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Abstract

Viewing of ambiguous stimuli can lead to bistable perception alternating between the possi-

ble percepts. During continuous presentation of ambiguous stimuli, percept changes occur

as single events, whereas during intermittent presentation of ambiguous stimuli, percept

changes occur at more or less regular intervals either as single events or bursts. Response

patterns can be highly variable and have been reported to show systematic differences

between patients with schizophrenia and healthy controls. Existing models of bistable per-

ception often use detailed assumptions and large parameter sets which make parameter

estimation challenging. Here we propose a parsimonious stochastic model that provides a

link between empirical data analysis of the observed response patterns and detailed models

of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the

times between percept changes, which assumes one single state in continuous presentation

and a stable and an unstable state in intermittent presentation. The HMM captures the

observed differences between patients with schizophrenia and healthy controls, but remains

descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which

produces similar response patterns but also provides a relation to potential underlying

mechanisms. The main idea is that neuronal activity is described as an activity difference

between two competing neuronal populations reflected in Brownian motions with drift. This

differential activity generates switching between the two conflicting percepts and between

stable and unstable states with similar mechanisms on different neuronal levels. With only a

small number of parameters, the HBM can be fitted closely to a high variety of response pat-

terns and captures group differences between healthy controls and patients with schizo-

phrenia. At the same time, it provides a link to mechanistic models of bistable perception,

linking the group differences to potential underlying mechanisms.

Author summary

Patients suffering from schizophrenia show specific cognitive deficits. One way to study

these cognitive phenomena works with the presentation of ambiguous stimuli. During

viewing of an ambiguous stimulus, perception alters spontaneously between different per-

cepts. Percept changes occur as single events during continuous presentation, whereas
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during intermittent presentation, percept changes occur at regular intervals either as sin-

gle events or bursts. Here we investigate perceptual responses to continuous and intermit-

tent stimulation in healthy control subjects and patients with schizophrenia. Interestingly,

the response patterns can be highly variable but show systematic group differences. We

propose a model that connects these perceptual responses to underlying neuronal pro-

cesses. The model mainly describes the activity difference between competing neuronal

populations on different neuronal levels. In a hierarchical manner, the differential activity

generates switching between the conflicting percepts as well as between states of higher

and lower perceptual stability. By fitting the model directly to empirical responses, a high

variety of patterns can be reproduced, and group differences between healthy controls

and patients with schizophrenia can be captured. This helps to link the observed group

differences to potential neuronal mechanisms, suggesting that patients with schizophrenia

tend to spend more time in neuronal states of lower perceptual stability.

Introduction

The phenomenon of bistable perception has fascinated researchers for a long time [1, 2, 3].

Recently, the description of response patterns to bistable stimuli such as the Necker Cube,

Rubin’s vase or rotating spheres with switching rotation direction gained increasing interest in

computational neuroscience [4, 5, 6, 7, 8]. By modeling dynamic changes of perception during

viewing of one and the same stimulus, one aims at providing potential explanations for neuro-

nal mechanisms underlying perception and perceptual changes and to identify related brain

areas as well as potential dysfunctions, e.g. in schizophrenia [9, 10].

Interestingly, the response patterns to continuously shown bistable stimuli often share com-

mon properties [7, 11]. Typically, the distribution of intervals of constant perception, termed

dominance times, is unimodal and right-skewed, and extremely short dominance times, i.e.,

rapidly fluctuating precepts, are rare [12, 13, 14]. The dominance times under continuous

stimulation are therefore often modeled as Gamma distributed [15, 16, 17, 18, 19, 20]. The

mean of dominance times can be highly variable across subjects [14, 20], whereas the coeffi-

cient of variation (CV) is often comparable [21].

In comparison to a continuous presentation, intermittent presentation of a bistable stimu-

lus, i.e., by repetitive interruption of stimulation for short time periods, has been observed to

stabilize the percept if the interruption period is long enough, typically longer than 0.7 seconds

[15, 18, 22, 23, 24, 25]. In this case, dominance times get longer and can also show a certain

degree of periodicity [14]. In addition, such stable phases with long dominance times during

intermittent presentation can also interchange with unstable phases of rapid percept changes.

Fig 1 shows examples of response patterns to continuous and intermittent presentation of a

bistable stimulus from the dataset reported in [10].

Modeling studies with elaborated mathematical models have been proposed that can

explain a number of properties of bistable perception like the distribution of dominance times

under continuous stimulation [8, 17, 19, 20, 21, 26] or cyclic behavior and the impact of the

duration of the stimulus presentation on the dominance times in intermittent stimulation

[14, 18]. One key ingredient of these models of bistable perception is typically a competition

between neuronal populations that correspond to the different percepts [14, 17, 18, 20, 27]. In

order to account for stabilized perception in intermittent viewing, the use of multiple time-

scales for memory traces of past perception has been proposed by [14] and [18].
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005856 November 20, 2017 2 / 38

(grant number STE 1430/7-1 to PS). KS is
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Many such models require a high number of parameters in order to describe the variety of

response patterns. As a consequence, they can often hardly be fitted to experimental data, espe-

cially in the typical cases when only a few dozen dominance times are observed. In addition,

the majority of models focus either on continuous or on intermittent viewing. Interesting

models that are applicable to both cases have been proposed by [14, 17, 18].

The relevance of a joint description of continuous and intermittent viewing is illustrated

here on a dataset including responses of patients with schizophrenia and of healthy controls to

continuous and intermittent presentation of a rotating sphere with ambiguous rotation direc-

tion reported earlier in [9, 10]. In [10], an enhanced alternation rate for the group of patients

with schizophrenia during intermittent presentation was reported. Interestingly, when we ana-

lyzed previously unpublished data recorded in the same participants during continuous pre-

sentation, the opposite could be observed [Fig 2; the data was collected during an initial

training run for which the experimental procedures but not the results are described in 10].

Due to the differences in patterns and time scales between continuous and intermittent

Fig 1. Examples of response patterns to a bistable stimulus. Response patterns to continuous (green, A,

B) and intermittent (blue, C-F) presentation from the dataset reported in [10]. While the distribution of

dominance times tends to be unimodal in the continuous case, stable and unstable phases interchange in

intermittent stimulation. In addition, response patterns can be highly variable across subjects.

https://doi.org/10.1371/journal.pcbi.1005856.g001

Fig 2. Alternation rates in control subjects and subjects with schizophrenia. During continuous

presentation healthy controls (C) showed higher alternation rates compared to patients with schizophrenia (S)

(left), while the opposite could be observed for intermittent presentation (right). Each grey dot indicates the

perceptual alternation rate from one individual participant, colored diamonds and lines indicate group medians

with 25%/75% quantiles. Two-sided Wilcoxon tests yielded p < .1 for both continuous and intermittent

stimulation.

https://doi.org/10.1371/journal.pcbi.1005856.g002
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presentation, the potential neuronal mechanisms underlying the transitions between the dif-

ferent response properties remain unclear.

Therefore, we propose here a new model for the description of response patterns to bistable

perception that links the observed behavior in continuous and intermittent stimulation to

potential underlying neuronal processes. First, the model should be able to describe the high

variety of both, continuous and intermittent stimulation within one model framework. Sec-

ond, we use a minimal number of parameters in order to allow parameter estimation and

model fitting to the typically short experimental data. This can then allow the statistical investi-

gation of differences between clinical groups.

Note that strictly speaking, the term ‘dominance time’ refers to slightly different objects in

continuous and intermittent viewing. While during continuous presentation, switches occur

from a dominant to a suppressed percept (percept-switch), dominance times during intermit-

tent presentation consist of multiple continuous presentation periods, and switches typically

occur because of different perceptual choices at the onset of the presentation (percept-choice)

[28]. In the present model, the observed sequences of dominance times are treated as concep-

tually similar. This simplification allows for a parsimonious model description in both contin-

uous and intermittent viewing but may not fully capture the relation between the perceptual

processes in the two regimes.

The remainder of the article is organized as follows. First, we use a simple Hidden Markov

Model (HMM) that describes the observed perceptual processes with a few parameters. For

continuous presentation, one state produces independent and identically distributed domi-

nance times with a two-parametric distribution. For intermittent presentation, switching

between stable and unstable phases requires two hidden states with short and long dominance

times, respectively. The HMM has the advantage that it allows straightforward model fitting

and data description with a minimal number of parameters. However, it remains descriptive

and lacks relations to potential underlying mechanisms. Therefore, we link the HMM to a

hypothetical underlying stochastic model. This model is termed here Hierarchical Brownian

Model (HBM) and intends to describe aggregated underlying neuronal activity, producing the

observed behavioral responses.

The HBM is based on two main ideas: First, it assumes that switching between percepts

results from two conflicting neuronal populations [cmp., e.g., 18]. In order to minimize the

number of parameters, this process is reduced to a simple Brownian motion with drift that

fluctuates between two thresholds, where the first passage times indicate state changes [similar

to 21]. For continuous presentation, one therefore requires only two parameters, i.e., the drift

of the Brownian motion and the threshold. The distribution of the resulting first passage

times—i.e., dominance times—is then the same as in the HMM, with a simple relation between

the two HBM and the two HMM parameters. Second, in order to describe intermittent presen-

tation in the same model framework, we use a hierarchical model. The idea is to describe the

switching between stable and unstable phases that is typical for intermittent presentation by

using an analogous threshold crossing mechanism of conflicting neuronal populations. Specif-

ically, we assume a second pair of neuronal populations whose corresponding Brownian

motion modulates the drift and threshold of the first population pair and thus causes switching

between stable and unstable phases. We give a set of model assumptions under which the

HBM parameters are comparable to the HMM parameters, thus allowing both model fitting to

experimental data sets and potential relation to underlying mechanisms. The parameter esti-

mation is straightforward using maximum likelihood and the HBM can reproduce both, the

unimodal distribution in the continuous presentation and the bimodal distribution of domi-

nance times in the intermittent presentation, including also various different response
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patterns. Moreover, it allows the identification of specific differences between the clinical

groups in [10] and relates these to the hypothesized underlying processes.

Results

A simple Hidden Markov Model for perceptual responses

As a first step to describe the processes observed in bistable perception, we reduce data analysis

to the dominance times, i.e., the times between reported changes of the percept. As described

above, the distribution of dominance times tends to be unimodal in the continuous case, while

stable and unstable phases interchange in intermittent stimulation.

We denote the dominance times by di, i = 1, 2, . . ., n. In the unimodal continuous case, we

assume the di to be the realizations of independent and identically (i.i.d.) distributed random

variables Di, i = 1, 2, . . ., n (Fig 3A), where the Gamma or the Inverse Gaussian (IG) distribu-

tion are suitable two-parametric distributions [17, 18, 19, 21]. For comparability with the

HBM, we focus on the Inverse Gaussian distribution here. For the intermittent case, we

assume a HMM with a stable and an unstable state, which are hidden and produce long and

short dominance times, respectively (Fig 3B). This requires two parameters for the switches

between states, and two parameters for the distribution of dominance times in each state.

Formally, let Y≔ (Yi)i = 1,. . .,n describe a Markov chain on {S, U}, where S and U denote

the stable and unstable state, respectively. Let pSU = 1 − pSS and pUS = 1 − pUU denote the transi-

tion probabilities. The dominance times (di)i2{1,2,. . .,n} are assumed to be Inverse Gaussian dis-

tributed and conditionally independent given Y, with mean and standard deviation given by

(μS, σS) for Yi = S and (μU, σU) for Yi = U.

Note that independence of dominance times is assumed here in continuous presentation.

This assumption enables straightforward parameter estimation and is in agreement with the

observation that serial correlations of dominance times are typically not reported [e.g., 29, 30].

However, weak long-term dependencies of dominance times reported under continuous pre-

sentation [31] cannot be reproduced in the HMM. As such long-term dependence was not

observed in the majority of cases in the present data set, also showing no group differences, we

use here the simple assumption of independence. In addition, the two used HMM parameters

are sufficient to capture the main group difference in the response properties reflected in the

alternation rate.

Parameter estimation and precision of parameter estimates. Continuous presentation.

For parameter estimation in the continuous case, we simply estimate the parameters of the

Inverse Gaussian distribution from the dominance times d1, . . ., dn, assuming these are

Fig 3. A simple HMM for bistable perception. (A) One state describes a unimodal distribution of dominance

times under continuous presentation. (B) Two states (stable, S, and unstable, U) produce long and short

dominance times under intermittent presentation.

https://doi.org/10.1371/journal.pcbi.1005856.g003
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realizations of i.i.d. random variables. Let

�md≔
1

n

Xn

i¼1

di

denote the sample mean of the observed dominance times. For the Inverse Gaussian (IG) dis-

tribution [32] with mean μ and standard deviation σ, the maximum likelihood (ML) estimators

are given by

m̂ ¼ �md and ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m3
d

1

n

Xn

i¼1

1

di
�

1

�md

� �s

: ð1Þ

The precision of these ML estimators is investigated by parametric bootstrap for the param-

eter values estimated from the 61 response patterns to continuous presentation in the sample

dataset of [10]. For each parameter combination (μi, σi)i = 1,. . .,61 we simulated 1000 response

patterns with length T = 240 as in the original data. We then compared the estimators

ðm̂i; ŝiÞi¼1;...;61
with the parameter values underlying the simulation using the relative error

(RE), defined e.g. for μ as REðmÞ≔ jm̂ � mj=m. The median relative errors for the 61 parameter

constellations are shown in Fig 4A. Out of these, 54 (89%) showed estimation errors with

median REs less than 0.25 (across the two parameters μ and σ, black). The remaining simula-

tions (gray) showed only few percept changes, n< 20, as well as large CVs (σ/μ, Fig 4B).

Intermittent presentation. In order to estimate the parameters in the two-state HMM in

intermittent presentation, we use the Baum-Welch-Alghorithm [BWA, 33, 34, 35]. See section

‘Intermittent presentation: Baum-Welch-Algorithm’ in the Materials and methods for details

on the BWA, the choice of starting values and specifications in the sample data set. For details

on HMMs see, e.g., [36, 37].

In order to investigate the estimation precision of this approach, we again apply parametric

bootstrap to the 61 parameter combinations estimated from the response patterns to intermit-

tent presentation in the sample data set. Fig 5 shows the median errors obtained in 1000 simu-

lations for every parameter constellation for T1 = 1200 s and T2 = 3600 s. For pSS and pUU the

absolute errors (i.e., AEðpSSÞ≔ jp̂SS � pSSj) are presented due to the small values of the two

parameters. For the time horizon of the data, T1 (panel A), 50 of the 61 parameter combina-

tions yielded average errors (i.e. mean median errors across all parameters) smaller than 0.25

(black). The remaining cases (gray) showed a large μU, i.e., less distinguishable stable and

Fig 4. Precision of parameter estimates in the one-state HMM. For each of 61 parameter constellations in

continuous presentation, 1000 simulations were performed with sample sizes as in the original data. (A)

Median of the relative error (RE) for each parameter. (B) The CV as a function of the number n of simulated

dominance times. Black points indicate constellations with mean RE across the parameters smaller than 0.25.

https://doi.org/10.1371/journal.pcbi.1005856.g004
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unstable distribution, or small sample size n� 10. For the larger time horizon T2 (panel B),

almost all parameter combinations showed errors smaller than 0.25.

Application of the HMM to the sample data set. Here we use the described methods in

order to apply the HMM to the sample dataset presented in [10] consisting of responses to

continuous and intermittent stimulation obtained from each of 29 patients with schizophrenia

and 32 healthy controls (for details on experimental procedures see Materials and methods).

While response patterns were highly variable across subjects, the CV of dominance times

(mean 0.79, SEM 0.04) was comparable to other studies reported in [21]. Serial correlation of

adjacent dominance times of the same percept was typically small (mean of Kendall’s rank cor-

relation �t ¼ 0:02), and statistically significant on the 5% level in less than 7% of the cases,

which is about chance level. Concerning long-term dependence [cmp. 31], deviations from the

assumption of independent dominance times were not observed in 81% of the cases, and no

differences were observed between the experimental groups (p> .1, Wilcoxon test, for details

on the analysis see Materials and methods). A correlation between the alternation rates in con-

tinuous and intermittent stimulation across subjects was not observed in either group, compa-

rable to the results of [14].

Model fit. By fitting the HMM to response patterns in continuous and intermittent presen-

tation as described above, the typical properties of the observed response patterns can be

reproduced in simulations, including unimodal distributions for continuous presentation and

changes between stable and unstable stages in intermittent presentation and a high variety of

response patterns (Fig 6). For example, subject C shows rather regular stable phases, separated

by unstable phases, while subject D shows an irregular response pattern, subject E shows only

stable phases, while subject F shows almost only unstable phases. The parameter estimates of

these example subjects are given in Tables 1 and 2. Note also that the response patterns of

seven of the 61 subjects were described better by only one (stable or unstable) distribution

than by the two-state HMM.

In addition to the good correspondence in the response patterns, no strong deviations

could be observed from the model assumption of Inverse Gaussian distributed dominance

times (Fig 7).

Comparison of repeated trials. The HMM approach also allows studying the reproducibility

of response parameters of subjects across multiple sessions. To this end, we used an additional

dataset from 105 healthy individuals that contained two separate sessions of continuous pre-

sentation [see 9, here we used the first two training runs from Behavioral Experiment 2 as

described in this previous work]. These showed highly reproducible response patterns, i.e., a

high correlation of parameter estimates of the IG distribution of the same individuals across

different sessions (Fig 8).

Fig 5. Precision of parameter estimates in the two-state HMM. For each of 61 parameter constellations in intermittent

presentation, 1000 simulations were performed. Log(median) of RE (for μS, σS, μU, σU) or of AE (for pSS, pUU) for T1 = 1200 (A) and

T2 = 3600 (B). Black lines indicate constellations with mean errors across the parameters <0.25.

https://doi.org/10.1371/journal.pcbi.1005856.g005
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In addition, we also used a likelihood ratio test [38] to investigate the null hypothesis of

equality of the parameters of two Inverse Gaussian distributed samples with sample sizes n1

and n2, i.e. H0: μ1 = μ2 and σ1 = σ2. The likelihood ratio derives as

Qn ¼
Y2

i¼1

ðn=niÞ
ni=2
ðSi=SÞ

ni=2
;

with Si ¼
Pni

j¼1
ðd� 1

ij � m̂ � 1
i Þ for i = 1, 2, S3 ¼ n1=m̂1 þ n2=m̂2 � n2ðn1m̂1 þ n2m̂2Þ

� 1
, n = n1 + n2

and S = S1 + S2 + S3. Under H0 the quantity Q�n≔ � 2ð1 � 1=6½1=n1 þ 1=n2� � 1=½12n�Þ logQn

is approximately chi-square distributed with two degress of freedom. Thus, the test rejects the

null hypothesis at level 5% if Q�n exceeds the 95%-th-quantile of the χ2(2)-distribution. In the

Fig 6. Comparison of empirical response patterns to patterns simulated with the HMM. Examples of

response patterns to continuous (green, panels A and B) and intermittent (blue, C-F) stimulation repeated from Fig

1 and corresponding simulations within the HMM (orange). The parameter estimates are given in Tables 1 and 2,

respectively.

https://doi.org/10.1371/journal.pcbi.1005856.g006

Table 1. Estimated HMM parameters of the response pattens to continuous presentation shown in Fig

1A and 1B.

com. m̂ ŝ

A 10.50 8.18

B 6.69 3.58

https://doi.org/10.1371/journal.pcbi.1005856.t001
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sample data set, the likelihood ratio test did not reject the null hypothesis of equal parameter

sets in 83 out of 105 subjects (about 79%). For a comparison, we performed 10000 permutations

by randomly assigning a first trial of one subject to a second trial of another subject and per-

forming the likelihood ratio tests on the permuted data sets. In the mean, the null hypothesis

was not rejected in only about 36% of the randomly assigned pairs, with a maximum percentage

across all permutations of 51%.

In summary, the response patterns of the same subject across multiple sessions showed a

high degree of reproducibility, with a Pearson correlation coefficient of up to r = 0.76 between

log(μ1) and log(μ2) (Fig 8). The similarity of response patterns for the same subject across mul-

tiple sessions was significantly higher than the similarity of response patterns between

subjects.

Group differences. Finally, the HMM provides a relation between the underlying model

parameters and the observed group differences reported in the introduction and in [10]. In the

continuous case, the decreased alternation rate in the patients with schizophrenia is simply

reflected in an increased mean dominance time m̂ (Fig 9A) in the one-state HMM. For inter-

mittent presentation, we had observed an increased alternation rate in the patients with schizo-

phrenia. The interpretation of this observation was not obvious due to the high variability of

response patterns and particularly due to the fluctuation between stable and unstable state.

The HMM provides a first explanation of this phenomenon by capturing important response

properties in the parameter estimates, which showed the following group differences: In par-

ticular, the expected relative time spent in the stable state,

φS≔
E½length of a stable phase�

E½length of a stable phaseþ length of an unstable phase�

was higher in the control group (Fig 9B, detailed formula given in Eq (13) in the Materials and

Table 2. Estimated HMM parameters of the response pattens to intermittent presentation shown in Fig 1C–1F.

com. m̂S ŝS m̂U ŝU p̂SS p̂UU
C 186.45 30.50 5.01 3.06 0.67 0.96

D 67.12 50.81 3.25 2.76 0.33 0.82

E 372.28 68.30 NA NA 1.00 NA

F 77.13 9.99 5.37 6.26 0.00 0.99

https://doi.org/10.1371/journal.pcbi.1005856.t002

Fig 7. Comparison of distribution of dominance times with theoretical distribution. The theoretical IG distribution in the

HMM fitted to the empirical distribution of dominance times for continuous (A) and intermittent (B) presentation shown in Fig 6A

and 6C.

https://doi.org/10.1371/journal.pcbi.1005856.g007
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methods). As the main variable contributing to this difference, we observe that the probability

p̂SS to stay in the stable state was higher in healthy controls. In addition, the mean dominance

time m̂U in the unstable state was slightly larger in the patients with schizophrenia. The degree

of statistical significance was highly similar to the one reported in [10] (p< .1 for m̂, m̂U , p̂SS

and φ̂S, two-sided Wilcoxon test). In the following section, we present a model that links these

observed differences to potential underlying neuronal mechanisms.

A hierarchical Brownian motion model

As described in the previous section, the HMM captures a high variety of response patterns

both in continuous and intermittent viewing, including uni- and bimodal distributions of

dominance times with alternations between stable and unstable states and a high variability

across subjects. With its small number of parameters, the HMM can be fitted also to short data

sections available empirically and therefore also capture differences between experimental

groups.

However, the HMM description remains phenomenological and does not provide insight

into potential neuronal processes. Also, it cannot provide explanations for potential effects

Fig 8. Reproducibility of response patterns. Parameter estimates of log(μ) (A) and log(σ) (B) of the IG

distribution in two sessions with the same individuals, dataset reported in [9]. The logarithm was applied due

to asymmetric distributions of the parameter estimates. Stars indicate highly significant (p < .0001) correlation

of parameter estimates across different sessions.

https://doi.org/10.1371/journal.pcbi.1005856.g008

Fig 9. Differences in the HMM parameter estimates between subjects with schizophrenia and control subjects.

(A) m̂ during continuous presentation and p̂SS and φ̂S for intermittent presentation (B). Each grey dot indicates one

individual participant’s data, colored diamonds indicate medians, horizontal bars indicate 25%/75%-quantiles.

https://doi.org/10.1371/journal.pcbi.1005856.g009
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that different lengths of blank displays could have on the response patterns, as discussed for

example by [14, 22, 24, 25]. In addition, the HMM cannot represent the following interesting

empirical observation: Before changing from stable to unstable state, the last dominance time

tends to be shorter. Therefore, we introduce here a new model, called Hierarchical Brownian

Model (HBM), which provides a potential link between the phenomonological description of

the response and potential underlying neuronal processes. The HBM assumptions can also

provide hypotheses on the effects of different lengths of blank displays and naturally yields

shorter dominance times before a state change to the unstable state.

The HBM assumes two competing neuronal populations which indicate perception of right

and left rotation, respectively. As has been proposed by various authors [14, 18], we implicitly

assume mechanisms of self-excitation, cross-inhibition and adaptation across these neuronal

populations, without explicitly modeling them in order to reduce the number of parameters

and to allow for model fitting to short trials. In order to obtain a parsimonious model descrip-

tion, we again assume independence of dominance times by neglecting potential mechanisms

of week long-term adaptation [31]. For possible model extensions compare section ‘Applica-

bility and model extensions’ in the discussion. We use the simplified assumption that percep-

tion arises from the difference in the activity of the two populations, which is modeled here by

a Brownian motion with drift [similar to 21] that fluctuates between two thresholds, where the

first passage times indicate state changes. This results in two parameters for the case of contin-

uous presentation that are directly linked to the two parametric distribution of dominance

times in the HMM. Further, we describe switching between stable and unstable states in inter-

mittent presentation by applying an analogous mechanism, which leads to a hierarchical

model. We assume another hierarchical layer of neuronal populations and a corresponding

Brownian motion which modulates the drift of the first population pair and thus causes

switching between stable and unstable phases.

Continuous presentation. The HBM in continuous presentation (HBMc) simply assumes

a Brownian motion with drift ±ν0 between two borders, ±b, where the first hitting times of the

borders indicate a percept change and lead to a sign change in the drift. As a potential neuro-

physiological interpretation, b could be considered the size of the activity difference between

the L and R population required for a perception change and thereby be related to the respec-

tive population sizes. Roughly speaking, the speed of the drift ν0 could be considered related to

the inverse of the connection strengths within and across populations that engage in self exci-

tation and cross inhibition.

Formally, let b> 0 be a fixed border, ν0 > 0 be a drift and T> 0 a time horizon, and let

(Wt)t2[0,T] be a standard Brownian motion. The perception process P≔ (Pt)t2[0,T] is then

defined by

dPt ¼ Stn0dt þ dWt; where P0 ¼ � b;

and the process St≔ S(Pt, t) takes the value −1 if Pt last hit b and 1 if Pt last hit −b, with S0 ≔ 1.

For t 2 (0, T] let

t�≔ t�ðtÞ≔ supfxjx < t; jPxj ¼ bg; where t�ð0Þ ¼ 0

be the last time before t that Pt hit either b or −b. Then

St ≔ SðPt; tÞ≔ � sgnðPt� Þ:

A hierarchical stochastic model for bistable perception
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The perception at time t� 0 takes the value L (left) if St = 1 and R (right) if St = −1 and

switches at the first-hitting times (Hi)i of the borders ±b defined by H0 ≔ 0 and

Hi≔ inf ft � Tjt > Hi� 1; Pt ¼ Stbg i ¼ 1; 2; . . . ð2Þ

An example of such a process is shown in Fig 10. Panel A shows the process P, where the

sign of the drift changes at each first hitting time of b or −b indicated by the process (Hi)i,

which also marks switches in the percept (panel B).

Parameter estimation in the HBMc makes use of the fact that the resulting dominance

times

di≔Hi � Hi� 1; i ¼ 1; 2; . . . ð3Þ

are independent and IG distributed, with a known relation between the HBMc parameters b
and ν0 and the parameters μ and σ of the IG distribution, given by μ = 2b/ν0 and s ¼

ffiffiffiffiffiffiffiffiffiffiffi
2b=n3

0

p

[32]. Note that the CV of the dominance time distribution is therefore given by 1/(2bν0). Thus,

an increase in the border b also increases the mean dominance time and decreases the CV. An

increase in the drift ν0 decreases the mean dominance time, while again decreasing the CV.

The ML estimators b̂ and n̂0 can be derived via

b̂ ¼ ð1=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
m̂3=ŝ2

p
and n̂0 ¼

ffiffiffiffiffiffiffiffiffiffi
m̂=ŝ2

p
;

where m̂ and ŝ are derived from Eq (1). Explicit expressions are given in the Materials and

methods.

The precision of parameter estimates is directly comparable to the HMM for continuous

presentation.

Intermittent presentation. In the Hierarchical Brownian Motion model for intermittent

presentation (HBMi), we require mechanisms for long dominance times in the stable state as

well as for short dominance times in the unstable state. In order to describe the responses to

intermittent and continuous presentation in one model framework, we assume the identical

perceptual process as in the HBMc during phases of stimulus presentation. The periods of

blank display represent the only difference to continuous presentation. In these periods, we

assume additional neuronal mechanisms. In particular, we assume that the perceptual process

then takes on one of two mean drifts, νS in the stable state and νU� νS in the unstable state,

with potentially opposite signs of ν0 and νS for increased stability (Fig 11). Note that the drifts

Fig 10. The HBMc. The first passage times (Hi) (green) of a Brownian motion Pt (black, panel A) with drift ±ν0

at borders ±b indicate the times of the percept changes (orange, panel B). The Brownian motion is assumed

to summarize the activity difference of two conflicting neuronal populations with only two parameters.

https://doi.org/10.1371/journal.pcbi.1005856.g010
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νS and νU are not necessarily constant across the whole period of blank display, but they denote

the mean drift of the process, which is sufficient to describe the distribution of dominance

times. Interestingly, additional assumptions on the temporal behavior of the drift terms could

also allow describing the impact of the lengths of blank displays (cmp. Discussion). Further, in

the unstable state the border bU at which perception and drift direction change is assumed

smaller than the border bS during stable perception. Switches between the stable and unstable

state will be caused by a similar mechanism in a so-called background process B described

later in this section.

Within a state (S or U), the fluctuation of the perception process between the borders is

assumed analogous to the HBMc, except that the borders are dependent on the hidden state

and that the drift is ν0 during presentation and νS or νU during blank display. Formally, we

denote by PR and BL the sets of all periods of stimulus presentation and blank display, respec-

tively. Assuming that we start a trial with a presentation interval and then switch regularly

between presentation intervals of length lp and blank display of length lb, PR and BL are given

by

PR ¼
[T=lb

i¼1

½ði � 1Þðlp þ lbÞ; ði � 1Þðlp þ lbÞ þ lpÞ

BL ¼
[T=lb

i¼1

½ði � 1Þðlp þ lbÞ þ lp; iðlp þ lbÞÞ ðFig11Þ:

The perception process (Pt)t is then given by

dPt ¼

Stn0dt þ dWt; if t 2 PR

Stn~Y t
dt þ dWt; if t 2 BL;

8
<

:

where ~Y t 2 fS;Ug denotes the hidden state and (Wt)t denotes a standard Brownian motion.

As a result, the mean drift per second is given by

n�S ≔
lb � nS þ lp � n0

lb þ lp
and n�U ≔

lb � nU þ lp � n0

lb þ lp
ð4Þ

for states S and U, respectively. Because the periods lb and lp are typically short in relation to a

dominance time, the behavior of P can be approximated by a Brownian motion with absolute

drifts n�S and n�U , respectively. As in the HBMc, the sign of the drift St≔ S(Pt, t) changes at

Fig 11. The perception process P in the HBMi during intermittent presentation. During presentation, P has drift ν0.

During blank displays (yellow), P has drift νS in the stable phase (A), and drift νU in the unstable phase (B). Typically, we have

νS� ν0 and νU� ν0. The borders are bS (light blue horizontal line) in the stable phase and bU (blue horizontal line) in the

unstable phase.

https://doi.org/10.1371/journal.pcbi.1005856.g011
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every first hitting time of the respective border, i.e.,

SðPt; tÞ≔ � sgnðPt� Þ where t�≔ t�ðtÞ≔ supfxjx < t; jPxj ¼ b~Y x
g with t�ð0Þ ¼ 0:

We initialize P0 ¼ � b~Y 0
for the initial state ~Y 0 which is the stable state with probability

pS≔Pð~Y 0 ¼ SÞ. The perception then takes the value L if St = 1 and R if St = −1 and switches

at the first-hitting times (Hi)i of the borders ±bi comparable to Eq (2). Note that perception

also changes during blank display. The dominance times are therefore again given by

di≔Hi −Hi−1, i = 1, 2, . . ..

In order to describe the switching between the two states S and U, we use an analogous

upper hierarchical level with another pair of conflicting neuronal populations. Their difference

activity is described by a so-called background process B≔ (Bt)t (Fig 12A, middle panel). B is

also assumed to be a Brownian motion with drift. Its drift is assumed to vanish during

Fig 12. The HBMi. The perception process P, the background process B and the resulting percept. A: A

simulation on [0, 500]. B: The same realization, zoomed in on the time interval [408, 458]. Stable phases

indicated by white background, unstable phases indicated by gray background. The beginnings of stable and

unstable phases are marked with light blue and blue arrows, respectively.

https://doi.org/10.1371/journal.pcbi.1005856.g012
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presentation and to take the value νB> 0 during blank display, i.e.,

dBt ¼

(
d ~Wt; if t 2 PR

nbdt þ d ~Wt; if t 2 BL; ~Y t ¼ S

� nbdt þ d ~Wt; if t 2 BL; ~Y t ¼ U;

ð5Þ

where ð ~WtÞt is a Brownian motion independent of (Wt)t. Again, the mean drift across PR and

BL intervals is n�B≔
lb�nB
lbþlp

.

The background process B evokes changes between the stable and the unstable state. Specif-

ically, at the time of a percept change t�, the question of whether the process stays in the

former state (S or U) or switches to the other state depends only on the value of B. Two bor-

ders, bU< bS determine this switching as follows (see Fig 12). If the former state is S, the pro-

cess remains stable if and only if Bt� >
~bS (first light blue arrow in panel A), while switching to

the unstable state if Bt� �
~bS (blue arrow, panel A). Analogously, if the former state is U, the

process switches to S if and only if Bt� >
~bU (right light blue arrow, panel A), while staying in

U if Bt� �
~bU (blue arrow, panel B). After the percept change, the background process B is

reset to zero and then follows its usual dynamic (Eq (5)), i.e., the sign of its drift changes if and

only if the state has changed. Finally, as the perception process P fluctuates between ±bS in the

stable state and between ±bU in the unstable state, the value of P is reset when the state changes,

to the value sgn(P)bS when changing to the stable state and to sgn(P)bU when changing to the

unstable state.

Discussion of assumptions and interpretation of parameters. The technical advantage

of the HBMi is that the resulting dominance times agree in most parts with the dominance

times resulting from the HMM assumptions, which allows model fitting also to short data sec-

tions and comparison across clinical groups. In addition, the HBMi also provides a relation to

potential underlying neuronal processes, as discussed in the following and illustrated in Fig 13.

Both HBMi-processes P and B are assumed Brownian motions with drift which may be

interpreted as the activity difference between neuronal populations. Implicitly, this assumes

mechanisms of self-excitation, cross-inhibition and adaptation across these neuronal popula-

tions, as proposed by various authors [14, 18]. Without explicitly modeling such mechanisms

in order to reduce the number of parameters and allow model fitting, the parameter sets are

reduced to the mean drifts ν and the borders b. Analogously to the HBMc, the speed of the

drifts could be considered related to the inverse of the connection strengths within and across

populations that engage in self excitation and cross inhibition. The border b, in analogy to the

HBMc, could be considered related to the size of the respective populations under consider-

ation. The use of different borders allows fitting of highly various response patterns and can be

motivated as follows.

In the HBMi, the perception process P has two borders, bS> bU for the stable and the unsta-

ble state. This suggests different population sizes of neurons involved in the stable and unstable

state. Typically bS> b> bU, suggesting that in the stable state, the activity of the dominant

population is increased by joining additional neurons to the population, for example by posi-

tive feedback mediated by population S. Vice versa, in the unstable state, only a minimal popu-

lation is involved in the respective percept, leading to fast changes. Thus, one could assume

that the dominant percept population size is decreased by the population U (red arrows). The

active population sizes are indicated by different circle sizes in the first line of Fig 13 and are

assumed modulated by the background populations S and U.
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The background process B models the activity difference between S and U and is also asso-

ciated with two borders, ~bS and ~bU . The assumption regarding resetting of B at percept change

is technically necessary to generate independent dominance times and to thus allow straight-

forward model fitting (cmp. section ‘Parameter estimation’). In the picture of Fig 13 it can be

motivated as follows. Population S is capable of offering positive feedback to the currently

active population, L or R, which results in an increased population size as described above. S is

also activated by the active population. Therefore, a percept change causes a reseting to zero.

However, if S had shown high previous activation (above ~bS), the activity of S can increase rap-

idly again, causing another stable dominance time. In contrast, in case of weak previous activa-

tion (below ~bS), the unstable population U is taking over, marking the transition to an unstable

state. With opposite signs, i.e., negative drift and a small new border ~bU , the process proceeds

analogously. Similar to the mean drift terms νS and νU, the drift νB is not necessarily constant

but describes the mean drift of B during the period of blank display.

In addition to the potential neurophysiological interpretations of the model parameters, we

give here a relation of the parameters to the response patterns. Interestingly, the seven HBMi

parameters allow the reproduction of highly variable response patterns as are also observed in

the empirical data sets (e.g., Fig 1). The following quantities, which are easily derived from the

parameters, offer a straightforward pattern interpretation.

First, the parameter sets ðbS; n�SÞ and ðbU ; n�UÞ can be interpreted analogously to the parame-

ters (b, ν0) in continuous stimulation. That means, an increase in the border (bS or bU)

increases the mean dominance time and decreases the CV in the respective state. An increase

in the drift (n�S or n�U) decreases the mean dominance time, while also decreasing the CV. Recall

that the CVs of dominance times during stable and unstable states are given by

CV�S ≔ 1=
ffiffiffiffiffiffiffiffiffiffiffi
2bSn�S

p
and CV�U ≔ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
2bUn�U

p
; respectively:

Fig 14 illustrates examples with small CV�S (panels A-D) and large CV�S (panels E-H).

Second, the parameters ~bS and n�B can be interpreted best when compared to bS and n�S as fol-

lows. Consider the expected fraction of ~bS reached by the background process at the end of a

Fig 13. Motivation of HBMi model assumptions. For explanation and details see text.

https://doi.org/10.1371/journal.pcbi.1005856.g013
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Fig 14. Impact of HBMi parameter values on the response patterns. Examples of simulated response patterns are shown

for different values of the three quantities CV�S, 2bSn�B=
~bSn�S and ~bU. The quantities for panels A-H were

CV�S ¼ f0:2; 0:2; 0:2; 0:2; 1; 1; 1; 1g, 2bSn�B=
~bSn�S ¼ f4; 4; 0:4; 0:4; 4; 4; 0:4; 0:4g,

~bU ¼ f0; 3; 0; 3; 0; 3; 0; 3g:

https://doi.org/10.1371/journal.pcbi.1005856.g014
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stable dominance time,

Expected duration of a stable dominance time
Expected duration until B reaches ~bS

¼
2bS=n�S
~bS=n�B

¼
2bSn�B
~bSn

�
S

;

which is related to the transition probability from stable to unstable state. In case of a small

background border ~bS < bS and small n�S, the probability of B crossing ~bS until percept change

is high, such that the process remains stable. Fig 14A, 14B, 14E and 14F show such parameter

combinations. An analogous term can be derived in comparison to the parameters ~bU and n�U .

Third, the parameter ~bU is related to the number of dominance times in the unstable state

before changing to the stable state. Recall that the drift of B is negative during unstable periods.

Therefore, a large value of ~bU implies a low probability to reach ~bU until the percept change.

This implies a high expected number of dominance times in the unstable state, or a low transi-

tion probability from the unstable to the stable state. Fig 14B, 14D, 14F and 14H show exam-

ples with large values of ~bU .

Relation of the HBMi to the two state HMM. The relation of the HBMc to the one state

HMM is simple as is represents only a reparameterization. Both the one state HMM and the

HBMc yield independent and IG distributed dominance times. For the intermittent case, the

relation of the HBMi to the two state HMM is not as straightforward. The two models are

highly similar in the sense that they use two parameters to describe long and short dominance

times, respectively (e.g., (μS, σS) and ðbS; n�SÞ for the stable state). In the HMM, the dominance

times are IG distributed, given the state with the respective parameters. In the HBMi, the dom-

inance times are approximately IG distributed, where the minor deviation from the IG distri-

bution originates from the minor deviation of P from a Brownian motion with drift n�S (or n�U),

instead of exactly assuming drift ν0 during stimulation and νS (or νU) during blank display.

However, the marginal distribution of P at multiples of such intervals lp + lb is identical to the

marginal distribution of a Brownian motion with drift n�S (or n�U) at these time points, and the

differences can only be observed in the meantime. Because dominance times usually span mul-

tiple trials of duration lp + lb, the approximation is very close. As another similarity, both mod-

els use additional parameters ((pSS, pUU) and ð~bS;
~bU ; nBÞ) to describe the transition

probabilities between the stable and the unstable state.

The main difference between the HBMi and the two state HMM concerns the dynamic of

the state transitions between stable and unstable state. In the HMM, transition probabilities

are given by (1 − pSS) and (1 − pUU) and are independent of the duration of the previous domi-

nance time. In contrast, in the HBMi, a transition from stable to unstable state requires that B
has not reached ~bS at the end of the respective dominance time. Therefore, the transition prob-

ability ~pSUðdiÞ depends on the duration di of the i-th dominance time, where shorter domi-

nance times yield higher transition probabilities. Note that the position of B at the end of a

dominance time di is given by an increment of a Brownian motion with drift n�B in the fixed

time interval di. Therefore the position is normally distributed with mean di � n�B and variance

di and the probability to remain in the stable state (which is the probability that the back-

ground process exceeds ~bS) is given by

~pSSðdiÞ ¼ PðYiþ1 ¼ SjYi ¼ S; diÞ � 1 � Fn�Bdi;di
ð~bSÞ; ð6Þ

where Fμ,σ2() denotes the distribution function of the normal distribution with mean μ and

variance σ2 and Yi is the hidden state of the i-th dominance time. Analogously, for the transi-

tion from unstable to stable state, the transition probability ~pUSðdiÞ tends to decrease with
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longer dominance times, and we find

~pUUðdiÞ ¼ PðYiþ1 ¼ UjYi ¼ U; diÞ � F� n�Bdi ;di
ð~bUÞ: ð7Þ

Note that we use the approximate sign ‘�’ because the drift of B is not exactly n�B through-

out, but is assumed to change between ν0 and νB during stimulation and blank display, respec-

tively, yielding a mean drift of n�B. Analogously to the above explanation, differences caused by

the approximation can be considered minimal.

In order to obtain quantities comparable to the transition probabilities pSS and pUU in the

HMM, we derive the marginal transition probabilities in the HBMi as the expected value of ~pSS

and ~pUU . As shown by [39], the positions XS and XU of B at the end of an independent stable or

unstable IG distributed dominance time follow the Normal Inverse Gauss (NIG) distribution.

The resulting transition probabilities in the HBMi can then be calculated as

p�SS ¼ PðXS >
~bSÞ and p�UU ¼ PðXU �

~bUÞ: ð8Þ

where XS is NIG-distributed with parameters (0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�S

2 þ n�B
2

p
, n�B, 2bS) and XU is NIG-

distributed with parameters (0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�U

2 þ n�B
2

p
, � n�B, 2bU).

One should note that due to the difference in transition probabilities of the two models, the

parameters ðbS; n�SÞ are not direct reparameterizations of (μS, σS) (and similarly for the unstable

state). Furthermore, the dependence of the transition probability on the length of the previous

dominance time is one important new aspect of the HBMi not described in the HMM, which

will also be used in the section ‘Application of the HBM to the sample data set’ for comparison

of models and empirical observations.

Parameter estimation. In order to estimate the HBMi parameter set

Y ¼ ðbS; n�S; bU ; n
�
U ;

~bS;
~bU ; n

�
BÞ, we use ML estimation. The likelihood L is given by

Lðd1; . . . ; dnjYÞ � aSðnÞ þ aUðnÞ; ð9Þ

where the forward variable αj(i) denotes the probability of being in state j at time i while

observing (d1, . . ., di). The approximation is again due to the averaging of drifts during blank

display and stimulus presentation. The forward variables can be derived recursively [34, 40] by

ajðiÞ ¼

( pjfjðdiÞ if i ¼ 1

fjðdiÞ
X

j2fS;Ug

ajði � 1Þ~pijðdi� 1Þ if i > 1
ð10Þ

with πj as starting distribution and fS and fU denoting the densities of IGð2bS=n�S;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bS=n�S

3
p

Þ

and IGð2bU=n�U ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bU=n�U

3
p

Þ distributed random variables, respectively. Details on the maximi-

zation algorithm can be found in the Materials and methods. After estimation of Θ, the esti-

mates of n̂S and n̂U can be obtained using Eq (4), and analogously for n̂B.

Precision of parameter estimation. The variability of the parameter estimates in the HBMi is

studied analogously to the HMM, using the RE and the AE of the parameter estimates

obtained in 1000 simulations of the 61 parameter combinations estimated from the empirical

data set. For the border parameters bS, bU, ~bS,
~bU , we use the RE, while for the typically small

drift parameters n�S , n�U , n�B, the AE is used. Again, one set of simulations uses the time horizon

of the empirical data, T1 = 1200s (Fig 15A), and a second simulation was performed using

T2 = 3600s (Fig 15B). According to the simulation results, the precision of parameter estima-

tion in the given parameter range is not always satisfactory for the given parameterization

ðbS; bU ; ~bS;
~bU ; n

�
S; n

�
U ; n

�
BÞ, yielding average errors (i.e., mean REs or AEs across all variables)
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smaller than 0.25 in only 24 out of 61 cases for the empirical time horizon T1 and still in only

44 out of 61 for the tripled sample size of T2. This suggests that these raw parameters yield less

reliable estimates because different combinations of b and ν can yield the same mean stable

dominance time. In contrast, the following set of derived parameters that are more easily com-

parable to the HMM parameters shows better properties. We denote by ðm�S; s
�
SÞ and ðm�U ; s

�
UÞ

the mean and standard deviation of dominance times in the HBMi in the stable and unstable

state, respectively. These have analogous interpretations as (μS, σS) and (μU, σU) in the HMM

and are given by

m�S � 2bS=n�S and s�S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bS=n�S

3
p

; ð11Þ

and analogously for m�U and s�U , where the approximation is again due to the minimal differ-

ence between the mean drift n�S and the changing drift νS + ν0 during presentation and blank

display. In addition, we consider the transition probabilities between the states, p�SS and p�UU
(cmp. Eq (8)). Fig 15C and 15D show the median REs for m�S , s�S , m�U , s�U and median AEs for

p�SS, p
�
UU obtained in the 1000 simulations of length T1 (panel C) and T2 (panel D). Concerning

this parameterization, 51 parameter combinations yielded average errors smaller than 0.25

across all variables for T1, while as many as 58 out of 61 cases showed errors smaller than 0.25

for T2. These simulations suggest that the parameterization ðm�S; s
�
S; m

�
U ; s

�
U ; p

�
SS; p

�
UUÞ yields

more reliable parameter estimates in the HBMi than the original parameterization of borders

and drifts.

Application of the HBM to the sample data set. For the analysis of the sample data set,

the HBMc and HBMi were fitted to the dataset of [10] containing responses to continuous and

intermittent stimulation for each of 29 patients with schizophrenia and 32 control subjects,

using the parameter estimation described in the section ‘Parameter estimation’.

Model fit. Because the HBMc represents only a reparameterization of the one-state HMM,

results are completely analogous for continuous presentation. Thus, a high variability of

Fig 15. Precision of parameter estimates in the HBMi. For each of the 61 parameter constellations estimated from the sample

data set, 1000 simulations were performed with the HBMi. (A) and (B): log(median(REs)) of the border parameters bS, bU, ~bS, ~bU, and

log(median(AEs)) of the drift parameters n�S, n�U, n�B with T = 1200s (A) and T = 3600s (B). (C) and (D) log(median(REs)) for the derived

model parameters m�S, s�S, m�U, s�U and log(median(AEs)) for the parameters p�SS and p�UU for T = 1200s (C) and T = 3600s (D).

Parameter combinations with mean errors < 0.25 across all variables plotted in black.

https://doi.org/10.1371/journal.pcbi.1005856.g015
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response patterns can be described with the two parametric distribution (see Fig 16A and

16B), including also different means and variances of dominance times. For intermittent pre-

sentation, the HBMi and the two-state HMM are similar, but also show a number of differ-

ences. As a first similarity to the two-state HMM, the HBMi can also describe and reproduce a

high variety of response pattens (Fig 16C–16F). For example, these include highly regular sta-

ble states that may or may not be interrupted by short unstable phases (C,E) or response pat-

terns with different degrees of regularity (D, F) and different alternation rates. Note also that

the response patterns to intermittent stimulation of six out of the 61 subjects were described

better by the one-parametric HBMc (e.g., E).

In addition to the close description and reproduction of the patterns in the empirical data,

one interesting additional aspect is captured by the HBMi, which cannot be described in the

two-state HMM. As explained in the section ‘Relation of the HBMi to the two state HMM’, the

probability of a transition from stable to unstable state decreases with the length of the domi-

nance time in the HBMi. The same is true for the reverse transition. Indeed, the same observa-

tion can be made in the empirical data set, while this dependence cannot be captured within

the HMM (Fig 17).

Group differences. Due to the high correspondence of the HBMi response patterns with the

empirical data and the neurophysiologically related parameterization, the HBMi provides

potential additional links to underlying neuronal processes of the observed differences

between control subjects and patients with schizophrenia. Here, we consider three aspects

related to continuous and intermittent stimulation and to the transition between these two

conditions.

First, concerning continuous stimulation, we note that the one-state-HMM and the HBMc

yield identically distributed sequences of dominance times. Note that the mean dominance

time m̂ in the HMM (Fig 9A) therefore equals the corresponding value 2b̂=n̂0 in the HBMc. As

a consequence, the results and interpretation were identical, i.e., the higher alternation rate of

the control subjects during continuous presentation (Fig 2) was reflected in a smaller value of

2b̂=n̂0. When analyzing the individual parameters b and ν0, we found no group differences in

the drift ν0, but a tendency for a larger neuronal pool b involved in sensory processing in the

group of patients with schizophrenia (Fig 18A, p< .1, two-sided Wilcoxon test).

Second, regarding intermittent presentation, we focussed on the derived parameters

ðm�S; s
�
S; m

�
U ; s

�
U ; p

�
SS; p

�
UUÞ, which show correspondence to the HMM and good estimation

properties, instead of testing the border and drift parameters individually. Similar to the

HMM, we found an increased mean unstable dominance time in the group of patients with

schizophrenia as compared to healthy controls. More importantly and also consistent with the

HMM, we also found that patients with schizophrenia showed a decreased relative time spent

in S, φ�S (p< .1, two-sided Wilcoxon test, see Eq (17) in the Materials and methods). Again, the

probability p�SS to stay in the stable state seemed to be the main variable contributing to this dif-

ference, being significantly reduced in patients with schizophrenia (Fig 18C, p< .1, two-sided

Wilcoxon test). In order to identify potential neurophysiological mechanisms underlying this

group difference, we further investigated the components of p�SS. Noting that no difference was

observed in the mean stable dominance time m�S ¼ 2bS=n�S and in the relation n�S=n�B of the drift

in stable state and the drift of the background process, one interesting parameter is bS=~bS.

Keeping all other parameters constant, an increase in this quantity means an increase in p�SS
because the crossing of ~bS at the end of a stable dominance time, i.e., staying in the stable state,

gets more likely. In the empirical data set, we found increased values of bS=~bS in the control

group (Fig 18C, p< .1, two-sided Wilcoxon test). In terms of the potential neurophysiological
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Fig 16. HBM: Examples of simulated response patterns. Example empirical response patterns from Fig 1

and response patterns simulated by the HBM (orange). Responses to continuous and intermittent presentation

are plotted in green and blue, respectively. The estimated parameters used for simulation are given in Tables 3

and 4, respectively. (A) and (B) Continuous presentation and HBMc. (C)-(F): Intermittent presentation and

HBMi. Below the orange response patterns, one can see the perception process P and (for the HBMi) the

background process B corresponding to the respective simulation.

https://doi.org/10.1371/journal.pcbi.1005856.g016
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interpretation, this would suggest an increased population size involved in stable perception

processing as a potential main underlying mechanism.

Third, a similar observation resulted from the derived parameter bS/b, which describes a

transition of population sizes from continuous to intermittent stimulus processing. In the data

set, we observed increased values of bS/b for the control group (Fig 18B) as compared to the

group of patients with schizophrenia. Again, applying a potential neurophysiological interpre-

tation, this would suggest that in the control group, the neuronal pool that is additionally

recruited during intermittent presentation in stable states could be higher than in the group of

patients with schizophrenia. Note that this result could not be obtained in the HMM, which

does not explicitly describe a potential transition between continuous and intermittent presen-

tation. However, note that this result should be interpreted carefully due to reduced estimation

precision of the parameters bS=~bS and bS/b.

In summary, this analysis of the HBM model parameters suggests the following explanation

for the observed phenomenon that the alternation rate of the perceived percepts is increased

for patients with schizophrenia during intermittent stimulation, while being decreased during

continuous stimulation. In general, the relative time spent in the unstable state was increased

in patients with schizophrenia. According to the HBM, this was attributed to an increased

probability of transition from the stable to the unstable state, which could be potentially related

to a decreased recruitment of neurons in the stable state. More specifically, a larger neuronal

pool is hypothesized to account for the increased stability, and we accordingly observe a

smaller increase in the neuronal pool from continuous to intermittent stable presentation in

the patients with schizophrenia, which is suggested by the HBM as a main mechanism for the

observed group differences. This analysis of a potential underlying mechanism, explaining the

observed group differences also in the transition from continuous to intermittent presentation,

Fig 17. Mean dominance times in stable state as a function of the successive state. In the empirical data set,

the mean dominance time before a state transition SU is shorter than the mean dominance time before SS (A). This

observation can be reproduced in the HBMi (C), while the expected dominance time in the HMM (B) is equally long for

intervals with and without transition, i.e., independent from transition between states. In the empirical data set [10],

the state transitions were estimated using the Viterbi paths [34]. Analogous results were obtained using a fixed

threshold. For the HBMi, the expected dominance times were derived from the HBMi parameters according to Eq (15)

in the Materials and methods. In the HMM, expected dominance times correspond to m̂S.

https://doi.org/10.1371/journal.pcbi.1005856.g017

Table 3. Estimated HBMi parameter combinations of the typical response pattens to continuous pre-

sentation shown in Fig 1A and 1B.

com. b̂ n̂0

A 2.08 0.40

B 2.42 0.72

https://doi.org/10.1371/journal.pcbi.1005856.t003
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is a particular advantage of the HBM over the HMM, because the HBM provides mechanistic

explanations and variables with potential neurophysiological interpretations.

Discussion

Summary and implications

In the present article we have proposed a model framework for the description and analysis of

perceptual responses to bistable stimuli. In particular, the first goal was to describe a high

number of observed patterns in responses to continuous and intermittent stimulation and

their differences between a group of patients with schizophrenia and healthy controls. The

variety of patterns includes more or less regular dominance times during continuous stimula-

tion and a switching between long and short dominance times, i.e., stable and unstable states,

during intermittent stimulation, with a tendency for periodically occurring percept changes.

We started on a descriptive level, assuming that dominance times were generated by a sim-

ple HMM with only one state for continuous presentation and a stable and an unstable state in

intermittent presentation. The HMM was sufficiently small to allow model fit to short empiri-

cal data sets and could also describe the high variety of empirically observed response patterns

in continuous and intermittent presentation. Interestingly, it also revealed a high degree of

reproducibility of response patterns of the same subject across different sessions. In addition,

it allowed to relate observed group differences in the rate of percept alternations to HMM

parameters, suggesting that especially the relative time spent in the stable state was reduced in

the patients with schizophrenia.

Our second goal was to relate the observed response patterns and group differences to

potential underlying mechanisms and thus, to build a link to models with detailed

Fig 18. Group differences between patients with schizophrenia and control subjects in the HBM. The HBMc

parameter b̂ (A) and the relation b̂=b̂S (B). (C): Differences in b̂S=~̂bS and p̂�SS. The raw data together with the median

(colored diamonds) and 25%- and 75%-quantiles are shown. All p-values of a two-sided Wilcoxon test were below.1.

https://doi.org/10.1371/journal.pcbi.1005856.g018

Table 4. Estimated HBMi parameter combinations of the typical response pattens to intermittent presentation shown in Fig 1C–1F.

com. n̂0 b̂S n̂S b̂U n̂U ~̂bS ~̂bU
n̂B

C 0.72 41.74 0.24 1.84 0.74 49.71 2.39 0.54

D 0.27 5.42 0.08 1.06 0.93 4.56 1.13 0.06

E 0.32 52.58 0.25 NA NA 0.00 NA 17.5

F 0.57 13.5 0.24 1.00 0.24 110.28 0.77 1.90

https://doi.org/10.1371/journal.pcbi.1005856.t004
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neurophysiological assumptions [7, 13, 14, 18, 20] that may not include all types or response

patterns and/or may not allow fitting to short data sets. To that end, we proposed a hierarchical

model of interacting Brownian motions (HBM). The HBM is based on the common assump-

tion that the sequence of percept changes results from a competition of conflicting neuronal

populations [14, 17, 18, 20, 27]. Instead of modeling these in detail, we describe the activity dif-

ference by a Brownian motion P with drift ν0 [21] between two borders ±b, where the first hit-

ting times of the borders indicate percept changes. Roughly speaking, the drift ν0 could be

considered related to the neuronal interactions within and between the populations, while the

border b could be considered related to the population sizes. In order to describe responses to

intermittent presentation, this mechanism is adapted in another population pair. These popu-

lations exhibit a corresponding background process B that evokes switching between stable

and unstable states, similar to switching between the two percepts. In particular, B causes the

perception process P to change parameters from small drift νS and large border bS in the stable

state to fast drift νU and small border bU in the unstable state.

The HBM could be fitted nicely to the given empirical data set, reproducing a high variety

of response patterns to continuous and intermittent stimulation in healthy subjects and

patients with schizophrenia. In particular, the model fit was even improved over the descrip-

tive HMM by reproducing shorter stable dominance times before a change to the unstable

state. The HBM also provided more detailed explanations for the observed group difference

that patients with schizophrenia showed higher alternation rates during intermittent stimula-

tion, while percept alternation was decreases during continuous presentation. In particular,

the HBM contains additional mechanisms of switching between stable and unstable state for

intermittent presentation, which is assumed inactive during continuous presentation. The

HBM, similar to the HMM, suggests an increased probability of switching to the unstable state

for the patients with schizophrenia and thus, a longer relative time spent in the unstable state.

The HBM also provides additional potential explanations related to the borders, or assumed

population sizes, suggesting a higher increase from continuous (border b) to stable intermit-

tent presentation (border bS) in the healthy subjects. This is a first finding on the transition

from continuous to intermittent presentation, which results from including both continuous

and intermittent presentation in one model.

These findings suggested by the HBM, which include a longer relative time spent in the

unstable state for the patients with schizophrenia and a smaller population size involved in

percept stabilization, are also in agreement with recent findings of [41]. They studied the learn-

ing behavior of healthy subjects of whom the degree of delusional ideation [42] had been mea-

sured. In compliance with earlier studies [for a review see 43], they reported that subjects with

larger delusion proneness made decisions on the basis of less information and were also less

resilient against irrelevant information [compare also the literature about jumping to conclu-

sions, e.g. 44, 45]. In the present setting, the ambiguous stimulus represents a constant source

of partly contradicting visual information [see also 5, 8]. In that sense, the unstable state could

be considered a state in which one is less resilient against this contradicting visual information,

which yields a high rate of percept changes. The fact that the patients with schizophrenia spent

more time in the unstable state is therefore highly consistent with the findings of [41]. More-

over, this finding is also compatible with current models of schizophrenia in the framework of

predictive coding [46] that propose a reduced top-down influence of stored predictions. How-

ever, it goes beyond previous work by highlighting the role of a background process that con-

trols the balance between stable and unstable states in perceptual inference. In addition, the

population sizes could be considered related to the amount of information taken into consid-

eration to create a percept. Again, consistently with [41], we find, in the stable state, larger esti-

mated population sizes, bS, of the perceptual populations L and R in healthy controls than in
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patients with schizophrenia. Also, these population sizes are typically much larger than the

population sizes in the unstable state (bS>> bU), which would be consistent with the notion

that subjects in the unstable state need less information to change their perception.

Applicability and model extensions

The HBM may also be used to describe dominance times resulting from other experiments

with ambiguous visual stimuli studying, e.g., motion-induced-blindness, binocular rivalry,

moving plaids, the Necker Cube, orthogonal gratings or the house/face-paradoxon [e.g. 21, 47]

or also bistable auditory stimuli [48]. The HBM is, however, not designed for tristable stimuli,

and transient stimulus manipulations as used in after-effect studies cannot be captured by the

HBM in its current form. In different bistable settings, the HBM cannot be applied directly,

but would allow for potential extensions. For example, in its present form, the HBM describes

only balanced perception. However, it could be extended with respect to unbalanced bistable

displays, e.g., for different eye contrasts during binocular rivalry [49], by choosing different

drift parameters for the positive and the negative drift direction during presentation. Similarly,

the drift could be chosen to vary as a function of attention [50, 51] or as a function of long-

term history (e.g., the cumulative history H proposed in [31]). In studies on mixed perception

during binocular rivalry [19], one might use an additional border to define an intermediate

range for the perception process in which mixed perception is described.

One should note that the HBMi in its current form is restricted to a duration of blank dis-

plays lb� lp � ν0/νS. For longer blank displays, the mean drift of P during stable states, n�S, will

be negative, yielding no perception change with high probability. However, it would be possi-

ble to extend the model accordingly, assuming a temporal evolution in the drift parameters,

given corresponding extended empirical observations. In addition, note that the border of the

perception process is assumed to be b during continuous stimulation and bS (or bU) during

intermittent stimulation. Therefore, an instantaneous change of intermittent to continuous

presentation is not yet described. Here, we qualitatively assume that the border jumps very fast

from b to bS with the onset of a blank display, while going back slowly during stimulation. A

transition from continuous to intermittent presentation would therefore instantly change the

response pattern, while a reverse transition would gradually reverse the change back to the

one-state process. Quantitative validation and fitting of this assumption would be interesting,

but requires corresponding empirical observations, in which the length of the presentation

period lp is varied. This would also allow investigation of potential relations between the

HBMc and HBMi parameters and thus, between the mechanisms assumed to underlie the

identified group differences.

Concerning the impact of the duration of the blank display lb, two aspects should be dis-

cussed. First, the HBM can theoretically reproduce a phenomenon reported earlier in [14].

Conditional that one percept has been present for a short while, the probability of a percept

change rises with the blank duration lb. In the HBMi, the same is observed during the unstable

state with typically short dominance times: During the unstable state the drift in the blank dis-

plays, νU, is typically larger than the drift ν0 during stimulation. Therefore, longer blank dis-

plays speed up P, thereby reducing perceptual stability.

Second, one interesting potential model extension is concerned with the relationship

between the length of the blank display and the alternation rate. As reported earlier by [14, 15,

18], the mean dominance time in intermittent presentation has been found to be a function of

the relationship between the presentation length lp (or ‘ON’-period) and the length of the

blank display lb (or ‘OFF’-period). Particularly, the dependence between lb and the alternation

rate is non-monotonic, as would be implied in the HBMi, but follows an inverted U-shape [22,
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24, 25] with a peak roughly at 0.4 s. Such an inverted U-shape would be possible in a model

extension of the HBMi. As discussed in the Results, the drift terms νS, νU only represent the

mean drift across the period of blank display, which is sufficient and parsimonious in the

given data set with fixed length of blank display. However, the model would be fully consistent

with the assumption that the drifts change during the ‘OFF’-period, such that the mean drifts

νS(lb) and νU(lb) are functions of the length of the blank display lb. In Fig 19A these mean drifts

νS, νU decrease with lb, where the stronger drifts at the beginning of the blank display could be

effects of the recent stimulation. Panel B shows the resulting mean alternation rate, which has

an inverted U-shape with a maximum around 0.4 s and shows increased stability under inter-

mittent stimulation for lb> 0.7. This increased stability is caused first by a small drift νS< ν0

in that range. Second, it is also caused by the fact that the time interval lb in which the back-

ground process B has positive drift is longer, leading to an increased probability to reach ~bS

and thus, to stay in the stable state. Estimation of the functions νS(lb) and νU(lb) from a suitable

data set with variable lengths of blank displays would be an interesting task.

In summary, the proposed HBM intends to provide a link between empirical data analysis

and mechanistic modeling. On the one hand, it aims at precisely describing the high variety of

response patterns observed in perceptual responses to bistable stimuli. On the other hand, it

aims at bridging the gap to detailed mechanistic models of bistable perception, allowing

assumed processes to be fitted to short empirical data sets and thus, also the analysis of group

differences. Various extension possibilities show a potential of the HBM to investigate related

experimental contexts. By including both continuous and intermittent stimulation, the HBM

can thus provide interesting new hypotheses on potential neuronal mechanisms of cognitive

phenomena.

Materials and methods

Estimation of HMM parameters

Here we describe the estimation procedures of the HMM parameters for continuous presenta-

tion and for intermittent presentation. We denote by d≔ (d1, d2, . . ., dn) the set of dominance

times modeled as realizations of random variables D = (D1, . . ., Dn).

Continuous presentation: ML estimation. The HMM for continuous presentation

assumes that all dominance times di are independent and Inverse Gaussian distributed with

Fig 19. HBMi extension for different lengths of blank display. Parameters derived for subject B and C in

Tables 3 and 4, which is the same subject during continuous and intermittent presentation. A) The mean drifts

νS, νU decrease with the length of the blank display lb. B) The resulting mean alternation rate ρ under

intermittent stimulation (black) is derived using formula (18) (Materials and methods). The empirical mean

alternation rates per minute of the subject during intermittent viewing with lb = 0.8 and during continuous

viewing are marked by blue and green lines, respectively.

https://doi.org/10.1371/journal.pcbi.1005856.g019

A hierarchical stochastic model for bistable perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005856 November 20, 2017 27 / 38

https://doi.org/10.1371/journal.pcbi.1005856.g019
https://doi.org/10.1371/journal.pcbi.1005856


mean μ and standard deviation σ. The log-likelihood function is then given by

logLðdjm; sÞ ¼
1

2

Xn

i¼1

log
m3

2ps2d3
i

� �

�
m

s2

ðdi � mÞ
2

di
: ð12Þ

Setting the partial derivatives with respect to μ and σ to zero yields the estimates of Eq (12)

[32]:

m̂ ¼ �md≔
1

n

Xn

i¼1

di and ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m3
d

n

Xn

i¼1
ð1=di � 1=�mdÞ

r

:

Intermittent presentation: Baum-Welch-Algorithm. The HMM for intermittent pre-

sentation uses the parameter set ϑ = (μS, σS, μU, σU, pSS, pUU) for the mean and standard devia-

tion in the stable and unstable state, respectively, and the transition probabilities between these

two states. This parameter set is estimated with the Baum-Welch-Algorithm [BWA, 33] which

is an iteratively working instance of the EM-Algorithm maximizing the model likelihood

locally. Here, we explain it briefly [for details see, e.g., 34]. In the first step one applies the so

called Forward- and Backward-Algorithm. The forward-variable αj(i) is defined as the proba-

bility of observing the sequence d1, d2, . . ., di and being in state j at time i, given the model

parameters. The backward-variable βj(i) denotes the analogous probability of observing the

ending partial sequence di+1, di+2, . . ., dn and being in state j at time i. To avoid underflow we

normalize both variables [e.g. 34], resulting in the normalized variables ~a jðiÞ, ~b jðiÞ. The nor-

malized variables can be derived iteratively as follows

a�j ð1Þ≔pjf
IG

mj;sj
ðd1Þ; ci≔ a�SðiÞ þ a�UðiÞ; ~a jðiÞ≔ a�j ðiÞ=ci;

a�j ðiÞ≔ f IG
mj;sj
ðdiÞ

X

k2fS;Ug

~akði � 1Þ~pkj for i ¼ 2; . . . ; n;

~b jðnÞ ¼ 1=cn and ~b jðiÞ ¼
X

k2fS;Ug

pjkf
IG

mk ;sk
ðdiþ1Þ

~bkðiþ 1Þ=ci for i ¼ n � 1; . . . ; 1;

where πj denotes the probability that the Markov chain starts in state j, pSU = 1 − pSS, pUS = 1 −
pUU and f IG

m;s
ðxÞ denotes the density of the IG distribution with expectation μ and standard devi-

ation σ evaluated at x. Note that we suppress the dependence of ~a jðiÞ and ~b jðiÞ on the parame-

ter set ϑ for convenience.

The forward and backward variables are used to derive the probability γj(i|ϑ) of being in

state j at time i, given the whole sequence d≔ (d1, . . ., dn) and the parameters ϑ

gjðijWÞ ¼
~a jðiÞ~b jðiÞ

~aSðiÞ~bSðiÞ þ ~aUðiÞ~bUðiÞ
:

Moreover, we need the probability ξj,k(i|ϑ) of being in state j at time i and in state k at time

i + 1, given the data d and the parameters ϑ,

xj;kðijWÞ ¼
~a jðiÞpjk~bkðiþ 1Þf IG

mk;sk
ðdiþ1Þ

P
j

P
k~a jðiÞpjk~bkðiþ 1Þf IG

mk;sk
ðdiþ1Þ

:

To iteratively derive the parameter estimates, the BWA applies expectation maximization as

follows. Let ϑ(m) denote the parameter estimates after the m-th iteration step, and let Y denote
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the set of all possible state sequences of the hidden Markov chain. Let Y = (Y1, . . ., Yn) denote a

Y-valued random variable and y = (y1, . . ., yn) a realization of Y. The BWA then iteratively

maximizes the Q-function [e.g. 35] over Y,

Q≔QðWjWðmÞÞ ¼
X

y2Y

logLðd; yjWÞPðY ¼ yjd; WðmÞÞ;

i.e., the expectation of the complete-data log-likelihood L across all possible paths y 2 Y. The

updated parameter set ϑ(m+1) is chosen such that it maximizes Q. For a fixed state sequence

y = (y1, . . ., yn) the log-likelihood of the data is

logLðd; yjWÞ ¼ logpy1
þ log f IG

my1 sy1
ðd1Þ þ

Xn

i¼2

ð log ðpyi� 1yi
Þ þ log ðf IG

myi ;syi
ðdiÞÞÞ:

Insertion into Q yields

QðWjWðmÞÞ ¼
X

y12fS;Ug

logpjPðY1 ¼ y1jd; W
ðmÞ
Þ

þ
X

yi� 12fS;Ug

X

yi2fS;Ug

Xn

i¼2

logpyi� 1yi
PðYi� 1 ¼ yi� 1;Yi ¼ yijd; W

ðmÞ
Þ

þ
X

yi2fS;Ug

Xn

i¼1

1

2
PðYi ¼ yijd; W

ðmÞ
Þ log

m3
yi

2s2
yi
pd3

i

 !

�
myi

s2
yi

ðdi � myi
Þ

2

di

 !

:

Note that the first line depends only on the initial distribution π, the second line depends

on the transition probabilities and the third line depends on the parameters of the Inverse

Gaussian distributions. Therefore, iterative parameter estimation separately maximizes these

terms. Note further that we can rewrite PðYi ¼ yijd; W
ðmÞ
Þ ¼ gyi

ðijWm
Þ and

PðYi� 1 ¼ yi� 1;Yi ¼ yijd; W
ðmÞ
Þ ¼ xyi� 1yi

ði � 1jW
m
Þ, which yields the following estimates in the

m + 1-st iteration step.

For the entries of the transition matrix, Lagrange maximization of the second line under

the constraints pSS + pSU = pUU + pUS = 1 yields the estimate

p̂ðmþ1Þ

jk ¼

Pn� 1

i¼1
xj;kðijW

ðmÞ
Þ

Pn� 1

i¼1
gjðijW

ðmÞ
Þ
;

in the (m + 1)-th step of the BWA [e.g. 34].

The big bracket in the last line of the Q-function is analogous to the likelihood function of

the IG distribution (Eq (12)) given in the section ‘Continuous presentation: ML estimation’

(with the additional indices yi and the weighting factors PðYi ¼ yijd; W
ðmÞ
Þ). Therefore, setting

the partial derivatives to zero yields for j 2 {S, U} the analogous estimates

m̂
ðmþ1Þ

j ¼

Xn

i¼1

gjðijW
ðmÞ
Þdi

Xn

i¼1

gjðijW
ðmÞ
Þ

; ŝ
ðmþ1Þ

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂3
j

Pn
i¼1

gjðijW
ðmÞ
Þ

Xn

i¼1

gjðijW
ðmÞ
Þ

1

di
�

1

m̂ j

 !v
u
u
t :

which are the updates for parameters of the Inverse Gaussian distributions in the (m + 1)-th

step of the BWA.

In order to update the starting distribution, we do not maximize the respective summand

of Q but we assume the stationary distribution as the starting distribution π. The stationary
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distribution is derived using the eigenvectors of the transpose of the transition matrix [52],

which yields

p
ðmþ1Þ

S ¼
pðmþ1Þ

UU � 1

pðmþ1Þ

SS þ pðmþ1Þ

UU � 2
; and p

ðmþ1Þ

U ¼ 1 � p
ðmþ1Þ

S :

These iterative steps are repeated until a desired level of convergence is reached.

Starting values and constraints. As starting values m
ðsÞ
S , s

ðsÞ
S , m

ðsÞ
U , s

ðsÞ
U , pðsÞSS , pðsÞUU for the Baum-

Welch algorithm we chose, in correspondence with the data set, pðsÞSS ¼ pðsÞUU ¼ 0:5; m
ðsÞ
S ¼ 4;

s
ðsÞ
U ¼ 5. In order to reduce the probability that the Baum-Welch-Algorithm will be captured

in a local extremum, we chose ten equidistant values for m
ðsÞ
S ranging between 60 and

0.95maxi di, and for each value of m
ðsÞ
S we choose ten equidistant values for s

ðsÞ
S between 10 and

1:1m
ðsÞ
S . Out of the resulting one hundred sets of parameter estimates we chose the parameter

set with the highest log-likelihood. If the response pattern shows only dominance times larger

than 30 seconds we reduce the model to the stable phase. The parameters μS and σS are derived

by ML as described in the section ‘Continuous presentation: ML estimation’, and we set

pSS≔ 1. If the dominance time are only smaller than 30 seconds, we only estimate μU and σU
by ML and use pUU = 1.

For subjects with relatively clear distinction between long and short dominance times

this procedure yields reasonable estimates. For subjects with less clear distinction, we

added the following constraints based on the idea that short dominance times should not

affect estimation of the stable parameters and long dominance times should not affect esti-

mation of unstable parameters. Note that in continuous presentation where no state exists,

about 90% of the dominance times are shorter than 15 seconds, while only about two per-

cent are larger than 30 seconds. Therefore, we first require ŝS > 1 such that not just the

largest dominance time is estimated as stable and all others are categorized as unstable

(which may increase the likelihood). Second, we do not accept HMMs with m̂S < 0:98m̂15

where m̂15 ≔ ð1=jd1d>15jÞ
Pn

i¼1
di1di>15. This prevents dominance times smaller than 15

seconds to be considered for the estimation of μS. Third, we require m̂S < 1:02m̂75 where

m̂75 ≔ ð1=jd1d>75jÞ
Pn

i¼1
di1di>75 if any dominance time is larger than 75 seconds and

m̂75 ¼ 75 otherwise such that rather stable dominance times longer than 75 seconds are not

classified as unstable.

Expected relative time spent in the stable state. Here we derive the formula for the

expected time φS spent in the stable state investigated in Fig 9. To that end, let Nj, j 2 {S, U},

denote the (random) number of dominance times in state j before a state change. As the

number of dominance times before a state change is geometrically distributed with probability

1 − pjj, we have for the expectation

E½Nj� ¼
1

1 � pjj
:

Moreover, let ðDS
i Þi�1

be a sequence of independent IG(μS, σS)-distributed random variables

and ðDU
i Þi�1

be a sequence of IG(μU, σU)-distributed random variables. We derive φS as

φS≔
E½length of a stable phase�

E½length of a stable phaseþ length of an unstable phase�
:

The length of a stable phase is a random variable distributed like
PNS

i¼1
DS

i , where

DS
1
; . . . ;DS

NS
are independent from each other and also independent of NS. Therefore we have
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[53]

E
XNS

i¼1

DS
i

" #

¼ E NS½ �E DS
i

� �
¼

mS

1 � pSS
;

and analogously for the expected length of an unstable phase. This yields

φS ¼
mS=ð1 � pSSÞ

mS=ð1 � pSSÞ þ mU=ð1 � pUUÞ
¼

ð1 � pUUÞmS

ð1 � pUUÞmS þ ð1 � pSSÞmU
: ð13Þ

Estimation of HBM parameters

Here we describe the estimation procedures of the HBM parameters for continuous presenta-

tion and for intermittent presentation.

HBMc. Recall that the HBMc describes the perception process P as a Brownian motion

with drift ±ν0, where the sign of the drift changes at the first hitting time of the borders ±b. The

two parameters (b, ν0) are estimated using the ML method. Due to transformation invariance

of the ML estimates, we can therefore use the ML estimators from the section ‘Continuous pre-

sentation: ML estimation’ applying that the resulting dominance times are IG distributed with

expectation μ = 2b/ν0 and variance s2 ¼ 2b=n3
0
, or conversely, b ¼ ð1=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
m3=s2

p
and

n̂0 ¼
ffiffiffiffiffiffiffiffiffiffi
m=s2

p
. This yields

n̂0 ¼ 2nb̂=
Xn

i¼1

di and b̂ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1=n
Pn

i¼1

1=di � n=
Pn

i¼1

di

v
u
u
u
t

:

HBMi. The parameters of the HBMi are Y ¼ ðbS; n�S; bU ; n
�
U ;

~bS;
~bU ; n

�
BÞ where ðbS; n�SÞ and

ðbU ; n�UÞ denote the border and drift parameters of the perception process P in the stable and

the unstable state, respectively. ~bS,
~bU , n�B are the border and drift parameters of the back-

ground process B which determines the hidden state. Recall that the likelihood of the whole

model given the data and the parameter vector Θ is approximately

LðdjYÞ � aSðnÞ þ aUðnÞ;

using the forward variables αj(i) defined recursively in Eq (10). Note again that we suppress

dependence on the parameters Θ for convenience. In practice we need to avoid underflow

when calculating αj(i). To that end the forward variables are normalized such that ∑j αj(i) = 1

for all time points i, using the following steps [40]. For j 2 {S, U},

a�j ð1Þ≔ ajð1Þ; ci≔ a�SðiÞ þ a�UðiÞ; ~a jðiÞ≔ a�j ðiÞ=ci;
a�j ðiÞ≔ f IG

mj;sj
ðdiÞ

X

k2fS;Ug

~akði � 1Þ~pkj; i > 1:

The likelihood then derives as

LðdjYÞ �
Yn

i¼1

cið~aSðnÞ þ ~aUðnÞÞ ¼
Yn

i¼1

ci; yielding logL �
Xn

i¼1

log ðciÞ: ð14Þ

Parameter estimation is then obtained by maximizing ∑i log(ci), which is a function of the

model parameters Θ. To that end we apply the Newton-type algorithm [54] implemented in
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the R-function nlm(). Alternatively the COBYLA-Algorithm [55] for maximization under

non-linear constraints can be applied.

Next we discuss the set of starting values fbðsÞS ; n�S
ðsÞ; bðsÞU ; n�U

ðsÞ; ~bðsÞS ; ~b
ðsÞ
U ; n

�
B
ðsÞg for the optimiza-

tion algorithm. Let U ≔ fm̂15; m̂30g and O≔ fŝ15; ŝ30; 1:15ŝ30g, where m̂k and ŝk denote the

empirical mean and standard deviation of all dominance times larger than k seconds. Then we

choose the initial values for bS and n�S from the sets

bðsÞS 2 f
ffiffiffiffiffiffiffiffiffiffiffiffi
m3=s2

p
=2jm 2 U ; s 2 Og; n�S

ðsÞ 2 f
ffiffiffiffiffiffiffiffiffiffi
m=s2

p
jm 2 U ; s 2 Og:

Depending on n�S
ðsÞ and bðsÞS , we choose bðsÞU 2 f0:01bðsÞS ; 0:05bðsÞS ; 0:15bðsÞS g, ~bðsÞS 2 fb

ðsÞ
S ;

10bðsÞS g, n
�ðsÞ
U 2 f1:01n

�ðsÞ
S ; 3n

�ðsÞ
S ; 7n

�ðsÞ
S g, furthermore n�B

ðsÞ 2 f0:1; 3g and ~bðsÞU 2 f� 3; 0; 3g.

The initial value for pS ¼ P(process starts in the stable state) is set to p̂S ¼ 1 if d1� 45,

p̂S ¼ 0 if d1� 15, and p̂S ¼ 1=2 otherwise. Alternatively and comparable to the HMM the sta-

tionary distribution can be used for the initial distribution, thereby reducing the number of

parameters by one. As this, however, requires numerical integration and increases the compu-

tational effort considerably and the differences between the two approaches were negligible we

used the simpler rule.

The maximization algorithm is applied using all combinations of starting values. We then

take the set of parameter estimates which yields the highest log-likelihood and fulfills the fol-

lowing constraints

AÞ nU � nS; BÞ 0 � bU � bS; CÞ ~bS � 0; DÞ nB > 0;

EÞ m�S � 2bS=n�S � 0:98m̂15; FÞ s�S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bS=n�S
3

q

< 1:20ŝ15:

Constraints A) to D) result from the model assumptions, E) prevents dominance times

smaller than 15 seconds to be considered for the estimation of μS, analogously to the HMM

procedure. Constraint F) prevents too big estimates of standard deviations, which would yield

implausible results.

In cases in which only dominance times larger than 30 seconds are observed, we apply the

algorithm described for the HBMc, where bS, n�S are estimated like in the section ‘HBMc’ and

~bS is set to zero. In cases in which only dominance times up to 30 seconds are observed, we

proceed analogously, where bU, n�U are estimated like in the section ‘HBMc’ and set ~bU ¼ 1010.

In either case we set n�b ¼ 10 and do not estimate the other variables.

HBMi: Dominance time before state changes

Stable dominance time before a change to the unstable state. In the section ‘Relation of

the HBMi to the two state HMM’ we discussed that in the HBMi, stable dominance times are

shorter when occurring directly before a state change to the unstable state than when followed

by another stable dominance time. The same observation was also made in the sample dataset

(Fig 17). Therefore, we derive here the expected length m�S of a stable dominance time before a

state change and its corresponding expected length mþS before another stable dominance time.

Let Y ¼ ðbS; n�S; bU ; n
�
U ;

~bS;
~bU ; n

�
BÞ be the parameter set of an HBMi, and let DS

1
denote an

IGð2bS=n�S;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bS=n�S

3
p

Þ-distributed random stable dominance time. Further, let p�SS denote the

probability to stay in the stable state (8), and let Yi denote the hidden state during the i-th
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dominance time. Then it holds

mþS ≔ E½DS
1
jY1 ¼ S;Y2 ¼ S� ¼ E½DS

1
jY1 ¼ S;BDS

1
� ~bS�

¼

R1
0
PðDS

1
¼ t;BDS

1
� ~bSÞtdt

PðBDS
1
� ~bSÞ

:

Now we integrate across all possible values t that DS
1

can take, using independence of B and

P during DS
1
, IG distribution of DS

1
and normal distribution of BDS

1
. Further we note that the

probability in the denominator equals p�SS, which yields

mþS ¼ ðp
�

SSÞ
� 1

Z 1

0

f IG
2bS=n�S ;

ffiffiffiffiffiffiffiffiffiffi
2bS=n�S

3
p ðtÞð1 � Fn�Bt;t

ð~bSÞÞtdt: ð15Þ

Analogously, we obtain

m�S ¼ E½D
S
1
jY1 ¼ S;Y2 ¼ U� ¼ ð1 � p�SSÞ

� 1

Z 1

0

f IG
2bS=n�S ;

ffiffiffiffiffiffiffiffiffiffi
2bS=n�S

3
p ðtÞFn�Bt;t

ð~bSÞ: ð16Þ

Expected relative time spent in the stable state. In this section we derive the formula for

the expected relative time φ�S spent in the stable state in the HBMi analyzed in the section

‘Application of the HBM to the sample data set’. To that end, let N�j , j 2 {S, U}, denote the (ran-

dom) number of dominance times of the HBMi in state j before a state change. As the number

of dominance times before a state change is geometrically distributed with probability 1 � p�jj
its expectation is given by E½N�j � ¼ ð1 � p�jjÞ

� 1
. (Again, due to taking the mean of different

drifts, this derivation is only a close approximation, but we omit approximation signs here for

convenience.) Again, we derive φ�S as

φ�S ≔
E½length of a stable phase�

E½length of a stable phaseþ length of an unstable phase�
:

The length of a stable phase is a random variable distributed like
PN�S

i¼1 DS
i , where

DS
1
; . . . ;DS

N�S
denote the random stable dominance times. Given N�S , we use linearity of expecta-

tion to compute the conditional expectation

E
XN
�
S

i¼1

DS
i jN

�

S

" #

¼ ðN�S � 1ÞmþS þ m�S :

Now we take expectation over N�S to find

E
XN
�
S

i¼1

DS
i

" #

¼
p�SS

1 � p�SS
mþS þ m�S :

An analogous result holds for the expected length of an unstable phase. This yields

φ�S ¼

p�SS
1 � p�SS

mþS þ m�S

p�SS
1 � p�SS

mþS þ m�S þ
p�UU

1 � p�UU
mþU þ m�U

: ð17Þ
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HBMi: Derivation of the alternation rate ρ as used in Fig 19B

Here, we derive a formula for the alternation rate ρ used in Fig 19 given the HBMi parameter

set ðm�S; s
�
S; m

�
U ; s

�
U ; p

�
SS; p

�
UUÞ. For each length of blank display lb and the value of νS, νU as shown

in Fig 19A the mean drifts per second in the stable and the unstable state n�S , n�U and the mean

drift of the background process n�B are derived using Eq (4). Then, we use Eqs (8) and (11) to

derive the values ðm�S; s
�
S; m

�
U ; s

�
U ; p

�
SS; p

�
UUÞ given the mean drifts per second, and we recall

Eq (17) for φ�S, and analogously for φ�U
We now show that the alternation rate can be described as

r≔ lim
D!1

E½N�ðDÞ�
D

¼
φ�S
m�S
þ

φ�U
m�U
; ð18Þ

where N�(Δ) denotes the number of perceptual changes in an interval of length Δ. We split up

N�ðDÞ ¼ N�S ðDÞ þ N�UðDÞ, where N�S ðDÞ and N�UðDÞ denote the number of perceptual changes

in the respective stable and unstable phases in the interval of length Δ. We then show

E½N�S ðDÞ�
D
!
D!1

φ�S
m�S
;

and analogously for the unstable state. To that end, let ΔS be the time spent in the stable state

in a time interval of length Δ. By the Elementary Renewal Theorem [e.g. 56] it holds

E½N�S ðDÞ�
DS

¼
E½N�S ðDSÞ�

DS
!
D!1

1

m�S

as Δ!1 naturally implies ΔS!1. According to the definition of φ�S as the expected relative

time spent in the stable state, we get DS=D! φ�S in probability. This yields the claim

E½N�S ðDÞ�
D

¼
DS

D
�
E½N�S ðDÞ�

DS
!
D!1

φ�S
m�S
:

Experimental protocol and data preprocessing

Details on experimental protocol. The sample data set for main analysis was collected as

described in [10], the sample data for the analysis of reproducibility was collected as described

in [9]. In both cases, participants took part in a behavioral experiment including continuous

and intermittent stimulation with the same ambiguous stimulus. This stimulus was a struc-

ture-from-motion stimulus that appears as a rotating sphere. The rotation direction of the

sphere is ambiguous and equally compatible with leftward and rightward percepts. For contin-

uous stimulation, the sphere was presented throughout four minutes in which participants’

perception spontaneously alternated between the two percepts. Participants indicated percep-

tual alternations via button presses on a keyboard. For intermittent stimulation, the sphere

was presented for twenty minutes repeatedly for short intervals of 0.6 s interleaved by blank

screens of 0.8 s duration. Here, participants indicated the perceived rotation direction at every

1.4 s at each presentation of the sphere. Please refer to [9, 10] for a detailed description of the

data collection. As suggested in [10], missing responses during intermittent stimulation were

replaced by their preceding responses because the reported percept typically persisted to the

next available response.

Investigation of history dependence in the response patterns. Long-term dependencies

in the data set of [10] during continuous presentation are analyzed using the Pearson
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correlation coefficient cH between the dominance times and the cumulative history H as intro-

duced in [31]. The history H is a function of the length and recency of previously dominated

percepts. For each of the 57 subjects with at least five dominance times, cH is estimated as

explained in [31]. To assess statistical significance, 1000 data sets are obtained for each subject

by permutation of the dominance times to approximate the distribution of cH under the null

hypothesis of independent and identically distributed dominance times. Statistical significance

on the 5% level is obtained by comparison of the empirical history cH to the 95% quantile of

the distribution of cH derived from the permuted data sets.

Supporting information

S1 Data. Raw data including dominance times from the studies [9, 10]. Data include domi-

nance times for intermittent (AlbertetalDataINT2015.RData) and continuous (AlbertetalData-

CON2015.RData) stimulation for each of the 61 subjects of [10], and dominance times of two

trials of continuous stimulation for each of the 105 subjects of [9] (AlbertetalDataCON2013.

RData). A pdf file (AlbertetalDataDescription.pdf) provides a detailed description of the data-

sets. The data files and pdf file are packed in the supporting information file S1_Data.zip.
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