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Abstract

The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long

stream of studies including recent experiments investigating motor sequence learning in

adult human subjects have produced a number of puzzling and seemingly contradictory

results. In particular, when subjects have to learn multiple action sequences, learning is

sometimes impaired by proactive and retroactive interference effects. In other situations,

however, learning is accelerated as reflected in facilitation and transfer effects. At present it

is unclear what the underlying neural mechanism are that give rise to these diverse findings.

Here we show that a recently developed recurrent neural network model readily reproduces

this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a

network of recurrently connected threshold units that combines a simplified form of spike-

timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring net-

work stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained

on sequence learning tasks modeled after recent experiments we find that it reproduces the

full range of interference, facilitation, and transfer effects. We show how these effects are

rooted in the network’s changing internal representation of the different sequences across

learning and how they depend on an interaction of training schedule and task similarity. Fur-

thermore, since learning in the model is based on fundamental neuronal plasticity mecha-

nisms, the model reveals how these plasticity mechanisms are ultimately responsible for the

network’s sequence learning abilities. In particular, we find that all three plasticity mecha-

nisms are essential for the network to learn effective internal models of the different training

sequences. This ability to form effective internal models is also the basis for the observed

interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving

forces behind our ability to learn complex action sequences.
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Author summary

From dialing a phone number to driving home after work, much of human behavior is

inherently sequential. But how do we learn such sequential behaviors and what neural

plasticity mechanisms support this learning? Recent experiments on sequence learning in

human adults have produced a range of confusing findings, especially when subjects have

to learn multiple sequences at the same time. For example, the succes of training can

strongly depend on subjects’ training schedules, i.e., whether they practice one task until

they are proficient before switching to the next or whether they interleave training of the

different tasks. Here we show that a model self-organizing neural network readily explains

many findings on human sequence learning. The model is formulated as a recurrent net-

work of simplified spiking neurons and incorporates multiple biologically plausible plas-

ticity mechanisms of neurons and synapses. Therefore, it offers a theoretical bridge

between basic mechanisms of synaptic and neuronal plasticity and the behavior of human

subjects in sequence learning tasks.

Introduction

Humans can improve their performance in sequential movement tasks through practice, but

such motor learning has shown puzzling and seemingly contradictory results. On the one

hand, a wide variety of proactive and retroactive interference effects have been observed when

multiple tasks have to be learned [1]. On the other hand, some studies have reported facilita-

tion and transfer of learning between different tasks, sometimes based on abstract structure

similarities [2]. At present it is unclear what learning mechanisms give rise to these various

findings, how these effects depend on the training, what their biophysical substrate is, and in

what brain structures they are implemented.

Progress towards answering questions about the neural underpinnings of sequence learning

in humans and other mammals has revealed that it depends on a number of brain structures

including the recurrent loops between neocortex, cerebellum, and basal ganglia [3]. At this sys-

tem level, computational modeling work rooted in reinforcement learning has tried to explain

the contributions of different brain areas [4] while matching the behavioral performance of

humans and monkeys. At the cellular level, there has been a strong interest in how the learning

of sequential patterns may be supported by the temporally asymetric learning window of

spike-timing-dependent plasticity (STDP) [5–9] and related learning rules, e.g., [10–17],

review in [18]. Furthermore, it has been investigated how the relatively short time windows

associated with STDP might be extended to behaviorally relevant time scales [19]. However,

such models have not been related to human performance in actual sequence learning experi-

ments and no mechanistic explanation of the above-mentioned interference and facilitation

effects has been given.

Here we show how these effects can be understood based on the interaction of different

learning mechanisms in a recurrent neural network model. Specifically, we consider the self-

organizing recurrent neural network (SORN), a sparsely connected recurrent network model

whose activity and connectivity are shaped by three plasticity mechanisms: spike timing-

dependent plasticity (STDP), intrinsic plasticity of neuron excitability, and a form of synaptic

normalization [20]. Despite its simplicity, the original SORN model and a recent extension

have been shown to exhibit powerful sequence learning abilities [20, 21]. Moreover, a variation

of the SORN has been shown to match findings on the probability distribution and the pattern

of fluctuations of synaptic efficacies in neocortex and hippocampus [22]. Most recently, it has
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been shown that the SORN can reproduce a range of findings on neural spiking variability and

the relationship between spontaneous and evoked activity patterns [23]. Therefore, it is an

interesting candidate model for trying to bridge the gap between behavioral performance of

human subjects on the one hand and cellular and synaptic mechanisms of plasticity on the

other hand.

In the present work, we consider a SORN model which receives stimulus-specific input and

is connected to a layer of motor neurons mediating movement sequences through a winner-

take-all mechanism. We use this network to model a series of experiments on movement

sequence learning [1, 24–26] using a single set of parameters in all simulations. We further-

more show the robustness of these results across variations of network parameters. The net-

work learns to carry out the correct movement sequences over trials and reproduces

differences in behavior between training schedules such as blocked vs. randomly interleaved

training. The network also reproduces human performance in tasks with similar training

sequences but different training times. In addition, it shows how psychophysical performance

measures are reflective of the learned neuronal representations in the recurrent network.

Mutual information calculations and PCA of network activity reveal how input representa-

tions and trajectories of neural activity change with training. Importantly, by parametrically

varying tasks when learning multiple sequences we find an interaction between training sched-

ule and task similarity, which provides testable predictions for further experiments. In sum, we

show how fundamental mechanisms of neural plasticity may be responsible for the rich set of

interference and facilitation effects induced by task similarity and training schedule in human

sequence learning.

Methods

Self-organizing recurrent neural network model

In this section, we present a specific recurrent neural network with threshold units combining

three different forms of plasticity. The network architecture here belongs to the SORN family:

a self-organizing recurrent neural network [5, 20, 22, 23] and a schematic is provided in Fig 1.

Fig 1. Structure of Self-Organizing Recurrent Neural Network (SORN). Input units (cyan) directly receive

external input in a non-overlapping way and connect to other excitatory reservoir units (blue). Excitatory

reservoir units are also connected to inhibitory units, as well as the output units. The weights between the

reservoir units and the output units are trained with supervised methods.

https://doi.org/10.1371/journal.pcbi.1005632.g001
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In contrast to traditional reservoir computing architectures [27–29] the “reservoir” is not static

in SORNs but adapts to inputs via multiple plasticity mechanisms giving rise to powerful

sequence learning abilities [20, 21].

The network is composed of NE excitatory (E) and NI(= 0.2 × NE) inhibitory (I) threshold

units. Neurons are connected through weighted synaptic connections, whereWij is the con-

nection strength from unit j to unit i, with self-connections being prohibited. All possible con-

nections between the excitatory and inhibitory neuron populations are present (WIE andWEI),
while the excitatory to excitatory connections WEE are sparse and random. On average each

neuron has λW incoming and outgoing connections. Direct connections between inhibitory

units are absent. The initial weight strengths are drawn from the interval [0, 1] and subse-

quently normalized such that the incoming connections to a neuron sum up to one:
P
jW

IE
ij ¼ 1,

P
jW

EI
ij ¼ 1,

P
jW

EE
ij ¼ 1.

The network state, at a discrete time t, is given by the binary vectors x(t) with length NE and

y(t) with length NI corresponding to the activity of the excitatory and inhibitory units, respec-

tively. The TE and TI are threshold values for the excitatory and inhibitory units. They are ini-

tially drawn from a uniform distribution in the interval ½0;TEmax� and ½0;TImax�, respectively.

The Heaviside step-function θ(.) constrains the activation of the network at time t to a binary

representation: The neuron i fires if the total drive it receives is greater then its threshold

(xi(t) = 1) otherwise it stays silent (xi(t) = 0). The evolution of the network state is described

by:

xiðt þ 1Þ ¼ Y
XNE

j¼1

WEE
ij ðtÞxjðtÞ �

XNI

k¼1

WEI
ik ykðtÞ þ v

U
i ðtÞ � T

E
i ðtÞ

 !

ð1Þ

yiðt þ 1Þ ¼ Y
XNE

j¼i

WIE
ij xjðt þ 1Þ � TIi

 !

: ð2Þ

Each input symbol (letter or digit) is associated with a predefined subset of NU input units,

and all neurons i in the corresponding group will receive a positive input drive (vUi ðtÞ ¼ 1).

There is no overlap between input units of different symbols.

We are using the same plasticity mechanisms as the original SORN. The network relies on

three forms of plasticity: STDP, Synaptic Normalization (SN) of the excitatory-excitatory con-

nections, and Intrinsic Plasticity (IP) regulating the thresholds of excitatory units. All plasticity

rules here only apply to excitatory units and connections between excitatory units.

Spike timing dependent plasticity (STDP). Is a temporally asymmetric way of adjusting

the strength of connections between neurons. If the presynaptic neuron fires slightly before

the postsynaptic one, the synapse between them will be strengthened. Conversely, if a postsyn-

aptic neuron fires before the presynaptic one, the connection will be weakened:

DWEE
ij ðtÞ ¼ ZSTDPðxiðtÞxjðt � 1Þ � xiðt � 1ÞxjðtÞÞ: ð3Þ

Synaptic normalization. Prevents a weight from becoming infinitely large, and propor-

tionally adjusts the values of incoming connections to a neuron so that they sum up to a con-

stant value. Specifically, the WEE connections are rescaled at every time step according to:

WEE
ij ðtÞ  W

EE
ij ðtÞ=

X

j

WEE
ij ðtÞ: ð4Þ
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Intrinsic plasticity. Ensures that on average each excitatory neuron will fire with the

same predefined target rate HIP. At each step a neuron changes its threshold according to:

TEi ðt þ 1Þ ¼ TEi ðtÞ þ ZIPðxiðtÞ � HIPÞ: ð5Þ

In spite of the constant synaptic modulations introduced by STDP, the two homeostatic

mechanisms intrinsic plasticity and synaptic normalization along with the sparse connectivity

between excitatory units ensure healthy network dynamics where the activity is asynchronous

and irregular and the network exhibits good learning behavior [5].

Network parameters. For all experiments, we used a network with NE = 300 excitatory

neurons and NI = 60 inhibitory neurons. The maximum threshold values for the excitatory

units was TEmax ¼ 0:5 and for inhibitory units TImax ¼ 0:9. The connection probability between

excitatory neurons was set to pconnect = 0.1, and the number of input neurons for a single ele-

ment was set to Ninput = 10. The learning rate of the two plasticity mechanisms were set as fol-

lows: learning rate of IP ηIP = 0.002, learning rate of STDP ηSTDP = 10−4. In our simulations of

the human sequence learning experiments (Fig 2), we used the SORN with three plasticity

rules and compared it with the equivalent network in which the plasticity mechanisms were

switched off.

Network output. We used a linear output layer that generates an output at every time

step, thereby producing the movement towards the next predicted sequence element. We

implemented a standard winner-take-all mechanism, i.e. the output neuron, which has the

highest activity defines the output of the network at that time step. Thus the output of the net-

work can be regarded as a movement that has to be carried out to reach the next predicted

Fig 2. Experimental setups (A) Experimental setup of the Panzer et al. studies [24, 25]. a) Drawing illustrating the targets’ positions relative to the lever

and start positions (Adapted from [24, 25]). The targets’ positions were projected on the tabletop from above. When the pointer attached to the

manipulandum passed into the illuminated target, the illumination was turned off and the next target in the sequence was illuminated. Circles overlaid on

the movement pattern indicate the position of the targets. The illumination of the target (filled circle) indicated the next target in the sequence. b) and c)

are examples of the movement patterns produced for sequences 1 and 2. The time series examples in b) and c) were typical of patterns participants

produced midway through the practice session. (Adapted from [24].) (B) Experimental setup of the Koedijker at. el experiments [26]. Schematic

illustration of the arrangement of buttons utilized in the sequence learning experiments. (Adapted from [26]).

https://doi.org/10.1371/journal.pcbi.1005632.g002
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sequence element. The output weights, i.e. the connection strengths, between the reservoir and

output neurons were trained so as to minimize the squared difference between the activity of

the output neurons and the target output values. This was achieved by applying the Delta-rule

[30] to the read out neurons’ weights at each time step of the simulation. The learning rate for

the output weights was set to: μ = 2 × 10−5.

Network pattern separability and human performance modeling. The network activity

needs to be related to the subjects’ behavioral performance. The SORN does not develop fixed

point attractors but encodes spatio-temporal input patterns as spatio-temporal activity pat-

terns. In doing so, it learns to predict the next sequence element. In fact, it has been shown pre-

viously that even when the input is removed, the SORN will spontaneously replay learned

evoked activity patterns, which was subject of a recent study [23]. The quality of this internal

prediction is directly related to how well the network manages to map different inputs onto

distinct activity patterns. Therefore we chose a measure of the separation of different network

states as a proxy for subjects’ reaction times, which also depend on the subject’s ability to cor-

rectly predict the next element. Separability here was defined as the sum of all pairwise dis-

tances between internal network activity patterns in response to an input sequence. The length

of the activity patterns was chosen to be identical to the length of an input pattern, i.e. for a

learning task involving input sequences of 20 elements corresponding to 20 time steps in the

simulation, the length of the activity patterns was chosen to be 20. Thus, denoting with Xt
the vector of length N collecting the activities of all network neurons in the reservoir excluding

the input neurons at time t, we calculated the separability of network states at time t as:

St ¼
X

n¼019

X

m¼019
kXtþn � Xtþmk2.

Methods for evaluating networks’ behavior

To understand the mechanisms underlying changes in the neuronal activities across learning

and mediating the differences in generated motor sequence behavior we carried out a number

of different analyses of network activities, which are detailed in the following section.

Separability and PCA of neuronal activities. In reservoir computing, performance

depends on the separation property. A key requirement for good performance is that different

inputs to the reservoir network result in separable internal states [31]. A larger separation in

the reservoir’s state space means that it will be easier to classify different input streams. Various

ways to measure separation have been studied, for example, in [27] the separation between

two different network states is calculated by measuring the Euclidean distance. A similar geo-

metric interpretation has been given by [32], which measures the separation of the network as

the Euclidean distance between the centroids of the network states that belong to different clas-

ses. In [31], the authors use spike train distance metrics instead of the Euclidean distance.

From the perspective of a classification system, it has been suggested that the rank of the state

matrix, i.e. the matrix consisting of the concatenation of vectors of network activity vectors,

can be used to measure the quality of the network [33]. According to this measure, the larger

the number of linearly independent state vectors produced by a network state, the better the

classification that can be obtained [34].

To better understand how plasticity mechanisms induce changes in the network underlying

the performance improvements, we compare the SORN implementing three types of plasticity

mechanisms to versions of SORN without STDP and IP mechanisms. We measure separability

as the Euclidean distance between network states and also perform principal component anal-

ysis (PCA) on the networks’ internal state representations. At each time point, the vector of

activities of the excitatory neurons in the reservoir forms n internal state representation of the
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network. The internal state representation was saved during training, and then PCA was per-

formed on the saved internal state representations after training.

Agglomerative hierarchical clustering of neuronal activities. To obtain further indica-

tions of the representational changes in the network across training, we carried out agglomera-

tive hierarchical clustering with vectors of networks’ internal state representations (R), as in

[20]. Each pattern of activity Ri(t) is a point in a space with dimensions of the size of the reser-

voir. Agglomerative clustering starts by considering each network activity vector and proceeds

by successively joining the closest activity patterns into clusters. As distance metric we use the

Euclidean distance between activity patterns. This process is repeated until all data are con-

joined into a single cluster. The process of merging clusters can be stopped when a desired

number of clusters is reached an in the present experiments we fixed the number of clusters to

20.

Evolution of the network’s excitatory weights. We analyzed the evolution of the net-

work’s excitatory weights during training. In particular, we considered the incoming weight

vectors into the excitatory units as points in a NE dimensional “weight” space and followed

their movement in this space. We define the vector of incoming excitatory weights into excit-

atory neuron i asWEE
i;� � ðW

EE
i;1 ; . . . WEE

i;NE
Þ
T
. Specifically, we were interested in the question

how switching from learning a first sequence to learning a second sequence affects the move-

ment direction of these weight vectors. To visualize this movement in weight space, we also

performed PCA on the set of all incoming weight vectors across the entire training and pro-

jected these weights into the lower-dimensional space spanned by the first three PCs.

Selectivity index. To further investigate changes within the network’s activity due to the

plasticity mechanisms active in SORN, we analyzed neurons’ selectivity for different inputs.

The selectivity index was introduced by Moody et al. [35] to quantify the degree of direction

tuning for primary visual cortex cells. It quantifies whether a unit is firing strongly in response

to all different conditions (in their case eight stimulus directions) versus in only one specific

condition (one direction). The selectivity index of the ith neuron was defined as follows:

di ¼
k � ð

Pk
n¼1
in

imax
Þ

k � 1
;

ð6Þ

where k is the number of different input conditions; in is the neuron’s average firing rate

responding to a target input n; imax is the maximum response across all conditions. A value of

di = 0 indicates no selectivity, i.e. that the neuron has identical responses to all stimuli; a value

of di = 1 indicates high selectivity: the neuron is activated by one specific stimulus and does

not respond to other stimuli [36].

Mutual information between input sequences and neuronal activities. Computing

mutual information between the sequences and neuronal activities is a further way of quantify-

ing how well the activities of model neurons in response to their input allow inferring the

respective identity of the driving sequence. We can therefore ask: how much information

about the stimulus is represented by the cell’s activity? We use Shannon’s mutual information

and calculated from the joint probability distribution according to:

IðR; SÞ ¼
X

r2R

X

s2S
Pðr; sÞ log

Pðr; sÞ
PðrÞPðsÞ

� �

ð7Þ

In our case, the first variable r is each neuron’s activity (on or off), the second variable s repre-

sents different inputs to the network. R and S are the sets of values that r and s can take. P(r) is

the overall probability that a neuron fires and P(s) is the probability of one input versus all
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input conditions. The joint probability P(r, s) is the probability that one neuron fires under a

certain input condition. The ratio compares this joint probability to what might happen if fir-

ing were independent of the stimulus: the product of the two individual probabilities P(r)P(s).
Finally, ∑r2R∑s2S P(r, s) simply indicates taking a sum over all stimuli and all responses,

weighted according to how often the combination occurs.

Numerically, we calculated the involved quantities as follows:

Pi ¼ ðFtotal=NwordÞ=Lword ð8Þ

Qi ¼ 1 � Pi ð9Þ

MIi ¼
X

i2N

ðPi log ð
PiP

i2NPi=Lword
ÞÞ þ

X

i2N
ðQi log ð

QiP
i2NQi=Lword

ÞÞ; ð10Þ

where Pi is the overall probability that neuroni fires, Qi is the overall probability that a neuron i
is silent. Ftotal is total number of times neuron i fires during this block of training. Nword is the

total number of input words in this block of training. Lword is the number of elements within

each input word. In our training sessions, all input words have the same length.

Results

Modeling sequence-learning tasks

Overall, we carried out five different experiments to address sequence learning tasks in SORN

and elucidating the connection between facilitation and interference effects on the one hand

and task similarities and training schedule on the other hand. First, we made sure that SORN

is able to reproduce some of the key aspects of previously published behavioral work with a

single set of network parameters across all simulations. To this end we modeled human

sequence learning tasks published in Panzer et al. [24], the tasks with altered learning times

published in Panzer et al. [25], and a sequence learning task involving finger tapping published

by Koedijker et al. [26]. Based on these results, we devised two sets of additional experiments

addressing sequence element representations and investigating joint effects of task similarity

and training schedule.

Investigating facilitation and interference effects

Arm movement sequence learning tasks. Facilitation and interference effects are perva-

sive in human sequence learning and have long been described (see e.g. [1]). Panzer et al. [24,

25] carried out experiments to determine the extent to which the learning of one movement

sequence influences the subsequent learning of a similar movement sequence. Participants

produced sequences by moving a lever with their right arm and hand to sequentially presented

target locations. They practiced two similar 16-element movement sequences (S1 and S2), with

14 of the 16 elements common in both sequences.

The fulcrum of the lever, which rotated freely in ball-bearing supports, allowed the lever to

move in the horizontal plane over the table surface, as shown in Fig 2. The horizontal move-

ment of the lever was monitored at 200 Hz by a potentiometer that was attached to the lower

end of the axle. The potentiometer data were used to provide lever position information to the

participant and stored for later analysis. The targets and total movement time were projected

on the table surface by a projector mounted above.

To encode the direction of a movement, we define the upward movement e.g. from position

2 to 3 with the symbol 2, differently from the downward movement e.g. from position 3 to 2

A spike-timing dependent plasticity model explains facilitation and interference effects
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with symbol 3’. Thus, position and direction of movements are encoded jointly and result

from activations of different subgroups of input neurons in SORN. We also add four extra ele-

ments (A1-A4 vs. B1-B4) in the beginning of the sequences corresponding to the lead-in

movement [37], which constitutes a signal for detecting contextual differences between S1 and

S2. In the simulation of the experimental group, we ran the SORN for 8000 time steps to learn

S1 and 8000 time steps to learn S2. In the control group, only sequence 1 or sequence 2 was

trained.

In the simulation we use sequences with length 20:

Sequence 1 (S1) = [A1 A2 A3 A4 2 3 4 3’ 2’ 3 2’ 1’ 2 3 2’ 3 4 3’ 2’ 1’], and

Sequence 2 (S2) = [B1 B2 B3 B4 2 3 4 3’ 2’ 1’ 2 3 2’ 3 2’ 3 4 3’ 2’ 1’].

Each digit in the sequence corresponds to a target position in the psychophysical experi-

ment in Fig 2, and we call it an ‘element’of the input sequence in our simulation. Each element

in the input sequence corresponds to external input to a subset of 10 input neurons. There is

no overlap of activity of the input neurons between different input elements. Input neurons

are connected to the excitatory reservoir neurons as shown in Fig 1.

Facilitation and interference effects in arm movement sequence learning tasks. In

Experiment 1 [24], participants were split into 3 groups, one experimental group and 2 control

groups. The experimental group practiced two movement sequences, one sequence on each of

two consecutive days of practice. The Sequence 1 (S1) with 16 elements was practiced on Day

1 and Sequence 2 (S2) on Day 2, where S2 was created by switching 2 positions of 16 elements

in sequence S1. The control groups received only one day of practice on one of the sequences.

Control group 1 only practiced S1 on Day 1 and Control group 2 only practiced S2 on Day 2.

On Day 3, all groups were tested on both S1 and S2, participants were counterbalanced in

order.

Experiment 1 results are shown in the left part of Fig 3. Early in Day 2 (S2) practice, the

experimental group demonstrated a relatively strong level of proactive facilitation arising from

previous practice with S1, which is due to the high similarity between sequences S1 and S2,

which have 14 of the 16 elements in common. On Day 3, the experimental group showed a

strong retroactive interference on the switched elements. The tested performance on S2 was

better compared with S1, and the tested performance on S1 was worse compared to the perfor-

mance at the end of Day 1. Thus, the memories underpinning S1 seemed to be overwritten or

adapted in response to the learning of S2.

As the result, in Fig 3 the black circles represent the experimental group, in which the net-

work first was trained on S1 and consecutively on S2 with the same training time (400 data

points, each of which contains 20 time steps). In the control conditions (triangles and squares),

the network was trained with only one sequence with the same training length. Referring to

the simulation results displayed in Fig 3, early in S2 training of the experimental group (black

circles), the performance was distinctly better than the starting performance for S1, which

indicates facilitation from the previous training of S1. In the test phase for the experimental

group, the performance on the later sequence (S2) was better compared to that for S1, which is

consistent with the retroactive interference observed in the psychophysics experiment. Thus,

the SORN reproduces the interference and facilitation effects that were observed in the human

sequence learning experiments. We were interested to obtain an indication of the robustness

of our results to the variation of networks’ parameters. To this end, we varied two of the essen-

tial parameters that describe the network, namely the sparsity of the connections between

excitatory neurons governed by the pconnect and the ratio between the number of excitatory

neurons NE and the number of inhibitory neurons NI. The results of these experiments are
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reported in the supplementary material. These results show, that the pattern of performance

for the sequence learning tasks is maintained over values for pconnect ranging from a value of

0.05 to 0.15 and that similarly the performance of the network is maintained for a ratio of

inhibitory to excitatory units between 0.1 and 0.4.

Facilitation and interference effects in arm movement sequence learning tasks with

altered training durations. Experiment 2 [25] was carried out originally to investigate how

prolonged practice on a sequence would influence performance on the sequence learning tasks

previously described as experiment 1 [24]. In Experiment 2, the same two 16-element move-

ment sequences (S1 and S2) were used as in Experiment 1. Experiment and simulation results

are shown in Fig 4. The experimental group practiced the first sequence (S1) for two consecu-

tive days (Day1 and Day2), which is twice as long as the previous experiment. A second

sequence (S2) was practiced on Day 3. Control groups received either two days of practice on

S1 or one day of practice on S2. The proactive facilitation in the early stage of S2 acquisition

was observed as in the previous experiment. Contrary to the earlier findings in Experiment 1

[24] of strong retroactive interference when S1 was only practiced for one day, this time no evi-

dence of retroactive interference was found when S1 was practiced for two days. When S1 was

tested on Day 4, the performance of S1 was about the same as it was tested after the first two

days of training (Day 1 and Day 2), and the performance of S1 was better compared with S2.

Based on the previous simulation experiments, we adapted the training schedule to reflect

the psychophysical manipulations. In the simulation of Experiment 2 the experimental group

(black circles in Fig 4) was trained twice as long on S1 as on S2. In Fig 4, the left panel shows

the training of S1, 20 × 800 = 16000 time points were analyzed and displayed, the middle panel

shows the training of S2 (20 × 400 = 8000 time points). The third panel shows the result of test-

ing S1 and S2.

Fig 3. (A) Results of Experiment 1 [24] (Adapted from [24]). Acquisition, retention and transfer performance of the experimental and control groups. Note

that Sequence 1 (S1) was practiced on Day 1 and Sequence 2 (S2) on Day 2. On Day 3, all groups were tested on both S1 and S2, in counterbalanced order.

(B) Simulation of experimental and control groups. Sum of pairwise distance of network states under different input conditions using Euclidean norm. Circles:

experimental group, training S1 and then S2 with equivalent training time. Triangles: control, training on S1 only. Squares: control, training on S2 only.

Proactive facilitation was observed in the beginning of training S2, comparable to the psychophysical data, as performance of the network simulating the

experimental group is better compared to the control group training. When training time is equivalent for S1 and S2, the performance of the network also

shows retroactive interference. The tested separability of the later sequence (S2) is larger, implying that the second sequence has been learnt better [24]).

https://doi.org/10.1371/journal.pcbi.1005632.g003
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The simulation results are displayed in Fig 4. The solid black curve shows that the tested

performance on S1 was about the same as the performance at the end of training S1, consistent

with the psychophysics experiment with no retroactive interference. A possible explanation is

that the longer training time on S1 lead to changes in the network such that the dynamics in

response to S1 are more stable compared to the shorter training on S2 and more training time

on S2 would be needed to result in an interference effect on S1. Inspecting the performance of

the network after training (see third panel of Fig 4B) shows the same relative performance on

S1 versus S2 as in the psychophysical experiments across all training groups, i.e. training on S1

and subsequently on S2, training only on S1, and training only on S2. However, there is one

difference to the simulations of the network, as the experimental S1-S2 group performs better

at testing than the control S2 group. Note however, that both the training and testing schedule

for the control group S2 are identical in both experiments [24] and [25], but human perfor-

mance at testing is different in the two studies. While the reported results of the first study [24]

match the simulations quite well, we attribute the deviations in the second experiment to vari-

ability inherent in the experimental data with human subjects. A detailed analysis of the vari-

ability in human performance as well as further work on the variability in the simulations

could clarify the source of this deviation.

In this section we have shown that a single network using only a single set of parameters

can display performance that mimics the performance measures observed in human subjects

for the considered psychophysical tasks. The following section presents a more detailed analy-

sis of the underlying changes in the neuronal activities generating motor sequences across

learning.

Network separability analysis. To gain insight into the changes occurring within SORN

across learning we trained networks with and without plasticity mechanisms and computed

the separability of internal network activities for these differently trained networks. Indeed,

adapting the network using the full set of plasticity mechanisms improves performance in the

initially random circuit and greatly increases separability compared to the initial random

Fig 4. (A) Experiment results of experiment 2. (Adapted from [25]). Acquisition, retention and transfer performance for the experimental and control

groups. Note the experimental group practiced S1 on Days 1 and 2 and S2 on Day 3. The S1 control group practiced S1 on Days 1 and 2. The S2 group

only practiced S2 for one day. All groups were tested on S1 and S2 (order counter-balanced). (B) Simulation results for [25]. Same as above, with the

difference that training on S1 is twice as long. Note that now the retroactive interference is attenuated, as in the psychophysical experiments.

https://doi.org/10.1371/journal.pcbi.1005632.g004
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network, as demonstrated in Fig 5. The SORN network with all three forms of plasticity is plot-

ted in dark solid lines in training and dark solid squares in testing. Network without STDP

and IP plasticity is plotted in dotted lines in training and empty circles in testing. This provides

clear evidence, that the results of modeling the motor sequence learning tasks in the previous

sections crucially depended on the plasticity mechanisms in SORN. A visual illustration of the

separability of spatio-temporal network activities can be obtained by plotting the sequence of

network states in a low dimensional space obtained through the first three principal compo-

nents of the PCA, as in Fig 6B and 6D. Thus, the full set of plasticity plasticity mechanisms

improves the randomly initialized circuit and greatly increases separability.

Agglomerative clustering of network activities. The results of agglomerative clustering

are shown in Fig 6A and 6C, where different colors reflect the respective clusters. For this clus-

tering, higher peaks reflect better performance, meaning that a cluster encodes different trials

of the same input. The number of peaks should be minimized such that, in an ideal case, each

cluster would have one peak meaning that it represents only one input pattern. Inspecting

these plots shows that in the beginning of training, the evoked network responses to different

inputs can be quite similar and fall within the same cluster. Thus many different input condi-

tions contribute to a single cluster of network states (Fig 6A). For each of the 20 clusters, a his-

togram depicts the counts of neuronal activity patterns in response to the input sequences that

contributed to the cluster, with averagely 3.75 different input conditions contribute to each

cluster, with each input condition contributing to 34.58%. Thus, clusters tend to mix many dis-

tinct input conditions, and mix different repetitions of the same input, indicating no clear sep-

aration between the inputs. By contrast, in Fig 6C, there are fewer short bars, and instead more

long bars for each cluster, indicating that plasticity separated the internal representations.

With each cluster containing average 1.7 input conditions, with average 71.67% from each

cluster in Fig 6C. Inspecting the expanding separation in PCA space, in the beginning of the

training, input conditions produce a cloud of network states that substantially overlap with

those from other input states within the projection space of the first three principal compo-

nents (PC), as shown in Fig 6B. By contrast, after training the SORN has developed an internal

representation where input conditions produce clusters of network states that are well sepa-

rated from those of other input conditions (Fig 6D). When we compare the space spanned by

Fig 5. Seperability of SORN with all three plasticity mechanisms turned on (solid) or with STDP and IP

turned off (dotted). To be intuitively comparable to experimental data, the Y-axis is plotted upside-down.

https://doi.org/10.1371/journal.pcbi.1005632.g005
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the dots in Fig 6D versus 6B, the SORN develops an internal representation where input condi-

tions produce tight clusters of network states, and the separation in PCA space after training is

larger than before training. Furthermore, the first three PCs in the SORN capture a greater

amount of variance compared to random networks. In particular, SORN learns to distinguish

different states that have a very similar history of inputs, say, repetitions of the same input con-

dition. This leads to more orderly and stereotyped trajectories through the network state space

in the case of SORNs. This is also reflected in a greater amount of total variance of network

activity which is captured by the first few PCs in the SORN when compared to random net-

works (not displayed here).

Evolution of the network’s excitatory weights. To shed light on the mechanisms respon-

sible for the qualitative difference between long and short training durations, we analyzed the

Fig 6. (A) Result of clustering of the internal activity patterns of the reservoir in the beginning of training. Clusters tend to mix many distinct input conditions,

and mix different repetitions of the same input, instead of keeping them separate. (B) Projections of initial network activities into the space spanned by the

first three principal components of activities throughout learning. Individual points corresponding to neural activity patterns in response to individual

elements of the first sequence S1 (blue) and to individual elements of the second sequence S2 (green) are lumped closely together at the beginning of

training. (C) The cluster structure after training the SORNs shows that activity patterns are more distinct among the 20 clusters and that a smaller number of

differing patterns are assigned to individual clusters. (D) Projections of final network activities into the space spanned by the first three principal components

of activities throughout learning. Individual points corresponding to neural activity patterns in response to individual elements of the first sequence S1 (blue)

and to individual elements of the second sequence S2 (green) are lumped closely together at the beginning of training. After training, the network states are

distributed in the shape of a tetrahedron. The volume covered by these states has increased in comparison to the beginning of training. Note that the two

sequences used in these simulations had a task similarity of 0.25. (E) Trajectories of network activities in the space of the first three PCs. The network

activity in the low dimensional embedding space shows that the separation of activities in the network grows across training from the initial 20 training

elements (blue) to the final 20 elements (orange). The trajectory of activities was plotted using cubic spline interpolation in the low dimensional PC space of

network activities across time for illustration purposes.

https://doi.org/10.1371/journal.pcbi.1005632.g006

A spike-timing dependent plasticity model explains facilitation and interference effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005632 August 2, 2017 13 / 27

https://doi.org/10.1371/journal.pcbi.1005632.g006
https://doi.org/10.1371/journal.pcbi.1005632


evolution of the network’s excitatory weights during training. Fig 7A shows an example of the

movement of each of the 300 weight vectors during training for short S1 training duration

before switching to S2, with the origin representing the initial weight vectorWEE
i;� ð0Þ at t = 0.

For visualization purposes we projected weight vectors in the lower-dimensional space

spanned by the first three principal components of all weight vectors across the entire training.

The blue part of each trajectory corresponds to training on sequence S1 and the red part

of each trajectory represents the subsequent period of training on sequence S2. First, we

observed that there is a general trend for the weight vectors to move outwards from the origin

during training of S1. This movement is associated with an increasing number of individual

weights that go all the way to zero. At the time of switching to S2, many weight vectors change

direction, reflecting the network’s adaptation to the new input sequence. Interestingly, how-

ever, these changes in direction are more pronounced for weight vectors that are still close to

the origin. This effect is illustrated in Fig 7B, which shows a scatter plot of the change in angle

of the weight vectors in the full 300-dimensional space as a function of their distance from the

origin at three different time points. The difference in angle is calculated over 1600 time steps:

blue points represent the change in direction of the weight vectors on the first training step,

Fig 7. Analysis of changes in input weight vectors over training. (A) Euclidean distance of all 300 weight vectors from the initial weightWEE
i;� ð0Þ

across training in Experiment 1 [24] projected into the space of the first three PCs of all weight vectors. The blue part of each curves corresponds to

training on sequence S1 and the red part corresponds to training on sequence S2. (B) Change in angle of the weights versus the total distance of the

weights to the initial weight across training in Experiment 1. The angle was computed through the dot product in the full 300 dimensional space of

weights. The total distance of weights was computed as the Euclidean distance of the weight vectorsWEE
i;� ðtÞ to the initial weight vectorWEE

i;� ð0Þ. The

blue data points correspond to the respective values after the first 1600 training steps and the red data points correspond to the weights after the last

training step. The black data points correspond to the changes in angle versus distance in weights across training after switching from sequence S1

to sequence S2. Panels (C,D) as Panel (A, B) but for the data of Experiment 2 [25].

https://doi.org/10.1371/journal.pcbi.1005632.g007
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red for the last training step, and black points represent the change of angle at the time when

training switched from S1 to S2.

Several findings are apparent: First, there is a general trend for weight vectors that are far

from the origin to undergo smaller changes in direction (compare blue and red populations).

Second, at the time of switching from S1 to S2, large changes in direction are observed, but

they tend to be smaller for weight vectors that have already moved far from the origin.

Fig 7C shows the movement of weights in PC-space for long training duration of S1. Note

that during the extended training time of S1 the weights move further away from the origin

(blue parts of the trajectories). When training switches to S2, most of the weight vectors that

have moved far away from the origin during S1 training barely change direction but continue

to move in the same direction. Fig 7D shows a scatter plot of changes in angle vs. distance

from the center for long S1 training duration. Compared to Fig 7B, the longer S1 training has

led to weight vectors with greater distance from the center (compare blue populations in B and

D). Furthermore, upon the switch to S2 changes in direction of the weight vectors tend to be

somewhat smaller than for short S1 training (compare black populations in B and D). To

quantify the effect, we directly compared the changes in direction of the weight vectors at the

time of the switch from S1 to S2. For short S1 training duration the average change in direction

in the full 300-dim. weight space was 57 ± 24 degrees, but it was only 44 ± 19 degrees after long

S1 training. This difference was highly significant (t-test, p< 10−32).

These results suggest the following explanation for the difference between short and long

S1 training durations in Figs 3 and 4. With increasing training time for S1, the memory trace

of S1 becomes more deeply engraved into the network’s structure. The longer this process

lasts, the harder it becomes for the network to learn a new sequence which requires a change

in the direction of the network’s weight vectors. The reason for this is that the activity patterns

of the SORN are a product of both the external input and the already established recurrent

connectivity. As training on S1 progresses the network weights come to more distinctly reflect

the spatio-temporal structure of S1 and the network becomes less sensitive to changes in the

input structure. This is because the recurrent connectivity gains a growing influence over the

network’s activity patterns, which ultimately drives changes in the network structure via the

STDP rule. In fact, previous work with the SORN has already shown that after sufficiently long

training, the network’s activity will be a product of both external inputs and its learned recur-

rent connectivity. Furthermore, in the absence of any external input, the network will sponta-

neously replay learned sequences [23]. This illustrates the strong influence of the recurrent

connectivity on the network’s activity and therefore also on further changes to its weights.

Selectivity index. We compared the selectivity indices of all neurons in the reservoir for

the SORN after the first block of training and after training was completed to the selectivity

indices in the network without plasticity. The resulting histograms of the selectivity indices are

depicted in Fig 8. When the plasticity mechanisms are switched off, the connectivity between

neurons in the reservoir is not changing and the selectivity is determined by the random con-

nectivity present in the network from the beginning. In this case, the number of neurons with

high specificity is limited and across the network selectivity indices can be as low as of 0.4 (Fig

8C). By contrast, the plasticity in the SORN changes the connectivity of the network in such a

way that the neurons become more selectively tuned to the inputs. Already after the first block

of training, plasticity has shaped the selectivity so that the index for most cells lies between val-

ues of 0.9 and 1 (Fig 8B). After the last training block, the vast majority of units in the SORN

have become highly specific to the input and show a selectivity index close to 1(Fig 8B).

Mutual information analysis. We plotted the joint probability between input sequence

and the neuron firing in Fig 9. In this figure, the vertical axis shows individual neurons (300

neurons), and the horizontal axis represents the 20 different inputs, with some elements

A spike-timing dependent plasticity model explains facilitation and interference effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005632 August 2, 2017 15 / 27

https://doi.org/10.1371/journal.pcbi.1005632


appearing more than once in the input sequence. Every 20 trials (400 input elements) was

defined as one block, we plotted the first block and the last block of training in Fig 9. Compar-

ing subplot A and B, one can see the increase in the joint probability of firing throughout train-

ing of the SORN network as reflected by initial low probabilities (represented by lighter shades

of gray) to higher joint probabilities (represented by darker shades of gray). The correspon-

dences between the neurons and input positions are very sparse, which gives different inputs

different firing patterns in the network, so different inputs are distinguishable by the neurons’

firing patterns. Even when the input elements are the same, their representation of firing pat-

terns are different across time. By contrast, when training the network without STDP and IP

plasticity mechanisms, only very few neurons are activated overall.

Mutual information between inputs and the neurons’ response is plotted in Fig 10, with the

left and middle subplot showing how mutual information will increase and how more neurons

are activated across training with STDP and IP plasticity. The right subplot by contrast shows

mutual information after training in the network without STDP and IP mechanisms. Only

very few neurons show high mutual information with respect to the input sequences. This is

very different from the SORN, in which more neurons show a non-zero mutual information

value after training. The mean value of mutual information in the first block of training in

SORN is 0.05, while the mean value of mutual information in the last block of training is

SORN is 0.19, which is higher than the mutual information in the same network but without

plasticity 0.12.

By definition, only neurons firing selectively to different inputs have large mutual informa-

tion. In SORN with plasticity, a subgroup of input neurons (neuron number 21-40 and 121-

140) became inactive, and had low joint probability and mutual information compared to

other neurons (Figs 9B and 10B). These input neurons were assigned to frequently appearing

inputs and in the beginning of training they were firing very frequently. After long training,

the firing thresholds of the frequently firing neurons increased because of the effect of intrinsic

plasticity and, once their firing threshold became too high, these neurons entered phases of

inactivity.

Fig 8. Selectivity indices of neurons in SORN network. (A) Distribution of selectivity indices in SORN with plasticity in the first

block of training. (B) Distribution of selectivity indices in SORN with plasticity after training (last block), which becomes higher with

training compared with the first block. (C) Distribution of selectivity indices in SORN without STDP and IP plasticity. A value of

zero indicates that the neuron has identical responses to all stimuli; a value of 1 indicates activation by one stimulus and silence to

all other stimuli. In SORN, neurons are firing highly selectively, with the indices reaching values between 0.9 and 1.0.

https://doi.org/10.1371/journal.pcbi.1005632.g008
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Task similarity and element analysis

From the considered experiments we can conclude that learning a sequence S1 can lead to pro-

active facilitation when subsequently learning a similar sequence S2. But arguably, this may

not be the case for arbitrary sequences S1 and S2. In the considered cases, the sequences had a

Fig 10. Mutual information distribution. A) Distribution of mutual information in SORN with plasticity in the

first block of training. B) Distribution of mutual information in SORN with plasticity after training (last block),

which becomes higher with training compared with the first block. C) Distribution of mutual information in

SORN without STDP and IP plasticity.

https://doi.org/10.1371/journal.pcbi.1005632.g010

Fig 9. The joint probability between inputs and neuron firing. The vertical axis corresponds to the network’s 300 model neurons, and the horizontal axis

corresponds to the input sequence element of the total length 20. (A) Joint probability of inputs and neuron firing in SORN with plasticity in the first block of

training. (B) Joint probability of inputs and neuron firing in SORN with plasticity in the last block of training. Compared with the left subplot, the joint probability

becomes higher with training and the firing of neurons is sparse. (C) Joint probability of inputs and neuron firing in SORN without STDP and IP.

https://doi.org/10.1371/journal.pcbi.1005632.g009
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high similarity in terms of the overlap of positions and directions within the movement

sequences. However, the measure in performance considers the whole task sequence. To study

how task similarity can influence learning performance, for example, whether changes on spe-

cific positions will influence the learning locally, we carried out a position specific analysis of

input sequences. Based on these results, we trained SORN on the discretized button press

experiments by Koedijker at. el [26], in which subjects learned two tasks consisting of consecu-

tively pressing eight target buttons in sequence. The two sequences, which had to be learned,

differed on positions 4 and 5 within the sequences, which were exchanged.

Finger tapping sequence learning task. Koedijker at. el [26], conducted a discretized

button press experiment as illustrated in Fig 2B. One sequence consisted of subsequently

pressing buttons I-D-F-B-K-H-A-L, whereas the other sequence consisted of pressing buttons

I-D-F-J-C-H-A-L. Both sequences consisted of consecutively pressing eight target buttons

resulting in eight consecutive movements, with the first movement being the movement from

the start button to the first target button (Button 1), the second movement being the move-

ment from Button 1 to the second target button (Button 2), and so on, up to the movement

from Buttons 7 to 8. The sequences differed on two buttons, that is, Buttons 4 and 5. The

two changed buttons were mirrored to keep the between-button distances equal over the

sequences.

Averages and standard deviations of reaction times across participants of both Sequence 1

(S1) and Sequence 2 (S2) of this Experiment are shown in Fig 11B to illustrate the short-term

proactive facilitation effects. Button press times were averaged over the five recorded trials for

each block. To test for proactive effects for both sequences the button press times over the six

acquisition blocks were compared. Post hoc comparisons on the Sequence × Block × Button

Fig 11. (A) Empirical data with changed Button 4, 5 (Adapted from [26]). Proactive facilitative effects are specific to the ordinal position within the learned

sequence. (B) Simulation results of the experiment in A. (C) Empirical data with changed Button 4, 7 (Adapted from [26]). Position specific facilitation was

observed. (D) Simulation results of the experiment in C).

https://doi.org/10.1371/journal.pcbi.1005632.g011
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interaction indicated that on Block 1 all button times, except for Button 5, were significantly

faster on S2 than S1. This tendency of Button 5 to show no facilitative effect on learning S2 was

repeated on the following blocks. Thus, the proactive facilitation effect did not apply equally to

all buttons, implying that the proactive effects were button-specific.

We again used the SORN with the parameter setting of the previous experiments to simu-

late these sequence learning experiments and our simulation data are shown on the right side

(Fig 11C). Compared with the experimental data, not only Button 5 was influenced, but Button

4 and 6 as well. We argue that in the experiment only the reaction time was recorded but not

the error rate, it might be the case that Button 4 and 6 are still pressed as fast as the unchanged

buttons, but in fact with higher error rate. The sequences differed on two buttons 4 and 5, but

the movements were changed to Buttons 4, 5, and 6. Although in the movement to Button 6

the target button remained the same, the button from which the movement had to be initiated

was different. In our simulation we can see that the proactive facilitation effect did not apply

equally to all buttons, but only to the positions for which movement was unchanged, implying

that the proactive effects were dependent on specific position similarity, very similar to the

effects observed in the psychophysical experiment.

An additional sequence was used in [26] to extend the findings of the above experiment by

changing movements to Buttons 4 and 7 between the sequences. By altering the sequence we

avoided capitalizing on effects that might have been specific to a certain set of movements

within a particular sequence. The sequences consisted of sequential movements to button loca-

tions I-D-F-C-E-G-J-H and I-D-F-K-E-G-B-H. In the experimental data, averages and stan-

dard deviations of movement times across participants of Block 1 of both Sequence 1 (S1) and

Sequence 2 (S2) are shown in Fig 11D. Pairwise comparisons revealed that all button times

were faster for S2 compared to S1 (all p< 0.01), except movements to Buttons 4 and 7. Buttons

4 and 7 were the buttons of S2 that were different from the corresponding parts of S1. Thus,

the results demonstrate a button-specific proactive facilitative effect for the movements that

remained unchanged from S1 to S2, but not for the two buttons that were different from S1 to

S2. The results from our network in the corresponding simulations are shown in Fig 11E. The

proactive facilitation was observed for all positions except the changed buttons 4 and 7 just as

shown in the experimental data. This demonstrates once more that the proactive effects were

dependent on specific position similarity.

Joint effects of task similarity and training schedule

In this section, we trained SORN with the same network parameters in all previous experi-

ments on a large number of different sequence learning tasks to investigate the effects of task

similarities and training schedules. We jointly varied task similarities between sequences, as

quantified by the fraction of overlapping sequence elements, and training schedules, as mea-

sured by the number of blocks of training in which the training sequence is not altered. We

show how task similarity and training schedule interact to produce a rich set of interference

and facilitation effects thereby unifying procedural memory consolidation and structure learn-

ing in a recurrent network model with multiple plasticity mechanisms. This provides an imple-

mentational explanation of a rich set of behavioral phenomena as well as testable predictions

for further experiments.

Training schedule: Blocked vs. interleaved. An exciting possibility is that the stability of

a memory trace is related to the training schedule. As show in Fig 12, with the same amount of

total training time, short and interleaved practice sessions might produce a stable memory

trace that is not susceptible to interference. But prolonged practice blocks might also generate

less stable memory traces that show interference between tasks [1]. Indeed, Osu et al. [38]
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found that human subjects can adapt to two opposing force fields when provided with contex-

tual cues and can consolidate motor memories if the force fields are interleaved in a random

fashion. This study suggests that multiple internal models can be acquired simultaneously dur-

ing learning and predictively switched, depending only on a contextual cue. By contrast, the

literature on motor learning contains reports from experiments showing that if different tasks

alternate frequently or are presented in large alternating blocks as in [39, 40], then learning

of the second task can lead to an unlearning of the internal model for the first. There might

also be potential benefits of interleaved practice when acquiring multiple finger movement

sequences.

We use our network with the same parameter settings as before to investigate the differ-

ences between training schedule as illustrated in Fig 12. This investigation compares the

Fig 12. From blocked to interleaved practice. Different color stands for different tasks. (A) Illustration of different training schedules from top to bottom

with 200, 100, 40, 20, and 1 trials per block. Together with a sequence length of 8 elements per trial this resulted in a total of 1600, 800, 320, 160, and 8

sequence elements per block, respectively. Each task is trained for the same total number of trails, and the blocks’ sequences were randomly generated.

Therefore the upper training schedule corresponds to blocked practice while the bottom training schedule corresponds to randomly interleaved practice. (B)

Blocked learning produces proactive interference, only the last task will have good performance in the end. (C) Randomly interleaved practice allows good

performance in all three tasks after training.

https://doi.org/10.1371/journal.pcbi.1005632.g012

A spike-timing dependent plasticity model explains facilitation and interference effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005632 August 2, 2017 20 / 27

https://doi.org/10.1371/journal.pcbi.1005632.g012
https://doi.org/10.1371/journal.pcbi.1005632


performance of the network on three sequence learning tasks after using different training

schedules. As shown in Fig 12A, the whole duration of the experiment can be subdivided in

many different ways, e.g. in three consecutive blocks of uninterrupted training of each task,

or in six consecutive blocks alternating between the three tasks, or in the limit, alternating

between tasks on every individual trial. For the experiments we used three different sequences

of length 8, where no sequence shared a common element with another sequence. As shown in

Fig 12A we divided the whole training time (4800 time steps) into three blocks (with 1600 time

steps in each block), each task was assigned to each block with one after the other, and trained

with the same length of time (task S1 on block 1, task S2 on block 2 and task S3 on block 3).

Different task performance was only measured after all training was completed. This testing

after learning was carried out on the three sequences (S1 to S3) used during learning. In the

lower panel of Fig 12A the whole training time was the same as in the previous one, and the

three tasks were the ones used in the upper panel as well, however, the three tasks were ran-

domly arranged during training with equal training time for each task.

The left panels of B and C in Fig 12 show the results of training of the three sequences after

training, again, as in the figures reporting the results of the previous experiments. From the

test results we can see that in the case of randomly interleaved training, all three tasks were per-

formed well with a low error rate. However in the blocked training case, only the task trained

last (S3) had good performance and the previous tasks (S1 and S2) showed signs of retroactive

interference. These simulation results are consistent with experiments [38–40].

Interaction between task similarity and training schedule. In the previous section

“Training schedule: blocked vs. interleaved” we could show the influence of blocked versus

interleaved training schedules on the performance of the SORN in sequence learning tasks.

Referring back to the results on position specific similarity between sequences, it is now natu-

ral to investigate how performance depends on task similarity and training schedule, if both

are varied. We carried out learning experiments by jointly varying both task similarity and

training schedule. The setting for the following experiments is identical as in the previous Sec-

tion, i.e. the network was trained on three different tasks where each task was trained for 200

trials resulting in a total training duration of 600 trials and a sequence lengths of 8 positions

for all three tasks. The training schedule was varied as described in Section. By varying the

number of trials a single task was trained on consecutively. A blocked training schedule is

achieved by training the three tasks for 200 consecutive trials in a total of 3 blocks whereas a

randomly interleaved training schedule is achieved by switching the trained task randomly

after every trial resulting in a total of 600 blocks. Intermediate training schedules were

achieved using an intermediate number of of blocks. The full set of the number of blocks was

{3, 6, 12, 24, 50, 100, 200, 400, 600}.

To simulate different task similarities, we need to choose a measure of sequence similarity.

While a general measure of task similarity in sequence learning is not available, a commonly

used measure to compare the similarity of sequences is the Hamming distance, i.e. the number

of exactly matching inputs at the corresponding positions in two sequences. Here we used the

complement of the Hamming distance normalized by the sequence length. Thus, a task simi-

larity of 0 corresponds to no shared input among two sequences (for example, ABCD vs.

EDFG vs. HIJK) whereas a task similarity of 0.25 could be ABCD vs. AEDF vs. AGHI, and a

task similarity of 1 means that the 3 tasks are identical on every position of the sequence of the

inputs (ABCD vs. ABCD vs. ABCD). For the present simulations we used eight equally spaced

task similarities linearly increasing by 0.125 between 0 and 0.875.

Finally, to quantify the amount of anterograde and retorgrade performance effects across

all training schedules and all tasks similarities, we needed to adopt a specific measure of inter-

ference and facilitation. Retrograde effects are commonly measured as the difference between
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performance at testing after the training of all tasks has been completed and performance at

the end of training of that task, which is being considered [24, 25]. As an example, referring

back to the experiments in Section., performance on sequence S1 at testing after blocked train-

ing had been completed was worse than at the end of training S1, constituting retrograde inter-

ference, as depicted in Fig 12. Accordingly, retrograde effects on S1 were quantified as the

difference in error rates after the end of training S1 and the error rate at testing, when all train-

ing had been completed, averaged over the last five trials to reduce variability. Anterograde

effects are quantified differently in the literature on sequence learning and for the following

experiments we chose the difference in performance at the beginning of training two different

sequences. Thus, if performance at the beginning of training sequence S2 is better than perfor-

mance at the beginning of training sequence S1, then this constitutes anterograde facilitation,

because having already trained on sequence S1 facilitates learning of sequence S2. Accordingly,

anterograde effects on S1 were quantified as the difference in error rates at the beginning of

training sequence S2, again averaged over five trials to compensate for variability in individual

trials. Each combination of training schedule and task similarity was simulated with 40 ran-

domly generated sequences of tasks and the averaged performance over the 40 experiments

was separately computed for anterograde and retrograde effects.

The performance results of training the SORN on different combinations of tasks similari-

ties and training schedules are shown in Fig 13 separately for anterograde (E) and retrograde

effects (F). Additionally, plots (panels A-D) of the error rates of the SORN during training are

provided to obtain some intuitions about the observed effects for four combinations of train-

ing schedules and task similarities, specifically: randomly interleaved training with non-over-

lapping sequences (A), blocked training with non-overlapping sequences (B), randomly

Fig 13. Anterograde and retrograde facilitation and interference effects across task similiarities and training schedules. A) Network performance as

a function of the number of training trials for interleaved training with low task similarity. B) Performance for blocked training with low task similarity. C)

Performance for interleaved training with high task similarity. D) Performance for blocked training with high task similarity. E) Anterograde effects in learning

as quantified by the difference in error rates between the first 10 training trials on task S2 and the first 10 training trials on task S1. F) Retrograde effects in

learning as quantified by the difference in error rates between the end of training task S1 and testing on S1 after training on all tasks. Note that facilitation

effects correspond to positive values while interference effects correspond to negative values in both E) and F).

https://doi.org/10.1371/journal.pcbi.1005632.g013
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interleaved training with sequences with task similarity of 0.875 (C), blocked training with

sequences with task similarity of 0.875 (D). First of all, plot E and F demonstrate that across all

combinations one can find regions in the space of task similarity and training schedule that

show all reported facilitation and interference effects, both anterograde as well as retrograde.

While retrograde effects are primarily dominated by the training schedule, anterograde effects

show a pattern of interaction between training schedule and task similarity. Closer examina-

tion of the map of anterograde effects (E) shows, that interference effects are associated with

more blocked training schedules at low task similarities. With more randomized training

schedules and with higher task similarities the interference effects diminish and then turn into

facilitation effects. The retrograde effects depicted in panel (F) show strong retrograde interfer-

ence for blocked training across a wide range of tasks similarities. These interference effects

disappear at intermediate training schedules, i.e. when training with more than 30 blocks with

20 repetitions of a each sequence in a single block. Further reducing the number of repetitions

in a single block finally leads to retrograde facilitation effects. In summary, these experiments

provide evidence that task similarity and training schedule interact to give rise to proactive

and retroactive interference and facilitation effects.

Discussion

In this work we have shown how different phenomena in human sequence learning can all be

understood based on generic learning principles in a recurrent neural network model. Specifi-

cally, we have considered a sparsely connected recurrent network whose activity and connec-

tivity is shaped by three plasticity mechanisms: spike-timing dependent plasticity (STDP), an

intrinsic plasticity regulating neuronal excitability, and a synaptic normalization controlling

the amount of afferent input to each neuron. The network receives stimulus-specific input and

is connected to a layer of “motor” neurons mediating the movement sequences through a win-

ner-take-all mechanism. We have used this network to model a series of experiments on move-

ment sequence learning using a single set of parameters in all simulations. The network learns

to carry out the correct movement sequences over trials and reproduces differences in behav-

ior between training schedules such as blocked vs. randomly interleaved training. The network

also shows close similarity to human performance in tasks with similar training sequences but

different training times.

Like various pervious models [5–9], our model of sequence learning is formulated as a

spiking network learning through STDP and we have used it to model behavioral data from

human subjects. We view this approach as complementary to recent modeling efforts using fir-

ing rate networks to reproduce neural firing patterns in motor cortex, e.g., [41, 42]. Whether

such firing patterns can also be learned with spiking networks through (reward-modulated)

STDP is an interesting topic for future research, as is the question wether such rate models,

often trained with very different learning mechanisms, can reproduce the kinds of behavioral

data on interference and facilitation effects that have been the focus of the present study.

The current work presents a detailed analysis of the underlying changes in the neuronal

representations of the motor sequences across learning. Mutual information, PCA of network

activity, and measures of neuronal selectivity reveal how neural activity changes with training

and how these changes crucially depend on the three plasticity mechanisms in the SORN.

Finally, we have provided testable predictions for future experiments jointly varying task simi-

larity and training schedule. Overall, we have shown how task similarity and training schedule

can interact to produce a rich set of interference and facilitation effects thereby unifying proce-

dural memory consolidation and structure learning in a recurrent network model with multi-

ple plasticity mechanisms.

A spike-timing dependent plasticity model explains facilitation and interference effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005632 August 2, 2017 23 / 27

https://doi.org/10.1371/journal.pcbi.1005632


The SORN model we have used in this study is admittedly a gross simplification of learning

processes in real cortical networks. It uses binary threshold units operating in discrete time

steps and highly abstracted forms of plasticity. It is intriguing, however, that networks from

the SORN family have already managed to account for both various structural features of corti-

cal networks [22, 43], as well as a large range of physiological findings on neural variability and

the relationship between spontaneous and evoked activity [44]. This suggests that despite their

simplicity they capture some essential aspects of cortical information processing and learning.

Therefore, it is maybe not that surprising that they also manage to account for a range of psy-

chophysical findings on human sequence learning as we have demonstrated here.

Studying the restructuring of neural circuits and their changes in representation during

sequence learning in human subjects is currently not feasible. However, extended recordings

from the same neural circuit during acquisition of a complex behavior are now possible in ani-

mal experiments. Impressively, [45] have even optogenetically reversed synaptic changes

occurring during learning of a motor task thereby erasing a recently acquired engram. This

makes studying the neural mechanisms underlying sequence learning behaviors both experi-

mentally and theoretically a promising direction for future research.
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S1 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

network connection probability between excitatory neurons was set to pconnect = 0.05.

(EPS)

S2 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

network connection probability between excitatory neurons was set to pconnect = 0.1. This is the

value used in the simulations of the main text.

(EPS)

S3 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

network connection probability between excitatory neurons was set to pconnect = 0.15.

(EPS)

S4 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

network connection probability between excitatory neurons was set to pconnect = 0.2.

(EPS)

S5 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

ratio of excitatory to inhibitory neurons was set to NI/NE = 0.1.

(EPS)

S6 Fig. (A) Simulation of experimental group of the Panzer et al. [24] study. Sum of pair-

wise distance of network states under different input conditions using Euclidean norm. The

ratio of excitatory to inhibitory neurons was set to NI/NE = 0.2. This is the value used in the

simulations of the main text.

(EPS)
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wise distance of network states under different input conditions using Euclidean norm. The

ratio of excitatory to inhibitory neurons was set to NI/NE = 0.4.
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