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Abstract

We consider Schwarz maps for triangles whose angles are rather
general rational multiples of 7. Under which conditions can they have
algebraic values at algebraic arguments? The answer is based mainly
on considerations of complex multiplication of certain Prym varieties
in Jacobians of hypergeometric curves. The paper can serve as an
introduction to transcendence techniques for hypergeometric functions,
but contains also new results and examples.
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Hypergeometric functions have many interesting relations to arithmet-
ics, for example to modular forms, diophantine approximation, continued
fractions and so on. In the following contribution we will concentrate on
transcendence questions and explain the relevant techniques in the frame-
work of a question concerning the classical Schwarz triangle functions.

These triangle functions D(vg, V1, Veo; 2) are defined as quotients of two
linearly independent solutions of Gauss’ hypergeometric differential equa-
tions. If their angular parameters vy, 1, Vs are real and have absolute value
in the open interval 0, 1[, they define biholomorphic mappings of the com-
plex upper half plane H onto triangles in the Riemann sphere bounded by
circular arcs. The singular points 0, 1, oo of the differential equation are sent
by D to the vertices of the triangle including there angles = |vy|, 7|v1|, 7|veo| ,



respectively. Particularly interesting special cases are those where vg, V1, Voo
are the inverses of positive integers p,q,r because then D is the inverse
function of an automorphic function for the triangle group with signature
(p,q,r),isomorphic to the (projective) monodromy group of the hypergeo-
metric differential equation.

The present paper considers the question if Schwarz triangle functions
can have algebraic values at algebraic arguments. The problem has its ori-
gins in the natural general question if or under which conditions (suitably
normalized) transcendental functions have transcendental values at algebraic
arguments, and in this special context it is related to automorphic functions
and periods of abelian varieties. For a general survey about algebraic and
transcendental periods in number theory see Waldschmidt’s recent article
[20]. In the cases related to automorphic functions mentioned above the
problem is treated already in our previous paper [16, Cor. 5]. It turned
out that a positive answer is directly related to the condition if certain
Prym varieties are of complex multiplication (CM) type, the Pryms being
defined in a natural way via the integral representation of the associated
hypergeometric functions. Now we generalize the setting and consider ar-
bitrary rational angular parameters vy, v1, Vs , restricted only by some mild
technical condition excluding logarithmic singularities and some other very
special situations. The main results will show that we have still ‘CM’ as ne-
cessary condition for ‘algebraic values at algebraic arguments’, but that even
under the CM condition this algebraicity is rather exceptional. However, we
will give examples that such exceptions occur.

This more general type of triangle functions has still images of H bounded
by parts of circles but they are in general not globally biholomorphic — the
image domains may overlap with themselves. We treated in [15] an ana-
logous problem admitting apparent singularities in the associate Fuchsian
differential equations. In many cases, the triangle functions of the present
paper may in fact be considered as limit cases of those of [15], and many tech-
niques developed there are useful also for the problem treated in the present
paper. Therefore we collect in Section 1 some known material mainly from
[15], [16], [21]. Section 2 presents the necessary tools from transcendence
theory, and in Section 3 we state and prove the main results. The methods
rely in part on the classical theory of hypergeometric functions, in part on the
consideration of families of abelian varieties, and in part on Wiistholz’ tran-
scendence techniques [24]. Sections 4 and 5 present instructive examples.

Notation: we will call Propositions the statements we took from the
literature and Theorems the new results presented here even if they might
be less important than the Propositions.



1 Families of Prym varieties and associate func-
tions

1.1 Integral representation by the periods on curves

Throughout this paper we will suppose that the angular parameters satisfy
Vo, V1, Voo € Q—Z, votuvytve € Z. (1.1)

We will use the integral representation of the Gauss hypergeometric func-
tion F(a,b,c;z) — omitting the usual normalizing Beta factor and some
algebraic nonzero factors, see Section 5 of [15] for a careful discussion — in
the form

LUG-C(U —1)eb= (= 2) " du = Lu“““(u — 1) (1 — 2)Hedu = / n(z)

~

with the (rational) exponents

1
Ho = 5(1—1/0-}-1/1—7/00)

1
1y = 5(1—}-1/0—1/1—7/00)

1

pe = 5l =vo— v +ve)

1
Moo = 5(1+V0+V1+Voo)
po+ p1+ izt oo = 2

for some Pochhammer cycle v around two of the singularities 0,1, z,00. As
already remarked by Klein [10, §19], analytic continuation of F(a,b,c;z)
means only to replace v by another cycle of integration, and a basis of
solutions of the corresponding hypergeometric differential equation will be
obtained by taking two Pochhammer cycles around different pairs of singu-
larities: remark that our hypothesis on the sums of the angular parameters
guarantees that no exponent pu; is an integer, whence all singularities are
nontrivial. For fixed arguments z # 0, 1,00 this integral representation can
be seen as a period integral on a nonsingular projective model X (k,z) of
the algebraic curve

yk = ufre (u— l)k’“ (u— z)k“z (1.2)



where k is the least common denominator of the y; , v some homology cycle
on X (k,z), and 7 a differential given on the singular model as

du
n=n(z) = —.
() Yy

It is a second kind differential what can be seen using appropriate local
variables ([21]; N. Archinard [1] explains in more detail the desingularization
procedure). Our Schwarz triangle map is a multivalued analytic function on

C — {0, 1} defined by

D(VOthVOO;Z) = D(naz) = D(Z) = (13)

for some independent cycles 1,7y, on X (k,z).

In the next subsection we will give a precise definition of independence for
these cycles, for the moment we can assume that they come from Pochham-
mer cycles around different pairs of singularities and are locally independent
of z#0,1,00. The triangle functions extend continuously to the arguments
excluded here, and our normalization guarantees that D(0), D(1), D(co) be-
come algebraic or 0o, see [15, Section 3.1]. For later use recall the relation
between angular and exponential parameters and a, b, c.

vp = 1-c¢ :1_HO_NZZH1+HOO_1
no=c—a—b=1—p1—p, = o+ ploo — 1 (1.4)
Voo = @—b =pio+peo—1=1—po—pr.

1.2 The family of Prym varieties

The family of Prym varieties in question can be described as follows. For all
proper divisors d of k there is an obvious morphism of the curve X (k, z) onto
the curve X (d,z) in whose definition (1.2) we keep fixed the exponential
parameters ku; on the right hand side and replace k£ by d as exponent of y .
These morphisms induce epimorphisms

Jac X (k,z) — Jac X (d,z).

Let T'(k,z) be the connected component of 0 in the intersection of all ker-
nels of these epimorphisms. Then it is known by [21], [1] that T'(k,z) is
an abelian variety of dimension ¢(k) where ¢ denotes Euler’s function.
T(k,z) has a special endomorphism structure called generalized complex



multiplication (complex multiplication in the narrow sense will be treated in
Subsection 2.3) by the cyclotomic field

Q(¢k) C EndoT(k,z) := Q®z EndT(k, 2)

induced by an automorphism of the curve X (k, z) described on its singular
model by

g : (u,y) — (u7Ck_1y)7 Ch = €k .

If (s) denotes the fractional part s —[s] of s € Q, the CM type of T'(k, z)
can be easily calculated in terms of the u; by

rpo= dimW, = =14 > (un), (1.5)
J
where W,, denotes the eigenspace for the eigenvalue (7 for the action of o on
the vector space H°(T(k,z),Q) of the first kind differentials, see e.g. [16]
(on p.23 use formula (4) with N = 2) or [3]. Note that r, can take the
values 0,1,2 only and satisfies r, +r_, =2 for all n.

In the following we will consider the second kind differentials n always
as differentials on T'(k, z) and the cycles 1,72 as cycles of the homology
in T'(k,z). This homology H.(T(k,z),Z) is a Z[(x]-module of rank two,
and independence of the cycles in the definition of the normalized Schwarz
triangle function D(z) = f% 77(z)/fw2 n(z) means now Q((x)-linear inde-
pendence in the Q(¢x)-module H,(T(k,z),Q)= Q®z H,(T(k,z),Z) . Note
that for algebraic z the curve, its Jacobian, its Prym variety 7'(k,z) and
the differential 7(z) are all defined over number fields.

1.3 Associate functions

As common in the literature about hypergeometric functions, we call two
hypergeometric functions F(a,b,c;z), F(a',b',c'; 2) associate if

a=d,b=Vb,c=c modZ
or equivalently, if the respective angular parameters satisfy

Vo=V, 1 =V, Voo =V,  modZ  and

V0—|—V1—|-VOOEV(I)+I/1+I/(,)O mod 27
or if the respective exponential parameters satisfy

pj = psmodZ forall j=0,1,2,00 and ZMZZM;ZQ'
J J
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All functions associate to F'(a,b,c;z) generate a vector space of dimension
two over the field of rational functions C(z), and since our parameters
are supposed to be rational, between any three associate functions there is
a linear relation with coefficients in Q(z). These relations can explicitely
produced by means of Gauss’ relations between contiguous functions, see [8].
Any two associate hypergeometric functions generate the vector space over
C(z) (obvious exceptions like F(a,a+1,¢;2), F(a+1,a,c;z) are excluded
by our assumptions about the angular parameters). The congruences for
the exponential parameters imply that the differentials n,n’ differ only by
factors which are rational functions R(u,z) € Q(u,z). As second kind
differentials on the Prym variety 7T'(k, z) they belong therefore to the same
Q(¢k)—eigenspace Vi in its de Rham cohomology. In our normalization,
the differentials of this eigenspace are characterized by noo = (xn. The
intersection of Vi with H(T'(k,z),Q) gives the eigenspace 1¥; mentioned
in the definition of the CM type. This observation extends to the other
eigenspaces V,, n € (Z/kZ)*, and the fact that all associate hypergeometric
functions generate a 2—dimensional vector space over C(z) has an obvious
interpretation for the eigenspaces V,, in the de Rham cohomology:

Lemma 1.1 dimV,, = 2 for all n € (Z/kZ)*.

Dimension means here the dimension over C, but for algebraic z we can
give another useful interpretation: as already mentioned, 7'(k,z) is then

defined over Q, all differentials 1 in the integral representation are defined
over Q as well whence we consider the vector spaces

HO(T(]C,Z),Q) 3 HBR(T(]CVZ)) 3 Vn

of differentials of the first and second kind defined over Q as vector spaces
over Q. In this sense, the Lemma remains true as a statement about Q-
dimensions. For z € Q we will follow this interpretation.

In the proof of Lemma 1.1 there is only one point which is not obvious: even
if associate differentials 7(z) generate a 2-dimensional C(z)-vector space
modulo exact differentials, it could be possible that for some fixed value z =
T the C—dimension would be smaller if e.g. all differentials in question vanish
for z = 7. This breakdown of the dimension can be seen to be impossible
for 7 # 0,1, 00 either by a careful analysis of the possible relations between
contiguous functions or by the fact that the genus of X (k,z) is the same
for all z # 0,1,00, hence also dim Hpr(X (k, z)) is independent of z, see

[9, Ch. 3.5].



1.4 Shimura varieties, monodromy groups, and modular groups

In general, our Prym varieties 7T'(k, z) are only special cases of principally
polarized complex abelian varieties A of dimension ¢(k), with period lattice
isomorphic to Z[(x]*, and with an action of Q((x) C EndgA of (general-
ized) CM type (r4)ne(z/kz)* > see (1.5). This CM type encodes the complex
representation of Q((x) on the space of holomorphic differentials HY(A, Q)
such that r, is the dimension of the eigenspace on which {; acts via

Cp tw (G w.

If we denote the family of all these abelian varieties by A, we know by work

of Shimura [17] and Siegel [18]

Proposition 1.2 The family A is parametrized by the product H" of upper
half planes H with dimension

r:% Z Tl —pn -

n€(Z/kZ)*

Since 0 < r, < 2 and r, +r_, = 2 for all n, we may rephrase
this statement by saying that the dimension r is half of the number of
the one—dimensional Q((;)—eigenspaces in H%(A,Q). For the special case
of the Prym varieties A = T(k,z) in question, we may take generators
wj, 7 =1,...,r of one-dimensional eigenspaces W, C H°(T'(k,z),Q),n €
(Z/kZ)*/{£1}. Then — up to linear fractional transformations — the val-
ues of the triangle functions D(w;; 2) defined by period quotients in (1.3)
serve as coordinates of the point in H" corresponding to T'(k, z) .

Two points in H" correspond to isomorphic abelian varieties in A if
and only if they belong to one I'-orbit where I' denotes the (arithmetically
defined) modular group acting discontinuously on H". The quotient space
['\'H" is therefore a classifying space for A, the Shimura variety of A. In
the case r = 1 we call it a Shimura curve, of course (we neglect many
interesting questions about algebraic or arithmetic stucture of these spaces).
One subgroup of ' is well known in the context of hypergeometric functions:

Proposition 1.3 Let wi(z) be a generator of a one—dimensional Q((x)-
eigenspace of H°(T(k, z),Q) and let A be the (projective) monodromy group
of the hypergeometric functions f% wi(z), f% wi(z) used in the definition
(1.3). Then A has a natural embedding into the modular group I' of A.



As already explained in Section 1.1, the monodromy group — defined
by analytic continuation of the hypergeometric functions — acts on the
homology of X (k,z) without changing the curve, hence leaving fixed the
isomorphism class of its Jacobian and of the Prym variety. By consequence
they embed into the modular group of the family, acting by fractional linear
transformations on the coordinates of H" . For a more detailed explanation
and a much stronger version of this proposition see [4]; in fact, there is even
a holomorphic modular embedding of H into H" compatible with the actions
of A and I'.

One extreme case of Proposition 1.2 will be very useful in Proposition
2.8 below. It can happen that the dimension of the family A is r = 0.
This is the case if and only if the modular group and a fortiori the mono-
dromy group A is finite. By the classical reasoning of H.A. Schwarz [14],
the fact that the hypergeometric functions and their triangle functions have
only finitely many branches is equivalent to state that they are algebraic
functions: just observe that the elementary symmetric functions of their
branches are single—valued meromorphic, hence rational functions, and note
that by the hypotheses (1.1) our hypergeometric differential equations are
irreducible. For other arguments in that direction and their generalization
to hypergeometric functions in several variables see [5].

The next interesting case is that of Shimura curves, i.e. the case r = 1.
Then the modular group I' and a fortiori the monodromy group A act as
arithmetically defined Fuchsian groups. In Section 3 it will become clear why
the arithmeticity of A is so important for our question, and Sections 4 and
5 will discuss in great detail one example, i.e. the family of hypergeometric
curves (4.2) with angular parameters vy = —vy = vo, = 1/5 and

k=5, rn=0,ro=r3=1,ry=2, r=1.

Caution. On the other hand, there are arithmetically defined mono-
dromy groups for which » > 1. In these cases the 7'(k,z) belong to some
subfamily of Hodge type of A, i.e. to a Shimura subvariety described by a
special splitting behaviour of T'(k, z) or — equivalently — by the fact that
the common endomorphism algebra of all T'(k,z) is strictly larger than
Q(Ck) . As an example, take
1 1 1 (1.6)
V0—27V1—3a’/oo—.10- .
An obvious calculation leads to £ =30 and r = 2. We have Wy, Wiy, as

one—dimensional eigenspaces in H°(T'(k,2)Q). The generators of W; and



Wiy lead with (1.3) to triangle functions

1 1 1 1
,—3;2) and D(=
10

D 11
( 3 31007

’

N | —
W —

which are constant multiples of each other, see [21, (16)]. Recall that these
triangle functions give the coordinates of the point in H? corresponding to
T(k, z). Therefore these Pryms are parametrized by an upper half plane
linearly embedded in #?, and a more detailed analysis shows that they split
into two factors, both isogenous to the Pryms of the family (4.2); this is not
surprising since the monodromy group for the example (1.6) is the triangle
group of signature (2,3,10), an index 6 extension of that one in (4.2) of
signature (5,5,5).

2 Tools from transcendence

2.1 The analytic subgroup theorem

The main instrument to obtain transcendence results for hypergeometric
functions is Wiistholz’ analytic subgroup theorem, see [23] and [24].

Proposition 2.1 Let G be a connected commutative algebraic group defined
over Q of dimension dimG > r >0 and

p:C = G

an analytic homomorphism whose tangential map dy is an homomorphism
of Q-vectorspaces. If the image contains a nontrivial algebraic point, i.e. if
©(C)(Q) # {0}, there is an algebraic subgroup H C o(C") defined over Q
with dim H > 0.

The unexperienced reader may wonder why this is a theorem about tran-
scendental numbers. Let us explain it first with a classical example: Let G
be the product C* x C of the multiplicative and the additive group of com-
plex numbers and observe that {1} xC and C*x{0} are the only nontrivial
connected algebraic subgroups of G. As analytic homomorphism take the
exponential map

z

¢ (zw) = (€F ),

restricted to the one-dimensional subspace z = bw of the tangent space
C? of G. Now suppose there were an algebraic number @ # 0,1 with an



algebraic logarithm b = loga. Then d¢ and our one-dimensional subspace
are defined over Q and the p-image contains and algebraic point (a,1). On
the other hand, it does not contain any proper algebraic subgroup of G in
contradiction to Proposition 2.1. So we obtain the Lindemann—Weierstrass
theorem that e’ is transcendental for all algebraic b# 0. With b= it we
get the transcendence of 7 as well.

2.2 Application to periods

The application of Proposition 2.1 needed for the values of the Schwarz
maps is a powerful theorem about linear independence of periods over Q
first stated as Theorem 5 of [23]. The proof has been worked out by Paula
Cohen in the appendix of [15].

Proposition 2.2 Let A be an abelian variety isogenous over Q to the direct
product Afl X ... X AfVN of simple, pairwise non-isogenous abelian varieties
A, defined over Q, with A, of dimension n,,v =1,...,N. Then the Q-
vector space ‘7A generated by 1,2m1 together with all periods of differentials,
defined over Q, of the first and the second kind on A, has dimension

,n2

N
. _’; — v
dimgVa = 2+ 4; dimg EndyA, -

We will not repeat the proof here. To give an impression how linear
independence of periods follows from Wiistholz’ analytic subgroup theorem,
we will however state and prove a simpler and very special case, see also [22,
Satz 1].

Proposition 2.3 Let A be a simple abelian variety defined over Q

Wiy.eoywn, € HY(A,Q) a basis of holomorphic differentials on A, also
defined over Q, and let v € Hy(A,Z) be a nonzero cycle on A. Then

the periods
/(.U] g ey /wn
¥ ¥

are linearly independent over Q.

Assume the statement to be wrong. Then there is a linear relation

al/wl—l—...—l—an/wnzo
7y ¥
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with algebraic coefficients a; not all = 0. Consider the exponential map
p:C" 5 A= C/A

where A denotes the period lattice {(f;wi,..., [wn)|6 € H'(A,Z)} and
restrict ¢ to the (n — 1)—dimensional subspace S given by

arzy + ...+ apz, = 0.

This subspace S and di are defined over Q. By our assumption, the nonzero

vector
v o= (/wl,...,/wn)
vy vy

belongs to the kernel of ¢ and ¢(Quv) consists of torsion points of A, hence

belongs to A(Q). Therefore Proposition 2.1 applies, but A is simple and
has no proper algebraic subgroup of positive dimension, contradiction.

2.3 Complex multiplication

Proposition 2.2 indicates that the splitting of 7'(k, z) and the endomorphism
algebra of its simple components will be very important for the understand-
ing of linear dependence or independence of periods. An extreme case is
the situation that the abelian variety A has complex multiplication or CM in
short. This means that there is a number field K C End A of the (maximal
possible) degree [K : Q] = 2dim A. For the convenience of the reader, we
collect here some facts well known from the literature (see e.g. [13]).

The field K is necessarily a CM field, that is a totally imaginary quad-
ratic extension of some totally real number field I of degree ¢ = dim A. The
space Hppr(A) of all first and second kind differentials splits into 2dim A
one—dimensional subspaces V, where o runs over all embeddings K — C
and every o € K acts on V, by multiplication with o(a). The subspace
H°(A,Q) of first kind differentials splits under the action of K into g one—
dimensional eigenspaces W, = V, among them for which ¢ runs over a
system of representatives of all embeddings K — C modulo complex con-
jugation. (In the case of a cyclotomic field Q({x) we may caracterize the
embeddings ¢ as usual by representatives of prime residue classes in Z/kZ
modulo £1.) The collection of these representatives o are called the CM
type of A and determine A uniquely up to isogeny. The abelian varieties with
this endomorphism structure form a zero—dimensional Shimura variety, and
A is defined over a (particularly interesting!) number field.

11



It can happen that A with CM is not simple: it may be isogeneous to
some power B™ of a simple abelian variety B with CM by a subfield L of
K of degree [L: Q] = L[K : Q]. The CM type of A arises from that of B
by extending the embeddings of L to K. Therefore symmetries of the CM
type of A show whether A is simple or not.

An abelian variety T is called of CM type if it is isogenous to a direct
product of factors with complex multiplication. The corresponding points
in a Shimura variety are called CM points or special points. In the easiest
example where the upper half plane H parametrizes the family of all elliptic
curves, the imaginary quadratic points give the CM points if we pass to the
Shimura variety '\, I denoting the elliptic modular group.

2.4 The splitting pattern of the Pryms

We come back to the Prym varieties defined in Section 1.2 and collect results
of [21, Satz 4] and [2, Exemple 3, Thm. 1, Lemme 1].

Proposition 2.4 Let C be the subalgebra of End (T (k, z) of elements com-
muting with Q(¢x) C EndoT'(k,z). This subalgebra belongs to one of the
following three types.

1. C = Q(C). Then T(k,z) is isogenous to a power D™ of a simple
abelian variety D whose endomorphism algebra S is a subfield S C
Q(Cr) with

m=1[Q(¢) : 5] and dimD=1[5:Q].
In particular, no simple factor of T (k,z) has complex multiplication.

2. C = K is a quadratic extension of Q(Cx). The Prym variety has
complex multiplication by K and is isogenous to a power B™ of a
simple abelian variety with CM by a subfield L C K with m =[K : L].

3. C has zero divisors. Then T(k,z) is isogenous to Ay & Ay with
two abelian varieties A; of dimension %go(k) and with endomorphism
algebra End gA; C Q(Cx). Both A; have complex multiplication by

Q(C) -

The proof can be sketched as follows. If C' has a zero divisor, its image of
T(k,z) gives a proper Q((x)—invariant abelian subvariety A; and a Q((x)-
invariant complement A, . 1t is well known that for such abelian varieties

12



[Q(Ck) : Q] divides 2dim A;, therefore we have equality, hence CM — the
third case of the classification.

If C' has no zero divisors, it is a (commutative) field by [2, Lemme 1] and
by reasons of divisibility again, it is either Q((z) or a quadratic extension
of it. If € = Q(¢k), [2, Exemple 3] applies to give the first case of our
classification. The second case is now obvious by the information given in
the last subsection.

2.5 Pryms not of CM type

Now we suppose z =7 € Q and consider all eigenspaces V,, as vector spaces

over Q. Proposition 2.2 implies in particular

Lemma 2.5 Suppose 7 € Q, # 0,1, and suppose that I'(k,T) is an abelian
variety not of CM type, see Proposition 2.4.1. Then all periods

/ 0, 7€ H(T(k7),2)

of a fized nonzero n €V, C HL,,(T'(k, 7)) generate a Q-vector space 11, of
dimension 2 .

The upper bound < 2 for this dimension follows directly from the facts
that Hy(T(k,7),Z) is a Z[(x]-module of rank 2 and that 7 is an eigendif-
ferential. On the other hand, dimension =1 would lead to a contradiction
as follows. Recall that by Proposition 2.4.1, T'(k,z) has only one simple
factor D of dimension ¢ = ¢(k)/m and with EndgD = S, S a number
field of degree g. Complete 1 to a basis of Hpgr(D) consisting of 2¢g ei-
gendifferentials for the action of Q((x) . As 7, all of them have their periods
in an at most 2-dimensional Q-vector space. On the other hand, this upper
bound is attained because Proposition 2.2 shows that all periods on T'(k, 2)
together with 1 and 7 generate a Q-vector space of dimension 2 4 4g'.

2.6 Pryms of CM type

Next we consider case 2 of Proposition 2.4.

'In [15, Prop. 4.1] we treated only the case that T(k, z) is simple without CM, i.e.
we overlooked the possibility that it can be isogenous to D™ with m > 1 as described
in Proposition 2.4.1. However, the result remains true (see Lemma 2.5) also in the non—
simple case, so all consequences drawn in [15] are correct.
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Lemma 2.6 Suppose 7 € Q, # 0,1 and suppose that T(k,T) has complex
multiplication by a CM field K, [K : Q(Ck)] = 2. All periods

/ n, v&€H(T(krT)Z)

of a nonzero second kind Q((x)-eigendifferential n € V,, C H},,(T(k,T))
generate a Q-vector space I1,, of dimension

o 1 ifnisa K-eigendifferential,
e 2 ifnot.

The first case happens in precisely two onedimensional subspaces of V,, .

For the proof recall that 7'(k, ) is isogenous to a power B™ of a simple
abelian variety with complex multiplication by some subfield L of K, and
V,, splits into two L—eigenspaces for factors B but for different eigenvalues.
Then the result follows again from Proposition 2.2.

The last possibility is case 3 of Proposition 2.4.

Lemma 2.7 Suppose 7 € Q, # 0,1 and that T(k,T) is isogenous to A; &
Ay for two abelian varieties of A; dimension %go(k) and with complex mul-

tiplication by Q(Ck) .

1. If Ay and Ay have the same CM type, all periods
/ n, v €H(T(k,T),Z), neVn
~
of any eigenspace V,, C HLp(T(k, 7)) generate a Q-vector space 11,

of dimension 1, and 11, = I1,, for all nonzero n €V, .

2. If Ay and Ay have different CM types, we have dimlIl, = 2, and
the periods of every fized 0 # n € V,, generate a 2-dimensional vector
space 11, over Q, except in the case that n belongs to one of the factors
in the decomposition

Hpp(T(k,7)) = Hpp(k, A1) & Hpgp(k, Ag) .

In this case (happening in precisely two onedimensional subspaces of
Vo ) 11, is of dimension 1.
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In both cases the A; are isogenous to pure powers B!"* of simple abelian
varieties B; with complex multiplication. In the first case, By and B, are
isogenous, and in the second case not. Then the result follows again by
Wiistholz’ analytic subgroup theorem in the version of Proposition 2.2, sim-
ilar to Lemma 2.6. For more details the reader my consult also the proof
of [15, Prop. 4.4]. Finally we give precise conditions under which the first
case of Lemma 2.7 occurs. Note that these conditions do not depend on the
algebraicity of z.

Proposition 2.8 The following statements are equivalent.

o The Shimura family A in Proposition 1.2 has dimension r = 0.
e For one (hence for all) z # 0,1, the CM type of T(k,z) satisfies
rn =0 or 2 forall ne(Z/kZ)".

e For one (hence for all) =z # 0,1, the abelian variety T (k, z) is isogen-
ous to Ay @ Ay, both A; have dimension %cp(k) and complex multi-
plication by Q(Cx) with equal CM type.

e The monodromy group of the corresponding hypergeometric differential
equation is finite.

o The corresponding triangle function D(vg,vi,Vs;z) is an algebraic
function of z .

The equivalence between the first and the second point follows from
Proposition 1.2. The equivalence between the second and the third is known
by work of Shimura [17, Thm. 5, Prop. 14], the equivalence between the
first and the last two points has been discussed already in Subsection 1.4.
The equivalence between the last two points is classical, of course, see e.g.

[10, §57].

3 Special values of Schwarz triangle functions

3.1 The role of complex multiplication

We work still under the hypothesis z = 7 € Q and recall that the cycles
Y1, 72 in the definition D(vg, v1,vee;7) = D(1) = f% n(r)/ fw n(T) are gen-
erators of the 2-dimensional Q((x)-module Hy(T'(k,7),Q) = Q®RzH (T (k,7),Z).
Numerator and denominator generate the period vector space I, discussed
in the last section. We conclude from Lemmata 2.5, 2.6 and 2.7
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Theorem 3.1 Suppose 7 € Q, #0,1.

J,, n(r)
f,, n()

is algebraic or oo if and only if T'(k,7) is of CM type and dimgll,;)=1,
i.e. if n(7) is a

D(vo,v1,Ve0;T7) = D(1) =

o K -eigendifferential under the hypotheses of Proposition 2.4.2, or a

o Q(Cr)-eigendifferential on one of the factors Ay, Ay under the hypo-
theses of Proposition 2.4.3.

In two special situations we can give more explicit conditions. The first
is obvious by Proposition 2.8 and Lemma 2.7.1

Theorem 3.2 If the monodromy group A of the corresponding differential
equation is finite, all values D(t) of the triangle function at algebraic ar-
guments T are algebraic or oo .

In the following we will therefore restrict our attention to infinite mono-
dromy groups A. In these cases, we know by Proposition 2.8 that at least
one r, = 1, in other words one W,, = V,N\H*(T'(k, 1), ) contains a nonzero
differential 7 = w of the first kind, unique up to multiples. For periods of
the first kind we can apply a sharper version of Wiistholz’ theorem giving a
period vector space II, of dimension 1 if the abelian variety has CM type.
Another way to prove dimll, = 1 is a second look on Lemma 2.6 and
Lemma 2.7: in Lemma 2.6, H°(T'(k,7),) is K—-invariant, therefore W, is
one of the onedimensional subspaces of K—eigendifferentials. In Lemma 2.7,
W, belongs to precisely one of the homology factors H°(A;, Q) since only
one of them contains eigendifferentials w with w oo = (Jw, otherwise we
would have dim W, = 2. Summing up we get (see also [16, Cor. 5] for a
different argument)

Theorem 3.3 Suppose 7 € Q, # 0,1, and that T(k,7) is of CM type,
let W, be a one—dimensional Q((x)—eigenspace in HO(T(k,7),Q). If 0 #
w = n(r) € W,, the value of the corresponding triangle function D(r) =

f% n(r)/ sz n(r) is algebraic.

The first natural question is now: how to control that n is of first kind?
For simplicity, take n = 1. There n = du/y — see Section 1.1 — is of first
kind if and only if the exponential parameters p; are all < 1. The second
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question is already much more difficult: for which 7 € Q is T(k,7) of CM
type? The answer depends on the nature of the monodromy group A and,
unfortunately, does not give a general explicit criterion for the distinction
between CM and non—CM cases.

1. If Ais finite, T'(k, z) is of CM type for every z, see Proposition 2.8.

2. If A is an arithmetic group, there is an infinity of T'(k,7) of CM type
and an infinity of 7'(k,7) not of CM type. In these cases — classified
by Takeuchi [19] — A is commensurable to the modular group for a
complex onedimensional family of polarized abelian varieties with a
certain endomorphism structure. Our T'(k, z), z # 0,1, form a dense
subset of this family, and the Schwarz triangle function D is the inverse
function of an arithmetic automorphic function for this modular group,
possibly up to composition with an algebraic function. See also our
remarks about Shimura curves in Section 1.4 and about CM points in
Section 2.3.

3. If A is infinite and non—-arithmetic, the 7T'(k, z) form a subfamily not
of Hodge type in the Shimura variety of all polarized abelian varieties
of their endomorphism structure. In this case, the André-Oort con-
jecture predicts that there are only finitely many 7'(k,7) of CM type.
This conjecture is proven by Edixhoven and Yafeev [7] for those CM
types discussed in Proposition 2.4.3, but it is open in general. For
more information and applications to other hypergeometric questions

see [6].

3.2 Other algebraic values at algebraic arguments

The aim of this part is to show that Theorems 3.2 and 3.3 describe very
exceptional situations, i.e. that in general for r € Q — {0, 1}

D(v;T) = D(vo,v1,Ve0;7) € Q

even if the necessary condition given by Theorem 3.1 is satisfied that T'(k, 7)
is of CM type. We used here an abbreviated notation v := (v, v, vs) for
the rational triplets of angular parameters (always under the restriction
(1.1)). We call two such triplets v, " associate if they belong to associate
hypergeometric functions, see the conditions on their components given in
Section 1.3. Observe that triangle functions with associate angular para-
meters belong to the same monodromy group.
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Theorem 3.4 Let P be a finite set of associate rational angular parameter
triplets v, belonging to an infinite monodromy group A . There is a finite
set Ep C Q of exceptional arguments such that for all other 7 € Q — Ep
at most two of the values D(v;T), v € P, are algebraic or co.

We may assume that P contains more than two elements and that 0,1 €
Ep, and for the proof we may assume moreover that 7'(k,7) is of CM
type since we know by Theorem 3.1 that otherwise all values in question
are transcendental. Theorem 3.4 uses Lemma 1.1 and classical facts about
associate hypergeometric functions: denote the differentials in the integral
representation of D(v;z),v € P, by n(v;z) and observe that all these
n(v;z),v € P, belong to one eigenspace V,,. By Gauss’ relations among
contiguous hypergeometric functions, any two of them generate V,, as a
C(z)—vector space. The only obstacle is mentioned already in Section 1.3
that for a fixed value z = 7 they may fail to be a basis over C or Q.
A closer look into Gauss’ relations [8] shows that this can happen only at
finitely many algebraic points since the relations always have coefficients in
Q(2) : For any three different fixed associate n(v;z), n(v'; z), n(v"; z) we get
a representation

n(v;z) = r'(2)n(;2) + r"(2)n("; 2)

with nonvanishing rational functions /7" € Q(z). We can use these re-
lations in all special points 7 € Q as relations over Q, except for the
(algebraic) poles of r',r”. For v,v/,v" € P we obtain finitely many such
poles and also finitely many algebraic zeros of all such r,r’. If we include
these finitely many exceptions in our exceptional set F'p, in all other points
7 € Q the n(v,7), v € P, generate pairwise different one—dimensional sub-
spaces of V,,. Lemma 2.6 and Lemma 2.7.2 show that in only two such
one-dimensional subspaces the period vector spaces I, are of dimension 1,
and this is equivalent to the algebraicity of the period quotient D(v;T).

It seems to be very likely that Ep D {0,1} is finite even for infinite
sets P of associate parameter triplets because in exceptional points 7 # 0,1
three quite different conditions have to be satisfied. First,

o two n(v;7),n(v;7), v,v' € P, have to be multiples of each other.
As an example that this can happen take relation (28) on p. 103 of [§]
(c—a)F(a—1,b,c;2) + (26— c— az+bz)F(a,b,c; z)

+a(z—1)F(a+1,b,¢;2) = 0.
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Translated to the language of differentials and angular parameters it says
that in the special point 7= (2a —¢)/(a—b) = (Voo — 11)/Veo the associate
differentials

n(V07V1+17V00+1;T)7 77(’/077/1—177/00—137')

are Q-linearly dependent and give there the same period quotient D(7).
Whether or not this value is really algebraic depends of course on two further
conditions, namely

o if T'(k,7) is of CM type and

e if n(v;7) generates one of the two one-dimensional eigenspaces men-
tioned in Lemma 2.6 or Lemma 2.7.2 .

In general, the second and the third condition are difficult to verify, for
examples see the next Sections. In the case treated in Theorem 3.3 we can
better localize at least one of these one—-dimensional eigenspaces: it is the
subspace of differentials of the first kind but containing no other n(v;7), if
we have no coincidences coming from the degeneration of Gauss’ relations
discussed in the proof of Theorem 3.4. Therefore we get the following sharper
result.

Theorem 3.5 Let P be a finite set of associate rational angular parameter
triplets v, belonging to an infinite monodromy group A , and suppose further
that there is precisely one first kind differential w = n(v';z) associate to
these n(v;z), v € P, but with v' ¢ P. Then there is a finite set Ep C Q
of exceptional arquments such that for all T € Q — Ep at most one of the
values D(v;T), v € P, is algebraic or co .

4 Examples of algebraic values: Pryms of CM type

As for the special values of the Schwarz map D(z) for a differential n(z) on a
family of hypergeometric curves, we have established the general properties
in preceding sections. Here we consider examples explaining the situation
in question. They all arise from specializations of a family of curves studied
in the framework of ball quotients and Appell-Lauricella hypergeometric
functions in two variables.
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4.1 Pentagonal curves and their degeneration

Let us consider a family of hypergeometric curves given by (1.2):

X(p,z) = X(2) :

yP = aPto(z — )P (z — 2)P"= (2 € C—-4{0,1}), (4.1)

where we suppose p to be a prime and pq, fi1, fhz, floo & %Z, equivalent to
the non-integrality condition (1.1). We defined the Prym variety 7'(p, z) for
X (z) induced from the Jacobi variety Jac(X(z)). Since k = p is prime,
T(p, z) coincides with Jac(X(z)). So in our case the field Q((,) acts on the
space of holomorphic differentials H°(Jac(X (2)),Q) & H%(X(2),Q) with
parameter z. We note also that the Q((,)—action on X (z) induces a Q(¢p)
module structure on Hq (X (2), Q) of rank two. Let vy, v, be two 1-cycles on
X (z) independent over Q((,) and let as in Subsection 1.1

n(z)=a7"(z—1)"" (2 — 2) " da

be a differential of second kind on X (z). Then the corresponding Schwarz
map is defined by (1.3). Let P(Aq, A2) be a projective nonsingular model of
the affine curve

Y =x(z—1)(z - M)z — X)), (A1, A, A\ /Ag, € C—{0,1}).

P(A1, A2) is a curve of genus 6 and is called a pentagonal curve. There are
many articles concerned with this family. We cite here just one by K. Koike
[12]. We have a basis of HY(P(A1, A2), Q):

dz dz rdr dz rdzx z2dx
P1=—7,¥2= 5,¥P3= —5,Pa= &, P55 = —, P6 = .
y? y? y? y? y? y?

Let DegP(z) be the compact nonsingular model of
vy =2%(z—1)(z —2) (2€C-{0,1}). (4.2)
It is a degenerate pentagonal curve of genus 4. There is a natural (s—action
o () (5,G)
So we have

Q(¢s) € Endg(Jac (DegP(z))) .

20



We have a basis of H?(DegP(z),) :
dz zdx rdx
W = —,Wy = —5,Ws = , Wq =
y? ’ yt y

consisting of eigendifferentials for the action of Q((s).

22dx
3 (4.3)

Remark 4.1 We note that ws and wy are mutually associate.
In general we have a solution for the Gauss hypergeometric differential
equation
FE(a,b,c) z(1=2)f"+(c—(+a+b)z)f —abf =0

given by the integrals

e—rrz'(—c+b+1—a) / moe—c(;r _ l)c—b—l (.r _ Z)_adm
1

1
— e—wz(—c+b+1—a)/ ub—l(l _ u)c—b—l(l _ zu)_“du
0

/ 2971 — 2)° "Nz — 2) "% = Fie(a,b,c;2)
1

with
wr=1,1-z=e¢™@x-1),z—z=¢"(z—2).

That solution is single valued holomorphic at z = 0 and

T I'(¢)
. — mi(1—c+b—a) .
Fa,b,c;z) = e TOT(e—b) Fieo(a, b, c;z) .

| @

is a holomorphic solution of F(2/5,3/5,6/5) at z = 0. The absolute values

of the angular parameters are given by

Then the integral

).

) we obtain an iso-

9 9

| =
| =

(It —ef,[e—a—b]Ja=b]) = (

N O =

4.

—_~~

By putting = = 1/zy,y = 2%y /21,2 = 1/2 in
morphic nonsingular curve given by

yr = z1(z1 — 1) (21 — z1)
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the integral [dzq/y; gives a solution for F(2/5,1/5,4/5) with the same
angular parameters in absolute values. So the inverse of the Schwarz map
becomes an automorphic function on the upper half plane with respect to
a cocompact arithmetic triangle group A(5,5,5). An explicit expression of
this automorphic function is given by Koike [12, Theorem 6.3].

4.2 First example

Theorem 4.2 In the family of curves (4.2), T(5,—(3) has complex mul-
tiplication by the field Q(C15) . For the differentials (4.3), the value of the

Schwarz map D(ws, —C3) = D(—2, -2, —2;—(3) is transcendental, but

D(wlv_CS) = D(_%véa_%;_g’))
D(ws, —C3) = D(%v—%é;—@)
D(w4,—§’3) = D(§7_§7§;_C3)

are algebraic numbers.
Proof. Define
¥oow =2 -1).

It is a singular model of a curve of genus 4 and we have on this model a
basis of the space of holomorphic differentials:

_dt _tdt tdt tPdt
PL= 3 P2 = 3 W38T o P4 T T

There are actions of (3 and (s5:

tI:C3ta wI:C3wa

t'=t, w =Cuw

on Y. They generate a cyclic group of automorphisms on ¥ generated by a
single action

th =ty w' = Csw
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and induces an action of Q((y5) on the space of holomorphic differentials.
Any ¢; (1 =1,2,3,4) is an eigendifferential for this action, and Q((15) acts
faithfully on the space of holomorphic differentials. We have

[Q(¢i5) : Q]=8=2- genus of ¥.

It means EndgJac(X) = Q(¢y5) and that Jac(X) is an abelian variety with

complex multiplication by Q((15). A more detailed analysis of its CM type

shows that it is simple and that the ¢; generate the eigenspaces in H%(3, ).
Defining

_ : (e = (EDT BTy
=G 16T (z,9)

-l Gt
the CM curve X is transformed to the degenerated pentagonal hypergeo-
metric curve

T :t(x)

DegP(=Gs) + y° = 2%(z = 1) (2 + ()

whose Prym variety 7'(5, —(3) (hereit is just the Jacobian) belongs therefore
to those discussed in case 2 of Proposition 2.4.
The converse transformation 77! is given by

o) = S ytn ) =

The pullback of the differentials under the transformation T is

(- (G)* -1+ (-0f)

T*(wy) = — dt
Twhmﬁggm%ﬂ
SNRELISIE VI CHE D
wa_mmﬂj+ﬁﬂﬁ

So via the transformation 7', wy,wy and w4 are equal to ¢, w9 and @4 up to
a constant factor, respectively. But ws is a linear combination of ¢3 and ¢4
and it is not an eigendifferential for the action of the CM field Q((y5).
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If we consider the Schwarz map

[, @i
D(w]-, z) —_n 4

= (1=1,2,3,4)
J, @i

for the family {DegP(z)} with respect to the differentials w;, Theorem 4.2
follows directly from Theorem 3.1 and Lemma 2.6.

4.3 Second example
Now we study the same family of curves at the point 7 = —1
DegP(—1) = X' : y° = 2%(2* - 1)

and show that its Jacobian belongs to those studied in case 3 of Proposition
2.4.

Theorem 4.3
Jac(X) =T(5,—1) isisogenous to A; P Ay

with End o(A;) = Q(¢5). For all differentials in (4.3) the Schwarz maps
have algebraic values D(w;,—1) (i=1,2,3,4).

Consider
HypE : y°> = u(u—1).
We have a natural map
¥ — HypE

by z — u = z*. Tt shows that Jac(X') is not simple and A; = Jac(HypF)
is a component. The differentials
xdx xdx
Wy = —, W3 = ——
y? yt

are the lifts from those on HypFE . The action of (5 is given by o : (2,y) —
(#,¢5'y)- So

zdx 3 Y @ _
U(w)—a(?)—%wm o(ws) = (y4) Cswa -
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Hence A; is an abelian variety of CM type with the field Q({5) and simple
CM type (3,4) . As we see later the cofactor Aj is of CM type (4,2) . By the
change of a primitive 5-th root of unity A; and A; are isogenous. We will
see below by a period matrix calculation that we have even an isomorphism.

We consider the special values of the Schwarz maps D(wy, —1) and
D(ws,—1). They are reduced to consider the periods

/Oodu U du
1 yg’ o ¥

/°° du Ydu

1oyt o y*

on the CM hyperelliptic curve y°> = u(u — 1). The differentials du/y* and
du/y* are eigendifferentials for the action of the corresponding CM field
Q(¢5) on the factor Ay . According to Theorems 3.1, 3.3 and Lemma 2.7.2
the values D(wg, —1) and D(ws, —1) are algebraic. Theorem 3.3 shows the
algebraicity of D(w;, —1) as well. Only w4 cannot be seen directly to be a
differential on A,.

We have to consider the following question: are the two associate differ-
entials ws,wy (see Remark 4.1) just those two differentials of Theorem 3.4
generating the two one—dimensional eigenspaces in V; needed according to
Lemma 2.7 7 The answer will be “yes” by explicit calculation of the period
matrix of ¥/ : y° = 2?(z* — 1) . Set

and

Y1
r=— = —=—.
z T

So we get an isomorphic curve ¥; : 37 = 2 (2% — 1). We have the expression
of the basis {wy,ws,ws,ws} on Xy :

dxy dxy x1dxy daxy

W = ———, Wy = —, Wy = — Wy = —— .
2 3 PR 1
% Ui A Y1

Let r,7’ be arcs on ¥; given by the oriented lines [0,1],[—1,0] with real
negative and real positive value y;, respectively. Remember that o de-
notes the change of sheets induced by y; — Cglyl and let r(9) be the arc
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o1~ (i=1,2,3,4). Set al) = r() — 1+ and O = ) _ p/(+) got

M1:

O oo O O oo O
|
—_
O =R OO O oo o
[l e e R e i e B e
e == e B e B e B e i ]
OO~ OO = =
—_— OO oo oo oo

Then
(AQ, Ag, A5, Ag, BQ, Bg, B5, Bg) = (Ot(l), - ,a(4), ﬂ(l), - 7ﬂ(4))AM1

is a homology basis of 3; with the intersection matrix

o oo oo
oo oo o o
oo oo CCc oo

SO OO oo O
SO oo oo~ O
(==l en Bllen B N ) S = =)
(=i en Bl an B e B i == R en)

0 0 -1

These cycles Ay, As, A5, Ag, By, B3, Bs, Bg are the same ones as those given
by K. Koike in [12] on the general pentagonal curve going to the limit

lim yi:‘ =z1(z1 — D(z1+1)(z1+A) .
A—=—00

Put

m=/ w,%=/ wi (i=1,2,3,4)
o) ()

then we have

@ =—DP1, 2=DP2, 3 =P3, 4 = —Pa .

Setting w! =w;/p1 (1 =1,2,3,4), we have the period matrix of w! for the
cycles (oD, ... a® M) 5@y,
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The period matrix of ¥y : y; = z1(23 — 1) with respect to the basis

{w! ... Wi} of HY(;,9Q) and the basis

of H'(X1,Z) is given by

5 G oG -1 ¢ -G -G
GG G LG GG
G G G 1 6 &G
G GG -1 =6 -G -¢
By changing the Q-homology basis to

(0D 4 80 W L g0 o) Z g0 ) 4 )

—_ =

we know that Jac(X;) = T'(5, —1) is isogenous to the direct sum
2 1 ¢ G G
(o) (o) r#(e) r2(8)
1 G Gs G
@/ (2() +#(0) (@) ()

That means Jac(X') is Q-isogenous to a direct sum of two 2-dimensional
abelian varieties of CM type with the CM field Q((s) of type (3,4) and of
type (4,2), and these types are the same under the isomorphism (5 — (3.

5 Examples of algebraic values: symmetry and de-
generation

The results in Theorems 4.2 and 4.3 concerning D(wq;7) and D(wz;7) in
the points 7 = —(3, —1 are not at all surprising since they are easily proved
with Theorem 3.3 provided we know that 7'(5,7) is of CM type. Even if
we know that fact, the results of the preceding section concerning ws and
w4 needed much more effort since they do not generate a one-dimensional
eigenspace of holomorphic differentials W,, (hypothesis of Theorem 3.3). For
them it is quite remarkable that w, was a K—eigendifferential for Lemma
2.6 in the case 7 = —(3 or that even both belonged to the two factors in
Lemma 2.7.2 in the case 7 = —1. In this section, we will shed some further
light on these phenomena, extend parts of the previous results and explain
why both 7 in question are exceptional arguments in the sense of Theorems

3.4 and 3.5.
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Theorem 5.1 1. Suppose p=vy =11 = Ve, € Q — %Z . Then
D(p, p, p;—C3) is algebraic or oo .

2. Suppose v1 and p = vy = Ve, € Q — Z satisfy the non—integrality
condition (1.1). Then D(vg, p, p;—1) is algebraic or oo .

5.1 Symmetry arguments

To prove the first statement, observe that in this case p € Q— %Z is a restate-
ment of the non—integrality condition. The corresponding hypergeometric
differential equation is invariant under the fractional linear transformation

z—1
z

zZ =

inducing a cyclic permutation of the singularities 0,1, 00 fixed points are
(¢ and —(3. The image of the lower half plane has therefore a symmetry
of order 3, hence its vertices D(0), D(1), D(co) under the Schwarz map
D have a midpoint D(—(3), i.e. a fixed point of an order 3 PSLy(C)-
transformation g providing an automorphism of the D-image and a cyclic
permutation of the vertices. (To see that it is really a fractional linear
transformation, observe that p extends to either a disc or the Riemann
sphere if one considers all analytic continuations of D.) These vertices are
algebraic or co what can be seen either by direct calculation as in [21, (15)]
or by the fact that in these points the Prym varieties T'(k, z) degenerate to
abelian varieties of dimension 1¢(k) with complex multiplication by Q((x) -
Therefore the midpoint also has to be algebraic or co. The same argument
works also for (g, but the analytic continuation of D to the upper half plane
changes at least one of the three vertices.

The second statement can be proved similarly but with the anticonformal
transformation

exchanging 0 and co and fixing the unit circle, in particular the point —1
which can be considered as the midpoint of the border edge D(]Joo,0]).
The triangle function D maps the unit circle to a symmetry axis of the
D—images of upper and lower half plane and again the algebraicity of the
vertices implies D(—1) € QU {co} .

Another version of these symmetry arguments has been indicated for
the special case p = % already in the end of Subsection 1.4: by nonlinear
relations, D is related to other triangle functions for the parameter triplets
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1,12 (first part) or 1,2, p (second part). In both cases, the D-values in
question belong to the (algebraic!) vertices of the new image triangles.

5.2 Corollaries and Remarks

1. By the “only if” part of Theorem 3.1, Theorem 5.1 implies that the
respective Pryms T(k, —(3), T(k,—1) are of CM type — but without the
precise information given in the last section, of course.

2. The same kind of symmetry arguments as in the second part of
Theorem 5.1 works for the argument 7 = % if v9 =11 and for 7 = 2 if
V] = Vo -

3. Sign changes of the angular parameters change the triangle functions
at most by fractional linear transformations defined over Q, see [21, (16)-
(18)], so Theorem 5.1 covers the algebraicity results of the last section.

4. For Theorem 5.1 it does not matter whether the underlying differential
is of first kind or only of second kind. For example, the parameter triplets

)

232 2 22
(57 5’ 5) ’ (
belong to generators of the eigenspace V; for the curve family (4.2), both of
second kind but the algebraicity of their values are covered by Theorem 5.1.

5. As already explained in the end of subsection 3.1, we expect only
finitely many 7'(k,7) to be of CM type if the corresponding monodromy
group is non—arithmetic. Apparently 7 = —1, %, 2, (6, —(3 lead to these
cases if suitable symmetry conditions are satisfied, independently of the
arithmeticity of the monodromy group.

5575

5.3 Degeneration of contiguity

As we explained in Subsection 3.2, associate differentials 7(v;z) generate
one—dimensional subspaces of V,, which are generically pairwise different.
Therefore — if the monodromy group is infinite — at most two of them
give algebraic values D(v;7), see Theorems 3.4 and 3.5, if the argument
T is not an “exceptional” one where several n(v;7) are multiples of each
other. Theorem 5.1 gives examples for such exceptional arguments because
arbitrarily many associate angular parameters lead to algebraic values.

Theorem 5.2 1. Suppose p € Q — %Z and let P be a set of associate
angular parameter triplets

(p+2k,p+2k,p+2k), keZ.
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Then ™= (g and —(3 are exceptional arqguments.

2. Suppose vy and p = vy = Vo, € Q — Z satisfy the non—integrality
condition (1.1) and let P be a set of associate parameter triplets

(p+kv,p+k), keZ.
Then ™= —1 is an exceptional arqument.

The truth of Theorem 5.2 follows from Theorems 3.4 and 5.1. As we
explained in the proof of Theorem 3.4, the statement implies in particular
that the corresponding differentials in these exceptional points are multiples
of each other. This is in turn equivalent to a degeneration of contiguity
relations: generically, any two different associate differentials generate their
two-dimensional eigenspace because any other can be written as a C(z)—
linear combination of them. But for a fixed argument z = 7 this may fail if
the coefficient functions have poles. These relations can be produced expli-
citely using Gauss’ relations between contiguous hypergeometric functions.
We illustrate this degeneration phenomenon in the second case. From the
contiguity relations in [8, (28)—(45)] one may deduce with Mathematica™™®
the relation

(I4+c)(c+2(1—a+b))Fla,b+1,c+1;2) =
c(l+c)F(a,byc;2)+z(1+b)(1—a+c)Fla,b+2,c+2;2) .

In the case vy = Voo = p € Z we have 1 —a+b = ¢ # —1, and the
left hand side coefficient vanishes precisely for z = —1. Passing to the
angular parameters and to the differentials, it means that n(p,vy,p;—1)
and n(p —2,v1,p—2;—1) are multiples of each other. By induction, we see
that for 7 = —1 in this family of associate differentials all elements with
even k are multiples of each other, and similarly all elements with £ odd.

An analogous argument for the first case of Theorem 5.2 should be pos-
sible, but would need explicit relations between associate hypergeometric
functions

F(a,b,c;2), Fla+k,b+ 3k, c+2k;z) and F(a+ 2k, b+ 6k,c+4k; z) ,

an extremely difficult task. In several easier cases we expect to be able to
perform the calculation with computer support.
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5.4 Gamma values

Finally another access to Theorem 5.1 has to be mentioned. In the symmet-
ric situations discussed here, special values of hypergeometric functions in
the fixed points of the symmetries are known, see e.g. [8, (46)—(56)]. One
may use them — often together with Kummer’s relations between different
representations of hypergeometric functions — to produce explicit formulas
describing D(—1) or D((g) in terms of products of values of the Gamma
function at rational arguments. For the normalization of D used in the
present paper compare also [15, Thm. 5.3 and p. 649]. Take e.g. w3 in
(4.3); we know already by different reasons (Theorems 4.3 and 5.1) that
the corresponding value of the triangle function in —1 is algebraic. Up to
algebraic nonzero factors (indicated by “~”) we can write it as

2 3 2 F(5)! (50)

557570~ T

and verify that this quotient is algebraic. This verification can be done either
explicitely using functional equation, parity relation and Gauss—Legendre’s
distribution relations (see e.g. [22, p. 6]; Serge Lang conjectures moreover
that all algebraic relations between Gamma values at rational arguments
follow from these classical relations), but this requires patience and luck.
However there is an easy criterion due to Koblitz and Ogus ([11] or [22,
Prop. 1]) to decide whether the algebraicity of such a product follows from
classical Gamma relations. This criterion applies here and leads as well to
the result; we leave it as an exercise for the reader.
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