eine Kombinati-
on der zweiten Moment-Methode und ’small subgraph conditioning’ in vielen anderen Problemen zur
Bestimmung der asymptotischen Verteilung der Anzahl der Losungen genutzt werden kann. Probleme,
fiir die das vorstellbar ist, sind z.B. zufilliges NAE-k-SAT, zufilliges k-XORSAT, zufillige Hyper-
graph k-Farbbarkeit oder Probleme auf zufilligen reguldren Strukturen. Fiir asymmetrische Probleme
wie das bekannte zufillige k-SAT erwarten wir jedoch, dass die Anzahl der Losungen stirker fluktu-
iert und bezweifeln daher, dass ein dhnliches Resultat erzielt werden kann.

Tatsdchlich wire es sehr interessant, eine komplette Klassifizierung aller Probleme zu erstellen, fiir
die eine solche Grenzverteilung gefunden werden kann. Es ist denkbar, dass dies alle Modelle betrifft,
bei denen die Verteilungsfunktion auf einem Baum mit n Knoten konstant ist. In diesem Fall wire
eine Verallgemeinerung der Beweistechnik lohnenswert, sodass alle betrachteten Modelle abgedeckt

werden.

Zudem ist auch die Frage nach dem effizienten Auffinden von Losungen aus algorithmischer Sicht
noch weitgehend unbeantwortet. Insbesondere die prizise Analyse von ’message-passing’ Algorith-
men ist ein aktives Forschungsgebiet. Obwohl es einige experimentelle Ergebnisse gibt, steckt die

mathematisch rigorose Analyse noch in den Kinderschuhen.

Zusammenfassend und abschliefend lésst sich sagen, dass in den letzten Jahrzehnten ein groBer Schritt
getan wurde, die Eigenschaften und Besonderheiten von Bedingungserfiillungsproblemen zu verste-
hen. Es gibt auf diesem Gebiet jedoch noch sehr viel zu erforschen und man ist noch weit davon

entfernt, alle auftretenden Phidnomene grundlegend verstanden zu haben.
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