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Abstract

Let G be a Fuchsian group containing two torsion free subgroups defin-
ing isomorphic Riemann surfaces. Then these surface subgroups K and
αKα−1 are conjugate in PSL(2, R), but in general the conjugating ele-
ment α cannot be taken in G or a finite index Fuchsian extension of G.
We will show that in the case of a normal inclusion in a triangle group G

these α can be chosen in some triangle group extending G. It turns out
that the method leading to this result allows also to answer the question
how many different regular dessins of the same type can exist on a given
quasiplatonic Riemann surface.

1 Introduction

Quasiplatonic Riemann surfaces of genus g > 1 can be characterized by the
fact that their surface groups K are normal subgroups of triangle groups ∆ .
It is well known that for every genus there are only finitely many isomorphism
classes of quasiplatonic surfaces, and that two such surfaces are isomorphic if
and only if their surface groups K, K ′ are conjugate in PSL(2, R) . All ques-
tions concerning classification and Galois actions on families of quasiplatonic
surfaces lead therefore to problems of the following type: Let K be a finite
index subgroup of a Fuchsian group G. Given α ∈ PSL(2, R) such that αKα−1

is another subgroup of G, we cannot expect α to be an element of G or of a
finite index extension of G , so where can α come from? In this paper we will
give complete answers in the case that both groups are triangle groups (Thms.
6, 7 and 8) and sufficiently complete answers if at least G is a triangle group
(Thms. 5 and 9, Corollaries 10 and 11). This case has consequences for the
construction of all regular dessins d’enfants of a given type on Riemann sur-
faces of genus > 1 (Thms. 4, 12 and 13), giving also a small contribution to
the wide open question how to generate all possible dessins on a given Belyi
surface. The parallel question in which cases regular dessins of different types
determine isomorphic Riemann surfaces has been treated recently by the first
author [2] and by Singerman and Syddall [8] (there mainly restricted to types
(2, m, n) but also including uniform dessins).

The structure of the paper is as follows:
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In Section 2 we introduce conjugators and basic facts about them. In Sec-
tion 3 we treat several interesting examples. Section 4 is devoted to triangle
groups, Belyi surfaces and dessin d’enfants. The main results of the paper are
contained in Section 5, where the conjugators of triangle groups inside other
triangle groups are studied in detail. Some consequences for regular dessins are
given in Section 6.

2 Finite index conjugate subgroups of Fuchsian

groups

Definition 1 Let K, G be two Fuchsian groups such that K < G. We call

C(G, K) := {α ∈ PSL(2, R) | αKα−1 < G}

the conjugator of K inside G.

The conjugator is not necessarily a group, since it does not behave well under
composition and taking inverses. But a rather obvious feature of C(G, K) is:

Lemma 1 Let K ⊂ G be a finite index inclusion of Fuchsian groups. Then

C(G, K) ⊇ N(G)N(K),

where N(·) denotes the normalizer in PSL(2, R), and the right hand side denotes
the set {ab | a ∈ N(G), b ∈ N(K)}.

Remark 2 Note that an equivalent definition for the conjugator of K inside G
is

C(G, K) = {α ∈ PSL(2, R) | K < α−1Gα}.

C(G, K) consists of a finite number of residue classes of N(K), due to the
fact that there are finitely many subgroups of G that are conjugate to K. It is
also easy to see that the group 〈C(G, K)〉 generated by C(G, K) satisfies

K < G < 〈C(G, K)〉 < Comm(G), (1)

where

Comm(G) := {γ ∈ PSL(2, R) | G∩ γGγ−1 has finite index in G and in γGγ−1}

is the commensurator of G.
A famous theorem by Margulis, see [5], states that Comm(Γ) is again Fuch-

sian if and only if the Fuchsian group Γ is not of arithmetic type (see [11] for a
definition of arithmeticity). We find therefore, in the non arithmetic case, that
the inclusion of G inside Comm(G), and hence that of K inside < C(G, K) >,
has finite index. This is in general not true in the arithmetic cases, for examples
see the next section.
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Definition 2 Let K, G be Fuchsian groups, K < G. We denote

nG(K) = #
{

H | H < G, ∃g ∈ PSL(2, R) s.t. H = gKg−1 < G
}

the number of different subgroups of G that are conjugate to K, and

NK(G) = #
{

H | H > K, ∃g ∈ PSL(2, R) s.t. H = gGg−1 > K
}

the number of different supergroups of K that are conjugate to G.

Note that nG(K) and NK(G) are in general independent of each other.

3 Examples of large conjugators

In this section we show that conjugators are in general not contained in the set
N(G)N(K) used in Lemma 1 and generate very large groups.

Theorem 3 There exist infinitely many arithmetic Fuchsian groups G , normal
torsion free subgroups K , and α 6∈ N(G)N(K) , α ∈ PSL(2, R) , such that K
is also normal in α−1Gα . The conjugating element α does not belong to any
Fuchsian group extending K .

Proof.- First let Γ be the elliptic modular group PSL(2, Z) and G := Γ(p)
the principal congruence subgroup of prime level p

Γ(p) :=

{(

a b
c d

)

∈ SL(2, Z) | b ≡ c ≡ 0, a ≡ d ≡ 1 mod p

} /

± E2

(where E2 denotes the 2× 2 unit matrix), K := Γ(p2) the principal congruence
subgroup of level p2 , and let α be given in normalized form as

α =
1√
p

(

p 0
0 1

)

∈ PSL(2, R) .

It is easy to verify that K is a normal subgroup in both G and

α−1Gα =

{(

a b
c d

)

∈ SL(2, Z)|c ≡ 0 mod p2, a ≡ d ≡ 1 mod p

} /

± E2

and that α is not contained in N(G) = N(K) = Γ . Since no proper power αn

of α has an integer trace, α cannot belong to a finite index extension of K , so
the claim follows.

These considerations extend almost without change to other arithmetic Fu-
chsian groups. To obtain cocompact examples, consider a definite quaternion
algebra B, for simplicity defined over Q. Let Γ be the norm unit group in a
maximal order O of B . If p is unramified in B, i.e. for almost all primes, B
embeds into M(2, Qp) and by the strong approximation theorem, Γ is dense in
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PSL(2, Zp) , see e.g. [6], §5.2. So Γ(p) and Γ(p2) can be defined in the same way
as above and α ∈ B can be chosen as congruent to

(

p 0
0 1

)

mod p2O .

Even if Γ has torsion elements, the traces in Γ(p) are congruent to 2 mod p,
whence Γ(p) and Γ(p2) are torsion free. �

We remark in passing that the quotient groups G/K, α−1Gα/K constructed
here are not isomorphic. In Section 5, Example 1, we will meet even (mostly
non–arithmetic!) cases for which K is a normal subgroup of G but a non–normal
subgroup of α−1Gα .

4 Normal surface subgroups of triangle groups

We now turn our attention to the case of the normal inclusions of a torsion free
group K inside a Fuchsian triangle group G. Any such inclusion corresponds
to a regular dessin d’enfant on the surface uniformized by the surface group K.
The study of C(G, K) turns out to be a very important point in this case, and
has consequences concerning dessins.

We have to recall some basics about triangle groups, dessins d’enfants and
Belyi surfaces. We shall expose the main ideas without giving proofs, as the
interested reader can find them easily in the literature (see, e.g. [1], [4], [13]).

4.1 Triangle groups and Belyi surfaces

Let T (l, m, n) be a hyperbolic triangle with angles π/l, π/m and π/n. Consider
the group generated by the reflections in the sides of T (l, m, n), and let ∆(l, m, n)
be the index 2 subgroup formed by its orientation preserving elements.

Definition 3 The group ∆(l, m, n) constructed as above is a Fuchsian triangle
group of type (l, m, n).

If γ0, γ1 and γ∞ are the (hyperbolic) turns with angles 2π/l, 2π/m and 2π/n
around the corresponding vertices of T (l, m, n), then

< γ0, γ1, γ∞; γl
0 = γm

1 = γn
∞

= γ∞γ1γ0 = 1 >

is a presentation of ∆(l, m, n). The union of the generating triangle T (l, m, n)
with one of its images under a reflection in a side forms a fundamental do-
main for ∆(l, m, n). Accordingly, ∆(l, m, n) corresponds to a tessellation of the
hyperbolic plane D with triangles of angles π/l, π/m and π/n.

The quotient space under the action of ∆(l, m, n) is the Riemann sphere with
three marked points of order l, m, n respectively. Triangle groups are rigid, in
the sense that two triangle groups of the same type are conjugate in PSL(2, R),
any conjugating element being an isometry of the hyperbolic plane sending one
generating triangle into the other.
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Triangle groups play a very important role in several branches of math-
ematics. They appear very naturally in different mathematical contexts like
monodromy groups of hypergeometric differential equations. They are central
in the theory of Belyi surfaces and Belyi maps, giving a link connecting triangle
groups with Galois Theory.

Definition 4 A covering of the Riemann sphere by a compact Riemann surface
that ramifies only above three points is a Belyi function. Accordingly, the
covering space is called a Belyi surface.

A very famous result by Belyi (see e.g. [4], [13]) shows that this kind of sur-
faces are deeply related to the field of algebraic numbers, since they correspond
exactly to those Riemann surfaces which can be defined, as algebraic curves, by
polynomial equations with coefficients in Q̄.

4.2 Dessins d’Enfants

One of the most surprising facts about the theory of Belyi surfaces is the obser-
vation, early pointed out by Grothendieck and others, that they can be studied
in a quite simple combinatorial way.

If β : X −→ Ĉ is a Belyi function, the preimage of the real interval ]0, 1[⊂ Ĉ

forms the edges of a bipartite graph D embedded into the compact Riemann
surface X , such that the connected components of X r D, the so-called faces
of D, are homeomorphic to open discs. The β–preimages of 0 are the white
vertices and the β–preimages of 1 are the black vertices of D . Such kind of
graphs were called by Grothendieck dessins d’enfants due to their simplicity.

The Belyi function β, hence the complex structure of X , is completely de-
termined by D in a very simple way. And D is in turn completely determined
by its monodromy group M, that is a permutation group on the set of edges
describing completely the incidence relations, defined as follows:

Label the edges of D with numbers from 1 to N . Each vertex of D has an
associated cycle, given simply by the edges incident to it (arranged, say, in coun-
terclockwise order). Since D is bipartite, the cycles corresponding to the vertices
of one colour are pairwise disjoint. Let σ0 and σ1 be the product of the cycles
around the white and black vertices respectively. Since D is connected, they
generate a permutation group acting transitively on the edges. It can be seen
that each cycle of σ∞ = (σ0σ1)

−1 describes half the edges encountered around
each of the faces. The group generated by σ0, σ1 and σ∞ is the monodromy
group M of β .

To avoid too much case–by–case analysis we will assume in the following
that our compact Riemann surfaces X have genus g > 1 . Then there is an
epimorphism θ : ∆(l, m, n) → M, where l and m are the least common multiples
of the valencies of the black and white vertices respectively, and n is half the
least common multiple of the valencies of the faces, and we have automatically
1

l
+ 1

m
+ 1

n
< 1 , so ∆(l, m, n) is a Fuchsian triangle group as constructed

above. Moreover, the surface X is reconstructed as D/K, where K is the (not
necessarily torsion free!) preimage via θ of the stabilizer of an edge. The trivial
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projection D/K −→ D/∆(l, m, n) ∼= Ĉ is a Belyi function, having D as associate
dessin, and every Belyi function can be written in this way. Note in particular
the well known fact that Belyi surfaces correspond exactly to quotient spaces of
the hyperbolic plane D under the action of subgroups of triangle groups.

Definition 5 Let D be the dessin on the Riemann surface X = D/K where
K is a finite index subgroup of the Fuchsian triangle group ∆(l, m, n) and D
belongs to the Belyi function

β : D/K −→ D/∆(l, m, n) ∼= Ĉ

whose l.c.m. of the ramification orders above 0, 1,∞ are l, m, n respectively.
Then we call (l, m, n) the type of D , and we will call D′ a renormalization

of D if it belongs to a Belyi function δ ◦ β where δ is an automorphism of Ĉ

permuting 0, 1,∞ .

An example of a renormalization is to replace β by β/(β − 1) meaning for
the dessin an interchange of black vertices and centers of the faces.

4.3 Regular dessins and quasiplatonic surfaces

Two classes of dessins are particularly interesting, namely uniform and regular
dessins. A dessin is uniform when black vertices, white vertices, and faces have
respectively constant valency. It corresponds to the inclusion of a torsion free,
hence uniformizing, Fuchsian group inside a triangle group. We call a dessin
regular — it will be automatically uniform — if the automorphism group acts
transitively on its set of edges, an automorphism of the dessin being simply a
colour-preserving bijection of the vertices compatible with relation of adjacency;
it can be always seen as a restriction of a holomorphic automorphism of X to
the dessin. Equivalently, the surface group associated to a regular dessin is
normally contained in the corresponding triangle group, and the Belyi function
β is a Galois covering.

Riemann surfaces that contain a regular dessin are called quasiplatonic. They
are also called surfaces with many automorphisms, since any surface that is close
enough in moduli space to a quasiplatonic one has a strictly smaller number of
automorphisms.

A quasiplatonic surface may contain several regular dessins of different types
(see [2]). On the other hand, suppose that D is a dessin embedded in the surface
X uniformized by K. Then D is induced by the inclusion K�∆ for some triangle
group ∆. Any other regular dessin D′ on X of the same type as D is given by
a second inclusion K � ∆′, where ∆′ = α∆α−1 for some α. Caution: “other”
means that D and D′ are not renormalizations of each other, it means ∆ 6= ∆′ .
Both are contained in the normalizer N(K) which is again a triangle group ∆̃.
Therefore we have a first result on multiple quasiplatonic surfaces of a given
type — more precise information will follow in Section 6.
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Theorem 4 Let D be a regular dessin on the quasiplatonic surface X = D/K
induced by the normal inclusion K �∆ , where K is torsion free and ∆ a Fuch-
sian triangle group. Let ∆̃ be the normalizer N(K) . Then all regular dessins
of the same type as D on X correspond to elements in C(∆̃, ∆) modulo N(∆) .
Their number is bounded by n

∆̃
(∆) .

We obtain even a one–to–one correspondence if K is normally contained in
all ∆′ ⊂ ∆̃ conjugate to ∆ . In this case, n

∆̃
(∆) is the precise number of

dessins on X of the same type as D .

4.4 Type–preserving isomorphisms between quasiplatonic

surfaces

In the consideration of Galois actions on families of quasiplatonic surfaces one
is often led to the question if two normal surface subgroups K, K ′ of a given
triangle group ∆ (mostly with isomorphic quotients ∆/K ∼= ∆/K ′ ) are conju-
gate. An easy example: for every prime q ≡ ±1 mod 7 there are three different
normal surface subgroups Ki, i = 1, 2, 3 , of ∆(2, 3, 7) all with quotients isomor-
phic to PSL2(Fq) giving three non–isomorphic but Galois conjugate Macbeath–
Hurwitz curves, see [9] and Corollary 11 below; more complicate examples can
be found in [10]. The same argument as above shows that K and αKα−1 are
both normal in ∆ if and only if K is normal in ∆ and α−1∆α , both triangle
groups being contained in the normalizer N(K) = ∆̃ of K . Again we have

Theorem 5 If there is an α ∈ PSL(2, R) such that the surface groups K
and αKα−1 are both normal subgroups of the triangle group ∆ , then α−1 ∈
C(∆̃, ∆) , where ∆̃ = N(K) is the normalizer of K.

5 The conjugator of a triangle group inside an-

other triangle group

Both results about multiple dessins of the same type and about the type–
preserving isomorphisms lead to the study of conjugators of triangle groups
inside other triangle groups. We start by taking into account the cases ∆1 < ∆2

such that no other triangle group lies in between ∆1 and ∆2.
D. Singerman obtained in 1972 [7] the list of all possible inclusion relations

between two triangle groups. One can easily check that there is a subset of just
eight generating elements of the list, in the sense that any of the inclusions can
be expressed as a concatenation of some of the generating ones. This generating
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system is
∆(n, n, n) �3 ∆(3, 3, n)

∆(n, n, m) �2 ∆(2, n, 2m)
∆(2, n, 2n) <3 ∆(2, 3, 2n)
∆(3, n, 3n) <4 ∆(2, 3, 3n)
∆(2, 7, 7) <9 ∆(2, 3, 7)
∆(3, 8, 8) <10 ∆(2, 3, 8)
∆(4, 4, 5) <6 ∆(2, 4, 5)
∆(3, 3, 7) <8 ∆(2, 3, 7),

(2)

where the subindices denote the index.
For the next result, we consider three separate cases for the second inclusion,

according to the three situations n /∈ {m, 2m} , n = m, and n = 2m .

Theorem 6 Table 1 shows C(∆2, ∆1), n∆2
(∆1) and N∆1

(∆2), where ∆1 < ∆2

runs through the fundamental inclusions of triangle groups in the list 2.

case ∆1 ∆2 C(∆2, ∆1) n∆2
(∆1) N∆1

(∆2)
i ∆(n, n, n) ∆(3, 3, n) ∆(2, 3, 2n) 1 1

ii a ∆(n, n, m) ∆(2, n, 2m) ∆(2, n, 2m) 1 1
ii b ∆(m, m, m) ∆(2, m, 2m) ∆(2, m, 2m) 1 3
ii c ∆(m, 2m, 2m) ∆(2, 2m, 2m) ∆(2, 4, 2m) 2 1
iii ∆(2, n, 2n) ∆(2, 3, 2n) ∆(2, 3, 2n) 3 1
iv ∆(3, n, 3n) ∆(2, 3, 3n) ∆(2, 3, 3n) 4 1
v ∆(2, 7, 7) ∆(2, 3, 7) ∆2∆(2, 4, 7) 9 2
vi ∆(3, 8, 8) ∆(2, 3, 8) ∆2∆(2, 6, 8) 10 2
vii ∆(4, 4, 5) ∆(2, 4, 5) ∆2∆(2, 4, 10) 6 2
viii ∆(3, 3, 7) ∆(2, 3, 7) ∆2∆(2, 3, 14) 8 2

Table 1: Conjugators of the fundamental inclusions of triangle groups

Proof.- Let ∆1 < ∆2 be any of the inclusions listed. Let T1 and T2 be
the triangles that define ∆1 and ∆2 respectively (one half of their fundamental
domains). Suppose we fix ∆1. If it is contained in a conjugate of ∆2, the
vertices of T1 must be vertices of the tessellation of the unit disc associated to
T2 of order multiple the order they had as fixed points of ∆1. Reciprocally, if
we fix ∆2, any subgroup conjugate to ∆1 has to have the vertices of T1 among
the vertices of the tessellation given by ∆2, with the same observation about
the ramification order as above.

This observation, applied to a case by case analysis of the inclusions, proves
the result. To illustrate the procedure, let us consider the case i) in detail.
Suppose that T2 generates ∆2 of type (3, 3, n), and that ∆1 < ∆2. A given
vertex z of T1 must coincide with some order n vertex of the tessellation induced
by T2. We can suppose then that T2 has its angle π/n vertex at z, which in turn
determines the location of T2 up to a turn fixing z, and we can suppose that an
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angle π/3–vertex lies inside T1. It can be easily seen that all the order n vertices
of the tessellation generated by ∆2 coincide with vertices of the tessellation
generated by ∆1 if and only if one of the sides of T1 bisects T2 (see Figure 1;
the black lines indicate the tessellation of the hyperbolic plane with triangles
T2 = T (3, 3, 4), the dotted white lines the tessellation with T1 = T (4, 4, 4)).
Therefore a (n, n, n) group can be included in only one (3, 3, n) group, hence
N∆1

(∆2) = 1 . A similar argument shows that ∆(3, 3, n) contains only one
∆(n, n, n) , i.e. n∆2

(∆1) = 1 .

Figure 1: i) The inclusion ∆(n, n, n) < ∆(3, 3, n) in the case n = 4.

The last four cases are more complicated. For the inclusion ∆1 = ∆(3, 8, 8) <
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∆2 = ∆(2, 3, 8) of case vi), for example, we first observe that the fixed points
of order 8 and of order 3 of ∆1 are also fixed points of ∆2 of the same order.
Suppose both groups share the fixed point of order 3 drawn as the center of
the unit disc in Figure 2. If this point is a vertex of T1 then the other two are
fixed points of order 8. In the correct hyperbolic distance we find precisely six
such fixed points of order 8 of ∆2, all leading to fundamental triangles for the
same group ∆1. Therefore all possible triangle subgroups of ∆2 with signature
(3, 8, 8) are already uniquely determined by the choice of a fixed point of order
3. All these fixed points belong to the same ∆2–orbit, hence

n∆2
(∆1) ≤ (∆2 : ∆1) = 10 .

On the other hand, the ∆2–conjugates of ∆1 form an orbit of length precisely
10 because the normalizer ∆3 of ∆1 is the triangle group of signature (2, 6, 8)
and intersects ∆2 in ∆1, see [Ta]. This argument shows moreover

C(∆2, ∆1) = {αβ |α ∈ ∆2 , β ∈ ∆3 }

and
N∆1

(∆2) = (∆3 : ∆1) = 2.

Figure 2: vi. The two ∆(2, 3, 8) groups containing a given ∆(3, 8, 8).

All other cases follow from a rather obvious analysis similar to those exposed
here looking at the corresponding figures of all the inclusions involved (figures
like 2 and 3 but related to the other inclusions). Due to problems of space we
cannot provide so many figures here, but the interested reader may find them
in the homepage [3]. �
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Figure 3: vi. The ten groups of type ∆(3, 8, 8) contained inside a given ∆(2, 3, 8).
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Now, if ∆1 < ∆2 is an inclusion different to those in the list 2, there is a
third triangle group ∆ lying between ∆1 and ∆2 . These cases can be treated in
different ways. The first possibility is to apply Theorem 6 step by step to show
that C(∆2, ∆1) contains only the obvious conjugators. Here it is not a priori
clear that between ∆1 and a conjugate α∆2α

−1 of ∆2 there is a conjugate to
∆ . One can overcome this difficulty by a refinement of Singerman’s methods
[7] showing that between any pair of Fuchsian groups ∆′

1 < ∆′

2 of the same
signature as ∆1 and ∆2 there is an intermediate group of the same signature as
∆ . We will follow more closely a second possibility, i.e. using the geometric tools
in the proof of the previous theorem. Only the following families of inclusions
have to be considered:

∆(n, n, n) <6 ∆(2, 3, 2n) , n > 3 ,

with intermediate groups ∆(2, n, 2n) or ∆(3, 3, n) and

∆(n, 2n, 2n) �2 ∆(2, 2n, 2n) �2 ∆(2, 4, 2n) , n > 2 ,

∆(n, 4n, 4n) �2 ∆(2, 2n, 4n) <3 ∆(2, 3, 4n) , n > 1 .

The right hand side groups ∆2 are maximal triangle groups with the only ex-
ception ∆(2, 4, 8) . Almost all groups involved are non–arithmetic, for them we
know therefore by Margulis’ theorem C(∆2, ∆1) = ∆2 , see Section 2. Only the
two–step inclusions between arithmetic triangle groups need a closer geometric
look. We will explain the details in the most difficult case, the only three–step
inclusion

∆1 = ∆(4, 8, 8) �2 ∆(2, 8, 8) �2 ∆(2, 4, 8) <3 ∆(2, 3, 8) = ∆2

(see [12], §4, case (III) with an obvious little correction). Every fixed point of
∆1 is an order 8 fixed point of ∆2 , whence we can suppose that T1 and T2 have
a common vertex of angle π/8 , without loss of generality the center 0 of the
hyperbolic unit disc, see Figure 4.

If we fix T2 (hence ∆2), T1 (hence the subgroup ∆1) is uniquely determined
by the location of its vertex of angle 2π/4, that has to be chosen among the
order 8 fixed points of ∆2. But all possible such vertices in the correct distance
of 0 result from one of them by rotation around 0 with angles 2πk/8 . This
means

C(∆2, ∆1) = ∆2 , N∆1
(∆2) = 1

and — counting the different choices of T1 for fixed T2 modulo the action of
∆2 , in other words the residue classes of ∆2 modulo the normalizer ∆(2, 8, 8)
of ∆1 — we get n∆2

(∆1) = 6 .
The other cases are easier and can be treated in the same way. For the relevant
tesselations we refer to the pictures in [3]. To summarize the considerations of
this section:
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Figure 4: The three-step inclusion: ∆(4, 8, 8) < ∆(2, 3, 8).
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Theorem 7 Let ∆1 < ∆2 be an inclusion between two triangle groups. Then
C(∆2, ∆1) = N(∆2)N(∆1).

And, as a consequence, we obtain:

Theorem 8 Let ∆1 and ∆2 be two triangle groups such that ∆1 < ∆2. Then
i) n∆2

(∆1) = (N(∆2) : N(∆1) ∩ N(∆2))
ii) N∆1

(∆2) = (N(∆1) : N(∆1) ∩ N(∆2)).

Proof.- Suppose that α∆1α
−1 < ∆2. By Theorem 7 we know that α = γ2γ1

where γi ∈ N(∆i). Therefore α∆1α
−1 = γ2∆1γ

−1
2 , so the conjugations of ∆1

inside ∆2 take part simply in N(∆2). But, clearly, if γ−1
2 γ̃2 ∈ N(∆1) then

γ2∆1γ
−1
2 = γ̃2∆1γ̃

−1
2 , and we obtain i).

The proof of ii) follows by a similar argument. �

Theorem 9 If the PSL(2, R)–conjugate surface groups K and K ′ are both nor-
mal subgroups of the triangle group ∆ , then K ′ = αKα−1 for some α ∈ N(∆)
or N(∆̃) where ∆̃ denotes the normalizer N(K) of K in PSL(2, R) .

Proof.- Theorems 5 and 7 tell us α−1 ∈ C(∆̃, ∆) = N(∆̃)N(∆) , what is
equivalent to α ∈ N(∆)N(∆̃) . Now a closer look into all possible inclusion
relations between triangle groups, see [7] and [12], shows that we have N(∆) <
N(∆̃) or N(∆̃) = ∆̃ . In both cases one of the factors in N(∆)N(∆̃) can be
omitted. �

As a special case we have

Corollary 10 If moreover ∆ = N(K) , i.e. if ∆/K is the full automorphism
group of the quasiplatonic surface X = D/K , we have α ∈ N(∆) .

Finally we obtain a well–known fact, important e.g. for the classification of
Hurwitz curves where ∆ is maximal of type (2, 3, 7) .

Corollary 11 Different normal surface subgroups of a maximal triangle group
belong to non–isomorphic quasiplatonic Riemann surfaces.

We should emphasize that the hypothesis that both surface groups are nor-
mally included in ∆ is very important. If not, the situation can get much more
complicated:

Example 1 The group ∆(2, 3, 2n) contains (see Theorem 6) exactly three dif-
ferent copies ∆1(2, n, 2n), ∆2(2, n, 2n), ∆3(2, n, 2n) of a group of type (2, n, 2n),
the intersection of them being ∆(n, n, n). The genus g (g ≥ 2) surface X with
affine equation

y2 = x2g+1 − 1

is uniformized by a normal subgroup K of index n in ∆(n, n, n) for n = 2g + 1.
It can be seen that K � ∆1(2, n, 2n), but the inclusion of K in the other two
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groups of type (2, n, 2n) is not normal, otherwise K would be normal also in the
maximal triangle group ∆(2, 3, 2n) . This is impossible since Aut K is not of
order 6n but only the direct product of a cyclic group Cn acting on the x–plane
with the factor C2 coming from the hyperelliptic involution.
Since ∆2 and ∆3 are conjugate to ∆1 in ∆(2, 3, 2n) , we have conjugates K2, K3

to K inside ∆(n, n, n) < ∆1 , but they are non–normal subgrups of ∆1 , and the
conjugating elements are not contained in N(∆1) = ∆1 = N(∆̃) , ∆̃ := N(K) .

6 Multiple regular dessins of given type

As already mentioned at the end of section 4.3, given a regular dessin D induced
on the surface uniformized by K by the inclusion K �∆, the number of regular
dessins on X of the same type as D is bounded by n

∆̃
(∆), where ∆̃ = N(K).

As indicated, we will count dessins on X only as “different” if they are induced
by different triangle groups ∆ 6= α∆α−1 , i.e. do not result from each other
by renormalization. The number of all dessins of the same type as D can differ
from n

∆̃
(∆) by two reasons. On the one hand, K may be contained as a non–

normal subgroup in triangle groups conjugate to ∆ , see Example 1 above. On
the other hand, even if it seems to be hard to give a concrete counterexample,
it is not at all clear if K is necessarily contained in all conjugate triangle groups
α−1∆α, α ∈ C(∆̃, ∆) .

Using Section 5 we can give now more precise information on multiple quasi-
platonic surfaces with several regular dessins of the same type.

Theorem 12 Suppose that D1 and D2 are two regular dessins of the same type,
but not of type (n, 2n, 2n), n > 2 , on a quasiplatonic surface X . Then there is
an automorphism of X sending D1 to D2.

Proof.- Suppose that X is uniformized by a Fuchsian group K. The dessins
Dj , j = 1, 2, are determined by the normal inclusion of K inside two triangle

groups ∆1 and α∆1α
−1 , both contained in the normalizer ∆̃ = N(K) , which is

necessarily another triangle group. Now we know α ∈ C(∆̃, ∆1) = N(∆̃)N(∆1)
and we may even omit the factor N(∆1) — its effect is only renormalization of
the dessin. If α ∈ ∆̃ , it represents an automorphism of X , so the claim is true
with possible exceptions in cases where

• ∆̃ is strictly contained in N(∆̃) ,

• and N(∆1) does not contain N(∆̃) .

The second condition implies in particular that ∆1 is strictly contained in ∆̃ .
Therefore we have to consider only the two–step inclusions ∆1 < ∆̃ < N(∆̃)
discussed in Section 5. Taking into account N(∆̃) 6⊆ N(∆1) , a look over these
possible inclusion relations shows that the obstruction in question can only occur
for

∆1 = ∆(n, 2n, 2n) , ∆̃ = ∆(2, 2n, 2n) , N(∆̃) = ∆(2, 4, 2n) ,
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the exceptional types mentioned in the theorem. �

Example 2 The lowest genus example of such an exceptional multiple dessin
lives on the genus 4 quasiplatonic curve X = D/K given by the affine equation

y3 = 1 − x6 .

Its covering group K is a normal subgroup of ∆1 = ∆(3, 6, 6) with quotient
∆1/K ∼= C3 × C6 , but ∆̃ = N(K) = N(∆1) = ∆(2, 6, 6) with quotient
Aut X = ∆̃/K ∼= S3 × C6 . On the other hand

N(∆̃) = ∆(2, 4, 6)

contains ∆̃ with index 2 , so the action of N(∆̃) induces two different regular
dessins of type (3, 6, 6) on X . In fact, ∆(2, 6, 6) contains two normal subgroups
∆1, ∆2 both of type 3, 6, 6 and both containig K as a normal subgroup what
can be seen as follows. If we denote the elements of C6 by representants of
the residue classes Z/6Z we can give the canonical homomorphism of ∆(2, 6, 6)
onto Aut X = ∆̃/K ∼= S3 × C6 by defining the images of the generators

γ0 7→ ((23), 3) , γ1 7→ ((12), 2) , γ∞ 7→ ((123), 1) .

The generator triples of ∆1 and ∆2 are

γ2
1 , γ0γ∞γ0, γ∞ and γ2

∞
, γ0γ1γ0, γ1 ,

respectively. It is easy to see that the canonical homomorphism maps ∆1 onto
C3 × C6 and ∆2 onto S3 × C3 .

Geometrically we have the following picture, easily understandable after a
look on the inclusion of ∆1 in ∆̃ and N(∆̃) (see Figure 5, where the tesselations
for ∆1, ∆̃ and N(∆) are depicted with dashing black lines, solid grey lines and
thick white lines respectively). If we draw D1 such that the ∆1–fixed points
of order 6 become the vertices of D1 on X , the conjugation by the order 2
generator of ∆̃ interchanges only the colour of the vertices, but the new order 2
generator of N(∆̃) interchanges vertices and centers of faces, so the underlying
graph of D2 is dual to the graph of D1 (and its vertices can be coloured in
two ways). The same happens for all exceptional multiple dessins excluded in
Theorem 9, so we obtain finally

Theorem 13 Two regular dessins D1, D2 of the same type on a quasiplatonic
Riemann surface X of genus g > 1 can be transformed into each other by

1. renormalization, i.e. permuting 0, 1,∞ in the associate Belyi functions,

2. automorphisms of X or

3. passing to the dual graph (in some cases of type (n, 2n, 2n) only).

Only in the third case it can happen that the automorphism groups of D1

and D2 are not isomorphic, see Example 2.
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Figure 5: Inclusions related to the exceptional case n = 3.
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