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Abstract

We call a vector z € R™ highly regular if it satisfies
< x,m >=0 for some short, non—zero integer vector
m where < ., . > is the inner product. We present
an algorithm which given x € R™ and o € IN finds
a highly reqular mearby point x' and a short integer
relation m for z'.

The nearby point z' is ’good’ in the sense that no
short relation M of length less than a2 exists for
points T within half the x'—distance from x. The inte-
ger relation m for ' is for random x up to an average
factor 2™/2 a shortest integer relation for x'.

Our algorithm wuses, for arbitrary real input x,
at most O(n*(n +loga)) many arithmetical oper-
ations on real numbers. If x is rational the
algorithm operates on integers having at most
O(n® + n®(log @)? + log(||gz||?)) many bits where q is
the common denominator for x.

1 Introduction

Let L C R™ be a lattice, i. e. a discrete subgroup of
the real n—-dimensional vector space that generates a
linear subspace span(L) of dimension n. Suppose we
are given, e. g. by physical measurements, approxi-
mate lattice vectors by, ...,bx, k > n. For nearly ev-
ery lattice problem we need a basis and even a reduced
basis of the lattice. However, the disturbed vectors
b1, ..., by may generate a subgroup of the R™ that may
be very different from L, possibly even non—discrete,
so that it is impossible to obtain from by, . .., by, by uni-
modular basis transformations even an approximate
basis of the lattice L. It is therefore necessary to cor-
rect by,...,bg. In the case n = 1 this amounts to
replacing the given reals Z; =b; i =1,...,k by the
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closest point (zi,...,z}) that admits k — 1 linear de-
pendency relations that are linearly independent and
have small integer coefficients. These linear relations
define the generator of the lattice up to integer multi-
ples. In this paper we propose an algorithm for solv-
ing this problem. For simplicity we concentrate on
the case of single relations. The case of several lin-
ear independent integer relations can be solved by a
straightforward extension of our algorithm.

The main problem solved in this paper can also
be described as to find a stable version of the HJLS-
algorithm of Hastad, Just, Lagarias and Schnorr [5]
where the stability means that the algorithm corrects
small distortions of the input. Interestingly, already
the L3-algorithm of Lenstra, Lenstra, Lovdsz [8] has
the same stability problem in case that the given basis
vectors are real vectors that are given with slight dis-
tortions. Following the analysis of Buchmann [2] the
L3-algorithm works fine if the distortions of the input
are small compared to the first successive minimum A,
of the lattice. However, if A; is arbitrarily small there
is no way other than to correct the given input.

Given a real vector x € R™ an integer relation for
x is a non—zero vector m € Z"™ with zero inner prod-
uct < m,x >= 0. This paper studies the following
computational problem: given z € IR™ find a nearby
point z' to z and a short integer relation m for z’'
so that there is no much closer point T to z having a
very short integer relation. Let A(z) denote the length
< m,m >'/? of the shortest integer relation m for z.
Given z € R™ and « € IN our algorithm finds a nearby
point ' and an integer relation m for x' satisfying

e AM(Z) > a/2 holds for all T € R"™ with
lz -zl <llz—2'[|/2

o E.(|lm||/M(z")) < 27/?  where &, is the expected
value for random z with ||z| =1

o ||m| < 20(n*(eg)*)

o if z = 2 then |m| < 2" min{ A(z), a }.



The nearby point is ’good’ in the sense that there is
no Z € R", within half the z’-distance from z, having
an integer relation of length at most «/2. The integer
relation m is for random x up to an average factor
2"/2 a shortest integer relation for z’. It is also short
in an absolute sense satisfying the crude upper bound
|m]| < 20(n*(log@)*) |

For real input z the algorithm uses at most
O(n*(n + log ) many arithmetic operations on real
numbers using exact arithmetic. If the input z is ra-
tional, x = (p1,...,Pn)/q with integers p1,...,pn,q,
then the arithmetic operations are on integers. The
bit length of these integers is bounded polynomially
in n + log @ + log(||gz||?) . For non-rational z the solu-
tion z' € R™ may be non-rational as well. The above
stated properties of the ouput (', m) do not only hold
for the input z but they hold for every T satisfying
|z —Z| < ||z —2'||/2. Without this stability property
the problem is easy to solve. A short integer rela-
tion for a close approximation z’ to x can be found by
the L3-algorithm for lattice basis reduction [7]. How-
ever this does not exclude that a much closer point
T admits a much shorter integer relation. The first
polynomial time algorithm, which for arbitrary real x
produces a ’good’ lower bound for A(z) has been de-
signed by Hastad, Just, Lagarias and Schnorr [5]. For
given z , a the HJLS-algorithm either finds an integer
relation m for z with ||m|? < 2772 min{ \(z)?, o2 }
or it proves that A(z) > «.

Our algorithm may be important in case that the
given z is slightly inaccurate and one searches for a
nearby point having a very short integer relation. We
are not aware of any previous algorithm for solving
this problem. The new algorithm can be extended
to find for given z € R™ and r € IN a nearby point
z' that admits r linearly independent short integer
relations myq, . .., m, . Our algorithm is a stable variant
of the HIJLS-algorithm, which in turn is a variation of
both the L3-algorithm of Lenstra, Lenstra and Lovész
[8] and the generalized continued fraction algorithm
presented by Bergman [1] in his notes on Ferguson
and Forcade’s generalized Euclidean algorithm [4].

2 Notation and definitions

Let R™ be the m—dimensional real vector space
with the ordinary inner product < .,. > and Eu-
clidean length |jy|| :=<y,y >'/2. A discrete addi-
tive subgroup L C R"™ is called a lattice. Every
lattice is generated by some set of linear indepen-
dent vectors by,...,b, € L that is called a basis of
L, L={X" tb; : t; €Z,1<j<m}. Welet

L(by,...,bn) denote the lattice generated by the basis
biy.eey b -

A non-zero vector m € Z" is called an integer re-
lation for x € R™ if < 2,m >=0. We let A(z) denote
the length ||m| :=< m,m >'/? of the shortest integer
relation m for z, A(z) = oo if no relation exists.

Throughout the paper we let b;,...,b, be an or-
dered basis of the integer lattice Z™ and let by := x
be a non—zero vector in IR™. We associate with this
basis the orthogonal projections

€L

Tz ¢ R™ — span(z,by,,...,,bi—1) and

3 7bi—1)J_

where span(b;,...,,bi—1) denotes the linear space
generated by b;,...,b,—1 and span(bj,...,b;—1)t
its orthogonal complement in IR™. We abbreviate
bi’z = ﬂ-i,z(bi), b, = TI'Z(b,) and ./77\, = 71','(.11‘) . The vec-
b .,/I;n’z (resp. /l;l,...,/gn) are pairwise or-
thogonal. They are called the Gram-Schmidt or-
thogonalization of x,bq,...,b, (resp. bi,...,b,). The
Gram—Schmidt coefficients for by = z,b1,...,b, are
defined as

m : R™ — span(by,,... fori=1,...,n,

tors by g, ..

~

< bg, bj,m >

”3 E for1<k,j<m,

Hi,g =
where we set py ; = 0 if ?)\j’m = 0. We have
k
Wi,z(bk) = Z,Utk,jbj,m for 1 S ) S k S n.
j=i

We call the (ordered) system of vectors by : =z,
bi,...,b, size—reduced if

|,uk,j|§% holdsfor 1 <j<k<m
and L3 -reduced if it is size-reduced and the inequality
I (Be)? < (1,0 (0) 12

holds for k =2,...,n.
The latter inequality is equivalent to

Fbk—1el® < llbkel® + pk ey br-1.0]1” -

We let [ .| denote the nearest integer function to a
real number 7, [r] =|r + 0.5] .

Let [by,...,bn] denote the matrix with column vectors
biy... bn.

3 The method of the algorithm

The new algorithm relies on the HJLS-algorithm
of Hastad, Just, Lagarias and Schnorr. Given z € R"™



and a € IN the HJLS-algorithm either finds an integer
relation m for z with ||m|? < 2"~2 min{ A(z)?, o? }
or it proves that A(z) > « . We will use Proposition 3.1
of [5] which states that

Mz) > 1/ max bl (1)
1=1,...,n

holds for every basis by, ..., b, of the lattice Z™. This

inequality already appears in somewhat weaker form

in [4].

Initially the vector x = by is extended to the linear
dependent system {bg,b1,...,bn} = {z,e1,...,en},
where e, ...,e, are the unit vectors in R".

The algorithm transforms the basis b;,...,b, by
exchange and size—reduction steps intending to mini-
mize max;=1, . n ||b;|l . For this the HJLS-algorithm
uses the Bergman exchange rule which swaps b;_1,
b; for an ¢ that maximizes ||/I;,z||2 2¢. The algo-
rithm terminates if max;=; .. n ||Bw|| < a~!. There
is one possible way that the HJLS-algorithm fails
to achieve max;—1,. n ||biz|]| < @~'. This is if an ex-
change b,,_1+—b, results in a zero—vector 3n—1,z- In
this case the new basis b1, . . ., b, yields an integer rela-
tion a,, which is the last vector of the basis a1,...,an
that is dual to by,...,b,, i. e.

[bl, .. ,bn]_l = [0,17 .. ,an]T -
This relation a,, is sufficiently short, we have
llan]l < 272 a.

Stability analysis. In Lemma 5(2) we show for

1 =1,...,n — 1 the inequalities
~ = ~ 2|3 — i
[|biz — bzl < ||bs =
e bzl < il
+ ) +
;o 2le-1
n

where Z; = mi(z) and Z; = m;(Z) . From this and (1)
we see that

@) > a/2 (3)

holds provided that the inequalities (4) and (5) are
satisfied:

lz =2l < [IZall/2 (4)
Ibie]l < 227" fori=1,...,n (5)

This is because inequalities (2), (4) and (5) imply

S .
bie — bizll < [bszll

and thus 0 < ||3,5|| < 207t fori=1,...,n.

We modify the HJLS—-algorithm so that the basis
and its dual satisfy throughout the algorithm the in-
equalities

lagll, Bl < 20 +n*0om?) k=1 (6)
see Proposition 2. These inequalities hold for arbitrary
real input z.

To obtain (6) we have to perform some size—
reduction steps but we cannot afford a complete size—
reduction as in the L3-algorithm. We only reduce by,
versus b; if ||b; .|| > a7 L. In this case Lemma 4 shows
that the reduction coefficient p ; is at most

~

| < 7je(br),bjc > |

n/2—1
B e

ki =

and thus the resulting reduction by«—by — [, ;]b;
does not generate a very large vector by . Large val-
ues py,; with ||b; .|| < @~! will be oppressed in the
further reduction process. The stable integer rela-
tion algorithm does not use Bergman’s exchange rule,
it uses the exchange rule of the L3-algorithm. The
L?-exchange rule may be inefficient in case of ex-
tremely small orthogonalization vectors b; .. We over-
come this inefliciency by collecting the vectors b; with
||E]z|| < a7l in the initial segment of the basis. For
this we use an index s which, throughout the algo-
rithm, satisfies

Ibjell < @' forj=1,...,s—1.
The vectors b; with j < s will be excluded from all
further exchange and reduction steps.

4 Stable integer relation algorithm
(SIRA)

Input x e R", 2 #0,a € IN.
1. FOR i=1TO n DO
a; :=b; :=e; the i—th unit—vector
s:=k:=1;by:=x; cg:=<z,2>;
* k is the stage *

2. WHILE s < n DO

* upon entry of the loop we always have

¢ =|bjall>>0forj=1,....k—1, s<k,
Cly..ycem1 < a”?,
o,z (bs)y vy To,a(br—1) is L3-reduced. *

cp =< bk,bk >



IF k =s=1 THEN
€1 :=<b1,by > — <b1,bg >? /e ;
p1,0 =< bi,bp > [co ;
IF ¢; < a2 THEN s5:=2;
k:=2; ¢y :=<by,bs >;
2.1 FOR j =0TO k—1 DO
Hk,j = (< bg,bj > —
120 kit ici) /<5
Cr 1= Ck —,u%’j ¢ s
IF (¢, =0 AND k <n ) THEN
Output z’' :=z, a,; STOP
22  IF (¢ <a 2 AND k=s) THEN
k:=s:=s+1; GOTO 2
2.3 FOR j =%k -1 DOWNTO s DO

br == br — [k ;165 ;
a; = a; + [prjlar ;
update p; fori =0,...,5;

2.4 IF 2¢x1 > cr+pj g k-1 THEN

swap bg—1, bk ; SWap ag—1,as ;

ki=k—1
ELSE k:=k+1;
END-WHILE
3. compute the orthogonal projec-
tion 7, = m,(z) € span(by,...,bp_1)" of x ;

Output z' =z — 7, , a, .

Comments: 1. Upon entry of stage k we compute
the Gram-Schmidt coefficients py ;j, 7 =0,...,k—1
and the height square ¢, = ||/51”||2 This computation
uses the actual basis vectors by,...,b;_1 and the pre-
viously computed entities p;; for 0 <i<j<k—1
and cg,...,CL_1.

2. The equality [b1,...,b,]"" = [a1,...,a,]" does
always hold, i. e. the basis ai,...,a, is the dual
of the basis bi,...,b,. Therefore a reduction
step br<—br — [px,;]b; implies the transformation
aj<—a; + [pr,j]ar in step 2.3.

3. The value max;<;<n ¢; does never increase. Ini-
tially this maximum is at most 1.

Lemma 1 Upon entry of the WHILE—loop in step 2
we always have
1.cj=|bal2>0forj=1,....k—1,
2.¢1,.0..,C1 <72,

8 Mo w(bs),- -y s w(br—1) is L3 —reduced.

Proof. The claims are shown by induction on the
number of passes of the WHILE-loop.

(1) The termination condition in step 2.1 implies
that 1¢; > 0 holds for j=1,...,k—1. (2) is an
immediate consequence of the actualization of s in
step 2.2. (3) holds because the previous steps 2.3
and 2.4 of stage k — 1 finish the L3-reduction of
Ts,z(bs)y v, Tso(br—1) . O

Several linear independent integer relations.
Modifying the termination condition in step 2.1
as ¢, =0 AND k<n—17r+1 yields an algorithm
which solves the problem of finding r linearly inde-
pendent integer relations for a nearby point z' to
the given input z € R™. We only have to com-
pute z’ as &' :== & — Zp_r4+1 . Then the last 7 vectors
Gn—r41; - - -, an Of the dual basis are r linearly indepen-
dent integer relations for z’. Our analysis given below
applies to this case as well.

5 Analysis and correctness

We first prove an upper bound on the length of the
vectors in the bases by,...,b, and its dual ay,...,a,
which holds throughout the algorithm. This bound
holds no matter whether the input z is rational or
irrational. The result is based on the restricted size-
reduction of step 2.3. It becomes wrong if we change
the algorithm to either perform full size-reduction or
to perform no size-reduction at all.

Proposition 2 Let the input x be an arbitrary real
vector. Throughout the algorithm the basis by,..., by,
and its dual aq,. .., a, satisfy

4 2 2
lall, [lox] < 20047008 k=1, . ..

Thus the bit length of the coordinates of by and ay
is at most O(n* + n2(loga)?). From this we obtain,
for rational inputs z, a polynomial bound for the bit
length of the integers occuring in the algorithm. As
a consequence the algorithm has polynomial bit com-
plexity for rational inputs z.

Theorem 3 Let the input x be rational with
z=(p1,...,Pn)/q and p1,...,pn,q€ Z. Then the al-
gorithm performs at most O(n*(n +loga)) arith-
metical operations using integers with at most
O(n® + n®(log a)? + log(|lqz||?)) bits.

Proof sketch. The number of arithmetic opera-
tions of the algorithm is about » times that of the



HJLS-algorithm, see Theorem 3.2 of [5]. The addi-
tional factor n is for the size-reduction in step 2.3.
Let the rational input be = by = (p1,...,pn)/q with
Pi,---Pn,q € ZL. Then a common denominator for
the coordinates of the rational vector b;, is the in-
teger

q2 det(< bj,bl >)0§j,l§i .

We see from Proposition 2 and the Hadamard in-
equality that this 1nteger 1s in absolute value at
most ||gz/|2 20 i+n%ile)”) " Tt follows that all
integers occurlng in the algorithm are at most
llgz|® 20(n*+n*(log@)®) in absolute value. O

To prove Proposition 2 we analyse the effect of the
size-reduction. All changes of the basis vectors are
by the size-reduction in step 2.3. For an arbitrary
pass of loop 2.3 let bg), ug,)i denote the vector by and
the Gram—Schmidt coefficient uy ; after performing !

iterations of this loop with [ values j. So bio)

before entering the loop, and bgck_s) is the vector by

upon termination of the loop. The following can be
proved by straightforward induction, see [9].

is bk

Lemma 4 1. We have fori=k—-1—-1,...,s

(l) (0) 3\! 1 (0)
|uk,i| |/1/ | + [(5) — 1](5 + j:k_ni‘?_‘?ik_l |u’k,]|) .

2. For every pass of step 2.8 we have

B < |#mu§jn#”n%k o

(L
(3 +s< i<k 1|H’“’1|) )

3. Upon entry of step 2.3 we have that

lukal < 272 ray/n, s<i<k-1.

4. The mazimum B® := max; <<, ||b§cl)|| satisfies

B(k—s) S B(O)(%)n—lzn/Qa\/ﬁ

Proof of Proposition 2. The number of
passes of step 2.3 is at most ”n+ the number of
swaps in step 2.4”. Hastad, Just, Lagarias and
Schnorr show that the number of swaps is at most
(%) ((logy/3 2)n + 2log, a) . This is because every swap
of by_1, bx in step 2.4 decreases the product

-1 N n — n—
[T5) (max{||bie[* 27, a™?})

by at least a factor %. Initially this product is at

most 27°/2 and upon termination it is at least =™
Thus the number of passes of step 2.3 is at most
(g‘) ((10g4/3 2)n + 2log, a) + n. Let Bierm , Biniz de-
note the maximum FEuclidean length of the termi-
nal, respectively initial, basis vectors. @ We have
Binit = maxi<ik<n |lex|| =1, and thus Lemma 4(4)
yields

[ (%)n—l 2n/2a\/ﬁ](;)((log4/3 2)n+2log, a)+n

9O(n'+n*(log a)?)

Bte'rm S

The claim on the vectors ay of the dual basis holds by
symmetry. O

Lemma 5 For z, T € R" let w,, 7z denote the or-
thogonal projection into span(z)*, span(T)* respec-
tively.

2|b]| |z — z]|
1. ||m.(b) — mz(b)]| < —Sh——T—t~ holds for all
le=(0) =m= ) < el TrITY "0/ f
beR™.
2. For every basis by,...,b, € Z"™ and T, := mp(x)
we have
1B:e—bizll < 2|[biall ” ” ,i=1,...,n—1.

3. For the terminal basis by, ...
z' of SIRA we have

,bn and the output

Bie = biar | < lbiell s i=1,...,n—1.
Proof. 1. Following Clarkson, [3] Lemma 3.2, we
have

<bzxz> _ <b,f>‘ I|b” ”.’E—f“ (7)

[ER [ER ll| ||zl

This and the Cauchy—-Schwarz inequality imply

o (B) — 72(0)] s‘h—ﬁﬂ%im—w—ﬁ%%i
ol El
_ H<ba:>__<b,a:>f
El EE
L <be>_ <bz> H
EE EE
< b,zT> <b x>
5||M hz> _ <b ‘
EEET
| <bx>|, _
+ e lia—a)
< M “b””— 2|
S TRl il
_ bl -3
.

|



which proves the claim.

2. We apply (1) with b = /l;,-, t=2;, T =1,. Using
7[‘53\([),‘) =b; . this yields

2 ||z — il

[bie — bizll < [0l S
max{||Z:||, |7}

T max{||Ziga |l [|Zaa I}
The  last equality follows _ from
1Zill 1biell = | det[mi(z), m(bo)]| = [|bill [Zisa ]l -
Using |[|Zn]| < [|Zigall, [1Zi = 7ill = [Imi(z —7)]| <

|l —Z|| for i =1,...,n — 1 we see that

llz —=||
2([Biel Tl ”
TL

S
bi,e —bizll <

3. We see from 51 o= b — <|l‘)“ﬁﬁ’2> z; and
l
< b,,m, >=< b,, z; > that
N 7 7
”bl,m —b; ! ” - | < b“ml > | || ”A ”2 - W“

. . c b—c
The inequality || IIblilz — T | < IIlbll Hclh and Cauchy’s
inequality yield

> 2 Bl 0 N12: — 2 [INES
Ibiz = bier |l < T =
v 1] 112 I 2|
Zita ’

Main Theorem 6 For arbitrary input x € Q"
a € N SIRA produces a pair of dual terminal bases
b1,...,bn and ai1,...,a, and a nearby point ©' € Q™
and m € ZL" such that

1. <m,z' > = 0, where m = a, = by, |[b,|| 2.

2. M(Z) > a/2 holds for all T € R"™ with
lz =] <llz—2']/2.
E(|m||/A=")) < 2% holds for random x,
Im|| < 20(n*(oga)?)

4. If x =1’ then |m||? < 2" 2 min{ A\(z)?, o? }.

Note that (4) has been proved by [5].
!

Proof. 1. The output vector z' 1is in
span(by,...,bp—1) no matter whether x = z' or
z # xz'. Therefore Zn,z/ = b, # 0 which implies
< @n,x' >=10. Since both Zn and a, are orthogonal
to z,b1,...,b,_1 and < a,,b, >=1 we must have

an = £bal|bal| 7%, [lanll =[[ball ™" =[[bnr || 7"-
2. For every T satisfying ||T — z|| < ||Z,||/2 Lemma
5(2) implies ||b;» — b; 3] < ||bs,«|| and thus

|bizll > 0 and |jbiz]| < 227" i=1,...,n—1.

From inequality (1) we see that A(Z) > & holds for all
Z € R™ with ||z — Z|| < ||z — 2'|| /2.

3. Proposition 2 implies the rather crude upper
bound |jm| < 20(*(ee®)®)  We now prove that
Ex(llanll/M(a")) < 27/2. Let © # x' since other-
wise the claim follows from (4). We see from
A(z') > 1/ max; |[b; || and ||an|| = |[bn,o||~* that

lonll e Wi
Alz") 1<isn—1 |[p

na |
izl _bizll  [brn-1,zll
t<isn=1 lbig| [|ba—1,ell [|bn,el

n—i—1

where  |[bio|l/[bno1.c]| < 27 since  the
basis by,...,b, is L3-reduced under the orthogonal
projection into span(z)* . From this and the inequal-
ity ||?)\,z:|| <2 ||/b\”,|| , which follows from Lemma 5(2)
and En,zl = /b\n , we infer

ol 5 pemgmt sl oo el

Now the claim follows from 5z(||3n_1,2|| JIball) < 1
which is proved below.

Proof of &,(|[bp_1.]l/|[bnl]) <1 for random z.
Let bn 1, Y denote the vector b,_; before and
after the last swap b,_;«—b,. We have b, = b9, |

Tn(bn) = /b\n and thus

Brtell  Wbnetoll mn1.0(Ba)ll
Ball B2, )l

where Tp—1,2(bn), mn(by) are the parts of mp—1(byn)
that are orthogonal to Z,—; and /l;n_l. Due to the
L3-teduction by_; / ||?)\n_1|| is a close approximation
10 Fnet/[Fnsll 50 that [[Tacte(ba)ll/I7a(Ba)l] ap-
proaches 1. This follows from the error bounds for
diophantine approximation by the generalized contin-
ued fraction algorithm proved in [6].

Moreover b24, is the vector b€ after the last
swap bp_1+—b,. The L37reduct10n subsequent to

the last swap b,—1+—b, can still increase bze“{ 2 to

the final bn_l,z. However, for random z we must



have E$(||3n_1,z||/||/\"ld II) < 1 since the last swap

n—1,x —
b, _1<—b,, decreases

| detlz, by, ..y bpal [ = Izl [[brell - 1n—1 2]l

and thus decreases, together with the subsequent L3—

reduction, each Sz(”?)\””) fori=1,...,n —1.Evenso
the case [|bn_1,2|| >[[b3'; .|| is not impossible it is very

unlikely. O

6 Closeness of the approximation

We prove an upper and an lower bound on the dis-
tance ||z — z'|| of the input vector z from the output
vector x'.

Proposition 7 For arbitrary real input x € R™ and
output (x',m) we have

e —a'll < llzll &'~ / Im] .

Proof. Let by,...,b, be the terminal basis and
ai,...,a, its dual, m:=a,. We can assume that
z # x' since otherwise the claim is trivial. If z # z'
the vectors z,b1,...,b,—1 form the basis of a lattice
L = L(z,b1,...,bn_1). Its determinant det(L) is the
volume of the parallelepiped generated by the basis.
We can compute det(L) as the product of the lengths
of the Gram—Schmidt orthogonalization vectors. Ap-
plying this to the bases z, b1, ...,bn—1 and by, ..., b1, 2
we see that

n—1
det(L(z,b1, ... ba1)) = llzll T 115l
Jj=1

n—1
TL b0 ) 1zl -
Jj=1

Throughout the algorithm the basis b4, ..., b, generates
the lattice Z™ and thus

det(L(b1,...,b)) = J] I = 1.
Jj=1

Thes1e R equaicio/r\ls imply ||En||—1 =
n— n— = ;
IT;=5 1051l = IL;=1 1bs.zll (llzll / [|Znll) - From this and
llanll =[[bn,e |72 = [|bal| =" we see that

[T
lz—2'll = [|Z.]l = lanll ]1:[1 bzl < llzll @' =" [lan] ™"

where we use that |[b; .| <a™',j=1,...,n—1.0

Proposition 7 raises the question whether the dis-
tance ||z — z'|| is for random z on the average propor-
tional to ||z||a=™ /||m||. This point requires further
study.

Proposition 8 Let the input z be rational, = =

(P1,---,0n)/q with p1,...,Pn,q €Z, and ' # x.
Then we have

”.’L‘ _ II“ > q—l 2—O(n4+n2(loga)2) .

Proof. Since the vector a, = i?)\nH?)\nH_2 is integer
and 2’ is of the special form we see that

_ 5. b
(=) Bl 2 = <z, =" > =
[Bal® ™ 1]

is a rational vector with denominator ¢q. Thus Propo-
sition 2 implies

g ball” = ¢ [laa] ™
q—l 2—O(n4+n2(10g a)z) . O

[l — 2|

v v
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