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Abstract

Over the last decades agroforestry parklands in Burkina Faso have come under increasing

demographic as well as climatic pressures, which are threatening indigenous tree species

that contribute substantially to income generation and nutrition in rural households. Ana-

lyzing the threats as well as the species vulnerability to them is fundamental for priority set-

ting in conservation planning. Guided by literature and local experts we selected 16

important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata,

Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis,

Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strych-

nos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus maur-

itiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production,

mining and climate change). We developed a species-specific and spatially explicit

approach combining freely accessible datasets, species distribution models (SDMs), cli-

mate models and expert survey results to predict, at fine scale, where these threats are

likely to have the greatest impact. We find that all species face serious threats throughout

much of their distribution in Burkina Faso and that climate change is predicted to be the

most prevalent threat in the long term, whereas overexploitation and cotton production are

the most important short-term threats. Tree populations growing in areas designated as

‘highly threatened’ due to climate change should be used as seed sources for ex situ
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conservation and planting in areas where future climate is predicting suitable habitats.

Assisted regeneration is suggested for populations in areas where suitable habitat under

future climate conditions coincides with high threat levels due to short-term threats. In the

case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its

distribution and considering assisted regeneration in the central part where the current

threat level is high due to overexploitation. In the same way, population-specific recom-

mendations can be derived from the individual and combined threat maps of the other 15

food tree species. The approach can be easily transferred to other countries and can be

used to analyze general and species specific threats at finer and more local as well as at

broader (continental) scales in order to plan more selective and efficient conservation

actions in time. The concept can be applied anywhere as long as appropriate spatial data

are available as well as knowledgeable experts.

Introduction

Burkina Faso is among the poorest countries in the world, with a very low Human Develop-

ment Index (HDI), holding position 183 out of 188 countries [1]. About 90% of its 17 million

inhabitants rely on subsistence agriculture and livestock farming for their livelihoods. As in

many other countries in Western Africa, most rural communities greatly depend on goods

provided by trees and woodland environments; these include food, timber, fuelwood, medi-

cine and animal fodder [2,3]. The country can be divided into three eco-climatic zones, based

on annual average rainfall distribution: i) the Sahelian zone in the northern part of the country,

with annual rainfall below 600 mm spread over a period of three to four months and vegeta-

tion characterized by dry savanna with sparse tree cover; ii) a transitional Sudano-Sahelian

zone in the central region, with a total rainfall of 600–900 mm distributed over four to five

months; and iii) the Sudanian zone in the southern part, with annual average rainfall of more

than 900 millimeters spread over five to six months [2,4].

Agroforestry parklands are among the most widespread traditional land use systems in

Burkina Faso, as in many other parts of sub-Saharan Africa, where scattered individual mature

trees occur on cultivated fields [5]. Due to the value and variety of their products, trees in

parkland systems are retained by farmers when woodland and old fallows are converted into

cropland [6,7]. In this way, low annual crop yields are offset by the availability of non-timber

forest products, which contribute substantially to income generation, nutrition and food secu-

rity [8–14].

Natural resources are overexploited in some parts of the country, due to the increasing

demographic pressure and human migration associated with overgrazing and environmental

changes [15,16]. Conflicting land use activities include uncontrolled bush burning, extensive

cattle grazing, and deforestation to clear land for agriculture [17]. Additionally, the century or

millennia-long preference for edible-fruit-yielding taxa from the wetter Sudanian and Guinean

vegetation zones over Sahelian species in parkland systems appears to have stranded species

that have anthropogenic-driven distribution beyond their rainfall tolerance limits, after the

sharp drop in precipitation since the 1960s [18]. Due to these factors, important and valued

indigenous food tree species (e.g., Vitellaria paradoxa C. F. Gaertn., Tamarindus indica L.,

Detarium microcarpum Guill. & Perr., Parkia biglobosa (Jacq.) G. Don are increasingly vulner-

able to various drivers of change, such as harvesting for fuelwood or charcoal production,
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removal of trees in intensive cotton agriculture and increasing frequency and intensity of

droughts. Climate change, in particular, is likely to intensify natural tree regeneration problems

and progressively modify the distribution of suitable habitats for several tree species, in parts of

their range, as the result of shifts in the main vegetation and eco-climatic zones [18–20].

Understanding the combined effects of different threats on the distribution of important

indigenous food tree species in Burkina Faso is necessary for priority setting in conservation

planning. Previous attempts to rank threats to forest cover included examining potential

changes in biodiversity at a larger regional or ecoregional scale [21–23] and combining these

layers with IUCN red listing categories [24]. However, no method has been developed so far to

generate species-specific threat layers.

In this paper we present a framework to develop a species-specific threat assessment

designed to predict, at the population level, where multiple threats (e.g. overexploitation, over-

grazing, projected impact of climate change) are likely to have a negative impact on the avail-

ability of suitable habitat in the present and near future. Thus, the main objectives of this study

were to:

1. Develop a species-specific and spatially explicit threat model based on freely accessible

(global and local) datasets, calibrated using local expert knowledge;

2. Identify areas where important food tree species in Burkina Faso are highly threatened

using spatial analysis for each species and threat factor individually and in combination;

3. Recommend conservation actions for priority tree populations.

Materials and methods

Selection of important food tree species and potential threats

The focus of this analysis is on the main present and future threats to important food tree spe-

cies in Burkina Faso. In this context, threats can be defined as proximate activities or processes

that have caused, are causing, or may cause the destruction, degradation, and/or impairment

of biodiversity targets [25]. Potential threats were identified from the literature, through con-

sultation of local experts and by means of a case study on farmers’ perception. Subsequently

we chose the most appropriate datasets to describe the spatial patterns of threat throughout the

country (Table 1). Climate change and its impacts were projected until 2055.

A list of indigenous food tree species that are important in Burkina Faso was prepared

based on a literature review and expert consultations [26–31]. From this initial list, 16 food

tree species were selected (Table 2) based on the availability of occurrence data for species dis-

tribution modeling and the Plant Resources of Tropical Africa (PROTA) star-ratings (https://

www.prota4u.org/database/starratings.asp) for vegetable, fruit and carbohydrate-starch use

importance. The species selected had a minimum of 30 unique observations and a minimum

rating of 2 (star-ratings range from 1 to 5) for at least one of the categories.

Modeled potential distribution

Tree distribution data were compiled from a Burkina Faso tree species distribution map pre-

pared by Terrible [32](S1 Dataset); collection data from the Herbarium Senckenbergianum

(FR) and the Aarhus University (AAU) herbarium from the West African Vegetation Database

[33] (S1 Dataset); georeferenced photo records of African Plants [34] (S1 Dataset); observation

records from a transect study of useful tree species in western Burkina Faso [35] (S1 Dataset);

and point locations obtained from the Global Biodiversity Information Facility [36], available
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within the range of 18 degrees west to 16 degrees east in longitude and latitudes of 4 to 28

degrees north.

Suitability models were calibrated with BiodiversityR [37] using an ensemble suitability

modeling approach that fitted an ensemble model based on the 10 submodels (different algo-

rithms that predict suitability such as random forests, boosted regression trees or artificial net-

works; the ensemble suitability is calculated as weighted average of these suitabilities) with

highest average AUC (Area Under the Receiver-operator curve). The average AUC of 12 can-

didate submodels was calculated from testing data after splitting the presence and absence

locations in 4 random subsets [38,39] and was used as weight in the calculation of the ensem-

ble suitability. In one series of model calibrations, explanatory variables were bioclimatic ones

obtained from AFRICLIM [40] with a resolution of 2.5 arc-minutes, calibrated from the

WorldClim 1.4 as baseline current climate [41]. The variables had a maximum Variance Infla-

tion Factor (VIF) of 20, selected by a stepwise process whereby the variables with highest VIF

were removed in each step, resulting in retaining: (i) BIO1 (annual mean temperature, VIF

3.78); (ii) BIO3 (isothermality, VIF 15.04); (iii) BIO5 (maximum temperature of the warmest

month, VIF 13.31); (iv) BIO13 (precipitation of the wettest month, VIF 4.46); (v) BIO14 (pre-

cipitation of the driest month, VIF 1.77); (vi) LLDS (length of the longest dry season, VIF

13.31); and (vii) PET (potential evapotranspiration, VIF 6.80). In another series of model cali-

brations, we only used (i) BIO1 (annual mean temperature) and BIO12 (annual precipitation).

Species suitability values were obtained as averages from repeating the model calibration pro-

cedure (including random selection of 2000 background locations, splitting presence and

absence locations in random subsets and calibrating submodels) five times for each subset of

explanatory variables.

A series of four potential distribution maps was produced for each species, using the differ-

ent combinations of two different subsets of explanatory variables (one based on the VIF and

Table 1. Threat layers and respective data sources.

Key threats Indicators Spatial layers Impact at population level

Overexploitation *■ Population density, human land use

and infrastructure

WCS and CIESIN/Columbia University. 2005.

Last of the Wild Project, Version 2, 2005.

Global Human Footprint ●

Fragments populations, reduces

tree density

Overgrazing *■ Cattle, goat and sheep density per area Gridded Livestock of the World v2.0, 2014,

FAO and ILRI ●
Inhibits natural regeneration

Fire *■ Fire frequency per unit area NASA Fire Information for Resource

Management System (FIRMS), 2012. MODIS

Active Fire Detections 2007–2012 ●

Reduces tree density, inhibits

natural regeneration

Cotton production **■ Cotton growing area as percentage of

land area

Ministry Report 2010 map and regional cotton

production statistics ●
Eliminates natural populations

Mining **■ Presence of mining sites, occurrences

and prospects

Mineral Resources Data System (MRDS) of

the U.S. Geological Survey 2005 + Ministry

Report 2010 map ●●

Eliminates natural populations;

opens roads

Climate change *■■ Predicted absence, presence or

presence under novel regional climatic

conditions of suitable habitat

Bioclimatic dataset under future conditions:

Downscaled GCMs from CMIP5 for 2055,

RCP 4.5 and 8.5 scenarios ●●

Reduces flowering and fruit set,

damages healthy individuals,

promotes invasive species

* species-specific threat.

** generic threat.

■ short-term threat.

■■ long-term threat.

● spatial layer with quantitative data.

●● spatial layer with qualitative data.

https://doi.org/10.1371/journal.pone.0184457.t001

Spatial analysis of threats to food tree species

PLOS ONE | https://doi.org/10.1371/journal.pone.0184457 September 7, 2017 4 / 26

http://www.worldclim.org/CMIP5
https://doi.org/10.1371/journal.pone.0184457.t001
https://doi.org/10.1371/journal.pone.0184457


Table 2. Expert survey results on SDMs based on the consensus approach.

Species Distribution Model Weighted Score Number of Experts Average Concordance Value

Acacia macrostachya Rchb. ex DC. 1 3.16 14 0.30

2 1.93

3 3.51

4 2.79

Acacia senegal (L.) Willd. 1 3.99 9 0.58

2 2.43

3 2.15

4 1.83

Adansonia digitata L. 1 2.48 14 0.74

2 2.51

3 3.5

4 4.3

Annona senegalensis Pers. 1 2.37 13 0.50

2 3.67

3 2.29

4 3.55

Balanites aegyptiaca (L.) Delile 1 1.65 13 0.59

2 1.91

3 1.85

4 3.93

Bombax costatum Pellegr. & Vuill. 1 2.67 14 0.77

2 1.51

3 2.88

4 3.92

Boscia senegalensis (Pers.) Lam. 1 4 13 0.58

2 2.49

3 2.71

4 1.57

Detarium microcarpum Guill. & Perr. 1 2.23 15 0.38

2 4.1

3 1.91

4 2.43

Lannea microcarpa Engl. & K. Krause 1 3.74 14 0.63

2 1.21

3 2.48

4 3.35

Parkia biglobosa (Jacq.) G. Don 1 2.8 14 0.57

2 4.02

3 2.37

4 2.85

Sclerocarya birrea (A. Rich.) Hochst. 1 1.81 13 0.41

2 1.81

3 3.76

4 1.91

Strychnos spinosa Lam. 1 2.58 13 0.43

2 4.15

3 2.59

4 3.15

(Continued )
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one on annual mean temperature and annual precipitation) and two threshold levels to differ-

entiate between species absence-presence (BiodiversityR function ensemble.test with option

‘minimum’ and ‘true positive rate of 0.90’ (two thresholds used in a previous study [42]). The

methodology of different combinations of explanatory variables and threshold values was

aimed at producing a series of current distribution maps that significantly differed in the areas

mapped as suitable for each species, a requirement for expert comparisons of candidate suit-

ability maps. By juxtaposing and visually comparing the different distribution maps for each

species, we confirmed that our methods produced four clear alternatives of current distribu-

tion of each species that could be subjected to expert evaluation.

Expert evaluation of species distribution

Seventeen experts with botanical expertise and knowledge of Burkina Faso were involved in

assessing the representativeness of the current spatial distribution models elaborated for the 16

selected tree species by means of an online survey (S1 Appendix). Most of them had detailed

knowledge of all the selected food tree species and some focused on particular species within

their expertise. For each of the 16 tree species, the four SDMs were ranked by each expert inde-

pendently on a five-point scale from 1 (not valid) to 5 (excellent), based on how well the model

represented the species distribution; furthermore, the experts individually attributed to each

tree species a sensitivity value to the different threats selected (S1 Appendix).

A consensus theory approach was applied [42] to formalize the experts’ feedback. Through

the consensus approach, the degree of concordance among individual experts’ feedback can be

estimated. For each expert the degree of concordance with the other experts was calculated as

pairwise Spearman correlation coefficient. Then a maximum-likelihood factor analysis was

carried out on the correlation coefficient matrices. The amount of variance explained in the

Table 2. (Continued)

Species Distribution Model Weighted Score Number of Experts Average Concordance Value

Tamarindus indica L. 1 2.74 13 0.42

2 4.29

3 2.51

4 2.87

Vitellaria paradoxa C. F. Gaertn. 1 2.69 15 0.63

2 4.4

3 2.34

4 2.74

Ximenia americana L. 1 2.55 13 0.47

2 2.21

3 2.23

4 3.84

Ziziphus mauritiana Lam. 1 2.06 12 0.64

2 3.9

3 2.3

4 2.9

The most appropriate species distribution model (SDM), marked in bold, is selected based on the highest weighted score. Model 1: annual variables, 90%

threshold; Model 2: annual variables, ‘ensemble.min’ threshold; Model 3: bioclimatic subset of variables, 90% threshold and Model 4: bioclimatic subset of

variables, ‘ensemble.min’ threshold. Weighted score values can vary between 1 and 5. In addition, the table shows the number of valid expert responses

(number of experts) and the average expert concordance (average concordance value) per species.

https://doi.org/10.1371/journal.pone.0184457.t002
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first factor indicated the rate of consensus between experts on best model selection. The degree

of concordance, which can vary between 0 and 1, was used to weight each informant’s

response. This response contributed to the definition of a final score for each model (Table 2)

which was used to identify the most appropriate distribution map for each tree species.

The average concordance rates were also used to indicate the consistency of the expert

group to accurately estimate the best distribution model. For each species, the SDM that

obtained the highest weighted score was used as the basis for further analyses.

Data sources for main threats

The study covers all of Burkina Faso with a spatial resolution of 2.5 arc-minutes (about 4.5 km

at the equator), based on the resolution of the bioclimatic variables used for the suitability

models. Threat layers with different resolutions were resampled in ArcGIS 10.1 using bilinear

interpolation. Furthermore, a square-root transformation was applied to the layers ‘overgraz-

ing’ and ‘fire’ due to the heavy skewness in the frequency distributions. To facilitate calcula-

tions, the raster layers with quantitative data (overexploitation, overgrazing, fire and cotton

production) were normalized on a pixel-by-pixel basis to obtain values between 0 and 1.

Overexploitation. To assess the threat potential due to overexploitation, which includes

harvesting for food, timber, fuelwood, and animal fodder, we used the Global Human Foot-

print dataset [43]. It is the result of various global layers representing anthropogenic factors

presumed to exert an influence on the ecosystem: human population density, type of land use

system, infrastructure distribution (built-up areas, nighttime lights, land use/land cover) and

accessibility (coastlines, roads, railroads, navigable rivers). The values range from 0 to 100 per

pixel and indicate the intensity of human influence on an area.

Overgrazing. The Gridded Livestock of the World v2.0 [44] was used to assess the threat

associated with the pressure of livestock through grazing, likely affecting tree regeneration.

The modeled livestock density combines statistics at province level within Burkina Faso with

remote sensing data on climate, environment, demography, land cover and terrain. The tropi-

cal livestock units (TLUs), a common measure used to standardize livestock numbers by sum-

ming cattle, goats and sheep densities, was calculated using the function ‘Raster calculator’ in

ArcGIS 10.1. A TLU is the grazing equivalent of an animal ruminant of 250 kilograms live

weight, and the TLU conversion factors used are: cattle 0.7, goats and sheep 0.1 [45]. The

TLUs per pixel ranged from 0 to 170.

Fire. To assess the spatial pattern of fires caused by natural events or human activities, we

utilized MODIS FIRMS data [46] for Burkina Faso between 2007 and 2012. Each active fire

detection represents the center of a pixel approximately 1 km2 in size flagged as containing

one or more fires. Fire events were included only if the detection confidence exceeded 30%,

and a selection of 113,636 single occurrences in Burkina Faso was retained to calculate fire fre-

quency per km2. We distinguished early fires, taking place at the beginning of the dry season,

from late fires, usually more intense and occurring during the peak of the dry season (January

to March) when the vegetation is completely dry and the fuel load is higher. Double weight

was assigned to late fires because mortality rates of trees can be twice as high in late-burned

plots as in early-burned plots [47]. Mean annual fire frequency per km was determined with

the functions ‘Cell statistics’ and ‘Raster calculator’ in ArcGIS 10.1, by averaging fire frequen-

cies per year from 2007 to 2012. The mean annual fire frequencies per pixel ranged from 0 to

1.35.

Cotton production. Burkina Faso is the number one cotton producer in West Africa and

production has increased rapidly over the past two decades. Currently, cotton farms account

for more than 6% of the country’s agricultural land [48,49]. To assess the threat posed to the
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tree cover due to conversion of woodland or agroforestry parklands into intensified cotton

production, we georeferenced the most recent national map showing cotton production areas

[50] and combined it with production statistics at province level [51]. A cotton production

intensity map was created by dividing the production value within each province equally

among the pixels on which cotton is produced. The production area is presented as a percent-

age of the total land area, with values ranging from 0 to 16.4 per pixel.

Mining. Whereas cotton accounted for 80% of exports in Burkina Faso and gold produc-

tion was non-existent a decade ago, gold now accounts for almost 80% of exports [49]. Burkina

Faso is ranked fourth in Africa for gold production, and it has the third highest exploration

activity in the continent; production is expected to continue its rapid growth. The Mineral

Resource Data System [52], representing sites where mineral commodities are known or likely

to be present, was used to assess the threat of mining activities on the selected food tree species.

The influence of mining activities includes habitat destruction in the mining sites and habitat

degradation in the surrounding areas. Active mining sites (presently exploited or with pros-

pects of future exploitation) were selected. Additional sites where gold, manganese and phos-

phate mines are located were included by georeferencing the most recent national map of

mining sites [50]. Mining points were converted into single raster pixels with the function

“point to raster” in ArcGIS 10.1.

Climate change. Climate projections for the middle of the 21st century (2041–2070) were

obtained from AFRICLIM [40], consisting of downscaled data from General Circulation

Model (GCM) at a spatial resolution of 2.5 arc-minutes for intermediate and high greenhouse

gas concentration pathways. The average ensembles for RCP 4.5 (raster layers corresponding

to the bioclimatic conditions for intermediate Representative Concentration Pathway 4.5 W

m-2) and RCP 8.5 were used to project future suitability with the most appropriate distribution

map for each of the 16 target tree species.

We distinguished ‘novel regional conditions’ in our definition of threat levels associated

with climate change because we noticed that calibrated models tended to predict species pres-

ence in some of the areas having novel climatic conditions, i.e. that the models extrapolated in

environmental space outside the range of conditions occurring in Burkina Faso and in the

larger region of West Africa to which the present species might not be adapted.

Climate change threat maps were created to depict: (i) very high threat: predicted absence

of suitable habitat for the species in question for either RCP 4.5 or RCP 8.5 scenarios; (ii) high

threat: predicted presence of suitable habitat for both RCP 4.5 and RCP 8.5 scenarios in novel

regional climate conditions (novel conditions were mapped with BiodiversityR function

ensemble.novel–these correspond to areas that are outside the minimum-maximum range of

current conditions for at least one bioclimatic variable); (iii) medium threat: predicted pres-

ence of suitable habitat for RCP 4.5 scenario in novel regional climate conditions; (iv) low

threat: predicted presence of suitable habitat for RCP 4.5; and (v) no threat: predicted presence

of suitable habitat for RCP 4.5 and RCP 8.5 scenarios.

Threat magnitude rating

To estimate the magnitude of a threat at a given location, for each tree species selected, we

adopted the approach recommended by TNC [53] and combined geographic scope (area) and

severity (intensity) of each individual threat. The geographic scope is defined by the propor-

tion of the modeled species distribution that is affected by the threat and the severity by the

intensity of the threat variable in each pixel (unit of measurement converted to values between

0 and 1). Threat intensity values were ranked based on a five-point rating scale (Table 3), as

five classes were expected to provide sufficient spread without creating false precision (adapted
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from [54]). We assumed that the geographic scope and severity of a threat are maintained over

time. Thus, the estimated threat magnitude indicates the combination of predicted and actual

threat impact [54]. The threat magnitude rating deliberately contains non-linear cut-off values

(Table 3) to reflect the non-linear nature of the relationship between intensity and potential

impact, for most of the threats examined. Field experiments revealed that a threat often begins

to take effect at a certain threshold, and the impact becomes severe with an increasing intensity

until reaching a plateau [22,23,54].

The dataset used to map ‘Cotton production’ had an insufficient spatial resolution to iden-

tify peaks of production intensity; thus, the maximum threat level was set to ‘High’.

The threat potential of each mining site was represented by a single 20.25 km2 pixel to

which we assigned the threat level ‘Very high’. The coarse spatial resolution includes mining

sites and degraded surrounding areas and therefore no further extrapolation was required.

Cotton production and mining usually result in complete clearance of tree cover, therefore

they do not pose species-specific threats. Thus, the threat intensity values of these two variables

together with the modeled climate change variable were directly classified according to the

authors’ best judgement supported by the definitions of the threat magnitude classes definition

in Table 3; for the other variables (overexploitation, overgrazing and fire) the attribution of a

threat magnitude was further guided by an expert validation, aimed at defining species specific

vulnerability to different threats.

Expert evaluation of threat sensitivity

To our knowledge no systematic methodology has been developed yet that incorporates expert

opinion to determine species-specific threat sensitivity to drivers of change and population

decline. In this paper, we propose obtaining expert feedback by means of an online survey (S1

Appendix), to systematically calibrate the spatial distribution of threat magnitude for each

individual species. Expert-based methods allow the involvement of stakeholders in priority set-

ting for conservation and have been used as a practical tool to take advantage of people’s expe-

rience and expertise in decision-making for natural resource management [55] and validation

of species distribution models [42]. Cultural consensus theory provides a framework to for-

malize expert feedback for scientific analysis by estimating the competence of experts and

weighting their feedback accordingly in final threat sensitivity scores [56].

The seventeen experts who assessed the representativeness of the spatial distribution mod-

els for the 16 selected tree species also individually attributed to each tree species a sensitivity

Table 3. Five-point rating scale to define the potential threat magnitude.

Threat

magnitude

Definition

Very high The threat is likely to destroy or eliminate the species, or reduce its population by 71–

100%

High The threat is likely to seriously degrade/reduce the species or reduce its population by

31–70%

Medium The threat is likely to moderately degrade/reduce the species or reduce its population

by 11–30%

Low The threat is likely to only slightly degrade/reduce the species or reduce its population

by 1–10%

No threat The threat is likely to not degrade/reduce the species or reduce its population by less

than 1%

The definition of the threat magnitude classes and its non-linear cut-off values (adapted from [54]).

https://doi.org/10.1371/journal.pone.0184457.t003
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value to the different threats selected (S1 Appendix). The experts’ feedback was formalized

using the same consensus theory approach [42] as described above to evaluate the species dis-

tribution modeling, and the concordance rate, which varies between 0 and 1, was used to

weight each expert’s response. The responses contributed to a species-specific sensitivity value

(Table 4) to different threats, which was used to identify the sensitivity for each tree species to

various threats.

To facilitate calculations, the threat sensitivity scores were normalized to obtain values

between 0 and 1. Then, the normalized threat sensitivity scores were multiplied by the normal-

ized threat intensity values on a pixel-by-pixel basis. The resulting values were transformed

into threat levels as described above.

Individual and combined threat levels

Six individual threat maps, at a spatial resolution of 2.5 arc-minutes (about 4.5 km at the equa-

tor), were created and then aggregated into one combined threat map for each species. The

original raster files used to create all the threat maps were made publicly available (https://

dataverse.harvard.edu/dataset.xhtml?persistentId=10.7910/DVN/3BTC8J).

The combined threat level of an area, corresponding to an individual pixel, was set to be

equal to the highest threat level among the six individual layers. In addition, the threat level of

the layer resulting from combining all threats was adjusted upwards if the criteria for the ‘3–5

rule’ were met [54,57] as follows:

• three or more individual threats with threat level ‘High’ are equivalent to threat level ‘Very

high’,

• five or more individual threats with threat level ‘Medium’ are equivalent to threat level

‘High’.

It is important to note that threat classes generated through this process do not represent

an absolute measure of the impact on food trees but rather the relative degree to which the spe-

cies are more likely to survive in one place over another based on the threat level of one or

more threats, using a common scale for all species.

Results and discussion

Patterns of threat magnitude

The most appropriate distribution map for each species was selected based on the expert sur-

vey results; these are presented in Table 2. The final threat magnitude levels attributed to the

six main threat factors examined are shown in Table 5. In the case of the species specific threats

overexploitation, overgrazing and fire, the sensitivity defined by experts is presented in

Table 4. The combination of species distribution models and threat maps resulted in a visuali-

zation of species-specific patterns of pressure from threats (presented individually and com-

bined) throughout the distribution range of all 16 selected food tree species within the

boundaries of Burkina Faso (Figs 1 and 2, S1–S14 Figs).

The moderate average concordance rates across species in both expert evaluation surveys

may have various reasons and do not necessarily imply a moderate trustworthiness in the

results [42]. Apart from differences in knowledge, a diverging interpretation of the survey

questions, especially regarding the more abstract concept of threat sensitivity, could also have

influenced the results. Although we see clear and reasonable trends in the threat magnitude

rating we recognize that there is some arbitrariness in the choice of the cut-off values that

requires further investigation. Specific field experiments can provide further insight into the
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Table 4. Expert survey results on threat sensitivity based on the consensus approach.

Species Threat Weighted Score Number of Experts Average Concordance Value

Overexploitation 3.68 14 0.47

Acacia macrostachya Rchb. ex DC. Overgrazing 2.33

Fire 2.94

Overexploitation 2.93 15 0.54

Acacia senegal (L.) Willd Overgrazing 3.73

Fire 2.87

Overexploitation 4.2 14 0.55

Adansonia digitata L. Overgrazing 2.17

Fire 2.43

Overexploitation 2.47 14 0.76

Annona senegalensis Pers. Overgrazing 1.66

Fire 3.03

Overexploitation 3.29 13 0.49

Balanites aegyptiaca (L.) Delile Overgrazing 3.8

Fire 2.31

Overexploitation 4.55 14 0.63

Bombax costatum Pellegr. & Vuill. Overgrazing 2.13

Fire 2.8

Overexploitation 2.82 14 0.54

Boscia senegalensis (Pers.) Lam. Overgrazing 2.57

Fire 2.43

Overexploitation 3.75 14 0.63

Detarium microcarpum Guill. & Perr. Overgrazing 1.57

Fire 3.06

Overexploitation 2.93 12 0.65

Lannea microcarpa Engl. & K. Krause Overgrazing 2.07

Fire 2.85

Overexploitation 4.16 14 0.76

Parkia biglobosa (Jacq.) G. Don Overgrazing 1.92

Fire 3.07

Overexploitation 2.8 12 0.33

Sclerocarya birrea (A. Rich.) Hochst. Overgrazing 1.89

Fire 2.18

Overexploitation 2.19 13 0.56

Strychnos spinosa Lam. Overgrazing 1.91

Fire 3.08

Overexploitation 2.98 13 0.65

Tamarindus indica L. Overgrazing 1.67

Fire 3.02

Overexploitation 4.16 14 0.71

Vitellaria paradoxa C. F. Gaertn. Overgrazing 2.02

Fire 2.77

Overexploitation 2.13 14 0.77

Ximenia americana L. Overgrazing 1.54

Fire 2.88

(Continued )
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threat intensity-impact relationship such as grazing impact on tree regeneration. Provenance

trials may be used to assess the adaptive ability of species to climate change. Assessing land

degradation or tree cover change through high resolution satellite imagery and comparing the

results with the modeled threat impact is certainly one of the most promising approaches to be

tested. Its limitations will likely be the difficulty in clearly associating the detected changes to

single tree species and to a single underlying threat.

In order to derive a synthetic index of threat hotspots, a final map was produced combining

layers with ‘High’ and ‘Very high’ threat levels (further referred to as ‘severe threat level’ in this

study) for all 16 important food tree species (Fig 3).

Driven by the findings of previous studies [18,19], suggesting that the progressive tree den-

sity and species decline in the anthropogenic-shaped African Sahel over the last 60 years is

attributable to climate change, we gave relatively high weight to the predicted 2055 climate

change impact on suitable habitat of our target species (Table 5). Under this method, climate

change was the most prevalent threat in the long term (according to Table 6) for 13 out of 16

selected food tree species and ‘severe threat levels’ are predicted for an average of 40.5% of the

distribution area of the group of study species. The amount of area within a species’ distribu-

tion categorized as having a severe threat level reaches a maximum of 78.3% for Boscia senega-
lensis (Fig 1D) because its main distribution area is in the Sahelian zone, the zone most

affected by climate change. ‘Very high’ threat levels, where the moderate climate change sce-

nario for 2055 (RCP 4.5) already predicts unsuitable habitat, can be found for Vitellaria para-
doxa at the northern boundaries of its distribution range affecting 2.9% of the distribution in

the country (S12 Fig). The areas with ‘high’ threat level cover 90% of the Sahelian zone (Sahel,

the northern parts of Boucle du Mouhoun, Nord, Centre-Nord and Est), about half of the

Table 4. (Continued)

Species Threat Weighted Score Number of Experts Average Concordance Value

Overexploitation 2.07 14 0.50

Ziziphus mauritiana Lam. Overgrazing 2.84

Fire 3.26

The greatest threat for each species, marked in bold, is selected based on the highest weighted score. Weighted score values can vary between 1 and 5.

The table further shows the number of valid expert responses (number of experts) and the average expert concordance (average concordance value) per

species.

https://doi.org/10.1371/journal.pone.0184457.t004

Table 5. Threat magnitude rating.

Threat

magnitude

Overexploitation Overgrazing Fire Cotton

production

Mining Climate change

Very high 0.71–1 0.71–1 0.71–1 NA Presence of mining site (incl.

surrounding areas)

One or both scenarios (RCP 4.5 a/o 8.5)

predict absence

High 0.31–0.7 0.31–0.7 0.31–

0.7

0.31–0.7 Both scenarios (RCP 4.5 and 8.5) predict

presence in novel regional climate conditions

Medium 0.11–0.3 0.11–0.3 0.11–

0.3

0.11–0.3 Only scenario RCP 4.5 predicts presence in

novel regional climate conditions

Low 0.01–0.1 0.01–0.1 0.01–

0.1

0.01–0.1 Only scenario RCP 4.5 predicts presence

No threat � 0.01 � 0.01 � 0.01 � 0.01 Absence of mining site Both scenarios (RCP 4.5 and 8.5) predict

presence

Threat levels and applied criteria to transform the threat intensity into threat magnitude.

https://doi.org/10.1371/journal.pone.0184457.t005
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Fig 1. Boscia senegalensis. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgrazing’, (C) ‘Fire’, (D)

‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined threat’. The criteria to define the threat

levels are presented in Table 5.

https://doi.org/10.1371/journal.pone.0184457.g001
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Sudano-Sahelian zone (Central part of Boucle du Mouhoun, Plateau-Central, Centre-Est and

Est) including its national reserves in the south but only very small parts of the Sudanian zone

in the southeast of Burkina Faso. The areas with ‘severe threat level’ follow the course of some

main river basins (White Volta, Niger and Oti River basins) in the central and south-eastern

part of the country (Fig 4). The species less affected by climate change are Detarium microcar-
pum (21.8%), Annona senegalensis (24.0%) and Strychnos spinosa (28.0%) because their occur-

rence is limited to the wetter areas in the central and southern part of the country, where

climate change is expected to have less impact.

We created the climate change threat maps assuming that all selected species react in the

same way to climatic conditions becoming less suitable. Also differences in plasticity of func-

tional traits [59], in genetic variability [60], in seed dispersal [61], etc., can play an important

role in vulnerability of species to a rapidly changing environment. Due to the existing com-

plexity of the multi-threat approach, we decided not to consider this additional aspect in our

analysis.

Fig 2. Detarium microcarpum. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgrazing’, (C) ‘Fire’, (D)

‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined threat’. The criteria to define the threat

levels are presented in Table 5.

https://doi.org/10.1371/journal.pone.0184457.g002

Fig 3. Combined threat magnitude levels ‘Very high’ and ‘High’ for all species across all threats and protected areas. The protected area

layer was derived from the World Database on Protected Areas [58]. The criteria to define the threat levels are presented in Table 5.

https://doi.org/10.1371/journal.pone.0184457.g003
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Based on the average proportion of distribution area affected by a ‘severe threat level’ for all

species, overexploitation emerged as the second most important threat in general, and as the

most important short-term threat. It is the single most important threat for Bombax costatum
(57.8%), Parkia biglobosa (41.2%) and Vitellaria paradoxa (41.1%), and is only slightly

exceeded by climate change in the case of Adansonia digitata (38.0%) (Table 6). Areas with a

‘Very high’ level of threat from overexploitation in Burkina Faso can be found in more or less

close vicinity to the largest cities (Ouagadougou, Bobo-Dioulasso, Koudougou and Banfora)

but also near smaller populated places (e.g. Kaya, Ouahigouya, Tougan, Tenkodogo, and Léo)

well connected to the road network. The main regions with a ‘severe threat level’ due to over-

exploitation are Centre, Centre-Sud, Plateau-Central, Centre-Nord, Nord and Boucle du

Mouhoun.

In our analysis we used one single spatial layer, the Global Human Footprint, as a proxy for

the different aspects of overexploitation (such as harvesting for food, timber, fuelwood, and

animal fodder). Although it combines various anthropogenic factors likely to have an impact

on the environment, we are aware that the aspects of overexploitation follow different dynam-

ics that might not be equally related to the intensity of human influence.

Cotton production represents a threat for those tree species that occur in the intensive cot-

ton production areas. In Burkina Faso, the area of cotton production is characterized by rela-

tively abundant rainfalls of 800-1000mm/a [15]. The species most affected is Detarium
microcarpum (Fig 2E), with 18.4% of its distribution area under high threat from competition

with cotton production. The species least threatened in this analysis is Boscia senegalensis (Fig

1E) with only 0.3% of its distribution area affected. Large areas with a ‘High’ threat level can be

found in Hauts-Bassins, Boucle du Mouhoun and the north-western part of the Cascades

region excluding the designated National Classified Forest areas (Maro, Tui, Kapo, Tere, Pa

and Toroba).

Table 6. Importance of individual threat layers by species.

species Overexploitation Overgrazing Fire Cotton production Mining Climate change

Acacia macrostachya 22.1 0.0 1.5 12.2 0.2 41.6

Acacia senegal 0.9 19.5 1.0 7.6 0.3 50.9

Adansonia digitata 38.0 0.0 0.2 12.0 0.2 44.4

Annona senegalensis 0.1 0.0 0.5 17.7 0.2 24.0

Balanites aegyptiaca 3.3 20.7 0.0 7.0 0.3 52.1

Bombax costatum 57.8 0.0 1.6 14.2 0.2 32.1

Boscia senegalensis 0.3 3.0 0.0 0.3 0.3 78.3

Detarium microcarpum 18.5 0.0 5.0 18.4 0.2 21.8

Lannea microcarpa 0.9 0.0 1.3 12.3 0.2 40.2

Parkia biglobosa 41.2 0.0 4.2 14.9 0.2 33.1

Sclerocarya birrea 0.4 0.0 0.0 10.8 0.2 44.3

Strychnos spinosa 0.0 0.0 4.7 15.9 0.2 28.0

Tamarindus indica 1.1 0.0 3.3 12.9 0.2 40.4

Vitellaria paradoxa 41.1 0.0 1.4 13.7 0.2 36.7

Ximenia americana 0.0 0.0 2.2 11.8 0.2 34.9

Ziziphus mauritiana 0.0 0.4 4.9 10.5 0.2 46.2

average 14.1 2.7 2.0 12.0 0.2 40.5

Percentage of distribution area (calculated for each species separately) assigned to the six different threats with ‘Very high’ and ‘High’ threat magnitude

under this method. The most prevalent threat for each species is highlighted in bold.

https://doi.org/10.1371/journal.pone.0184457.t006
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We selected cotton production instead of agricultural production in general as the main

threat to food tree species because of its particular importance in Burkina Faso. It is considered

the principal source of income for rural populations and the nearly threefold increase in cotton

production between 1995 and 2005 was achieved mainly due to expansion of cultivated land

[49]. Due to the lack of precise cotton production intensity maps, we assigned the maximum

threat level as ‘High’ which is likely to underestimate the actual threat potential posed to food

tree species. As we had assumed easy access to high resolution maps developed by local author-

ities, we did not explore the potential of directly assessing production intensity from satellite

imagery. After various unsuccessful attempts with local authorities, we found a viable compro-

mise by georeferencing a production area map and combining it with provincial production

statistics.

Overgrazing is estimated to be the fourth most prevalent threat (Table 6) but with a larger

impact in the Sahelian zone, in the northern part of Burkina Faso, a traditional herding area. It

is the second most important threat for Balanites aegyptiaca (20.7%), Acacia senegal (19.5%)

and Boscia senegalensis (3.0%) following climate change. ‘High’ threat levels can be found in

the Sahel, Centre, Plateau-Central, in the northern part of Est and Centre-Est and in some

parts of the Centre-Ouest and Hauts-Bassins regions. Based on availability we combined cattle,

goat and sheep density to create TLUs to account for different amounts of feed. Additional

Fig 4. Climate change threat magnitude levels ‘Very high’ and ‘High’ combined for all species. The criteria to define the threat levels are

presented in Table 5.

https://doi.org/10.1371/journal.pone.0184457.g004
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information on distinct grazing preferences and livestock management systems would be

needed to make more precise predictions of livestock pressure on tree regeneration. Tree-

regeneration projects in Sahelian West Africa have demonstrated success through specific pro-

tection of seedlings from grazing and through selective clearing of fields. The farmers promot-

ing assisted regeneration of natural woody species benefited from sufficient wood production

for their household and increasing sustainable crop yields after 2–3 years [62].

Fire is the second least prevalent threat in general (Table 6), and ‘High’ threat levels occur

only in 2%, on average, of the distribution area of all tree species analyzed. Some species

emerge to be more vulnerable to fire because of the higher share of distribution in fire frequent

areas and a higher threat sensitivity rating (Table 4), although experts noted only little differ-

ence among species: Detarium microcarpum (5.0%), Ziziphus mauritiana (4.9%) and Strychnos
spinosa (4.7%). High levels of threat from fire are common in the southern regions, such as

Cascades Sud-Ouest, Centre-Sud and Est, especially in the reserves and national parks (e.g.

Kabore-Tambi, Singou, Pama, Arly and ‘W’ Region Biosphere Reserve) due to the thick grass-

lands that characterize these areas. The vulnerability of species to fire, especially in the seedling

stage, depends very much on fire frequency. Fire frequency was calculated from single fire

locations deriving from a reliable data source, FIRMS, which provided remotely-sensed infor-

mation on fire events in Burkina Faso between 2007 and 2012.

Mining is the least prevalent threat taking into account the average distribution area where

‘severe threat levels’ occur for all selected species (Table 6). Although of minor relevance for

food trees at the country level, in mining sites and surrounding areas serious habitat destruc-

tion and degradation occur at a local scale. The continuing boom in gold production and

exploration activities might further increase the local threats to food tree species. Most of the

current mining activities, primarily gold mining, are located in the Sahel, Nord, Centre-Nord

and in the northern part of the Centre-Ouest region.

Combination of threats

All 16 selected food tree species are highly threatened over large areas of their distribution in

Burkina Faso (ranging from 45 to 78% of the area); on average 60.5% of the distribution area

of these tree species is highly threatened. Only a small area is classified as ‘very highly’ threat-

ened (average 0.7%—see Table 7). Protected areas such as faunal reserves, classified forests and

national parks in the Est, Boucle du Mouhoun and Hauts-Bassins regions (Fig 3) may not

afford protection to species that are highly threatened throughout much of their distribution

area. The highest threats are mainly from climate change and fire whereas establishing pro-

tected areas potentially protects against overexploitation, cotton production, overgrazing and

mining.

The species for which the highest percentages of distribution area are under ‘severe threat’

are Boscia senegalensis (78.5%), Bombax costatum (75.4%) and Adansonia digitata (73.4%).

The high threat status is caused nearly exclusively by climate change (Table 7) in the case of

Boscia senegalensis and by the combination of overexploitation and climate change in the cases

of Bombax costatum and Adansonia digitata (for spatial details see Fig 1, S3 and S6 Figs). Par-
kia biglobosa, a multi-purpose tree species widely used by local communities ranks fourth

(Table 7), followed by the most abundant tree species in agroforestry parklands in the Suda-

nian zone, Vitellaria paradoxa. Both Parkia biglobosa and Vitellaria paradoxa show ‘severe

threat levels’ caused mainly by overexploitation, climate change and cotton production

(Table 7). The species with the lowest percentage of distribution area under ‘severe threat’ is

Annona senegalensis (43.7%), partly because it occurs in areas where climate change is expected

to have less impact (S4 Fig) and partly because of its lower threat sensitivity (Table 4).
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The highest species richness of the 16 target species in this study, determined on the basis

of SDMs predicting presence of suitable habitat, can be found in the central Sudano-Sahelian

and the northern Sudanian zone (Fig 5) and the largest areas that are severely threatened for

all species combined occur in the central-eastern parts of Boucle du Mouhon (Nayala, Mou-

hon, and Kossi provinces), in the northern part of Centre-Ouest (Sanguie province), in parts

of Plateau-Central and Centre-Est and in the south-eastern parts of Est (Tapoa and Kopienga

provinces) (Fig 3). The main threats in Boucle du Mouhon are cotton production, climate

change and overexploitation while the central and southern regions are mostly affected by cli-

mate change and partly also by fire.

Conclusions and recommendations

The species-level spatial threat analysis presented in this study identifies critical areas for con-

servation of populations of important food tree species in Burkina Faso. The multi-threat

approach facilitates determining which threat contributes most to high threat levels in certain

areas of the country, which is crucial for specific decisions on conservation and management

actions.

The approach can be easily transferred to other countries and can be used to analyze gen-

eral and species specific threats at finer and more local as well as at broader (continental)

scales. The concept can be applied anywhere as long as appropriate spatial data are available as

well as knowledgeable experts. Expert input is crucial to refine the species distribution as well

as the magnitude of the threats. We learned that an online survey can be a valid alternative to

conducting workshops, having the advantage of being less time- and cost-intensive. The

model is repeatable and it could be applied again in the future to determine if threat levels for

certain species and populations have increased or decreased in specific areas.

Table 7. Combined threat layers by species.

Species Very high High Medium Low No threat

Boscia senegalensis 0.4 78.1 21.5 0 0

Bombax costatum 1.5 73.9 24.5 0 0

Adansonia digitata 0.7 72.7 26.5 0.1 0

Parkia biglobosa 0.8 69.7 29.4 0.1 0

Vitellaria paradoxa 3.6 66.6 29.8 0.1 0

Balanites aegyptiaca 0.9 67.2 31.9 0.1 0

Acacia senegal 0.5 66.1 33.3 0 0

Acacia macrostachya 0.5 64.1 35.3 0.1 0

Ziziphus mauritiana 0.3 59.1 39.8 0.8 0

Tamarindus indica 0.2 55.1 44.4 0.3 0

Detarium microcarpum 1.0 53.6 45.2 0.1 0

Sclerocarya birrea 0.3 53.6 45.7 0.4 0

Lannea microcarpa 0.3 52.4 47.2 0.2 0

Ximenia americana 0.2 46.9 44.8 8 0

Strychnos spinosa 0.2 45.8 48.2 5.7 0

Annona senegalensis 0.2 43.5 54.4 1.9 0

average 0.7 60.5 37.6 1.1 0

Percentage of distribution area (calculated for each species separately) assigned to the five different threat levels (‘Very high’ to ‘No threat’) under this

method. The three highest percentages per threat level are highlighted in bold. The species are ranked based on the percentage of distribution area under

‘severe threat’ (‘High’ and ‘Very high’ threat level).

https://doi.org/10.1371/journal.pone.0184457.t007

Spatial analysis of threats to food tree species

PLOS ONE | https://doi.org/10.1371/journal.pone.0184457 September 7, 2017 19 / 26

https://doi.org/10.1371/journal.pone.0184457.t007
https://doi.org/10.1371/journal.pone.0184457


The results of this study indicate that all 16 species face serious threats throughout much of

their distribution in Burkina Faso and that climate change is predicted to be the most prevalent

threat in the long term. Overexploitation is the most important short-term threat at the national

level, although cotton production is a more serious threat in the region where it is grown. The

predicted decline of habitat suitability together with evidence from other studies [18,19] of natu-

ral regeneration problems due to climate change and human population strongly suggest the

need for conservation measures. We recommend that tree populations growing in areas desig-

nated as ‘severely’ threatened (Fig 4, Figs 1D and 2D, S1–S14 Figs) due to climate change should

be used as seed sources for ex situ conservation and planted in areas where predicted future cli-

mate would produce suitable habitat. Assisted regeneration is suggested for populations grow-

ing in areas where habitat is predicted under future climate conditions, coinciding with a

‘severe’ threat level due to short-term threats such as overexploitation and/or overgrazing.

More than 55% of the distribution of ten of the species is under high or very high threat.

Conservation planning is urgent for these species and plans should be developed to focus on

the specific threats to targeted populations, prioritizing the species and if possible, the popula-

tions, that are most important to local people. For example, Vitellaria paradoxa is very highly

threatened by climate change along its northern margin. Valuable seed sources in this area

may be lost unless seed is collected for planting in more suitable climate and/or for ex situ con-

servation. Populations highly threatened by overexploitation in the central part of Burkina

Faso, between Ouagadougou, Kadougou and Kaya, should be prioritized for assisted

Fig 5. Species richness map of 16 important food tree species and eco-climatic zones. The three eco-climatic zones

(Sahelian zone: < 600mm/a, Sudano-Sahelian zone: 600–900 mm/a and Sudanian zone: > 900 mm/a) are defined by the annual

rainfall [4] and are represented in this map by the bioclimatic variable 12 from the WorldClim 1.4 dataset [41].

https://doi.org/10.1371/journal.pone.0184457.g005
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regeneration as they grow in areas where predicted future climate would produce suitable hab-

itat. Parkia biglobosa, another highly valuable species, is also highly threatened by a combina-

tion of climate change, overexploitation and cotton production across most of its distribution.

The recommendations on population level regarding conservation measures for Vitellaria
paradoxa and Parkia biglobosa are very similar. Both species are highly threatened near the

northern limit of intensive cotton production. Knowing the regions where the various threats

are most serious allows targeting actions to address the particular threats at the population

level (S8 and S12 Figs) so that government agencies can take specific conservation actions to

maintain the genetic diversity across the species’ distribution range. In the same way, popula-

tion specific recommendations can be derived from the individual and combined threat maps

of the other selected food tree species.

The visual and spatially explicit representation of the threats and their predicted impact, in

the form of maps with different threat levels, makes the results easily accessible and under-

standable to decision makers from private and public agencies. Identifying areas with high

threat levels for certain species and knowing the underlying cause can guide specific recom-

mendations on priority areas for the implementation of conservation efforts.

This analysis represents one step towards a detailed understanding of multi-species-threat

relations across time, and studies should follow aiming to refine and test additional methodol-

ogies, such as remote sensing to measure threat intensities and for pseudo ground truthing or

provenance trials to assess climate change impacts. Spatial and temporal resolution of informa-

tion is continuously increasing and will lead to more precise predictions and monitoring of

areas likely to become severely threatened in order to plan more selective and efficient conser-

vation actions in time.

Supporting information

S1 Dataset. Georeferenced tree distribution records.

(XLSX)

S1 Appendix. Online survey questions.

(PDF)

S1 Fig. Acacia macrostachya. Threat magnitude levels of (a) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S2 Fig. Acacia senegal. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgrazing’,

(C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S3 Fig. Adansonia digitata. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S4 Fig. Annona senegalensis. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)
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S5 Fig. Balanites aegyptiaca. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S6 Fig. Bombax costatum. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S7 Fig. Lannea microcarpa. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S8 Fig. Parkia biglobosa. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgrazing’,

(C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S9 Fig. Sclerocarya birrea. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S10 Fig. Strychnos spinosa. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S11 Fig. Tamarindus indica. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Overgraz-

ing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Combined

threat’.

(TIF)

S12 Fig. Vitellaria paradoxa. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Over-

grazing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Com-

bined threat’.

(TIF)

S13 Fig. Ximenia americana. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Over-

grazing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Com-

bined threat’.

(TIF)

S14 Fig. Ziziphus mauritiana. Threat magnitude levels of (A) ‘Overexploitation’, (B) ‘Over-

grazing’, (C) ‘Fire’, (D) ‘Climate change’, (E) ‘Cotton production’, (F) ‘Mining’ and (G) ‘Com-

bined threat’.

(TIF)
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