
Small Generic Hardcore Subsets for the

Discrete Logarithm: Short Secret DL-Keys

C.P. Schnorr∗

Fachbereich Mathematik/Informatik
Universität Frankfurt, Germany

schnorr@cs.uni-frankfurt.de

September 27, 2000

Abstract

Let G be a group of prime order q with generator g. We study hardcore subsets
H ⊂ G of the discrete logarithm (DL) logg in the model of generic algorithms. In this
model we count group operations such as multiplication, division while computations
with non-group data are for free. It is known from Nechaev (1994) and Shoup (1997)
that generic DL-algorithms for the entire group G must perform

√
2q generic steps.

We show that DL-algorithms for small subsets H ⊂ G require m
2 + o(m) generic steps

for almost all H of size #H = m with m ≤ √
q. Conversely, m

2 + 1 generic steps are
sufficient for all H ⊂ G of even size m. Our main result justifies to generate secret
DL-keys from seeds that are only 1

2 log2 q bits long.

Keywords. Computational complexity, cryptography, discrete logarithm (DL), generic
algorithms, generic complexity, hardcore subsets.

Introduction. Many cryptographic schemes for digital signatures, encryption and key ex-
change rely on the hardness of the discrete logarithm (DL) problem [CS98, DH76, G85,
O92, Sc91]. The security of these schemes requires that the problem to compute the dis-
crete logarithm of random group elements is hard. For security, private-public key pairs,
ciphertexts and signatures must represent random instances of the DL-problem. As the
computational costs of the DL-cryptosystems increase with the size of the group it raises
the question whether the entire group must be used. We show that the DL-problem re-
stricted to small random subsets H of the group G has nearly the same generic complexity
as for the entire group. This suggests that DL-cryptosystems can be optimized by using
small random subsets of the group. An example of such an optimization is to generate the
secret key of a DL-cryptosystem from random seeds that are only 1

2 log2 q bits long. The
1
2 log2 q threshold is tight, its proof requires the generic model.

∗This work was initiated in 1998 during a stay at Bell Laboratories, Murray Hill, New Jersey. The support
of Bell Laboratories is gratefully acknowledged.

1

Let us mention some recent security results in the generic model which give reasonable
evidence that various practical cryptosystems are secure. Shoup [Sh97] proves security of
the Schnorr identification scheme against active attacks. He also proves lower bounds for
the Diffie-Hellman problem and the decisional Diffie-Hellman problem. The intractability of
the latter problems is assumed in the security proofs of [CS98]. Schnorr [Sc98] proves that
almost all discrete log bits are simultaneously secure. Schnorr and Jakobsson [SJ00]
show that signed ElGamal encryption is non-malleable and plaintext aware provided that
the hash function is random.

The generic DL-complexity. Let G be a group of prime order q with generator g and
let Zq denote the field of integers modulo q. The discrete logarithm logg(h) of h ∈ G is the
integer x mod q in Zq that satisfies gx = h. The discrete logarithm is defined modulo q as
the order of g is q. Roughly speaking, an algorithm is generic if it does not use the binary
encoding of the group elements. It can only use group elements for group operations such
as multiplication/division (generic steps) and for equality tests. There are many groups
for which the fastest known DL-algorithms are generic: (1) general elliptic and curves, (2)
general hyper-elliptic curves of genus 2, (3) subgroups of prime order q of the multiplicative
group Z∗p of integers modulo a prime p for which p/q is so large that sieving methods are
inefficient. Following Nechaev [Ne94] and Shoup [Sh97] generic algorithms that compute
logg(h) for all h ∈ G must perform Ω(

√
q) multiplications/divisions. We slightly extend the

generic model of Shoup by allowing for generic steps arbitrary multivariate exponentiations.
Let the generic DL-complexity of a subset H ⊂ G be the minimal number of generic steps
to compute logg(h) for all h ∈ H.

Our results. Let m = #H denote the size of H. We show that the generic DL-complexity
is at least m

2 + o(m) for almost all H of size m ≤ √
q. 1 On the other hand dm

2 e+ 1 generic
steps are always sufficient. Thus the generic DL-complexity is m

2 + o(m) for almost all
subsets H ⊂ G of size m ≤ √

q. For m =
√

q the generic DL-complexity is 1
2

√
q + o(

√
q),

i.e., about 1
2
√

2
times the generic DL-complexity

√
2q for the entire group G. Our main

theorem shows a generic DL-complexity lower bound for subsets H of size m = o(
√

q). We
subsequently extend this result to the case m ≤ √

q. Interestingly, our generic lower bounds
hold for arbitrary multivariate exponentiations and not just for multiplications/division.

It is interesting to compare the optimal generic DL-algorithms with the brute force
method : given the set of logarithms logg(H) test gx = h for all x ∈ logg(H). This requires
in worst case m and on the average m

2 generic steps. We show that the brute force method
is — up to a factor 2 — optimal for almost all subsets H of size m ≤ √

q.
Short secret keys. Our main result justifies to generate secret keys of DL-cryptosystems

from random seeds with 1
2 log2 q bits. For this expand a random integer x′ ∈R [0,

√
q] of

1
2 log2 q bits using a strong hash function SH into a pseudo-random integer SH(x′) ∈PR

[0, q[. The corresponding pair x′, gSH(x′) is a DL-key pair that is — for generic attacks —
nearly as strong as pairs x, gx for truly random x ∈R [0, q[. This is because the generic
DL-complexity is for almost all subsets H ⊂ G of size

√
q about 1

2
√

2
times the generic

1The asymptotics as o(m), o(1) is for m → ∞. ”For almost all H” means that the fraction of excepted
H is negligible, i.e., less than O(m−c) for all constant c > 0.

2

DL-complexity for G. Clearly, a strong hash function SH yields a set of pseudo-random
public keys SH[0,

√
q] ⊂ [0, q[of size Ω(

√
q) since otherwise collisions SH(x′) = SH(x′′)

can be constructed using o(
√

q) function evaluations [0,
√

q] 3 x 7→ SH(x). Moreover, it
is reasonable to assume that the set SH[0,

√
q] does not fall into the exceptional class of

subsets H ⊂ G where the DL is easy in the generic model. Generating secret keys from short
random seeds can be practical if a strong hash function SH is at hand anyway. Now, there
is a theoretical justification that seeds of length 1

2 log2 q are nearly of the highest security
level while shorter seeds are less secure.

Moreover, as the generic DL-complexity is m
2 + o(m) for almost all subsets H ⊂ G of

size m, it is sufficient to generate secret DL-keys from seeds x′ ranging over a set of size m
that is so large that m

2 generic steps are infeasible — at present m ≥ 280 is sufficient.
Fast pseudo-random exponentiation. An intriguing challenge along this line is to replace

SH in the short secret key representation by a pseudo-random function F that speeds up
the exponentiation x′ 7→ gF (x′).

The Generic Model. The data of a generic algorithm are partitioned into group elements
in G and non-group data (arbitrary data except elements of G). We assume that the prime
module q and the set logg(H) are given, other non-group data are the collisions defined
below. The generic steps of a generic algorithm are multivariate exponentiations2 :
• mex: Zd

q ×Gd → G, (a1, ..., ad, g1, ..., gd) 7→
∏

i g
ai
i with d ≥ 0.

Multiplication/division are exponentiations with d = 2, a1 = 1, a2 = ±1. The operations
mex with d = 0 are the inputs in G — e.g., g, h are inputs for the DL-computation.

Def. A generic algorithm is a sequence of t generic steps

• f1, . . . , ft′ ∈ G (inputs) 1 ≤ t′ < t,

• fi =
∏i−1

j=1 f
aj

j for i = t′+1, . . . , t, where (a1, . . . , ai−1) ∈ Zi−1
q depends arbitrarily

on i, the non-group input and the set COi−1 := {(j, k) | fj = fk, 1 ≤ j < k ≤ i − 1}
of previous collisions of group elements.

The following operations are free of charge: testing equality of group elements, arbitrary
computations using non-group data, the selection of the exponents a1, ..., ai−1 of a generic
step and the selection of a non-group output. A generic algorithm for computing h 7→ logg(h)
for h ∈ H can use the set logg(H) of all logarithms of elements in H for free. The probability
associated with DL-algorithms refers to the random input h ∈R H. Generic algorithms are
deterministic, internal coin tosses are useless as the algorithm can always select an optimal
coin flip that maximizes its probability of success. The only possible way that the generic

2We count the same generic steps as in [Sh97] however we allow arbitrary multivariate exponentiations
while Shoup merely uses multiplication and division. On the surface the technical setup in [Sh97] looks
different as groups G are additive and associated with a random injective encoding σ : G → S of the group
G into a set S of bit strings — the generic algorithm performs arbitrary computations on these bit strings.
Addition/subtraction is done by an oracle that computes σ(fi±fj) when given σ(fi), σ(fj) and the specified
sign bit. As the encoding σ is random it contains only the information about which group elements coincide
— this is what we call the set of collisions. We dispense with the encoding σ and let the algorithm make
arbitrary use of the set of collisions. We distinguish group and non-group data, a distinction that in the
Shoup setup comes automatically with the oracle for the group operation.

3

steps affect the computation of non-group data such as discrete log’s is by collisions of group
elements.3 The example below shows how collisions reveal logg h.

A generic algorithm for computing logg(h) for random h ∈ H. We give an example
demonstrating the power of generic algorithms. The example algorithm is twice as fast as
the brute force method. It provides a generic DL-complexity upper bound that matches
the lower bound of the main theorem. The generic steps of the example algorithm are
determined by solving linear equations over Zq related to logg(H) — that computation is
free of charge. Let us emphasize that H is an arbitrary subset of G, not a subgroup. In
particular, the neutral element of G needs not be in H. For convenience we assume that
the generator g is in H.

Determining the step sequence of the algorithm A. We construct u1, ..., ut, v1, ...vt ∈
Zq for the generic steps fi = guihvi , i = 1, ..., t as follows. Select distinct elements
x1,, x2t−2 ∈ logg(H), with x1 = 1 = logg(g), and recursively determine u1, ..., ut, v1, ..., vt ∈
Zq such that

(u1, v1) := (1, 0), (u2, v2) := (0, 1), and thus x1(v1 − v2) = u2 − u1.
x2i−4(v1 − vi) = ui − u1, x2i−3(v2 − vi) = ui − u2 for i = 3, ..., t.

This system of equations in the unknowns u3, ..., ut, v3, ..., vt is always solvable. Given
u1, ..., ui−1, v1, ..., vi−1 the two linear equations for ui, vi have determinant x2i−4 − x2i−3

which is nonzero in Zq. Therefore ui and vi are uniquely determined. Note that we cannot
have v1 = vi or v2 = vi. If v1 = vi we have u1 = ui and this implies ui−u2 = x2i−3(v2−vi) =
u1 − u2 = x1(v2 − v1), hence x2i−3 = x1. This has been excluded as the xi are distinct. As
v1 6= vi, v2 6= vi we have x2i−4 = ui−u1

v1−vi
, x2i−3 = ui−u2

v2−vi
. Moreover, (ui, vi) 6= (uj , vj) holds

for 3 ≤ i, j,≤ t and i 6= j — since otherwise we must have x2i−4 = x2j−4 which is excluded
as x1, ..., x2t are distinct. In summary, the pairs (u1, v1), ..., (ut, vt) are pairwise distinct.

Let A’s generic steps compute fk := gukhvk for k = 1, ..., t, in particular for k = 1, 2
we get f1 = g, f2 = h. We have fi = fj iff ui + vi logg(h) = uj + vj logg(h) iff
logg(h) = uj−ui

vi−vj
.

A gets from a collision fi = fj the logarithm logg(h) = uj−ui

vi−vj
. By the construction of

u1, ..., ut, v1, ..., vt, A gets logg(h) for logg(h) ∈ {x1, ..., x2t−3}. Otherwise A guesses that
logg(h) = x2t−2. A succeeds for random h ∈R H, #H = m, with probability 2t−2

m . The
case that logg(h) = x2t−2 contributes 1

m to the success probability.

In order to succeed for all h ∈ H of even size m we use the algorithm with t = m+2
2 .

Then 2t− 2 = m and x1, ..., x2t−2 exhaust H. The number of generic steps is m
2 + 1. This

proves the following proposition where we let m — for simplicity — be even.

Proposition 1. The above-mentioned algorithm A computes logg(h) for random h ∈ H and
even m = #H with probability 2t−2

m using t generic steps. A always succeeds for t = m
2 + 1.

Main Theorem 2. Every generic algorithm A with t generic steps satifies for almost all
3The decision to terminate with a generic step may arbitrarily depend on the non-group input — such

as q and logg(H) — and the previous collisions. Thus, t arbitrarily depends on the given non-group data.

4

subsets H ⊂ G of size m with m = o(
√

q): Prh∈RH [A(h) = logg(h)] ≤ 2t
m + o(1).

The generic DL-complexity for small subsets. The upper bound 2t
m + o(1) of A’s

probability of success in Theorem 2 is tight as the example algorithm succeeds with proba-
bility 2t−2

m . Hence, the generic complexity of logg is at least m
2 + o(1) for almost all subsets

H of size m = o(
√

q). Below we extend the latter result to the case m ≤ √
q.

Proof. Let H = {gx1 , ..., gxm} ⊂ G be a random multiset, where the random elements
xi ∈R Zq for i = 1, ..., m are chosen independently at random with repetition. H has size
m counted with multiplicities. As m = o(

√
q) repetitions xi = xj , i < j, have probability

o(1) and are disregarded in the following. Importantly, the elements in H are mutually
independent. Let A’s generic steps compute

fk := gukhvk for k = 1, ..., t,
where the pairs (uk, vk) ∈ Z2

q are pairwise distinct and (uk, vk) depends arbitrarily on the
set of logarithms logg(H) ⊂ Zq and on previous collisions fi = fj with i < j < k. The
distinctness of the (ut, vt) is not a restriction as repetitions can easily be removed. For
simplicity we do not require that g, h ∈ {f1, ..., ft}.

We first consider constant step sequences u = (u1, ..., ut), v = (v1, ..., vt) ∈ Zt
q for which

uk, vk do not depend on previous collisions but depend arbitrarily on logg(H). In case of a
collision fi = fj we have logg(h) = uj−ui

vi−vj
. (We have vi 6= vj , as vi = vj implies ui = uj and

the case (ui, vi) = (uj , vj) has been excluded.) We denote

xi,j := uj−ui

vi−vj
and Hu,v :=

{
xi,j ∈ logg(H) | 1 ≤ i < j ≤ t

}
.

Thus A succeeds if logg(h) ∈ Hu,v. Hence p := #Hu,v/m is, for random h ∈R H, the
probability that there is a collision.

If logg(h) 6∈ Hu,v then all A gets to know is that logg(h) ∈ logg(H) \ Hu,v. Then A
can at best guess for logg(h) one of the m −#Hu,v elements in logg(H) \Hu,v. Thus A’s
probability of success is for given H and random h ∈ H at most

p + (1− p) 1
m−#Hu,v

= p + 1
m = #Hu,v/m + 1

m .

We see from Lemma 3 that #Hu,v ≤ 2t + o(m) for almost all H ⊂ G of size m. Here
we use that t2/q = o(1) holds for t = o(

√
q), and also that exp(−2mt) ≤ exp(−2

√
m) is

negligible for t ≤ m
2 −

√
m while #Hu,v ≤ 2t + o(m) is trivial for t > m

2 −
√

m. Therefore
Lemma 3 proves Theorem 2 for constant u,v.

Lemma 3. For random H of size m and mt := m− 2t + 2 we have
PrH [maxu,v∈Zt

q
#Hu,v ≥ 2t− 2 + mt t2/q] ≤ exp(−2mt).

Proof. Let (u,v) ∈ Z2t
q be a constant step sequence such that #Hu,v is maximum for some

H. Consider the corresponding equations
xi,j(vi − vj) = uj − ui for xi,j ∈ Hu,v. (1)

Select a maximum subset of the linear equations in (1) that are linearly independent — when
the constants u1, ..., ut, v1, ..., vt are replaced by variables over Zq. That linear independence
is a property of the set of triples (xi,j , i, j) with xi,j ∈ Hu,v. Let I denote the set of pairs

5

(i, j) corresponding to these linearly independent equations and let HI := {xi,j | (i, j) ∈ I}.
We next show that #I = 2t − 2. The solutions of the equations (1) for (i, j) ∈ I form a
linear space of dimension ≥ 2: if (u,v) is a solution then so is (αu, βv) for α, β ∈ Zq, and
thus #I ≤ 2t − 2. Moreover for t ≥ 4, #I = 2t − 2 and random xi,j ∈R Zq the equations
(1) for (i, j) ∈ I are linearly independent except for an event of probability O(1/q).

Next we prove that 2t − 2 linearly independent equations for (i, j) ∈ I determine the
step sequence (u,v) ∈ Z2t

q up to constant factors α, β ∈ Zq. Suppose there exist two such
step sequences (u,v), (u′,v′) satisfying (u,v) 6= (αu′, βv′) for all α, β ∈ Zq. If two such
step sequences satisfy the linear equations (1) for all (i, j) ∈ I for the same I then there
exist λ, λ′ ∈ Zq and (i, j) 6∈ I such that (λ(uj−ui)+λ′(u′j−u′i))/(λ(vi−vj)+λ′(v′i−v′j)) ∈
logg(H) \Hu,v holds for some 1 ≤ i < j ≤ t. Then (u∗,v∗) := λ(u,v) + λ′(u′,v′) is a step
sequence for which Hu,v is properly contained in Hu∗,v∗ — contradicting to the assumption
that #Hu,v is maximum. This proves the claim that the step sequence (u,v) is determined
— up to constant factors — by the xi,j ∈ HI via the equations (1).

We call the xj ∈ logg(H)\HI free. There are m−#I = mt free xj ∈ logg(H). The free
xj are statistically independent of (u,v) as (u,v) is determined by the xi,j ∈ HI . The free
xj are uniformly distributed over logg(H). Hence, PrH [xj ∈ Hu,v \HI] = (

(t
2

) − #I)/q.
Therefore, the expected number of free xj ∈ Hu,v \HI is mt(

(t
2

)−#I)/q ≤ mt
(t
2

)
/q. Next

we bound the deviation from the expected value.
The events [xj ∈ Hu,v \HI], for the free xj , are mt Poisson trials that are mutually

independent. By Chernoff’s bound we have for ε > 0:
PrH [#{free xj ∈ Hu,v \HI} ≥ mt

(t
2

)
(1 + ε)/q] ≤ exp(−2εmt). (2)

(More precisely, we use Hoeffding’s bound [H63] as in exercise 4.7 of [MR95].) Inequality
2 with ε = 1 proves Lemma 3 as HI consists of 2t− 2 non-free xi,j . ¤

To complete the proof of Theorem 2, consider the case that uk, vk are recursively defined
depending on previous collisions fi = fj with i < j < k. Consider the first collision for
which j is minimal. The first collision occurs for a constant step sequence (u′,v′) ∈ Z2t′

q .
This is because all non-group data are constant — i.e., not depending on h — unless there is
a collision. A first collision occurs if logg(h) ∈ Hu′,v′ for constant u′,v′, which happens with
probability #Hu′,v′/m. This shows that A’s probability of success is at most the maximum
of #Hu′,v′/m + 1/m over all constant u′,v′ ∈ Zt′

q for t′ ≤ t. By Lemma 3 this maximum is
at most 2t

m + o(1) for almost all H of size m. ¤

The case m ≤ √
q. By the previous argument, lower bound proofs need only to cover

generic algorithms with constant step sequences u,v. If m ≤ √
q we can in the proof of

Theorem 2 still disregard repetitions xi = xj , i < j of the random xi ∈ logg(H) as the
expected number of repetition is at most

(m
2

)
/q ≤ 1

2 . Therefore, Inequality 2 holds for
m ≤ √

q. Setting m :=
√

q, t := 1
2

√
q(1− ε), mt := m− 2t + 2 we have mt = ε

√
q + 2 and

mt
(t
2

)
/q = ε(1−ε)2(1+ε)m

8 . As there are 2t−2 ≤ m(1−ε) non-free xi,j ∈ Hu,v, Inequality
2 shows that the event #Hu,v/m ≥ (1 − ε) + ε(1 − ε)2(1 + ε)/8 has probability at most
exp(−2εmt) ≈ exp(−2ε2√q) for random H of size m. Moreover, (1−ε)+ε(1−ε)2(1+ε)/8 ≥
1− ε, and exp(−2ε2√q) is negligible for ε = q−1/5. So let ε := q−1/5.

We conclude that generic algorithms with t := 1
2

√
q − q3/10 generic steps succeed, for

6

almost all H of size m =
√

q, at most with probability 1−q−1/5. This shows that the generic
DL-complexity is for m =

√
q at least 1

2

√
q−q3/10 = m

2 +o(m) for almost all subset H of size
m =

√
q. Moreover, the cryptographic relevant q, q ≈ 2160, satisfy 1

2

√
q−q3/10 ≈ 1

2

√
q ≈ 279.

Therefore, the generic DL-complexity for subsets of size 280 is close to 279.

The case m = q. For H = G and t <
√

2q we have that #Hu,v/q ≤ (t
2

)
/q < 1. Therefore,

the generic DL-complexity is at least
√

2q for the entire group G.

Acknowledgements. I wish to thank Carl Pomerance for some useful communications on
this subject and Marc Fischlin for proof reading the manuscript.

References

[CS98] R. Cramer and V. Shoup: A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. Proc. Crypto’98, LNCS
1462, Springer-Verlag, pp. 13–25, 1998.

[DH76] W. Diffie and M.E. Hellman: New Directions in Cryptography. In IEEE
Transactions on Information Theory, vol IT-22, no. 6, pp. 644–654, 1976.

[G85] T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Trans. Inform. Theory, 31, pp. 469–472, 1985.

[H63] W. Hoeffding: Probability in equalities for sums of bounded random variables.
J. Amer. Stat. Ass. 58 (1963), pp. 13–30.

[MR95] R. Motwani and P. Raghavan: Randomized Algorithms. Cambridge Univer-
sity Press Cambridge UK, 1995.

[Ne94] V.I. Nechaev: Complexity of a Determinate Algorithm for the Discrete Log-
arithm. Mathematical Notes 55, pp. 165-172, 1994.

[O92] T. Okamoto: Provably Secure Identification Schemes and Corresponding Sig-
nature Schemes. Proc. Crypto’92, LNCS 740, Springer-Verlag, pp. 31–53,
1992. 1–16,

[Sc91] C.P. Schnorr: Efficient Signature Generation for Smart Cards. Journal of
Cryptology 4, pp. 161–174, 1994.

[Sh97] V. Shoup: Lower Bounds for Discrete Logarithms and Related Problems.
Proc. Eurocrypt’97, LNCS 1233, Springer-Verlag, pp. 256-266, 1997.

[Sc98] C.P. Schnorr: Security of Almost All Discrete Log Bits. Electronic Collo-
quium on Computational Complexity. Report TR 98-033. Available at http:
//www.eccc.uni-trier.de/eccc/

[SJ00] C.P. Schnorr and M. Jakobsson: Security of Signed ElGamal Encryption.
Proc. Asiacrypt’00, LNCS ed. T. Okamoto, Springer-Verlag 2000.

7

