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Abstract. We present a novel parallel one-more signature forgery against
blind Okamoto-Schnorr and blind Schnorr signatures in which an at-
tacker interacts some ! times with a legitimate signer and produces
from these interactions [ 4+ 1 signatures. Security against the new at-
tack requires that the following ROS-problem is intractable: find an
overdetermined, solvable system of linear equations modulo g with random
inhomogenities (right sides).

There is an inherent weakness in the security result of POINTCHEVAL
AND STERN. Theorem 26 [PS00] does not cover attacks with 4 paral-
lel interactions for elliptic curves of order 22°°. That would require the
intractability of the ROS-problem, a plausible but novel complexity as-
sumption. Conversely, assuming the intractability of the ROS-problem,
we show that Schnorr signatures are secure in the random oracle and
generic group model against the one-more signature forgery.

1 Introduction and Summary

We study the security of blind Schnorr signatures and blind Okamoto-Schnorr
signatures against the one-more signature forgery in which an attacker interacts
some [ times with the legitimate signer and produces from these [ interactions
l + 1 signatures. Let these signatures be based on the discrete logarithm of an
arbitrary group G of prime order ¢, e.g. an elliptic or hyperelliptic curve or
a subgroup of units in Z} for a composite or prime module n. We introduce
the novel parallel attack that succeeds in a one-more signature forgery against
blind Schnorr signatures and blind Okamoto-Schnorr signatures with the same
efficiency. The attack is in the Random Oracle and Generic Group Model (ROM
+ GM) explained in Section 3. The new attack merely requires a solution of the
ROS-problem, a possibly intractable problem: find an overdetermined, solvable
system of linear equations modulo ¢ with random inhomogenities. Specifically,
given a system of ¢ > [ linear equations modulo ¢ in [ unknowns with random
inhomogenities (right sides) find a solvable subsystem of [ + 1 equations — a
solvable subsystem corresponds to a (I + 1) x [-submatrix of rank I.

The new parallel attack has the interesting feature not to depend on the
public key. Traditional security proofs do not seem to work in the presence of



such an attack. Usually, traditional security proofs use the attacker to solve a
DL-problem or a decisional Diffie-Hellman-problem associated with the public
key. However, the generic parallel attack uses a solution of the ROS-problem that
is not related to the public key and thus the attacker cannot be used to solve
a DL- or a DDH-problem. How could [PS00,PS96b] prove security 7 Theorem
26 of [PS00] only covers cases where solutions of the ROS-problem exist with
negligible probability. While Theorem 26 [PS00] is optimal in the traditional
security model, the new attack points to an inherent weakness of this result.

Theorem 26 of [PS00] shows that an attacker mounting a one-more signature
forgery with a probability of success ¢ > 4Q'*!/q can be used to compute a
discrete logarithm.! Here @ is the number of hash queries, [ is the number
interactions with the signer and g is the prime order of the group G. For an
elliptic curve G of order ¢ ~ 22°° and Q = 2°° we must have { < 3 as ¢ < 1. For
a subgroup G of units of order < 21°%0 we must have [ < 20. The security for
larger values of [ is an open problem [PS00]. Our generic parallel attack shows
that the security of blind DL-signatures against one-more signature forgeries
requires the intractability of the ROS-problem. The ROS-problem is related to
a NP-complete problem [H97].

Conversely, assuming the intractability of the ROS-problem Theorem 2 gives
a practical security guarantee for blind Schnorr signatures in the ROM + GM. A
generic attacker performing ¢ generic steps, including some [ interactions with the
signer, cannot produce [ + 1 signatures with a better probability than (})/g. For
elliptic curves G of order g ~ 22%0 this guarantee covers up to ¢t = 2'%0 generic
steps including up to 2'%° parallel signer interactions that can be interleaved
in an arbitrary way. Blind Schnorr signatures have the same security level in
the ROM + GM as the double-keyed blind Okamoto-Schnorr signatures, thus
reducing a considerable overhead.

Our result suggests to use blind Schnorr signatures in connection with strong
elliptic/hyperelliptic curves rather than double-keyed blind Okamoto-Schnorr
signatures with subgroups of units. We prove security of the most practical
schemes under reasonable assumptions. The less practical schemes of [P98], [AO
00] are provably secure for a polynomial number of interactions, but some re-
strictions apply. 2 The security proofs of [P98], [AO 00] do not use the GM. The
new attack does not apply to the less simple signatures of [A01].

! In terms of asymptotic bounds the security results of POINTCHEVAL, STERN
[PS96b,PS00] show that blind Okamoto-Schnorr signatures are secure against par-
allel interactive attacks provided that the number of interactions with the signer is
poly-logarithmic — polylog(|q|) for the binary length |g| of ¢. The polylog bound on
the number of signer interactions has not been explicitly mentioned in [P00] but it
is required as the proof is based on the results of [PS00].

In [P98] a third party — the checker — has been introduced, and it is shown that
the resulting three-party signature protocol is secure for a polynomial number of
synchronized signer interactions, where the synchronization forces the completion of
each step for all the different protocol invocations before the next step of any other
invocation is started. The [AO 00] scheme uses the [P98] scheme, thus the same
restrictions apply.

N



Is the GM-assumption to strong ? Contrary to claims of previous anonymous
referees we are not aware of a practical cryptographic scheme that is secure in the
ROM + GM but is insecure in reality. [CGH98] give a very intricate example of
a secure scheme in ROM (only) that does not have a secure implementation. Of
course the random hash function must be independent of the generic group [F00].
Moreover, F1sCHLIN [F00] shows that generic verifier zeroknowledge is provably
weaker than black-box TM verifier zeroknowledge. There are two reasons [ScO1b]:
firstly, generic verifiers are more restricted than TM-verifiers, secondly black-
box simulators are less powerful than generic verifier simulators that control the
generic group steps. Fischlin’s result does not amount to a security break as
we do not know that generic verifier zeroknowledge is weaker than ”general”
TM-verifier zeroknowledge. The restriction via the black-box mode may be to
rigid.

The paper is organized as follows. We present in Section 2 blind Schnorr
signatures and the novel parallel attack against blind Schnorr and against blind
Okamoto-Schnorr signatures. We determine in Theorem 1 the probability for the
existence of a solution for the ROS-problem. In Section 3 we describe the ROM
+ GM as introduced in [SJ00]. Assuming the intractability of the ROS-problem
we give in Section 4, Theorem 2 a practical security guarantee for blind Schnorr
signatures in the ROM + GM.

2 Blind Schnorr Signatures and the Parallel Attack

We are interested in blind signatures as required for anomymous digital cash.
Blind signatures are generated by an interaction with the signer who controls
the secret signature key.

Schnorr signatures refer to an arbitrary group G of prime order ¢ and an
arbitrary message space M. We describe signer interactions, an interactive pro-
tocol that enables a user to generate Schnorr signatures of messages of its choice.
We first describe the setting and the structure of the signatures, after which we
review the protocol for generation of signatures. We also show how to generate
blind signatures of the same type. Signatures will be based on an ideal hash
function H : G x M — Z,, where M is the set of messages.

Private/public key pairs. The private key x of the signer is random in Z,. The
corresponding public key is h = ¢g® € @, a random group element. We have
z = logy h.

Signatures. A Schnorr signature on a message m is a triple (m,¢c,2) € M x Zg
such that H(g*h~°,m) = c. For this paper, we let signatures (m, ¢, z) comprise
the message.

Signing a message m € M: Pick a random r € Z,, compute g", ¢ := H(g", m)
and z := 7 + cz. Output the signature: (m,c, z). The result is a valid
signature since we have g?°h™¢ = g"T**h~¢ = g", and thus H(g*h™¢,m) = c. We
call a signature (m,c, z) constructed by this protocol a standard signature.



A signer interaction is a three round interactive protocol between the signer and
a user. The signer picks a random r €gr Z, and sends the commitment g" to
the user. The user selects a challenge c € Z, and sends c. The signer responses
by sending z :=r + cx € Zy. We let (r,¢,2) € Z3 denote the signer interaction
consisting of the signer’s random coin r, the user’s challenge ¢ and the signer’s
response z. A signer interaction (r,c,z) can be used to generate the standard
signature (m,c,z), where ¢ := H(g",m) or a transformation (m,c’,z') of this
signature.

Blind Signature Protocol. We call the signature protocol blind if it generates a sig-
nature (m,c’, z') that is statistically independent of the interaction (r,c, z) that
provides the view of the signer. Lateron, blind signatures cannot be identified
and related to the signer interaction. The blindness concept is from [CP92].

To generate a blind signature (m,c’,2’) the user picks random numbers
o, €Rr Zg4, and responses to the commitment g" by sending the challenge
c = H(g" *hP,m) + B € Z,. After receiving z = r + cz € Z, he computes
Z=z+a,d=c-p.

Validity. For the output of the interaction (m,c’,2') = (m,c— B3,z + a) we have
g* h~¢ = grtestap=—cth — grtapf Hence H(g* h=°,m) = c— 3 = ¢, and thus
(m,d,2') is a valid signature.

Blindness Property. The generated signature (m,c— (3, z+a) is — for a constant
interaction (r, ¢, z) — uniformly distributed over all signatures on message m due
to the random «, 3 €gr Z,. Each signature (m,c’, 2') is produced for a unique
pair (a,8) :a=2 —2, B=c—C.

2.1 A New Parallel Attack Against Blind Schnorr Signatures

We present a variant of the attack that does not even use the generator g and
the public key h. We first present the attack for Schnorr signatures. Thereafter,
we extend it to Okamoto-Schnorr signatures. We show that Okamoto-Schnorr
signatures do not protect better against the attack than plain Schnorr signatures.
The new attack uses a solution of the following

ROS-problem: Find an overdetermined, solvable system of linear equations
modulo ¢ with random inhomogenities. Specifically, given an oracle random func-
tion F' : Zf1 — Zg4, find coefficients ay ¢ € Z4 and a solvable system of [+1 distinct
equations (1) in the unknowns c;, ..., ¢; over Zg:

ag1€ + ... tagic = F(ak,l, ...,ak,l) for k=1,...,t. (1)

We evaluate the expected number of solvable subsystems consisting of [ + 1 out
of ¢t equations (1).

Theorem 1. For arbitrary coefficients ar ¢ € Zg, the average number of solvable
subsystems of L+ 1 out of the t equations (1) is at most (l+t1) /q. For statistically
independent coefficients ary €Er Z4 the average number of solvable subsystems

is (f)at (1—g ' +0(g?).



proof Consider a constant selection of [ + 1 out of the ¢ equations (1) with
arbitrary coeflicients ag ¢. Let the subsystem have s linearly independent vectors
(ak,1, - ak) € Zt. The subsystem is solvable if and only if the rank of the
submatrix of the corresponding vectors (ax,1, ..., @k,1, F(ak,1,...,ax,1)) is s. The
probability that the subsystem is solvable has a maximum ¢~ for s = [. For
s = [ the [ linearly independent equations have a unique solution and that
solution satisfies the remaining equation with probability g~1. As there are (Ht_l)
selections out of £, the average number of solvable subsystems is at most (lfrl) /q.

Next, consider random coefficients ax¢ €r Z4. Then [ vectors (ak,i,..., k1)
are linearly independent with probability (1 — ¢~1)(1 —¢~2) - ...+ (1 — ¢g~!*1).
Hence, a constant selection of I + 1 equations (1) is solvable with probability
g'(1—-g" +0(g7?).

Consider two distinct selections of [ + 1 equations. The solvability of two
systems of [ + 1 equations is (nearly) statistically independent as the systems
differ in at least one random value F(ak,1,...,ax,;). The law of large numbers
holds for a sequence of pairwise independent, identically distributed random
variables. Therefore, the expected number of solvable subsystems with [ 4+ 1
equations is (lil)q_l(l —q¢ '+ 0(qg7?). |

The attack against Schnorr signatures. The signer sends commitments g; =
g™, ...,q1 = g"*. The attacker A selects a1, ..., ak,; € Zq and messages my, ..., My,
and computes fr = g7*" -...-g;/*" and H(fx,ms) for k =1,...,t. Then A solves
[+ 1 of the t equations (2) in the unknowns ¢y, ..,¢; over Zg:

H(fk,mk) = Zé:l Q¢ Co for k=1,...,t. (2)
A sends the solutions cy, ..., ¢; as challenges to the signer. The signer sends back
2o 1 =1y +cox € Zg for £ = 1,..,1. For each solved equation (2), the attacker gets
a valid signature (mg, ¢}, 2;,) by setting

1 1

C = pq0keCe = H(fx,mp) and 2z :=>,_; akeze.
Correctness. The equations (2) imply that

gkh% =gttt gt = fr and H(g*h™%,my) = c}.
In the ROM the values H(fi, my) are random. The coefficients ay ¢ selected
by the attacker are arbitrary values. The solution (ci,...,¢;) of [ + 1 of the t
equations (2) does not depend on g, h. As A does not use g, h, A cannot help in
black-box mode to compute log, h or to solve a Diffie-Hellman or a decisional
Diffie-Hellman problem related to h.

The new attack is generic, it works for arbitrary groups with an efficient
multiplication. We call it the generic, parallel attack. The attack is intrinsic
parallel. Theorem 1 shows that the number [ of parallel interactions with the
signer must be at least logarithmic in g. Otherwise, the probability (l+t1) /q for
the existence of a solvable subsystem of [ + 1 equations (2) is negligible.

The attack against Okamoto-Schnorr signatures. We follow the notation of [PS00).
There are two public keys h and y = g~"h™* for random secret keys r,s €g Zg



while log, h is unknown. A signature of message m is a tuple (m,e,0,p) € M x Zg
satisfying H(g?h°y®,m) = ¢.

The signer picks random t;,u; €g Z, and sends commitments g, = g*¢h*¢ for
¢=1,.,1. The attacker A selects coefficients ay ¢ € Z, and messages my, ..., My,
and computes fr = g7*" -...- g and H(fx,mi) for k =1,...,t. Asolvesl+1
of the t linear equations (2) modulo ¢ in the unknowns cy,...,¢;. A sends the
solutions ¢y, ..., ¢; as challenges to the signer. The signer sends back R, := ty+cyr,
Se 1= ug + cgs € Zy for £ = 1,..,1. For each solved equation (2) A gets a valid
signature (mg, €, Pk, k) by setting

! ! !
ek = H(fe,mi) =31 akece, pk =730y 0keRe, ok =3 areSe
Correctness. From the equations (2) we get that
gPehorys =TT, , 9o = fr and H(gP*ho*y%*,my) = ey.

Conclusion. The generic parallel attack A does not use the public g, h,y. Thus,
it is impossible to use a successful attacker to solve a DL- DH- or DDH-problem.
The generic, parallel attack has been excluded in Theorem 26 [PS00] by assuming
that the attacker has a probability of success 4t(+1) /q which is greater than the
probability (Hfl) /q for the existence of a solvable subsystem of [ + 1 equations
(2). The second part of Theorem 1 shows that solutions to the ROS-problem are
very likely to exist for | = 4,t = 250 and ¢ ~ 2290, The generic parallel attack
is possible for [ = 4 parallel interactions, ¢ = 250 hash queries for elliptic curves
of order g ~ 22°°, A meaningful security guarantee for elliptic curves of order
~ 2290 requires that solvable subsystems of I + 1 equations (2) are hard to find.

3 The Random Oracle and the Generic Group Model

The Random Oracle Model (ROM). Let G be a group of prime order g
with generator g, a range M of messages, and let Z, denote the field of integers
modulo g. Let H be an ideal hash function with range Z,, modelled as an oracle
that given an input (query) in G x M, outputs a random number in Z,. Formally,
H is a random function H : G x M — Z, chosen at random over all functions
of that type with uniform probability distribution.

The Generic Group Model (GM). Generic algorithms for G' do not use the
binary encodings of the group elements, as they access group elements only for
group operations and equality tests. NECHAEV [Ne94] proves that the discrete
logarithm problem is hard in such a model, see [ScOla] for a stronger result.
The generic model of algorithms was further elaborated on by SHOUP [Sh97].
We present the Shoup model in a slightly different setup® and we extend it
to algorithms that interact with a decryption oracle. Encryptions are for the

3 We count the same generic steps as in [Sh97]; however, we allow arbitrary multi-
variate exponentiations while Shoup merely uses multiplication and division. The
technical setup in [Sh97] looks different as groups G are additive and associated with
a random injective encoding o : G — S of the group G into a set S of bit strings —
the generic algorithm performs arbitrary computations on these bit strings. Addi-



private/public key pair (z, h), where z is random in Z, and h = g*. We describe
the extended generic model in detail, first focusing on non-interactive algorithms
and thereafter on algorithms interacting with oracles for hashing and signing.

The data of a generic algorithm is partitioned into group elements in G and
non-group data. The generic steps for group elements are multivariate exponen-
tiations:

e mex: Zg x G¢ = G, (a1,...,ad,91,---,9a) > [1; 97% with d > 0.

The cases d = 2,a; = 1,a = +1 present multiplication/division. The case d = 0
presents inputs in G — e.g., g, h are inputs for the DL-computation.

Def. A (non-interactive) generic algorithm is a sequence of ¢ generic steps*
e fi,...,fv €G (inputs) 1<t <t,

o fi= H;;ll f;j for i=t+41,...,t, where (a1,...,a;_1) € Z; ' depends
arbitrarily on %, the non-group input and the set CO;_; := {(4,¢) |
fi = fo, 1 < j <€ <1i—1} of previous collisions of group elements.

Typical non-group inputs are various integers in Z, contained in given cipher-
texts or signatures. CQ; is the set of all collisions of the algorithm.

Some group inputs f; depend on random coin flips, e.g., the random public
key h = g® depends on the random secret key x €g Z,. The probability space
consists of the random group elements of the input. The logarithms log,, f; of the
random inputs f; play the role of secret parameters. Information about the secret
parameters can only be revealed by collisions. E.g., g = f? implies log, fi = a/b.
We let the non-group input and the generator g not depend on random bits.

The output of a generic algorithm consists of

e non-group data that depend arbitrarily on the non-group input and on the
set CO; of all collisions,

e group elements f,,,...,f,, where the integers o01,...,04 € {1,...,t}
depend arbitrarily on the non-group input and on CO;.

Next, we elaborate on interactive, generic algorithms. We count the following
generic steps :

e group operations, mex: Zfli XG4 — G, (a1, Qdy g1,y Gd) > IL 9i,
e queries to the hash oracle H,

e interactions with a signature oracle (signer for short).
A generic adversary A — mounting a one-more signature forgery — is an
interactive algorithm that interacts with a signer. It performs some ¢t generic

tion/subtraction is done by an oracle that computes o(fi£ f;) when given o (f;), o (f;)
and the specified sign bit. As the encoding ¢ is random it contains only the informa-
tion about which group elements coincide — this is what we call the set of collisions.
Shoup’s random encoding allows for an efficient sorting of group elements. We do
not need such efficient sorting as equality tests are for free.

* We can allow that the number ¢ of generic steps varies with the input. We can let
the algorithm decide after each step whether to terminate depending arbitrarily on
the given non-group data.



steps resulting in ¢’ < ¢ group elements fi, ..., fir. A iteratively selects the next
generic step — a group operation, a query to H, an interaction with the signer
— depending arbitrarily on the non-group input and on previous collisions of
group elements.

The input consists of the generator g, the public key A € G, the group order
g, a collection of messages and ciphertexts and so on, all of which can be broken
down into group elements and non-group data.

The computed group elements f1, ..., fv € G are the group elements contained
in the input, such as g, h. When counting the number of group operations, we
count each input as one operation. As a signer interaction is counted as a generic
step the number ¢’ of group elements is bounded by the number ¢ of generic steps,
t' <t. We have t = t’ for a non-interactive A.

The given non-group data consists of the non-group data contained in the
input, the previous hash replies H(Q) of queries @, and the set of previous
collisions of group elements. Signer interactions are described in Section 2.

A’s output and transmission to the signer consists of non-group data NG and
previously computed group elements f,, where NG and o, 1 < o < t/, depend
arbitrarily on given non-group data.

A’s transmission to the hash oracle H depends arbitrarily on given group
elements and given non-group data. The probability space consists of the random
H, the random input group elements and the random coin flips of the signer.

The restriction of the generic model is that A can use group elements only
for generic group operations, equality tests and for queries to the hash oracle,
whereas non-group data can be arbitrarily used without charge. The computed
group elements fi,..., fiz are given as explicit multiplicative combinations of
given group elements. Let g = g™ for £ = 1,...,1 be the group elements that A
gets from the signer. A computed f; € G is of the form f; = g%.-1h%0g7%" .
g;zj”, where the exponents a; _1,...,a;; € Z, depend arbitrarily on given non-
group data. A can arbitrarily use the coefficients a; _1,...,a;; from this explicit
representation of f;. A generic adversary does not use internal coin flips, this is
not a restriction as internal coin flips would be useless.?

Trivial collisions. We call a collision (i,5) € COy trivial if f; = f; holds
with probability 1, i.e., if it holds for all choices of the secret data such as the
secret key x and the random bits r of the encipherer. We write f; = f; for a
trivial collision. Trivial collisions do not release any information about the secret
data while non-trivial collisions can completely release some secret data. Trivial
collisions can be excluded from CQ;. Therefore, we ignore trivial collisions.

5 A could select interior coin flips that maximize the probability of success — there is
always a choice for the internal coin flips that does not decrease A’s probability of
success. Moreover, it would be useless for A to generate random group elements — in
particular ones with unknown DL. Using one generic step, .A could replace random
elements in G by some deterministic g* where a € Z, is chosen as to maximize the
probability of success.



4 Security of Signatures against Interactive Attacks

Assuming the intractability of the ROS-problem and the ROM + GM we give
in Theorem 2 a practical security guarantee for blind Schnorr signatures against
one-more signature forgeries.

This section refers to a generic adversary A performing some ¢ generic steps
— including some [ interactions (r1, 1, 21), ---, (71, €1, 21) With the signer — pro-
ducing some t' group elements and some t” queries to the hash oracle. We let

r = (ry,...,r;) denote the signers random coins. Let f; = g, fo = h = g%,
f3,..-ftr € G denote the group elements of A’s computation. The generic A com-
putes f; = g%—1h%0g"t . . g where g1 = g™, ..., = g™ are the signer’s

commitments and the exponents a;, € Z,; depend arbitrarily on the previously
computed non-group data. As each signer interaction yields one group element
g™ we have that t/ =t —t' > 0 is the number of interactions with the hash ora-
cle. We first present the basic Lemma 1 and 2 that extend results of [SJ00] from
a non-interactive attacker to an adversary using a hash oracle and a signature
oracle.

Lemma 1. Collisions among f1, ..., fir occur at most with probability (tzl) /q. The
probability refers to the random h, H and the random coins r of the signer.

Proof. We show for ¢ < j that Pry . g[fi = f;] < % under the condition that
there is no prior collision of group elements. So let us assume that there is no
such prior collision. The main point is to show that f;, f; are either statisti-
cally independent or f;/f; is constant with f; # f;. Considering x and ry,...,7
as indeterminates over Zg, log, f; = aj -1+ ajoz + 21221 ajere is a linear
polynomial in Z,[z, 71, ..., 7]

For a non-interactive A, where l = 0 and r = (4, ..., 1) is empty we have f; =
fiiff a;, 1 —aj 1+ (as,0 — aj0) © = 0. Therefore, x is statistically independent
of the i, aje, and thus Pr, g[fi = f;] < 3.°

Next, consider an interactive A. We call ry, g™ prior to f; if the value a;,
depends on the signer’s response z; = 7 + c,x, otherwise r; is subsequent to f;.
When given f; = g%:-1h%.0g;"" ... g/'* the probability space — from A’s point
of view — consists of x, H and the r, subsequent to f;. The r, = 2, — cpx prior
to f; are linear functions in z, with given coefficients 2, c. Consider log, f; =
aj _1+ajozr+ 211:1 aj¢7¢ as a linear function in z and the 7, subsequent to f;.
The coeflicients a; ¢, ¢y, 2¢ € Z4 depend on z, H, r only via prior 7, and prior hash
values. Thus z is statistically independent of the given coefficients. Therefore, the
values of the function log, f;—log, f; are either constant or uniformly distributed
over Z,. The case that log, f; —log, f; = 0 for all z and all 7, subsequent to
f; has been excluded as f; # f;. This shows that Pr,. g[fi = f;] < %, which

implies the claim of Lemma 1 as there are (g) pairs 7 < j. a

5 The equality f; = f; holds with zero probability if a; 1 # a;,—1 and a;0 = a;0. As
fi Z fi we cannot have that (a;,—1,ai,0) = (aj,—1,a;5,0).



Lemma 2. If there are no collisions among f1, ..., fv the random x is statisti-
cally independent of the computed non-group data except that the random coins
(r,z) leading to collisions are excluded.

Proof. The random « enters into the generic computation only via the the ran-
dom values zy = ¢+ cpx, random hash values and h = ¢g®. In a signer interaction
A gets the pair (g™, z¢). Due to the random r, the distribution of z, does not
depend on h = g*. The probability distribution of the non-group data gener-
ated from hash values and signer responses does not depend on x. Therefore, x
is statistically independent of all non-group data (h = ¢g* is NOT statistically
independent of (g™, z¢), however g™ enters into the computation of non-group
data only by collisions of group elements and via random hash values). a

Theorem 2 shows that Schnorr signatures are secure against the one-more
signature forgery in the ROM + GM. Theorem 2 covers blind signatures as
required for anonymous electronic cash. This is the first sharp security result for
simple DL-signatures in the interactive setting.

Theorem 2. Let a generic adversary A be given the generator g, the public key
h, an oracle for H. Let A interact with the signer some | times and perform t
generic steps including | signer interactions. If A succeeds in a parallel attack
to produce l + 1 signatures with a better probability of success than (;) /q then A
must solve the ROS-problem : solve | + 1 distinct equations (2) in the unknowns
Cl,..,C € Zg. The probability space consists of h, H and the random coins of
the signer.

Proof. In the interaction (74, cg, 2z¢) the signer correctly transmits g, := g™ and
responds to A’s challenge ¢y by zy = ry + cyz. It is assumed that A outputs
distinct triples (m;, ¢}, 2j) € M x Z2 for i = 1,...,1+1. We study the probability
that the [ + 1 outputs are all signatures. Let there be ¢ (distinct) queries to the
hash oracle resulting in independent hash values H(f,,,mr) € Zyfor k =1, ...,¢"
for an arbitrary function k¥ — oy that selects f,, from the computed group
elements f;. Lemma 3 shows that the group element gzzh_C; corresponding to a

signature (m;, c;, ;) must be among fo,, ..., f5,,. We let f,, = gFih~¢.

Lemma 3. Let the output (m,c},z;) be a signature with a better probability
than %. Then we have that ¢; = H(fy,,m;) for some hash query satisfying fo, =

oo . . l
g% h™%. Moreover, ¢, z;,0; satisfy the equations z; = ag,—1+ > 4_1 Qo 2 and

l
H(foismi) = —g,0 + D g1 Goype Ce (3)
Conversely, given a solution (ci, ...,c1) of equation (3) one easily gets a signature

(mg, c;, 2}) for each solved equation.

Proof. The first claim follows from the equation ¢, = H(g*h™¢,m;) required
for signatures (m;, ¢}, z;). In the ROM this equation necessitates that A selects
¢; from given hash values H(f,,,my) — otherwise the equality only holds with
probability % as the hash value is random. W.l.o.g. let ¢, = H(f,,,m;) where
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f». = g%h~¢ holds for the output (m;, ¢k, 2!) which determines ;. ” The equa-

. ro_ A l .
tions g%ih ™% = f,, = ges—1Ta0 ¥ X i1 doit e and 1y = 2y — cox imply

’ ’
z; = log, g*h™% +cix
! !
Zi = Qo1+ D gy Gopt 20+ (0,0 = Dpmy Gosece +65)T, (4)
If ¢, = —aq0+ 215:1 Go;.0Ce then A can easily compute the correct z; . In

this case, the equation (4) does not depend on the secret key z and we have
Zi=ag,, -1+ le:l G0 2¢, Where the signers responses 21, ..., 2; and the coeffi-
cients ag;,—1,...,00;,; are known to A.
Conversely, A must select cy, ..., ¢; as to zero the coefficient of the secret key
z in (4). Otherwise, Equation (4) holds with probability % as z is by Lemma 2
statistically independent of the non-group data z,ay;,— 1,...; @0, 1, C1, ..., €1, and
1

thus A’s probability of success is not better than 7 This proves that .4 must

solve the equation O
We see that the parallel attacker A can only succeed in either of four cases:
e Asolves [ + 1 out of ¢ distinct equations
l
H(foia mz) = —0s;0 + Zgzl Qg0 Ce- (3)
Each solved equation (3) yields a corresponding signature (mg, ci, z;) by
setting z, = ao,,—1 + Zle=1 o, ¢ 2¢- This is the generic, parallel attack.
e For some i, 1 <i <[+ 1 equation (3) does not hold but equation (4) holds.
This event has probability %.

e There is a collision of group elements. This event has probability < (tz’) /q.
e There is a collision of hash values H(f,,,m;) = H(f,;, m;), where m; = m;,
fo. # fo; and ag, 0 = @s,,0,-, 80,1 = Ag;,1- In this case the equations

(3) with indices i and j coincide. This event has probability < (t;’) /q.

W.l.o.g. we can assume that ', > 1, and thus (g) + (t;) +1< (;) We see that
A succeeds in the last three cases with no better probability than (;) /q. This
proves Theorem 2 as A does not succeed with a better probability than (;) /q,
except that A solves [ + 1 out of ¢" distinct equations (3). O

Security against sequential attacks. It can be seen from the above proof that a
sequential attack cannot succeed in the GM + ROM with a better probability
than (é) /q. Here, the intractability of the ROS-problem is not needed. This
characterizes the different power of sequential and of parallel attacks.

For a sequence of | sequential attacks, each with a single signer interaction,
A selects the coeflicients a; ¢ in (3) such that there is for each k at most one
non-zero coefficient ay , with £ > 1.

" For simplicity we abbreviate f,, = gzéh_Cg even though that equation only holds

a posteriori. The output (m,c,2;) defines o; except that there is a collision
H(fs;,mi) = H(fajymj) with m; = m;.
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