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1 Introduction

The study of random constraint satisfaction problems (CSPs) looks back on a long history and, during

this time, has been approached from different points of view. Extensive investigations were underta-

ken in the mathematical field of combinatorics as well as in computer science and, more recently, in

statistical mechanics. The motivation for this interdisciplinary research originates in a wide range of

applications, namely, among others, in the fields of optimization, coding theory, artificial intelligence

and spin glasses.

In a constraint satisfaction problem variables are related via constraints that determine which com-

binations of value assignments to the variables form a solution. The decision version of the problem

aims at establishing whether or not an instance admits a solution. In the search version algorithms

are applied to try and find concrete solutions. If the problem exhibits a solution, a canonical question

will relate to the total number of solutions. Prominent examples of CSPs are the well-known k-SAT

problem, the graph k-colouring problem and the hypergraph 2-colouring problem1.

The focus of this thesis is on random constraint satisfaction problems, meaning that the underlying

structures (the boolean formulas or (hyper)graphs) are generated randomly. Studying random pro-

blems is of great interest as random instances exhibit phenomena that deterministically construc-

ted instances do not. Indeed, in many problems it seems to be impossible to generate determini-

stic instances that are as hard as random ones picked according to some appropriate distribution

(cf. [BHvMW09, CM97] and the references therein for more details).

When speaking of the evolution of the random structures, we mostly refer to the setting where the

constraint-to-variables density (the ratio between constraints and variables, often only called cons-

traint density or average degree) increases, thus making it more and more unlikely for a random

instance to exhibit a solution. Almost exclusively, the objects to be studied will be sparse, meaning

that the average degree will be bounded when the number of variables tends to infinity.

The persistent study of random CSPs in different disciplines during the last three decades has led to

a series of hypotheses and results, highlighting in particular their striking similarities. A prominent

hypothesis states that when the constraint density passes through a critical threshold, the probability

for a random instance of the problem to be solvable drops very rapidly from 1 to 0, thus the problem

appears to undergo a phase transition. Although a wealth of research has been dedicated to under-

standing the behaviour of random CSPs, it has turned out very difficult to rigorously approach any

1In the colouring problems variables correspond to vertices and constraints to (hyper)edges. The expressions will be used
synonymously further on.
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1. Introduction

of the hypotheses. In particular, for most random CSPs a proof of the existence, let alone the precise

location, of the critical threshold remains elusive.

However, some progress has been made in shedding light on the various phenomena over the years.

A great part of this success is owed to physicists from statistical mechanics who brought about new

inspiring insights into the combinatorial nature of the problems. They developed non-rigorous but

sophisticated methods to make very precise predictions about the location of the critical threshold

(cf. [MM09, KMRTSZ07] for detailed information and references). Maybe even more importantly,

they illuminated the impact of the geometry of the set of solutions, thereby explaining a variety of

peculiarities that had been observed before, but had not been understood.

In the last years, several of the predictions could be proven by mathematicians from probabilistic com-

binatorics and up to now none has been falsified. Mathematicians benefited a lot from the physicists’

insights and the knowledge of statements they had to prove. However, it still required developing some

completely new techniques.

The results in this thesis take their place alongside a range of other contributions on the long way

of solving this puzzle piece by piece. They pertain to two different random CSPs, namely random

graph k-colouring and random hypergraph 2-colouring. On these models, they relate to two different

objectives. The first is determining the distribution of the number of solutions in these CSPs in the

limit when the number of vertices becomes large. The second consists in establishing the existence

and location of yet another phase transition predicted by the physicists called “condensation”.

The thesis will be structured as follows: The next two sections provide a brief overview of the historical

evolution of the research in this area and a short outline of the physics approach to these problems.

After that, a short summary of the results in this thesis will be given. Chapter 2 is devoted to formally

introducing the models under consideration and defining essential concepts and the questions we are

dealing with. In Chapter 3 the techniques and proof methods are explained. Chapter 4 presents the

main results of the thesis and puts them in relation to other relevant work. The subsequent Chapters 5

up to 8 as well as Appendices A and B comprise the proofs of the results. Finally, Chapter 9 provides

a conclusion and an outlook to further research questions and challenges.

1.1. Historical background

The graph k-colouring problem, asking whether it is possible to colour the vertices of a given graph

with k different colours such that no two adjacent vertices share the same colour, has been of central

interest in discrete mathematics for more than one century. It had its beginnings in the “four co-

lour problem” posed by De Morgan in 1852 and for randomly generated graphs it constitutes one

of the longest-standing challenges in probabilistic combinatorics since the seminal paper [ER60]

2



1.1. Historical background

of Erdős and Rényi, which started the theory of random graphs (cf. [Bol01, JLR00] for a compre-

hensive survey of this field of research). This impressive paper laid the foundation for engagement in

the theory of phase transitions as it illuminated many aspects of the evolution of random graphs and

established the critical point for the emergence of a giant component as well as the one for a random

graph being connected (which they had already investigated in [ER59]). From a number of intriguing

questions posed in this paper, the one concerning the typical chromatic number of a random graph is

the last that still remains unanswered.

Also the hypergraph 2-colouring problem has a long history: In the early 1900s, the mathematician

Bernstein [Ber07] considered a question which can be rephrased in the following way: Is it possible to

colour the vertices of a given hypergraph with two colours such that no hyperedge is monochromatic?

A hypergraph for which this is possible possesses “Property B” as it was later called in honour of

Bernstein. In the 1960s, Erdős popularized this problem [Erd63, Erd64] and proposed bounds on

the smallest number of hyperedges in non-2-colourable k-uniform hypergraphs. Indeed, according to

[AM06], determining this smallest number remains one of the most important problems in extremal

graph theory up to these days.

The problems of k-colouring graphs and 2-colouring hypergraphs belong to the aforementioned set

of constraint satisfaction problems, just as for example the well-known boolean satisfiability problem

k-SAT or the independent set problem. In 1971, the renowned computer scientist and mathematician

Cook [Coo71] proved that k-SAT is NP-complete for all k ≥ 3. One year later, Karp [Kar72] sho-

wed that by reduction a whole bunch of combinatorial and graph theoretical computational problems,

including k-colourability, can also be found to be NP-complete and thus cannot be solved by determi-

nistic polynomial time algorithms unless the classes P and NP coincide. Lovász [Lov73] derived the

same result for hypergraph 2-colouring.

Since the 1990s, random CSPs, involving randomly chosen constraints on the variables, have been

intensely studied in the field of probabilistic combinatorics. The beginnings of this work were of ex-

perimental nature and the findings resulted in two hypotheses [CKT91, MSL92]: First, that in many

random CSPs there exists a satisfiability threshold, a certain constraint-to-variables density below

which random instances of the problem have solutions and above which they have not with high pro-

bability2. And second, that the difficulties of algorithmically computing a solution near this threshold

go hand in hand with this threshold phenomenon.

While it turned out extremely difficult to verify any conjectures concerning the algorithmic performan-

ce, and until now we only have a very vague idea about the true connections, regarding the threshold

behaviour some progress could be achieved. Indeed, in a breakthrough paper in 1999, Friedgut [Fri99]

proved the existence of a non-uniform satisfiability threshold sequence in random k-SAT, i.e. a se-

2We say that a sequence of events An occurs with high probability (w.h.p.) if limn→∞ P [An] = 1.

3



1. Introduction

quence depending on the number n of variables that marks the point where the probability of being

solvable drops from 1 to 0:

Theorem 1.1.1. Let Fk(n, dn) be a k-CNF 3 formula on n variables and dn constraints chosen

uniformly at random from all such formulas. Then for each k ≥ 3, there exists a sequence dsat(n),

such that for every ε > 0,

lim
n→∞

P [Fk(n, dn) is satisfiable ] =

1 if d = (1− ε)dsat(n),

0 if d = (1 + ε)dsat(n).

Achlioptas and Friedgut [AF99] could prove the same for random graph k-colouring for k ≥ 3

and it also holds for random hypergraph 2-colouring and other monotone random CSPs [Fri05]. The

non-uniformity of the threshold sequence left open the possibility that the threshold value might va-

ry with growing n. Only for a very small number of problems, the existence of the limit dsat =

limn→∞ dsat(n) has been proven and its location been determined. The most prominent example pre-

sumably is the result for random k-SAT for large k [DSS15]. However, it is widely conjectured that

the sequence converges in other problems as well4. For this reason and as per common practice in the

study of random CSPs, we will take the liberty of speaking of “the threshold” dsat, or more specifically

dcol for the colouring problems. Proving this conjecture and determining the location of the threshold

in random CSPs (as Theorem 1.1.1 is a pure existence result) is a major open problem.

A wealth of research has since been devoted to finding upper and lower bounds on the threshold in the

different problems. While upper bounds can rather easily be derived via the first moment method, for

a long period of time the best lower bounds were of algorithmic nature [FS96], later on they stemmed

from the second moment method. However, in most cases the first and second moment method do

not yield matching lower and upper bounds (cf. Section 3.2 for an explanation of the methods and

Sections 4.2 and 4.3 for a discussion of their application in different problems). So, efforts were

started to learn about the nature of this gap, but for a couple of years it was not clear how to get a

handle on that.

Interestingly and - as might be said - fortunately, physicists doing research in the field of statistical me-

chanics have been working on random CSPs for the past decades as well. In the early 2000s, they put

forward a “symmetry-breaking” version of the so-called cavity method, a non-rigorous but very sophi-

sticated tool that allowed them to make very precise conjectures as to the location of the thresholds in

3CNF stands for “conjunctive normal form”. In the k-SAT problem, the boolean formula is expressed in k-CNF, which is
a conjunction of disjunctions, each encompassing k literals.

4Not in all problems, however, as e.g. the problem of 2-colouring random graphs does not exhibit sharp threshold behaviour,
because the probabilities of G(n, dn) having an odd cycle and not having an odd cycle are both bounded away from 0
for every d ∈ (0, 1).
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1.2. The physics perspective

different problems. But maybe even more intriguing were the insights into the combinatorial nature of

the problems and the prediction of yet another phase transition called condensation that occurs shortly

before the satisfiability threshold [KMRTSZ07] and that seems to be the reason why identifying the

precise threshold for the existence of solutions is such a challenging task.

1.2. The physics perspective

In this section we want to outline the picture that has been painted by physicists from statistical me-

chanics about the combinatorial and structural properties of the solution space5 in many random CSPs.

This picture gives hints, albeit in a non-rigorous way, to questions such as why there seems to be a

mysterious barrier in the constraint density that all rigorously analysed algorithms prove unable to

pass or what is the nature of the gap between the first moment upper and the second moment lower

bound in these kinds of problems. As will be described in detail in Section 4.3, some of the conjectures

made by the physicists have meanwhile been proven, but a major part still evades a rigorous analysis.

In the language of statistical physics, random CSPs like hypergraph 2-colouring and graph k-colouring

on sparse random (hyper)graphs are examples of diluted mean-field models of disordered systems. Re-

solving this term into its components reveals some very important common characteristics of these

problems. The term diluted refers to the fact that the average degree in the underlying graph is boun-

ded, while mean-field indicates that there is no underlying lattice geometry. Moreover, the concept of

disordered systems reflects that the model involves randomness, which in our case comes in the form

of the sparse random (hyper)graph that determines the geometry of interactions between individual

“sites”.

Diluted mean-field models have been studied thus intensely because they are considered a better ap-

proximation to “real” disordered systems than models where the underlying graph is complete, in the

sense that they have a more realistic geometry. A prominent example for a model basing on a comple-

te graph is the Sherrington-Kirkpatrick model [SK75], which is a fully-connected mean-field model,

where each variable interacts with any other via randomly chosen couplings. Examples for these real

disordered systems are glasses and spin-glasses, which attracted attention because of their peculiar

magnetic properties. Already in the 1980s, Mézard and Parisi [MP85, MP87] as well as Fu and An-

derson [FA86] made first attempts on adapting heuristics from the study of spin glasses to explain the

CSP solution space. Unfortunately, unlike for example in the Sherrington-Kirkpatrick model, where

the free energy is captured by the “Parisi formula” [Par80, Tal06], and in general in fully-connected

5To be concrete, the solution space of a distinct problem is a simple graph where every vertex represents a solution and
vertices are connected if the solutions differ on exactly one variable. In the literature it is also common to connect vertices
if the solutions differ only on a sub-linear number of variables. However, in most cases this yields asymptotically the
same statements. The graph representing the solution space should not be confused with the underlying graph of the
random CSP.

5



1. Introduction

models, where every pair of vertices interacts in the same way, statistical mechanics models of dis-

ordered systems exhibit a non-trivial geometry and their analytical study turned out to be notoriously

difficult.

However, more than 30 years ago, physicists introduced the so-called replica method, an analytic but

non-rigorous approach for attacking these kinds of problems [MPV87]. It was originally developed

to deal with the Sherrington-Kirkpatrick model and generalized former attempts of understanding its

behaviour [SK75, Par79, Par80]. As an alternative approach, yet similar in spirit, the cavity method

was presented around the same time. After having been applied to sparse random graphs [MP85]

and coding theory, since the late 1990s the replica symmetric (RS) variants of these methods have

been further developed into the more intricate one-step replica symmetry breaking (1RSB) versions

[Mon98, MP01, MP03]. The one-step replica symmetric cavity method is a very sophisticated and

powerful but still non-rigorous tool and originated in the context of spin glasses, where it was designed

to work with models on locally tree-like graphs (cf. [MM09] for details and references).

As sparse random (hyper)graphs are locally tree-like and only possess a bounded number of short

cycles with high probability, the cavity method can be used to put forward precise conjectures on

diluted mean-field models of disordered systems. Its application to constraint satisfaction problems,

first in [MPZ02], led to a huge amount of work in the physics literature (cf. [KMRTSZ07] for a survey).

The cavity method has been used to put forward conjectures in a variety of areas, during the last years

mainly in compressive sensing and most recently in machine learning. Many of its predictions are

given in terms of a distributional fixed point problem. Among the various predictions, perhaps the most

exciting ones relate to the existence and location of phase transitions. Typically, the replica symmetric

cavity method gives upper and lower bounds on the location, while the 1RSB version is conjectured

to yield precise results. In particular, there exist conjectures on the exact location of the satisfiability

threshold dsat in many problems. What is more, according to the cavity method there occur other

transitions prior to dsat [KMRTSZ07] and when crossing them, the geometric properties of the solution

space dramatically change. In the next paragraph an overview of this predicted development of the

solution space will be given. The most important transition for our purposes in this thesis is the so-

called condensation phase transition. It occurs very shortly before dsat [KMSSZ12a] as the result of

an “entropy crisis”. It is a phenomenon that is ubiquitous in physics, holding the key to a variety of

problems, for instance it seems to be closely related to the difficulty of proving precise results on the

satisfiability threshold and in particular to the demise of the second moment method (cf. e.g. [COZ12]).

Furthermore, it seems to be responsible for the difficulty of analysing the performance of certain

message passing algorithms, although it turned out extremely challenging to rigorously get a handle on

this prediction. In contrast to the satisfiability transition, the condensation phase transition is a genuine

thermodynamic transition persisting in models with finite inverse temperature (that we introduce in

Section 2.3). Its role in the context of structural glasses goes back to the work of Kauzmann in the

1940s [Kau48]. It has been established in a variety of models, ranging from the random energy model

6



1.2. The physics perspective

[Der81] to the fully-connected p-spin-glass [Tal03, KT87]. However, there are only a few rigorous

results on the condensation phase transition in diluted mean-field models.

The cavity method yields substantial insights into the geometry of the solution space and makes pre-

dictions on the free entropy density limn→∞
1
nE [lnZ].6 The conjectured evolution of the geometry of

the solution space is as follows:

For very low constraint densities, when the (hyper)graph is still very sparse and typically many soluti-

ons exist, the solution space is - more or less - a single connected component and is described as being

replica symmetric [KMRTSZ07]. In this regime, in many problems the typical value or quenched ave-

rage limn→∞
1
nE [lnZ] equals the so-called annealed average limn→∞

1
n lnE [Z] (which is often a

well-behaved analytical function) .

As the density increases, at some point called the clustering transition, which is quite a distance from

the conjectured satisfiability threshold (for example for hypergraph 2-colouring it is about a factor

of k below dcol), the set of solutions starts to “shatter” into a multitude of well-separated clusters

and every cluster only contains an exponentially small fraction of all solutions. The clustering tran-

sition is called dynamic one-step replica symmetry breaking in physics language. It is purely com-

binatorial, i.e. it marks no phase transition in the sense defined later in Section 2.5 because still

limn→∞
1
nE [lnZ] ∼ limn→∞

1
n lnE [Z] holds. This clustering phenomenon has been rigorously pro-

ven [ART06, ACO08] for some of the most important random CSPs. After the clustering threshold, in

a typical cluster (i.e. the cluster of a solution picked uniformly at random) all solutions agree on most

variables, which are then called frozen variables. As the constraint density increases, a further transiti-

on takes place, the freezing transition, rigorously established by Molloy [Mol12]. After this transition,

in almost every cluster a constant fraction (converging to one as k tends to infinity) of variables take

on the same value.

As the constraint density evolves further, both the overall number of solutions and the sizes of the

clusters decrease. But, according to the prediction, the number of all solutions drops at a faster rate, a

phenomenon referred to as “entropy crisis”, and thus we end up at a point, typically only a constant

factor below the satisfiability transition, where the number of solutions in the largest cluster equals (up

to sub-exponential terms) the number of all solutions: the condensation phase transition dcond. This

marks a further change in the geometry of the solution space, a sub-exponential number of “large”

clusters now contain a constant fraction of the entire set of solutions. As a consequence, while in the

clustering phase typical solutions can be considered as being nearly independent, according to the pre-

diction they have non-trivial correlations in the condensation phase and thus the combinatorial nature

of a typical solution becomes significantly more complicated. The condensation transition is a ther-

modynamic phase transition that is called static one-step replica symmetry breaking in physics terms

and in the condensation phase it should be true that limn→∞
1
nE [lnZ] < limn→∞

1
n lnE [Z]. At least

some parts of this picture have been established rigorously, especially the existence and location of a

6Here, Z is the number of solutions, or, more general, the partition function (cf. Sections 2.2 and 2.3) and the expectation
is taken over the choice of the random (hyper)graph.
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condensation phenomenon (cf. e.g. [COP12, DSS16, DSS16+, BCO15+] as well as Section 4.1).

Finally, as the average degree approaches the satisfiability threshold, the number of clusters drops

down, until none survives.

In general, 1RSB [KMRTSZ07, ZK07, MRTS08] can be understood as RS at cluster level and suggests

that there is no extra structure in clusters. There are other problems, like for instance the Sherrington-

Kirkpatrick model or the problem of finding extremal cuts of sparse random graphs, that are predicted

to have a full RSB structure [Par80, DMS16+], meaning that inside the clusters the solutions shatter

again into smaller clusters, which shatter again and so on and so forth. This phenomenon is, however,

very far from being verified rigorously.

Concerning the failure of algorithms, there seems to be a connection between clustering and the com-

putational difficulty of finding a solution [ACO08, Mol12, Zde09]: Efficient algorithms provably find

solutions up to (roughly) the density at which frozen clusters come into existence. On the basis of

insights from the cavity method, in the past years physicists have developed new message passing al-

gorithms, the most prominent examples being Belief Propagation Guided Decimation and Survey Pro-

pagation Guided Decimation [BMZ05, MZ02]. They were originally developed to deal with the clus-

tered geometry of the solution space [BMPWZ03, MPZ02] and experimental evaluation suggests that

for small values of k these algorithms yield good results even in a clustered phase. However, while a

satisfactory analysis remains elusive, meanwhile there is some (rigorous) evidence that the algorithms

break down below the clustering barrier for large k in the limit of large n [RTS09, CO11, Het16+]

(cf. Subsection 4.3.2 for a more in-depth discussion).

Beside the algorithmic question, based on the cavity method a Survey Propagation-inspired first and

second moment method have been developed [MS08, CO13, COP16]. The essence of these methods

is that instead of determining the moments of the number of solutions, the arguments are executed

for the number of clusters. So-called covers are used, such that each cluster corresponds to a single

cover and the internal entropy of the clusters can completely be ignored. This yields improvements

over the “classical” application of the first and second moment methods (cf. Section 4.2), as close to

the satisfiability threshold the cluster sizes are conjectured to vary significantly. This phenomenon has

in part been established rigorously [COP16, DSS15].

Apart from models of inherent physical interest, the cavity method has been applied to a wide variety

of problems in probabilistic combinatorics, computer science, coding theory and, more recently, com-

pressed sensing [KMSSZ12a, KMSSZ12b]. It seems to be crucial to deepen our understanding of the

behaviour of random CSPs. Several of its most important predictions have been confirmed rigorously

through alternative approaches [MM09]. In effect, it has become an important research endeavour to

provide a rigorous mathematical foundation for the cavity method. The results in this thesis contribute

to this effort.
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1.3. Summary of results

1.3. Summary of results

This PhD thesis deals with two different types of questions on random graph and random hypergraph

structures. One part is about the proof of the existence and the determination of the location of the

condensation phase transition. This transition will be investigated for large values of k in the problem

of k-colouring random graphs and in the problem of 2-colouring random k-uniform hypergraphs,

where in the latter case we investigate a more general model with finite inverse temperature. The other

part deals with establishing the limiting distribution of the number of solutions in these structures in

density regimes below the condensation threshold.

The thesis comprises four main results from four papers of which two are already published and the

other two are submitted. This section provides a very short summary of the results of these papers

as well as an assessment of the contribution of this thesis’ author. A more detailed description and

discussion of the results can be found in Sections 4.1 and 4.2.

The first main result is from the paper The condensation phase transition in random graph coloring

by Bapst, Coja-Oghlan, Hetterich, Raßmann and Vilenchik published in Communications in Mathe-

matical Physics 341 (2016) and cited in this thesis as [BCOHRV16]. In this paper we establish the

existence and determine the precise location of the condensation phase transition in random graph

k-colouring for large k. The result is in terms of a distributional fixed point problem and rigorous-

ly verifies the prediction of the cavity method. The detailed proof can be found in Chapter 5 and

Appendix A. The author of this thesis contributed primarily to the analysis of the branching process

presented in Section 5.2 as well as to the determination of the cluster size using Warning Propagation

and to establishing a connection between the random tree process and the graph with planted colouring

presented in Section 5.3.

The second result is from the paper A positive temperature phase transition in random hypergraph

2-coloring by Bapst, Coja-Oghlan and Raßmann published in the Annals of Applied Probability 26

(2016) and cited here as [BCOR16]. The main result in this paper proves the existence and determines

the location of the condensation phase transition in random k-uniform hypergraph 2-colouring with

additional temperature parameter β for large values of k. The proof can be found in all details in

Chapter 6. The author of this thesis contributed primarily to the investigation of the first and second

moment presented in Section 6.2, to the calculations in the planted model performed in Section 6.3

and to the proof of the existence of Φd,k(β) in Section 6.5. Furthermore she carried out revision work

of all the proofs and statements presented in Chapter 6.

The third result is from the paper On the number of solutions in random hypergraph 2-colouring

by Raßmann submitted to The Electronic Journal of Combinatorics and cited as [Ras16a+]. In this

paper, the asymptotic distribution of the logarithm of the number of 2-colourings of random k-uniform

hypergraphs is determined for all k ≥ 3, concentration of this number is established and the random
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1. Introduction

colouring model is shown to be contiguous to the planted model. All proofs can be found in Chapter 7.

As this is a single-author paper, the question regarding the contribution of this thesis’ author does not

arise.

The last result is from the paper On the number of solutions in random graph k-colouring by Raßmann

submitted to Combinatorics, Probability and Computing and cited as [Ras16b+]. We determine the

asymptotic distribution of the number of k-colourings for random graphs in a low density regime for

all k ≥ 3, and in a density up to the condensation transition for all k ≥ k0 for some constant k0. The

proof will be presented in Chapter 8 and Appendix B. As this is a single-author paper, the question

regarding the contribution of this thesis’ author does not arise.
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2 Definition of the problems

7 In this thesis the focus is on two random constraint satisfaction problems, namely random graph
k-colouring and random k-uniform hypergraph 2-colouring (for k ≥ 3). These models are famous

benchmark problems in the study of random CSPs and stand out from other standard examples for

different reasons:

As mentioned previously, random graph k-colouring has a long history and is one of the most po-

pular random CSPs. In particular, it is the most famous model having k spins. Random hypergraph

2-colouring is also a common CSP and one of the most widely studied models with 2 spins. It can

be seen as the prototype of a symmetric CSP, where the inverse of each solution is a solution itself,

and is closely related to NAE-k-SAT (cf. Section 4.3). Studying it offers the advantage of not having

to deal with technically too involved calculations (e.g. in regards to the second moment calculations),

yet it shares interesting qualitative phenomena with other commonly studied problems. The model

can consequently be used to develop and test proof techniques that might also be applicable to models

exhibiting more complicated combinatorics.

2.1. Graph and hypergraph models

There is a variety of different models for generating graph and hypergraph structures randomly. In

this thesis, the focus will be on Erdős-Rényi random graphs and hypergraphs. To be precise, we con-

sider three slightly different, but essentially very similar models, such that with the right choice of

parameters the results proven for one model can be transferred easily to the other models.

The random graph models used to state the results are the Erdős-Rényi random graphs G(n, p), which

was originally introduced by Gilbert [Gil59], and G(n,m). Both graphs are defined on the vertex set

[n] = {1, . . . , n}. G(n, p) is obtained by connecting any two vertices with probability p ∈ [0, 1] in-

dependently, while G(n,m) is a graph chosen uniformly at random from all graphs with exactly n

vertices and m edges. By setting p = m/
(
n
2

)
, these two models are equivalent with respect to mono-

tone properties [Jan95, AF99].

Furthermore, for the sake of simplicity, we choose to prove most of the statements in Chapter 8 using

the auxiliary random graph model G(n,m). This is a random (multi-)graph on the vertex set [n] obtai-

ned by choosing exactly m hyperedges e1, . . . , em of the complete graph on n vertices uniformly and

independently at random (i.e. with replacement). This model yields the advantage of having mutually

7At some points in this chapter the phrasing is a verbatim copy of text passages from the papers included in this thesis:
[BCOHRV16, BCOR16, Ras16a+, Ras16b+].
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independent edges, which simplifies calculations significantly. In this model we may choose the same

edge more than once, however, for sparse random graphs the probability of this event is bounded away

from 1:

Fact 2.1.1. Assume that m = m(n) is a sequence such that m = O(n) and let An be the event that

G(n,m) has no multiple edges. Then there is a constant c > 0 such that limn→∞ P [An] > c. 8

Regarding hypergraph models, we consider the k-uniform random hypergraph Hk(n, p) on the vertex

set [n], in which each of the
(
n
k

)
possible hyperedges, comprising of k ≥ 3 distinct vertices, is present

with probability p ∈ [0, 1] independently. Additionally, we letHk(n,m) denote the random k-uniform

hypergraph on the vertex set [n] with exactly m hyperedges consisting of k distinct vertices and cho-

sen uniformly at random without replacement from all possible subsets of [n] of size k.

For the proofs in Chapters 6 and 7, we use the auxiliary random hypergraph modelH(n,m), a random

k-uniform (multi-)hypergraph (with k ≥ 3) on the vertex set [n], obtained by choosing exactly m hy-

peredges e1, . . . , em of the complete hypergraph on n vertices uniformly and independently at random

(i.e. with replacement). This model yields the advantage of having mutually independent edges, which

simplifies calculations. Although in this model we may choose the same edge more than once, the

following analogue to Fact 2.1.1 shows that in the case of sparse random hypergraphs this is unlikely.

Fact 2.1.2. Assume that m = m(n) is a sequence such that m = O(n) and let An be the event that

H(n,m) has no multiple hyperedges. Then P [¬An] = O(n2−k).

Throughout the thesis we consider the case m = O(n) as n → ∞, resulting in so-called sparse

random graphs and hypergraphs. For these densities the phenomena described in the previous section

are conjectured to happen. More explicitly, inG(n, p) we set p = d/n for a real number d > 0 that we

call the edge density or average degree. In Hk(n, p) we set p = d/
(
n−1
k−1

)
, where d > 0 is again a fixed

real number. We refer to d (or sometimes to d/k) as the hyperedge density. Analogously, in G(n,m)

and G(n,m) we let d = 2m/n and in Hk(n,m) and H(n,m) we set d = km/n. As for some of

our results we need very precise computations (especially in Chapters 7 and 8 and Appendix B), we

additionally introduce the parameter d′, which is such that m = dd′n/2e in the random graph models

andm = dd′n/ke in the random hypergraph models. We distinguish this quantity from d, which arises

naturally in the computations of the first and second moment. We note that d′ ∼ d, although d = d(n)

might vary with n, whereas d′ is assumed to be fixed as n→∞.

As in the following chapters some results and phenomena will be stated in relative generality, in these

cases we will use the symbol G under the tacit assumption that it refers to either a random graph or

a random hypergraph (from one of the models introduced above). Sometimes the statements are even

8This is the best we can hope for: P [A] does not converge to 0 as there exist multiple edges with constant probability.
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valid for other random structures (such as CNF formulas). In that case, we will not always explicitly

state this fact.

Note that there exist other random graph models [JLR00] like for instance random graphs with non-

uniform degree distributions or random regular graphs, which are usually generated via the configu-

ration model. These graph models partly exhibit properties similar to the Erdős-Rényi random graphs

and some of the results may be comparable to ours.9

2.2. Colouring (hyper)graphs

Having introduced the random graph and hypergraph models, the two random CSPs of interest can be

formalized as follows: In the graph k-colouring problem we are interested in the number Zk(G(n,m))

or Zk(G(n, p)) of k-colourings, also called solutions, of G(n,m) or G(n, p) respectively. A k-

colouring is a valid colouring of the vertices, i.e. a map σ : [n]→ [k], such that for two adjacent verti-

ces v, w ∈ [n] we always have σ(v) 6= σ(w). Analogously, in the hypergraph 2-colouring problem, we

consider the number Z(Hk(n,m)) or Z(Hk(n, p)) of 2-colourings ofHk(n,m) andHk(n, p) respec-

tively, which are maps σ : [n] → {±1} that generate no monochromatic hyperedges (i.e. hyperedges

e such that |σ(e)| = 1).

In the following, we adopt the notion of just writing Z for the number of solutions if the problem in

question is obvious from the context or if we aim at making generic statements that are valid for all

considered problems.

Often, to simplify calculations, we just consider a special type of colourings, namely balanced co-

lourings. For the random graph k-colouring problem, we call a map σ : [n] → [k] balanced if

||σ−1(i)| − n
k | ≤

√
n for i ∈ [k]. Most k-colourings of the random graph G have this property

with probability tending to 1 as n → ∞ [AF99, CO13].10 For the random hypergraph 2-colouring

problem, we call σ : [n]→ {±1} balanced if ||σ−1(i)| − n
2 | ≤

√
n for i ∈ {±1}.

A graph or hypergraph colouring problem admitting at least one solution instantly exhibits an expo-

nential number of solutions w.h.p.. One reason for this is that in the sparse regime the (hyper)graph

possesses a linear number of isolated vertices w.h.p.11: The degrees of the vertices12 are approximately

Poisson distributed with parameter d. For d as defined in Section 2.1, the probability for each of them

to take the value 0 is constant and independent of n.

9A short overview (without a claim to completeness) of some results on regular random graphs is given in Section 4.3. For
graphs with general degree distributions, we are not aware of results concerning the study of phase transitions.

10This has been proven to hold in density regimes up to the condensation transition. For larger densities it might be suspected
to be true but has to our knowledge not been proven yet.

11Of course, this is not the only reason as otherwise we could greatly simplify the problem by deleting all isolated vertices.
12When we speak of the degree of a vertex v ∈ [n] in a (hyper)graph, we refer to the number of all (hyper)edges of this

(hyper)graph that contain v.
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Therefore, the correct scaling of Z to obtain a limit consists in taking the n-th root. As we are always

interested in asymptotic statements and as most proof techniques inherently require large values of n

anyway, we define the following quantity which we call the free entropy density: 13

Φk(d) = lim
n→∞

E
[
Z1/n

]
(2.2.1)

The expectation is over the choice of the random (hyper)graph. With the n-th root sitting inside the

expectation, Φk(d) is difficult to calculate for general values of d. It is widely conjectured that in

most interesting random CSPs the limit Φk(d) exists for all d and k, but this has not been proven

in general. In fact, the existence of the limit for all d and k would imply that the sequence dsat(n)

from Theorem 1.1.1 converges, which is an open problem in the theory of random graphs. However,

Theorems 4.1.5 and 4.1.9 presented in Section 4.1 determine the typical value of lnZ and show that

it converges in a broad density regime.

Influenced by predictions from statistical physics [MM09], it has turned out that properties of typi-

cal colourings have a considerable impact on combinatorial and algorithmic aspects of the random

(hyper)graph colouring problem. To make this precise, when speaking of a typical 2-colouring (k-

colouring), we mean a 2-colouring (k-colouring) of the random hypergraph H (the random graph G)

chosen uniformly at random from the set of all its 2-colourings (k-colourings), provided that this set

is non-empty.

2.3. Finite inverse temperatures

Particularly in the context of applications in physics, it is sometimes necessary to generalize the above

framework and the definition of Z. Rather than only working with the (hyper)edge density d as pa-

rameter, we introduce a second parameter β. Following physics diction, we refer to β as the inverse

temperature.

Theorem 4.1.4 is a result in terms of both of these parameters. As we only consider finite inverse

temperatures in the hypergraph 2-colouring problem, we introduce the following notation solely in

this context. However, we like to emphasize that an analogue definition would be possible as well for

random graph k-colouring (which is called k-spin Potts antiferromagnet in the physics literature) and

various other random CSPs.

In the following, H is a k-uniform hypergraph and for a map σ : [n] → {±1} we let EH(σ) be the

number of monochromatic hyperedges e of H (i.e. either all vertices of e are set to −1 or to 1 under

σ). The Hamiltonian EH gives rise to the so-called Boltzmann distribution or Gibbs measure πH,β on

13In the physics literature the free entropy density is usually defined as Φk(d) = limn→∞
1
n
E [lnZ] (cf. [MM09]), i.e. in-

stead of taking the n-th root, the logarithm of Z is taken and the whole expression is normalized by n. Here, we choose
to take the n-th root as in general the random variable Z may be zero and this is exactly the quantity considered in
Chapter 5.
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the set of all maps σ : [n]→ {±1} in the following way: We let

πH,β[σ] =
exp [−βEH(σ)]

Zβ(H)
, where Zβ(H) =

∑
τ :[n]→{±1}

exp [−βEH(τ)] , (2.3.1)

where we note that the distribution is randomly generated as the underlying hypergraph H is random.

This means that in this model we deal with two layers of randomness, as in a first step the randomness

comes in through the choice of the hypergraph and in a second step a random colour assignment for

the chosen hypergraph is selected. The Boltzmann distribution weights every colour assignment σ

according to the number of monochromatic edges it generates. For every “violated” edge, a “penalty”

of exp [−β] has to be paid. The parameter β plays an important role in this definition because it

determines the influence of the penalty imposed by EH(σ). If β = 0, the penalty factor vanishes

and πH,β is just the uniform distribution over all colour assignments, regardless of their number of

monochromatic edges. Clearly, as β →∞ the Boltzmann distribution πH,β will place more and more

weight on maps σ with fewer and fewer monochromatic edges. For infinite β, we recover the setting

from the previous section because in this case Zβ(H) equals the number of solutions Z(H) and thus

πH,β is the uniform distribution over all solutions. We call the normalisation constant Zβ in (2.3.1) the

partition function. In statistical mechanics, one of the main objectives is to study πH,β as n→∞ and

to try and understand the behaviour of Zβ as it supplies detailed information on basic properties of the

system [MM09]. In general, however, computing Zβ is #P-hard [Pap94].

Similar to (2.2.1), we also define the free entropy density for the partition function Zβ:

Φd,k(β) = lim
n→∞

1

n
E [lnZβ(H)] . (2.3.2)

Obviously, the question arises whether the limit (2.3.2) exists for all d, k and β. Indeed this is the case,

as follows from an application of the combinatorial interpolation method from [BGT13]. Details will

be provided in Section 6.5. Furthermore, a standard application of Azuma’s inequality shows that for

any d, k, β and H as defined in Section 2.1, the sequence { 1
n lnZβ(H)}n converges to Φd,k(β) in

probability.

Naturally, the physics picture of the evolution of the solution space as well as the prediction that the

condensation phase transition results from an “entropy crisis”, as described in Section 1.2, are also

valid in this extended scenario. We present it again, albeit from a slightly different point of view,

namely instead of varying d, we keep varying β. From a “classical” statistical physics point of view, it

seems less natural to vary the parameter d, which governs the geometry of the system, and fix β than

to fix d and vary β. Thus, Theorem 4.1.4 encompasses the latter case. Our explanations concerning

the evolution of the geometry will be a little more formal than in Section 1.2 because we build upon

this intuition later in the proofs presented in Chapter 6.

Based on the cavity method, it is predicted that already for densities d/k beyond about 2k−1 ln k/k
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and for large enough β, the Boltzmann distribution can w.h.p. be approximated by a convex combi-

nation of probability measures corresponding to “clusters” of 2-colourings. That is, there exist sets

Cβ,1, . . . , Cβ,N ⊂ {±1}n and small numbers 0 < ε < δ such that

• if σ, τ ∈ Cβ,i for some i, then 〈σ, τ〉 > (1− ε)n,

• if σ ∈ Cβ,i, τ ∈ Cβ,j with i 6= j, then | 〈σ, τ〉 | < δn,

and if we denote by Zβ,i =
∑

τ∈Cβ,i exp [−βEH(τ)] the volume of Cβ,i, we have

∥∥∥∥∥πH,β[ · ]−
N∑
i=1

Zβ,i
Zβ(H)

· πH,β[ · |Cβ,i]

∥∥∥∥∥
TV

< exp [−Ω(n)] ,

where ‖.‖TV is the total variation distance. Given a hypergraph, the construction of the “clusters” Cβ,i
will be formalised in Section 2.4.

With the cluster decomposition in place, the physics story of how the condensation phase transition

comes about goes as follows. If β is sufficiently small, we have maxi≤N lnZβ,i ≤ lnZβ(H)− Ω(n)

w.h.p.. That is, even the largest cluster only captures an exponentially small fraction of the overall mass

Zβ(H). Now, as we increase β (while d/k remains fixed), both Zβ(H) and maxi≤N Zβ,i decrease.

But in compliance with the the concept of the “entropy crisis”, Zβ(H) drops at a faster rate. In fact, for

large enough densities d/k there might be a critical value βcond where the gap between maxi≤N lnZβ,i

and lnZβ(H) vanishes. This βcond should mark a phase transition. This is because maxi≤N lnZβ,i

and lnZβ(H) cannot both extend analytically to β > βcond, as otherwise we would arrive at the

absurd conclusion that maxi≤N Zβ,i > Zβ .

To distinguish the refined version of the colouring problems from the simpler case where only solutions

are considered, we will speak of proper graph colouring in case “β =∞”.

2.4. Clusters and cluster size

In this section we formally introduce the notion of clusters, which we already touched upon in Secti-

ons 1.2 and 2.3. With respect to random graph k-colouring, we again let G be a graph on n vertices.

If σ, τ are k-colourings of G, we define their overlap as the k × k-matrix ρ(σ, τ) = (ρij(σ, τ))i,j∈[k]

with entries

ρij(σ, τ) =
|σ−1(i) ∩ τ−1(j)|

n
,

i.e. ρij(σ, τ) is the fraction of vertices coloured i under σ and j under τ . Now, define the cluster of σ

in G as

C(G, σ) = {τ : τ is a k-colouring of G and ρii(σ, τ) ≥ 0.51/k for all i ∈ [k]} .
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Suppose that σ, τ are balanced colourings. Then τ ∈ C(G, σ) means that a little over 50% of the ver-

tices with colour i under σ also have colour i under τ . To this extent, C(G, σ) comprises of colourings

“similar” to σ. In fact, for large k and densities close to the condensation phase transition (formally

introduced in Section 2.5), this definition exhibits w.h.p. the same asymptotics as other, more combi-

natorial concepts (e.g. colourings that can be reached from σ by iteratively altering the colours of o(n)

vertices at a time) [Mol12].

That the clusters defined in this way are indeed well-separated in the interesting density regimes can

be formalised by the notion of separability. Roughly speaking, separable colourings are defined by

the property that two colour classes overlapping by little more than 50% of their variables are nearly

identical. This implies that the clusters of two separable colourings are either disjoint or identical. The

notion has been used e.g. in [COV13], where it is essentially shown that balanced colourings are also

separable.

With respect to random hypergraph 2-colouring a completely analogue definition is possible. However,

as we are going to work with the finite temperature case of the problem and thus do not only consider

solutions, but have to take into account all possible colour assignments, just counting the number of

assignments “near” some specific colouring σ does not make sense. Instead, for a hypergraph H on n

vertices and a map σ : [n]→ {±1} we define the cluster size of σ in H as

Cβ(H,σ) =
∑

τ∈{±1}n:〈σ,τ〉≥2n/3

exp [−βEH(τ)] , (2.4.1)

where EH(τ) denotes the number of monochromatic hyperedges in H under the colour assignment

τ . Thus, we sum up the contribution to the partition function of all τ whose “overlap” 〈σ, τ〉 =∑
v∈[n] σ(v)τ(v) with the given σ is big. Indeed, we will show in Chapter 6 that w.h.p. for typical σ

almost all the contribution comes from colourings with overlap 〈σ, τ〉 ≥ (1− k−5)n.

2.5. Phase transitions

In mathematical physics, a phase transition usually describes a point where the functions Φk(d) from

(2.2.1) or Φd,k(β) from (2.3.2) are non-analytic. As already explained in detail in Section 1.2, the

points where phase transitions occur play a very important role in understanding the evolution of the

geometry of the set of solutions or, more generally, the set of weighted colour assignments.

As elaborated on in Section 2.2, the limit Φk(d) is currently not known to exist for all d and k. In order

to circumvent this problem, for a fixed k ≥ 3 we call d0 ∈ (0,∞) smooth if there exists ε > 0 such

that

• for any d ∈ (d0 − ε, d0 + ε) the limit Φk(d) exists, and
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• the map d ∈ (d0 − ε, d0 + ε) 7→ Φk(d) has an expansion as an absolutely convergent power

series around d0.

If d0 fails to be smooth, we say that a phase transition occurs at d0. Using a concentration result

from [ACO08], it follows that for smooth d0 the sequence of random variables {Zk(G(n, d0/n))1/n}n
converges to Φk(d0) in probability. Thus, up to a sub-exponential factor, Φk(d) captures the “typical”

value of the number Zk(G(n, d/n)). A similar statement also holds for the number of 2-colourings of

random hypergraphs.

The above definition of phase transitions is in compliance with its common use in combinatorics. For

instance, the classical result of Erdős and Rényi [ER60] implies that the function that maps d to the

expected fraction of vertices belonging to the largest component ofG(n, d/n) (in the limit as n→∞)

is non-analytic at d = 1. Similarly, if there actually is a sharp threshold dcol for (hyper)graph colouring,

then dcol is a phase transition in the above sense. This can easily be understood: By definition, for

d < dcol, the random (hyper)graph G has a colouring w.h.p. and thus the number of colourings is, in

fact, exponentially large in n (as explained in Section 2.2). Hence, if Φk(d) exists for d < dcol, then

Φk(d) > 0. By contrast, for d > dcol the random (hyper)graph G fails to be colourable w.h.p. and

therefore Φk(d) = 0. Thus, Φk(d) cannot be analytic at dcol.

In the case of finite β, we choose an analogue definition: We call β0 > 0 smooth if there exists ε > 0

such that the function β ∈ (β0−ε, β0+ε) 7→ Φd,k(β) admits an expansion as an absolutely convergent

power series around β0. Otherwise, we say that a phase transition occurs at β0.

The condensation phase transition

The phase transition we will be mostly concerned with in this thesis is the condensation phase tran-

sition. As we noted in Section 2.2, Φk(d) is not known to exist for general values of d. However, for

d ∈ [0, 1) this quantity is easily understood.

With respect to random graphs, it is known that G(n, d/n) decomposes for d ∈ [0, 1) into tree com-

ponents and a bounded number of connected components with precisely one cycle w.h.p. [ER60].

Moreover, the number of k-colourings of a tree with ν vertices and ν − 1 edges is well-known to be

kν(1− 1/k)ν−1 and thus w.h.p. we obtain

Zk(G(n, d/n))1/n ∼ k(1− 1/k)d/2 for d < 1. (2.5.1)

As Zk(G)1/n ≤ k for any graph G on n vertices, (2.5.1) implies that

Φk(d) = lim
n→∞

E[Zk(G(n, d/n))1/n] = k(1− 1/k)d/2 for d < 1. (2.5.2)

Since d 7→ k(1− 1/k)d/2 is analytic, the least d > 0 for which the limit Φk(d) either fails to exist or
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strays away from k(1− 1/k)d/2 is going to be a phase transition. Hence, for k ≥ 3 we let

dcrit = inf
{
d ≥ 0 : the limit Φk(d) does not exist or Φk(d) < k(1− 1/k)d/2

}
. (2.5.3)

It will become evident in Chapter 5 that this is exactly the right definition for the condensation transiti-

on dcond non-formally introduced in Section 1.2. Furthermore, we show that dcrit can also be expressed

as sup
{
d ≥ 0 : the limit Φk(d) exists and Φk(d) = k(1− 1/k)d/2

}
.

With respect to random hypergraphs, there is an analogue definition of the condensation transition

dcond and it was shown in [COZ12] that indeed Φk(d) is non-analytic around dcond if the limit exists

because Φk(d) coincides with the linear function limn→∞ E [Z]1/n for d < dcond.

For the case of finite β in the random hypergraph 2-colouring problem, we show in Section 6.2 that

for any β we have

Φd,k(β) ≤ ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)

(2.5.4)

and that there is a regime where equality holds in this equation. Since the function β ∈ [0,∞) 7→ ln 2+
d
k ln

(
1− 21−k (1− exp [−β])

)
is analytic, it follows that the least β > 0 for which the inequality in

(2.5.4) is strict, marks a phase transition. Hence, we define

βcrit(d, k) = inf

{
β ≥ 0 : Φd,k(β) < ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)}

. (2.5.5)

In Chapter 6 we will show that indeed βcrit(d, k) coincides with the condensation phase transition

βcond that we non-formally introduced in Section 2.3.

2.6. Notation and further remarks

Throughout the thesis, we are concerned with asymptotic statements in the number n of vertices.

Therefore, we always tacitly assume that n ≥ n0 is sufficiently large for the various statements to

hold. Moreover, to avoid floor and ceiling signs, we assume that n is either even or divisible by k,

depending on the situation. As mentioned above, we denote by [n] the set {1, ..., n}.

For k, the uniformity parameter or the number of colours respectively, it is sometimes necessary to

have a lower bound to carry out sufficiently accurate analyses, especially in the proofs presented in

Chapters 5 and 6. Hence, we often assume that k ≥ k0 for some large enough constant k0. Thus, k

may be arbitrarily large but fixed while n → ∞. In many cases it may not be impossible to optimize

or at least calculate k0, but so far no attempt has been made.

Furthermore, it might be interesting to note that for small values of k various properties of random

CSPs that are proven for big k, are not even conjectured to hold. In particular, the solution space is
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expected to have a completely different structure, which may also be a reason why certain algorithms

work well for small k but can be proven to fail for larger k (cf. Subsection 4.3.2). For example, as

k increases, typical satisfying assignments get closer and closer to being balanced as the number of

occurences of the variables in the constraints approach their expectation.

In Chapter 7 and in most parts of Chapter 8, however, the statements and proofs do not require large

values of k and we assume that k ≥ 3.

We use the standard O-notation when referring to the limit n → ∞. Thus, f(n) = O(g(n)) means

that there exist C > 0, n0 > 0 such that for all n > n0 we have |f(n)| ≤ C · |g(n)|. In addition,

we use the standard symbols o(·),Ω(·),Θ(·). In particular, o(1) stands for a term that tends to 0 as

n→∞. We adopt the common notation that for the symbol Ω(·) the sign matters, i.e. f(n) = Ω(g(n))

means that there exist C > 0, n0 > 0 such that for all n > n0 we have f(n) ≥ C · g(n), whereas

f(n) = −Ω(g(n)) implies −f(n) ≥ C · g(n) for all n > n0.

Additionally, we use asymptotic notation with respect to k. To make this explicit, we insert k as an

index. Thus, f(k) = Ok(g(k)) means that there exist C > 0 and k0 > 0 such that for all k > k0 we

have |f(k)| ≤ C · |g(k)|. Further, we write f(k) = Õk(g(k)) to indicate that there exist C > 0 and

k0 > 0 such that for all k > k0 we have |f(k)| ≤ kC · |g(k)|. An analogous convention applies to

ok(·),Ωk(·) and Θk(·). Notice that here as well we have Ωk(·) 6= −Ωk(·).

Furthermore, the notation f(n) ∼ g(n) stands for limn→∞ f(n)/g(n) = 1 or equivalently f(n) =

g(n)(1 + o(1)). Besides taking the limit n → ∞, at some point we need to consider the limit

ν → ∞ for some number ν ∈ N. Thus, we additionally introduce f(n, ν) ∼ν g(n, ν) meaning

that limν→∞ limn→∞ f(n, ν)/g(n, ν) = 1.

Moreover, if p = (p1, . . . , pl) is a vector with entries pi ≥ 0, then we let

H(p) = −
l∑

i=1

pi ln pi.

Here and throughout, we use the conventions that 0 ln 0 = 0 and consistently 0 ln 0
0 = 0. Hence, if∑l

i=1 pi = 1, thenH(p) is the entropy of the probability distribution p. As a special case, if z ∈ [0, 1]

is just a number, then the entropy function H(z) is defined as H(z) = −z ln z − (1 − z) ln(1 − z).

Further, for a number x and an integer h > 0, we let (x)h = x(x− 1) · · · (x− h+ 1) denote the hth

falling factorial of x.

Concerning the distribution of random variables, if X follows the Poisson distribution with parameter

λ, we write X ∼ Po(λ). If X is Bernoulli-p-distributed, we denote this by X ∼ Be(p) and if it is

binomially distributed with parameters n and p, we write X ∼ Bin(n, p).
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14 There is a variety of techniques that have become standard tools in the rigorous study of random

CSPs over the years. Some of them will be introduced in detail in this chapter, namely the planted

model and the moment methods. Furthermore, a short summary of small subgraph conditioning will

be given. Others will be brought in “on the fly” in the following chapters when needed. Among them

are the core, the backbone and the notion of free vertices. The core [PSW96] will be introduced in

Chapter 6. It is, roughly speaking, a set of vertices such that every vertex has many neighbours15,

which belong to the core themselves. Vertices in the core do not contribute to the cluster size because

they can only take a specific colour (cf. e.g. [COV13]). Otherwise, they would initiate an avalanche of

colour changes ending up at a colouring outside the initial cluster.

3.1. Planted model

In many random CSPs and for a wide range of constraint densities (namely those where the number

of solutions is sufficiently concentrated), it has turned out that typical properties of random solutions

as well as the geometry of the solution space can be studied by way of the so-called planted model.

This is an easily accessible distribution, often very convenient to work with. It can be used to study

rigorously the various phase transitions in random CSPs, in particular it enables us to get a handle on

the size of the cluster introduced in Section 2.4.

The idea of “planting” a property inside a random structure is very old and has for example been

used to investigate the performance of algorithms [DF89, AK97]. Juels and Peinado [JP00] were, to

our knowledge, the first to investigate the relationship between the “planted model” and the “random

colouring model” for the clique problem in dense random graphs.

In this chapter, we present the planted model only in its common setup for the case of proper graph

colouring (meaning that we do not have an additional parameter β). For finite inverse temperatures in

random hypergraph 2-colouring, the planted model is refined in Chapter 6. Analogously, it can also be

used for the study of other random CSPs, e.g. random k-SAT.

As already mentioned in Section 2.2, when investigating the properties of random CSPs, it is often

14At some points in this chapter the phrasing is a verbatim copy of text passages from the papers included in this thesis:
[BCOHRV16, BCOR16, Ras16a+, Ras16b+].

15The set of neighbours of a vertex v consists of all vertices which are connected to v via an edge.
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essential to have the notion of typical colourings at hand. To be precise, for a random (hyper)graph

G = G(n,m) let Λk,n,m be the set of all pairs (G, σ) with σ being a colouring of G. Let N =
(
n
2

)
for random graph k-colouring and N =

(
n
k

)
for random k-uniform hypergraph 2-colouring. Now we

define a probability distribution πrc
k,n,m[G, σ] on Λk,n,m by letting

πrc
k,n,m[G, σ] =

[
Z(G)

(
N

m

)
P [G is colourable]

]−1

.

We call this distribution the random colouring model or Gibbs distribution. It can also be described as

the distribution produced by the following experiment.

RC1 Generate a random (hyper)graph G = G(n,m) given that Z(G) > 0.

RC2 Choose a colouring σ of G uniformly at random. The result of the experiment is (G, σ).

For densities below the colouring threshold, this experiment is key to studying the combinatorial nature

of the (hyper)graph colouring problem as it corresponds to randomly picking solutions of random

(hyper)graphs. However, up to now, there is no known method to implement this experiment efficiently

for a wide range of (hyper)edge densities. In fact, the first step RC1 is easy to process because we

are only interested in values of d where G is colourable w.h.p. and consequently the conditioning

on Z(G) > 0 does not cause problems because the probability P [G is colourable] is close to 1. In

fact, what turns the direct study of the distribution πrc
k,n,m into a challenge is step RC2 because in

the interesting density regimes we cannot even find one colouring algorithmically, let alone sample

one uniformly: The currently best-performing algorithms for sampling a colouring of G are known to

succeed up to a density about a factor of 2 below the colouring threshold for random graph k-colouring

[AM97, GM75, KS98] and about a factor of k below the threshold for random k-uniform hypergraph

2-colouring [AKKT02].

To circumvent these difficulties, we consider an alternative probability distribution on Λk,n,m cal-

led the planted model, which is much easier to approach. To describe this experiment, for a colour

assignment σ let F(σ) be the number of (hyper)edges of the complete (hyper)graph that are mono-

chromatic under σ.16 Then the planted distribution is induced by the following experiment:

PL1 Choose a colour assignment σ uniformly at random provided that F(σ) ≤ N −m.

PL2 Generate a (hyper)graph G on [n] consisting of m (hyper)edges that are bichromatic under σ

uniformly at random. The result of the experiment is (G,σ).

16To be precise, for graph k-colouring we have σ : [n]→ [k] and F(σ) =
∑k
i=1

(|σ−1(i)|
2

)
and for k-uniform hypergraph

2-colouring we have σ : [n]→ {±1} and F(σ) =
(|σ−1(−1)|

k

)
+
(|σ−1(1)|

k

)
.
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Thus, the probability that the planted model assigns to a pair (G, σ) is

πpl
k,n,m[G, σ] ∼

[
2n
(
N

m

)
P [σ is a colouring of G]

]−1

.

We observe that step PL1 is easy to handle, as the conditioning on F(σ) ≤ N−m does not cause any

difficulties. Additionally, in contrast to the “difficult” step RC2, step PL2 is much easier to implement.

3.1.1. Quiet planting

Of course, the two probability distributions πrc
k,n,m and πpl

k,n,m differ. Under πrc
k,n,m, the (hyper)graph is

chosen uniformly at random, whereas under πpl
k,n,m its probability depends on its number of solutions

in such a way that (hyper)graphs exhibiting many colourings are “favoured” by the planted model (or,

put differently, in the planted model there exist more solutions because there is a solution - and its

whole cluster - built into the problem).

However, the two models are related if m = m(n) is such that w.h.p.

lnZ(G) = lnE[Z(G)] + o(n). (3.1.1)

For the problems of k-colouring random graphs and 2-colouring random hypergraphs, Coja-Oghlan

and Achlioptas showed in [ACO08] that the following is true if (3.1.1) is satisfied:

If (En) is a sequence of events En ⊂ Λk,n,m such that πpl
k,n,m[En] ≤ exp [−Ω(n)], then

πrc
k,n,m[En] = o(1).

(3.1.2)

The statement (3.1.2) was baptised quiet planting by Krzakala and Zdeborová [KZ09] and has ever

since been used to study the behaviour of the set of colourings and its geometrical structure in various

random constraint satisfaction problems [ACO08, BCOHRV16, Mol12, MR13, MRT11]. Although

work has been greatly simplified by (3.1.2), yet a significant complication in its use is caused by the

fact that En not only has to be unlikely but is required to be exponentially unlikely in the planted model.

This has caused substantial difficulties in several applications (e.g. [BCOR16, BCOHRV16, Mol12]).

3.1.2. Contiguity and silent planting

In [ACO08] it has been proven that for random graph k-colouring and random hypergraph 2-colouring,

in a certain density regime (well below the condensation transition) the number of solutions is con-

centrated around its expectation in the sense that for all ε > 0 w.h.p.

1

n
| lnZ − lnE [Z] | ≤ ε.
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This leaves open the possibility that lnZ has fluctuations of order e.g.
√
n, which appears plausible be-

cause the core fluctuates on this scale and it seems reasonable to expect that its behaviour influences the

number of solutions. Rather surprisingly, Bapst, Coja-Oghlan and Efthymiou proved in [BCOE14+]

that for the problem of k-colouring random graphs indeed lnZ fluctuates by less than ω(n) for any

ω(n)→∞, which is equivalent to saying that for all ε > 0 w.h.p.

1

ω
| lnZ − lnE [Z] | ≤ ε. (3.1.3)

The key tool in [BCOE14+] is the method of small subgraph conditioning (cf. Section 3.3). The proof

works because the fluctuations in the number of solutions are due to the fluctuations in the number of

short cycles in the factor graph17 and because this is the only important structure contributing to the

fluctuations.

Our result Corollary 4.1.7 establishes this behaviour for random hypergraph 2-colouring. To obtain

this result, it is an essential necessary condition that the number of colourings of an arbitrary tree does

only depend on its number of vertices, as in sparse random (hyper)graphs most components either

are trees or contain short cycles [ER60]. Thus, we have to make sure that the tree components do not

contribute to the variance of the number of solutions. Indeed, in the random k-colouring problem, for

every tree with n nodes (and consequently m = n − 1 edges), the number of k-colourings of this

tree is deterministic and given by kn(1 − 1/k)m = k(k − 1)m. For hypergraph 2-colouring, every

k-uniform hypergraph being a tree with m edges has exactly k + (m − 1)(k − 1) vertices and its

number of 2-colourings is, independently of the tree structure, given by
(
2k − 2

) (
2k−1 − 1

)m.

A consequence of (3.1.3) concerns the following notion of contiguity. Suppose that µ = (µn)n≥1 and

ν = (νn)n≥1 are two sequences of probability measures such that µn, νn are defined on the same

probability space Ωn for every n. Then (µn)n≥1 is contiguous with respect to (νn)n≥1, in symbols µ/

ν, if for any sequence (En)n≥1 of events such that limn→∞ νn(En) = 0, we have limn→∞ µn(En) = 0.

Our result Corollary 4.1.8 establishes that the random colouring model is contiguous with respect to

the planted model, a fact that we refer to as silent planting. Thus, instead of an exponentially small

probability in (3.1.2) we only need a probability decaying to zero arbitrarily slowly in the planted

model to obtain a probability decaying to zero in the random colouring model.

17The factor graph is an auxiliary graph, representing the original (hyper)graph in a slightly different way by directly
internalising the constraints: It is a bipartite graph with variable nodes corresponding to the vertices in the original
(hyper)graph and factor nodes corresponding to the (hyper)edges. In the factor graph a variable node is connected to a
factor node if in the original (hyper)graph the variable was contained in the corresponding edge.
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3.2. Moment methods

For several years, in many random constraint satisfaction problems the best bounds on the threshold

for the existence of solutions derived from the first and second moment method (cf. Sections 4.2 and

4.3). These methods are non-constructive, meaning that they do not yield concrete solutions for the

respective problem, but rather are probabilistic methods to prove the (non-)existence of a solution. In

most cases, applied to random CSPs these simple techniques do not yield matching upper and lower

bounds on the satisfiability threshold. However, one often obtains at least its exponential order and in

many analyses the results from these methods form the basis for advanced calculations.

3.2.1. First moment method

The first moment method is a very simple technique to obtain an upper bound on the satisfiability

threshold dcol by showing that above a certain density the first moment (which is nothing but the

expectation) of the number of solutions tends to zero. If G is a random (hyper)graph on n vertices to

be coloured and Z its number of colourings, then Markov’s inequality yields

P [G is colourable] = P [Z ≥ 1] ≤ E [Z]

and consequently if E [Z] = o(1) for some density d, then d ≥ dcol for large enough n. For many

random CSPs, it is easy to compute a critical density dfirst, such that E [Z] = o(1) for d > dfirst while

E [Z] = exp [Ω(n)] for d < dfirst.18

3.2.2. Second moment method

Unfortunately, having E [Z] = exp [Ω(n)] for d < dfirst does not mean that in this density regime

the random (hyper)graph admits a colouring w.h.p.. It could simply be the case that the first moment

is pushed up by a small number of (hyper)graphs with excessively many solutions. To eliminate this

possibility, a lower bound on the threshold dcol can be derived via the second moment method. The

use of this method in the context of random CSPs was pioneered by Achlioptas and Moore [AM06]

and Frieze and Wormald [FW05]. Based on the Paley-Zygmund inequality

P [G is colourable] = P [Z ≥ 1] ≥ E [Z]2

E [Z2]
,

18As stated in Section 2.2, in sparse random graphs there exists a linear number of isolated vertices w.h.p. and thus, if the
problem exhibits at least one solution, it immediately exhibits an exponentially (in n) large number of solutions.

25



3. Techniques

where G is again a random (hyper)graph on n vertices, we conclude that if

E
[
Z2
]
≤ C · E [Z]2 (3.2.1)

for some density d and some constant C = C(k, d) > 0, then P [G is colourable] ≥ 1/C. Thus, the

second moment lower bound dsec is a (hyper)edge density such that (3.2.1) holds for d < dsec but is

violated for d > dsec. Here, it is important that C does not depend on n because this ensures that the

probability that G is colourable is bounded away from 0 as n tends to infinity. There exist different

possibilities for pushing the probability from 1/C up to 1− o(1) (to obtain dcol > d). The method of

choice depends on the specific problem. For k-SAT and for models on Erdős-Rényi graphs, like e.g. the

presented problems graph k-colouring and hypergraph 2-colouring, Friedgut’s sharp threshold result

Theorem 1.1.1 can be applied [Fri99, AF99, Fri05]. In other cases, the small subgraph conditioning

technique (cf. Section 3.3) by Robinson and Wormald [RW94] can be used [KPGW10, COEH16,

Wor99]. This includes scenarios like for example regular graph problems, where Friedgut’s result

does not hold, or other random CSPs, for which Friedgut’s result has not been proven yet. In this case,

it might seem more suitable to apply small subgraph conditioning because the required machinery is

not as huge and a more precise bound on the required density can be obtained.

Applying the second moment method to the number Z of solutions of the (hyper)graph problem is

sometimes referred to as the “vanilla” application of the second moment method. In practice, often a

random variable only counting the number of solutions with (nearly) balanced colour classes is used

[AN05, AM06] with the goal of reducing the variance relative to the expectation. For asymmetric

problems, this has been done by using a random variable that weights assignments cleverly [AP04]

or only counts colourings whose complement is also satisfying [AM06]. In fact, we can use every

random variable Z̄ such that Z̄(G) > 0 implies that G is colourable.

Nevertheless, in all these cases (except for some very easy problems touched upon in Section 4.3),

when comparing the best first moment upper bound dfirst and the best second moment lower bound

dsec, it turns out that they differ in the limit of large k by at least a constant additive. For several

problems, e.g. for hypergraph 2-colouring, it has been shown [AM06] that the second moment analysis

is tight. That means just putting more effort into the calculations or increasing their accuracy does not

help to squeeze out the missing constant. On the contrary, Achlioptas and Moore even proved that

E
[
Z2
]
> exp [Ω(n)]E [Z]2 for d > dsec, implying that the second moment method fails drastically.

3.2.3. To the condensation threshold and beyond

The reason for this failure is twofold, as has been explicitly shown for random hypergraph 2-colouring

[COZ12] and random graph k-colouring [COV13]: For densities between dsec and dcond (the conden-

sation transition introduced in Section 2.5), the random variable Z is close to E [Z] w.h.p., but without

being sufficiently concentrated for (3.2.1) to hold. In fact, it was shown that there is a constant k0 ≥ 3
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and a sequence εk → 0 such that for all k ≥ k0 and d < dcond − εk the random (hyper)graph is

colourable w.h.p. and

lnZ ∼ lnE [Z] .

Thus, below dcond, Z is w.h.p. of the same exponential order as E [Z].

For densities above dcond, however, the expectation E [Z] is driven up by a very small number of

(hyper)graphs possessing a vast number of colourings resulting in non-concentration ofZ: W.h.p. there

is some εk → 0 such that for dcond + εk < d < dcol it is true that

lnZ < lnE [Z]− Ω(n).

This means that the expected number of 2-colourings exceeds the actual number by an exponential

factor w.h.p.. In this case, this small number of “crazy” (hyper)graphs is responsible for an explosion

of the second moment E
[
Z2
]
.

Zooming in on the reasons for this phenomenon reveals the following picture. By the definition of the

second moment of Z, we have

E
[
Z2
]

=
∑
σ,τ

P (σ is a colouring)P (τ is a colouring|σ is a colouring)

This implies that the second moment method works as long as, roughly speaking, the main contribu-

tion to the second moment comes from uncorrelated colourings because in this case E
[
Z2
]

is of the

same order of magnitude as E [Z]2.

Seen from another angle, calculating
∑

τ P (τ is a colouring|σ is a colouring) for fixed σ amounts to

calculating the expected number of colourings in the planted model (cf. Section 3.1) with planted

colouring σ. As we noticed above, under the distribution πpl
k,n,m, (hyper)graphs exhibiting many co-

lourings are chosen excessively often, or, in other words, the typically chosen (hyper)graph possesses

a lot more solutions than the one chosen uniformly according to πrc
k,n,m. As a consequence, the ex-

pected number of solutions is over-estimated. At dsec this over-estimation becomes significant in the

second moment and the second moment method breaks down.

A slightly different perspective yields yet another explanation and paves the way for improving the

second moment bound up to the condensation transition: It was shown in [AM06] that we can find a

function ψ : (0, 1) → R such that ψ(1/2) ∼ 1
n lnE [Z]. Furthermore, if and only if ψ(x) takes its

global maximum at x = 1/2, then E
[
Z2
]
≤ C · E [Z]2 for some constant C > 0 and the second

moment method works. On the other hand, there exists a 0 < α � 1/2 such that the maximum of

ψ in (0, α) can be interpreted as the normalized logarithm of the expected size of the local cluster.

Thus, the second moment argument breaks down at dsec because at this point the expected cluster size
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exceeds the total expected number of solutions.

It can, however, be proven that up to dcond the expected size of the local cluster in the planted model

exaggerates its typical size. Below dcond this typical size is indeed not bigger than the total number of

solutions (cf. [COZ12, Proposition 4.6]).

Thus, the second moment argument can be pushed up to the condensation transition by investigating

the internal structure of the clusters and excluding solutions with huge clusters. This has for example

been done in [COV13].

Ultimately, beyond dcond the size of the typical local cluster in the planted model is by an exponential

factor bigger than the expected number of 2-colourings. In this regime, the planted model fails to be a

good approximation for the random colouring model as a pair chosen from the planted distribution cor-

responds to a pair chosen from the Gibbs distribution only with exponentially small probability. Two

randomly chosen colourings strongly correlate as they belong to the same cluster with non-vanishing

probability. This explains intuitively that the second moment method cannot be extended to densities

beyond dcond, as a necessary condition for the second moment method to work is that a random pair

of colourings decorrelate (cf. e.g. [ANP05]). Thus, it proves difficult to obtain mathematically precise

results for densities beyond dcond, especially concerning the satisfiability threshold dcol.

3.3. Small subgraph conditioning

Small subgraph conditioning is a method developed by Robinson and Wormald in [RW92, RW94].

It was originally used to show that random regular graphs of degree three or more are Hamiltonian

w.h.p. and has since been applied in many different settings. Essentially, the method is used to study

a sequence of random variables depending on a graph G, which are not concentrated around their

means, but become concentrated conditioned on the presence of small sub-structures in G, in our case

short cycles. Janson used the method in [Jan95] in order to obtain limiting distributions and to prove

contiguity. In this process, small subgraph conditioning was developed into a comfortably applicable

tool, only requiring the calculation of some joint moments and a very accurate analysis of the variance.

In Section 4.2, we give a more thorough overview of work in this field (additionally we recommend

the survey [Wor99] for a detailed discussion.) For the moment, we content ourselves with stating that

the core idea of the method consists in showing the following:

When we consider the variance of the random variables in question, in our case the number of sa-

tisfying assignments with some additional properties, we can divide the set of all (hyper)graphs into

groups according to the small cycle counts and decompose the variance into the variance of the group

mean plus the expected value of the variance within a group.

We then proceed to show that conditioning on the number of small cycles reduces the variance signi-
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ficantly. More precisely, it can be proven that the contribution of the second summand is negligible

and thus the limiting distribution of the logarithm of the number of satisfying assignments can be

determined by the joint distribution of the number of short cycles.

The following theorem by Janson is typically the main tool when using small subgraph conditioning.

Theorem 3.3.1 ([Jan95]). Suppose that (δl)l≥2 and (λl)l≥2 are sequences of real numbers such that

δl ≥ −1 and λl > 0 for all l. Moreover, assume that (Cl,n)l≥2,n≥1 and (Zn)n≥1 are random variables

such that each Cl,n takes values in the non-negative integers. Additionally, suppose that for each n

the random variables C2,n, . . . , Cn,n and Zn are defined on the same probability space. Moreover,

let (Xl)l≥2 be a sequence of independent random variables such that Xl has distribution Po(λl) and

assume that the following four conditions hold.

SSC1 for any integer L ≥ 2 and any integers x2, . . . , xL ≥ 0

lim
n→∞

P [∀2 ≤ l ≤ L : Cl,n = xl] =
L∏
l=2

P [Xl = xl] .

SSC2 for any integer L ≥ 2 and any integers x2, . . . , xL ≥ 0

lim
n→∞

E[Zn|∀2 ≤ l ≤ L : Cl,n = xl]

E[Zn]
=

L∏
l=2

(1 + δl)
xl exp [−λlδl] .

SSC3
∑∞

l=2 λlδ
2
l <∞.

SSC4 limn→∞ E[Z2
n]/E[Zn]2 ≤ exp

[∑∞
l=2 λlδ

2
l

]
.

Then the sequence (Zn/E[Zn])n≥1 converges in distribution to
∏∞
l=2(1 + δl)

Xl exp [−λlδl] .

The random variable
∏∞
l=2(1+ δl)

Xl exp [−λlδl] has been studied in [Jan95], where it was shown that

it has a bounded first and second moment. Unfortunately, in our context it is not possible to explicitly

use Theorem 3.3.1 for reasons which will be elaborated on in Sections 4.2 as well as 7.1 and 8.1. We

therefore have to refine the analysis similar to the one done in [COW16+].
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4 Results and related work

4.1. Results

The results presented in this thesis are manifold and touch upon a variety of models and questions

related to the study of random CSPs. Integrated are four papers, whose results will be presented in

the chronological order of their creation. Two of them are already published, while the other two are

submitted and preprints can be found online. Large parts of this chapter are a verbatim copy or a close

adaption of the content of these papers.

The proofs of the results will be unfolded in full detail in Chapters 5 to 8 and in Appendices A and B.

4.1.1. Condensation in random graph k-colouring

The first result is from the paper

The condensation phase transition in random graph coloring

by Bapst, Coja-Oghlan, Hetterich, Raßmann and Vilenchik published in Communications in Mathe-

matical Physics 341 (2016) [BCOHRV16]. It deals with proving the existence and exactly determining

the location of the condensation phase transition in random graph k-colouring provided that k exceeds

a certain constant k0. The solution is given in terms of a distributional fixed point problem and verifies

the conjecture obtained via the cavity method.

To state the result, we need a bit of notation. Let Ω be the set of probability measures on [k]. We

identify Ω with the k-simplex, i.e. the set of maps µ : [k]→ [0, 1] such that
∑k

h=1 µ(h) = 1, equipped

with the topology and Borel algebra induced by Rk. Moreover, we define a map B :
⋃∞
γ=1 Ωγ → Ω,

(µ1, . . . , µγ) 7→ B[µ1, . . . , µγ ] by letting

B[µ1, . . . , µγ ](i) =

 1/k if
∑

h∈[k]

∏γ
j=1 (1− µj(h)) = 0,∏γ

j=1(1−µj(i))∑
h∈[k]

∏γ
j=1(1−µj(h))

otherwise,
for any i ∈ [k] .

In physics language this would be called the Belief Propagation operator. Further, we let P be the set

of all probability measures on Ω and for each µ ∈ Ω we let δµ ∈ P denote the Dirac measure that

puts mass one on the single point µ. In particular, δk−11 ∈ P is the measure putting mass one on the
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uniform distribution k−11 = (1/k, . . . , 1/k). For π ∈ P and γ ≥ 0 let

Zγ(π) =

k∑
h=1

(
1−

∫
Ω
µ(h)dπ(µ)

)γ
. (4.1.1)

Further, define a map Fd,k : P → P , π 7→ Fd,k[π] by letting

Fd,k[π] = exp [−d] δk−11 +
∞∑
γ=1

dγ exp [−d]

γ!Zγ(π)

∫
Ωγ

 k∑
h=1

γ∏
j=1

(1− µj(h))

 δB[µ1,...,µγ ]

γ⊗
j=1

dπ(µj).

(4.1.2)

Thus, in (4.1.2) we integrate a function with values in P , viewed as a subset of the Banach space

of signed measures on Ω. The normalising term Zγ(π) from (4.1.1) ensures that Fd,k[π] really is

a probability measure on Ω. In physics terms, Fd,k represents a distributional version of the Belief

Propagation operator.

The main theorem is given in terms of a fixed point of the map Fd,k, i.e. a point π∗ ∈ P such that

Fd,k[π∗] = π∗. In general, the map Fd,k has several fixed points. Hence, we need to single out the

correct one. For h ∈ [k] let δh ∈ Ω denote the vector whose hth coordinate is 1 and whose other

coordinates are 0 (i.e. the Dirac measure on h). We call a measure π ∈ P frozen if π({δ1, . . . , δk}) ≥
2/3; in words, the total probability mass concentrated on the k vertices of the simplex Ω is at least

2/3.

As a final ingredient, we need a function φd,k : P → R. To streamline the notation, for π ∈ P and

h ∈ [k] we write πh for the measure dπh(µ) = kµ(h)dπ(µ). With this notation, φd,k is defined as

φd,k(π) = φed,k(π) +
1

k

∑
i∈[k]

∞∑
γ1,...,γk=0

φvd,k(π; i; γ1, . . . , γk)
∏
h∈[k]

(
d

k − 1

)γh exp [−d/(k − 1)]

γh!
,

where

φed,k(π) = − d

2k(k − 1)

k∑
h1=1

∑
h2∈[k]\{h1}

∫
Ω2

ln

1−
∑
h∈[k]

µ1(h)µ2(h)

 2⊗
i=1

dπhi(µi), (4.1.3)

φvd,k(π; i; γ1, . . . , γk) =


ln k if

∑k
i=1 γi = 0,∫

Ωγ1+···+γk
ln

 k∑
h=1

∏
h′∈[k]\{i}

γh′∏
j=1

1− µ(j)

h′ (h)

 ⊗
h′∈[k]

γh′⊗
j=1

dπh′(µ
(j)

h′ ) if
∑k
i=1 γi > 0.

(4.1.4)

The integrals in (4.1.3) and (4.1.4) are well-defined because the set where the argument of the loga-

rithm vanishes has measure zero.
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The above formulas are derived systematically via the cavity method [MM09]. The functional φd,k is

an instalment of a generic formula, the so-called “Bethe free entropy”. Generally speaking, the “Bethe

free entropy” yields a good approximation of the free entropy of the system if we insert the right

distribution - on trees e.g. this distribution can be determined as the fixed point of Belief Propagation.

Now, the main theorem can be stated.

Theorem 4.1.1. There exists a constant k0 ≥ 3 such that for any k ≥ k0 the following holds. If

d ≥ (2k − 1) ln k − 2, then Fd,k has precisely one frozen fixed point π∗d,k. Further, the function

Σk : d 7→ ln k +
d

2
ln(1− 1/k)− φd,k(π∗d,k) (4.1.5)

has a unique zero dcond in the interval [(2k − 1) ln k − 2, (2k − 1) ln k − 1]. For this number dcond,

the following three statements are true.

(i) Any 0 < d < dcond is smooth and Φk(d) = k(1− 1/k)d/2.

(ii) There occurs a phase transition at dcond.

(iii) If d > dcond, then

lim sup
n→∞

E[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2.

Thus, if d is smooth, then Φk(d) < k(1− 1/k)d/2.

Remark 4.1.2. We observe that the first part of Theorem 4.1.1 implies that G(n, d/n) has a k-

colouring w.h.p. for any 0 < d < dcond. Indeed, if d < dcond, then Φk(d) = k(1 − 1/k)d/2 > 0

and thus Zk(G(n, d/n)) > 0 w.h.p. because (Zk(G(n, d/n))1/n) converges to Φk(d) in probability.

The key strength of Theorem 4.1.1 is that we identify the precise location of the phase transition.

Given the intricate combinatorics of the random graph colouring problem, it does not seem surprising

that the answer is not exactly simple.

In the proof of Theorem 4.1.1 the nature of the condensation phase transition is brought to light.

For instance, the fixed point π∗d,k turns out to have a nice combinatorial interpretation, and, perhaps

surprisingly, π∗d,k emerges to be a discrete probability distribution. Furthermore, in the course of the

proof the prediction of the evolution of the solution space up to dcond as described in Section 1.2 will

be verified. We will present the proof in Chapters 5 and Appendix A.

With the definition of the cluster of a colouring σ from Section 2.4, we obtain the following corollary:

Corollary 4.1.3. With the notation and assumptions of Theorem 4.1.1, the function Σk is conti-

nuous, strictly positive and monotonically decreasing on the interval ((2k − 1) ln k − 2, dcond), and
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limd→dcond
Σk(d) = 0. Further, given that Zk(G(n, d/n)) > 0, let τ be a uniformly chosen random

k-colouring of this random graph. Then, for any d ∈ ((2k − 1) ln k − 2, dcond),

lim
ε↘0

lim
n→∞

P
[

1

n
ln
|C(G(n, d/n), τ )|
Zk(G(n, d/n))

≤ Σk(d) + ε
∣∣Zk(G(n, d/n)) > 0

]
= 1, and

lim
ε↘0

lim sup
n→∞

P
[

1

n
ln
|C(G(n, d/n), τ )|
Zk(G(n, d/n))

≥ Σk(d)− ε
∣∣Zk(G(n, d/n)) > 0

]
> 0.

We emphasise that conditioning on Zk(G(n, d/n)) > 0 is necessary to speak of a random k-colouring

τ but otherwise harmless, as Theorem 4.1.1 implies that G(n, d/n) is k-colourable w.h.p. for any

d < dcond.

In other words, Corollary 4.1.3 shows that there is a certain function Σk > 0 such that the total number

of k-colourings exceeds the number of k-colourings in the cluster of a randomly chosen k-colouring

by at least a factor of exp [n(Σk(d) + o(1))] with probability tending to one. On the other hand, with

a non-vanishing probability the total number of k-colourings surpasses the size of a single cluster by

at most a factor of exp [n(Σk(d) + o(1))]. As d approaches dcond, the function Σk(d) tends to 0 and

thus the corollary formalizes the prediction of an entropy crisis (cf. Section 1.2).

4.1.2. Condensation in finite temperature random hypergraph 2-colouring

The second result is from the paper

A positive temperature phase transition in random hypergraph 2-coloring

by Bapst, Coja-Oghlan and Raßmann [BCOR16] published in the Annals of Applied Probability 26

(2016). In this paper we establish the existence and approximate location of the condensation phase

transition in random hypergraph 2-colouring for finite inverse temperatures β. More specifically, we

obtain a formula that determines the location of the condensation phase transition up to an error εk
that tends to 0 for k → ∞. This is the first (rigorous) result that determines the condensation phase

transition within such accuracy in terms of finite β.

With the definition of a phase transition from Section 2.5, we have the following result.

Theorem 4.1.4. For any fixed number C > 0, there exists a sequence εk > 0 with limk→∞ εk = 0

such that the following is true. Let

Σk,d(β) = (β + 1) exp [−β + k ln 2] ln 2− 2

(
d

k
− 2k−1 ln 2 + ln 2

)
.
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1. If d/k < 2k−1 ln 2− ln 2− εk, then any β > 0 is smooth and

Φd,k(β) = ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
. (4.1.6)

2. If 2k−1 ln 2− ln 2 + εk < d/k < 2k−1 ln 2 + C, then Σk,d(β) has a unique zero βcond(d, k) ≥
k ln 2 and

• any β ∈ (0, βcond(d, k) + εk) is smooth and Φd,k(β) is given by (4.1.6),

• there occurs a phase transition at βcond(d, k) + εk

• for β > βcond(d, k) + εk we have

Φd,k(β) < ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
.

In summary, Theorem 4.1.4 shows that in random hypergraphs with density d/k less than about

2k−1 ln 2 − ln 2 there does not occur a phase transition for any finite β. By contrast, for slightly

larger densities there is a phase transition. Its approximate location is given by βcond(d, k). While in

Theorem 4.1.4 this value is determined implicitly as the zero of Σk,d(β), it is not difficult to obtain the

expansion

βcond(d, k) = (k − 1) ln 2 + ln k + 2 ln ln 2− ln c+ δk,

where c = d/k−2k−1 ln 2+ln 2 and limk→∞ δk = 0. Furthermore, the proof of Theorem 4.1.4 shows

that there exists c1 > 0 such that εk ≤ kc12−k. Thus, Theorem 4.1.4 determines the critical density

from that on a phase transition starts to occur and the critical βcond(d, k) up to an error term decaying

exponentially with k.

The proof of the theorem is carried out in full detail in Chapter 6.

4.1.3. Number of solutions in random hypergraph 2-colouring

The third result is from the paper

On the number of solutions in random hypergraph 2-colouring

by Raßmann [Ras16a+] submitted to The Electronic Journal of Combinatorics. We determine the

limiting distribution of the logarithm of the number of satisfying assignments in the random k-uniform

hypergraph 2-colouring problem in a certain density regime essentially up to the second moment lower

bound dsec for all k ≥ 3. As a direct consequence, we obtain that in this regime the random colouring

model is contiguous with respect to the planted model, a result that helps simplifying the transfer of

statements between these two models.

While studying random constraint satisfaction problems, for a long time a main focus has been on
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determining the expected value of the number of solutions and understanding how this number evolves

when the constraint density changes. Despite the efforts, up to now the distribution of the number

of solutions has remained elusive in any of the standard examples of random constraint satisfaction

problems.

Theorem 4.1.5. Let k ≥ 3 and d′/k ≤ 2k−1 ln 2− 2 as well as

λl =
[d(k − 1)]l

2l
and δl =

(−1)l

(2k−1 − 1)
l

for l ≥ 2. Further let (Xl)l be a family of independent Poisson variables with E[Xl] = λl, all defined

on the same probability space. Then the random variable

W =
∑
l

[Xl ln(1 + δl)− λlδl]

satisfies E|W | <∞ and lnZ(Hk(n,m))− lnE[Z(Hk(n,m))] converges in distribution to W .

Remark 4.1.6. By definition, W has an infinitely divisible distribution. It was shown in [Jan95]

that the random variable W ′ = exp [W ] converges almost surely and in L2 with E [W ′] = 1 and

E
[
W ′2

]
= exp

[∑
l λlδ

2
l

]
. Thus, by Jensen’s inequality it follows that E [W ] ≤ 0. Furthermore, by

basic calculations it is easy to verify that also E
[
W 2
]

is finite.

As a direct consequence of Theorem 4.1.5, we obtain the following.

Corollary 4.1.7. Assume that k ≥ 3 and d′/k ≤ 2k−1 ln 2− 2. Then

lim
ω→∞

lim
n→∞

P [| lnZ(Hk(n,m))− lnE [Z(Hk(n,m)] | ≤ ω] = 1. (4.1.7)

On the other hand, for any fixed number ω > 0 we have

lim
n→∞

P [| lnZ(Hk(n,m))− lnE[Z(Hk(n,m))]| ≤ ω] < 1.

The first part of Corollary 4.1.7 shows that for the covered range of d′ and k, lnZk(G(n,m)) actually

fluctuates w.h.p. by no more than ω = ω(n) for any ω(n)→∞. Moreover, the second part shows that

this is best possible.

Furthermore, Theorem 4.1.5 enables us to establish a very strong connection between the random

colouring model and the planted model. To state this, we recall the definition of contiguity from Sub-

section 3.1.2 and show that as a consequence of Theorem 4.1.5 the statement (3.1.2) can be sharpened
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in the strongest possible sense. Roughly speaking, we show that in a density regime nearly up to the

second moment lower bound the random colouring model is contiguous with respect to the planted

model, i.e. that in (3.1.2) it suffices that πpl
k,n,m[En] = o(1).

Corollary 4.1.8. Assume that d/k ≤ 2k−1 ln 2− 2. Then (πrc
k,n,m)n≥1 / (πpl

k,n,m)n≥1.

As done in [BCOE14+], we refer to this contiguity statement as silent planting. We will elaborate on

the proofs of Theorem 4.1.5 and Corollaries 4.1.7 and 4.1.8 in Chapter 7.

4.1.4. Number of solutions in random graph k-colouring

The last result is from the paper

On the number of solutions in random graph k-colouring

by Raßmann [Ras16b+] submitted to Combinatorics, Probability and Computing.

We show that under certain conditions the number Zk(G(n,m)) of k-colourings of the random graph

is concentrated tightly and determine the distribution of lnZk(G(n,m))− lnE[Zk(G(n,m))] asym-

ptotically in a density regime up to the condensation transition.

Theorem 4.1.9. There is a constant k0 > 3 such that the following is true. Assume that either k ≥ 3

and d′ ≤ 2(k − 1) ln(k − 1) or that k ≥ k0 and d′ < dcond. Further, let

λl =
dl

2l
and δl =

(−1)l

(k − 1)l−1

for l ≥ 2. Let (Xl)l be a family of independent Poisson variables with E[Xl] = λl, all defined on the

same probability space. Then the random variable

W =
∑
l≥3

[Xl ln(1 + δl)− λlδl]− d2/(4(k − 1))

satisfies E|W | <∞ and lnZk(G(n,m))− lnE[Zk(G(n,m))] converges in distribution to W .

Analogously to Remark 4.1.6, it is known that W has a bounded first and second moment.

By obtaining an exact expression for the asymptotic distribution of the logarithm of the partition

function up to the condensation threshold dcond, in the present paper we give a definite and complete

answer to the question about the relationship between the planted model and the Gibbs distribution.

Furthermore, we show that the fluctuations in the number of solutions can completely be attributed to
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the presence of short cycles, thereby eliminating the possibility of other influencing factors.

4.2. Discussion and former work

In this section, we discuss the relevance and impact of the results presented above, i.e. explain how

they compare to other relevant work, relate to various questions that have come up in the literature and

find their place alongside other existing results.

4.2.1. On phase transitions in random graph k-colouring

As already outlined in Section 1.1, graph colouring is one of the most fundamental problems in combi-

natorics and has attracted a great deal of attention since it was first posed by Erdős and Rényi [ER60].

Much effort has been devoted to studying the typical value of the chromatic number of the Erdős-

Rényi random graph [Bol88, Luc91a, Mat87, AN05, COPS08, COV13] and its concentration [SS87,

AK97, Luc91b]. With Theorem 4.1.1 we contribute to the endeavour of thoroughly understanding

this problem by identifying the precise location of the condensation phase transition dcond for the

Erdős-Rényi random graph model. In effect, Theorem 4.1.1 is the first result that pins down the exact

condensation phase transition in a diluted mean-field model, thereby verifying the prediction from the

cavity method derived in [KMRTSZ07, ZK07].

A simple asymptotic expansion of dcond in the limit of large k yields

dcond = (2k − 1) ln k − 2 ln 2 + εk,

where εk → 0 as k → ∞. This asymptotic formula had already been obtained by Coja-Oghlan and

Vilenchik in [COV13], although by means of a much simpler argument that does not quite get to the

bottom of the condensation phenomenon and could therefore not be applied to establish the exact

location of the condensation transition.

Essentially, our proof of Theorem 4.1.1 builds upon the second moment argument from [COV13].

Furthermore, it uses some of the techniques developed to study the geometry of the set of k-colourings

of the random graph and adds to this machinery. Among the techniques that we use are the planted

model introduced in Section 3.1, the notion of a core [ACO08, Mol12, COV13], techniques for proving

the existence of “frozen variables” (or “hard fields” in physics jargon) [ACO08, CO13, Mol12], and

a concentration argument from [COZ12]. Beyond that, the cornerstone of the present work is a novel

argument that allows us to establish an explicit link between the combinatorics of the graph colouring

problem and the cavity formalism, more precisely to connect the geometry of the set of k-colourings

rigorously with the distributional fixed point problem from [ZK07].
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Furthermore, Theorem 4.1.1 yields a small improvement over the best lower bound on the colouring

threshold sequence dcol(n) from Theorem 1.1.1. Prior to Theorem 4.1.1, the best bounds on dcol(n)

had been

(2k − 1) ln k − 2 ln 2 + εk ≤ lim inf
n→∞

dcol(n) ≤ lim sup
n→∞

dcol(n) ≤ (2k − 1) ln k − 1 + δk, (4.2.1)

where εk, δk → 0 as k → ∞. The upper bound in (4.2.1) was obtained by the first moment me-

thod [CO13], while the lower bound rests on a second moment argument [COV13], which improved a

landmark result of Achlioptas and Naor [AN05]. In particular, the proofs of the bounds (4.2.1) exploit

structural properties such as the “clustering” of the set of k-colourings and the emergence of “frozen

variables”.

Theorem 4.1.1 improves the lower bound in (4.2.1) by determining the precise “error term” εk. Indeed,

Remark 4.1.2 implies that lim infn→∞ dcol(n) ≥ dcond. In fact, dcond is the best-possible lower bound

that can be obtained via the kind of second moment argument developed in [AN05, COV13] because

a necessary condition for the success of the second moment argument is that Φk(d) = k(1− 1/k)d/2.

While Theorem 4.1.1 allows for the possibility that dcond is equal to the k-colouring threshold dcol (if

it exists), the physics prediction is that these two are different. More specifically, the cavity method

yields a prediction as to the precise value of dcol in terms of another distributional fixed point problem.

An asymptotic expansion in terms of k leads to the conjecture dcol = (2k − 1) ln k − 1 + ηk with

ηk → 0 as k → ∞ [KPW04]. Thus, the upper bound in (4.2.1) is conjectured to be asymptotically

tight in the limit k →∞.

In effect, the predictions regarding the condensation phase transitions in other problems look very

similar to the one in random graph colouring. Consequently, it seems reasonable to expect that the

proof technique developed in [BCOHRV16] carries over to many other problems.

4.2.2. On phase transitions in random hypergraph 2-colouring for finite inverse
temperatures

As discussed in Section 1.1 and Chapter 2, the problem of hypergraph 2-colouring stands out from

other random CSPs because of the symmetry it exhibits and its technically not too involved calculati-

ons (for instance in the second moment analysis). With the work [BCOR16] we contribute to investi-

gating an extension of this problem, namely its finite temperature version, meaning that we deal with a

two-dimensional phase diagram governed by d and, additionally, the inverse temperature β. Our result

is the first to identify the condensation phase transition in such a finite temperature problem rigorously

up to an error term that decays to 0 when k →∞.

The first rigorous result on a genuine condensation phase transition in a diluted mean field model is
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due to Coja-Oghlan and Zdeborová [COZ12], who dealt with proper hypergraph 2-colouring (i.e. the

β = ∞ case of the problem considered here). Thus, the only parameter in [COZ12] is d. The main

results of [COZ12] are that there occurs a condensation phase transition at d/k = 2k−1 ln 2−ln 2+γk,

where limk→∞ γk = 0 and that the condensation phase is not empty. Up to the error term γk, the result

confirms a prediction from [DRZ08]. Moreover, as Theorem 4.1.4 shows, the result from [COZ12]

matches the smallest density for which a condensation phase transition occurs for finite β. In this

sense, [COZ12] determines the intersection of the “condensation line” in the two-dimensional phase

diagram of Theorem 4.1.4 with the d-axis.

As proper hypergraph 2-colouring has been an active area of research, there is a variety of rigorous

results concerning the geometry and the evolution of the solution space [ACO08, AM02], for example

the proof of the “shattering” of the solution space into small, well-separated clusters up to the conden-

sation threshold [AM06, COZ12]. Although the existence and location of a sharp colouring threshold

has not been proven yet, Friedgut’s Theorem 1.1.1 can be applied. The best current bounds on the

threshold sequence dcol(n) are

2k−1 ln 2− ln 2 + εk ≤ lim inf
n→∞

dcol(n)/k ≤ lim sup
n→∞

dcol(n)/k ≤ 2k−1 ln 2− ln 2/2 + δk,

where εk, δk → 0 as k → ∞. The upper bound was obtained by Achlioptas and Moore [AM06] via

the first moment method. The lower bound is the location of the condensation phase transition shown

in [COZ12], which represents an improvement over the former second moment lower bound from

[AM06].

Furthermore, there is a prediction for the location of the colouring threshold dcol by statistical physi-

cists [DRZ08, KMRTSZ07], suggesting that

dcol/k = 2k−1 ln 2− ln 2/2− 1/4 + εk with lim
k→∞

εk → 0.

This prediction was proven by Coja-Oghlan and Panagiotou [COP12] for the problem of NAE-k-SAT,

which is almost equivalent to hypergraph 2-colouring, and it should be possible to transfer the result

without major difficulties.

In a Paper by Ayre, Coja-Oghlan and Greenhill [ACOG15+], the generalized problem of random

k-uniform hypergraph q-colouring has lately been investigated and a lower bound on the colouring

threshold has been obtained. This bound matches the prediction for the condensation phase transition

[KMRTSZ07].

Up to now, work on problems with finite β has concentrated mostly on the k-spin Potts antiferromagnet

at zero temperature, which is the physics name for the k-colouring problem. It has been studied on

lattices [ZK08] and on the Erdős-Rényi random graph, where the condensation line at finite β was

investigated by Krzakala and Zdeborová [KZ08] by means of non-rigorous techniques. They predict
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the location of the condensation line in terms of an intricate fixed-point problem.

The only prior rigorous paper that explicitly deals with the positive temperature case is the recent

work of Contucci, Dommers, Giardina and Starr [CDGS13]. They also study the k-spin Potts anti-

ferromagnet on the Erdős-Rényi random graph with finite β and show that for certain values of the

average degree a condensation phase transition exists. To the extent to which the results are com-

parable, [CDGS13] is less precise than Theorem 4.1.4. Indeed, a direct application of the approach

from [CDGS13] to the present problem would determine βcond(d, k) only up to an additive error of

ln k, rather than an error that diminishes with k. This is due to two technical differences between the

present work and [CDGS13]. First, the second moment argument required in the case of the k-spin

Potts antiferromagnet is technically far more challenging than in the present case. In effect, an enhan-

ced version of the second moment argument along the lines of [COZ12] (with explicit conditioning on

the cluster size) is not available in the Potts model. Second, [CDGS13] employs a conceptually less

precise estimate of the cluster size than the one we derive. This originates from the fact that they es-

sentially neglect the entropic contribution to the cluster size, with the consequence of under-estimating

the typical cluster size significantly.

Very recently, Coja-Oghlan and Jaafari [COJ16+] determined the free entropy in the Potts antiferro-

magnet with finite β rigorously for all temperatures and small average degrees and specified a regime

where surely no phase transition occurs.

Theorem 4.1.4 is perfectly in line with the picture sketched by the non-rigorous cavity method. Indeed

its proof is inspired by the physicists’ notion that the condensation phase transition results from an

“entropy crisis” [KMRTSZ07, MM09] (cf. Section 2.3). The proof of Theorem 4.1.4 is based on

turning this scenario into a rigorous argument. To this end, we establish a rigorous version of the cluster

decomposition summarized in Section 2.3 and, crucially, an estimate of the cluster volumes Zβ,i. The

arguments that we develop for these problems partly build upon prior work from [ACO08, AM02,

COZ12]. In particular, we provide a “finite-β” version of the second moment arguments from [ACO08,

COZ12]. The argument that we develop for inferring the condensation transition from the second

moment method and the estimate of the cluster size draws upon ideas developed for the β = ∞ case

in [ACO08, BCOHRV16, COZ12]. Dealing with finite β requires substantial additional work and

ideas, especially with respect to the estimate of the cluster size.

4.2.3. On the asymptotic distribution of partition functions

Determining the distribution of the number of solutions in random graph k-colouring and random

hypergraph 2-colouring has been an open problem for a very long time.

For colouring random regular graphs, where each vertex appears in exactly the same number of edges,

it had been implicitly known for a while that the fluctuations in the number of colourings can be
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attributed to the presence of short cycles [Wor99]. As in the random d-regular graph for any fixed

number s the neighbourhood of depth s of all but a bounded number of vertices is a d-regular tree,

there are only extremely limited fluctuations in the local graph structure. Thus, it seemed reasonable to

expect that the random variable lnZ is more tightly concentrated in random regular graphs than in the

Erdős-Rényi model, where the depth-s neighbourhoods can be of varying shapes and sizes (although

all but a bounded number will be acyclic), and also the number of vertices and edges in the largest

connected component as well as the core fluctuate. Thus, it did not seem obvious that small subgraph

conditioning could be applied in the case of Erdős-Rényi random graphs. However, in [BCOE14+] it

was established that also when k-colouring random Erdős-Rényi graphs, the fluctuations of lnZ are

merely due to the appearance of short cycles.

The ideas for the proofs of the results from [Ras16a+] and [Ras16b+] follow the way beaten in

[BCOE14+], where statements analogue to Corollary 4.1.7 and Corollary 4.1.8 are shown for the pro-

blem of k-colouring random graphs. However, Theorems 4.1.5 and 4.1.9 are stronger than the results

obtained in [BCOE14+] because we determine the exact distribution of lnZ−E [lnZ] asymptotically.

The proofs are mainly based on the observation that the variance in the logarithm of the number of

2-colourings can be attributed to the fluctuations in the number of cycles of bounded length and that

conditioning on this number reduces the variance dramatically. The same phenomenon was observed

in [BCOE14+] and also in [COW16+], where a combination of the second moment method and small

subgraph conditioning was applied to derive a result similar to ours for the problem of random regular

k-SAT.

Small subgraph conditioning was originally developed by Robinson and Wormald in [RW92, RW94]

to investigate the Hamiltonicity of random regular graphs of degree at least three. Janson showed in

[Jan95] that the method can be used to obtain limiting distributions. Small subgraph conditioning has

frequently been used in random regular graph problems (see [Wor99] for an enlightening survey). In

e.g. [KPGW10] and [COEH16] it was applied to upper-bound the chromatic number of the random

d-regular graph, as the sharp threshold result Theorem 1.1.1 does not hold for this problem. More

recently, is has also been used to establish a result on non-distinguishability of the Erdős-Rényi model

and the stochastic block model [BMNN16] and to determine the satisfiability threshold for positive

1-in-k-SAT, a Boolean satisfiability problem, where each clause contains k variables and demands that

exactly one of them is true [Moo15+].

Similar to [Jan95], we aim at obtaining a limiting distribution. Unfortunately, Janson’s result Theo-

rem 3.3.1 does not apply directly in our case for the following reason. In contrast to [BCOE14+],

where only bounds on the fluctuation of lnZk were proven, we aim at a statement about its asymptotic

distribution. Thus, for our approach it does not suffice to consider colourings with balanced colour

classes (with a deviation of o(n−1/2) from their typical value), but we have to get a handle on all

colourings providing a positive contribution. To this aim, we collect together colourings exhibiting

similar colour class sizes. This results in the need to not only consider one random variable, but break
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it into a large number of smaller random variables. However, it is not evident how to apply Janson’s

result simultaneously to these variables, whose number grows with n. Instead, we choose to perform a

variance analysis along the lines of [RW94]. The same approach was pursued in [COW16+], and thus

our proof technique is similar to theirs in flavour, yet we have the advantage of only having to deal

with a very moderately growing number of variables, which simplifies matters slightly.

We expect that it is possible to apply a combination of the second moment method and small sub-

graph conditioning to a variety of further random CSPs, such as e.g. random k-NAESAT, random

k-XORSAT or random hypergraph k-colourability. However, for asymmetric problems like the well-

known benchmark problem random k-SAT, we expect that the logarithm of the number of satisfying

assignments exhibits stronger fluctuations and we doubt that a result similar to ours can be established.

4.3. Related work

In this section we provide a short overview of (mostly) rigorous work on random CSPs related to those

we deal with, without raising a claim to completeness of the presented work.

4.3.1. Related constraint satisfaction problems

Random k-XORSAT, which is an ensemble of random linear systems over the field of integers mo-

dulo 2, is an example of a very simple random CSP which does not exhibit a condensation phase due

to its algebraic nature: all clusters are simply translations of the kernel. The precise threshold for the

existence of solutions is known [DM02, PS16] and is obtained by applying the second moment me-

thod to the number of solutions after “stripping” the instance down to a certain core, ending up with a

set of variables independent of the assignment which the process started from (a fact which simplifies

the second moment analysis substantially).

Random k-SAT, a special case of Boolean Satisfiability where (almost) all clauses have the same size

k, has been one of the benchmark problems in computer science, ever since Cook proved that it is

NP-complete in the worst case for all k ≥ 3 [Coo71]. The problem can be stated as follows: Given

a Conjunctive Normal Form (CNF) formula F , is it possible to assign truth values to the variables of

F so that it evaluates to true? While for instance hypergraph 2-colouring is a symmetric problem in

the sense that the inverse of each solution is a solution again, random k-SAT is not. Satisfying assi-

gnments tend to “lean” towards the majority vote truth assignment: truth assignments satisfying many

literal occurrences in the random formula have significantly greater probability of being satisfying.

Furthermore, they tend to be correlated and to agree with each other and the majority truth assignment

on more than half of the variables. It was shown in [AM06, AP04] that as a consequence in random

k-SAT the bound E
[
Z2
]

= O
(
E [Z]2

)
does not hold for any density.
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Franco and Paull [FP83] were the first to mathematically investigate random k-SAT and to observe

that the problem is w.h.p. unsatisfiable if d > 2k ln 2. In 1990, Chao and Franco [CF90] invented a

simple algorithm called “unit clause” that finds satisfying truth assignments with uniformly positive

probability19 for d < 2k/k. Frieze and Suen [FS96] later improved this lower bound to d > ck2
k/k

with limk→∞ ck = 1.817... and this remained the best lower bound for a long time.

In [AM06], Achlioptas and Moore tackled the problem by considering a special case of the k-SAT

problem, namely the symmetric version NAE-k-SAT (see below), and by focusing on balanced assign-

ments. By this means, they could significantly improve the lower bound by applying the second mo-

ment method and were able to determine the threshold for random k-SAT within a factor of two.

Later on, the second moment lower bound was improved by Achlioptas and Peres [AP04], matching

the first moment upper bound up to an exponentially small second-order term, only leaving a gap of or-

der Ω(k). Their result was the first rigorous proof of a replica method prediction for any NP-complete

problem at zero temperature. They coped with the asymmetry and the tendency of the majority vote

by cleverly weighting the truth assignments and concentrating the weight on balanced ones.

After that, the gap was narrowed to an additive constant (independent of k) via improved second mo-

ment arguments [COP13] and soon afterwards closed up to an error vanishing for k → ∞ [COP16].

This was done by using a second moment argument inspired by the physicists’ concept of “Survey

Propagation”, counting the number of clusters rather than solutions.

Finally, Ding, Sly and Sun [DSS15] could eliminate this last error term and exactly determine the

satisfiability threshold in k-SAT for large k via a second moment argument that fully rigorizes the

notion of Survey Propagation.

Two special cases of the random k-SAT problem had been tackled before: For the 2-SAT problem,

which was proven to belong to the class P, meaning that it is computationally tractable, Chvátal and

Reed [CR92] and independently Goerdt [Goe96] found the d2−SAT threshold to occur at the density

m/n ∼ 1. There is no condensation phase in this problem. Secondly, in random k-SAT with k >

log2 n, where the clause length is growing with n, there too is no condensation phase. The precise

threshold has been obtained via the second moment method [FW05, COF08].

Random regular k-SAT is a version of the k-SAT problem where each variable appears exactly d

times positively and d times negatively in the random formula. This regularity condition leads to a

relatively simple structure of the resulting factor graph because the neighbourhoods of all variables

look structurally the same, and w.h.p. the total number of cycles of a fixed length is bounded. Rathi,

Aurell, Rasmussen and Skoglund [RARS10] were the first to study instances of this problem. They

applied the second moment method to prove that near dsat random instances are satisfiable w.u.p.p.. A

few years later, Coja-Oghlan and Panagiotou [COP16] used an enhancement of this method, namely

a Survey Propagation-based second moment method, to exactly determine dsat. In [BCO15+], Bapst

19We say that a sequence of events An occurs with uniformly positive probability (w.u.p.p.) if lim infn→∞ P [An] > 0.
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and Coja-Oghlan determined the existence and location of the condensation phase transition in this

problem.

In [COW16+], Coja-Oghlan and Wormald combined the second moment argument from [COP13]

with small subgraph conditioning to obtain the asymptotic distribution of the number of solutions in

random regular k-SAT.

Random NAE-k-SAT is the symmetric version of random k-SAT, where NAE stands for ’not all

equal’, meaning that a clause is satisfied if and only if it contains at least one satisfied and one unsatis-

fied literal, or, in other words, the inverse of a satisfying assignment is satisfying as well. Like random

k-SAT, random NAE-k-SAT is known to be NP-complete in the worst case for any k ≥ 3. It is closely

related to hypergraph 2-colouring, which can be interpreted as a special case of NAE-k-SAT without

negations. Thus, results, e.g. the ones from [COZ12] for hypergraph 2-colouring, carry over without

much effort. Coja-Oghlan and Panagiotou determined the threshold for the existence of solutions in

[COP12] up to an error that vanishes in the limit of large k using a Survey Propagation-inspired second

moment method.

Random regular NAE-k-SAT is again the regular version of random NAE-k-SAT, where each varia-

ble appears exactly d times positively and d times negatively. Ding, Sly and Sun [DSS16] investigated

this problem via a second moment argument and determined the satisfiability threshold for large va-

lues of k. This was the first result exactly locating the threshold in a problem exhibiting condensation.

Around the same time, they also determined the asymptotics of the independence number of random

d-regular graphs [DSS16+] for large d. Very recently, Sly, Sun and Zhang [SSZ16+] showed that for

large k the free entropy is well defined and determined the number of solutions of a typical instance,

thereby verifying the physicists 1RSB prediction.

Random regular graph k-colouring is the regular version of the graph colouring problem. Coja-

Oghlan, Efthymiou and Hetterich [COEH16] determined the chromatic number on a set of density

1, thereby improving over a result of Kemkes, Péres-Giménez and Wormald [KPGW10], who had

previously succeeded in locating the chromatic number for about half of all degrees d. In both papers,

a second moment argument is used and combined with small subgraph conditioning. The enhanced

result in [COEH16] matches the one obtained in [COV13] for Erdős-Rényi random graphs. Indeed,

it uses the Survey Propagation-inspired second moment argument from [COV13] as a “black box”.

Combining this with small subgraph conditioning is crucial to obtain the required high probability as

for regular graphs Friedgut’s sharp threshold result Theorem 1.1.1 cannot be applied.

Stochastic block models were introduced in the 1980s as models for random graphs exhibiting com-

munity structures.

In these models the vertices are divided into different classes and edges are added between them with

probabilities depending on the classes. This construction can be interpreted as a generalisation of the

planted model corresponding to the Potts antiferromagnet with finite β. An extensively studied pro-
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blem in stochastic block models is the community detection problem. It investigates in which regime

it is possible to recover the allocation of vertices to classes by only looking at the structure of the

graph. Related is the question of distinguishability, asking whether a stochastic block model can be

distinguished from an Erdős-Rényi model with the same average degree.

While for a long time research mostly concentrated on dense models (with high average degree),

recently sparse models received a lot of attention. This was triggered by conjectures from statistical

physicists [DKMZ11] concerning the existence and location of different bounds separating regimes

where community detection is possible, possible but computationally hard, or not possible at all.

These conjectures were rigorously proven in the special case of having two classes with equal sizes

[MNS16+, MNS13+, Mas14]. Recently, [BMNN16] addressed the problem of community detection

for more than two classes. They gave upper and lower bounds on the information-theoretic thres-

hold, which corresponds to the condensation threshold in spin glasses and separates regimes where

successful detection is possible from ones where it is not. Their bounds are tight for some values of

the edge-probabilities. Additionally, they established contiguity of the stochastic block model and the

Erdős-Rényi model in a certain density regime.

4.3.2. Algorithmic questions

A short overview of the literature concerning the algorithmic point of view in the presented problems

will complete this chapter.

Since the second moment method is non-constructive, there is a separate algorithmic question: For

which densities can solutions of random CSPs be constructed in polynomial time w.h.p.? An abun-

dance of research has been invested in studying random CSPs by means of efficient algorithms. Unfor-

tunately, the best known combinatorial algorithms asymptotically do not work better than extremely

naive ones: For random k-SAT, the simple algorithms “unit clause” and “shortest clause” were ana-

lysed more than 20 years ago and could be proven to find solutions for densities up to O
(
2k/k

)
[CF90, CR92, FS96]. A few years ago, Coja-Oghlan [CO10] presented an algorithm provably suc-

ceeding up to d = 2k ln k/k. However, up to now, no polynomial-time algorithm is known to find

satisfying assignments for d = 2kf(k)/k for any function f(k) = ωk(ln k). For the problem of

colouring random graphs, analyses can be found in [AM97, GM75]. They show that a certain list-

colouring algorithm finds colourings if d ≤ k ln k. Up to now, no polynomial time algorithms are

known that are able to colour a random graph with average degree (1 + ε) k ln k for some fixed ε > 0

and arbitrarily large k.

In [ACO08] Achlioptas and Coja-Oghlan proved that the point where the geometry of the soluti-

on space changes, the dynamical phase transition predicted by statistical physics [KMRTSZ07] and

discussed in Section 1.2, coincides with the point where the best known analysed algorithms cease
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to work. In [ACO08] the “shattering” point for k-SAT, k-colouring and hypergraph 2-colouring was

rigorously determined for large values of k. In general, however, no causal relation between the clus-

tering of the solution space and the breakdown of the investigated algorithms could be proven to this

day.

Following insights from the cavity method, new “message passing” algorithms for these problems have

been developed. These algorithms are supposed to act more “far-sighted” than simpler combinatorial

ones. When assigning a variable, instead of basing their decision only on the graph structure at a fixed

small distance around this variable, they take into account constraints and variables in a much larger ra-

dius. The algorithms are called Belief/Survey Propagation Guided Decimation [BMPWZ03, MPZ02]

and sequentially fix variables to satisfy the constraints while message passing is run after each step

to provide a heuristic for the choice at the next step. During message passing vertices send messages

back and forth, updating their belief about their marginals in a sequence of rounds. The key tool in this

process is an approximate fixed point computation on a finite random graph. Essentially, the challenge

when analysing these algorithms consists in investigating whether the fixed point computation pro-

vides a good approximation to the marginals of the Boltzmann distribution (in the case of the Belief

Propagation algorithm) or a certain modified distribution (in the case of Survey Propagation).

Experiments on random graph k-colouring instances for small values of k indicate an excellent per-

formance [BMPWZ03, Zde09, ZK07]. However, while a comprehensive rigorous analysis remains

elusive, sophisticated evidence is given in [RTS09] that for random k-SAT Belief Propagation Guided

Decimation succeeds for d = Θ(2k/k) but not for higher densities (and an analogue is also supposed

to hold for the colouring problems). More precisely, the physics prediction is that the performan-

ce of Belief Propagation Guided Decimation hinges on the location of the “condensation line” in a

two-dimensional phase diagram parametrised by d and a value t/n that measures the progress of the

algorithm [RTS09]. This line promises to separate the regime where the algorithm succeeds in appro-

ximating the correct marginal distribution from the one where this is not possible. The idea behind it

is that in each decimation step clauses are shortened and become more and more difficult to satisfy.

In other words, successive decimation of variables has a similar effect as increasing the density of the

formula.

However, this is far from being understood rigorously, although there are contributions attempting to

analyse message passing algorithms along these lines. For the problem of random k-SAT, Coja-Oghlan

[CO11] proved that a basic version of Belief Propagation Guided Decimation does not succeed for den-

sities beyond d = Θ(2k/k) for large k. Very recently, Hetterich [Het16+] proved that a similar basic

version of Survey Propagation Guided Decimation cannot overcome the dynamical phase transition,

i.e. d = Θ(2k ln k/k) for large k in the limit of large n. Yet, it is not obvious how to generalize their

results to more involved variants of the algorithms.

Thus, the rigorous understanding of the presented algorithms is still in its early stages and there is an

amount of work to do in this field.
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5 Condensation phase transition in random graph k-colou-
ring

This chapter is dedicated to proving Theorem 4.1.1, which establishes the existence and determines

the precise location of the condensation phase transition in random graph k-colouring for large values

of k. The result is in terms of a distributional fixed point problem and rigorously verifies the prediction

of the cavity method.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper The

condensation phase transition in random graph coloring [BCOHRV16] that is joint work with Victor

Bapst, Amin Coja-Oghlan, Samuel Hetterich and Dan Vilenchik and is published in the Communica-

tions in Mathematical Physics 341 (2016).

This chapter only presents parts of the proof, namely the parts where the author of this thesis mainly

contributed. The other parts can be found in the appendix, Chapter A. The first section of this chapter

describes an outline of the proof of Theorem 4.1.1 and gives a short introduction to the proof ideas.

In Section 5.2, a first step to the analysis of a certain branching process is presented. Section 5.3

deals with determining the cluster size of a planted colouring in the random graph using Warning

Propagation and establishing a connection between the random tree process and the random graph.

5.1. Outline of the proof

In this section, we sketch the steps of the proof of Theorem 4.1.1, thereby explaining the main ideas

and introducing the most important concepts.

The proof of Theorem 4.1.1 is composed of two parallel threads. The first thread is to show that

there exists a density, namely the density dcrit defined in (2.5.3), where a phase transition occurs and

statements (i)-(iii) of the theorem are met. The second thread is to identify the frozen fixed point π∗d,k
of Fd,k and to interpret it combinatorially. Finally, the two threads intertwine to show that dcrit =

dcond, i.e. that the “obvious” phase transition dcrit is indeed the unique zero of equation (4.1.5). The

first thread is an extension of ideas developed in [COZ12] for random hypergraph 2-colouring to the

(technically more involved) random graph colouring problem. The second thread and the intertwining

of the two require novel arguments.
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5. Condensation phase transition in random graph k-colouring

5.1.1. First thread

We recall the critical density dcrit defined in (2.5.3):

dcrit = inf
{
d ≥ 0 : the limit Φk(d) does not exist or Φk(d) < k(1− 1/k)d/2

}
.

We rather directly obtain the following bounds:

Fact 5.1.1. We have dcrit ≤ (2k − 1) ln k.

Proof. The upper bound on the k-colouring threshold stated in (4.2.1) implies thatZk(G(n, d/n)) = 0

w.h.p. for d > (2k − 1) ln k. By contrast, k(1− 1/k)d/2 > 0 for any d > 0.

Thus, dcrit is a well-defined finite number, and there occurs a phase transition at dcrit. Moreover, the

following proposition yields a lower bound on dcrit and implies that dcrit satisfies the first condition in

Theorem 4.1.1. The proposition will be proven in Section A.1 via calculating the first moment of Zk
and second moment of Zk,tame, which is a random variable only counting separable k-colourings that

have an appropriately bounded cluster size.

Proposition 5.1.2. For any d > 0, we have

lim sup
n→∞

E[Zk(G(n, d/n))1/n] ≤ k(1− 1/k)d/2.

Moreover,

dcrit = sup
{
d ≥ 0 : lim inf

n→∞
E[Zk(G(n, d/n))1/n] ≥ k(1− 1/k)d/2

}
≥ (2k − 1) ln k − 2.

Thus, we know that there exists a number dcrit that satisfies conditions (i) and (ii) in Theorem 4.1.1.

Of course, to actually calculate this number we need to unearth its combinatorial “meaning”. As

we saw in Section 1.2, if dcrit really is the condensation phase transition, then the combinatorial

interpretation should be as follows. For d < dcrit, the size of the cluster that a randomly chosen k-

colouring τ belongs to is smaller than Zk(G(n, d/n)) by an exponential factor exp [Ω(n)] w.h.p.. But

as d approaches dcrit, the gap between the cluster size and Zk(G(n, d/n)) diminishes. Hence, dcrit

should mark the point where the cluster size has the same order of magnitude as Zk(G(n, d/n)).

But how can we possibly get a handle on the size of the cluster that a randomly chosen k-colouring τ of

G(n, d/n) belongs to? As explained in Section 3.1, no “constructive” method is known for obtaining a

single k-colouring of G(n, d/n) for d anywhere close to dcol, let alone for sampling one uniformly at

random. Nevertheless, in the case that Φk(d) = k(1−1/k)d/2, i.e. for d < dcrit, the experiment of first
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5.1. Outline of the proof

choosing the random graph G(n, d/n) and then sampling a k-colouring τ uniformly at random can

be captured by the planted model: We first choose a map σ : [n]→ [k] uniformly at random, then we

generate a graph G(n, p′,σ) on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) 6= σ(w)

with probability p′ independently. If p′ = dk/(n(k − 1)) is chosen so that the expected number of

edges is the same as in G(n, d/n) and if Φk(d) = k(1− 1/k)d/2, then the planted model should be a

good approximation to the random colouring model. In particular, with respect to the cluster size we

expect that

E[|C(G(n, p′,σ),σ)|1/n] ∼ E[|C(G(n, d/n), τ )|1/n],

i.e. that the suitably scaled cluster size in the planted model is about the same as the cluster size in

G(n, d/n). Hence, dcrit should mark the point where E[|C(G(n, p′,σ),σ)|1/n] equals k(1− 1/k)d/2.

The following proposition verifies that this is indeed so. Let us write G = G(n, p′,σ) for the sake of

brevity.

Proposition 5.1.3. Assume that (2k − 1) ln k − 2 ≤ d ≤ (2k − 1) ln k and set

p′ = d′/n with d′ =
dk

k − 1
. (5.1.1)

1. If

lim
ε↘0

lim inf
n→∞

P
[
|C(G,σ)|1/n ≤ k(1− 1/k)d/2 − ε

]
= 1, (5.1.2)

then d ≤ dcrit.

2. Conversely, if

lim
ε↘0

lim inf
n→∞

P
[
|C(G,σ)|1/n ≥ k(1− 1/k)d/2 + ε

]
= 1, (5.1.3)

then lim supn→∞ E[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2. In particular, d ≥ dcrit.

To show the first part of Proposition 5.1.3 we observe that below dcrit a typical k-colouring is separable

and has bounded cluster size and use this to bound E [Zk] from below. The second part of the proof

cleverly uses a variant of the “planting trick” argument from [ACO08] combined with temporarily

introducing a finite temperature parameter in order to use concentration of the partition function. The

proof can be found in Section A.2.

5.1.2. Second thread

Our next aim is to “solve” the fixed point problem for the map Fd,k to an extent that gives the fixed

point an explicit combinatorial interpretation. This combinatorial interpretation is in terms of a certain

random tree process, associated with a concept of “legal colourings”. Specifically, we consider a multi-
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5. Condensation phase transition in random graph k-colouring

type Galton-Watson branching process. Its set of types is

T = {(i, `) : i ∈ [k] , ` ⊂ [k] , i ∈ `} .

The intuition is that i is a “distinguished colour” and that ` is a set of “available colours”. The bran-

ching process is further parameterized by a vector q = (q1, . . . , qk) ∈ [0, 1]k such that q1 + · · ·+ qk ≤
1. Let d′ = dk/(k − 1) and

qi,` =
1

k

∏
j∈`\{i}

exp
[
−qjd′

] ∏
j∈[k]\`

(
1− exp

[
−qjd′

])
for (i, `) ∈ T .

Then ∑
(i,`)∈T

qi,` = 1.

Further, for each (i, `) ∈ T such that |`| > 1, we define Ti,` as the set of all (i′, `′) ∈ T such that

` ∩ `′ 6= ∅ and |`′| > 1. In addition, for (i, `) ∈ T such that |`| = 1 we set Ti,` = ∅.

The branching process GW(d, k, q) starts with a single individual, whose type (i, `) ∈ T is chosen

from the probability distribution (qi,`)(i,`)∈T . In the course of the process, each individual of type

(i, `) ∈ T spawns a Poisson number Po(d′qi′,`′) of offspring of type (i′, `′) for each (i′, `′) ∈ Ti,`. In

particular, only the initial individual may have a type (i, `) with |`| = 1, in which case it does not have

any offspring. Let 1 ≤ N ≤ ∞ be the progeny of the process (i.e. the total number of individuals

created).

We are going to view GW(d, k, q) as a distribution over trees endowed with some extra information.

Let us define a decorated graph as a graph T = (V,E) together with a map ϑ : V → T such that for

each edge e = {v, w} ∈ E we have ϑ(w) ∈ Tϑ(v). Moreover, a rooted decorated graph is a decorated

graph (T, ϑ) together with a distinguished vertex v0, the root. Further, an isomorphism between two

rooted decorated graphs T and T ′ is an isomorphism of the underlying graphs that preserves the root

and the types of the vertices.

Given thatN <∞, the branching process GW(d, k, q) canonically induces a probability distribution

over isomorphism classes of rooted decorated trees. Indeed, we obtain a tree whose vertices are all the

individuals created in the course of the branching process and where there is an edge between each

individual and its offspring. The individual from which the process starts is the root. Moreover, by

construction each individual v comes with a type ϑ(v). We denote the (random) isomorphism class of

this tree by T d,k,q. (It is most natural to view the branching process as a probability distribution over

isomorphism classes as the process does not specify the order in which offspring is created.)

To proceed, we define a legal colouring of a decorated graph (G,ϑ) as a map τ : V (G)→ [k] such that

τ is a k-colouring of G and such that for any type (i, `) ∈ T and for any vertex v with ϑ(v) = (i, `)
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5.1. Outline of the proof

we have τ(v) ∈ `. Let Z(G,ϑ) denote the number of legal colourings.

Since Z(G,ϑ) is isomorphism-invariant, we obtain the integer-valued random variable Z(T d,k,q). We

have Z(T d,k,q) ≥ 1 with certainty because a legal colouring τ can be constructed by colouring each

vertex with its distinguished colour (i.e. setting τ(v) = i if v has type (i, `)). Hence, lnZ(T d,k,q) is a

well-defined non-negative random variable. Additionally, we write |T d,k,q| for the number of vertices

in T d,k,q.

Finally, consider a rooted, decorated tree (T, ϑ, v0) and let τ be a legal colouring of (T, ϑ, v0) chosen

uniformly at random. Then the colour τ (v0) of the root is a random variable with values in [k]. Let

µT,ϑ,v0 ∈ Ω denote its distribution. Clearly, µT,ϑ,v0 is invariant under isomorphisms. Consequently, the

distribution µT d,k,q of the colour of the root of a tree in the random isomorphism class T d,k,q is a well-

defined Ω-valued random variable. Let πd,k,q ∈ P denote its distribution. Then we can characterise

the frozen fixed point of Fd,k as follows.

Proposition 5.1.4. Suppose that d ≥ (2k − 1) ln k − 2.

1. The function

q ∈ [0, 1] 7→ (1− exp [−dq/(k − 1)])k−1 (5.1.4)

has a unique fixed point q∗ in the interval [2/3, 1]. Moreover, with

q∗ = k−1(q∗, . . . , q∗) ∈ [0, 1]k (5.1.5)

the branching process GW(d, k, q∗) is sub-critical. Thus, P[N <∞] = 1.

2. The map Fd,k has precisely one frozen fixed point, namely πd,k,q∗ .

3. We have φd,k(πd,k,q∗) = E
[

lnZ(T d,k,q∗ )

|T d,k,q∗ |

]
.

4. The function Σk from (4.1.5) is strictly decreasing and continuous on [(2k − 1) ln k − 2, (2k −
1) ln k − 1] and has a unique zero dcond in this interval.

The function (5.1.4) and its fixed point explicitly occur in the physics work [ZK07]. The proof of

Proposition 5.1.4 incorporates an analysis of the Galton Watson process GW and of the fixed points

of Fd,k. The main work consists in showing that indeed Fd,k has exactly one frozen fixed point πd,k,q∗

and that the Bethe free entropy φd,k evaluated at this fixed point is related to the number of legal

colourings of T d,k,q∗ . The proof of Proposition 5.1.4 can be found in Sections 5.2 and A.3.

5.1.3. Tying up the threads

To prove that dcond = dcrit, we establish a connection between the random tree T d,k,q∗ and the

random graph G with planted colouring σ. We start by giving a recipe for computing the cluster size
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5. Condensation phase transition in random graph k-colouring

|C(G,σ)|, and then show that the random tree process “cooks” it.

Computing the cluster size hinges on a close understanding of its combinatorial structure. As hypothe-

sised in physics work [MM09] and established rigorously in [ACO08, CO13, Mol12], typically many

vertices v are “frozen” in C(G,σ), i.e. τ(v) = τ ′(v) for any two colourings τ, τ ′ ∈ C(G,σ). More

generally, we consider for each vertex v the set

`(v) = {τ(v) : τ ∈ C(G,σ)}

of colours that v may take in colourings τ that belong to the cluster. Together with the “planted” colour

σ(v), we can thus assign each vertex v a type ϑ(v) = (σ(v), `(v)). This turnsG into a decorated graph

(G, ϑ).

By construction, each colouring τ ∈ C(G,σ) is a legal colouring of the decorated graph G. Con-

versely, we will see that w.h.p. any legal colouring of (G, ϑ) belongs to the cluster C(G,σ). Hence,

computing the cluster size |C(G,σ)| amounts to calculating the number Z(G, ϑ) of legal colourings

of (G, ϑ).

This calculation is facilitated by the following observation. Let G̃ be the graph obtained from G by

deleting all edges e = {v, w} that join two vertices such that `(v)∩`(w) = ∅. Then any legal colouring

τ of G̃ is a legal colouring ofG, because τ(v) ∈ `(v) for any vertex v. Hence, Z(G, ϑ) = Z(G̃, ϑ).

Thus, we just need to compute Z(G̃, ϑ). This task is much easier than computing Z(G, ϑ) directly

because G̃ turns out to have significantly fewer edges thanG w.h.p.. More precisely, w.h.p. G̃ (most-

ly) consists of connected components that are trees of bounded size. In fact, we shall see that in an

appropriate sense the distribution of the tree components converges to that of the decorated random

tree T d,k,q∗ . In effect, we obtain

Proposition 5.1.5. Suppose that d ≥ (2k−1) ln k−2 and let p′ be as in (5.1.1). Let q∗ be as in (5.1.5).

Then the sequence { 1
n ln |C(G,σ)|}n converges to E

[
lnZ(T d,k,q∗ )

|T d,k,q∗ |

]
in probability.

The proof of Proposition 5.1.5, that connects the geometry of the set of k-colourings rigorously with

the distributional fixed point problem, is based on the precise analysis of a further, combinatorial fixed

point problem called Warning Propagation. It can be found in all details in Section 5.3.

Proof of Theorem 4.1.1. Combining Propositions 5.1.3 and 5.1.5, we see that dcrit is equal to dcond,

which is well-defined by Proposition 5.1.4. Further, (2.5.2) implies that dcrit > 0. Assume for con-

tradiction that dcrit is smooth. Then there is ε > 0 such that the limit Φk(d) exists for all d ∈
(dcrit − ε, dcrit + ε) and such that the function d 7→ Φk(d) is given by an absolutely convergent

power series on this interval. Moreover, Proposition 5.1.2 implies that Φk(d) = k(1 − 1/k)d/2
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5.1. Outline of the proof

for all d ∈ (dcrit − ε, dcrit). Consequently, the uniqueness of analytic continuations implies that

Φk(d) = k(1 − 1/k)d/2 for all d ∈ (dcrit − ε, dcrit + ε), in contradiction to the definition of dcrit.

Thus, dcrit is a phase transition.

Proof of Corollary 4.1.3. Corollary 4.1.3 follows rather easily from the above and the following lem-

ma establishing a connection between the planted model and the Boltzmann distribution onG(n, d/n).

As in Corollary 4.1.3, we let τ denote a random k-colouring of G(n, d/n).

Lemma 5.1.6 ([BCOE14+]). Assume that d < dcond. Let E be a set of pairs (G, σ), where G is a

graph and σ is a k-colouring of G. Further, given that Zk(G(n, d/n)) > 0, let τ be a uniformly

random k-colouring of G(n, d/n).

Then P [(G,σ) ∈ E ] = o(1) implies that P [(G(n, d/n), τ ) ∈ E|Zk(G(n, d/n)) > 0] = o(1).

The statements about the properties of the function Σk follow readily from Proposition 5.1.4. Now,

assume that d ∈ ((2k − 1) ln k − 2, dcond). Propositions 5.1.4 and 5.1.5 show that 1
n ln |C(G,σ)|

converges to φd,k(πd,k,q∗) in probability. Hence, Markov’s inequality shows that for any ε > 0,

P
[

1

n
ln |C(G,σ)| > φd,k(πd,k,q∗) + ε

]
= o(1). (5.1.6)

In combination with Lemma 5.1.6, (5.1.6) entails that

P
[

1

n
ln |C(G(n, d/n), τ )| > φd,k(πd,k,q∗) + ε|Zk(G(n, d/n) > 0

]
= o(1). (5.1.7)

Further, Propositions 5.1.4 and 5.1.5 imply that for any fixed ε > 0,

P
[

1

n
ln |C(G,σ)| < φd,k(πd,k,q∗)− ε

]
= o(1).

Hence, Lemma 5.1.6 yields

P
[

1

n
ln |C(G(n, d/n), τ )| ≥ φd,k(πd,k,q∗)− ε

]
= Ω(1). (5.1.8)

Thus, Corollary 4.1.3 follows from (5.1.7), (5.1.8) and the fact that Zk(G(n, d/n))1/n converges to

Φk(d) = k(1− 1/k)d/2 in probability.
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5. Condensation phase transition in random graph k-colouring

5.2. The fixed point problem

5.2.1. The branching process

Throughout this section we assume that (2k − 1) ln k − 2 ≤ d ≤ (2k − 1) ln k. Moreover, we recall

that d′ = kd/(k − 1).

Lemma 5.2.1. Suppose that d ≥ (2k − 1) ln k − 2.

1. The function

Fd,k : [0, 1]k → [0, 1]k, (q1, . . . , qk) 7→
(

1

k

∏
j∈[k]\{i}

1− exp
(
−d′qj

))
i∈[k]

(5.2.1)

has a unique fixed point q∗ = (q∗1, . . . , q
∗
k) such that

∑
j∈[k] q

∗
j ≥ 2/3. This fixed point has the

property that q∗1 = · · · = q∗k. Moreover, q∗ = kq∗1 is the unique fixed point of the function (5.1.4)

in the interval [2/3, 1], and q∗ = 1−Ok(1/k).

2. The branching process GW(d, k, q∗) is sub-critical.

3. Furthermore, ∂
∂dE

[
lnZ(T d,k(q∗))
|T d,k(q∗)|

]
= Õk(k

−2).

The proof of Lemma 5.2.1 requires several steps. We begin by studying the fixed points of Fd,k.

Lemma 5.2.2. The function Fd,k maps the compact set [ 2
3k ,

1
k ]k into itself and has a unique fixed point

q∗ in this set. Moreover, the function from (5.1.4) has a unique fixed point q∗ in the set [2/3, 1] and

q∗ = (q∗/k, . . . , q∗/k). Furthermore,

q∗ = 1− 1/k + ok(1/k). (5.2.2)

In addition, if q ∈ [0, 1]k is a fixed point of Fd,k, then

q1 = · · · = qk. (5.2.3)

Proof. Let I = [ 2
3k ,

1
k ]k. As a first step, we show that Fd,k(I) ⊂ I . Indeed, let q ∈ I . Then for any

i ∈ [k]

(Fd,k(q))i =
1

k

∏
j 6=i

1− exp(−d′qj) ≤
1

k
.
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5.2. The fixed point problem

On the other hand, as d ≥ (2k − 1) ln k − 2 we see that d′ ≥ 1.99k ln k. Hence,

(Fd,k(q))i =
1

k

∏
j 6=i

1− exp(−d′qj) ≥
1

k

(
1− exp

(
−2d′

3k

))k−1

≥ 1

k
(1− k−1.1)k =

1− ok(1)

k
.

Thus, Fd,k(I) ⊂ I .

In addition, we claim that Fd,k is contracting on I . In fact, as d′ ≥ 1.99k ln k and ql ≥ 2/3 for all l,

for any i, j ∈ [k] we have

∂

∂qj
(Fd,k(q))i =

1i 6=j
k

∂

∂qj

∏
l 6=i

1− exp(−d′ql) =
1i 6=jd

′

k exp(d′qj)
·
∏
l 6=i,j

1− exp(−d′ql)

= (1 + ok(1))
1i 6=jd

′

k exp(d′qj)
≤ k−1.3.

Therefore, for q ∈ I the Jacobi matrix DFd,k(q) satisfies

‖DFd,k(q)‖2 ≤
∑
i,j∈[k]

(
∂

∂qj
(Fd,k(q))i

)2

≤ k2 · k−2.6 < 1.

Thus, Fd,k is a contraction on the compact set I . Consequently, Banach’s fixed point theorem implies

that there is a unique fixed point q∗ ∈ I .

To establish (5.2.3), assume without loss that q = (q1, . . . , qk) ∈ [0, 1]k is a fixed point such that

q1 ≤ · · · ≤ qk. For the trivial fixed point q1 = ... = qk = 0, the equation (5.2.3) obviously holds. So

we assume q1 > 0. Because q is a fixed point and as q1 ≤ qk, we find that

qk
q1

=
(Fd,k(q))k
(Fd,k(q))1

=
1− exp(−d′q1)

1− exp(−d′qk)
≤ 1,

whence (5.2.3) follows.

Further, we claim that the function fd,k : [0, 1]→ [0, 1], q 7→ (1−exp(−dq/(k−1)))k−1 maps the in-

terval [2/3, 1] into itself. This is because for q ∈ [2/3, 1] we have 0 ≤ exp(−dq/(k−1)) ≤ k−1.3 due

to our assumption on d. Moreover, the derivative of fd,k works out to be f ′d,k(q) = d exp(−dq/(k −
1))(1 − exp(−dq/(k − 1)))k−2. Thus, for q ∈ [2/3, 1] we find 0 ≤ f ′d,k(q) < 1/2. Hence, fd,k
has a unique fixed point q∗ ∈ [2/3, 1]. Comparing the expressions fd,k(q) and Fd,k(q), we see that

(q∗/k, . . . , q∗/k) is a fixed point of Fd,k. Consequently, q∗ = (q∗/k, . . . , q∗/k).

Finally, since f ′d,k(q) > 0 for all q, the function fd,k is strictly increasing. Therefore, as d = (2 −
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5. Condensation phase transition in random graph k-colouring

ok(1))k ln k,

q∗ = fd,k(q∗) ≤ fd,k(1) = (1− exp(−d/(k − 1)))k−1 = 1− 1/k + ok(1/k). (5.2.4)

Similarly, q∗ ≥ fd,k(2/3) ≥ 1− k−0.3. Hence, because d ≥ (2k − 1) ln k − 3, we obtain

q∗ = fd,k(q∗) ≥ fd,k(1− k−0.3) =

(
1− exp

[
−d(1− k−0.3)

k − 1

])k−1

=
(
1− k−2 +Ok(k

−2.1)
)k−1

= 1− 1/k + ok(1/k). (5.2.5)

Combining (5.2.4) and (5.2.5), we conclude that q∗ = 1− 1/k + ok(1/k), as claimed.

Remark 5.2.3. The proof of Lemma 5.2.2 directly incorporate parts of the calculations outlined in

the physics work [ZK07] that predicted the existence and location of dcond. We redo these calculations

here in detail to be self-contained and because not all steps are carried out in full detail in [ZK07].

From here on out, we let q∗ denote the fixed point of Fd,k in [2/(3k), 1/k]k and we denote the fixed

point of the function (5.1.4) in the interval [2/3, 1] by q∗. Hence, q∗ = (q∗/k, . . . , q∗/k). If we keep

k fixed, how does q∗ vary with d?

Corollary 5.2.4. We have dq∗

dd = Θk

(
k−2

)
.

Proof. The map d 7→ q∗ is differentiable by the implicit function theorem. Moreover, differentia-

ting (5.1.4) while keeping in mind that q∗ = q∗(d) is a fixed point, we find

dq∗

dd
=

d

dd
(1− exp(−dq∗/(k − 1)))k−1

=
(k − 1) (1− exp (−dq∗/(k − 1)))k−2

exp (dq∗/(k − 1))
·
(

q∗

k − 1
+

d

k − 1

dq∗

dd

)
.

Rearranging the above using d = 2k ln k +Ok(ln k) and (5.2.2) yields the assertion.

Corollary 5.2.5. We have q∗i,` = Θ̃k

(
k−(2|`|−1)

)
for all (i, `) ∈ T . Moreover,

dq∗i,`
dd = Õk

(
|`|k−2|`|) .

Proof. Lemma 5.2.2 shows that q∗j = q∗/k for all j ∈ [k]. Hence, due to (5.2.2) and because d′ =

2k ln k +Ok(ln k) we obtain

q∗i,` =
1

k

∏
j∈[k]\`

1− exp
(
−d′q∗j

) ∏
j∈`\{i}

exp
(
−d′q∗j

)
= Θ̃k(k

−(2|`|−1)).
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Furthermore, applying Corollary 5.2.4, we get

dq∗i,`
dd

=
1

k

d

dd

 ∏
j∈[k]\`

1− exp
(
−d′q∗j

) ∏
j∈`\{i}

exp
(
−d′q∗j

)
=

1

k

d

dd

[
(1− exp

(
−d′q∗/k

)
)k−|`| exp

(
−d′q∗/k

)|`|−1
]

=
1

k

(
q∗

k − 1
+
d′

k

dq∗
dd

)[
k − |`|

exp(d′q∗/k)
(1− exp(−d′q∗/k))k−|`|−1

− (|`| − 1)(1− exp
(
−d′q∗/k

)
)k−|`|

]
exp

(
−d′(|`| − 1)q∗/k

)
= |`|Ok(k−2) exp

(
−d′(|`| − 1)q∗/k

)
= Õk(|`|k−2|`|).

Lemma 5.2.6. The branching process GW(d, k, q∗) is sub-critical.

Proof. We introduce another branching process GW′(d, k, q∗) with only three types 1, 2, 3. The idea

is that type 1 of the new process represents all types (h, {h}) ∈ T with h ∈ [k], that 2 represents

all types (h, {j, h}) ∈ T with h, j ∈ [k], j 6= h, and that 3 lumps together all of the remaining

types. More specifically, in GW′(d, k, q∗) an individual of type i spawns a Poisson number Po(Mij)

of offspring of type j (i, j ∈ {1, 2, 3}), where M = (Mij) is the following matrix: If either i = 1 or

j = 1, then Mij = 0. Moreover,

M22 =
∑

(i,`)∈T(1,{1,2}):|`|=2

q∗i,`d
′ M23 =

∑
(i,`)∈T(1,{1,2}):|`|>2

q∗i,`d
′,

M32 =
∑

(i,`)∈T(1,[k]):|`|=2

q∗i,`d
′, M33 =

∑
(i,`)∈T(1,[k]):|`|>2

q∗i,`d
′.

Due to the symmetry of the fixed point q∗ (i.e. q∗ = (q∗/k, . . . , q∗/k)), M22 is precisely the expected

number of offspring of type (i, `) with |`| = 2 that an individual of type (i0, `0) ∈ T with |`0| = 2

spawns in the branching process GW(d, k, q∗). Similarly, M23 is just the expected offspring of type

(i, `) with |`| > 2 of an individual with |`0| = 2. Furthermore, M32 is an upper bound on the expected

offspring of type (i′, `′) with |`′| = 2 of an individual of type (i0, `0) with |`0| > 2. Indeed, M32

is the expected offspring in the case that `0 = [k], which is the case that yields the largest possible

expectation. Similarly, M33 is an upper bound on the expected offspring of type (i′, `′) with |`′| > 2

in the case |`0| > 2. Therefore, if GW′(d, k, q∗) is sub-critical, then so is GW(d, k, q∗).

To show that GW(d, k, q∗) is sub-critical, we need to estimate the entries Mij . Estimating the q∗i,` via
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5. Condensation phase transition in random graph k-colouring

Corollary 5.2.5, we obtain

M22 ≤ 2kq∗1,{1,2}d
′ ≤ Õk(k−1), M23 ≤ 2

∑
l≥3

l

(
k

l − 1

)
q∗1,[l]d

′ ≤ Õk(k−2),

M32 ≤ k(k − 1)q∗1,{1,2}d
′ ≤ Õk(1), M33 ≤ k

∑
l≥3

l

(
k

l − 1

)
q∗1,[l]d

′ ≤ Õk(k−1).

The branching process GW′(d, k, q∗) is sub-critical if and only if all eigenvalues of M are less than

1 in absolute value. Because the first row and column of M are 0, this is the case if and only if the

eigenvalues of the 2×2 matrix M∗ = (Mij)2≤i,j≤3 are less than 1 in absolute value. Indeed, since the

above estimates show that M∗ has trace Õk(k−1) and determinant Õk(k−2), both eigenvalues of M∗
are Õk(k−1).

Lemma 5.2.7. We have d
ddE[|T d,k,q∗ |−1 lnZ(T d,k,q∗)] = Õk(k

−2).

Proof. Fix a number d ∈ [(2k−1) ln k−2, (2k−1) ln k] and a small number ε > 0 and let d̂ = d+ε.

Let q∗ be the unique fixed point of Fd,k in [2/(3k), 1/k]k and let q̂∗ be the unique fixed point of Fd̂,k
in [2/(3k), 1/k]k. Set d′ = dk/(k−1) and d̂′ = d̂k/(k−1). Moreover, let us introduce the shorthands

T = T d,k,q∗ and T̂ = T d̂,k,q̂∗ . We aim to bound

∆ =

∣∣∣∣∣E
[

lnZ(T )

|T |

]
− E

[
lnZ(T̂ )

|T̂ |

]∣∣∣∣∣ .
To this end, we couple T and T̂ as follows:

• In T , T̂ the type (i0, `0) respectively (̂i0, ˆ̀
0) of the root v0 is chosen from the distribution

Q = (qi,`)(i,`)∈T respectively Q̂ = (q̂i,`)(i,`)∈T .

We couple (i0, `0), (̂i0, ˆ̀
0) optimally.

• If (i0, `0) 6= (̂i0, ˆ̀
0), then we generate T , T̂ independently from the corresponding conditional

distributions given the type of the root.

• If (i0, `0) = (̂i0, ˆ̀
0), we generate a random tree T̃ by means of the following branching process.

– Initially, there is one individual. Its type is (i0, `0).

– Each individual of type (i, `) spawns a Po(Λi′,`′) number of offspring of each type (i′, `′)∈
Ti,`, where

Λi′,`′ = max
{
q∗i′,`′d

′, q̂∗i′,`′ d̂
′
}
.

– Given that the total progeny is finite, we obtain T̃ by linking each individual to its off-

spring.
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5.2. The fixed point problem

• For each type (i, `), let

λi,` = 1−min
{
d′q∗i,`, d̂

′q̂∗i,`

}
/Λi,`.

For every vertex v of T̃ , let sv be a random variable with distribution Be(λiv ,`v), where (iv, `v)

is the type of v. The random variables (sv)v are mutually independent.

• Obtain T from T̃ by deleting all vertices v such that d′q∗iv ,`v < d̂′q̂∗iv ,`v and sv = 1, along with

the pending sub-tree.

• Similarly, obtain T̂ from T̃ by deleting all v and their sub-trees such that d′q∗iv ,`v > d̂′q̂∗iv ,`v and

sv = 1.

Let A be the event that the type of the root satisfies `0 = {i0} and let Â be the event ˆ̀
0 = {̂i0}. If

A∩ Â occurs, then both T , T̂ consist of a single vertex and have precisely one legal colouring. Thus,

|T |−1 lnZ(T ) = |T̂ |−1 lnZ(T̂ ) = 0. Consequently,

∆ ≤ E

[∣∣∣∣∣ lnZ(T )

|T |
− lnZ(T̂ )

|T̂ |

∣∣∣∣∣
∣∣∣∣¬A ∨ ¬Â

]
· P
[
¬A ∨ ¬Â

]
.

Further, since |T |−1 lnZ(T ), |T̂ |−1 lnZ(T̂ ) ≤ ln k with certainty, we obtain

∆ ≤
(
P
[
¬A ∧ Â

]
+ P

[
A ∧ ¬Â

])
ln k

+ E

[∣∣∣∣∣ lnZ(T )

|T |
− lnZ(T̂ )

|T̂ |

∣∣∣∣∣
∣∣∣∣¬A ∧ ¬Â

]
· P
[
¬A ∧ ¬Â

]
.

Because (i0, `0) and (̂i0, ˆ̀
0) are coupled optimally and P[A] = kq∗1 , P[Â] = kq̂∗1 , Corollary 5.2.4

implies that P[¬A ∧ Â],P[A ∧ ¬Â] ≤ εÕk(k−2). Hence,

∆ ≤ εÕk(k−2) + E

[∣∣∣∣∣ lnZ(T )

|T |
− lnZ(T̂ )

|T̂ |

∣∣∣∣∣
∣∣∣∣¬A ∧ ¬Â

]
· P
[
¬A ∧ ¬Â

]
. (5.2.6)

Now, let E be the event that `0 6= {i0}, ˆ̀
0 6= {̂i0} and (i0, `0) = (̂i0, ˆ̀

0). Due to Corollary 5.2.5 and

because (i0, `0), (̂i0, ˆ̀
0) are coupled optimally, we see that

P
[
¬A ∧ ¬Â ∧ ¬E

]
≤ εÕk(k−2). (5.2.7)

Combining (5.2.6) and (5.2.7), we conclude that

∆ ≤ εÕk(k−2) + E

[∣∣∣∣∣ lnZ(T )

|T |
− lnZ(T̂ )

|T̂ |

∣∣∣∣∣
∣∣∣∣E
]
· P
[
¬A ∧ ¬Â

]
. (5.2.8)
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5. Condensation phase transition in random graph k-colouring

Further, since P
[
¬A ∧ ¬Â

]
≤ P [¬A] ≤ 1− kq∗1 ≤ Ok(1/k) by Lemma 5.2.1, (5.2.8) yields

∆ ≤ εÕk(k−2) +Ok(1/k) · E

[∣∣∣∣∣ lnZ(T )

|T |
− lnZ(T̂ )

|T̂ |

∣∣∣∣∣
∣∣∣∣E
]

≤ εÕk(k−2) +Ok(ln k/k) · P
[
T 6= T̂ |E

]
. (5.2.9)

Thus, we are left to estimate the probability that T 6= T̂ , given that both trees have a root of the same

type (i0, `0) with |`0| > 1. Our coupling ensures that this event occurs if and only if sv = 1 for some

vertex v of T̃ . To estimate the probability of this event, we observe that by Corollary 5.2.5

λi,` ≤

εÕk(1/k) if |`| = 2,

εÕk(1) if |`| > 2.
(5.2.10)

Now, let N1 be the number of vertices v 6= v0 of T̃ such that |`v| = 2, and let N2 be the number of

v 6= v0 such that |`v| > 2. Then (5.2.9), (5.2.10) and the construction of the coupling yield

∆/ε ≤ Õk(k−2) + Õk(k
−1)

(
k−1E[N1|E ] + ·E[N2|E ]

)
. (5.2.11)

To complete the proof, we claim that

E[N1|E ] ≤ Õk(k−1), E[N2|E ] ≤ Õk(k−2). (5.2.12)

Indeed, consider the matrix M̃ = (M̃ij)i,j=1,2 with entries

M̃11 =
∑

(i,`)∈T1,{1,2}:|`|=2

Λi,`, M̃12 =
∑

(i,`)∈T1,{1,2}:|`|>2

Λi,`,

M̃21 =
∑

(i,`)∈T1,[k]:|`|=2

Λi,`, M̃22 =
∑

(i,`)∈T1,[k]:|`|>2

Λi,`.

Then Corollary 5.2.5 entails that

M̃11 = Õk(k
−1), M̃12 = Õk(k

−2), M̃21 = Õk(1), M̃22 = Õk(k
−1). (5.2.13)

In addition, let ξ =
(
ξ1
ξ2

)
, where ξ1 = 1 − ξ2 = P [|`0| = 2|E ]. Then Corollary 5.2.5 shows that

ξ2 = Õk(k
−2). Furthermore, by the construction of the branching process and (5.2.13) we have(

E [N1|E ]

E [N2|E ]

)
≤
∞∑
t=1

M̃ tξ =

(
Õk(k

−1)

Õk(k−2)

)
,
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5.3. The cluster size

which implies (5.2.12).

Finally, (5.2.11) and (5.2.12) imply that ∆ ≤ εÕk(k−2). Taking ε→ 0 completes the proof.

Proof of Lemma 5.2.1. The first assertion is immediate from Lemma 5.2.2. The second claim follows

from Lemma 5.2.6, and the third one from Lemma 5.2.7.

5.3. The cluster size

The objective in this section is to prove Proposition 5.1.5. For technical reasons, we consider a variant

of the “planted model” G(n, p′,σ) in which the number of vertices is not exactly n but n − o(n).

This is necessary because we are going to perform inductive arguments in which small parts of the

random graph get removed. Thus, let η = η(n) = o(n) be a non-negative integer sequence. Throug-

hout the section, we write n′ = n − η(n). Moreover, we let G = G(n′, p′,σ), where p′ = d′/n′

with d′ = kd/(k − 1) as in (5.1.1). By a slight abuse of notation we do not distinguish between σ

and its restriction to the vertices in [n′]. Unless specified otherwise, all statements in this section are

understood to hold for any sequence η = o(n).

5.3.1. Preliminaries

Assume that G = (V,E), let σ be a k-colouring of G, let v ∈ V and let ω ≥ 1 be an integer. We write

∂ωG(v) for the subgraph of G consisting of all vertices at distance at most ω from v. Moreover, |∂ωG(v)|
signifies the number of vertices of ∂ωG(v). Where the reference to G is clear from the context, we omit

it. We begin with the following standard fact about the random graphG.

Lemma 5.3.1. Let ω = 10dln ln lnne.

1. With probability 1− exp(−Ω(ln2 n)) the random graph G is such that |∂ωG(v)| ≤ n0.01 for all

vertices v.

2. W.h.p. all but o(n) vertices v ofG are such that ∂ωG(v) is acyclic.

In addition, we need to know that the “local structure” of the random graph G endowed with the

colouring σ enjoys the following concentration property.

Lemma 5.3.2. Let S be a set of triples (G0, σ0, v0) such that G0 is a graph, σ0 is a k-colouring of

G0, and v0 is a vertex of G0. Let ω = 10dln ln lnne and define a random variable Sv = Sv(G,σ) by

letting

Sv = 1(∂ωG(v),σ|∂ω
G

(v),v)∈S .
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5. Condensation phase transition in random graph k-colouring

Further, let S =
∑

v Sv. Then S = E[S] + o(n) w.h.p..

The proof of Lemma 5.3.2 is based on standard arguments. The full details can be found in Subsection

5.3.4.

5.3.2. Warning Propagation

The goal in this section is to prove Proposition 5.1.5, i.e. to determine the cluster size |C(G,σ)|. A

key step in this endeavor will be to determine the sets

`(v) = {τ(v) : τ ∈ C(G,σ)}

of colours that vertex v may take under a k-colouring in C(G,σ). In particular, we called a vertex

frozen in C(G,σ) if `(v) = {σ(v)}. To establish Proposition 5.1.5, we will first show that the sets

`(v) can be determined by means of a process called Warning Propagation, which hails from the

physics literature (see [MM09] and the references therein). More precisely, we will see that Warning

Propagation yields colour sets L(v) such that L(v) = `(v) for all but o(n) vertices w.h.p.. Crucially,

by tracing Warning Propagation we will be able to determine the number of vertices of any type (i, `).

Moreover, we will show that the cluster C(σ) essentially consists of all k-colourings τ ofG such that

τ(v) ∈ L(v) for all v. In addition, the number of such colourings τ can be calculated by considering

a certain reduced graph GWP(σ). This graphs turns out to be a forest (possibly after the removal of

o(n) vertices), and the final step of the proof consists in arguing that, informally speaking, w.h.p. the

statistics of the trees in this forest are given by the distribution of the multi-type branching process

from Section 5.1.

Let us begin by describing Warning Propagation on a general graph G endowed with a k-colouring

σ. For each edge e = {v, w} of G and any colour i, we define a sequence (µv→w(i, t|G, σ))t≥1 such

that µv→w(i, t|G, σ) ∈ {0, 1} for all i, v, w. The idea is that µv→w(i, t|G, σ) = 1 indicates that in the

tth step of the process vertex v “warns” vertex w that the other neighbours u 6= w of v force v to take

colour i. We initialize this process by having each vertex v emit a warning about its original colour

σ(v) at t = 0, i.e.

µv→w(i, 0|G, σ) = 1i=σ(v) (5.3.1)

for all edges {v, w} and all i ∈ [k]. Letting ∂v = ∂G(v) denote the neighbourhood of v inG, for t ≥ 0

we let

µv→w(i, t+ 1|G, σ) =
∏

j∈[k]\{i}

max {µu→v(j, t|G, σ) : u ∈ ∂v \ {w}} . (5.3.2)

That is, v warns w about colour i in step t + 1 if and only if at step t it received warnings from its

64



5.3. The cluster size

other neighbours u (not including w) about all colours j 6= i. Further, for a vertex v and t ≥ 0 we let

L(v, t|G, σ) =

{
j ∈ [k] : max

u∈∂v
µu→v(j, t|G, σ) = 0

}
and

L(v|G, σ) =
∞⋃
t=0

L(v, t|G, σ).

Thus, L(v, t|G, σ) is the set of colours that vertex v receives no warnings about at step t. To unclutter

the notation, we omit the reference to G, σ where it is apparent from the context.

To understand the semantics of this process, observe that by construction the list L(v, t|G, σ) only de-

pends on the vertices at distance at most t+1 from v. Further, if we assume that the tth neighbourhood

∂tv in G is a tree, then L(v, t|G, σ) is precisely the set of colours that v may take in k-colourings τ of

G such that τ(w) = σ(w) for all vertices w at distance greater than t from v, as can be verified by a

straightforward induction on t. As we will see, this observation together with the fact that the random

graphG contains only few short cycles (cf. Lemma 5.3.1) allows us to show that for most vertices v we

have `(v) = L(v|G,σ) w.h.p.. In effect, the number of k-colourings τ of G with τ(v) ∈ L(v|G,σ)

for all v will emerge to be a very good approximation to the cluster size |C(G,σ)|.

Counting these k-colourings is greatly facilitated by the following observation. For a graphG together

with a k-colouring σ, let us denote by GWP(t|σ) the graph obtained from G by removing all edges

{v, w} such that either |L(v, t)| < 2, |L(w, t)| < 2 or L(v, t) ∩ L(w, t) = ∅. Furthermore, obtain

GWP(σ) from G by removing all edges {v, w} such that L(v) ∩ L(w) = ∅. We view GWP(t|σ) and

GWP(σ) as decorated graphs in which each vertex v is endowed with the colour list L(v, t) and L(v)

respectively. As before, we let Z denote the number of legal colourings of a decorated graph. Thus,

Z(GWP(σ)) is the number of colourings τ of GWP(σ) such that τ(v) ∈ L(v|G, σ) for all v. The key

statement in this section is

Proposition 5.3.3. W.h.p. we have lnZ(GWP(σ)) = ln |C(G,σ)|+ o(n).

We begin by proving that Z(GWP(σ)) is a lower bound on the cluster size w.h.p.. To this end, let us

highlight a few elementary facts.

Fact 5.3.4. The following statements hold for any G, σ.

1. For all v, w, i and all t ≥ 0, we have µv→w(i, t+ 1) ≤ µv→w(i, t).

2. We have σ(v) ∈ L(v, t) for all v, t. Moreover, if µv→w(i, t) = 1 for some w ∈ ∂v, then

i = σ(v).

3. There is a number t∗ such that for any t > t∗ we have µv→w(i, t) = µv→w(i, t∗) for all v, w, i.
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Proof. We prove (1) and (2) by induction on t. In the case t = 0 both statements are immediate

from (5.3.1). Now, assume that t ≥ 1 and µv→w(i, t) = 0. Then there is a colour j 6= i and a

neighbour u 6= w of v such that µu→v(j, t − 1) = 0. By induction, we have µu→v(j, t) = 0. Hence,

(5.3.2) implies that µv→w(i, t + 1) = 0. Furthermore, if µv→w(i, t + 1) = 1 for some i 6= σ(v),

then v has a neighbour u 6= w such that µu→v(σ(v), t) = 1. But since σ(u) 6= σ(v) because σ is a

k-colouring, this contradicts the induction hypothesis. Thus, we have established (1) and (2). Finally,

(3) is immediate from (1).

Fact 5.3.5. If for some t ≥ 0, τ is a colouring of GWP(t|σ) such that τ(v) ∈ L(v, t) for all v, then

τ is a k-colouring of G. Moreover, if τ is a k-colouring of GWP(σ) such that τ(v) ∈ L(v) for all v,

then τ is a k-colouring of G.

Proof. Let {v, w} be an edge ofG. Clearly, if L(v, t)∩L(w, t) = ∅, then τ(v) 6= τ(w). Thus, assume

that L(v, t) ∩ L(w, t) 6= ∅. Then |L(v, t)| > 1. Indeed, if |L(v, t)| = 1, then by Fact 5.3.4 we have

L(v, t) = {σ(v)} and thus σ(v) 6∈ L(w, t) by (5.3.2). Similarly, |L(w, t)| > 1. Hence, the edge

{v, w} is present in GWP(t|σ), and thus τ(v) 6= τ(w). This implies the first assertion. The second

assertion follows from the first assertion and Fact 5.3.4, which shows that there is a finite t such that

L(v, t) = L(v) for all v.

To turn Fact 5.3.5 into a lower bound on the cluster size, we are going to argue that in G there are a

lot of frozen vertices w.h.p.. In fact, w.h.p. the number of such frozen vertices will turn out to be so

large that all colourings τ as in Fact 5.3.5 belong to the cluster C(G,σ).

To exhibit frozen vertices, we consider an appropriate notion of a “core”. More precisely, assume

that σ is a k-colouring of a graph G. We denote by core(G, σ) the largest set V ′ of vertices with the

following property.

If v ∈ V ′ and j 6= σ(v), then |V ′ ∩ σ−1(j) ∩ ∂v| ≥ 100.

In words, any vertex in the core has at least 100 neighbours of any colour j 6= σ(v) that also belong

to the core. The core is well-defined: If V ′, V ′′ are two sets with this property, then so is V ′ ∪V ′′. The

following is immediate from the definition of the core.

Fact 5.3.6. Assume that v ∈ core(G, σ). Then L(v, t) = {σ(v)} for all t.

The core has become a standard tool in the theory of random structures in general and in random graph

colouring in particular. Indeed, standard arguments show that w.h.p. G has a very large core. More

precisely, we have
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Proposition 5.3.7 ([COV13]). W.h.p.G,σ are such that the following two properties hold for all sets

S ⊂ [n′] of size |S| ≤
√
n.

1. LetG′ be the subgraph obtained fromG by removing the vertices in S. Then

|core(G′,σ) ∩ σ−1(i)| ≥ n

k
(1− k−2/3) for all i ∈ [k]. (5.3.3)

2. If v ∈ core(G′,σ), then σ(v) = τ(v) for all τ ∈ C(G,σ).

Corollary 5.3.8. W.h.p. we have |C(G,σ)| ≥ Z(GWP(σ)).

Proof. By Proposition 5.3.7 we may assume that (5.3.3) is true for S = ∅. Let τ be a k-colouring

of GWP(σ) such that τ(v) ∈ L(v) for all v. Then Fact 5.3.5 implies that τ is a k-colouring of G.

Furthermore, Fact 5.3.6 implies that τ(v) = σ(v) for all v ∈ core(G,σ). Hence, (5.3.3) entails that

ρii(σ, τ) ≥ 1− k−2/3 > 0.51 for all i ∈ [k]. Thus, τ ∈ C(G,σ).

While Z(GWP(σ)) provides a lower bound on the cluster size, the two numbers do not generally

coincide. This is because for a few vertices v, the list L(v) produced by Warning Propagation may be

a proper subset of `(v). For instance, assume that the vertices v1, v2, v3, v4 induce a cycle of length

four such that σ(v1) = σ(v3) = 1 and σ(v2) = σ(v4) = 2, while v1, v2, v3, v4 are not adjacent to any

further vertices of colour 1 or 2. Moreover, suppose that for each colour j ∈ {3, 4, . . . , k}, each of

v1, . . . , v4 has at least one neighbour of colour j that belongs to the core. Then Warning Propagation

yields L(v1) = L(v3) = {1} and L(v2) = L(v4) = {2}. However, v1, v2, v3, v4 are actually unfrozen

as we might as well give colour 2 to v1, v3 and colour 1 to v2, v4. (A bipartite sub-structure of this

kind is known as a “Kempe chain”, cf. [Mol12].)

The reason for this problem is, roughly speaking, that we launched Warning Propagation from the

initialization (5.3.1), which is the obvious choice but may be too restrictive. Thus, to obtain an upper

bound on the cluster size we will start Warning Propagation from a different initialization. Ideally, this

starting point should be such that only vertices that are frozen emit warnings. By Proposition 5.3.7, the

vertices in the core meet this condition w.h.p.. Thus, we are going to compare the above installment

of Warning Propagation with the result of starting Warning Propagation from an initialization where

only the vertices in the core send out warnings.

Thus, given a graph G together with a k-colouring σ, we let

µ′v→w(i, 0|G, σ) = 1i=σ(v) · 1v∈core(G,σ),

µ′v→w(i, t+ 1|G, σ) =
∏

j∈[k]\{i}

max
{
µ′u→v(j, t|G, σ) : u ∈ ∂v \ {w}

}
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for all edges {v, w} of G, all i ∈ [k] and all t ≥ 0. Furthermore, let

L′(v, t|G, σ) =

{
j ∈ [k] : max

u∈∂v
µ′u→v(j, t|G, σ) = 0

}
and

L′(v|G, σ) =
∞⋂
t=0

L′(v, t|G, σ).

As before, we drop G, σ from the notation where possible.

Similarly as before, we can use the lists L′(v, t) to construct a decorated reduced graph. Indeed,

let G′WP(t|σ) be the graph obtained from G by removing all edges {v, w} such that |L′(v, t)| < 2

or |L′(w, t)| < 2 or L′(v, t) ∩ L′(w, t) = ∅. We decorate each vertex in this graph with the list

L′(v, t). In addition, let G′WP(σ) be the graph obtain from G by removing all edges {v, w} such that

L′(v) ∩ L′(w) = ∅ endowed with the lists L′(v).

Fact 5.3.9. The following statements hold for all G, σ.

1. For all v, we have σ(v) ∈ L′(v). Moreover, if there are j, t, w such that µ′v→w(j, t) = 1, then

j = σ(v).

2. If v ∈ core(G, σ), then L′(v, t) = {σ(v)} for all t.

3. We have µ′v→w(i, t+ 1) ≥ µ′v→w(i, t).

4. There is a number t∗ such that for any t > t∗ we have µ′v→w(i, t) = µ′v→w(i, t∗) for all v, w, i.

Proof. This follows by induction on t (cf. the proof of Fact 5.3.4).

Lemma 5.3.10. W.h.p. for all vertices v we have `(v) = {τ(v) : τ ∈ C(G,σ)} ⊂ L′(v|G,σ).

Proof. Proposition 5.3.7 shows that w.h.p.

τ(v) = σ(v) for all v ∈ core(G,σ). (5.3.4)

Assuming (5.3.4), we are going to prove by induction on t that

`(v) ⊂ L′(v, t) for all v ∈ [n] , t ≥ 0. (5.3.5)

By construction, for any vertex v and any colour j we have j ∈ L′(v, 0), unless v has a neighbour

w ∈ core(G,σ) such that σ(w) = j. Moreover, if such a neighbour w exists, (5.3.4) implies that

w.h.p. τ(w) = j and thus τ(v) 6= j for all τ ∈ C(σ). Hence, (5.3.5) is true for t = 0.

Now, assume that (5.3.5) holds for t. Suppose that j 6∈ L′(v, t+1). Then v has a neighbour u such that

µ′u→v(j, t+1) = 1. Therefore, for each l 6= j there iswl 6= v such that µ′wl→u(l, t) = 1. Consequently,
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L′(u, t) = {j}. Hence, by induction we have τ(u) = j and thus τ(v) 6= j for all τ ∈ C(G,σ).

As an immediate consequence of Lemma 5.3.10, we obtain

Corollary 5.3.11. W.h.p. we have |C(G,σ)| ≤ Z(G′WP(σ)).

Combining Corollary 5.3.8 and Corollary 5.3.11, we see that w.h.p.

Z(GWP(σ)) ≤ |C(G,σ)| ≤ Z(G′WP(σ)).

To complete the proof of Proposition 5.3.3, we are going to argue that w.h.p. lnZ(G′WP(σ)) =

lnZ(GWP(σ)) + o(n).

To this end, we need one more general construction. Let G be a graph and let σ be a k-colouring of G.

Let t ≥ 0 be an integer. For each vertex v of G, we define a rooted, decorated graph T (v, t|G, σ) as

follows.

• The graph underlying T (v, t|G, σ) is the connected component of v in GWP(v, t|G, σ).

• The root of T (v, t|G, σ) is v.

• The type of each vertex w of T (v, t|G, σ) is (σ(w), L(w, t|G, σ)).

Analogously we obtain rooted, decorated graphs T (v|G, σ) from GWP(σ) as well as T ′(v, t|G, σ)

from G′WP(t|σ) and T ′(v|G, σ) from G′WP(σ).

Of course, the total number Z(GWP(σ)) of legal colourings of GWP(σ) is just the product of the

number of legal colourings of all the connected components of GWP(σ). The following lemma shows

that w.h.p. for all but o(n) vertices the components inGWP(σ) andG′WP(σ) coincide.

Lemma 5.3.12. W.h.p.G,σ is such that T (v|G,σ) = T ′(v|G,σ) for all but o(n) vertices v.

The main technical step towards the proof of Lemma 5.3.12 is to show that w.h.p. most of the com-

ponents T ′(v|G,σ) are “small” by comparison to n. Technically, it is easier to establish this state-

ment for T ′(v, 0|G,σ), which contains T ′(v|G,σ) as a subgraph due to the monotonicity property

Fact 5.3.9, (3).

Lemma 5.3.13. For any ε > 0, there is a number ω = ω(ε) > 0 such that w.h.p. for at least (1− ε)n
vertices v the component T ′(v, 0|G,σ) contains no more than ω vertices.

The proof of Lemma 5.3.13, which we defer to Subsection 5.3.4, is a bit technical but based on known

arguments. Lemma 5.3.1 shows that w.h.p. for most vertices v such that T ′(v, 0|G,σ) contains at
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most, say, ω = dln ln lnne vertices, T ′(v, 0|G,σ) is a tree. In this case, the following observation

applies.

Lemma 5.3.14. Let G be a graph and let σ be a k-colouring of G. Assume that T ′(v, 0|G, σ) is a tree

on ω vertices for some integer ω ≥ 1. Then for any vertex y in T ′(v, 0|G, σ) we have L(y|G, σ) =

L′(y|G, σ). Moreover, if T ′(v, 0|G, σ) has ω vertices, then L(y|G, σ) = L(y, ω + 1|G, σ) and

L′(y|G, σ) = L′(y, ω + 1|G, σ).

Proof. To get started, let us recall some basic properties of the warnings:

P1 If for an edge {x, y} in G we have µx→y(i, 0) = 1 or µ′x→y(i, 0) = 1 then i = σ(x).

P2 For each vertex v ∈ G, we have σ(v) ∈ L(v, t) and σ(v) ∈ L′(v, t) for all t ≥ 0.

P3 For all edges {x, y} in G, we have µx→y(i, t) ≥ µ′x→y(i, t) for all i ∈ [k].

As a first step we are going to show that for each edge {x, y} in T ′(v, 0|G, σ) we have

µx→y(i, t) = µ′x→y(i, t) = 0 for all t > ω and all i ∈ [k]. (5.3.6)

To do so, pick and fix an arbitrary vertex y in T ′(v, 0). We define the y-height hy(x) of a vertex x 6= y

in T ′(v, 0) as follows. Since T ′(v, 0) is a tree, there is a unique path from x to y in T ′(v, 0). Let

Py(x) be the neighbour of x on this path. Then hy(x) is the maximum distance from x to a leaf of

T ′(v, 0) that belongs to the component of x in the subgraph of T ′(v, 0) obtained by removing the edge

{x, Py(x)}.

Let U be the set of all neighbours u of x that do not belong to T ′(v, 0), and let U ′ be the set of all

neighbours u′ 6= Py(x) of x in T ′(v, 0). We compute

µ′x→Py(x)(i, 1) =
∏

j∈[k]\{i}

max
{
µ′u→x(j, 0) : u ∈ U

}
= 0 for all i ∈ [k]

where we omitted the vertices in U ′ since by construction of core(G, σ) we conclude that for all

u′ ∈ U ′ we get µ′u′→x(i, 0) = 0 for all i ∈ [k]. For each j ∈ [k] \ L′(x, 0), there exists a neighbour

u ∈ U such that σ(u) = j and µ′u→x(i, 0) = 1i=j and let UC be the set of all such neighbours. By

Fact 5.3.9 and P3 for all u ∈ UC , we find

µu→x(i, t) = µ′u→x(i, t) = 1i=σ(u) for all i ∈ [k] for all t ≥ 0. (5.3.7)

By construction of T ′(v, 0), for all u ∈ U the lists L′(x, 0) and L′(u, 0) are disjoint and by P1, P2
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and (5.3.7), we obtain

For any u ∈ U \ UC we find σ(u) ∈ L′(u, 0) ⊂ [k] \ L′(x, 0) and

thus there exists a u′ ∈ UC such that µu→x(i, 0) = µu′→x(i, 0) =

1i=σ(u) and in particular µu→x(i, t) ≤ µu′→x(i, 0) = 1i=σ(u) for

all t ≥ 0.

(5.3.8)

We conclude by (5.3.8) that

µ′x→Py(x)(i, 1) =
∏

j∈[k]\{i}

max
{
µ′u→x(j, 0) : u ∈ UC

}
= 0 for all i ∈ [k]. (5.3.9)

To prove (5.3.6), we show by induction on hy(x) that for all i ∈ [k]

µx→Py(x)(i, t) = µ′x→Py(x)(i, t) = 0 for all t ≥ hy(x) + 1. (5.3.10)

To get started, suppose that hy(x) = 0. Then x is a leaf of T ′(v, 0). We compute

µx→Py(x)(i, 1) =
∏

j∈[k]\{i}

max {µu→x(j, 0) : u ∈ U}

=
∏

j∈[k]\{i}

max {µu→x(j, 0) : u ∈ UC} [by (5.3.8)]

=
∏

j∈[k]\{i}

max
{
µ′u→x(j, 0) : u ∈ UC

}
[by (5.3.7)]

= µ′x→Py(x)(i, 1) = 0 [by (5.3.9)]

for all i ∈ [k]. By Fact 5.3.4 and P3, we conclude that µx→Py(x)(i, t) = µ′x→Py(x)(i, t) = 0 for all

t ≥ 1.

Now, assume that hy(x) > 0. Then all u′ ∈ U ′ satisfy hy(u′) < hy(x). Moreover, Py(u′) = x.

Therefore, by induction

µu′→x(i, t) = µu′→x(i, hy(x)) = 0 = µ′u′→x(i, hy(x)) = µ′u′→x(i, t) (5.3.11)

for all u′ ∈ U ′, i ∈ [k], t > hy(x).
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We compute

µx→Py(x)(i, t) =
∏

j∈[k]\{i}

max
{
µu→x(j, t− 1) : u ∈ U ∪ U ′

}
=

∏
j∈[k]\{i}

max {µu→x(j, 0) : u ∈ UC} [by (5.3.8) and (5.3.11)]

=
∏

j∈[k]\{i}

max
{
µ′u→x(j, 0) : u ∈ UC

}
[by (5.3.7)]

= µ′x→Py(x)(i, 1) = 0for all i ∈ [k], t ≥ hy(x) + 1.

Again by Fact 5.3.4 and P3, we conclude that µx→Py(x)(i, t) = µ′x→Py(x)(i, t) = 0 for all i ∈ [k] and

t ≥ hy(x) + 1.

Finally, we observe that hy(x) ≤ ω = |T ′(v, 0)| for all x. Hence, applying (5.3.10) to the neighbours

x of y in T ′(v, 0), we obtain µx→y(j, t) = µx→y(i, ω + 1) = µ′x→y(i, ω + 1) = 0 = µ′x→y(i, t)

for all i ∈ [k] and all t > ω. Together with (5.3.7) which states that for any x ∈ T ′(v, 0) and

for any j ∈ [k] \ L′(x, 0) there exists a vertex u /∈ T ′(v, 0) that is adjacent to x in G such that

µu→x(j, t) = µ′u→x(j, t) = 1 for all t ≥ 0 and with (5.3.8) which states that for any j ∈ L′(x, 0)

there exists no vertex u /∈ T ′(v, 0) that is adjacent to x in G such that µu→x(j, t) = µ′u→x(j, t) = 1

for any t ≥ 0 we conclude that L(x) = L(x, ω + 1) = L′(x, ω + 1) = L′(x) as desired.

Proof of Lemma 5.3.12. Lemma 5.3.13 implies that for all but o(n) vertices v we have |T ′(v, 0)| ≤
ln ln lnn w.h.p.. Together with Lemma 5.3.1, this implies that w.h.p. T ′(v, 0) is a tree for all but o(n)

vertices v. Thus, assume in the following that v is such that T ′(v, 0) is a tree.

It is immediate from Facts 5.3.4, 5.3.6 and 5.3.9 that L(w) ⊂ L′(w) ⊂ L′(w, 0) for all vertices w.

Therefore,GWP(σ) ⊂ G′WP(σ) ⊂ G′WP(0|σ) and thus

T (v) ⊂ T ′(v) ⊂ T ′(v, 0). (5.3.12)

Conversely, Lemma 5.3.14 shows that L(x) = L′(x) for all vertices x in T ′(v, 0). Together with

equation (5.3.12), this implies that T (v) = T ′(v).

Proof of Proposition 5.3.3. By Corollary 5.3.8 and Corollary 5.3.11, w.h.p. we have Z(GWP(σ)) ≤
|C(G,σ)| ≤ Z(G′WP(σ)). Thus, it suffices to show that lnZ(GWP(σ)) = lnZ(G′WP(σ)) + o(n)

w.h.p.. Indeed, because the various connected components ofGWP(σ) can be coloured independently,
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we find that

lnZ(GWP(σ)) =
∑
v∈[n′]

lnZ(T (v|G,σ))

|T (v|G,σ)|
,

lnZ(G′WP(σ)) =
∑
v∈[n′]

lnZ(T ′(v|G,σ))

|T ′(v|G,σ)|
.

(5.3.13)

Clearly, for any vertex v we have lnZ(T (v|G,σ))
|T (v|G,σ)| , lnZ(T ′(v|G,σ))

|T ′(v|G,σ)| ≤ ln k. Hence, Lemma 5.3.12 shows

that w.h.p.

∑
v∈[n′]

lnZ(T (v|G,σ))

|T (v|G,σ)|
∼
∑
v∈[n′]

lnZ(T ′(v|G,σ))

|T ′(v|G,σ)|
. (5.3.14)

Finally, the assertion follows from (5.3.13) and (5.3.14).

5.3.3. Counting legal colourings

Proposition 5.3.3 reduces the proof of Proposition 5.1.5 to the problem of counting the legal colou-

rings of the reduced graphGWP(σ). Lemma 5.3.13 implies that w.h.p.GWP(σ) is a forest consisting

mostly of trees of size, say at most ln ln lnn. In this section we are going to show that w.h.p. the “sta-

tistics” of these trees follows the distribution of the random tree generated by the branching process

from Section 5.1. To formalise this, let T = T d,k,q∗ with q∗ from (5.1.5) denote the random isomor-

phism class of rooted, decorated trees produced by the process GW(d, k, q∗). Moreover, for a rooted,

decorated tree T let HT be the number of vertices v in GWP(σ) such that T (v|G,σ) ∼= T . In this

section we prove:

Proposition 5.3.15. If T is such that P[T ∈ T ] > 0, then ( 1
nHT )n≥1 converges to P [T ∈ T ] in

probability.

We begin by showing that the fixed point problem q∗ = Fd,k(q
∗) with Fd,k from (5.2.1) provides a

good approximation to the number of vertices v such that L(v|G,σ) = {i} for any i. To this end, we

let

q0 = (1/k, . . . , 1/k) and qt = Fd,k(q
t−1) for t ≥ 1.

In addition, let Qi(t|G,σ) be the set of vertices v ofG such that L(v, t|G,σ) = {i}.

Lemma 5.3.16. For any i ∈ [k] and any fixed t > 0, we have 1
n |Qi(t|G,σ)| = qti + o(1) w.h.p..

Proof. We proceed by induction on t. To get started, we set Qi(−1|G,σ) = σ−1(i) and q−1
i = 1/k.

Then w.h.p. 1
n |Qi(−1|G,σ)| = q−1

i + o(1).
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Now, assuming that t ≥ 0 and that the assertion holds for t− 1, we are going to argue that

E[|Qi(t|G,σ)|/n] = qti + o(1). (5.3.15)

Indeed, let v = n′ be the last vertex of the random graph, and let us condition on the event that

σ(v) = i. By symmetry and the linearity of expectation, it suffices to show that

P[L(v, t|G,σ) = {i} |σ(v) = i] = kqti + o(1). (5.3.16)

To show (5.3.16), let G̃ signify the subgraph obtained from G by removing v. Moreover, let Qt−1(ε)

be the event that

|n−1|Qj(t− 1|G̃,σ)| − qt−1
j | < ε for all j ∈ [k].

Since G̃ is nothing but a random graph G(n′−1, p′,σ) with one less vertex and as n′−1 = n−o(n),

by induction we have

P[Qt−1(ε)] = 1− o(1) for any ε > 0. (5.3.17)

LetA(i) be the event that for each j ∈ [k]\{i} there is w ∈ ∂G(v) such that L(w, t−1|G̃,σ) = {j}.
Given σ(v) = i, we can obtain G from G̃ by connecting v with each vertex w ∈ [n′ − 1] such that

σ(w) 6= i with probability p′ independently. Therefore,

P
[
A(i)|G̃,σ(v) = i

]
=
∏
j 6=i

1− (1− p′)|Qj(t−1|G̃,σ)|

∼
∏
j 6=i

1− exp(−p′|Qj(t− 1|G̃,σ)|)

=
∏
j 6=i

1− exp

[
− kd

k − 1
· n−1|Qj(t− 1|G̃,σ)|

]
.

Furthermore, for any fixed δ > 0 there is an (n-independent) ε > 0 such that given that Qt−1(ε)

occurs, we have ∣∣∣∣∣∣qti −
∏
j 6=i

1− exp

(
− kd

k − 1
· n−1|Qj(t− 1|G̃,σ)|

)∣∣∣∣∣∣ < δ. (5.3.18)

Combining (5.3.17) and (5.3.18), we see that for any fixed δ > 0 we have

∣∣P [A(i)|σ(v) = i]− kqti
∣∣ < δ + o(1). (5.3.19)

If v is acyclic and σ(v) = i as well as A(i) occurs, then L(v, t|G,σ) = {i}. Therefore, (5.3.16)

follows from (5.3.19) and Lemma 5.3.1.

Finally, the random variable |Qti(G,σ)| satisfies the assumptions of Lemma 5.3.2. Indeed, the event

v ∈ Qi(t|G,σ) is determined solely by the sub-graph of G encompassing those vertices at distance
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at most t from v. Thus, (5.3.15) and Lemma 5.3.2 imply that 1
n |Qi(t|G,σ)| = qti + o(1) w.h.p., as

desired.

As a next step, we consider the statistics of the trees T (v, ω|G,σ) with ω ≥ 0 large but fixed as

n→∞. Thus, for an isomorphism class T of rooted, decorated graphs we let HT,ω be the number of

vertices v inGWP(ω|σ) such that T (v, ω|G,σ) ∈ T .

Lemma 5.3.17. Assume that T is an isomorphism class of rooted decorated trees with P [T = T ] > 0.

Then for any ε > 0 there is ω > 0 such that

lim
n→∞

P
[∣∣∣∣P [T = T ]− 1

n
HT,ω

∣∣∣∣ > ε

]
= 0.

Proof. We observe that P [T = T ] is a number that depends on T but not on n. Furthermore, if T∗ is

the isomorphism class of a rooted sub-tree of T , then P [T = T∗] ≥ P [T = T ].

The proof is by induction on the height of the trees in T . In the case that T consists of a single vertex

v of type (i, {i}) for some i ∈ [k], the assertion readily follows from Lemma 5.3.16.

Let (i0, `0) be the type of the root and v = n′. To this end, consider the graph G̃ obtained by removing

v. By Lemma 5.3.16 the number of vertices w of G̃ with L(w,ω|G̃,σ) = {j} is n(qj + oω(1)) w.h.p.

for all j, where oω(1) signifies a term that tends to 0 in the limit of large ω. Let A be the event that

this is indeed the case. Moreover, let B be the following event:

• σ(v) = i0.

• for each colour j 6∈ `0, vertex v has a neighbour w in G̃ such that L(w,ω|G̃,σ) = {j}.
• v does not have a neighbour w with L(w,ω|G̃,σ) = {h} for any h ∈ `0.

Then

P [B|A] =
1

k

∏
j 6∈`0

P
[
Bin(n(q∗j + oω(1)), p′) > 0

]
·
∏

j∈`0\{i0}

P
[
Bin(n(q∗j + oω(1)), p′) = 0

]
∼ 1

k

∏
j 6∈`0

P
[
Po(np′(q∗j + oω(1))) > 0

]
·
∏

j∈`0\{i0}

P
[
Po(np′(q∗j + oω(1))) = 0

]
= q∗i0,`0 + oω(1).

Since P [A] ∼ 1, we find

P [B] = q∗i0,`0 + oω(1). (5.3.20)

Let Tv0 be the unique tree of the isomorphism class of rooted decorated trees consisting only of
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5. Condensation phase transition in random graph k-colouring

the root v0. Let Yv be the event that v has no neighbour of any type (i′, `′) ∈ Ti0,`0 . Therefore let

q0
∅ =

∑
(i′,`′)∈Ti,` qi,`. We find

P [Yv|B] = (1− p′)n(q∅+oω(1)) = oω(1) + exp(−np′q∅)

= oω(1) + exp(−d′q∅) = oω(1) + P [Tv0 ∈ T i0,`0 ] . (5.3.21)

Combining (5.3.20) and (5.3.21), we find that

P [B ∩ Yv] = P [Tv0 ∈ T ] + oω(1).

As for the inductive step, pick and fix one representative T0 ∈ T . If we remove the root v0 from T0,

then we obtain a decorated forest T0− v0. Each tree T ′ in this forest contains precisely one neighbour

of the root of T0, which we designate as the root of T ′. Let V(T ) be the set of all isomorphism classes

of rooted decorated trees T ′ obtained in this way. Furthermore, for each T̂ ∈ V(T ) let y(T̂ ) be the

number of components of the forest T0 − v0 that belong to the isomorphism class T̂ .

We are going to show that for v = n′ and for ω = ω(T, ε) sufficiently large we have

|P [T (v, ω|G,σ) ∼= T0]− P [T = T ] | < ε.

Furthermore, for each tree T ′ ∈ V(T ) we let Q̃(T ′) be the set of all vertices w of G̃ such that

T (w,ω|G̃,σ) ∼= T ′. In addition, let Q̃∅ be the set of all vertices w of G̃ that satisfy none of the

following conditions:

• w ∈
⋃
T ′∈V(T )Q(T ′).

• ϑ(w) /∈ Ti0,`0 .

• L(w,ω|G̃,σ) = {j} for some j ∈ [k].

Further, let q(T ′) = P [T = T ′] and let

q∅(T ) = q0
∅ −

∑
T ′∈V(T )

q(T ′).

Let Q be the event that |Q̃(T ′)|/n = q(T ′) + oω(1) for all T ′ ∈ V(T ) and that |Q̃∅|/n = q∅(T ) +

oω(1). Then

P [Q] ∼ 1

by induction. Letting again ∂v = ∂G(v) and Y be the event that for each T ′ ∈ V(T ) we have
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5.3. The cluster size

y(T ′) = |∂v ∩ Q̃(T ′)| and ∂v ∩ Q̃∅ = ∅. Then

P [Y|B] ∼ P [Y|B,Q]

= (1− p′)n(q∅+oω(1))
∏

T ′∈V(T )

P
[
Bin(n(q(T ′) + oω(1)), p′) = y(T ′)

]
= oω(1) + exp(−np′q∅)

∏
T ′∈V(T )

P
[
Po(np′q(T ′)) = y(T ′)

]
= oω(1) + exp(−d′q∅)

∏
T ′∈V(T )

P
[
Po(d′q(T ′)) = y(T ′)

]
= oω(1) + P [T0 ∈ T i0,`0 ] . (5.3.22)

The last equality sign follows from the fact that in tree T i0,`0 , the root has a Poisson number of children

of possible “shape” T ′. Combining (5.3.20) and (5.3.22), we find that

P [B ∩ Y] = P [T0 ∈ T ] + oω(1). (5.3.23)

LetR be the event that ∂ωG(v) is acyclic. By Lemma 5.3.1 we have P [R] ∼ 1. Furthermore, givenR,

we have T (v, ω|G,σ) ∈ T if and only if the event B ∩ Y occurs. Thus, (5.3.23) implies that

P [T (v, ω|G,σ) ∈ T ] = P [B ∩ Y] + o(1) = P [T = T ] + oω(1). (5.3.24)

Moreover, (5.3.24) shows that

1

n
E[HT,ω] = P [T = T ] + oω(1). (5.3.25)

Finally, because the event T (v, ω|G,σ) ∈ T is governed by the vertices at distance at most |T | + ω

from v, Lemma 5.3.2 implies together with (5.3.25) that for any ε > 0 there is ω such that

P [|HT,ω − P [T = T ] | < εn] = 1− o(1).

This completes the induction.

Lemma 5.3.18. For any ε > 0, there is ω > 0 such that w.h.p. all but εn vertices v satisfy T (v|G,σ) =

T (v, ω|G,σ).

Proof. Lemma 5.3.14 implies that T (v|G,σ) = T (v, ω + 2|G,σ), unless T ′(v, 0|G,σ) contains at

least ω vertices. Furthermore, Lemma 5.3.13 implies that for any fixed ε > 0 there is ω = ω(ε) such

that this holds for no more than εn vertices w.h.p..
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Finally, Proposition 5.3.15 is immediate from Lemmas 5.3.17 and 5.3.18 and Proposition 5.1.5 follows

from Propositions 5.3.3 and 5.3.15.

5.3.4. Remaining proofs

Proof of Lemma 5.3.13.

Set θ = dln lnne. Moreover, for a set S ⊂ V let CS denote the σ-core of the subgraph ofG obtained

by removing the vertices in S. Further, for any vertex w ∈ S let Λ(w, S) be the set of colours j ∈ [k]

such that in G vertex w does not have a neighbour in σ−1(j) ∩ CS . In addition, let us call S wobbly

inG if the following conditions are satisfied.

W1 |S| = θ.

W2 We have |Λ(w, S)| ≥ 2 for all w ∈ S.

W3 The subgraph ofG induced on S has a spanning tree T such that

Λ(u, S) ∩ Λ(w, S) 6= ∅ for each edge {u,w} of T .

Assume that T ′(v, 0|G,σ) contains at least θ vertices. If T = (S,ET ) is a sub-tree on θ vertices

contained in T ′(v, 0|G,σ), then S is wobbly. Therefore, it suffices to prove that the total number W

of vertices that are contained in a wobbly set S satisfies

E[W ] ≤
∑

S⊂V :|S|=θ

θ · P [S is wobbly] = o(n). (5.3.26)

To prove (5.3.26), we need a bit of notation. For a set S, let ES be the event that

|CS ∩ σ−1(i)| ≥ n

k
(1− k−2/3) for all i ∈ [k] .

Then Proposition 5.3.7 implies that for any set S of size θ we have

P [ES ] ≥ 1− exp(−Ω(n)). (5.3.27)

Further, for a vertexw ∈ S and a set Jw ⊂ [k]\{σ(w)}, let L(w, Jw) be the event that Λ(w, S) ⊃ Jw.

Crucially, the core CS of the subgraph of G obtained by removing S is independent of the edges

between S and CS . Therefore, w is adjacent to a vertex x in CS with σ(x) 6= σ(w) with probability

p′, independently for all such vertices x. Consequently,

P [L(w, Jw)|ES ] ≤
∏
j∈Jw

(1− p′)
n
k

(1−k−2/3) ≤ k−1.99|Jw|. (5.3.28)
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Moreover, due to the independence of the edges in G, the events L(w, Jw) are independent for all

w ∈ S.

Let S ⊂ V be a set of size θ. Let us call a vertex w ∈ S rich if |Λ(w, S)| ≥
√
k. Further, let RS be

the set of rich vertices in S. To estimate the probability that S is wobbly, we consider the following

events.

• Let AS be the event that |RS | ≥ k−1/3θ and thatG contains a tree T with vertex set S.

• Let A′S be the event that and thatG contains a tree T with vertex set S such that∑
w∈RS

|∂1
T (w)| ≥ θ/2.

(In words, the sum of the degrees of the rich vertices in T is at least θ/2.)

• Let A′′S be the event thatG contains a tree T with vertex set S such that∑
w∈RS

|∂1
T (w)| < θ/2.

• LetWS be the event that condition W2 is satisfied.

• For a given tree T with vertex set S, letW ′S,T be the event that condition W3 is satisfied.

If S is wobbly, then the event AS ∪ (WS ∩A′S)∪ (WS ∩W ′S,T ∩A′′S) for a tree T occurs. Therefore,

P [S is wobbly] ≤ P [AS ] + P
[
WS ∩ A′S \ AS

]
+ P

[
WS ∩W ′S,T ∩ A′′S \ (AS ∪ A′S)

]
. (5.3.29)

In the following, we are going to estimate the three probabilities on the r.h.s. separately.

With respect to the probability of AS , (5.3.27) and (5.3.28) yield

P
[
|RS | ≥ k−1/3θ

]
≤P [¬ES ] + P

[
∃R ⊂ S, |R| = dk−1/3θe : ∀w ∈ R : |Λ(w, S)| ≥

√
k|ES

]
≤ exp(−Ω(n)) +

(
θ

k−1/3θ

)[(
k√
k

)
k−1.9

√
k

]k−1/3θ

≤ exp(−
√
kθ).

Furthermore, by Cayley’s formula there are θθ−2 possible trees with vertex set S. Since any two

vertices in S are connected in G with probability at most p′, and because edges occur independently,

we obtain

P [AS ] ≤ θθ−2p′
θ−1 · P

[
|RS | ≥ k−1/3θ

]
≤ θθ−2p′

θ−1
exp(−

√
kθ). (5.3.30)
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To bound the probability ofWS ∩ A′S \ AS , let R ⊂ S. Moreover, let e(S) denote the total number

of edges spanned by S in G, and let e(R,S) denote the number of edges that join a vertex in R with

another vertex in S. Let A′S(R, t) be the event e(S) ≥ θ − 1 and e(R,S) = t. If A′S \ AS occurs,

then there exist R ⊂ S, |R| ≤ r = bk−1/3θc, and t ≥ θ/4 such that A′S(R, t) occurs. Therefore, by

the union bound,

P
[
WS ∩ A′S \ AS

]
≤

∑
R⊂S:|R|≤r

∑
t≥θ/4

P
[
WS ∩ A′S(R, t)

]
. (5.3.31)

Further, because the eventWS is independent of the subgraph ofG induced on S, (5.3.31) yields

P
[
WS ∩ A′S \ AS

]
≤ P [WS ] ·

∑
R⊂S:|R|≤r

∑
t≥θ/4

P
[
A′S(R, t)

]
. (5.3.32)

Because any two vertices in S are connected with probability at most p′ independently, the random

variable e(R,S) is stochastically dominated by a binomial distribution Bin(rθ, p′). Therefore,

P [e(R,S) = t] ≤ P
[
Bin(rθ, p′) = t

]
≤
(
rθ

t

)
p′
t
. (5.3.33)

Similarly, we find

P [e(S) ≥ θ − 1|e(R,S) = t] ≤P
[
Bin

((
θ

2

)
, p′
)
≥ θ − t− 1

]

≤
(

θ2/2

θ − t− 1

)
p′
θ−t−1

. (5.3.34)

Combining (5.3.33) and (5.3.34), we get

P
[
A′S(R, t)

]
≤

(
rθ

t

)(
θ2/2

θ − t− 1

)
pθ−1. (5.3.35)

Further, plugging (5.3.35) into (5.3.32), we obtain

P
[
WS ∩ A′S \ AS

]
≤ P [WS ] · 2θpθ−1

∑
t≥θ/4

(
rθ

t

)(
θ2/2

θ − t− 1

)

≤ 21+θpθ−1 P [WS ]

(
rθ

θ/4

)(
θ2/2

3θ/4− 1

)

≤ 21+θpθ−1 P [WS ]

(
erθ

θ/4

)θ/4(eθ2/2

3θ/4

)3θ/4

≤ θθpθ−1k−θ/13 P [WS ] . (5.3.36)
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Finally, if the eventWS occurs, then for each w ∈ S there is j ∈ [k] \ {σ(w)} such that j ∈ Λ(w, S).

Thus, (5.3.27) and (5.3.28) yield

P [WS ] ≤ P [¬ES ] +
∏
w∈S

∑
j 6=σ(w)

P [L(w, {j})|ES ]

≤ exp(−Ω(n)) + k−0.99θ ≤ k−0.98θ. (5.3.37)

Combining (5.3.36) and (5.3.37), we arrive at

P
[
WS ∩ A′S \ AS

]
≤ θθpθ−1k−1.02θ. (5.3.38)

To bound the probability of A′′S , suppose that T is a tree with vertex set S, let U ⊂ S and denote by

A′′S(T,U) the event that the following statements are true:

(i) T is contained as a subgraph inG.

(ii) Let s0 = minS and consider s0 the root of T . Then for each u ∈ U the parent P (u) satisfies

P (u) 6∈ RS .

If the event A′′S \ (AS ∪ A′S) occurs, then there exist a tree T and a set U of size |U | ≥ θ/3 such that

A′′S(T,U) occurs. Therefore,

P
[
WS ∩W ′S,T ∩ A′′S \ (AS ∪ A′S)

]
≤
∑
T

∑
U :|U |≥θ/3

P
[
WS ∩W ′S,T ∩ A′′S(T,U)

]
. (5.3.39)

Fix a tree T on S and a set U ⊂ S, |U | ≥ θ/3. Since any two vertices are connected in G with

probability at most p′ independently, the probability that (i) occurs is bounded by p′θ−1. Furthermore,

if (ii) occurs and u ∈ U , then |Λ(P (u), S)| ≤
√
k because P (u) is not rich. In addition, W3 requires

that Λ(P (u), S) ∩ Λ(u, S) 6= ∅. There are two ways how this can come about: first, it could be that

Λ(P (u), S) ∩ Λ(u, S) \ {σ(u)} 6= ∅. Then the event L(u, {j}) occurs for some j ∈ Λ(P (u), S) \
{σ(u)}. Hence, due to (5.3.28)

P
[
Λ(P (u), S) ∩ Λ(u, S) \ {σ(u)} 6= ∅|ES , |Λ(P (u), S)| ≤

√
k
]
≤ k−1.49 (5.3.40)

for any u ∈ U .

Alternatively, it could be that σ(u) ∈ Λ(P (u), S). Given that Λ(P (u), S) has size at most
√
k, the

probability of this event is bounded by k−1/2 because σ(u) is random. Additionally, by W2 there is
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another colour j ∈ Λ(u), j 6= σ(u). Hence, the event L(u, {j}) occurs and (5.3.28) yields

P
[
σ(u) ∈ Λ(P (u), S),Λ(u, S) \ {σ(u)} 6= ∅|ES , |Λ(P (u), S)| ≤

√
k
]
≤ k−1.49 (5.3.41)

for any u ∈ U .

Combining (5.3.27), (5.3.40) and (5.3.41), we find

P
[
∀u ∈ U : Λ(P (u), S) ∩ Λ(u, S) 6= ∅ ∧ |Λ(P (u), S)| ≤

√
k
]
≤ exp(−Ω(n)) + k−1.48|U |.

(5.3.42)

In addition, if w ∈ S \ U , then W2 requires that the event L(w, {j}) occurs for some j 6= σ(w)

and (5.3.28) yields

P [∀w ∈ S \ U : ∃j ∈ [k] \ {σ(w)} : L(w, j)|ES ] ≤ k−0.99|S\U |. (5.3.43)

Combining (5.3.42) and (5.3.43), we obtain

P
[
WS ∩W ′S,T ∩ A′′S(T,U)|T ⊂ G

]
≤ exp(−Ω(n)) + k−0.99(θ−|U |) · k−1.48|U | ≤ k−1.1θ.

(5.3.44)

Further, the probability that T is contained inG is bounded by p′θ−1. Thus, (5.3.44) implies

P
[
WS ∩W ′S,T ∩ A′′S(T,U)

]
≤ k−1.1θp′

θ−1
. (5.3.45)

Finally, combining (5.3.39) and (5.3.45) and using Cayley’s formula, we obtain

P
[
WS ∩W ′S ∩ A′′S \ (AS ∪ A′S)

]
≤ 2θθθ−2k−1.1θp′

θ−1

≤ θθ−2p′
θ−1

k−1.09θ. (5.3.46)

Plugging (5.3.30), (5.3.38) and (5.3.46) into (5.3.29), we see that

θ P [S is wobbly] ≤ 2θθ+1pθ−1k−1.02θ.

Hence, (5.3.26) yields

E [W ] ≤ 2θθ+1p′
θ−1

k−1.02θ ·
(
n

θ

)
≤ 2

(en

θ

)θ
θθ+1p′

θ−1
k−1.02θ

≤ n(3np′)θk−1.02θ ≤ n(7k ln k)θk−1.02θ = o(n),

as desired.
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Proof of Lemma 5.3.2.

The following large deviations inequality known as Warnke’s inequality facilitates the proof of Lem-

ma 5.3.2.

Lemma 5.3.19 ([War16]). Let X1, . . . , XN be independent random variables with values in a finite

set Λ. Assume that f : ΛN → R is a function, that Γ ⊂ ΛN is an event and that c, c′ > 0 are numbers

such that the following is true.

If x, x′ ∈ ΛN are such that there is k ∈ [N ] such that xi = x′i for all i 6= k,

then

|f(x)− f(x′)| ≤

{
c if x ∈ Γ,

c′ if x 6∈ Γ.

(5.3.47)

Then for any γ ∈ (0, 1] and any t > 0 we have

P [|f(X1, . . . , XN )− E[f(X1, . . . , XN )]| > t] ≤2 exp

(
− t2

2N(c+ γ(c′ − c))2

)
+

2N

γ
P [(X1, . . . , XN ) 6∈ Γ] .

Proof of Lemma 5.3.2. The proof is based on Lemma 5.3.19. Of course, we can view (G,σ) as chosen

from a product space X2, . . . , XN with N = 2n′ where Xi is a 0/1 vector of length i − 1 whose

components are independent Be(p′) variables for 2 ≤ i ≤ n′ and where Xi ∈ [k] is uniformly

distributed for i >
(
n′

2

)
(“vertex exposure”). Let Γ be the event that |Nω(v)| ≤ λ = n0.01 for all

vertices v. Then by Lemma 5.3.1 we have

P [Γ] ≥ 1− exp(−Ω(ln2 n)). (5.3.48)

Furthermore, let G′ be the graph obtained from G by removing all edges e that are incident with a

vertex v such that |∂ωG(v)| > λ and let

S′ =
∑
v

Sv(G
′,σ) =

∣∣∣{v ∈ [n′] : ∂ωG′(v),σ|∂ω
G′ (v), v) ∈ S

}∣∣∣ .
If Γ occurs, then S = S′. Hence, (5.3.48) implies that

E[S′] = E[S] + o(1). (5.3.49)

Moreover, the random variable S′ = f(X2, . . . , XN ) satisfies (5.3.47) with c = λ and c′ = n′. Indeed,

altering either the colour of one vertex u or its set of neighbours can only affect those vertices v that
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are at distance at most ω from u, and inG′ there are no more than λ such vertices. Thus, Lemma 5.3.19

applied with, say, t = n2/3 and γ = 1/n and (5.3.48) yields

P
[
|S′ − E[S′]| > t

]
≤ exp(−Ω(ln2 n)) = o(1). (5.3.50)

Finally, the assertion follows from (5.3.49) and (5.3.50).
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6 Condensation phase transition in random hypergraph 2-
colouring for finite inverse temperatures

This chapter is dedicated to proving Theorem 4.1.4, which establishes the existence and determines

the location of the condensation phase transition in random k-uniform hypergraph 2-colouring with

additional temperature parameter β for large values of k.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper A

positive temperature phase transition in random hypergraph 2-coloring [BCOR16] that is joint work

with Victor Bapst and Amin Coja-Oghlan and is published in the Annals of Applied Probability 26

(2016).

The first section of this chapter presents an outline of the proof of Theorem 4.1.4 and gives a short

introduction to the proof ideas. Subsequently, the first and second moment of Zβ are determined in

Section 6.2. Calculations in Section 6.3 are performed in the planted model and the expected cluster

size is established in Section 6.4. The last section can be seen as a kind of appendix where we prove

the existence of the free entropy density Φd,k(β) for finite β.

The author of this thesis contributed primarily to the investigation of the first and second moment

presented in Section 6.2, to the calculations in the planted model performed in Section 6.3 and to

the proof of the existence of Φd,k(β) in Section 6.5. Furthermore she carried out revision work of all

presented proofs and statements.

Throughout the whole chapter we assume that 0 ≤ d/k ≤ 2k−1 ln 2 +Ok(1). We let m = ddn/ke.

6.1. Outline of the proof

The proof of Theorem 4.1.4 is based on establishing the physicists’ notion of an “entropy crisis”

(cf. Section 2.3) rigorously. To this end, we are going to trace two key quantities. First, the free entropy

density Φd,k(β) defined in (2.3.2), which we examine here for the random hypergraph Hk(n, p), i. e.

Φd,k(β) = lim
n→∞

1

n
E [lnZβ(Hk(n, p))] .

Thus, Φd,k(β) mirrors the typical value of the partition function Zβ(Hk(n, p)). Second, the size of the

cluster of a typical σ chosen from the Boltzmann distribution. More specifically, we are going to argue
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that it is sufficient to study the cluster size defined in (2.4.1) in the planted model. Ultimately, it will

emerge that the condensation phase transition marks the point where the cluster size in the planted

model equals the typical value of Zβ(Hk(n, p)).

To implement this strategy, we begin by deriving upper and lower bounds on Φd,k(β) via the first and

the second moment method. More precisely, in Subsection 6.2.1 we are going to prove the following.

Proposition 6.1.1. For any β, we have

Φd,k(β) ≤ ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
.

Moreover, if either d/k ≤ 2k−1 ln 2− 2 and β ≥ 0 or d/k > 2k−1 ln 2− 2 and β ≤ k ln 2− ln k, we

have

Φd,k(β) = ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
.

We remember the quantity βcrit(d, k) defined in (2.5.5). Then Proposition 6.1.1 readily implies the

following lower bounds on βcrit(d, k).

Corollary 6.1.2. We have βcrit(d, k) ≥ k ln 2− ln k. If d/k ≤ 2k−1 ln 2− 2, then βcrit(d, k) =∞.

It is well-known that lnZβ enjoys the following “Lipschitz property”.

Fact 6.1.3. Let H be a hypergraph and H ′ obtained from H by either adding or removing a single

edge. Then | lnZβ(H)− lnZβ(H ′)| ≤ β.

This Lipschitz property implies the following concentration bound for lnZβ(Hk(n, p)).

Lemma 6.1.4. For any α > 0 there is δ = δ(α) > 0 such that

P [| lnZβ(Hk(n, p))− E[lnZβ(Hk(n, p))]| > αn] < exp [−δn] .

Proof. This is immediate from Fact 6.1.3 and McDiarmid’s inequality [McD98, Theorem 3.8].

The second main component of the proof of Theorem 4.1.4 is the analysis of the cluster size in the

planted model. First, we observe that for the cluster size in Hk(n, p) we have a concentration bound

analogous to Lemma 6.1.4:
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Lemma 6.1.5. For any σ : [n]→ {±1} and α > 0, there is δ = δ(α, σ) > 0 such that

P [| ln Cβ(Hk(n, p), σ)− E[ln Cβ(Hk(n, p), σ)]| > αn] < exp [−δn] .

Proof. This follows from McDiarmid’s inequality [McD98, Theorem 3.8] and because it holds that

| ln Cβ(H,σ)− ln Cβ(H ′, σ)| ≤ β for any σ if the hypergraph H ′ is obtained from the hypergraph H

by either adding or removing a single edge.

Ideally, we would like to compare the cluster size of an assignment σ chosen from the Boltzmann

distribution on Hk(n, p) with the partition function Zβ(Hk(n, p)). Then according to the physicists’

prediction of the “entropy crisis”, the condensation phase transition should mark the point β where

Cβ(Hk(n, p), σ) is of the same order of magnitude as Zβ(Hk(n, p)). However, it seems difficult to

calculate Cβ(Hk(n, p), σ) directly, as the Boltzmann distribution on a randomly generated hypergraph

is a very difficult object to approach directly.

We explained this phenomenon in detail in Section 3.1, where we introduced the planted model. It will

emerge that the planted model is sufficient to pin down the condensation phase transition. However,

we have to refine the definitions from Section 3.1 in the following way to adapt them to the case of

finite β:

Let σ : [n]→ {±1} be a map chosen uniformly at random. Moreover, given d, k, β, set

p1 =
exp [−β]

1− 21−k (1− exp [−β])
· d(

n−1
k−1

) , p2 =
1

1− 21−k (1− exp [−β])
· d(

n−1
k−1

) .
Now, obtain a random k-uniform hypergraph H by inserting each hyperedge that is monochromatic

under σ with probability p1 and each hyperedge that is bichromatic under σ with probability p2

independently. In symbols, for any hypergraph H with vertex set [n] we have

P [H = H|σ] = p
EH(σ)
1 (1− p1)m1p

e(H)−EH(σ)
2 (1− p2)m2 ,

where e(H) denotes the total number of hyperedges of H and m1 (respectively m2) the numbers of

hyperedges that are monochromatic (respectively bichromatic) under σ and are not in H .

The following proposition, which we will prove in Section 6.3, reduces the problem of determining

βcrit(d, k) to that of calculating Cβ(H,σ).

Proposition 6.1.6. Assume that d/k = 2k−1 ln 2 + Ok(1) and β0 ≥ k ln 2 − ln k. If for all k ln 2 −
ln k ≤ β ≤ β0 we have

lim
ε↘0

lim inf
n→∞

P
[

1

n
ln Cβ(H,σ) ≤ ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)
− ε
]

= 1, (6.1.1)
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then β0 ≤ βcrit(d, k). Conversely, if

lim
ε↘0

lim inf
n→∞

P
[

1

n
ln Cβ0(H,σ) ≥ ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β0])
)

+ ε

]
= 1, (6.1.2)

then β0 ≥ βcrit(d, k).

Finally, in Section 6.4 we are going to estimate the cluster size Cβ(H,σ) to derive the following

result.

Proposition 6.1.7. Assume that d/k = 2k−1 ln 2 + Ok(1) and β ≥ k ln 2 − ln k. Then w.h.p. the

cluster size in the planted model satisfies

1

n
ln Cβ(H,σ) =

ln 2

2k
− β ln 2

exp [β]
+ Õk(4

−k).

Proof of Theorem 4.1.4. The result of the theorem in the case d/k ≤ 2k−1 ln 2− 2 follows from Co-

rollary 6.1.2. Let us thus assume that d/k = 2k−1 ln 2+Ok(1). Because we will use Proposition 6.1.6,

we can also assume that β ≥ k ln 2− ln k. We write ck = d/k− 2k−1 ln 2 + ln 2 and bk = β− k ln 2.

With Proposition 6.1.7, we have w.h.p.

1

n
ln Cβ(H,σ)−

(
ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
))

=

(
ln 2

2k
− (k ln 2 + bk) ln 2

exp [−bk]
2k

)
−
(

ln 2

2k
− ck

2k−1
+

ln 2 exp [−bk]
2k

)
+ Õk(4

−k)

=
1

2k
(2ck − (k ln 2 + bk + 1) ln 2 exp [−bk]) + Õk(4

−k)

=
1

2k

(
−Σk,d(β) + Õk(2

−k)
)
.

The equation Σk,d(β) = 0 has exactly one solution βcond(d, k) ≥ k ln 2− ln k for d/k > 2k−1 ln 2−
ln 2, and no such solution for d/k < 2k−1 ln 2 − ln 2. Moreover Σk,d(β) is smooth for d/k >

2k−1 ln 2 − ln 2 + 2−k, with derivatives of order Ω(k−4). Consequently there is εk = Õk(2
−k) such

that the following is true.

1. If d/k < 2k−1 ln 2− ln 2− εk, then w.h.p. for all β ≥ k ln 2− ln k,

1

n
ln Cβ(H,σ) ≤

(
ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
))
− Ω(1)

2. If d/k > 2k−1 ln 2− ln 2 + εk, then w.h.p. for all β ≥ k ln 2− ln k:
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• if β ≤ βcond(d, k)− εk then

1

n
ln Cβ(H,σ) ≤

(
ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
))
− Ω(1)

• if β ≥ βcond(d, k) + εk then

1

n
ln Cβ(H,σ) ≥

(
ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
))

+ Ω(1).

The proof of the theorem is completed by using Proposition 6.1.6.

6.2. The first and the second moment

In this section we prove Proposition 6.1.1 and also lay the foundations for the proof of Propositi-

on 6.1.6. We let m = ddn/ke and recall that Hk(n,m) signifies the hypergraph on [n] obtained

by choosing m edges uniformly at random without replacement while to create H(n,m) we choose

m edges e1, ..., em with replacement uniformly and independently at random, thereby allowing for

multiple edges.

6.2.1. The first moment

We begin with the following estimate of the first moment of Zβ inH(n,m).

Lemma 6.2.1. We have E [Zβ(H(n,m))] = Θ
(
2n
(
1− 21−k (1− exp [−β])

)m).
The proof of Lemma 6.2.1 is straightforward, but we carry it out at leisure to introduce some notation

that will be used throughout. For a map σ : [n]→ {±1}, let

F(σ) =

(
|σ−1(−1)|

k

)
+

(
|σ−1(1)|

k

)
be the number of “forbidden k-sets” of vertices that are identically coloured under σ. The function

x 7→
(
x
k

)
+
(
n−x
k

)
is convex and takes its minimal value at x = n

2 . Therefore,

F(σ) ≥ 2

(
n/2

k

)
= 21−kN(1 +O(1/n)) = 21−kN +O(N/n), with N =

(
n
k

)
. (6.2.1)

As introduced in Section 2.2, we call σ balanced if
∣∣|σ−1(1)| − n

2

∣∣ ≤ √n. Let Bal = Bal(n) be the
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set of all balanced maps σ : [n]→ {±1}. Stirling’s formula yields |Bal| = Ω(2n). If σ ∈ Bal, then

F(σ) ≤
(
n/2 +

√
n

k

)
+

(
n/2−

√
n

k

)
= 21−kN +O(N/n). (6.2.2)

For a hypergraph H , let

Zβ,bal(H) =
∑
σ∈Bal

exp [−βEH(σ)] .

Proof of Lemma 6.2.1. By the independence of edges in the random hypergraphH(n,m) we have

E
[
exp

[
−βEH(n,m)(σ)

]]
= E

[
m∏
i=1

exp
[
−β1ei∈F(σ)

]]
=

m∏
i=1

E
[
exp

[
−β1ei∈F(σ)

]]
=
(
1−N−1F(σ) (1− exp [−β])

)m
≤
(

1− 21−k(1 +O(1/n)) (1− exp [−β])
)m

.

Consequently,

E [Zβ(H(n,m))] = O
(

2n
(

1− 21−k (1− exp [−β])
)m)

. (6.2.3)

If σ ∈ Bal, by (6.2.2) we have E
[
exp

[
−βEH(n,m)(σ)

]]
= Ω

((
1− 21−k (1− exp [−β])

)m)
. The-

refore,

E[Zβ(H(n,m))] ≥ |Bal| · Ω
((

1− 21−k (1− exp [−β])
)m)

= Ω
(

2n
(

1− 21−k (1− exp [−β])
)m)

. (6.2.4)

Thus, Lemma 6.2.1 follows from (6.2.3) and (6.2.4).

The following lemma relates the expectation of the partition functions of the models Hk(n,m) and

H(n,m).

Lemma 6.2.2. We have E [Zβ(Hk(n,m))] = Θ (E [Zβ(H(n,m))]).

Proof. Let A be the event thatH(n,m) has no multiple edges. Then, using Fact 2.1.2 we get

E[Zβ(H(n,m))] ≥ E[Zβ(H(n,m))|A]P [A] ≥ E[Zβ(Hk(n,m))](1− o(1)),

implying that

E[Zβ(Hk(n,m))] ≤ O(1)E[Zβ(H(n,m))]. (6.2.5)
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6.2. The first and the second moment

On the other hand let m0 = 21−k exp[−β]
1−21−k(1−exp[−β])

m and

f(x) = −xβ − x lnx− (1− x) ln(1− x) + x ln(21−k) + (1− x) ln(1− 21−k).

We observe that f is strictly concave and attains its maximum at x = m0
m where it is equal to

ln
(
1− 21−k (1− exp [−β])

)
. For σ ∈ Bal, we get with Stirling’s formula

E
[
exp

[
−βEHk(n,m)(σ)

]]
=
∑
µ

P
[
EHk(n,m) = µ

]
exp [−βµ]

≥
∑

µ∈[m0−
√
m,m0+

√
m]

exp [−βµ]

(
m
µ

)
(F(σ))µ(N −F(σ))m−µ

Nm

=
∑

µ∈[m0−
√
m,m0+

√
m]

Θm

(
1√
m

)
exp

[
mf

(m0

m

)]
Θ(1)

= Θ
((

1− 21−k(1− exp [−β]
)m)

Therefore,

E[Zβ(Hk(n,m))] ≥ |Bal| · E
[
exp

[
−βEHk(n,m)(σ)

]]
= Ω

(
2n
(

1− 21−k (1− exp [−β])m
))

.

(6.2.6)

Combining (6.2.5), Lemma 6.2.1 and (6.2.6) proves the assertion.

As a further consequence of Lemma 6.2.1, we obtain

Corollary 6.2.3. 1. We have Φd,k(β) ≤ ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
for all d, β.

2. Assume that d, β are such that

lim sup
n→∞

1

n
E[lnZβ(H(n,m))] < ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)
.

Then Φd,k(β) < ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
.

To prove this corollary, we need the following installment of the Chernoff bound on the tails of a

binomially distributed random variable.

Lemma 6.2.4 ([JLR00, p.29]). Assume that X1, . . . , Xn are independent random variables such that

Xi has a Bernoulli distribution with mean pi. Let λ = E[X] and set φ(x) = (1 + x) ln(1 + x) − x.
Then

P [X ≥ λ+ t] ≤ exp [−λφ(t/λ)] , P [X ≤ λ− t] ≤ exp [−λφ(−t/λ)] for any t > 0.
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

In particular, P [X ≥ tλ] ≤ exp [−tλ ln(t/e)] for any t > 1.

Proof of Corollary 6.2.3. Let E be the event that |e(Hk(n, p)) −m| ≤
√
n lnn. Then we can couple

the random hypergraphsH(n,m) and Hk(n, p) given E as follows.

1. Choose a random hypergraph H0 = H(n,m).

2. Let e = Bin
((
n
k

)
, p
)

be a binomial random variable given that |e−m| ≤
√
n lnn.

3. Obtain a random hypergraph H1 from H0 as follows.

• If e ≥ m, choose a set of e −m random edges from all edges not present in H0 and add

them to H0.

• If e < m, remove m− e randomly chosen edges from H0.

The outcome H1 has the same distribution as Hk(n, p) given E , and H0, H1 differ in at most
√
n lnn

edges. Therefore, noting that 1
n | lnZβ| ≤

d
kβ + ln 2 with certainty, we obtain with Fact 6.1.3

1

n
E lnZβ(Hk(n, p)) ≤

1

n
E[lnZβ(H1)] +

(
d

k
β + ln 2

)
P [¬E ]

≤ 1

n
E[lnZβ(H0)] +

β lnn√
n

+

(
d

k
β + ln 2

)
P [¬E ]

=
1

n
E[lnZβ(H(n,m))] +

(
d

k
β + ln 2

)
P [¬E ] + o(1). (6.2.7)

Since e(Hk(n, p)) is a binomial random variable with mean m + O(1), Lemma 6.2.4 implies that

P [¬E ] = o(1). Thus, by (6.2.7) and Jensen’s inequality,

1

n
E lnZβ(Hk(n, p)) ≤

1

n
E[lnZβ(H(n,m))] + o(1) ≤ 1

n
lnE[Zβ(H(n,m))] + o(1).

Thus, the assertions follow by Lemmas 6.2.1 and 6.2.2 and by taking n→∞.

We conclude this section by observing that the contribution to Zβ of certain “exotic” σ is negligible.

We begin with σ that are very imbalanced.

Lemma 6.2.5. For any ε > 0, there is δ > 0 such that the following is true. Let B̄ε be the set of all

σ : [n]→ {±1} such that
∣∣|σ−1(1)| − n

2

∣∣ > εn. Moreover, let

Zβ,B̄ε(H) =
∑
σ∈B̄ε

exp [−βEH(σ)] .

Then E[Zβ,B̄ε(Hk(n,m))] ≤ exp [−δn]E [Zβ(Hk(n,m))].

Proof. Stirling’s formula implies that for any ε > 0 there is δ > 0 such that 1
n ln |B̄ε| < ln 2 − δ.
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Hence, (6.2.1) and the independence of the edges imply that

E
[
Zβ,B̄ε(H(n,m))

]
=
∑
σ∈B̄ε

E
[
exp

[
−βEH(n,m)(σ)

]]
≤ |B̄ε|

(
1− 21−k (1− exp [−β])

)m
≤ exp [−δn] 2n

(
1− 21−k (1− exp [−β])

)m
.

The assertion then follows from Lemma 6.2.2 and by observing that (as in (6.2.5))

E[Zβ,B̄ε(Hk(n,m))] = O(E[Zβ,B̄ε(H(n,m))]).

Next, we consider σ having an untypically high number of monochromatic edges.

Lemma 6.2.6. For any ε > 0, there is δ > 0 such that the following is true. Let

m0 =
21−k exp [−β]

1− 21−k (1− exp [−β])
, Zβ,ε(H) =

∑
σ:[n]→{±1}

exp [−βEH(σ)] · 1|EH(σ)−m0|>εm.

Then E[Zβ,ε(H(n,m))] ≤ exp [−δn]E [Zβ(H(n,m))].

Proof. Let M0 = {µ ∈ [m] : |µ−m0| > εm}. Moreover for α > 0 let Bα be the set of all σ : [n]→
{±1} such that

∣∣|σ−1(1)| − n
2

∣∣ < αn. By Lemma 6.2.5 there exists δ > 0 such that

E[Zβ,ε(H(n,m))]

≤ exp [−δn]E [Zβ(H(n,m))] +
∑
µ∈M0

∑
σ∈Bα

exp [−βµ]P
[
EH(n,m)(σ) = µ

]
. (6.2.8)

As in the proof of Lemma 6.2.2 we define f(x) = −xβ − x lnx− (1− x) ln(1− x) + x ln(21−k) +

(1− x) ln(1− 21−k) and find that for any γ > 0 we can choose α > 0 small enough so that

1

m
ln
(
exp [−βµ]P

[
EH(n,m)(σ) = µ

])
≤ γ + f

( µ
m

)
for all σ ∈ Bα.

Because f is strictly concave and attains its maximum at x = m0
m , there is δ′ > 0 such that∑

µ∈M0

∑
σ∈Bα

exp [−βµ]P[EH(n,m)(σ) = µ] ≤ exp
[
−δ′n

]
E [Zβ(H(n,m))] . (6.2.9)

Finally, the assertion follows from (6.2.8) and (6.2.9).
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6.2.2. The second moment

In Subsection 6.2.1 we derived an upper bound on Φd,k(β) by calculating the expectation value of

Zβ(H(n,m)). Here we obtain a matching lower bound for certain values of β and d by estimating the

second moment E[Zβ,bal(H(n,m))2]. To this end, we define for α ∈ [−1, 1],

Zβ(α) =
∑

σ,τ∈Bal:〈σ,τ〉=αn

exp
[
−β
(
EH(n,m)(σ) + EH(n,m)(τ)

)]
. (6.2.10)

Thus, in (6.2.10) we sum over balanced pairs σ, τ : [n]→ {±1} that agree on precisely n((1 + α)/2)

vertices. Hence, we can express the second moment as

E
[
Zβ,bal(H(n,m))2

]
=

∑
σ,τ∈Bal

E
[
exp

[
−β
(
EH(n,m)(σ) + EH(n,m)(τ)

)]]

=
n∑
ν=0

E [Zβ(2ν/n− 1)] .

Consequently, we need to bound Zβ(α) for α ∈ [−1, 1]. To this aim, recall the function H(z) =

−z ln z − (1− z) ln(1− z) from Section 2.6.

Lemma 6.2.7. For α ∈ [±1], we have

1

n
lnE[Zβ(α)] = ln 2 + Λβ(α)− lnn

2n
+O(1/n), where

Λβ(α) = H
(

1 + α

2

)
+
d

k
ln
[
1− 21−k (1− exp [−β])

·
[
2− (1− exp [−β])

(1 + α)k + (1− α)k

2k

]]
.

Proof. Let e be a randomly chosen edge of H(n,m). Let σ, τ : [n] → {±1} be two balanced maps

with overlap 〈σ, τ〉 = αn. Let us write σ � e if e 6∈ F(σ) (i.e. e is bichromatic under σ). By inclusion-

exclusion,

P [σ � e] ,P [τ � e] = 1− 21−k +O(1/n),

P [σ, τ � e] = 1− 22−k + 21−2k
(

(1 + α)k + (1− α)k
)

+O(1/n).

94



6.2. The first and the second moment

Hence, by the independence of edges,

E [Zβ(α)] =
∑

σ,τ :〈σ,τ〉=αn

E
m∏
i=1

exp [−β(1σ2ei + 1τ2ei)]

=
∑

σ,τ :〈σ,τ〉=αn

(E [exp [−β(1σ2e1 + 1τ2e1)]])m

= 2n
(

n

(1 + α)n/2

)
(1 · P [σ, τ � e1] + exp [−β]

· (P [σ � e1, τ 2 e1] + P [σ 2 e1, τ � e1]) + exp [−2β] · P [σ, τ 2 e1])m

= 2n
(

n

(1 + α)n/2

)
(1 +O(1/n))

[
1− 22−k (1− exp [−β])

+21−2k (1− exp [−β])2 ((1 + α)k + (1− α)k)
]m

. (6.2.11)

Furthermore, by Stirling’s formula,(
n

(1 + α)n/2

)
= O(n−1/2) exp

[
nH

(
1 + α

2

)]
. (6.2.12)

The assertion follows by combining (6.2.11) and (6.2.12).

Hence, we need to study the function Λβ . Since Λβ(α) = Λβ(−α), α = 0 is a stationary point.

Moreover, with

s = s(α, β) = 1− 21−k (1− exp [−β])

[
2− (1− exp [−β])

(1 + α)k + (1− α)k

2k

]
the first two derivatives of Λβ work out to be

Λ′β(α) =
ln(1− α)− ln(1 + α)

2
+

2d

4ks
ln exp [−β]− 12((1 + α)k−1 − (1− α)k−1), (6.2.13)

Λ′′β(α) =
1

α2 − 1
+

2d(k − 1) (exp [−β]− 1)2

4ks

(
(1 + α)k−2 + (1− α)k−2

)
− dk (1− exp [−β])4

24k−2s2

[
(1 + α)k−1 − (1− α)k−1

]2
. (6.2.14)

In particular,

Λ′′β(0) = −1 + Õk(2
−k) < 0. (6.2.15)

Hence, there is a local maximum at α = 0. As a consequence, if Λβ takes its strict global maximum

at α = 0, then E[Zβ(H(n,m))2] = O(E[Zβ(H(n,m))]2). More generally, we have
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Lemma 6.2.8. Assume that β ≥ 0 and J ⊂ [−1, 1] is a compact set such that Λβ(α) < Λβ(0) for all

α ∈ J \ {0}. Then

n∑
ν=0

E [Zβ(2ν/n− 1)]12ν/n−1∈J = O(E[Zβ(H(n,m))]2).

Proof. We start by observing that ln 2+Λβ(0)
2 = ln 2 + d

k ln
(
1− 21−k (1− exp [−β])

)
. Hence, Lem-

ma 6.2.1 yields

exp [n(ln 2 + Λβ(0))] = O(E[Zβ(H(n,m))]2). (6.2.16)

Now, by (6.2.15), there exist η, c > 0 such that Λβ(α) ≤ Λβ(0)− cα2 for all α ∈ J0 = J ∩ (−η, η).

Hence, by Lemma 6.2.7 and (6.2.16),

n∑
ν=0

E [Zβ(2ν/n− 1)]12ν/n−1∈J0
= O(n−1/22n)

n∑
ν=0

exp [nΛβ(2ν/n− 1)]12ν/n−1∈J0

= O (2n exp [nΛβ(0)])
∑

ν:|2ν/n−1|<η

exp
[
−nc(2ν/n− 1)2

]
√
n

= O (2n exp [nΛβ(0)]) = O
(
E [Zβ(H(n,m))]2

)
. (6.2.17)

Further, let J1 = J \ (−η, η). Then J1 is compact. Hence, there exists δ > 0 such that Λβ(α) <

Λβ(0)− δ for all α ∈ J1. Therefore, Lemma 6.2.7 and (6.2.16) yield

n∑
ν=0

E [Zβ(2ν/n− 1)]12ν/n−1∈J1
= O(n2n) sup

α∈J1

exp [nΛβ(α)]

= O(n2n) exp [n (Λβ(0)− δ)] = O(E [Zβ(H(n,m))]2).

(6.2.18)

Finally, the assertion follows from (6.2.17) and (6.2.18).

Now we prove that [−1 + 2−3k/4, 1− 2−3k/4] ⊂ J for all β ≥ 0 and J as defined in Lemma 6.2.8.

Lemma 6.2.9. For d/k = 2k−1 ln 2 +Ok(1) and β ≥ 0, we have Λβ(α) < Λβ(0) for all α 6= 0 with

|α| ≤ 1− 2−3k/4.

Proof. We know that there is a local maximum at α = 0. Moreover, we read off of (6.2.14) that

Λ′′β(α) < 0 if |α| < 1− 6 ln k/k, and thus

Λβ(0) > Λβ(α) for all α ∈ (−(1− 6 ln k/k), 1− 6 ln k/k).
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Further, for |α| ≥ 1− 6 ln k/k we obtain from (6.2.13)

Λ′β(α) ≤ ln(1− α)

2
+

2d (1− exp [−β])2 (1 + α)k−1

4k(1 +Ok(2−k))

≤ ln(1− α)

2
+
d(1− exp [−β])2 exp [(1 + α)(k − 1)/2]

2k(1 +Ok(2−k))
.

Hence, Λ′β(α) < 0 if |α| < 1− 2.01 ln k/k and k large enough and a similar estimate yields

Λ′β(α) > 0 if |α| > 1− 1.99 ln k/k.

Thus, to proceed we need to evaluate Λβ at |α| = 1 − γ ln k/k for γ ∈ [1.99, 2.01] and at |α| =

1− 2−3k/4. We find

Λβ(α) = − ln 2 + ok(1)

for |α| = 1−γ ln k/k with γ ∈ [1.99, 2.01] and Λβ(α) = − ln 2+ok(1) for |α| = 1−2−3k/4 proving

the assertion.

Lemma 6.2.10. The function β 7→ Λβ(α) − Λβ(0) is non-decreasing for α 6= 0. In particular, if

d > 0 and β0 ≥ 0 are such that Λβ0(α) < Λβ0(0) for all α 6= 0, then Λβ(α) < Λβ(0) for all

α 6= 0, 0 ≤ β < β0.

Proof. The derivative of Λβ with respect to β works out to be

∂Λβ
∂β

=
d

k
· 22−2k((1 + α)k + (1− α)k) exp [−β] (1− exp [−β])− 22−k exp [−β]

1− 22−k (1− exp [−β]) + 21−2k (1− exp [−β])2 ((1 + α)k + (1− α)k)
.

Substituting z = (1 + α)k + (1− α)k and b = 1− exp [−β] in the above, we obtain

g(z) =
d

k
· 22−2kb(1− b)z − 22−k(1− b)

1− 22−kb+ 21−2kb2z
.

Because the function z 7→ az−b
cz+d with a, b, c, d ≥ 0 is non-decreasing, this completes the proof.

With these instruments in hand, we identify regimes of d and β where Λβ(α) takes its global maximum

at α = 0.

Lemma 6.2.11. Assume that d/k = 2k−1 ln 2 + Ok(1) and β ≤ k ln 2− ln k. Then Λβ(0) > Λβ(α)

for all α ∈ [−1, 1] \ {0}.

Proof. For |α| ≤ 1 − 2−3k/4, this is the statement of Lemma 6.2.9. We write α = 1 − δ with
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δ ∈ [0, 2−3k/4]. Let

fβ(δ) = (1− exp [−β])

[
2− (1− exp [−β])

(2− δ)k + δk

2k

]
∈ [0, 2].

For β = k ln 2− ln k, we have the expansion

fβ(δ) =

(
1− k

2k

)[
2−

(
1− k

2k

)(
1− k δ

2
+ Õk(4

−k)

)]
= 1 + k

δ

2
+ Õk(4

−k).

Therefore,

Λβ(α) = −δ
2

ln

(
δ

2

)
−
(

1− δ

2

)
ln

(
1− δ

2

)

+
(

2k−1 ln 2 +Ok(1)
)

ln

(
1− 21−k

(
1 + k

δ

2
+ Õk(4

−k)

))
= − ln 2− δ

2
ln δ +

δ

2
− (k − 1)

δ

2
ln 2 +Ok(2

−k).

The function δ 7→ − δ
2 ln δ + δ

2 − (k − 1) δ2 ln 2 is easily studied: it takes its maximum at δ0 = 21−k

for which it is equal to 2−k. Hence for α = 1− δ with δ ∈ [0, 2−3k/4],

Λβ(α) ≤ − ln 2 +Ok(2
−k).

By symmetry this also holds for α = −1 + δ with δ ∈ [0, 2−3k/4]. By comparison,

Λβ(0) = ln 2 +
(

2k−1 ln 2 +Ok(1)
)

ln

(
1− 22−k +

4k

4k
+Ok(4

−k)

)
= − ln 2 + 21−kk ln 2 +Ok(2

−k).

Therefore Λβ(0) > Λβ(α) for all α 6= 0 if β = k ln 2− ln k. Using Lemma 6.2.10 we can expand the

result to all β ≤ k ln 2− ln k.

Lemma 6.2.12. Assume that d/k ≤ 2k−1 ln 2 − 2 and β ≥ 0. Then Λβ(0) > Λβ(α) for all α ∈
[−1, 1] \ {0}.

Proof. Let rk = Ok(1) such that d/k = 2k−1 ln 2 + rk. Define the function

Λ∞ : [−1, 1]→ R, α 7→ H
(

1 + α

2

)
+
d

k
ln
(

1− 22−k + 21−2k
(

(1 + α)k + (1− α)k
))

.

Analogously to the proof of Lemma 6.2.11 we get Λ∞(α) ≤ − ln 2− (ln 2 + 2rk− 1)2−k + Õk(4
−k)

98



6.2. The first and the second moment

for all α and Λ∞(0) = − ln 2−2(ln 2+2rk)2
−k+ Õk(4

−k), which implies that for rk ≤ −2 we have

Λ∞(α) < Λ∞(0) for all α ∈ [−1, 1] \ {0}. Because the continuous functions Λβ converge uniformly

to Λ∞ as β →∞, we conclude that there is β0 ≥ 0 such that for all β > β0,

Λβ(α) < Λβ(0) for all α ∈ [−1, 1] \ {0} . (6.2.19)

Hence, Lemma 6.2.10 implies that (6.2.19) holds for all β ≥ 0, as desired.

Proof of Proposition 6.1.1. The first assertion follows directly from Corollary 6.2.3. Moreover, if d, β

are such that for some n-independent number C > 0 we have

E[Zβ(H(n,m))2] ≤ C · E[Zβ(H(n,m))]2, (6.2.20)

then the Paley-Zygmund inequality implies that

P [Zβ(H(n,m)) ≥ E[Zβ(H(n,m))]/2] ≥
E[Zβ(H(n,m))]2

4E[Zβ(H(n,m))2]
≥ 1

4C
> 0. (6.2.21)

Let A be the event thatH(n,m) has no multiple edges. Since A occurs w.h.p. by Fact 2.1.2, equation

(6.2.21) implies that

P [Zβ(H(n,m)) ≥ E [Zβ(H(n,m))] /2|A] ≥ 1− o(1)

4C
. (6.2.22)

Further, since the number e(Hk(n, p)) of edges in Hk(n, p) is binomially distributed with mean m+

O(1), Stirling’s formula implies that P [e(Hk(n, p)) = m] ≥ Ω(n−1/2). As Hk(n, p) is identically

distributed toH(n,m) given e(Hk(n, p)) = m and A, (6.2.22) implies that

P [Zβ(Hk(n, p)) ≥ E[Zβ(H(n,m))]/2] ≥ Ω(n−1/2). (6.2.23)

Thus, the concentration bound from Lemma 6.1.4 and (6.2.23) yield

lnE[Zβ(H(n,m))]− E[lnZβ(Hk(n, p))]− ln 2 = o(n).

Hence, if (6.2.20) is true, then

1

n
E [lnZβ(Hk(n, p))] ≥

1

n
lnE[Zβ(H(n,m))]− o(1). (6.2.24)

Finally, Lemma 6.2.8 and Lemma 6.2.12 imply that (6.2.20) holds for all β ≥ 0 and d/k ≤ 2k−1 ln 2−
2. Moreover, by Lemma 6.2.8 and Lemma 6.2.11 the bound (6.2.20) is true if d/k = 2k−1 ln 2+Ok(1)

and β ≤ k ln 2− ln k. Thus, the assertion follows from (6.2.24).
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6.3. The planted model

The aim of this section is to prove Proposition 6.1.6. Throughout the section we let m = ddn/ke. For

ε > 0, we let Bε be the set of all σ : [n] → {±1} such that
∣∣|σ−1(1)| − n

2

∣∣ < εn. Further, the map

σ : [n] → {±1} is assumed to be a map chosen uniformly at random and H the random hypergraph

obtained by inserting each edge that is monochromatic under σ with probability p1 and each edge that

is bichromatic with probability p2.

6.3.1. Quiet planting

We begin with the second part of Proposition 6.1.6. The following statement relates the planted mo-

del to the random hypergraph Hk(n,m). A similar statement has been obtained independently by

Achlioptas and Theodoropoulos [AT+].

Lemma 6.3.1. Let d > 0 and β ≥ 0. Assume that there is a sequence (En)n≥1 of events such that

lim supn→∞ P [H ∈ En]1/n < 1. Then E[Zβ(Hk(n,m))1En ] ≤ exp [−Ω(n)]E[Zβ(Hk(n,m))].

Proof. Fix α > 0 such that lim supn→∞ P [H ∈ En]1/n ≤ exp [−α]. For any ε > 0, we have the

decomposition

E[Zβ(Hk(n,m))1En ] =
∑

σ:[n]→{±1}

E
[
exp

[
−βEHk(n,m)(σ)

]
1En
]

≤
∑
σ∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]
1En
]

+
∑
σ 6∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]]
.

(6.3.1)

To bound the first summand in (6.3.1), we let m0 = 21−k exp[−β]
1−21−k(1−exp[−β])

m and define

Mε = {µ ∈ [m] : |µ−m0| < εn} .

Now, for any µ ∈ [m] we have∑
σ∈Bε

P[{EHk(n,m)(σ) = µ} ∩ {Hk(n,m) ∈ En}]

=
∑
σ∈Bε

P[Hk(n,m) ∈ En|EHk(n,m)(σ) = µ]P
[
EHk(n,m)(σ) = µ

]
.

Under the conditions e(H) = m and EHk(n,m)(σ) = EH(σ) for σ : [n] → {±1}, the two random
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hypergraphs Hk(n,m) andH are identically distributed. Therefore,

P[Hk(n,m) ∈ En|EHk(n,m)(σ) = µ] = P[H ∈ En|EH(σ) = µ, e(H) = m]

≤ P[H ∈ En]

P [EH(σ) = µ, e(H) = m]
.

By standard concentration results there is α > 0 such that

P [EH(σ) = µ, e(H) = m] ≥ exp
[
−α

2
n
]

for any σ ∈ Bε, µ ∈Mε.

Hence, for any µ ∈Mε,∑
σ∈Bε

P[{EHk(n,m)(σ) = µ} ∩ {Hk(n,m) ∈ En}]

≤ exp
[α

2
n
] ∑
σ∈Bε

P[H ∈ En]P
[
EHk(n,m)(σ) = µ

]
and therefore, letting A = 2n

(
1− 21−k (1− exp [−β])

)m, we get∑
µ∈Mε

∑
σ∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]
1En
]

=
∑
µ∈Mε

∑
σ∈Bε

exp [−βµ]P[{EHk(n,m)(σ) = µ} ∩ {Hk(n,m) ∈ En}]

≤ exp
[
−α

2
n
] ∑
µ∈Mε

∑
σ∈Bε

exp [−βµ]P
[
EHk(n,m)(σ) = µ

]
≤ A exp

[
−α

2
n
]
. (6.3.2)

Furthermore, Lemma 6.2.6 shows that there is δ > 0 such that∑
µ 6∈Mε

∑
σ∈Bε

exp [−βµ]P
[
EHk(n,m)(σ) = µ

]
≤ A exp [−δn] . (6.3.3)

To bound the second summand in (6.3.1) we get from Lemma 6.2.5 that there is δ′ > 0 such that∑
σ 6∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]]
≤ A exp

[
−δ′n

]
. (6.3.4)

Combining the estimates (6.3.2), (6.3.3) and (6.3.4) in the decomposition (6.3.1) yields

E[Zβ(Hk(n,m))1En ] ≤ A exp
[
−max

(
α/2, δ, δ′

)
n
]
.

Thus, the assertion follows with Lemmas 6.2.1 and 6.2.2.
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Corollary 6.3.2. Let d > 0 and β ≥ 0. Assume that there exists a sequence (En)n≥1 of events such

that

lim
n→∞

P [Hk(n,m) ∈ En] = 1 while lim sup
n→∞

P [H ∈ En]1/n < 1.

Then Φd,k(β) < ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
.

Proof. Since Zβ(Hk(n,m))1/n ≤ 2 and P [Hk(n,m) ∈ En] = 1− o(1), Jensen’s inequality yields

E
[
Zβ(Hk(n,m))1/n

]
= E

[
Zβ(Hk(n,m))1/n1En

]
+ o(1) ≤ E [Zβ(Hk(n,m))1En ]1/n + o(1).

Hence, under the assumptions of the corollary we obtain with Jensen’s inequality and Lemma 6.3.1

Φd,k(β) ≤ lim sup
n→∞

lnE
[
Zβ(Hk(n,m))1/n

]
≤ exp [−Ω(1)] lim sup

n→∞
lnE [Zβ(Hk(n,m))]1/n .

The result then follows from Lemmas 6.2.1 and 6.2.2.

6.3.2. An unlikely event

As a next step, we establish the following.

Lemma 6.3.3. Assume that (6.1.2) holds for some β ≥ k ln 2− ln k. Then there exists z > 0 such that

lim
n→∞

P
[

1

n
lnZβ(Hk(n,m)) ≤ z

]
= 1 while lim sup

n→∞
P
[

1

n
lnZβ(H) ≤ z

]1/n

< 1.

The proof of Lemma 6.3.3, to which the rest of this subsection is dedicated, is an extension of the

argument from [BCOHRV16, Section 6] to the case of finite β. We need the following concentration

result.

Lemma 6.3.4. For any fixed d > 0, β ≥ 0, α > 0, there are δ > 0, δ′ > 0 such that the following is

true. Suppose that (σn)n≥1 is a sequence of maps [n]→ {±1}. Then for all large enough n,

P [| ln(Zβ(H))− E[lnZβ(H)|σ = σn]| > αn|σ = σn] ≤ exp [−δn]

and

P [| ln(Cβ(H,σ))− E [ln Cβ(H,σ)|σ = σn] | > αn|σ = σn] ≤ exp
[
−δ′n

]
.

Proof. This is immediate from the Lipschitz property and McDiarmid’s inequality [McD98, Theo-

rem 3.8].
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We further need several statements about quantities in the planted model conditioned on σ being some

fixed (balanced) colouring.

Lemma 6.3.5. Assume that (6.1.2) is true for some β ≥ k ln 2− ln k. Then there exist a fixed number

ε > 0 and a sequence σn of balanced maps [n]→ {±1} such that

lim
n→∞

P
[

1

n
ln Cβ(H,σ) > ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)

+ ε|σ = σn

]
= 1.

Proof. By Stirling’s formula there is an n-independent number δ > 0 such that for sufficiently large

n we have

P [σ ∈ Bal] ≥ δ. (6.3.5)

Let A = ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
. Using (6.1.2) we know there is ε > 0 such that

lim infn→∞ P
[

1
n ln Cβ(H,σ) > A+ 3ε

]
≥ 0.9. With the concentration bound from Lemma 6.1.5

we get

lim
n→∞

P
[

1

n
ln Cβ(H,σ) > A+ 2ε

]
= 1.

Thus, setting pn = lim infn→∞maxσn∈Bal P
[

1
n ln Cβ(H,σ) > A+ 2ε|σ = σn

]
and using (6.3.5)

implies

1 ≤ lim inf
n→∞

 ∑
σn∈Bal

P
[

1

n
ln Cβ(H,σ) > A+ 2ε|σ = σn

]
P[σ = σn] +

∑
σn /∈Bal

P[σ = σn]


≤ lim inf

n→∞
pn P[σ ∈ Bal] + P[σ /∈ Bal] ≤ lim inf

n→∞
pn + 1− δ

and consequently lim infn→∞ pn ≥ δ. Thus the concentration bound from Lemma 6.3.4 yields

lim
n→∞

max
σn∈Bal

P
[

1

n
ln Cβ(H,σ) > A+ ε|σ = σn

]
= 1,

thereby completing the proof.

Lemma 6.3.6. For any η > 0, there is δ > 0 such that

lim sup
n→∞

1

n
lnP

[
||σ−1(1)| − n/2| > ηn

]
≤ −δ.

Proof. This is immediate from the Chernoff bound.

For a set S ⊂ V , let Vol(S|H) be the sum of the degrees of the vertices in S in the hypergraph H .

Lemma 6.3.7. For any γ > 0, there is α > 0 such that for any set S ⊂ [n] of size |S| ≤ αn and any
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σ : [n]→ {±1} we have lim sup 1
n lnP [Vol(S|H) ≥ γn|σ = σ] ≤ −α.

Proof. Let (Xv)v∈[n] be a family of independent random variables with distribution Bin
((

n−1
k−1

)
, 2p
)

.

Then for any σ and any set S ⊂ [n] the volume Vol(S|H) is stochastically dominated by XS =

2k
∑

v∈S Xv. Furthermore, E[XS ] = 4dk|S|. Thus, for any γ > 0 we can choose an n-independent

α > 0 such that for any S ⊂ [n] of size |S| ≤ αn we have E[XS ] ≤ γn/2. In fact, the Chernoff bound

shows that by picking α > 0 sufficiently small, we can ensure that P [Vol(S|H) ≥ γn|σ = σ] ≤
P [XS ≥ γn] ≤ exp [−αn] , as desired.

Lemma 6.3.8. Let d > 0 and β ≥ 0. Assume that there exist numbers z > 0, ε > 0 and a sequence

(σn)n≥1 of balanced maps [n]→ {±1} such that

lim
n→∞

1

n
E [lnZβ(H)|σ = σn] > z + ε.

Then lim supn→∞ P
[

1
n lnZβ(H) ≤ z

]1/n
< 1.

Proof. Suppose that n is large enough so that 1
nE [lnZβ(H)|σ = σn] > z + ε/2. Set ni = |σ−1

n (i)|
and let T be the set of all τ : [n] → {±1} such that |τ−1(i)| = ni for i = ±1. As Zβ is invariant

under permutations of the vertices, we have

1

n
E [lnZβ(H)|σ = τ ] =

1

n
E [lnZβ(H)|σ = σn] > z + ε/2 for any τ ∈ T. (6.3.6)

Let γ = ε/(4β) > 0. By Lemma 6.3.7 there exists α > 0 such that for large enough n for any set

S ⊂ V of size |S| ≤ αn and any σ : [n]→ {±1} we have

P
[
Vol(S|H) <

γn

2
|σ = σ

]
≥ 1− exp [−αn] . (6.3.7)

Fix such an α > 0 and pick and fix a small 0 < η < α/3. By Lemma 6.3.6 there exists an (n-

independent) number δ = δ(β, ε, η) > 0 such that

P [σ ∈ Bη] ≥ 1− exp [−δn] . (6.3.8)

As σn is balanced, we have |ni − n/2| ≤
√
n for i = ±1. Therefore, if σ ∈ Bη, a map τσ ∈ T can

be obtained from σ by changing the colours of at most 2ηn vertices. Hence, if σ ∈ Bη, we let Hτσ

be the random hypergraph with planted colouring τσ. Further, let Hσ be the hypergraph obtained

by removing from Hτσ each edge that is monochromatic under σ but not under τσ with probability

1− exp [−β] independently and inserting each edge that is monochromatic under τσ but not under σ

with probability (1− exp [−β]) p2 independently. ThenHσ = H in distribution.

For the set Sσ of vertices v with σ(v) 6= τσ(v), our choice of η ensures that |Sσ| < αn. Let ∆
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be the number of edges present in Hτσ but not in Hσ or vice versa. Then ∆ ≤ Vol(Sσ|Hτσ) +

Vol(Sσ|Hσ). Hence, with (6.3.7) there exists a constant c > 0 such that

P [∆ ≤ γn|σ ∈ Bη] ≥ 1− c exp [−αn] . (6.3.9)

Using (6.3.8), (6.3.9) and the fact that removing a single edge can reduce 1
n lnZβ by at most β/n, we

obtain

P
[

1

n
lnZβ(H) ≤ z

]

= P
[

1

n
lnZβ(Hσ) ≤ z

]
≤ exp [−δn] + P

[
1

n
lnZβ(Hσ) ≤ z|σ ∈ Bη

]

≤ exp [−δn] + c exp [−αn] + P
[

1

n
lnZβ(Hσ) ≤ z|σ ∈ Bη,∆ ≤ γn

]

≤ exp [−δn] + c exp [−αn] + P
[

1

n
lnZβ(Hτσ)− γβ ≤ z|σ ∈ Bη,∆ ≤ γn

]
. (6.3.10)

By the choice of γ, (6.3.8), (6.3.9) and (6.3.6) we have

P
[

1

n
lnZβ(Hτσ)− γβ ≤ z|σ ∈ Bη,∆ ≤ γn

]

≤ 2P
[

1

n
lnZβ(Hτσ) ≤ z + ε/4|σ ∈ Bη

]

≤ 3P
[

1

n
lnZβ(H) ≤ z + ε/4|σ = σn

]

≤ 3P
[

1

n
lnZβ(H) ≤ 1

n
E[lnZβ(H)|σ = σn]− ε/4|σ = σn

]
. (6.3.11)

The assertion follows by combining (6.3.10) and (6.3.11) with Lemma 6.3.4.

Proof of Lemma 6.3.3. Lemma 6.3.5 shows that there exist ε > 0 and balanced maps σn : [n] →
{±1} such that

lim
n→∞

P
[

1

n
ln Cβ(H,σ) ≥ ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)

+ ε|σ = σn

]
= 1. (6.3.12)

Clearly, (6.3.12) implies that

lim
n→∞

P
[

1

n
lnZβ(H) ≥ ln 2 +

d

k
ln
(

1− 21−k (1− exp [−β])
)

+ ε|σ = σn

]
= 1. (6.3.13)
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Hence, with z = ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
+ ε/2, Lemma 6.3.8 and (6.3.13) yield

lim sup
n→∞

P
[

1

n
lnZβ(H) ≤ z

]1/n

< 1. (6.3.14)

By comparison, Lemma 6.2.1 and Lemma 6.2.2 imply

lim
n→∞

P
[

1

n
lnZβ(Hk(n,m)) ≤ z

]
= 1 (6.3.15)

and the assertion follows from (6.3.14) and (6.3.15).

6.3.3. Tame colourings

To facilitate the proof of the first part of Proposition 6.1.6 we introduce a random variable that explicit-

ly controls the “cluster size” Cβ(Hk(n,m), σ). The idea of explicitly controlling the cluster size was

introduced in [COZ12] in the “zero temperature” case, and here we generalise it to the case of finite

β. More precisely, we call σ : [n] → {±1} tame in H if σ is balanced and if Cβ(H,σ) ≤ E[Zβ(H)].

Now, let

Zβ,tame(Hk(n,m)) =
∑

σ:[n]→{±1}

exp
[
−βEHk(n,m)(σ)

]
· 1σ is tame.

Lemma 6.3.9. Let 0 ≤ d/k ≤ 2k−1 ln 2 + Ok(1) is such that lim infn→∞
E[Zβ,tame(Hk(n,m))]

E[Zβ(Hk(n,m))] > 0.

Then

lim inf
n→∞

E[Zβ,tame(Hk(n,m))]2

E[Zβ,tame(Hk(n,m))2]
> 0.

Proof. The proof is based on a second moment argument. Mimicking the notation of Section 6.2.2,

we let

Zβ,tame(α) =
∑

σ,τ :〈σ,τ〉=αn

exp
[
−β
(
EHk(n,m)(σ) + EHk(n,m)(τ)

)]
· 1σ is tame · 1τ is tame.

Then it is clear that

E[Zβ,tame(Hk(n,m))2] =
n∑
ν=0

E [Zβ,tame(2ν/n− 1)] .

Furthermore, we have Zβ,tame(α) ≤ Zβ(α) for any α. Let I = [−1 + 2−3k/4, 1 − 2−3k/4]. Then

Lemma 6.2.9 and Lemma 6.2.8 yield∑
α∈I

E [Zβ(α)] = O(E[Zβ(Hk(n,m))]2). (6.3.16)
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By the definition of “tame” we have

∑
α>1−2−3k/4

E [Zβ,tame(α)] ≤ E

[∑
σ

exp
[
−βEHk(n,m)(σ)

]
· 1σ is tame · Cβ(Hk(n,m), σ)

]

≤ E

[∑
σ

exp
[
−βEHk(n,m)(σ)

]
· E [Zβ,tame(Hk(n,m))]

]

= O(E [Zβ,tame(Hk(n,m))]2). (6.3.17)

Moreover,
∑

α<−1+2−3k/4 E [Zβ,tame(α)] =
∑

α>1−2−3k/4 E [Zβ,tame(α)] by symmetry. Hence, equa-

tions (6.3.16) and (6.3.17) yield E[Zβ,tame(Hk(n,m))2] = O(E[Zβ(Hk(n,m))]2).

Finally, the assertion follows from our assumption E[Zβ,tame(Hk(n,m))] = Ω(E[Zβ(Hk(n,m))]).

Lemma 6.3.10. Let d > 0 and β ≥ 0 and assume that lim supn→∞ P [σ is not tame inH]1/n < 1.

Then there is c > 0 such that E[Zβ,tame(Hk(n,m))] ≥ E[Zβ(Hk(n,m))]/c.

Proof. The proof is very similar to the proof of Lemma 6.3.1. We fix α > 0 such that

lim sup
n→∞

P [σ is not tame inH]1/n ≤ exp [−α] < 1.

For any ε > 0, we have

E[Zβ(Hk(n,m))− Zβ,tame(Hk(n,m))]

=
∑

σ:[n]→{±1}

E
[
exp

[
−βEHk(n,m)(σ)

]
1σ is not tame in Hk(n,m)

]
≤
∑
σ∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]
1σ is not tame in Hk(n,m)

]
+
∑
σ 6∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]]
.

We setm0 andMε as in the proof of Lemma 6.3.1 and letA(σ, µ) be the event {EH(σ) = µ, e(H) =

m, |σ−1(1)| = |σ−1(1)|}. Further, we fix an ε > 0 such that P[A(σ, µ)] > exp
[
−α

2n
]

for all
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

σ ∈ Bε, µ ∈Mε. Then for any µ ∈Mε:∑
σ∈Bε

P[{EHk(n,m)(σ) = µ} ∩ {σ is not tame in Hk(n,m)}]

=
∑
σ∈Bε

P[σ is not tame in Hk(n,m)|EHk(n,m)(σ) = µ]P
[
EHk(n,m)(σ) = µ

]
=
∑
σ∈Bε

P[σ is not tame inH|A(σ, µ)]P
[
EHk(n,m)(σ) = µ

]
≤
∑
σ∈Bε

P[σ is not tame inH]

P(A(σ, µ))
P
[
EHk(n,m)(σ) = µ

]
≤ exp

[
−α

2
n
] ∑
σ∈Bε

P
[
EHk(n,m)(σ) = µ

]
.

Letting A = 2n
(
1− 21−k (1− exp [−β])

)m, we get∑
µ∈Mε

∑
σ∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]
1σ is not tame in Hk(n,m)

]
=
∑
µ∈Mε

∑
σ∈Bε

exp [−βµ]P
[
{EHk(n,m)(σ) = µ} ∩ {σ is not tame in Hk(n,m)}

]
≤ A exp

[
−α

2
n
]
.

(6.3.18)

Furthermore, Lemma 6.2.6 shows that there is δ > 0 such that∑
µ6∈Mε

∑
σ∈Bε

exp [−βµ]P
[
EHk(n,m)(σ) = µ

]
≤ A exp [−δn] (6.3.19)

and Lemma 6.2.5 implies that there is δ′ > 0 such that∑
σ 6∈Bε

E
[
exp

[
−βEHk(n,m)(σ)

]]
≤ A exp

[
−δ′n

]
. (6.3.20)

Combining the estimates (6.3.18), (6.3.19) and (6.3.20) and using Lemmas 6.2.1 and 6.2.2 yields

E[Zβ(Hk(n,m))− Zβ,tame(Hk(n,m))] ≤ A exp
[
−max(α/2, δ, δ′)n

]
≤ exp [−Ω(n)]E [Zβ(Hk(n,m))] ,

which proves the assertion.

Corollary 6.3.11. Assume that d/k = 2k−1 ln 2+Ok(1) and that β0 ≥ k ln 2−ln k is such that (6.1.1)

holds for all k ln 2− ln k ≤ β ≤ β0. Then βcrit(d, k) ≥ β0.
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6.4. The cluster size

The proof of this corollary extends a “zero temperature” argument from [BCOHRV16, Section 5] to

the case of β ∈ [0,∞).

Proof. Assume for contradiction that β0 is such that (6.1.1) holds for all k ln 2− ln k ≤ β ≤ β0 but

βcrit(d, k) < β0. By Corollary 6.1.2 we have βcrit(d, k) ≥ k ln 2 − ln k. We pick and fix a number

βcrit(d, k) < β < β0. If we let A = ln 2 + d
k ln

(
1− 21−k (1− exp [−β])

)
, then there exists ε > 0

such that

lim
n→∞

1

n
E[lnZβHk(n,m)] < A− ε. (6.3.21)

On the other hand, (6.1.1) and Lemma 6.1.5 ensure that we can apply Lemma 6.3.10 and find a number

c > 0 such that

E[Zβ,tame(Hk(n,m))] ≥ c · E[Zβ(Hk(n,m))]. (6.3.22)

Hence, Lemma 6.3.9 implies that E[Zβ,tame(Hk(n,m))2] = O(E[Zβ,tame(Hk(n,m))]2). Using the

Paley-Zygmund inequality there is a number C > 0 such that

lim inf
n→∞

P [Zβ,tame(Hk(n,m)) ≥ E[Zβ,tame(Hk(n,m))]/2] ≥ 1/C > 0.

With (6.3.22) and because c/2 · E[Zβ(Hk(n,m))] > exp [nA− nε/3], we see that

lim inf
n→∞

P [Zβ,tame(Hk(n,m)) ≥ exp [nA− nε/3]] > 0.

With Lemma 6.1.4 it follows that

lim
n→∞

P [Zβ,tame(Hk(n,m)) ≥ exp [nA− 2nε/3]] = 1.

With (6.3.21) we get the contradiction

A− ε > lim inf
n→∞

1

n
E[lnZβ,tame(Hk(n,m))] ≥ A− 2ε/3,

which refutes our assumption that βcrit(d, k) < β0.

Proof of Proposition 6.1.6. The assertion is immediate from Corollary 6.3.2 combined with Lem-

ma 6.3.3 and from Corollary 6.3.11.

6.4. The cluster size

In this section we prove Proposition 6.1.7. Throughout the section we assume that d/k = 2k−1 ln 2 +

Ok(1) and that β ≥ k ln 2− ln k.
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

In order to analyse the cluster size, we will show that there is a large set of vertices (the “core”)

whose value cannot be changed without creating a large number of monochromatic edges. Hence, the

contribution of these vertices to the cluster size can be controlled. Then we analyse the contribution of

the remaining vertices.

The proof strategy broadly follows the argument for estimating the cluster size in the “zero tempe-

rature” case from [COZ12]. However, the fact that we are dealing with a finite β causes significant

complications. More precisely, one of the key features of the “zero temperature” case is the existence

of “frozen variables”, i.e. vertices that take the same colour in all colourings in the cluster. Indeed, in

the zero temperature case the problem of estimating the cluster size basically reduces to estimating

the number of “frozen variables”. By contrast, in the case of finite β, frozen variables do not exist. In

effect, we need to take a much closer look.

We let σ : [n]→ {±1} be a map chosen uniformly at random conditioned on the event that σ ∈ Bal

andH be the random hypergraph obtained by inserting each edge that is monochromatic under σ with

probability p1 and each edge that is bichromatic with probability p2.

We say that a vertex v supports an edge e 3 v under σ if σ(e \ {v}) = {−σ(v)}. In this case, we call

e critical. Moreover, if U ⊂ [n], then we say that an edge e of H is U -endangered if |σ(U ∩ e)| = 1

(i.e. the vertices in U ∩ e all have the same colour).

For the first three subsections of this section, it will be convenient to introduce a slightly more ge-

neral construction. Let ω ≥ 0 be fixed and let v1, . . . , vω be vertices chosen uniformly at random

without replacement from all vertices inH . LetH ′ be the hypergraph obtained fromH by removing

v1, . . . , vω and edges e involving one of these vertices. Without loss of generality we can assume that

{v1, . . . , vω} = {n− ω + 1, . . . , n}. The edge set ofH ′ is thus [n′], with n′ = n− ω.

6.4.1. The core

Let core(H,σ) be the maximal set V ′ ⊂ [n] of vertices such that the following two conditions hold.

CR1 Each vertex v ∈ V ′ supports at least 100 edges that consist of vertices from V ′ only,

CR2 No vertex v ∈ V ′ occurs in more than 10 edges that are V ′-endangered under σ.

If V ′, V ′′ are sets that satisfy CR1–CR2, then so does V ′ ∪ V ′′. Hence, the core is well-defined.

Proposition 6.4.1. W.h.p.|core(H,σ)| = n(1− Õk(2−k))

To prove this proposition, we consider the following whitening process on the graph H ′ whose result

U is such that its complement Ū = [n′] \ U is a subset of core(H ′,σ).
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6.4. The cluster size

WH1 LetW contain all vertices ofH ′ that either support fewer than 200 edges or occur in more than

2 edges that are monochromatic under σ.

WH2 Let U = W initially. While there is a vertex v ∈ [n′] \ U such that

• v occurs in more than 5 edges that are [n′] \ U -endangered and contain a vertex from U ,

or

• v supports fewer than 150 edges containing vertices in [n′] \ U only,

add v to U .

Proposition 6.4.1 will be a consequence of the following lemma by taking ω = 0 and noticing that

core(H ′,σ) is a superset of the set Ū .

Lemma 6.4.2. Let U be the outcome of the process WH1–WH2 on H ′. Then |U | = n′Õk(2
−k)

w.h.p..

The rest of this subsection is dedicated to the proof of this lemma. We first bound the size of the set

W generated by WH1.

Lemma 6.4.3. W.h.p. the set W contains n′Õk(2−k) vertices.

Proof. Our assumptions on β and d ensure that the number of monochromatic edges containing a

fixed vertex v is binomially distributed with mean Õk(2−k). Therefore, the probability that v occurs

in more than 2 monochromatic edges is bounded by Õk(2−2k). Furthermore, the number of edges

supported by v is binomially distributed with mean k ln 2 +Ok(1). Hence, by the Chernoff bound the

probability that v supports fewer than 200 edges is bounded by Õk(2−k). Consequently,

E [|W |] = n′Õk(2
−k). (6.4.1)

Finally, either adding or removing a single edge from the hypergraph can alter the size ofW by at most

k. Therefore, (6.4.1) and Azuma’s inequality imply that |W | = n′Õk(2
−k) w.h.p., as desired.

In the next step we state two results excluding some properties of small sets of vertices inH ′.

Lemma 6.4.4. W.h.p. the random hypergraphH ′ enjoys the following property.

There is no set T 6= ∅ of vertices with |T | ≤ n′/k8 such that at least 0.9|T | vertices

from T occur in two or more [n′] \ T -endangered edges that contain another vertex

from T .

(6.4.2)

Proof. For a set T ⊂ [n′], we define ε = |T |/n′ and we let Xi(T ) for i ∈ {2, ...k} be the number of

edges that are [n′] \T -endangered and contain exactly i vertices from T . Then Xi(T ) is stochastically
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

dominated by a binomial random variable Bin
(

(1 + o(1))2i+1−k(εn′
i

)(
n′

k−i
)
, 2p
)

. Indeed, there are(
εn′

i

)
ways to choose i vertices from T and at most

((1−ε)n′
k−i

)
≤
(
n′

k−i
)

ways to choose k − i vertices

from [n′] \ T . Moreover, these k − i vertices are required to have the same colour and because we

assumed that σ is balanced, this gives rise to the (1 + o(1))2i+1−k-factor. Let X(T ) =
∑k

i=2Xi(T )

be the total number of edges that are [n′] \ T -endangered and contain at least two vertices from T .

Then using the rough upper bound
(
n
k

)
2p ≤ n2k ln 2 we obtain

E[X(T )] =
k∑
i=2

E[Xi(T )] ≤ kE[X2(T )] ≤ 3.6k3ε2n′. (6.4.3)

Let E(T ) be the event thatX(T ) ≥ 1.8|T |. If the set T satisfies (6.4.2) then E(T ) occurs. The Chernoff

bound from Lemma 6.2.4 and the above upper bound (6.4.3) on E[X(T )] yield

P[E(T )] ≤ exp

[
−1.8εn′ ln

(
1

2ek3ε

)]
.

Hence, the probability of the event E that there is a set T of size |T | ≤ n′/k8 such that E(T ) occurs is

bounded by

P [E ] ≤
∑

T :|T |≤n′/k8

P [E(T )] ≤
∑

1/n′≤ε≤1/k8

(
n′

εn′

)
exp

[
−1.8εn′ ln

(
1

2ek3ε

)]

≤
∑

1/n′≤ε≤1/k8

(
2en′

εn′

)εn′
exp

[
−1.8εn′ ln

(
1

2ek3ε

)]

≤
∑

1/n′≤ε≤1/k8

exp
[
εn′ (5 + 5.6 ln(k) + 0.8 ln(ε))

]
= o(1),

as claimed.

Lemma 6.4.5. W.h.p. the random hypergraphH ′ enjoys the following property.

There is no set T 6= ∅ of vertices of size |T | ≤ n′/k6 such that at least 0.09|T |
vertices from T support at least 20 edges that contain another vertex from T .

(6.4.4)

Proof. For a set T ⊂ [n′] and a set Q ⊂ [T ], we let E(T,Q) be the event that each vertex v ∈ Q

supports at least 20 edges that contain another vertex from T . Let ε = |T |/n′. Then for each vertex

v the number Xv of edges that v supports and that contain another vertex from T is stochastically

dominated by a binomial random variable Bin
(

(1 + o(1))22−kεn′
(
n′

k−2

)
, p2

)
. Indeed, there are εn′−

1 ways to choose another vertex v′ 6= v from T , and at most
(
n′

k−2

)
ways to choose k − 2 further

vertices to complete the edges. Moreover, these k− 2 vertices are required to have colour −σ(v), and

because we assumed that σ is balanced this gives rise to the (1 + o(1))22−k-factor. Furthermore, the
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random variables Xv are mutually independent, because the edges in question are distinct as they are

supported by the distinguished vertex v. Therefore, using the rough upper bound
(
n
k

)
p2 ≤ n2k ln 2,

we obtain

P [E(T,Q)] ≤
∏
v∈Q

P [Xv ≥ 20]

≤ P
[
Bin

(
(1 + o(1))22−kεn′

(
n′

k − 2

)
, p2

)
≥ 20

]|Q|
≤ (k2ε)20|Q|. (6.4.5)

Now, let E(T ) be the event that there is a set Q ⊂ [T ] of size |Q| ≥ 0.09|T | such that E(T,Q) occurs.

Then (6.4.5) implies that

P [E(T )] ≤ 2|T |(k2|T |/n′)1.8|T |.

Hence, the probability of the event E that there is a set T of size |T | ≤ n′/k6 such that E(T ) occurs is

bounded by

P [E ] ≤
∑

T :|T |≤n′/k6

P [E(T )] ≤
∑

1≤t≤n′/k6

(
n′

t

)
2t(k2t/n′)1.8t

≤
∑

1≤t≤n′/k6

(
2en′

t

)t
(k2t/n′)1.8t ≤

∑
1≤t≤n′/k6

[
2e(t/n′)0.8k3.6

]t
= o(1),

as claimed.

Proof of Lemma 6.4.2. By Lemmas 6.4.4 and 6.4.5 we may assume that H ′ enjoys the properties

(6.4.2) and (6.4.4). We are going to argue that |U | ≤ k|W | w.h.p.. Indeed, assume for contradiction

that |U | > k|W | and let U ′ be the set obtained by WH2 when precisely (k−1)|W | vertices have been

added to U ; thus, |U ′| = k|W |. Then by construction each vertex v ∈ U ′ has one of the following

properties.

1. v belongs to W , or

2. v occurs in two or more [n′] \ U ′-endangered edges, or

3. v supports at least 20 edges that contain another vertex from U ′.

Let U0 ⊂ U ′ be the set of all v ∈ U ′ that satisfy (1), let U1 ⊂ U ′ \U0 be the set of all v ∈ U ′ \U0 that

satisfy (2) and let U2 = U ′ \ (U0 ∪ U1). There are two cases to consider.

Case 1: |U1| ≥ 0.9|U ′| then (6.4.2) implies that |U ′| > n′/k8.

Case 2: |U1| < 0.9|U ′| then |U0| + |U2| ≥ 0.1|U ′| and since |U0| = |W | and |U ′| = k|W | we have

|U2| ≥ 0.09|U ′| for k large enough. Thus, (6.4.4) entails that |U ′| > n′/k6.
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Hence, in either case we have k|W | = |U ′| > n′/k8 and thus |W | > n′/k9. But by Lemma 6.4.3 we

have |W | = n′Õk(2
−k) w.h.p.. Thus, we conclude that |U | ≤ k|W | = n′Õk(2

−k) w.h.p..

6.4.2. The backbone

We define the backbone back(H,σ) as the set of all vertices v ∈ [n] \ core(H,σ) such that the

following two conditions hold.

BB1 v supports at least one edge e such that e \ {v} ⊂ core(H,σ) and

BB2 v does not occur in a {v} ∪ core(H,σ)-endangered edge.

GivenH ′, we simply reconstructH (in distribution) by adding for each i ∈ [ω] each monochromatic

edge involving vi with probability p1, and each bichromatic edge involving vi with probability p2. We

let A be the event that

• no vertex v ∈ [n′] is incident with more than one edge containing a vertex from {v1, . . . , vω},
and

• there is no edge containing two vertices from {v1, . . . , vω}.

With the notation from the previous subsection we let Ū be the complement of the set of vertices

produced by the whitening process WH1–WH2 applied to the hypergraph H ′. We note that |Ū | =

n′(1− Õk(2−k)) w.h.p. by Lemma 6.4.2. In addition, if A occurs, then Ū ⊂ core(H,σ). In this case

the following lemma states the probabilities for some events concerning the vertices vi, i ∈ [ω].

Lemma 6.4.6. Assume thatA holds. Let l ≥ 0 be fixed. Then the following statements are true for all

i ∈ [ω]:

1. The probability that vi supports exactly l edges is (1 + o(1)) λl

l! exp[λ] where

λ =
d

2k−1 − 1 + exp [−β]
= k ln 2 + Õk(2

−k).

2. The probability that vi occurs in exactly l monochromatic edges is (1 + o(1)) (λ′)l

l! exp[λ′] where

λ′ = Õk(2
−k).

3. The probability that there exist exactly l edges blocking vi and containing at least one vertex

outside {vi} ∪ Ū is (1 + o(1)) (λ′′)l

l! exp[λ′′] where λ′′ = Õk(2
−k).

4. The probability that exactly l edges are {vi} ∪ Ū -endangered is (1 + o(1)) (λ′′′)l

l! exp[λ′′′] where

λ′′′ = Õk(2
−k).

Proof. For each i ∈ [ω], the number of edges supported by vi is Bin
((

n−1
k−1

)
(1 + o(1))21−k, p2

)
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distributed and the number of monochromatic edges involving vi is Bin
((

n−1
k−1

)
(1 + o(1))21−k, p1

)
distributed. Indeed, because we assumed that σ is balanced, there are

(
n−1
k−1

)
(1 + o(1))21−k edges e

involving vi such that σ(v) = −σ(vi) (respectively σ(v) = σ(vi)) for all v ∈ e \ {vi} and each

of them is added independently at random with probability p2 (respectively p1). Hence the Poisson

approximation of the binomial distribution shows that the probability that vi supports precisely l edges

is (1 + o(1)) λl

l! exp[λ] with

λ =

(
n− 1

k − 1

)
p2

2k−1
=

d

2k−1 − 1 + exp [−β]
,

which proves assertion (1). Moreover, since β = Ωk(k ln 2) and d = Õk(2
k), the probability that vi

occurs in precisely l monochromatic edges is (1 + o(1)) (λ′)l

l! exp[λ′] with

λ′ =

(
n− 1

k − 1

)
p1

2k−1
= λÕk(2

−k) = Õk(2
−k).

This implies assertion (2).

The probability that in an edge blocking vi at least one of the vertices is outside {vi} ∪ Ū is Õk(2−k)

by Lemma 6.4.2. Using (1), the number of edges blocking vi and containing at least one vertex outside

{vi}∪ Ū is stochastically dominated by a Bin
((

n−1
k−1

)
Õk(4

−k), p2

)
random variable. (3) then follows

by the Poisson approximation.

If an edge e is {vi} ∪ Ū -endangered it is either monochromatic or such that |(e \ {vi}) ∩ Ū | ≤ k − 2.

Given H ′, these two events are independent and the numbers of edges of each type are binomially

distributed. The expected number of edges of the first type is Õk(2−k) by (2). The expected number

of edges of the second type is Õk(2−k) by Lemma 6.4.3. Thus (4) follows again from the Poisson

approximation.

6.4.3. The rest

Let rest(H,σ) = [n] \ (core(H,σ) ∪ back(H,σ)).

Proposition 6.4.7. W.h.p. |rest(H,σ)| = n2−k(1 + Õk(2
−k))

Proof. rest(H,σ) contains at least all vertices that do not support an edge. As the number of edges

that a vertex supports is binomially distributed with mean k ln 2 + Ok(1), by the Chernoff bound we

have |rest(H,σ)| ≥ n2−k(1 + Õk(2
−k)) w.h.p.. Now let Y = rest(H,σ) and let ω = ω(n) be a
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slowly diverging function. Let ε = Õk(2
−k). We are going to show that

E[Y (Y − 1) · . . . · (Y − ω + 1)] ≤
(

(1 + ε+ o(1))n

2k

)ω
. (6.4.6)

This bound implies the assertion; indeed,

P
[
Y > (1 + 2ε)n2−k

]
≤ P

[
Y (Y − 1) · . . . · (Y − ω + 1) > ((1 + 2ε− o(1))n2−k)ω

]
≤ E[Y (Y − 1) · . . . · (Y − ω + 1)]

((1 + 2ε− o(1))n2−k)ω
≤
(

1 + ε+ o(1)

1 + 2ε− o(1)

)ω
= o(1).

To prove (6.4.6), we observe that Y (Y −1) · . . . · (Y −ω+1) is just the number of ordered ω-tuples of

vertices belonging to neither the core nor the backbone – that is, belonging to Y . Hence, by symmetry

and the linearity of expectation,

E[Y (Y − 1) · . . . · (Y − ω + 1)] ≤ nω P [v1, . . . , vω ∈ Y ] .

Thus, we are left to estimate P [v1, . . . , vω ∈ Y ]. If A occurs, then Ū ⊂ core(H,σ). Furthermore, if

Ū ⊂ core(H,σ) and v1, . . . , vω ∈ Y , then for any i ∈ [ω] one of the following must occur.

1. There is no edge blocking vi that consists of vertices in {vi} ∪ Ū only.

2. vi occurs in more than 10 edges that are {vi} ∪ Ū -endangered.

3. There are at least 200 edges blocking vi but fewer than 100 of them consist of vertices in {vi}∪Ū
only.

4. There are at most 200 edges blocking vi and one edge e such that vi ∈ e and that is {vi} ∪ Ū -

endangered.

Indeed, if a vertex vi is in rest(H,σ) then it violates one of the conditions CR1 and CR2 and one of

BB1 and BB2. Therefore we have to consider several cases. If vi violates BB1, then (1) is true. If it

violates CR1 and BB2, then either (3) or (4) is true. If vi violates CR2 and one of BB1 and BB2, then

(2) is true.

Let Bi be the event that one of the above is true for i ∈ [ω]. By the principle of deferred decisions we

have P [A] = 1−O(ω2/n) and therefore we get

P [v1, . . . , vω ∈ Y ] ≤ P [v1, . . . , vω ∈ Y |A] + o(1) ≤ P [∩ωi=1Bi|A] + o(1).

Given that there is no edge containing two vertices from v1, ..., vω, the events B1, . . . ,Bω are mutually

independent. Therefore, P [∩ωi=1Bi|A] = P [B1|A]ω. Given that A occurs, by Lemma 6.4.6 the proba-

bility of event (1) is asymptotically equal to 2−k+ Õk(4
−k) and the probabilities of events (2), (3) and
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(4) are asymptotically equal to Õk(4−k). Hence, P [B1|A] = 2−k+Õk(4
−k) and P [v1, . . . , vω ∈ Y ] ≤

(2−k + Õk(4
−k) + o(1))ω = ((1 + ε+ o(1))2−k)ω.

We define free(H,σ) as the set of all vertices v ∈ rest(H,σ) such that v occurs only in edges e such

that e ∩ core(H,σ) is bichromatic.

Proposition 6.4.8. W.h.p. |rest(H,σ) \ free(H,σ)| = nÕk(4
−k). In particular, |free(H,σ)| =

n(2−k + Õk(4
−k)).

Proof. We introduce Y = |rest(H,σ) \ free(H,σ)| and proceed just as in the proof of Propositi-

on 6.4.7. To estimate P [v1, . . . , vω ∈ Y ] we observe that if Ū ⊂ core(H,σ) and v1, . . . , vω ∈ Y then

for any i ∈ [ω] one of the following must occur.

1. There is no edge blocking vi that consists of vertices in {vi} ∪ Ū only and vi occurs in at least

one edge that is {vi} ∪ Ū -endangered.

2. vi occurs in more than 10 edges that are {vi} ∪ Ū -endangered.

3. There are at least 200 edges blocking vi but fewer than 100 of them consist of vertices in {vi}∪Ū
only.

4. There are at most 200 edges blocking vi and one edge e such that vi ∈ e and that is {vi} ∪ Ū -

endangered.

Events (2), (3) and (4) are as in the proof of Proposition 6.4.7 and their probabilities are asymptotically

equal to Õk(4−k). By Lemma 6.4.6 the probability of (1) is Õk(4−k) and the assertion follows.

In the following three subsections we calculate the cluster size Cβ(H,σ) up to a small error term.

We proceed by first eliminating the contribution of the vertices in the core and in a second step the

contribution of the vertices in the backbone. Finally we calculate the contribution of the vertices in

rest(H,σ).

6.4.4. Rigidity of the core

In the following we let x = k−5. We first show that the cluster of σ under H mostly consists of

configurations at distance less than 2x from σ.

Lemma 6.4.9. W.h.p.

Cβ(H,σ) ∼
∑

τ∈{±1}n:〈σ,τ〉≥(1−x)n

exp [−βEH(τ)]
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To prove this result we recall the notation from Section 6.2. We need the following technical lemma:

Lemma 6.4.10. Let d/k = 2k−1 ln 2 +Ok(1) and β ≥ k ln 2− ln k. Then supα∈[2/3,1−k−5] Λβ(α) <

Λβ(1)− Ωk(k
−5).

Proof. We observe that for α ∈ [1− k−5, 1− k−7],

Λ′β(α) =
ln(1− α)

2
+

d

2k
+ Õk(2

−k) = k ln 2 +Ok(ln k) ≥ 1. (6.4.7)

An expansion of Λβ(α) near α = 1 gives Λβ(1− k−7) ≤ Λβ(1) +Ok(k
−6) and together with (6.4.7)

this implies

Λβ(1− k−5) ≤ Λβ(1)− Ωk(k
−5). (6.4.8)

Further, using that Λ′β(α) > 0 if α > 1− 1.99 ln k/k (as in the proof of Lemma 6.2.9) and (6.4.8) we

obtain

sup
α∈[1−1.99 ln k/k,1−k−5]

Λβ(α) ≤ Λβ(1− k−5) ≤ Λβ(1)− Ωk(k
−5). (6.4.9)

A study of Λβ(α) also gives

sup
γ∈[1.99,2.01]

Λβ(1− γ ln k/k) ≤ Λβ(1)− Ωk(k
−5) (6.4.10)

and Λβ(α) − Λβ(1 − 2.01 ln k/k) = H
(

1+α
2

)
+ Õk

((
2

2.01

)k) ≤ 0 for α ∈ [2/3, 1 − 2.01 ln k/k],

which leads to

sup
α∈[2/3,1−2.01 ln k/k]

Λβ(α) ≤ H
(

1 + α

2

)
+ Õk

((
2

2.01

)k)
+ Λβ(1− 2.01 ln k/k)

≤ Λβ(1)− Ωk(k
−5). (6.4.11)

Combining (6.4.9), (6.4.10) and (6.4.11) completes the proof of the assertion.

Proof of Lemma 6.4.9. Given σ and α ∈ [−1, 1] and using Lemma 6.2.2 we have

E

 ∑
τ∈{±1}n:〈σ,τ〉=αn

exp [−βEH(τ)]

∣∣∣∣∣∣ |e(H)−m| ≤ m2/3



=
E
[∑

τ :〈σ,τ〉=αn exp
[
−βEHk(n,p)(σ)

]
exp

[
−βEHk(n,p)(τ)

]∣∣∣ |e(Hk(n, p))−m| ≤ m2/3
]

E
[
exp

[
−βEHk(n,p)(σ)

]∣∣ |e(Hk(n, p))−m| ≤ m2/3
]

≤
E [Zβ(α)]

E [Zβ(H(n,m))]
exp

[
O
(
m2/3

)]
.
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In order to derive the last line, we used an observation similar to equation (6.2.5) and Lemma 6.2.2.

We observe that we have w.h.p. Cβ(H,σ) ≥ exp [−βEH(σ)] ∼ exp
[
−nÕk(2−k)

]
by Lemma 6.2.6.

Hence,

E

 ∑
τ∈{±1}n:2/3n≤〈σ,τ〉<(1−x)n

exp [−βEH(τ)]

∣∣∣∣∣∣ |e(H)−m| ≤ m2/3


≤

n∑
ν=0

E [Zβ(2ν/n− 1)]

E [Zβ(H(n,m))]
12ν/n−1∈[2/3,(1−x)] exp

[
O
(
m2/3

)]

≤ exp

[
n

(
sup

α∈[2/3,1−x]
Λβ(α)− Λβ(1) + Õk(2

−k)

)]
Cβ(H,σ)

≤ exp
[
−nΩk(k

−5)
]
Cβ(H,σ)

by Lemmas 6.2.7 and 6.4.10. It follows from Markov’s inequality that w.h.p.∑
τ∈{±1}n:2/3n≤〈σ,τ〉<(1−x)n

exp [−βEH(τ)] = o(Cβ(H,σ)).

We now approximate Cβ(H,σ) based on the previous decomposition of the vertex set V . Given a

k-uniform hypergraph H , σ : [n] → {±1}, and three maps τcore : core(H,σ) → {±1}, τback :

back(H,σ) → {±1} and τrest : rest(H,σ) → {±1}, we define EH(τcore, τback, τrest) as EH(τ)

for the unique τ whose restriction to core(H,σ) (respectively back(H,σ), rest(H,σ)) is given by

τcore (respectively τback, τrest).

We introduce the “restricted” cluster size

Cback+rest
β (H,σ) =

∑
τback,τrest

exp [−βEH(σcore, τback, τrest)] .

The summation is over τback : back(H,σ)→ {±1} and τrest : rest(H,σ)→ {±1}. The aim of this

section is to prove the following.

Proposition 6.4.11. W.h.p.

1

n
ln Cback+rest

β (H,σ) ≤ 1

n
ln Cβ(H,σ) ≤ 1

n
ln Cback+rest

β (H,σ) + exp [−88β]

In order to proceed we first need a few additional results. We introduce the set EH(τ,σ) of edges that
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

• are supported by a vertex v such that τcore(v) 6= σcore(v) and

• contain two or more vertices v′ such that τcore(v
′) 6= σcore(v

′).

The following lemma is reminiscent of [COZ12, Lemma 5.9].

Lemma 6.4.12. W.h.p. for all τ : [n]→ {±1} satisfying 〈σ, τ〉 ≥ (1− x)n it holds that

|EH(τ,σ)| ≤ 2|{v : σcore(v) 6= τcore(v)}|.

Proof. We claim that w.h.p. H has the following property. Let T ⊂ V be a set of size |T | ≤
n/(2e3k2λ2). Then there are no more than 2|T | edges that are supported by a vertex in T and contain

a second vertex from T . Indeed, by a first moment argument, with |T | = tn the probability that there

is a set T that violates the above property is bounded by

(
n

tn

)(
(1 + o(1))λn

2tn

)
(kt2)2tn ≤

[
(1 + o(1))

e

t

(
λe

2t

)2 (
kt2
)2]tn

≤
(
(1 + o(1))t

(
e3λ2k2

))tn
= o(1).

With T = {v : σcore(v) 6= τcore(v)} and x = k−5, we have |T | ≤ 2xn < n/(2e3k2λ2), which

completes the proof.

Lemma 6.4.13. W.h.p. for all τ : [n]→ {±1} satisfying 〈σ, τ〉 ≥ (1− x)n it holds that

EH(τcore, τback, τrest) ≥ EH(σcore, τback, τrest) + 88 dist(τcore,σcore).

Proof. Denote for a vertex v ∈ V and τ : [n]→ {±1} by

• X(v) the number of critical (under σ) edges e supported by v such that e \ {v} ⊂ core(H,σ),

• Y (v) the number of core(H,σ)-endangered edges containing v,

• Mτ (v) the number of edges containing v that are monochromatic under (σcore, τback, τrest).

We can lower bound EH(τcore, τback, τrest) in terms of EH(σcore, τback, τrest) as

EH(τcore, τback, τrest) ≥ EH(σcore, τback, τrest) +
∑

v : τcore(v)6=σcore(v)

(X(v)−Mτ (v))− |EH(τ,σ)|.

(6.4.12)

Only edges that were core(H,σ)-endangered can be monochromatic under (σcore, τback, τrest), imp-

lying that Mτ (v) ≤ Y (v). In particular

∀v ∈ core(H,σ), X(v)−Mτ (v) ≥ 90. (6.4.13)
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On the other hand, we can upper bound |EH(τ,σ)| with Lemma 6.4.12. Replacing in (6.4.12) and

using (6.4.13) gives

EH(τcore, τback, τrest) ≥ EH(σcore, τback, τrest) + 88 dist(τcore,σcore)

w.h.p., thereby completing the proof.

Proof of Proposition 6.4.11. We first establish the lower bound on Cβ(H,σ). With Proposition 6.4.1

we have 〈σ, (σcore, τback, τrest)〉 ≥ (1 − x)n w.h.p. for all (τback, τrest). Hence with Lemma 6.4.9

w.h.p.

Cβ(H,σ) ≥
∑

τback,τrest

exp [−βEH(σcore, τback, τrest)] = Cback+rest
β (H,σ).

To derive the upper bound we write

Cβ(H,σ) ≤
∑
τcore :

〈σcore,τcore〉≥(1−x)n

∑
τback,τrest

[−βEH(τcore, τback, τrest)]

≤
∑
τcore :

〈σcore,τcore〉≥(1−x)n

exp [−88βdist(σcore, τcore)] Cback+rest
β (H,σ), (6.4.14)

where the second inequality holds w.h.p. by Lemma 6.4.13. Finally

∑
τcore :

〈σcore,τcore〉≥(1−x)n

exp [−88βdist(σcoreτcore)] =

xn/2∑
i=0

(
n

i

)
exp [−88βi] ≤

n∑
i=0

(
n

i

)
exp [−88βi]

= (1 + exp [−88β])n ≤ exp [n exp [−88β]] .

(6.4.15)

Replacing with (6.4.15) in (6.4.14) completes the proof.

6.4.5. Rigidity of the backbone

We proceed one step further by eliminating the vertices in the backbone and consequently comparing

Cback+rest
β (H,σ) to Crest

β (H,σ), where

Crest
β (H,σ) =

∑
τrest

exp [−βEH(σcore,σback, τrest)] .

The sum is over τrest : rest(H,σ)→ {±1}. We prove the following result.
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Proposition 6.4.14. W.h.p.

1

n
ln Crest

β (H,σ) ≤ 1

n
ln Cback+rest

β (H,σ) ≤ 1

n
ln Crest

β (H,σ) + Õk(4
−k)

Proof. The left inequality is obvious. To prove the right inequality we observe that, by definition of

the backbone, for any τback : back(H,σ)→ {±1} and τrest : rest(H,σ)→ {±1}, the following is

true:

EH(σcore, τback, τrest) ≥ EH(σcore,σback, τrest) + dist(σback, τback). (6.4.16)

Indeed for any vertex v ∈ back(H,σ) with σback(v) 6= τback(v) and any edge e 3 v,

• either v supports e and e \ {v} ⊂ core(H,σ), in which case it is bichromatic under the assi-

gnment (σcore,σback, τrest) and monochromatic under (σcore, τback, τrest),

• or e is not {v}∪core(H,σ)-endangered and is bichromatic both under (σcore,σback, τrest) and

under (σcore, τback, τrest).

Moreover, by the definition of back(H,σ), there is at least one edge of the first type for any v ∈
back(H,σ) with σback(v) 6= τback(v).

Using the definition of Cback+rest
β (H,σ) and (6.4.16) yields

Cback+rest
β (H,σ) ≤

∑
τback,τrest

exp [−βdist(σback, τback)] exp [−βEH(σcore,σback, τrest)]

≤
∑
τback

exp [−βdist(σback, τback)] Crest
β (H,σ). (6.4.17)

The remaining sum can easily be upper-bounded:

∑
τback

exp [−βdist(σback, τback)] =

|back(H,σ)|∑
i=0

(
|back(H,σ)|

i

)
exp [−βi]

= (1 + exp [−β])|back(H,σ)| ≤ exp [exp [−β] |back(H,σ)|]
(6.4.18)

The upper bound of Proposition 6.4.14 then follows from (6.4.17) and (6.4.18) combined with Propo-

sition 6.4.1.

6.4.6. The remaining vertices

We finally deal with the vertices that belong neither to the core nor to the backbone. As anticipated in

Proposition 6.4.8, most of them are free. This yields the following result.
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Proposition 6.4.15. W.h.p.

1

n
ln Crest

β (H,σ) =
ln 2

2k
− βEH(σ)

n
+ Õk(4

−k)

To prove this, we need the following result. Let M ′σ(v) be the number of monochromatic edges invol-

ving v in the configuration σ.

Lemma 6.4.16. W.h.p. ∑
v∈rest(H,σ)\free(H,σ)

M ′σ(v) = nÕk(4
−k)

Proof. We start with the following observation:∑
v∈rest(H,σ)\free(H,σ)

M ′σ(v) ≤
∑

v∈V :M ′σ(v)>2

M ′σ(v) + 2|rest(H,σ) \ free(H,σ)|

The number of monochromatic edges involving a vertex v is a Bin
((

n−1
k−1

)
(1 + o(1))2k−1, p1

)
ran-

dom variable. Hence
∑

v∈V :M ′σ(v)>2M
′
σ(v) = nÕk(4

−k). Applying Proposition 6.4.8 completes the

proof.

Proof of Proposition 6.4.15. By the definition of free(H,σ), the number of monochromatic edges

EH(σcore,σback, τrest) does not depend on the values τrest(v) for v ∈ free(H,σ). Consequently,

Crest
β (H,σ) ≥ 2|free(H,σ)| exp [−βEH(σ)] .

Together with Proposition 6.4.8, this gives the lower bound on 1
n ln Crest

β (H,σ). For the upper bound,

we start with the general inequality

1

n
ln Crest

β (H,σ) ≤ ln 2

n
|rest(H,σ)| − β

n
inf
τrest

EH(σcore,σback, τrest).

As the number of monochromatic edges does not depend on the values of the vertices in free(H,σ),

we have

inf
τrest

EH(σcore,σback, τrest) ≥ EH(σ)−
∑

v∈rest(H,σ)\free(H,σ)

M ′σ(v).

Hence, we obtain

1

n
ln Crest

β (H,σ) ≤ ln 2

n
|rest(H,σ)| − βEH(σ)

n
+
β

n

∑
v∈rest(H,σ)\free(H,σ)

M ′σ(v). (6.4.19)

The upper bound follows by combining (6.4.19) with Proposition 6.4.7 and Lemma 6.4.16.

123



6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

Proof of Proposition 6.1.7. Combining Propositions 6.4.11, 6.4.14 and 6.4.15 we obtain that w.h.p.

1

n
ln Cβ(H,σ) =

ln 2

2k
− βEH(σ)

n
+ Õk(4

−k). (6.4.20)

The number of monochromatic edges in the planted model is tightly concentrated by Chernoff bounds.

Therefore, we get w.h.p.

EH(σ) =

(
n

k

)
21−kp1(1 + o(1)) ∼ exp [−β]

2k−1 − 1 + exp [−β]

d

k
n.

For d/k = 2k−1 ln 2 +Ok(1) and β ≥ k ln 2− ln k, we have EH(σ) = ln 2 exp [−β]n+ Õk(4
−k)n.

Inserting this in (6.4.20) yields w.h.p.

1

n
ln Cβ(H,σ) =

ln 2

2k
− β ln 2 exp [−β] + Õk(4

−k),

thereby proving Proposition 6.1.7.

6.5. Existence of Φd,k(β)

Theorem 6.5.1. The limit Φd,k(β) exists for any d > 0, k ≥ 3, β ≥ 0.

We prove the existence of the limit using the so-called interpolation method. The proof is very similar

to and adapted from [BGT13]. Let us first shortly summarize the idea of the interpolation method.

Given Hk(n,m) and n1, n2 such that n = n1 + n2 and M1
d
= Bin(m,n1/n), we can construct a

sequence of hypergraphs interpolating between Hk(n,m) and a disjoint union of Hk(n1,M1) and

Hk(n2,m − M1), where we have split the set of nodes [n] into two sets [n1] = {1, ..., n1} and

{n1 + 1, ..., n} which we denote, with some abuse of notation, as [n2].

To realize this interpolation, for any 0 ≤ r ≤ m, let Hk(n,m, r) be the random graph on nodes

[n] obtained as follows: It contains m hyperedges, where the first r hyperdeges e1, ..., er are selected

independently and uniformly at random from all possible hyperedges on Hk(n,m). The remaining

m− r hyperdeges are generated independently and uniformly at random from all possible hyperedges

on nodes [n1] with probability n1/n and from all possible hyperedges on nodes [n2] with probability

n2/n .

We observe that Hk(n,m,m) = Hk(n,m) and that Hk(n,m, 0) is a disjoint union of the graphs

Hk(n1,M1), Hk(n2,M2) conditioned onM1 +M2 = m, whereMj = Bin(m,nj/n).

A centerpiece of the interpolation method is the following lemma:
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Lemma 6.5.2. For every r = 1, ...,m,

E[lnZβ(Hk(n,m, r))] ≥ E[lnZβ(Hk(n,m, r − 1))].

Proof. We letHk(n,m, r−1) be obtained fromHk(n,m, r) by deleting a hyperdege chosen uniform-

ly at random from all e1, ..., er and adding a hyperedge e to nodes [n1] or [n2] with the appropriate

probabilities. Let H0
k be the hypergraph obtained in this interpolation process from Hk(n,m, r) after

deleting but before inserting a hyperedge. We let Z0
β and π0

β be the corresponding partition function

and Gibbs measure respectively.

We now show that conditional on any realization of the graph H0
k , we have

E[lnZβ(Hk(n,m, r))|H0
k ] ≥ E[lnZβ(Hk(n,m, r − 1))|H0

k ].

Note that since we fix H0
k , the only randomness underlying the expectation arises from choosing the

hyperedge e = (ni1 , ..., nik). We have

E[lnZβ(Hk(n,m, r))|H0
k ]− lnZ0

β

= E

[
ln
Zβ(Hk(n,m, r))

Z0
β

− |H0
k

]

= E

[
ln

∑
σ 1{not all σij identical} exp [−βE(σ)] + exp [−β]

∑
σ 1{σi1=...=σik}

exp [−βE(σ)]∑
x exp [−βE(x)]

|H0
k

]
.

Since β <∞, we have 0 ≤ (1− exp [−β])π0
β(σi1 = ... = σik) < 1. Using the expansion ln(1−x) =

−
∑

j≥1 x
j/j, we get

E[lnZβ(Hk(n,m, r))|H0
k ]− lnZ0

β

= −E

 ∞∑
j=1

(1− exp [−β])j π0
β(σi1 = ... = σik)j

j
|H0

k



= −
∞∑
j=1

(1− exp [−β])j

j
E

 ∑
σ(1),...,σ(j)

exp
[
−β
∑j

s=1E(σ(j))
]

(Z0
β)j

1{σ(s)
i1

=...=σ
(s)
ik
∀s∈[j]}|H

0
k



= −
∞∑
j=1

(1− exp [−β])j

j

∑
σ(1),...,σ(j)

exp
[
−β
∑j

s=1E(σ(j))
]

(Z0
β)j

E
[
1{σ(s)

i1
=...=σ

(s)
ik
∀s∈[j]}|H

0
k

]
,

where the sum
∑

σ(1),...,σ(j) is over j-tupels of colour assignments. We now introduce equivalency

classes on [n] for each such j-tupel for all j ∈ {1, ...,∞}. For t, r ∈ [n], we say that t is equiva-
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6. Condensation phase transition in random hypergraph 2-colouring for finite inverse temperatures

lent to r, denoted by t ∼ r, if σ(s)
t = σ

(s)
r for all s ∈ [j]. Let Ol, 1 ≤ l ≤ J be the correspon-

ding equivalency classes. For an edge (ni1 , ..., nik) generated uniformly at random, it follows that

E
[
1{σ(s)

i1
=...=σ

(s)
ik
∀s∈[j]}|H

0
k

]
=
∑J

l=2

(
|Ol|
n

)k
and thus

E
[
lnZβ(Hk(n,m, r))|H0

k

]
− lnZ0

β

= −
∞∑
j=1

(1− exp [−β])j

j

∑
σ(1),...,σ(j)

exp
[
−β
∑j

s=1E(σ(j))
]

(Z0
β)j

J∑
l=2

(
|Ol|
n

)k
.

A similar calculation for E[lnZβ(Hk(n,m, r−1))|H0
k ] obtained by adding a hyperedge to nodes [n1]

with probability n/n1 or to nodes [n2] with probability n/n2 gives

E[lnZβ(Hk(n,m, r − 1))|H0
k ]− lnZ0

β = −
∞∑
j=1

(1− exp [−β])j

j

∑
σ(1),...,σ(j)

exp
[
−β
∑j

s=1E(σ(j))
]

(Z0
β)j

·
J∑
l=2

(
n1

n

(
|Ol ∩ [n1]|

n1

)k
+
n2

n

(
|Ol ∩ [n2]|

n2

)k)
.

Using the convexity of the function f(x) = xk, the claim follows.

Lemma 6.5.3. For every 1 ≤ n1, n2 ≤ n− 1 such that n1 + n2 = n and every β <∞,

E[lnZβ(Hk(n,m))] ≥ E[lnZβ(Hk(n1,M1))] + E[lnZβ(Hk(n2,M2))]

whereM1
d
= Bin(m,n1/n) andM2 = m−M1

d
= Bin(m,n2/n).

Proof. For a disjoint union of two graphs H = H1 +H2 with H = (V,E) and H1 = (V1, E1), H2 =

(V2, E2), we always have lnZβ(H) = lnZβ(H1)+ lnZβ(H2). Knowing that, the claim follows from

Lemma 6.5.2.

Lemma 6.5.4 ([BGT13], Proposition 5). Given α ∈ (0, 1), suppose a non-negative sequence (an)n≥1

satisfies

an ≥ an1 + an2 −O(nα)

for every n1, n2 such that n = n1 + n2. Then the limit limn→∞
an
n exists.

Proof of Theorem 6.5.1. SinceM1,M2 have a binomial distribution, we obtain

E[lnZβ(Hk(n,m))] ≥ E[lnZβ(Hk(n1,M1))] + E[lnZβ(Hk(n2,M2))]−O(
√
n).
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6.5. Existence of Φd,k(β)

by Fact 6.1.3 and Lemma 6.5.3. With Lemma 6.5.4, we conclude that 1
n limn→∞ E[lnZβ(Hk(n,m))]

exists. Completely analogue to the proof of Corollary 6.2.3, we find that

1

n
E[lnZβ(Hk(n, p))] ≤

1

n
E[lnZβ(H(n,m))] + o(1)

and with Lemma 6.2.2 the assertion follows.
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7 Number of solutions in random hypergraph 2-colouring

This chapter contains the proof of Theorem 4.1.5, where the asymptotic distribution of the logarithm

of the number of 2-colourings of random k-uniform hypergraphs is determined for all k ≥ 3. Fur-

ther the proofs of Corollaries 4.1.7 and 4.1.8 are presented, in which concentration of this number is

established and the planted model is shown to be contiguous to the random colouring model.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper On

the number of solutions in random hypergraph 2-colouring [Ras16a+] submitted to The Electronic

Journal of Combinatorics.

The first section of this chapter contains an outline of the proof of Theorem 4.1.5, introduces import-

ant notation and states the main steps of the proof. In the following section the first moment of the

number of solutions is explicitly calculated. After that, the number of short cycles is determined and

in Section 7.4 the second moment is calculated very precisely. The last section contains the sketch of

an alternative approach for tackling the second moment calculation.

As the paper is a single-author paper, the question of the contribution of this thesis’ author does not

arise.

From here on out we always assume that m = dd′n/ke, where d′ remains fixed as n → ∞. We also

require that k ≥ 3.

7.1. Outline of the proof

We classify the 2-colourings according to their proportion of assigned colours: For a map σ : [n] →
{±1}, we define

ρ(σ) = |σ−1(1)|/n (7.1.1)

and call this value the colour density of σ. We let A(n) signify the set of all possible colour densities

ρ(σ) for σ : [n] → {±1}. We will later show that when bounding the moments of Z(H(n,m)) we

can confine ourselves to colourings such that the proportion of the two colours does not deviate too

much from 1/2. Formally, we say that ρ ∈ [0, 1] is (ω, n)-balanced for ω ∈ N if

ρ ∈
[

1

2
− ω√

n
,
1

2
+

ω√
n

)
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7. Number of solutions in random hypergraph 2-colouring

and we denote by Aω(n) the set of all (ω, n)-balanced colour densities ρ ∈ A(n). For a hypergraph

H on [n], we let Zω(H) signify the number of (ω, n)-balanced colourings, which are 2-colourings σ

such that ρ(σ) ∈ Aω(n). As we will see, it will turn out useful to split up the set Aω(n) into smaller

sets in the following way. For ν ∈ N and s ∈ [ων], let

ρsω,ν =
1

2
− ω√

n
+

2s− 1

ν
√
n
. (7.1.2)

Let Asω,ν(n) be the set of all colour densities ρ ∈ A(n) such that

ρ ∈
[
ρsω,ν −

1

ν
√
n
, ρsω,ν +

1

ν
√
n

)
.

For a hypergraphH , letZsω,ν(H) denote the number of 2-colourings σ ofH such that ρ(σ) ∈ Asω,ν(n).

The strategy is to apply small subgraph conditioning to the random variables Zsω,ν rather than directly

to Z. We observe that for each fixed ν we have Zω =
∑ων

s=1 Z
s
ω,ν . In Section 7.2 we will calculate the

first moments of Z and Zω to obtain the following.

Proposition 7.1.1. Let k ≥ 3, d′ ∈ (0,∞) and ω > 0. Then

E [Z(H(n,m))] = Θ
(

2n
(

1− 21−k
)m)

and lim
ω→∞

lim inf
n→∞

E [Zω(H(n,m))]

E [Z(H(n,m))]
= 1.

As outlined in Section 4.2, our basic strategy is to show that the fluctuations of lnZ can be attributed

to fluctuations in the number of cycles of a bounded length. Hence, for an integer l ≥ 2 we let Cl,n
denote the number of cycles of length (exactly) l inH(n,m). Let

λl =
[d(k − 1)]l

2l
and δl =

(−1)l

(2k−1 − 1)
l
. (7.1.3)

We will see that λl denotes the expected number of cycles of length l in a random k-uniform hyper-

graph, whereas δl is a correction factor that takes into account that we only allow for bichromatic

edges. It is well-known that C2,n, . . . are asymptotically independent Poisson variables [Bol01, Theo-

rem 5.16]. More precisely, we have the following.

Fact 7.1.2. If c2, . . . , cL are non-negative integers, then

lim
n→∞

P [∀2 ≤ l ≤ L : Cl,n = cl] =

L∏
l=2

P [Po(λl) = cl] .

Next, we investigate the impact of the cycle counts Cl,n on the first moment of Zsω,ν . In Section 7.3

we prove the following.
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7.1. Outline of the proof

Proposition 7.1.3. Assume that k ≥ 3 and d′ ∈ (0,∞). Then

∞∑
l=2

λlδ
2
l <∞. (7.1.4)

Moreover, let ω, ν ∈ N. If c2, . . . , cL are non-negative integers, then for any s ∈ [ων]:

E
[
Zsω,ν(H(n,m))|∀2 ≤ l ≤ L : Cl,n = cl

]
E
[
Zsω,ν(H(n,m))

] ∼
L∏
l=2

[1 + δl]
cl exp [−δlλl] . (7.1.5)

Additionally, we need to know the second moment of Zsω,ν very precisely. The following proposition

is the key result of our approach and the one that requires the most technical work. Its proof can be

found at the end of Section 7.4.

Proposition 7.1.4. Assume that k ≥ 3 and d′/k < 2k−1 ln 2 − 2 and let ω, ν ∈ N. Then for every

s ∈ [ων] we have

E
[
Zsω,ν(H(n,m))2

]
E
[
Zsω,ν(H(n,m))

]2 ∼ν exp

∑
l≥2

λlδ
2
l

 .
We now derive Theorem 4.1.4 from Propositions 7.1.1-7.1.4. The key observation we will need is that

the variance of the random variables Zsω,ν can almost entirely be attributed to the fluctuations of the

number of short cycles. As done in [COW16+], the arguments we use are similar to the small subgraph

conditioning from [Jan95, RW94]. But we do not refer to any technical statements from [Jan95, RW94]

directly because instead of working only with the random variable Z we need to control all Zsω,ν for

fixed ω, ν ∈ N simultaneously. In fact, ultimately we have to take ν → ∞ and ω → ∞ as well. Our

line of argument follows the path beaten in [COW16+] and the following three lemmas are an adaption

of the ones there.

For L > 2, let FL = FL,n(d, k) be the σ-algebra generated by the random variables Cl,n with

2 ≤ l ≤ L. For each L ≥ 2, the standard decomposition of the variance yields

Var
[
Zsω,ν(H(n,m))

]
= Var

[
E
[
Zsω,ν(H(n,m))|FL

]]
+ E

[
Var

[
Zsω,ν(H(n,m))|FL

]]
.

The term Var
[
E
[
Zsω,ν(H(n,m))|FL

]]
accounts for the amount of variance induced by the fluctuati-

ons of the number of cycles of length at most L. The strategy when using small subgraph conditioning

is to bound the second summand, which is the expected conditional variance

E
[
Var

[
Zsω,ν(H(n,m))|FL

]]
= E

[
E
[
Zsω,ν(H(n,m))2|FL

]
− E

[
Zsω,ν(H(n,m))|FL

]2]
.

In the following lemma we show that in fact in the limit of large L and n this quantity is negligible.
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7. Number of solutions in random hypergraph 2-colouring

This implies that conditioned on the number of short cycles the variance vanishes and thus the limiting

distribution of lnZsω,ν is just the limit of lnE
[
Zsω,ν |FL

]
as n,L→∞. This limit is determined by the

joint distribution of the number of short cycles.

Lemma 7.1.5. For d′ ∈ (0,∞) and any ω, ν ∈ N and s ∈ [2ων], we have

lim sup
L→∞

lim sup
n→∞

E

E
[
Zsω,ν(H(n,m))2|FL

]
− E

[
Zsω,ν(H(n,m))|FL

]2
E
[
Zsω,ν(H(n,m))

]2
 = 0.

Proof. Fix ω, ν ∈ N and set Zs = Zsω,ν(H(n,m)). Using Fact 7.1.2 and equation (7.1.5) from Propo-

sition 7.1.3 we can choose for any ε > 0 a constant B = B(ε) and L ≥ L0(ε) large enough such that

for each large enough n ≥ n0(ε,B, L) we have for any s ∈ [ων]:

E
[
E [Zs|FL]2

]
≥

∑
c1,...,cL≤B

E [Zs|∀2 ≤ l ≤ L : Cl,n = cl]
2 P [∀2 ≤ l ≤ L : Cl,n = cl]

≥ exp [−ε]E [Zs]
2

∑
c1,...,cL≤B

L∏
l=2

[(1 + δl)
cl exp [−λlδl]]2 P [Po(λl) = cl]

= exp [−ε]E [Zs]
2

∑
c1,...,cL≤B

L∏
l=2

[
(1 + δl)

2λl
]cl

cl! exp [2λlδl + λl]

≥ E [Zs]
2 exp

[
−2ε+

L∑
l=2

δ2
l λl

]
. (7.1.6)

The tower property for conditional expectations and the standard formula for the decomposition of the

variance yields

E
[
Z2
s

]
= E

[
E
[
Z2
s |FL

]]
= E

[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
+ E

[
E [Zs|FL]2

]
and thus, using (7.1.6) we have

E
[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
E [Zs]

2 ≤
E
[
Z2
s

]
E [Zs]

2 − exp

[
−2ε+

L∑
l=2

δ2
l λl

]
. (7.1.7)

Finally, the estimate exp[−x] ≥ 1 − x for |x| < 1/8 combined with (7.1.7) and Proposition 7.1.4

implies that for large enough ν, n, L and each s ∈ [ων] we have

E
[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
E [Zs]

2 ≤ 2ε exp

[ ∞∑
l=2

δ2
l λl

]
.
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7.1. Outline of the proof

As this holds for any ε > 0 and by equation (7.1.4) the expression exp
[∑∞

l=2 δ
2
l λl
]

is bounded, the

proof of the lemma is completed by first taking n→∞ and then L→∞.

Lemma 7.1.6. For d ∈ (0,∞) and any α > 0, we have

lim sup
L→∞

lim sup
n→∞

P [|Z(H(n,m))− E [Z(H(n,m))|FL] | > αE [Z(H(n,m))]] = 0.

Proof. To unclutter the notation, we set Z = Z(H(n,m)) and Zω = Zω(H(n,m)). First we observe

that Proposition 7.1.1 implies that for any α > 0 we can choose ω ∈ N large enough such that

lim inf
n→∞

E [Zω] > (1− α2)E [Z] . (7.1.8)

We let ν ∈ N. To prove the statement, we need to get a handle on the cases where the random

variables Zsω,ν(H(n,m)) deviate strongly from their conditional expectation E
[
Zsω,ν(H(n,m))|FL

]
.

We let Zs = Zsω,ν(H(n,m)) and define

Xs = |Zs − E [Zs|FL] | · 1{|Zs−E[Zs|FL]|>αE[Zs]}

and X =
∑ων

s=1Xs. Then these definitions directly yield

P [X < αE [Zω]] ≤ P [|Zω − E [Zω|FL]| < 2αE [Zω]] . (7.1.9)

By the definition of the Xs’s and Chebyshev’s inequality it is true for every s that

E [Xs|FL] ≤
∑
j≥0

2j+1αE [Zs]P
[
|Zs − E [Zs|FL]| > 2jαE [Zs]

]
≤ 4Var [Zs|FL]

αE [Zs]
.

Hence, using that with Proposition 7.1.1 there is a number β = β(α, ω) such that E [Zs] /E [Z] ≤
β/(ων) for all s ∈ [ων] and n large enough, we have

E [X|FL] ≤
ων∑
s=1

4Var [Zs|FL]

αE [Zs]
≤ 2βE [Z]

ανω

ων∑
s=1

Var [Zs|FL]

E [Zs]
2 .

Taking expectations, choosing ε = ε(α, β, ω) small enough and applying Lemma 7.1.5, we obtain

E [X] = E [E [X|FL]] ≤ 2βE [Z]

ανω

ων∑
s=1

E [Var [Zs|FL]]

E [Zs]
2 ≤ 4βεE [Z]

α
≤ α2E [Z] . (7.1.10)

Using (7.1.9), Markov’s inequality, (7.1.10) and (7.1.8), it follows that

P [|Zω − E [Zω|FL]| < 2αE [Zω]] ≥ 1− 2α. (7.1.11)
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Finally, the triangle inequality combined with Markov’s inequality and equations (7.1.8) and (7.1.11)

yields

P [|Z − E [Z|FL]| > αE [Z]]

≤ P [|Z − Zω|+ |Zω − E [Zω|FL]|+ |E [Zω|FL]− E [Z|FL]| > αE [Z]]

≤ 3α+ α/3 + 3α < 7α,

which proves the statement.

Lemma 7.1.7. Let

UL =
L∑
l=2

Cl,n ln(1 + δl)− λlδl. (7.1.12)

Then lim supL→∞ lim supn→∞ E [|UL|] <∞ and further for any ε > 0 we have

lim sup
L→∞

lim sup
n→∞

P [| lnE [Z(H(n,m))|FL]− lnE [Z(H(n,m))]− UL| > ε] = 0 (7.1.13)

Proof. In a first step we show that E [|UL|] is uniformly bounded. As x − x2 ≤ ln(1 + x) ≤ x for

|x| ≤ 1/8 we have for every l ≤ L:

E [|Cl,n ln(1 + δl)− λlδl|] ≤ δlE [|Cl,n − λl|] + δ2
l E [Cl,n] .

Therefore, Fact 7.1.2 implies that

E [|UL|] ≤
L∑
l=2

δl
√
λl + δ2

l λl. (7.1.14)

Proposition 7.1.3 ensures that
∑

l δ
2
l λl < ∞. Furthermore, as we are in the regime d′/k ≤ 2k−1 ln 2,

we have
∑

l δl
√
λl ≤

∑
l k
l2−(k−1)l/2 <∞ and thus (7.1.14) shows that E [|UL|] is uniformly boun-

ded.

To prove (7.1.13), for given n and a constant B > 0 we let CB be the event that Cl,n < B for all

l ≤ L. Referring to Fact 7.1.2, we can find for each L, ε > 0 a B > 0 such that

P [CB] > 1− ε. (7.1.15)

To simplify the notation we set Z = Z(H(n,m)) and Zω = Zω(H(n,m)). By Proposition 7.1.1 we
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can choose for any α > 0 a ω > 0 large enough such that E [Zω] > (1 − α)E [Z] for large enough

n. Then Propositions 7.1.1 and 7.1.3 combined with Fact 7.1.2 imply that for any c1, ..., cL ≤ B and

small enough α = α(ε, L,B) we have for n large enough:

E [Z|∀2 ≤ l ≤ L : Cl,n = cl] ≥ E [Zω|∀2 ≤ l ≤ L : Cl,n = cl]

≥ exp [−ε]E [Z]
L∏
l=2

(1 + δl)
cl exp [−δlλl] . (7.1.16)

On the other hand, for α sufficiently small and large enough n we have

E [Z|∀2 ≤ l ≤ L : Cl,n = cl] = E [Z − Zω|∀2 ≤ l ≤ L : Cl,n = cl]+E [Zω|∀2 ≤ l ≤ L : Cl,n = cl]

≤ 2αE [Z]∏L
l=2 P [Po(λl) = cl]

+ E [Zω|∀2 ≤ l ≤ L : Cl,n = cl]

≤ exp [ε]E [Z]

L∏
l=2

(1 + δl)
cl exp [−δlλl] (7.1.17)

Thus, the proof of (7.1.13) is completed by combining (7.1.15), (7.1.16), (7.1.17) and taking loga-

rithms.

Proof of Theorem 4.1.5. For L ≥ 2, we define

WL =

L∑
l=2

Xl ln(1 + δl)− λlδl.

Then Fact 7.1.2 implies that for each L the random variables UL defined in (7.1.12) converge in distri-

bution to WL as n→∞. Furthermore, because
∑

l δl
√
λl,
∑

l δ
2
l λl <∞, the martingale convergence

theorem implies thatW is well-defined and that theWL converge toW almost surely as L→∞. The-

refore, from Lemmas 7.1.7 and 7.1.6 it follows that lnZ(H(n,m))− lnE [Z(H(n,m))] converges to

W in distribution, meaning that for any ε > 0 we have

lim
n→∞

P [| lnZ(H(n,m))− lnE [Z(H(n,m))]−W | > ε] = 0. (7.1.18)

To derive Theorem 4.1.5 from (7.1.18) let S be the event that H(n,m) consists of m distinct edges.

Given that S occurs, H(n,m) is identical to Hk(n,m). Furthermore, Fact 2.1.2 implies that P [S] =

Ω(1). Consequently, (7.1.18) yields

0 = lim
n→∞

P [| lnZ(H(n,m))− lnE [Z(H(n,m))]−W | > ε|S]

= lim
n→∞

P [| lnZ(Hk(n,m))− lnE [Z(H(n,m))]−W | > ε] . (7.1.19)

135



7. Number of solutions in random hypergraph 2-colouring

Furthermore, Lemma 7.2.1 implies that E [Z(H(n,m))] ,E [Z(Hk(n,m)] = Θ
(
2n
(
1− 21−k)m).

Thus, it holds that E [Z(H(n,m))] = Θ(E [Z(Hk(n,m)]) and with (7.1.19) it follows that

lim
n→∞

P [| lnZ(Hk(n,m))− lnE [Z(Hk(n,m)))]−W | > ε] = 0,

which proves Theorem 4.1.5.

Proof of Corollary 4.1.7. The first part of the proof follows directly from Theorem 4.1.5 and the pro-

perties of W . By the definition of convergence in distribution and Markov’s inequality we have

lim
n→∞

P [| lnZ(Hk(n,m))− lnE [Z(Hk(n,m)] | ≤ ω] = P [|W | ≤ ω] ≥ 1− E|W |
ω

and (4.1.7) follows.

To prove the second part, we construct an event whose probability is bounded away from 0 and that

is such that conditioned on this event, the number of solutions of the random hypergraph Hk(n,m) is

not concentrated very strongly.

We consider the event Tt that the random hypergraph Hk(n,m) contains t isolated triangles, i.e. t

connected components such that each component consists of 3k − 3 vertices and 3 edges and the

intersection of each pair of edges contains exactly one vertex. It is well-known that for t ≥ 0 there

exists ε = ε(d, t) > 0 such that

lim inf
n→∞

P [Tt] > ε. (7.1.20)

Given Tt, we let H∗k(n,m) denote the random hypergraph obtained by choosing a set of t isolated

triangles randomly and removing them. Then H∗k(n,m) is identical to Hk(n− (3k−3)t,m−3t) and

with Proposition 7.1.1 there exists a constant C = C(d, k) such that

E [Z(H∗k(n,m))] = E [Z(Hk(n− (3k − 3)t,m− 3t))] ≤ C · 2n−(3k−3)t
(

1− 21−k
)m−3t

.

A very accurate calculation of the number of 2-colourings of a triangle in a hypergraph yields that this

number is given by
(
2k−2 − 1

) (
22k−1 − 2k + 2

)
. Thus, we obtain

E [Z(Hk(n,m))|Tt] ≤ E [Z(Hk(n− (3k − 3)t,m− 3t))]
((

2k−2 − 1
)(

22k−1 − 2k + 2
))t

≤ C · 2n
(

1− 21−k
)m−3t (

1− 22−k
)t (

1− 21−k + 22−2k
)t

≤ C · 2n
(

1− 21−k
)m(

1− 8
(

2k − 2
)−3

)

≤ O (E [Z(Hk(n,m))])

(
1− 8

(
2k − 2

)−3
)
,
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7.1. Outline of the proof

implying that for any ω > 0 we can choose t large enough so that

E [Z(Hk(n,m))|Tt] ≤ E [Z(Hk(n,m))] /(2 exp [ω]).

Using Markov’s inequality, we obtain

P [lnZ(Hk(n,m)) ≥ lnE [Z(Hk(n,m))]− ω|Tt]

= P [Z(Hk(n,m))/E [Z(Hk(n,m))] ≥ exp [−ω] |Tt] ≤ 1/2. (7.1.21)

Thus, combining (7.1.20) and (7.1.21) yields that for any finite ω > 0 there is ε > 0 such that for large

enough n we have

P [| lnZ(Hk(n,m))− E [lnZ(Hk(n,m))] | > ω]

≥ P [lnZ(Hk(n,m)) < E [lnZ(Hk(n,m))]− ω]

≥ P [lnZ(Hk(n,m)) ≥ lnE [Z(Hk(n,m))]− ω|Tt]P [Tt]

> ε/2,

thereby completing the proof of the second claim.

Proof of Corollary 4.1.8. This proof is nearly identical to the one in [BCOE14+]. Assume for con-

tradiction that (An)n≥1 is a sequence of events such that for some fixed number 0 < ε < 1/2 we

have

lim
n→∞

πpl
k,n,m [An] = 0 while lim sup

n→∞
πrc
k,n,m [An] > ε. (7.1.22)

Let Hk(n,m, σ) denote a k-uniform hypergraph on [n] with precisely m edges chosen uniformly at

random from all edges that are bichromatic under σ. Let V(σ) be the event that σ is a 2-colouring of
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7. Number of solutions in random hypergraph 2-colouring

Hk(n,m). Then

E [Z(Hk(n,m))1An ] =
∑

σ:[n]→{±1}

P [V(σ) and (Hk(n,m), σ) ∈ An]

=
∑

σ:[n]→{±1}

P [(Hk(n,m), σ) ∈ An|V(σ)]P [V(σ)]

=
∑

σ:[n]→{±1}

P [Hk(n,m, σ) ∈ An]P [V(σ)]

≤ O
((

1− 21−k
)m) ∑

σ:[n]→{±1}

P [Hk(n,m, σ) ∈ An]

= O
(

2n
(

1− 21−k
)m)

P [Hk(n,m,σ) ∈ An] = o
(

2n
(

1− 21−k
)m)

.

(7.1.23)

By Theorem 4.1.4, for any ε > 0 there is δ > 0 such that for all large enough n we have

P [Z(Hk(n,m)) < δE [Z(Hk(n,m))]] < ε/2. (7.1.24)

Now, let E be the event that Z(Hk(n,m)) ≥ δE[Z(Hk(n,m)] and let q = πrc
k,n,m [An|E ]. Then

E [Z(Hk(n,m))1An ] ≥ δE[Z(Hk(n,m))]P [((Hk(n,m),σ) ∈ An, E ]

≥ δqE[Z(Hk(n,m))]P [E ] ≥ δqE[Z(Hk(n,m))]/2

=
δq

2
· Ω
(

2n
(

1− 21−k
)m)

. (7.1.25)

Combining (7.1.23) and (7.1.25), we obtain q = o(1). Hence, (7.1.24) implies that

πrc
k,n,m [An] = πrc

k,n,m [An|¬E ] · P [¬E ] + q · P [E ] ≤ P [¬E ] + q ≤ ε/2 + o(1),

in contradiction to (7.1.22).

7.2. The first moment

The aim in this section is to prove Proposition 7.1.1 and a result that we need for Proposition 7.1.4.

For a hypergraph H , let Zρ(H) be its number of 2-colourings with colour density ρ. We set ρ̄ = 1
2 .

For ρ ∈ [0, 1], we define

f1 : ρ 7→ H(ρ) + g1(ρ) with g1(ρ) =
d

k
ln
(

1− ρk − (1− ρ)k
)
. (7.2.1)
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7.2. The first moment

The next lemma shows that f1(ρ) is the function we need to analyse in order to determine the expec-

tation of Zρ.

Lemma 7.2.1. Let d′ ∈ (0,∞). There exist numbers C1 = C1(k, d), C2 = C2(k, d) > 0 such that

for any colour density ρ:

C1n
−1/2 exp [nf1(ρ)] ≤ E [Zρ(H(n,m))] ≤ C2 exp [nf1(ρ)] . (7.2.2)

Moreover, if |ρ− ρ̄| = o(1), then

E [Zρ(H(n,m))] ∼
√

2

πn
exp

[
d(k − 1)

2k − 2

]
exp [nf1(ρ)] . (7.2.3)

Proof. The edges in the random hypergraphH(n,m) are independent by construction, so the expected

number of solutions with colour density ρ can be written as

E[Zρ(H(n,m))] =

(
n

ρn

)(
1−

(
ρn
k

)
+
((1−ρ)n

k

)
N

)m
, where N =

(
n

k

)
. (7.2.4)

Further, the number of “forbidden” edges is given by(
ρn

k

)
+

(
(1− ρ)n

k

)

=
1

k!

(
nk
(
ρk + (1− ρ)k

)
− k(k − 1)

2
nk−1

(
ρk−1 + (1− ρ)k−1

)
+ Θ

(
nk−2

))

= N
(
ρk + (1− ρ)k

)
− k(k − 1)

2k!
nk−1

(
ρk−1(1− ρ) + ρ(1− ρ)k−1

)
+ Θ

(
nk−2

)
yielding

1−
(
ρn
k

)
+
((1−ρ)n

k

)
N

= 1− ρk − (1− ρ)k +
k(k − 1)

2n

(
ρk−1(1− ρ) + ρ(1− ρ)k−1

)
+ Θ

(
n−2

)
.

To proceed we observe that ln
(
x+ y

n

)
= ln(x) + ln

(
1 + y

xn

)
for x > 0, y < xn and consequently

m ln

(
1−

(
ρn
k

)
+
((1−ρ)n

k

)
N

)

=
dn

k

(
ln
(

1− ρk − (1− ρ)k
)

+ ln

(
1− k(k − 1)

2n

ρk−1(1− ρ) + ρ(1− ρ)k−1

1− ρk − (1− ρ)k
+ Θ

(
n−2

)))

∼ dn

k
ln
(

1− ρk − (1− ρ)k
)

+
d(k − 1)

2

(
ρk−1(1− ρ) + ρ(1− ρ)k−1

1− ρk − (1− ρ)k

)
+ Θ

(
n−1

)
. (7.2.5)
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Equation (7.2.2) follows from (7.2.4), (7.2.5) and Stirling’s formula applied to
(
n
ρn

)
. Moreover, equa-

tion (7.2.3) follows from (7.2.4) and (7.2.5) because |ρ− ρ̄| = o(1) implies that(
n

ρn

)
∼
√

2

πn
exp [nH(ρ)] and

ρk−1(1− ρ) + ρ(1− ρ)k−1

1− ρk − (1− ρ)k
∼ 1

2k−1 − 1
.

The following corollary states an expression for E [Z(H(n,m))]. Additionally, it shows that when

ω →∞, this value can be approximated by E [Zω(H(n,m))].

Corollary 7.2.2. Let d′ ∈ (0,∞). Then

E [Z(H(n,m))] ∼ exp

[
d(k − 1)

2k − 2
+ nf1(ρ̄)

](
1 +

d(k − 1)

2k−1 − 1

)− 1
2

. (7.2.6)

Furthermore, for ω > 0 we have

lim
ω→∞

lim
n→∞

E [Zω(H(n,m))]

E [Z(H(n,m))]
= 1. (7.2.7)

Proof. The functions ρ 7→ H(ρ) and ρ 7→ g1(ρ) are both concave and attain their maximum at ρ = ρ̄.

Consequently, setting B(d, k) = 4
(

1 + d(k−1)
2k−1−1

)
and expanding around ρ̄, we obtain

f1(ρ̄)− B(d, k)

2
(ρ− ρ̄)2 −O

(
(ρ− ρ̄)3

)
≤ f1(ρ) ≤ f1(ρ̄)− B(d, k)

2
(ρ− ρ̄)2 . (7.2.8)

Plugging the upper bound from (7.2.8) into (7.2.2) and observing that the number of all colour densi-

ties for maps σ : [n]→ {±1} is bounded from above by n = exp[o(n)], we find

S1 =
∑

ρ: |ρ−ρ̄|>n−3/8

E [Zρ(H(n,m))] ≤ C2 exp

[
nf1(ρ̄)− B(d, k)

2
n1/4

]
. (7.2.9)

On the other hand, equation (7.2.3) implies that

S2 =
∑

ρ: |ρ−ρ̄|≤n−3/8

E [Zρ(H(n,m))]

∼
√

2

πn
exp

[
d(k − 1)

2k − 2

]
+ exp [nf1(ρ̄)]

∑
ρ

exp

[
−nB(d, k)

2
(ρ− ρ̄)2

]
. (7.2.10)

The last sum is in the standard form of a Gaussian summation. Using
∫∞
−∞ exp

[
−a(x+ b)2

]
dx =√

a
π , we get

140



7.2. The first moment

∑
ρ∈A(n)

exp

[
−nB(d, k)

2
(ρ− ρ̄)2

]
∼ n

∫
exp

[
−nB(d, k)

2
(ρ− ρ̄)2

]
dρ

∼ n

√
2π

nB(d, k)
=

√
πn

2

(
1 +

d(k − 1)

2k−1 − 1

)− 1
2

(7.2.11)

Plugging (7.2.11) into (7.2.10), we obtain

S2 ∼ exp

[
d(k − 1)

2k − 2
+ nf1(ρ̄)

](
1 +

d(k − 1)

2k−1 − 1

)− 1
2

. (7.2.12)

Finally, comparing (7.2.9) and (7.2.12), we see that S1 = o(S2). Thus, S1 + S2 ∼ S2 and (7.2.6)

follows from (7.2.12).

To prove (7.2.7), we find that analogously to (7.2.9), (7.2.10) and the calculation leading to (7.2.12),

it holds that

S′1 =
∑

ρ: |ρ−ρ̄|>ωn−1/2

E [Zρ(H(n,m))] ≤ C2 exp

[
nf(ρ̄)− B(d, k)

2
ω

]
.

and

S′2 =
∑

ρ: |ρ−ρ̄|≤ωn−1/2

E [Zρ(H(n,m))] ∼ exp

[
d(k − 1)

2k − 2
+ nf1(ρ̄)

](
1 +

d(k − 1)

2k−1 − 1

)− 1
2

.

Thus, we have limω→∞ limn→∞
S′1+S′2
S′2

= 1, yielding (7.2.7).

Proof of Proposition 7.1.1. The statements are immediate by Corollary 7.2.2 and the fact that

f1 (ρ̄) = ln 2 +
d

k
ln
(

1− 21−k
)
.

Finally, we derive an expression for E
[
Zsω,ν(H(n,m))

]
that we will need to prove Proposition 7.1.4.

Lemma 7.2.3. Let d′ ∈ (0,∞), ω, ν ∈ N, s ∈ [ων] and ρ ∈ Asω,ν(n). Then with ρsω,ν as defined in

(7.1.2) we have

E
[
Zsω,ν(H(n,m))

]
∼ν |Asω,ν(n)|

√
2

πn
exp

[
d(k − 1)

2k − 2

]
exp

[
nf1

(
ρsω,ν

)]
.
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Proof. Using a Taylor expansion of f1(ρ) around ρ = ρsω,ν , we get

f1(ρ) = f1(ρsω,ν) + Θ

(
ω√
n

)
|ρ− ρsω,ν |+ Θ

((
ρ− ρsω,ν

)2)
. (7.2.13)

As |ρ − ρsω,ν | ≤ 1
ν
√
n

for ρ ∈ Asω,ν(n), we conclude that f1(ρ) = f1(ρsω,ν) + O
(
ω
νn

)
and as this is

independent of ρ the assertion follows by inserting (7.2.13) in (7.2.3) and multiplying with |Asω,ν(n)|.

7.3. Counting short cycles

We recall that for l ∈ {2, . . . , L} we denote by Cl,n the number of cycles of length l in H(n,m).

Further we let c2, . . . , cL be a sequence of non-negative integers and S be the event that Cl,n = cl for

l = 2, . . . , L. Additionally, for an assignment σ : [n] → {±1} we let V(σ) be the event that σ is a

colouring of the random graphH(n,m). We also recall λl, δl from (7.1.3).

Proof of Proposition 7.1.3. First observe that from the definition of λl and δl in (7.1.3) and the fact

that
∑∞

n=1
xn

n = − ln(1− x) we get

exp

∑
l≥2

λlδ
2
l

 = exp

[
−d(k − 1)

2

1

(2k−1 − 1)
2

](
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

. (7.3.1)

Together with (7.3.1), Proposition 7.1.3 readily follows from the following lemma about the distribu-

tion of the random variables Cl,n given V(σ).

Lemma 7.3.1. Let µl = (d(k−1))l

2l

[
1 + (−1)l

(2k−1−1)
l

]
. Then P [S|V(σ)] ∼

∏L
l=2

exp[−µl]
cl!

µcll for any σ

with ρ(σ) ∈ Aω(n).

Before we establish Lemma 7.3.1, let us point out how it implies Proposition 7.1.3. By Bayes’ rule,

we have

E
[
Zsω,ν(H(n,m))|S

]
=

1

P[S]

∑
τ∈Asω,ν(n)

P[V(τ)]P[S|V(τ)]. (7.3.2)
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Inserting the result from Lemma 7.3.1 into (7.3.2) yields

E
[
Zsω,ν(H(n,m))|S

]
∼
∏L
l=2

exp[−µl]
cl!

µcll
P[S]

∑
τ∈Asω,ν(n)

P[V(τ)]

∼
∏L
l=2

exp[−µl]
cl!

µcll
P[S]

E
[
Zsω,ν(H(n,m))

]
.

From Lemma 7.3.1 and Fact 7.1.2 we get that∏L
l=2

exp[−µl]
cl!

µcll
P[S]

∼
L∏
l=2

[1 + δl]
cl exp [−δlλl]

and Proposition 7.1.3 follows.

Proof of Lemma 7.3.1. We are going to show that for any fixed sequence of integersm1, . . . ,mL ≥ 0,

the joint factorial moments satisfy

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] ∼
L∏
l=2

µmll . (7.3.3)

Then Lemma 7.3.1 follows from [Bol01, Theorem 1.23].

We consider the number of sequences of m2 + · · · + mL distinct cycles such that m2 corresponds to

the number of cycles of length 2, and so on. Clearly this number is equal to (C2,n)m2 · · · (CL,n)mL .

We call a cycle good, if it does not contain edges that overlap on more than one vertex. We call a

sequence of good cycles good sequence if for any two cycles C and C ′ in this sequence, there are no

vertices v ∈ C and v′ ∈ C ′ such that v and v′ are contained in the same edge. Let Y be the number of

good sequences and Ȳ be the number of sequences that are not good. Then it holds that

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] = E[Y |V(σ)] + E[Ȳ |V(σ)]. (7.3.4)

The following claim states that the contribution of E[Ȳ |V(σ)] is negligible. Its proof follows at the

end of this section.

Claim 7.3.2. We have E
[
Ȳ |V(σ)

]
= O

(
n−1

)
.

Thus it remains to count good sequences given V(σ). We let σ ∈ Aω(n) and first consider the number

Dl,n of rooted, directed, good cycles of length l. This will introduce a factor of 2l for the number

of all good cycles of length l, thus Dl,n = 2lCl,n. For a rooted, directed, good cycle of length l, we
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need to pick l vertices (v1, ..., vl) as roots, introducing a factor (1 + o(1))
(
n
2

)l, and there have to exist

edges between them which generates a factor
[

m

(nk)(1−21−k)

]l
. To choose the remaining vertices in the

participating edges we have to distinguish between pairs of vertices (vi, vi+1) that are assigned the

same colour and those that are not, because if σ(vi) = σ(vi+1) we have to make sure that at least one

of the other k − 2 vertices participating in this edge is assigned the opposite colour. This gives rise to

the third factor in the following calculation.

E [Dl,n|V(σ)]

∼
(n

2

)l [ m(
n
k

)
(1− 21−k)

]l
· 2

l∑
i=0

[(
l

i

)(
n− 2

k − 2

)i [(n− 2

k − 2

)
−
(
n/2

k − 2

)]l−i
1{i is even}

]

=
(n

2

)l [ m(
n
k

)
(1− 21−k)

]l
·

[[
2

(
n− 2

k − 2

)
−
(
n/2

k − 2

)]l
+

[
−
(
n/2

k − 2

)]l]

∼
(n

2

)l [ k!dn

knk (1− 21−k)

]l
·

[[(
2k−1 − 1

)
nk−2

]l
+
(
−nk−2

)l
[2k−2(k − 2)!]

l

]

= [d(k − 1)]l
(

1 +
(−1)l

(2k−1 − 1)
l

)

Hence, recalling that Cl,n = 1
2lDl,n, we get

E [Cl,n|V(σ)] ∼ [d(k − 1)]l

2l

(
1 +

(−1)l

(2k−1 − 1)
l

)
. (7.3.5)

In fact, since Y considers only good sequences and l, m2, . . . ,mL remain fixed as n → ∞, (7.3.5)

yields

E[Y |V(σ)] ∼
L∏
l=2

(
[d(k − 1)]l

2l

(
1 +

(−1)l

(2k−1 − 1)
l

))ml
.

Plugging the above relation and Claim 7.3.2 into (7.3.4) we get (7.3.3). The proposition follows.

Proof of Claim 7.3.2: The idea of the proof is to find an event, namely that there exists an induced

subgraph with too many edges, that always occurs if Ȳ > 0 and whose probability we can bound from

above. To this aim let A = {i ∈ R|i = (l − 1)(k − 1) + j for some l ≤ L, j ∈ {0, ..., k − 2}}. For

every subset R of (l − 1)(k − 1) + j vertices, where l ≤ L and j ∈ {0, ..., k − 2} let IR be equal to

1 if the number of edges that only consist of vertices in R is at least l. Let the HL be the event that
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∑
R:|R|∈A IR > 0. It is direct to check that if Ȳ > 0 then HL occurs. This implies that

P
[
Ȳ > 0|V(σ)

]
≤ P [HL|V(σ)] .

The claim follows by appropriately bounding P [HL|V(σ)]. For this, we are going to use Markov’s

inequality, i.e.

P [HL|V(σ)] ≤ E

 ∑
R:|R|∈A

IR|V(σ)

 =
L∑
l=2

k−2∑
j=0

∑
R:|R|=(l−1)(k−1)+j

E [IR|V(σ)] .

For any set R such that |R| = (l − 1)(k − 1) + j, we can put l edges inside the set in at most(
((l−1)(k−1)+j

k )
l

)
ways, which obviously gets largest if j = k−2 and thus (l−1)(k−1)+j = l(k−1)−1.

Clearly conditioning on V(σ) can only reduce the number of different placings of the edges.

We observe that for a colouring σ and two fixed vertices v and v′ with σ(v) 6= σ(v′) the probability

that e(v, v′) does not exist is
(

1− 1
N−F(σ)

)m
. Using inclusion/exclusion and the binomial theorem,

with N =
(
n
k

)
and F (σ) ∼ 21−kN , for a fixed set R of cardinality (l − 1)(k − 1) + j we get that

E [IR|V(σ)] ≤
((

l(k−1)−1
k

)
l

) l∑
i=0

(
l

i

)
(−1)i

(
1− i

N −F (σ)

)m

≤
((

l(k−1)−1
k

)
l

)( m

N −F (σ)

)l
∼
((

l(k−1)−1
k

)
l

)( m(
n
k

)
(1− 21−k)

)l
.

With m = dn
k and since

(
i
j

)
≤ (ie/j)j , it holds that

P [HL|V(σ)] ≤ (1 + o(1))

L∑
l=2

(
n

l(k − 1)− 1

)((
l(k−1)−1

k

)
l

)( m(
n
k

)
(1− 21−k)

)l

= (1 + o(1))
L∑
l=2

(
ne

l(k − 1)− 1

)l(k−1)−1(ek+1(l(k − 1)− 1)k

kkl

)l(
mkk

nkek (1− 21−k)

)l

= (1 + o(1))
L∑
l=2

mlekl−1(l(k − 1)− 1)l+1

nl+1ll (1− 21−k)
l

=
1 + o(1)

n

L∑
l=2

(
ekd(l(k − 1)− 1)

l (1− 21−k)

)l
l(k − 1)− 1

e
= O

(
n−1

)
,

where the last equality follows since L is a fixed number. �
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7.4. The second moment

In this section we prove Proposition 7.1.4. To this end, we need to derive an expression for the second

moment of the random variables Zsω,ν for s ∈ [ων] that is asymptotically tight. As a consequence,

we need to put more effort into the calculations than done in prior work on hypergraph-2-colouring

(e.g.[COZ12]), where the second moment of Z is only determined up to a constant factor. Part of

the proof is based on ideas from [BCOE14+], but as we aim for a stronger result, the arguments are

extended and adapted to our situation.

7.4.1. The overlap

For two colour assignments σ, τ : [n]→ {±1}, we define the overlap matrix

ρ(σ, τ) =

(
ρ1,1(σ, τ) ρ1,−1(σ, τ)

ρ−1,1(σ, τ) ρ−1,−1(σ, τ)

)

with entries

ρi,j(σ, τ) =
1

n
· |σ−1(i) ∩ τ−1(j)| for i, j ∈ {±1}.

Obviously, it holds that

ρ1,1(σ, τ) + ρ1,−1(σ, τ) + ρ−1,1(σ, τ) + ρ−1,−1(σ, τ) = 1.

If we further remember the definition from (7.1.1), we can alternatively represent ρ(σ, τ) as

ρ(σ, τ) =

(
ρ1,1(σ, τ) ρ(σ)− ρ1,1(σ, τ)

ρ(τ)− ρ1,1(σ, τ) 1− ρ(σ)− ρ(τ) + ρ1,1(σ, τ)

)
.

To simplify the notation, for a 2× 2-matrix ρ = (ρij) we introduce the shorthands

ρi,? = ρi,1 + ρi,−1, ρ · ,? = (ρ1,?, ρ−1,?), ρ?,j = ρ1,j + ρ−1,j , ρ?, · = (ρ?,1, ρ?,−1).

We let B(n) be the set of all overlap matrices ρ(σ, τ) for σ, τ : [n] → {±1} and B denote the set of

all probability distributions ρ = (ρi,j)i,j∈{±1} on {±1}2. Further, we let ρ̄ be the 2 × 2-matrix with

all entries equal to 1/4.

For a given hypergraph H on [n], let Z(2)
ρ (H) be the number of pairs (σ, τ) of 2-colourings of H

whose overlap matrix is ρ. Analogously to (7.2.1), we define the functions f2, g2 : B 7→ R as

f2 : ρ 7→ H(ρ) + g2(ρ) with g2(ρ) =
d

k
ln
(

1−
∑

ρki,? −
∑

ρk?,j +
∑

ρki,j

)
.
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The following lemma states a formula for E
[
Z

(2)
ρ (H(n,m))

]
for ρ ∈ B(n) in terms of f2(ρ).

Lemma 7.4.1. Let d′ ∈ (0,∞) and set

Cn(d, k) =

√
32

(πn)3
exp

[
d(k − 1)

2

2k − 3

(2k−1 − 1)
2

]
. (7.4.1)

Then for ρ ∈ B(n) we have

E
[
Z(2)
ρ (H(n,m))

]
∼
√

2π

n3

2∏
i,j=1

(2πρi,j)
−1/2 exp [nf2(ρ)]

exp

[
d(k − 1)

2

∑
ρk−1
i,? −

∑
ρki,? +

∑
ρk−1
?,j −

∑
ρk?,j −

∑
ρk−1
i,j +

∑
ρki,j

1−
∑
ρki,? −

∑
ρk?,j +

∑
ρki,j

]
.

(7.4.2)

Moreover, if ρ ∈ B(n) satisfies ‖ρ− ρ̄‖22 = o(1), then

E
[
Z(2)
ρ (H(n,m))

]
∼ Cn(d, k) exp [nf2(ρ)] . (7.4.3)

Proof. Let ρ =

(
ρ1,1 ρ1,−1

ρ−1,1 ρ−1,−1

)
∈ B(n). Then

E
[
Z(2)
ρ (H(n,m))

]
=

∑
σ,τ :ρ(σ,τ)=ρ

P [σ, τ are colourings ofH(n,m)] =
∑

σ,τ :ρ(σ,τ)=ρ

(
1− F(σ, τ)

N

)m

=

(
n

ρ1,1n, ρ1,−1n, ρ−1,1n, ρ−1,−1n

)(
1− F(σ, τ)

N

)m
. (7.4.4)

where N =
(
n
k

)
and F(σ, τ) is the total number of possible monochromatic edges under either σ or

τ . In the last line, σ and τ are just two arbitrary fixed 2-colourings with overlap ρ and the equation is
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valid because the following computation shows that F(σ, τ) only depends on ρ:

F(σ, τ) =
∑

i∈{±1}

(
ρi,?n

k

)
+

∑
j∈{±1}

(
ρ?,jn

k

)
−

∑
i,j∈{±1}

(
ρi,jn

k

)

= N

 ∑
i∈{±1}

ρki,? +
∑

j∈{±1}

ρk?,j −
∑

i,j∈{±1}

ρki,j

+
k(k − 1)

2k!
nk−1·

 ∑
i∈{±1}

ρki,? −
∑

i∈{±1}

ρk−1
i,? +

∑
j∈{±1}

ρk?,j −
∑

j∈{±1}

ρk−1
?,j −

∑
i,j∈{±1}

ρki,j +
∑

i,j∈{±1}

ρk−1
i,j


+ Θ

(
nk−2

)
,

yielding

1− F (σ, τ)

N
= 1−

∑
i∈{±1}

ρki,? −
∑

j∈{±1}

ρk?,j +
∑

i,j∈{±1}

ρki,j −
k(k − 1)

2n

·

 ∑
i∈{±1}

ρki,? −
∑

i∈{±1}

ρk−1
i,? +

∑
j∈{±1}

ρk?,j −
∑

j∈{±1}

ρk−1
?,j −

∑
i,j∈{±1}

ρki,j +
∑

i,j∈{±1}

ρk−1
i,j


+ Θ

(
n−2

)
.

We proceed as in the proof of Lemma 7.2.1 by using that ln
(
x− y

n

)
= ln(x) + ln

(
1− y

xn

)
for

x > 0, yn < x and consequently

m ln

(
1− F (σ, τ)

N

)
=
dn

k

[
ln
(

1−
∑

ρki,? −
∑

ρk?,j +
∑

ρki,j

)
+ ln

(
1− k(k − 1)

2n

∑
ρki,? −

∑
ρk−1
i,? +

∑
ρk?,j −

∑
ρk−1
?,j −

∑
ρki,j +

∑
ρk−1
i,j

1−
∑
ρki,? −

∑
ρk?,j +

∑
ρki,j

+ Θ
(
n−2

))]

∼ dn

k
ln
(

1−
∑

ρki,? −
∑

ρk?,j +
∑

ρki,j

)
+
d(k − 1)

2

∑
ρk−1
i,? −

∑
ρki,? +

∑
ρk−1
?,j −

∑
ρk?,j −

∑
ρk−1
i,j +

∑
ρki,j

1−
∑
ρki,? −

∑
ρk?,j +

∑
ρki,j

+ Θ
(
n−1

)
. (7.4.5)

As F(σ, τ) does only depend on ρ, (7.4.4) becomes Using Stirling’s formula, we get the following
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7.4. The second moment

approximation for the number of colour assignments with overlap ρ:(
n

ρ1,1n, ρ1,−1n, ρ−1,1n, ρ−1,−1n

)
∼
√

2πn−3/2
∏

i,j∈{±1}

(2πρi,j)
−1/2 exp [nH(ρ)] . (7.4.6)

Inserting (7.4.5) and (7.4.6) into (7.4.4) completes the proof of (7.4.2). Equation (7.4.3) follows from

(7.4.2) because if ‖ρ− ρ̄‖22 = o(1), then

2∏
i,j=1

(2πρi,j)
−1/2 ∼ 4

π2

and ∑
ρk−1
i,? −

∑
ρki,? +

∑
ρk−1
?,j −

∑
ρk?,j −

∑
ρk−1
i,j +

∑
ρki,j

1−
∑
ρki,? −

∑
ρk?,j +

∑
ρki,j

∼ 2k − 3

(2k−1 − 1)
2 .

7.4.2. Dividing up the interval

Let ω, ν ∈ N and s ∈ [ων]. Analogously to the notation in Section 7.1 we introduce the sets

Bω(n) =

{
ρ ∈ B(n) : ρi,?, ρ?,i ∈

[
1

2
− ω√

n
,
1

2
+

ω√
n

)
for i ∈ {±1}

}
and

Bsω,ν(n) =

{
ρ ∈ Bω(n) : ρi,?, ρ?,i ∈

[
ρsω,ν −

1

ν
√
n
, ρsω,ν +

1

ν
√
n

)
for i ∈ {±1}

}
,

imposing constraints on the overlap matrix ρ insofar as the colour densities resulting from its projec-

tion on each colouring must not deviate too much from 1/2 in the set Bω(n) and from ρsω,ν in the set

Bsω,ν(n). By the linearity of expectation, for any s ∈ [ων] we have

E
[
Zsω,ν(H(n,m))2

]
=

∑
ρ∈Bsω,ν(n)

E
[
Z(2)
ρ (H(n,m))

]
.

We are going to show that the expression on the right hand side of this equation is dominated by

the contributions with ρ “close to” ρ̄ in terms of the euclidian norm. More precisely, for η > 0 we

introduce the set

Bsω,ν,η(n) =
{
ρ ∈ Bsω,ν(n) : ‖ρ− ρ̄‖2 ≤ η

}
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and define

Zs (2)
ω,ν,η(H(n,m)) =

∑
ρ∈Bsω,ν,η(n)

Z(2)
ρ (H(n,m)).

The following proposition reveals that it suffices to consider overlap matrices ρ such that ‖ρ− ρ̄‖2 ≤
n−3/8. Here, the number 3/8 is somewhat arbitrary, any number smaller than 1/2 would do.

Proposition 7.4.2. Let k ≥ 3 and ω, ν ∈ N. If d′/k < 2k−1 ln 2− 2, than for every s ∈ [ων] we have

E
[
Zsω,ν(H(n,m))2

]
∼ E

[
Z
s (2)

ω,ν,n−3/8(H(n,m))
]
.

To prove this proposition, we need the following lemma.

Lemma 7.4.3. Let d/k < 2k−1 ln 2− 2 and Cn(d, k) as defined in Lemma 7.4.1. Set

B(d, k) = 4

(
1− d(k − 1)

2k−1 − 1

)
.

1. If ρ ∈ Bω(n) satisfies ‖ρ− ρ̄‖2 ≤ n−3/8 then

E
[
Z(2)
ρ (H(n,m))

]
∼ Cn(d, k) exp

[
nf2(ρ̄)− nB(d, k)

2
‖ρ− ρ̄‖22

]
. (7.4.7)

2. There exists A = A(d, k) > 0 such that if ρ ∈ Bω(n) satisfies ‖ρ− ρ̄‖2 > n−3/8, then

E
[
Z(2)
ρ (H(n,m))

]
= O

(
exp

[
nf2 (ρ̄)−An1/4

])
. (7.4.8)

Proof. To prove (7.4.7), we observe that if ρ ∈ Bω(n) satisfies ‖ρ−ρ̄‖2 ≤ n−3/8, by Taylor expansion

around ρ̄ (whereH and g2 are maximized) we obtain

H(ρ) = H (ρ̄)− 2‖ρ− ρ̄‖22 + o
(
n−1

)
and (7.4.9)

g2(ρ) = g2 (ρ̄)− 2d(k − 1)

2k−1 − 1
‖ρ− ρ̄‖22 + o

(
n−1

)
. (7.4.10)

Inserting this into (7.4.3) yields (7.4.7).

To prove (7.4.8), we distinguish two cases.

Case 1: ‖ρ − ρ̄‖2 = o(1): We observe that similarly to (7.4.9) and (7.4.10) there exists a constant

A = A(d, k) > 0 such that

f2(ρ) ≤ f2 (ρ̄)−A‖ρ− ρ̄‖22.
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Hence, if ‖ρ− ρ̄‖2 > n−3/8 and ‖ρ− ρ̄‖2 = o(1), then

E
[
Z(2)
ρ (H(n,m))

]
= O

(
n−3/2

)
exp [nf2(ρ)] ≤ exp

[
nf2 (ρ̄)−An1/4

]
. (7.4.11)

Case 2: ‖ρ − ρ̄‖2 = c where c > 0 is a constant independent of n: We consider the function f̄2 :[
0, 1

2

]
7→ R that results from f2 by setting ρi,? = ρ?,i = 1/2. This function was introduced by

Achlioptas and Moore [AM06] and has been studied at different places in the literature on random

hypergraph 2-colouring. The following lemma quantifies the largest possible deviation of f2 and f̄2.

Lemma 7.4.4. Let f̄2 : [0, 1]→ R be defined as

f̄2(ρ) = ln 2 +H (2ρ) +
d

k
ln

(
1− 22−k + 2ρk + 2

(
1

2
− ρ
)k)

.

Then for ρ = (ρi,j) ∈ Bω(n) we have

exp [nf2(ρ)] ∼ exp
[
nf̄2(ρ1,1) +O

(
ω2
)]
.

Proof. For ρ ∈ Bω(n), we consider the function

ζ(ρ) = f2(ρ)− f̄2(ρ1,1)

and approximate ζ(ρ) by a Taylor expansion around ρ = ρ̄. As f2(ρ̄) = f̄2(ρ̄1,1) and ∂f2

∂ρi,j
(ρ̄) = 0 for

i, j ∈ {0, 1} and f̄ ′2(ρ̄1,1) = 0, we have ζ(ρ) = C · ‖ρ− ρ̄‖22 = O
(
ω√
n

)
for some constant C. Thus,

max
ρ∈Bω(n)

|ζ(ρ)| = O

(
ω2

n

)
,

yielding the assertion.

In [BCOR16, Lemma 4.11] the function f̄2 is analysed and it is shown that in the regime d/k ≤
2k−1 ln 2 − 2 it takes its global maximum at ρ = ρ̄ and f̄2(ρ) < f̄2(ρ̄) for all ρ ∈

[
0, 1

2

]
with

ρ 6= ρ̄ independent of n. Combining this with Lemma 7.4.4 we find that there exists a constant

A′ = A′(d, k) > 0 such that

f2(ρ) = f2 (ρ̄)−A′ +O

(
ω2

n

)
,

where we used that f2(ρ̄) = f̄2(ρ̄).
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Thus,

E
[
Z(2)
ρ (H(n,m))

]
= O

(
n−3/2

)
exp [nf2(ρ)] ≤ exp

[
nf2 (ρ̄)−A′n+O

(
ω2
)]
. (7.4.12)

As exp
[
nf2 (ρ̄)−A′n+O

(
ω2
)]

= o
(
exp

[
nf2 (ρ̄)−An1/4

])
, equation (7.4.12) together with

(7.4.11) completes the proof of (7.4.8).

Proof of Proposition 7.4.2. We let s ∈ [ων]. For a ρ̂ ∈ Bs
ω,ν,n−3/8(n), we have ‖ρ̂ − ρ̄‖2 = O

(
ω√
n

)
and obtain from the first part of Lemma 7.4.3 that

E
[
Z
s (2)

ω,ν,n−3/8(H(n,m))2
]
≥ E

[
Z

(2)
ρ̂ (H(n,m))

]
∼ Cn(d, k) exp

[
nf2 (ρ̄) +O(ω2)

]
. (7.4.13)

On the other hand, because |Bsω,ν(n)| is bounded by a polynomial in n, the second part of Lemma 7.4.3

yields ∑
ρ∈Bsω,ν(n):‖ρ−ρ̄‖2>n−3/8

E
[
Z(2)
ρ (H(n,m))

]
= O

(
exp

[
nf2 (ρ̄)−An1/4 +O(lnn)

])
. (7.4.14)

Combining (7.4.13) and (7.4.14), we obtain

E
[
Zsω,ν(H(n,m))2

]
∼

∑
ρ∈Bs

ω,ν,n−3/8
(n)

E
[
Z(2)
ρ (H(n,m))

]
= E

[
Z
s (2)

ω,ν,n−3/8(H(n,m))
]

as claimed.

7.4.3. The leading constant

In this section we compute the contribution of overlap matrices ρ ∈ Bs
ω,ν,n−3/8(n). In a first step we

show that for ρ ∈ Bs
ω,ν,n−3/8(n) we can approximate f2 by a function fs2 that results from f2 by

(approximately) fixing the marginals ρi,?, ρ?,j for i, j ∈ {±1}.

Lemma 7.4.5. Let k ≥ 3, ω, ν ∈ N and Cn(d, k) as in (7.4.1). For s ∈ [ων], remember ρsω,ν from

(7.1.2). Let fs2 : B → R be defined as

fs2 : ρ 7→ H(ρ) +
d

k
ln

1− 2ρsω,ν
k − 2(1− ρsω,ν)k +

∑
i,j∈{±1}

ρi,j

 .

Then for ρ ∈ Bs
ω,ν,n−3/8(n) it holds that

E
[
Z(2)
ρ (H(n,m))

]
∼ Cn(d, k) exp

[
nfs2 (ρ) +O

(ω
ν

)]
.
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Proof. Equation (7.4.3) of Lemma 7.4.1 yields that

E
[
Z(2)
ρ (H(n,m))

]
∼ Cn(d, k) exp [nf2(ρ)] . (7.4.15)

Analogously to the proof of Lemma 7.4.4 we define

ζs(ρ) = f2(ρ)− fs2 (ρ).

To bound ζs(ρ) from above for all ρ ∈ Bs
ω,ν,n−3/8(n), we observe that we can express the function f2

by setting ρ1,? = ρsω,ν + α and ρ?,1 = ρsω,ν + β, where |α|, |β| ≤ 1
ν
√
n

and thus

f2 : ρ 7→ H(ρ)

+
d

k
ln

1−
(
ρsω,ν + α

)k − (ρsω,ν + β
)k − (1− ρsω,ν − α)k − (1− ρsω,ν − β)k +

∑
i,j∈{±1}

ρi,j

 .

As we are only interested in the difference between f2 and fs2 , we can reparametrise ζs as

ζs(α, β)

=
d

k
ln

1−
(
ρsω,ν + α

)k − (ρsω,ν + β
)k − (1− ρsω,ν − α)k − (1− ρsω,ν − β)k +

∑
i,j∈{±1} ρi,j

1− 2ρsω,ν
k − 2(1− ρsω,ν)k +

∑
i,j∈{±1} ρi,j

.
Differentiating and simplifying the expression yields ∂ζs

∂α (α, β), ∂ζ
s

∂β (α, β) = O
(
ω√
n

)
. As we are

interested in ρ ∈ Bs
ω,ν,n−3/8(n) and |Bs

ω,ν,n−3/8(n)| ≤ 2
ν
√
n

according to the fundamental theorem of

calculus it follows for every s ∈ [ων] that

max
ρ∈Bs

ω,ν,n−3/8
(n)
|ζs(ρ)| =

∫ (ν
√
n)
−1

−(ν
√
n)
−1
O

(
ω√
n

)
dα = O

( ω
nν

)
.

Combining this with (7.4.15) yields the assertion.

Proposition 7.4.6. Let k ≥ 3, ω, ν ∈ N and d′(k − 1) <
(
2k−1 − 1

)2. Then for all s ∈ [ων] we have

E
[
Z
s (2)

ω,ν,n−3/8(H(n,m))
]
∼ν

(
|Asω,ν(n)|

√
2

πn
exp

[
nf1

(
ρsω,ν

)])2

·

exp

[
d(k − 1)

2

2k − 3

(2k−1 − 1)
2

](
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

.
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Proof. By Lemma 7.4.5 we know that for ρ ∈ Bs
ω,ν,n−3/8(n) we have

E
[
Z(2)
ρ (H(n,m))

]
∼ Cn(d, k) exp

[
nfs2 (ρ) +O

(ω
ν

)]
. (7.4.16)

A Taylor expansion of fs2 (ρ) around

ρs =

(
ρsω,ν

2 ρsω,ν(1− ρsω,ν)(
1− ρsω,ν

)
ρsω,ν

(
1− ρsω,ν

)2
)

while setting D(d, k) = 4

(
1− d(k−1)

(2k−1−1)
2

)
yields

fs2 (ρ) = fs2 (ρs) + Θ
(ω
n

)
‖ρ− ρs‖2 −

D(d, k)

2
‖ρ− ρs‖22 + o

(
n−1

)
.

Combining this with (7.4.16) we find that

E
[
Z(2)
ρ (H(n,m))

]
∼Cn(d, k) exp

[
nfs2 (ρs) + Θ (ω) ‖ρ−ρs‖2−n

D(d, k)

2
‖ρ−ρs‖22 +O

(ω
ν

)]
.

(7.4.17)

For ρ0, ρ1 ∈ Bsω,ν(n), we introduce the set of overlap matrices

Bs
ω,ν,n−3/8(n, ρ0, ρ1) = {ρ ∈ Bs

ω,ν,n−3/8(n) : ρ · ,? = ρ0, ρ?, · = ρ1}.

In particular, Bs
ω,ν,n−3/8(n, ρ0, ρ1) contains the “product” overlap ρ0 ⊗ ρ1 defined by

(
ρ0 ⊗ ρ1

)
ij

=

ρ0
i ρ

1
j . With these definitions we see that

E
[
Z
s (2)

ω,ν,n−3/8(H(n,m))
]

=
∑

ρ0,ρ1∈Bsω,ν(n)

∑
ρ∈Bs

ω,ν,n−3/8
(n,ρ0,ρ1)

E
[
Z(2)
ρ (H(n,m))

]
. (7.4.18)

Let us fix from now on two colour densities ρ0, ρ1 ∈ Bsω,ν(n). We simplify the notation by setting

B̂ = Bs
ω,ν,n−3/8(n, ρ0, ρ1), ρ̂ = ρ0 ⊗ ρ1.

Thus, we are going to evaluate

S1 =
∑
ρ∈B̂

E
[
Z(2)
ρ (H(n,m))

]
.
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We define the set En =
{
ε = (ε,−ε,−ε, ε), ε ∈ 1

nZ, 0 ≤ ε ≤ 1
}

. Then for each ρ ∈ B̂ we can find

ε ∈ En such that

ρ = ρ̂+ ε

Hence, this gives ‖ρ− ρs‖2 = ‖ρ̂+ ε− ρs‖2 and the triangle inequality yields

‖ε‖2 − ‖ρ̂− ρ
s‖2 ≤ ‖ρ̂+ ε− ρs‖2 ≤ ‖ε‖2 + ‖ρ̂− ρs‖2 .

As ‖ρ̂− ρs‖2 ≤
1

ν
√
n

and for ν →∞ it holds that 1
ν
√
n

= o(n−1/2), in this case we have

‖ρ− ρs‖2 = ‖ε‖2 + o(n−1/2). (7.4.19)

Observing that fs2 (ρs) =
(
f1(ρsω,ν)

)2 and inserting (7.4.19) into (7.4.17), we find

S1 ∼ν
∑
ρ∈B̂

Cn(d, k) exp

[
nf s2 (ρs)− nD(d, k)

2
‖ε‖22 + o(n1/2) ‖ε‖2 + o(1)

]

∼ν Cn(d, k) exp
[
2nfs1

(
ρsω,ν

)]∑
ρ∈B̂

exp

[
−nD(d, k)

2
‖ε‖22 + o(n1/2) ‖ε‖2

]
. (7.4.20)

It follows from the definition of B̂ that{
ρ̂+ ε : ε ∈ En, ‖ε‖2 ≤ n−3/8/2

}
⊂
{
ρ ∈ B̂

}
⊂ {ρ̂+ ε : ε ∈ En} .

As

S2 ∼ν Cn(d, k) exp [nf s2 (ρs)]
∑

ε∈En, ‖ε‖2>n−3/8/2

exp

[
−nD(d, k)

2
‖ε‖22 (1 + o(1))

]

≤ Cn(d, k) exp [nfs2 (ρs)]O(n) exp

[
−D(d, k)

8
n1/4

]
,

equation (7.4.20) yields limν→∞ limn→∞ S2/S1 = 0 and we see that ε ∈ En with ‖ε‖2 > n−3/8/2 do

only contribute negligibly. Thus, we conclude, using the formula of Euler-Maclaurin and a Gaussian
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integration, that

S1 ∼ν Cn(d, k) exp
[
2nf s1

(
ρsω,ν

)] ∑
ε∈En

exp

[
−nD(d, k)

2
‖ε‖22 + o(n1/2) ‖ε‖2

]

∼ν Cn(d, k) exp
[
2nf s1

(
ρsω,ν

)]
n

∫
exp

[
−nD(d, k)

8
ε2 + o(n1/2)ε

]
dε

∼ν Cn(d, k) exp
[
2nf s1

(
ρsω,ν

)]√πn

8

(
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

. (7.4.21)

In particular, the last expression is independent of the choice of the vectors ρ0, ρ1 that defined B̂.

Therefore, substituting (7.4.21) in the decomposition (7.4.18) completes the proof.

Proof of Proposition 7.1.4. From (7.3.1) we remember that

exp

∑
l≥2

λlδ
2
l

 = exp

[
−d(k − 1)

2

1

(2k−1 − 1)
2

](
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

. (7.4.22)

To prove Proposition 7.1.4 we combine Lemma 7.2.3 with Propositions 7.4.2 and 7.4.6 yielding

E
[
Zsω,ν(H(n,m))2

]
E
[
Zsω,ν(H(n,m))

]2 ∼ν exp

[
d(k − 1)

2

(
2k − 3

(2k−1 − 1)
2 −

2

2k−1 − 1

)](
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

= exp

[
−d(k − 1)

2

1

(2k−1 − 1)
2

](
1− d(k − 1)

(2k−1 − 1)
2

)−1/2

. (7.4.23)

Combining equations (7.4.22) and (7.4.23) completes the proof.

7.5. Excursion: Colour patterns - A different approach

In the course of proving Proposition 7.1.4, it was not clear from the beginning that we could guarantee

the second moment of the total number of solutions to be small enough for small subgraph conditio-

ning to work. An idea going beyond a straightforward calculation of the second moment was to split

the number of all colourings and to group colourings exhibiting the same “pattern”, i.e. colourings

satisfying the edges of the hypergraph in the same prescribed way. The purpose behind that was to be

able to get a handle on the “cross-terms” emerging from pairs of colour assignments that colour the

edges of a hypergraph in different ways, because we suspected pairs of colourings having “untypical”

patterns to push up the variance.

Fortunately, it turned out that we did not need to pursue this more complicated approach. Nevertheless,

as it might be interesting and might potentially be useful in further applications, we shortly sketch it
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here without going into too much detail.

To begin, we decompose the number of solutions Z into a sum of contributions that are tractable. To

this aim, let Θ = {±1}k\{(1, ..., 1) ∪ (−1, ...,−1)} be the set of all 2k − 2 valid combinations to

colour a k-uniform hyperedge. We call a vector ϑ = (ϑ1, ..., ϑm) with ϑi ∈ Θ for all i ∈ [m] a colour

pattern. Given H(n,m) and a colouring σ, let µ(ϑ) = µH(n,m),σ(ϑ) for ϑ ∈ Θ denote the number of

edges e of H(n,m) such that σ|e = ϑ (the number of occurences of ϑ in H(n,m) under σ). Let M

be the set of all vectors µ = (µ(ϑ))ϑ∈Θ such that
∑

ϑ∈Θ µ(ϑ) = m. Finally, let Zµ(H(n,m)) be the

number of colourings σ ofH(n,m) “fitting” µ. Then obviously we have

Z(H(n,m)) =
∑
µ∈M

Zµ(H(n,m)).

The strategy is to apply small subgraph conditioning to the random variables Zµ rather than directly

to Z. To calculate the second moment of Zµ, the key tool will be the following result of Hoeffding

[Hoe51] establishing a limiting normal distribution for the sum of real functions of random permuta-

tions.

Let (Yn1, ..., Ynn) be a random vector which takes on the n! permutations of (1, ..., n) with equal

probabilities. Let cn(i, j) for i, j = 1, ..., n be real numbers and Sn =
∑n

i=1 cn(i, Yni). We say that

Sn is asymptotically normal distributed if

lim
n→∞

P
(
Sn − E [Sn]

Var [Sn]

)
=

1√
2π

∫ x

−∞
exp

[
−1

2
y2

]
dy

for −∞ < x <∞. Then the following holds.

Theorem 7.5.1 ([Hoe51]). The mean and variance of Sn =
∑n

i=1 cn(i, Yin) are

E [Sn] =
1

n

n∑
i=1

n∑
j=1

cn(i, j) and Var [Sn] =
1

n− 1

n∑
i=1

n∑
j=1

d2
n(i, j)

with dn(i, j) = cn(i, j) − 1
n

∑n
g=1 cn(g, j) − 1

n

∑n
h=1 cn(i, h) + 1

n2

∑n
g=1

∑n
h=1 cn(g, h). Further-

more, the distribution of Sn is asymptotically normal if

lim
n→∞

max1≤i,j≤n d
2
n(i, j)∑n

i=1

∑n
j=1 d

2
n(i, j)

= 0.

A main observation is that only Zµ with µ close to some “canonical” µ̄ contribute to Z. We assume

that 2k − 2 divides m and let µ̄ =
(
m/(2k − 2), ...,m/(2k − 2)

)
and Mω be the set of all µ ∈ M
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with ‖µ− µ̄‖2 ≤ ωm−1/2. Then it can be shown that

lim
ω→∞

lim inf
n→∞

∑
µ∈Mω

E [Zµ]

E [Z]
= 1.

The proof will not be stated here as it is very similar to the proof of 7.1.1.

The rest of this section deals with giving an idea how to prove the following statement.

Proposition 7.5.2. For every ω > 0, we have

lim sup
n→∞

max
µ∈Mω

E
[
Z2
µ

]
E [Zµ]2

=

[
1− d(k − 1)

(2k−1 − 1)
2

]−1/2

.

However, we will leave out some of the technical details and just perform the computations for certain

canonical choices of µ and under certain conditions on the colourings.

7.5.1. Random permutations

In a first step we show that the distribution of the overlap of two random colour patterns satisfying

some balanced condition is asymptotically normal.

We let p = (p1, . . . , pm) with pi ∈ Θ for i ∈ [m]. Additionally , we let π be a random permutation of

[m] and pπ be the permuted sequence, i.e. pπr = pπ(r). For r, s ∈ [m], we define

c(pr, ps) =

k∑
i=1

1{pri=1}1{psi=1} and c(pr) =

m∑
s=1

c(pr, ps).

Further, let

X =
m∑
r=1

c(pr, p
π
r )

be the overlap of p and pπ. Then X = X(p) is a random variable and its distribution depends on the

choice of p. We let α(i, j) for all i, j ∈ [k] be defined as

α(i, j) =

m∑
r=1

1{pri=1}1{prj=1}.
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In order to simplify calculations, in the following we choose p such that

α(i, j) =

m
2 if i = j

m(2k−2−1)
2k−2

if i 6= j.
(7.5.1)

This condition is for instance satisfied if
∑m

i=1 1{pi=ϑ} = m/(2k − 2) for all ϑ ∈ Θ. What is the

asymptotic distribution of X in this case?

Proposition 7.5.3. The random variable X is asymptotically normal with

E [X] =
km

4
and Var [X] =

km

16

[
k − 1

(2k−1 − 1)2
+ 1

]
.

Proof. Using Theorem 7.5.1 we can calculate the expected value of X as

E [X] =
1

m

m∑
r=1

m∑
s=1

c(pr, ps) =
1

m

m∑
r=1

m∑
s=1

[
k∑
i=1

1{pri=1}1{psi=1}

]

=
1

m

k∑
i=1

[
m∑
r=1

1{pri=1}

m∑
s=1

1{psi=1}

]
=

1

m

k∑
i=1

m2

4
=
km

4
. (7.5.2)

To calculate the variance of X , for r, s ∈ [m] we define d(pr, ps) as

d(pr, ps) = c(pr, ps)−
1

m

[
m∑
u=1

c(pu, ps) +
m∑
v=1

c(pr, pv)

]
+

1

m
E [X]

and the symmetry of the functional c combined with (7.5.2) yields

d(pr, ps) = c(pr, ps)−
2

m
c(pr) +

k

4
. (7.5.3)

According to Theorem 7.5.1, the variance of X is then given by

Var [X] =
1

m− 1

m∑
r=1

m∑
s=1

d(pr, ps)
2. (7.5.4)

159



7. Number of solutions in random hypergraph 2-colouring

With the decomposition of d(pr, ps) from (7.5.3) we have

m∑
r,s=1

d(pr, ps)
2 =

m∑
r,s=1

[
c(pr, ps)

2 − 2

m
c(pr, ps) [c(pr) + c(ps)] +

1

m2
[c(pr) + c(ps)]

2

+
k

2
c(pr, ps)−

k

2m
[c(pr) + c(ps)] +

k2

16

]

=

m∑
r,s=1

[
c(pr, ps)

2 − 4

m
c(pr, ps)c(pr) +

2

m2
c(pr)

2 +
2

m2
c(pr)c(ps)

+
k

2
c(pr, ps)−

k

m
c(pr) +

k2

16

]

=
m∑

r,s=1

c(pr, ps)
2 − 2

m

m∑
r=1

c(pr)
2 +

(km)2

16
(7.5.5)

because
∑m

r=1 c(pr) = km2

4 and thus
∑m

r,s=1 c(pr)c(ps) = k2m4

16 . As we chose p such that (7.5.1)

holds, we have

m∑
r=1

m∑
s=1

c(pr, ps)
2 =

m∑
r=1

m∑
s=1

 k∑
i,j=1

1{pri=1}1{prj=1}1{psi=1}1{psj=1}


=

k∑
i,j=1

[
m∑
r=1

1{pri=1}1{prj=1}

]2

= kα(1, 1)2 + k(k − 1)α(1, 2)2

=
km2

16 (2k − 2)
2

[
k
(

2k − 4
)2

+ 2k
(

3 · 2k − 8
)]
. (7.5.6)

Moreover,

2

m

m∑
r=1

c(pr)
2 =

2

m

m∑
r=1

[
m∑
s=1

k∑
i=1

1{pri=1}1{psi=1}

]2

=
m

2

m∑
r=1

[
k∑
i=1

1{pri=1}

]2

=
m2

2
[kα(1, 1) + k(k − 1)α(1, 2)] =

km2

8 (2k − 2)

((
2k − 4

)
k + 2k

)
. (7.5.7)
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Combining (7.5.5) and (7.5.4) and the equations (7.5.6) and (7.5.7) yields

Var [X] =
1

m− 1

 m∑
r,s=1

c(pr, ps)
2 − 2

m

m∑
r=1

c(pr)
2 +

(km)2

16


=

1

m− 1

[
km2

16 (2k − 2)
2

[
k
(

2k − 4
)2

+ 2k
(

3 · 2k − 8
)]

− km2

8 (2k − 2)

((
2k − 4

)
k + 2k

)
+

(km)2

16

]

=
km2

m− 1

[
k − 1

4 (2k − 2)
2 +

1

16

]
≈ km

16

[
k − 1

(2k−1 − 1)2
+ 1

]
. (7.5.8)

Theorem 7.5.1 provides that the distribution of X is asymptotically normal because

lim
m→∞

max1≤r,s≤m d(pr, ps)
2

1
m

∑m
r=1

∑m
s=1 d(ps, ps)2

= 0.

Together with (7.5.2) and (7.5.8) this completes the proof of the proposition.

7.5.2. The configuration model

To proceed, we introduce the so-called configuration model, which is an alternative model to create

random hypergraphs. For each i ∈ {1, ..., n} independently, we consider a Po(d)-distributed random

variable and collect the realisations in a vector d = (d1, ..., dn), to which we refer as the degree

sequence of the hypergraph. We then proceed as follows:

• Create di ‘clones’ of each vertex i:

i; (i, 1), ..., (i, di)

for all i ∈ [n]. Let D = {(i, 1), ..., (i, di), 1 ≤ i ≤ n}.
• Choose a random bijection π : [m]× [k]→ D.

• Set µij = π(i, j) where µij is the j’th vertex of the i’th hyperedge.

This model actually generates random hypergraphs where di is the degree of vertex vi. We can think

of the clones as a deck of cards. To create the hypergraph, we just shuffle the deck randomly and put

the cards down in the resulting order to “fill in” the k-hyperedges one by one.
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7.5.3. Entropy

In a next step we show that the distribution of the overlap of two random assignments satisfying a

certain balanced condition in the configuration model is asymptotically normal.

For a given hypergraph, we let p% be the number of vertices of degree % for % ∈ [0,∞). To simplify

calculations, in the following we only consider 2-colourings σ that are balanced on every degree,

meaning that for all % ∈ [0,∞) we have

|{v : σ(v) = 1, deg(v) = %}| = |{v : σ(v) = −1,deg(v) = %}|,

where deg(v) denotes the degree of vertex v. For two randomly chosen colourings σ and τ , which are

balanced on every degree, we let Y be the “overlap” in the configuration model, i.e. the number of

vertices where both colourings evaluate to 1 weighted with their degree:

Y =
∑
v∈[n]

deg(v)1{σ(v)=τ(v)=1}.

Then the following holds.

Proposition 7.5.4. The random variable Y is asymptotically normal with

E [Y ] =
dn

4
and Var [Y ] =

dn(d+ 1)

16
.

Proof. The strategy is to prove this statement by applying Theorem 7.5.1. For two colourings σ and τ

and a vertex v, we define

c(σ(v), τ(w)) = 1{σ(v)=1}1{τ(w)=1} and c(σ(v)) = 1{σ(v)=1}.

We decompose Y into a sum of contributions Y% for % ∈ [0,∞). We let

Y% =
∑

v:deg(v)=%

1{σ(v)=1 and τ(v)=1} =
∑

v:deg(v)=%

c(σ(v), τ(v)).

Thus, Y% can be interpreted as the overlap of σ and τ restricted to the vertices of degree %. Then

Theorem 7.5.1 implies that the Y% are asymptotically normal distributed.

We have

Y =

∞∑
%=0

%Y%. (7.5.9)
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Therefore, also Y is asymptotically normal and we use Theorem 7.5.1 to calculate the expectation and

variance of Y . We begin with the expectation. Conditioned on the vertices of degree %, we interpret τ

as a random permutation of σ. We have

E [Y%] =
1

np%

∑
v:deg(v)=%

∑
w:deg(w)=%

c(σ(v), τ(w)) =
1

np%

 ∑
v:deg(v)=%

c(σ(v))

2

=
1

np%

(np%
2

)2
=
np%
4
.

Inserting this into (7.5.9) and applying the linearity of the expectation as well as the fact that the

degrees of the vertices are Po(d) distributed, yields

E [Y ] =

∞∑
%=0

%E [Y%] =

∞∑
%=0

%
np%
4

=
dn

4
.

As Y% are independent random variables, the variance of Y decomposes in the following way:

Var [Y ] =
∞∑
%=0

%2Var [Y%] . (7.5.10)

Thus, analogously to (7.5.5) we find that

Var [Y%] =
1

np% − 1

 ∑
v:deg(v)=%

∑
w:deg(w)=%

c(σ(v), τ(w))2 − 2

np%

∑
v:deg(v)=%

c(σ(v))2 +
(np%)

2

16


=

1

16

(np%)
2

np% − 1
. (7.5.11)

Inserting (7.5.11) into (7.5.10) that the degrees of the vertices are Po(d) distributed yields

Var [Y ] =

∞∑
%=0

%2

16

(np%)
2

np% − 1
≈ n

16

∑
%

p%%
2 =

dn(d+ 1)

16
,

thereby completing the proof.

7.5.4. Matchings

The penultimate step consists in connecting the number of colourings in the configuration model to

the number of patterns. More specifically, we count in how many ways two random colourings having

overlap ρ in the configuration model can be mapped to a bi-pattern also having overlap ρ. This number
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is given by

f(ρ) =
(kmρ)!2

(
km

(
1
2 − ρ

))
!2

(km)!

≈
2πkmρ · 2πkm

(
1
2 − ρ

)
(kmρ)2kmρ (km (1

2 − ρ
))2km( 1

2
−ρ)

√
2πkm(km)km

=
(√

2πkm
)3
ρ

(
1

2
− ρ
)
ρ2kmρ

(
1

2
− ρ
)2km( 1

2
−ρ)

=
(√

2πkm
)3
ρ

(
1

2
− ρ
)

exp

[
km

(
2ρ ln(ρ) + 2

(
1

2
− ρ
)

ln

(
1

2
− ρ
))]

,

where we used Stirling’s approximation. We let g(ρ) = km
(
2ρ ln(ρ) + 2

(
1
2 − ρ

)
ln
(

1
2 − ρ

))
denote

the exponential part of this function. As can be easily verified, we have

g′(ρ) = km

(
2 ln(ρ)− 2 ln

1

2
− ρ
)

and g′′(ρ) = km

(
2

ρ
+

2
1
2 − ρ

)
.

Thus, expanding f around ρ = 1
4 gives

f(ρ) =

(√
2πkm

)3

16
exp

[
g

(
1

4

)
+

1

2
· g′′

(
1

4

)(
ρ− 1

4

)2
]

=

(√
2πkm

)3

16
4−km exp

[
16km

2

(
ρ− 1

4

)2
]
. (7.5.12)

7.5.5. Putting things together

We now have all the pieces in place to give a sketch of the proof of Proposition 7.5.2. More precisely,

we are going to prove the following:

lim sup
n→∞

E[
(
Zbal
µ

)2
]

E[Zbal
µ ]2

=

[
1− d(k − 1)

(2k−1 − 1)
2

]−1/2

, (7.5.13)

where Zbal
µ is the number of colourings that are balanced on every degree and whose colour pattern

fits µ and µ is chosen such that (7.5.1) is satisfied. If we write µ = (µ(ϑ))ϑ∈Θ, the total number of

allowed colour patterns is equal to (
m

(µϑ)ϑ

)
.
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Furthermore, such patterns can be sampled simply by permuting some “canonical pattern” randomly.

Analogously, in order to create a legal “bi-pattern” (two rows of patterns), we merely choose two

permutations independently. Of course, the total number of pairs of patterns is
(

m
(µϑ)ϑ

)2.

Let λ(ρ) be the probability that a legal bi-pattern has overlap ρ. Proposition 7.5.3 yields that for

n→∞ we have

λ(ρ) =
1√
2πξ

exp

[
− 1

2ξ

(
ρ− 1

4

)2

(km)2

]
, (7.5.14)

where ξ = km
16

[
k−1

(2k−1−1)2 + 1
]
. Further, let ζ(ρ) be the probability that two randomly chosen colou-

rings have overlap ρ in the configuration model. Then Proposition 7.5.4 yields that for n → ∞ we

have

ζ(ρ) =
1√
2πχ

exp

[
− 1

2χ

(
ρ− 1

4

)2

(km)2

]
, (7.5.15)

where χ = km(d+1)
16 . Then the number of triples (H(n,m), σ, τ) of hypergraphs H(n,m) and colou-

rings σ, τ with overlap ρ comes to

Λ(ρ) = 4nζ(ρ)

(
m

(µϑ)ϑ

)2

λ(ρ)f(ρ).

The first two factors account for the entropy (number of ways of choosing the assignments σ, τ ).

The next two factors are the number of patterns as desired. The last factor is the number of ways

of matching the vertex clones to the edges. By comparison, the number of pairs (H(n,m), σ) of

hypergraphs and colourings σ comes to

E[Zbal
µ ] ∼ 2n

(
m

(µϑ)ϑ

)(
km

km/2

)−1

.

Therefore, integrating over all “possible” ρ gives

E[
(
Zbal
µ

)2
]

E[Zbal
µ ]2

∼
∑
ρ

Λ(ρ)
(
km
km/2

)2
4n
(

m
(µϑ)ϑ

)2 ∼ km ∫
ρ

Λ(ρ)
(
km
km/2

)2
4n
(

m
(µϑ)ϑ

)2 dρ = km

(
km

km/2

)2 ∫
ρ
ζ(ρ)λ(ρ)f(ρ)dρ.

(7.5.16)

By Stirling, (
km

km/2

)
∼ 2km

√
2

πkm
. (7.5.17)
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7. Number of solutions in random hypergraph 2-colouring

Furthermore, inserting (7.5.14), (7.5.15) and (7.5.12) gives∫
ρ
ζ(ρ)λ(ρ)f(ρ)dρ

∼

(√
2πkm

)3

16
4−km

∫
1

2π
√
ξχ

exp

[
−(km)2

2

(
ρ− 1

4

)2(1

ξ
+

1

χ
− 16

km

)]
dρ

=

(√
2πkm

)3

16
4−km

∫
1

2π
√
ξχ

exp

[
−(km)2

2

(
ρ− 1

4

)2
(
ξ + χ− 16ξχ

km

ξχ

)]
dρ

Using the formula
∫∞
−∞ exp

[
−a (x+ b)2

]
dx =

√
π
a for a Gaussian integral, this transforms to

∫
ρ
ζ(ρ)λ(ρ)f(ρ)dρ

∼

(√
2πkm

)3

16km
√

2π
4−km

[
ξ + χ− 16ξχ

km

]− 1
2

=
π

2
4−km

[
k − 1

(2k−1 − 1)
2 + 1 + (d+ 1)− d(k − 1)

(2k−1 − 1)
2 − d−

k − 1

(2k−1 − 1)
2 − 1

]− 1
2

=
π

2
4−km

[
1− d(k − 1)

(2k−1 − 1)
2

]− 1
2

(7.5.18)

Plugging (7.5.18) and (7.5.17) into (7.5.16), we get

E[
(
Zbal
µ

)2
]

E[Zbal
µ ]2

∼ km4km
2

πkm

π

2
4−km

[
1− d(k − 1)

(2k−1 − 1)
2

]− 1
2

=

[
1− d(k − 1)

(2k−1 − 1)
2

]− 1
2

.

and thus we have proven (7.5.13).
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8 Number of solutions in random graph k-colouring

This chapter contains the proof of Theorem 4.1.9 establishing the limiting distribution of the loga-

rithm of the number of k-colourings of a random graph. The result is obtained up to the condensation

threshold for large values of k and in lower density regimes for all k ≥ 3.

Large parts of this chapter are a verbatim copy or a close adaption of the content of the paper On the

number of solutions in random graph k-colouring [Ras16b+] submitted to Combinatorics, Probability

and Computing.

The first section of this chapter presents an outline of the proof of Theorem 4.1.9 and gives a short

introduction to the proof ideas. In Section 8.2 the first moment of the number of solutions is explicitly

calculated and further on the number of short cycles is determined in Section B.3. To apply small

subgraph conditioning, the second moment of some auxiliary random variables is calculated very

precisely in different density regimes. This is done in Section 8.3.

As the paper is a single-author paper, the question of the contribution of this thesis’ author does not

arise.

Throughout the chapter we assume that m = dd′n/2e, where d′ remains fixed as n → ∞. We also

require that k ≥ 3.

8.1. Outline of the proof

To determine the distribution of lnZk(G(n,m)), it will be necessary to control the size of the colour

classes. To formalize this, we introduce the following notation. For a map σ : [n]→ [k], we define

ρ(σ) = (ρ1(σ), . . . , ρk(σ)), where ρi(σ) = |σ−1(i)|/n for i = 1 . . . k.

Thus, ρ(σ) is a probability distribution on [k], to which we refer as the colour density of σ.

Let Ak(n) signify the set of all possible colour densities ρ(σ) for σ : [n] → [k]. Further, let Ak be

the set of all probability distributions ρ = (ρ1, . . . , ρk) on [k], and let ρ? = (1/k, . . . , 1/k) signify the

barycentre of Ak.

In order to simplify the notation, for the rest of this chapter we assume that ω, ν are odd natural

numbers, formally we define N = {2i− 1 : i ∈ N} and let ω, ν ∈ N . We say that ρ = (ρ1, . . . , ρk) ∈
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8. Number of solutions in random graph k-colouring

Ak(n) is (ω, n)-balanced if

ρi ∈
[

1

k
− ω√

n
,

1

k
+

ω√
n

)
for all i ∈ [k]

and letAk,ω(n) denote the set of all (ω, n)-balanced ρ ∈ Ak(n). As we will see, in order to prove state-

ments about the number Zk of all solutions, it suffices to consider solutions σ with ρ(σ) ∈ Ak,ω(n).

We let Zk,ω(G) signify the number of (ω, n)-balanced k-colourings of a graph G on [n], i.e. k-

colourings σ such that ρ(σ) ∈ Ak,ω(n).

Since verifying the required properties to apply small subgraph conditioning directly for the random

variable Zω is very intricate, we break Zω down into smaller contributions, for which we determine

the first and second moment in the following sections.

To this aim, we decompose the set Ak,ω(n) into smaller sets. We define

Sk,ω,ν =

{
s ∈ Zk : ‖s‖1 = 2i, i ∈ N, i ≤ ων − 1

2

}
. (8.1.1)

Sk,ω,ν contains vectors that we use as centres of disjoint ’balls’ to partition the set Ak,ω(n): For

s = (s1, ..., sk) ∈ Sk,ω,ν , we let ρk,ω,ν,s ∈ Rk be the vector with components

ρk,ω,ν,si =
1

k
+

si
ν
√
n
. (8.1.2)

Further, we let Ask,ω,ν(n) be the set of all colour densities ρ ∈ Ak,ω(n) such that

ρi ∈
[
ρk,ω,ν,si − 1

ν
√
n
, ρk,ω,ν,si +

1

ν
√
n

)
.

For a graph G, we denote by Zsk,ω,ν(G) the number of 2-colourings σ such that ρ(σ) ∈ Ask,ω,ν(n).

For each fixed ν, we have Zk,ω =
∑

s∈Sk,ω,ν Z
s
k,ω,ν and our strategy is to apply small subgraph

conditioning to the random variables Zsk,ω,ν rather than directly to Zk. But first, we will calculate the

first moments of Zk and Zk,ω in Section 8.2 to obtain the following.

Proposition 8.1.1. Fix an integer k ≥ 3 and a number d′ ∈ (0,∞). Let ω > 0. Then

E [Zk(G(n,m))] = Θ(kn(1− 1/k)m) and lim
ω→∞

lim inf
n→∞

E [Zk,ω(G(n,m))]

E [Zk(G(n,m))]
= 1.

The key observation the proof is based on is that the fluctuations of Zk(G(n,m)) can be attributed

to fluctuations in the number of cycles of a bounded length. Hence, for an integer l ≥ 2 we let Cl,n
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8.1. Outline of the proof

denote the number of cycles of length exactly l in G(n,m). Let

λl =
dl

2l
and δl =

(−1)l

(k − 1)l−1
. (8.1.3)

The following fact shows that C2,n, . . . are asymptotically independent Poisson variables (e.g. [Bol01,

Theorem 5.16]):

Fact 8.1.2. If c2, . . . , cL are non-negative integers, then

lim
n→∞

P [∀2 ≤ l ≤ L : Cl,n = cl] =
L∏
l=2

P [Po(λl) = cl] .

In Section B.3 the impact of the cycle countsCl,n on the first moment ofZsω,ν(G(n,m)) is investigated.

As this was already done in [BCOE14+], we carry it out in the present work only for the sake of

completeness. The result is the following:

Proposition 8.1.3. Assume that k ≥ 3 and d′ ∈ (0,∞). Then

∞∑
l=2

λlδ
2
l <∞.

Moreover, let ω, ν ∈ N and c2, . . . , cL be non-negative integers. Then

E
[
Zsk,ω,ν(G(n,m))|∀2 ≤ l ≤ L : Cl,n = cl

]
E
[
Zsk,ω,ν(G(n,m))

] ∼
L∏
l=2

[1 + δl]
cl exp [−δlλl] . (8.1.4)

Additionally, to apply small subgraph conditioning, we have to determine the second moment of

Zsk,ω,ν(G(n,m)) very precisely. This step constitutes the main technical work in this chapter. We con-

sider two regimes of d′ and k separately. In the simpler case, based on the second moment argument

from [AN05], we obtain the following result.

Proposition 8.1.4. Assume that k ≥ 3 and d′ < 2(k − 1) ln(k − 1). Then

E
[
Zsk,ω,ν(G(n,m))2

]
E
[
Zsk,ω,ν(G(n,m))

]2 ∼ exp

∑
l≥2

λlδ
2
l

 .

The second regime of d′ and k is that k ≥ k0 for a certain constant k0 ≥ 3 and d′ < dcond (with

dcond = dcrit the number defined in (2.5.3)). In this case, we replace Zsk,ω,ν by the slightly tweaked
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8. Number of solutions in random graph k-colouring

random variable Z̃sk,ω,ν used in the second moment arguments from [BCOHRV16, COV13].

Proposition 8.1.5. There is a constant k0 ≥ 3 such that the following is true. Assume that k ≥ k0 and

2(k−1) ln(k−1) ≤ d′ < dcond. Then for each ω, ν ∈ N and s ∈ Sk,ω,ν there exists an integer-valued

random variable 0 ≤ Z̃sk,ω,ν ≤ Zsk,ω,ν such that

E
[
Z̃sk,ω,ν(G(n,m))

]
∼ E

[
Zsk,ω,ν(G(n,m))

]
and (8.1.5)

E
[
Z̃sk,ω,ν(G(n,m))2

]
E
[
Z̃sk,ω,ν(G(n,m))

]2 ≤ (1 + o(1)) exp

∑
l≥2

λlδ
2
l

 .

The proofs of Propositions 8.1.4 and 8.1.5 appear at the end of Section 8.3. In order to apply small

subgraph conditioning to the random variable Z̃sk,ω,ν , we need to investigate the impact of Cl,n on the

first moment of Z̃sk,ω,ν . Thus, we need a similar result as Proposition 8.1.3 for Z̃sk,ω,ν . Fortunately,

instead of having to reiterate the proof of Proposition 8.1.3, we obtain the following by combining

Proposition 8.1.3 with (8.1.5):

Corollary 8.1.6. Let c2, . . . , cL be non-negative integers. With the assumptions and notation of Pro-

position 8.1.5 we have

E
[
Z̃sk,ω,ν(G(n,m))|∀2 ≤ l ≤ L : Cl,n = cl

]
E
[
Z̃sk,ω,ν(G(n,m))

] ∼
L∏
l=2

[1 + δl]
cl exp [−δlλl] .

As the proof is nearly identical to the analogous proof in [BCOE14+], we defer it to Appendix B.

The aim is now to derive Theorem 4.1.9 from Propositions 8.1.1-8.1.4. The key observation is that the

variance of the random variablesZsk,ω,ν is affected by the presence of cycles of bounded length and that

this is the only significant influence. As a consequence, conditioning on the small cycle counts up to

some preselected length reduces the variance of Zsk,ω,ν . What is maybe surprising is that conditioning

on the number of enough small cycles reduces the variance to any desired fraction of E[Zsk,ω,ν ]2.

As done in [COW16+, Ras16a+], the arguments we use are similar to the small subgraph conditioning

from [Jan95, RW94]. But we do not refer to any technical statements from [Jan95, RW94] directly

because instead of working only with the random variable Zk we need to control all Zsk,ω,ν for fixed

ω, ν ∈ N simultaneously. In fact, ultimately we have to take ν →∞ and ω →∞ as well. Our line of

argument follows the path beaten in [COW16+, Ras16a+] and the following three lemmas are nearly

identical to the ones derived there.
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8.1. Outline of the proof

For L > 2, let FL = FL,n(d, k) be the σ-algebra generated by the random variables Cl,n with

2 ≤ l ≤ L. The set of all graphs can be divided into groups according to the small cycle counts: For

each L ≥ 2, the decomposition of the variance of Zsk,ω,ν yields

Var
[
Zsk,ω,ν(G(n,m))

]
= Var

[
E
[
Zsk,ω,ν(G(n,m))|FL

]]
+ E

[
Var

[
Zsk,ω,ν(G(n,m))|FL

]]
,

meaning that the variance can be written as the variance of the group mean plus the expected value

of the variance within a group. The term Var
[
E
[
Zsk,ω,ν(G(n,m))|FL

]]
accounts for the amount of

variance induced by the fluctuations of the number of cycles of length at most L. The strategy when

using small subgraph conditioning is to bound the second summand, which is the expected conditional

variance

E
[
Var

[
Zsk,ω,ν(G(n,m))|FL

]]
= E

[
E
[
Zsk,ω,ν(G(n,m))2|FL

]
− E

[
Zsk,ω,ν(G(n,m))|FL

]2]
.

In the following lemma we show that in fact in the limit of large L and n this quantity is negligible.

This implies that conditioned on the number of short cycles the variance vanishes and thus the limiting

distribution of lnZsk,ω,ν is just the limit of lnE
[
Zsk,ω,ν |FL

]
as n,L→∞. This limit is determined by

the joint distribution of the number of short cycles.

Lemma 8.1.7. Let k ≥ 3 and d′ ∈ (0,∞). For any ω, ν ∈ N and s ∈ Sk,ω,ν , we have

lim sup
L→∞

lim sup
n→∞

E

E
[
Zsk,ω,ν(G(n,m))2|FL

]
− E

[
Zsk,ω,ν(G(n,m))|FL

]2

E
[
Zsk,ω,ν(G(n,m))

]2

 = 0.

Proof. Fix ω, ν ∈ N and set Zs = Zsk,ω,ν(G(n,m)). Using Fact 8.1.2 and equation (8.1.3) from

Proposition 8.1.3 we can choose for any ε > 0 a constant B = B(ε) and L ≥ L0(ε) large enough

such that for each large enough n ≥ n0(ε,B, L) we have for any s ∈ Sk,ω,ν :

E
[
E [Zs|FL]2

]
≥

∑
c1,...,cL≤B

E [Zs|∀2 ≤ l ≤ L : Cl,n = cl]
2 P [∀2 ≤ l ≤ L : Cl,n = cl]

≥ exp [−ε]E [Zs]
2

∑
c1,...,cL≤B

L∏
l=2

[(1 + δl)
cl exp [−λlδl]]2 P [Po(λl) = cl]

= exp [−ε]E [Zs]
2

∑
c1,...,cL≤B

L∏
l=2

[
(1 + δl)

2λl
]cl

cl! exp [2λlδl + λl]

≥ E [Zs]
2 exp

[
−2ε+

L∑
l=2

δ2
l λl

]
. (8.1.6)

The tower property for conditional expectations and the standard formula for the decomposition of the
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8. Number of solutions in random graph k-colouring

variance yields

E
[
Z2
s

]
= E

[
E
[
Z2
s |FL

]]
= E

[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
+ E

[
E [Zs|FL]2

]
and thus, using (8.1.6) we have

E
[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
E [Zs]

2 ≤
E
[
Z2
s

]
E [Zs]

2 − exp

[
−2ε+

L∑
l=2

δ2
l λl

]
. (8.1.7)

Finally, the estimate exp[−x] ≥ 1 − x for |x| < 1/8 combined with (8.1.7) and Proposition 8.1.4

implies that for large enough ν, n, L and each s ∈ Sk,ω,ν we have

E
[
E
[
Z2
s |FL

]
− E [Zs|FL]2

]
E [Zs]

2 ≤ 2ε exp

[ ∞∑
l=2

δ2
l λl

]
.

As this holds for any ε > 0 and by equation (8.1.3) the expression exp
[∑∞

l=2 δ
2
l λl
]

is bounded, the

proof of the lemma is completed by first taking n→∞ and then L→∞.

Lemma 8.1.8. For any α > 0, we have

lim sup
L→∞

lim sup
n→∞

P [|Zk(G(n,m))− E [Zk(G(n,m))|FL] | > αE [Zk(G(n,m))]] = 0.

Proof. To unclutter the notation, we set Zk = Zk(G(n,m)) and Zk,ω = Zk,ω(G(n,m)). First we

observe that Proposition 8.1.1 implies that for any α > 0 we can choose ω ∈ N large enough such

that

lim inf
n→∞

E [Zk,ω] > (1− α2)E [Zk] . (8.1.8)

We let ν ∈ N . To prove the statement, we need to get a handle on the cases where the variables

Zsk,ω,ν(G(n,m)) deviate strongly from their conditional expectation E
[
Zsk,ω,ν(G(n,m))|FL

]
. We let

Zs = Zsk,ω,ν(G(n,m)) and define

Xs = |Zs − E [Zs|FL] | · 1{|Zs−E[Zs|FL]|>αE[Zs]}

and X =
∑

s∈Sk,ω,ν Xs. Then these definitions directly yield

P [X < αE [Zk,ω]] ≤ P [|Zk,ω − E [Zk,ω|FL]| < 2αE [Zk,ω]] . (8.1.9)
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8.1. Outline of the proof

By the definition of the Xs’s and Chebyshev’s inequality it is true for every s that

E [Xs|FL] ≤
∑
j≥0

2j+1αE [Zs]P
[
|Zs − E [Zs|FL]| > 2jαE [Zs]

]
≤ 4Var [Zs|FL]

αE [Zs]
.

Hence, using that with Proposition 8.1.1 there is a number β = β(α, ω) such that E [Zs] /E [Zk] ≤
β/(|Sk,ω,ν |) for all s ∈ Sk,ω,ν and n large enough, we have

E [X|FL] ≤
∑

s∈Sk,ω,ν

4Var [Zs|FL]

αE [Zs]
≤ 4βE [Zk]

α|Sk,ω,ν |
∑

s∈Sk,ω,ν

Var [Zs|FL]

E [Zs]
2 .

Taking expectations, choosing ε = ε(α, β, ω) small enough and applying Lemma 8.1.7, we obtain

E [X] = E [E [X|FL]] ≤ 4βE [Zk]

α|Sk,ω,ν |
∑

s∈Sk,ω,ν

E [Var [Zs|FL]]

E [Zs]
2 ≤ 4βεE [Zk]

α
≤ α2E [Zk] . (8.1.10)

Using (8.1.9), Markov’s inequality, (8.1.10) and (8.1.8), it follows that

P [|Zk,ω − E [Zk,ω|FL]| < 2αE [Zk,ω]] ≥ 1− 2α. (8.1.11)

Finally, the triangle inequality combined with Markov’s inequality and equations (8.1.8) and (8.1.11)

yields

P [|Zk − E [Zk|FL]| > αE [Zk]]

≤ P [|Zk − Zk,ω|+ |Zk,ω − E [Zk,ω|FL]|+ |E [Zk,ω|FL]− E [Zk|FL]| > αE [Zk]]

≤ 3α+ α/3 + 3α < 7α,

which proves the statement.

Lemma 8.1.9. Let

UL =

L∑
l=2

Cl,n ln(1 + δl)− λlδl. (8.1.12)

Then lim supL→∞ lim supn→∞ E [|UL|] <∞ and further for any ε > 0 we have

lim sup
L→∞

lim sup
n→∞

P [| lnE [Zk(G(n,m))|FL]− lnE [Zk(G(n,m))]− UL| > ε] = 0 (8.1.13)

Proof. In a first step we show that E [|UL|] is uniformly bounded. As x − x2 ≤ ln(1 + x) ≤ x for
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8. Number of solutions in random graph k-colouring

|x| ≤ 1/8 we have for every l ≤ L:

E [|Cl,n ln(1 + δl)− λlδl|] ≤ δlE [|Cl,n − λl|] + δ2
l E [Cl,n] .

Therefore, Fact 8.1.2 implies that

E [|UL|] ≤
L∑
l=2

δl
√
λl + δ2

l λl. (8.1.14)

Proposition 8.1.3 ensures that
∑

l δ
2
l λl <∞. Furthermore, as d′ ≤ (2k−1) ln k, we have

∑
l δl
√
λl ≤∑

l k
l2−(k−1)l/2 <∞ and thus (8.1.14) shows that E [|UL|] is uniformly bounded.

To prove (8.1.13), for given n and a constant B > 0 we let CB be the event that Cl,n < B for all

l ≤ L. Referring to Fact 8.1.2, we can find for each L, ε > 0 a B > 0 such that

P [CB] > 1− ε. (8.1.15)

To simplify the notation we set Zk = Zk(G(n,m)) and Zk,ω = Zk,ω(G(n,m)). By Proposition 8.1.1

we can choose for any α > 0 a ω > 0 large enough such that E [Zk,ω] > (1−α)E [Zk] for large enough

n. Then Propositions 8.1.1 and 8.1.3 combined with Fact 8.1.2 imply that for any c1, ..., cL ≤ B and

small enough α = α(ε, L,B) we have for n large enough:

E [Zk|∀2 ≤ l ≤ L : Cl,n = cl] ≥ E [Zk,ω|∀2 ≤ l ≤ L : Cl,n = cl]

≥ exp [−ε]E [Zk]
L∏
l=2

(1 + δl)
cl exp [−δlλl] . (8.1.16)

On the other hand, for α sufficiently small and large enough n we have

E [Zk|∀2 ≤ l ≤ L : Cl,n = cl]

= E [Zk − Zk,ω|∀2 ≤ l ≤ L : Cl,n = cl] + E [Zk,ω|∀2 ≤ l ≤ L : Cl,n = cl]

≤ 2αE [Zk]∏L
l=2 P [Po(λl) = cl]

+ E [Zk,ω|∀2 ≤ l ≤ L : Cl,n = cl]

≤ exp [ε]E [Zk]
L∏
l=2

(1 + δl)
cl exp [−δlλl] (8.1.17)

Thus, the proof of (8.1.13) is completed by combining (8.1.15), (8.1.16), (8.1.17) and taking loga-

rithms.
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8.2. The first moment

Proof of Theorem 4.1.9. For L ≥ 2, we define

WL =

L∑
l=2

Xl ln(1 + δl)− λlδl and W ′ =
∑
l≥2

Xl ln(1 + δl)− λlδl.

Then Fact 8.1.2 implies that for each L the random variables UL defined in (8.1.12) converge in distri-

bution to WL as n→∞. Furthermore, because
∑

l δl
√
λl,
∑

l δ
2
l λl <∞, the martingale convergence

theorem implies that W ′ is well-defined and that the WL converge to W ′ almost surely as L → ∞.

Hence, from Lemmas 8.1.9 and 8.1.8 it follows that lnZk(G(n,m)) − lnE [Zk(G(n,m))] converges

to W ′ in distribution, meaning that for any ε > 0 we have

lim
n→∞

P
[
| lnZk(G(n,m))− lnE [Zk(G(n,m))]−W ′| > ε

]
= 0. (8.1.18)

To derive Theorem 4.1.9 from (8.1.18), we denote by S the event that G(n,m) consists of m distinct

edges, or, equivalently, that no cycles of length 2 exist in G(n,m). Given that S occurs, G(n,m) is

identical to G(n,m) and W ′ is identical to W . Furthermore, Fact 2.1.1 implies that P [S] = Ω(1).

Consequently, (8.1.18) yields

0 = lim
n→∞

P
[
| lnZk(G(n,m))− lnE [Zk(G(n,m))]−W ′| > ε|S

]
= lim

n→∞
P [| lnZk(G(n,m))− lnE [Zk(G(n,m))]−W | > ε] . (8.1.19)

As Lemma 8.2.1 implies that E [Zk(G(n,m))] ,E [Zk(G(n,m)] = Θ (kn (1− 1/k)m), we have

E [Zk(G(n,m))] = Θ(E [Zk(G(n,m)]) and with (8.1.19) it follows that

lim
n→∞

P [| lnZk(G(n,m))− lnE [Zk(G(n,m)))]−W | > ε] = 0,

which proves Theorem 4.1.9.

8.2. The first moment

The aim in this section is to prove Proposition 8.1.1. The calculations that have to be done follow the

path beaten in [AN05, COV13, KPGW10, Ras16a+] and are in fact very similar to [BCOE14+]. Thus,

most of the proofs are deferred to Section B.1. Furthermore, at the end of the section we state a result

that we need for Proposition 8.1.4.

Let Zk,ρ(G) be the number of k-colourings of the graph G with colour density ρ. Let ρ? be a k-

dimensional vector with all entries set to 1/k. We define

f1 : ρ ∈ Ak 7→ H(ρ) +
d

2
ln

(
1−

k∑
i=1

ρ2
i

)
.
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In order to determine the expectation of Zk,ρ, we have to analyse the function f1(ρ). The following

lemma was already obtained in [BCOE14+] and its proof can be found in Section B.1.

Lemma 8.2.1. Let k ≥ 3 and d′ ∈ (0,∞). Then there exist numbersC1 = C1(k, d), C2 = C2(k, d) >

0 such that for any ρ ∈ Ak(n) we have

C1n
1−k

2 exp [nf1(ρ)] ≤ E [Zk,ρ(G(n,m))] ≤ C2 exp [nf1(ρ)] . (8.2.1)

Moreover, if ‖ρ− ρ?‖2 = o(1) and d = 2m/n, then

E [Zk,ρ(G(n,m))] ∼ (2πn)
1−k

2 kk/2 exp [d/2 + nf1(ρ)] . (8.2.2)

We can now state the expectation of Zk. The proof will be carried out in detail in Section B.1.

Corollary 8.2.2. For any k ≥ 3, d′ ∈ (0,∞) and d = 2m/n, we have

E [Zk(G(n,m))] ∼ exp [d/2 + nf1 (ρ?)]

(
1 +

d

k − 1

)− k−1
2

.

Proof of Proposition 8.1.1. The first assertion is immediate from Corollary 8.2.2. Moreover, the se-

cond assertion follows from Corollary 8.2.2 and the second part of Lemma 8.2.1.

Finally, as our approach requires the analysis of the random variables Zsk,ω,ν(G(n,m)), we derive an

expression for E
[
Zsk,ω,ν(G(n,m))

]
that we will need to prove Proposition 8.1.4.

Lemma 8.2.3. Let k ≥ 3, ω, ν ∈ N, d′ ∈ (0,∞) and d = 2m/n. For s ∈ Sk,ω,ν and ρk,ω,ν,s as

defined in (8.1.2), we have

E
[
Zsk,ω,ν(G(n,m))

]
∼ν |Ask,ω,ν(n)| (2πn)

1−k
2 kk/2 exp

[
d/2 + nf1(ρk,ω,ν,s)

]
.

Proof. Using a Taylor expansion of f1(ρ) around ρ = ρk,ω,ν,s, we get

f1(ρ) = f1(ρk,ω,ν,s) + Θ

(
ω√
n

)
‖ρ− ρk,ω,ν,s‖1 + Θ

(
‖ρ− ρk,ω,ν,s‖22

)
. (8.2.3)

As ‖ρ − ρk,ω,ν,s‖1 = O
(

1
ν
√
n

)
for ρ ∈ Ask,ω,ν(n) and ‖ρ − ρk,ω,ν,s‖22 = O

(
1
ν2n

)
, we conclude

that f1(ρ) = f1(ρk,ω,ν,s) + O
(
ω
νn

)
and as this is independent of ρ, the assertion follows by inserting

(8.2.3) in (8.2.2) and multiplying by |Ask,ω,ν(n)|.
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8.3. The second moment

8.3. The second moment

The aim of this section is to prove Proposition 8.1.4, which constitutes the main technical contri-

bution of this work and Proposition 8.1.5, which is done in the last subsection and is based on and

an enhancement of results derived in [AN05]. The crucial points in our analysis are that, similar to

[BCOE14+, Ras16a+], we need an asymptotically tight expression for the second moment and instead

of confining ourselves to the case of colourings whose colour densities are (O(1), n)-balanced, as

done in most of prior work [AN05, BCOHRV16, COV13, KPGW10], we need to deal with (ω, n)-

balanced colour densities for a diverging function ω = ω(n)→∞. However, our work has to extend

the calculations from [BCOE14+] following the example of [Ras16a+], because we aim for a state-

ment about the whole distribution of lnZk(G(n,m)). Our line of argument follows that of [Ras16a+],

where analogue statements are proven for the problem of hypergraph 2-colouring.

8.3.1. Classifying the overlap

To standardise the notation, we define the overlap matrix ρ(σ, τ) = (ρij(σ, τ))i,j∈[k] for two colour

assignments σ, τ : [n]→ [k] as the doubly stochastic k × k-matrix with entries

ρij(σ, τ) =
1

n
· |σ−1(i) ∩ τ−1(j)|.

We let Bk(n) denote the set of all overlap matrices and Bk denote the set of all probability measures

ρ = (ρij)i,j∈[k] on [k]× [k]. Moreover, we let ρ̄ signify the k× k-matrix with all entries equal to k−2,

the barycentre of Bk. For a k × k-matrix ρ = (ρij), we introduce the shorthands

ρi? =

k∑
j=1

ρij , ρ · ? = (ρi?)i∈[k], ρ?j =

k∑
i=1

ρij , ρ? · = (ρ?i)i∈[k].

With the notation from Section 8.1, we observe that for any σ, τ : [n] → [k] we have ρ · ?, ρ? · ∈
Ak(n). We introduce the set

Bk,ω(n) =

{
ρ ∈ Bk(n) : ρi?, ρ?i ∈

[
1

k
− w√

n
,

1

k
+

w√
n

)
for all i ∈ [k]

}
,

which corresponds to Ak,ω(n) insofar as for ρ ∈ Bk,ω(n) we have ρi?, ρ?i ∈ Ak,ω(n) for all i ∈ [k].

We remember Sk,ω,ν from (8.1.1). Then for s ∈ Sk,ω,ν we define

Bsk,ω,ν(n) =

{
ρ ∈ Bk,ω(n) : ρi?, ρ?i ∈

[
ρk,ω,ν,si − 1

ν
√
n
, ρk,ω,ν,si +

1

ν
√
n

)
for all i ∈ [k]

}
.

Thus, for any fixed ν, Bk,ω(n) is a disjoint union of all Bsk,ω,ν(n) for s ∈ Sk,ω,ν . For a given graph G

on [n], we let Z(2)
k,ρ(G) be the number of pairs (σ, τ) of k-colourings of G whose overlap is ρ. By the
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linearity of expectation,

E
[
Zsk,ω,ν(G(n,m))2

]
=

∑
ρ∈Bsk,ω,ν(n)

E
[
Z

(2)
k,ρ(G(n,m))

]
. (8.3.1)

To proceed calculating this quantity, we first need the following elementary estimates whose proofs

can be found in Section B.2.

Fact 8.3.1. For any k ≥ 3, d′ ∈ (0,∞) and d = 2m/n, the following estimates are true.

1. Let ρ ∈ Bk(n). Then

E
[
Z

(2)
k,ρ(G(n,m))

]
∼

√
2πn

1−k2

2∏k
i,j=1

√
2πρij

exp
[
d/2 + nH(ρ) +m ln(1− ‖ρ · ?‖22 − ‖ρ? · ‖

2
2 + ‖ρ‖22)

]
.

(8.3.2)

2. For any ρ ∈ Bk(n) with ‖ρ− ρ̄‖22 = o(1), we have

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ kk2

(2πn)
1−k2

2 exp
[
d/2 + nH(ρ) +m ln(1− ‖ρ · ?‖22 − ‖ρ? · ‖

2
2 + ‖ρ‖22)

]
.

(8.3.3)

To simplify the notation, we introduce the function f2 : Bk → R defined as

f2(ρ) = H(ρ) +
d

2
ln(1− ‖ρ · ?‖22 − ‖ρ? · ‖

2
2 + ‖ρ‖22). (8.3.4)

A direct consequence of Fact 8.3.1 that will be used in the sequel is that for every ρ ∈ Bk(n) we have

E
[
Z

(2)
k,ρ(G(n,m))

]
= exp [nf2(ρ) +O(lnn)] . (8.3.5)

8.3.2. Dividing up the hypercube

To proceed, we refine equation (8.3.1). For each ω, ν ∈ N, s ∈ Sk,ω,ν and η > 0, we introduce

Bsk,ω,ν,η(n) =
{
ρ ∈ Bsk,ω,ν(n) : ‖ρ− ρ̄‖2 ≤ η

}
.

We are going to show that the r.h.s. of (8.3.1) is dominated by the contributions with ρ “close to” ρ̄ in
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terms of the euclidean norm. More precisely, for a graph G let

Z
s (2)
k,ω,ν,η(G) =

∑
ρ∈Bsk,ω,ν,η(n)

Z
(2)
k,ρ(G) for any η > 0.

Then the second moment argument performed in [AN05] fairly directly yields the following statement

showing that overlap matrices that are far apart from ρ̄ do asymptotically not contribute to the second

moment.

Proposition 8.3.2. Assume that k ≥ 3 and d′ < 2(k − 1) ln(k − 1). Further, let ω, ν ∈ N . Then for

any fixed η > 0 and any s ∈ Sk,ω,ν , it holds that

E
[
Zsk,ω,ν(G(n,m))2

]
∼ E

[
Z
s (2)
k,ω,ν,η(G(n,m))

]
.

To prove this proposition, we first define a function

f̄2 : ρ ∈ Bk,ω(n)→ R, ρ 7→ H(ρ) +
d

2
ln

(
1− 2

k
+ ‖ρ‖22

)
.

The following lemma shows how f2 defined in (8.3.4) relates to f̄2.

Lemma 8.3.3. For ρ = (ρij) ∈ Bk,ω(n), we have

exp [nf2(ρ)] ∼ exp
[
nf̄2(ρ) +O

(
ω2
)]
.

Proof. We define the function

ζ(ρ) = f2(ρ)− f̄2(ρ)

and derive an upper bound on ζ(ρ). By definition, for each ρ ∈ Bk,ω(n) there exist α = (αi)i∈[k] and

β = (βj)j∈[k] such that ρi? = 1
k + αi and ρ?j = 1

k + βj for all i, j ∈ [k] with |αi|, |βj | ≤ ω√
n

. Thus,

f2(ρ) = H(ρ) +
d

2
ln
(
1− ‖ρ̄ · ? + α‖22 − ‖ρ̄? · + β‖22 + ‖ρ‖22

)
.

As we are only interested in the difference between f2 and f̄2, we can reparametrise ζ as

ζ(α, β) =
d

2
ln

(
1− ‖ρ̄ · ? + α‖22 − ‖ρ̄? · + β‖22 + ‖ρ‖22

1− 2
k + ‖ρ‖22

)
.

Differentiating and simplifying the expression yields ∂ζ
∂αi

(α, β), ∂ζ∂βj (α, β) = O
(
ω√
n

)
for all i, j ∈

[k]. According to the fundamental theorem of calculus, it follows that
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max
ρ∈Bk,ω(n)

|ζ(ρ)| =
∫ ω/

√
n

−ω/
√
n
O

(
ω√
n

)
dα1 = O

(
ω2

n

)
,

completing the proof.

Proof of Proposition 8.3.2. Equation (8.3.5) combined with Lemma 8.3.3 reduces our task to studying

the function f̄2(ρ). For the range of d covered by Proposition 8.3.2, this analysis is the main technical

achievement of [AN05], where (essentially) the following statement is proved.

Lemma 8.3.4. Assume that k ≥ 3, ω ∈ N as well as d′ ≤ 2(k − 1) ln(k − 1) and d = 2m/n. For

any n > 0 and any overlap matrix ρ ∈ Bk,ω(n), we have

f̄2(ρ) ≤ f̄2(ρ̄)− 2(k − 1) ln(k − 1)− d
4(k − 1)2

(
k2‖ρ‖22 − 1

)
+ o(1). (8.3.6)

Proof. For ρ such that
∑k

i=1 ρij =
∑k

i=1 ρji = 1/k, the bound (8.3.6) is proved in [AN05, Section 3].

This implies that (8.3.6) also holds for ρ ∈ Bk,ω(n), because f̄2 is uniformly continuous on the

compact set Bk,ω(n).

Now, assume that k and d satisfy the assumptions of Proposition 8.3.2 and let ν ∈ N and η > 0 be any

fixed number. Then, for any ρ̂ ∈ Bsk,ω,ν(n), we have ‖ρ̂ − ρ̄‖2 = O
(
ω√
n

)
. Consequently, we obtain

with (8.3.5) that∑
ρ∈Bsk,ω,ν(n)

‖ρ−ρ̄‖2≤η

E
[
Z

(2)
k,ρ(G(n,m))

]
≥ E

[
Z

(2)
k,ρ̂(G(n,m))

]
≥ exp [nf2(ρ̄) +O(lnn)] . (8.3.7)

On the other hand, the function B → R, ρ → k2‖ρ‖2 is smooth, strictly convex and attains its global

minimum of 1 at ρ = ρ̄. Consequently, there exist (ck)k > 0 such that if ‖ρ − ρ̄‖2 > η, then(
k2‖ρ‖2 − 1

)
≥ ck. Hence, Fact 8.3.1, Lemma 8.3.3 and Lemma 8.3.4 yield∑

ρ∈Bsk,ω,ν(n)

‖ρ−ρ̄‖2>η

E
[
Z

(2)
k,ρ(G(n,m))

]
≤ exp [nf2(ρ̄)− nckdk + o(n)] , (8.3.8)

where dk = 2(k−1) ln(k−1)−d
4(k−1)2 > 0.

Combining (8.3.8) and (8.3.7), we conclude that E
[
Zsk,ω,ν(G(n,m))2

]
∼ E

[
Z
s (2)
k,ω,ν,η(G(n,m))

]
,

thereby completing the proof of Proposition 8.3.2.

Having reduced our task to studying overlaps ρ such that ‖ρ− ρ̄‖2 ≤ η for a small but fixed η > 0,
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in this section we are going to argue that, in fact, it suffices to consider ρ such that ‖ρ− ρ̄‖2 ≤
n−3/8 (where the constant 3/8 is somewhat arbitrary; any number smaller than 1/2 would do). More

precisely, we have

Proposition 8.3.5. Assume that k ≥ 3 and that d′ < dcond. Let ν, ω ∈ N and s ∈ Sk,ω,ν . There exists

a number η0 = η0(d′, k) such that for any 0 < η < η0 we have

E
[
Z
s (2)
k,ω,ν,η(G(n,m))

]
∼ E

[
Z
s (2)

k,ω,ν,n−3/8(G(n,m))
]
.

The key to proving this proposition is the following lemma. It specifies the expected number of pairs

of solutions in the cases where the overlap matrices ρ ∈ Bsk,ω,ν(n) satisfy ‖ρ − ρ̄‖2 ≤ n−3/8 or

‖ρ− ρ̄‖2 ∈ (n−3/8, η).

Lemma 8.3.6. Let k ≥ 3, d′ < (k − 1)2 and d = 2m/n. Set

Cn(d, k) = exp [d/2] kk
2
(2πn)

1−k2

2 and D(d, k) = k2

(
1− d

(k − 1)2

)
. (8.3.9)

• If ρ ∈ Bsk,ω,ν,η(n) satisfies ‖ρ− ρ̄‖2 ≤ n−3/8, then

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp

[
2nf1(ρ?)− nD(d, k)

2
‖ρ− ρ̄‖22

]
. (8.3.10)

• There exist numbers η = η(d, k) > 0 andA = A(d, k) > 0 such that if ρ ∈ Bsk,ω,ν,η(n) satisfies

‖ρ− ρ̄‖2 ∈ (n−3/8, η), then

E
[
Z

(2)
k,ρ(G(n,m))

]
= exp

[
2nf1(ρ?)−An1/4

]
. (8.3.11)

Proof. As Fact 8.3.1 yields E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp [nf2(ρ)] , we have to analyse f2.

Expanding this function around ρ̄ yields

f2(ρ) = f2(ρ̄)− D(d, k)

2
‖ρ− ρ̄‖22 +O(‖ρ− ρ̄‖32). (8.3.12)

Consequently, for ‖ρ− ρ̄‖2 ≤ n−3/8,

exp [nf2(ρ)] = exp

[
nf2(ρ̄)− nD(d, k)

2
‖ρ− ρ̄‖22 +O(n−1/8)

]
.

As f2 satisfies f2(ρ̄) = 2f1(ρ?), the statement in (8.3.10) follows.

To prove (8.3.11), we observe that similarly to (8.3.12) and because f2 is smooth in a neighbourhood
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of ρ̄, there exist η > 0 and A > 0 such that for ‖ρ− ρ̄‖2 ≤ η,

f2(ρ) ≤ f2(ρ̄)−A‖ρ− ρ̄‖22.

Hence, if ‖ρ− ρ̄‖2 ∈ (n−3/8, η), then

E
[
Z

(2)
k,ρ(G(n,m))

]
= O

(
n

1−k2

2

)
exp [nf2(ρ)] ≤ exp

[
2nf1(ρ?)−An1/4

]
,

as claimed.

Proof of Proposition 8.3.5. We fix s ∈ Sk,ω,ν . Further, we fix η > 0 and A > 0 as given by Lem-

ma 8.3.6. For each ρ̂ ∈ Bsk,ω,ν,η(n), we have ‖ρ̂ − ρ̄‖2 = O
(
ω√
n

)
and obtain from the first part of

Lemma 8.3.6 that

E
[
Z
s (2)

k,ω,ν,n−3/8(G(n,m))
]
≥ E

[
Z

(2)
k,ρ0

(G(n,m))
]
∼ Cn(d, k) exp

[
2nf1(ρ?) +O

(
ω2
)]
. (8.3.13)

On the other hand, because |Bsk,ω,ν,η(n)| is bounded by a polynomial in n, the second part of Lem-

ma 8.3.6 yields∑
ρ∈Bsk,ω,ν,η(n)

‖ρ−ρ̄‖2>n−3/8

E
[
Z

(2)
k,ρ(G(n,m))

]
≤ exp

[
2nf1(ρ?)−An1/6 +O(lnn)

]
. (8.3.14)

Combining (8.3.13) and (8.3.14), we obtain

E
[
Z
s (2)
k,ω,ν,η(G(n,m))

]
∼

∑
ρ∈Bs

k,ω,ν,n−3/8
(n)

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ E

[
Z
s (2)

k,ω,ν,n−3/8(G(n,m))
]
,

as claimed.

8.3.3. Calculating the constant

This section is dedicated to computing the contribution of the overlap matrices ρ ∈ Bs
k,ω,ν,n−3/8(n).

To this aim, we first show that in each region of the hypercube we can approximate f2 by a function

where the marginals are set to those of the centre of this region as defined in (8.1.2). More formally,

let fs2 : Bk → R be defined as

fs2 : ρ 7→ H(ρ) +
d

2
ln
(

1− 2‖ρk,ω,ν,s‖22 + ‖ρ‖22
)
.

Then the following is true

182



8.3. The second moment

Lemma 8.3.7. Let k ≥ 3, ω, ν ∈ N and Cn(d, k) as in (8.3.9). Then for ρ ∈ Bs
k,ω,ν,n−3/8(n) it holds

that

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp

[
nfs2 (ρ) +O

(ω
ν

)]
.

Proof. Equation (8.3.3) of Fact 8.3.1 yields that

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp [nf2(ρ)] . (8.3.15)

For s ∈ Sk,ω,ν , we define the function

ζs(ρ) = f2(ρ)− fs2 (ρ).

To derive an upper bound on ζs(ρ) for all values ρ ∈ Bs
k,ω,ν,n−3/8(n), we first we observe that there

exist α = (αi)i∈[k] and β = (βj)j∈[k] such that the function f2 can be expressed by setting ρi? =

ρk,ω,ν,si + αi and ρ?j = ρk,ω,ν,sj + βj for all i, j ∈ [k] with |αi|, |βj | ≤ 1
ν
√
n

. Thus,

f2 : ρ 7→ H(ρ) +
d

2
ln
(

1− ‖ρk,ω,ν,s + α‖22 − ‖ρk,ω,ν,s + β‖22 + ‖ρ‖22
)
.

As we are only interested in the difference between f2 and fs2 , we can reparametrise ζs as

ζs(α, β) =
d

2
ln

(
1− ‖ρk,ω,ν,s + α‖22 − ‖ρk,ω,ν,s + β‖22 + ‖ρ‖22

1− 2‖ρk,ω,ν,s‖22 + ‖ρ‖22

)
.

Differentiating and simplifying the expression yields ∂ζs

∂αi
(α, β), ∂ζ

s

∂βj
(α, β) = O

(
ω√
n

)
for all i, j ∈

[k]. According to the fundamental theorem of calculus it follows for every s ∈ Sk,ω,ν that

max
ρ∈Bs

k,ω,ν,n−3/8
(n)
|ζs(ρ)| =

∫ (ν
√
n)
−1

−(ν
√
n)
−1
O

(
ω√
n

)
dα1 = O

( ω
nν

)
.

Combining this with (8.3.15) yields the assertion.

Now we are able to give a very precise expression for the second moment.

Proposition 8.3.8. Assume that k ≥ 3, ω, ν ∈ N, d′ < (k− 1)2 and d = 2m/n. Let s ∈ Sk,ω,ν . Then

E
[
Z
s (2)

k,ω,ν,n−3/8(G(n,m))
]

∼ν
(
|Ak,ω(n)| (2πn)

1−k
2 kk/2 exp

[
nf1(ρk,ω,ν,s)

])2
exp [d/2]

(
1− d

(k − 1)2

)− (k−1)2

2

.
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The rest of this subsection will be dedicated to proving this proposition. In due course we are going to

need the set of matrices with coefficients in 1
nZ whose lines and columns sum to zero:

En =

{
(εi,j)1≤i≤k

1≤j≤k
, ∀i, j ∈ [k], εi,j ∈

1

n
Z, ∀j ∈ [k],

k∑
i=1

εij =
k∑
i=1

εji = 0

}
. (8.3.16)

The following result regards Gaussian summations over matrices in En.

Lemma 8.3.9. Let k ≥ 2, d′ < (k − 1)2 and D > 0 be fixed. Then

∑
ε∈En

exp

[
−nD

2
‖ε‖22 + o(n1/2)‖ε‖2

]
∼
(√

2πn
)(k−1)2

D−
(k−1)2

2 k−(k−1).

Lemma 8.3.9 and its proof are very similar to an argument used in [KPGW10, Section 3]. In fact,

Lemma 8.3.9 follows from

Lemma 8.3.10 ([KPGW10, Lemma 6 (b) and 7 (c)]). There is a (k − 1)2 × (k − 1)2-matrix H =

(H(i,j),(k,l))i,j,k,l∈[k−1] such that for any ε = (εij)i,j∈[k] ∈ En we have∑
i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′ = ‖ε‖22 .

This matrixH is positive definite and detH = k2(k−1).

Proof of Lemma 8.3.9. Together with the Euler-Maclaurin formula and Lemma 8.3.10, a Gaussian

integration yields

∑
ε∈Sn

exp

[
−nD

2
‖ε‖22 + o(n1/2)‖ε‖2

]

=
∑

ε∈(Z/n)(k−1)2

exp

−nD
2

∑
i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′ + o(n1/2)‖ε‖2



∼ n(k−1)2

∫
. . .

∫
exp

−nD
2

∑
i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′

dε11 · · · dε(k−1)(k−1)

∼
(√

2πn
)(k−1)2

D
−(k−1)2

2 (detH)−1/2 ∼
(√

2πn
)(k−1)2

D
−(k−1)2

2 k−(k−1),

as desired.
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Now we are ready to prove Proposition 8.3.8.

Proof of Proposition 8.3.8. Lemma 8.3.7 states that for every ρ ∈ Bs
k,ω,ν,n−3/8(n) we have

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp

[
nfs2 (ρ) +O

(ω
ν

)]
. (8.3.17)

Thus, all we have to do is analysing the function fs2 for s ∈ Sk,ω,ν . To this aim, we expand fs2 (ρ)

around ρ = ρs where ρs = (ρsij)i,j with ρij = ρk,ω,ν,si · ρk,ω,ν,sj . Then with D(d, k) as defined in

(8.3.9) we have

fs2 (ρ) = f s2 (ρs) + Θ
(ω
n

)
‖ρ− ρs‖2 −

D(d, k)

2
‖ρ− ρs‖22 + o(n−1). (8.3.18)

Combining (8.3.18) with (8.3.17), we find that

E
[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp

[
nfs2 (ρs) + Θ (ω) ‖ρ− ρs‖2 − n

D(d, k)

2
‖ρ− ρs‖22 +O

(ω
ν

)]
. (8.3.19)

For two vectors of “marginals” ρ0, ρ1 ∈ Bsk,ω,ν(n), we introduce the set of overlap matrices

Bs
k,ω,ν,n−3/8(n, ρ0, ρ1) = {ρ ∈ Bs

k,ω,ν,n−3/8(n) : ρ · ? = ρ0, ρ? · = ρ1}.

and observe that with this definition we have

E
[
Z
s (2)

k,ω,ν,n−3/8(G(n,m))
]

=
∑

ρ0,ρ1∈Bsk,ω,ν(n)

∑
ρ∈Bs

k,ω,ν,n−3/8
(n,ρ0,ρ1)

E
[
Z

(2)
k,ρ(G(n,m))

]
. (8.3.20)

In particular, the set Bs
k,ω,ν,n−3/8(n, ρ0, ρ1) contains the “product” overlap ρ0 ⊗ ρ1 defined by (ρ0 ⊗

ρ1)ij = ρ0
i ρ

1
j for i, j ∈ [k]. To proceed, we fix two colour densities ρ0, ρ1 ∈ Bsk,ω,ν(n) and simplify

the notation by writing

B̂ = Bs
k,ω,ν,n−3/8(n, ρ0, ρ1), ρ̂ = ρ0 ⊗ ρ1.

Thus, the inner sum from (8.3.20) simplifies to

S1 =
∑
ρ∈B̂

E
[
Z

(2)
k,ρ(G(n,m))

]
.

and we are going to evaluate this quantity. We observe that with En as defined in (8.3.16), for each

185



8. Number of solutions in random graph k-colouring

ρ ∈ B̂ we can find ε ∈ En such that

ρ = ρ̂+ ε.

Hence, this gives ‖ρ− ρs‖2 = ‖ρ̂+ ε− ρs‖2 and the triangle inequality yields

‖ε‖2 − ‖ρ̂− ρ
s‖2 ≤ ‖ρ̂+ ε− ρs‖2 ≤ ‖ε‖2 + ‖ρ̂− ρs‖2 .

By definition of ρ̂ and ρs, we have ‖ρ̂− ρs‖2 ≤
1

ν
√
n

and consequently

‖ρ− ρs‖2 = ‖ε‖2 +O

(
1

ν
√
n

)
. (8.3.21)

Observing that fs2 (ρs) =
(
f1(ρk,ω,ν,s)

)2 and inserting (8.3.21) into (8.3.19) while taking first n→∞
and afterwards ν →∞, we obtain

S1 ∼ν Cn(d, k) exp
[
2nf s1

(
ρk,ω,ν,s

)]∑
ρ∈B̂

exp

[
−nD(d, k)

2
‖ε‖22 + o(n1/2) ‖ε‖2

]
. (8.3.22)

To apply Lemma 8.3.9, we have to relate ρ ∈ B̂ to ε ∈ En. From the definitions we obtain{
ρ̂+ ε : ε ∈ En, ‖ε‖2 ≤ n−3/8/2

}
⊂
{
ρ ∈ B̂

}
⊂ {ρ̂+ ε : ε ∈ En} .

We show that the contribution of ε ∈ En with ‖ε‖2 > n−3/8/2 is negligible:

S2 = Cn(d, k) exp
[
2nfs1

(
ρk,ω,ν,s

)] ∑
ε∈Sn

‖ε‖2>n−3/8/2

exp

[
−nD(d, k)

2
‖ε‖22(1 + o(1))

]

= Cn(d, k) exp
[
2nfs1

(
ρk,ω,ν,s

)] ∑
l∈Z/n

l>n−3/8/2

∑
ε∈Sn
‖ε‖2=l

exp

[
−nl2D(d, k)

2
(1 + o(1))

]

= Cn(d, k) exp
[
2nfs1

(
ρk,ω,ν,s

)]
O
(
nk

2
)

exp

[
−D(d, k)

2
n1/4

]
Consequently, (8.3.22) yields Σ2 = o(Σ1). Thus, we obtain from Lemma 8.3.9 that

S1 ∼ν Cn(d, k) exp
[
2nfs1

(
ρk,ω,ν,s

)]∑
ρ∈B̂

exp

[
−nD(d, k)

2
‖ε‖22 + o(n1/2)‖ε‖2

]
.

∼ν Cn(d, k) exp
[
2nfs1

(
ρk,ω,ν,s

)](√
2πn

)(k−1)2

k−k(k−1)

(
1− d

(k − 1)2

)− (k−1)2

2

. (8.3.23)

186



8.3. The second moment

In particular, the last expression is independent of the choice of the vectors ρ0, ρ1 that defined B̂.

Therefore, substituting (8.3.23) in the decomposition (8.3.20) completes the proof of Proposition 8.3.8.

Proof of Proposition 8.1.4. First observe that

exp

∑
l≥2

λlδ
2
l

 =

(
1− d

(k − 1)2

)− (k−1)2

2

exp

[
−d

2

]
.

Proposition 8.1.4 is immediately obtained by combining Lemma 8.2.3 with Propositions 8.3.2, 8.3.5

and 8.3.8.

8.3.4. Up to the condensation threshold

In this last subsection we prove Proposition 8.1.5. In the regime 2(k − 1) ln(k − 1) ≤ d′ < dcond

for k ≥ k0 for some big constant k0, we consider random variables Z̃sk,ω,ν instead of Zsk,ω,ν . To prove

the proposition we show the following result by adapting our setting in a way that we can apply the

second moments argument from [COV13] and [BCOHRV16].

Proposition 8.3.11. Let ω, ν ∈ N . There is a constant k0 > 3 such that for k ≥ k0 and 2(k −
1) ln(k − 1) ≤ d′ < dcond the following is true. For each s ∈ Sk,ω,ν , there exists an integer-valued

random variable 0 ≤ Z̃sk,ω,ν ≤ Zsk,ω,ν that satisfies

E
[
Z̃sk,ω,ν(G(n,m))

]
∼ E

[
Zsk,ω,ν(G(n,m))

]
and such that for any fixed η > 0 we have E

[
Z̃sk,ω,ν(G(n,m))2

]
≤ (1+o(1))E

[
Z
s (2)
k,ω,ν,η(G(n,m))

]
.

In this section we work with the Erdős-Rényi random graph model G(n, p), which is a random graph

on [n] vertices where every possible edge is present with probability p = d/n independently. We

further assume from now on that k divides n.

The use of results from [COV13, BCOHRV16] is complicated by the fact that we are dealing with

(ω, n)-balanced k-colourings that allow a larger discrepancy between the colour classes than [COV13,

BCOHRV16], where balanced colourings are defined such that in each color class only a deviation of

at most
√
n from the typical value n/k is allowed. To circumvent this problem, we introduce the

following:

Choose a map σ : [n] → [k] uniformly at random and generate a graph G(n, p′, σ) on [n] by connec-

ting any two vertices v, w ∈ [n] such that σ(v) 6= σ(w) with probability p′ = dk/(n(k− 1)) indepen-
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8. Number of solutions in random graph k-colouring

dently.

Given σ and G(n, p′, σ), we define

αi = |σ−1(i)− n/k| for i ∈ [k]

and let α = maxi∈[k] αi. Thus, by definition α ≤ ω
√
n. We set n′ = n+ kdαe. Further, we let

βi = |σ−1(i)− (n+ kdαe)/k| for i ∈ [k].

We then construct a coloured graph G′n′,p′,σ′ from G(n, p′, σ) in the following way:

• Add kdαe vertices to G(n, p) and denote them by n+ 1, n+ 2, ..., n+ kdαe.
• Define a colouring σ′ : [n′] → [k] by setting σ′(i) = σ(i) for i ∈ [n], σ(i) = 1 for i ∈
n+ 1, ..., n+ β1 and σ(i) = j for j ∈ {2, ..., k} and i ∈ n+ βj−1 + 1, ..., n+ βj .

• Add each possible edge (i, j) with σ′(i) 6= σ′(j) involving a vertex i ∈ {n + 1, ..., n + kdαe}
with probability p′ = dk/(n(k − 1)).

We call a colouring τ : [n]→ [k] of a graph G on [n] perfectly balanced if |τ−1(i)| = |τ−1(j)| for all

i, j ∈ [k] and we denote the set of all such perfectly balanced colourings by B̃k(n). Then the following

holds by construction:

Fact 8.3.12. G′n′,p′,σ′ has the same distribution asG(n′, p′, τ) conditioned on the event that τ : [n′]→
k is perfectly balanced.

Let G′′n,p′,σ′|[n] denote the graph obtained from G′n′,p′,σ′ by deleting the vertices n + 1, ..., n + kdαe
and the incident edges.

Fact 8.3.13. G′′n,p′,σ′|n has the same distribution as G(n, p′, τ) conditioned on the event that τ is

(ω, n)-balanced.

To proceed, we adopt the following notation from [COV13]: Let ρ ∈ Bk be called s-stable if it has

precisely s entries bigger than 0.51/k. Further, let B̄k be the set of all ρ ∈ Bk such that

k∑
j=1

ρij =

k∑
j=1

ρji = 1/k for all i ∈ [k].

Then any ρ ∈ B̄k is s-stable for some s ∈ {0, 1, . . . , k}. In addition, let κ = ln20 k/k and let us call

ρ ∈ Bk separable if kρij 6∈ (0.51, 1 − κ) for all i, j ∈ [k]. A k-colouring σ of a graph G on [n] is

called separable if for any other k-colouring τ of G the overlap matrix ρ(σ, τ) is separable. We have
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the following result:

Lemma 8.3.14. Let s ∈ Sk,ω,ν . There is k0 > 0 such that for all k > k0 and all d′ such that

2(k− 1) ln(k− 1) ≤ d′ ≤ (2k− 1) ln k the following is true. Let Z̃sk,ω,ν(G(n,m)) denote the number

of (ω, n)-balanced k-colourings of G(n,m) that fail to be separable. Then E[Z̃sk,ω,ν(G(n,m))] =

o(E[Zsk,ω,ν(G(n,m))]).

To prove this lemma, we combine Fact 8.3.12 with [COV13, Lemma 3.3]. This yields the following20.

Lemma 8.3.15 ([COV13]). There is k0 > 0 such that for all k ≥ k0 and all d′ with 2(k − 1) ln(k −
1) ≤ d′ ≤ (2k − 1) ln k each τ ∈ B̃k(n′) is separable in G′n′,p′,τ w.h.p..

Proof of Lemma 8.3.14. Choose a map σ : [n] → [k] uniformly at random and generate a graph

G(n, p′, σ) on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) 6= σ(w) with probability

p′ independently. Construct G′n′,p′,σ′ from G(n, p′, σ) in the way defined above. Then σ′ ∈ B̃k(n).

By Lemma 8.3.15, σ′ is separable in G′n′,p′,σ′ w.h.p.. Thus, σ is separable in G′′n,p′,σ′|n if we define

separability using κ′ = ln21 k
k . By choosing k0 large enough and applying Fact 8.3.13, the assertion

follows.

For the next ingredient to the proof of Proposition 8.3.11, we need the following definition. For a graph

G on [n] and a k-colouring σ of G, we let C(G, σ) be the set of all τ ∈ Bk that are k-colourings of G

such that ρ(σ, τ) is k-stable.

Lemma 8.3.16. Let s ∈ Sk,ω,ν . There is k0 > 0 such that for all k > k0 and all d′ such that (2k −
1) ln k−2 ≤ d′ ≤ dcond the following is true. There exists an ε > 0 such that if Z̃sk,ω,ν(G(n,m)) deno-

tes the number of (ω, n)-balanced k-colourings σ of G(n,m) satisfying |C(G(n,m), σ)| >

E
[
Zsk,ω,ν(G(n,m))

]
/ exp [εn] , then E

[
Z̃sk,ω,ν(G(n,m))

]
= o

(
E
[
Zsk,ω,ν(G(n,m))

])
.

To prove this lemma, we combine 8.3.12 with [BCOHRV16, Corollary 1.1] and obtain the following:

Lemma 8.3.17 ([BCOHRV16]). Let s ∈ Sk,ω,ν . There is k0 > 0 such that for all k > k0 and all d′

such that (2k− 1) ln k− 2 ≤ d′ ≤ dcond the following is true. Let τ ∈ B̃k(n′) be a perfectly balanced

colour assignment. Then there exists ε > 0 such that if Z̃sk,ω,ν(G′n′,p′,τ ) denotes the number of (ω, n)-

balanced k-colourings τ of G′n′,p′,τ satisfying |C(G′n′,p′,τ , τ)| > E
[
Zsk,ω,ν(G′n′,p′,τ )

]
/ exp [εn], then

E
[
Z̃sk,ω,ν(G′n′,p′,τ )

]
= o

(
E
[
Zsk,ω,ν(G′n′,p′,τ )

])
.

20As a matter of fact, Lemma 3.2 in [COV13] also holds for densities 2(k − 1) ln(k − 1) ≤ d′ ≤ 2(k − 1) ln k − 2, as all
steps in the proof are also valid in this regime.
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Proof of Lemma 8.3.16. Choose a map σ : [n] → [k] uniformly at random and generate a graph

G(n, p′, σ) on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) 6= σ(w) with probability

p′ independently. ConstructG′n′,p′,σ′ fromG(n, p′, σ) in the way defined above. To constructG′′n,p′,σ′|[n]

fromG′n′,p′,σ′ , we have to deleteO(
√
n) many vertices. By [BCOHRV16, Section 6], for each of these

vertices v we can bound the logarithm of the number of colourings that emerge when deleting v by

O(lnn). Thus,

ln |C(G′′n,p′,σ′|[n]
, σ′|[n])| = ln |C(G′n′,p′,σ′ , σ′)|+O(

√
n lnn) = ln |C(G′n′,p′,σ′ , σ′)|+ o(n). (8.3.24)

Then Lemma 8.3.16 follows by combining Lemma 8.3.17 with (8.3.24) and Fact 8.3.13.

To complete the proof, we have to analyse the function f2 defined in (8.3.4), as we know from (8.3.5)

that

E
[
Z

(2)
k,ρ(G(n,m))

]
= exp [nf2(ρ) +O(lnn)] .

The following lemma shows that we can confine ourselves to the investigation of the function f̄2

defined in (8.3.2).

Lemma 8.3.18. Let limn→∞(ρn)n = ρ0. Then limn→∞ lnE
[
Z

(2)
k,ρn

(G(n,m))
]
≤ f̄2(ρ0).

Proof. Lemma 8.3.3 yields that

exp [nf2(ρ)] ∼ exp
[
nf̄2(ρ) +O

(
ω2
)]
.

Together with the uniform continuity of f̄2 this proves the assertion.

We use results from [COV13] where an analysis of f̄2 was performed. The following lemma summa-

rizes this analysis from [COV13, Section 4]. The same result was used in [BCOE14+].

Lemma 8.3.19. For any c > 0, there is k0 > 0 such that for all k > k0 and all d such that (2k −
1) ln k − c ≤ d′ ≤ (2k − 1) ln k the following statements are true.

1. If 1 ≤ s < k, then for all separable s-stable ρ ∈ B̄k we have f̄2(ρ) < f̄2(ρ̄).

2. If ρ ∈ B̄k is 0-stable and ρ 6= ρ̄, then f̄2(ρ) < f̄2(ρ̄).

3. If d′ = (2k − 1) ln k − 2, then for all separable, k-stable ρ ∈ B̄k we have f̄2(ρ) < f̄2(ρ̄).

Proof of Proposition 8.3.11. Assume that k ≥ k0 for a large enough number k0 and that d′ ≥ 2(k −
1) ln(k − 1). We consider two different cases.

Case 1: d′ ≤ (2k − 1) ln k − 2: Let Z̃sk,ω,ν be the number of (ω, n)-balanced separable k-colourings
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of G(n,m). Then Lemma 8.3.15 implies that E[Z̃sk,ω,ν(G(n,m))] ∼ E
[
Zsk,ω,ν(G(n,m))

]
. Fur-

thermore, in the case that d′ = (2k − 1) ln k − 2, the combination of the statements of Lem-

ma 8.3.19 imply that f̄2(ρ) < f̄2(ρ̄) for any separable ρ ∈ B̄k \ {ρ̄}. As f̄2(ρ) is the sum of the

concave function ρ 7→ H(ρ) and the convex function ρ 7→ d
2 ln(1− 2/k ‖ρ‖22), this implies that,

in fact, for any d′ ≤ (2k − 1) ln k − 2 we have f̄2(ρ) < f̄2(ρ̄) for any separable ρ ∈ B̄k \ {ρ̄}.
Hence, the uniform continuity of f̄2 on Bk and (8.3.5) yield

E[Zsk,ω,ν(G(n,m))2] ≤ (1 + o(1))
∑

ρ∈Bsk,ω,ν(n)

ρ is 0-stable

E
[
Z

(2)
k,ρ(G(n,m))

]
. (8.3.25)

Additionally, as B̄k is a compact set, with the second statement of Lemma 8.3.19 it follows that

for any η > 0 there exists ε > 0 such that

max
ρ∈Bsk,ω,ν(n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

exp
[
nf̄2(ρ)

]
≤ exp

[
n(f̄2(ρ̄)− ε)

]
. (8.3.26)

As on the other hand it holds that

E
[
Z
s (2)
k,ω,ν,η(G(n,m))

]
≥ exp

[
nf̄2(ρ̄)

]
/poly(n), (8.3.27)

combining (8.3.26) and (8.3.27) with (8.3.5) and the observation that |Bsk,ω,ν(n)| ≤ nk2
, we see

that for any η > 0,∑
ρ∈Bsk,ω,ν(n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

E
[
Z

(2)
k,ρ(G(n,m))

]
≤

∑
ρ∈Bsk,ω,ν(n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

exp
[
nf̄2(ρ) +O(lnn)

]
= o

(
E
[
Z
s (2)
k,ω,ν,η(G(n,m))

])
.

(8.3.28)

Case 2: (2k − 1) ln k − 2 < d′ < dcond: For an appropriately chosen ε > 0 , we let Z̃sk,ω,ν be the

number of (ω, n)-balanced separable k-colourings σ of G(n,m) satisfying |C(G(n,m), σ)| ≤
E
[
Zsk,ω,ν(G(n,m))

]
/ exp [εn]. Then Lemmas 8.3.15 and 8.3.16 imply that E[Z̃sk,ω,ν(G(n,m))]

∼ E
[
Zsk,ω,ν(G(n,m))

]
. Furthermore, the first part of Lemma 8.3.19 and equation (8.3.5) entail

that (8.3.25) holds for this random variable Z̃sk,ω,ν . Moreover, as in the previous case (8.3.26),

(8.3.27), (8.3.5) and the second part of Lemma 8.3.19 show that (8.3.28) holds true for any fixed

η > 0.

In either case the assertion follows by combining (8.3.25) and (8.3.28).

Proof of Proposition 8.1.5. The assertion is obtained by combining Proposition 8.1.1 with Propositi-

ons 8.3.11, 8.3.5 and 8.3.8.
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9 Conclusion and open questions

With the results presented in this thesis we provide an important contribution to the endeavour of un-

derstanding and rigorously verifying the various phenomena arising in random constraint satisfaction

problems.

As to condensation, a phase transition thoroughly changing the geometry of the solution space and

posing a serious obstacle to locating the satisfiability threshold, we rigorously established its existence

and exactly determined its location in random graph colouring. It was the first time that the conden-

sation phase transition could be located in a rigorous manner within such accuracy in a random CSP.

Our result verifies predictions made by the cavity method, a sophisticated tool of statistical physics.

Furthermore, we also investigated a non-zero temperature model, which is commonly used in the phy-

sics literature but has so far been given only scant attention to in mathematics. In this model, instead of

only considering solutions, each colour assignment is weighted according to its number of monochro-

matic edges. We located the condensation transition in finite inverse temperature k-uniform random

hypergraph 2-colouring up to an error tending to 0 when the uniformity k grows to infinity. This is the

first result pinning down the condensation phase transition within such accuracy in terms of the finite

temperature parameter.

Apart from this, we investigated the distribution of the number of solutions in a regime where it can be

proven that w.h.p. solutions exist. We determined this distribution asymptotically in the limit of large

n for random graph k-colouring and random hypergraph 2-colouring using the method of small sub-

graph conditioning. From this it follows that in the covered problems the random colouring model is

contiguous with respect to the planted model, a statement that simplifies transferring results between

these two models.

We expect that it is possible to apply similar methods and techniques to a variety of further random

constraint satisfaction problems.

In particular, it seems reasonable to expect that the proof technique developed for locating the conden-

sation phase transition in random graph k-colouring carries over to many other problems, especially

because the physics predictions look very similar in many of them.

It would furthermore be interesting to explore to what extent the approach for determining the con-

densation phase transition for finite inverse temperatures can be transferred from random hypergraph

2-colouring to other random CSPs. Indeed, Coja-Oghlan and Jaafari [COJ16+] already started inves-

tigating non-zero random graph k-colouring.

It still is an open question whether the method for determining the condensation phase transition as

precisely as we did for random graph k-colouring can be applied to models with finite inverse tem-
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9. Conclusion and open questions

perature. One problem occuring for these models is that the “cut up” decorated graph we investigated

in order to determine the cluster size in Section 5.3 does not essentially consist of bounded tree com-

ponents in the case of finite inverse temperatures. To us it is not clear how to solve this problem.

As a matter of course, apart from the condensation transition, it is also of considerable interest to ob-

tain results on the actual satisfiability threshold in zero temperature problems. Up to now, there only

exist rigorous proofs of its location for large values of k in random k-SAT [DSS15], in random regular

k-SAT [COP16], in random regular NAE-k-SAT [DSS16] and for large values of d in the independent

set problem on d-regular random graphs [DSS16+]. It would complete the picture to also establish its

location in further random CSPs. In many problems, it is even still not verified that the satisfiability

threshold is different from the condensation threshold as predicted by the cavity method. In any way, it

remains an important research endeavour and an outstanding mathematical challenge to fully rigorize

the predictions made by this method.

Concerning the distribution of the number of solutions, we believe that a combination of the second

moment method and small subgraph conditioning could be used to obtain the limiting distribution

of the number of solutions in e.g. random NAE-k-SAT, random k-XORSAT, random hypergraph k-

colouring or in random regular models. However, for asymmetric problems like the well-known bench-

mark problem random k-SAT, we expect that the logarithm of the number of satisfying assignments

exhibits stronger fluctuations and we doubt that a result similar to ours can be established.

In general, a complete description of all problems for which a limiting distribution can be found might

be achievable and it possibly covers all models where the partition function on a tree on n vertices is

constant. In this case, the proof technique might be generalized to develop a generic proof suitable for

all these models.

Going in a slightly different direction, the investigation could be extended to regimes beyond the con-

densation transition. [SSZ16+] enhanced the second moment method and analysed a certain Survey

Propagation model in the case of random regular NAE-k-SAT. In this way, they were able to determine

the total number of solutions for a typical instance in the whole satisfiable regime.

Additionally, it would certainly be of considerable interest to advance the rigorous study of algorithms,

especially of certain message passing algorithms, as there is plenty of experimental work, but so far

precise rigorous results are scarce.

To summarise, we can say that in the last decades much has been achieved in thoroughly understanding

the various aspects and phenomena in random constraint satisfaction problems. The results in this

thesis contribute to this endeavour. But investigation is in every respect far from being complete and

the process will go on, offering new and exciting perspectives along the way.
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[JP00] A. JUELS, M. PEINADO: Hiding Cliques for Cryptographic Security. Designs, Co-

des and Cryptography archive 20(3) (2000), pp. 269–280.

[Kar72] R. KARP: Reducibility among Combinatorial Problems. Complexity of Computer

Computations. Plenum Press, New York (1972), pp. 85–103.

[Kau48] W. KAUZMANN: The Nature of the Glassy State and the Behavior of Liquids at

low Temperatures. Chemical Reviews 43(4) (1948), pp. 219–256.

[KPGW10] G. KEMKES, X. PÉREZ-GIMÉNEZ, N. WORMALD: On the chromatic number

of random d-regular graphs. Advances in Mathematics 223(1) (2010), pp. 300–328.

[KT87] T. R. KIRKPATRICK, D. THIRUMALAI: p-spin-interaction spin-glass models:

Connections with the structural glass problem. Physical Review B 36 (1987) 5388.

[KS98] M. KRIVELEVICH, B. SUDAKOV: Coloring random graphs. Information Proces-

200



Literaturverzeichnis

sing Letters 67 (1998), pp. 71-74.

[KMRTSZ07] F. KRZAKALA, A. MONTANARI, F. RICCI-TERSENGHI, G. SEMERJIAN,

L. ZDEBOROVÁ: Gibbs states and the set of solutions of random constraint satis-

faction problems. Proc. National Academy of Sciences 104(25) (2007), pp. 10318–

10323.

[KMSSZ12a] F. KRZAKALA, M. MÉZARD, F. SAUSSET, Y. SUN, L. ZDEBOROVÁ: Proba-

bilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and

Threshold Achieving Matrices. Journal of Statistical Mechanics (2012) P08009.

[KMSSZ12b] F. KRZAKALA, M. MÉZARD, F. SAUSSET, Y. SUN, L. ZDEBOROVÁ: Statistical

physics-based reconstruction in compressed sensing. Physical Review X 2 (2012)

021005.

[KPW04] F. KRZAKALA, A. PAGNANI, M. WEIGT: Threshold values, stability analysis and

high q-asymptotics for the coloring problem on random graphs. Physical Review E

70 (2004) 046705.

[KZ08] F. KRZAKALA, L. ZDEBOROVÁ: Potts glass on random graphs. Europhysics Let-

ters 81(5) (2008) 57005.

[KZ09] F. KRZAKALA, L. ZDEBOROVÁ: Hiding Quiet Solutions in Random Constraint

Satisfaction Problems. Physical Review Letters 102 (2009) 238701.

[Lov73] L. LOVÁSZ: Coverings and colorings of hypergraphs. Proc. 4th Southeastern Con-

ference on Combinatorics (1973), pp. 3–12.

[Luc91a] T. ŁUCZAK: The chromatic number of random graphs. Combinatorica 11(1)
(1991), pp. 45–54.

[Luc91b] T. ŁUCZAK: A note on the sharp concentration of the chromatic number of random

graphs. Combinatorica 11(3) (1991), pp. 295–297.

[Mas14] L. MASSOULIÉ: Community detection thresholds and the weak Ramanujan pro-

perty. Proc. 46th STOC (2014), pp. 1–10.

[Mat87] D. MATULA: Expose-and-merge exploration and the chromatic number of a ran-

dom graph. Combinatorica 7(3) (1987), pp. 275–284.

[MS08] E. MANEVA, A. SINCLAIR: On the satisfiability threshold and clustering of so-

lutions of random 3-SAT formulas. Theoretical Computer Science 407(1-3) (2008),

201



Literaturverzeichnis

pp. 359–369.

[McD98] C. MCDIARMID: Concentration. Probabilistic Methods for Algorithmic Discrete

Mathematics. Springer (1998), pp. 195–248.

[MM09] M. MÉZARD, A. MONTANARI: Information, Physics, and Computation. Oxford

University Press (2009).

[MP85] M. MÉZARD, G. PARISI: Replicas and optimization. Journal de Physique Lettres

46(17) (1985), pp. 771–778.

[MP87] M. MÉZARD, G. PARISI: Mean-Field Theory of Randomly Frustrated Systems with

Finite Connectivity. Europhysics Letters 3(10) (1987), pp. 1067–1074.

[MP01] M. MÉZARD, G. PARISI: The Bethe lattice spin glass revisited. European Physical

Journal B 20 (2001), pp. 217–233.

[MP03] M. MÉZARD, G. PARISI: The Cavity Method at Zero Temperature. Journal of Sta-

tistical Physics 111(1) (2003), pp. 1–34.

[MPV87] M. MÉZARD, G. PARISI, M. A. VIASORO: Spin Glass Theory and Beyond. World

Scientific Lecture Notes in Physics 9, World Scientific, Singapore (1987).

[MPZ02] M. MÉZARD, G. PARISI, R. ZECCHINA: Analytic and Algorithmic Solution of

Random Satisfiability Problems. Science 297 (2002), pp. 812–815.

[MZ02] M. MÉZARD, R. ZECCHINA: Random K-satisfiability problem: from an analytic

solution to an efficient algorithm. Physical Review E 66 (2002) 056126.

[MSL92] D. G. MITCHELL, B. SELMAN, H. J. LEVESQUE: Hard and Easy Distributions

of SAT Problems. Proc. 10th AAAI (1992), pp. 459–465.

[Mol12] M. MOLLOY: The freezing threshold for k-colourings of a random graph.

Proc. 43rd STOC (2012), pp. 921–930.

[MR13] M. MOLLOY, R. RESTREPO: Frozen variables in random boolean constraint sa-

tisfaction problems. Proc. 24th SODA (2013), pp. 1306–1318.

[Mon98] R. MONASSON: Optimization problems and replica symmetry breaking in finite

connectivity spin glasses. Journal of Physics A 31 (1998), pp. 513–529.

[MRTS08] A. MONTANARI, F. RICCI-TERSENGHI, G. SEMERJIAN: Clusters of solutions

and replica symmetry breaking in random k-satisfiability. Journal of Statistical Me-

202



Literaturverzeichnis

chanics (2008) P04004.

[MRT11] A. MONTANARI, R. RESTREPO, P. TETALI: Reconstruction and Clustering in

Random Constraint Satisfaction Problems. SIAM Journal on Discrete Mathematics

25(2) (2011), pp. 771–808.

[Moo15+] C. MOORE: The phase transition in random regular exact cover. arXiv:1502.07591.

[MNS16+] E. MOSSEL, J. NEEMAN, A. SLY: Stochastic block models and reconstruction.

Probability Theory and Related Fields, to appear (2016+).

[MNS13+] E. MOSSEL, J. NEEMAN, A. SLY: A proof of the block model threshold conjecture.

arXiv:1311.4115.

[Pap94] C. H. PAPADIMITRIOU: Computational Complexity. Addison-Wesley, Reading,

MA (1994).

[Par79] G. PARISI: Infinite Number of Order Parameters for Spin-Glasses. Physical Review

Letters 43 (1979), pp. 1754–1756.

[Par80] G. PARISI: A sequence of approximated solutions to the S-K model for spin glasses.

Journal of Physics A 13(4) (1980) L115.

[PS16] B. PITTEL, G. B. SORKIN: The satisfiability threshold for k-XORSAT. Combina-

torics, Probability and Computing 25(2) (2016), pp. 236–268.

[PSW96] B. PITTEL, J. SPENCER, N. WORMALD: Sudden Emergence of a Giant k-Core

in a Random Graph. Journal of Combinatorial Theory, Series B 67(1) (1996), pp.

111–151.

[Ras16a+] F. RASSMANN: On the number of solutions in random hypergraph 2-colouring.

arXiv:1603.07523.

[Ras16b+] F. RASSMANN: On the number of solutions in random graph k-colouring. ar-

Xiv:1609.04191.

[RARS10] V. RATHI, E. AURELL, L. RASMUSSEN, M. SKOGLUND: Bounds on Threshold

of Regular Random k-SAT. Proc. 13th SAT (2010), pp. 264–277.

[RTS09] F. RICCI-TERSENGHI, G. SEMERJIAN: On the cavity method for decimated ran-

dom constraint satisfaction problems and the analysis of belief propagation guided

decimation algorithms. Journal of Statistical Mechanics (2009) P09001.

203



Literaturverzeichnis

[RW92] R. ROBINSON, N. WORMALD: Almost all cubic graphs are Hamiltonian. Ran-

dom Structures and Algorithms 3(2) (1992), pp. 117-–125.

[RW94] R. ROBINSON, N. WORMALD: Almost all Regular Graphs are Hamiltonian. Ran-

dom Structures & Algorithms 5(2) (1994), pp. 363–374.

[SS87] E. SHAMIR, J. SPENCER: Sharp concentration of the chromatic number of random

graphs G(n, p). Combinatorica 7(1) (1987), pp. 121–129.

[SSZ16+] A. SLY, N. SUN, Y. ZHANG: The number of solutions for random regular NAE-

SAT. arXiv:1604.08546.

[SK75] D. SHERRINGTON, S. KIRKPATRICK: Solvable Model of a Spin-Glass. Physical

Review Letters 35(26) (1975), pp. 1792–1796.

[Tal03] M. TALAGRAND: Spin Glasses: A Challenge for Mathematicians. Springer

(2003).

[Tal06] M. TALAGRAND: The Parisi formula. Annals of Mathematics 163(1) (2006), pp.

221–263.

[War16] L. WARNKE: On the method of typical bounded differences. Combinatorics, Proba-

bility and Computing 25, pp. 269–299.

[Wor99] N. WORMALD: Models of random regular graphs. London Mathematical Society

Lecture Note Series (1999), pp. 239–298.

[Zde09] L. ZDEBOROVÁ: Statistical Physics of Hard Optimization Problems. Acta Physica

Slovaca 59(3) (2009), pp. 169–303.

[ZK07] L. ZDEBOROVÁ, F. KRZAKALA: Phase transitions in the coloring of random

graphs. Physical Review E 76 (2007) 031131.

[ZK08] L. ZDEBOROVÁ, F. KRZAKALA: Potts glass on random graphs. Europhysics Let-

ters 81(5) (2008) 57005.

204



A Complementary proofs: Condensation phase transition
in random graph k-colouring

This chapter presents the remaining parts of the proof of Theorem 4.1.1. They are not part of this

thesis’ author’s achievement and are only included here for the sake of completeness.

In section Section A.1 the first and second moment method are applied to prove bounds on dcrit.

In Section A.2 calculations are performed in the planted model to prove Proposition 5.1.3. The last

section Section A.3 is devoted to determining the frozen fixed point πd,k,q∗ of Fd,k, to show that it is

unique and that it describes the expected number of vertices in a certain tree process.

The chapter is a verbatim copy of parts of the paper The condensation phase transition in random

graph coloring [BCOHRV16] that is joint work with Victor Bapst, Amin Coja-Oghlan, Samuel Hette-

rich and Dan Vilenchik and is published in the Communications in Mathematical Physics 341 (2016).

A.1. Groundwork: the first and the second moment method

In this section we prove Proposition 5.1.2 and also lay the foundations for the proof of Propositi-

on 5.1.3.

A.1.1. The first moment

We start by deriving an upper bound on Φk(d) by computing the expected number of k-colourings. To

avoid fluctuations of the total number of edges, we work with the G(n,m) model.

Lemma A.1.1. We have E[Zk(G(n,m))] = Θ(kn(1− 1/k)m).

Lemma A.1.1 is folklore. We carry the proof out regardless to make a few observations that will be

important later. For a map σ : [n]→ [k], let

F(σ) =
k∑
i=1

(
|σ−1(i)|

2

)

205



A. Complementary proofs: Condensation phase transition in random graph k-colouring

be the number of “forbidden pairs” of vertices that are coloured the same under σ. By convexity,

N −F(σ) ≥ (1− 1/k)N, with N =
(
n
2

)
. (A.1.1)

Hence, using Stirling’s formula, we find

P [σ is a k-colouring of G(n,m)] =

(
N −F(σ)

m

)
/

(
N

m

)
≤ O((1− 1/k)m). (A.1.2)

As there are kn possible maps σ in total, the linearity of expectation and (A.1.2) imply

E[Zk(G(n,m))] = O(kn(1− 1/k)m).

To bound E[Zk(G(n,m))] from below, call σ : [n] → [k] balanced if |σ−1(i) − n
k | ≤

√
n for all

i ∈ [k]. Let Bal = Baln,k be the set of all balanced σ : [n] → [k]. For σ ∈ Bal, we verify easily that

N −F(σ) = (1− 1/k)N +O(n). Thus, (A.1.2) and Stirling’s formula yield

P [σ is a k-colouring of G(n,m)] = Ω((1− 1/k)m) for any σ ∈ Bal. (A.1.3)

As |Bal| = Ω(kn) by Stirling, the linearity of expectation and (A.1.3) imply E[Zk(G(n,m))] =

Ω(kn(1− 1/k)m), whence Lemma A.1.1 follows.

Letting Zk,bal denote the number of balanced k-colourings, we obtain from the above argument

Corollary A.1.2. For any d ≥ 0, we have E[Zk,bal(G(n,m))] = Θ(kn(1− 1/k)m).

As a further consequence of Lemma A.1.1, we obtain

Corollary A.1.3. For any c > 0, we have

lim sup
n→∞

E[Zk(G(n, c/n))1/n] ≤ k(1− 1/k)c/2.

Proof. Lemma A.1.1 and Jensen’s inequality yield

E[Zk(G(n,m))1/n] ≤ E[Zk(G(n,m))]1/n ≤ k(1− 1/k)d/2 + o(1). (A.1.4)

Now, let c > 0 and set d = c − ε for some ε > 0. The number of edges in G(n, c/n) is binomially

distributed with mean (1 + o(1))cn/2 = m + Ω(n). Hence, by the Chernoff bound the probability

of the event A that G(n, c/n) has at least m edges tends to 1 as n → ∞. Because adding further

edges can only decrease the number of k-colourings and since the number of k-colourings is trivially

206



A.1. Groundwork: the first and the second moment method

bounded by kn, we obtain from (A.1.4) that

E[Zk(G(n, c/n))1/n] ≤E[Zk(G(n, c/n))1/n · 1A] + P [A does not occur] · k

≤E[Zk(G(n,m))1/n] + o(1) ≤ k(1− 1/k)d/2 + o(1).

Consequently, lim supE[Zk(G(n, c/n))1/n] ≤ k(1 − 1/k)d/2. This holds for any d > c. Hence,

letting ε = d− c→ 0, we see that

lim supE[Zk(G(n, c/n))1/n] ≤ k(1− 1/k)c/2,

as desired.

We conclude this subsection with the following crucial observation.

Lemma A.1.4. Let

D∗ =
{
d > 0 : lim inf E[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2

}
,

D∗ =
{
d > 0 : lim supE[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2

}
.

If d1 ∈ D∗ and d2 > d1, then d2 ∈ D∗. Similarly, if d1 ∈ D∗ and d2 > d1, then d2 ∈ D∗.

Proof. Let 0 < d1 < d2 and let q ∼ (d2 − d1)/n be such that d1/n + (1 − d1/n)q = d2/n. Let us

denote the random graph G(n, d1/n) by G1. Furthermore, let G2 be a random graph obtained from

G1 by joining any two vertices that are not already adjacent in G1 with probability q independently.

Then G2 is identical to G(n, d2/n), because in G2 any two vertices are adjacent with probability

d1/n+ (1− d1/n)q = d2/n independently. Set N =
(
n
2

)
.

Let e(Gi) signify the number of edges inGi for i = 1, 2. Because e(Gi) is a binomial random variable

with mean µi = di
n ·N = ndi/2 +O(1), the Chernoff bound implies that

P
[
|e(G1)− µ1| > n2/3

]
= o(1),

pµ1,µ2(G1, G2) = P
[
|e(G2)− e(G1)− (µ2 − µ1)| > n2/3

]
= o(1).

(A.1.5)
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Further, since Z1/n
k ≤ k with certainty, (A.1.5) implies that

E[Zk(G2)1/n |Zk(G1)] = E[Zk(G2)1/n |Zk(G1), |e(G2)− e(G1)− (µ2 − µ1)|

≤ n2/3](1− pµ1,µ2(G1, G2)) + k · pµ1,µ2(G1, G2)

≤ E[Zk(G2)1/n1|e(G2)−e(G1)−(µ2−µ1)|≤n2/3 |Zk(G1)] + o(1). (A.1.6)

Suppose that we condition on e(G1), e(G2) and |e(G1)−µ1| ≤ n2/3, |e(G2)−e(G1)− (µ2−µ1)| ≤
n2/3. Assume that σ is a k-colouring of G1. What is the probability that σ remains a k-colouring of

G2? For this to happen, none of the e(G2) − e(G1) additional edges must be among the F(σ) pairs

of vertices with the same colour under σ. Using Stirling’s formula, we see that the probability of σ

remaining a k-colouring in G2 is bounded by

γ =

(
N −F(σ)− e(G1)

e(G2)− e(G1)

)
/

(
N − e(G1)

e(G2)− e(G1)

)
≤ (1− 1/k)(d2−d1+o(1))n/2. (A.1.7)

Hence, by (A.1.6), Jensen’s inequality and (A.1.7)

E[Zk(G2)1/n |Zk(G1)] ≤ E
[
Zk(G2) · 1|e(G2)−e(G1)−(µ2−µ1)|≤n2/3

∣∣Zk(G1)
]1/n

+ o(1)

≤ γ1/nZk(G1)1/n + o(1) ≤ (1− 1/k)(d2−d1)/2Zk(G1)1/n + o(1).

(A.1.8)

Averaging (A.1.8) over G1, we obtain

E[Zk(G(n, d2/n))1/n] = E[Zk(G2)1/n]

≤ (1− 1/k)(d2−d1)/2E[Zk(G1)1/n · 1|e(G1)−µ1|≤n2/3 ]

+ k · P
[
1|e(G1)−µ1|>n2/3

]
+ o(1)

≤ (1− 1/k)(d2−d1)/2E[Zk(G(n, d1/n))1/n] + o(1) [due to (A.1.5)].

Thus, if E[Zk(G(n, d1/n))1/n] < k(1− 1/k)d1/2 − δ + o(1), then

E[Zk(G(n, d2/n)1/n] ≤ k(1− 1/k)d2/2 − ε+ o(1)

for some ε = ε(δ, k, d1, d2) > 0. Taking n→∞ yields the assertion.
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A.1. Groundwork: the first and the second moment method

A.1.2. The second moment

The main technical step in the article [COV13] that yields the lower bound (4.2.1) on dcol is a second

moment argument for a random variable Zk,tame related to the number of k-colourings. We are going

to employ this second moment estimate to bound Zk(G(n, d/n)) from below.

The random variable Zk,tame counts k-colourings with some additional properties. Suppose that σ is

a balanced k-colouring of a graph G on [n]. We call σ separable if for any balanced τ ∈ C(G, σ) and

any i ∈ [k] we have

ρii(σ, τ) ≥ (1− κ)/k, where κ = ln20 k/k.

Thus, if σ is a balanced, separable k-colouring, then for any colour i and for any other balanced k-

colouring τ in the cluster of σ, a 1− κ+ o(1)-fraction of the vertices coloured i under σ are coloured

i under τ as well. In particular, the clusters of any two such colourings are either disjoint or identical.

Definition A.1.5. Let G be a graph with n vertices and m edges. A k-colouring σ of G is tame if

T1 σ is balanced,

T2 σ is separable, and

T3 |C(G, σ) ∩ Bal| ≤ kn(1− 1/k)m.

Let Zk,tame(G) denote the number of tame k-colourings of G.

Lemma A.1.6 ([COV13]). Assume that d > 0 is such that

lim inf
n→∞

E[Zk,tame(G(n,m))]

kn(1− 1/k)m
> 0. (A.1.9)

Then

lim inf
n→∞

E[Zk,tame(G(n,m))]2

E[Zk,tame(G(n,m))2]
> 0.

Furthermore, there exists εk = ok(1) such that (A.1.9) is satisfied if d ≤ (2k − 1) ln k − 2 ln 2− εk.

As fleshed out in [COV13], together with the sharp threshold result from [AF99], Lemma A.1.6 im-

plies that G(n, d/n) is k-colourable w.h.p. if d ≤ (2k − 1) ln k − 2 ln 2 − εk. Here we are going

to combine Lemma A.1.6 with the following variant of that sharp threshold result to obtain a lower

bound on the number of k-colourings.

Lemma A.1.7 ([ACO08]). For any k ≥ 3 and for any real ξ > 0, there is a sequence dk,ξ(n) such

that for any ε > 0 the following holds.
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A. Complementary proofs: Condensation phase transition in random graph k-colouring

1. If p(n) < (1− ε)dk,ξ(n)/n, then Zk(G(n, p(n))) ≥ ξn w.h.p..

2. If p(n) > (1 + ε)dk,ξ(n)/n, then Zk(G(n, p(n))) < ξn w.h.p..

Lemmas A.1.6 and A.1.7 entail the following lower bound on dcrit.

Lemma A.1.8. Assume that d∗ > 0 and ε > 0 are such that (A.1.9) holds for any d ∈ (d∗ − ε, d∗).

Then dcrit ≥ d∗.

Proof. Assume for contradiction that d∗ is such that (A.1.9) holds for all d ∈ (d∗ − ε, d∗) but dcrit <

d∗. Pick and fix a number

max{d∗ − ε, dcrit} < d∗ < d∗.

Corollary A.1.3 implies that lim supE[Zk(G(n, d∗/n))1/n] ≤ k(1− 1/k)d∗/2. Therefore, since d∗ >

dcrit, there exists ε∗ > 0 such that

lim inf
n→∞

E[Zk(G(n, d∗/n))1/n] < k(1− 1/k)d∗/2 − ε∗. (A.1.10)

Further, pick and fix d∗ < d̂ < d∗ such that k(1− 1/k)d̂/2 > k(1− 1/k)d∗/2 − ε∗ and ξ such that

k(1− 1/k)d∗/2 − ε∗ < ξ < k(1− 1/k)d̂/2. (A.1.11)

We are going to use Lemmas A.1.6 and A.1.7 to establish a lower bound on Zk(G(n, d∗/n)) that

contradicts (A.1.10). By the Paley-Zygmund inequality and because (A.1.9) holds for any d∗ − ε <
d < d∗,

P
[
Zk,tame(G(n,m)) ≥ 1

2
E[Zk,tame(G(n,m))]

]
≥

E[Zk,tame(G(n,m))]2

4 · E[Zk,tame(G(n,m))2]
(A.1.12)

for any d∗ − ε < d < d∗. Moreover, Lemma A.1.6 and (A.1.12) imply

lim inf
n→∞

P
[
Zk,tame(G(n,m)) ≥ 1

2
E[Zk,tame(G(n,m))

]
> 0 (A.1.13)

for any d∗−ε < d < d∗. Further, because (A.1.9) is true for any d∗−ε < d < d∗ and ξ < k(1−1/k)d/2

for any d < d̂ < d∗, we see that

1

2
E[Zk,tame(G(n,m))] = Ω(kn(1− 1/k)m) > ξn for any d < d̂.

Hence, (A.1.13) implies

lim inf
n→∞

P [Zk,tame(G(n,m)) ≥ ξn] > 0 for any d < d̂. (A.1.14)
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Since the number of edges in G(n, d/n) has a binomial distribution with mean m, with probability at

least 1/3 the number of edges in G(n, d/n) does not exceed m. Therefore, (A.1.14) implies that

lim inf
n→∞

P [Zk(G(n, d/n)) ≥ ξn] ≥ 1

3
lim inf
n→∞

P [Zk,tame(G(n,m)) ≥ ξn] > 0 for any d < d̂.

(A.1.15)

Moreover, (A.1.15) entails that the sequence dk,ξ(n) from Lemma A.1.7 satisfies lim inf dk,ξ(n) ≥ d̂.

Therefore,

lim
n→∞

P [Zk(G(n, d/n)) ≥ ξn] = 1 for any d < d̂. (A.1.16)

Since d∗ < d̂, (A.1.16) entails that

lim inf
n→∞

E
[
Zk,tame(G(n, d∗/n))1/n

]
≥ ξ. (A.1.17)

Combining (A.1.10), (A.1.11) and (A.1.17) yields a contradiction, which refutes our assumption that

dcrit < d∗.

Proof of Proposition 5.1.2. The first assertion follows from Corollary A.1.3. Hence, the second asser-

tion

dcrit = sup
{
d ≥ 0 : lim inf

n→∞
E[Zk(G(n, d/n))1/n] ≥ k(1− 1/k)d/2

}
.

is immediate from Lemma A.1.4. The third assertion follows from Lemma A.1.6 and Lemma A.1.8.

A.2. The planted model

A.2.1. Overview

The aim in this section is to prove Proposition 5.1.3. The proof of the first part is fairly straightforward.

More precisely, in Subsection A.2.2 we are going to establish

Lemma A.2.1. Assume that (2k − 1) ln k − 2 ≤ d ≤ (2k − 1) ln k is such that (5.1.2) holds. Then

dcrit ≥ d.

The more challenging claim is that d ≥ dcrit if typically the cluster in the planted model is “too big”.

To prove this, we consider a variant of the planted model in which the number of edges is fixed. More

precisely, for a map σ : [n] → [k] we let G(n,m, σ) denote a graph on the vertex set V = [n] with

precisely m edges that do not join vertices v, w with σ(v) = σ(w) chosen uniformly at random. In

other words, G(n,m, σ) is just the random graph G(n,m) conditioned on the event that σ is a k-
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colouring. The following lemma, which is a variant of the “planting trick” from [ACO08], establishes

a general relationship between G(n,m) and G(n,m, σ).

Lemma A.2.2. Let d > 0. Assume that there exists a sequence (En)n≥1 of events such that

lim
n→∞

P [G(n,m) ∈ En] = 1 while lim sup
n→∞

P [G(n,m,σ) ∈ En]1/n < 1. (A.2.1)

Then for any c > d we have lim supE[Zk(G(n, c/n))1/n] < k(1− 1/k)c/2. In particular, dcrit ≤ d.

We prove Lemma A.2.2 in Subsection A.2.2. Hence, assuming that the typical cluster size in the

planted model is “too big” w.h.p., we need to exhibit events En such that (A.2.1) holds. An obvious

choice seems to be

En(ε) =
{
Z

1/n
k ≤ k(1− 1/k)d/2 + ε

}
.

But (A.2.1) requires that the probability that En occurs in G(n,m, σ) is exponentially small, and

neither the cluster size norZk are known to be sufficiently concentrated to obtain such an exponentially

small probability.

Therefore, we define the events En by means of another random variable. For a graph G = (V,E) and

a map σ : V → [k], letHG(σ) be the number of edges {v, w} of G such that σ(v) = σ(w). In words,

HG(σ) is the number of edges of G that are monochromatic under σ. Furthermore, given β > 0 let

Zβ,k(G) =
∑

σ:V→[k]

exp(−β · HG(σ)),

the partition function of the k-spin Potts antiferromagnet on G at inverse temperature β.

For large β, there is a stiff “penalty factor” of exp(−β) for any monochromatic edge. Thus, we expect

that Zβ,k becomes a good proxy for Zk as β → ∞. At the same time, lnZβ,k enjoys a Lipschitz

property. Namely, suppose that we obtain a graph G′ from G by either adding or removing a single

edge. Then

| ln(Zβ,k(G))− ln(Zβ,k(G
′))| ≤ β. (A.2.2)

Due to this Lipschitz property, one can easily show that lnZβ,k is tightly concentrated. More precisely,

we have

Lemma A.2.3. For any fixed d > 0, ε > 0 there is α > 0 such that the following is true. Suppose that

(σn)n≥1 is a sequence of maps [n]→ [k]. Then for all large enough n,

P
[
| ln(Zβ,k(G(n, p′, σn)))− E[lnZβ,k(G(n, p′, σn))]| > εn

]
≤ exp(−αn).
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Proof. This is immediate from the Lipschitz property (A.2.2) and McDiarmid’s inequality [McD98,

Theorem 3.8].

Furthermore, in Subsection A.2.2 we show that Lemma A.2.3 implies

Lemma A.2.4. Assume that d is such that (5.1.3) holds. Then there exist z, β > 0 such that

lim
n→∞

P
[

1

n
lnZβ,k(G(n,m)) ≤ z

]
= 1

while lim sup
n→∞

P
[

1

n
lnZβ,k(G(n,m,σ)) ≤ z

]1/n

< 1.

Finally, Proposition 5.1.3 is immediate from Lemmas A.2.1, A.2.2 and A.2.4.

A.2.2. Remaining proofs

Proof of Lemma A.2.1

We use the following observation from [COV13].

Lemma A.2.5 ([COV13]). Suppose that (2k−1) ln k−2 ≤ d ≤ (2k−1) ln k. Let p′ be as in (5.1.1).

Then the planted colouring σ is separable in G(n, p′,σ) w.h.p..

Proof of Lemma A.2.1. If (5.1.2) holds, then there exists ε > 0 such that with p′ from (5.1.1) we have

lim
n→∞

P
[
|C(G(n, p′,σ),σ)| ≤ kn(1− 1/k)m exp(−εn)

]
= 1. (A.2.3)

Pick a number d∗ > d such that with m∗ = dd∗n/2e we have

kn(1− 1/k)m
∗ ≥ kn(1− 1/k)m exp(−εn/2).

We claim that if we choose σ : [n] → [k] uniformly at random and independently a random graph

G(n,m∗), then

lim inf
n→∞

P [σ is tame|σ is a k-colouring of G(n,m∗)] > 0. (A.2.4)

To see this, let E be the event that the random graph G(n, p′,σ) has no more than m∗ edges. Because

the number of edges inG(n, p′,σ) is binomially distributed with meanm < m∗−Ω(n), the Chernoff
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bound implies that P [E ] = 1− o(1). Therefore, (A.2.3) implies

lim
n→∞

P
[
|C(G(n, p′,σ),σ)| ≤ kn(1− 1/k)m exp(−εn) | E

]
= 1. (A.2.5)

Further, set d′′ = kd∗/(k − 1) and let p′′ = d′′/n > p′. Then we can think of G(n, p′′,σ) as being

obtained from G(n, p′,σ) by adding further random edges. More precisely, let A be the event that

G(n, p′′,σ) contains precisely m∗ edges and set

p′n = P
[
|C(G(n, p′′,σ),σ)| ≤ kn(1− 1/k)m

∗ | A
]
.

Since adding edges can only decrease the cluster size, (A.2.5) entails

lim
n→∞

p′n ≥ lim
n→∞

P
[
|C(G(n, p′,σ),σ)| ≤ kn(1− 1/k)m exp(−εn) | E

]
= 1. (A.2.6)

Similarly, let p′′n = P [σ is separable in G(n, p′′,σ) | A] . Then Lemma A.2.5 implies

lim
n→∞

p′′n ≥ lim
n→∞

P
[
σ is separable in G(n, p′,σ) | E

]
= 1.

Further, consider p′′′n = P [σ is balanced]. Then by Stirling’s formula,

lim inf
n→∞

p′′′n > 0. (A.2.7)

Finally, let pn = P [σ is a tame k-colouring of G(n, p′′,σ)|A]. Given the event A, G(n, p′′,σ) is just

a uniformly random graph with m∗ edges in which σ is a k-colouring. Hence,

pn = P [σ is tame|σ is a k-colouring of G(n,m∗)] .

As (A.2.6)–(A.2.7) yield lim infn→∞ pn > 0, we obtain (A.2.4).

The estimate (A.2.4) enables us to bound E[Zk,tame(G(n,m∗))] from below. Indeed, by the linearity

of expectation

E[Zk,tame(G(n,m∗))]

=
∑

σ:[n]→[k]

P [σ is a tame k-colouring of G(n,m∗)]

= kn · P [σ is a tame k-colouring of G(n,m∗)]

= kn P [σ is a k-colouring of G(n,m∗)]P [σ is tame|σ is a k-colouring of G(n,m∗)]

= kn P [σ is a k-colouring of G(n,m∗)] · pn

= E[Zk(G(n,m∗))] · pn.
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Thus, Lemma A.1.1 and (A.2.4) yield

lim inf
n→∞

E[Zk,tame(G(n,m∗)]

kn(1− 1/k)m∗
> 0.

As this holds for all d∗ in an interval (d + η, d + 2η) with η > 0, Lemma A.1.8 implies that dcrit ≥
d.

Proof of Lemma A.2.2

Lemma A.2.6. Assume that d > 0 is such that lim supE[Zk(G(n,m))1/n] < k(1 − 1/k)d/2. Then

for any c > d we have lim supE[Zk(G(n, c/n))1/n] < k(1− 1/k)c/2.

Proof. Assume that d, δ > 0 are such that lim supE[Zk(G(n,m))1/n] < k(1−1/k)d/2−δ. We claim

that

d∗ ∈ D∗ =
{
c > 0 : lim supE[Zk(G(n, c/n))1/n] < k(1− 1/k)c/2

}
for any d∗ > d. (A.2.8)

Indeed, the number e(G(n, d∗/n)) of edges of G(n, d∗/n) is binomially distributed with mean (1 +

o(1))d∗n/2. Since d, d∗ are independent of n and d∗ > d, the Chernoff bound implies that

P [e(G(n, d∗/n)) ≤ m] ≤ exp(−Ω(n)). (A.2.9)

Further, if we condition on the event thatm∗ = e(G(n, d∗/n)) > m, then we can think ofG(n, d∗/n)

as follows: first, create a random graph G(n,m); then, add another m∗ −m random edges. Since the

addition of further random edges cannot increase the number of k-colourings, by (A.2.9) we find that

E[Zk(G(n, d∗/n))1/n] ≤ E[Zk(G(n, d∗/n))1/n|m∗ > m] + k · P [e(G(n, d∗/n)) ≤ m]

≤ E[Zk(G(n,m))1/n] + o(1).

Taking n→∞, and assuming that d∗ > d is sufficiently close to d, we conclude that

lim sup
n→∞

E[Zk(G(n, d∗/n))1/n] ≤ k(1− 1/k)d/2 − δ < k(1− 1/k)d∗/2.

Hence, for any ε > 0 there is d∗ ∈ (d, d + ε) such that d∗ ∈ D∗. Thus, (A.2.8) follows from

Lemma A.1.4.

Proof of Lemma A.2.2. Assuming the existence of d and (En)n≥1 as in Lemma A.2.2, we are going to

argue that

lim supE[Zk(G(n,m))1/n] < k(1− 1/k)d/2. (A.2.10)
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Then the assertion follows from Lemma A.2.6.

Since Z1/n
k ≤ k with certainty and P[G(n,m) ∈ En] = 1− o(1), Jensen’s inequality yields

E[Zk(G(n,m))1/n] =E[Zk(G(n,m))1/n · 1En ] + o(1) ≤ E[Zk(G(n,m)) · 1En ]1/n + o(1).

Furthermore, by the linearity of expectation,

E[Zk(G(n,m)) · 1En ] =
∑

σ:[n]→[k]

P [En occurs and σ is a k-colouring of G(n,m)]

=
∑

σ:[n]→[k]

P [En|σ is a k-colouring of G(n,m)]

· P [σ is a k-colouring of G(n,m)]

=
∑

σ:[n]→[k]

P [G(n,m, σ) ∈ En]

· P [σ is a k-colouring of G(n,m)] . (A.2.11)

To estimate the last factor, we use (A.1.1) and Stirling’s formula, which yield

P [σ is a k-colouring of G(n,m)] ≤
((n

2

)
−F(σ)

m

)
/

((n
2

)
m

)
≤ O((1− 1/k)m).

Plugging this estimate into (A.2.11) and recalling that σ is a random map [n]→ [k], we obtain

E[Zk(G(n,m)) · 1En ] ≤ O((1− 1/k)m)
∑

σ:[n]→[k]

P [G(n,m, σ) ∈ En]

= O((1− 1/k)m) · kn P [G(n,m,σ) ∈ En]

= O(E[Zk(G(n,m))]) · P [G(n,m,σ) ∈ En] . (A.2.12)

Finally, using our assumption that lim supP [G(n,m,σ) ∈ En]1/n < 1 and combining (A.2.11) and

(A.2.12), we see that

lim supE[Zk(G(n,m))1/n] ≤ k(1− 1/k)d/2 · lim supP [G(n,m,σ) ∈ En]1/n

< k(1− 1/k)d/2,

thereby completing the proof of (A.2.10).
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Proof of Lemma A.2.4

Lemma A.2.7. Let d > 0. For any ε > 0, there exists β > 0 such that

1

n
lnE[Zβ,k(G(n,m))] ≤ ln k +

d

2
ln(1− 1/k) + ε.

Proof. For any fixed number γ > 0, we can choose β(γ) > 0 so large that ln k − βγ < 0. Now, let

M(G(n,m)) be the set of all σ : [n] → [k] such that at least γn edges are monochromatic under σ,

and letM(G(n,m)) contain all σ 6∈ M(G(n,m)). Then

Zβ,k(G(n,m)) ≤ |M(G(n,m))| · exp(−βγn) + |M(G(n,m))|

≤ kn · exp(−βγn) + |M(G(n,m))| ≤ 1 + |M(G(n,m))|. (A.2.13)

Further, if σ ∈ M(G(n,m)), then σ is a k-colouring of a subgraph of G(n,m) containing m − γn
edges. Hence, we obtain from Stirling’s formula that for γ = γ(ε) > 0 small enough,

P
[
σ ∈M(G(n,m))

]
≤
((n

2

)
γn

)
·
((n

2

)
−F(σ)

m− γn

)
/

((n
2

)
m

)
≤ (1− 1/k)m · exp(εn/2).

Hence,

E[M(G(n,m))] ≤ kn(1− 1/k)m · exp(εn/2). (A.2.14)

Combining (A.2.13) and (A.2.14), we obtain

E[Zβ,k(G(n,m))] ≤ 1 + kn(1− 1/k)m · exp(εn/2) < kn(1− 1/k)m · exp(εn).

Taking logarithms completes the proof.

Lemma A.2.8. Assume that (5.1.3) is true. Then there exist a fixed number ε > 0, a sequence σn of

balanced maps [n]→ [k] and a sequence µn of numbers satisfying |µn − dn/2| ≤
√
n such that

lim
n→∞

P
[
|C(G(n, µn, σn), σn)|1/n > k(1− 1/k)d/2 + ε

]
= 1.

Proof. Let A be the event that the number of edges in the random graph G(n, p′,σ) differs from

dn/2 by at most
√
n. Let N =

(
n
2

)
. For any balanced σ : [n]→ [k], the expected number of edges in

G(n, p′,σ) is

(N −F(σ))p′ = (1− 1/k)Np′ +O(1) = dn/2 +O(1). (A.2.15)

Since the number of edges in G(n, p′,σ) is a binomial random variable, (A.2.15) shows together with
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the central limit theorem that there exists a fixed γ > 0 such that for sufficiently large n

P
[
G(n, p′, σ) ∈ A

]
≥ γ for all balanced σ. (A.2.16)

Furthermore, by Stirling’s formula there is an n-independent number δ > 0 such that for sufficiently

large n we have

P [σ ∈ Bal] ≥ δ. (A.2.17)

Combining (A.2.16) and (A.2.17), we see that

P
[
σ ∈ Bal, G(n, p′,σ) ∈ A

]
= P [σ ∈ Bal] · P

[
G(n, p′,σ) ∈ A|σ ∈ Bal

]
≥ γδ > 0. (A.2.18)

Thus, pick σn ∈ Bal and µn ∈ [dn/2−
√
n, dn/2 +

√
n] that maximize

p(σn, µn) = P
[
|C(G(n, µn, σn), σn)|1/n > k(1− 1/k)d/2 + ε

]
.

Then (5.1.3) and (A.2.18) imply that limn→∞ p(σn, µn) = 1.

Lemma A.2.9. For any η > 0, there is δ > 0 such that

lim
n→∞

1

n
lnP

[
k∑
i=1

||σ−1(i)| − n/k| > ηn

]
≤ −δ.

Proof. For each i ∈ [k], the number |σ−1(i)| is a binomially distributed random variable with mean

n/k. Moreover, if
∑k

i=1 ||σ−1(i)|−n/k| > ηn, then there is some i ∈ [k] such that ||σ−1(i)|−n/k| >
ηn/k. Thus, the assertion is immediate from the Chernoff bound.

Let VolG(S) be the sum of the degrees of the vertices in S in the graph G.

Lemma A.2.10. For any γ > 0, there is α > 0 such that for any set S ⊂ [n] of size |S| ≤ αn and

any σ : [n]→ [k] we have

lim sup
1

n
lnP

[
VolG(n,p′,σ)(S) > γn

]
≤ −α.

Proof. Let (Xv)v∈[n] be a family of independent random variables with distribution Bin(n, p′). Then

for any set S the volume Vol(S) in G(n, p′, σ) is stochastically dominated by XS = 2
∑

v∈S Xv.

Indeed, for each vertex v ∈ S the degree is a binomial random variable with mean at most np′, and

the only correlation amongst the degrees of the vertices in S is that each edge joining two vertices in

S contributes two to Vol(S). Furthermore, E[XS ] ≤ 2d′|S|. Thus, for any γ > 0 we can choose an

n-independent α > 0 such that for any S ⊂ [n] of size |S| ≤ αn we have E[XS ] ≤ γn/2. In fact, the

218



A.2. The planted model

Chernoff bound shows that by picking α > 0 sufficiently small, we can ensure that

P [Vol(S) ≥ γn] ≤ P [XS ≥ γn] ≤ exp(−αn),

as desired.

Lemma A.2.11. Assume that there exist numbers z > 0, ε > 0 and a sequence (σn)n≥1 of balanced

maps [n]→ [k] such that

lim
n→∞

1

n
E
[
lnZβ,k(G(n, p′, σn))

]
> z + ε.

Then lim supn→∞ P [lnZβ,k(G(n, p′,σ)) ≤ nz]1/n < 1.

Proof. Let Y = 1
n lnZβ,k for the sake of brevity. Suppose that n is large enough so that we have

E [Y (G(n, p′, σn))] > z + ε/2. Set ni = |σ−1
n (i)| and let T be the set of all τ : [n] → [k] such that

|τ−1(i)| = ni for i = 1, . . . , k. As Zβ,k is invariant under permutations of the vertices, we have

E
[
Y (G(n, p′, τ))

]
= E

[
Y (G(n, p′, σn))

]
> z + ε/2 for any τ ∈ T. (A.2.19)

Let γ = ε/(4β) > 0. By Lemma A.2.10 there exists α > 0 such that for large enough n for any set

S ⊂ V of size |S| ≤ αn and any σ : [n]→ [k] we have

P
[
VolG(n,p′,σ)(S) > γn

]
≥ 1− exp(−αn). (A.2.20)

Pick and fix a small 0 < η < α/3 and let A be the event that
∑k

i=1 ||σ−1(i)| − n/k| ≤ ηn. Then by

Lemma A.2.9 there exists an (n-independent) number δ = δ(β, ε, η) > 0 such that for n large enough

P [A] ≥ 1− exp(−δn). (A.2.21)

Because σn is balanced, we have |ni − n/k| ≤
√
n for all i ∈ [k]. Therefore, if A occurs, then it

is possible to obtain from σ a map τσ ∈ T by changing the colours of at most 2ηn vertices. If A
occurs, we let G1 = G(n, p′, τσ). Further, let G2 be the random graph obtained by removing from

G1 all edges that are monochromatic under σ. Finally, let G3 be the random graph obtained from

G2 by inserting an edge between any two vertices v, w with σ(v) 6= σ(w) but τσ(v) = τσ(w) with

probability p′ independently. Thus, the bottom line is that inG3, we connect any two vertices that are

coloured differently under σ with probability p′ independently. That is,G3 = G(n, p′,σ).

Let Sσ be the set of vertices v with σ(v) 6= τσ(v) and let ∆ be the number of edges we removed to

obtain G2 from G1. Then ∆ is bounded by the volume of Sσ in G1 = G(n, p′, τσ). Hence, (A.2.20)
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implies that

P [∆ ≤ γn|A] ≥ 1− exp(−αn). (A.2.22)

Since removing a single edge can reduce Y by at most β/n, we obtain

P[Y (G(n, p′,σ)) ≤ z]

= P[Y (G3) ≤ z] ≤ exp(−δn) + P[Y (G3) ≤ z|A] [by (A.2.21)]

≤ exp(−δn) + exp(−αn) + P[Y (G3) ≤ z|A,∆ ≤ γn] [by (A.2.22)]

≤ exp(−δn) + exp(−αn) + P[Y (G1)− γβ ≤ z|A,∆ ≤ γn]

≤ exp(−δn) + exp(−αn) + 2P[Y (G1) ≤ z + ε/4|A] [by the choice of γ and (A.2.22)]

≤ exp(−δn) + exp(−αn) + 3P[Y (G(n, p′, σn)) ≤ z + ε/4] [by (A.2.21)]

≤ exp(−δn) + exp(−αn) + 3P[Y (G(n, p′, σn)) ≤ E[Y (G(n, p′, σn))]− ε/4] [by (A.2.19)].

Finally, the assertion follows from Lemma A.2.3.

Proof of Lemma A.2.4. Lemma A.2.8 shows that there exist ε > 0, balanced maps σn : [n]→ [k] and

a sequence µn satisfying |µn − dn/2| ≤
√
n such that

lim
n→∞

P
[

1

n
ln |C(G(n, µn, σn), σn)| ≥ ln k +

d

2
ln(1− 1/k) + ε

]
= 1. (A.2.23)

By the definition of Zβ,k, (A.2.23) implies that

lim
n→∞

P
[

1

n
lnZβ,k(G(n, µn, σn)) ≥ ln k +

d

2
ln(1− 1/k) + ε

]
= 1 for all β > 0. (A.2.24)

By comparison, Lemma A.2.7 yields β > 0 such that with z = ln k + d
2 ln(1− 1/k) + ε/8 we have

lim
n→∞

P
[

1

n
lnZβ,k(G(n,m)) ≤ z

]
= 1.

Thus, we aim to prove that there is α > 0 such that for sufficiently large n

P
[

1

n
lnZβ,k(G(n,m,σ)) ≤ z + ε/8

]
≤ exp(−αn). (A.2.25)
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Indeed, since | lnZβ,k(G(n, µn, σn))| ≤ βµn = O(n), (A.2.24) implies that for large enough n

1

n
E[lnZβ,k(G(n, µn, σn))] ≥ ln k +

d

2
ln(1− 1/k) + ε− o(1)

≥ ln k +
d

2
ln(1− 1/k) + ε/2.

Thus, since the number of edges in G(n, p′, σn)) is binomially distributed with expectation dn/2 +

O(1), equation (A.2.25) follows from Lemma A.2.11.

A.3. Determining the fixed point

A.3.1. The “hard fields”

In this section we make the first step towards proving that πd,k,q∗ is the unique frozen fixed point of

Fd,k. More specifically, identifying the set Ω with the k-simplex, we show that every face of Ω carries

the same probability mass under any frozen fixed point of Fd,k as under the measure πd,k,q∗ . Formally,

let us denote the extremal points of Ω by δh = (1i=h)i∈[k], i.e. δh is the probability measure on [k]

that puts mass 1 on the single point h ∈ [k]. In addition, let Ω` be the set of all µ ∈ Ω with support

` (i.e. µ(i) > 0 for all i ∈ ` and µ(i) = 0 for all i ∈ [k] \ `). Further, for a probability measure

π ∈ P we let ρh(π) = π({δh}) denote the probability mass of δh under π. In physics jargon, the

numbers ρh(π) are called the “hard fields” of π. In addition, recalling that dπi(µ) = kµ(i)dπ(µ), we

set ρi,`(π) = πi(Ω`) for any (i, `) ∈ T . The main result of this section is

Lemma A.3.1. Suppose that d ≥ (2k − 1) ln k − 2. Let q∗ ∈ [2/3, 1] be the fixed point of (5.1.4). If

π ∈ P is a frozen fixed point of Fd,k, then ρi(π) = q∗/k and ρi,`(π) = kq∗i,` for all (i, `) ∈ T .

Remark A.3.2. The proofs of several statements in this section (Lemmas A.3.1, A.3.3, A.3.4 and

Corollary A.3.5) directly incorporate parts of the calculations outlined in the physics work [ZK07]

that predicted the existence and location of dcond. We redo these calculations here in detail to be

self-contained and because not all steps are carried out in full detail in [ZK07].

To avoid many case distinctions, we introduce the following convention when working with product

measures. Let us agree that Ω0 = {∅}. Hence, if B : Ω0 → Ω is a map, then B(∅) ∈ Ω. Furthermore,

there is precisely one probability measure π0 on Ω0, namely the measure that puts mass one on the

point ∅ ∈ Ω0. Thus, the integral
∫

Ω∅ B(µ)dπ0(µ) is simply equal toB(∅). If π1, π2, . . . are probability

measures on Ω, what we mean by the empty product measure
⊗0

γ=1 πγ is just the measure π0 on Ω0.
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Further, for a real λ ≥ 0 and an integer y ≥ 1 we let

pλ(y) = λy exp(−λ)/y!.

Moreover, for i ∈ [k] we let Γi be the set of all non-negative integer vectors γ = (γj)j∈[k]\{i} and for

γ ∈ Γi we set

pi(γ) =
∏

h∈[k]\{i}

p d
k−1

(γh).

We also let Ωγ =
∏
h∈[k]\{i}

∏
j∈[γh] Ω for γ ∈ Γi. The elements of Ωγ are denoted by µγ =

(µh,j)h∈[k]\{i},j∈[γh]. Moreover, let

πi,γ =
⊗

h∈[k]\{i}

⊗
j∈[γh]

πh.

Thus, with the convention from the previous paragraph, in the case γ = 0 the set Ωγ = {∅} contains

only one element, namely µ0 = ∅. Moreover, πi,γ is the probability measure on Ω0 that gives mass one

to the point ∅. We recall the map B :
⋃
γ≥1 Ωγ → Ω from (4.1.1) and extend this map to Ω0 by letting

B(∅) = 1
k1 be the uniform distribution on Ω. We start the proof of Lemma A.3.1 by establishing the

following identity.

Lemma A.3.3. If π is fixed point of Fd,k, then for any i ∈ [k] we have

πi =
∑
γ∈Γi

∫
Ωγ
δB[µγ ]pi(γ)dπi,γ(µγ).

To establish Lemma A.3.3 we need to calculate the normalising quantities Zγ(π).

Lemma A.3.4. If π is fixed point of Fd,k, then Zγ(π) = (k − 1)γ/kγ−1.

Proof. Assume that π is fixed point of Fd,k. We claim that∫
Ω
µ(h)dπ(µ) = 1/k for all h ∈ [k]. (A.3.1)

Indeed, set ν(h) =
∫

Ω µ(h)dπ(µ). Then ν is a probability distribution on [k]. Since π is a fixed point
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of Fd,k, we find

ν(h) =

∫
Ω
µ(h)dFd,k[π](µ) =

∞∑
γ=0

pd(γ)

Zγ(π)

∫
Ωγ

 k∑
h=1

γ∏
j=1

1− µj(h)

B[µ1, . . . , µγ ](h)

γ⊗
j=1

dπ(µj)

=

∞∑
γ=0

pd(γ)

Zγ(π)

∫
Ωγ

γ∏
j=1

1− µj(h)

γ⊗
j=1

dπ(µj) [plugging in (4.1.1)]

=
∞∑
γ=0

pd(γ)

Zγ(π)

[∫
Ω

1− µ(h)dπ(µ)

]γ
=
∑
γ≥0

(1− ν(h))γ pd(γ)∑
h′∈[k] (1− ν(h′))γ

[due to (4.1.1)]. (A.3.2)

Now, assume that h1, h2 ∈ [k] are such that ν(h1) ≤ ν(h2). Then (A.3.2) yields

ν(h2) =
∑
γ≥0

(1− ν(h1))γ pd(γ)∑
h′∈[k] (1− ν(h′))γ

≤
∑
γ≥0

(1− ν(h2))γ pd(γ)∑
h′∈[k] (1− ν(h′))γ

= ν(h1).

Hence, ν(h1) = ν(h2) for all h1, h2 ∈ [k], which implies (A.3.1). Finally, the assertion follows

from (A.3.1) and the definition (4.1.1) of Zγ(π).

Proof of Lemma A.3.3. If π is a fixed point of Fd,k, then by Lemma A.3.4 and the definition (4.1.1) of

the map B we have

πi =

∫
Ω
kµ(i)δµdπ(µ) =

∫
Ω
kµ(i)δµdFd,k[π](µ)

=
∞∑
γ=0

pd(γ)

Zγ(π)

∫
Ωγ

 k∑
h=1

γ∏
j=1

1− µj(h)

 kB[µ1, . . . , µγ ](i)δB[µ1,...,µγ ]

γ⊗
j=1

dπ(µj)

=
∞∑
γ=0

kγpd(γ)

(k − 1)γ

∫
Ωγ

 γ∏
j=1

1− µj(i)

 · δB[µ1,...,µγ ]

γ⊗
j=1

dπ(µj).

Further, for any µ ∈ Ω we have 1− µ(i) =
∑

i′ 6=i µ(i′). Hence,

πi =

∞∑
γ=0

kγpd(γ)

(k − 1)γ

∑
i1,...,iγ∈[k]\{i}

∫
Ωγ

 γ∏
j=1

µj(ij)

 · δB[µ1,...,µγ ]

γ⊗
j=1

dπ(µj)

=

∞∑
γ=0

pd(γ)

(k − 1)γ

∑
i1,...,iγ∈[k]\{i}

∫
Ωγ
δB[µ1,...,µγ ]

γ⊗
j=1

dπij (µj). (A.3.3)

In the last expression, we can think of generating the sequence i1, . . . , iγ as follows: first, choose γ

from the Poisson distribution Po(d). Then, choose the sequence i1, . . . , iγ by independently choosing

ij from the set [k] \ {i} uniformly at random. Thus, in the overall experiment the number of times
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that each colour h occurs has distribution Po(d/(k − 1)), independently for all h ∈ [k] \ {i}, whence

(A.3.3) implies the assertion.

Corollary A.3.5. If π is fixed point of Fd,k, then (ρi(π))i∈[k] is a fixed point of the function Fd,k from

Lemma 5.2.1.

Proof. Invoking Lemma A.3.3, we obtain for any i ∈ [k]

ρi(π) = π({δi}) =
πi({δi})

k
=

1

k

∑
γ∈Γi

∫
Ωγ

1δi=B[µγ ]pi(γ)dπi,γ(µγ). (A.3.4)

A glimpse at the definition (4.1.1) of B reveals that δi = B[µγ ] if and only if for each h ∈ [k] \ {i}
there is j ∈ [γh] such that µh,j = δh. Further, in (A.3.4) the µh,j are chosen independently from the

distribution πh, and πh({δh}) = kρh(π). In effect, the r.h.s. of (A.3.4) is simply the probability that

if we choose numbers γh independently from the Poisson distribution with mean d/(k − 1) for h 6= i

and then perform γh independent Bernoulli experiments with success probability kρh(π), then there

occurs at least one success for each h 6= i. Of course, this is nothing but the probability that k − 1

independent Poisson variables (Po(ρh(π)dk/(k − 1)))h6=i are all strictly positive. Hence,

ρi(π) =
1

k

∏
h∈[k]\{i}

P[Po(ρh(π)dk/(k − 1)) > 0]

=
1

k

∏
h∈[k]\{i}

1− exp(−ρh(π)d′) for any i ∈ [k] .

Consequently, (ρi(π))i∈[k] = Fd,k((ρi(π))i∈[k]).

Proof of Lemma A.3.1. Assume that π ∈ P is a frozen fixed point of Fd,k. Then ρi(π) ≥ 2
3k for

all i ∈ [k]. Hence, Corollary A.3.5 yields (ρ1(π), . . . , ρk(π)) ∈ [ 2
3k ,

1
k ]k is a fixed point of Fd,k.

Therefore, Lemma 5.2.1 implies that ρi(π) = q∗/k for all i ∈ [k].

To prove the second assertion, let (i, `) ∈ T . Then Lemma A.3.3 yields

ρi,`(π) =
∑
γ∈Γi

∫
Ωγ

1B[µγ ]∈Ω`pi(γ)dπi,γ(µγ). (A.3.5)

Now, the definition (4.1.1) is such that B[µγ ] ∈ Ω` if and only if

1. for each h ∈ [k] \ ` there is j ∈ [γh] such that µh,j = δh, and

2. for each h ∈ ` \ {i} and any j ∈ [γh] we have µh,j 6= δh.

Given γ, the distributions µh,j are chosen independently from πh for all h 6= i, j ∈ [γh]. Hence, for a
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given γ the probability that (1) and (2) occur is precisely

η(γ) =
∏

h∈`\{i}

(1− πh({δh}))γh ·
∏

h∈[k]\`

1− (1− πh({δh}))γh

=
∏

h∈`\{i}

(1− kρh(π))γh ·
∏

h∈[k]\`

1− (1− kρh(π))γh . (A.3.6)

Thus, combining (A.3.5) and (A.3.6), we see that

ρi,`(π) =
∑
γ∈Γi

η(γ)pi(γ)

=
∏

h∈`\{i}

∑
γh≥0

(1− kρh(π))γhp d
k−1

(γh)

 ∏
h∈[k]\`

∑
γh≥0

(1− (1− kρh(π))γh)p d
k−1

(γh)


=

∏
h∈`\{i}

P [Po(dkρh(π)/(k − 1) = 0)]
∏

h∈[k]\`

P [Po(dkρh(π)/(k − 1) > 0)]

=
∏

h∈`\{i}

exp(−d′ρh(π))
∏

h∈[k]\`

1− exp(−d′ρh(π)). (A.3.7)

Finally, as we already know from the first paragraph that ρh(π) = q∗/k, (A.3.7) implies that ρi,`(π) =

kq∗i,`.

A.3.2. The fixed point

The objective in this section is to establish

Lemma A.3.6. Suppose that d ≥ (2k − 1) ln k − 2. Then πd,k,q∗ is the unique frozen fixed point of

Fd,k.

To prove Lemma A.3.6, let P` be the set of all probability measures π ∈ P whose support is contained

in Ω` (i.e. π(Ω`) = 1). For each π ∈ P and any (i, `) ∈ T , we define a measure πi,` by letting

dπi,`(µ) =
1µ∈Ω`

kq∗i,`
dπi(µ) =

µ(i)

q∗i,`
1µ∈Ω`dπ(µ).

In addition, let P̃ =
∏

(i,`)∈T P` be the set of all families (πi,`)i,`∈T such that πi,` ∈ P` for all (i, `).

Lemma A.3.7. If π if a frozen fixed point of Fd,k, then π̃ = (πi,`)(i,`)∈T ∈ P̃ .

Proof. Let (i, `) ∈ T . By construction, the support of πi,` is contained in Ω`. Furthermore, Lem-
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ma A.3.1 implies that

πi,`(Ω`) =
1

kq∗i,`

∫
Ω
1µ∈Ω`dπi(µ) =

πi(Ω`)

kq∗i,`
=
ρi,`(π)

kq∗i,`
= 1.

Thus, πi,` is a probability measure.

Let Γi,` be the set of all non-negative integer vectors γ̂ = (γ̂i′,`′)(i′,`′)∈Ti,` . For γ̂ ∈ Γi,`, we let

pi,`(γ̂) =
∏

(i′,`′)∈Ti,`

pd′q∗
i′,`′

(γ̂i′,`′).

Moreover, we let Ωγ̂ =
∏

(i′,`′)∈Ti,`
∏
j∈[γ̂i′,`′ ]

Ω and by µγ̂ = (µi′,`′,j)(i′,`′)∈Ti,`,j∈[γ̂i′,`′ ]
we denote its

points. In addition, if π is a probability measure on Ω and γ̂ ∈ Γi,`, we set

πi,`,γ̂ =
⊗

(i′,`′)∈Ti,`

γ̂i′,`′⊗
j=1

πi′,`′ .

Further, we define for any non-empty set ` ⊂ [k] a map

B` :

∞⋃
γ=1

Ωγ → Ω, (µ1, . . . , µγ) 7→ B`[µ1, . . . , µγ ], where (A.3.8)

B`[µ1, . . . , µγ ](h) =


1h∈`
|`| if

∑
h′∈`

∏γ
j=1 1− µj(h′) = 0,

1h∈`·
∏γ
j=1 1−µj(h)∑

h′∈`
∏γ
j=1 1−µj(h′)

if
∑

h′∈`
∏γ
j=1 1− µj(h′) > 0.

Additionally, to cover the case γ = 0 we define B`[∅](h) = 1h∈`
|`| . Thus, B`[∅] is the uniform distribu-

tion on `.

Lemma A.3.8. Let X be the set of all frozen fixed points of Fd,k. Moreover, let X̃ be the set of all

fixed points of

F̃d,k : P̃ → P̃, (πi,`)(i,`)∈T 7→

 ∑
γ̂∈Γi,`

∫
Ωγ̂
δB`[µγ̂ ]pi,`(γ̂)dπi,`,γ̂(µγ̂)


(i,`)∈T

.

Then the map π ∈ X 7→ π̃ = (πi,`)(i,`)∈T induces a bijection between X and X̃ .

Proof. Suppose that π ∈ X . Let (i, `) ∈ T . Then Lemma A.3.3 yields

πi,` =

∫
Ω`

δµ
kq∗i,`

dπi(µ) =
∑
γ∈Γi

∫
Ωγ

1B[µγ ]∈Ω`δB[µγ ]

kq∗i,`
pi(γ)dπi,γ(µγ). (A.3.9)
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Now let us fix a pair (i, `) ∈ T and (γ, µγ). We denote, for h 6= i, by γ̂h = γ̂h(µγ) the number of

occurrences of δh in the tuple µγ . The event B[µγ ] ∈ Ω` occurs if and only if

1. for each h ∈ [k] \ ` there is j ∈ [γh] such that µh,j = δh, i.e. γ̂h > 0,

2. for each h ∈ ` \ {i} and all j ∈ [γh] we have µh,j = δh, i.e. γ̂h = 0,

Thus, Lemma A.3.1 implies that

∑
γ∈Γi

∫
Ωγ

1B[µγ ]∈Ω`

kq∗i,`
pi(γ)dπi,γ(µγ) =

1

kq∗i,`

∏
h∈[k]\`

P
[
Po(q∗hd

′) > 0
] ∏
h∈`\{i}

P
[
Po(q∗hd

′) = 0
]

= 1.

(A.3.10)

Furthermore, given that the event B[µγ ] ∈ Ω` occurs, the measure B[µγ ] is determined by tho-

se components µi′,`′,j with (i′, `′) ∈ Ti,` only. Thus, defining γ̂ = (γ̂i′,`′)(i′,`′)∈Ti,` and µγ̂ =

(µi′,`′,j)(i′,`′)∈Ti,`,j∈[γ̂i′,`′ ]
we obtain from (A.3.9) and (A.3.10)

πi,` =
∑
γ̂∈Γi,`

∫
Ωγ̂
δB`[µγ̂ ]pi,`(γ̂)dπi,`,γ̂(µγ̂).

Thus, if π is a frozen fixed point of Fd,k, then π̃ is a fixed point of F̃d,k.

Conversely, if π̃ = (πi,`) is a fixed point of F̃d,k, then the measure π defined by

dπ(µ) =
∑
`⊂[k]

1

|`|
∑
i∈`

q∗i,`
µ(i)

dπi,`(µ)

is easily verified to be a fixed point of Fd,k. Moreover, for i ∈ [k], ρi(π) = q∗i,{i} = q∗/k ≥ 2/(3k)

and π is thus a frozen fixed point of Fd,k.

Corollary A.3.9. The distribution πd,k,q∗ is a fixed point of Fd,k.

Proof. To unclutter the notation we write π = πd,k,q∗ . Moreover, we let T = T d,k,q∗ ; by Lemma 5.2.1

we may always assume that T is a finite tree. Recall that π is the distribution of µT , which is the

distribution of the colour of the root under a random legal colouring of T . In light of Lemma A.3.8 it

suffices to show that π̃ = (πi,`) is a fixed point of F̃d,k. Thus, we need to show that for all (i, `) ∈ T ,

πi,` =
∑
γ̂∈Γi,`

∫
Ωγ̂
δB`[(µi′,`′,j)]

∏
(i′,`′)∈Ti,`

pd′q∗
i′,`′

(γ̂i′,`′)

γ̂i′,`′⊗
j=1

dπi′,`′(µi′,`′,j). (A.3.11)

Let us denote by T i,` the random tree T given that the root has type (i, `). We claim that πi,` is the
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distribution of µT i,` . Indeed, let ` ⊂ [k]. If the root v0 of T has type (i, `) for some i ∈ `, then

the support of the measure µT is contained in ` (because under any legal colouring, v0 receives a

colour from `). Moreover, all children of v0 have types in Ti,`, and if (i′, `′) ∈ Ti,`, then |`′| ≥ 2.

Hence, inductively we see that if v0 has type (i, `), then for any colour h ∈ ` there is a legal colouring

under which v0 receives colour h. Consequently, the support of µT is precisely `. Furthermore, the

distribution µT is invariant under the following operation: obtain a random tree T ′ by choosing a

legal colour τ of T randomly and then changing the types ϑ(v) = (iv, `v) of the vertices to ϑ′(v) =

(τ (iv), `v); this is because the trees T and T ′ have the same set of legal colourings. These observations

imply that for any measurable set A we have

P [µT ∈ A|ϑ(v0) = (i, `)] =
P [µT ∈ A, ϑ(v0) = (i, `)]

P [ϑ(v0) = (i, `)]

=
P [µT ∈ A ∩ Ω`, ϑ(v0) = (i, `)]

q∗i,`

=
1

q∗i,`

∫
A
µ(i)1µ∈Ω`dπ(µ) = πi,`(A).

To prove that π̃ is a fixed point of F̃d,k, we observe that the random tree T i,` can be described by

the following recurrence. There is a root v0 of type (i, `). For each (i′, `′), v0 has a random number

γi′,`′ = Po(d′q∗i,`) of children (vi′,`′,j)j=1,...,γi′,`′ of type (i′, `′). Moreover, each vi′,`′,j is the root of a

random tree T i′,`′,j . Of course, the random variables (γi′,`′)(i′,`′)∈Ti,` and the random trees T i′,`′,j are

chosen independently.

This recursive description of the random tree T i,` leads to a recurrence for the distribution πi,`. Indeed,

given the numbers (γi′,`′)i′,`′ , the distribution µT i′,`′,j of the colour of the root of the random tree

T i′,`′,j is an Ω`′-valued random variable with distribution πi′,`′ for each j = 1, . . . , γi′,`′ . Moreover,

the random variables (µT i′,`′,j )i′,`′,j are mutually independent. In addition, we claim that given the

distributions (µT i′,`′,j )i′,`′,j , the colour of the root v0 of the entire tree T i,` has distribution

µT i,` = B`[(µT i′,`′,j )i′,`′,j ]. (A.3.12)

Indeed, given that v0 has type (i, `), v0 receives a colour from ` under any legal colouring. Further, for

any h ∈ ` the probability that v0 takes colour h under a random colouring of T i,` is proportional to

the probability that none of its children vi′,`′,j takes colour h in a random colouring of the tree T i′,`′,j
whose root vi′,`′,j is.

Finally, we recall that πi,` is the distribution of µT i,` . Hence, (A.3.12) implies together with the fact

that the γi′,`′,j are independent Poisson variables that πi,` satisfies (A.3.11).
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Lemma A.3.10. The map F̃d,k has at most one fixed point.

Proof. As before, we let T denote the random tree T d,k,q∗ . Moreover, T i,` is the random tree T given

that the root has type (i, `).

Let t ≥ 0 be an integer and let π̃ = (πi,`) ∈ P̃ . We define a distribution π̃t = (πi,`,t) ∈ P̃ by means of

the following experiment. Let (i, `) ∈ T . Let v0 denote the root of T i,` and let ϑ(v) signify the type

of each vertex v.

TR1 Let T i,`,t be the tree obtained from T i,` by deleting all vertices at distance greater than t from

v0.

TR2 Let Vt be the set of all vertices at distance exactly t from v0. For each v ∈ Vt independently,

choose µv ∈ Ω from the distribution πϑ(v).

TR3 Let µi,`,t be the distribution of the colour of v0 under a random colouring τ chosen as follows.

• Independently for each vertex v ∈ Vt choose a colour τ t(v) from the distribution µv.

• Let τ be a uniformly random legal colouring of T i,`,t such that τ (v) = τ t(v) for all

v ∈ Vt; if there is no such colouring, discard the experiment.

Step TR3 of the above experiment yields a distribution µi,`,t ∈ Ω. Clearly µi,`,t is determined by the

random choices in steps TR1–TR2. Thus, let we let πi,`,t be the distribution of µi,`,t with respect to

TR1–TR2.

We now claim that for any integer t ≥ 0 the following is true.

If π̃ is a fixed point of F̃d,k, then π̃ = π̃t. (A.3.13)

The proof of (A.3.13) is by induction on t. It is immediate from the construction that πi,`,0 = πi,`

for all (i, `) ∈ T . Thus, assume that t ≥ 1. By induction, it suffices to show that π̃t = π̃t−1. To this

end, let us condition on the random tree T i,`,t−1. Consider a vertex v ∈ Vt−1 of type ϑ(v) = (iv, `v).

We obtain the random tree T i,`,t from T i,`,t−1 by attaching to each such v ∈ Vt−1 a random number

γi′,`′,v = Po(d′q∗i′,`′) of children of each type (i′, `′) ∈ Tiv ,`v where, of course, the random variables

γi′,`′,v are mutually independent. Further, in step TR2 of the above experiment we choose µi′,`′,v,j ∈
Ω`′ independently from πi′,`′ for each v ∈ Vt−1, (i′, `′) ∈ Ti,` and j = 1, . . . , γi′,`′,v.

Given the distributions µi′,`′,v,j , suppose that we choose a legal colouring τ v of the sub-tree consisting

of v ∈ Vt−1 and its children only from the following distribution.

• Independently choose the colours τ v(ui′,`′,j) of the children ui′,`′,j of v of type (i′, `′) from

µi′,`′,v,j .

• Choose a colour τ v(v) for v uniformly from the set of all colours h ∈ ` that are not already

assigned to a child of v if possible.
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Let µv denote the distribution of the colour τ v(v). Then by construction,

µv = B`[(µi′,`′,v,j)(i′,`′)∈Ti,`,j∈[γi′,`′,v ]].

Hence, the distribution of µv with respect to the choice of the numbers γi′,`′,v and the distributions

µi′,`′,v,j is given by

∑
γ∈Γi,`

∫
Ωγ
δB`[(µi′,`′,v,j)]

∏
(i′,`′)∈Ti,`

pd′q∗
i′,`′

(γi′,`′,v)

γi′,`′,v⊗
j=1

dπi′,`′(µi′,`′,v,j) = πi,`,

because π̃ is a fixed point of F̃d,k. Therefore, the experiment of first choosing T i,`,t, then choosing

distributions µu independently from πϑ(u) for the vertices at distance t, and then choosing a random

legal colouring τ as in TR3 is equivalent to performing the same experiment with t−1 instead. Hence,

π̃t = π̃t−1.

To complete the proof, assume that π̃, π̃′ are fixed points of F̃d,k. Then for any integer t ≥ 0 we have

π̃ = π̃t, π̃′ = π̃′t. Furthermore, as π̃t, π̃′t result from the experiment TR1–TR3, whose first step TR1
can be coupled, we see that for any (i, `) ∈ T ,

∥∥πi,` − π′i,`∥∥TV
=
∥∥πi,`,t − π′i,`,t∥∥TV

≤ 2P [|T i,`| ≥ t] . (A.3.14)

Because Lemma 5.2.1 shows that T results from a sub-critical branching process, we have

lim
t→∞

P [|T i,`| ≥ t] = 0

for any (i, `) ∈ T . Consequently, (A.3.14) shows that π̃ = π̃′.

Finally, Lemma A.3.6 follows directly from Lemma A.3.8, Corollary A.3.9 and Lemma A.3.10.

A.3.3. The number of legal colourings

The final step of the proof of Proposition 5.1.4 is to relate φd,k(πd,k,q∗) to the number of legal co-

lourings of T d,k,q∗ . The starting point for this is a formula for the (logarithm of the) number of legal

colourings of a decorated tree T, ϑ. To write this formula down, we recall the map B` from (A.3.8).

Moreover, suppose that ` ⊂ [k] and µ1, . . . , µγ ∈ Ω are such that:

∃h ∈ ` ∀j ∈ [γ] : µj(h) < 1. (A.3.15)
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Then we let

φ`(µ1, . . . , µγ) = φv` (µ1, . . . , µγ)− 1

2
φe`(µ1, . . . , µγ), where

φv` (µ1, . . . , µγ) = ln
∑
h∈`

γ∏
j=1

1− µj(h),

φe`(µ1, . . . , µγ) =

γ∑
j=1

ln

[
1−

∑
h∈`

µj(h)B`[µ1, . . . , µj−1, µj+1, . . . , µγ ](h)

]
;

the condition (A.3.15) ensures that these quantities are well-defined (i.e. the argument of the logarithm

is positive in both instances). Additionally, to cover the case γ = 0 we set φ`(∅) = ln |`|.

Further, suppose that T, ϑ, v is a rooted decorated tree that has at least one legal colouring σ. Let

v1, . . . , vγ be the neighbours of the root vertex v and suppose that ϑ(v) = (i, `) and ϑ(vj) = (ij , `j)

for j = 1, . . . , γ. If we remove the root v from T , then each of the vertices v1, . . . , vγ lies in a

connected component Ti of the resulting forest. By considering the restrictions ϑi of ϑ to the vertex

set of Ti, we obtain decorated trees Ti, ϑi. Recall that µTj ,ϑj ,vj denotes the distribution of the colour

of the root in a random legal colouring of Tj , ϑj , vj . Since σ is a legal colouring, for h = σ(v) for all

j ∈ [γ] we have µTj ,ϑj ,vj (h) < 1. Thus, we can define

φ(T, ϑ, v) = φ`(µT1,ϑ1,v1 , . . . , µTγ ,ϑγ ,vγ ).

Fact A.3.11. Let T, ϑ be a decorated tree such that Z(T, ϑ) ≥ 1. Then we have lnZ(T, ϑ) =∑
v∈V (T ) φ(T, ϑ, v).

Proof. This follows from [DM10, Proposition 3.7]. More specifically, let (iv, `v) = ϑ(v) be the type

of vertex v. In the terminology of [DM10] (and of the physicists “cavity method”), φ(T, ϑ, v) is the

Bethe free entropy of the Boltzmann distribution

ν : [k]V (T ) → [0, 1], ν(τ) =
1

Z(T, ϑ)

∏
v∈V (T )

1τ(v)∈`v ·
∏

e={u,w}∈E(T )

1τ(u)6=τ(w).

Thus, ν is simply the uniform distribution over legal k-colourings of T, ϑ, and Z(T, ϑ) is its partition

function.

Let T denote the random rooted decorated tree T d,k,q∗ . Moreover, for (i, `) ∈ T we let T i,` denote

the random tree T given that the root has type (i, `). The starting point of the proof is the following

key observation. Furthermore, if (T, ϑ, v) is a rooted decorated tree, then we let (T, ϑ, v)? signify the

isomorphism class of the random rooted decorated tree (T, ϑ, u) obtained from (T, ϑ, v) by choosing

a vertex u of T uniformly at random and rooting the tree at u. In other words, (T, ϑ, v)? is obtained
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by re-rooting (T, ϑ, v) at a random vertex.

Lemma A.3.12. Let T ? be the random rooted decorated tree obtained by re-rooting T at a random

vertex. Then the distribution of T ? coincides with the distribution of T .

Proof. This follows from the general fact that Galton-Watson trees are unimodular in the sense of

[BC15].

Corollary A.3.13. We have E
[

lnZ(T )
|T |

]
= E[φ(T )].

Proof. Letting (T, ϑ, v) range over rooted decorated trees, we find

E
[

lnZ(T )

|T |

]
=
∑

(T,ϑ,v)

P [T ∼= (T, ϑ, v)] · lnZ(T, ϑ, v)

|V (T )|

=
∑

(T,ϑ,v)

∑
u∈V (T )

P [T ∼= (T, ϑ, v)]φ(T, ϑ, u)

|V (T )|
[by Fact A.3.11]

=
∑

(T,ϑ,v)

∑
u∈V (T )

P [T ∼= (T, ϑ, u)]φ(T, ϑ, u)

|V (T )|
[by Lemma A.3.12]

=
∑

(T,ϑ,v)

P [T ∼= (T, ϑ, v)]φ(T, ϑ, v) = E[φ(T )],

as claimed.

Lemma A.3.14. We have

E[φ(T i,`)] =
∑
γ∈Γi,`

pi,`(γ)

∫
Ωγ
φv` (µγ)dπγ(µγ)

−
∑

(̂i,ˆ̀)∈Ti,`

qî,ˆ̀d
′

2

∫
Ω2

ln

[
1−

k∑
h=1

µ̂(h)µ(h)

]
dπi,`(µ)⊗ πî,ˆ̀(µ̂).

Proof. Writing π = πd,k,q∗ for the distribution of µT , we know from Corollary A.3.9 that πi,` is

the distribution of µT i,` for any type (i, `). Furthermore, the distribution of T i,` can be described by

the following recurrence: there is a root v0 of type (i, `), to which we attach for each (i′, `′) ∈ Ti,`
independently a number γi′,`′ = Po(d′q∗i′,`′) of trees (Ti′,`′,j)j=1,...,γi′,`′ that are chosen independently

from the distribution T i′,`′ . By independence, the distribution of the colour of the root of each Ti′,`′,j
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is just an independent sample from the distribution πi′,`′ . Therefore, we obtain the expansion

E[φ(T i,`)] =
∑
γ∈Γi,`

∫
Ωγ
φ`(µγ)pi,`(γ)dπγ(µγ).

Substituting in the definition of φ`, we obtain

E[φ(T i,`)] = Ii,` −
1

2
Ji,`,

where Ii,` =
∑
γ∈Γi,`

pi,`(γ)
∫

Ωγ φ
v
` (µγ)dπγ(µγ) and Ji,` =

∑
γ∈Γi,`

pi,`(γ)
∫

Ωγ φ
e
`(µγ)dπγ(µγ).

Further, by the definition of φe` we have

Ji,` =
∑
γ∈Γi,`

pi,`(γ)
∑

(̂i,ˆ̀)∈Ti,`

γî,ˆ̀∑
ĵ=1

∫
Ωγ

ln

[
1−

∑
h∈`

µî,ˆ̀,ĵ(h)B[(µi′,`′,j)(i′,`′,j)6=(̂i,ˆ̀,ĵ)](h)

]
dπγ(µγ)

=
∑

(̂i,ˆ̀)∈Ti,`

∑
g≥1

pq∗
î,ˆ̀

(g)

g∑
ĵ=1

∑
γ∈Γi,`

pi,`(γ)1γî,ˆ̀=g

·
∫

Ω×Ωγ
ln

[
1−

∑
h∈`

µ(h)B[(µi′,`′,j)(i′,`′,j) 6=(̂i,ˆ̀,1)](h)

]
dπî,ˆ̀(µ)⊗ dπγ(µγ)

=
∑

(̂i,ˆ̀)∈Ti,`

∑
g≥1

pq∗
î,ˆ̀
d′(g)

g∑
ĵ=1

∑
γ∈Γi,`

pi,`(γ)1γî,ˆ̀=g−1

·
∫

Ω×Ωγ
ln

[
1−

∑
h∈`

µ(h)B[µγ ](h)

]
dπî,ˆ̀(µ)⊗ dπγ(µγ).

To simplify this, we use the following elementary relation: if X : Z → R≥0 is a function and g is a

Poisson random variable, then E[1g≥1gX(g − 1)] = E[g]E[X(g)]. Applying this observation to

X(g) =
∑
γ∈Γi,`

pi,`(γ)1γi,`=g−1

∫
Ω×Ωγ

ln

[
1−

∑
h∈`

µ(h)B[µγ ](h)

]
dπî,ˆ̀(µ)⊗ dπγ(µγ),

we obtain

Ji,` =
∑

(̂i,ˆ̀)∈Ti,`

qî,ˆ̀d
′
∑
γ∈Γi,`

pi,`(γ)

·
∫

Ω×Ωγ
ln

[
1−

∑
h∈`

µî,ˆ̀(h)B[µγ ](h)

]
dπî,ˆ̀(µ)⊗ dπγ(µγ).
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Now, since π is a fixed point of Fd,k, the distribution of the measure B[µγ ] is just πi,`. Hence,

Ji,` =
∑

(̂i,ˆ̀)∈Ti,`

qî,ˆ̀d
′
∫

Ω2

ln

[
1−

∑
h∈`

µ̂(h)µ(h)

]
dπi,`(µ)⊗ dπî,ˆ̀(µ̂).

Thus, we obtain the assertion.

Lemma A.3.15. We have E [φ(T d,k,q∗)] = φd,k(πd,k,q∗).

Proof. Summing over all (i, `) ∈ T , we obtain from Lemma A.3.14 that

E[φ(T )] = I − 1

2
J, where

I =
∑

(i,`)∈T

q∗i,`
∑
γ∈Γi,`

pi,`(γ)

∫
Ωγ
φv` (µγ)dπγ(µγ),

J = d′
∑

(i,`)∈T

∑
(̂i,ˆ̀)∈Ti,`

q∗i,`q
∗
î,ˆ̀

∫
Ω2

ln

[
1−

k∑
h=1

µ̂(h)µ(h)

]
dπi,`(µ)⊗ πî,ˆ̀(µ̂).

Recalling that dπi,`(µ) =
1µ∈Ω`
kq∗i,`

dπi(µ) and dπî,ˆ̀(µ̂) =
1µ̂∈Ωˆ̀

kq∗
î,ˆ̀

dπî(µ̂), we get

J =
d′

k2

∑
(i,`)∈T

∑
(̂i,ˆ̀)∈Ti,`

∫
Ω2

ln

[
1−

k∑
h=1

µ̂(h)µ(h)

]
1µ∈Ω`1µ̂∈Ωˆ̀

dπi(µ)⊗ πî(µ̂)

=
d

k(k − 1)

∑
i,̂i∈[k]:i 6=î

∫
Ω2

∑
`:(i,`)∈T

∑
ˆ̀:(̂i,ˆ̀)∈T

ln

[
1−

k∑
h=1

µ̂(h)µ(h)

]

· 1µ∈Ω`1µ̂∈Ωˆ̀
dπi(µ)⊗ πî(µ̂)

=
d

k(k − 1)

∑
i,̂i∈[k]:i 6=î

∫
Ω2

ln

[
1−

k∑
h=1

µ̂(h)µ(h)

]
dπi(µ)⊗ πî(µ̂) = φed,k(π).

It finally remains to simplify the expression for I . To this aim, we introduce Ti = {(i′, `′) ∈ T , i′ 6=
i} and let Γi be the set of non-negative vectors γ = (γi′,`′)(i′,`′)∈Ti . Moreover, we define Ωγ =∏

(i′,`′)∈Ti
∏
j∈[γi′,`′ ]

Ω and denote its points by µγ = (µi′,`′,j)(i′,`′)∈Ti,j∈[γi′,`′ ]
. We note that if γ ∈

Γi,` and γ ∈ Γi are such that:

(a) ∀i′ ∈ ` \ {i}, γi′,{i′} = 0,

(b) ∀i′ ∈ [k] \ `, γi′,{i′} > 0
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(c) ∀(i′, `′) ∈ Ti,`, γi′,`′ = γi′,`′ ,

and that µγ , µγ satisfy

(d) ∀(i′, `′) ∈ Ti,`,∀j ∈ [γi′,`′ ], µi′,`′,j = µi′,`′,j ,

(e) ∀(i′, `′) ∈ Ti, ∀j ∈ [γi′,`′ ], µi′,`′,j ∈ Ω`′ ,

then

∏
(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1− µi′,`′,j(h) =

0 if h /∈ `,∏
(i′,`′)∈Ti,`

∏
j∈[γi′,`′ ]

1− µi′,`′,j(h) if h ∈ `.

Consequently

φv` (µγ) = ln

∑
h∈[k]

∏
(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1− µi′,`′,j(h)

 . (A.3.16)

Moreover, choosing the γi′,`′ from a Poisson distribution of parameter q∗i′,`′d
′, the event “(a) and (b)”

happens with probability exactly kq∗i,`. This allows us to write:

I =
∑

(i,`)∈T

q∗i,`
∑
γ∈Γi,`

∏
(i′,`′)∈Ti,`

pq∗
i′,`′d

′(γi′,`′) ·
∫

Ωγ
φv` (µγ)

⊗
(i,′`′)∈Ti,`

⊗
j∈[γ̂i′,`′ ]

dπi′,`′(µi′,`′,j)

=
1

k

∑
(i,`)∈T

∑
γ∈Γi

∏
(i′,`′)∈Ti

pq∗
i′,`′d

′(γi′,`′)
∏

i′∈`\{i}

1γi′,{i′}=0

∏
i′∈[k]\`

1γi′,{i′}>0

·
∫

Ωγ
ln

∑
h∈[k]

∏
(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1− µi′,`′,j(h)


·
∏

(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1µi′,`′,j∈Ω`′

kq∗i′,`′

⊗
(i,′`′)∈Ti

⊗
j∈[γi′,`′ ]

dπi′(µi′,`′,j)

=
1

k

∑
i∈[k]

∑
γ∈Γi

∏
(i′,`′)∈Ti

pq∗
i′,`′d

′(γi′,`′)

·
∫

Ωγ
ln

∑
h∈[k]

∏
(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1− µi′,`′,j(h)


·
∏

(i′,`′)∈Ti

∏
j∈[γi′,`′ ]

1µi′,`′,j′∈Ω`′

kq∗i′,`′

⊗
(i,′`′)∈Ti

⊗
j∈[γi′,`′ ]

dπi′(µi′,`′,j).

We used (A.3.16) to go from the first to the second line, and summed over ` 3 i to go from the second

to the third. Re-indexing the vector µγ in a vector µγ , γ ∈ Γi (with γi′ =
∑

`′:(i′,`′)∈T γi′,`′), we
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obtain with Lemma A.3.1:

I =
1

k

∑
i∈[k]

∑
γ∈Γi

∏
i′ 6=i

p d
k−1

(γi′)

·
∫

Ωγ
ln

∑
h∈[k]

∏
i′ 6=i

∏
j∈[γi′ ]

1− µi′,j(h)

⊗
i′ 6=i

⊗
j∈[γi′ ]

dπi′(µi′,j)

=
1

k

∑
i∈[k]

∞∑
γ1,...,γh=0

∏
i′∈[k]

p d
k−1

(γi′)

·
∫

Ωγ1+···+γh
ln

∑
h∈[k]

∏
i′ 6=i

∏
j∈[γi′ ]

1− µi′,j(h)

 ⊗
i′∈[k]

⊗
j∈[γi′ ]

dπi′(µi′,j).

Proof of Proposition 5.1.4. The first assertion is immediate from Lemma 5.2.1, while the second as-

sertion follows from Lemma A.3.6. The third claim follows by combining Corollary A.3.13 with Lem-

ma A.3.15. With respect to the last assertion, we observe that for d = (2k − 1) ln k − 2 ln 2 + ok(1)

we have

ln k +
d

2
ln(1− 1/k) =

ln 2 + ok(1)

k
.

Moreover, as q∗ = 1− 1/k + ok(1/k) by Lemma 5.2.1, one checks easily that

E
[

lnZ(T d,k,q∗)

|T d,k,q∗ |

]
=

ln 2 + ok(1)

k
. (A.3.17)

Further, by Lemma 5.2.1

∂

∂d
E
[

lnZ(T d,k(q
∗))

|T d,k(q∗)|

]
= Õk(k

−2) while
∂

∂d
ln k +

d

2
ln(1− 1/k) = Ωk(1/k). (A.3.18)

Combining (A.3.17) and (A.3.18) and using the third part of Proposition 5.1.4, we conclude that Σk

has a unique zero dcond, as claimed.
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B Complementary proofs: Number of solutions in random
graph k-colouring

This chapter presents the remaining parts of the proofs of statements in Chapter 8. It is a verbatim copy

of parts of the paper On the number of solutions in random graph k-colouring [Ras16b+] submitted

to Combinatorics, Probability and Computing.

Proof of Corollary 8.1.6. We fix s ∈ Sk,ω,ν and let E denote the event {∀2 ≤ l ≤ L : Cl,n = cl}. Let

Zn = Z̃sk,ω,ν(G(n,m)) for the sake of brevity. Since Zn ≤ Zsk,ω,ν(G(n,m)), equation (8.1.5) yields

the upper bound

E [Zn|E ]

E [Zn]
≤

E
[
Zsk,ω,ν(G(n,m))|E

]
(1 + o(1))E

[
Zsk,ω,ν(G(n,m))

] ∼ L∏
l=2

[1 + δl]
cl exp [−δlλl] . (B.0.1)

We show the following matching lower bound:

E [Zn|E ] ≥ (1− o(1))E
[
Zsk,ω,ν(G(n,m))|E

]
. (B.0.2)

Indeed, assume for contradiction that (B.0.2) is false. Then we can find an n-independent ε > 0 such

that for infinitely many n,

E [Zn|E ] < (1− ε)E
[
Zsk,ω,ν(G(n,m))|E

]
. (B.0.3)

By Fact 8.1.2 there exists an n-independent ξ = ξ(c2, . . . , cL) > 0 such that P [E ] ≥ ξ. Hence, (B.0.3)

and Bayes’ formula imply that

E [Zn] = E [Zn|E ]P [E ] + E [Zn|¬E ]P [¬E ]

≤ (1− ε)E
[
Zsk,ω,ν(G(n,m))|E

]
P [E ] + E

[
Zsk,ω,ν(G(n,m))|¬E

]
P [¬E ]

≤ E[Zsk,ω,ν(G(n,m))]− εξ · E[Zsk,ω,ν(G(n,m))|E ]

= E[Zsk,ω,ν(G(n,m))] ·

(
1 + o(1)− εξ

L∏
l=2

[1 + δl]
cl exp [−δlλl]

)

= (1− Ω(1))E
[
Zsk,ω,ν(G(n,m))

]
, (B.0.4)

where the last equality holds since δl, λl and cl remain fixed as n→∞. As (B.0.4) contradicts (8.1.5),
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we have established (B.0.2). Finally, combining (B.0.2) with (8.1.4) and (8.1.5), we get

E [Zn|S]

E [Zn]
≥

(1− o(1))E
[
Zsk,ω,ν(G(n,m))|S

]
(1 + o(1))E

[
Zsk,ω,ν(G(n,m))

] ∼ L∏
l=2

[1 + δl]
cl exp [−δlλl] , (B.0.5)

and the assertion follows from (B.0.1) and (B.0.5).

B.1. Calculating the first moment

The following proofs are very close to analogous proofs in [BCOE14+].

Proof of Lemma 8.2.1. As the edges in G(n,m) are independent by construction, the expected number

of k-colourings with colour density ρ is given by

E [Zk,ρ(G(n,m))] =

(
n

ρ1n, . . . , ρkn

)(
1− 1

N

k∑
i=1

(
ρin

2

))m
, where N =

(
n

2

)
. (B.1.1)

Further, the number of forbidden edges is given by

k∑
i=1

(
ρin

2

)
= N

(
k∑
i=1

ρ2
i

)
+
n

2

(
k∑
i=1

ρ2
i − 1

)
+O(1)

and thus

m ln

(
1− 1

N

k∑
i=1

(
ρin

2

))
= m ln

[(
1 +

n

2N

)(
1−

k∑
i=1

ρ2
i

)]
+ o(1)

= n
d

2
ln

(
1−

k∑
i=1

ρ2
i

)
+
d

2
+ o(1). (B.1.2)

Equation (8.2.1) follows from (B.1.1), (B.1.2) and Stirling’s formula. Moreover, (8.2.2) follows from

(B.1.1) and (B.1.2) because ‖ρ− ρ?‖2 = o(1) implies that
∑k

i=1 ρ
2
i ∼ 1/k and(

n

ρ1n, . . . , ρkn

)
∼ (2πn)

1−k
2 kk/2 exp [nH(ρ)] .

Proof of Corollary 8.2.2. The functions ρ ∈ Ak 7→ H(ρ) and ρ ∈ Ak 7→ d
2 ln(1 −

∑k
i=1 ρ

2
i ) are

both concave and attain their maximum at ρ = ρ?. Consequently, setting B(d, k) = k(1 + d
k−1) and
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expanding around ρ = ρ?, we obtain

f1 (ρ?)− B(d, k)

2
‖ρ− ρ?‖22 −O

(
‖ρ− ρ?‖32

)
≤ f1(ρ) ≤ f1 (ρ?)− B(d, k)

2
‖ρ− ρ?‖22. (B.1.3)

Plugging the upper bound from (B.1.3) into (8.2.1) and observing that |Ak(n)| ≤ nk = exp [o(n)],

we find

S1 =
∑

ρ∈Ak(n)

‖ρ−ρ?‖2>n−3/8

E [Zk,ρ(G(n,m))] ≤ C2 exp [f1 (ρ?)] exp

[
−B(d, k)

2
n1/6

]
. (B.1.4)

On the other hand, (8.2.2) implies that

S2 =
∑

ρ∈Ak(n)

‖ρ−ρ?‖2≤n−3/8

E [Zk,ρ(G(n,m))] ∼
∑

ρ∈Ak(n)

‖ρ−ρ?‖2≤n−3/8

(2πn)
1−k

2 kk/2 exp [d/2] exp [nf1(ρ)]

∼ (2πn)
1−k

2 kk/2 exp [d/2 + nf1 (ρ?)]
∑

ρ∈Ak(n)

exp

[
−nB(d, k)

2
‖ρ− ρ?‖22

]
. (B.1.5)

The last sum is nearly in the standard form of a Gaussian summation, just that the vectors ρ ∈ Ak(n)

that we sum over are subject to the linear constraint ρ1 + · · · + ρk = 1. We rid ourselves of this

constraint by substituting ρk = 1− ρ1 − · · · − ρk−1. Formally, let J be the (k − 1)× (k − 1)-matrix

with diagonal entries equal to 2 and remaining entries equal to 1. We observe that det J = k. Then

∑
ρ∈Ak(n)

exp

[
−nB(d, k)

2
‖ρ− ρ?‖22

]
∼
∑

y∈ 1
n
Zk

exp

[
−nB(d, k)

2
〈Jy, y〉

]

∼ (2πn)
k−1

2 k−
k
2

(
1 +

d

k − 1

)− k−1
2

. (B.1.6)

Plugging (B.1.6) into (B.1.5), we obtain

S2 ∼ (2πn)
1−k

2 kk/2 exp [d/2 + nf1(ρ?)] (2πn)
k−1

2 k−
k
2

(
1 +

d

k − 1

)− k−1
2

= exp [d/2 + nf1(ρ?)]

(
1 +

d

k − 1

)− k−1
2

. (B.1.7)

Finally, comparing (B.1.4) and (B.1.7), we see that S1 = o(S2). Thus, E[Zk(G(n,m))] = S1 + S2 ∼
S2, and the assertion follows from (B.1.7).
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B.2. Calculating the second moment

The following proof is very close to an analogous proof in [BCOE14+].

Proof of 8.3.1. To calculate the expected number of pairs of colourings σ, τ with overlap ρ ∈ Bk(n),

we first observe that

P [σ, τ are k-colourings of G(n,m)] =

(
1− F(σ, τ)

N

)m
,

where F(σ, τ) is the number of “forbidden” edges joining two vertices with the same colour under

either σ or τ and N =
(
n
2

)
. We have

F(σ, τ) =
k∑
i=1

(
ρi?n

2

)
+

k∑
j=1

(
ρ?jn

2

)
−

k∑
i,j=1

(
ρijn

2

)

= N

 k∑
i=1

ρ2
i? +

k∑
j=1

ρ2
?j −

k∑
i,j=1

ρ2
ij

+
n

2

 k∑
i=1

ρ2
i? +

k∑
j=1

ρ2
?j −

k∑
i,j=1

ρ2
ij − 1

+O(1)

and thus, the probability that σ and τ are both colourings of G(n,m) only depends on their overlap ρ

and is given by

P [σ, τ are k-colourings of G(n,m)] ∼ exp

m ln

1−
k∑
i=1

ρ2
i? −

k∑
j=1

ρ2
?j +

k∑
i,j=1

ρ2
ij

+
d

2

 .
(B.2.1)

It remains to multiply this by the total number of σ, τ with overlap ρ ∈ Bk(n). By Stirling’s formula,

this number is given by

(
n

ρ11n, . . . , ρkkn

)
∼
√

2πn−
k2−1

2

∏
i,j

1√
2πρij

 exp [nH(ρ)] . (B.2.2)

Equation (8.3.2) is obtained by combining (B.2.1) and (B.2.2). To prove (8.3.3), we observe that if

‖ρ− ρ̄‖22 = o(1), we have

√
2πn

1−k2

2∏k
i,j=1

√
2πρij

∼ kk2
(2πn)

1−k2

2

and the statement follows.
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B.3. Counting short cycles

In this section we count the number of cycles of a short fixed length in order to prove Proposition 8.1.3.

The results in this section were already obtained in [BCOE14+] and the proofs are a very close ad-

aption of the ones in [BCOE14+]. We recall that for l = 2, . . . , L we denoted by Cl,n the number of

cycles of length exactly l in G(n,m). We let c2, . . . , cL be a sequence of non-negative integers and E
the event that Cl,n = cl for l = 2, . . . , L. We recall λl, δl from (8.1.3). For a map σ : [n] 7→ [k], we

define V(σ) as the event that σ is a k-colouring of the random graph G(n,m). Our starting point is the

following lemma concerning the distribution of the random variables Cl,n given V(σ).

Lemma B.3.1. Let µl = dl

2l

[
1 + (−1)l

(k−1)l−1

]
. Then P[E|V(σ)] ∼

∏L
l=2

exp[−µl]
cl!

µcll for any σ with

ρ(σ) ∈ Ak,ω(n).

Proof. All we have to show is that for any fixed sequence of integers m2, . . . ,mL ≥ 0, the joint

factorial moments satisfy

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] ∼
L∏
l=2

µmll . (B.3.1)

Then Lemma B.3.1 follows from [Bol01, Theorem 1.23].

To establish (B.3.1), we interpret (C2,n)m2 · · · (CL,n)mL as the number of sequences ofm2+· · ·+mL

distinct cycles such that m2 is the number of cycles of length 2, and so on. We let Y be the number

of those sequences of cycles such that any two cycles are vertex-disjoint and Y ′ be the number of

sequences having intersecting cycles. Obviously, we have

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] = E [Y |V(σ)] + E
[
Y ′|V(σ)

]
. (B.3.2)

For E [Y ′|V(σ)], we use the following claim that we prove at the end of this section.

Claim B.3.2. It holds that E [Y ′|V(σ)] = O(n−1).

Thus, it remains to count the number of vertex disjoint cycles conditioned on V(σ). The line of argu-

ments we use is similar to [KPGW10, Section 2]. To simplify the calculations, we define Dl,n as the

number of rooted, directed cycles of length l in G(n,m), implying that Dl,n = 2lCl,n.

For a rooted directed cycle (v1, . . . , vl) of length l, we call (σ(v1), . . . , σ(vl)) the type of the cycle

under σ. Let Dt
l,n denote the number of rooted, directed cycles of length l and type t = (t1, ..., tl). We
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claim that

E
[
Dt
l,n|V(σ)

]
∼
(n
k

)l (m)l
(N −F(σ))l

∼
(

d

k − 1

)l
with N =

(
n

2

)
. (B.3.3)

Indeed, as σ is (ω, n)-balanced, the number of ways of choosing l vertices (v1, . . . , vl) such that

σ(vi) = ti for all i is (1 + o(1))(n/k)l and each edge {vi, vi+1} of the cycle is present in the graph

with a probability asymptotically equal to m/(N −F(σ)). This explains the first asymptotic equality

in (B.3.3). The second one follows because m = dn/2 and F(σ) ∼ N/k.

In particular, the r.h.s. of (B.3.3) is independent of the type t. For a given l, let Tl signify the number

of all possible types of cycles of length l. Thus, Tl is the set of all sequences (t1, . . . , tl) such that

ti+1 6= ti for all 1 ≤ i < l and tl 6= t1. Let T1 = 0. Then Tl satisfies the recurrence

Tl + Tl−1 = k(k − 1)l−1. (B.3.4)

To see this, observe that k(k− 1)l−1 is the number of all sequences (t1, . . . , tl) such that ti+1 6= ti for

all 1 ≤ i < l. Any such sequence either satisfies tl 6= t1, which is accounted for by Tl, or tl = t1 and

tl−1 6= t1, in which case it is contained in Tl−1.

Hence, iterating (B.3.4) gives Tl = (k− 1)l + (−1)l(k− 1). Combining this formula with (B.3.3), we

obtain

E [Dl,n|V(σ)] ∼ Tl · E
(
Dt
l,n|V(σ)

)
∼ dl

(
1 +

(−1)l

(k − 1)l−1

)
.

Recalling that Cl,n = Dl,n/(2l), we get

E [Cl,n|V(σ)] ∼ dl

2l

(
1 +

(−1)l

(k − 1)l−1

)
. (B.3.5)

Since Y considers only vertex disjoint cycles and l, m2, . . . ,mL remain fixed as n → ∞, equation

(B.3.5) yields

E [Y |V(σ)] ∼
L∏
l=2

(
dl

2l

(
1 +

(−1)l

(k − 1)l−1

))ml
.

Plugging the above relation and Claim B.3.2 into (B.3.2), we get (B.3.1) and the assertion follows.
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B.3. Counting short cycles

Proof of Proposition 8.1.3: Let s ∈ Sk,ω,ν . By Bayes’ rule and Lemma B.3.1 we have

E
[
Zsk,ω,ν(G(n,m))|E

]
=

1

P[E ]

∑
τ∈Ask,ω,ν(n)

P[V(τ)]P [E|V(τ)]

∼
∏L
l=2

exp[−µl]
cl!

µcll
P[E ]

∑
τ∈Ask,ω,ν(n)

P [V(τ)]

∼
∏L
l=2

exp[−µl]
cl!

µcll
P[E ]

E
[
Zsk,ω,ν(G(n,m))

]
.

From Lemma B.3.1 and Fact 8.1.2 we get that∏L
l=2

exp[−µl]
cl!

µcll
P[E ]

∼
L∏
l=2

[1 + δl]
cl exp [−δlλl] ,

whence Proposition 8.1.3 follows. �

Proof of Claim B.3.2: For every subset R of l ≤ L vertices, let IR be equal to 1 if the number of edges

with both ends in R is at least |R|+ 1. Let HL be the event that {
∑

R:|R|≤L IR > 0}. By definition, if

Y ′ > 0 then the event HL occurs. This implies that

P
[
Y ′ > 0|V(σ)

]
≤ P [HL|V(σ)] .

Thus, it suffices to appropriately bound P[HL|V(σ)]. Markov’s inequality yields

P [HL|V(σ)] ≤ E

 ∑
R:|R|≤L

IR|V(σ)

 =

L∑
l=2

∑
R:|R|=l

E [IR|V(σ)] .

For any set R such that |R| = l, we can put l + 1 edges inside the set in at most
((l2)
l+1

)
ways. Clearly

conditioning on V(σ) can only reduce the number of different placings of the edges. For a fixed set

R of cardinality l, we get, using inclusion/exclusion and the Binomial theorem as well as the fact that

F (σ) ∼ N/k:

E [IR|V(σ)] ≤
( ( l

2

)
l + 1

) l+1∑
i=0

(
l + 1

i

)
(−1)i

(
1− i

N −F (σ)

)m

≤
( ( l

2

)
l + 1

)(
m

N −F (σ)

)l+1

∼
( ( l

2

)
l + 1

)(
d

n(1− 1/k)

)l+1

.
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As
(
i
j

)
≤ (ie/j)j , it follows that

P [HL|V(σ)] ≤ (1 + o(1))
L∑
l=2

(
n

l

)( ( l
2

)
l + 1

)(
d

n(1− 1/k)

)l+1

≤ (1 + o(1))

L∑
l=2

(ne
l

)l ( le
2

)l+1( d

n(1− 1/k)

)l+1

≤ 1 + o(1)

n

L∑
l=2

led

2(1− 1/k)

(
e2d

2(1− 1/k)

)l
= O(n−1),

where the last equality holds since L is a fixed number. The proves the claim. �
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Deutsche Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit zwei Fragestellungen im Bereich der Erforschung

von zufälligen Graph- und Hypergraphstrukturen.

Zum einen geht es um den Beweis der Existenz und die Bestimmung der Lage des sogenannten

Kondensations-Phasenübergangs. Dieser wird für große Werte von k sowohl im Problem der k-Färb-

barkeit von zufälligen Graphen als auch im Problem der 2-Färbbarkeit von zufälligen k-uniformen

Hypergraphen untersucht, wobei in letzterem ein erweitertes Modell mit sogenannter endlicher Tem-

peratur betrachtet wird.

Zum anderen beschäftigt sich die Arbeit mit der asymptotischen Bestimmung der Verteilung der

Anzahl der Lösungen in ebendiesen Strukturen in Dichtebereichen unterhalb des Kondensations-

Phasenübergangs.

Die präsentierten Ergebnisse resultieren aus vier Artikeln, die eingereicht und teilweise bereits veröf-

fentlicht sind.

Zunächst folgt nun ein kurzer historischer Überblick über die Entwicklung der Erforschung von Pha-

senübergängen in zufälligen Bedingungserfüllungsproblemen. Anschließend werden die verwende-

ten Modelle kurz vorgestellt und danach die Hauptresultate präsentiert und eingeordnet. Es folgt ein

weiterer Abschnitt über die verwendeten Methoden, bevor am Ende ein kurzer Ausblick zukünftige

Forschungsfragen erläutert.

Historischer Überblick

Die Untersuchung von zufälligen Graphen geht zurück auf die einflussreiche Arbeit von Erdős und

Rényi aus dem Jahr 1960 [ER60]. Seit diesem Zeitpunkt ist die Erforschung von zufälligen diskreten

Strukturen, insbesondere von Bedingungserfüllungsproblemen, ein aktives und breites Forschungsge-

biet. In den 1990ern entwickelten sich, gestützt durch Computersimulationen, mehrere Hypothesen

zum Verhalten dieser zufälligen Probleme bei wachsender Kantendichte21.

Eine wesentliche Hypothese besagte, dass bei vielen zufälligen Bedingungserfüllungsproblemen die

Wahrscheinlichkeit, eine Lösung zu besitzen, rapide von 1 auf 0 abfällt, sobald die Kantendichte einen

gewissen ’kritischen Punkt’ passiert, das Problem also einen ’scharfen Erfüllbarkeits-Phasenübergang’

aufweist.

Viele Jahre versuchte man, diese und andere Hypothesen zu verifizieren, scheiterte aber weitgehend,

21Die Kantendichte bezeichnet das Verhältnis von Kanten zu Knoten oder allgemeiner von Bedingungen zu Variablen.
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und konnte zumeist weder die Existenz des Phasenübergangs beweisen, noch seine genaue Lage be-

stimmen. Seit Anfang der 2000er jedoch ermöglichten von Physikern aus der statistischen Mechanik

entwickelte Methoden, insbesondere die ’cavity method’ [KMRTSZ07], die kombinatorische Struktur

besagter Probleme besser zu verstehen. Mit Hilfe dieser Methoden ließen sich Vorhersagen zum Auf-

treten des Erfüllbarkeits-Phasenübergangs machen und zusätzlich entfaltete sich ein differenziertes

Bild über die Entwicklung der Struktur des Raums der Lösungen. Zu diesem Bild gehört unter ande-

rem das Auftreten eines weiteren Phasenübergangs, Kondensations-Phasenübergang genannt, an dem

sich die Geometrie des Raums der Lösungen grundlegend ändert und den man verantwortlich macht

für die Schwierigkeiten, die sich bei der Untersuchung der Probleme ergeben hatten. Da die physi-

kalischen Methoden allerdings mathematisch nicht rigoros sind, öffnete sich für Mathematiker ein

neues Betätigungsfeld. Die Resultate der vorliegenden Arbeit tragen dazu bei, mathematisch exakte

Grundlagen für diese Methoden zu entwickeln.

Verwendete Modelle

Als zufällige Graphenmodelle betrachten wir die Erdős-Rényi GraphenG(n, p) undG(n,m) mit Kno-

tenmenge [n] und Kantenmenge E. Eine k-Färbung dieser Graphen ist eine Abbildung σ : [n]→ [k]

mit σ(i) 6= σ(j) für alle {i, j} ∈ E. Die Kantendichte ist definiert als d = pn bzw. d = 2m/n und

bestimmt die Schwierigkeit des Problems.

Analog dazu untersuchen wir die k-uniformen Hypergraphen Hk(n, p) und Hk(n,m) mit Knoten-

menge [n] und Kantenmenge E und die 2-Färbungen σ : [n] → {±1} mit |σ(e)| = 2 für alle e ∈ E
(d.h. Färbungen der Knoten, so dass keine monochromatischen Kanten entstehen). Hier ist die Kan-

tendichte definiert als d = p
(
n−1
k−1

)
bzw. d = km/n.

Zumeist sind wir an asymptotischen Resultaten in n interessiert, setzen also stillschweigend voraus,

dass n beliebig groß wird. Wir betrachten dünn besetzte Graphen und Hypergraphen, also solche, bei

denen die Kantendichte beschränkt bleibt, während n ins Unendliche wächst. In allen vorgestellten

Problemen bezeichnen wir mit Z die Anzahl der Färbungen.

Ergebnisse

Das erste Ergebnis der Doktorarbeit (aus The condensation phase transition in random graph co-

loring [BCOHRV16] zusammen mit Bapst, Coja-Oghlan, Hetterich und Vilenchik, veröffentlicht in

Communications in Mathematical Physics 341 (2016)) beinhaltet den Beweis der Existenz sowie ei-

ne exakte, mathematisch rigorose Lokalisierung des Kondensations-Phasenübergangs im Graph-k-

Färbbarkeitsproblem für große k. Der Phasenübergang wird nicht explizit, sondern als Lösung eines

Fixpunktproblems angegeben, was der sehr komplizierten kombinatorischen Struktur des Problems

geschuldet ist. Es ist das erste Resultat dieser Art für eine breite Klasse von Problemen und es stimmt

mit der Vorhersage der ’cavity method’ überein.
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Zunächst ein paar grundlegende Definitionen: Wir betrachten die n-te Wurzel der Anzahl der Lösun-

gen des k-Färbbarkeitsproblems im Grenzwert für großes n:

Φk(d) = lim
n→∞

E
[
Z1/n

]
Die Skalierung ist sinnvoll, da Z üblicherweise von exponentieller Größenordnung ist. Im Allgemei-

nen ist nicht bewiesen, dass der Grenzwert Φk(d) für alle Werte von d und k existiert. Für gegebenes

k nennen wir d0 ∈ (0,∞) daher glatt, falls es ein ε > 0 gibt, so dass

• für jedes d ∈ (d0 − ε, d0 + ε) der Grenzwert Φk(d) existiert und

• die Abbildung d ∈ (d0− ε, d0 + ε) 7→ Φk(d) eine Entwicklung als absolut konvergente Potenz-

reihe um d0 hat.

Falls d0 nicht glatt ist, sagen wir, dass ein Phasenübergang bei d0 auftritt.

Im folgenden Theorem bezeichnet die FunktionFd,k : P → P die Verteilungsversion eines Operators,

der in der Physik als ’Belief Propagation’-Operator bekannt ist und vom Raum P aller Verteilungen

auf einem k-Simplex in sich selbst abbildet. Im Allgemeinen hat diese Abbildung mehrere Fixpunkte,

also Punkte π∗ ∈ P , so dass Fd,k[π∗] = π∗. Wir nennen einen solchen Fixpunkt gefroren, falls die

Masse auf den k Ecken des Simplex zusammen mindestens 2/3 beträgt.

Das Funktional φd,k ist eine Darstellung einer generischen Formel, der sogenannten ’Bethe free entro-

py’. Die ’Bethe free entropy’ liefert eine gute Approximation der freien Entropie des Systems, falls

wir als Argumente Verteilungen verwenden, deren Marginale ’nah’ an den Marginalen der korrekten

Verteilung über die Färbungen der Knoten liegen.

All diese Konzepte wurden systematisch mit Hilfe der ’cavity method’ hergeleitet [MM09]. Sie wer-

den in Abschnitt 4.1 ausführlich dargestellt.

Theorem. Es existiert eine Konstante k0 ≥ 3, so dass für jedes k ≥ k0 folgendes gilt: Falls d ≥
(2k − 1) ln k − 2, so hat Fd,k genau einen gefrorenen Fixpunkt π∗d,k. Weiterhin hat die Funktion

Σk : d 7→ ln k +
d

2
ln(1− 1/k)− φd,k(π∗d,k)

eine eindeutige Nullstelle dcond im Intervall [(2k−1) ln k−2, (2k−1) ln k−1]. Für diese Zahl dcond

gelten die folgenden drei Aussagen:

(i) Jedes 0 < d < dcond ist glatt und Φk(d) = k(1− 1/k)d/2.

(ii) Es gibt einen Phasenübergang bei dcond.

(iii) Falls d > dcond, so gilt

lim sup
n→∞

E[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2.
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Das bedeutet, falls d glatt ist, gilt Φk(d) < k(1− 1/k)d/2.

Im zweiten Resultat (aus A positive temperature phase transition in random hypergraph 2-coloring

[BCOR16], zusammen mit Bapst und Coja-Oghlan, veröffentlicht in Annals of Applied Probability 26

(2016)) wird für große k die Existenz des Kondensations-Phasenübergangs im 2-Färbbarkeitsproblem

für k-uniforme Hypergraphen mit endlicher Temperatur bewiesen und die Lage des Phasenübergangs

wird asymptotisch exakt in k bestimmt.

Die Erweiterung des klassischen Modells auf endliche Temperatur wird in der physikalischen Litera-

tur oft betrachtet und bedeutet im Wesentlichen, dass man sich nicht nur für gültige Färbungen des

Problems interessiert, sondern alle möglichen Zuweisungen von Farben zu Knoten betrachtet und die-

se proportional zur Anzahl der erzeugten monochromatischen Kanten gewichtet. Man definiert die

sogenannte Boltzmann-Verteilung für einen Hypergraphen H und Parameter β als

πH,β[σ] =
exp [−βEH(σ)]

Zβ(H)
, mit Zβ(H) =

∑
τ :[n]→{±1}

exp [−βEH(τ)] ,

wobeiEH(σ) die Anzahl der monochromatischen Kanten inH unter der Farbzuweisung σ bezeichnet.

Wir definieren dann

Φd,k(β) = lim
n→∞

1

n
E [lnZβ(H)] .

Die formale Definition eines Phasenübergangs in diesem Szenario ist wie folgt: Wir nennen β0 > 0

glatt, falls es ein ε > 0 gibt, so dass die Funktion β ∈ (β0 − ε, β0 + ε) 7→ Φd,k(β) eine Entwicklung

als absolut konvergente Potenzreihe um β0 hat. Ansonsten sagen wir, dass ein Phasenübergang bei β0

eintritt.

Theorem. Für jedes feste C > 0 existiert eine Folge εk > 0 mit limk→∞ εk = 0, so dass folgendes

gilt: Sei

Σk,d(β) = (β + 1) exp [−β + k ln 2] ln 2− 2

(
d

k
− 2k−1 ln 2 + ln 2

)
.

1. Falls d/k < 2k−1 ln 2− ln 2− εk, ist jedes β > 0 glatt und

Φd,k(β) = ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
. (B.3.6)

2. Falls 2k−1 ln 2 − ln 2 + εk < d/k < 2k−1 ln 2 + C, hat Σk,d(β) eine eindeutige Nullstelle

βcond(d, k) ≥ k ln 2 und

• jedes β ∈ (0, βcond(d, k) + εk) ist glatt und Φd,k(β) ist gegeben durch (B.3.6),

• es gibt einen Phasenübergang bei βcond(d, k) + εk

• für β > βcond(d, k) + εk gilt

Φd,k(β) < ln 2 +
d

k
ln
(

1− 21−k (1− exp [−β])
)
.
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Dieses Resultat ist das erste, das den Kondensations-Phasenübergang in Bezug auf β mit solcher

Genauigkeit bestimmt. Bis auf den Fehler εk bestätigt es die Vorhersage der nicht-rigorosen ’cavity

method’.

Die letzten beiden Hauptresultate beschäftigen sich mit der asymptotischen Verteilung der Anzahl der

Lösungen in zwei verschiedenen Färbbarkeitsproblemen. In der Doktorarbeit werden die folgenden

Resultate aus On the number of solutions in random hypergraph 2-colouring [Ras16a+], eingereicht

bei The Electronic Journal of Combinatorics und On the number of solutions in random graph k-

colouring [Ras16b+], eingereicht bei Combinatorics, Probability and Computing präsentiert: Ist Z

die Anzahl der Lösungen im zufälligen Hypergraph-2-Färbbarkeitsproblem oder im zufälligen Graph-

k-Färbbarkeitsproblem, so zeigen wir, dass lnZ − lnE[Z] in Verteilung gegen eine Zufallsvariable

konvergiert, die wir explizit angeben können.

Für das 2-Färbbarkeitsproblem von k-uniformen Hypergraphen lautet das Resultat:

Theorem. Sei k ≥ 3 und d′ eine feste Zahl, so dass m = dd′n/ke und d′/k ≤ 2k−1 ln 2− 2 sowie

λl =
[d(k − 1)]l

2l
und δl =

(−1)l

(2k−1 − 1)
l
.

Ist dann (Xl)l eine Familie von unabhängigen Zufallsvariablen mit E[Xl] = λl, alle auf dem gleichen

Wahrscheinlichkeitsraum definiert, so gilt für die Zufallsvariable

W =
∑
l

Xl ln(1 + δl)− λlδl,

dass E|W | <∞ und lnZ − lnE[Z] in Verteilung gegen W konvergiert.

Aus diesem Resultat folgt, dass die Fluktuation des Logarithmus der Anzahl der Lösungen in n diver-

giert, allerdings beliebig langsam. Zusätzlich zeigen wir eine Aussage über das qualitative Verhalten

des ’planted model’, einer Wahrscheinlichkeitsverteilung über Paare von Graph und Färbung, die oft

alternativ zur ’natürlich auftretenden’ Verteilung untersucht wird, da sie leichter zu handhaben ist.

Für das Graph-k-Färbbarkeitsproblem lautet das Resultat:

Theorem. Es gibt eine Konstante k0 > 3, so dass folgendes gilt: Sei d′ eine feste Zahl, so dass

m = dd′n/2e und sei entweder k ≥ 3 sowie d′ ≤ 2(k − 1) ln(k − 1) oder k ≥ k0 sowie d′ < dcond.

Sei weiterhin

λl =
dl

2l
und δl =

(−1)l

(k − 1)l−1
.

Ist dann (Xl)l eine Familie von unabhängigen Zufallsvariablen mit E[Xl] = λl, alle auf dem gleichen
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Wahrscheinlichkeitsraum definiert, so gilt für die Zufallsvariable

W =
∑
l≥3

Xl ln(1 + δl)− λlδl − d2/(4(k − 1)),

dass E|W | <∞ und lnZ − lnE[Z] in Verteilung gegen W konvergiert.

Methoden

Übliche Werkzeuge bei der Untersuchung von Phasenübergängen in zufälligen Bedingungserfüllungs-

problemen sind die erste und zweite Moment-Methode, die obere und untere Schranken an den Erfüll-

barkeits-Phasenübergang liefern und die auch bei allen hier präsentierten Resultaten verwendet wer-

den. Insbesondere die zweite Moment-Methode kann entweder in ihrer klassischen Form Anwen-

dung finden, oder in einer von den physikalischen Methoden inspirierten erweiterten Form (wie in

[COP16]).

Des Weiteren benutzen wir das ’planted model’, das uns erlaubt, die Struktur des Lösungsraums von

zufälligen Bedingungserfüllungsproblemen unterhalb des Kondensations-Phasenübergangs zu unter-

suchen. Wir verwenden Konzentrationsargumente sowie Aussagen über die Eigenschaften des ’core’,

einer dicht-verlinkten Menge von ’gefrorenen’ Knoten, die aufgrund der geometrischen Strukturen im

Wesentlichen auf eine Farbe fixiert sind.

Für den Beweis des ersten Resultats finden wir eine explizite Verbindung zwischen der kombinatori-

schen Struktur des Graph-Färbbarkeitsproblems und dem Verteilungs-Fixpunktproblem aus [ZK07].

Wir benutzen dazu den in der physikalischen Literaur eingeführten ’message-passing’-Prozess War-

ning Propagation (vgl. [MM09]) und zeigen, dass wir mit seiner Hilfe einen detaillierten Einblick in

die Geometrie der Komponenten des Lösungsraums erhalten.

Im Falle endlicher Temperatur entwickeln wir eine rigorose Version der vorhergesagten Zerlegung des

Raums der Lösungen in sogenannte ’cluster’, wie es sie für das klassische Modell (ohne Temperatur-

Parameter) schon gab [ACO08, COZ12] und beschäftigen uns mit der Bestimmung der Größe dieser

’cluster’.

Die Resultate zur asymptotischen Verteilung der Anzahl der Lösungen erhalten wir mit einer Vari-

ante der Methode ’small subgraph conditioning’, die von Robinson und Wormald [RW94] eingeführt

wurde und von Janson [Jan95] weiterentwickelt. Der Beweis beruht auf der Beobachtung, dass die

Fluktuationen in der Anzahl der Lösungen zurückgeführt werden können auf die Fluktuationen in der

Anzahl der kurzen Kreise in den zugrundeliegenden Graph- und Hypergraphstrukturen. Die Verwen-

dung dieser Methode erfordert eine sehr exakte Berechnung des zweiten Moments und eine Analyse

der Varianz nach dem Vorbild von [RW94].
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Ausblick

Die in dieser Arbeit entwickelten und verwendeten Methoden lassen sich vermutlich auf eine ganze

Reihe weiterer Probleme und Fragestellungen anwenden.

Da sich die Vorhersagen der Physiker in vielen Bedingungserfüllungsproblemen ähneln, ist es plausi-

bel, dass sich z.B. die Beweistechniken zur Lokalisierung des Kondensations-Phasenübergangs im

k-Färbbarkeitsproblem auf andere Probleme übertragen lassen. Ebenso ist zu erwarten, dass auch

Modelle mit endlicher Temperatur analog zur Hypergraph 2-Färbbarkeit untersucht werden können.

Selbstverständlich ist neben der Frage zum Kondensations-Phasenübergang auch die Frage nach der

Existenz und Lage des Erfüllbarkeits-Phasenübergangs (zumindest in Problemen ohne den Tempe-

raturparameter) wegweisend. Bis jetzt existieren nur wenige rigorose Ergebnisse zur Bestimmung

dieses Übergangs [DSS15, DSS16, DSS16+, COP16]. Tatsächlich ist in vielen Problemen nicht ein-

mal die Vorhersage der ’cavity method’ bewiesen, dass sich der Kondensations-Phasenübergang vom

Erfüllbarkeits-Phasenübergang unterscheidet. In jedem Fall wird die vollständige mathematische Präs-

zisierung der ’cavity method’ auf absehbare Zeit eine spannende Herausforderung bleiben.

Was die Verteilung der Anzahl der Lösungen betrifft, so liegt die Annahme nahe, dass eine Kombinati-

on der zweiten Moment-Methode und ’small subgraph conditioning’ in vielen anderen Problemen zur

Bestimmung der asymptotischen Verteilung der Anzahl der Lösungen genutzt werden kann. Probleme,

für die das vorstellbar ist, sind z.B. zufälliges NAE-k-SAT, zufälliges k-XORSAT, zufällige Hyper-

graph k-Färbbarkeit oder Probleme auf zufälligen regulären Strukturen. Für asymmetrische Probleme

wie das bekannte zufällige k-SAT erwarten wir jedoch, dass die Anzahl der Lösungen stärker fluktu-

iert und bezweifeln daher, dass ein ähnliches Resultat erzielt werden kann.

Tatsächlich wäre es sehr interessant, eine komplette Klassifizierung aller Probleme zu erstellen, für

die eine solche Grenzverteilung gefunden werden kann. Es ist denkbar, dass dies alle Modelle betrifft,

bei denen die Verteilungsfunktion auf einem Baum mit n Knoten konstant ist. In diesem Fall wäre

eine Verallgemeinerung der Beweistechnik lohnenswert, sodass alle betrachteten Modelle abgedeckt

werden.

Zudem ist auch die Frage nach dem effizienten Auffinden von Lösungen aus algorithmischer Sicht

noch weitgehend unbeantwortet. Insbesondere die präzise Analyse von ’message-passing’ Algorith-

men ist ein aktives Forschungsgebiet. Obwohl es einige experimentelle Ergebnisse gibt, steckt die

mathematisch rigorose Analyse noch in den Kinderschuhen.

Zusammenfassend und abschließend lässt sich sagen, dass in den letzten Jahrzehnten ein großer Schritt

getan wurde, die Eigenschaften und Besonderheiten von Bedingungserfüllungsproblemen zu verste-

hen. Es gibt auf diesem Gebiet jedoch noch sehr viel zu erforschen und man ist noch weit davon

entfernt, alle auftretenden Phänomene grundlegend verstanden zu haben.
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