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“There are no incurable diseases - only the lack of will. There are no worthless

herbs - only the lack of knowledge”

Avicenna

“Logic will get you from A to B. Imagination will take you everywhere.”

Albert Einstein



Abstract

One of the main things that we as humans do in our lifetime is the recognition

and/or classification of all kind of visual objects. It is known that about fifty

percentage of the neocortex is responsible for visual processing. This fact tells us

that object recognition (OR) is a complex task in our and in the animal brain,

but we do it in a fraction of a second .

The main question is: How does the brain exactly do it? Does the brain use some

feature extraction algorithm for OR tasks? The hierarchical structure of the visual

cortex and studies on a part of the visual cortex called V1 tell us that our brain

uses feature extraction for OR tasks by Gabor filters. We also use our previous

knowledge in object recognition to detect and recognize the objects which we never

saw before. Also, as we grow up we learn new objects faster than before.

These facts imply that the visual cortex of human and other animals uses some

common (universal) features at least in the first stages to distinguish between

different objects. In this context, we might ask: Do universal features in images

exist, such that by using them we are able to efficiently recognize any unknown

object? Is it necessary to extract new special features for any new object? How

about using existing features from other tasks for this? Is it possible to efficiently

use extracted feature of a specific task for other tasks? Are there some general

features in natural and non-natural images which can also be used for specific

object recognition? For example, can we use extracted features of natural images

also for handwritten digit classification?

In this context, our work proposes a new information-based approach and tries

to give some answers to the questions above. As a result, in our case we found

that we could indeed extract unique features which are valid in all three different

kinds of tasks. They give classification results that are about as good as the results

reported by the corresponding literature for the specialized systems, or even better

ones.

Another problem of the OR task is the recognition of objects, independently of any

perception changes. We as humans or also animals can recognize objects in spite

of many deformations (e.g. changes in illumination, rotation in any direction or

angles, distortion and scaling up or down) in a fraction of a second. When observ-

ing an object which we never saw, we can imagine the rotated or scaled up object



in our mind. Here, also the question arises: How does the brain solve this prob-

lem? To do this, does the brain learn some mapping algorithm (transformation),

independent of the objects or their features ?

There are many approaches to model the mapping task. One of the most versatile

ones is the idea of dynamically changing mappings, the dynamic link mapping

(DLM). Although the dynamic link mapping systems show interesting results, the

DLM system has the problem of a high computational complexity. In addition,

because it uses the least mean squared error as risk function, the performance for

classification is also not optimal. For random values where outliers are present,

this system may not work well because outliers influence the mean squared error

classification much more than probability-based systems. Therefore, we would like

to complete the DLM system by a modified approach.

In our contribution, we will introduce a new system which employs the information

criteria (i.e. probabilities) to overcome the outlier problem of the DLM systems

and has a smaller computational complexity. The new information based self-

organised system can solve the problem of invariant object recognition, especially

in the task of rotation in depth, and does not have the disadvantage of current

DLM systems.



Übersicht und Zusammenfassung

Menschen nutzen ihr bestehendes Wissen um Neues zu lernen: Sie nutzen Infor-

mationen über grundlegende mathematische Tatsachen um komplexere mathema-

tische Probleme zu lösen, oder sie nutzen Wissen über das Fahren eines Motorrads

um schneller Auto zu fahren. Das Übertragen von Wissen ist eine der Strategien

unseres Gehirns, um Objekte und Konzepte schneller zu erlernen.

Eines der vielen Dinge, die wir als Menschen in unserem Leben tun ist das Erken-

nen und/oder Kategorisieren aller Arten von visuellen Objekten (“OE-Aufgabe”).

In [1] wird erwähnt, dass rund fünfzig Prozent des Neocortex für das Verarbeiten

visueller Reize genutzt wird. Aus dieser Tatsache können wir schließen, dass Ob-

jekterkennung eine komplizierte Aufgabe in unserem Gehirn und in den Gehirnen

von Tieren ist, und trotzdem schaffen wir dies in Sekundenbruchteilen [2].

Die zentrale Frage dabei ist: Wie schafft das Gehirn das? Nutzt das Gehirn eine

Art Merkmalsextraktionsalgorithmus für OE-Aufgaben? Der hierarchische Aufbau

des visuellen Cortex und Studien eines Teils der Sehrinde V1 zeigen, dass unser

Gehirn Merkmalsextraktion mit Gabor-Filtern ausführt [3, 4].

Wir nutzen außerdem bereits erworbenes Wissen über Objekterkennung um Ob-

jekte zu bemerken und zu erkennen, die wir nie zuvor gesehen haben. Außerdem

lernen wir, neue Objekte schneller zu erkennen wenn wir älter werden. Die Frage

ist wieder, wie machen wir das? Gibt es Merkmale, die verschiedene Objekte

miteinander gemeinsam haben, die uns helfen verschiedenste Objekte mit unter-

schiedlichsten Wahrscheinlichkeiten und Eigenschaften zu erkennen?

Die Extraktion von Merkmalen ist ein wichtiger Schritt in der Erkennung von

Mustern und zielt darauf ab, die relevanten Informationen, die eine Objektklassi-

fizierung ermöglichen, zu erhalten. Es ist die Basis für jede Erkennung von Objek-

ten, sowohl im menschlichen als auch beim maschinellen Sehen. Die Extraktion

und Wiederverwendung von Information impliziert, dass die Sehrinde von Men-

schen und anderen Tieren gemeinsame (universelle) Merkmale zumindest in den

tieferen Ebenen nutzt, um zwischen verschiedenen Objekten zu unterscheiden. Es

ist immer noch ein schwieriges Problem im maschinellen Sehen, Merkmale zu ex-

trahieren, die die fundamentale Substanz von Bildern so komplett wie möglich

abbilden.



In diesem Zusammenhang stellt sich die Frage: Gibt es universelle Merkmale in

Bildern, so dass unter Verwendung dieser Merkmale ein unbekanntes Objekt ef-

fizient erkannt werden kann? Ist es nötig neue, spezielle Merkmale für jedes neue

Objekt zu finden? Was geschieht mit den bereits gelernten Merkmalen früherer

Objekterkennungen? Ist es ohne großen Aufwand möglich, extrahierte Merkmale

aus einer Aufgabe für eine andere Aufgabe zu nutzen? Gibt es einige allgemeine

Merkmale in natürlichen und nicht-natürlichen Bildern, die auch für spezielle

Objekterkennungsaufgaben erfolgreich verwendet werden können? Können wir

beispielsweise Merkmale natürlicher Bilder für das Erkennen handgeschriebener

Ziffern verwenden?

In den letzten Jahrzehnten wurden diese Fragen kaum erforscht. Manchmal wird

das Konzept von transfer learning verwendet, um Wissen aus einem Klassifizierungsprob-

lem für ein anderes Problem wiederzuverwenden. In diesem Kontext schlagen wir

einen neuen, informationsbasierten Ansatz vor und versuchen, Antworten auf die

oben gestellten Fragen zu finden.

Ein weiteres Problem der Objekterkennung ist das Erkennen von Objekten, un-

abhängig von jeglichen Änderungen, die durch den Kontext verursacht werden.

Wir als Menschen und auch viele Tiere sind in der Lage, Objekte trotz vieler De-

formationen (z.B. Änderung der Lichtverhältnisse, Drehung um beliebige Achsen

und Winkel, Verzerrung sowie Vergrößerung und Verkleinerung) in Sekunden-

bruchteilen zu erkennen. Beim Beobachten eines Objektes, das wir nie zuvor

gesehen haben, können wir uns trotzdem eine gedrehte oder vergrößerte Version

des Objektes vorstellen. Damit stellt sich auch hier die Frage, wie wir das tun.

Lernt das Gehirn eine Abbildungstransformation, unabhängig von Objekten oder

deren Merkmalen?

Zu dieser Frage wurde in den vergangenen Jahrzehnten viel geforscht, aber es gibt

immer noch viele ungelöste Probleme aufgrund der beschriebenen Schwierigkeiten

bei Objekterkennungsaufgaben. Zum Beispiel gibt es noch kein künstliches Objek-

terkennungssystem, das eine Objekterkennung auf menschlichem Level ausführen

kann, unabhängig von bestehenden Objektdeformationen.

Eines der flexibelsten Systeme, Abbildungen von visuellen Objekten zu gespe-

icherten, bekannten Objekten zu finden, ist die Gruppe der dynamischen Abbil-

dungen (Dynamic Link Mapping DLM). Obwohl diese Gruppe vobn Systemen

interessante Resultate aufweist, haben sie auch Probleme: zum einen sind sie

durch die Verwendung des mittleren quadratischen Fehlers empfindlich gegenüber



Ausreißern, und zum anderen haben sie eine hohe Rechenkomplexität.

Aus diesem Grund beschäftigen wir uns in dieser Arbeit näher mit diesen Syste-

men und entwickeln einen neuen Algorithmus , der auf der Shannon-Information

basiert. Wir können zeigen, dass der neue informationsbasierte, selbst-organisierende

Algorithmus das Problem der invarianten Objekterkennung lösen kann, insbeson-

dere auch das Problem der 3D-Rotation in der Tiefe.

Kontext der Arbeit

In diesem Zusammenhang ist es sinnvoll, einige allgemein gebräuchliche Begriffe

genauer vorzustellen.

Merkmalsextraktion

Bei jeder Klassifizierung von Mustern oder Objekterkennungsaufgabe ist die Ex-

traktion und Verwendung von Merkmalen, die geeignete Informationen zur Charak-

terisierung der Objekte bereitstellen, essentieller Teil der Diagnose. Es gibt viele

Algorithmen um eine Merkmalsextraktion für Muster- und Objekterkennungsauf-

gaben durchzuführen. Sie lassen sich grob in drei Hauptgruppen unterteilen:

Merkmalsextraktion basierend auf statistischer Analyse, Merkmalsextraktion basierend

auf Interessensfokus und Merkmalsextraktion mit künstlichen Neuronalen Netzen.

Merkmalsextraktion mithilfe statistischer Analyse

Als Merkmalsextraktion mithilfe statistischer Analyse bezeichnet man eine Merk-

malsextraktion, die statistische Werkzeuge wie Varianz, Kovarianz oder Korrela-

tion nutzt um die wertvollste Information aus den Eingabedaten zu extrahieren.

Einige dieser Extraktionsalgorithmen sind Hauptkomponentenanalyse (PCA), Lin-

eare Diskriminanzanalyse (LDA), Unabhängigkeitsanalyse (ICA) und Faktoranal-

yse (FA), die alle Bildpunkte umfassen.

Interessensfokus (POI) und Orientierungspunkt

Im Gegensatz dazu basieren POI Methoden auf interessanten Punkten oder Regio-

nen eines Bildes, die nützlich für Objekterkennungsaufgaben sein können. Diese

Punkte sollten gegen Beleuchtungsänderungen, Drehungen und Verschiebungen im

Vergleich zu den Originalbildern sich nicht ändern. Die Methoden dafür beinhalten

beispielsweise Kantenerkennung [5–7], Eckpunkterkennung [8, 9], Kleckserkennung

[10], skaleninvariante Merkmalstransformation (SIFT) [11], beschleunigte, robuste

Merkmale (SURF) [12] und Gabor Jets.



Merkmalsextraktion mit künstlichen neuronalen Netzen

Der traditionelle Ansatz zur Objekterkennung besteht darin, den Erkennungsprozess

in zwei Teile zu teilen: (1) Merkmalsextration und (2) Klassifikation. Eines der

Hauptprobleme bei diesem Ansatz ist, dass die Genauigkeit der Klassifikation

davon abhängt, dass vorher die Art der Merkmale per Hand gut entworfen worden

sind. Durch ein mehrschichtiges neuronales Netzwerk kann das Problem handge-

fertigter Merkmale umgangen und nichtlineare Objekterkennungsaufgaben gelöst

werden. Merkmale werden nicht entworfen, sondern beim Lösen der Aufgabe selbst

trainiert und sind damit nicht willkürlich gewählt. Die zur Optimierung der Net-

zwerke eingesetzten Verfahren basierend meist auf einer Zielfunktion und dem

Gradientenverfahren. Sie werden genutzt, um komplexe nichtlineare Probleme zu

lösen. Die am weiten verbreitete Familie von neuronalen Netzen zur Mustererken-

nung [13] sind feed-forward -Netzwerke, zu denen auch mehrlagige Perzeptrons und

radiale Basisfunktionsnetzwerke gehören. Eine weitere beliebte Netzwerkart ist die

selbstorganisierende Karte (Kohonen-Netzwerk) [14], die hauptsächlich für das

Clustern von Daten oder das Abbilden von Merkmalen verwendet wird. In der

Literatur der letzten Jahrzehnte bis heute [15–18] taucht eine Vielzahl von Merk-

malsextraktionsverfahren, basierend auf neuronalen Netzen, auf. In den letzten

Jahren wurden dabei auch sogenannte deep learning-Netzwerke aus mehrschichti-

gen, komplexen Architekturen benutzt, um eine Vielzahl von Problemen in der

Mustererkennung und im maschinellen Lernen zu lösen; viele Wissenschaftler ar-

beiten auf diesem Feld. Außerdem gibt es sog. tiefe neuronale Netze. Dies

sind vielschichtige neuronale Netze (mindestens 3, aber auch 20 Schichten) mit

Fehlerrückführung zur Bild- (Objekt-) oder Mustererkennung. In [19] ist eine Ein-

schätzung von tiefen neuronalen Netzen zu finden.

Partizipation von Wissen

In der Praxis sind die meisten Modelle zum maschinellen Lernen entwickelt wor-

den, um eine einzelne Aufgabe zu erledigen. In diesem Abschnitt fokussieren wir

uns mehr auf die Details verschiedener Arten von Wissen bei der Nutzung dieser

Methode für die Aufgaben der Klassifizierung. Dazu gehören das Übertragen von

Wissen (Transfer learning), eigenständig erworbenes Wissen (self-taught learning),

und universelle Merkmalsextraktion. Deswegen bezeichnen wir diese drei Typen

des Lernens als Wissenspartizipation (knowledge sharing).

Invariante Objekterkennung



Invariante Objekterkennung bezeichnet die Unterscheidung eines Objektes un-

abhängig von Variationen im Bild des Objekts, wie zum Beispiel Änderungen

des Blickwinkels, Lichts oder Hintergrunds. Wie bereits in Kapitel 1 erwähnt,

haben die schwierigsten Aufgaben der Objekterkennung mit diesen Änderungen

von Blickwinkeln, Licht, Translationen und anderen affinen oder nicht-affinen

Transformationen zu tun. Für Menschen und manche Tiere sind dies einfache

Probleme. Zum Beispiel wird in [20] gezeigt, dass Ratten invariante visuelle Ob-

jekterkennung auszuführen. Es wurde außerdem festgestellt, dass Ratten spon-

tan verschiedene Ansichten desselben Objekts als ähnlich wahrnehmen, also als

verschiedene, veränderte Instanzen desselben Objekts wiedererkennen. Für die

invariante Objekterkennung wurde eine Klasse von Algorithmen erfunden, um

dieses Problem zu lösen. Abhängig von der Art des zu lösenden Problems und dem

Feingefühl der Autoren wurde diese Problem auch als “Übereinstimmungsregistrierung”

oder “Abgleich” bezeichnet. Diese Konzepte sind sehr ähnlich und überschneiden

sich.

Dynamische Verbindungsabgleichsmethoden (DLM)

Die bisher erwähnten Graph-basierten Abgleichsmethoden zur Abbildung von vi-

suellen Objekten auf gespeicherte Objekte sind im Wesentlichen statische Meth-

oden, wogegen in der Natur sich der Abgleichsprozess dynamisch verhält. Dies

spiegelt sich in Ansätzen mit dynamischen Methoden (DLM) wider, die Verbindun-

gen zwischen den Bildpunkten des gesehenen Objekts und den Punkten des gespe-

icherten Objekts dynamisch herzustellen. Die DLM-Verfahren basieren auf der

biologischen Beobachtung schneller, neuronaler Plastizität. Eine der neuesten

Methoden dazu ist ein System, das in [21] vorgeschlagen wurde. In dieser Ar-

beit versuchen die Autoren, ein neues Modell zu definieren, das auf der Dynamik

von sog. Häussler-Systemen basiert, das in [22] vorgeschlagen wurde. Dort wird

die Formierung multipler Abbildungen mithilfe sogenannter “Kontrolleinheiten”

gelernt. In diesem System ist jede Kontrolleinheit verantwortlich für eine spezielle

Abbildung wie Verschiebung oder Deformation. Trotzdem hat auch dieses System

einige Nachteile, die wir versuchen, zu vermeiden.

Dazu versuchen wir in unserem Beitrag zuerst, Merkmale zu finden, die für spezielle

Klassifikationen optimal sind, und danach Merkmale zu finden, die auch für ver-

schiedene Klassifikationsaufgaben verwendet werden können. Weiterhin werden

wir ein System vorstellen, welches das Shannon-Informationskriterium (also Wahrschein-

lichkeiten) nutzt um das Ausreißer Problem von DLM Systemen zu bewältigen und



außerdem eine niedrigere Rechenkomplexität aufweist.

Gliederung der Arbeit

In dieser Arbeit stellen wir einen umfangreichen Ansatz vor, bestehend aus uni-

verseller Merkmalsextraktion und einem informationsbasierten, selbstorganisieren-

den System, um die invariante Objekterkennung auszuführen.

In den vorherigen Absätzen haben wir gezeigt, dass es verschiedene Methoden

für die Merkmalsauswahl und die Durchführung der Objekterkennung von de-

formierten invarianten Bildern gibt. Wie wir erwähnt haben, haben die POI-

basierten Methoden das Problem, dass sie anwendungsspezifisch sind und manuell

angepasste Algorithmen nutzen, die je nach Anwendungsfall unterschiedlich aus-

fallen und nicht allgemein verwendbar sind. Statistische Methoden wie PCA und

ICA nutzen die Annahme, dass die Originaldaten in einem linearen Verfahren

separiert werden können, aber diese Annahme ist für die meisten Daten in der

realen Welt nicht zutreffend. Ein Ansatz, basierend auf künstlichen neuronalen

Netzen wie beispielsweise tiefe Netzwerke, versucht dieses Nichtlinearitätsproblem

von PCA und ICA zu lösen, aber diese Methoden können mit Transformationen,

Translationen oder Änderungen in der Objektposition nur schwer umgehen. Ob-

wohl die DLM-Systeme interessante Ergebnisse liefern, werden wir später auch im

Detail zeigen, das DLM-Systeme ein Problem haben: das Problem einer hohen

Rechenkomplexität. Da sie außerdem auf dem mittleren quadratischen Fehler als

Risikofunktion basieren, ist die Klassifikationsleistung nicht optimal. Bei zufälligen

Werte ergeben sich immer Ausreißer, so dass das System unter Umständen nicht

die gewünschten Ergebnisse liefern kann: Ausreißer beeinflussen das Ergebnis des

quadratischen Fehlers viel stärker als dies bei wahrscheinlichkeitsbasierten Sys-

temen der Fall ist. Dies ist die Hauptmotivation unseres Ansatzes, einen neuen

Ansatz für DLM zu finden. Dazu versuchen wir in unserem Beitrag zuerst, Merk-

male zu finden, die für verschiedene Klassifikationen verwendet werden können,

und danach Merkmale zu finden, die für verschiedene Klassifikationsaufgaben ver-

wendet werden können. Weiterhin werden wir ein System vorstellen, welches das

Shannon-Informationskriterium (also Wahrscheinlichkeiten) nutzt um das Aus-

reißer Problem von DLM Systemen zu bewältigen und außerdem eine niedrigere

Rechenkomplexität aufweist.



In Kapitel 3 haben wir eine neue Methode für die universelle Merkmalsextrak-

tion vorgeschlagen, die allgemeiner ist, als die Aufgaben, die davor ausgeführt

wurden, also Transferlernen, halbüberwachtes Lernen und unüberwachtes Lernen.

Um dies zu erreichen nutzten wir einen auf der Informationstheorie basierenden

Ansatz, um eine Risikofunktion zu wählen, die die Kreuzentropie minimiert. Als

Grundlage für die Extraktion universeller Merkmale haben wir ein feed-forward

neuronales Netz entwickelt. Außerdem wird die Anzahl der Parameter, die gel-

ernt werden müssen, durch die Übertragung der Parameter unter allen rezeptiven

Feldern reduziert. Zusätzlich zur reduzierten Anzahl von Parametern hat dies den

Vorteil, dass alle Neuronen dieselben Merkmale lernen, unabhängig von ihrer Po-

sition im Eingabebild. Als Nachteil unseres Systems sollte angeführt werden, das

diese Entscheidung nicht von den ursprünglichen Beweisen [23] für die Approxi-

mationseigenschaften von zweischichtigen neuronalen Netzen abgedeckt wird, so

dass die klassischen Approximationseigenschaften nicht garantiert werden. Außer-

dem ist die Betrachtung der Filtereigenschaften der Ersten Schicht als Merkmale

plausibel, aber willkürlich gewählt.

Trotzdem zeigen unsere Ergebnisse, dass diese universell trainierten Merkmale er-

folgreich in verschiedenen Bildverarbeitungsaufgaben angewendet werden können,

wie zum Beispiel bei der Erkennung handgeschriebener Ziffern sowie der Erken-

nung natürlicher und künstlicher Objekte, die vor künstlichen oder natürlichen

Hintergründen platziert wurden oder der Erkennung verschiedener Texturen.

In Kapitel 4 haben wir eine zweite und dritte verdeckte Schicht zu dem flachen

neuronalen Netz aus dem vorangegangenen Kapitel hinzugefügt und die Leistung

dieser Netze für verschiedene Parameter getestet. Interessanterweise zeigt das

flache Netzwerk bessere Resultate als das Vielschichtennetzwerk, was auch von

anderen Autoren bestätigt wird.

In Kapitel 5 haben wir eine neue Methode zur Selbstorganisation des Systems

vorgestellt. Wir nutzten einen Informationstheoretischen Ansatz um ein neues

Ähnlichkeitsmaßzu definieren. Um die Ähnlichkeit zwischen Ein- und Ausgabe

der neuronalen Aktivität zu messen, verwendeten wir eine Zielfunktion, die auf

lokalisierter Shannon-Entropie basiert und von einer Gaußfunktion gewichtet wird.

Als Ergebnis entwickelte sich eine gewünschte neuronale Abbildung zwischen vi-

suellem Objekt und gespeichertem Objekt, sowohl ein- als auch zweidimensional.

Um die Qualität des Endergebnisses und die Rechenkomplexität der vorgeschla-

genen Methode mit zwei anderen erwähnten Methoden zu vergleichen, können



wir sagen, dass die finale Version unseres Vorschlags besser ist, als ein Kohonen-

System. Vergleicht man die Methode, mit dem Häussler System lässt sich sagen,

dass die Ergebnisse bei den untersuchten Beispielen zwar dieselben sind, aber unser

Vorgehen hat immer eine niedrigere Rechenkomplexität.

In Kapitel 6 haben wir zunächst die Theorie zu überwachten Systemen von Tomas

et. al. für die Aufgabe der deformationsinvarianten Objekterkennung mit unserer

Informationsabbildung verglichen. Wir nutzten die verbesserte Architektur des

Häussler-Systems, die von Tomas und Malsburg in [21] vorgeschlagen wurde. Sie

wendeten diese für die Verschiebung und Drehung im zweidimensionalen Raum

an. Die guten Ergebnisse waren eine Motivation, den Fall von dreidimensionalen

Transformationen zu testen. Das Ergebnis qualifiziert unser System mindestens so

gut wie das Häussler-System, aber es nutzt weniger Rechenleistung und ist weniger

beeinflusst von Ausreißern aufgrund des wahrscheinlichkeitsbasierten Ansatzes.

Danach haben wir für den Fall des unüberwachten Lernens die Fähigkeiten ihrer

Systeme für die drehungs- und tiefeninvariante Objekterkennung untersucht und

die Konvergenz gezeigt. Auf jeden Fall ist auch für den unüberwachten Fall ein

informationsbasierter Ansatz vorzuziehen. Dafür werden wir unser System in

zukünftigen Arbeiten in diese Richtung ausbauen.
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Chapter 1

Introduction

1.1 Preamble

Humans use their existing knowledge to learn new things. They use the informa-

tion taken from learning basic math operations to solve more complex mathematic

problems or they use knowledge taken from driving a motorcycle to learn car driv-

ing faster. Therefore, knowledge sharing is one of our brain strategies to learn

objects and also concepts faster.

One of the main things that we as human do in our lifetime is the recognition

and/or classification of all kind of visual objects (“OR task”). It is noted in [1]

that around fifty percentage of the nonhuman neocortex is responsible for visual

processing. This fact tells us that object recognition is a complex task in our and

in animal brain, but we do it in a fraction of a second [2]. The main question

is: How does the brain exactly do it? Does the brain use some feature extraction

algorithm for OR tasks? The hierarchical structure of the visual cortex and studies

on a part of visual cortex called V1 tell us that our brain use feature extraction

for OR tasks using Gabor filters [3, 4].

We also use our previous knowledge in object recognition to detect and recognize

the objects which we never saw before. Also, as we grow up we learn new objects

faster than before. The question is again: how do we do that? Are there some

1
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common features among different objects that can be used for classification of

many other objects with different probabilities and properties?

Feature extraction is an important step in the construction of any pattern classi-

fication and aims at the extraction of the relevant information that characterizes

each class. This is basic for any task of object recognition, both in human vision

and computer vision. These facts imply that the visual cortex of human and other

animals use some common (universal) features at least in lower layers to distin-

guish between different objects. Additionally, it is still a challenging problem in

computer vision how to extract universal features that reflect the fundamental

substance of images as complete as possible. In this context, we might ask: Do

universal features in images exist, such that by using them we are able to efficiently

recognize any unknown object? Is it necessary to extract new special features for

any new object? How about using existing features from other tasks? Is it pos-

sible to efficiently use extracted feature of a specific task for other tasks? Are

there some general features in natural and non-natural images which can also be

used for specific object recognition? For example, can we use extracted features

of natural images also for handwritten digit classification?

Very little research attention has been paid to these problems in the last decades.

Some people used the concept of transfer learning to reuse the knowledge taken

from one classification problem for similar problems. In this context, our work

proposes a new information-based approach and tries to give some answers to the

questions above.

Another problem in the OR task is the recognition of objects, independently of

any changes. We as human or also animals can recognize objects in spite of many

deformations (e.g. changes in illumination, rotation in any direction or angles,

distortion and scaling up or down) in a fraction of a second. When observing an

object which we never saw, we can imagine the rotated or scaled up object in our

mind. Here also the question arises: How does the brain solve this problem? To do

this, does the brain learn some mapping algorithm (transformation), independent

of the objects or their features ? Also about this question, much work has been
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done during the past decades, but there are still many problems existing due to

the difficulty of OR tasks which need to be solved in future. For instance, there is

still no artificial OR system which could perform deformation independent object

recognition as good as humans. In this contribution, also this question is addressed

and a new algorithm is devised, based on information.

1.2 Thesis outline

In chapter 2, we review some feature extraction algorithms (e.g. SIFT and SURF)

and knowledge sharing methods including transfer learning, semi-supervised learn-

ing and self-taught learning.

In chapter 3, we focus on the extraction of very general features that can be

useful for object recognition and classification, implemented by a neural network

of only two layers. We also do some experimental tests on different data sets with

different classes and distributions in order to show the feasibility of our approach.

In chapter 4, a second and third hidden layer will be added to the shallow neural

network from chapter 2. The chapter starts with a short introduction into deep

architectures and then will look on the equations and updated learning rules for a

three and four-layer neural network as well as on the network specifications. Lastly,

the performance of the three and four layer networks for different parameters will

be tested.

In chapter 5, additional to state-of-the-art systems, we introduce a new dynami-

cal self-organized mapping which can be used for dynamical object recognition and

classification. Firstly, we explain two well-known dynamical object recognition sys-

tems (Kohonen and Häussler systems). Then, we describe our new self-organized

neural projection system which is based on information theory.

In chapter 6, we apply the new self-organized neural projection method developed

in chapter 5 to the task of deformation invariant object recognition task and

compare it to a Häussler system.
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Finally in chapter 7, we describe some important conclusions about our result

and discuss future work in this area.



Chapter 2

Feature Extraction and Object

Recognition Today

In this chapter we give an overview of the state of the art on feature extraction,

knowledge sharing and invariant object recognition algorithms, setting the ground

for our newly developed algorithms.

2.1 Feature extraction

In any pattern classification or object recognition (OR) task, the extraction and

usage of features which have excellent information to characterizes each class or

object are the most crucial part of the diagnosis. There are many algorithms to

do feature extraction for pattern and object recognition tasks. We can categorize

them into several main groups, e.g., statistical analysis based feature extraction,

point of interest (POI) based feature extraction and ANN based feature extraction.

2.1.1 Statistical analyses based feature extraction

Statistical analysis based feature extraction refer to the types of feature extractions

which employ statistical tools e.g. variance, covariance or correlation to extract

5
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most valuable information from input data. Some of this classical algorithms

are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

Independent Component Analyses (ICA) and Factor Analysis (FA).

PCA is type of linear dimension reduction (feature extraction) techniques which

aim to transfer data from high dimension to lower dimension such that the vari-

ance of transformed data should be maximized. This task is done by using the

covariance matrix of the data and the eigenvectors of the covariance matrix. The

eigenvectors of the covariance matrix with the biggest eigenvalues are the new base

for the linear transform. This reduced space is called principle components and is

an orthogonal base system.

PCA is concerned with explaining the variance-covariance structure of a set of

variables by a few linear combinations of these variables. Its general objectives

are (1) data reduction and (2) interpretation [27].

In image classification work, it is common to use PCA as preprocessing step of

analysis. We can use it to reduce the number of variables and avoid redundancy.

PCA projects the high-dimensional data to a low-dimensional subspace by mini-

mizing the expected reconstruction error. Among linear dimension methods, PCA

is one of the most efficient of them but it’s effective is based on the assumption

that biggest variances have most importance, but this may not be true in the real

world. Another assumption is that the data embedded in the low-dimensional

space are globally linear or approximate linear [28].

LDA is a traditional statistical technique which is proposed by Fisher in [29]. It

reduces dimensionality while the classes are separated as much as possible. To

measure the distance among classes, he applied the concept of a between-class

and within-class covariance matrix. The conventional form of the LDA assumes

that all data are available in advance. The LDA computes its feature space by

finding the spectral decomposition of the appropriate matrix. The conventional

form of the LDA assumes that all the data are available in advance. The LDA

computes its feature space by finding the spectral decomposition of the appropriate

matrix. It is a traditional supervised technique for both dimensionality reduction
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and classification [30]. In [31], they described that when the training data set is

small, PCA can outperform LDA and, also, that PCA is less sensitive to different

training data sets.

Independent component analysis (ICA) is a method in which a linear representa-

tion of non-Gaussian data has to be found such that the components are statisti-

cally independent, or as independent as possible [32]. In comparison to PCA, we

can say that PCA is based on the information given by the second order statistics,

while ICA goes up to forth order statistics.

Factor analysis (FA) is another types of linear feature extraction which is based on

correlated variables and aims to transfer this correlated variables to lower number

of unobserved variables called factors which are sufficient for the task of classifica-

tion [33]. The main applications of FA are to reduce the number of variables and

to detect structure in the relationships between variables for classifying variables.

Therefore, factor analysis is applied as a data reduction or structure detection

method.

2.1.2 Point of interest (POI) and landmarks

POI methods are based on some interesting points or regions of an image which

can be useful for object recognition tasks. These points should be resistant due

the change in illumination, rotation or shift in the original images. These methods

include (but are not limited to) edge detection [5–7], corner detection [8, 9], blob

detection [10], scale-invariant feature transform (SIFT) [11], speeded up robust

features (SURF) [12] and Gabor jets .

2.1.3 Artificial neural network based feature extraction

The methods we talked in the first section (e.g. PCA or ICA) are linear, but the

problems we meet in the real world are nonlinear. Therefore, it is necessary to

search for nonlinear feature extraction methods for pattern recognition (PR). In
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addition, the disadvantage of methods which are based on landmarks (POI) is that

they are very task specific and need some hand-crafted algorithms which change

from application to application.

The traditional way for object recognition is to divide the recognition process into

two parts: (1) feature extractor and (2) classification. One of the main problems

with this approach is that the accuracy rate depends on the ability of the designer

to prepare a set of good features. By using a multilayer neural network for pattern

recognition, we can overcome the problem of preparing hand-crafted features, and

also solve the nonlinear PR problems. Features are learned by training during the

task itself and are not subject to arbitrary design.

To learn very complex nonlinear problems, objective functions and gradient-based

minimization techniques using the objective functions are used. The most com-

monly used family of neural networks for pattern classification tasks [13] are the

feed-forward networks, which include multilayer perceptrons and radial basis func-

tion networks. Another popular network is the Self-Organizing Map or Kohonen-

Network [14], which is mainly used for data clustering and feature mapping.

A large variety of feature extraction methods based on neural networks appeared

in the literature from last decades up to now [15–18]. In recent years, so-called

”deep” artificial neural networks have been used to overcome numerous problems

in pattern recognition and machine learning, and many researchers are working in

this field. Deep neural networks use artificial neural networks with many layers

(from at least three to even 20 layers) and back-propagation technique for image

(object) classification or pattern recognition. In [19], a review of deep learning in

neural networks is available.

2.2 Knowledge sharing

In practice, most of the time machine learning models are designed to accomplish

a single task. In this section, we try to focus on more details of different types of
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knowledge using methods for the task of classification, including transfer learning,

self-taught learning and universal feature extraction. Therefore, we reference these

three types of learning as knowledge sharing.

The study of knowledge sharing is motivated by the human brain and the learning

process within the human brain. Human learners appear to have natural ways to

transfer knowledge between tasks. For instance, suppose that two persons want

to learn driving a car. One of these persons has the motorcycle driving license

and the other one does not have it. Learning the new task (here, driving a car)

is easier for the person who has the driver license of the motorcycle than for the

other one, because he or she can reuse some of the already acquired abilities.

Depending on the methods which are used for knowledge sharing - including what

to transfer (share), how to transfer and when to transfer - we can find different

types of knowledge sharing algorithms like transfer learning, multi-task learning,

self-taught learning, semi-supervised learning and universal (common) features

learning. Let us have a closer look on these methods.

2.2.1 Multi-task learning and transfer learning

Multi-task learning is an approach that learns a problem together with other re-

lated problems at the same time. By this way, the major task can be learned bet-

ter through using the experience gained by other tasks. This approach is effective

when the tasks have some similarities. For instance, in [34],they used an algorithm

which alternately performs a supervised and an unsupervised step, where, in the

supervised step it learns task-specific functions and in the unsupervised step it

learns common across tasks representations.

In [35] transfer learning is defined as ”the ability of a system to recognize and

apply knowledge and skills learned in previous tasks to novel tasks”. By this

definition, transfer learning aims to extract the information from one or more

source functions and applies the knowledge to a different function. Consider that
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the target task should be related to the task of origin. You can find some work on

transfer learning in [36] and [37].

In comparison to multi-task learning which tries to learn all of the source and

target tasks simultaneously, transfer learning goal is to improve the learning of

target task.

2.2.2 Semi-supervised learning

Semi-supervised learning is another type of knowledge sharing algorithm which is

used in the literature [38], [39] and [40]. This kind of transfer learning is useful

when we want to classify some data, and there are not sufficient labeled data of

the domain, or it is difficult to get, but unlabeled data of the same domain is

cheap and available. In this case, we try to transfer information from unlabeled

data to classify labeled data. In comparison with transfer learning, we can say

that in transfer learning we use typically labeled data from a different but related

task, and try to transfer knowledge from one supervised learning task to another

supervised task.

2.2.3 Self-taught learning

One more general algorithm than semi-supervised learning is self-taught learning

which was introduced by Rajat Raina et al. in [41]. In this work, they tried to use

information (features) extracted from some unlabeled natural images to classify

labeled image data (elephants and rhinos). In another test, they used features

extracted from a font character recognition task to classify handwritten English

characters. Here also, the source and target task should be from the same domain

but a different distribution.
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2.3 Invariant object recognition

Invariant object recognition refers to distinguish an object regardless of image

variations, such as variations in viewpoint, lighting or background. As we men-

tioned in Chapter 1, one of the hardest tasks in OR problems is related to changes

of an object in view angle, illumination, translation and other types of affine or

non-affine transformation. This task is done by animals and human easily. For

instance, in [20] it is shown that rats are capable of invariant visual object recog-

nition. They also got the result that rats spontaneously perceive different views

of a visual object as similar to each other, i.e. as instances of the same object.

Some groups of algorithms are invented to overcome this problem. Depending on

the type of problem and also on the tact of authors this problem has also been

referred to as alignment, registration, or matching. These concepts are very close

to each other and have overlappings. We will explain these methods in the rest of

this section.

2.3.1 Image registration

Image registration techniques refer to the task of geometric transformation between

input (source) and output (target) images [42, 43]. In this case, they try to align

two or more images of the same scene, taken in different conditions like the change

in viewpoints or sensors. The authors use some algorithms like correlation-like

methods, methods using invariant descriptors and mutual information methods to

perform image registration.

2.3.2 Shape correspondence

Shape correspondence methods refer to find important points between the source

domain (object) and the target domain (objects) [44]. The correspondence may be

done very densely which means trying to find the relevant pixels in the reference

image for the corresponding pixels in the target image. Or, a sparse mapping is
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done which uses only the important points in the input and output pattern [44].

In figure 2.1 an example of a sparse shape correspondence between two images

is illustrated. Certainly, to match different parts of the shape, the corresponding

POI has to be identified before

Figure 2.1: Sparse corresponding between two images.

2.3.3 Graph matching methods

Some authors (e.g. [45] ) tried to see the invariant pattern recognition as a graph

matching problem between input and output images. In these methods the graph

matching schema offers the ability to match transformed patterns. These methods

seem to use the ideas of image registration and shape correspondence and combine

them into a formal approach using well-known graph theory.
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2.3.4 Dynamic link matching (DLM) methods

The graph matching methods mentioned so far basically are static methods, whereas

in nature the matching process is very fast and dynamically changing. This is re-

flected by the dynamic link methods (DLM). The DLM is based on the biological

observation of rapid synaptic plasticity for performing transformations. One of the

state-of-the-art methods to overcome the mapping problem is a system proposed

in [21]. In this work, they defined a new model which is based on Häussler system

which was already proposed in [22] to learn the formation of multiple mappings

using the concept of control units. In this system, each control unit is responsible

for a particular transformation. Nevertheless, also this system has some drawbacks

which will be discussed in the next section.

2.4 Conclusion

In the previous section, we have shown that different methods exist for selecting

features and performing deformation invariant image recognition. As we men-

tioned, the methods based on POI have the problem that they are task specific

and need some hand-crafted algorithms which change from application to applica-

tion. Statistical based methods like PCA and ICA have the assumption that the

original data should be separated in a linear approach, but this assumption is not

valid for most of the data in the real world.

We will propose a new method for universal feature extraction which is more gen-

eral than the previous tasks which have been done before e.g. transfer learning,

semi-supervised learning and self-taught learning. In our contribution, it is not

needed for the source task and target task to be related while in knowledge sharing

methods it is necessary.

An ANN-based method like deep network tries to solve the nonlinearity problem

not solved by PCA and ICA, but they have the problem that these methods are

not robust in the case of transformations, translations or change in the position
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of the objects.

Although the DLM system shows interesting results for this problem, as we will

show in more detail later on, the DLM system has the problem of a high compu-

tational complexity. In addition, because it uses the least mean squared error as

risk function, the performance for classification is also not optimal. For random

values where outliers are present, this system may not work well because outliers

influence the mean squared error classification much more than probability-based

systems. Therefore, the DLM system should be completed by a modified approach.

In our contribution, first, we try to find features which can be used for multiple

classification tasks, and second, we will introduce a new system which employs

the information criteria (i.e. probabilities) to overcome the outlier problem of the

DLM systems and has a smaller computational complexity.



Chapter 3

Information-Based Universal

Feature Extraction

3.1 Introduction

In many real world image based pattern recognition tasks, the extraction and

usage of task-relevant features are the most crucial part of the diagnosis1. In the

standard approach, either the features are given by common sense like edges or

corners in image analysis, or they are directly determined by expertise. They

mostly remain task-specific, although humans who perform such a task always use

the same image features, trained in early childhood. It seems that a universal

feature set exists, but it is not yet systematically found.

Humans have sought to extract information from imagery ever since the first pho-

tographic images were acquired [46]. The most useful basic components are called

features. Feature extraction and representation are crucial steps for object recog-

nition. One issue is the effective identification of important features in images, and

the other one is extracting them. It is a difficult task to obtain a prior knowledge

1The results of this chapter published as: (1) Information based universal feature extraction.
In Seventh International Conference on Machine Vision (ICMV2014), volume 9445 of , page
94450D, February 2015 and (2) accepted as :Information Based Universal Feature Extraction in
Shallow Networks, International Journal of Pattern Recognition and Artificial Intelligence.

15
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of what kind of information is required from the image, even when you know the

image domain. Feature extraction is a type of dimension reduction that efficiently

represents interesting parts of an image as a compact feature vector with less data.

Features are functions of original measurements that are useful for classification

and/or pattern recognition. In other words, feature extraction of images is the

process of defining a set of image characteristics, which represent most efficiently

or significantly the information that is important for analysis and classification;

much of the information in the data set may be of little value for discrimination.

There have been many attempts to solve this problem. Dong [47] presents a

review on image feature extraction and representation techniques. In his view,

there are three feature representations: global, block-based, and region- based

features. Chow et al. [48] proposed an image classification approach through a

tree-structured feature set. In this approach, they combined both the global and

the local features through the root and the child nodes. Tsai and Lin [49] compared

global, block-based, and region-based features and their combinations by using a

standard classifier over thirty categories. However, it is not clear whether these

features are important or not. All those feature definitions seem to arbitrary

subjective, not guided by the task specification itself.

However, there is a general agreement that the tools available for analysis of images

are not sufficient. Additionally, it is still a challenging problem in computer vision

how to extract universal features that reflect the fundamental substance of images

as complete as possible.

In this context, we might ask: Do universal features in images exist such that by

using them we are able to efficiently recognize any unknown object? Is it necessary

to extract new special features for any new object recognition tasks? How about

using existing features from other tasks? Is it possible to use extracted feature

of a specific task for other tasks? Are there some general features in natural and

non-natural images which can also be used for specific object recognition? For

example, can we use extracted features of natural images also for handwritten

digit classification? Very little research attention has been paid to these problems
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in the last decades. Some people used the concept of transfer learning to reuse

the knowledge which taken from one classification problem for similar problems.

Dan et al. [50] used the knowledge of Latin digits classification for Latin uppercase

letters. Raina et al. [41] also used a similar paradigm which is self-taught learning,

or transfer learning from unlabeled data to use the knowledge of some non-labeled

data for supervised classification of groups of animals with limited number of

images .

This context proposes an new information based approach and tries to give some

answers. Therefore, in this paper we focus on the extraction of very general fea-

tures that can be useful for object recognition and classification, implemented by a

neural network of only two layers. The rest of this chapter is organized as follows.

Section 3.2 elaborates the definition of universal features and describes the pro-

posed method for their extraction. In section 3.3, we present the implementation

of the method by neural networks, and in section 3.4, some experimental results

of this algorithm are shown. Finally, some important conclusions and future po-

tential research directions are shown in Section 3.5.

3.2 Universal feature extraction

In this section, we will develop the notation of universal features. How can

we show that a feature is universal or not? One criterion is its applicability: an

universal feature has to be effective in all applications ever existed and yet to come

up. Unfortunately, there is no practical way to prove this. Instead, we will first

define the features by theoretical considerations and then show their effectiveness.

Alternatively, we may not need to prove that a certain feature is universal; it rather

means that it is not specific to any particular application. For example, textures

are common in many computer vision applications which means for many tex-

ture features to have a multipurpose nature. For applications of different nature,
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texture feature extracting algorithms may determine what morphological particu-

larities are typical in all those applications. The algorithms addressing these types

are then also practicable in this scenario.

In this contribution, for task specification we will focus on the question: What

kind of features are the best for classifying objects? It is well known that the best

strategy for classification is the Bayes decision criterion [51]: given an image x,

choose that class ωk which has the highest conditional probability of occurrence.

ωk = arg maxωi
P (ωi|x) (3.1)

Unfortunately, we do not know the conditional probabilities. Instead, we have to

estimate them.

Let us assume that we observe pictures x containing an object. Additionally, a

teacher will tell us with the decision L if the object is present: L = 1 indicates

yes and L = 0 means no. Therefore, the observation set consists of pairs (x, L)

and the best classification is the one which maximizes the probability P (L|x).

Now, instead of using the whole picture, only a small set of features h1, . . . , hn

extracted from x by a function h(x) should be sufficient for detecting the object.

How can we find it? Let us first consider just one feature h. This means, that

the probability of the correct decision for the presence of object P (L|x) should be

as close to P (L|h) as possible. Since the probability for correct classification is

based on the conditional probabilities, the distance between the two probability

distributions can be seen as a measure for the classification quality, implementing

the Bayes decision. It is well known that the Kullback-Leibler distance

D(P (L|x)||P (L|h)) =
∑
L

P (L|x) log
P (L|x)

P (L|h)
(3.2)
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becomes zero if and only if the two probability distributions become equal [52]. It

implements the difference

∑
L

P (L|x) log
P (L|x)

P (L|h)
=
∑
L

P (L|x) logP (L|h)−
∑
L

P (L|x) logP (L|x)

= HL(h)−HL(x)

(3.3)

between the estimated Shannon information HL(h) and the observed information

HL(x) of the image pattern x for the teacher classification decision L.

Now, we have a problem: since h(x) is an unknown function, we do not know

P (L|h). Instead, we can estimate it by a function g(L|h) which does depend

on the decision L, but is indeed a function of h only. Therefore, we note it by

gL(h). Nevertheless, if we maintain 0 < g < 1 the Kullback-Leibler distance will

still become zero if the two probability distributions become equal. Therefore,

we might use the expected distance as an objective function R for setting up the

unknown function.

R =
∑
x

P (x)D(P (L|x)||gL(h))

=
∑
x

∑
L

P (x)P (L|x) log
P (L|x)

gL(h)

=
∑
x

∑
L

P (L, x) log
P (L|x)

gL(h)

=
∑
x

∑
L

P (L, x) logP (L|x)−
∑
x

∑
L

P (L, x) log gL(h)

(3.4)

The objective function is composed by two additive terms. The first term does

not depend on the unknown function g, remaining constant when changing g.

Therefore, for minimizing R it suffices to maximize the new risk function

R(g, h) =
∑
x

∑
L

P (L, x) log gL(h) = 〈log gL(h(x))〉 (3.5)



Chapter 3. Information-Based Universal Feature Extraction 20

The expectation 〈.〉 is computed over all values of x and L. This is also covered

by the uniformly distributed M observations (x(i), L(i)) where i = 1, . . . ,M by

R(g, h) =
1

M

M∑
i=1

log gL(h(x(i))) (3.6)

In our observation set, each x(i) is accompanied by the teacher decision L(i) ∈

{0, 1}. For L(i) = 1, the feature should be present to show the presence of the

object. Assuming the probability gL(h) for L = 1 is g(h), then for the second

case L = 0 the probability must be (1− g(h)). Therefore, the term log g(h) in the

objective function can be written as

log gL(h) = L(i) log g(h) + (1− L(i)) log(1− g(h)) (3.7)

and the objective function becomes

R(g, h) =
1

M

M∑
i=1

L(i) log g(h) + (1− L(i)) log(1− g(h)) (3.8)

This function is well known as maximum likelihood objective function[53]. It should

be mentioned that for N independent objects, the probabilities of the multiple

output h = (h1, . . . , hN) factorize

gL(h) =
N∏
k=1

gLk(hk) (3.9)

and the log probability becomes by eq.(3.7)

log gL(h) =
N∑
k=1

Lk(i) log gk(hk) + (1− Lk(i) log(1− gk(hk))) (3.10)

Thus, our objective risk function forms a sum over all single risks

R(g,h) =
1

M

M∑
i=1

N∑
k=1

Lk(i) log gk(hk) + (1− Lk(i) log(1− gk(hk))) (3.11)

Now, how can we obtain the unknown functions g and h? Let us assume that
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we use parameterized functions, i.e., the necessary information for extracting and

using the features are stored in a finite set of parameters. For m features, we

assume m extraction functions hi(x), each one containing n parameters

hj(x) = hj(u, x) with u = (u1, . . . , un)

The object detection function g(y) is determined by s parameters

g(h(u),w) with h = (h1, . . . , hm) and w = (w1, . . . , ws)

Thus, the task of determining the universal features becomes a task of determining

the appropriate parameters of the unknown functions.

3.3 Learning the feature extraction

In this section, we will describe our approach for extracting the universal features

by minimizing the objective function. Unfortunately, the desired solution is prob-

lem dependent, i.e. it depends on our observation set. One common approach for

minimizing an objective function, if there is no analytic solution, is the stepwise

iteration of an approximation expression, a so-called learning algorithm, using the

observations as training set.

As learning algorithm for the parameters w we might use the well-known stochastic

gradient ascend for maximizing R,

w(t+ 1) = w(t) + γ(t)
∂R(g(w))

∂w
(3.12)

which does not use the expectation value over M samples of the objective function

R,

R(g,h) =
1

M

M∑
i=1

L(i) log g(h) + (1−L(i)) log(1− g(h)) =
1

M

M∑
i=1

Ri(g,h) (3.13)
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but its stochastic version for the i− th sample pairs (x(i), L(i))

Ri(g,h) = L(i) log g(w, h(u, i)) + (1− L(i)) log(1− g(w, h(u, i))) (3.14)

For further computations, let us drop the index i from the notation, since the

formulas should be applied to all pairs (x(i), L(i)) of the training set. The gradient

of the stochastic objective function becomes

∂

∂w
R(w,u) =

∂

∂w
L log g(w) + (1− L) log(1− g(w))

=
L

g(w)

∂g(w, y)

∂w
− 1− L

1− g(w)

∂g(w)

∂w

= [
L

g
− 1− L

1− g
]
∂g(w)

∂w

= (
L(1− g)− g(1− L)

g(1− g)
)
∂g(w)

∂w
= (

L− g
g(1− g)

)
∂g(w)

∂w

(3.15)

For the second set of parameters u we proceed analogously. Here, our learning

algorithm is:

u(t+ 1) = u(t) + γ(t)
∂R(g(u))

∂u
(3.16)

and the gradient becomes

∂

∂u
R(w,u) = (

L− g
g(1− g)

)
∂g(w, h(u))

∂u
(3.17)

For estimating the unknown function g and the parameters w by we learn the

parameters by iteratively analyzing the data.

3.3.1 The neural net for extracting one feature

Now, we have to choose the kind of functions g(.) and h(.) to use here. It is well

known that all continuous functions can be approximated sufficiently well by two

layers networks using sigma neurons and squashing functions S as output functions

[23]. Therefore, choosing our approximation functions like this will not limit our

approach in any way. With the image input described by a pixel tuple x, we might
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choose as extraction function a squashing function with an affine argument

hj(u,x) = S(z) with z = uTx

and as object detection function for one object we choose the Fermi function

g(w,h) = SF (v) with SF (v) =
1

1 + exp(−v)
and v = wTh

This can be interpreted as having a first layer of formal neurons, implementing

sigma neurons and squashing function h(u,x), and a second layer, implementing

the object detection function g(h,w). In figure 3.1 the two layer architecture is

shown with N output units, each one detecting a different object.

Figure 3.1: The network architecture for function approximation

Now, to obtain the desired iteration equations, the learning rules, we use the stan-

dard back-propagation approach for our risk function and compute the necessary

derivatives.

In our approach and our learning rules we have the properties 0 ≤ g ≤ 1 and

0 ≤ L ≤ 1. This is covered by the choice of the Fermi function SF (v) = 1
1+exp(−v)

as squashing function of the output layer with dim(w) = dim(h) = m and the



Chapter 3. Information-Based Universal Feature Extraction 24

derivative

∂g

∂v
=
∂SF (v)

∂v
=

∂

∂v
(1 + e−v)−1 = (1 + e−v)−2e−v =

1 + e−v − 1

(1 + e−v)(1 + e−v)

= g(1− g)

(3.18)

For the first layer, the hidden layer, we get

hj(u,x) = St(z) = e.g. tanh(z) with z = uTx

Therefore, the derivatives in equations 3.12 and 3.16 become

∂

∂w
R(w,u) = (

L− g
g(1− g)

)
∂g(w, h(u))

∂w

= (
L− g
g(1− g)

)
∂g

∂v

∂v

∂w

= (
L− g
g(1− g)

)g(1− g)h = −(g − L)h

(3.19)

and

∂

∂u
R(w,u) = (

L− g
g(1− g)

)
∂g(w, h(u))

∂u

= (
L− g
g(1− g)

)
∂g

∂v

∂v

∂u

= (
L− g
g(1− g)

)g(1− g)
∂v

∂u
= −(g − L)

∂v

∂u

(3.20)

The s− th term of the vector ∂v
∂u

is

∂v

∂us
=

m∑
j=1

wj
∂hj
∂us

=
m∑
j=1

wjS
′(zj)

∂zj
∂us

=
m∑
j=1

wjS
′(zj)xs (3.21)

By this, our learning equations 3.12 and 3.16 become

w(t+ 1) = w(t)− γ1(t)(g − L)h (3.22)

u(t+ 1) = u(t)− γ2(t)(g − L)
m∑
j=1

wjS
′(zj)x (3.23)

with e.g. S ′t(zj) = 1− h2j .
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Now, for learning we assume several important restrictions:

• Each extraction function hj covers a different part of input x, i.e., it has an

unique receptive field and is not completely overlapping with other fields,

see figure 3.2. This means, that the tuple of input pixels x is different for

each extraction unit j, denoted by xj.

Figure 3.2: The receptive field patch extraction from an image

• The object should be recognized everywhere on the image. Therefore, in

order to train only the statistics and avoid overfitting, we put the constraint

that the parameters u of each extraction function are the same ones, i.e., all

hidden neurons share the same k weights.

• There can be more than one object present, i.e. N ones which should be

recognized independently. Therefore, we assume not one, but N functions

gk, i.e., N output units.

• Training a weight will also result in training neighboring weights by a certain

degree.

An important decision in this network is that we use the weight sharing idea in

the feature extraction layer. Using weight sharing has two advantages: First, it

reduces the number of parameters for learning, and second, all neurons learn to

detect the same features, although their receptive fields are located at different

positions in the input image.
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The number of output neurons depends on the number of classes (sets) that we

need or how many sets we want for classification. Therefore, the weights w in the

last layer are not shared and specific for the detected classes. In figure 3.3 the

overall architecture is shown.

We use the first layer (U) as feature extractor and the second layer (W) as

Figure 3.3: The architecture of the two layers neural network for universal
feature extraction

classifier layer. Since all outputs gk(wk,h) can be computed independently from

each other, the stochastic gradient learning rule does not change much.

For the k − th output unit, we get by eq.(3.22)

wk(t+ 1) = wk(t)− γ1(t)(gk − Lk)h (3.24)

and equation (3.23) becomes by all N output units

u(t+ 1) = u(t)− γ2(t)
N∑
k=1

(gk − Lk)
m∑
j=1

wkjS
′(zj)xj (3.25)

and each component of u (urs) in two dimensional view of weights has a little

effect on its neighbors umn by

umn(t+ 1) = umn(t) + ℵ(m,n, r, s)urs(t+ 1) (3.26)
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where

ℵ(m,n, r, s) = e−((r−m)2+(s−n)2)/2σ2

(3.27)

is the neighborhood function and variable σ in this equation is related to neighbor-

hood radius. It is updated for each unit j differently. In figure 3.4 this is shown.

The input samples are no longer treated similarly by the extraction units hj(x),

Figure 3.4: The input samples covered by the first layer by two-dimensional
overlapping receptive fields (left) or one-dimensional overlapping receptive fields

(right) (from [24])

but they are grouped into subsets. Each unit j processes only a subset xj. The

input samples can be arranged in different manners. On the left hand side of figure

3.4 the samples are arranged in a two-dimensional manner, e.g. like pixels of an

image. The one-dimensional case is shown on the right hand side of figure 3.4 e.g.

for a speech signal with k = 5.

As you can also see in figure 3.4, we extract several patches from each image and

use them as inputs for the network. The number of patches that can be extracted

from an image depends on some factors, e.g. the size of a patch, the size of the

image and the number of pixels shared between two neighbor patches. For instance,

the number of rectangular patches which can be taken from an image with 60×80

pixels and a patch size of 9×9 sharing three pixels is 108. Please note that we
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extract square patches instead of circular ones because it is computationally more

feasible.

There are still some open questions for this kind of architecture:

• What is the best size of a receptive field (patch)?

• What is the optimum number of hidden units?

We will discuss these questions in later sections presenting some experimental

results. It is clear that, by increasing the size of the image, we need more receptive

fields and more parameters in the subsequent layer. Instead, it might be better

to increase the receptive field size for covering the image by a smaller number of

fields.

3.3.2 Extracting several features

Our feature extraction analysis of the previous section only covers just one feature

in each receptive field, the most important one. How do we get additional, helpful

features? Let us assume that in each receptive field we extract not only one

feature, but r ones. Then, each extraction result hj of receptive field j has several

components

hj = (h1(u1,xj), . . . hr(ur,xj))
T with hi(ui,xj) = S(zij), zij = uTj xj (3.28)

The corresponding network architecture is shown in figure 3.5. On the left hand

side, we see the two-dimensional input sample image covering. On the right hand

side, the corresponding one-dimensional receptive fields are shown. The activity

of the second layer, the object detection, will not change except of the fact that

for each output unit the number of inputs becomes mr instead of m.

g(w,h) = SF (v) and v = wTh and dim(w) = dim(h) = mr (3.29)
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Figure 3.5: The extraction of multiple features (from [24])

Certainly, the learning equations change with the additional features. Equation

(3.22) has now mr components, and equation (3.23)) becomes for the s-th feature

us(t+ 1) = us(t)− γ2(t)(g − L)
∂v

∂us
(3.30)

With the activity of

v = wTh =
rm∑
p=1

wphp =
r∑
i=1

m∑
j=1

wijhij + w0 (3.31)

containing the i− th feature of the j − th receptive field, we get the derivative of

∂v

∂us
=

∂

∂us

r∑
i=1

m∑
j=1

wijhij =
r∑
i=1

m∑
j=1

wij
∂

∂us
hij(ui,xj) (3.32)



Chapter 3. Information-Based Universal Feature Extraction 30

Since the i − th feature extraction function hij(ui,xj) does only depend on the

i− th parameter vector ui, we get zero for all terms where i 6= s

∂v

∂us
=

r∑
i=1

m∑
j=1

wij
∂

∂us
hij(ui,xj) =

m∑
j=1

wsjS
′(zsj)xj (3.33)

and our learning equation becomes

us(t+ 1) = us(t)− γ2(t)(g − L)
m∑
j=1

wsjS
′(zsj)xj (3.34)

using k inputs xkj at each receptive field j, obtaining the feature ysj = St(zsj) =

e.g. tanh(uTs xj) with S ′(zsj) = 1− tanh2(zsj).

For N outputs, equation(3.22) changes to

wk(t+ 1) = wk(t)− γ1(t)(gk − Lk)h (3.35)

and equation(3.34) is determined by all N output units

us(t+ 1) = us(t)− γ2(t)
N∑
k=1

(gk − Lk)
m∑
j=1

wksjS
′(zsj)xj (3.36)

and here also like in 3.26 and 3.27 each component of u (upq) in two dimensional

view of weights has a little effect on its neighbors umn by

umn(t+ 1) = umn(t) + ℵ(m,n, p, q)upq(t+ 1) (3.37)

Now, there are r features learned by each of the receptive fields. How can we

assume that they will be different although they have the same input and the

same learning rules? The answer lies in the fact that all feature vectors us have

different feedback from the second layer, depending on their own activity hs. This

leads to different learning behavior and different convergence states.
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3.3.3 Training and testing strategies

There are several training strategies which distinguish among different learning

modes:

1. Parallel training: All weights wkij and usp are updated after the whole net

has determined its activity. This strategy is preferable, but suffers from

strong convergence problems of the network parameter iteration.

2. Sequential training: We first train u1 and the corresponding wk1 until con-

vergence, not using the other u2, . . . ,ur. Then, leaving u1 constant, we train

u2 and the wk1 and wk2, still not using the other u3, . . . ,ur. After this, we

train u3 including wk1, . . . , wk3 and so on, until all the other feature vectors

are determined.

3. Batch vs. stochastic training: Parallel or sequential trainings can be used as

elements in a more comprehensive strategy, the use of batch offline or stochas-

tic online learning. Let us show this for the proposed back-propagation

scheme by the following nested loops of pseudo code for batch training.

In contrast to batch offline learning, stochastic online learning differs slightly. It

does not take the average over all corrections, but use them instantly. Thus, each

learning step is based on the previous one and not on the average over all pat-

terns. For the training procedure, we might ask the following questions: Does

the performance decrease with increasing system size k? Does the performance in-

crease with increasing number f of features? The results of these different training

procedures are different. The stochastic training converges faster, but has higher

performance variations than the batch procedure.

3.4 Experimental results

In this section we report several results using the ideas and algorithms presented so

far. First, we discuss the setup of the training procedure and some of the network
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Algorithm 1 Algorithm of Batch Training (offline learning)

for all features f do
for all units k, increasing system size do

for all cross-validations p do
reset weights wkf and uf for unit k and feature f
for all iteration steps t do

for all patterns i of the training set do
compute the activity (w,u) of the current network layers
compute the corrections ∆wkf and ∆uf for the k− th unit and the
f − th feature

end for i
update the k − th weights wkf and uf for feature f
compute the objective function R(training set), R(test set)

end for t
change training and test set

end for p
compute the average of R(.) of all training and test sets p for one system
size k

end for k
compute R(.) of the full system size and one feature f

end for f

Algorithm 2 Algorithm of Stochastic Gradient (online learning)

for all features f do
for all units k, increasing the system size do

for all cross-validations p do
reset all weights wkf and uf of unit k and feature f
for all iteration steps t do

for all patterns i of the training set do
compute the activity (w,u) of the current network layers
compute the corrections ∆wkf and ∆uf for the k-th unit and f−th
feature
update the k − th weights wkf and uf for featuref

end for i
compute objective function R(training set) and R(test set)

end for t
change training and test set

end for p
compute average of R(.) of all training and test sets p for one system size
k

end for k
compute R(.) of the full system size for one feature f

end for f
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parameters used. Then, the results of training and testing with different kind of

images and parameters are reported.

3.4.1 Network parameters

To prepare the network for training, several decisions have to be taken before.

First, let us discuss the general decisions which are taken for training and testing.

Activation Functions: There are number of common activation functions in

use for artificial neural networks e.g. tanh, the step function, Gaussian function

for RBF nets, the logistic sigmoid function f(x) = 1/(1 + e−x) or the bipolar

sigmoid function f(x) = (1 − e−x)/(1 + e−x). In some literature, e.g. [54], it is

emphasized that, although selection of an activation function for a neural network

or its node is an important task, other factors like the training algorithm, the

network size or the learning parameters are more vital for a proper training of

the network. In [55] it has been shown that for general purpose bipolar sigmoid,

unipolar sigmoid and tanh functions are better than others. In our case, we used

the bipolar tanh activation function for the hidden layer units of the network and

the unipolar sigmoid function for the output units of the second layer, because the

output should show the amount of probability that an input object may be in a

class. Therefore, the output function has to take values between zero and one.

Weight Initialization: There are also many possible algorithms for initializing

the weights for feed forward neural networks [26, 56, 57]. One method is the

usual weight initialization: an uniform random initialization inside the interval

[−0.05,+0.05] or [−0.01,+0.01] . For large number of inputs the smaller random

interval is preferred to avoid the saturation of the sigmoids. Random weight

initialization is still the most popular method because of simplicity and comparable

results with other methods [26, 56].

In [57] Kim proposed a minimum bound for the weight initialization. The ini-

tialization is still random, but satisfying a minimum value. In the equation, the
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minimum is the learning step used in the back-propagation training after initializa-

tion. In the reference, the initialization procedure is not clearly specified because

there is just a lower bound and not an upper one.

√
(γ/ninput) < |wij| (3.38)

In [26] there is just a maximum bound for the weights and the initialization is still

random, but satisfying the maximum.

|wij| < 2.4/ninput (3.39)

The variable ninput refers to the number of input units, wij refers to the weight

between neuron j and input i and γ refers to the learning rate.

We used the method of random uniform distribution with interval [−0.01,+0.01]

for initializing the weights because it is simple and our experimental result showed

that it performs better than the methods proposed in [57] and [26].

Learning Rate: In all tests in training and test phase the learning rate is γ =

0.005.

3.4.2 Input data preparation

Some object images are taken from the Amsterdam library of object images (ALOI)

database [58]. ALOI is a color image collection of 1000 small objects, recorded for

scientific purposes. In order to capture the sensory variations in object appear-

ance, they systematically varied viewing angle, illumination angle, and illumina-

tion color for each object and additionally captured wide baseline stereo images.

They recorded over a hundred images of each object, yielding a total of 110,250

images for the whole collection[58]. Objects can be characterized as natural (e.g.

an apple or an orange) or artificial (e.g., a hat or a cup), see figures 3.6 and 3.7.
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Figure 3.6: Some examples of natural objects

Figure 3.7: Some examples of artificial objects

We placed the selected objects in the middle of some natural or artificial back-

ground images and used shifted variations of three pixels left, right, up or down,

maximally. By this, we prepared six sets of data. For preprocessing the input

images, we normalized each input pixel set x to zero mean and unit variance of

all pixel values. It is also possible to normalize only the set of extracted patches

instead of normalizing the whole image, but the result of image normalization was

better. The size of the objects to recognize is 80×60 pixels. Objects in sets 8 to 11

in addition of having different viewing angle, illumination angle and illumination

color, have also different scales (1, 2 and 2.5). These sets are multi scale versions

of set 1 to 4 and are designed for training and testing scale invariance. These

objects are placed before different backgrounds. For example, figures 3.8 and 3.9

show different objects with multiple scales, illumination and viewing angles, placed

before different background images.

Figure 3.8: Example objects located on multiple natural background
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Figure 3.9: Example objects located on multiple artificial background

Additionally, we used different kinds of datasets including MNIST handwritten

digits, KTH-TIPS2 and UIUCTEX texture to validate that features are universal.

The MNIST database of handwritten digits has a training set of 60,000 exam-

ples, and a test set of 10,000 examples. The digit images have 28×28 pixels [59].

Initially, before use we normalized the size and centered it in a fixed-size image.

The KTH-TIPS (Textures under varying Illumination, Pose and Scale) image

database was created to extend the CUReT database in two directions, by provid-

ing variations in scale as well as pose and illumination, and by imaging other sam-

ples of a subset of its materials in different settings. The KTH-TIPS2 databases

took this a step further by imaging 4 different samples of 11 materials, each under

varying pose, illumination and scale [60]. The UIUC texture database features 25

texture classes, 40 samples each. All images are in grayscale JPG format, 640×480

pixels [61].

In figures 3.10, 3.11 and 3.12 you can see some examples of these three datasets.

These sets were chosen to represent unnatural objects. If features are universal,

they have to represent efficiently also those objects. Examples of the resulting

training and test objects are shown in figure 3.13 .

Figure 3.10: Some examples of MNIST handwritten digits
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Figure 3.11: Some examples of KTH-TIPS2 texture dataset

Figure 3.12: Some examples of UIUC texture dataset

The following table 3.1 gives an overview of the composition of the different train-

ing and test sets. In set 2, objects are shifted a little from the center and they

have different view and illuminations with many natural backgrounds. In set 4, the

same objects are used as in set 2, but they use non-natural backgrounds. In sets 1

and 3 objects are natural (like apples or potatoes) with the same backgrounds as

in sets 2 and 4 respectively. Data sets 8 to 11 have multiple scales in addition to

multiple views and illuminations and natural or non-natural background, similar

to sets 1 to 4 respectively.
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Figure 3.13: Image examples of the training and test sets

Set label Object Background Scale

set1 natural natural 1

set2 artificial natural 1

set3 natural artificial 1

set4 artificial artificial 1

set5 MNIST handwritten digits 1

set6 KTH texture 1

set7 UIUC texture 1

set8 natural natural 1, 2, 2.5

set9 artificial natural 1, 2, 2.5

set10 natural artificial 1, 2, 2.5

set11 artificial artificial 1, 2, 2.5

Table 3.1: The composition of the training and test sets
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3.4.3 Does the network learn universal features?

We trained the system with 40,000 input images in 10 different groups with 16

neurons in the hidden layer. Each group included one object with multiple illumi-

nations and view angles, placed in the middle of many background images, with

a maximum of three pixel shift in right or left and up or down. The size of a

receptive field was set to 9 by 9, and each receptive field shared three pixels with

its neighbors. This value was determined experimentally; it gives better result

than others. After convergence of the network, we fixed the value of the first layer

(U), the features, and used it as feature extractor for further processing.

The weights of the second layer were trained separately to classify multiple objects

with multiple backgrounds. After training, it could classify 10 groups (according

to the objects in the images) of data set images. For evaluation, we used as

classification accuracy

Accuracy = 0.5(Prob(PT ) + Prob(NF )) (3.40)

Please note that, for calculating the rate of accuracy, we had to record the positive

(true) PT and negative (false) NF system classification decisions. If we just use the

positive input PT rate to compute the accuracy rate, by changing the threshold

value we can get better results. Therefore, for a fair comparison, we had to take

both rates into account. In general, a ROC analysis have to be computed, but the

averaged correct decision is sufficient for this application. For more information

about ROC analysis, see [62, 63]. For computing the probabilities, we used the

classification output of the neural network units. Because the output of the units

is between zero and one, to assign an object to a class we selected the maximum

value of the output in accordance to the Bayes classification rule. Thus, the object

is the member of a class with the maximum output value 2

choose Ci if gi = max(gj) j = 1..N (3.41)

For instance, after using set 2 as training set to learn the features, the test revealed
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that with 82.28% accuracy set 1 was correctly classified, and with 91.97% accuracy

set 4. Set 1 includes natural objects and set 4 includes artificial objects, see table

3.2 for more results. After this, we set up the second layer to classify the MNIST

handwritten digits by using 60,000 data for training and 10,000 data for test. As

result, it could classify ten groups (0-9) of the handwritten digit images of the

test set with 90.97% accuracy. It is interesting to know that by using the MNIST

exclusively for training the features, the rate of correct accuracy was 89.25%. The

small difference between the results shows that both sets had the same statistical

proportions, giving rise to quite optimal features used for digit classification.

In comparison to this, the result of the handwritten digit recognition by the LDA

classifier implemented in the Matlab software package was only 87.6%. The best

result for handwritten digit classification reported in literature is 99.77% for the

training error and was obtained using a special 6 layer non-linear neural net-

work, each layer stacked on top of another one (convolutional neural network)

[50]. Consider that this result was not obtained by universal features and their

test set results should be worse, our results are very good.

If we use the same dataset both for feature learning and classification, the result

was close to using a different set for feature learning. This means that, by using

universal feature extraction, we loose almost no accuracy and in some cases (like

set 5) we got the better result.

In table 3.2 you see more results of this test. All results of this table show the

average accuracy of 10 times running for each test to obtain a robust result .

In all cases (including the results of this chapter and next chapter) the variance

was small (about 0.6) and the confidence interval also was very small. The table

displays the rate of accuracy (in percent) with multiple training and test sets for

feature extraction and classification. In the four last columns, we used feature

weights trained by the union of multiple data sets. We can see that, if the training

set material is sufficient rich, adding other sets to this set does not have much

effect on the rate of accuracy, though the result is a little bit better. In figure

3.14, we can see the effect of using multiple data sets for training. It shows that,

2It is also possible to use a Softmax policy [64] to assign an object to a specific class.



Chapter 3. Information-Based Universal Feature Extraction 41

``````````````̀Test Set
Training Set

set 1 set 2 set 3 set 4 set 5 sets 1,5 sets 1,6 sets 5,6 sets 1,5,6

set 1 85.11 82.28 85.49 84.57 66.30 71.35 83.63 81.63 83.90
set 2 86.32 85.37 87.02 87.30 73.72 77.57 85.22 83.66 84.68
set 3 92.18 90.13 94.47 93.66 73.93 81.93 93.22 88.44 91.17
set 4 91.83 91.97 92.66 92.48 83.41 87.16 91.42 91.50 91.34
set 5 91.58 90.97 91.91 92.10 89.25 89.72 91.24 91.71 91.85
set 6 76.70 80.20 78.00 76.40 65.38 67.32 85.33 88.47 86.32
set 7 98.30 99.20 99.50 99.60 98.00 99.7 100 100 100

Table 3.2: Universal feature learning: test results

by using more data sets, the results are about the same or improve also. In the

case of handwritten digits the result of using multiple sets of different data for fea-

ture extraction is much better than using only handwritten digits both for feature

extraction and classification. The digits are graphically very simple; using statis-

tically more diversified images in the training will lead to more complex features

and improve the results. The low accuracy of class 6 by a system trained only

with the union of sets 1 and 5 may be due to the fact that the statistical diversity

within set 6 is extraordinary high. So, the class boundaries can be hardly found

to the overlapping material of sets 1 and 5. Here, higher level form features are

demanded for recognition.

Figure 3.14: Effect of using multiple data sets as classifier
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3.4.4 Does the network learn also scale invariant features?

In this test we used the data sets with 40,000 objects with three different scales

(1, 2 and 2.5) and also with different illumination and view angles to train the

system (see figure 3.9). After training, we used the features to classify the data

sets which include multiple scales, illuminations and view angles, and we got the

accuracy of 82.91% and 82.11% for set 8 and 9 respectively. These results were

82.20% and 81.35% for sets 10 and 11 respectively. For more details see table 3.3.

The smaller accuracy reflects the fact that we use a static system which does not

adapt to possible changes of input. There are a lot of systems which try to cope

with this problem and we try to cope with this in the next chapter.

Set RF size RF share Feature number Accuracy %

set 8 9 3 16 82.91

set 9 9 3 16 82.11

set 10 9 3 16 82.20

set 11 9 3 16 81.35

Table 3.3: The accuracy rates for multi scale objects

3.4.5 Changing the size of the receptive field

Changing the size of the receptive field from 9×9 to 19×19 and the receptive field

share to an overlap of 6 results in an accuracy of 79.77%, 78.40%, 82.50% and

87.84% respectively for sets 1, 2, 3 and 4. It means that, by increasing the size

of receptive field, the rate of accuracy is reduced. By decreasing the RF size to

5, we see that the rate of accuracy is also reduced. The results with the receptive

filed size of 7 and 9 are very close and for performance in running time and better

accuracy on set 5 (which has more different structure from other sets), we took

the 9 as our best size of receptive filed. In all of these tests, set 1 has been selected

for feature training. For more details see table 3.4.
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Set RF size RF share Accuracy % RF size RF share Accuracy % RF size RF share Accuracy % RF size RF share Accuracy %

set1 5 2 80.86 7 2 85.92 9 3 85.11 19 6 79.77

set2 5 2 81.96 7 2 87.64 9 3 86.32 19 6 78.40

set3 5 2 91.57 7 2 94.31 9 3 92.18 19 6 82.50

set4 5 2 90.40 7 2 92.83 9 3 91.83 19 6 87.84

set5 5 2 88.30 7 2 90.90 9 3 91.58 19 6 88.59

Table 3.4: Effect of changing the size of receptive fields

3.4.6 Changing the number of features (hidden units)

In this test all configuration and initialization was done as in section 3.4.1 except

that we increased the number of features to 25 and decreased them from 16 to 9

and 7. It is clear that a small number of hidden units (features) generalizes better

than a bigger number, but might be not precise enough. On the other hand, a

bigger number of features might be precise in training, but might fail to generalize

due to over-fitting the training data. The results of the experiments are shown in

table 3.5. In all tests we used set 1 for training the features.

Set Features Accuracy % Features Accuracy % Features Accuracy % Features Accuracy %

set1 25 86.42 16 86.76 9 85.11 7 85.15

set2 25 86.98 16 86.99 9 86.32 7 86.00

set3 25 93.40 16 93.66 9 92.18 7 92.56

set4 25 92.51 16 92.50 9 91.83 7 91.58

set5 25 90.92 16 90.85 9 91.58 7 90.54

Table 3.5: The effect of changing feature numbers

By decreasing the features from 9 to 7, the rate of accuracy is also reduced a little

bit (see table 3.5), whereas increasing the number of features takes much more

computing time, but did not increase the performance significantly. Therefore, in

our case 9 features present the best compromise between generalization error and

over-fitting error.
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3.4.7 Classification with random features

It is interesting to compare the network performance with a network of random

features. In this case we do not learn any features but initialize the feature layer

of network by random values.

Now, to test the network with random features we set the feature layer by random

values of [−0.5,+0.5] with uniform distribution and then tried to train the classi-

fication layer. The accuracy rate obtained for set 2 and set 4 was 58% and 63%,

respectively. These amounts show that using random features can not provide

good result for our tasks.

3.4.8 What kind of feature does the network learn ?

It is interesting to visualize the feature extractor filters that the network learned

after training. In other words, we want to know if our filter or feature extractor

looks like one of those filters found in literature, e.g. a Gabor filter, a differential of

Gaussian (DOG) or some rotated bars. For this, we plot the weights of a receptive

fields of some features as images in figure 3.15. They can be interpreted as filters.

This features are trained in parallel, so we learned all features simultaneously.

The number of features was nine for these sets. The figure shows a set of quite

complex filters. Here, we used the neighbors influence as specified in formula 3.37.

The reason was that it is proved that interaction in mammalian nervous is more

locally influenced. For instance, neural signal correlations between neighboring

points in the neural fields is described in [65].

The resulting weights and therefore the features are the same in any run of the net-

work weights adaptation starting with random initial weights, but the numberings

are different, see figure 3.16.

This depends only on the starting conditions of the weights, and for this result they

should be in [−0.01,+0.01]. By increasing the upper/lower boundary to around

±0.02, the result will not be unique, and by decreasing the boundary to around
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Figure 3.15: Receptive field weights learned by different training sets.

Figure 3.16: Receptive field weights resulting from different runs but the same
training pattern set using random starts. ”-” sign refers to the negative of the

weights

±10−5 the result is unique, but most of them looks like each others (see figure

3.17). To understand that how the weights are similar together among different

run of program, we drew the similarity curve of the weights in figure 3.18. We
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Figure 3.17: Receptive field weights resulting from very small random initial-
ization weights (0.00001) .

computed the similarity between two weights w1 and w2 by this formula

Sim(w1,w2) =

∣∣∣∣ w1.w2

‖w1‖‖w2‖

∣∣∣∣ (3.42)

It may be interesting to see the weights for the case where we drop the neigh-

borhood influence. In figure 3.19 you can see the result when we drop the neigh-

borhood influence. It is shown that in this case the weights are less smooth than

before. Consider that by influencing the weights by their neighbors the perfor-

mance does not change significantly (just around 1% in accuracy rate). This

influence is biologically plausible and produces results which may be interpreted

as filters.

3.4.9 The extracted features and Gabor filters

It is well known [66, 67] that the simple cell (V1) response in the visual cortex of

mammalian brain can be modeled by a Gabor filter. Now, how do the extracted

features compare to Gabor filters? For this comparison, we picked up some of the

extracted features and measured the Euclidean distance among them and Gabor
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Figure 3.18: Similarity among weights

Figure 3.19: Receptive field weights when we drop the neighborhood influence.

filters with different scale and orientation. It means that for each extracted feature,

we tried to find the best match Gabor filter which has the minimum distance with

our selected feature as a pair of our features. In figure 3.20, the Euclidean distance

among Gabor and our extracted filter is displayed between nine extracted features

from set 1, set 2 and set 3 and the appropriate Gabor filter. In this figure, the
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Figure 3.20: Euclidean distance among nine extracted features from set 1, set
2 and set 3 with Gabor filters. The distance values are displayed between zero

(minimum distance) and one (maximum distance).

distance values are displayed between zero (minimum distance) and one (maximum

distance). We see that the extracted feature are similar to Gabor filters with the

average distance of 0.55. The reason that the extracted features are not very close

to Gabor filters my be refer to some preprocessing algorithms like whitening. For

instance in [68] the extracted features were more like to the Gabor filters after

they applied Mahalanobis whitening on the training images.

3.4.10 Shallow network features vs. auto-encoder features

In this section, we compare the features of the proposed method with the features

formed by an auto-encoder for reconstructing the input. Are the best features for

classification also those who are the best for reconstruct-ing the input? To answer

this question, we set the input layer and hidden units of an auto-encoder to be

the same as our best configuration for classification. Then we set the input layer

of an auto-encoder to 81 units and the hidden units to 9. The auto-encoder (AE)

is a simple network that tries to reproduce at its output what is presented at the

input. The basic AE is, in fact, a simple neural network with one hidden layer and

one output layer, subject to the number of output neurons is equal to the number

of inputs. In figure 3.21 the structure of auto-encoder is shown with one hidden

layer.
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Figure 3.21: A typical Architecture of an auto encoder with one hidden layer.

The relation between input neurons (x) and output neurons (x̂) in a typical auto-

encoder is as:

h(x) = s(Wex+ b) (3.43)

and

x = s(Wdh(x) + c) (3.44)

where s is a squashing function (e.g. tanh) and b and c are bias constants. To

use the auto-encoder as feature extraction layer of the classifier, we have to train

it with some unlabeled natural images. In this test we used the same data sets

which used for our proposed shallow network but here we used them as unlabeled

data and extracted some patches from them randomly as a train sets for auto-

encoder. As in any neural network, here also we have to define an objective

function which is to be optimized. In general, there are several possible choices

for the objective function e.g. mean squared error, cross entropy and etc. To have

a good comparison between the result of classification by auto-encoder and our

shallow network, we used cross entropy as objective function because our objective

function in the shallow network was based on cross-entropy. Then, the objective

function is defined by:

R = −
∑
k

xk ln(x̂k) + (1− xk) ln(1− x̂k) (3.45)
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The gradient descent method is employed to minimize this objective function.

Table 3.6 illustrates the accuracy rate of classification using the auto-encoder . To

have a good comparison, we used tanh for squashing function in hidden layer and

sigmoid for the output layer which we did for our shallow network. Comparing

the result of two tables, it is obviously clear that the average classification rate

for two methods are very close to each others (88.93± 0.60% for shallow network

and 89.31 ± 0.43% for auto-encoder). The interpretation of this may be that the

auto-encoder tries to learn the features which are best for reconstruction while

our network tries to learn the features which are better for classification, which is

evidently not the same.

hhhhhhhhhhhhhhhhhhTest Set
Training Set

Set 1 Set 2 Set 3 Set 4

Set 1 85.39 85.19 83.27 84.83
Set 2 86.53 85.85 86.29 86.91
Set 3 92.89 93.45 93.31 94.38
Set 4 92.93 91.86 92.77 93.19

Table 3.6: Classification accuracies for various combinations of training and
test sets using auto-encoder.

3.5 Summary

In this chapter we proposed a new method for universal feature extraction.

First, we used an information theory approach to design a proper risk function

which leads to cross-entropy minimization. It is emphasized in some literatures

that the cross-entropy risk function has significant, practical advantages over mean

squared-error approaches [69, 70]. We developed a feed forward neural network as

basic structure to extract universal features.

Second, to reduce the number of parameter to learn, as constraint we used a

weight sharing method for all receptive fields. In addition of reducing the number

of learning parameters it has the benefit that the shared weights makes all neurons

detecting the same features, independent of their different positions in the input
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image. As draw-back, it should be noted that this decision is not covered by the

original proofs [23] for the approximation properties of two-layer neural networks.

Additionally, the labeling of the filter properties of the first layer as ”features” is

plausible, but arbitrary.

Nevertheless, the results show that those universal features are unique and can

be successfully applied in very different image processing applications e.g., hand

written digit classification, recognition of natural or artificial objects which are

placed in the natural or artificial background images and recognition of texture.

We used very different image sets for training and testing image features for clas-

sification purposes. Additionally, we changed several network parameters (e.g

network layer, number of hidden unit and size of receptive field) to get the best

results. By these tests, we can give some answers to our questions posed in section

3.1.

• What is the best size of a receptive field (patch)? The optimal RF size is

9×9.

• What is the optimum number of hidden units? The number of hidden units

seems to be 16.

Although the universal features are a good start, for really recognizing natural

objects in images additional questions have be studied:

• How can we make the system invariant to the position of objects in image so

it could recognize objects not only in the center of background image, but

also in any places of image?

• How can we make the system to adapt to different shadings and object sizes?

• How can the optimal size of the receptive fields be obtained automatically?

• The approach has shown the abilities of shallow networks - but what about

deep networks [19, 71]? Is there a performance increasing possible?
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In the next chapter we evaluate the capability of deep network with three layers

for universal feature extraction approach.



Chapter 4

Deep Neural Networks for

Universal Feature Extraction

4.1 Introduction

In this chapter, a second hidden layer will be added to the shallow neural net-

work from the previous chapter. The chapter is divided into a short introduction

into deep architectures, then we will look at the equations and updated learning

rules for a three and four-layer neural network as well as the network specifica-

tions. Lastly the performance of the three and four layers network for different

parameters will be tested.1

4.2 Motivation for using a deep neural network

Deep neural networks are compositions of many layers of non-linear units, in other

words, they are cascades of parameterized non-linear modules that contain train-

able parameters at every level. The outputs of the intermediate layers are akin to

intermediate results on the way to computing the final output. While deep neural

networks are well-known in the machine learning field since the 1980s, they were

1Thanks Mrs. Mackert for help in simulation of the result of this cahpter.

53
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not popular among researchers until recently. The main reason for that was a

highly cited publication by George Cybenko in 1989 [72]. Cybenko showed that

one hidden layer of nodes is sufficient for any multivariate function approximation

problem. While Cybenko [72] and Kolmogorov [73] have shown that convergence

is possible, the resource requirements are never addressed. In other words, a large

number of hidden layer nodes may be needed to solve any generalized functional

mapping. Even with this property, shallow networks are popular, since many tasks

are simple enough to be solved by neural networks with one hidden layer and deep

networks are widely known as being hard to train. In the last decade deep neu-

ral networks have gained much more attention because of several breakthroughs

in research such as deep belief nets [74] and deep convolutional neural networks

[71]. There is one promising quality that deep neural networks offer, that shallow

networks don”t have:

• If another hidden layer is added to the shallow network that was introduced

in chapter two, the universality theorem is satisfied for the task of feature

extraction. This should affect the search for universal features positively,

because now the deep neural networks can represent a significantly larger

set of functions than the shallow network.

4.3 Learning highly-varying functions

Expressing complex behaviors (such as universal feature extraction) requires highly

varying mathematical functions, or high-level abstractions. Deep multi-layers neu-

ral networks have many levels of non-linearities allowing them to compactly rep-

resent highly non-linear and highly-varying functions. The reason why shallow

networks are not able to represent these functions is that they have a large num-

ber of variations in the domain of interest e.g., they would require a large number

of pieces to be well represented by a piecewise-linear approximation. Deep archi-

tectures allow the representation of a wide family of functions in a more compact

form than shallow architectures, because they can trade space for time (or breadth
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for depth). The learning of more abstract functions is much more efficient when it

is done sequentially, by composing previously learned concepts [75]. With a second

hidden layer the architecture will have one more layer of abstraction. Each layer

in a multi-layers neural network can be seen as a representation of the input ob-

tained through a learned transformation. More detailed, the first hidden layer will

extract low-level features and the second hidden layer will build on this knowledge

and extract more abstract, higher-level features. Finally the higher-level features

will be classified in the last layer. This technique shares many similarities with

the mammalian vision system as can be seen in figure 4.1. Here one can see that

the model of multi-layers feed-forward architectures for computational visual pro-

cessing bears a lot of resemblance to the organization of biological vision in the

brain.

Figure 4.1: Hierarchical organization of visual scenes. In (a) a general hierar-
chical multi-layers model is described where each of the descriptions correspon-
dents to the neighboring layer of the artificial feed-forward neural network in
(b). In (c) the components of the biological vision system are briefly explained.
First the visual stimuli are captured by the photo-receptors of the retina and
then this information is relayed to primary visual cortex V1, where it is coded
in terms of edge detection. Visual area V4 is tuned for simple geometric shapes.
The last region in the hierarchy of visual processing in the inferotemporal cortex,

its primary function is object recognition.
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4.4 Training neural networks

Although deep neural networks with many layers can represent deep circuits, train-

ing deep networks has always been seen as somewhat of a challenge and has con-

tributed greatly to their bad reputation. A notable exception to this is the convo-

lutional neural network architecture that has a sparse connectivity from layer to

layer. Training a convolutional network can be performed with stochastic (on-line)

gradient descent, computing the gradients with a variant of the back-propagation

method. While convolutional nets are deep (generally 5 to 7 layers of non-linear

functions), they do not seem to suffer from the convergence problems that plague

deep fully-connected neural networks. There is no definitive explanation for this,

but it is suspected that this phenomenon is linked to the heavily constrained pa-

rameterization, as well as to the asymmetry of the architecture [75]. Another

successful training algorithm is used in the deep belief net that can be seen as a

composition of simple, unsupervised networks such as restricted Boltzmann ma-

chines. Experiments have been performed on the MNIST and other datasets to

try to understand why the Deep Belief Networks are doing much better than ei-

ther shallow networks or deep networks. The results are reported and discussed in

[74]. A common explanation for the difficulty of deep network learning is the pres-

ence of local minima or plateaus in the loss function. Gradient-based optimization

methods that start from random initial conditions appear to often get trapped in

poor local minima or plateaus. The problem seems particularly dire for narrow

networks (with few hidden units or with a bottleneck) and for networks with many

symmetries (i.e., fully-connected networks in which hidden units are exchangeable)

[75]. Another practical implication of using deep multi-layers architectures is the

effect of the gradient progressively getting more dilute. It can happen that the

correction signal that is propagated to the first few layers is getting smaller and

smaller with each layer, therefore having little impact on the weights of the first

layers. Therefore it is important to be aware of the potential issues that can occur

when expanding a shallow network to a deep network.
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4.5 Three layer neural network for extracting

several features

In this section, we will expand the shallow network from previous chapter to a

deep neural network with three layers. In figure 4.2 you can see the general design

of a three-layer neural network for extracting several features from one receptive

field that consists of xl pixels. Here the additional Layer (e) is integrated between

the first layer (u) and the output layer (w) of the network. (e) represents an

additional feature extraction step.

Figure 4.2: Deep neural network with 2 hidden layers, extracting and classi-
fying information from one receptive field.

In figure 4.3 the entire deep neural network is shown. Here, you can see how the

outer layer connects to the second hidden layer and how multiple receptive fields

are extracted. The first task is obtaining the new learning equations to update

the weights in each layer accordingly.

The extraction result dj of the first layer, now consists of P features and is per-

formed for each of the receptive fields j. We again chose tanh as the squashing

function for the hidden layers

dj = (d1(u1,xj), dr(ur,xj), . . . , dP (uP ,xj))
T (4.1)

with

drj(ur,xj) = S (orj) = tanh(orj), orj = uTrjxj (4.2)
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Figure 4.3: Deep neural network with 2 hidden layers, extracting and classi-
fying information from one receptive field.

In the second hidden layer of the network, a different set of features is extracted

with size M . This extraction result can be thought of as the extraction of impor-

tant characteristics of the features from the first layer

hj = (h1 (e1,dj) , hs (es,dj) , . . . , hM (eM ,dj))
T (4.3)

with

hsj(es,dj) = S (zsj) = tanh (zsj) , zsj = eTsjdj (4.4)

The number of hidden units in both hidden layers is equal in our application,

therefore we have P = M . For the object detection function we chose the Fermi

function, as we did before for the shallow network.

g (w,h) = SF (v) with SF (v) =
1

1 + exp(−v)
and v = wTh (4.5)

For the N output units the number of inputs becomes M ×m since

dim (w) = dim (h) = Mm
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Now we will define the weight update functions, starting with w

w (t+ 1) = w (t) + γ(t)
∂R(u, e,w)

∂w
(4.6)

We can calculate the derivative of the stochastic gradient objective function, so

the learning equation for w is

wk (t+ 1) = wk (t)− γ(t) (gk − Lk) h (4.7)

With k being the k − th output unit. e is then

e (t+ 1) = e (t) + γ(t)
∂R(u, e,w)

∂e
(4.8)

And again we calculate the derivative of the objective function. For the s − th

feature es is now

es (t+ 1) = es (t)− γ(t)(g − L)
∂v

∂es
(4.9)

With the activity of v

v = wTh =
M∑
i=1

m∑
j=1

wijhij (4.10)

Containing the s− th feature of the j − th receptive field, we get the derivative of

∂v

∂es
=

∂

∂es

M∑
i=1

m∑
j=1

wijhij =
M∑
i=1

m∑
j=1

wij
∂

∂es
hij(eij,dj) (4.11)

Because the s − th feature extraction function hij only depends on the s − th

parameter vector es, the outer sum is redundant, the term is reduced for i = s

and the remaining derivative is calculated as:
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∂v

∂es
=

M∑
i=1

m∑
j=1

wij
∂

∂es
hij(eij,dj) =

m∑
j=1

wsj S
′ (zsj) dj (4.12)

The learning equation for e is now

es (t+ 1) = es (t)− γ(t)(g − L)
m∑
j=1

wsj S
′ (zsj) dj (4.13)

Finally, considering all N output units, es is

es (t+ 1) = es (t)− γ(t)
N∑
k=1

(gk − Lk)
m∑
j=1

wksjS
′
(zsj) dj (4.14)

Where S
′
(zsj) = 1− tanh2(zsj)

Next we will calculate the learning equation for u

u (t+ 1) = u (t) + γ(t)
∂R(u, e,w)

∂u
(4.15)

The derivative of the objective function becomes

ur(t+ 1) = ur(t)− γ(t)(g − L)
∂v

∂ur
(4.16)

With the activity v from equation (4.10) the derivative ∂v
∂ur

is

∂v

∂ur
=

P∑
q=1

m∑
j=1

M∑
i=1

wij
∂

∂ur
hij(eij, dqj) =

P∑
q=1

m∑
j=1

M∑
i=1

wijS
′ (zij) er,i

∂

∂ur
dqj(uqj,xj)

(4.17)

Again the r − th feature extraction function dqj only depends on the r − th pa-

rameter vector ur, the outer sum is redundant, the term is reduced for q = r and

the rest of the derivative is calculated as:
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∂v

∂ur
=

m∑
j=1

M∑
i=1

wijS
′ (zij) eri

∂

∂ur
drj(urj,xj) =

m∑
j=1

M∑
i=1

wijS
′ (zij)eri S

′
(or,j) xj

(4.18)

The learning equation for u is

ur(t+ 1) = ur(t)− γ(t)(g − L)
m∑
j=1

M∑
i=1

wijS
′
(zij) eri S

′
(orj) xj (4.19)

Finally, considering all N output units, the update rule for ur is

ur (t+ 1) = ur (t)− γ(t)
N∑
k=1

(gk − Lk)
m∑
j=1

M∑
i=1

wkij S
′
(zij) eri S

′
(orj) xj (4.20)

Where S
′
(zij) = 1− tanh2(zij) and S

′
(orj) = 1− tanh2(orj).

At this point the neighboring effect of the weights is calculated, just like we did

for the shallow network in previous chapter.

umn(t+ 1) = umn(t) + ℵ(m,n, r, s)urs(t+ 1) (4.21)

where

ℵ(m,n, r, s) = e−((r−m)2+(s−n)2)/2σ2

(4.22)

is the neighborhood function. Variable σ is related to the neighborhood radius.

4.6 Experimental results

As training and testing data, we used the same data sets and preprocessing meth-

ods which have been done for the shallow network in the previous section. Images

from the Amsterdam library of object images are used [58]. Further processing
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included placing the selected object in the middle of a natural (e.g. beach or a

landscape) background image and shifting the objects position by maximum 3

pixels to the left, right, top or bottom of the image. The entire set of data holds

40,000 images with size 80×60 pixels. The data is labeled, with each image having

a label, explaining what class the image belongs to. Here also there are 10 classes

in total; therefore, the deep neural network has 10 output units. In this section,

the performance of the deep neural network will be evaluated in terms of the cor-

rect classification of the extracted features. We rely on prior research that was

presented in the second section for frame conditions concerning the deep neural

network architecture and the choice of parameter values.

4.6.1 Important parameters for testing

The weight initialization: In a deep network, weight initialization has a big

influence on the learning process since the feed-forward and back-propagation algo-

rithms now traverse longer routes and have to perform more calculations. Various

weight initialization methods will be reviewed for the deep neural network.

The number of features to be extracted: It certainly could be the case that

universal features that are extracted with a deep neural networks exhibit a different

composition than features that are extracted in a shallow network. Therefore, it

is appropriate to experiment with the number of features.

Receptive field size and receptive field overlap: In the shallow network it

was determined that the optimal receptive field size was 9×9 with 3 shared pixels.

Universal feature extraction in a deep network might benefit from a different sized

receptive field since there are now higher-level features involved. A significant

benchmark for training and testing is the shallow network itself since it allows

us to compare certain outputs like the classification accuracy and the extracted

features of the first layer. It definitely is a notable help in determining how certain

parameters affect the deep neural network and of course, what is most interesting:
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Does the deep neural network perform the task of universal feature extraction

better than the shallow neural network?

4.6.2 Measuring classification quality

For evaluating how a certain set of parameters affects the network, the most mean-

ingful information is found in the accuracy of the classification. In this section, we

used the same formula and methods to measure the quality of classification which

has been used in the previous chapter for shallow network. Then the formula to

calculate the classification accuracy is:

Accuracy = 0.5(Prob(PT ) + Prob(NF )) (4.23)

where Prob(PT ) is the Probability of a positive (true) neural network system

classification decision or the percentage of true classifications that were correctly

identified as such and Prob(NF ) the negative (false) classification decision or

the percentage of negative classifications that are correctly identified as such. To

compute Prob(PT ) and Prob(NF ) the classification output of the neural network

units is used. The output that is calculated at each unit in the network is a proba-

bility. To assign an object to a class, the maximum value of the output is selected.

This is in accordance with the Bayes classification rule that was introduced before.

Thus, the object is the member of a class with the maximum output value:

choose Ci if gi = max(gj) j = 1..N (4.24)

4.6.3 Testing specifications

The optimal parameters for the deep neural network are not yet known, so as initial

parameters we pick the parameters that gave the best classification accuracy in

the shallow network and work from there:
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Optimal weight initialization method: Random uniform distribution in the

interval [−0.01,+0.01]

Optimal feature number: 9

Optimal receptive field size and receptive field share: size 9×9, with share

3.

Unless explicitly stated, the tests will be performed with set 1 from the ALOI

database. The accuracy values in this sections are the average classification accu-

racy (with maximum 1.5% variation ) values for four completed training and test

runs of the network for a respective parameter set. This number leads to a good

approximation of the accuracy for the respective parameters and reflects the effect

of the parameters sufficiently. Ideally, each accuracy value would be a mean over

more than four completed runs, however in this regard, we are restricted by the

available computational power. A bigger number would lead to a slightly more

precise accuracy, however, this does not influence the process positively, therefore,

it can be disregarded. The classification accuracy was calculated after training the

network with 80% of the images from the respective image set and testing it with

the remaining 20% of the images. To test how well the deep network executes the

task of extracting and classifying universal features, the accuracy is calculated. A

more concrete and descriptive evaluation is given by the learned weights. Gener-

ally, weights are tunable parameters that are adjusted according to the information

that is gathered from the feed-forward algorithm and the risk function. Maybe an

even more important property: weights themselves are adapted to the image data

as part of the training process. After thousands of iterations, the feed-forward and

back-propagation algorithms create a model of decision making that can perform

the presented task to a certain degree. The functionality of this model is best

represented through the weights. Weights can be understood as filters and after

a sufficiently large number of training samples, the weights of each layer show a

representation of the features that are learned in that layer. Consequently after

determining the optimal parameters of the deep neural network, we will take a

look at the extracted features.
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4.6.4 Optimal weight initialization method

For the prior first execution of the deep neural network, the weight values were

initialized with the random uniform distribution in the interval [−0.01,+0.01].

The shallow network performed best with this method of weight initialization.

Now we want to test which method leads to a better performance in the deep

neural network. First, we will review whether the suggested method from [26]

results in a good accuracy. While it was not the best method for the shallow

network, it may lead to a better performance in the deep network. We did not

follow the calculation of the interval value from [26] which is as:

|wij| < 2.4/ninput (4.25)

completely because we also included the upper bound as a test value, but as we will

see this is a good idea. The interval values for first layer is then [−0.03,+0.03] and

for the second and third layer is [−0.27,+0.27]. Because the hidden and last layer

has smaller units, the weight interval for them is bigger. The resulting accuracy

for the deep neural network is 90.92%. This is already better than initializing

the weights in the interval [−0.01,+0.01]. We also initialized the weights with

smaller values, with similar proportion. The results can be viewed in table 4.1.

Here we can see that the best classification accuracy is reached with the proposed

upper bound from 4.25 with 90.84%. The interval [−0.005,+0.005] for u is lower

than the lower bound is given in equation 3.38 and as we can see it leads to a

comparatively bad classification. The reverse approach of initializing the weights

of the first hidden layer in a bigger interval than the rest of the network resulted

in a worse classification for the deep neural network that reached about 85%. The

classification gets gradually worse with smaller intervals. So far we dont know all

the optimal parameters, therefore, we can only compare the calculated accuracies

in table 4.1 to table 4.2 and 4.3.

In table 4.2 we start from the optimal weight interval value of the shallow network,

increasing the weight interval for e to analyze the effect the additional hidden layer

has on the classification accuracy. The best accuracy in this table is achieved
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Interval u Interval e,w Accuracy %

[-0.03,+0.03] [-0.27,+0.27] 90.84
[-0.025, +0.025] [-0.23, +0.23] 89.71
[-0.02, +0.02] [-0.19, +0.19] 89.31
[-0.015, +0.015] [-0.15, +0.15] 88.93
[-0.01, +0.01] [-0.11, +0.11] 88.88
[-0.005, +0.005] [-0.07, +0.07] 87.54

Table 4.1: Accuracy of the classification for different weight initialization
values, stepwise decreasing from the upper bound given in [26].

Interval e Accuracy % Interval e Accuracy %

[-0.02, +0.02] 86.37 [-0.42, +0.42] 87.72
[-0.07, +0.07] 85.98 [-0.47, +0.47] 88.93
[-0.12, +0.12] 87.94 [-0.52, +0.52] 88.97
[-0.17, +0.17] 86.37 [-0.57, +0.57] 89.4
[-0.22, +0.22] 87.13 [-0.62, +0.62] 88.92
[-0.27, +0.27] 87.08 [-0.67, +0.67] 89.29
[-0.32, +0.32] 88.29 [-0.72, +0.72] 89.42
[-0.37, +0.37] 87.94 [-0.77, +0.77] 89.24

Table 4.2: Accuracy of the classification for different weight initialization
intervals. Values of weights u and w are initialized in the interval [−0.01,+0.01]

while e is initialized with increasing interval values.

for the interval [-0.72,+0.72] with 89.42%. An interesting observation is that the

accuracy is better if the weight interval of the second hidden layer is comparatively

bigger than the interval of the first hidden layer and the last layer. Initializing

the weights of the second hidden layer in intervals under [-0.32,+0.32] leads to a

classification accuracy that is nearly as low as initializing the weights of all layers

in the interval [-0.01,+0.01]. Ultimately a classification with the approach in table

4.2 never manages to classify as well as the upper bound method from 4.25. What

is apparent in table 4.3 is that the deep neural network classifies more accurately if

the weights are initialized in a bigger interval, although the accuracy is declining

slowly above [-0.37,+0.37]. Some degree of the meaningful information that is

needed for a good classification is lost in the feed-forward algorithm with small

weights. In table 4.3 the most accurate classification is given when all weights are

initialized in the interval [-0.25, +0.25] with 90.47%.

The conclusive findings are that the best classification accuracy can be achieved
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with the weights of the deep network initialized in the intervals specified by equa-

tion 4.25. As previously mentioned, we are not following the method completely

because we actually use the upper bound. The clear advantage to this method is

that it considers the number of inputs in each layer. Now we could also try to

find another similar method, however, it would not be as thoroughly tested as the

proposed method from [26], therefore, it is reasonable to continue with intervals

specified by equation 4.25.

Interval Accuracy % Interval Accuracy %

[-0.01, +0.01] 85.77 [-0.29, +0.29] 89.14
[-0.05, +0.05] 87.85 [-0.33, +0.33] 90.18
[-0.09, +0.09] 88.32 [-0.37, +0.37] 89.97
[-0.13, +0.13] 89.25 [-0.41, +0.41] 89.73
[-0.17, +0.17] 89.18 [-0.45, +0.45] 87.73
[-0.21, +0.21] 89.69 [-0.49, +0.49] 87.99
[-0.25, +0.25] 90.47 [-0.53, +0.53] 87.76

Table 4.3: Accuracy of the classification for different weight initialization
intervals. All weights are initialized in the same interval.

4.6.5 Optimal number of features (hidden units)

The aim of this Section is to determine what the optimal number of features

is in the deep neural network. Up until now we used 9 features since this was

the optimal number for the shallow network. It is important to note that the

weight initialization intervals of the second hidden layer and the last layer are now

dependent on the number of inputs the neurons of the respective layers receive,

in this case, that is the feature number. So the weights of the first hidden layer

will still be initialized in [-0.03,+0.03], while the weights of the remaining layers

will be initialized in the appropriate interval. Generally, the number of hidden

units influences the network in the following way: A small number of hidden units

may generalize better but might cause under-fitting of the data. Too many hidden

units may cause the network to tend to over-fit the training data, thus reducing

generalization accuracy. Additionally, a big number of hidden units might make



Chapter 4. Deep Neural Networks for Universal Feature Extraction 68

the training unnecessarily slow. The factors have to be taken into account besides

the classification accuracy when choosing the number of features.

Features Accuracy % Features Accuracy %

5 85.41 17 89.69
7 87.48 19 87.25
9 90.39 21 88.86
11 89.41 23 88.28
13 88.14 25 89.11
15 89.30 27 87.09

Table 4.4: The classification accuracy for different numbers of features, trained
and tested with set 1.

In table 4.4 you can see the accuracy of the classification for different numbers

of features. For a feature number smaller than 9 the classification accuracy is

accordingly worse. For set 1, 9 is the optimal number of features, however, feature

numbers 11, 15 and 17 lead to a similarly good classification. The classification

accuracy is decreasing for 25 and more features. If we compare the results from

table 4.4 with the results of shallow network for set 1 from previous chapter we

can see that the classification accuracy of the deep neural network is about 1.6%

worse for 9 features. However for comparably smaller and bigger feature numbers

it performs better than the shallow network. For 7 features the classification

accuracy is 0.60% better and even 4.63% better for 25 features. That said the

accuracy is still highest for 9 features.

Now we will expand the test data and review how well the deep network classifies

images that were not part of the training process. Different feature numbers were

tested for image sets 2, 3 and 4 from the ALOI database. It is interesting that

for some image sets, the classification is significantly higher if the network was

trained with images from a different image set. For example for image sets 3 and

4, similarly to the results of the shallow network, the features that were extracted

with set 1 are apparently general enough to lead to a good classification of objects

from sets 3 and 4. For set 2 the accuracy is comparable worse throughout the test

results. Set 2 consists of images of an artificial object (e.g. toys or cups) in front

of natural backgrounds. Set 1 consists of images of natural objects in front of
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natural backgrounds. Features that are learned with natural objects do not reflect

the characteristics of artificial objects well enough and therefore, the classification

is worse.

Set Features Accuracy % Set Features Accuracy %

2 7 87.57 2 9 86.91
3 7 94.87 3 9 95.71
4 7 93.08 4 9 93.04

Table 4.5: The classification accuracy for 7 and 9 features, trained with set 1
and tested with image sets 2, 3 and 4 from the ALOI database.

Set 3 consists of natural objects in front of artificial backgrounds and leads to the

best classification overall with an average classification accuracy of 94.59% for the

4 tested feature numbers. The comparatively high accuracy for set 3 implies that

objects are easier to classify if the properties of the background image differ from

the object properties. However, that only applies if the network was also trained

with the same objects, because if its not the accuracy decreases, as we have seen

in the results of set 2.

Set Features Accuracy % Set Features Accuracy %

2 16 88.85 2 25 89.63
3 16 93.69 3 25 94.1
4 16 92.55 4 25 93.23

Table 4.6: The accuracy for 16 and 25 features, trained with set 1 and tested
with image sets 2,3 and 4 from the ALOI database.

Objects from set 4 are classified correctly in the deep neural network with an best

accuracy of 93.08% and 93.04% which is taken by 7 and 9 features respectively.

In set 4, images are artificial objects in front of artificial backgrounds. While the

accuracy is not as good as for set 3 it still proves that the deep neural network

is capable of extracting universal features and successfully applying them in the

classification of objects that have a different composition.
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4.6.6 Optimal size of the receptive field and the receptive

share

In this section, we want to determine if size 9×9 of the receptive field still gives

better results than other receptive field sizes. The size of the receptive field equates

to the number of input units in the network. As a consequence weight, u will be

initialized in the appropriate interval that is specified by the upper bound in

equation 4.25. The remaining weights e and w will be initialized in the interval

[-0.27,+0.27] for all the tests in this section. The appropriate size of the receptive

field is strongly dependent on the size of the first hidden layer and the size of the

image itself. By increasing the receptive field size each image patch holds more

information and the image is covered by fewer image patches. Bigger receptive

fields will yield a smaller network and decrease its complexity, which can also be a

disadvantage in learning meaningful features. On the other hand, smaller receptive

fields would encourage the development of more precise features, however, that

would also expand the network size and might over-fit the training data. A good

receptive field size should result in an image patch that is sufficiently characteristic

of the observed image to allow a successful feature extraction. In table 4.7 you

can see the accuracy of the classification for different receptive field sizes, tested

on set 1 of the ALOI images. The size of the receptive share was chosen as

b(RF Size)/3c. Its interesting to see that the receptive field size has more direct

influence on the classification accuracy than for example the number of features.

RF size RF share Accuracy % RF size RF share Accuracy %

5 1 86.76 15 5 87.01
7 2 89.17 17 5 84.66
9 3 90.94 19 6 83.18
11 3 86.32 22 7 82.15
13 4 86.28 25 8 84.75

Table 4.7: Accuracy of a classification of 9 features and different receptive
field sizes.

The worst classification accuracy is obtained for a receptive field size of 22×22

pixels with 82.15%. Receptive Field size 9 is still the best choice for set 1 with 7
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being the second best while the remaining test sizes lead to a significantly worse

classification. For the deep neural network, a smaller receptive field size leads to

a better classification than in the shallow network. In fact, receptive field size

7×7 has a classification accuracy increase of 2.69% in the deep neural network

compared to the shallow network. It seems that the extraction of higher-level fea-

tures benefits from lower-level features that are extracted from a smaller receptive

field. In Tables 4.8 and 4.9 we also looked at the classification accuracy of different

ALOI image sets.

Set RF size RF share Accuracy % Set RF size RF share Accuracy %

2 7 2 88.42 2 9 3 87.72
3 7 2 94.96 3 9 3 94.43
4 7 2 93.97 4 9 3 93.06

Table 4.8: Classification accuracies for receptive field sizes 7×7 and 9×9. The
deep network was trained with set 1 and tested with sets 2, 3 and 4.

Set RF size RF share Accuracy %

2 19 6 77.43
3 19 6 82.06
4 19 6 86.69

Table 4.9: Classification accuracies for receptive field size 19×19. The deep
network was trained with set 1 and tested with the respective sets.

For set 4, the best classification accuracy is obtained for a receptive field size of

7×7. In the shallow network set 4 achieved an accuracy of 94.68% on average,

thats significantly better than the classification accuracy of the deep network with

91.06%. So far set 4 is the test set that exhibits the most stable classification

accuracy in all parameter tests. Receptive field size 9x9 lead to a particularly

good classification when the network was trained and tested with set 1. However

receptive field size 7×7 lead to a better classification accuracy when we used image

sets 2,3 and 4 as the test sets and set 1 as the training set. Generally, the deep

network performed better with an input layer with size 7×7 as can be seen in

tables 4.8 and 4.9 . With smaller receptive fields the extracted features in the

first hidden layer are more precise. More expressive information is captured in the

features, therefore improving the classification.
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Now, we can answer the questions from section 4.6.1 for the deep neural network:

• The optimal number of features is 9, just like in the shallow network.

• The optimal size of the receptive field and the receptive share is 7×7 and 2

respectively.

• The optimal weight initializing interval for the first layer (u) is [−0.03,+0.03]

and for the second (e) and third (w) layers are [−0.27,+0.27].

Consider that the optimal weight initialization interval for the deep neural network

depends on the number of input units of the respective network layer. In section

4.6.3 the significance of the weights was exemplified and a first comparison was

conducted in section 4.6.4.

4.6.7 Extracted features from the deep network

In this section we will take a closer look at the features that are extracted within the

architecture using the optimum parameters obtained experimentally in previous

sections.

In figure 4.5 you can see the features extracted with the deep neural network. They

look quite unique and also exhibit more variation than the features extracted with

the shallow network, presented in figure 4.4, although they are smaller in size.

4.7 Comparing the deep network to the shallow

network

In this section, we compare the shallow and deep network in the terms of trans-

ferring features or universality. In tables 4.11 and 4.10 the average classification

of different data sets using the features which are originally extracted to classify

other sets for the shallow and deep network is shown. By comparing the results of
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Figure 4.4: Weight plots (extracted features) of the first layer from the shallow
network using set 1 as training set.

Figure 4.5: Weights of the first hidden layer (features)of deep network. The
features on the left were trained with set 1 and the features on the right were

trained with set 2.

these two tables, it is clarified that the deep network has better accuracy when the

train set and test set are the same or close to each other. For instance the values

of the diagonal of the table for shallow network is less than the related values for

deep network. The average classification rate for shallow network is 88.92% while

the average of the classification accuracy for deep network is 91.36%.

Another interesting result is that the shallow network has better performance

than the deep network when we compare the accuracy rate of classification for set

5 (MNIST hand-written digits) as a test set. The average value of accuracy for

shallow network is 91.72% while this value for deep network is 88.94%.
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The interpretation of these results could be that in the deep network the features

become more specific from lower layers to higher layers. On the other hand, the

features computed by the last layer of a trained network must depend greatly on

the chosen dataset and task.

hhhhhhhhhhhhhhhhhhTest Set
Training Set

Set 1 Set 2 Set 3 Set 4

Set 1 85.11 82.28 85.49 84.57
Set 2 86.32 85.37 87.02 87.30
Set 3 92.18 90.13 94.47 93.66
Set 4 91.83 91.97 92.66 92.48
Set 5 91.58 90.97 91.91 92.10

Table 4.10: Shallow network classification accuracies for various combinations
of training and test sets.

hhhhhhhhhhhhhhhhhhTest Set
Training Set

Set 1 Set 2 Set 3 Set 4

Set 1 89.80 85.64 87.1 85.85
Set 2 90.09 89.32 86.97 89.55
Set 3 96.76 95.12 95.97 94.52
Set 4 93.88 93.77 92.75 94.78

Table 4.11: Multi-layers network with three layers classification accuracies for
various combinations of training and test sets.

hhhhhhhhhhhhhhhhhhTest Set
Training Set

Set 1 Set 2 Set 3 Set 4

Set 1 97.20 96.10 96.40 96.20
Set 2 97.80 98.20 97.40 98.20
Set 3 97.10 96.20 97.10 96.40
Set 4 98.80 98.90 95.70 98.90
Set 5 93.10 93.10 92.60 93.10

Table 4.12: Multi-layers network with four layers classification accuracies for
various combinations of training and test sets.

4.8 Summary

In this chapter, we added a second hidden to the shallow neural network from

the previous chapter. After finding the optimum parameters for the network like
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we did for shallow network, we test the performance of the three and four layers

network. By comparing the results of shallow network with multi-layers network,

it is clarified that the multi-layer has better accuracy when the train set and test

set are the same or close to each other. Surprising result is that the shallow

network has better performance than the multi-layer network when we compare

both accuracy rates of classification for set 5 (MNIST hand-written digits) as

test set. It could be interpreted that the in the multi-layers network the features

become more specific from lower layers to higher layers. On the other hand, the

features computed by the last layer of a trained network must depend greatly on

the chosen dataset and task.





Chapter 5

Object Learning and Recognition

by Neural Mappings

One of the main problem for object recognition in computer vision is the trans-

formation of an object (e.g. by shift, rotate, scale or depth deformation) within

several views of that object. Object recognition in human vision might be ex-

plained by special temporary mappings where an unknown object is compared to

stored object prototypes of standardized size and view1. How does this mapping

work? One solution to this problem is to use dynamic links for a mapping between

the input object and the target object. There already exist several approaches for

that. In this chapter, we introduce a new dynamical self-organized mapping which

can be used for dynamical object recognition and classification. Firstly, we explain

two well-known dynamical object recognition system (Kohonen and Häussler sys-

tems), and in the rest of the chapter we describe our proposed system which is

based on information theory.

1The result of this chapter published as: Self-organized neighborhood preserving projections
using information,The 28th annual IEEE International Conference on Tools with Artificial In-
telligence (ICTAI 2016).

77
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5.1 Introduction

In vertebrates, especially in the human brain, the neural connections are not ge-

netically fixed from birth, like in insects, but are developing during their lifetime.

This is well known, but the question is still unresolved: how? There are many

models for the self-organization of neural connections. For instance, the mapping

of 3D sensory input distribution of the body to the human brain, which extends

in a 2D way, is observed in the primary somatosensory cortex, as it receives the

bulk of the thalamocortical projections from the sensory input fields. Typically,

sensory neighbor regions are mapped to neighbor regions within the cortex. So,

those mappings are termed neighborhood-preserving mapping which should not be

confused with topology-preserving mappings. The latter guarantees the neighbor-

hood while the former only approximates it. Mathematically, it is impossible to

construct a topologically correct mapping between a 3D space and a 2D space,

but it can be done by approximations, giving rise to a mapping which has discon-

tinuities where the neighborhood abruptly changes. Such mappings are observed

generally in the brain of many animals. For instance, in the bat brain, the echo

signals are mapped to a 3D space representations [76]

There is a vast amount of literature on models for this phenomena. One of the

most popular ones is the Kohonen map [77] which has many variations, e.g. the

supervised or unsupervised Kohonen map, the neural gas and other approaches

[14]. In all those approaches the input dimension is given by the number of inputs.

The n-dimensional input space is spanned by all possible values of those n sensory

input lines. In contrast to this, the mapping problem can be formulated as a

mapping of sensory inputs, arranged in a 2D or 3D way, by neural projections.

This means, for a 2D input having n lines and m rows of inputs sensors, we have

k = m × n input values forming a 2D pattern, not k input dimensions. For each

input neuron, the projection provides a way how it projects to an output neuron.

In figure 5.1 both approaches are illustrated. On the left-hand side, all inputs from

one variable x1 are directed to all neurons, arranged in a 2D-way. The input from

other variables is similar and not drawn. Thus, by 6 input sensors we have a 6D to
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2D projection. On the right-hand side, also, the output neurons are arranged in

a 2-dimensional way. Nevertheless, the input neurons are arranged as a 2D plane

and present a 2D pattern which is mapped to the 2D output.

Figure 5.1: a) 6D to 2D SOM mapping. Here, X is a 6 dimensional vector.
b) 2D to 2D neural projections.

In this chapter, we propose a new neighborhood preserving self-organizing map

(SOM) algorithm, based on information theory. We present a new similarity mea-

sure based on the distance of local pattern entropies. Experimental results illus-

trate the robustness and efficiency of our new algorithm.

Let us now regard the neural projection approach more closely. One of the early

work on this subject was done by Willshaw and Malsburg [78]. They formed a

model where neighbored neurons of the output layer are enforcing activity while

more distant neurons are inhibiting it. If the activity surpasses a threshold, also

the synapses (weights) are adapted. Additionally, a continuously working fiber

growing mechanism tries to test new connections. If the synapses are enforced by

activity, they will remain, otherwise deleted. The local mechanism is completed

by a global one which makes the local activities globally consistent. All feedback

is within the output layer.

An important idea was also contributed by Häussler and Malsburg [22]. They tried

to model the retina-tectum connections by neighboring retinal cell projections
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through their fibers onto neighboring cells of the tectum. For this, they developed

a set of differential equations. The fiber connections are two-fold: short-time

connections are used to determine if an object is already stored, while the long-time

connections are learned for storing the patterns. The idea of neighboring short-

time connections and long-time projections was termed Dynamic Link Architecture

[79, 80]. The idea of a dynamic link architecture evolved also by the work of Lücke

et al. [81]. Their work interprets the visual columns as macrocolumns which have

a state determined by a system of differential equations. Another early work was

done by Kohonen [82]. In the rest of this chapter firstly, we explain two well-

known self-organizing systems which proposed by Kohonen and Häussler [22, 82]

and then, will describe our approach for a self-organizing system.

5.2 The Kohonen self-organizing neural projec-

tion

In this section, we explain the architecture of the Kohonen self-organizing neural

projection which is proposed in [82].

Like many self-organizing systems, the goal was to get a mapping between an

input pattern and an output pattern, starting from the full-connected situation

on the left side of the figure 5.2 and developing to the finally ordered state on the

right side after some iterations.

Figure 5.2: Illustration of the neural connectivity before (left) and after (right)
self-organizing
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To avoid the complexity of human brain structure, the transfer function of the

network is assumed as linear:

yi =

N1∑
j=1

wijxj (5.1)

where:

• xj is the input neuron activity.

• wij is the variable strength of the synapse between input neuron j and output

neuron i.

• N1 is the number of neurons in the input layer.

To make an adaptation equation, Kohonen tried to use the modified Hebbian

law as a basic formula. In the Hebb rule, a synapse between two neurons is

strengthened when the activity of the neurons in input and output side of it are

highly correlated.

In the Kohonen formula, the strength of a synapse depends on the activity of input

neuron on the input side but on the output side, it also depends on the activity

of its neighbors proportional to the distance of these neurons to it. Another

important change is that the strength of a synapse also depends on the original

value of it. Then, the adaptation equation is as follows:

wij(t+ 1) = wij(t) + α(t)[1 + βwij(t)]ui(t)xj(t) (5.2)

where:

• α(t) is a time-variable learning rate coefficient which starts from a small

value between zero and one and decrease after each step of running. One

common function for α(t) can be α(t) = 1/(1 + γt) with e.g. γ = 0.01 or

0.0001.
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• β is a constant value that describes the synapse-dependent emphasis in learn-

ing.

• ui(t) is the modified Hebbian law which not only depends on the activity

of output neuron yi, but is also affected by the activity of its neighbors,

yh, according to the distance from them. Then this effect decreases when

the distance increases. This function can be a Gaussian modulation-type

function which is used in this work as:

ui = eazi (5.3)

where a is constant control parameter and zi defines a linear superposition of the

activity of the neighbors of output neuron yih and interaction kernel gih as

zi =

N2∑
h=1

gihyh (5.4)

Here, N2 is the number of output neurons.

The kernel function gih is defined to model its effect from location h to location i

for an one-dimensional layer in the following way:

gih =
1

1 + |i− h|/c
(5.5)

where c is a constant. Therefor, gih is a number between zero and one and decreases

when the distance between two neuron i and h increases.

Let wj be the column j of the connectivity matrix W. Then the new updated

values for the weights wij are normalized using Euclidean norm as:

wij(t+ 1) =
wij(t)

||wj||
(5.6)
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5.2.1 Simulations with one-dimensional layers

In this section, in order to compare the Kohonen approach with our new system,

we should first characterize the Kohonen self-organized mapping by using some

experiments.

We did the one-dimensional mapping with 20 input neurons and 20 output neurons.

All parameters and input data patterns are selected as done by Kohonen in [82].

Then, to prepare the input data for training, in order to mimic complex input

patterns that may consist of several independent parts, we used random mixtures

of Gaussian patterns. Here, we used the biological motivation that the output

activity of a neuron, controlled by the number of synapses, is centered on the

neuron and decreases by the distance to the neuron. Each Gaussian was shifted

randomly in the input layer. The mathematical forms of the Gaussians are simple

and exactly definable, whereas their random mixture has a complex statistical

distribution. Let the input pattern consist of K Gaussian components, centered

at random in the input layer:

xi =
K∑
k=1

e−(i−dk)
2/2σ2

(5.7)

Where the dk are selected randomly from the range [1, N1] with a uniform distri-

bution (i.e. from the whole input layer), and σ is a variance of the normal function

that may or may not be time-variable. In the first place, we wanted to demon-

strate the point-wise organization of the projection when starting with randomly

interconnected layers. The initial values of the wij were selected at random from

the range [0, 1] with uniform probability, after which, for each i, the sets of the

input weights for j were normalized using the Euclidean norm.

As in the original work of Kohonen [82], in order to obtain good results, we have

to normalize the kernel function. At each training step, we have to divide each

element of it by Euclidean norm of the vector like we did in equation 5.6. Thus

the function values ui become:
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ui(t+ 1) =
ui(t)

||u||
(5.8)

The final connectivity matrix with 20 input neurons and 20 output neurons is

illustrated in figure 5.3, where row i corresponds to the i − th output neuron,

and column j to its j − th synapse, or the j − th input neuron, respectively. We

got this result by setting σ = 5, β = 1000, c = 5 and time-dependent variable

α(t) = 0.2/(1 + 0.001t) from equation 5.1. The parameter a in the equation 5.3

is set to 4. The ideal output in one-dimensional approach should be a diagonal

matrix like as it is shown in the right side of this figure. As you can see in the left

Figure 5.3: The connectivity matrix of Kohonen SOM after 25000 iterations
(left) and the ideal connectivity (right).

side of figure 5.3, the desired connectivity is not really as same as the ideal output

which is shown in the right side of this figure specially in the ridges.

5.3 The Häussler self-organizing system

In this section, we demonstrate another self-organizing system which is invented

by Häussler and Von der Malsburg [22]. This system is known as Häussler system.

In this system, the development of the synaptic connection between two neurons

(e.g retina and tectum2in mammalian brain) from a random initial state toward

a topological projection (e.g one to one) is described. The differential equations

are based on two concepts: cooperation and competition among input and output

neurons which are defined in [22] as :
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• Cooperation: The synaptic contacts on neighboring tectal cells which are

in the same retinal region help each other to be strengthened (see part (a) of

figure 5.4).

• Competition: The contacts made by one fiber compete with each other (see

parts (b and c) of figure 5.4).

Figure 5.4: Cooperative (a) and competitive (b and c) processes between
source (retina) and target( tectum) regions. (b) illustrates the divergent com-
petition and (c) displays the convergent competition. (figure is taken from [21])

The change of the synaptic contact between input neuron (e.g retina) r and output

neuron (e.g tectum) , wrt, is a differential equation as follows :

ẇrt = frt(W)− wrtBrt(f(W)) (5.9)

where frt(W) in this formula is the cooperation term described by the following

equation,

frt(W) = α + η + wrt
∑
r′t′

C (r, r′, t, t′)wr′t′ (5.10)

where :

• α is an unspecific synaptic growth rate.

2”In [83], the general function of the tectal system is defined as: ”to direct behavioral re-
sponses toward specific points in egocentric (body-centered) space”.
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• η is a small noise.

• W is a neural connectivity matrix.

• C (r, r′, t, t′) is a separable coupling function, modeled as a product of Gaus-

sians which models the effect of neighbors on the activity of each other

according to the distance among them as :

C (r, r′, t, t′) = exp
(r − r′)2

2σ2
exp

(t− t′)2

2σ2
(5.11)

In equation 5.9 there is another term, Brt(f(W )), which describes the competition

among neurons as:

Brt (f(W)) =
1

2

(∑
r′ fr′t(W)

Nr

+

∑
t′ frt′(W)

Nt

)
. (5.12)

where in this formula:

• Nr and Nt refer to the number of neurons in the retina and tectum respec-

tively.

As you see in the proposed formula, this system will be symmetric if the coupling

functions of equation 5.10 are selected as Gaussian functions. In this case, when

we start the iteration of the connectivity matrix W with an uniform random

distribution, there are two possible final states in the one-dimensional approach.

We will illustrate these states in the next section.

5.3.1 Simulation of a one-dimension Häussler system

In this section, in order to compare the Häussler self-organized mapping with

our new system, we should first characterize the Häussler system by using some

experiments. To avoid the complexity of two dimensional system, we do this in

one dimensional approach as we did for Kohonen system before.
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In difference to the Kohonen system which was presented in the previous section

and our information based system which we present afterwards, this system does

not need any input pattern. Then we only need to set the parameters α, η, Nr ,

Nt and σ in the equations 5.10 and 5.11. In this case, we put the number of the

neurons both in the input and output to 20. The small noise value η, is generated

from a uniform random distribution within the interval [−0.01,+0.01].

Figure 5.5 illustrates the final state of the system after 5500 iterations using α =

0.1 and σ = 2 in the first 5000 iterations and σ = 1 in the remaining 500 iterations.

We changed the neighborhood effect parameter after some steps to get better

result. As we discussed above, this system is symmetric. Therefore, there are

two possible final states in the one-dimensional approach. In comparison with the

Kohonen system, it is obviously clear that the final result shows that the mapping

is completely diagonal in coherence to the desired result. However, as we will

show afterwards, the run time complexity of this system is worse than the run

time complexity of the Kohonen system. About the evaluation of the complexity

of these systems we discuss afterward.

Figure 5.5: The final states of the Häussler system with α = 0.1 after 5500
iterations with σ = 2 in first 5000 iterations and σ = 1 in the rest 500 iterations.

a) left diagonal final state b) right diagonal final state.
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5.4 The information-based self-organizing system

In this section, we will describe our approach for a self-organizing system, preserv-

ing locality information. It is well known that for classification, the Bayes optimal

decision strategy is realized by choosing the object class with the highest posterior

probability. In the average, this is implemented by choosing the class with shares

the maximal information with the input. This has also proposed by other authors,

e.g. by [84, 85] who claims that the information criteria is successful in the field

of self-organization.

5.4.1 Model architecture

Our goal is to get a mapping between an input pattern and an output pattern,

starting from the full-connected situation on the left side of figure 5.2 and ending

up to the ordered state on the right side after some iterations.

This mapping should be formed in a self-organized way, preserving the neighbor-

hood of input data (the local information).

As a base for comparing the patterns, let us use the Shannon information measure,

based on the distribution p(x) of patterns x over the event space X as follows:

H(X) =
∑
x

p(x) log p(x) (5.13)

Our similarity measure is based on the information difference H(xi) −H(yj) be-

tween the input and the output as we already proposed in the previous chapter.

Additionally, we want to punish big differences much more than smaller ones.

Thus, we define our similarity cost function R as a Gaussian

R(Xi, Yj, r) = exp

(
−(H(Xi)−H(Xj))

2

σ

)
(5.14)
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where:

• σ is a control parameter which controls the influence of the information

measurement according to biological topology.

• H(Xi(r)) is the local entropy of the activity Xi(r) of the other neurons

around neuron i within neighboring distance r.

H(Xi(r)) =
∑

x∈Xi(r)

p(x) log p(x) (5.15)

Please note that here, we use the topological distance between the neurons, not

the pattern distance or activity difference. The learning equation modulates all

weights of the weight matrix W according to the observed pattern similarity:

wij(t+ 1) = wij(t) + γwij(t)R(Xi, Yj, r) (5.16)

where:

• γ is the learning rate.

• The function R calculates the similarity measurement, based on local entropy

between neuron i of the input neurons and neuron j of the output neurons.

Because all parameters in above equation are positive, all weights will only in-

crease towards infinity and the learning process of the equation 5.16 will diverge.

This is a common problem, often observed in unrestricted systems [82]. To avoid

this, we normalize each column wk of connectivity matrix W by

wk(t+ 1) =
wk(t)

||wk||
(5.17)
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5.5 Experimental results

In this section, we experimentally evaluate the proposed mapping self-organization.

First, let us start with a simple one-dimensional mapping, comparing it to the

previously described approaches of Kohonen in section 5.2 and Häussler in section

5.3, and then go on to a two-dimensional mapping used in image recognition. As

training input patterns, let us use some natural images from SUN database [86].

We used some arbitrary gray scale images with pixel grids of 20 × 20. In figure

5.6, you can see some examples of these images.

Figure 5.6: Some natural images for training

5.5.1 One-dimensional input and output mapping

To feed these images to the neural network with one dimension, we used one

column of each image as one pattern in the training set. By this, we extracted

34,180 pattern samples from 1709 images and used them as training set for all

consecutive experiments. Within training, all samples are drawn randomly from

this set. In the first step, we want to demonstrate the self-organization when

starting with randomly interconnected layers in one dimension. The initial values

of the weight matrix W were selected randomly from the range [0, 1] with uniform
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distribution. The initial connection with 20 input neurons and 20 output neurons

is illustrated in figure 5.7. Here, row i corresponds to the i − th input neuron

weight value and column j corresponds to the j − th output neuron, respectively.

The colors encode the weight values between the i−th input and the j−th output.

Figure 5.7: Illustration of the initial connectivity values

As we expect, the initial mapping is completely random. To calculate the local

entropy of each input or output neuron t within a neighbor radius of r, we used

the elements of input values or output values from r − t until r + t in the one-

dimensional approach. If the indices are out of the borders we assume that the

list of inputs is circularly connected (see figure 5.8).

Figure 5.8: Two examples of neighbors of a neuron t in one-dimensional ap-
proach with a radius of neighboring r = 1. The neighbors of the neuron t are

shown with green color.

Now, we try to illustrate the effect of each parameter (σ, γ and r) on the speed

of convergence and quality of the final mapping result. Figure 5.9 shows the

results of training after 1000, 5000, 10000 and 25000 iterations respectively for

σ = 2, γ = 0.05 and r = 2.
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Figure 5.9: Neural connectivity with σ = 2 and r = 2 after a) 1000 iterations
b) 5000 iterations c) 10,000 iterations d)25,000 iterations

As we can see, a regular mapping evolves which becomes precise during the learning

process. Please note that we do not use any direct pattern comparison, only the

statistics of them. To compare the effect of the similarity modulation parameter σ

in equation 5.16, we performed a test with three different values of this parameter.

In figure 5.10 the matrix connectivity is shown with the same neighborhood and

learning rate as in figure 5.9, i.e. r = 2 and γ = 0.05, but with σ = 2, 5 and 10.

Figure 5.10: Neural connectivity development with r = 2 , γ = 0.05 and with
a) σ = 2 b) σ = 5 c) σ = 10. Iteration number n are shown underneath the
panel. Row i corresponds to the i − th input neuron weight value and column

j corresponds to the j − th column in output neuron respectively.

As you can see, when we increase σ from 2 to 10, the mapping still converges, but

the speed of convergence decreased considerably. Now, how does the neighboring

radius r influences the mapping? In figure 5.11, we try to show the effect of r,

both in the speed of convergence and the quality of the result. This results has

been taken by setting σ = 2, γ = 0.05 and r = 2, 5 and 10.
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Figure 5.11: The connectivity matrix when we changed the radius of neigh-
boring. In all cases σ = 2 and γ = 0.05 a) with r = 2 b) with r = 5 c)
with r = 10. Iteration numbers n are shown underneath the panel. Row i
corresponds to the i− th input neuron weight value and column j corresponds

to the j − th column in output neuron respectively.

Compared with the results in the figure 5.9, especially the result with the neigh-

borhood r = 10, it is clear that, by increasing this parameter from 2 to 10, the

network converges slower and the quality of the final result is not as well as in

other tests.

5.5.2 One-dimensional mappings with different number of

inputs and outputs

Now, we test the case when the dimensionality of the input and output layers

are different. This property can tackle the problem of scale-invariant in object

recognition problems. When the objects in our view seem smaller or bigger, we

have to map those objects to a constant size of the prototype. For instance, when

we change the scale of an object to make it smaller, the mapping system have to

map bigger number of input pixels to smaller number of output pixels. To do this,

for instance, we might change the output dimension from 20 to 15. Therefore, we

need training samples with different sizes for input and output. For input, we used

the same training samples of the previous section and for the output, we resized

the input pattern to 15 pixels by a nearest-neighbor interpolation algorithm which
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is a simple, one of many algorithms for scaling an image. In this algorithm, the

output pixel is assigned the value of the pixel that the point falls within. No other

pixels are considered. Figure 5.12 describes an example of this algorithm which

scales six pixels to three pixels.

Figure 5.12: Example of nearest neighbor algorithm for scaling the six pixels
to three pixels.

Figure 5.13 shows the results of our new model with the parameters σ = 3 and

γ = 0.05. In this case, we did the test with three different approaches. In the

first approach, we trained the network with a constant value of neighboring radius

during the whole procedure, while in the second and the third approach we changed

the neighboring radius after 40,000 and 50,000 iterations respectively.

Figure 5.13: Neural connectivity when the number of input neuron and output
neurons are different after a) 50,000 iterations with r = 2. b) 50,000 iterations
with r = 2 in first 40,000 iterations and r = 1 in the rest 10,000 iterations. c)
100,000 iterations with r = 2 in first 50,000 iterations and r = 1 in the rest

50,000 iterations

In all three cases, we observe that the mapping still converges, although the input-

output pattern pairs have changed considerably. The effect of parameters σ and
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r on convergence is shown in figure 5.14. We trained the network with a) r = 2

and σ = 10, b) r = 3 and σ = 3 and finally, c) r = 3 and σ = 10.

Figure 5.14: Connectivity matrix when the number of input neuron and out-
put neurons are different after 50,000 iterations. a) with r = 2 and σ = 10, b)

with r = 3 and σ = 3, c) with r = 3 and σ = 10

By comparing the results of the figure 5.13 and 5.14, we determined as best pa-

rameters r = 2 and σ = 3.

Now, we want to compare this behavior with the results of the Kohonen and

Häussler systems when the number of input neurons and output neurons are dif-

ferent. In figure 5.15, this is shown for two systems with 20 neurons in the input

and 15 neurons in the output.

Figure 5.15: Connectivity matrix of Kohonen (left ) and Häussler
(right)systems when the number of input neuron and output neurons are differ-

ent.

It is clear that in this case, the final states of both system like our proposed system,

is not completely diagonal (the ideal final state for these types of mapping system

when the number of input and output neurons are the same).



Chapter 5. Object Learning and Recognition by Neural Mappings 96

5.5.3 Two-dimensional mappings

In this section, we want to investigate the result of self-organizing the mappings

for two-dimensional input and output layers, e.g. for the purpose of image object

recognition. The mapping between two-dimensional layers is more complicated.

To calculate the local entropy, in this case, we used the neighbors of a related point

in both directions, in rows and columns. For instance, if we set the parameter r

in equation 5.16 to 3, we have to calculate the local entropy in the 3 × 3 square

area around the related point as a center. If the indices are outside of the borders,

we see the sample as circular like we did for one dimension. Here also, like in the

one-dimensional approach, we started with randomly interconnected layers by the

weights in the range of [0, 1] from a random uniform distribution( see figure 5.16).

Figure 5.16: The initial mapping in the two-dimensional approach

The initial mapping has 9×9 = 81 input neurons and 9×9 = 81 output neurons. To

visualize the four-dimensional matrix W, we just display the strongest connection

between an input neuron and all of its output neurons. In this picture, the upper

surface refers to the input neurons and the lower surface refers to the output

neurons.

Figure 5.17 shows the result after 25,000 iterations of the two-dimensional map-

ping. As you see, finally here also we got one-to-one connections between input

and output neurons like in the one-dimensional approach.
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Figure 5.17: Matrix connectivity values in two-dimensional approach after
25000 iterations with σ = 3 and r = 2.

5.6 Comparing the computational complexity of

three mapping algorithms

In this section we compare the three algorithm of sections 5.2, 5.3 and 5.4 regarding

their complexity of computing in the one-dimensional approach. To do this, we

make some assumptions and then compute the complexity.

• First, we assume that any simple mathematical operation add, multiply,

division and exponential runs in O(1) time.

• Second, we ignore the time of initializing the parameters and preprocessing

the input patterns for all three systems.

• Third, for simplicity, we assume that the number of input neurons and output

neurons has the same value N .

We only calculate the complexity of updating one synapse from input neurons to

the output neuron.

Run time complexity of the Kohonen system: We need N summations in

equation 5.1 to get each yh. To calculate each zi using equation 5.4, we need to

execute calculating of yh for N times. Therefore, the run time complexity for each
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zi will be O(N2). Computing ui from zi in equation 5.3 and then normalizing it

by equation 5.2 can be done in O(N) since we have to calculate the length of ui

in each time which takes O(N). So, the run time complexity of each ui is as:

O(N2) = O(N2) +O(N)

Since all elements of equation 5.2 calculated before, wij(t+1) can be done in O(1).

Here also the normalization of each wij can be done in O(N). Therefore, the total

run time complexity of the Kohonen system is as:

O(N2) = O(N2) +O(N)

Run time complexity of the Häussler system: To calculate the complexity

of the Häussler system, we have to compute the complexity of function frt(W )

using equation 5.10. In this equation, the neighbor effect function, C(r, r′, t, t′),

can be calculated for one time and saved in a lookup table. So, to obtain frt(W ),

we need N2 = N ×N summations. Therefore the run time complexity of frt(W )

is O(N2).

Then, the complexity of the competition term Brt(f(W )) using equation 5.12 can

be computed as:

O(N3) = 2×N ×O(N2)

Therefor, the whole run time complexity of the Häussler system is as:

O(N3) = O(N3) +O(N2)

Run time complexity of our proposed system: To evaluate the complexity

of our information-based network, according to equations 5.14, 5.15 and 5.16,

we should measure the complexity of calculating the entropy around a neuron.

Because we used a histogram to estimate the probability of each input in equation

5.13, the complexity of measuring the entropy in one dimension will be O(r) where

r is the radius of the neighborhood to be included and it is always less than N .
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Since we need to calculate the entropy both around input neuron and output

neuron, the complexity of computing the entropy for two neurons will be

O(N) >= 2×O(r) = O(r)

using 5.15. Therefore, for all N neurons the complexity will be O(N2).

Comparing the run time complexity, the Kohonen network and our proposed sys-

tem has the same run time complexity, while the Häussler system has the worst

run time complexity.

5.7 Summary

In this chapter, we proposed a new method for self-organization system. We used

an information theory to define a new similarity measurement. To measure the

similarity between input and output neuronal activity, we employed an objective

function, based on a localized Shannon entropy and weighted by a Gaussian func-

tion. The resulting neural mapping developed in two and one-dimensional cases.

To compare the quality of the final result and the computational complexity of the

proposed method with two other methods which discussed in section 5.2 and 5.3,

we can say that the final result of our proposed method is better than Kohonen

system (see figures 5.3 and 5.9). Comparing with the Häussler system, we can say

that the final result of both system are the same but our proposed system has less

computational complexity than Häussler system.





Chapter 6

Application on Deformation and

Depth Invariance Object

Recognition

In this chapter, we try to apply our proposed self-organized neural projection

method developed in the previous chapter and, for comparison, a Häussler system

on the task of deformation invariant object recognition.

6.1 Introduction

One of the biggest challenges in any object recognition or machine vision is in-

variant pattern recognition. We as humans can quickly detect and map one view

of an object to other possible views (e.g. translated or rotated in any direction

or angle, distorted, scaled or changed in lighting conditions) of the object at the

same time, but in computer vision, this task is one of the hardest tasks. In figure

6.1, as example an object and different views of it are shown.

One instance of this task is the case when we have an object and want to find all

objects in a particular data set which are similar to it. In computer vision, this

problem is defined as mapping or matching between an object and the transformed

101
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Figure 6.1: An object (shown within a square) and some transformations of
it.

version of it. One idea to solve this issue is to extract features from the image do-

main and the model domain which are resistant to changes in view or illumination

and to map them. In [87] they used Gabor features (jets) as feature extractions

for a mapping mechanism using POI, which is based on a macro-columnar corti-

cal model, and used dynamic links to perform the mapping. In [88] they treated

the mapping problem as a graph-matching problem to find corresponding points

(POI) in the source image and the target domain.

Now, how can these systems be applied to deformation invariant object recogni-

tion, especially also on 3D depth invariant object recognition?

For this, the rest of this chapter is as follows:

In section two, we explain both our information based system and the system

which was introduced by Tomas and Von der Malsburg in [21] to solve the prob-

lem of deformation and depth invariance in a supervised approach, followed by

some experimental results. In section three, we describe the architecture of an

unsupervised approach for their system with also some experimental results on 3D

depth invariant object recognition. In section four, a summary and conclusion of

the results of this chapter is given.
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6.2 Supervised training for depth invariant ob-

ject recognition

For the task of 3D depth invariant object recognition, a dynamic link matching

architecture based on a Häussler system has been proposed in the literature. The

performance of this system will be compared with our new self-organized system,

based on information criteria.

6.2.1 A DLM system for depth invariant object recogni-

tion

The Häussler system introduced in the previous chapter, uses a similarity measure

between input and output neurons. As we already told in the previous chapter,

the Häussler system does not need any input or output pattern to converge to the

desired one-one projection. In comparison to the Häussler system in the previous

chapter, for rotation invariant object recognition, the authors of [21] added a cross-

activity term to the cooperation term of equation 5.10 and got a new cooperation

term:

frt(W) = grt + η + wrt
∑
r′t′

C (r, r′, t, t′)wr′t′ (6.1)

where grt is a cross-activity term which depends on the similarity between the

input and output pattern:

grt = αmδrte
−(Ir−Ot)2/2k2g (6.2)

Here, we have:

• Ir and Ot are the activity of input and output neurons r and t in the source

and target, respectively.

• αm defines the maximum effect of cross-activity term in the whole system in

equation 6.1.
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• kg is the parameter which controls the width of the Gaussian neighbor func-

tion.

• The function δrt which has the binary output of zero or one, is defined to

block the synapses to outgrow at regions outside of the segment. They used

this function to restrict the growth of synapses which connect the black

regions (which has no information) of input and output patterns.

6.2.2 The new self-organized neural projection

For the task of depth invariant recognition, we also use our self-organized neural

projection (SONP), which was proposed in the previous chapter. This also solves

the deformation (including shift, rotation in both depth and surface) invariance

problem in the task of object recognition. For this task, instead of using the same

pictures as input (source) and output (target) pattern, as targets we apply the

transformed versions of the source images. We explain more details about this in

the section of this chapter with the experimental results.

Although we already described our system with more details in the previous chap-

ter, let us explain now our proposed SONP briefly. The learning equation modu-

lates all weights of the weight matrix W according to the observed pattern simi-

larity:

wij(t+ 1) = wij(t) + γwij(t)R(Xi, Yj, r) (6.3)

where γ is the learning rate. The function R calculates the similarity measurement,

based on local entropy between neuron i of the input neurons and neuron j of the

output neurons. We defined our similarity cost function R as a Gaussian

R(Xi, Yj, r) = exp

(
−(H(Xi)−H(Xj))

2

σ

)
(6.4)

where σ is a control parameter, and H(Xi(r)) is the local entropy of the activity

Xi(r) of the other neurons around neuron i with neighboring distance r. Consider
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that we normalize each column wk of connectivity matrix W by

wk(t+ 1) =
wk(t)

||wk||
(6.5)

the transform should be neutral in the intensity.

6.2.3 Experimental results

In this section, we experimentally evaluate the Häussler system and our proposed

mapping system for the shift and rotation in depth transformations. For train-

ing, let us use some natural images like we did in previous chapters. We used

some arbitrary gray scale images with pixel grids of 20× 20 as input pattern and

transformed version of them as output pattern in supervised approaches. In figure

6.2, you can see some examples of these images. To avoid the complexity and to

get better performance in run time we used only the one-dimensional approach of

these systems. To feed these images to the neural network with one dimension,

we used one column of each image as one pattern in the training set. By this, we

Figure 6.2: Some natural images for training

extracted 34,180 pattern samples from 1709 images and used them as the training
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set for all consecutive experiments. Within training, all samples are drawn ran-

domly from this set. To do this, we used some natural images as input pattern

and transformed version of those pictures as output.

Before talking about the result and make some comparison, we want to have a close

look at the concept of rotation in depth. When we rotate an object in depth and

map it in 2D space, the output image can be seen as a projective transformation

of the original image (see figure 3.2).

In projective transformation angles between lines are not invariant, so the parallel

line in an original image are not parallel in the output image [25]. But for small

patches of an object, the projective transformation can be approximated as chang-

ing the scales of a patch in width and height. In figure 6.3, we displayed an object

and a projective transformation of it. In part (c) of this figure, we extracted a

small patch from the original image (left picture) and its transformed patch from

the transformed image (right picture). These two small patches can be seen as

scaling of each other, whereas the deformation due to the 3D effect is nearly not

visible. Thus, the scaling approach to deformation can be seen as the first, domi-

nant linear term in the development of a non-linear function, restricted to a small

local patch of image. The whole nonlinear deformation mapping is performed by

a big number of small patches, each one performing only individual scaling. The

patches cover the image as the overlapping receptive fields introduced in chapter

3( see figure 3.2). In the first step, we want to demonstrate the self-organization by

starting with randomly interconnected layers in one dimension. The initial values

of the connectivity matrix, W were randomly selected uniformly from the range

[0, 1]. The initial connections with 20 input neurons and 20 output neurons are

illustrated in figure 6.4. Here, all connections are indicated by a color: from blue

for no connection until yellow for a good one.

As we expect, the initial mapping is completely random. In figure 6.5, the results

of mapping for both systems are illustrated when we used a scaled version of input

pattern as output pattern. As you can see, the final results of both systems are

qualified as mappings for small patches (Here 20 by 15) and can be used for the
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Figure 6.3: Example of an image and its projective transformation. a) original
image b) projective transformation of the original image c) A small patch from
the original image and its transformed patch in the output image. Images of

(a) and (b) are taken from [25].

Figure 6.4: Initial states of the connectivity matrix.

task of mapping rotations in depth when the patches are small, although they are

not perfect. The ideal final state for these types of mapping when the number

of input and output neurons are the same and should be completely diagonal as

we saw in the previous chapter. But with different numbers of input and output

neurons the final state is not completely diagonal because the diagonal matrix can

be defined only for a square matrix.
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Figure 6.5: The final neural connection using scaled version of input as output
pattern a) in our proposed SONP b) in the system proposed by [21]. The output

pattern is taken by 75% scaling down of the input pattern.

6.3 Checking an unsupervised model architec-

ture

In this section, we explain the unsupervised architecture of the system which was

introduced by Tomas and Von der Malsburg in [21]. They applied it for the shift

and rotation in 2D space. The good results motivated us to check its usability for

the case when the transformation is in depth, not only in 2D. Again, we check the

ability for small patterns, i.e. for scalings.

As we mentioned before, their system has two main possible structures: a su-

pervised and an unsupervised model. In the supervised model, they applied the

transformed version of input pattern for output pattern. Therefore, after some

iterations, the system learns the related transformation. This, we presented in the

previous section.

In this section, we will use the unsupervised training. In the unsupervised model,

they applied a more powerful approach that does not need any pattern in output

(target) and the target image initialized by some random value in [0, 255].

Instead of only one connection between each input and activity pattern Ir and

output activity pattern Ot there are multiple synaptic connections, each under

the command of the particular control unit.

During the learning process, these control units compete for the representation of

maps between input and output pattern. To achieve this, they have cooperation
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and competition mechanisms, working together in parallel.

Control units control the state of a set of synapses projections corresponding to

a particular mapping. The basic structure of this system is illustrated in figure

6.6. As you see in this figure, their mappings connect the source domain (input

neurons Ir) to the target domain (output neurons Ot) each one controlled by a

related control unit ( CU1, CU2 and CU3). Then they labeled the synaptic weights

between input neuron r and output neuron t which is governed by control unit u

by Wu
rt. In this figure, each group of synapses which is controlled by a specific

control unit is distinguished by color (e.g. red or green) from others. Now, we

Figure 6.6: Controlled mappings between input neuron Ir and output neuron
Ot. In this figure, a controlled mapping structure with three units is shown.

Control units have competition and cooperation functions in parallel.

want to talk about the control unit activity algorithm, target pattern update rule

and synaptic weight changes based on this structure.

6.3.1 Control unit activation

They changed the primary Häussler system (see equation 5.9) in the cooperation

term and the activity of control units to get the new update rule by multiplication
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of a term S(u) as:

ẇurt = S(u) [frt(W
u)− wurtBrt(f(Wu))] (6.6)

with the new cooperation term defined in equation 6.1. In this equation, the

activity function S(u) has the value of 0, 1 and acts to indicate active and inactive

states of the control unit u. Therefore, only the active units can update their

relevant synaptic connection and others can not. Therefore, the main problem

would be the decision about activation and deactivation of control units which

should be done by this function. In the rest of this section we present the elements

which compose the new function S(u). So, S(u) is defined as:

S(u) =

1, if P (u) > randomreal(0, 1)

0, otherwise

(6.7)

Where randomreal is a function that generates a random value in [0, 1] with

uniform distribution. The definition of P (u) will be given later on.

Activation and deactivation of each control units depend on two things: (1) acti-

vation of other units, especially the activation of the units which has less distance

to current unit, and (2) similarity between input and output targets, weighted by

synaptic connectivity between them. The former is done by a function L(u) and

the latter by a function E(u). Each unit will be active with the probability of

P (u) =
1

1 + e−ks(Etot(u)+β)
, (6.8)

whereks and β are the control parameters which control the steepness of the func-

tion and the bias, respectively. Here, they defined Etot, the total excitation of the

each control unit u, as a weighted sum of two terms, the excitatory input of the

control unit,E(u)and interaction among control units, L(u) as:

Etot(u) = bE(u) + (1− b)L(u). (6.9)
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They defined E(u) as weighted summations of the similarity of the input and

output patterns and got the equation:

E(u) =
1

Nu

∑
r

∑
t

W u
rte
− (Ir−Ot)

2

2k2 (6.10)

with

Nu =
∑
rt

W u
rt (6.11)

where k is a parameter which controls the influence of similarity on the whole

function E(u). Ir and Ot are the input and output activity patterns respectively,

r and t are indices of source and target points in and , respectively, and Nu is a

normalization factor. Please note that here, the similarity in the excitatory term

is measured by the mean squared error again which is sensitive to outliers.

The interaction function L(u) of the control units is computed as:

L(u) =
U∑

u′ 6=u

C(duu′)S(u′), (6.12)

where U is the number of control units, S(u′) is the activity state of unitu′ , and

C(.) is the Gaussian coupling function defined as follows:

C(duu′) = e−d
2
uu′/2σ

2

(6.13)

where duu′ is the distance between the control units and σ is the local strength

control parameter. If the indices are out of the borders they assumed that the list

of inputs is circularly connected as we did for the distance between neurons in our

SNOP system.

Output pattern updates rule

As we talked before, in the unsupervised model, they applied a more robust ap-

proach that does not need any pattern as output (target) and the target image

is initialized by some uniform random values from [0, 255]. Then, the update
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equation for the output pattern is:

∆Ot = γ(I ′t −Ot) (6.14)

where γ is an update rate and I ′t = Ir is the activity of the source domain unit

with the strongest active connection W u′

r′t to t.

r′ = argmax
r,t

S(u)W u
rt (6.15)

making a strong connection even stronger.

6.3.2 Experimental results of the unsupervised approach

In this section, we want to see the result of applying the unsupervised model above

to small 3D mappings (scaling) using a system with six control units. As we talked

before, in this case we do not have any output pattern, and output patterns start

with a random value in the range [0, 1] with uniform distribution. For the input

pattern we used the original input pattern and transformed version of it with

scaling factors of 0.9, 0.8,0.7, 0.6 and 0.5. To get the same image size, we filled the

extra space in the images with zeros, see figure 6.7. As we told before, to avoid the

Figure 6.7: Sample image (top left) and its transformed version with multiple
scaling factors.

complexity of running time performance, we used the one-dimensional approach of
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the system. In figure 6.8, the final mappings for different scaling factors after some

iterations is illustrated. As showed in figure 6.8, after some iterations starting with

Figure 6.8: Results for the 1D-mapping algorithm. The weight values are
shown for the sample image (top left) and its transformed version with multiple

scaling factors.

randomly initialized weights and also random output pattern the system could do

a consistent mapping between the input pattern and non-zero parts of output

pattern,. Therefore after convergence, if we put any image as an input pattern,

we can get the six different scaled transformed image of it as output pattern with

six control units.

The results show the robustness and capability of this system for the task of depth

deformation invariant object recognition.

Nevertheless, a self-organized, probability based approach is also needed for this

unsupervised task. Thus we will develop our SNOP system in future also in this

direction.

6.4 Summary

In this chapter, first we compared the supervised system proposed by Tomas et.

al. for the task of deformation invariant object recognition to our information

based mapping. We used the improved architecture of the Häussler system which

has been proposed by Tomas and Malsburg in [21]. They applied it for the shift
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and rotation in 2D space. The good results were a motivation for the case when

the transformation is in 3D depth, not only in 2D. The results qualified our new

system at least as good as the Häussler system, although it uses less computational

power and is less influenced by outliers due to the probability-based approach.

Then, in the case of the unsupervised approach, we showed the capability of the

improved Häussler system for the task of rotation in depth.

Certainly, for the unsupervised case, an information-based approach is desired

also. For this, we will extend our system in this direction in future work.



Chapter 7

Discussion and Conclusion

In this thesis, we presented multiple work for the task of universal feature ex-

traction and an information based self-organized system to perform the task of

invariant object recognition. Different methods exist for selecting features and

performing deformation invariant image recognition. As we mentioned, the meth-

ods based on POI have the problem that they are task specific and need some

hand-crafted algorithms which change from application to application. Statistical

based methods for feature extraction like PCA and ICA have the assumption that

the original data should be separated in a linear approach, but this assumption

is not valid for most of the data in the real world. ANN-based methods try to

solve the nonlinearity problem of PCA and ICA, but they have the problem that

they need many training data (around millions) especially when the input data

are transformed version of each other. Another problem is that these methods are

not robust in the case of transformation, translations or the change in the posi-

tion of the objects or it is very difficult to do this task by ANNs. Although the

dynamic link model DLM shows interesting results, this system has the problem

of a high computational complexity. In addition, because it uses the least mean

squared error as risk function, the performance for classification is also not opti-

mal. For random values where outliers are present, this system may not work well

because outliers influence the mean squared error classification much more than

115
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probability-based systems. Therefore, the DLM system should be completed by a

new approach.

7.1 Universal feature extraction

In our contribution, firstly, we tried to find features which can be used for multiple

classification tasks and second, we introduced a new system which employs the

information criteria (i.e. probabilities) to overcome the problem of DLM system

and has a smaller computational complexity. First, in Chapter 3 we proposed a

new method for universal feature extraction which is more general than the pre-

vious tasks which have been done before e.g. transfer learning, semi-supervised

learning and self-taught learning. To do this, we used an information theoretic

approach to design a proper risk function which leads to cross-entropy minimiza-

tion. We developed a feed forward neural network as a basic structure to extract

universal features. Additionally, to reduce the number of parameters to learn,

we used a weight sharing method for all receptive fields as constraint. In addi-

tion to reducing the number of learning parameters it has the benefit that the

shared weights make all neurons detecting the same features, independent of their

different positions in the input image. Although the labeling of the filter proper-

ties of the first layer as ”features” is plausible, but arbitrary, the results showed

that those universal features are unique and can be successfully applied in very

different image processing applications e.g., handwritten digit classification, recog-

nition of natural or artificial objects which are placed in the natural or artificial

background images and recognition of texture. In chapter 4, we added a second

hidden to the shallow neural network from the previous chapter. By comparing

the results of the shallow network with the multi-layers network, it is clarified

that the multi-layer has better accuracy when the train set and test set are the

same or close to each other. The surprising result is that the shallow network has

better performance than the multi-layers when we compared the accuracy rate of

classification for MNIST hand-written digits as a test set. It could be interpreted

as in the multi-layers network the features become more specific from lower layers
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to higher layers. On the other hand, the features computed by the last layer of a

trained network must depend greatly on the chosen dataset and task. Comparing

the result of shallow network and multi-layers network clarifies that also by adding

one layer to the shallow network we got a better result but sometimes by changing

the other parameters (e.g. number of hidden unit or initialization variable) it is

possible to achieve the result as same as multi-layers. This result agrees with the

results of Adam et.al. in [68]. They showed that several factors, such as the num-

ber of hidden nodes in the model, may be as important as the choice of learning

algorithm or the number of hidden layer. For instance by tuning the parameters

in K-means, they could get better accuracy rate of classification than the state of

the art results of the deep neural network, deep belief network and convolutional

neural network for the task of NORB objects classification. About the transfer-

ability of features in layers above the first layer of the deep network, we found

that two research attempts has been done simultaneously to our work, see ([89]

and [90]). Unlike our work, in their work the source and target task was related

such that they reused the features of seven layers extracted of the classification of

objects in the ImageNet database for the objects of PASCAL VOC dataset([89]).

In [90] the authors tried to use the features of one subset of ImageNet dataset for

another subset of this data set. Like our work, they also found that transferring

features even from distant tasks can be better than using random features. Like

our work, in these two works the features become also more specific from lower

layers to higher layers.

7.2 Deformation invariant object recognition

In chapter 5, we proposed a new method for self-organization system. We used

an information theoretic approach to define a new similarity measurement. To

measure the similarity between input and output neuronal activity, we employed

an objective function, based on a localized Shannon entropy and weighted by a

Gaussian function. The resulting neural mapping developed in two-dimensional

(image) and one-dimensional cases. To compare it with another state of the art
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self-organized system, we can say that the final result of our proposed method

is better than Kohonen system. Comparing with the Häussler system, we can

say that the final result of both systems is roughly the same, but our proposed

system has less computational complexity than Häussler system. In chapter 6,

first we compared the supervised system proposed by Tomas et. al. for the task of

deformation invariant object recognition to our information based mapping. Here,

we used the improved architecture of the Häussler system which has been proposed

by Tomas and Malsburg in [21]. They applied it for the shift and rotation in 2D

space. The good results were a motivation for the case when the transformation

is in 3D depth, not only in 2D. The results qualified our new system at least as

good as the Häussler system, although it uses less computational power and is

less influenced by outliers than the Häussler system due to the probability-based

approach. Additionally, in the case of the unsupervised approach, we showed the

capability of Häussler system for the task of depth-rotation. Certainly, for the

unsupervised case an information-based approach is desired also. For this, we will

extend our system in this direction in future work. To compare our work with the

work of Kishore Konda [91], the latter can only detect orthogonal transformations

and it does not work for the task of rotation and specially rotation in depth.

7.3 Future work

In invariant object recognition by unsupervised Häussler systems, for each whole

mapping we used a specific control unit, but this is not realistic in the real world.

In the real world, we guess that human brain uses combinations of some local

transformation to perform the whole mapping. Therefore, in the real world each

control unit is responsible for a small local transformation and by cooperation

between these many control units, we can understand the whole mapping. This

mechanism can solve a restriction of the present model to deal not only with

rigid transformations but with deformable mappings as well. For this reason,

we employed the deformation of object surfaces during rotation in depth. By
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developing our proposed method for the task of unsupervised depth-deformation,

we hope to overcome this problem.





Bibliography

[1] D. J. Felleman and D. C. Van Essen. Distributed Hierarchical Processing in

the Primate Cerebral Cortex. Cerebral Cortex, 1(1):1–47, jan 1991.

[2] Mary C Potter. Short-Term Conceptual Memory for Pictures. Journal of

Experimental Psychology: Human Learning & Memory, 2(5):509–522, 1975.

[3] JamesJ. DiCarlo, Davide Zoccolan, and NicoleC. Rust. How Does the Brain

Solve Visual Object Recognition? Neuron, 73(3):415–434, 2012.

[4] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[5] D Marr and E Hildreth. Theory of Edge Detection. Biological Sciences,

207(1167):187–217, 1980.

[6] John Canny. A Computational Approach to Edge Detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,

1986.

[7] T Lindeberg. Edge detection and ridge detection with automatic scale se-

lection. Computer Vision and Pattern Recognition, 1996. Proceedings CVPR

’96, 1996 IEEE Computer Society Conference on, 30(2):465–470, 1996.

[8] A Willis and Yunfeng Yunfeng Sui. An algebraic model for fast corner de-

tection. In 2009 IEEE 12th International Conference on Computer Vision,

pages 2296–2302. IEEE, sep 2009.

[9] Chris Harris and Mike Stephens. A Combined Corner and Edge Detector. In

Procedings of the Alvey Vision Conference 1988, pages 147–151, 1988.

121



Bibliography 122

[10] T. Lindeberg. Scale-Space Theory of Computer Vision. Kluwer Academic

Publishers, Norwell, MA, USA, 1994.

[11] David G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[12] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust

features. In Computer Vision – ECCV 2006: 9th European Conference on

Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I”, pages

404–417. Springer Berlin Heidelberg, 2006.

[13] K. Mohiuddin Anil K. Jain, Jianchang Mao. Artificial Neural Networks: A

Tutorial. IEEE Computer, 29(3):31–44, 1996.

[14] Teuvo. Kohonen, M. R. Schroeder, and T. S. Huang. Self-organizing maps.

Springer-Verlag Berlin Heidelberg, 2001.

[15] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford

University Press, 1995.

[16] Xinyu Guo, Xun Liang, and Xiang Li. A Stock Pattern Recognition Algo-

rithm Based on Neural Networks. In Proceedings of the Third International

Conference on Natural Computation - Volume 02, pages 518–522, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[17] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir

Anguelov. Scalable Object Detection using Deep Neural Networks. In Proceed-

ings of the 2014 IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2155–2162. IEEE Computer Society, jun 2014.

[18] Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping Luo, Yonglong

Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Chen-Change Loy, and Xiaoou

Tang. DeepID-Net: Deformable Deep Convolutional Neural Networks for

Object Detection. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2403–2412, 2015.



Bibliography 123

[19] Jürgen Schmidhuber. Deep Learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015.

[20] Davide Zoccolan. Invariant visual object recognition and shape processing in

rats. Behavioural Brain Research, 285:10–33, 2015.

[21] T Fernandes and C von der Malsburg. Self-Organization of Control Circuits

for Invariant Fiber Projections. Neural Computation, 27(5):1005–1032, 2015.
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