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Abstract. We explore space improvements in LRP, a polymorphically typed call-by-need functional core
language. A relaxed space measure is chosen for the maximal size usage during an evaluation. It abstracts
from the details of the implementation via abstract machines, but it takes garbage collection into account
and thus can be seen as a realistic approximation of space usage. The results are: a context lemma for space
improving translations and for space equivalences; all but one reduction rule of the calculus are shown to
be space improvements, and the exceptional one, the copy-rule, is shown to increase space only moderately.
Several further program transformations are shown to be space improvements or space equivalences, in
particular the translation into machine expressions is a space equivalence. These results are a step forward
in making predictions about the change in runtime space behavior of optimizing transformations in call-
by-need functional languages.

1 Introduction

The focus of this paper is on providing methods for analyzing optimizations for call-by-need functional
languages. Haskell [11, 4] is a functional programming language that uses lazy evaluation, and employs
a polymorphic type system. Programming in Haskell is declarative, which avoids overspecifying im-
perative details of the actions at run time. Together with the type system this leads to a compact
style of high level programming and avoids several types of errors.

The declarative features must be complemented with a more sophisticated compiler including
optimization methods and procedures. Declarativeness in connection with lazy evaluation (which is
call-by-need [1, 13] as a sharing variant of call-by-name) gives a lot of freedom to the exact execution
and is accompanied by a semantically founded notion of correctness of the compilation. Compilation
is usually a process that translates the surface program into a core language, where the optimization
process can be understood as a sequence of transformations producing a final program.

Evaluation of a program or of an expression in a lazily evaluating functional language is connected
with variations in the evaluation sequences of the expressions in the function body, depending on the
arguments. The optimization exploits this and usually leads to faster evaluation. The easy to grasp
notion of time improvements is contrasted by an opaque behavior of the evaluation w.r.t. space usage,
which in the worst case may lead to space leaks. Programmers may experience this as unpredictability
of space usage, generating rumors like “Haskell’s space usage prediction is a black art” and in fact
a loss of trust into the optimization. [7, 8, 2] observed that semantically correct modifications of the
sequence of evaluation (for example due to strictness information) may have a dramatic effect on space
usage. An example is (head xs) eqBool (last xs) vs. (last xs) eqBool (head xs) for an epression xs
that generates a long list of Booleans (using the Haskell-conventions).
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Early work on space improvements by Gustavsson and Sands [7, 8] provides deep insights and
founded methods to analyze the dynamic space usage of programs in call-by-need functional languages.
Our work is a reconsideration of the same issues, but there are some differences: Their calculus has
a restricted syntax (for example the arguments of function calls must be variables), whereas our
calculus is unrestricted; they investigate an untyped calculus, whereas we investigate a typed calculus.
Measuring space is also slightly different: whereas [7, 8] counts only the bindings, we count the whole
expression, but instead omit parts of the structure (for example variables are not counted). The
difference in space measuring appears to be arbitrary, however, our measure turns out to ignore the
right amount of noise and subtleties of space behavior, but nevertheless sufficiently models the reality.
Also, their weak improvement relation that increases space only by linear function, is misleading, since
a linear number of weak improvement transformations may lead to an exponential size explosion (see
Section 7.3). This is not the case for our defined max-space improvement notion, which is related to
the strong (space-) improvement notion in [6, 7].

The focus of this paper is to contribute to a better understanding of the space usage of lazy
functional languages and to enable tools for a better predictability of space requirements. The approach
is to analyze a polymorphically typed and call-by-need functional core language LRP that is a lambda
calculus extended with the constructs letrec, case, constructors, seq, type abstractions, and with call-
by-need evaluation. Call-by-need evaluation has a sharing regime and due to the recursive bindings
by a letrec, in fact a sharing graph is used. Focussing on space usage enforces us to include garbage
collection into the model, i.e. the core language. This model is our calculus LRPgc.

The contributions and results of this paper are: A definition (Def. 4.4) of the space measure
spmax as an abstract version of the maximally used space by an abstract machine during an evaluation,
and a corresponding definition of transformations to be max-space-improvements or -equivalences,
where the criterion is that this holds for the application in every context. Two context lemmas (Props.
4.8 and 4.12), are proved that ease proofs of transformations being space improvements or equivalences.
The main result is a classification in Section 5 of the rules of the calculus used as transformations, and of
further transformations as max-space improvements and/or max-space equivalences. These results, in
particular the space-equivalence of (ucp) (Thm. 6.3), then imply that the transformation into machine
expressions keeps the max-space usage (Thm. 8.2), which also holds for the evaluations on the abstract
machine (Prop. 8.3). In addition, for the (cp)-rule, which is not a max-space improvement, we give a
criterion (Prop. 7.2), exhibiting the worst case of max-space increase of a version of (cp) not copying
into abstractions. A generalisation is Theorem 7.3 that shows that n application of copying abstraction
increases the maximally used space at most by a summand of n times the size of the initial program.
The type-dependent rule (caseId) is shown to be a max-space improvement (Prop. 6.6), which is a
minimal example for the space behavior of larger class of type-dependent transformations. This is
a contribution to predicting the space behavior of optimizing transformations, which in the future
may lead also to a better control of powerful, but space-hazardous, transformations like inlining and
common subexpression elimination (see Example 7.1). We also reconsider space properties of recursive
function definitions in 7.3, and show that our relaxed measure leads to better results.

We discuss some previous work on time and space behavior for call-by-need functional languages.
Examples for research on the correctness of program transformations are e.g. [14, 10, 21], and exam-
ples for the use of transformations in optimization in functional languages are [15] and the work on
Hermit [22]. A theory of (time) optimizations of call-by-need functional languages was started in [12]
for a call-by-need higher order language, also based on a variant of Sestoft’s abstract machine [23].
Clearly there are other program transformations with a high potential to improve efficiency. An exam-
ple transformation with a high potential to improve efficiency is common subexpression elimination,
which is considered in [12], and which is proved correct in [17]. Hackett and Hutton [9] applied the
improvement theory of [12] to argue that optimizations are indeed improvements, with a particular
focus on (typed) worker/wrapper transformations (see e.g. [3] for more examples). The work of [9] uses
the same call-by-need abstract machine as [12] with a slightly modified measure for the improvement



Space Improvements and Equivalences in a Functional Core Language 3

Syntax of expressions and types: Let type variables a, ai ∈ TVar and term variables x,xi ∈ Var . Every type
constructor K has an arity ar(K) ≥ 0 and a finite set DK of data constructors cK,i ∈ DK with an arity ar(cK,i) ≥ 0.

Types Typ and polymorphic types PTyp are defined as follows:
τ ∈ Typ ::= a | (τ1 → τ2) | (K τ1 . . . τar(K))
ρ ∈ PTyp ::= τ | ∀a.ρ

Expressions Expr are generated by this grammar with n ≥ 1 and k ≥ 0:

s, t ∈ Expr ::= u | x::ρ | (s τ) | (s t) | (seq s t) | (cK,i::(τ) s1 . . . sar(cK,i)) | (letrec x1::ρ1 = s1, . . . , xn::ρn = sn in t)

| (caseK s of {(PatK,1 -> t1) . . . (PatK,|DK | -> t|DK |)})
PatK,i ::= (cK,i :: (τ) (x1 :: τ1) . . . (xar(cK,i) :: τar(cK,i)))

u ∈ PExpr ::= (Λa1.Λa2. . . . Λak.λx :: τ.s)

Fig. 1. Syntax of expressions and types of LRP

relation. Further work that analyses space-usage of a lazy functional language is [2], for a language
without letrec and using a term graph model, and comparing different evaluators.

The structure of the paper is to first define the calculi LRP and LRPgc in Section 2. Sect. 3
contains garbage collection variants of the calculi. Sect. 4 defines space improvements and contains
the context lemmata. Sect. 5 contains a detailed treatment of space improving transformations. Sect.
6 analyses unique copying and a particular typed max-space improvement. Sect. 7 analyses the impact
of some time-improvements on space usage, and in Sect. 8 there are some remarks on the abstract
machine and the translation into machine language. Missing proofs are in the Appendix.

(lbeta) ((λx.s)sub r)→ (letrec x = r in s)

(Tbeta) ((Λa.u)sub τ)→ u[τ/a]

(cp-in) (letrec x1 = vsub, {xi = xi−1}mi=2,E in C[xvism ])→ (letrec x1 = v, {xi = xi−1}mi=2,E in C[v])
where v is a polymorphic abstraction

(cp-e) (letrec x1 = vsub, {xi = xi−1}mi=2,E , y = C[xvism ] in r)→ (letrec x1 = v, {xi = xi−1}mi=2,E , y = C[v] in r)
where v is a polymorphic abstraction

(llet-in) (letrec E1 in (letrec E2 in r)sub)→ (letrec E1,E2 in r)

(llet-e) (letrec E1, x = (letrec E2 in t)sub in r)→ (letrec E1,E2, x = t in r)

(lapp) ((letrec E in t)sub s)→ (letrec E in (t s))

(lcase) (caseK (letrec E in t)sub of alts)→ (letrec E in (caseK t of alts))

(seq-c) (seq vsub t)→ t if v is a value

(seq-in) (letrec x1 = (c #»s )sub, {xi = xi−1}mi=2,E in C[(seq xvism t)])
→ (letrec x1 = (c #»s ), {xi = xi−1}mi=2,E in C[t])

(seq-e) (letrec x1 = (c #»s )sub, {xi = xi−1}mi=2,E , y = C[(seq xvism t)] in r)
→ (letrec x1 = (c #»s ), {xi = xi−1}mi=2,E , y = C[t] in r)

(lseq) (seq (letrec E in s)sub t)→ (letrec E in (seq s t))

(case-c) (caseK csub of {. . . (c -> t) . . . })→ t if ar(c) = 0, otherwise:

(caseK (c #»s )sub of {. . . ((c #»y ) -> t) . . . })→ (letrec {yi = si}ar(c)i=1 in t)

(case-in) (letrec x1 = csub, {xi = xi−1}mi=2,E in C[(caseK xvism of {(c -> r) . . . })])
→ (letrec x1 = c, {xi = xi−1}mi=2,E in C[r]) if ar(c) = 0; otherwise:

(letrec x1 = (c
#»
t )sub, {xi = xi−1}mi=2,E in C[(caseK xvism of {((c #»z ) -> r) . . . })])

→ (letrec x1 = (c #»y ), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2,E in C[letrec {zi = yi}ar(c)i=1 in r])

(case-e) (letrec x1 = csub, {xi = xi−1}mi=2, u = C[(caseK xvism of {(c -> r1) . . . })], E in r2)
→ (letrec x1 = c, {xi = xi−1}mi=2, u = C[r1],E in r2) if ar(c) = 0; otherwise:

(letrec x1 = (c
#»
t )sub, {xi = xi−1}mi=2, u = C[(caseK xvism of {. . . ((c #»z ) -> r) . . . })],E in s)

→ (letrec x1 = (c #»y ), {yi = ti}ar(c)i=1 , {xi = xi−1}mi=2, u = C[letrec {zi = yi}ar(c)i=1 in r],E in s)
The variables yi are fresh ones.

Fig. 2. Basic LRP-reduction rules [16]
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2 Lazy Lambda Calculi, Polymorphic and Untyped

We introduce the polymorphically typed LRP, since numerous complex transformations have their
nice space improving property under all circumstances (in all contexts) only in a typed language, and
then introduce LR, its untyped reduct, where reasoning is in general simpler. We will also consider
the effect of typed transformations in the untyped calculus.

2.1 LRP: The Polymorphic Variant

We recall the polymorphically typed lazy lambda calculus (LRP) [18, 17, 16] as a language. We also
motivate and introduce several necessary extensions for supporting realistic space analyses.

LRP [16] is LR (an extended call-by-need lambda calculus with letrec, e.g. see [21]) extended
with types. I.e. LRP is an extension of the lambda calculus by polymorphic types, recursive letrec-
expressions, case-expressions, seq-expressions, data constructors, type abstractions Λa.s to express
polymorphic functions and type applications (s τ) for type instantiations. The syntax of expressions
and types of LRP is defined in Fig. 1. Note that type-abstractions are restricted to abstractions which
implies a typed progress lemma and makes the reduction of LRP and LR compatible.

An expression is well-typed if it can be typed using typing rules that are defined in [16]. LRP is a
core language of Haskell and is simplified compared to Haskell, because it does not have type classes
and is only polymorphic in the bindings of letrec variables. But LRP is strong enough to express
polymorphically typed lists and functions working on such data structures.

From now on we use Env as abbreviation for a letrec-environment, {xg(i) = sf(i)}mi=j for
xg(j) = sf(j), . . . , xg(m) = sf(m) and alts for case-alternatives. We use FV (s) and BV (s) to de-
note free and bound variables of an expression s and LV (Env) to denote the binding variables of a
letrec-environment. Furthermore we abbreviate (cK,i s1 . . . sar(cK,i)) with c #»s and λx1. . . . λxn.s
with λx1, . . . , xn.s. The data constructors Nil and Cons are used to represent lists, but we may also
use the Haskell-notation [] and (:) instead. A context C is an expression with exactly one (typed) hole
[· :: τ ] at expression position. A surface context, denoted S, is a context where the hole is not within
an abstraction, and a top context, denoted T , is a context where the hole is not in an abstraction or
a case alternative. A reduction context is a context where reduction may take place, and it is defined
using the labeling algorithm of [16]. Reduction contexts are for example [·], ([·] e), (case [·] . . .) and
letrec x = [·], y = x, . . . in (x True). Note that reduction contexts are surface contexts.

A value is an abstraction λx.s, a type abstraction u or a constructor application c #»s .

The classical β-reduction is replaced by the sharing (lbeta). (Tbeta) is used for type instantiations
concerning polymorphic type bindings. The rules (cp-in) and (cp-e) copy abstractions which areneeded
when the reduction rule has to reduce an application (f g) where f is an abstraction defined in a
letrec-environment. The rules (llet-in) and (llet-e) are used to merge nested letrec-expressions;
(lapp), (lcase) and (lseq) move a letrec-expression out of an application, a seq-expression or a case-
expression; (seq-c), (seq-in) and (seq-e) evaluate seq-expressions, where the first argument has to be
a value or a value which is reachable through a letrec-environment. The rules (seq-in), (seq-e) are
specialized to constructed values since we aim at a uniquely defined normal-order reduction. (case-c),
(case-in) and (case-e) evaluate case-expressions by using letrec-expressions to realize the insertion
of the variables for the appropriate case-alternative.

The following abbreviations are used: (cp) is the union of (cp-in) and (cp-e); (llet) is the union of
(llet-in) and (llet-e); (lll) is the union of (lapp), (lcase), (lseq) and (llet); (case) is the union of (case-c),
(case-in), (case-e); (seq) is the union of (seq-c), (seq-in), (seq-e).

Normal order reduction steps and termination are defined as follows:

Definition 2.1 (Normal order reduction). A normal order reduction step s
LRP−−−→ t is performed

(uniquely) if the labeling algorithm in [16] terminates on s inserting the labels sub (subexpression)

and vis (visited) and the applicable rule (i.e. matching also the labels) of Fig. 2 produces t.
LRP,∗−−−−→ is
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(gc1) letrec {xi = si}ni=1,E in t→ letrec E in t if ∀i : xi 6∈ FV (t,E), n > 0

(gc2) letrec x1 = s1, . . . , xn = sn in t→ t if for all i : xi 6∈ FV (t)

(cpx-in) (letrec x = y,E in C[x])→ (letrec x = y,E in C[y]) where y is a variable and x 6= y
(cpx-e) (letrec x = y, z = C[x],E in t)→ (letrec x = y, z = C[y],E in t) where y is a variable and x 6= y

(cpcx-in) (letrec x = c
#»
t ,E in C[x])→ (letrec x = c #»y , {yi = ti}ar(c)i=1 ,E in C[c #»y ])

(cpcx-e) (letrec x = c
#»
t , z = C[x],E in t)→ (letrec x = c #»y , {yi = ti}ar(c)i=1 , z = C[c #»y ],E in t)

(abs) (letrec x = c
#»
t ,E in s)→ (letrec x = c #»x , {xi = ti}ar(c)i=1 ,E in s) where ar(c) ≥ 1

(abse) (c
#»
t )→ (letrec {xi = ti}ar(c)i=1 in c #»x ) where ar(c) ≥ 1

(xch) (letrec x = t, y = x,E in r) → (letrec y = t, x = y,E in r)
(ucp1) (letrec E , x = t in S[x])→ (letrec E in S[t])
(ucp2) (letrec E , x = t, y = S[x] in r)→ (letrec E , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where in the (ucp)-rules, x has at most one occurrence in S[x],
no occurrence in E , t, r; and S is a surface context.

Fig. 3. Extra transformation rules

(case-cx) (letrec x = (cT,j x1 . . . xn),E in C[caseT x ((cT,j y1 . . . yn) -> s) alts])
→ letrec x = (cT,j x1 . . . xn),E in C[(letrec y1 = x1, . . . , yn = xn in s)]

(case-cx) letrec x = (cT,j x1 . . . xn),E , y = C[caseT x ((cT,j y1 . . . yn) -> s) alts] in r
→ letrec x = (c x1 . . . xn),E , y = C[(letrec y1 = x1, . . . , yn = xn in s)] in r

(case-cx) like (case) in all other cases
(case*) is defined as (case) if the scrutinized data expression is of the form (c s1 . . . sn),

where (s1, . . . , sn) is not a tuple of different variables, and otherwise it is (case-cx)
(cpS) is (cp) restricted such that only surface contexts S for the target context C are permitted
(cpxT) is (cpx) restricted such that only top contexts T for the target context C are permitted
(cpcxT) is (cpcx) restricted such that only top contexts T for the target context C are permitted

Fig. 4. Some special transformation rules

the reflexive, transitive closure,
LRP,+−−−−→ is the transitive closure of

LRP−−−→ and
LRP,k−−−−→ denotes k normal

order steps.

In Fig. 2 we omit the types in all rules with the exception of (TBeta) for simplicity. Note that the
normal-order reduction is type safe.

Definition 2.2. A weak head normal form (WHNF) in LRP is a value, or an expression
letrec E in v, where v is a value, or an expression letrec x1 = c

#»
t , {xi = xi−1}mi=2,E in xm.

An expression s converges to an expression t (s↓t or s↓ if we do not need t) if s
LRP,∗−−−−→ t where t is a

WHNF. Expression s diverges (s↑) if it does not converge. The symbol ⊥ represents a closed diverging
expression, e.g. letrec x = x in x.

Definition 2.3. For LRP-expressions s, t of the same type τ , s ≤c t holds iff ∀C[· :: τ ] : C[s]↓ ⇒ C[t]↓,
and s ∼c t holds iff s ≤c t and t ≤c s. The relation ≤c is called contextual preorder and ∼c is called
contextual equivalence.

The following notions of reduction length are used for measuring the time behavior in LRP.

Definition 2.4. For a closed LRP-expression s with s↓s0, let rln(s) be the sum of the number of all
(lbeta)-, (case)- and (seq)-reduction steps in s↓s0, let rlnLCSC (s) be the sum of all a-reduction in s↓s0
with a ∈ LCSC , where LCSC = {(lbeta), (case), (seq), (cp)}.

2.2 The Untyped Calculus LR

To be self contained, we give the necessary definitions and connections between LRP and LR as these
appear in [18]. The good news is that if (TBeta)-reduction steps (that only manipulate types) are
ignored, then this constitutes exactly the normal order reduction of the untyped expression.
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Definition 2.5. The calculus LR is defined on the set of expressions that is generated by a grammar
that is derived from the one in Fig. 1 by omitting the types in the expression, but keeping the type
constructor K at the caseK constructs.
The type erasure function ε : LRP → LR maps LRP-expressions to LR-expressions by removing
the types, the type information and the Λ-construct. In particular: ε(s τ) = ε(s), ε(Λa.s) = ε(s),
ε(x :: ρ) = x, and ε(c :: ρ) = c. We also define the type erasure for reduction sequences.

Clearly,
LRP−−−→-reduction steps are mapped by ε to LR-normal-order reduction steps where exactly

the (Tbeta)-reduction steps are omitted. The translation ε is adequate, but not fully abstract:

Proposition 2.6. The translation ε is adequate:
ε(e1) ∼c ε(e2) =⇒ e1 ∼c e2.

It is not fully abstract (i.e. e1 ∼c e2 does not imply ε(e1) ∼c ε(e2)); an example will be the (caseId)
transformation (see Section 6).

Definition 2.7. Let s, t be two LRP-expressions of the same type ρ. The improvement relation � for
LRP is defined as: Let s � t iff s ∼c t and for all contexts C[· :: ρ]: if C[s], C[t] are closed, then
rln(C[s]) ≤ rln(C[t]). If s � t and t � s, we write s ≈ t.

The notation s1
C,a−−→ s2 means C[s1] is transformed to C[s2] be reduction or transformation rule

a. If every context C is permitted, then we may also write
a−→ instead of

C,a−−→. The following facts are
valid and can easily be verified or found in the literature [18, 20, 21]:

Theorem 2.8.

1. For a closed LRP-expression s, the equations rln(s) = rln(ε(s)) and rlnLCSC(s) = rlnLCSC(ε(s))
hold.

2. The reduction rules (Fig. 2) and extra transformations (Figs. 3, 4) in their typed forms can also
be used in LRP. They are correct program transformations and (time-) improvements.

3. If s
a−→ t where a is a reduction rule in any context, then rlnLCSC(s) ≥ rlnLCSC(t)

4. If s
a−→ t where a is an extra transformation in any context, then rlnLCSC(s) = rlnLCSC(t).

5. Common subexpression elimination applied to well-typed expressions is a (time-) improvement in
LRP ([17]).

3 Calculi with Garbage Collection

As extra reduction rule in the normal order reduction we use garbage collection (gc), which is the
union of (gc1) and (gc2), but restricted to the top letrec (see Fig. 3).

Definition 3.1 (LRPgc). We define the calculus LRPgc as LRP modified by adding garbage collection
to the normal-order reduction sequences. Let s be an LRP-expression (see [19, 16]). A normal-order-gc

(LRPgc) reduction step s
LRPgc−−−−→ t is defined by two cases:

1. If a (gc)-transformation is applicable to s (in the empty context), i.e. s
gc−→ t, then s

LRPgc−−−−→ t,
where the maximum of bindings is removed.

2. If (1) is not applicable and s
LRP−−−→ t, then s

LRPgc−−−−→ t.

A sequence of LRPgc-reduction steps is called a normal-order-gc reduction sequence or LRPgc-

reduction sequence. A WHNF without
LRPgc,gc−−−−−−→-reduction possibility is called an LRPgc-WHNF. If

the LRPgc-reduction sequence of an expression s halts with a LRPgc-WHNF, then we say s converges
w.r.t. LRPgc, denoted as s ↓LRPgc, or s ↓, if the calculus is clear from the context.

The calculus LRgc is defined as the type erasure of LRPgc.
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Note that an
LRPgc,gc2−−−−−−−→-reduction may have several subsequent

LRPgc,gc−−−−−−→-reduction steps.
We will use complete sets of forking and commuting diagrams between transformation steps and the
normal-order reduction steps (see [21] for more explanations). These cover all forms of overlaps of
a normal-order-reduction and a transformation where also the context-class is fixed, and come with

joining reduction and transformation steps. A forking is the pattern
LRPgc,a←−−−−− · trans−−−→, whereas a

commuting is the pattern
trans−−−→ · LRPgc,a−−−−−→.

Definition 3.2 ([21])). The measure µlll(s) for an LR-expression s is defined as follows: µlll(s) is
a pair (µlll,1(s), µlll,2(s)), ordered lexicographically. The measure µlll,1(s) is the number of letrec-
subexpressions in s, and µlll,2(s) is the sum of lrdepth(C) for all letrec-subexpressions r with s ≡
C[r], where lrdepth is defined as follows, where C(1) is a context of hole depth 1:

lrdepth([·]) = 0

lrdepth(C(1)[C
′[]]) =

{
1 + lrdepth(C ′[]) if C(1) is not a letrec

lrdepth(C ′[]) if C(1) is a letrec

We need the following result later for inductive proofs on the steps of a reduction sequence.

Lemma 3.3. The following inequations hold:

1. If s
lll−→ s′, then µlll(s) > µlll(s

′),

2. if s
T,gc−−→ s′, then µlll(s) ≥ µlll(s′),

3. and if s
T,seq−−−→ s′, then µlll(s) ≥ µlll(s′).

Proof. This is proved in [21] for s
lll−→ s′, and obvious for s

gc−→ s′ and s
seq−−→ s′.

Definition 3.4. The syntactical size synsize(s) of s is defined as:

synsize(x) = 1
synsize(s t) = 1 + synsize(s) + synsize(t)
synsize(λx.s) = 2 + synsize(s)
synsize(case e of {alt1 . . . altn}) = 1 + synsize(e) +

∑n
i=1 synsize(alti)

synsize((c x1 . . . xn) -> e) = 1 + n+ synsize(e)
synsize(c s1 . . . sn) = 1 +

∑
synsize(si)

synsize(seq s1 s2) = 1 + synsize(s1) + synsize(s2)
synsize(letrec x1 = s1, . . . , xn = sn in s) = 1 + n+ synsize(s) +

∑
synsize(si)

Theorem 3.5. The calculus LRP is convergence-equivalent to LRPgc. I.e. for all expressions s:
s↓ ⇐⇒ s↓LRPgc.

Also, contextual equivalence and preorder for LRP coincides with the corresponding notions in
LRPgc.

4 Space improvements

From now on we use the calculus LRPgc as defined in Definition 3.1. We define an adapted (weaker)
size measure than synsize, which is useful for measuring the maximal space required to reduce an
expression to a WHNF. The size-measure omits certain components. This turns into an advantage later,
since this enables proofs for the exact behavior w.r.t. our space measure for a lot of transformations.
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Definition 4.1. The size size(s) of an expression s is the following number:

size(x) = 0
size(s t) = 1 + size(s) + size(t)
size(λx.s) = 1 + size(s)
size(case e of alt1 . . . altn) = 1 + size(e) +

∑n
i=1 size(alti)

size((c x1 . . . xn) -> e) = 1 + size(e)
size(c s1 . . . sn) = 1 +

∑
size(si)

size(seq s1 s2) = 1 + size(s1) + size(s2)
size(letrec x1 = s1, . . . , xn = sn in s) = size(s) +

∑
size(si)

This measure does not count variables, and also counts bindings of a letrec only by the size of the
bound expressions. Also, it ignores the type expressions and type annotations in the expressions.

The reason for defining size(x) as 0 is that the let-reduction rules do not change the size, and
that it is compatible with the size in the machine language. For example, the bindings x = y do not
contribute to the size-measure. This is justified, since the abstract machine ([5]) does not create x = y
bindings, (not even implicit ones) and instead makes an immediate substitution.

The sizes size and synsize differ only by a constant factor:

Proposition 4.2. Let s be an LRP-expression. If s does not permit a garbage collection of any
binding, and there are no x = y-bindings, then synsize(s) ≤ (maxarity + 1) ∗ size(s) and
size(s) ≤ synsize(s), where maxarity is the maximum of 2 and the maximal arity of constructor
symbols in the language.

Proof. It is sufficient to check every subexpression using an inductive argument.

Definition 4.3. The space measure spmax (s) of the reduction of a closed expression s is the maximum

of those size(si), where si
LRPgc−−−−→ si+1 is not a (gc), and where the reduction sequence is s = s0

LRPgc−−−−→
s1

LRPgc−−−−→ . . .
LRPgc−−−−→ sn, and sn is a WHNF. If s↑, then spmax (s) is defined as ∞.

For a (partial) reduction sequence Red = s1 → . . .→ sn, we define spmax (Red) = maxi{size(si) |
si → si+1 is not a (gc)}.

Counting space only if there is no (LRPgc,gc)-reduction step possible is consistent with the definition
in [8].

Definition 4.4. Let s, t be two expressions with s ∼c t and s↓. Then s is a space-improvement of
t, s ≤spmax t, if for all contexts C: if C[s], C[t] are closed then spmax (C[s]) ≤ spmax (C[t]). If for
all contexts C: if C[s], C[t] are closed then spmax (C[s]) = spmax (C[t]), then s is space-equivalent to

t, denoted s ∼spmax t. A transformation
trans−−−→ is called a space-improvement (space-equivalence) if

s
trans−−−→ t implies that t is a space-improvement of (space-equivalent to, respectively) s. ut

Note that ≤spmax is a precongruence, i.e. it is transitive and s ≤spmax t implies C[s] ≤spmax C[t],
and that ∼spmax is a congruence.

Lemma 4.5. If s ≤spmax t for two expressions s, t, then size(s) ≤ size(t).

Proof. The context λx.[·] for a fresh variable x enforces size(s) ≤ size(t).

LRPgc-reduction contexts are the same as the LRP-reduction contexts.

Definition 4.6. Let s, t be two expressions with s ∼c t and s↓. The relation s ≤R,spmax t holds, pro-
vided the following holds: For all reduction contexts R and if R[s], R[t] are closed, then spmax (R[s]) ≤
spmax (R[t]).
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4.1 Context Lemmas for Max-Space Improvements

The context lemmas proved below are very helpful in proving the space-improvement property, since
less cases have to be considered in case analyses of the interferences between reductiosn and transfor-
mations.
The type-erasure relation between LRP and LR also holds between LRPgc and LRgc, and so the
results can be transferred also to the typed language. We will now prove two context lemmas in LRgc,
and thus we assume in the rest of this section that the expressions are LR-expressions and the calculus
is LRgc.

The following lemma helps in the proof of the context lemma for max-space.

Lemma 4.7. Let s be an expression with s
[·],gc−−−→ s′, i.e. it is a gc-reduction step in the empty context.

Then spmax (s) = spmax (s′)

Proof. There are two cases:

1. If s
gc−→ s′ is s

LRgc,gc−−−−−→ s′, then the claim holds by applying spmax .
2. In the other case, the gc-transformation is a (gc1)-reduction, and the following diagram holds:

s
LRgc,gc1
��

gc // s′

LRgc,gcsss1

and hence spmax (s) = spmax (s1) = spmax (s′). ut

We will use multi-contexts, which are are expressions with several holes ·i, such that every hole
has exactly one occurrence.

Lemma 4.8 (Context Lemma for Maximal Space Improvements). If size(s) ≤ size(t),
FV (s) ⊆ FV (t), and s ≤R,spmax t, then s ≤spmax t.

Proof. Let M be a multi-context. We prove the more general claim that if for all i: size(si) ≤ size(ti),
FV (si) ⊆ FV (ti), si ≤R,spmax ti, and M [s1, . . . , sn] and M [t1, . . . , tn] are closed and M [s1, . . . , sn]↓,
then spmax (M [s1, . . . , sn]) ≤ spmax (M [t1, . . . , tn]).

By the assumption that si ∼c ti, we have M [s1, . . . , sn] ∼c M [t1, . . . , tn] and thus M [s1, . . . , sn]↓ ⇐⇒
M [t1, . . . , tn]↓. The induction proof is (i) on the number of LRgc-reduction steps of M [t1, . . . , tn], and
as a second parameter on the number of holes of M . We distinguish the following cases:

(I) The LRgc-reduction step of M [t1, . . . , tn] is a (gc). If M is the empty context, then we can
apply the assumption s1 ≤R,spmax t1, which shows spmax (s1) ≤ spmax (t1). Now we can assume
that M is not empty, hence it is a context starting with a letrec, and in M [t1, . . . , tn] the re-
duction (gc) removes a subset of the bindings in the top letrec, resulting in M ′[t′1, . . . , t

′
k]. Since

FV (si) ⊆ FV (ti), the same set of bindings in the top letrec can be removed in M [s1, . . . , sn]
by (gc) resulting in M ′[s′1, . . . , s

′
k], where the pairs (s′i, t

′
i) are renamed versions of pairs (sj , tj).

If the reduction step is a (gc2), or if it is a (gc1) with M [s1, . . . , sn]
LRgc,gc1−−−−−−→ M ′[s′1, . . . , s

′
k],

then by induction we obtain spmax (M ′[s′1, . . . , s
′
k]) ≤ spmax (M ′[t′1, . . . , t

′
k]). Since spmax is not

changed by (gc)-reduction, this shows the claim. However, in case the (gc1) step that is not a LRgc-
reduction step, it does not remove the maximal set of removable bindings in M [s1, . . . , sn]. By in-
duction we obtain spmax (M ′[s′1, . . . , s

′
k]) ≤ spmax (M ′[t′1, . . . , t

′
k]). We use Lemma 4.7, which shows

spmax (M ′[s′1, . . . , s
′
k]) = spmax (M [s1, . . . , sn]), and spmax (M ′[t′1, . . . , t

′
k]) = spmax (M [t1, . . . , tn]),

and thus the claim.
(II) If no hole of M is in a reduction context and the reduction step is not a (gc), then there are

two cases: (i) M [t1, . . . , tn] is a WHNF. Then also M [s1, . . . , sn] is a WHNF, and by the assumption,

we have size(M [s1, . . . , sn]) ≤ size(M [t1, . . . , tn]). (ii) The reduction step is M [t1, . . . , tn]
LRgc,a−−−−→
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M ′[t′1, . . . , t
′
n′ ], and M [s1, . . . , sn]

LRgc,a−−−−→M ′[s′1, . . . , s
′
n′ ] with a 6= gc, and the pairs (s′i, t

′
i) are renamed

versions of pairs (sj , tj). This shows spmax (M ′[s′1, . . . , s
′
n′ ]) ≤ spmax (M ′[t′1, . . . , t

′
n′ ]) by induction. By

assumption, the inequation size(M [s1, . . . , sn]) ≤ size(M [t1, . . . , tn]), holds, hence by computing the
maximum, we obtain spmax (M [s1, . . . , sn]) ≤ spmax (M [t1, . . . , tn]).

(III) Some tj in M [t1, . . . , tn] is in a reduction position, and there is no LRgc-gc-
reduction of M [t1, . . . , tn]. Then there is one hole, say i, of M that is in a reduction posi-
tion. With M ′ = M [·, . . . , ·, ti, ·, . . . , ·], we can apply the induction hypothesis, since the num-
ber of holes of M ′ is strictly smaller than the number of holes of M , and the number of
normal-order-gc reduction steps of M [t1, . . . , tn] is the same as of M ′[t1, . . . , ti−1, ti+1, . . . , tn],
and obtain: spmax (M [s1, . . . , si−1, ti, si+1, . . . , sn]) ≤ spmax (M [t1, . . . , ti−1, ti, ti+1, . . . , tn]). Also
by the assumption: spmax (M [s1, . . . , si−1, si, si+1, . . . , sn]) ≤ spmax (M [s1, . . . , si−1, ti, si+1, . . . , sn]),
since M [s1, . . . , si−1, ·, si+1, . . . , sn]) is a reduction context. Hence spmax (M [s1, . . . , sn]) ≤
spmax (M [t1, . . . , tn]). ut

Example 4.9. The conditions FV (s) ⊆ FV (t) and size(s) ≤ size(t) are necessary in the context
lemma: FV (s) ⊆ FV (t) is necessary: Let s = letrec y = x in True, and let t = letrec y =
True in True. Then s ∼c t, since s and t are both contextually equivalent to True, using garbage
collection. Also size(s) ≤ size(t). But s is not a max-space improvement of t: Let C be the context
letrec x = s1, z = s2 in seq z (seq (c[·]) z), where s1, s2 are closed expressions such that size(s1) ≥ 2
and the evaluation of s2 produces a WHNF s2,WHNF of size at least 1 + size(s1) + size(s2). This is
easy to construct using recursive list functions. Then the reduction sequence of C[s] reaches the size
maximum after s2 is reduced to WHNF due to the first seq, which is 1 +size(s1) +size(s2,WHNF ) +
3 + size(s). The reduction sequence of C[t] first removes s1, and then reaches the same maximum as
s, which is 1 + size(s2,WHNF ) + 3 + size(t). Thus spmax (C[s])− spmax ([t]) = size(s1) + size(s)−
size(t) = size(s1) − 1 > 0. We have to show that for all reduction contexts R, spmax (R[s]) ≤
spmax (R[t]): Reducing R[s] will first shift (perhaps in several steps) the binding y = x to the top
letrec and then remove it (together with perhaps other bindings) with gc. The same for R[t]. After
this removal, the expressions are the same. Hence spmax (R[s]) ≤ spmax (R[t]). This shows that if
FV (s) ⊆ FV (t) is violated, then the context lemma does not hold in general. Note that this example
also shows that for arbitrary expressions s, t with s ∼c t and s↓, the relation s ≤R,spmax t does not
imply FV (s) ⊆ FV (t).

size(s) ≤ size(t) is necessary in the context lemma: Let t be a small expression that generates a
large WHNF, and let s be seq True t. Then size(s) > size(t). Lemma 4.5 shows (by contradiction)
that s cannot be a space improvement of t. For all reduction contexts R, the first non-gc reduction will
join the reduction sequences of R[s] and R[t]. Since the WHNF of s is large, we obtain spmax (R[s]) =
spmax (R[t]), since the size difference of s, t which is 1, is too small compared with the size of the
WHNF. This implies s ≤R,spmax t, but s is not a max-space improvement of t. Thus the condition
size(s) ≤ size(t) is necessary in the max-space-context-lemma.

An immediate consequence of the context lemma 4.8 is:

Proposition 4.10. The context lemma also holds for all context classes that contain the reduction
contexts. In particular for top-contexts T , which are all contexts where the hole is neither in an ab-
straction nor in an alternative of a case expression.

We show that there are cases which do not change the max-space consumption, and also adapt
the context lemma to this case.

Definition 4.11. Let s, t be two expressions with s ∼c t and s↓. The relation s ∼R,spmax t
holds, provided the following holds: For all reduction contexts R and if R[s], R[t] are closed, then
spmax (R[s]) = spmax (R[t]).

Lemma 4.12 (Context Lemma for Maximal Space Equivalence). If size(s) = size(t),
FV (s) = FV (t), and s ∼R,spmax t, then s ∼spmax t.
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The context lemmas for max-space improvement and max-space equivalence in the polymorphic
variant LRPgc cannot be derived from the context lemmas in LRgc. However, it is easy to see that
the reasoning in the proofs of the context lemmas is completely analogous and so we obtain:

Proposition 4.13. The context lemmas for max-space improvement and max-space equivalence also
hold in LRPgc.

5 Space Improving Transformations

The plan of this section is to analyze the reductions of the calculus in Fig. 2. For complete proofs,
it is required to analyze several other (special) transformations (see Fig. 4) w.r.t. their max-space
improvement or max-space equivalence properties. We will perform the analyses and proofs w.r.t. the
calculus LRgc. This is justified since this implies the respective properties in LRPgc:

Proposition 5.1. Let Q be a transformation in LRgc and let QP be the corresponding transformation
in LRPgc. We assume that QP does not change the type of expressions in LRPgc. We also assume
that for the type-erased relation it holds that ε(QP ) ⊆ Q. Then the following holds:

1. If Q is a max-space improvement, then also QP is a max-space improvement.
2. If Q is a max-space equivalence then also QP is a max-space equivalence.

Proof. This is obvious, since the size measure is the same, and since every type erased context from
LRPgc is also an untyped context.

Proposition 5.2. The (lll)-transformation steps in any context do not change the size of expressions
and the (case)-, (lbeta)- and (seq)-transformations in any context strictly decrease the size.

Proof. The reduction (llet) that merges environments does not change size.
The reductions (lapp), (lseq), and (lcase) only move the letrec, and so the size is the same. For
(lbeta)-, (seq)- and (case-c)-reductions the claim is trivial. For (case-e) and (case-in)-reductions w.r.t.
constructors of arity ≥ 1, this also holds, where it is exploited that variables do not count in the
measure.

Theorem 5.3. The transformations (lbeta), (seq-c) and (case-c) are max-space improvements.

Proof. We apply the context lemma for max-space improvement and reduction contexts: Let s
a−→ t

where a ∈ {(lbeta), (seq-c), (case-c)} and the transformation is w.l.o.g. on the top of the expression s.
The precondition FV (t) ⊆ FV (s) is satisfied. Let R be a reduction context. We consider the cases for
R[s]

a−→ R[t], which is normal-order for LR, but since (gc) may be also applicable, it may be not an
LRPgc-reduction. An analysis of cases shows that the following diagram is valid1

R[s]

n,gc,∗
��

a // R[t]

gc,∗xx
n,gc,∗

��

R′[s] n,a
// R′[t]

n,gc,∗
&&
R′′[t]

Proposition 5.2 shows that size(R[s]) ≥ size(R[t]) ≥ size(R′′[t]) and also all intermediate ex-
pressions in the diagram have smaller size than size(R[s]).

The definition of spmax implies: spmax (R[s]) ≥ spmax (R[t]) for all reduction contexts R. An
application of the context lemma 4.8 shows the claim.

A detailed analysis using forking-diagrams and using the context lemma (see appendix) shows:

1 In this diagram and the following, we abbreviate LRPgc as n.
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Theorem 5.4. The transformations (seq), (lll) and (gc) are max-space improvements.

Remark 5.5. The reduction (cp) is not a space improvement. The simple argument is that a (cp)-
reduction that is not normal-order, copying an abstraction, increases the size und thus it cannot be a
space improvement.

The transformation not yet analyzed are (case-e) and (case-in). We will show that these are space-
improvements after we have shown that several transformations are space-equivalences.

Proposition 5.6. The transformation cpxT is a space-equivalence.

Proof. An analysis of forking overlaps between LRPgc-reductions and cpxT -transformations in top

contexts shows that they (almost) commute, i.e., s1
n,a←−− s

T,cpxT−−−−→ s′ can be joined by s1
T,cpxT,0∨1−−−−−−−→

s′1
n,a←−− s′. (Here we mean by

T,cpxT,0∨1−−−−−−−→ a reduction sequence consisting of 0 or 1 steps
T,cpxT−−−−→.) We

will apply the context lemma for space equivalence (Proposition 4.12), which also holds for T -contexts.

Let s0
cpx−−→ t0, and let s = R[s0] and s′ = R[t0]. Then size(s) = size(s′) as well as FV (s) = FV (s′).

We have to show spmax (s) = spmax (s′), which can be shown by an induction on the number of
LRPgc-reductions of R[s0]. An application of the context lemma for space equivalence finishes the
proof.

Definition 5.7. Let the transformation s
gc=−−→ s′ be the specialization of (gc) where a single binding

x = y is removed, where y is not free, and there is a binding for y that cannot be garbage collected
after the removal of x = y.

Several specialized variants of (gc) different from (gc=) are not space equivalences, contrary to the
intuition:

Lemma 5.8. Consider a (gc)-transformation that removes the binding x = y in a top context in s.

1. If y is free in s, then the transformation is not necessarily a space equivalence.
2. If the removal changes the garbage status of other bindings then the gc-transformation is not

necessarily a space equivalence.

Proof. One example is sufficient to show both claims: Consider s = (letrec y =
r1 in seq r2 (letrec x = y in True)), and s′ = (letrec y = r1 in seq r2 True), where we as-
sume that spmax (r2) > size(r1) + size(r2). Then spmax (s) = size(r1) + spmax (r2) + 2, whereas
spmax (s′) is spmax (r2) + 2, since in s, first r2 is evaluated, whereas in s′, (gc) first removes r1.

The interpretation for the first claim is that the context is (letrec y = r1in [·]), and in the second
case the whole expression, where the garbage status of y = r1 changes.

Proposition 5.9. The transformation (gc=) is a space-equivalence.

Proposition 5.10. The variant (case*) of case (see Fig. 4) is a space improvement.

Theorem 5.11. The transformation (case) is a space improvement.

Proof. Since either (case) is the same reduction as (case*), or (case*) is the same as (case) followed
by several (cpx) and several (gc=)-transformations. Note that the (gc)-transformations necessary to
remove the bindings are indeed (gc=)-transformations.
Since (gc=) and (cpx) are space-equivalences due to Propositions 5.9 and 5.6, and (case*) is a space
improvement by Proposition 5.10, the claim holds.

Theorem 5.12. All reductions used as transformation in Fig. 2 with the exception of (cp) are space
improvements.

Proof. This is a summary of Theorems 5.4, 5.11, and 5.3 and of Remark 5.5.
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6 The Improvements (ucp) and (caseId)

6.1 Space Properties of unique copying (ucp)

The helper transformations (abs) and (xch) are space equivalences (see the appendix).

Proposition 6.1. The transformations (abs) and (xch) are space equivalences.

For the analysis of (ucp) we need a “local space property” for a specialization of (cpcx). Let
(cpcxT) be the transformation (cpcx) where the target is in a T -context, and let (T, (cpcxT )) be the
application of (cpcxT) in a T -context.

Lemma 6.2. If s
(T,(cpcxT ))−−−−−−−→s′, then spmax (s) ≤ spmax(s′) ≤ spmax (s) + 1.

s
T,ucp //

n,a

��

s′

n,a

��
s1

T,ucp // s′1

s
T,ucp //

n,a

��

s′

n,a

~~
s1

s
n,cp
��

T,ucp

~~

s2
n,gc
��
s1

s
T,ucp //

n,a
��

s′

n,a

��

s2
n,gc
��
s1

a ∈ {seq, case}

s
T,ucp //

n,case
��

s′

n,case

��

s1
n,gc=

��
s2

T,cpx,∗// s′′2
T,gc=,∗// s′2

and the left (n,case) triggers a (gc).

s
T,ucp //

n,lll
��

s′

n,lll∨gc,∗

��

s2
n,lll∨gc,∗

��
s1

T,ucp,0∨1 // s′1

Fig. 5. Forking diagrams for (ucp)

We prove that the transformation (ucp) is a space equivalence, which is extremely helpful for
proving space equivalence of the translation into machine expressions.

Theorem 6.3. The transformation (ucp) is a space equivalence.

Proof. We apply the forking diagrams in Fig. 5. The proof technique is by applying the context
lemma for improvements. Let s0, s

′
0 be expressions with s = T [s0]

ucp−−→ T [s′0] = s′. It is easy to see
that size(s) = size(s′) and FV (s) = FV (s′). We show the prerequisite spmax (s) = spmax (s′) for
the context lemma for T -contexts and space-equivalence by induction on the following measure of s:
(i) µ1, the number of LCSC -reductions, (ii) the measure µlll(s), and (iii) the measure synsize(s).
See Theorem 2.8 and Lemma 3.3 for the modification and invariances of the measures µ1, µ2 under
reductions.

If s is a LRPgc-WHNF, then the claim holds, since for s
ucp−−→ t: s is a WHNF iff t is a WHNF, and

since (ucp) does not change the size.
If the first diagram is applicable, then the induction hypothesis can be applied to s1, and thus
spmax (s1) = spmax (s′1). Since size(s) = size(s′), we obtain spmax (s) = spmax (s′). If the sec-
ond diagram is applicable, then reasoning is obvious, since size(s) = size(s′). If the third diagram is
applicable, then the induction hypothesis can be applied to s1, and thus spmax (s) = spmax (s1), due
to the definition of spmax (Def. 4.3). If the 4th diagram is applicable, then spmax (s) = spmax (s′),
since size(s) = size(s′), and (seq), (case) and (gc) do not increase the size.
Assume the 5th diagram is applicable. Then we have size(s) = size(s′) and spmax (s2) = spmax (s′2),
since (cpx) and (gc=) are space equivalences (see Propositions 5.9 and 5.6), hence spmax (s) =

spmax (s′). For the 6th diagram, the claim is obvious if s1 = s′1. If s1
T,ucp−−−→ s′1, then the induc-

tion hypothesis can be applied to s1, and thus spmax (s1) = spmax (s′1). Since size(s) = size(s′) and
size(s1), size(s′1), size(s2), are not greater than size(s), the claim is proved. Now we can apply
the context lemma 4.12 for space equivalence, which shows the overall claim.
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6.2 A Typed Max-Space Improvement

In this section we show the max-space-improvement property for the transformation (caseId) in LRPgc.
Note that in the untyped calculi LR and LRgc not every use of this transformation is correct. Never-
theless we make the reasoning in LRgc, since the condition that specific (caseId)-transformations are
correct, is sufficient for valid arguments.

The rule (caseId) is also the heart of other type-dependent transformations, which are also only
correct under typing. Examples for such transformations are: (map λx.x)→ id, filter (λx.True)→
id, and foldr (:) [] → id, where we refer to the usual Haskell-functions and constructors. Note that
these transformations are not correct in the untyped calculi. Applicative simulation can be used in LRP
to prove correctness of the transformations (see [16]). These transformations are space-improvements
in LRP, see the appendix for a sketch of a justification.

Definition 6.4. The transformation (caseId) is defined as follows.

(caseId) (caseK s (pat1 -> pat1) . . . (pat|DK | -> pat|DK |))→ s

The transformation (caseId) is correct in LRP [18], but not in LR, which can be seen by trying the
case s = λx.t.

We only consider transformation instances s1
caseId−−−−→ s2 in LRgc, where s1, s2 are contextually

equivalent. In this case we say the (instance of the) (caseId)-transformation is correct in LRgc.

Lemma 6.5. If caseK s . . .
caseId−−−−→ s is correct, and s LRPgc-reduces to a LRPgc-WHNF s′, then s′

is of the form (c s′1 . . . s
′
n), where c is a constructor belonging to type K.

Proposition 6.6. Correct instances of the (caseId)-transformation are space-improvements.

7 Time-Improvements and Their Space Usage

7.1 Optimizing, space-safe

Our proposal for controlled program optimization in the call-by-need calculus LRPgc is as follows:

1. Consider an input program P that is to be optimized by transformations.

2. Use only program transformations that are correct w.r.t. contextual equivalence, where we rely on
previous work.

3. As a filtering criterion: use only program transformations that are (also) space improvements. As
analyzed in this paper, there is a sufficiently large set of such program transformations: First, these
are all the reduction rules in Fig. 2 with the exception of (cp), as proved in this paper. Second,
there are further transformation rules in Fig. 3, which can be used, since we proved that all these
rules are space-improvements. Future work may exhibit more such transformations.
Since only space-improvements are applied, the guarantee is that the program itself is also not
enlarged.

4. Further time-improving transformations can be applied that are not guaranteed to be space im-
provements. Examples for such transformations are (T, (cpT )) and (T, (cpcxT ), where n appli-
cations of (T, (cpT )) are guaranteed to only increase the space of the current program and the
reduction by at most n ∗ size(P ) (see Proposition 7.2), or at most by n (see Lemma 6.2), respec-
tively.

If only the evaluation of P itself is requested, then a (cp) as a reduction can be used, since it is a
required reduction.

5. Common subexpression elimination is a time improvement as shown in [17], but it comes with a
higher risk of size explosion as shown in the next subsection.
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7.2 Optimization with space control

Program transformations that are used for optimizing running time may increase the size of the
programs but also the max-space used during evaluation. The symmetric disadvantage of max-space
improving program translation is that these may increase the running time. A disadvantage also holds
for a translation that at a first sight appears to improve the space: common subexpression elimination.

Example 7.1. Common subexpression elimination may increase the max-space used in evaluations by
a huge factor: The expression is given in a Haskell-like notation, using integers, but can also be defined
in LRPgc: Let s := (if (last [1..n]) > 0 then (reverse [1..n]) else Nil, where [1..n] is the expression
that lazily generates a list [1, . . . , n]. This expression evaluates the list until the last element is found
and then evaluates the same expression again. Due to eager garbage collection, it is not hard to see that
the evaluation requires constant max-space, independent of n (assuming constant space for integers).
In LRPgc the evaluation will also generate letrec-environments, perhaps with long indirection chains.
It may seem unfair, since our space measure ignores these, but a simple change in evaluation (the
normal-order) where such indirections are shortened (see e.g. [5]) will really use constant space also
on an abstract machine.
Now let s′ = (letrec x = [1..n] in if (last x) > 0 then (reverse x) else Nil. The evaluation of
s′ behaves different to s: it first evaluates the list, and stores it in full length, and then the second
expression will be evaluated with an already evaluated list. The size required is a linear function in n.
Seen from a complexity point of view, there is no real bound on this max-space increase: The example
can be adapted using any computable function f on n by modifying the list to [1..f(n)]. We may call
this a space-leak.
There may be cases where common subexpression elimination is space-safe. we leave the development
of analyses for future research.

As a final estimation we show that the reduction (cp) used as transformation (cpT) in a T -context
increases the max-space at most by size(v) where v is the copied abstraction. This enables very useful
estimations of the effects of optimizing transformations w.r.t. their max-space-behavior at least for
the transformations mentioned in this paper, in particular for optimizations by partial evaluation.

Proposition 7.2. For a fixed expression t, the translation (T, cpT ) increases max-space of the reduc-

tion of t at most by size(v), where v is the abstraction copied by
cpT−−→.

Theorem 7.3. Let t be an expression.

1. If t is translated into t′ by an arbitrary number of space improvements that do not increase the
size of abstractions, including at most n (T, cpT )-translations, then spmax (t′) ≤ spmax (t) + n · V ,
where V is the maximum of the size of abstractions in t.

2. If t is translated into t′ by an arbitrary number of space improvements including at most n
(T, cpcxT )-translations, then spmax (t′) ≤ spmax (t) + n.

Proof. The first item follows from Proposition 7.2 and since Lemma 4.5 holds also for all subexpres-
sions, and since (T, cpT ) does not increase the size of abstractions. The second item follows from
Lemma 6.2.

Note that this result cannot be formulated in terms of improvements, since the contexts where the
transformation can be applied are restricted.

A consequence is that n applications of (T, cpT ) may increase the max-space usage by at most
n ∗ size(P0), where P0 is the program to be optimized.

Using (cp) with general contexts for the target, for example copying into an abstraction, may
induce a much worse max-space-behavior, in particular the max-space of a reduction may increase
linear with the number of reduction steps, and exponentially with the number of applications of the
(cp)-transformation.

Note that there are instances of (cp) that behave much better, for example if the copied abstraction
can be garbage collected after (cp), and also the special case of (ucp)-transformations.
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7.3 Examples for Space-Improvements with Recursive Functions

In [8], the re-bracketing of ((xs ++ ys) ++ zs) was analyzed, and the results had to use several variants
of their improvement orderings; in particular their observation of stack and heap space made the
analysis rather complex. We got easier to obtain and grasp result due to our relaxed measure of space:

Our analysis of applying the associative law to the recursively defined append function ++ shows
that ((xs ++ ys) ++ zs) ≥spmax (xs ++ (ys ++ zs)), where xs, ys, zs are variables. We know that
the two expressions are contextually equivalent. The exact analysis uses the context lemma for space
improvement and in particular the space-equivalence of (ucp) which allows to inline uniquely used
bindings. The proof itself uses an induction argument. The exact analysis shows that within reduction
contexts, the spmax -difference is exactly 4.

For the three sum-of-list-examples in [8], the analysis using our size-measure results in comparable
conclusions: The recursively defined sum of a list of numbers requires space linear in the length of
the list, and the reprogrammed sum′′ that is tail-recursive and with an accumulator requires constant
space. However, sum and sum′′ are not related by any improvement relation due to the change in the
evaluation order of the spine and elements of the argument list.

As a further comparison we could check and compare our results with those for weak improvement
in Fig. 2 in [7]: the claim on (weak-value-beta) there appears to be practically almost useless: copying
once indeed can only increase the space by a linear function in the size of the program, even copying
into an abstraction is permitted. However, repeating (weak-value-beta) n-times may increase the
program exponentially (in n) by repeated doubling. The transformation rule in [7] permits letrec x =
V [x] in C[x]→ letrec x = V [V [x]] in C[V [x]]→ letrec x = V [V [V [V [x]]]] in C[V [V [V [x]]]]. Hence,
a sequence of several weak improvement steps is not space-safe in the intuitive sense.
Our foundations allow to improve the last two let-shuffling rules of [7], which are (strong) space-
improvements w.r.t. our measure and definitions, since we have proved that (lll) is a space equivalence.

7.4 Additional Helpful Analyses

Let S be a set of closed expressions of the same (data-only) type, s ∈ S, and the full evaluation result is
eval(s). Let an evaluation sequence of s be a list L of all positions of eval(s), such that whenever p1 is a
(proper) prefix of p2, then p1 is earlier in L than p2. An evaluation of s controlled by L is the reduction
sequence for s where the lazy evaluation evaluates the tail-nodes top-down in s, starting with the first
position in L, and whenever the evaluation stops, tries the expression at the next position in L. Note
that the expression s itself may evaluate deeper, for example let xs = [1..n] in seq (length xs) xs.

Definition 7.4. Let S be as above. If there is a function f from integers to integers, such that for
all s ∈ S, and all evaluation sequences Ls of s, the evaluation of s controlled by Ls requires at most
space size(eval(s)) + f(size(eval(s))), then we say the expressions of S can be evaluated in f -space.
If f(x) is a constant c, then it can be evaluated in constant space.

For example, the set of list expressions [1..n] can be evaluated in constant space. We conclude that for
all list expressions that result in finite lists of integers, and that can be evaluated in constant space,
and are non-empty, replacing sum by sum′′ is a space-improvement.

8 Translating into Machine Language

An efficient implementation of the evaluation of programs or program expressions first translates
expressions into a machine format that can be executed by an abstract machine. There are several
machine models for call-by-need evaluation. We follow [12] in this respect, and discuss a variant of
the Sestoft machine [23] that is extended by (eager) garbage collection. This model has the advantage
that it is simple, efficient at least compared to the rules of the calculus, and makes the resource usage
of evaluation explicit. A corresponding abstract machine and an environment measuring space and
time is in [5]. In contrast to the pragmatics of occasionally turning on a complete garbage collector,
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the theoretical estimations assume that garbage is immediately collected after its generation, which
means to have an eager garbage collector.

The translation of LRP into machine expressions is a mapping onto a subset of the expressions.
The characteristic is that at several positions in expressions only variables are permitted, which can
be achieved by putting the expressions in a letrec environment. The restricted expressions are the
following: applications (s x), case expressions (case x alts), constructor applications (c x1 . . . xn), and
seq-expressions seq s x.

Definition 8.1 (Translation to machine language). [17] The translation ψ from arbitrary LR-
expressions into machine expressions is defined as follows, where y, yi are fresh variables:

ψ(x) := x
ψ(λx.s) := λx.ψ(s)
ψ(s t) := letrec y = ψ(t) in (ψ(s) y)
ψ(seq s t) := letrec y = ψ(t) in (seq ψ(s) y)
ψ(c #»s ) := letrec {yi = ψ(si)}ni=1 in (c #»yi)

ψ

(
letrec {xi = si}ni=1

in t

)
:=

(
letrec{xi = ψ(si)}ni=1

in ψ(e)

)

ψ


caseK e of

{(PatK,1 -> t1)
. . .
(PatK,|DK | -> t|DK |)}

 :=


caseK ψ(e) of

{(PatK,1 ->ψ(t1))
. . .
(PatK,|DK | ->ψ(t|DK |))}


This translation is semantically correct, since it only consists of correct transformation steps. It is

also shown in [17], that counting the number of (lbeta)-, (case)- and (seq)-steps in LRP is equivalent to
counting the corresponding steps on the abstract machine, and that the corresponding subsequences
are the same.

The space measure is much more sensible to these changes, since space usage in the com-
plete normal-order reduction is measured. For example the expression ((λy.y) 0) evaluates in LR
in one reduction step to (letrec y = 0 in y), whereas the corresponding machine expression
sme := (letrec x = λy.y in (x 0)) has the LR-evaluation: sme → letrec x = λy.y in ((λy.y) 0)
→ letrec x = λy.y in (letrec y = 0 in y).
Using LRgc, the reduction sequence is sme → letrec x = λy.y in (λy.y) 0 → (letrec y = 0 in y).
Since we only count space-usage after garbage collection (see Def. 4.3), as in [8], the small space peak
in the second expression is ignored. The error which is made by this counting method is at most the
size of the largest abstraction in the input program, which can be seen as a constant.

Theorem 8.2. If s is translated into its corresponding machine expressions sme, then s and sme are
space equivalent.

Proof. A step-wise translation into machine expressions can be done by the reverse of the transforma-
tion (ucp), which is a space equivalence by Theorem 6.3.

Reducing in LRgc and the abstract machine is slightly different: Consider the example s :=
letrec x1 = λy.y, x2 = x1, z = 0 in (x2 z) in LRgc is as follows: s → letrec x1 = λy.y, x2 =
x1, z = 0 in ((λy.y) z) → letrec z = 0 in ((λy.y) z) . . . .
A reduction sequence corresponding to the one on the abstract machine is s→ letrec x1 = λy.y, x2 =
λy.y, z = 0 in (x2 z) → letrec x1 = λy.y, x2 = λy.y, z = 0 in ((λy.y) z) → . . . .
The latter clearly requires more space. The remedy is twofold: machine programs are optimized by
removing all x = y-bindings using transformations (cpx) and (gc), and second, there is a precaution
in the abstract machine to avoid the generation of variable-variable bindings (see [5]). Note that these
variable-variable bindings may also be implicit on the stack of the machine.
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Proposition 8.3. If x = y bindings are avoided on the abstract machine, then evaluation of expres-
sions in LRP and on the abstract machine in [5] have the same spmax-requirements.

More examples and experiments on space usage that also are valid for our calculus can be found
in [5].

9 Conclusion and Future Research

We successfully derived results on the space behavior of transformations in lazy functional languages,
by defining a space measure and reasoning about space improvements.
Future work is to extend the analysis of transformations to larger and more complex transformations
in the polymorphic typed setting. A generalisation from copy target positions and application context
from top contexts to surface contexts is also of value for several transformations. To develop methods
and justifications for space-improvements involving recursive definitions is also left for future work.
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Appendix

Notation: In diagrams we label LRPgc-reductions with n, and (if necessary) non-LRPgc-reductions
with i, and reductions in top-contexts with T . The straight arrows are given reductions/transformations
and the dashed ones are implied existing ones.

A Equivalence of LRP and LRPgc

We will use complete sets of forking and commuting diagrams between transformations and the normal-
order reduction (see [21] for more explanations). These cover all forms of overlaps and come with

joining reductions and transformations. A forking is the pattern
n,a←−− · trans−−−→, whereas commuting is

the pattern
trans−−−→ · n,a−−→.

Lemma A.1. The forking diagrams between (T,gc)-reductions and LRPgc-reductions are the follow-
ing:

s
n,a
��

T,gc // t
n,a
��

s′
T,gc,∗

// t′

a ∈ {gc, lll}

s
n,gc
��

T,gc // t

s′
T,gc,∗

@@

s
n,gc �� T,gc

��
s′

s

n,a

��

T,gc // t
LRPgc,gc��

t1
n,a��

s′
T,gc,∗

// t′

a 6∈ {gc, lll}

Proof. The diagrams for a 6= gc can be derived from the appendix in [21]. For s
LRPgc,gc−−−−−−→ s′, the

bottom reduction may consist of 0, 1, 2 gc-reductions. A typical example for the latter case is:

letrec x1 = True,
x2 = True in

letrec y1 = x2 in False

n,gc

��

T,gc // letrec x1 = True,
x2 = True in False

n,gc

��letrec x2 = True in

letrec y1 = x2 in False T,gc,∗
// False

Lemma A.2. Let s
T,gc−−→ t, and s ↓. If s has an LRP-reduction with n LCSC -reductions, then this

also holds for t.

Proof. Let s
LRPgc,∗−−−−−→ s′ be an LRPgc-reduction such that s′ is a WHNF, and let s

T,gc−−→ t. We show
that claim by induction on (i) the number if LCSC -reductions of s to a WHNF, (ii) on the µlll-measure
and (iii) on the syntactical size.

– If s
LRPgc,a−−−−−→ s′ where a is a LCSC -reduction, then we can apply the induction hypothesis to

s′, and the reduction sequence to t′, and obtain using diagram (1) and (4) that the number of
LCSC -reductions of s′ is the same as for s.

– If s
LRPgc,lll−−−−−−→ s′, then we can apply the induction hypothesis to s′, and thus also to t′. From

diagrams 1 and 2, we obtain that the number of LCSC -reductions is the same for s, t.

– If s
LRPgc,gc−−−−−−→ s′, then we can apply the induction hypothesis to s′. For diagram 1, the reasoning is

as above. For diagram 2, we can apply the induction hypothesis to s′ and t and obtain the claim.
For diagram 3, the claim is obvious. ut
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Proposition A.3. The calculus LRP is convergence-equivalent to LRPgc. I.e. for all expressions s:
s↓ ⇐⇒ s↓LRPgc.

Proof. Let s ↓LRPgc. Then it is sufficient to argue as for LR by induction on the number of normal-

order reductions: If s is a WHNF, then the claim is trivial. If s
a,nogc−−−−→ s1, then there are two cases: (i)

s
LRPgc,a−−−−−→ s1 with a 6= gc and we can apply the induction hypothesis to obtain s ↓. (ii) s

gc−→ s1. By
induction we obtain s1 ↓, and since (gc) is correct in LR, we also obtain s ↓.

For the reversed implication, let s be an expression with s ↓. We have to construct a LRPgc-
reduction to a WHNF. The induction is on the number of LCSC -reductions of s, then on the measure
µlll, and then on the size of s seen as syntax tree. The decrease of the measure µlll for (lll)- and for
(gc)-reductions is in Lemma ??.

1. s is a WHNF. Then there is a sequence s
LRPgc,gc,∗−−−−−−−→ s′, where s′ is a LRPgc-WHNF.

2. s
no−→ s1, and the reduction is also a LRPgc-reduction. Then obviously s1↓. If the reduction is

a LCSC -reduction, then we can apply the induction hypothesis to s1. If the reduction is a (lll)-
reduction, then the expression s1 is smaller w.r.t. µlll, and we can apply the induction hypothesis
to s1.

3. The third case is s
LRPgc,gc−−−−−−→ s1. Then either µlll(s) > µlll(s1), or µlll(s) = µlll(s1), and the

syntactical size is strictly decreased, and s1↓ by Lemmas ?? and A.2. Then we can apply the
induction hypothesis and obtain a LRPgc-reduction of s to a WHNF. ut

Corollary A.4. Contextual equivalence and preorder coincide for LRP and LRPgc.

B space properties of (cpT) and its forking diagrams

Lemma B.1. A complete set of forking diagrams for (cpT) in T -contexts is in Fig 6.

s
T,cpT //

n,a

��

s′

n,a
��

s1
T,cpT

// s′1

s
T,cpT //

n,a

��

s′

n,a

zz
s1

s
T,cpT //

n,cp

��

s′

n,gc

��

s1

n,gc

��
s2

s

n,cp
�� T,cpT
��

s′

s
T,cpT //

n,a

��

T,ucp ((

s′

n,gc
��
s′2

n,a
��

s1
T,ucp

// s′1

s
T,cpT //

n,gc

��

T,ucp

$$

s′

gc

zz
n,gc

��

s′′2

gc ##
s1

T,ucp
// s′1

s
T,cpT //

n,a

��

T,ucp

&&

s′

n,gc
��

s1

n,gc

��

s′1

n,a
ww

s2

a ∈ {seq, case}

Fig. 6. Forking diagrams for (cpT) in T -contexts

Proof. We have to take into account that (cpT) may trigger a garbage collection, but only in the case
that corresponds to an (ucp)-transformation. The case analysis is then straightforward.

Proposition B.2. The translation (T, cpT ) increases max-space at most by size(v), where v is the
copied abstraction.
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Proof. of Proposition 7.2:

Let s
T,cpT−−−→ s′, where v is the copied abstraction. We use the diagrams in Lemma B.1 (i.e. Fig. 6) and

prove the claim by induction on the following measure of s: (i) the number of LCSC -reductions µ1(s),
(ii) the measure µlll(s), and (iii) the measure synsize(s).

If s is a LRPgc-WHNF, then s′ is also a LRPgc-WHNF, and the claim holds, since size(s) =
size(v) = size(s′). Now s has a LRPgc-reduction, and we check each applicable diagram in
turn. If diagram 1 applies, then the induction hypothesis applies to s1, and size(s) + size(v) =
size(s′). This implies spmax (s′) ≤ spmax (s) + size(v). If diagram 2, 3 or 4 applies, then the
computation is similar as above but easier. If diagram 5 applies, then spmax (s) = spmax (s′)
and spmax (s1) = spmax (s′1) by Theorem 6.3. We have spmax (s) = max(size(s), spmax (s1)) and
spmax (s′) = max(size(s′), size(s′2), spmax (s1)). Hence the claim holds in this case. Reasoning for
diagram 6 is almost the same. If diagram 7 applies, then spmax (s) = max(size(s), spmax (s1)) and
spmax (s′) = max(size(s′), size(s′1), spmax (s2)). Hence the claim holds. ut

C Proof of the (ucp)-Diagrams

Lemma C.1. The diagrams in Fig. 5 are a complete set of forkings diagrams for (T, ucp).

Proof. The diagrams are adapted from [21]. There are two adaptations: (i) in diagram 3 the case
letrec x = λy.r, E in R[x]→ letrec E in R[λy.r] with an application of (cp) followed by a (gc) is
covered; (ii) in diagram 7, also an intermediate (gc) may be triggered: a prototypical case is:

letrec x = (letrec E1 in c), E2 in (letrec E3 in x)
ucp−−→ letrec E2 in (letrec E3 in

(letrec E1 in c))
n,llet−−−→ letrec E2, E3 in (letrec E1 in c)), leading to letrec E′2, E

′
3, E

′
1 in c)),

and the left sequence:
llet−−→ letrec x = c, E1, E2 in (letrec E3 in x)

gc−→ letrec x =
c, E1, E

′
2 in (letrec E3 in x) leading to (letrec x = c, E′2, E

′
3, E

′
1 in x).

We explicitly mention the cases for diagrams 4, 5 and 6:
(4): letrec x = a,E in seq (c x) b

ucp−−→ letrec E in seq (c x) b
n,seq−−−→ letrec E in b.

The left sequence is:
n,seq−−−→ letrec x = a,E in in b

n,gc−−→ letrec E in b.
(5): letrec x = c ri, E in case x (c yi -> a)

ucp−−→ letrec E in case (c ri) (c yi -> a)
n,case−−−−→

letrec E in letrec yi = ri in a). The left sequence is:
n,case−−−−→ .

n,gc−−→ letrec zi = ri, E in letrec yi = zi in a)
cpx∨gc,∗−−−−−→ (letrec zi = ri, E in a[zi/yi]).

(6): letrec x = c ri, E in seq x a
ucp−−→ letrec E in seq (c ri) a

n,case−−−−→ (letrec E in a). The

left sequence is:
n,case−−−−→ .

n,gc−−→ letrec E in a).

D Proof of the context lemma for Space Equivalence

Proof. of Lemma 4.12.
Let M be a multi-context. We prove the more general claim that if for all i: size(si) = size(ti),
FV (si) = FV (ti), si ∼R,spmax ti, and M [s1, . . . , sn] and M [t1, . . . , tn] are closed and M [s1, . . . , sn]↓,
then spmax (M [s1, . . . , sn]) = spmax (M [t1, . . . , tn]).

By the assumption that si ∼c ti, we have M [s1, . . . , sn] ∼c M [t1, . . . , tn] and thus
M [s1, . . . , sn]↓ ⇐⇒ M [t1, . . . , tn]↓. The induction proof is (i) on the number of LRPgc-reduction
steps of M [t1, . . . , tn], and as a second parameter on the number of holes of M .

We distinguish the following cases:
(I) The LRPgc-reduction of M [t1, . . . , tn] is a (gc). If M is the empty context, then we can apply

the assumption s1 ∼R,spmax t1, which shows spmax (s1) = spmax (t1).
Now we can assume that M is not empty, hence it is a context starting with a letrec, and in
M [t1, . . . , tn] the reduction (gc) removes a subset of the bindings in the top letrec, resulting in
M ′[t′1, . . . , t

′
k]. Since FV (si) = FV (ti), the same set of bindings (of the same size) in the top letrec



Space Improvements and Equivalences in a Functional Core Language 23

can be removed in M [s1, . . . , sn] by (gc) resulting in M ′[s′1, . . . , s
′
k], where the pairs (s′i, t

′
i) are re-

named versions of pairs (sj , tj). If the reduction is a (gc), then it is either a (gc2) on both sides, and
hence LRPgc, or it is a (gc1) and the same set of bindings with LRPgc is removed on both sides.

If the reduction is a (gc2) or M [s1, . . . , sn]
LRPgc,gc1−−−−−−−→ M ′[s′1, . . . , s

′
k], then by induction we obtain

spmax (M ′[s′1, . . . , s
′
k]) = spmax (M ′[t′1, . . . , t

′
k]), which implies the claim.

(II) If no hole of M is in a reduction context and the reduction is not a (gc), then there are two
cases: (i) M [t1, . . . , tn] is a WHNF. Then also M [s1, . . . , sn] is a WHNF, and by the assumption, we
obtain size(M [s1, . . . , sn]) = size(M [t1, . . . , tn]).

(ii) The reduction is M [t1, . . . , tn]
LRPgc,a−−−−−→ M ′[t′1, . . . , t

′
n′ ], and M [s1, . . . , sn]

LRPgc,a−−−−−→ M ′[s′1, . . . , s
′
n′ ]

with a 6= gc, and the pairs (s′i, t
′
i) are renamed versions of pairs (sj , tj).

This shows spmax (M ′[s′1, . . . , s
′
n′ ]) = spmax (M ′[t′1, . . . , t

′
n′ ]) by induction. By assumption, the

equation size(M [s1, . . . , sn]) = size(M [t1, . . . , tn]), holds, hence by computing the maximum, we
obtain spmax (M [s1, . . . , sn]) = spmax (M [t1, . . . , tn]).

(III) some tj in M [t1, . . . , tn] is in a reduction position, and there is no LRPgc-gc-reduction of
M [t1, . . . , tn]. Then there is one hole, say i, of M that is in a reduction position.

With M ′ = M [·, . . . , ·, ti, ·, . . . , ·], we can apply the induction hypothesis, since the number of holes
of M ′ is strictly smaller than the number of holes of M , and the number of normal-order-gc reduction
steps of M [t1, . . . , tn] is the same as of M ′[t1, . . . , ti−1, ti+1, . . . , tn], and obtain:
spmax (M [s1, . . . , si−1, ti, si+1, . . . , sn]) = spmax (M [t1, . . . , ti−1, ti, ti+1, . . . , tn]). Also by the as-
sumption: spmax (M [s1, . . . , si−1, si, si+1, . . . , sn]) = spmax (M [s1, . . . , si−1, ti, si+1, . . . , sn]) since
M [s1, . . . , si−1, ·, si+1, . . . , sn]) is a reduction context. Hence spmax (M [s1, . . . , si−1, si, . . . , sn]) =
spmax (M [t1, . . . , ti−1, ti, ti+1, . . . , tn]). ut

E (gc) is a Space-Improvement

We prove a part of Theorem 5.4:

Proposition E.1. The reduction (gc) is a maxspace improvement.

Proof. Let s0
gc−→ t0 in the empty context. We show that the context lemma for max-space can be

applied: Let R be a reduction context. Then we consider the reductions of R[s0] and R[t0]. Obviously
size(R[s0]) ≥ size(R[t0]). The diagrams in Lemma A.1 can be applied to show that spmax (R[s0]) ≥
spmax (R[t0]) by induction on the number of LRPgc-reductions.

Let s = R[s0] and t = R[t0]. Then s
T,gc−−→ t. The conditions size(s0) ≥ size(t0) and FV (s0) ⊇

FV (t0) are satisfied. We show that spmax (s) ≥ spmax (t) by induction on the following measure: (i)
the number of LCSC -reductions, (ii) the measure µlll(), and (iii) the measure synsize(s).

We make a case analysis along the diagrams in Lemma A.1.

1. If s is a gcWHNF, then t, since s
gc−→ t, and spmax (s) ≥ spmax (t) holds.

2. If s
LRPgc,gc−−−−−−→ s′ and s

gc−→ t are the same reductions (i.e., the situation of diagram 3), then clearly
spmax (s) ≥ spmax (s′) holds.

3. If s
LRPgc,a−−−−−→ s′ for a ∈ LCSC , then for diagram 1 we can apply the induction hypothesis along the

chain s′
T,gc,∗−−−−→ t′ using Lemma A.2, and obtain spmax (s′) ≥ spmax (t′). Since size(s) ≥ size(t),

we obtain spmax (s) ≥ spmax (t) in this case. For diagram 4, we also get spmax (s′) ≥ spmax (t′),
and also size(s) ≥ size(t) ≥ size(t1) and thus the claim holds.
(Note that spmax (s) ≥ spmax (s′) may be wrong for (cp)-reductions.)

4. If s
LRPgc,lll−−−−−−→ s′, then diagrams 1,2 are relevant. For diagram 1: Since the measure µlll gets strictly

smaller, we can apply the induction hypothesis to s′, and since gc-reductions keeps the LCSC -
number and do not increase the µlll-measure, the induction hypothesis can be applied to the
reduction chain and we obtain spmax (s′) ≥ spmax (t′). Also, size(s) ≥ size(t), and the claim
spmax (s) ≥ spmax (t) is proved. For diagram 2: the reasoning is similar, but a bit simpler.
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5. If s
LRPgc,gc−−−−−−→ s′, then diagrams 1,2,3 are relevant. We can apply the induction hypothesis, since

the LCSC - number is not changed in the diagram, the µlll-measure decreases along the reductions
in the diagram, and also the syntactical size is strictly decreased from s to s′. Hence we can apply
the induction hypothesis, to s′, and obtain spmax (s′) ≥ spmax (t′). Then it is easy to see that
spmax (s) ≥ spmax (t).

In case of diagram 2, the reasoning is similar but simpler

An application of the context lemma 4.8 now shows the claim.

F (lll) is a space improvement

F.1 Forking Diagrams of lll and justification

First of all, a complete set of forking diagrams for (lll) in the calculus LR is of the form

n,lbeta←−−−− . lll−→ ;
lll−→ .

n,lbeta←−−−−
n,cp←−− . lll−→ ;

lll−→ .
n,cp←−−

n,lll←−− . lll−→ ;
lll−→ .

n,lll←−−
n,lll←−− . lll−→ ; .
n,lll←−− . lll−→ ;

lll−→ .
lll−→ .

n,lll←−−
n,case←−−−− . lll−→ ;

lll−→ .
n,case←−−−−

n,case←−−−− . lll−→ ;
n,case←−−−−

n,seq←−−− . lll−→ ;
lll−→ .

n,seq←−−−
n,seq←−−− . lll−→ ;

n,seq←−−−
Answer.

lll−→; Answer

The double
lll−→ occurs in the case (letrec E1 in (letrec E2 in r)) r

′ lll−→ (letrec E1;E2 in r) r
′.

Lemma F.1. An (llet)-transformation may enable a (LRPgc,gc1) but not a (LRPgc,gc2)

Proof. The only situation where this occurs occurs when a letrec-environment is shifted to the top,
and if the shifted letrec environment contains garbage.

Lemma F.2. A complete set of forking diagrams for (lll) w.r.t. space improvement can be summarized
in three diagrams where we label non-LRPgc reductions with i and label the reductions in top contexts
with T .

s
i,T,lll //

n,a

��

s′

n,gc,0∨1��
a 6= gc s′1

n,a,0∨1��
s′2
n,gc,0∨1��

s3
T,lll,∗

// s′′3(i,T )∨n,gc,0∨1
// s′3
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s
(i,T ),lll //

n,gc
��

s′

n,gc
��

s1
(i,T )∨n,lll,0∨1

// s′′1(i,T )∨n,gc,0∨1
// s′1

s(WHNF )
(i,T ),lll // s′

n,gc,0∨1��
s′1(WHNF )

F.2 Proof that (lll)-transformations are space improvements

Proof. We will apply the context lemma for top-contexts (see Proposition 4.8 and 4.10). Therefore we
will employ forking diagrams for (lll) in top-contexts from Lemma F.2. Let s be a closed expression with

s↓LRPgc and s
T,lll−−→ s′. We show by induction that for all top-contexts T , we have spmax (T [s′]) ≤

spmax (T [s]). The measure for induction is (µ1, µ2, µ3), ordered lexicographically, where µ1 is the
number of LRPgc,LCSC -reductions of s to a WHNF, and µ2 is µlll and µ3 is the syntactical size.

The first two assumptions of the context lemma are satisfied, i.e. size(s) ≥ size(s′) and FV (s) ⊇
FV (s′), which can be easily checked.
In the following we use invariances and properties:
(i) Proposition E.1 shows that (gc) is a space improvement, (ii) Lemma A.2 shows that (gc) leaves µ1
invariant) and (iii) in [21], Theorem 2.14 it is proved that (lll) does not change µ1.
We now go through the cases according to the diagrams.

– If s is a gcWHNF, then either s is a gcWHNF or one (LRPgc,gc) is sufficient to turn it into a
gcWHNF. In both cases, spmax (s) ≥ spmax (s′) or spmax (s) ≥ spmax (s′1).

– If a ∈ {(lbeta), (case), (seq)}, then we can use induction and the above properties. The induction
hypothesis is applicable to s3, since µ1(s) > µ1(s3) ≥ µ1(s′′3) = µ1(s

′
3). This shows that s′3 improves

s′′3 which in turn improves s3. We have size(s) ≥ size(s3) as well as size(s) ≥ size(s′) ≥
size(s′1) ≥ size(s′2) ≥ size(s′3). Hence also spmax (s) ≥ spmax (s′).

– If a = (cp), then we can also use the property. Again, the induction hypothesis can be applied to
show that s′3 improves s′′3 which in turn improves s3.
We have to take into account that (cp) increases the size. Looking at the diagrams and the case
analyses, we see that size(s) ≥ size(s′1), since the (gc) of s removes at least the same bindings as
the (gc) from s′. Since the cp-reductions copy the same expression, we have size(s3) ≥ size(s′2).
Thus we have shown that also in this case spmax (s) ≥ spmax (s′).

– If a = (lll), then the measure of s3, s
′′
3, s
′
3 is strictly smaller than s, since lll does not change µ1,

but strictly decreases µ2. By induction s′′3 space-improves s3, and s′3 improves s′′3. Since (lll) does
not increase the size, we obtain spmax (s) ≥ spmax (s′) also in this case.

– If the first LRPgc-reduction is a (gc), then the second diagram holds, and we can apply induction,
since (gc) does not increase µ1 nor µ2, but strictly decreases the syntactical size.

Finally, we can apply the context lemma 4.8 and obtain the claim that s′ max-space-improves s.

G Justification that (seq) is a space-improvement

The first subsection proves a set of forking diagrams and the space improvement property, and relies
on subsection G.2, where a detailed analysis of a number of cases is made.

G.1 (seq) is a Space Improvement

Lemma G.1. The forking diagrams for seq w.r.t. space improvement can be summarized in three
diagrams where we label non-LRPgc reductions with i and label the reductions in top contexts with T ,
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s
i,T,seq //

n,a

��

s′

n,gc,0∨1��
a 6= gc s′1

n,a,0∨1��
s′2
n,gc,0∨1��

s3
(i,T )∨n,seq,0∨1

// s′′3 (i,T )∨n,gc,0∨1
// s′3

s
(i,T ),seq //

n,gc2

��

s′

n,gc2
��

s1
(i,T )∨n,seq,0∨1

// s′1

s
(i,T ),seq //

n,gc1
��

s′

n,gc��
s1

(i,T )∨n,seq,0∨1
// s′′1 (i,T )∨n,gc,0∨1

// s′1

Proof. See subsection G.2 for the detailed cases.

We prove a part of Theorem 5.4:

Proposition G.2. The seq-reduction is a space improvement.

Proof. This is already proved in the case of a (seq-c) in Theorem 5.3.
For the general case of a seq-reduction we will apply the context lemma for top-contexts (see Propo-
sition 4.8 and Proposition 4.10). Therefore we will employ forking diagrams for seq in top-contexts

from Lemma G.1. Let s be a closed expression with s↓LRPgc and s
T,seq−−−→ s′. We show by induc-

tion on the following measure that s′ ≤spmax s by showing that for all top-contexts T , we have
spmax (T [s′]) ≤ spmax (T [s]). The measure for induction is (µ1, µ2, µ3), ordered lexicographically,
where µ1 is the number of LRPgc,LCSC -reductions of s to a WHNF, and µ2 is µlll and µ3 is the
syntactical size.

The first two assumptions of the context lemma are satisfied, i.e. size(s) ≥ size(s′) and FV (s) ⊇
FV (s′), which can be easily checked.
In the following we use the following invariances and properties:
(i) Proposition E.1 shows that (gc) is a space improvement, (ii) Lemma A.2 shows that (gc) leaves µ1
invariant) and (iii) in [21] it is proved that (seq) does not increase µ1.
We now go through the cases for the (summary) diagram.

– If s is a gcWHNF, then s′ is also a gcWHNF and so size(s) = spmax (s) ≥ spmax (s′) = size(s′).

– s
T,seq−−−→ s′ is an LRPgc-reduction step, then spmax (s) = spmax (s′) by definition.

– If a ∈ {(lbeta), (case), (seq)}, and the LRPgc-reduction is different from the transformation, then
we can use induction and the above properties. We are in the situation of diagram 1. The induction
hypothesis is applicable to s3, since µ1(s) > µ1(s3) ≥ µ1(s′′3) = µ1(s

′
3). This shows that s′3 improves

s′′3 which in turn improves s3. We have size(s) ≥ size(s3) as well as size(s) ≥ size(s′) ≥
size(s′1) ≥ size(s′2) ≥ size(s′3). Hence also spmax (s) ≥ spmax (s′).

– If a = (cp), then we can also use the property. Again, the induction hypothesis can be applied to
show that s′3 improves s′′3 which in turn improves s3.
We have to take into account that (cp) increases the size. Looking at the diagrams and the case
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analyses, we see that size(s) ≥ size(s′1), since the (gc) of s removes at least the same bindings as
the (gc) from s′. Since the cp-reductions copy the same expression, we have size(s3) ≥ size(s′2).
Thus we have shown that also in this case spmax (s) ≥ spmax (s′).

– If a = (lll), then by induction s′′3 space-improves s3, and s′3 improves s′′3. Since (lll) does not
increase the size, we obtain spmax (s) ≥ spmax (s′) also in this case.

– If the first LRPgc-reduction step is a (gc2), then the second diagram holds, and we can apply
induction, since (gc) does not increase µ1 nor µ2, but strictly decreases the syntactical size.

– If the first LRPgc-reduction step is a (gc1), then the third diagram holds, and we can apply
induction, since (gc) does not increase µ1 nor µ2, but strictly decreases the syntactical size. Then
the size decreases along the reductions, and we can reason as before.

– If the first LRPgc-reduction step is a (seqgc), then the fourth diagram is active. Since size(s) ≥
size(s′) and spmax (s′) ≥ spmax (s1), the claim spmax (s) ≥ spmax (s′) holds.

Finally, we can apply the context lemma 4.8 and obtain the claim that s′ max-space-improves s.

G.2 A Detailed Justification of Forking Diagrams of seq

We justify the complete set of forking diagrams for seq w.r.t. space improvement.

Lemma G.3. The forking diagrams for seq w.r.t. space improvement can be summarized in the dia-
grams in Lemma G.1. where we write n for LRPgc and i for non-LRPgc reductions, see diagrams in
Lemma G.1.

Proof. We check all possibilities of s1
LRPgc,a←−−−−− s

T,seq−−−→ s′ for closed expressions s, where the seq-
reduction is not a LRPgc-reduction.

– The expression s is not a letrec-expression. Then closing the reduction is represented by a square

diagram. The reason is that s does not admit a
LRPgc,gc−−−−−−→-reduction.

s
i,seq //

n,a

��

s′

n,a
��

s1 i,seq
// s′1

In the following we can assume that s is a letrec-expression.

– s
LRPgc,a−−−−−→ s1, i.e. the first reduction is not a garbage collection, and a is an (lbeta), (seq), (cp) or

(case)-reduction.
Then s = letrec env1; env2 in r, where env1 is garbage after the seq-reduction. If the seq-

reduction does not enable a
LRPgc,gc−−−−−−→-reduction, then the following two diagrams are sufficient.

s
i,seq //

n,a

��

s′

n,a
��

s1 i,seq
// s′1

s
i,seq //

n,a

��

s′

n,a

��

s1

n,seq

��
s2

If seq enables a
LRPgc,gc−−−−−−→-reduction, then the diagram is:
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s
i,seq //

n,a

��

s′

n,gc
��
s′1

n,a

��
s1 i,seq

// · gc
// s′2

An example is

letrec x1 = 0;x2 = seq x1 0 in (λx.x) x2
n,lbeta−−−−→ letrec x1 = 0;x2 = seq x1 0 in (letrec x = x2in x)

i,seq−−−→ letrec x1 = 0;x2 = 0 in (letrec x = x2 in x)
gc−→ letrec x2 = 0 in (letrec x = x2 in x)

i,seq−−−→ letrec x1 = 0;x2 = 0 in (λx.x) x2
n,gc−−−→ letrec x2 = 0 in (λx.x) x2

n,lbeta−−−−→ letrec x2 = 0 in (letrec x = x2 in x)

– s
LRPgc,gc2−−−−−−→ s′. Then the diagram for reductions is as follows:

s
i,seq //

n,gc2

��

s′

n,gc2
��

s1 i,seq
// s′1

s
i,seq //

n,gc2

��

s′

n,gc,∗

��

s1

n,seq

��
s2

An example is

letrec x1 = 0 in C[seq x2 0]
n,gc2−−−→ C[seq x2 0]

i,seq−−−→ C[0]; and · i,seq−−−→ letrec x1 =

0 in C[0]
n,gc2−−−→ C[0]

!! In the following cases s is a letrec-expression, and the first LRPgc-reduction of s is not a (gc2).
– If a is an (lbeta), (seq), (cp) or (case)-reduction,

and the first LRPgc-reduction is a gc, seq enables a (gc), the a-reduction does not enable a gc,
then the diagram is:

s
i,seq //

n,gc

��

s′

n,gc
��

s1

n,a

��

s′1

n,a

��
s2 i,seq

// · gc
// s′2

An example is
letrec x0 = 0;x1 = 0;x2 = seq x1 0 in (λx.x) x2

n,gc−−−→ letrec x1 = 0;x2 = seq x1 0 in (λx.x) x2
n,lbeta−−−−→ letrec x1 = 0;x2 = seq x1 0 in

(letrec x = x2in x)
i,seq−−−→ letrec x1 = 0;x2 = 0 in (letrec x = x2 in x)

gc−→ letrec x2 = 0 in (letrec x = x2 in x)

i,seq−−−→ letrec x0 = 0;x1 = 0;x2 = 0 in (λx.x) x2
n,gc−−−→ letrec x2 = 0 in (λx.x) x2

n,lbeta−−−−→ letrec x2 = 0 in (letrec x = x2 in x)
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– If a is an (lbeta), (seq) or (case)-reduction.
and the first LRPgc-reduction is a gc, seq enables a (gc), the a-reduction enables a gc (only a seq
or case are possible), then the diagram is:

s
i,seq //

n,gc

��

s′

n,gc
��

s1

n,a

��

s′1

n,a

��
s′2

n,gc

��
s3 i,seq

// · gc
// s′3

An example is
letrec x0 = 0;x1 = 0;x2 = seq x1 0 ;x3 = 0

in (seq x3 x2)
n,gc−−−→ letrec x1 = 0;x2 = seq x1 0;x3 = 0

in (seq x3 x2)
n,seq−−−→ letrec x1 = 0;x2 = seq x1 0 ;x3 = 0 in x2
i,seq−−−→ letrec x1 = 0;x2 = 0;x3 = 0 in x2

gc−→ letrec x2 = 0 in x2

i,seq−−−→ letrec x0 = 0;x1 = 0;x2 = 0 ;x3 = 0 in (seq x3 x2)
n,gc−−−→ letrec x2 = 0 ;x3 = 0 in (seq x3 x2)

n,seq−−−→ letrec x2 = 0 ;x3 = 0 in x2
n,gc−−−→ letrec x2 = 0 ; in x2

– If a is a (llet)-reduction, the first LRPgc-reduction step is (llet), and seq may enable a gc. Then
the diagram is:

s
i,seq //

n,llet

��

s′

n,gc
��
s′1

n,llet
��
s′2

n,gc

��
s3 i,seq

// · gc
// s′3

An example is
letrec x1 = 0;x2 = seq x1 0 ; in letrec x3 = 0;x4 = 0

in x3 x2
n,llet−−−→ letrec x1 = 0;x2 = seq x1 0 ;x3 = 0;x4 = 0 in x3 x2
i,seq−−−→ letrec x1 = 0;x2 = 0;x3 = 0;x4 = 0 in x3 x2

gc−→ letrec x2 = 0;x3 = 0 in x3 x2

i,seq−−−→ letrec x1 = 0;x2 = 0 ; in letrec x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2

n,llet−−−→ letrec x2 = 0 ;x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x2 = 0 ;x3 = 0in x3 x2

– If a is a (llet)-reduction, the first LRPgc-reduction step is (gc), and seq may enable a gc.
then the diagram is:
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s
i,seq //

n,gc

��

s′

n,gc
��

s1

n,llet

��

s′1

n,llet
��
s′2

n,gc

��
s3 i,seq

// · gc
// s′3

An example is

letrec x0 = 0;x1 = 0;x2 = seq x1 0 in

letrec x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x1 = 0;x2 = seq x1 0 in

letrec x3 = 0;x4 = 0 in x3 x2
n,llet−−−→ letrec x1 = 0;x2 = seq x1 0 ;x3 = 0;x4 = 0 in x3 x2
i,seq−−−→ letrec x1 = 0;x2 = 0;x3 = 0;x4 = 0 in x3 x2

gc−→ letrec x2 = 0;x3 = 0 in x3 x2

i,seq−−−→ letrec x0 = 0;x1 = 0;x2 = 0 in

letrec x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2

n,llet−−−→ letrec x2 = 0 ;x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x2 = 0 ;x3 = 0in x3 x2

– If in the example the binding x4 = 0 is missing, then the reduction s′2
LRPgc,gc−−−−−−→ s′3 can be omitted.

Thus the summary of the last two diagrams is

s
i,seq //

(n,gc)0∨1

��

s′

n,gc
��

s1

n,llet

��

s′1

n,llet
��
s′2

(n,gc)0∨1

��
s3 i,seq

// · gc
// s′3

– If a is a (llet)-reduction, the first LRPgc-reduction step is (gc), and seq may enable a gc, then the
diagram is:

s
i,seq //

n,gc

��

s′

n,gc

��

s1

n,llet

��
s2 i,seq

// · gc
// s′2
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letrec x0 = 0; x1 = 0 in letrec x2 = seq x1 0 in letrec x3 = 0;x4 = 0 in x3 x2
n,gc−−−→ letrec x1 = 0 in letrec x2 = seq x1 0 in letrec x3 = 0;x4 = 0 in x3 x2

n,llet−−−→ letrec x1 = 0; x2 = seq x1 0 ; in letrec x3 = 0;x4 = 0 in x3 x2
i,seq−−−→ letrec x1 = 0; x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2

gc−→ letrec x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2

i,seq−−−→ letrec x0 = 0; x1 = 0 in letrec x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2
n,gc2−−−→ letrec x2 = 0 in letrec x3 = 0;x4 = 0 in x3 x2

letrec x = 0 in (letrec y = seq x 0 in (letrec v = 0 in ((λz.z) 0)))
n,llet−in−−−−−−→ letrec x = 0, y = seq x 0 in (letrec v = 0 in ((λz.z) 0))

i,seq−−−→ letrec x = 0, y = 0 in (letrec v = 0 in ((λz.z) 0))
gc2−−→ letrec v = 0 in ((λz.z) 0)

i,seq−−−→ letrec x = 0 in (letrec y = 0 in (letrec v = 0 in ((λz.z) 0)))
n,gc2−−−→ letrec y = 0 in (letrec v = 0 in ((λz.z) 0))
n,gc2−−−→ letrec v = 0 in ((λz.z) 0)

Fig. 7. Examples for seq-forking diagrams

s
i,seq //

n,llet

��

s′

n,gc
��
s′1

n,gc,0∨1
��

s2 i,seq
// ·

gc
// s′2

s
i,seq //

n,gc

��

s′

n,gc
��

s1

n,llet

��

s′1

n,gc,0∨1
��

s2 i,seq
// ·

gc
// s′2

Examples for these diagrams are in Fig. 7.

H Space Improvement Lemmas for case

In order to show that the case-rule as a transformation is also a space improvement, we use the
variant (case*) (see Fig. 4),

Remark H.1. It follows from [21] that case*-transformation are correct program transformations, since
the difference to a (case)-transformation consists of applications of (gc) and (cpx). I.e. it is easy to see

that s
case−−→ s1, and s

case∗−−−→ s∗1, then s1
(gc)∨(cpx),∗−−−−−−−→ s∗1.

Lemma H.2. A complete set forking diagrams for
T,case∗−−−−→ with LRPgc-reductions is in Fig. 8.

Proof. By inspecting all the cases. Note that the diagrams for (case*) are very similar to the ones for
(seq), since the effects of the overlaps are comparable.
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s
i,T,case∗ //

n,a

��

s′

n,gc,0∨1
��

a 6= gc s′1

n,a,0∨1
��
s′2

n,gc,0∨1
��

s3
(i,T )∨n,case∗,0∨1

// s′′3
(i,T )∨n,gc,0∨1

// s′3

s
(i,T ),case∗ //

n,gc2

��

s′

n,gc2

��
s1

(i,T )∨n,case∗,0∨1
// s′1

s
(i,T ),case∗ //

n,gc1

��

s′

n,gc

��
s1

(i,T )∨n,case∗,0∨1
// s′′1

(i,T )∨n,gc,0∨1
// s′1

Fig. 8. A complete set forking diagrams for
T,case∗−−−−−→ with LRPgc-reductions

Proposition H.3. The transformation (case*) is a space improvement.

Proof. The proof is almost the same as the proof for (seq) in the proof of Theorem 5.4, where seq has
to be replaced by case*. The only new argument is that (case*) also decreases the size of expressions.

I Space Equivalences xch and abs

Proposition I.1 (Proof of Proposition 6.1). (abs) and (xch) are space equivalences

Proof. The transformations (abs) and (xch) do not change the LRPgc-WHNF property.
A complete set of forking diagrams for (xch) and (abs), respectively, in top contexts is:

·T,xch//
n,a
��

·
n,a
��

·
T,xch
// ·

·T,xch//
n,a
��

·
n,a��

·

s
T,abs//

n,a

��

s′

n,a

��
s1

T,abs// s′1

s· T,abs//

n,a

��

s′

n,a
��

s1

s· T,abs //

n,case

��

s′

n,case

��
s1 s′1

//
T,cpx∨gc=,∗

These diagrams can be derived for example from the more general diagrams in [21]. These trans-
formations keep the number of LCSC-reductions.

The same proof technique as in Proposition 5.6 will be used, i.e. the context lemma for space
equivalence and induction proofs with the same measure. First the space equivalence property of
(xch) is proved using the same methods as above and the context lemma for max-space improvement.
The next part is the space equivalence property of (abs), which follows from space equivalence of (abs)
and (cpx) by Proposition 5.6 and 5.9.

J Proof for the Transformation (caseId)

Lemma J.1. A complete set of forking diagrams for the correct instances of the transformation
(caseId) with LRPgc-reductions is in Fig. 9. This implies that whenever the starting (caseId) trans-
formation is correct, then the other (caseId)-transformation in the diagrams is also correct.

Proof. These are adaptations from [18].

Proof of Proposition 6.6:
Correct instances of the (caseId)-transformation are space-improvements.
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s
T,caseId//

n,lcase
��

s′

s1
T,caseId

99

s
T,caseId //

n,case

��

s′

T,cpcxT,0∨1uu
s3

s2
T,gc=,∗

55

s1
T,cpxT,∗

55

s

n,case

��
T,caseId

��
s1

s
T,caseId //

n,a

��

s′

n,gc,0∨1 ��
s′2

n,a
��

s1
T,caseId,0∨1// s3

gc,∗ // s′1

s
T,caseId //

n,gc

��

s′

n,gc

��
s1

T,caseId,0∨1// s′1
gc,∗ // ·

s
T,caseId//

n,casec

��

s′

s1
T,ucp

;;

Fig. 9. Forking diagrams for (caseId)

Proof. We apply the context lemma for max-space-improvements and the diagrams in Lemma J.1. Let

s, s′ be expression with s
T,caseId−−−−−→ s′. We show that the prerequisites for the context lemma for max-

space-improvements hold: The conditions FV (s) ⊇ FV (s′) and size(s) ≥ size(s′) obviously hold.
We show the third condition s′ ≤R,spmax s by induction on the following measure of s: (i) the number
of LCSC -reductions µ1(s), (ii) the measure µlll(s), and (iii) the measure synsize(s). See Theorem 2.8
and Lemma 3.3 for the modification and invariances of the measures µ1, µ2 under reductions.
If s is a LRPgc-WHNF, then s′ is also a LRPgc-WHNF, and the claim holds, since size(s) ≥ size(s′).
Now s has a LRPgc-reduction, and we check each applicable diagram in turn. If diagram 1 is appli-
cable, then the induction hypothesis can be applied to s1, and we obtain spmax (s1) ≥ spmax (s′).
Since size(s) > size(s′), this implies spmax (s) = max(size(s), spmax (s1)) ≥ spmax (s′). If dia-
gram 2 is applicable, then spmax (s1) = spmax (s2) ≥ spmax (s3) by Propositions 5.6 and Theorem
5.4. Proposition 6.2 shows spmax (s3) ≥ spmax (s′). Since also spmax (s) ≥ spmax (s1), we obtain

spmax (s) ≥ spmax (s′). In the case of diagram 3, s
n,a−−→ s1 is the same reduction as s

T,caseId−−−−−→ s1,
then the claim holds obviously. For diagram 4, the induction hypothesis can be applied to s1, which
shows spmax (s1) ≥ spmax (s3). Since gc is a max-space improvement by Theorem 5.4 we derive
spmax (s3) ≥ spmax (s′1).

Since along LRPgc-reduction sequences, spmax is decreasing, we obtain spmax (s′) ≥ spmax (s′2) ≥
spmax (s′1). Since also size(s) ≥ size(s′), we obtain spmax (s) = max(size(s), spmax (s1)) ≥
max(size(s′), size(s′2), spmax (s′1)) = spmax (s′). For diagram 5, the induction hypothesis can be
applied to s1, and the rest of the computations is similar, since (gc) is a max-space improvement. For
diagram 6, Theorem 5.11 and Theorem 6.3 show spmax (s) ≥ spmax (s1) ≥ spmax (s′) and the claim is
proved. Finally we apply the context lemma 4.8 for max-space improvements which proves the claim.

K Space Properties of cpcx

Lemma K.1. The transformation (cpcx) does not change the LRPgc-WHNF property. A complete
set of forking and commuting diagrams for (T, (cpcxT )) is in Fig. 10.

Proof. The diagrams can be derived using the cases and examples in [21], and omitting the diagram,
where the copy target is within an abstraction. Observe that (cpcxT) may trigger a new garbage
collection, which have to be covered by the diagrams. The diagrams are explicit, and have more
arrows for more information on the the cases, since we want to prove space properties.
Diagram 1 is the non-interfering case, also with (n,gc) and the case where the x = c #»s -binding is
removed.
Diagram 2 covers the case where the x = c #»s -binding will become garbage after the copy.
Diagram 3 covers the case where the target position of (cpcxT) is removed by the (no,a)-reduction.
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s
T,cpcxT //

n,a

��

s′

n,a

��
s1

T,cpcxT,0∨1 // s′1

s
T,cpcxT //

n,a

��

abs ''

s′

n,gc

��

·

T,ucp &&
·

T,ucp

��

s′2

n,a

��
s1

T,cpcxT //

abs

??

s′′1
gc // s′1

where a 6= gc

s
T,cpcxT //

n,a

��

s′

n,a

��
s1

T,abs // s′1

a ∈
{(case), (seq)}

s
T,cpcxT //

n,case

��

s′

n,case

��
s1

T,cpcxT
// s2 oo

T,cpxT,∗
// · oo

T,gc=,∗
// s′1

Fig. 10. Forking diagrams for (cpcxT)

Diagram 4 covers the case where (cpcxT) copies into the variable-chain of the normal-order case-
reduction, or somewhere else.

Clearly, (cpcxT) is not a max-space improvement, but for the improvement property of (caseId),
we need that the reverse of (cpcxT) has this property in top contexts.

Proposition K.2. [This is Lemma 6.2]

If s
T,cpcxT−−−−−→s′, then spmax (s) ≤ spmax(s′) ≤ spmax (s) + 1.

Proof. The inequality is proved by an induction argument using the diagrams as commuting ones (see
Fig. 10). We show the claim by induction on the following measure of s: (i) the number of LCSC -
reductions of s′, (ii) the measure µlll(s

′), and (iii) the measure synsize(s′).
If s, s′ are LRPgc-WHNFs, then the claim holds, since size(s) + 1 = size(s′). If s is a LRPgc-

WHNF, and s′ is not an LRPgc-WHNF, then only one binding of size 1 may be garbage collected,
hence spmax (s) + 1 = spmax (s′).
Otherwise, s is LRPgc-reducible, and we have to check all diagrams.
Assume the first diagram is applicable. If s1 = s′1, then there are two cases: (i) spmax (s1) ≥ size(s)+1.
Then spmax (s1) = spmax (s) = spmax (s′). (ii) spmax (s1) ≤ size(s). Then spmax (s) = size(s) and
spmax (s′) = size(s) + 1.
If s1 6= s′1, then the induction hypothesis is applicable. We obtain spmax (s) ≤ spmax(s′) ≤
spmax (s) + 1 from the maximum computation.
In the case of the second diagram Theorem 6.3 and Proposition 6.1 (I.1) show that spmax (s) =
spmax (s′2) and spmax (s1) = spmax (s′1). Since size(s′) = size(s) + 1, we obtain spmax (s) ≤
spmax (s′) ≤ spmax (s) + 1.
In the case of the third diagram we obtain spmax (s1) = spmax (s′1) by Proposition 6.1 (I.1), and since
size(s′) = size(s) + 1, this implies the claim.
In the fourth diagram, the induction hypothesis can be applied. This together with Propositions 5.6
and 5.9 show spmax (s1) ≤ spmax (s2) ≤ spmax (s1) + 1 and spmax (s2) = spmax (s′1). Maximum com-
putations show the claim. ut

L Proof of a Proposition for gc=

Proposition L.1 (Proof of Propostiton 5.9). The transformation (gc=) is a space-equivalence.

Proof. An analysis of forking overlaps between LRPgc-reductions and gc=-transformations, which are

different, shows that they (almost) commute, i.e. i.e., s1
n,a←−− s T,gc=−−−−→ s′ can be joined by s1

T,gc=,0∨1−−−−−−→
s′1

n,a←−− s′. We will apply the context lemma for space equivalence (Proposition 4.12), which also holds
for T -contexts.
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Let s0
gc=−−→ t0, and let s = R[s0] and s′ = R[t0]. Then size(s) = size(s′) as well as FV (s) = FV (s′).

The equality spmax (s) = spmax (s′) can easily be shown by induction on the number of LRPgc-
reductions. Then an application of the context lemma (Proposition 4.12) for space equivalences shows
the claim.

M Space Improvements for Append as a Recursive Function

We show as an example that for the append-function, written ++, the improvement relation
((xs ++ ys) ++ zs) ≥spmax (xs ++ (ys ++ zs) holds, where xs, ys, zs are variables. These expressions
are contextually equivalent.

More exactly, we can show that in reduction-contexts, the spmax-difference is a constant: 4.

The definition of append (denoted as ++) is:
++ = λxs.λys.case xs of Nil -> ys;x : xxs ->x : (++ xss ys)

The context lemma and the already known space equivalences will be used to show the improvement
relation. It is sufficient to show the claim in reduction contexts.

Let us assume that we start with the same reduction context R.

Then R[((xs ++ ys) ++ zs)] has to be compared with R[(xs ++ (ys ++ zs))]. We use induction on
the number of recursive expansions of ++.
We will tacitly shift the let-environments to the top using the space-equivalence property of (lll) and
(ucp).
First we compute the left-hand side:
(1L) The body of append is copied: R[((xs ++ ys) ++body zs)].
(2L) 2 lbeta-reduction steps: R ∪ {xs1 = (xs ++ ys), ys1 = zs} in (case xs1 . . .).
(2L2) copying append: R ∪ {xs1 = (xs ++body ys), ys1 = zs} in (case xs1 . . .).
(2L3) 2 lbeta: R ∪ {xs1 = (case xs2 . . .), xs2 = xs, ys2 = ys, ys1 = zs} in (case xs1 . . .).
(1R) The body of append is copied: R[(xs ++body (ys ++ zs))].
(2R) 2 lbeta-reduction steps: R ∪ {xs1 = xs, ys1 = (ys ++ zs)} in case xs1 . . .).
(3NT) If the local evaluation of xs does not terminate, then the improvement relation holds, irrespec-
tive of the size.
(3NilL) If xs locally evaluates to the empty list, then the reduction result is R ∪ {xs1 = ys2, xs2 =
xs, ys2 = ys, ys1 = zs} in (case xs1 . . .) .
(3NilR) If xs locally evaluates to the empty list, then the reduction result is R ∪ {xs1 = xs, ys1 =
(ys ++ zs)} in ys1). The next step is: R ∪ {xs1 = xs, ys1 = (ys ++body zs)} in ys1), and then
R ∪ {xs1 = xs, ys1 = (case ys Nil -> zs; . . .} in ys1), which is the same as for the left hand side.
(3NilRL) Comparison: the L-expression has a space maximum r+ 14, and the right one a space maxi-
mum of r+ 10. The latter steps do not contribute to the space maximum, thus the claim holds in this
case.
(3CL) If xs locally evaluates to a : as, then R ∪ {xs1 = a : (as++ys), ys1 = zs} in (case xs1 . . .). The
next step is R[(a : ((as ++ ys) ++ zs))]. Note that xs1 is garbage collected.
(3CR) If xs locally evaluates to a : as, then R[a : (as ++ (ys ++ zs))].
Now we can use induction on the number of steps.

Finally, the context lemma shows that claim ((xs ++ ys) ++ zs) ≥spmax (xs ++ (ys ++ zs).
Note that the example in [8] where the maxspace-difference is linear, the hole of the context is within
an abstraction.

N Space Usage of Two Sum Variants

We reconsider the definitions of three variants of sum of a list, and the space analysis in [8]. If the list
is unevaluated, then the different sum-versions below would change the evaluation order of parts of
the expressions, which has the potential to introduce space leaks. Hence, we avoid this complication
for our analysis and use a fully evaluated list [1, . . . , n] of integers as argument for the sum-functions.
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For the analysis, we make further simplifications: We assume that positive integers are available
(for example Peano-integers) and assume that an integer occupies a space unit of 1. We also assume
that addition (+) is a strict function in two arguments and that n+m immediately returns the result
without using extra space. These simplification are justified, since we are only interested in analyzing
the recursive variant in comparison with the tail recursive variants, and since we could also use Boolean
values or constants for numbers.

sum = λxs.case xs of Nil -> 0; y : ys -> y + (sum ys)
sum′ = λxs.asum 0 xs
asum = λa.λ xs.case xs of Nil -> a;

y : ys -> asum (a+ y) ys
sum′′ = λxs.asum′ 0 xs
asum′ = λa.λ xs.case xs of Nil -> a;

y : ys -> let a′ = a+ y in seq a′ (asum′ a′ ys)
Let us assume that the definitions of the functions are in the letrec environment, and then

we compare sum [1, . . . , n], sum’ [1, . . . , n] and sum’’ [1, . . . , n]. We also assume that the input
environment including the list is not garbage collected during the evaluation.

We analyze the space usage for an empty list first:

– (sum): sum Nil −→ sumbody Nil:
−→ letrec xs = Nil in case xs of Nil -> 0; y : ys -> y + sum ys −→ 0.
The maximal space, but only for the expressions without the top- let and without the input list:
8 + 1 = 9.

– (sum’): sum’ Nil −→ sum’body Nil −→
letrec xs = Nil in asum 0 xs −→
letrec xs = Nil in asumbody 0 xs
letrec xs = Nil; a = 0;xs′ = xs in case xs′ of Nil -> a; y : ys -> asum (y + a) ys
The result is 0. The maximal space, without the top- let and without the input list: is 9 for the
body of asum, and 1 for the application, i.e. 9 + 1 = 10.

– (sum”): The analysis is the same, the size is 10 + 1 = 11.

If the lists are not empty, then the analysis results in intermediate steps:

– sum [i, . . . , n]:
letrec xs = [i, . . . , n] in 1 + (2 + . . .
+(case xs of Nil -> 0; y : ys -> y + sum ys))
The maximum sized expression without the input list is 1 + (2 + . . .+ (n
+(λxs.(case xs of Nil -> 0; y : ys -> y + sum ys)) Nil
The size is 2 ∗ n+ 2 + (size(sumbody)) = 2 ∗ (n+ 1) + 8.

– sum′ [i, . . . , n]:
letrec xs = [i, . . . , n] in asum 0 xs
letrec xs = [i, . . . , n]; a = 0 in case xs of Nil -> a; y : ys -> asum (y + a) ys
The maximum sized expression (without the input list) is:
letrec . . . ;xsn = Nil

in asumbody (. . . (0 + 1) + 2 . . .+ n) xsn.
The size is 2 ∗ n+ 2 + 9 = 2 ∗ (n+ 1) + 9

– sum′′ [i, . . . , n]:
The maximum occurs in the expression:
letrec ys = Nil; a′ = m in seq a′ (asum′body a

′ ys), counted without the Nil:
The size is 1 + 1 + 2 + 9 = 13.
Thus the maximal size in this case is a constant.
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O Computations for Examples

We sketch the argumentation for space improvement property of two example transformations.

O.1 map λx.x vs. id

First we have to check contextual equality of the expressions:
This could be done by applicative bisimulation in the call-by-name variant of the calculus LRP

(see [16]). We are sure that the applicative bisimulation also in the Kleene-restriction is a sufficient
criteron for contextual equivalence. The proof is by standard methods. Since LRP and LRPgc are
equivalent, this also holds in LRPgc .

We have to check the cases:

1. If xs is ⊥, then the equivalence holds.
2. If xs = Nil, then again equivalence holds by simple computation.
3. If xs = a : ss, then map (λx.x) (a : as) reduces to a : map (λx.x) as, and the right hand side to
a : as, and we can go on with the applicative bisimulation.

In order to check whether the space improvement property holds, we use the context lemma for
space improvement. Let R be a reduction context.
We compare R[map (λx.x) xs] and R[(λx.x) xs].
If xs is not convergent, then ≥R,spmax holds.
If the left hand side reduces as R[mapbody (λx.x) xs], then this reduces to R[letrec f = (λx.x);xs′ =
xs in case xs′ . . .].
If xs reduces to the empty list, then the spmax of the right hand side is smaller than spmax of the
left hand side.
If xs reduces to a : as, then we also see that the space of the left hand side is greater than that of the
right hand side, and by induction, spmax of the lhs is greater then that of the rhs.

O.2 foldr (:) [] vs. id

Correctness can be proved using applicative simulation in the call-by-name variant of LRP
We have to check the cases:

1. If xs is ⊥, then the equivalence holds, since the functions are strict in the argument.
2. If xs = Nil, then again equivalence holds by simple computation.
3. If xs = a : ss, then foldr (:) [] (a : as) reduces to a : foldr(:) [] as, and the right hand side to
a : as. This is sufficient for the applicative bisimulation.

In order to check whether the space improvement property holds, we use the context lemma for
space improvement. Let R be a reduction context.
We compare R[foldr (:) [] xs] and R[(λx.x) xs].
If xs is not convergent, then ≥R,spmax holds.
If the left hand side reduces as R[foldrbody (:) [] xs]; then this reduces to R[letrec f = (:); e =
[];xs′ = xs in case xs′ . . .]. If xs reduces to the empty list, then the spmax of the right hand side is
smaller than spmax of the left hand side.
If xs reduces to a : as, then we also see that the space of the left hand side is greater than that of the
right hand side, and by induction, spmax of the lhs is greater then that of the rhs.


