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Abstract

In this thesis we explore the characteristics of strongly interacting matter, described by
Quantum Chromodynamics (QCD). In particular, we investigate the properties of QCD
at extreme densities, a region yet to be explored by first principle methods. We base the
study on lattice gauge theory with Wilson fermions in the strong coupling, heavy quark
regime. We expand the lattice action around this limit, and carry out analytic integrals
over the gauge links to obtain an effective, dimensionally reduced, theory of Polyakov
loop interactions.

The 3D effective theory suffers only from a mild sign problem, and we briefly outline
how it can be simulated using either Monte Carlo techniques with reweighting, or the
Complex Langevin flow. We then continue to the main topic of the thesis, namely the
analytic treatment of the effective theory. We introduce the linked cluster expansion,
a method ideal for studying thermodynamic expansions. The complex nature of the
effective theory action requires the development of a generalisation of the linked cluster
expansion. We find a mapping between generalised linked cluster expansion and our
effective theory, and use this to compute the thermodynamic quantities.

Lastly, various resummation techniques are explored, and a chain resummation is im-
plemented on the level of the effective theory itself. The resummed effective theory
describes not only nearest neighbour, next to nearest neighbour, and so on, interactions,
but couplings at all distances, making it well suited for describing macroscopic effects.
We compute the equation of state for cold and dense heavy QCD, and find a correspon-
dence with that of non-relativistic free fermions, indicating a shift of the dynamics in
the continuum.

We conclude this thesis by presenting two possible extensions to new physics using
the techniques outlined within. First is the application of the effective theory in the
large-Nc limit, of particular interest to the study of conformal field theory. Second is
the computation of analytic Yang Lee zeros, which can be applied in the search for real
phase transitions.
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Deutsche Zusammenfassung

In der vorliegenden Arbeit studieren wir die Eigenschaften derQuantenchromodynamik
(QCD), welche die Dynamik der starken Wechselwirkung, eine der vier fundamentalen
Kräfte des Universums, beschreibt. Die zugehörigenQuantenzahlen werden von den ele-
mentaren Bestandteilen der Nukleonen, denQuarks, getragen. Dabei ist die starkeWech-
selwirkung dafür verantwortlich, dassQuarks gebundene Zustände, sogenanntenHadro-
nen, bilden. Die daraus resultierende Bindungsenergie entspricht 99% der Hadronen-
Masse und somit ist die Stärke der starken Wechselwirkung der Ursprung des Großteils
der sichtbaren Materie in unserem Universum.

Von großem Interesse ist insbesondere das Phasendiagramm der QCD für stark wech-
selwirkende Materie. Die QCD hat die Eigenschaft der asymptotischen Freiheit, was
dazu führt, dass die Stärke der Wechselwirkung bei sehr hohen Energien (bzw. sehr
kleinen Abständen) abnimmt. Die zugehörige Energieskala für dieses Phänomen ist
ΛQCD ≈ 200 MeV. Derartig hohe Energien können bei Kollisionen in Teilchenbeschle-
unigern entstehen, sind aber auch in thermodynamischen Systemen mit hinreichend
hohen Temperaturen und/oder Dichten erreichbar.

Bei Temperaturen um Tc ∼ ΛQCD tritt ein Crossover-Übergang auf, bei dem die
charakteristischen Freiheitsgrade nicht mehr gebundene, hadronische Zustände bilden,
sondern in einen Zustand quasi-freier Quarks und Gluonen, bekannt als das Quark-
Gluon-Plasma (QGP), übergehen. Man geht davon aus, dass dieser Übergang in den
anfänglichen Phasen unseres Universums vorzufinden war. Experimentell wird dieser
Zustand in den verschiedenen Kollisionsexperimenten, die es weltweit gibt, untersucht.
Dazu gehören beispielsweise der Relativistic Heavy Ion Collider (RHIC) am Brookhaven
National Laboratory und der Large Hadron Collider (LHC) amCERN in Genf. Außerdem
sind weitere Experimente an Einrichtungen, wie die Facility for Antiproton and Ion Re-
search (FAIR) an der GSI in Darmstadt oder die Nuclotron-based Ion Collider fAcility
(NICA) am JINR in Dubna, in der Entstehung. In letzteren wird insbesondere der QGP-
Übergang bei höheren Dichten und der sogenannte critical endpoint (CEP) untersucht.

Im Grenzwert niedriger Temperaturen und hoher Dichten findet man dagegen den
Flüssigkeit-Gas-Phasenübergang bei chemischem Quark-Potential µc ∼Mp (Protonen-
masse). Folgt man der Kurve des Phasendiagramms dieses Übergangs hin zu höheren
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Dichten, so gelangt man ebenfalls an einen CEP, der jedoch nicht mit dem hypothetis-
chen CEP des QGP zu verwechseln ist. Bei noch höheren Dichten wird erneut die asymp-
totische Freiheit deutlich. In diesem Grenzwert kalter und sehr dichter Materie befindet
man sich zudem in der sogenannten supraleitenden Phase. Diese ist vergleichbar mit
der supraleitenden Phase in der Elektrodynamik, wobei die zusätzliche Farbladung eine
nicht triviale Rolle in der Konstruktion der Cooper-Paare einnimmt.

Das Hauptaugenmerk liegt in dieser Arbeit auf dem erwähnten Flüssigkeit-Gas-Pha-
senübergang. Dieser Übergang liegt im Bereich von Energien, die zu groß für effektive
Theorien, jedoch zu klein zur Anwendung von Störungstheorie, sind. Deshalb wenden
wir Gittereichtheorie imRahmen der QCD an, in der die Raumzeit diskretisiert und durch
ein endliches Gitter mit endlichem Gitterabstand beschrieben wird. Dadurch wird ein
kleinster Abstand, der Gitterabstand a, genauso wie ein größter Abstand, aN, definiert.
Mithilfe der Gitter-QCD lässt sich der Pfadintegralformalismus approximieren, in dem
die unendliche Anzahl von möglichen Pfaden auf eine endliche, von der Gittergröße ab-
hängige Anzahl reduziert wird. Diese Diskretisierung wurde erstmals von Wilson im
Jahre 1974 formuliert. Sie ist so konstruiert, dass sie im Grenzwert a 0 (Kontinu-
umslimes) und N ∞ (sodass aN ∞) die volle QCD reproduziert. Abweichungen
werden meist in zwei Kategorien unterteilt, einerseits finite size Effekte (aufgrund von
a ̸= 0) und andererseits finite volume Effekte (da aN ̸= ∞).

Die Gitter-QCD hat zweifelsfrei ihre Wirkungskraft durch die Bestätigung einer Viel-
zahl experimenteller Ergebnisse von Vakuum-Observablen unter Beweis gestellt. Bei-
spiele dafür sind die Massen leichter Hadronen, die bis auf wenige Prozent genau übere-
instimmen. Dies dient nicht nur als eine Bestätigung der Gitter-QCD, sondern auch als
eine Bestätigung der QCD und desQuark-Modells als eineTheorie zur Beschreibung der
Natur.

Auch wenn die Gitter-QCD die mathematischen Herausforderungen der Berechnung
von Observablen deutlich vereinfacht, muss man sich dennoch numerischer Methoden
bedienen, um an die vollen nicht-perturbativen Ergebnisse zu gelangen. Gängige Meth-
oden beruhen auf der stochastischen Integration, wie beispielsweise der Monte-Carlo-
Integration oder der Langevin-Integration. Diese Methoden nutzen die Tatsache, dass
man das Integrationsmaß selbst verwenden kann, um Informationen über die dominan-
ten Beiträge zum vollen Integral zu erlangen.

Diese Methode lässt sich auch auf thermodynamische Systeme anwenden, in denen
die Minkowski-Zeit durch die periodische euklidische Zeit ersetzt wird. Die euklidische
Zeit steht dabei im Zusammenhang mit der Temperatur in thermodynamischen Feldthe-
orien. Der Versuch ein chemisches Potential hinzuzufügen bringt jedoch Probleme nu-
merischer Naturmit sich. Auchwenn die Fermionen-Determinante (einmathematisches
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Objekt, das die volle fermionische Dynamik beinhaltet) bei verschwindendem chemis-
chen Potential eine reelle Zahl ist, wird diese in die komplexe Ebene gerückt, sobald
das chemische Potential von Null verschieden ist. Das stellt in der Kontinuumsphysik
keine Probleme dar, da sich die imaginären Komponenten in der Betrachtung des vollen
Satzes der Integrale gegenseitig eliminieren. Für die numerische Implementation ist
das hingegen nicht der Fall, da man den komplexwertigen Integranden nicht mehr als
Wahrscheinlichkeitsgewicht der stochastischen Variablen verwenden kann. Dieses Prob-
lem kann theoretisch umgangenwerden, indemman eine leicht modifizierte, jedoch ähn-
liche Verteilung zur Berechnung der Observablen wählt. Dieses Verfahren ist bekannt
als reweighting. Für µ/T > 1 lassen sich jedoch häufig nur sehr schwer passende
Verteilungen finden, wodurch eine stochastische Integration nicht mehr möglich ist.
Dieser Sachverhalt wird im Allgemeinen als sign problem bezeichnet.

Eineweitere Schwierigkeit, die bei Gitterberechnungenmit endlichem chemischen Po-
tential auftritt, hat ihren Ursprung im Pauli-Prinzip. Aufgrund der fermionischen Natur
von Quarks kombiniert mit dem diskreten Gitter besitzt ein System in der Gitter-QCD
eine obere Schranke für die Anzahl der zugelassenen Quarks. Dieses Gitter-Artefakt
wird problematisch an dem Punkt, an dem das Gitter zur Hälfte gefüllt ist, also dem
Punkt, an demdieHälfte dermöglichenQuantenzustände besetzt sind. Dieses Phänomen
wird als lattice saturation bezeichnet und wird selten diskutiert, da das sign problem deut-
lich früher bei der Berechnung auftritt. Sobald wir letzteres überwunden haben, wird
ersteres zu einer echten Herausforderung, die wir ebenfalls bewältigen müssen.

Um das sign problem abzuschwächen, verwenden wir eine effektive Gittertheorie, in
der wir das auftretende Integral über einen Teil der Freiheitsgrade analytisch auswerten.
Wir werden zeigen, dass diese Methode erfolgreich die Stärke des sign problem mildert
und dass die daraus resultierende effektiveTheorie leicht mithilfe von reweighting-Tech-
niken simuliert werden kann. Um diese Rechnung durchführen zu können, muss der
Integrand in bestimmten Grenzwerten entwickelt werden. Ein geeigneter Entwicklungs-
punkt ist dieTheorie der stark gekoppelten statischenQuarks, in der die Integrale der Zu-
standssumme analytisch lösbar sind. Der zugehörige Grenzwert wird als strong coupling
limit bezeichnet und entspricht dem Grenzwert αs ∞, was in der Gitter-QCD dem
Verschwinden des Parameters β ∝ 1/αs der Wilson-Plakette entspricht. Des Weiteren
bezeichnen statischeQuarks jene mit Massemq ∞. Verwendet man Gitter-QCD mit
Wilson-Fermionen, so taucht die Masse nur im sogenannten hopping parameter κ =

1
2(4+amq)

auf. Der Limes statischer Quarks ist somit eine Entwicklung um den Punkt
κ 0, auch bekannt als hopping expansion.

Durch geeignete Reskalierung der Gittertheorie muss die zugehörige Kontinuumsphy-
sik zugänglich sein. Aufgrund von Renormierungseffekten erhält die Kopplungskon-
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stante eine Abhängigkeit von der Skala des Systems, das bedeutet β β(a), wodurch
wir die a-Abhängigkeit der Observablen durch Variation von β bestimmen können. Das
Verhalten des Kontinuumslimes in Abhängigkeit von β kann mithilfe von Störungstheo-
rie studiert werden und den tatsächlichenKontinuumslimes erlangtman durchβ(a 0)∞, welches der entgegengesetzte Grenzwert zu unserer Entwicklung ist. Betrachtet
man jedoch höhere Ordnungen dieses Parameters, kannman eine Aussage über die Skala
der Gitter-QCD treffen, von der eine analytische Erweiterung zum Kontinuum möglich
ist. Weitere Einzelheiten dazu folgen später im Text.

Die effektiveTheorie gewährleistet die Bestimmung der korrekten Entwicklungskoef-
fizienten der vollen Gitter-QCD in den angesprochenen Grenzwerten. Damit ermöglicht
sie es uns diese interessante Region des QCD-Phasenraumdiagrammes von fundamen-
taler Basis aus zu untersuchen. Der Hauptbestandteil der vorliegenden Arbeit ist die
Herleitung dieser effektiven Theorie und beinhaltet ein volles Kapitel, das sich allein
damit beschäftigt, die korrekten Entwicklungskoeffizienten Ordnung für Ordnung zu
bestimmen. Es wird sich herausstellen, dass sich die Kombinatorik der Entwicklung bei
niedrigen Temperaturen deutlich vereinfacht, was bezogen auf das Gitter einer großen
zeitlichen Gitterausdehnung entspricht. Daraus resultiert ein dritter Entwicklungspa-
rameter T (oder genauer aT = 1/Nt). Schlussendlich profitieren wir auch noch von
den Vereinfachungen, die bei sehr dichten Systemen auftreten. Wenn die chemischen
Potentiale hoch genug sind, leisten die Antiquarks keinen großen Beitrag und können
daher vernachlässigt werden. Die resultierenden Freiheitsgrade sind die sogenannten
Polyakov loops, welche geschlossene Quarklinien in zeitlicher Richtung sind. Die effek-
tive Wirkung setzt sich dann aus nächster-Nachbar-Wechselwirkungen, übernächster-
Nachbar-Wechselwirkungen, etc. dieser Variablen zusammen. Man kann das System
demnach als ein kompliziertes nicht-lokales System von kontinuierlichen Spins mit bes-
timmten Symmetrien betrachten. Wirwerden amEnde der Arbeit einO(κ8u5N4

t)-Ergeb-
nis dieser effektiven Theorie präsentieren.

Auch wenn die numerische Fähigkeit der effektiven Theorie diskutiert wird, ist sie
nicht der Hauptreiz der gegenwärtigen Arbeit. Stattdessen präsentieren wir eine neue,
rein analytische Behandlung der effektivenTheorie. Dabei basieren unsere Untersuchun-
gen auf der klassischen linked cluster Entwicklung, welche die in der Praxis gängige
Methode ist, um Ergebnisse für die Gleichgewichts-Thermodynamik von Spin-Systemen
zu erhalten. Diese muss jedoch verallgemeinert werden, um den Anforderungen unserer
nicht-lokalen Wirkung gerecht zu werden. Deshalb erarbeiten wir eine polymer linked
cluster Entwicklung, welche sich Techniken der Graphentheorie bedient.

Wir verwenden eine Vielzahl analytischer Methoden, um die resummation-Verfahren,
die mit numerischen Methoden unerreichbar sind, zu entwickeln. Dazu zählt die so-
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genannte chain resummation, die alle Beiträge der effektiven Theorie zusammenzählt,
die eine Kette bilden oder in eine solche eingeschlossen werden können. Eine weitere
wäre die ladder resummation, die wir ebenfalls behandeln werden. Wir werden sehen,
dass diese resummation-Methoden die Konvergenz der Theorie deutlich steigern, was
den Anreiz schaffen sollte, zukünftige Arbeiten auf diese Art der Verbesserungen zu
fokussieren.

Am Ende dieser Arbeit werden wir verschiedene thermodynamische Größen unter
Verwendung unserer rein analytischen großkanonischen Zustandssumme berechnen.
Dies wird im Temperaturbereich ∼ 10 MeV und bei chemischen Potentialen nahe der
Baryonenmasse geschehen. Dabei sehen wir einen Crossover-Übergang zu atomarer
Materie, da sich der CEP des Flüssigkeit-Gas-Überganges in Richtung niedrigerer Tem-
peraturen bewegt, wenn man die Quarkmasse erhöht. Eine Untersuchung der zuvor
erwähnten lattice saturation wird ebenfalls gezeigt. Dieses Problem zeigt sich insbeson-
dere in der Kontinuumsextrapolation und wir werden sehen, dass Gitter-Berechnungen
bezüglich der Physik jenseits des Flüssigkeit-Gas-Phasenüberganges erschwert werden,
obwohl Ergebnisse im Kontinuumslimes nicht von diesen Gitterartefakten beeinträch-
tigt werden.

Unser letztes und interessantestes Ergebnis bezieht sich auf die Zustandsgleichung für
die QCD schwererQuarks in kalter und dichter Materie. Es zeigt sich, dass die Kontinu-
umsphysik, die auf unseren Berechnungen mit schwerenQuarks und starker Kopplung
beruht, sehr ähnlich zur Physik schwach gekoppelter Fermionen ist. Der auftretende
Wechsel der Freiheitsgrade des Systems ist ein dynamischer Prozess und demonstriert
die Stärke unseres Ansatzes. Wir führen zwar Untersuchungen der beitragenden Frei-
heitsgrade durch, dennoch sind Fragen für weiterführende Arbeiten offen gelassen.

Die effektive Theorie kann zusätzlich erweitert werden, um Eichtheorien verschiede-
ner lokaler Symmetriegruppen, wie zum Beispiel SU(Nc) (Nc = 3 für QCD), zu beschrei-
ben. Diese Tatsache macht sich in der gesamten Arbeit bemerkbar, da die Symme-
triegruppe nur sehr selten explizit festgelegt wird. Eine Welt mit etwa Nc = 4 würde
sich sehr von unserer unterscheiden, da beispielsweise jedes Hadron ein Boson wäre.
Der Grundstock einer solchen Untersuchung ist in chapter 5 zu finden und weiter-
führende Berechnungen sind aktuell im Gange. Es wird außerdem ein Appendix ange-
boten, in dem die zugehörigen mathematischen Werkzeuge detailliert beschrieben wer-
den.
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1
Introduction

The current state of human knowledge suggests that the majority of visible matter in
the universe is made up of hadrons which in turn consist of the more fundamental
quarks. We have so far discovered six species, or flavours, of quarks, namely the up,
down, strange, charm, top and bottom. These fundamental particles carry three sets
of charges: electric charge, flavour charge and colour charge. The latter manifests it-
self through the confinement process that binds the quarks together into inseparable
hadrons, and the resulting binding energy is responsible for almost 99 % of the mass
of these bound particles. For example the proton has a mass of 938.27 MeV, while its
constituents, two up quarks and a single down quark, have a total rest mass of no more
than 9.8 (1.9) MeV [Olive et al., 2014]. It is therefore of great importance to understand
the dynamics governing interactions between particles carrying colour charges and the
force’s mediators, the gluons.

Throughout the various stages of discoveries in the world of particle physics, the theo-
ries we use to describe nature have evolved. The current reigning model of the universe
is called the StandardModel of particle physics, and categorises the knownworld consist-
ing of 6 leptons, 18 quarks, 13 mediators, and their antiparticles into symmetry groups.
This theory describes three of the four established fundamental forces as a quantum the-
ory of fields, electromagnetism, the strong- and weak nuclear forces, and it is the most
successful theory to date, predicting experimental values with astonishing accuracy.

The subset of the Standard Model that describes the interaction between quarks and
gluons is called Quantum Chromodynamics (QCD). The advent of QCD came in the
1960’s, in a period where a great number of ”fundamental” particles were discovered.
Both Gell-Mann [1962] and Ne’eman [1961] found structure and symmetry in this zoo
of new particles, and to explain this phenomenon, the existence of quarks was sug-
gested [Gell-Mann, 1964]. Due to the fermionic nature of the quarks, an additional quan-
tum number was needed to allow for the quarks inside baryons to occupy the required
spin and flavour quantum states. This new quantum number was named colour, hence
chromodynamics, from ancient Greek χρῶμα [Greenberg, 1964].

QCD has an extremely rich structure, being confining at low energies, while also pos-
sessing asymptotic freedom. It has an internal energy scale, ΛQCD ≈ 200 MeV, which
arise from dimensional transmutation, and gives the defining length scales of the theory.
It also has a non-trivial topological structure, resulting in instanton configurations in
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Figure 1.1.: Left: A simplified, conjectured phase diagram of QCD with path symbolis-
ing the scan lines of various current and future experiments. Right: The
Columbia plot, showing the deconfinement transition order for various
quark masses.

the vacuum [’t Hooft, 1976].
Of particular interest is the phase diagram of QCD in the temperature-chemical po-

tential plane, sketched in figure 1.1 (left). At low temperatures and densities, QCD
is confining, and thus the effective degrees of freedom are the bound states, baryons
and mesons. Moving along the temperature axis, one eventually passes into the quark-
gluon-plasma phase, a phase in which the thermodynamic energies are high enough
that the quarks and gluons deconfine. In this phase the quarks and gluons move around
semi-freely, weakly interacting with each other within the bulk of the plasma. This de-
confinement transition is in fact not a phase transition at all, but has been shown to be
a crossover transition, with a pseudo-critical temperature Tc ≈ 150 − 170 MeV [Aoki
et al., 2006]. It is still an open question whether moving along this line of crossover
transitions eventually will result in a phase transition and an accompanying critical end-
point. The nature of the crossover transition depends on the constituent quark masses
and the number of quark flavours, degenerate or otherwise. This dependence is often
represented in a Columbia plot, figure 1.1 (right). Although the physical point clearly
sits in the crossover area, the existence of a critical end-point depends on whether the
lower Z(2) critical line shrinks or expands at increasing chemical potential. It is also an
open question whether this critical line actually touch the chiral axis in the left or not
[Philipsen and Pinke, 2016].
Back to the T -µ phase diagram, moving along the chemical potential axis at zero tem-

perature, one finds a first order liquid-gas phase transition at baryon chemical potentials
around the proton mass. Following this transition curve to higher temperature, it will
eventually end in a critical endpoint. On the other hand, continuing to even higher
chemical potentials, Cooper’s theorem tells us that we should find various colour super-
conducting phases. This has been shown for asymptotically large densities. However,
no first principle proof for intermediate values exists. Due to the nature of QCD, and
the enlarged number of quantum numbers, there are multiple superconducting phases.
These phases differ in which quantum numbers are fixed to create Cooper pairs. One
has the 2-flavour superconducting phase and the colour-flavour-locked superconducting
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phase, where the colour indices play different roles in the two cases. For a discussion
on the phase structure of QCD see e.g. [Rajagopal and Wilczek, 2000; Rischke, 2004].

The goal of this thesis is to attempt a study of QCD at low temperatures and high den-
sities, close to the liquid-gas phase transition. Due to the confining nature of QCD, such
a study cannot be carried out with the use of perturbation theory. A common approach
to this is using low energy effective models for QCD, such as hadron gas resonant mod-
els, and meson models. We will be more ambitious, and will undertake a first principle
study through the medium of lattice gauge theories. As we will see in the introductory
chapters, the lattice formalism is ill-suited for carrying out simulations in the cold and
dense regime of QCD due to the sign problem, which we will surmount by the use of
an effective lattice theory that has matching series coefficients to full QCD in a specific
parameter region.

The outline of the thesis is as follows. We introduce the necessary formalism in
chapter 2. Thiswill include the quantumfield theoretical description of a special type of
quantified local symmetries, and a short introduction to the group theory of continuous
groups. We then introduce lattice gauge theory through the discretisation of space-time,
and finally an overview of important lattice concepts is given.

In chapter 3 we proceed to introducing the necessary formalism for transitioning our
quantum field theory, and with it lattice gauge theory, into the realm of thermodynamics
and statistical mechanics. In this section we take great care to properly define difficulties
that arise in high density lattice simulations, namely the sign problem. We also present
a handful of ”remedies”, and discuss their applicability.

This is followed by chapter 4 in which we introduce our method of choice for deal-
ing with the sign problem. This is a systematic series expansion approach around the
dynamics of heavy quarks (mq ∞) and strong coupling (αs ∞). The derivation of
the effective theory is carried out in great detail, and various important steps for con-
vergence is discussed. We round off the chapter with a discussion on the numerical
evaluation of this simplified lattice theory.

The thesis culminates in the purely analytical treatment of this effective lattice theory.
Chapter 5 begins with the introduction of the linked cluster expansion, which enter as a
bedrock on which we build the remainder of the analysis, and is the de factor method for
studies of thermodynamics through series expansions. We then develop a generalisation
to the cluster expansion formore intricate theories, and name it the polymer linked cluster
expansion. We then introduce powerful resummation schemes to extend the region of
relevance of our theory further. Finally, the equation of state for cold and dense, heavy
QCD is studied and discussed.
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2
Gauge Theories and Lattice Gauge Theories

In this chapter we formally introduce the quantum field theory describing fermions
invariant under local group transformations, and introduce the Dirac Lagrangian in
section 2.1. Section 2.2 gives a brief overview of basic group theory, introducing the
concepts and tools necessary for the thesis. In section 2.3 we investigate the defining
symmetry properties of our quantum field theory, and how these can be extended. After
this introduction to continuum physics, section 2.4 discretises space-time and puts our
theory on a lattice. In sections 2.5, and 2.6, we review the similarities and differences
between the lattice and the continuum, and stress where additional care has to be taken.
Finally, we give a very quick introduction to numerical evaluation of lattice theories in
section 2.7.

For the introduction, standard texts on the subjectmatter have been consulted. Among
these are introductory volumes on quantumfield theory [e.g. Peskin and Schroeder, 1995;
Maggiore, 2004], lattice gauge theory [e.g. Montvay and Münster, 1997; Gattringer and
Lang, 2009] and group theory [e.g. Georgi, 1999; Fulton and Harris, 2013].

2.1 The free Dirac Lagrangian
Theundoubtedlymost important quantity inQuantum FieldTheory (QFT ) and Statistical
Mechanics (SM) are the generating functional, named Z, and the partition function, for
the two theories respectively. In SM, it is defined as

ZE = tr e−H/T =

∫ ∏
i

dϕie
−SE[ϕi], (2.1)

where we have chosen to represent the trace over the Hamiltonian matrix by an integral
over a continuous system, described by a set of field parameters,ϕi. There is an analogue
between the two theories and one can convert from one to the other by Wick rotating
the time coordinate x0E = −ix0M. Whenever the possibility for confusion exists we use
anM to symbolise Minkowski space, the world of QFT, and an E to symbolise Euclidean
space, the world of SM.

The action, S, is in turn defined by the Lagrangian density

S[ϕi] =

∫
d4xL[ϕi(x)], (2.2)
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and our theories are uniquely defined by L and the properties of the fields ϕi.
Of physical interest are expectation values of Hermitian operators Ô, which in the

path integral formalism can be computed using the partition function

⟨
Ô[ϕi]

⟩
=

1

ZE

∫ ∏
i

dϕiO[ϕi] e
−SE[ϕi], (2.3)

It is the set of Hermitian operators that represents physical observables. These can for
example be accessed by the introduction of source terms to the action

ZE[ Ji ] =

∫ ∏
i

dϕi e
−SE[ϕi]−

∫
Jiϕi (2.4)

with which we can rewrite the expectation value in terms of functional derivatives

⟨
O[ϕi]

⟩
= O

[
δ

δJi

]
logZE

∣∣∣∣
J=0

, (2.5)

hence the name generating functional.

2.1.1 The Dirac Lagrangian

Our starting point will be the Dirac Lagrangian, which reads

L = ψ̄i
(
iγµ∂µ −mi

)
ψi. (2.6)

Here we have introduced the fermionic fields ψi. To get the right statistics, these fields
have to obey the anti-commutation relations, and therefore they have to comply with
the Grassmann algebra {

ψi,ψj
}
≡ ψiψj +ψjψi = 0, (2.7){

ψ̄i, ψ̄j
}
≡ ψ̄iψ̄j + ψ̄jψ̄i = 0, (2.8){

ψ̄i,ψj
}
≡ ψ̄iψj +ψjψ̄i = δij. (2.9)

This Lagrangian describes the dynamics of a set of free, massive fermions, which by it-
self is not very exciting. There are however different ways to add interactions while still
maintaining the desired symmetry properties (which we will discuss later). Depending
on the physics one is interested in describing, one such extension is given by the addition
of a self interacting coupling of the fermions, e.g. a four point term, g

(
ψ̄ψ
)2, which is

named the NJL model [Nambu and Jona-Lasinio, 1961]. Another option is to introduce
new fields and corresponding couplings to these fields. One such model is the linear
sigma model [Gell-Mann and Lévy, 1960], describing effective low energy couplings be-
tween quarks and mesons. Finally, by localising certain symmetries of the system one
can organically induce new fields and coupling to the theory, which we examine closer.
For such a study we need a short overview of group theory, which we will present next.
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2.2. A group theory perspective

2.2 A group theory perspective
A groupG is a set and a rule for assigning to every (ordered) pair in the set a new element
also in the set

For every f,g ∈ G, then h = fg ∈ G , (2.10)

this assignment is called the group product. The group product is associative, and in
every group a unit element (e) exists. Every element also has an inverse so that

∀ f ∈ G, ∃ f−1 : f−1f = ff−1 = e . (2.11)

A representation of a group G on a complex vector space V is a homomorphism

DR : G GL(V) (2.12)

of the group G on the group of automorphisms of V . Therefore representations have to
maintain the group structure, meaning

DR(e) = 1R, (2.13)
DR(f)DR(g) = DR(fg). (2.14)

In physics we are normally content with a coordinate basis, in which the representations
map to n by n invertible matrices, i.e. V := C, GL(V) :=MC(n,n).

2.2.1 Lie groups

If the elements of a group G depends smoothly on some set of parameters, g(αi) ∈ G,
we call that group a Lie group. Lie groups make up the theory of continuous transfor-
mations, and are therefore of special interest to physics. The continuous nature of the
Lie groups creates a sense of closeness where two elements that are close to each other
can be represented through differentials, e.g.

DR(g(δαi)) = 1R + i δαiTRi + O(δα2). (2.15)

One commonly refers to TRi as the generators of the groupG. Applying the smoothness
condition to the group product, eq (2.14), we find that the commutator of the generators
follow a special relation [

TRi, TRj
]
= i fijkTRk. (2.16)

The structure constants, fijk, are in fact independent of the representation R. They are
tremendously important as they summarise the entire group multiplication law. They
are also referred to as the algebra of the group, g. The generators and the group algebra
will come into play when we later introduce continuous symmetries of our quantum the-
ory of fields. Using the Jacobi identity, it is possible to see that the structure constants
themselves comply with the multiplication law. We can therefore use the structure con-
stants as a representation of the algebra g called the adjoint representation[

Tadji
]
jk

≡ −i fijk, (2.17)

which fulfils eq (2.16).
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2.2.2 Character and character expansion

The character of a representation is defined as

χR(g) = trDR(g). (2.18)

The characters appear frequently in field theory due to the cyclic properties of the trace
and its ability to facilitate the creation of invariant objects. On top of this, the characters
span a basis of functions that share this cyclic property, i.e. any function ρ(fgf−1) =
ρ(g). Hence

ρ(g) =
∑
r

ρrχr(g), (2.19)

with
ρr =

∫
g∈G
dgχ∗r(g)ρ(g). (2.20)

It is common to factor out both the trivial representation (D0(g) = 1), as well as the
dimension of the representation, dR = trDR(e), and write

ρ(g) = ρ0

(
1+

∑
r ̸=0

drρ̄rχr(g)
)
, (2.21)

whichwewill refer to as the character expansion. Wewill make use of this in section 4.2.

2.2.3 Group integrals

Lastly we need to define integrals over continuous groups. We introduce the Haar inte-
gration measure, which has the following properties∫

dgρ(g) =

∫
dgρ(fg) =

∫
dgρ(gf) ∀ f ∈ G (2.22)

and the normalisation ∫
dg = 1. (2.23)

Throughout the derivation of the effective theory, we will encounter polynomial inte-
grals on the form

I =

∫
dggn(g−1)m (2.24)

or more commonly, with a representation

I
k1,l1,...,km,lm
i1,j1,...,in,jn

=

∫
dgDR(g)i1j1 · · ·DR(g)injnDR(g−1)k1l1 · · ·DR(g−1)kmlm . (2.25)

There are multiple ways of handling these integrals, depending on the Lie group one is
interested in. For SU(N) one can for instance decompose the integral into generalised Eu-
ler angles [as described in Tilma and Sudarshan, 2004], construct generating functionals
for the integrals Ik1,l1,...,km,lm

i1,j1,...,in,jn
[details in Creutz, 1978b], or one can use tensor product

decompositions to write the integrals in terms of Young projectors [Christensen et al.,
2015]. In the present work, a combination of the first two approaches is used, and exten-
sive details are provided in appendices A.1, A.2, and A.3.
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2.3. Symmetries of the Lagrangian

2.3 Symmetries of the Lagrangian

With the necessary formalism in place, we can now discuss the symmetries of the La-
grangian we introduced in eq (2.6). We first look at the symmetries that come by con-
struction before delving into possible ways of extending the theory to be both globally
and locally symmetric under additional transformations.

2.3.1 Symmetries by construction

Every quantum field theory is constructed to be symmetric under the full Poincaré group,
namely the group of space-time translations plus Lorentz transformations.

To see the other symmetries of the Dirac Lagrangian we have to decompose the fields
into its spinorial components. Every element ofψi in eq (2.6) is a four-component spinor,
and the γ’s, 4× 4 matrices. In the standard representation they take the form

ψ =
1√
2

(
ψR +ψL
ψR −ψL

)
, γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
. (2.26)

The fields ψR,L are two component fields that transform under two distinct representa-
tions of the Lorentz group, (1

2
, 0) and (0, 1

2
) respectively. With this choice of basis the

Dirac Lagrangian reads

L = iψ̄Rγ
µ∂µψR + iψ̄Lγ

µ∂µψL −m(ψ̄RψL + ψ̄LψR). (2.27)

It is apparent that this Lagrangian is symmetric under the U(1) ⊗ U(1) transformation

ψR,L eiαR,LψR,L (2.28)

if and only if the mass term is set to zero. Invariance of the independent transformations
of the left- and right-handed fields is called chiral symmetry, and signals the existence
of helicity eigenstates. The presence of the mass term explicitly breaks the symmetry
into a single U(1) symmetry, where αR = αL, commonly referred to as the vector-U(1).

The global symmetry group of ψ can be trivially extended to admit any Lie group by
making the field live in the vector space the representation of choice acts on, and carry
out transformations in the following way

ψ DR(g)ψ, ψ̄ ψ̄D
†
R(g), g ∈ G. (2.29)

This symmetry has an associated conserved Noether current for every generator of the
group G

j
µ
i = ψ̄γµTiψ, where ∂µj

µ
i = 0, (2.30)

which gives the associated charge

Qi =

∫
d3x ψ̄γ0Tiψ. (2.31)
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2.3.2 Gauge symmetries

We just saw that the Lagrangian can be trivially extended to be invariant under global
symmetry transformations. Next, we want to promote them to local symmetries. This
is motivated post facto by QED, which exhibits a local U(1) symmetry.
The idea was first explored byWeyl, who tried introducing local scale transformations

to the metric
gµν(x) eσ(x)gµν(x) (2.32)

which prompted the need for an additional vector field to gauge how much one needs
to adjust scales to compare two separate points. Weyl then showed that these vector
fields need to follow Maxwell’s equations, and postulated that the vector fields were in
fact nothing else than Maxwell’s electromagnetic potentials [Weyl, 1918]. It was later
discovered that classically scale invariant theories loose this symmetry due to a quantum
effect sometimes referred to as the Weyl anomaly. In fact, it is this very effect that is
responsible for the bulk contribution to the hadron masses in QCD. So, although Weyl’s
ideas do not describe how the world actually works, it served as a cornerstone on which
the theories connecting the geometry of space to local symmetries was built. Instead of
adjusting local length scales, we will apply group transformations to vector spaces that
live on top of space-time.
We define a local group element by a Lie group whose parameters are space-time

dependent g(αi(x)). We will use the short hand notation U(x) = DR
(
g(αi(x))

)
for

representations of such group elements. We suppress the representation R-subscript
wherever it is not needed. The transformations of the fields at a single coordinate follow
trivially from eq (2.29)

ψ(x) U(x)ψ(x), ψ̄(x) ψ̄(x)U†(x). (2.33)

There is however no way to make derivative terms invariant under these symmetries.
This becomes obvious when writing the derivative in terms of limits

ηµ∂µψ(x) = lim
δ 0

1

δ

(
ψ(x+ δη) −ψ(x)

)
(2.34)

where ηµ is some unit vector. We have to take the difference between fields at two
different points in space-time, which transform independently under eq (2.33). Naively
calculating this difference is nonsensical as one is allowed to choose the basis of the
representation of the different points independently, meaning that ψ(x) and ψ(y) can
be members of different vector spaces. We therefore introduce the parallel transporters,
Λ(y, x), which transforms between the vector spaces of the fields at the points x and y
in a smooth way [Wu and Yang, 1975]. We define the covariant derivative as

ηµDµψ(x) = lim
δ 0

1

δ

(
ψ(x+ δη) −Λ(x+ δη, x)ψ(x)

)
. (2.35)

where the transporter Λ makes sure we subtract quantities which are defined on the
same vector space. These transformations are nothing but coordinate transformations
of the vector spaces, and must therefore itself be a member of the representations on G.
From this it follows that Λ transforms as

Λ(y, x) U(y)Λ(y, x)U†(x). (2.36)

12



2.3. Symmetries of the Lagrangian

This in turn gives rise to the subsequent transformation rule for the covariant derivative
Dµψ(x) U(x)Dµψ(x), (2.37)

ensuring that terms of the form ψ̄Dµψ remain invariant under local symmetry transfor-
mations. As Λ is a representation of G, we can express it in terms of the generators of
the group. On infinitesimal form, this is

Λ(x+ δη, x) = 1+ igδηµAiµ(x)Ti + O(δ2) (2.38)
where the Aiµ have to transform as

Aiµ Aiµ + ∂µα
i − gfijkαjAkµ + O(α2), (2.39)

which is independent of the representation. The locally symmetric Dirac Lagrangian
thus reads

L = ψ̄
(
iγµDµ −m

)
ψ. (2.40)

Unfortunately, without a kinetic term for the newly introduced fields Aiµ, the theory
would permit violently oscillating fields with no cost in energy [’t Hooft, 2002]. This
would make our theory non-renormalisable, which we obviously want to avoid. We
therefore need to find a kinetic term for the fields that admits all of our restrictions.
When constructing such a term, it is natural to once more turn to the parallel trans-
porters, it being the main ingredient in adjusting the kinetic term of the fermions. Using
the gauge transformation ofΛ, it is easy to see that the geometric plaquette could create
such a term

Uµν(x) =Λ(x, x+ ν̂δ)Λ(x+ ν̂δ, x+ µ̂δ+ ν̂δ)

×Λ(x+ µ̂δ+ ν̂δ, x+ µ̂δ)Λ(x+ µ̂δ, x) (2.41)
which transforms as

Uµν(x) U(x)Uµν(x)U
†(x) , (2.42)

and hence trUµν(x) is invariant under local group transformations. Expanding Uµν in
the fields Aiµ, we get

Uµν = 1+ igδ2Ti
(
∂µA

i
ν − ∂νA

i
µ + gf

ijkAjµA
k
ν

)
+ O(δ3) (2.43)

from which we extract the term
Fiµν = ∂µA

i
ν − ∂νA

i
µ + gf

ijkAjµA
k
ν , (2.44)

which is both invariant under the gauge transformations as well as being the kinetic
term we were looking for. The full gauge extended Lagrangian thus reads

L = ψ̄
(
iγµDµ −m

)
ψ−

1

4
FiµνF

iµν . (2.45)

There are higher order combinations of these ingredients which are invariant under the
symmetries discussed so far, such as the dual field strength

LD = gDε
αβµνFiαβF

i
µν , (2.46)

and magnetic dipole interactions
LMD = gMDψ̄σ

µνFiµνψ . (2.47)
We ignore these in the present study as they contribute to the breaking of other symme-
tries and/or systematics, some of which we are interested in conserving at the scope of
this thesis, such as CP symmetry and renormalisability,
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2.4 Lattice discretisation

With the Lagrangian at hand we want to actually evaluate the partition function integral
from eq (2.1). The integral is however infinite dimensional, and has no known closed
analytical form unless the theory is trivial (non-interacting). If the theory is close to
being trivial, one can apply perturbation theory and systematically solve the integral
order by order. This is however not the case for the theories we plan to study, and we
must resort to other means.
In the lattice approach one discretises space-time into a grid, or lattice, restricting the

fields and variables to exist only at these points. We thus introduce a shortest distance,
namely the spacing between these grid points, commonly named a. The coordinates are
thus restricted to(

x0, x1, x2, x3
)
∈ R4

(
n0,n1,n2,n3

)
∈

{
0, 1, ...,N− 1

}4
. (2.48)

In addition to having a shortest distance, which works as a natural regulariser for this
approach, we also have a finite volume Ω = a4N4 (1). Therefore, to recover physical
results, we need to take the continuum limit, a 0, and the infinite volume limit,N 0,
in such a way that Ω is large enough in physical units to encompass the scales we are
interested in studying.
Having introduced the lattice, we see that the partition function of the discretised

theory is simplified compared to the continuum. The simplification is not obvious as it
quietly changes the number of integrals from being infinite to being an albeit still large,
but finite number.
In the following sections we will first construct a Lagrangian to put on the lattice and

analyse its new symmetry properties. We will then briefly discuss how to determine the
lattice scale and compare lattice results with continuum physics. Finally a brief overview
of the real world computations and applications of lattice gauge theories will be given.

2.4.1 The lattice gauge theory Lagrangian

Constructing a good discretised Lagrangian is both a subject and an art in of itself.
Naively one would think that any Lagrangian that reduces to the continuum Lagrangian
of eq (2.45) when we send a 0 would suffice. Or broader, Lagrangians that at most
introduce total derivatives with vanishing borders when a 0. Though this is to some
extent true, we will see that as always, the devil are in the details, and if one does not
take great care, the continuum theory will not be as it first appears.
In the previous section we introduced the parallel transporters to define how to as-

sociate two different points in space that can belong to different vector spaces. This
procedure complies nicely with the lattice approach, as the only modification we have
to make to the definition of the covariant derivative is to replace δ by a, and abolish the
limit. We will exclusively use the transporter between nearest neighbour lattice sites,
and therefore make the abbreviation U(x+ aηµ, x) = Uµ(x) = U†

−µ(x+ aηµ). Hence,

(1)We later distinguish between spatial and temporal lattice directions, and denote the total number of
lattice points in one such direction by Ns and Nt.
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2.5. Fermion doubling and chiral symmetry

the fermion contribution to the lattice action with a symmetrised derivative reads

Sf = a
4
∑
x

(
mψ̄(x)ψ(x) −

1

2a

±3∑
µ=±0

ψ̄(x+ µ̂)γµUµ(x)ψ(x)

)
, (2.49)

where the sum is over the discrete points on the lattice, and we have used the shorthand
definition γ−µ ≡ −γµ. We have also switched to Euclidean space, which is a conscious
choice that will benefit us later in the stochastic evaluation of the path integral. It is
common to factor the fields out of the definition and write the action in terms of a vector-
matrix product

Sf = a
4ψ̄yQyxψx, Qyx[Uµ] = mδy,x −

1

2a

±3∑
µ=±0

γµUµ(x)δy−µ,x , (2.50)

where the spin and gauge indices are hidden. This is to simplify the expression for the
integral over the fermion fields, which can be evaluated exactly∫ ∏

i,j

dψ̄iψje
ψ̄iQijψj = detQ, (2.51)

with Q commonly referred to as the Dirac operator or the fermion matrix, and detQ
the fermion determinant. The matrix can either be represented as a higher dimensional
tensor, or using a super index describing all degrees of freedom.

Having introduced the plaquette transporter in eq (2.41), constructing a lattice gauge
action is straightforward

Sg = βRa
4
∑
x

∑
µ<ν

(
1− 1

dR
Re trURµν(x)

)
, (2.52)

where dR is the dimension of the representation. βR is the coupling constant, and by
comparison with the continuum field strength tensor (eq (2.44)), we find

βR =
2dR
g2

. (2.53)

2.5 Fermion doubling and chiral symmetry
Although the Lagrangian in eq (2.49) has the desired transformation properties, and re-
produces the Dirac Lagrangian in the continuum, it suffers from a degeneracy in its
energy eigenvalues. The easiest way to see this is by choosing the trivial representation
of the gauge fields and writing down the fermion Hamiltonian

Hf =
∑
x⃗

(
mψ̄(⃗x)ψ(⃗x) +

i

2a

3∑
k=1

(
ψ̄(⃗x+ k̂)γkψ(⃗x) − ψ̄(⃗x− k̂)γkψ(⃗x)

))
. (2.54)

From experience we know that the free Hamiltonian is diagonal in momentum space, so
we introduce a Fourier transform

ψ̃(p⃗) = a3
∑
x⃗

e−ip⃗·x⃗ψ(⃗x) (2.55)
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where the possible values of p⃗ are restricted to the Brillouin zones

pi =
2π

aN
νi, νi ∈

{
−
(
L
2
−1
)
, ..., L

2

}
⇒ pi ∈

(
−π,π

]
. (2.56)

After a Fourier transformation the Hamiltonian is

Hf =
1

(aN)3

∑
p⃗

˜̄ψ(p⃗)
(
m+

1

a
γk sin(apk)

)
ψ̃(p⃗). (2.57)

It can easily be seen that it has eigenvalues

Hp⃗ = ±

√√√√m2 +
1

a2

3∑
k=1

sin2(apk) (2.58)

which for every momentum p⃗ is 8-fold degenerate, owing to the periodicity of the sine
function. This implies that we have 7 additional, unwanted fermions in the theory when-
ever we put one in. These doublers come from the corners of the Brillouin zone, and
therefore disappear as we take the continuum limit. This is however of little comfort,
as they would give incalculable effects to loop diagrams at finite volumes which can-
not easily be factored out. In four dimensional space-time an additional set of 8 energy
eigenstates appear from doublings in the additional temporal Brillouin corners.

2.5.1 Wilson fermions

In an attempt to resolve this issue, Wilson introduced an additional term to the La-
grangian in the form of a second order derivative. This new term, appropriately named
the Wilson term, is one order higher in a, and therefore disappears in the continuum
limit. After reordering the terms, adding the Wilson term to the Lagrangian gives us

Sf,w = a4
∑
x

((
m+ 4r

a

)
ψ̄(x)ψ(x) −

1

2a

±3∑
µ=±0

ψ̄(x+ µ̂)(r+γµ)Uµ(x)ψ(x)

)
. (2.59)

We have introduced theWilson parameter r, which has to be in the interval (0, 1], and is
commonly chosen to be 1. Using the Wilson action, one can calculate the Hamiltonian’s
eigenvalues, and show that they are modified to

Hp⃗ = ±

√√√√(m+
r

a

3∑
k=1

(1− cos(apk))

)2

+
1

a2

3∑
k=1

sin2(apk) . (2.60)

The addition of the Wilson term has given an additional mass of nr/a to the unwanted
doublers, meaning that they properly decouple from the theory in the continuum where
their masses diverge.
However, including the Wilson term does not come without a cost. By introducing

the Wilson term, we explicitly break chiral symmetry. As a result, regardless of whether
we choose m = 0 for the bare mass parameter, the transformation of eq (2.28) is no
longer a symmetry of the system.
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There is in fact a theorem by Nielsen and Ninomiya [1981a; 1981b] which states that
one cannot have a lattice theory both chirally symmetric and free of doublers at the same
time with a Dirac Lagrangian that is also local and possesses the correct continuum limit
properties.

Yet all hope is not lost as Ginsparg andWilson shortly after stated a modified equation
the fermion propagator has to fulfil to give a chiral theory in the continuum [Ginsparg
andWilson, 1982]. AlthoughWilson fermions do not meet these requirements, solutions
to the equations have since been found. Two notable discretisation schemes are overlap
fermions [Neuberger, 1998a,b], and domain wall fermions [Kaplan, 1992] (which heed the
equation in a special limit of its internals).

2.6 Scale setting and the continuum limit
We previously mentioned that the lattice spacing a works as a non-perturbative reg-
ulariser of the theory, and thus sets the internal scale. Any parameter in the lattice
theory appears as dimensionless combinations, such as x⃗/a, ap⃗, am, a3/2ψ(x); the
scale is therefore to some extent hidden, and the only way to access it is by computing
observables and comparing them to experimental values

lim
a 0

O(m,g;a) = Ophys. (2.61)

Simply sending a to 0 is considered to be the naive continuum limit, as it fails to take
into account the parameters’ dependence on the scale. The parameters that enter our
theory are called bare, as they vary together with the scale

mphys = lim
a 0

mbare(a), gphys = lim
a 0

gbare(a). (2.62)

The scale dependence of the theory’s parameters is summarised by the Callan-Symanzik
equations, which can be computed for any physical observable Ophys

a
d

da
Ophys =

(
a
∂

∂a
− β

∂

∂g
− γ

∂

∂m

)
Ophys = 0. (2.63)

The β-function describes how much the coupling changes as a function of the lattice
spacing, while the anomalous dimension γ gives the field strength scaling. To lowest
order in perturbation theory, the β-function is

β(g) = −a
∂g

∂a
= −

g3

(4π)2

(11
3
Cadj2 −

4

3
nfCR

)
+ O(g5),

≡ −β0g
3 + O(g5) (2.64)

Here we encounter the group’s Casmir operators, CR and Cadj2. They are defined as

CR2 = ||TRif
iabfjbaTRj||, CR =

dR

dadj
CR2, (2.65)

and take the following values for the fundamental representation of SU(N)

CF =
1

2
, Cadj2 = N . (2.66)
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One can solve the differential equation in eq (2.64) and get

g =
1√

1− 2β0 log(a/a0)
⇔ a =

1

Λ
exp

{ −1

2β0g2

}
. (2.67)

We see that although gwas initially dimensionless, we have generated an energy scaleΛ
through the renormalisation group, a phenomenon known as dimensional transmutation.
We also see that the lattice spacing a goes to zero as g goes to zero (and the lattice
coupling β goes to infinity). This is the true continuum limit, where one, as opposed to
the naive limit, takes the change of the parameters into account.

2.7 Numerical evaluation of lattice gauge theories
Although the lattice discretisation has decreased the number of integrals in the definition
of Z from infinity to something finite, the number of free variables is still too large for it
to be evaluated, even numerically. The fermion fields have 2NfdR independent degrees
of freedom at every position; the gauge field is a four vector at every space-time point
with dadj degrees of freedom. Even though the fermion fields can be integrated out
exactly, as seen in eq (2.51), this still leaves a highly dimensional integral if one wants
to look at anything but miniscule volumes.
The only feasible way to handle these types of integrals is by using approximate inte-

gration schemes, many of which are stochastic in nature. One such algorithm is Monte
Carlo integration, which instead of summing over all values the degrees of freedom can
take, as one does in standard numerical integration, only samples a small number of
these configurations. The value of the integral is then reconstructed using this (small)
number of configurations.
For this to work well one has to sample the configuration space in an optimal way

as the integrand is usually sharply peaked around a small set of very specific, although
unknown, configurations. A first step is to do importance sampling, where one uses
the integrand as a probability distribution for the configuration space, in the case of the
partition function

P
(
[ψ, ψ̄,Uµ]

)
∝ e−S[ψ,ψ̄,Uµ]. (2.68)

This is only a viable interpretation as long as the right hand side is real and positive. We
evaluate the fermion integrals according to eq (2.51), giving us

P
(
[Uµ]

)
∝ detQ[Uµ] e

−Sg[Uµ]. (2.69)

The exponent of the gauge action is clearly both real and positive. The fermion determi-
nant can be shown forWilson fermions to be real by using the fact that it is γ5-hermitian

γ5Qγ5 = Q†. (2.70)

It is however not guaranteed to be positive. We can fix this by studying systems with an
even number of pairwise degenerate quarks. The QCD action does not mix the different
quark species, and we therefore get a separate fermion matrix for every quark flavour

detQ =
∏
f

detQf . (2.71)
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2.7. Numerical evaluation of lattice gauge theories

Since direct sampling from the distribution is not possible in practice, one usually
constructs a chain of samples, each being related to the previous through a Markov
chain {[

ψ, ψ̄,Uµ
]
1
,
[
ψ, ψ̄,Uµ

]
2
, ...,

[
ψ, ψ̄,Uµ

]
N

}
(2.72)

where the probability of choosing one configuration given another follows the detailed
balance equation

P
(
[ ]n

∣∣[ ]n−1

)
P
(
[ ]n−1

∣∣[ ]n ) = eS[ ]n−1−S[ ]n , (2.73)

which will converge to the correct distribution as long as the chain is ergodic, i.e. will
reach any field configuration in finite (albeit arbitrarily long) time.

2.7.1 Observables

Using this process to select a finite set of configurations, one can obtain an estimate for
the expectation value of observables. Commonly named the ensemble average, it is given
by

Ō
[
ψ, ψ̄,Uµ

]
=

1

N

N∑
n=1

O
(
[ ]n
)
. (2.74)

If the set of configurations behaves as described in the previous section, it converges to
the true average, eq (2.3), when N ∞.

We want an estimate of the error for any realisable number of configurations. This
information is encoded in the autocorrelation function

CO(m) =
⟨
O
(
[ ]n
)
O
(
[ ]n+m

)⟩
n
−
⟨
O
(
[ ]n
)⟩2
n
, (2.75)

which quantizes how correlated consecutive measurements are. Since the n+ 1’th con-
figuration depends on the n’th configuration through the Markov chain, CO(m) ̸= 0
form > 0.However, it is how quickly this function decreases that determine how good
the estimate for the average is. An important quantity for this is the integrated autocor-
relation time

τO =
1

2

+∞∑
m=−∞

CO(m)

CO(0)
. (2.76)

One can show that approximately 2τO of the consecutive measurements will be cor-
related, meaning that it is advantageous to sample only the observable at this interval
instead of for every new configuration [Montvay and Münster, 1997, sect. 7.1.3].
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3
Statistical Mechanics and Phase Transitions

This chapter give a short overview of some aspects of statistical mechanics that are im-
portant in the present work. This is done in section 3.1. Then the field theoretical
equivalent is given in section 3.2, before we once more study the discretised theory in
section 3.3. We tie up the chapter in sections 3.4, and 3.5 with a thorough discussion
of simulations of finite density systems, and the hurdles that need to be overcome.

Several volumes of the standard literature have been consulted with respect to the
contents of this chapter. These include, but are not limited to, Landau and Lifshitz [2013];
Pathria and Beale [2011] for introductions to statistical mechanics, Kapusta and Gale
[2006] with an introduction to Thermal Field Theory (TFT ), and Montvay and Münster
[1997]; Philipsen [2010] for the lattice formulation of finite temperature theory.

3.1 Statistical mechanics

Every quantity of interest in the study of equilibrium thermodynamics is contained in
the previously mentioned partition function

Z =
∑
i

Zi =
∑
i

e−βEi . (3.1)

The sum is over all states of the degrees of freedom of the system, Ei being the energy
cost of the configuration, and β = 1/T the reciprocal temperature(1). How one chooses
to define the scope of these states depends on the physics one is interested in, as different
physical quantities are more accessible to certain descriptions compared to others. Three
common descriptions are the microcanonical, canonical and grand canonical ensembles.
They differ in their scope as the microcanonical ensemble includes systems at a fixed
energy shell, the canonical ensemble a system of fixed temperature and particle number
while the grand canonical ensemble also allows for fluctuations in particle number.

Both the canonical and grand canonical ensembles have associated partition functions,

(1)This should not be confused with the lattice gauge coupling, which was introduced in the previous
chapter. β will be used to indicate 1/T in this chapter only.
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and the two are related through

ZGC(z,V , T) =

∞∑
N=0

zNZC(N,V , T), (3.2)

where z = eβµ is the fugacity and µ the chemical potential. The partition function can
in turn be used to calculate a multitude of thermodynamic quantities

P =
1

β

(
∂

∂V
logZ

)
β,z

, (3.3)

E = −

(
∂

∂β
logZ

)
z,V

, (3.4)

N = z

(
∂

∂z
logZ

)
β,V

, (3.5)

pressure, average energy and average particle number respectively.

3.1.1 Phases and phase transitions

The phase of a system is linked to the characteristic behaviour of one or more of its
physical quantities, such as the magnetisation of spin glasses, the average positions of
atoms in a crystal and the molecular composition of solutions. We refer to these defining
physical quantities as the order parameters of the phases. The transitions between two
or more phases is known as a phase transition, and due to the very nature of phases,
happens through the induction of mathematical singularities.
The order of a phase transition is exactly described by which derivative of the free en-

ergy with respect to the order parameter of choice diverges. First order transitions have
discontinuous first derivatives, while only higher order derivatives diverge for second
order transitions.
However, if the order parameter approaches zero, without ever reaching it, one can

define a pseudo-phase transition, known as a crossover, to be the point of the most rapid
change of the order parameter (the inflection point). While this is not a real phase tran-
sition, following its trajectory in a phase diagram will result in one, if a transition exists,
and thus linking the two concepts.
Phase transitions are an inherently macroscopic concept, and do not know about the

microscopic details of the theory. Theories with different microscopic properties might
therefore still behave alike on the macroscopic level. These categorise into universality
classes, catalogued by the singular behaviour of their physical quantities close to the
transition. If we denote the order parameter bym, and the ordering field by h(2), we can
define some of the critical exponents by

m ∼ (T − Tc)
β, (3.6)(

∂m

∂h

)
T

∼ (T − Tc)
−γ, (3.7)

CV = −β2

(
∂2F

∂β2

)
V

∼ (T − Tc)
−α. (3.8)

Systems which have the same critical exponents fall into the same universality class.
(2)a characteristic variable which define the transition,m 0 as h 0
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3.2. Thermal field theory

3.1.2 Yang Lee zeros

An alternative approach to a rigorous study of the phase transitions was proposed by
Yang and Lee [1952b; 1952a]. They suggested that one can analyse the properties of
the thermodynamic functions around a transition by studying the zeros of the grand
canonical partition function in the complex fugacity plane.

Seeing as the partition function is per definition the normalisation factor of a statistical
system, it can never be zero for real and positive values of z. The Yang Lee zeros thus lie
in the complex plane. However, as one increases the volume of the system, the number
of zeros increases, and tends to a continuous curve in the thermodynamic limit, V ∞.
As this curve forms, zeros on the positive and negative imaginary axis could coincide at
the real axis, signalling the onset of a phase transition.

3.2 Thermal field theory

The quantum partition function is defined similarly to the classical one, but with the
energy and particle numbers promoted to operators

ZGC =
∑

[ϕi,πi]

⟨
[ϕi,πi]

∣∣zN̂e−βĤ∣∣[ϕi,πi]⟩ . (3.9)

This sum reduces to a form similar to eq (2.1) after introducing the second quantisation
and evaluating the integrals over the conjugate momentum fields πi.

Focussing on the canonical ensemble, there are two amendments which need to be
made to the Euclidean action in eq (2.2). First the Euclidean time τE has to be integrated
over the half open interval [0,β)

SE[ϕi] =

∫β
0

dτE

∫
d3xLE

[
ϕi(x)

]
. (3.10)

The second rectification is a bit more subtle and concerns the periodic boundary condi-
tions of the fields. For the fields to respect their statistical properties (Bose- vs Fermi
statistics) they need to obey the boundary conditions

ϕ(τE + β) =

{
ϕ(τE), for bosonic fields,

−ϕ(τE), for fermionic fields.
(3.11)

We can now return to the grand canonical ensemble and the particle number operator
N̂. A suitable operator can be created from the conserved Noether charges, such as
the one from eq (2.31). For every distinct conserved charge one wishes to study the
dynamics of, there should be a separate chemical potential. Two common systems of
interest are those of quark- and isospin chemical potential. Quark chemical potential
is connected to the global U(1) symmetry of the fermion fields. The associated Noether
charge is that of total fermion number

Nf =

∫
d3x ψ̄f(x)γ

0ψf(x), (3.12)
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with either separate or degenerate µf for each of the fermion species. The isospin charge
is related to the Cartan generator of the flavour mixing SU(2) symmetry of a two flavour
system (the third Pauli matrix)

NI =

∫
d3x ψ̄i(x)γ

0(σ3)ijψj(x), (3.13)

which for QCD gives the up and down quarks chemical potentials that only differ in sign.
By tuning the value of µI, one can study the effects of a u/d asymmetry, while adjusting
µf induces a particle/antiparticle imbalance.

3.3 Thermal fields on the lattice

Following the same path as in section 2.4, discretising the expression for the partition
function Z is straightforward. We see that lattice theory naturally describe systems at
non-zero temperature, as the temporal extent is always finite. The temperature is given
in terms of the number of temporal lattice sites, Nt,

T =
1

aNt
. (3.14)

Therefore, when analysing continuum physics it is important to take a proper infinite
volume limit for spatial coordinates, while for the Euclidean temporal extent one sends
a 0 and Nt ∞ in such a way that aNt remains finite.
At a first glance it might seem as if when integrating lattice theories we can only vary

the temperature in finite increments, seeing as Nt has to be an integer. It is however
much more common to keep Nt fixed while varying a, which one does by tuning the
gauge coupling g, as in section 2.6.
Other than imposing the proper boundary conditions for the variables, no other amend-

ments need to be made for the finite temperature simulations. These follow directly from
eq (3.11)

ψ(nt +Nt) = −ψ(nt), (3.15)
Uµ(nt +Nt) = Uµ(nt). (3.16)

3.3.1 Thermodynamic quantities

In section 3.1 we stated the thermodynamic quantities P, E and N in terms of deriva-
tives of the partition function. However, one cannot sample the partition function
through Monte Carlo simulations, and we therefore have to device a different scheme to
calculate these quantities. By interchanging the order of the derivatives and the integrals
we get

E = −
∂

∂β
logZ =

1

Z

∫ ∏
i

dϕi

(
∂S

∂β

)
e−S ≡

⟨
∂S

∂β

⟩
. (3.17)

However, there is still a problem in defining the derivative with respect to β. As we
wish to keep Nt fixed, we have to vary β by varying a, but we only want to vary the
lattice spacing in the temporal direction, not the spatial ones. By naively varying a, we
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3.4. Finite density simulations

would not only change the temperature, but also the volume, which must stay fixed in
the definition of E.

To rectify this we have to introduce an anisotropic lattice, one in which the spatial and
temporal lattice spacings are different. The magnitude of this difference is encoded in
the anisotropy parameter ξ = as/at. By varying as and at separately we can compute
derivatives with respect to temperature and volume independently, and calculate the
thermodynamic quantities

P = −
as

3βV

⟨
∂S

∂as

⟩
, (3.18)

E =
at

β

⟨
∂S

∂at

⟩
, (3.19)

N = −z

⟨
∂S

∂z

⟩
. (3.20)

Now that they are expressed in terms of ensemble averages we can use the previously
introduced Monte Carlo methods to estimate their values.

3.4 Finite density simulations
In order to carry out simulations of systems with non-zero quark number density we
saw that we have to introduce a quark chemical potential. Unfortunately, a naive dis-
cretisation of the quark number operator from eq (3.12) leads to divergences in the ther-
modynamic quantities in the continuum limit [Hasenfratz and Karsch, 1983; Kogut et al.,
1983]. This is due to the lack of an implicit gauge invariance of the lattice action needed
for the right continuum cancellations to take place.

The correct way to introduce a quark chemical potential to the lattice action is by
weighing the appropriate gauge links with the correct single step fugacity

U0(x) eaµU0(x), U
†
0(x) e−aµU

†
0(x). (3.21)

Adding this change to the Wilson fermion matrix from eq (2.59) yields

Qyx =
(
m+ 4r

a

)
δy,x −

1

2a

±3∑
µ=±1

(r+ γµ)Uµ(x)δy−µ̂,x

−
1

2a

(
eaµ(r+ γ0)U0(x)δy−0̂,x + e

−aµ(r− γ0)U†
0(x− 0̂)δy+0̂,x

)
, (3.22)

which is also the final form of the lattice action we will study in this thesis.

3.4.1 Dense systems and lattice saturation

Lattice studies of systems at finite chemical potential is limited in the very dense regime
by lattice saturation. This is a mere lattice artefact arising from the Pauli exclusion prin-
ciple, which tells us that two fermion degrees of freedom cannot occupy the same quan-
tum state. Due to the discretised nature of it, a lattice cannot accommodate more than
2NfNcNtN

3
s fermions.
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Figure 3.1.: Sketch of the average number of quarks per lattice site as a function of baryon
chemical potential on the lattice, Nf = 2,Nc = 3. Starts in the silver blaze
state, moves into onset, reaches half filling then saturates at 2NfNc.

This limitation is sketched in figure 3.1 where a stereotypical lattice curve has been
plotted. At small and intermediate values of the chemical potential, we see the Silver
Blaze property. Coined by Cohen [2003], is the phenomenon that at any chemical poten-
tials smaller than the smallest mass of the theory, the eigenvalues of the Dirac operator
are µ independent. Slightly before µ = m we have onset, which signals the beginning
of the nuclear condensation phase change, after which the system will eventually reach
half-filling, where half of the states on the lattice are occupied. One should generally ig-
nore results beyond this point, as lattice artefacts become dominant. This was the study
of [Rindlisbacher and de Forcrand, 2016], in which the authors discovered a particle-hole
symmetry around half-filling, similar to electron-hole symmetries in solid state systems.
As the lattice continues to fill up we eventually reach saturation, at which point the
lattice states are all occupied, dynamics stop, and no more quarks can be added to the
system. As we see in the sketch, this happens when every lattice site is populated by
2NfNc fermions.

3.5 The sign problem
An issue arises when trying to numerically evaluate the partition function integrals of
finite chemical potential systems through Monte Carlo methods. We saw that we can
use the probability density

P
(
[Uµ]

)
∝ detQ[Uµ] e

−Sg[Uµ] (3.23)

to evaluate the integrals numerically. This requires that the fermion determinant be pos-
itive definite, something we can guarantee from the fact that the matrix is γ5-hermitian.
Unfortunately, this property is lost when a chemical potential is introduced. When dig-
ging deeper we find that this conceptual issue is just the tip of the iceberg, and that there
is a more fundamental issue at play.
The partition function has to be a real positive quantity, and so we know that if we

carry out the integral properly, all the imaginary contributions have to cancel out in the
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Re f(x) Im f(x)

Figure 3.2.: The essence of the sign problem. Real and imaginary part of a function with
a phase, f(x)eiθ(x).

end. It is getting these exact cancellations out of inexact numerical methods that is the
underlying complication. This is what is referred to as the sign problem, and the issue is
not exclusive to lattice studies of fermionic systems at finite density. Being categorised
as an NP-hard problem [Troyer and Wiese, 2005], it is unlikely that we will ever find
a generic solution to it, and it needs to be tackled through deep understanding of the
source of the issue itself.

The problem is most easily illustrated using a sketch. In figure 3.2 we have plotted
the real and imaginary part of a symmetric function with a complex phase, f(x)eiθ(x).
The real part integrates to something finite that is exponentially suppressed by the phase,
while the imaginary part integrates to zero. However, this subtlety is hard to reproduce
numerically, just as it is hard to see with the bare eye that one of the two plots integrate
to zero, while the other something finite. The number of operations needed to keep
the errors down grow exponentially with the system size, making continuum studies
impossible.

There are multiple workarounds devised to allow for evaluating finite density systems
using Monte Carlo methods. Such methods include reweighting, Taylor expansions, and
analytic continuation from imaginary chemical potential; there is also stochastic quanti-
sation, which is not a Monte Carlo method. Although none of these procedures actually
tackle the essence of the sign problem, with sufficiently powerful computers results with
reasonable accuracy can be obtained. However, one should take great care to sample cor-
rectly if one wants sensible results, as was demonstrated in [Osborn et al., 2008].

The remainder of this chapter is dedicated to covering the basic ideas of these methods,
and refer to [de Forcrand, 2009] for a more thorough review.

3.5.1 Reweighting

Reweighting is a highly effective refactoring scheme, where one takes the phase of the
fermion determinant as part of the observation rather than the probability weight. Fac-
toring out the phase

detQ = | detQ| eiθ (3.24)
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Figure 3.3.: Overlap of the full ensemble to the reweighted ensemble at low and high
chemical potential.

one can rewrite the expectation value of an observable as

⟨O⟩ = 1

Z

∫ ∏
i

dϕiO | detQ| eiθe−Sg

=
Zpq

Zpq

∫∏
i dϕiO | detQ| eiθe−Sg∫∏
i dϕi | detQ| eiθe−Sg

=
⟨Oeiθ⟩pq
⟨eiθ⟩pq

. (3.25)

The phase quenched ensembles, where the phase is kept constant, only have real weights,
and one can therefore use Monte Carlo techniques. It is possible to introduce a positive
function of the phase, f(θ), to lessen the difference between the true ensemble and the
phase quenched one

⟨O⟩ = ⟨Oeiθ/f(θ)⟩f
⟨eiθ/f(θ)⟩f

. (3.26)

This was explored in [de Forcrand et al., 2003], and an optimal choice for f was deter-
mined to be f(θ) = | cos θ|.
The sign problem comes into play when the average phase drastically deviates from

1, in which case the ensemble we sample is far from the ensemble we want to measure,
drastically increasing the required statistics. The issue is sketched in figure 3.3 where
we see the overlap between the full and reweighted ensembles. Because the reweighted
ensemble deviates significantly from the full ensemble at high chemical potentials, most
of the sampled configurations will be discarded, often referred to as the overlap problem.

3.5.2 Imaginary chemical potentials

Another method that has been given much attention recently is simulating at purely
imaginary chemical potentials, and then using analytic continuation from the negative
µ2 parameter region to the positive. At purely imaginary µ the measure becomes a real,
positive quantity, which can be seen from

detQ†(µ) = detQ(−µ∗). (3.27)
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This has been used to study the critical surfaces of the Columbia plot (figure 1.1, right),
where one can compute the curvature of this surface upon crossing into the region of
real chemical potential [de Forcrand and Philipsen, 2002; D’Elia and Lombardo, 2003].

In addition to being a useful method of extrapolating to real chemical potentials, the
interesting phase structure in the region of imaginary chemical potentials can be stud-
ied. Because the imaginary chemical potentials introduce a pure phase, the partition
function is periodic under centre transformations of the group. This is known as the
Roberge-Weiss symmetry, and the periodicity leads to a phase transition of the same
name [Roberge and Weiss, 1986]. Never developments in the field can be found in e.g.
[Wu and Meng, 2013; Cuteri et al., 2016; Philipsen and Pinke, 2016].

3.5.3 Taylor series

A similar approach to analytic extrapolation is to calculate the Taylor series of an observ-
able and then change the order of integration and derivation, leading to the expansion

⟨O⟩µ = ⟨O⟩0 +
⟨
dO

dµ

⟩
0

µ+
1

2

⟨
d2O

dµ2

⟩
0

µ2 + O(µ3). (3.28)

This has been used to try and follow the trajectory of the phase transition into the re-
gion of finite µ [Allton et al., 2003]. The convergence region is however governed by the
partition function’s behaviour at imaginary chemical potential, and the Roberge-Weiss
transition is to our knowledge the bound for any extrapolation from zero chemical po-
tential. There is therefore a strict limit on how far this expansion is valid, which was the
study of [Osborn et al., 2008].

3.5.4 Stochastic quantisation

The final method we will cover is the use of stochastic quantisation. This approach is
different from the others as it doesn’t use Monte Carlo methods at all. Instead, one uses
a different stochastic process to estimate the partition function integral, the Langevin
equations [Parisi and Wu, 1981]. One introduces an additional continuous parameter of
the fields, α, and then evolves the system in this new parameter following the stochastic
differential equation

∂ϕi(x,α)

∂α
= −

δS

δϕ
+ η(x,α) (3.29)

where η is Gaussian white noise. The method then relies on the fact that in the α ∞
limit, the expectation value of observables with respect to the η distribution is identical
to the true expectation value evaluated via the path integral

lim
αi ∞

⟨
O[ϕ(x,α)]i

⟩
η
=
⟨
O[ϕ(x)]i

⟩
, (3.30)

where the noise average is defined as

⟨
O
⟩
η
=

∫∏
i dηiOe

− 1
4

∫
d4xη(x)2∫∏

i dηi e
− 1

4

∫
d4xη(x)2

. (3.31)

This equality can be rigorously proven for real actions [Damgaard and Huffel, 1987; Huf-
fel and Kelnhofer, 2004]. One can nevertheless apply the method to complex actions.
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Figure 3.4.: Left: Baryon number density of the Stephanov model measured by complex
Langevin compared to full and phase quenched analytical results at fixed
m = 0.0. Phase quenched computed using a mean field approach. Right:
Same comparison for the chiral condensate at fixed µ = 1.0.

Although using a complex action induces imaginary contributions to the noise aver-
age, these are expected to average out in the limit for physical observables. This is not
always the case, as the complex Langevin sometimes diverges towards unphysical solu-
tions [Ambjorn and Yang, 1985], the reason for which is still an open question.
The sign problem manifests itself in the complex flow of the fields. For large values of

the chemical potential, the field configurations will spend a considerable amount of time
in the complex phase, resulting in the need for longer flow times before the imaginary
contributions average out. This can to some extent be remedied by the introduction of
gauge cooling [Seiler et al., 2013], which is the application of invariant transformations
on the variables that push them closer to non-complex field values. For QCD it has been
shown that this places a restriction on the coupling strengths for which the method
is applicable. A recent comparison made between the reach of reweighting to that of
stochastic quantisation shows that they are comparable [Fodor et al., 2015]. The newest
developments can be found in [Aarts et al., 2016].
To demonstrate a case in which we can clearly see the Langevin flow converging to

the wrong theory, we study a RandomMatrixTheory (RMT), which is a simple model also
suffering from a strong sign problem. One such RMT is the Stephanovmodel [Stephanov,
1996], whose partition function is

ZS =

∫
[dW]e−NΣ

2 trW†W detNf
(

M iW + µ
iW† + µ M

)
, (3.32)

where the degrees of freedom are random matricesW ∈ MC(N,N). The mass matrix
M, chemical potential matrix µ, and flavour number Nf, are introduced to mimic the
parameters of QCD. This model has the advantage that it is analytically solvable both at
finiteµ, as well as in the phase quenched limit [Stephanov, 1996; Halasz et al., 1997b]. The
results from simulating this theory using the unimproved complex Langevin algorithm
is shown in figure 3.4. In the same plots the full analytic result is plotted in red, and
the phase quenched result in green. It should be noted that the phase quenched is only
accessible in the thermodynamic limit, N ∞, though 48 is close enough to this limit
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to expect only few discrepancies from finite volume effects. We see that the complex
Langevin results clearly converge to the phase quenched theory even though the full
theory is used as input. Further analysis is yet to be made regarding improvement of
this case. This includes the aforementioned gauge cooling method, which was studied
in [Nagata et al., 2016a,b] for a different RMT, namely the Osborn model, and proved
to be effective with the right choice for the required cooling norm. Another alternative
comes from the theory of Lefschetz thimbles, where one can use the thimbles to weigh
the probability distributions at the stochastic step [Di Renzo and Eruzzi, 2015].
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4
The Effective Theory

Having presented the challenges and difficulties in simulating strongly interacting ferm-
ions, especially in the dense regime, we will introduce an effective theory that handles
some of these problems, while reproducing the full theory in a certain parameter region.
We will see that although simulations of the effective theory still suffer from the side
effects of the sign problem (e.g. complex actions), the sign problem is in essence weak
enough that reweighting can be readily applied.

The work in this thesis builds on previous work with the effective theory while push-
ing the derivation further and introducing analytic tools, which we will cover in the next
chapter.

In the present chapter we will first introduce the effective theory before introducing
two expansion schemes that facilitate the computation of the theory. These are namely
the character expansion, mentioned in section 2.2, and the hopping parameter expan-
sion for heavy fermions. We round off the chapter with a discussion on the numerical
evaluation of the effective theory.

4.1 The effective theory - Introduction
The essence of the derivation of the effective theory is to integrate out some of the de-
grees of freedom analytically. This will ease the burden of the numerical evaluation,
having fewer degrees of freedom left to vary, which in turn lessens the sign problem.
The sign problem will be milder due to the fact that many, or as we will see, most, of the
fluctuations cancel exactly, as they should. Integrating out the spatial gauge links in the
partition function

Z =

∫ ∏
x,µ

dUµ(x) detQ [Uµ] e
−Sg[Uµ] ≡

∫ ∏
x

dU0(x) e
−Seff[U0], (4.1)

defines the effective action

Seff = − log

∫ ∏
x,i

dUi(x) detQ [Uµ] e
−Sg[Uµ]. (4.2)

The integrals over the spatial gauge links Ui(x) is unfortunately not something we can
evaluate analytically without the aid of approximations. We will therefore introduce
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two expansion schemes and work towards deriving the effective theory such that it re-
produces the exact expansion coefficients of the full lattice gauge theory in the end.

4.2 The character expansion
The first expansion we will apply is the character expansion introduced in section 2.2.
In the form of an exact equality, it is not of much help. Nevertheless, from the character
expansion of the single plaquette gauge contribution (1)

e−β(1−
1
Nc

Re trUp) = u0(β)

(
1+

∑
r̸=0

dr ur(β)χr(Up)

)
, (4.3)

we see that the character expansion coefficients are dependent on the lattice gauge cou-
pling β. It can be easily seen that the higher dimensional representations come with
a higher power of this coupling. A natural ordering therefore arises if one expands
around the infinite coupling limit, g ∞,β 0. This expansion scheme is aptly named
the strong coupling expansion, and has been the focus of numerous studies for the past
decades, also having been picked up in recent years by groups studying conformal field
theories. Introductions to the field can be found in [Drouffe and Zuber, 1983] and [Mont-
vay and Münster, 1997].

The lowest order character expansion coefficient, namely that of the fundamental rep-
resentation, has for SU(3) been calculated to high orders

uF(β) =
1

Nc

∫
dg trg e−

β
2Nc

(trg+trg†)∫
dg e−

β
2Nc

(trg+trg†)

=
x+ 1

2
x2 + x3 + 5

8
x4 + 13

24
x5 + O(x6)

1+ x2 + 1
3
x3 + 1

2
x4 + 1

4
x5 + O(x6)

, x =
β

2Nc
. (4.4)

To leading order uF(β) ≈ β

2N2
c
, and we therefore use uF as our expansion parameter

rather than β. The character coefficients are in fact always smaller than or equal to 1,
and therefore do an excellent job as expansion parameters. The character expansion only
permits a single plaquette from any representation to be placed at each position, making
order counting easier than a standard Taylor expansion of the gauge action.

4.3 Pure gauge effective theory
With the character expansion at hand we can evaluate the pure gauge contributions to
the effective action. Ignoring the quark contribution, the effective action is

e−Seff =

∫ [
dU
]
i

∏
p

(
1+

∑
r ̸=0

drur(β)χr(Up)

)
, (4.5)

where we have introduced the shorthand
[
dU
]
i
=

∏
x,i dUi(x) for the integration mea-

sure. Expanding the product over the plaquettes gives a sum of terms which are of the
form

dr1ur1(β)χr1(Up1
)dr2ur2(β)χr2(Up2

) · · · . (4.6)
(1)Wewill from this point onward assume that the gauge group is SU(Nc) and that the fermions transform

under the fundamental representation, unless stated otherwise.
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t

x⃗

Figure 4.1.: Lowest order pure gauge contribution to the effective action

If one or more of the plaquettes in a term have a link that falls on (x,µ), this gives the
integral ∫

dUµ(x)χr1
(
Us1Uµ(x)

)
χr2
(
Us2Uµ(x)

)
· · · , (4.7)

where Usi is the remaining staple after the link Uµ(x) has been factored out of the pla-
quette. One approach to solving these integrals is to compute the Kronecker product
of the representation matrices and decompose them to their irreducible representations
using the Clebsch-Gordan coefficients. We see that only products of characters whose
Clebsch-Gordan series contains the trivial representation do not vanish due to the iden-
tity ∫

dgχr(g) = δr,0. (4.8)

On top of restricting the valid plaquette combinations sharing a link, it also restricts the
graphs created from plaquette combinations to ones that have no boundaries. On an
infinite lattice the lowest order contribution would therefore come from combining six
fundamental plaquettes into a cube.

For finite lattices, the periodic boundary can be utilised to create closed surfaces. In
fact, only graphs periodic in the temporal direction contribute to the finite temperature
observables as the non-periodic ones can be normalised out. Since we only integrate
spatial links, the contributing graphs need only have closed surfaces in the spatial direc-
tions. The lowest order contribution to the effective action comes from a strip of plaque-
ttes spanning the temporal direction as shown in figure 4.1. Since only two links meet
at all the spatial sites we need only the integral∫

dU χr(VU) χs(WU
−1) = δr,s

1

dr
χr(VW), (4.9)

which can be represented graphically as∫
dU V WU =

1

dr
V W . (4.10)

Integrating out the spatial links of the strip of plaquettes leaves two disconnected
loops at the neighbouring spatial lattice sites

e−Seff = 1+
∑
⟨x⃗,y⃗⟩

uNtF
(
Lx⃗L

∗
y⃗ + L

∗
x⃗Ly⃗
)
+ O(uNt+4

F ) (4.11)

37



The Effective Theory

where L is the so-called Polyakov loop

Lx⃗ = tr

Nt−1∏
t=0

U0(⃗x, t). (4.12)

We see that the explicit time dependence of the links has disappeared, as the only degrees
of freedom left are full windings. The integral over the effective action thus simplifies to

Zeff =

∫ [
dU
]
0
e−Seff[L] =

∫ ∏
x⃗

dLx⃗
√
detU0 e

−Seff[L], (4.13)

where
√
detU0 is the reduced Haar measure of the group, the calculation of which is

covered in appendix A.1. As one can see, the effective theory is a three dimensional
theory of Polyakov loop interactions. To first order we have a nearest neighbour spin
system with an effective coupling uNtF .
At higher orders in β, new effects are introduced through interactions between loops

at higher order representations, next to nearest neighbour interactions as well as cor-
rections to the nearest neighbour coupling between fundamental Polyakov loops. The
effects of higher order representations in Polyakov loop effective theories were studied
in [Wozar et al., 2007]. The corrections to the fundamental nearest neighbour coupling
was calculated to O(uNt+10

F ) in [Langelage et al., 2011] while the effects of long range
interactions was examined in [Bergner et al., 2015].
We will leave the topic of pure gauge effective theories for now as the work in this

thesis is mostly concerned with the cold and dense regime. At low temperatures the
pure gauge contribution is exponentially suppressed as λi ∼ unNt , with n ⩽ 1. The
pure gauge sector plays no role in the cold regime, and will be subsequently neglected.

4.4 The hopping parameter expansion
Even for lattice simulations at zero chemical potential, evaluating the fermion determi-
nant is by far the most expensive operation. For heavy quarks it takes a close to block di-
agonal form, while for light quarks the dynamics delocalise, and no such simplifications
appear. It is therefore clear that the analysis of heavy quarks is of reduced complexity,
and an expansion around this limit can be used to derive an effective theory for heavy
quarks. By rescaling the fields, we see from eq (2.50) that the single flavour quark matrix
can be refactored to be

Qyx = δyx − κHyx, κ =
1

2(4+ am)
(4.14)

where we have introduced the hopping parameter κ and the hopping matrix H. The
hopping matrix for Wilson fermions with r = 1 is

Hyx = (1± γ0)e±aµU±0(x)δy∓0̂,x +

±3∑
µ=±1

(1+ γµ)Uµ(x)δy−µ̂,x . (4.15)

We then expand the fermion propagator in powers of κ resulting in

Q−1
yx =

∞∑
n=0

κn(Hn)yx. (4.16)
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Since every factor ofH comes with a δy+µ̂,x, they symbolise a single discrete hop on the
lattice. The full fermion propagator is therefore the sum of all fermion lines starting at
x and ending at y. Due to the fact that every hop carries a spin factor (1± γµ), and the
identity (1 − γµ)(1 + γµ) = 0, the path is restricted to lines with no backtracking. If
the series is truncated, it is approximated by lines with a specific upper bound for their
length. The fermion matrix can likewise be rewritten using the trace-log identity

detQ = exp
(
tr log(1− κH)

)
= exp

(
−

∞∑
n=1

1

n
κn trHn

)
. (4.17)

The trace overHn gives all closed fermion loops of lengthnwith no backtracking. In lieu
of the hopping expansion we see that the fermion propagator is the sum of all fermion
lines while the determinant is the exponential of all fermion loops.

4.5 Pure fermion effective theory
The first step towards deriving an effective three dimensional theory for heavy quarks
and strong coupling is to separate the temporal and spatial hops

Hyx = Tyx +

3∑
i=1

Si,yx, (4.18)

where the temporal and spatial hopping matrices are divided into positive and negative
components: T = T+ + T−, Si = S+i + S−i , and

T±yx = (1± γ0)e±aµU±0(x) δy⃗,x⃗ δty,tx±1, (4.19)
S±i,yx = (1± γi)U±i(x) δy⃗,x⃗±î δty,tx . (4.20)

The fermion determinant can then be refactored into static and kinematic factors by
factoring out the temporal hopping matrix

det(Q) = det(1− κT − κS) = det (1− κT)

Qstat

det
(
1−

κS

1− κT

)
Qkin

. (4.21)

4.5.1 Static determinant

For the derivation of the effective theory we need the full static propagator and static
determinant. Since every hop in the temporal direction comes with a fugacity factor, the
true temporal hopping expansion parameter is e±aµκ, which is not a small parameter
for sufficiently dense systems.

We rewrite the static determinant through the trace-log identity

detQstat ≡ det(1− κT) = exp

(
−

∞∑
n=1

1

n
κn tr(T+ + T−)n

)
. (4.22)

Due to the no backtracking restriction we get no mixed T+T− terms, and the static
determinant factorises into fermion and anti-fermion static determinants

det(1− κT) = det(1− κT+) det(1− κT−) . (4.23)
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The trace in the determinant restricts us to closed loops, which for the static hopping
matrix exclusively results in full windings in the temporal direction. A term that winds
the lattice n times in the positive direction has the mathematical form

(−1)nκnNt(1+ γ0)nNtenNtaµ
Nt−1∑
i=0

nNt−1∏
ti=0

U0(⃗x, ti)

=
1

2
Nt(−1)n(2eaµκ)nNt(1+ γ0)Wn(⃗x), (4.24)

whereW(⃗x) denotes an untraced Polyakov loop, the minus sign originates from fermion
anti-periodicity, and we have used the fact that (1 ± γµ)2 = 2(1 ± γµ). The positive
static determinant therefore simplifies to

exp

(
−

1

2
tr(1+ γ0)

∞∑
n=1

1

n
(−h1)

n trWn(⃗x)

)
=

∏
x⃗

det(1+ h1W(⃗x))2, (4.25)

in which h1(µ) = (2eaµκ)Nt = z eNt log(2κ) (= h̄1(−µ)) is the static loop (anti loop)
weight. SinceW is simply a product ofU0 matrices, it has to belong to the same symme-
try group as U0. We can therefore use trace decomposition of the determinant together
with the Cayley-Hamilton theorem to express it in terms of the traces ofW, namely the
Polyakov loops. We state the result for SU(3)

det(1+ h1W) = 1+ h1L+ h
2
1L

∗ + h3
1 (4.26)

and refer to appendix A.4 for the more general approach. The full static determinant is

det(1− κT) =
∏
x⃗

(1+ h1Lx⃗ + h
2
1L

∗
x⃗ + h

3
1)

2(1+ h̄1L
∗
x⃗ + h̄

2
1Lx⃗ + h̄

3
1)

2. (4.27)

4.5.2 Static propagator

The static propagator can be calculated in several ways. One option is to apply the
Cayley-Hamilton theorem to calculate the matrix inverse. Alternatively, one can expand
in κ and then resum the resulting expression to all orders. Since the latter approach is
limited in convergence, we will choose a third method, a straightforward calculation
of the matrix inverse. Once more, due to the fact that backtracking is disallowed, the
propagator separates into two pieces

Q−1
stat ≡

1

1− κT
=

1

1− κT+
+

1

1− κT−
− 1, (4.28)

and we are content calculating one of these. The matrix in temporal indices has a simple
pseudo upper triangular shape, except for one term from the periodic boundary condi-
tions

(1− κT+)tytx =


1 −ηU0(1) 0 0 · · · 0
0 1 −ηU0(2) 0 · · · 0
0 0 1 −ηU0(3) · · · 0
... ... ... ... . . . ...

ηU0(Nt) 0 0 0 · · · 1

 , (4.29)
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where η = (1+γ0)κeaµ is the time independent factor in T+. This matrix can be easily
inverted by standard row reduction, giving

1

1+
∏Nt
t=1ηU0(t)


1 ηU0(1) η2U0(1)U0(2) · · ·

∏Nt−1
t=1 ηU0(t)

−ηNt−1U
†
0(2) 1 ηU0(2) · · ·

∏Nt−1
t=2 ηU0(t)

−ηNt−2U
†
0(2)U

†
0(3) −ηNt−1U

†
0(3) 1 · · ·

∏Nt−1
t=3 ηU0(t)

... ... ... . . . ...
−η

∏Nt
t=2U

†
0(t) −η2

∏Nt
t=3U

†
0(t) −η3

∏Nt
t=4U

†
0(t) · · · 1

 (4.30)

which in component form simplifies to

(1− κT±)−1
tytx

= δty,tx +
1± γ0

2
B±
tytx

, (4.31)

B+
tytx

=
h1W

1+ h1W
δtytx + (2eaµκ)ty−tx

U0(tx ty)

1+ h1W
(θty,tx − h1Wθtx,ty), (4.32)

B−
tytx

=
h̄1W

†

1+ h̄1W†δtytx + (2e−aµκ)tx−ty
U0(tx ty)

1+ h̄1W† (θtx,ty − h̄1W
†θty,tx). (4.33)

where θ is the Heaviside step function. We have introduced the gauge transporter
U0(tx ty), which is

U0(tx ty) =

∏ty−1
t=tx

U0(t) if tx < ty,∏tx−1
t=ty

U
†
0(t) if tx > ty.

(4.34)

The full static propagator reads

(Q−1
stat)ty,tx = δty,tx +

1+ γ0

2
B+
ty,tx

+
1− γ0

2
B−
ty,tx

(4.35)

4.5.3 Spatial hopping expansion

We now have all the necessary ingredients to start a systematic expansion of the kinetic
quark determinant. First, we introduce the fundamental building blocks of the spatial
hopping expansion

P =

3∑
i=1

Pi =
1

1− κT

3∑
i=1

κS+i , (4.36)

M =

3∑
i=1

Mi =
1

1− κT

3∑
i=1

κS−i . (4.37)

The P and M symbolise a single lattice hop in positive or negative spatial directions,
combined with arbitrary movement in the temporal direction, including all windings.
The kinetic determinant, the object of our expansion, is simply

detQkin = det(1− P −M) = exp

(
−

∞∑
n=1

1

n
tr(P +M)n

)
, (4.38)
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Figure 4.2.: The four contributions from the lowest order spatial hopping expansion. The
principal path is indicated in red and the additional windings in blue.

and since P andM both come with a single power of κ, we can expand around these two
being 0. The determinant is described by all closed fermion lines, and thus we need an
equal number of positive and negative hops (ignoring finite size boundaries). The next
to leading order contribution is

detQkin = exp
(
− tr(PM) − tr(PPMM) − 1

2
tr(PMPM) + O(κ6)

)
. (4.39)

For every P andM we get a multitude of different combinations of terms depending on
whether we have fermions coupled to fermions, or fermions to anti-fermions. The four
combinations of the lowest order tr(PM) term is shown in figure 4.2.
To be able to calculate the spatial gauge integrals, it is necessary to expand the expo-

nential. The lowest non-trivial order contribution to the partition function is

Z2 =

∫ [
dU
]
µ
detQstat e

− tr(PM) =

∫ [
dU
]
µ
detQstat (1− tr(PM) + O(κ4)). (4.40)

The only non-trivial integral is the one over the PM factor. Focussing on the spatial
links only, the integral to be solved is

I
[
PM

]
=

∫ [
dU
]
i
tr(PM)

= κ2
∫ [

dU
]
i

∑
x⃗,j

trsct
(
Q−1

stat(⃗x)(1+ γj)Uj(⃗x, t1)Q
−1
stat(⃗x+ ĵ)(1− γj)U

†
j (⃗x, t2)

)
. (4.41)

Using one of the simplest gauge integral selection rules eq (A.35), we see that this inte-
gral is non-zero only if the two links overlap, i.e. if t1 = t2, the implication of which
place restrictions on the temporal indices only. We therefore divide the evaluation of
the trace into its three remaining indices; spin, colour and temporal.
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The spin indices are unrelated to the group integral and can be evaluated immediately.
Inserting the expression for Q−1

stat, eq (4.35), we get

trs

(
(1+ 1+γ0

2
B+
x⃗ + 1−γ0

2
B−
x⃗ )(1+ γj)(1+

1+γ0

2
B+

x⃗+ĵ
+ 1−γ0

2
B−

x⃗+ĵ
)(1− γj)

)
= 2(B+

x⃗ − B−
x⃗ )(B

+

x⃗+ĵ
− B−

x⃗+ĵ
). (4.42)

Inserted back into eq (4.41) we have reduced its complexity

I
[
PM

]
= 2κ2

∫ [
dU
]
i

∑
x⃗,j

trct
(
(B+
x⃗ − B−

x⃗ )Uj(⃗x, t1)(B
+

x⃗+ĵ
− B−

x⃗+ĵ
)U†
j (⃗x, t2)

)
,

= 2κ2 trt
∑
x⃗,j

(B+
x⃗ − B−

x⃗ )ab(B
+

x⃗+ĵ
− B−

x⃗+ĵ
)cd δt1,t2

∫
dUUbcU

†
da. (4.43)

In the second line we reintroduced the colour indices, carried out the unoccupied link
integrals and renamed the spatial links toU. Making use of the group integral eq (A.36),
we get

I
[
PM

]
=

2κ2

Nc
trt

∑
x⃗,j

(B+
x⃗ − B−

x⃗ )ab(B
+

x⃗+ĵ
− B−

x⃗+ĵ
)cd δt1,t2δabδcd,

=
2κ2

Nc
trt

∑
x⃗,j

trc(B
+
x⃗ − B−

x⃗ ) trc(B
+

x⃗+ĵ
− B−

x⃗+ĵ
) δt1,t2 . (4.44)

The final step missing is evaluating the temporal trace, which is easily done by summing
over the delta and picking out only the diagonal pieces of B±

I
[
PM

]
=

2κ2

Nc

∑
t1,t2

∑
x⃗,j

trc(B
+
x⃗ − B−

x⃗ )t1t2 trc(B
+

x⃗+ĵ
− B−

x⃗+ĵ
)t2t1 δt1,t2 ,

=
κ2Nt

Nc

∑
⟨x⃗,y⃗⟩

trc

(
h1Wx⃗

1+ h1Wx⃗

−
h̄1W

†
x⃗

1+ h̄1W
†
x⃗

)

× trc

(
h1Wy⃗

1+ h1Wy⃗

−
h̄1W

†
y⃗

1+ h̄1W
†
y⃗

)
. (4.45)

The final sum over the time-slice resulted in a factor Nt. Analysing this expression we
see that due to the fact that there is no colour mixing between sites, the lowest order
contribution to the spatial hopping expansion of the kinetic determinant is simply a
nearest neighbour interaction between Polyakov loop dependent objects. We will see
later that it is useful to introduce the short hand notation

Wnm(⃗x) = trc
(h1Wx⃗)

m

(1+ h1Wx⃗)n
, and Wnm(⃗x) = trc

(h̄1W
†
x⃗)
m

(1+ h̄1W
†
x⃗)
n
, (4.46)

and thus the lowest order spatial hopping contribution to the effective action can be
written as

e−Seff = 1−
κ2Nt

Nc

∑
⟨x⃗,y⃗⟩

(
W11(⃗x) −W11(⃗x)

)(
W11(y⃗) −W11(y⃗)

)
+ O(u, κ4) . (4.47)
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Figure 4.3.: Examples of next to leading order contributions to the kinematic determi-
nant. Left: Single fermion hopping twice between nearest neighbouring sites.
Middle: Two separate fermions hopping between the same nearest neigh-
bouring sites. Right: Single fermion visiting a next to nearest neighbour.

At next to leading order in κ we get new terms both in the nearest neighbour contri-
bution as well as non-local terms spanning further on the lattice. Examples of these
contributions are sketched in figure 4.3.

4.5.4 Multiple fermion flavours

The introduction of multiple fermion flavours is in principle trivial. As we have no
flavour changing processes, the different flavours decouple, and the effective theory at
Nf different fermion flavours is simply

Z =

∫ [
dU
]
µ

Nf∏
f=1

detQf,stat exp

(
−

Nf∑
f=1

∞∑
n=1

1

n
tr(Pf +Mf)

n

)
. (4.48)

The only distinction between different fermionic flavours in QCD is their masses, and
chemical potentials; the flavour dependence enter simply through the parameters κf
and µf. For degenerate flavours the situation is even simpler, in that caseNf enters as a
simple number in the equations

Z =

∫ [
dU
]
µ
detQNfstat exp

(
−Nf

∞∑
n=1

1

n
tr(P +M)n

)
. (4.49)

This factor easily carries through in the computation, and the correct prefactors are de-
termined simply by the number of fermion traces from which the term originates.
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4.6 Mixed contributions and gauge corrections
So far we have only considered either pure gluonic contributions or pure fermionic con-
tributions, and no mix between the two. In section 4.3 we considered an expansion in
β, ignoring corrections from κ, while in section 4.5 we carried out an expansion in κ
only. In this section we will see how these two expansions affect each other, and how
the effects can mostly be absorbed into shifts in the effective coupling constants.

4.6.1 Fermionic corrections

The simplest fermionic correction imaginable is one where any gauge plaquette is re-
placed by a fermionic loop, given that they have the same group structure(2)

+ . (4.50)

We get a contribution from every fermionic flavour, which results in a shift in β

βR βR + 16dR
∑
fκ

4
f. (4.51)

The next order contribution comes from replacing a pair of plaquettes by six fermion
hops

+ , (4.52)

which only gives the same result after link integration due to eq (4.10). Higher order
corrections can be constructed in a similar manner. We will see that this means that
most of the finite β corrections to the effective theory can also be implemented in terms
of κ corrections by simply replacing the plaquettes by a sufficiently long fermion loop
with the same geometric border.

4.6.2 Gauge corrections

As many of the gluonic correction to our theory can be reproduced by fermionic loops,
we turn our attention to these gauge corrections. We will focus on amendments to the
pure fermionic effective theory, ignoring the pure gauge theory as it is subdominant in
the cold and dense regime.

The first corrections to consider are modifications to the static determinant. They
consist of making detours in the spatial directions, filling the surface with plaquettes

QNtstate
−Sg = + + + . . . . (4.53)

These types of diagrams also result in Polyakov loops after spatial gauge integration(3),
and can therefore be absorbed into a redefinition of the invariant parameters of the static
determinant, namely the loop weight h1(z, κ). The shift in h1 has been calculated to
(2)Plaquettes depicted as filled squares, fermion loops are empty.
(3)As long as their extended boundary is not in contact with other links or Polyakov loops at the point of

integration.
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Figure 4.4.: Diagrams contributing to the corrections to the nearest neighbour coupling
constant of the effective theory. From left to right O(1), O(u), O(u5) and
O(κ2u4) respectively.

higher orders in the expansion parameters, κ,u [Fromm et al., 2012; Christensen et al.,
2014]

h1(z,κ,β) = h1(z,κ) exp

(
6Ntκ

2u

(
1− uNt−1

1− u
+ 4u4− 12κ2+ 9κ2u+O(κ4,u4)

))
.

(4.54)
Analogously, the nearest neighbour coupling strength has a similar correction scheme

where we shift spatial hops and fill it with plaquettes. The diagrams are shown in
figure 4.4 and they give the following corrections to nearest neighbour interactions
[Langelage et al., 2014]

I
[
PM

] κ2Nt

Nc

(
1+ 2

u− uNt

1− u
+ 8u5 + 16κ2u4

)
×

∑
⟨x⃗,y⃗⟩

(
W11(⃗x) −W11(⃗x)

)(
W11(y⃗) −W11(y⃗)

)
. (4.55)

It is useful to introduce the nearest neighbour coupling constant

h2(κ,β) =
κ2Nt

Nc

(
1+ 2

u− uNt

1− u
+ 8u5 + 16κ2u4 + O(κ4u3)

)
, (4.56)

which will appear frequently in later calculations.

4.7 Resummation
One of the more powerful tools available to improve convergence is the process of re-
summing an infinite series of terms into a closed analytic expression. This has already
been done in the expression for h1, eq (4.54). We will however go through the exponen-
tiation of the effective action in great detail as it is an integral part of the linked cluster
expansion which will be introduced in chapter 5.
Expanding the single hop partition function, eq (4.40), to all powers gives

Z2 =

∫ [
dU
]
µ
detQstat

∞∑
n=0

(−1)n

n!

(
trxsc(PM)

)n
, (4.57)
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where every power carries an independent sum over the spatial degrees of freedom.
These traces will contain both terms in which the PMmatrices have overlapping spatial
links as well as terms where they are separate. In the latter case the integrals themselves
separate, and to lowest order we have

Z2 =

∫ [
dU
]
0
detQstat

∞∑
n=0

(−1)n

n!

( ∫ [
dU
]
i
trxsc(PM)

)n
+ O(k4),

=

∫ [
dU
]
0
detQstat exp

(
−

∫ [
dU
]
i
trxsc(PM)

)
+ O(κ4). (4.58)

We see that, since the effective action stems from an exponential, it naturally also resums
to one. Corrections due to overlapping terms can be taken into account order by order in
a systematic way. This resummation gives a more satisfactory expression for Seff which
we gave to first order in eq (4.47)

Seff =
κ2Nt

Nc

∑
⟨x⃗,y⃗⟩

(
W11(⃗x) −W11(⃗x)

)(
W11(y⃗) −W11(y⃗)

)
+ O(u,κ4). (4.59)

Since the effective action is given by the logarithm of the partial partition function, it is
more advantageous to expand this quantity directly. To facilitate this we introduce the
method of moments and cumulants.

4.7.1 Method of moments and cumulants

Themethod of moments and cumulants is an elegant mathematical formalismwhich can
be used to extract the correct infinite volume limit for thermodynamic physics [Rush-
brooke et al., 1974; Münster, 1981], and will be an integral part in the linked cluster
expansion of chapter 5.

The moment, ⟨ ⟩, is a symmetric function operating on symbols where the moment
product

⟨ ⟩1 ⊗ ⟨ ⟩2 = ⟨ ⟩3 (4.60)
is defined by

⟨α, . . . ,β⟩3 =
∑
p2

⟨α, . . . , δ⟩1 ⟨γ, . . . , ϵ⟩2 (4.61)

where the sum is over all partitions of the symbols α, . . . ,β in two sets. The cumulant,
[ ], of the moment ⟨ ⟩ is defined through the ⊗ exponential

exp⊗ [ ] = 1+

∞∑
n=1

1

n!
[ ]⊗n ≡ 1+ ⟨ ⟩. (4.62)

The moments and the cumulants can then be defined in terms of each other using parti-
tion sums

⟨α1, . . . ,αn⟩ =
n∑
k=1

∑
pk

[α1, . . . ,αm]1 . . . [αi, . . . ,αj]k (4.63)

[α1, . . . ,αn] =

n∑
k=1

(−1)k−1(k− 1)!
∑
pk

⟨α1, . . . ,αm⟩1 . . . ⟨αi, . . . ,αj⟩k (4.64)
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We define the generating functional f⟨ ⟩ through indexed variables, xα for α in the set of
symbols

f⟨ ⟩({xα}) =

∞∑
n=1

∑
α1,...,αn

1

n!
⟨α1, . . . ,αn⟩xα1

· · · xαn (4.65)

with an analogous definition for f[ ]({xα}). The main theorem of the method of moments
and cumulants then tells us

exp f[ ]({xα}) = 1+ f⟨ ⟩({xα}) , (4.66)

which can be easily proven through induction.
Next, we want to apply this method to the so far computed effective theory so that we

can generalise the exponentiation procedure. We want to compute the effective action
which is defined by eq (4.2). Let us for now consider the strong coupling limit of this
expression

e−Seff =

∫ [
dU
]
i
exp

(
−

∞∑
n=1

1

n
tr(P +M)n

)
. (4.67)

We define the general polymer variables Xi to represent a combination of tr(P +M)n

factors with a connected set of overlapping links and a given spatial extent on the lattice.
The function I(Xi) gives the value after integration over the spatial links of the polymer
Xi. We introduce a cluster moment such that

⟨X1, . . . ,Xn⟩ =
1, if every Xi, Xj is disconnected,
0, otherwise,

(4.68)

with which we can easily express the effective action

e−Seff = 1+

∞∑
n=1

∑
X1,...,Xn

1

n!
⟨X1, . . . ,Xn⟩I(X1) · · · I(Xn) (4.69)

because we know that the integrals factorise if the polymers share no spatial links. We
can then compute the logarithm of the above expression using eq (4.66)

Seff = −

∞∑
n=1

∑
X1,...,Xn

1

n!
[X1, . . . ,Xn] I(X1) · · · I(Xn). (4.70)

The crucial observation is that due to the alternating sign in the formula for the cumulant
in terms of the moments, the cumulants posses the opposite property of the moments

[X1, . . . ,Xn] ̸= 0 ⇐⇒ X1 ∪ · · · ∪ Xn is connected. (4.71)

We can thus conclude that the effective action properly exponentiates if one considers
connected polymers only, and their combinatorial prefactors are given by the cumulants.
It should be noted that this is only true in the infinite volume limit, but corrections can
easily be calculated on an order by order basis. Later, in the analytical chapter we will
work in the actual limit where the exponentiation is exact.
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4.7.2 Logarithmic resummation

One final resummation scheme will be discussed in this section. It is based on a resum-
mation of the exponentiated action into a logarithm, as was carried out for the pure
gauge action in [Langelage et al., 2011]. Although it does not provide as much numeri-
cal benefit to the heavy quark effective theory as it does for the pure gauge theory, we
will see that it will prove to be a useful tool when we turn to analytic evaluation.

We will focus on the lowest order term in the effective action before integration, the
previously mentioned Z2. We want to study the expression one obtains when all the
nearest neighbour interactions lie on the same spatial link

Seff = −

∞∑
n=1

∑
X

1

n!
[X, ...,X] I(X)n + O(κ4) , (4.72)

where X = trxsc(PM). Combining the results of section 4.5.3,
∑
X = Nt

∑
⟨x,y⟩,

with the expression for the single link cumulant, [X, . . . ,X] = (−1)n−1(n − 1)!, the Z2

effective action yields

Seff = −Nt
∑
⟨x,y⟩

∞∑
n=1

(−1)n−1

n
I(X)n + O(κ4),

= Nt
∑
⟨x,y⟩

log
(
− I(X)

)
+ O(κ4) (4.73)

and the full Z2 is

Z2 ≈
∫ [

dU
]
0
detQstat

∏
⟨x⃗,y⃗⟩

(
1−

κ2

Nc

(
W11(⃗x)−W11(⃗x)

)(
W11(y⃗)−W11(y⃗)

))Nt
, (4.74)

with higher order corrections at O(κ4). This formulation is particularly useful for study-
ing e.g. the finite volume dependence of the Yang Lee zeros, which we will analyse in
section 5.5.2.

4.8 The cold and dense regime
Although we have built the foundations for calculating the effective 3D theory, we have
still not presented any results beyond leading order in the hopping expansion apart from
the discussions on resummation. In [Langelage et al., 2014] the effective theory was
computed to O(κ4), and a detailed computation of the appearing terms, as well as gauge
corrections can be found in [Neuman, 2015]. In the same publication an observation was
made that the effective action greatly simplifies in the cold and dense limit, an area of
QCD which is of great interest. The two limits aid our computations in two ways: In
the dense limit the thermodynamics is dominated by quarks, not anti-quarks, and we
can therefore neglect any terms involving anti-quarks. Mathematically, this would be
an expansion to zeroth order in h̄1. The simplifications coming from the cold limit, the
limit in which Nt ∞, are more subtle and easier understood through an example.

Consider the term tr(PMPM) appearing at NLO of the hopping parameter expansion.
The term has four spatial hops which have to pair up for the gauge integral to give
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Figure 4.5.: The different spatial and temporal occupation of the tr(PMPM) term ap-
pearing at the NLO of the hopping parameter expansion. The last figure
shows all spatial hops occupying the same spatial link, meaning that they
will vanish in the large-Nt limit.

something non-zero. There are three fundamental scenarios which fulfil this criterion,
and they are depicted in figure 4.5. In the leftmost graph the two pairs of hops occupy
different spatial positions and can therefore never overlap. The temporal sum in this
case gives a factorN2

t as the two hops can independently choose a temporal slice. When
the two hops occupy the same nearest neighbour pair, we have two situations. There are
Nt(Nt − 1) copies in which they occupy different time slices and Nt copies in which
they overlap. Since ∫

dUUU†UU† ̸=
( ∫

dUUU†
)2

(4.75)

they naturally give different results, all of which are accounted for by the method of
moments and cumulants. However, the integrals and spin traces are independent of the
number of temporal lattice sites, and there therefore has to exist an Nt for which

Nt(Nt − 1)

( ∫
dUUU†

)2

≫ Nt

∫
dUUU†UU† (4.76)

and the more complicated overlapping diagrams can be neglected. This is equivalent to
a leading order expansion in 1/Nt.

4.8.1 Combinatorics

Before we present the N3LO result for the effective action in the cold and dense limit, we
review some of the combinatorics that went into the computation.
Because of the selection criterion for non-vanishing gauge integrals, eq (A.35), we

see that one must restrict the coordinate sums in the matrix multiplications of the P and
M matrices in such a way that spatial links overlap and give contributing results. We
therefore define a contraction

PxyMzw = PxyMzw δy⃗z⃗δx⃗w⃗ δtytw , (4.77a)

Pxy Pzw = PxyPzw δx⃗z⃗δy⃗w⃗ δtytw , (4.77b)
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P M PM PM PMPMPM PMPMPM PMPMPM

PMPMPM PMPMPM PMPMPM PMPMPM

PMPMPM PMPMPM PMPMPM PMPMPM

PMPMPM PMPMPM PMPMPM PMPMPM

PMPMPM

Table 4.1.: All contractions contributing to the O(κ6) term tr(PMPMPM).

which can trivially be extended to the contraction of more elements. We see that the
contraction fixes a single temporal index as well as fully fixes the spatial position and
orientation of every matrix but one. One can also contract more than one matrix, as
shown in table 4.1 which contains all non-vanishing contractions of the NNLO term
tr(PMPMPM). Due to the fact that every contraction fixes a temporal index in all
matrices involved we see that the degrees of freedom naturally decrease. The various
contractions of table 4.1 can be categorised into three distinct groups∑

t1,t2,t3

PMPMPM ∝ N3
t , (4.78a)

∑
t1,t2

PMPMPM ∝ N2
t , (4.78b)

∑
t1,t2

PMPMPM ∝ N2
t , (4.78c)

∑
t1

PMPMPM ∝ Nt . (4.78d)

Generally the power ofNt is the same as the number of independent contractions. This
is true only whenNt is large, as the number of free temporal slices must be large enough
for the contractions to be separate. Since we are interested in theNt ≫ 1 range, we will
disregard contributions from contractions not consisting of a single PM pair.

At this stage in the computation we will dispense with the notion that hops in positive
and negative spatial directions are distinguishable. In contrast to the temporal hops,
which get boosted by baryon chemical potential, there is no asymmetry between positive
and negative spatial hops. We therefore switch to a notation which focusses on the
dominant pairings

tr X i Y i = tr X P Y M + tr XMY P , (4.79)

in which X and Y symbolise the remainder of the matrix, which are disallowed from
having spatial hops overlapping with the i-pairing. Every contracted PM pair is labelled
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by an arbitrary symbol i, and is invariant under relabelling. Of the terms in table 4.1,
the six terms which consists of pairings only can in this notation be reduced to the three
terms

tr 1 1 2 2 3 3 , tr 1 2 3 3 2 1 , tr 1 2 3 1 2 3 . (4.80)

To be a bit more explicit we will quickly go through the notation at NLO. In the old
notation the kinetic determinant would read

detQkin = 1− tr(PM) +
1

2

(
tr(PM)

)2
− tr(PPMM) −

1

2
tr(PMPM) +O(κ6) (4.81)

which would give

detQkin = 1−
1

2
tr(1 1) +

1

8
tr(1 1) tr(2 2)

+
1

4
tr(1 2) tr(1 2) −

1

2
tr(1 1 2 2) + O(κ6,N−1

t ). (4.82)

The pairing notation might seem lengthier, but it contains more information than the
previous PM notation. When counting terms one has to be careful not to over count.
For instance, the final term of eq (4.82) can be expanded into four terms in the PM
notation

tr(PMPM), tr(PMMP), tr(MPPM), tr(MPMP), (4.83)

one should however note that the third term is identical to the second under cyclic per-
mutations and relabelling, and should therefore be discarded. The separate traces are
however distinct, and the invariant relabelling must be considered on a trace by trace
basis. The combinatorial prefactors 1/g can be computed with the following formula

1

g
=

# of unique cyclic
permutations of the traces

n2!n4! · · ·nN! 2n24n4 · · ·NnN
. (4.84)

The numerator is the number of cyclic permutations within the traces that remain dif-
ferent under relabelling, e.g. tr(1 1 2 2) has two distinct permutations, the one already
mentioned and tr(1 2 2 1). The nm in the numerator is the number of trace factors with
m matrices. E.g. tr(1 2) tr(1 2) has n2 = 2,n4 = 0, . . . ,nN = 0, while tr(1 1 2 2) has
n2 = 0,n4 = 1, . . . ,nN = 0.

4.8.2 Dirac indices

In this subsection we will study the spin structure of the terms dominating the cold
regime, and subsequently discover that it is in fact trivial in this limit. In the limit of
high baryon chemical potential, we see from eqs (4.28-4.33) that the static propagator
simplifies to

Q−1
stat,tytx ≈ (1− κT+)−1

tytx
= δtytx +

1+ γ0

2
B+
tytx

, (4.85)

in which the matrix B has no spin dependence. We see from the definition of a contrac-
tion, eqs (4.77a, 4.77b), that the δtytx inQ−1

stat would impose additional constraints on the
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temporal index and will therefore produce terms which are subleading whenNt is large.
The only exception is a contraction

PxyMyz = PxyMyz δx⃗z⃗ δtytz (4.86)

in which the δtytx condition of theQ−1
stat matrix of theM factor is already fulfilled. How-

ever this would apply no temporal movement and is therefore disallowed because the
hopping expansion of Wilson fermions does not allow backtracking, (1+γµ)(1−γµ) =
0. We can therefore to leading order use the following expression for the static propaga-
tor

Q−1
stat,tytx =

leading
order 1+ γ0

2
B+
tytx

. (4.87)

Since the B± matrix has no spin structure, we can easily identify the full Dirac trace of
any contributing term as

trxsc(Xxsc) = trs
(
(1+ γ0)(1± γi)(1+ γ0)(1± γj) · · ·

)
trxc(X

′
xc). (4.88)

where every P would contribute with a factor (1 + γ0)(1 + γi) and everyM a factor
(1 + γ0)(1 − γj). To shorten the notation we introduce the alias gµ = (1 + γµ) and
ḡµ = (1− γµ). In this notation the spin trace of a polymer X gives

trs(X
′
s) = trs(g0gig0ḡj · · · ) (4.89)

We can expand the first product

trs((1+ γ0 ± γi ± γ0γi)g0 · · · )
= trs(g0 · · · ) + trs(γ0g0 · · · )± trs(γig0 · · · )± trs(γ0γig0 · · · ). (4.90)

Using the anti-commutation relation of the Dirac matrices, together with the expression
γ0g0 = γ0(1+ γ0) = (γ0 + 1) = g0, we see that the spin structure simplifies to

trs(g0 · · · ) + trs(g0 · · · )± trs(γig0 · · · )∓ trs(γig0 · · · ) = 2 trs(g0 · · · ). (4.91)

We therefore replace every g0gi and every g0ḡj pair with a factor 2 until there is only
one pair left. The trace of the final pair is simply the dimension of the system, in this
case 4. The spin trace of the large-Nt limit can thus be considered trivial

trs(X
′
s) = tr(g0gig0ḡj · · ·

n pairs

) = 2n−1 tr(g0gi) = 2n+1. (4.92)

4.8.3 A comment on gauge corrections

Before we finally state the N3LO effective action for the cold and dense regimewe need to
examine a final set of apparently low order graphs which have yet to be discussed. They
are the result of new geometries only possible to construct with the insertion of plaque-
ttes. The first of these appears at O(κ4u) and is depicted to the far left in figure 4.6.
This particular contribution arises in the following integral

κ4u

∫ [
dU
]
µ
χ(U) trxsc(PiPjMiMj), for i ̸= j. (4.93)
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Figure 4.6.: The three first non-trivial gauge corrections to O(κ4)

This however restricts the four quark hops to occupy the same temporal slice and there-
fore only gives a single factor of Nt, while the dominating O(κ4) terms give contribu-
tions proportional to N2

t. It is possible to shift the quark hops on the slices by inserting
plaquettes as can be seen in the two other graphs in figure 4.6, and that would give a
correction to the formula above

κ4u

(
1+ 2

uκ2 − (uκ2)Nt

1− uκ2

)4

(1+ 4u5)

∫ [
dU
]
µ
χ(U) trxsc(PiPjMiMj), (4.94)

which of course would be highly suppressed as u is also a small parameter. This specific
geometry will indeed appear at O(κ8) where the plaquette can be replaced by a quark
loop including windings which can shift the links arbitrarily in the temporal coordinate.

4.8.4 The O(κ8) effective action

We finally turn our attention to the higher order contributions to the effective theory.
Although the groundwork has been laid, the combinatorics still have to be carried out. As
the number of terms grow exponentially, so does their complexity, there is little chance
for a straightforward computation ever to get all the prefactors correct. Due to this,
a computer program has been developed as part of the present work. The aim is to
compute the effective theory in the limit of cold QCD [Glesaaen, 2016].
The software computes the effective theory terms in a series of easily understandable

steps

1. Computes all permutations of P andM that can enter a trace to a given order.

2. Finds and collects all identical terms.

3. Computes all combinations of traces of lower orders which give a contribution to
the given order.

4. Computes all contractions of P’s andM’s which can be realised spatially.

5. Computes all spatial realisations of ambiguous multi trace contractions.
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Figure 4.7.: The two possible spatial configurations of the contraction of (tr(P PMM))2

in eq (4.96).

6. Reduces links by colour deltas from the spatial gauge integrals.

7. Sums over all temporal permutations for every link.

The first three steps are essentially expanding the exponential as shown in eq (4.81),
while steps four and five loosely translate to switching from the PM notation to the
contracted notation, as was introduced in section 4.8.1. The fourth step can be amended
by placing a constriction on the contractions requiring an equal number of P andM in
between two contractedmatrices, and requiring the spatial detour to return to its starting
point. For example

tr P PMM (4.95)

is an impossible contraction as the contracted P andMmatrices can never overlap. Con-
tractions across multiple traces are more complicated as the traces can be translated and
rotated with respect to each other. An example of the ambiguities can be seen in the
O(κ8) term

tr( P PMM ) tr( P PMM ) , (4.96)

which has two possibilities for the spatial extent

tr(PiPjMiMj) tr(PjPiMjMi) and tr(PiPjMjMi) tr(PiPjMjMi). (4.97)

The graphical representation of the two choices is depicted in figure 4.7. Summing over
the colour indices from the gauge link integral is simple, as we need only a single integral
in the cold and dense regime, namely the integral from eq (A.36)

Iklij =

∫
dUUijU

†
kl =

1

Nc
δilδjk. (4.98)

After the computation has been carried out and equal terms have been collected, we get
the full effective action to a given order in κ as output. The number of terms at a given
order is plotted in figure 4.8, in which we see that it grows exponentially as we increase
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Figure 4.8.: Number of terms generated by the software at varying orders in κ.

the expansion order. This is a roadblock for the numerical evaluation as the number of
operations one has to carry out to compute the Monte Carlo weight / Complex Langevin
force at some point will overtake even that of computing the fermion determinant in full.
The number of terms can be reduced by around one order of magnitude by expressing
sums over coordinates such that the link indices can run over both positive and negative
directions. This is conceptually similar to the earlier switch between the PM notation
and the pairing notation. However, this rewriting is a simplification for analytic evalu-
ation only, as the net numerical work stays constant.
In [Glesaaen et al., 2015, 2016], as well as in this thesis we work with the effective ac-

tion up to O(κ8u5). Since the analytic expression is rather lengthy, we give the effective
action in a graphical representation. This will also serve as a convenient notation for the
analytic evaluation, which we will tackle in the next session. The full expression is given
in a more conventional notation in appendix B.1. We symbolise factors ofWn,m(⃗x) by
vertices where n is the number of bonds entering a vertex and m is the number indi-
cated on the node. Furthermore, vertices connected by one or more nodes are nearest
neighbours on the lattice =2mu

Seff = S0 + h2Nf
∑
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. (4.99)

The sums over ”degrees of freedom” represent the remaining spatial trace and sums
over directions, which remains to be carried out either for analytic computations or
during numerical evaluation. We see that all the higher order interactions appear with
a coupling constant equal to some power of the nearest neighbour coupling constant
h2. This is not very hard to realise from the mathematics, as every new spatial link
contributes a combinatorial factor ofNt, a hopping factor of κ2 and the gauge integration
results in a factor ofN−1

c for every integrated link. Since no spatial links ever overlap, we
can apply gauge corrections on a link by link basis regardless of whether they connect
the same nearest neighbour sites. Corrections to this will appear at NLO in N−1

t . The
gauge corrections are therefore given by replacing h2 h2(β) as shown in eq (4.56).

4.8.5 Application region of the large-Nt approximation

Although there is no questioning the dense approximation for its region of applicability
when studying the cold and dense regime due to its exponential nature, one might ask
the validity of the expansion aroundN−1

t 0. The lowest order correction to this limit
comes at order κ4Nt. If we choose a somewhat extreme scenario for our parameters,
h2 = 0.15 and Nt = 50, we see that the κ4Nt and h4

2 have about the same order of
magnitude, meaning that the next order in N−1

t should contribute about the same as
the κ8 terms do. To analyse this effect we plot the ratio of the baryon number density
computed at fixedh1 andh2 using theO(h4

2) actionwith andwithout theO(κ4Nt) terms,
shown in figure 4.9. Although the prefactor of the expansion coefficients are around
the same order of magnitude, it is clear that the contributions from these higher order
terms give small corrections to the final result. Already at Nt ⩽ 13 the contribution is
less than 5%, which is insignificant when compared to the contribution from the O(h4

2)
term at these extreme parameter choices. We thus conclude that the large-Nt limit is
well under control for the physical region we are studying.

4.9 Numerical evaluation
Although the focus of this thesis is the analytic evaluation of the effective theory, a
couple of remarks on the numerical evaluation is still in order. At the beginning of this
chapter we stated the nefarious sign problem as a motivation for developing the effective
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Figure 4.9.: Ratio of baryon number density at O(h4
2, κ

4Nt) and at O(h4
2) for fixed h1

and h2 in the strong coupling limit. Computed with the analytic treatment
of chapter 5.

3D theory. And although the effective theory still suffers from a conceptual sign problem
in the sense that the action takes complex values, we are in a regimewheremethods such
as reweighting work well. A thorough review of the theory’s numerical properties can
be found in [Neuman, 2015].
The effective theory offers multiple advantages for numerical evaluation over full lat-

tice calculations besides the apparent resolution of the sign problem.

• First and foremost we have replaced the very expensive fermion determinant with
a discrete sum over the volume and a handful of terms, an overall much cheaper
computation.

• Second, the temporal direction has been integrated out and its remnant is encoded
in Nt, which is a parameter, reducing the dimensionality of the variable space by
one.

• Finally, the remaining field variables are traces of group elements of SU(3) which
can be represented by two real angles in comparison to the eight generators needed
to represent a gauge link in full lattice QCD.

Regardless of whether one chooses to do a reweighted Monte Carlo (MC) or a Complex
Langevin (CL) simulation to deal with the trivial sign problem, it is advantageous to
rewrite the partition function to depend on the angular representation of the group char-
acters, as outlined in appendix A.1. For SU(3) we replace the characters with

L(⃗x) ≡ χ1 = eiθx⃗ + eiϕx⃗ + e−i(θx⃗+ϕx⃗) (4.100)

and the integration measure by∫ [
dW

]
x⃗
=

1

(2π)2Nc!

∫ ∏
x⃗

dθx⃗ dϕx⃗H(θx⃗,ϕx⃗) (4.101)

whereH is the reduced Haar measure given by eq (A.13). This induces a Polyakov Loop
potential in the action ∫ [

dθ dϕ
]
x⃗
e−Seff+V[L], (4.102)
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the nearest neighbour coupling h2 in various orders of the hopping expan-
sion at strong coupling. Right: Corresponding convergence plot at different
orders in the character expansion parameter u.(4)

with the potential as stated in the appendix

V[L] = log
(∑
x⃗

27− 18|L(⃗x)|2 + 8ReL(⃗x)3 − |L(⃗x)|4
)
. (4.103)

The effective theory is also easily extendable to other SU(Nc), possibly other gauge
groups. For the former, one simply has to give the proper reduced Haar measure and
the definition for the new Polyakov loop variable

LNc (⃗x) =

Nc−1∑
n=1

eiθn(x⃗) + e−i
∑Nc−1
n=1 θn(x⃗). (4.104)

We see that an effective theory using the gauge group SU(Nc) has N3
s(Nc − 1) degrees

of freedom as compared to the 4N3
sNt(N

2
c− 1) degrees of freedom one would have in a

full lattice gauge theory simulation. Therefore, on top of the reduced computation cost
the theory also scales linearly in complexity with the number of colours as compared to
quadratic in a full simulation.

The simulations were carried out using both algorithms, MC with reweighting and
CL, and the results were cross checked [Langelage et al., 2014]. Both methods give com-
patible results within the parameter range for which the effective theory is well defined.
Our first task is to assess the range of validity of the strong coupling, heavy quark action.
One expects the additional orders in κ to extend the convergence region, within which
the description of thermodynamic functions by the effective action is reliable. We test
this by computing the baryon number density at fixed values of the coupling h1 and
Nτ. Varying κ then allows us to assess the convergence of the expansion of the kinetic
quark determinant. figure 4.10 (left) shows the results obtained with effective actions
of increasing order in κ. One clearly observes how two adjacent orders stay together for
larger values of h2(κ) as the order increase, thus extending the range where our effective
action is reliable. figure 4.10 (right) shows the same exercise for the largest κ consid-
ered with the numerics, this time increasing the orders of the character expansion. We
(4)Simulation data courtesy of Mathias Neuman
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observe good convergence up to β ∼ 6, which is a sufficiently weak coupling to allow for
continuum extrapolations. It is interesting to note that the convergence properties are
not determined by the size of the expansion parameters alone. Even though the u(β)-
values far exceed the κ-values employed in the figures, convergence in u(β) appears to
be faster. The gain in convergence region by the additional orders in the effective action
can be exploited to study the systematics of our effective theory.
We will leave the numerical evaluation for now and will shift our focus to a purely

analytical treatment of the effective 3D theory using graphical methods borrowed from
the linked cluster formalism.
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In chapter 4we introduced the dimensionally reduced effective theory for heavy quarks
at strong coupling. The chapter ended with a section on the numerical handling of the
theory and its advantages over full lattice gauge theory simulations. Although a lot of
progress has been made evaluating the predictions of the theory [Fromm et al., 2012,
2013; Langelage et al., 2014], we see from the convergence plots in figure 4.10 that
convergence is slow and other approaches should be considered.

It was discovered in one of the previous studies of the effective theory [Langelage
et al., 2014] that it is possible to treat the effective theory purely analytically, which pro-
vides a plethora of useful methods to be explored in this chapter. First and foremost the
analytical evaluation gives insight into the mathematical and physical structure of the
effective theory and serves as a cross check for the numerical methods. In section 5.1
we present the linked cluster expansion which provides the building blocks for a system-
atic study of the analytic evaluation. We will see how one can transform the language
of spin statistics and nearest neighbour systems to that of the strong coupling, heavy
quark formalism. In section 5.4 we introduce a new resummation scheme, which is
inaccessible to numerical methods.

In section 5.4.4 we use the full power of the analytic expressions to study the var-
ious aspects of the theory at hand, comparing with numerical results, studying lattice
artefacts and more.

Finally, in sections 5.5.1, and 5.5.2, we carry out two exploratory studies in which
the analytic evaluation is paramount. Although these still pose a lot of open questions,
we build foundations which future studies can use as a basis.

5.1 Linked cluster expansion

We start oncemore on amore fundamental level by introducing the linked cluster formal-
ism for scalar fields with nearest neighbour interactions. Although the following section
gives a complete overview, we refer to introductory texts on the subject for more details,
e.g. [Wortis, 1974; Reisz, 1995], and [Domb, 1974; Martin, 1974] for a physics focused
presentation of simple graph theoretical practices. After the fundamentals are out of the
way, we study how the formalism can be extended to include n-point interactions with
finite spatial extent – a system in which the effective theory can then be expressed.
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5.1.1 Classical linked cluster expansion for nearest neighbour interactions

To introduce the framework we consider a scalar field with a two-point coupling

Z =

∫ [
dϕ
]
e−S0[ϕ]+ 1

2

∑
x,yϕ(x)v(x,y)ϕ(y), and v(x, x) = 0 , (5.1)

where the function v(x,y) encodes the coupling information. We will assume that the
coupling strength is small enough to justify an expansion around the free theory. To
facilitate the expansion we introduce source fields J(x) and define the generating func-
tional

Z[J] =

∫ [
dϕ
]
e−S[ϕ]+

∑
x J(x)ϕ(x). (5.2)

Since our goal is to study thermodynamic quantities, we shift our attention to the com-
putation of the grand canonical potentialW, also known as the generating functional of
connected correlation functions

W[J, v] = logZ[J, v]. (5.3)

A linked cluster expansion (LCE) of the grand canonical potential is then defined as the
Taylor expansion with respect to the coupling v(x,y) around the free theory

W[J, v] =

(
exp

(
1

2

∑
x,y

v(x,y)
δ

δv̂(x,y)

))
W[J, v̂]

∣∣∣∣∣
v̂=0

. (5.4)

The derivative of W with respect to the couplings can be expressed as derivatives with
respect to the sources

δW

δv(x,y)
=

δ2W

δJ(x)δJ(y)
+
δW

δJ(x)

δW

δJ(y)
. (5.5)

We also know thatW[J] is the generating functional of the connected n-point functions

δW

δJ(x)

∣∣∣∣
J=0

=
1

Z

∫ [
dϕ
]
ϕ(x) e−S[ϕ] ≡ ⟨ϕ(x)⟩, (5.6)

which for higher order derivatives produces the cumulants

δ2W

δJ(x)δJ(y)

∣∣∣∣
J=0

= ⟨ϕ(x)ϕ(y)⟩− ⟨ϕ(x)⟩⟨ϕ(y)⟩. (5.7)

To second order the expansion in eq (5.4) is

W[J, v] = W[J, 0] +
1

2

∑
x,y

v(x,y)
δW[J, v̂]

δv̂(x,y)

∣∣∣∣
v̂=0

+
1

8

∑
x,y

∑
z,w

v(x,y)v(z,w)
δ2W[J, v̂]

δv̂(x,y)δv̂(z,w)

∣∣∣∣
v̂=0

+ . . . (5.8)
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We define the coupled n-point functions by

Mn(x1, x2, . . . , xn) =
δnW[J, v]

δJ(x1)δJ(x2) · · · δJ(xn)
, (5.9)

which in turn define the free n-point functions

Mn(x1, x2, . . . , xn)
∣∣
v=0

≡Mn(x1)δ(x1, x2, . . . , xn) (5.10)

where the Kronecker deltas naturally arise in the free theory

x ̸= y ⇒ ⟨ϕ(x)ϕ(y)⟩
∣∣
v=0

= ⟨ϕ(x)⟩⟨ϕ(y)⟩. (5.11)

We can easily see from the deltas that the cluster expansion constitutes an expansion in
connected graphs as any disconnected graphs would give vanishing contributions. We
can rewrite the second order derivative in v in eq (5.8) in terms of derivatives w.r.t. the
sources, and thus the free n-point functions, obtaining

W[v] = W[0] +
1

2

∑
x,y

M1(x) v(x,y)M1(y) +
1

4

∑
x,y

M2(x) v
2(x,y)M2(y)

+
1

2

∑
x,y,z

M1(x) v(x,y)M2(y) v(y, z)M1(z) + . . . . (5.12)

5.1.2 Graphical definitions

Although the coefficients for the vn term can be computed systematically from eq (5.4),
as we showed to second order in eq (5.8), the process is tedious. However, there exists a
formalism in which the terms and their prefactors can be written down immediately in
an intuitive way.

Definition 5.1. Connected graph
A graph is a set of vertices and bonds where every bond connects two distinct vertices. An
n-rooted graph has n fixed, distinguishable, external vertices, while all non-rooted vertices
are free. A vertex is said to be n-valent if it has n bonds attached to it.

A connected graph has the property that one can always move from one vertex to another
through a continuous set of movements along the graph’s bonds. A graph which is not
connected is disconnected.

Two n-rooted graphs are isomorphic if there exists a labelling of the bonds and vertices
so that the bonds and vertices of the two graphs can be made identical. The number of
distinct isomorphic labellings of a graph is called the graph’s symmetry factor.

To compute W one simply takes the set of all topologically distinct 0-rooted connected
graphs. The order counting is on the bond level, meaning that at O(v3) we only take
0-rooted connected graphs with three or fewer bonds. The final ingredient is a rule for
transforming between the graphical representation and the mathematical expression for
the grand canonical potential

Rule 5.1. Grand canonical potential W

1. Assign a symbol, x1, x2, . . . , xn to every vertex.
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2. To every bond connecting vertices xi and xj add a factor v(xi, xj).

3. For every vertex xi with valence p, add a factorMp(xi).

4. Add a sum over the entire lattice for every vertex symbol xi.

5. Divide by the symmetry factor of the graph.

Using this rule we can write the grand canonical potential in eq (5.12) in terms of graphs

W[v] = + 1
2

+ 1
2

+ 1
4

+ . . . . (5.13)

The equality between rule 5.1 and the grand canonical potential LCE eq (5.4) is in no
way trivial, and proofs for the equality are given in e.g. [Englert, 1963; Bloch and Langer,
1965]. The geometry of the interaction is yet to be specified, and the sum over the sym-
bols {x1,…,xn} runs over the entire lattice. Further simplification can be achieved by
choosing e.g. a uniform nearest neighbour coupling

v(x,y) =
v if x and y are nearest neighbours
0 else.

(5.14)

It was shown in [Pordt and Reisz, 1997] that a graphical expansion for non-nearest neigh-
bour couplings (albeit uniform) can be reordered in such a way that the class of graphs
is identical to the nearest neighbour case, and thus the procedure is in practice more
general than the one stated here. Regardless, choosing nearest neighbour interactions
the grand canonical potential simplifies further

W[v] = NM0 +
q

2
vNM2

1 +
q

4
v2NM2

2 +
q2

2
v2NM2

1M2 + . . . (5.15)

where q is 2d for a d-dimensional square lattice. The prefactor of a term that arise from
the spatial sum is called the embedding number(1) of a graph onto the lattice, and will
differ from lattice to lattice. For every graph arising from an action with a uniform two-
point interaction, the sum over the symbols / coordinates will yield N, the number of
lattice sites, times the (free) embedding number of the graph. It might seem wrong at
first to include all possible embeddings, as e.g. the q2 in theM2

1M2 term will naturally
include the embedding corresponding to theM2

2 term. This is however not a problem, as
theMn factors are given in terms of cumulants, and consulting section 4.7.1 we see that
the system resolves these issues automatically. The embedding number is dependent on
the lattice, so that e.g. the three bond graph

(5.16)

has embedding number zero on a square lattice, given that there is no way to resolve the
nearest neighbour requirement of rule 5.1. On a triangular lattice on the other hand,
it would have a non-zero embedding number. A table of all four bond graphs, as well
as their symmetry factors and embeddings on a square lattice can be found in table 5.1.
When we later extrapolate the graphical methods to the effective theory, we will see that
these are all the graphs needed to carry out a computation to order κ8.
In the next sectionwewill see how tomap the effective theory onto an LCE framework

and which additional considerations have to be taken into account.
(1)Also referred to as the lattice constant in the lattice community.
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5.1. Linked cluster expansion

Graph Symmetries Embeddings Graph Symmetries Embeddings

2 2d 3! (2d)3

2 (2d)2 6 0

4 2d 2 (2d)2

2 (2d)3 2×3! 2d

2 (2d)4 4! (2d)4

2 (2d)4 8 3(2d)2 − 6d

2×2! (2d)3 2 (2d)3

2×2! (2d)3 2×2! 0

2 0 2×(2!)2 (2d)2

3! (2d)2 2×4! 2d

Table 5.1.: Graphs with up to four bonds with symmetry factor and embeddings on a d
dimensional square lattice.

5.1.3 LCE for the effective theory at LO

We first analyse the leading order action, and see how to establish a correspondence
between the parameters of the effective action to the ones of the LCE. In the dense regime
(µ≫ T ) the LO effective partition function is

Z2 =

∫ [
dU
]
0
detQNfstat exp

(
− h2Nf

∑
⟨x,y⟩

W11(x)W11(y)

)
, (5.17)

as shown in chapter 4. Comparing the above equation to the scalar field partition func-
tion we used to introduce the LCE, eq (5.1), we see that there is an approximate one-to-
one correspondence between the two systems

ϕ⇔W11, v⇔ 2h2Nf, e−S0[ϕ] ⇔ J(U0,W11) detQstat, (5.18)

where J(U0,W11) is the Jacobian determinant for the variable change. There is however
no need to compute S0[W11] explicitly, as the free energy depends only on the n-point
functionsMn, which in turn depend on the expectation values of the free theory. We
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define the n-point functions in terms of z-functions, which are (for Nf = 1)

z0 =

∫
dW detQstat = 1+ 4h3

1 + h
6
1, (5.19a)

z(11) =

∫
dW detQstatW11 = 6h3

1 + 3h6
1, (5.19b)

z(11)2 =

∫
dW detQstatW

2
11 = 4h3

1 + 9h6
1, (5.19c)

z(11)3 =

∫
dW detQstatW

3
11 = h

3
1 + 17h6

1 + h
9
1, (5.19d)

z(11)4 =

∫
dW detQstatW

4
11 = 21h6

1 + 6h9
1, (5.19e)

while for Nf = 2 they take the values

z0 =

∫
dW detQ2

stat = 1+ 20h3
1 + 50h6

1 + 20h9
1 + h

12
1 , (5.20a)

z(11) =

∫
dW detQ2

statW11 = 15h3
1 + 75h6

1 + 45h9
1 + 3h12

1 , (5.20b)

z(11)2 =

∫
dW detQ2

statW
2
11 = 6h3

1 + 95h6
1 + 96h9

1 + 9h12
1 , (5.20c)

z(11)3 =

∫
dW detQ2

statW
3
11 = h

3
1 + 90h6

1 + 188h9
1 + 27h12

1 , (5.20d)

z(11)4 =

∫
dW detQ2

statW
4
11 = 60h6

1 + 312h9
1 + 81h12

1 . (5.20e)

The z’s have a fairly convoluted naming scheme. The reason for this is that upon includ-
ing more orders in the effective action, sets ofW{nm} must be placed in the integrand.
The z’s follow the naming scheme

z(n1m1)k1 ···(npmp)
kp =

∫
dW detQNfstatW

k1
n1m1

· · ·Wkp
npmp . (5.21)

A list of all the integrated z’s needed to compute the results presented later is given in
appendix B.2. The n-point functions are then given by

M0 = log z0, (5.22a)

M1 =
z(11)

z0
, (5.22b)

M2 =
z(11)2

z0
−
z2(11)

z20
, (5.22c)

M3 =
z(11)3

z0
− 3

z(11)2z(11)

z20
+ 2

z3(11)

z30
, (5.22d)

M4 =
z(11)4

z0
− 4

z(11)3z(11)

z20
− 3

z2(11)2

z20
+ 12

z(11)2z
2
(11)

z30
− 6

z4(11)

z40
. (5.22e)

With the full analytic result for the Z2 partition function at hand, we can start com-
paring thermodynamic quantities with results from the numerical evaluation. However,
we first need to establish the observables.
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5.2 Observables
The definitions of the observables were given in section 3.1, but just as they were de-
fined on the lattice in section 3.3, we have to give them in terms of the parameters we
are working with in the analytic treatment of the effective theory. We exploit the fact
that W is linear in volume in the thermodynamic limit, which means that the pressure
is given simply as

P = T

(
∂

∂V
logZ

)
T ,z

=
T

V
W. (5.23)

Similarly, taking the derivative with respect to fugacity is also straightforward. We sim-
plify it further by using

z
∂

∂z

∣∣∣∣
T ,V

= h1
∂

∂h1

∣∣∣∣
T ,V

(5.24)

which means that the baryon number density is defined as

nB =
1

3
nq = h1

1

3

(
∂

∂h1

W

V

)
T ,V

. (5.25)

To compute the energy density e we need to calculate the derivative

e = T 2
(
∂

∂T

logZ

V

)
z,V

. (5.26)

We know that logZ
V

is volume independent, and therefore the requirement of keeping V
constant is automatically fulfilled. We replace the derivative in T by a derivative in a,
and thus have

e = −
1

Nt

(
∂

∂a

W

V

)
z

. (5.27)

The derivative with respect to the lattice spacing must be handled with some care. One
option is to define the derivative at constant baryon mass

a
∂

∂a
(amB) = amB. (5.28)

We base the baryon and meson masses on the full heavy quark results from [Smit, 2002],
and later with the additional gauge corrections from [Langelage et al., 2014]

amM = arcosh

(
1+

(M2 − 4)(M2 − 1)

2M2 − 3

)
− 24κ2

u

1− u
, (5.29)

amB = log

(
M3(M3 − 2)

M3 − 5
4

)
− 18κ2

u

1− u
, (5.30)

whereM = 1
2κ
. In the strong coupling limit we can use this to determine ∂κ

∂a

a
∂κ

∂a
= amB

/ ∂amB
∂κ

= −
amBe

−amB
(
eamB − 8+ 4

√
4+ eamB(eamB − 1)

)
6×201/3

√
4+ eamB(eamB − 1)

(
e−amB

(
2+ eamB −

√
4+ eamB(eamB − 1)

))2/3 .
(5.31)
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Figure 5.1.: Comparison of the effective and full baryon mass used in the definition of ϵ.

Away from strong coupling the derivative in a must be defined in terms of a derivative
in β through the use of implicit functions

a
dβ

da

dκ

dβ
= −a

dβ

da

∂amB

∂β

/ ∂amB
∂κ

. (5.32)

Assuming strong coupling for now, we observe that the energy density is given in terms
of the two parameters of the theory, h1 and h2

e = −
1

aNt
a
∂κ

∂a

∂h1

∂κ

∂

∂h1

W

V

∣∣∣∣
z

−
1

aNt
a
∂κ

∂a

∂h2

∂κ

∂

∂h2

W

V

∣∣∣∣
z

. (5.33)

We use the fact that
∂h1

∂κ

∣∣∣∣
z

=
Nt

κ
h1 (5.34)

to see that the first part of eq (5.33) is

−
1

aNt
a
∂κ

∂a

∂h1

∂κ

∂

∂h1

W

V

∣∣∣∣
z

= −
1

a

a

κ

∂κ

∂a
h1

∂

∂h1

W

V
= −3

1

a

a

κ

∂κ

∂a
nB (5.35)

after inserting the definition of nB. Using that to first order in κ, ∂κ∂a ∼ −κmB

3
, we notice

the first term to be somehow related to the rest energy of the system. We subtract this
shift from the energy density, and the resulting quantity should give a good estimate for
the binding energy of the system at low temperatures where thermal fluctuations are
suppressed. We define the dimensionless ratio of the binding energy density to the rest
energy to be

ϵ =
e−mB,eff nB
mB,eff nB

, (5.36)

where
mB,eff = −3

1

κ

∂κ

∂a
. (5.37)

We plot the effective baryon mass vs the real baryon mass in the strong coupling limit
for different values of κ in figure 5.1, and see that they mostly agree all the way to κcrit,
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Figure 5.2.: Convergence of LCE carried out on the LO effective theory Z2, compared to
numerical data for the same parameters.
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Figure 5.3.: Binding energy ϵ for three different values of κwith the O(κ2) LCE of Z2 on
the left and O(κ8) LCE of Z2 on the right.

which is far enough from the parameter range in this study for the two to be interchange-
able.

Figure 5.2 shows the baryon number density in the strong coupling limit at varying
coupling parameterh2. This can be used to test the convergence of the expansion, similar
to what we did in chapter 4 with figure 4.10 (left). We see that the higher order linked
cluster contribution has a small effect on the convergence, and that it agrees with the
results from the simulations.

At this point, a note on the multi level expansions is in order. Using the methods
outlined in chapter 4, we compute the effective theory to some order in the expansion
parameters κ and u. This defines a unique system with a unique action, which can then
be simulatedwithMonte Carlo or Langevin algorithms. Another alternative is to analyse
the partition function at the given expansion order and determine the new expansion
parameters (in this case h2). A second expansion can then be carried out to evaluate this
specific system order by order in the expansion parameter. If the simulation converges to
the correct result it is expected to reproduce the full (all orders) linked cluster expansion
result of the effective theory at a given order.
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Figure 5.4.: Left: The scale range accessible to the Necco-Sommer interpolation formula
for strong coupling QCD. Right: The effective nearest neighbour coupling h2

as a function of the lattice spacing keepingmB fixed at T = 10 MeV.

Finally, we plot the binding energy ratio ϵ as a function of the chemical potential for
various values of κ in figure 5.3. We see that the binding energy decreases together
with the constituent quark masses (increased κ), which is what one would expect. The
plot on the left is to leading order in h2, while the plot on the right shows the fourth
order, h4

2, of the expansion. The higher order solution shows interesting behaviour at
higher values of κ as we pass the µB/mB = 1 line. It is however beyond convergence,
and we need more orders in the effective theory before we can say anything about the
behaviour at higher chemical potential.

5.2.1 Scale setting and the continuum limit

Until now we have only considered observables at finite lattice spacing, and these ob-
servables have always been computed as dimensionless ratios of the, thus far unspecified,
lattice spacing. However, for us to be able to make any connections to other fields, we
first have to determine the physical scale of the problem. As outlined in section 2.6,
we need to determine the scale generated by the regulator a. One way to do this is to
analyse the static potential and link the curvature of this potential to the characteristic
length scale of QCD interactions (the so called Sommer parameter [Sommer, 1994]). In
this way we can determine a function a(β,κ) that encodes the scale information. We
assume that the heavy quarks have little influence on the running of the coupling, and
so for small κwe assume a(β,κ) ≈ a(β). We make use of the interpolation formula for
a(β) [Necco and Sommer, 2002]

a = r0 exp(−1.6804− 1.7331(β− 6) + 0.7849(β− 6)2 − 0.4428(β− 6)3),

for β ∈ [5.7, 6.29], (5.38)

using the Sommer parameter r0 = 0.5 fm. The interpolation formula is plotted in
figure 5.4 (left).
With respect to the continuum limit, it is important to alter the variables in such a

way that the physical system remains unchanged, in other words move along curves
of constant physics. Analogous to how we defined the energy density by taking the
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5.3. Linked cluster expansion for polymer interactions

β a [fm] Nt κ

5.70 0.170 116 0.000089
5.75 0.152 130 0.000224
5.80 0.136 145 0.000491
5.85 0.123 160 0.000964
5.90 0.112 177 0.001724
5.95 0.102 194 0.002851

β a [fm] Nt κ

6.00 0.093 212 0.004419
6.05 0.086 231 0.006488
6.10 0.077 250 0.009100
6.15 0.073 270 0.012278
6.20 0.068 291 0.016030
6.25 0.063 313 0.020348

Table 5.2.: Tabulated values of the parameters of interest for the continuum study, com-
puted at T = 10 MeV andmB = 30 GeV.

a derivative in such a way that mB remained constant, we now vary the parameters
κ(a),β(a),Nt(a) in such a way that ∂amB = 0 and ∂aT = 0. Some of the values at
different lattice spacings are shown in table 5.2, where we have fixed the baryon mass
at 30GeV. We observe that moving towards the continuum limit not only increases the
hopping parameter, but also increases the number of temporal slices needed to fix the
temperature. These two effects combinewhen computing the effective coupling constant
h2 = κ

2Nt/Nc, as is clearly shown in figure 5.4 (right).
Finally, we demonstrate how the continuum limit is approached. We first compute

the desired observable at multiple values for β, whose upper limit is determined by the
convergence limit of our theory. For instance the convergence plot figure 4.10 (left) tells
us that h2 ≲ 0.04 for Z2 if we demand at most 10% deviation. If we fixmB = 30 GeV
and T = 10 MeV, we find an upper limit for β ≲ 6.02. Afterwards, the scaling of the
observable with respect to the lattice spacing is analysed

Olattice = Ocontinuum +O1 a+O2 a
2 + O(a3). (5.39)

As the expansion is based on unimproved Wilson fermions, the lattice spacing correc-
tions enter already at the linear level. We somewhat conservatively assume that we still
haveO(a2) remnants in the observables. The observables are then fitted to the quadratic
function, and the continuum limit results are extracted from an extrapolation to a = 0.
The fit is carried out with two sets of data points, which are chosen based on the observ-
able and the value for µ. A common choice here is ∆β = 0.01 and then using the final
10 and 6 points respectively for the two fits. One then averages over the two values,
and takes the difference as an error estimate for the systematic error. The importance
of a data point for the fit is weighted by the difference in the computed observable at
a fixed lattice spacing for two consecutive orders. The fitting procedure is illustrated
in figure 5.5 (left). In the right hand plot is the continuum extrapolated baryon num-
ber density of the Z2 partition function expanded to four bonds using the linked cluster
expansion.

5.3 Linked cluster expansion for polymer interactions

Before we can apply the cluster expansion formalism to the fullO(u5κ8) effective action,
we must be able to handle interactions more complicated than two-point couplings. In
this section we develop a new method for our tool belt to handle polymer interactions
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Figure 5.5.: Left: Plot demonstrating the continuum limit which is taken at the smallest
accessible lattice spacing extrapolated with two different data sets. Right:
The continuum limit ofnB/m3

B for the LO effective theory to four bond LCE.

with the linked cluster formalism. We then establish the necessary mappings and apply
it to the higher order effective theories.

5.3.1 Generalisation of the LCE to polymer interactions

We start with a generalised partition function for n component fields ϕi

Z =

∫ [
dϕi

]
exp

(
− S0[ϕi] +

1

2!

∑
x,y

∑
i,j

vij(x,y)ϕi(x)ϕj(y)

+
1

3!

∑
x,y,z

∑
i,j,k

uijk(x,y, z)ϕi(x)ϕj(y)ϕk(z) + . . .

)
. (5.40)

We introduce sources Ji similarly to how they were introduced in section 5.1.1. This
gives us a linked cluster expansion for the grand canonical potential

W[v,u] =

[
exp

(
1

2!

∑
x,y

∑
i,j

vij(x,y)
δ

δṽij(x,y)

)

× exp

(
1

3!

∑
x,y,z

∑
i,j,k

uijk(x,y, z)
δ

δũijk(x,y, z)

)
· · ·
]
W[ṽ, ũ]

∣∣∣∣∣ṽ=0
ũ=0
···

. (5.41)

The derivative with respect to the three-point coupling u can be expressed in terms of
derivates w.r.t. the sources

δW

δuijk(x,y, z)
=

δ3W

δJi(x)δJj(y)δJk(z)
+

δW

δJi(x)

δ2W

δJj(y)δJk(z)
+

δW

δJj(y)

δ2W

δJi(x)δJk(z)

+
δW

δJk(z)

δ2W

δJi(x)δJj(y)
+

δW

δJi(x)

δW

δJj(y)

δW

δJk(z)
, (5.42)

the same is also true for all the higher n-point interactions. To O(v2,u) (two bonds) we
get
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W[v,u] = W[0]+
1

2

∑
Mi(x) vij(x,y)Mj(y)+

1

4

∑
Mij(x) vik(x,y)vjl(x,y)Mjl(y)

+
1

2

∑
Mi(x) vij(x,y)Mjk(y) vkl(y, z)M1(z)

+
1

3!

∑
uijk(x,y, z)Mi(x)Mj(y)Mk(z)

+
1

2

∑
uijk(x,y,y)Mi(x)Mjk(y) + . . . (5.43)

where the sums have been shortened for the sake of brevity, and we have assumed that
the three-point coupling is cyclic. Just as with the two-point LCE, one can systemati-
cally carry out the linked cluster expansion, rewriting the derivatives in the couplings
{v,u, . . . } order by order and evaluate W. A graphical method is however desired, as it
would greatly benefit the expansion. To do this we need to further specify the geometry
of the three-point interaction. One natural choice that is compatible with the already
defined nearest neighbour interaction v, is a set of two nearest neighbour interactions

u(x,y, z) =

u if ⟨x,y⟩ and ⟨y, z⟩ are nearest neighbours,
u if ⟨x,y⟩ and ⟨x, z⟩ are nearest neighbours,
u if ⟨x, z⟩ and ⟨y, z⟩ are nearest neighbours,
0 else,

(5.44)

wherewe have reverted to the one-components fields for simplicity. Using this definition
for u, W evaluates to

W[v,u] = NM0 +
q

2
vNM2

1 +
q2

2
v2NM2

1M2

+
q

4
v2NM2

2 +
q2

2
uNM3

1 +
q

2
uNM1M2 + . . . (5.45)

The above expression can be represented graphically as

W[v] = + 1
2

+ 1
2

+ 1
4

+ 1
2

+ 1
2

+ . . . , (5.46)

where the v bonds are coloured blue and the u bond pair red. The nodes are represented
by concentric circles, where every additional node from a base interaction adds an addi-
tional circle of appropriate colour. This is necessary to distinguish e.g. the nodes in the
final term. An alternative three-point coupling could be a triangular nearest neighbour
coupling

u(x,y, z) =
u if ⟨x,y⟩, ⟨y, z⟩, and ⟨x, z⟩ are nearest neighbours,
0 else,

(5.47)

in which case the final term in eq (5.46) would be excluded, given that it is not geomet-
rically realisable. It would actually be better to represent this particular version of the
three-point interaction with a three bond diagram

(5.48)
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as the bonds are intended to encode the nearest neighbour restriction. Regardless of
which geometry the n-point interactions have, there are numerous paths onward. One
option is to compute the derivatives explicitly order by order and sum over the coor-
dinates explicitly. Alternatively one can write down all mixed graphs that respect the
chosen geometry and compute the modified symmetry factor. For instance we see that
the two bond nearest neighbour graph for the v and u interactions

1
4

, 1
2

(5.49)

have different symmetry factors since the node relabelling symmetry is broken. A third
alternative, and the one we will focus on, is through a second embedding step

Rule 5.2. Grand canonical potential W for n point interactions

1. Represent the geometry of the n-point interaction vn(xn1 , xn2 , . . . , xnn) as a graph
according to definition 5.1.

2. Construct all graphs with the necessary number of bonds and geometry to the desired
order (we refer to these as skeleton graphs).

3. Embed all n-point interaction graphs onto the skeleton graphs.

4. For every embedded n-point graph that visits xn1
, xn2

, . . . , xnn , add a factor
vn(xn1

, xn2
, . . . , xnn).

5. For every vertex with modified valence(2) p, add a factorMp(xi).

6. The correct symmetry factor will be the symmetry factor of the skeleton graph times
the number of unique isomorphic embeddings.

Let us consider the embedding of a v-link and a u-”wedge” from eq (5.44) on the three
bond graph

1
2

(5.50)

This can be done in four different ways

1
2

+ 1
2

+ 1
2

+ 1
2

(5.51)

where the first two are isomorphic and can be collected in one term. Hence there are
three unique embeddings of this combination onto the skeleton graph, of which one has
a non-unit embedding number, and thus a modified symmetry factor. With these two
ingredients we present the full three bond free energy

W[v] = + 1
2

+ 1
2

+ 1
4

+ 1
2

+ 1
2

+ 1
3!

+ 1
2

+ 1
6

+ 1
2

+ 1
2×3!

+ 1
2

+ + 1
2

+ + 1
2

+ 1
2

+ 1
2

+ . . . . (5.52)
(2)Modified valence is the number of bonds entering a vertex originating from different n-point interac-

tions.
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Figure 5.6.: Number of analytic terms from the LCE of the effective theory

5.3.2 Application to the effective theory, graph embeddings

Once more, we will compare the effective theory partition function to the one of the
LCE and create a correspondence. We will increase the order of the effective theory by
one, working with Z4. The method is easily generalisable, and the Z8 effective theory
partition function has been considered for the upcoming result. The O(κ4) partition
function is

Z4 =

∫ [
dU
]
0
detQNfstat exp

(
− 2h2Nf

∑
⟨x,y⟩

W11(x)W11(y)

+ 2h2
2Nf

∑
⟨x,y⟩

∑
⟨y,z⟩

W11(x)W21(y)W11(z) + 2h2
2N

2
f

∑
⟨x,y⟩

W21(x)W21(y)

)
. (5.53)

The correspondence is now between the two component fieldϕi in the followingmanner

ϕi ⇔
(
W11,W21

)
i
, e−S0[ϕ] ⇔ J(U0,W11,W21) detQ

Nf
stat . (5.54)

The two and three-point interactions are given by

vij(x,y) = δ(⟨x,y⟩)
(
−2h2Nf 0

0 2h2
2N

2
f

)
ij

(5.55)

and

u1jk(x,y, z) = 2h2
2Nf

(
0 δ(⟨x, z⟩)δ(⟨y, z⟩)

δ(⟨x,y⟩)δ(⟨y, z⟩) 0

)
jk

, (5.56)

u2jk(x,y, z) = 2h2
2Nf

(
δ(⟨x,y⟩)δ(⟨x, z⟩) 0

0 0

)
jk

. (5.57)

AtZ6we see thatwe have to expand the set of fields to four,ϕi ⇔
(
W11,W21,W31,W32

)
i
,

which would result in the following two-point interaction matrix

vij(x,y) = δ(⟨x,y⟩)


−2h2Nf 0 0 0

0 2h2
2N

2
f 0 0

0 0 −1
3
h3
2Nf

4
3
h3
2N

3
f

0 0 4
3
h3
2N

3
f −1

3
h3
2Nf


ij

. (5.58)
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Figure 5.7.: Convergence of the analytic expressions in h2 (left) and β (right) overlaid
with the simulation results at highest order. The normalised baryon number
density has been used in the right plot.

The other n-point functions are too long to list. The computation of the analytic formula
for W has been carried out using all three methods outlined above (calculating deriva-
tives, computing graphs directly as well as using the embedding method). This was done
to verify the result. The number of terms contributing to the analytic function describ-
ing ZQCD at a given order in our expansion scheme is plotted in figure 5.6, and we see
once more that the number of terms grows exponentially with increasing order. Pushing
this to higher order would require the development software to carry out the graphical
combinatorics. This would be a similar task e.g. to the one undertaken by Lüscher and
Weisz in their groundbreaking work on the λϕ4 lattice theory [Lüscher and Weisz, 1988,
1989] where they carried out a LCE to 14th order, and showed the triviality of the theory.
One should however note the added difficulty due to the additional polymer interaction,
and the geometry. For instance, the four bond LCE on a square lattice gives 17 graphs,
while our effective theory has 243 graphs at the four bond level.

5.3.3 Results

We are now in a position where we can evaluate thermodynamic functions fully ana-
lytically. Using the LCE we have computed the grand canonical partition function in
the thermodynamic limit through O(κ8u5) to first order in N−1

t . We first compare the
convergence of the theory in the two parameters to that obtained through simulating
the effective theory. The convergence in the nearest neighbour effective coupling, h2,
is shown in figure 5.7 (left). Comparing it to figure 4.10 (left), we see that the ana-
lytic convergence range matches that of the simulated data and shows good quantitative
agreement. Figure 5.7 (right) shows the corresponding convergence plot in the strong
coupling parameter β. We see that the analytic computation underestimates the strong
coupling contributions. One should however note the axis scales, that the finite coupling
corrections are much smaller than the corrections in κ, and that the main contribution
of finite β ultimately appears indirectly through a rescaling of the system.
Next we explore the convergence properties of the theory as we move towards lighter

quarks and smaller lattice spacings. Figure 5.8 shows the baryon number density at ever
smaller lattice spacings. The error bars are estimates of the systematic error, computed
as the difference between two subsequent orders in the expansion. The first observation
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is that at conservative quark masses of ∼ 10GeV, the continuum extrapolation is limited
by extrapolation from data taken at ∼ 0.07 fm. However, we note that the convergence
improves at higher orders of the expansion in all cases, demonstrating the stability of
the expansion. The second observation is that convergence is worse at higher chemical
potential. This, combined with the fact that the slope increases, makes accessing the
denser systemsmore difficult. This is a manifestation of fermion saturation on the lattice,
as was discussed in section 3.4.1.

Figure 5.9 shows the convergence of the different orders of the expansion at varying
meson mass at fixed temperature and lattice spacing. This plot demonstrates the diffi-
culty the effective theory has in reaching smaller quark masses. Although higher orders
do indeed help the convergence, we see that the effect of two more orders is small com-
pared to the relevant scales of the problem. We can therefore not envision an extension
to smaller quark masses through brute force order by order computations.
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Figure 5.10.: Results from the Padé approximants. Left: Convergence plot at strong cou-
pling compared to the normal series from the LCE. Right: The nucleon bind-
ing energy as a function of chemical potential at different orders.

5.3.4 Padé approximants

An alternative, but very powerful tool for series analyses is the Padé approximants. It is
simply a reordering of the power series into a rational expression

[L/M](z) =
a0 + a1z+ · · ·+ aLzL

b0 + b1z+ · · ·+ bMzM
, (5.59)

so that its Maclaurin series agrees with the original series to (L+M)th order

L+M∑
i=0

cizi = [L/M](z) + O(zL+M+1). (5.60)

An extensive introduction to Padé approximants, their uses and properties can be found
in [Baker and Graves-Morris, 1996]. If the approximants are well defined, they tend to
show better convergence properties than their corresponding Maclaurin series. If one
considers a long enough series it is also possible to use the Padé formulation to analyse
critical points and non-analyticities of the theory. One should however be careful, as
the Padé series will pick up both the real physical singularities as well as artificial singu-
larities due to the fractional nature of the expression. To resolve this one can e.g. study
the different Padé approximants, as the L-M ratio can be set freely. It is however known
that the diagonals ([L/L] and [L − 1/L]) possess various favourable properties [Gaunt
and Guttmann, 1974; Guttmann, 1989, and references therein].
In our case the Padé variable ish2, and the highest order is L+M = 4. After discarding

the approximants with artificial singularities, we can compare the convergence to that
of the Maclaurin series. This is shown in figure 5.10 (left) where we have once more
used the baryon number density to investigate convergence. We see that the order by
order convergence rate of the Padé approximants is far superior to that of the pure linked
cluster expansion, as expected.
Finally we plot the binding energy per nucleon, ϵ, as defined in eq (5.36) with the

Padé series in figure 5.10 (right). We observe that this quantity displays the silver blaze
problem, namely that it is zero up until onset transition, where it in this case becomes
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negative, as demonstrated in [Langelage et al., 2014]. With the fourth order Padé, we
can extend the study to higher densities. Although the quantitative convergence breaks
down shortly after the onset transition near µB ≈ mB, we see new qualitative behaviour.
At higher orders the binding energy has a minimum and reaches a positive value at
growing chemical potential, as expected fromnuclear physics. Thismeans that we have a
qualitative bulk nuclear density, whose quantitative value is still unsettled by the present
study.

We refrain from analysing any more results until we have introduced a final improve-
ment to the analytic approach.

5.4 Analytic resummation

So far we have managed to analytically calculate the grand canonical potential of the
effective theory to the same order as the effective theory itself, and thus obtained the
thermodynamic quantities analytically. Although this in of itself is both useful due to
the permanence of the results, as well as the additional mathematical insight into the the-
ory it admits, we have merely reproduced the simulated results. In this section, further
improvements to the theory will be analysed, which will push the analytic evaluation
beyond that of the numerically obtained ones. We start by introducing a resummation
scheme on the level of the effective theory in section 5.4.1. We then proceed to a resum-
mation on the cluster expansion level in section 5.4.2. Finally, in section 5.4.3, we will
review a second hypothetical resummation, again on the level of the effective theory.

5.4.1 Chain resummation

We start with an example. Consider the following four terms from the effective action
eq (4.99)

h2Nf
∑
dof

1

1
, −h2

2Nf
∑
dof

1

1

1
, h3

2Nf
∑
dof

1

1

1

1
, −h4

2Nf
∑
dof

1

1

1

1

1
.

(5.61)
It is clear that these four terms follow a common pattern that generates a chain. Each of
the terms above extend the chain by one node while maintaining a common prefactor.
By studying the mathematically equivalent formulation, we observe that every new link
in the chain contributes a factor h2W21 to the term, in addition to the necessary spatial
geometry. One can check the other terms in the κ8 action, e.g.

2h3
2N

2
f

∑
dof

(
1

1

1
−

1

2

1

)
, −2h4

2N
2
f

∑
dof

(
1

1

1

1
−

1

2

1

1
)
, (5.62)

all follow this pattern. The conjecture is then that every singly connected node, namely
every factorW11, can be extended to a chain of arbitrary length, and that these termswill
appear in a predictable form at higher orders. The chain resummation can schematically
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be represented as

C0 =
rest of
the term

1
...m ends 1

1

resummation Cn = rest of
the term

...m ends

1
1

1

· · ·

1

1

1

1

· · ·

1

1

, (5.63)

in which C0 represents and arbitrary unsummed term with m singly connected nodes
(open ends), and Cn represents the same term where the m opens ends have been ex-
tended a combined total of n times. We then sum over the extension n of the m open
ends which results in a replacement of all open ends

W11(x) W11(x)

∞∑
n=0

G({xn})

n∏
i=1

(−h2)W21(xi). (5.64)

The factor G({xn}) represents the geometry of the chain, which we will later embed onto
the polymer linked cluster expansion developed in the previous section. Before doing
this, we need to review the mathematical structure of the resummation, as well as its
origin.

Combinatorial analysis

We already introduced the combinatorics of the cold and dense regime in section 4.8.1,
uponwhichwewill build in this section. First, we need to identify which terms, analysed
before the spatial gauge link integrals, contribute to the chain. We will simply state
the general pattern here and prove it later. We define an open end to consist of two
consecutive hops that form a pair, such as 1 1. When we earlier introduced the pairing
notation, we used the sixth order single trace as an example, which can appear in three
combinations (as in eq (4.80))

tr 1 1 2 2 3 3 , tr 1 2 3 3 2 1 , tr 1 2 3 1 2 3 . (5.65)

The first term has three open ends, the second has two open ends (including cyclic per-
mutations), while the final term has no open ends. An extension of the chain is obtained
by inserting a new pair between the contracted PM pair of an already existing open end.
Instead of the quark hopping forth and directly back again, it takes a detour through this
new position

. . . 1 1 . . . W11(⃗x), (5.66a)
. . . 1 2 2 1 . . . W21(⃗x)W11(⃗x+ i), (5.66b)

. . . 1 2 3 3 2 1 . . . W21(⃗x)W21(⃗x+ i)W11(⃗x+ i+ j). (5.66c)

The prefactors of terms in this resummation can be calculated from symmetry argu-
ments. Assume that we know the symmetry prefactor 1/g of a term with N open ends.
Extending one of these can be done in N/g distinct ways, which all break the previ-
ous symmetry. The sum of all such insertions thus has a prefactor of N/g, which is
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N times that of the base diagram. However, instead of counting the number of these
permutations, one can make the observation that the problem is equivalent to distribut-
ing n indistinguishable objects to N distinguishable bins. This is done assuming that
extending any of the chains give the same result. Although this is obviously not true in
general, as they result in different geometric objects, when we later embed these objects
onto the linked cluster expansion we will only consider the embeddings in which this
discrepancy is irrelevant. In this special case, the new symmetry factor from extending
a graph with a symmetry factor 1/g with N open ends by n links is

1

g ′ =
1

g

(
N− 1+ n

n

)
. (5.67)

This is also only true if we consider a root graph, which is any graph that does not appear
as an extension to any other lower order graph. However, as long as we carry out the
resummation on an order by order basis, it does not pose a problem.

With all the ingredients in place, we are ready to carry out the gauge integrals for a
chain matrix, and show that the above mentioned expression does indeed appear. As
argued, the chain can be express as

X 1 2 3 4 . . . n n . . . 4 3 2 1 , (5.68)

where X represents the remainder of the term, which may or may not include additional
open ends, and/or chains. Since the expression has a recursive structure it is natural to
define the integrated matrices Gn so that

1 2 3 4 . . . n n . . . 4 3 2 1

Gn

Gn−1

Gn−2

. (5.69)

The matrix Gn is then defined in terms of Gn−1, which is defined in terms of Gn−2, and
so on. In section 4.8.1 we saw that the static propagator in the cold dense limit had the
approximate expression eq (4.87), meaning that the effective hopping matrices take the
form

Pabαβ(y, x) = κ
(1+ γ0

2

)
αγ
Bacx⃗ (ty, tx)

3∑
i=1

(1+ γi)γβU
cb
x⃗,i δy⃗,x⃗+i (5.70)

Mab
αβ(y, x) = κ

(1+ γ0

2

)
αγ
Bacx⃗ (ty, tx)

3∑
i=1

(1− γi)γβU
†,cb
x⃗,i δy⃗,x⃗−i (5.71)

where we have shortened the B+ notation for brevity. Colour indices are denoted by
Roman letters, and Dirac indices by Greek characters. We also saw in section 4.8.2 that
the Dirac trace is somewhat trivial. The colour matrix content that enters the integrals
is thus

Bacx⃗ (ty, tx)U
cb
x⃗,i, and Bacx⃗ (ty, tx)U

†,cb
x⃗,i . (5.72)
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We are now ready to evaluate the colour integrals over the matrix Gn

Gafn (t1, t2; x⃗0) = 2κ2
∑
i0,t3

∫
dUx⃗0,i0(t2) B

ab
x⃗0

(t1, t2)U
bc
x⃗0,i0

(t2)

×Gcdn−1(t2, t3; x⃗0 + i0)B
de
x⃗0+i0

(t3, t2)U
†,ef
x⃗0,i0

(t2)

=
2κ2

Nc

∑
i0,t3

Babx⃗0 (t1, t2)G
cd
n−1(t2, t3; x⃗0 + i)B

de
x⃗0+i

(t3, t2)δceδbf

=
2κ2

Nc

∑
i0,t3

Bafx⃗0 (t1, t2) trc
[
Gn−1(t2, t3; x⃗0 + i)Bx⃗0+i(t3, t2)

]
. (5.73)

The coordinate x⃗0 is the coordinate of the beginning of the chain, and we see that we
have a recursive structure for these spatial positions as wemove along the chain x⃗m+1 =
x⃗m + im. We use the above equation to express Gn−1 in terms of Gn−2

Gabn−1(t2, t3; x⃗1) =
2κ2

Nc

∑
i1,t4

Babx⃗1 (t2, t3) trc
[
Gn−2(t3, t4; x⃗2)Bx⃗2(t4, t3)

]
. (5.74)

Inserting the expression for Gn−1 into the one for Gn, yields

Gafn (t1, t2; x⃗0) =

(
2κ2

Nc

)2 ∑
t3,t4

∑
i0,i1

Bafx⃗0 (t1, t2) trc
[
Gn−2(t3, t4; x⃗2)Bx⃗2(t4, t3)

]
× trc

[
Bx⃗1(t2, t3)Bx⃗1(t3, t2)

]
−1

2
W21(⃗x1)

. (5.75)

We see that the structure ofGn stays the same after one step of the recursion, except for
a factor ofW21 as well as sums over new degrees of freedom. The recursion ends at G1,
which is the open end of the chain, given by a consecutive, paired hop

Gae1 (τ1, τ2; x⃗n) = 2κ2
∑
in

∫
dU⃗x⃗n,in B

ab
x⃗n

(t1, t2)U
bc
x⃗n,in

(t2)B
cd
x⃗n+1

(t2, t2)U
†,de
x⃗n,in

(t2)

=
2κ2

Nc

∑
in

Baex⃗n(t1, t2)trc
[
Bx⃗n+1(t2, t2)

]
1
2
W11(⃗xn+1)

. (5.76)

Recursively inserting the expressions for the Gm matrices yields the final result for the
full chain matrix

Gabn (t1, t2; x⃗0) = B
ab
x⃗0

(t1, t2)

(
2κ2

Nc

)n ∑
t3,t4,
...,tn+1

∑
i0,i1,
...,in

W11(⃗xn+1)

n∏
k=1

(
−W21(⃗xk)

)

= Babx⃗0 (t1, t2)

(
2κ2

Nc

)n
Nn−1
t

∑
i0,i1,
...,in

W11(⃗xn+1)

n∏
k=1

(
−W21(⃗xk)

)
. (5.77)
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The sums over the temporal variables are trivially evaluated because theWnm factors
are time independent.

To tie it all together, let us consider a generic contribution with N open ends

C0 =
1

g
tr
[
G1(t1, t2; x⃗1)M1G1(t3, t4; x⃗2)M2 · · ·G1(t2N−1, t2N; x⃗N)MN

]
, (5.78)

where the matrices Mi are the rest of the term, comparable to the left hand side of
eq (5.63). We have only considered a single trace term here, but the analysis can easily
be extended to multi trace terms, as a chain can only reside within one fermion trace.
Inserting the expression for G1 gives

C0 =
1

g
tr
[
B(t1, t2; x⃗1)M1B(t3, t4; x⃗2)M2 · · ·B(t2N−1, t2N; x⃗N)MN

]
×
(
κ2

Nc

)N ∑
i1,i2,...,iN

W1,1(⃗x1 + i1)W1,1(⃗x2 + i2) · · ·W1,1(⃗xN + iN). (5.79)

We can now attach chains of lengthni to each of theN open ends so that the total length
of the chain is n, corresponding to the right hand side of eq (5.63)

Cn =
∑

n1,n2,...,nN

1

g{ni}
tr
[
Gn1+1(t1, t2; x⃗1)M1Gn2+1(t3, t4; x⃗2)M2

· · · ×GnN+1(t2N−1, t2N; x⃗N)MN

]
δ
( N∑
i=1

ni − n

)
. (5.80)

This gives a symmetry factor that depends on the partitioning of the attachments {ni}.
We insert the expression for Gn from eq (5.77), which yields

Cn =
∑

n1,n2,...,nN

1

g{ni}
tr
[
B(t1, t2; x⃗1)M1B(t3, t4; x⃗2)M2 · · ·B(t2N−1, t2N; x⃗N)MN

]
×
(
κ2

Nc

)N+n

Nnt

∑
{x⃗i}

N∏
j=1

W1,1(⃗xj(nj+1))

nj∏
k=0

(
−W2,1(⃗xjk)

)
δ
( N∑
i=1

ni − n

)
, (5.81)

where we have once more introduced recursive coordinate vectors x⃗i(j+1) = x⃗ij + iij
which originate from the base position x⃗i0 ≡ x⃗i. There is a remaining sum over all
geometries of the extended graphs through the variables {⃗xi}which we have to examine
further. We see that the base diagram, which is explicitly left in the trace, is the same
for the term with and without attachments. This is the crucial observation necessary for
the correctness of the chain resummation.

Embeddings

To be able to say anything about the final sum over the chain positionswe oncemore turn
to the graph- and lattice embeddings. The snaking chain is in no way a foreign principle
to the LCE, as it is the basic ingredient for cluster expansion resummation schemes,
which we will analyse further in the next section. For now it is enough to know that
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for every chain graph there exists a skeleton graph with the appropriate geometry. For
example,

· · · · · · · · · · · · · · · · · ·

(5.82)

all have the proper geometry to have a chain embedded onto them, given that denotes
a suitable graph remainder. Taking the sum of all valid skeleton graphs is unfortunately
an impossible task, and we have to restrict the analysis to the subset of graphs we can
compute. One such set is all graphs where the chain never overlaps with itself nor the
graph remainder. We can thus apply this resummation scheme to all embeddings and
combinations of graphs entering the fullO(κ8) polymeric linked cluster expansion. This
includes direct map embeddings such as

+ 3 + 3 + 3 , (5.83)

embeddings where the overlap appears only in sections of the diagram to highest order,

+ + , (5.84)

and finally multi-diagram embeddings with free ends

+ 2 + + 2 . (5.85)

We have introduced the symbol to indicate a resummed open end in our diagrammatic
representation. For this subset of all possible embeddings of the chain, the integrals,
embedding factors and symmetry factors can be computed.
We finish the computation of the resummed graphCnwith this restricted set of embed-

dings, and label this set C∗
n. The total symmetry factor after summing over the extension

partitions {ni} is exactly the one we argued for in eq (5.67)

∑
n1,n2,...,nN

1

g{ni}
=

1

g

(
N− 1+ n

n

)
. (5.86)

The spatial integral over the C∗
n is∫ [

dU
]
µ
C∗
n =

1

g

(
N− 1+ n

n

)
Ω

∫ [
dU
]
0
detQNfstat tr

[
B1M1B2M2 · · ·BNMN

]
×
(
2dκ2

Nc

∫ [
dU
]
0
detQNfstatW11

)N(
−
2dκ2Nτ
Nc

∫ [
dU
]
0
detQNfstatW21

)n
. (5.87)

Here Ω is the embedding factor of the base diagram, and every new node in the chain
contributes with a lattice embedding of (2d), as discussed in section 5.1.1. The integrals
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Figure 5.11.: Left: Known and predicted contributions to baryon number density for a
single chain single graph embedding. Right: TheM-cumulants as a func-
tion of h1 for three different embedding types.

overW11 andW21 are nothing but the previously defined z-functions. Finally, we sum
over the total length of the attachments n

∞∑
n=0

∫ [
dU
]
µ
C∗
n =

1

g

∫ [
dU
]
µ
C̄∗
0

((2d)κ2
Nc

z(11)

)N ∞∑
n=0

(
N− 1+ n

n

)(
− (2d)h2 z(21)

)n
=

1

g

∫ [
dU
]
µ
C̄∗
0

(
(2d)κ2

Nc

z(11)

1+ (2d)h2 z(21)

)N
. (5.88)

To highlight the substitution, we have extracted the open ends from the base graph C0,
and named the remainder C̄0. This final equation proves the resummation identity in
eq (5.64). At the linked cluster level we make the substitution

z(11)
z(11)

1+ (2d)h2 z(21)
, (5.89)

at an order by order level, making sure we remove the appropriate higher order graphs
this resummation predicts. A demonstration of the convergence power of the resumma-
tion is shown in figure 5.11 (left), where we have plotted the contribution to the baryon
number density of the single chain, single graph terms. We plot the full result up to the
highest known order as well as higher order truncated results from the resummation for-
mula, and the resummed result itself. We see that the different orders diverge to ±∞ at
some point at increasing values of h2 while the full resummed result stays under control.

Finally, the systematic errors introduced by the resummation need to be discussed.
In the resummation scheme we chose a specific embedding for the higher order graphs
while neglecting other embeddings at the same order. Due to the nature of the method
of moments and cumulants this results in a slight overcounting of the number of terms
as the embedding factor (2d)n will naturally include geometries that overlap with itself.
One possible way to rectify this is to change the embedding factor to the correct one,
given by the theory of the Self-Avoiding Walk [see e.g. Janse van Rensburg, 2009, for a
review]. This is however not the preferred approach as it would spoil the nice properties
of the cluster expansion. We rather regard the cumulants as the primitive objects of the
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theory, for which the embedding factor is correct. One may then study the amplitude of
the corrections appearing at the same orders as the chain elements. Figure 5.11 (right)
shows the value of three cumulants as a function of their primary variable, h1. We see
that the free value is, for all values of h1, at least one order of magnitude larger than its
overlapping counterparts. This behaviour is due to the fact that the integrals∫

dLWN
nm, and

( ∫
dLWnm

)N
, (5.90)

are of the same order of magnitude, resulting in cancellations in the cumulants. This
gives us additional confidence in the resummation, and shows that the systematic errors
are small.

5.4.2 Cluster resummation

As mentioned earlier, the idea of graph level resummation schemes has been around for
the LCE since its conception [see e.g.Wortis, 1974, for a review], and the samemachinery
is to some extent applicable here as well. We will nonetheless choose a simpler approach
to LCE resummations that complements the already incorporated chain resummation.
In the previous section we analysed how to create chains on the level of the effective
theory. This is however not the only way of creating chains. Instead of extending the
base diagrams at the pre-integral level, one can create chains with the LCE ingredients
themselves. One example is a chain consisting of nearest neighbour interactions, which
can be represented graphically as

· · · · · ·
. (5.91)

Further improvement is gained by mixing the two expansion schemes and extending
every open end by all combinations of chain segments resulting in a chain of a certain
length

· · · · · ·

chain 1

chain 2

chainm

. (5.92)

This can most easily be achieved by partitioning a chain intom ∈ [1,n] smaller chains .
For instance, one such partition withm = 4, n = 6, is

. (5.93)

Every cut in the chainwill replace a−h2W21 in the expression by a factor−2h2NfW(11)2 ,
andm replacements on a n long chain can be done in

(
n

m

)
ways. The combined cluster

and chain resummation formula is therefore summarised as the replacement

z(11) z(11)

∞∑
n=0

n∑
m=0

(
n

m

)
(−(2d)h2)

n+m zn(21) (Nfz(11)2)
m

=
z(11)

1+ 2Nf(2d)h2 z(11)2 + (2d)h2 z(21)
. (5.94)
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x⃗

t

Figure 5.12.: The ladder resummation graphic, illustrating the general principle.

As this is only a fraction of the full LCE resummation scheme, further improvements
are expected to appear as one cranks the machinery. Still, this particular subset of cluster
resummations synergises well with the already developed chain resummation.

5.4.3 Ladder resummation

The last of the resummation schemes addressed in this thesis is a ladder resummation,
which is simply a renormalisation scheme for the nearest neighbour coupling constant.
The idea behind the ladder resummation is, similarly to the chain resummation, sim-
ple, albeit mathematically complicated. The general principle is sketched in figure 5.12,
where the details are suppressed. The full ladder is given by the nearest neighbour ki-
netic determinant ∏

i

det(1− κ2PiMi) ≡ det(1− κ2MC2
), (5.95)

which represents a different ordering scheme of the spatial hopping expansion. It is
possible to express the full static determinant in this path ordering scheme, which is
equivalent to the hopping scheme we have used so far. We adopt the same notation as
in [Rindlisbacher and de Forcrand, 2016]

detQkin =
∏
n

∏
{Cn}

det(1− κnMCn), (5.96)

where Cs symbolises a spatial path of length s and the product goes over all such
paths. The path ordered determinants can then be expanded in traces using the Faddeev-
LeVerrier algorithm, which truncates at the dimension of the matrix. This formalism does
however in noway simplify the computation of the effective theory, as the combinatorics
of the spatial gauge integrals, which presents the higher obstacle, remain.

Expanding the nearest neighbour path determinant gives

det(1− κ2MC2
) = 1− κ2 tr(MC2

) −
1

2
κ4
(
tr(M2

C2
) −

(
tr(MC2

)
)2)

−
1

6
κ6
((

tr(MC2
)
)3

− 3 tr(MC2
) tr(M2

C2
) + 2 tr(M3

C2
)
)
+ . . . (5.97)
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which grants some insight into the terms that will appear in the ladder. It is however
impossible to compute the full ladder, and we will have to settle for a computable subset
of all graphs. One possible subset is the single trace terms∑

i

tr(PiMiPiMiPiMi · · · ) (5.98)

which will include both high order coupled terms as well as close packed embeddings of
longer chains. For example all chains of the previous expansion will be one such term,
where the chain has been folded onto a nearest neighbour pair. In addition to being
restricted by combinatorics, we are restricted by the integrability of the linked cluster
integrals. The chain had the advantage that no new integrals (z-functions) were needed,
while in a nearest neighbour resummation, new integrals will inevitably appear. We
therefore turn to an even smaller subset of all nearest neighbour graphs, namely

tr( 1 1 2 2 3 3 4 4 5 5 . . . n n ). (5.99)

From the earlier analysis, we know that these diagrams have n open ends and thus
represent the set of star graphs

· · · (5.100)

The structure is the same as a consecutive set of G1 matrices from earlier

An = tr( 1 1 2 2 . . . n n ) = tr(G1G1 · · ·G1)

n times

(5.101)

which gives

An =
1

n

(
2κ2

Nc

)n∑
{ti}

tr(Bx⃗(t1, t2)Bx⃗(t2, t3) · · ·Bx⃗(tn, t1))
n∏
i=1

∑
{x⃗i}

1
2
W11(⃗xi) (5.102)

after inserting the integrated expression for G1 from eq (5.76). The positions x⃗i = x⃗+ î
are all nearest neighbours to the root position. Finally one has to evaluate the colour
trace of all possible partitions of the set of temporal variables {ti}. For example the three
star term gives

A3 =
1

3

(
2κ2

Nc

)3 ∑
t1,t2,t3

tr(Bx⃗(t1, t2)Bx⃗(t2, t3)Bx⃗(t3, t1))

3∏
i=1

∑
{x⃗i}

1
2
W11(⃗xi)

=
1

3
h3
2

(
1
2
W31 −

1
2
W32

) 3∏
i=1

∑
{x⃗i}

W11(⃗xi), (5.103)

and the four star one results in

A4 =
1

4
h4
2

(
1
4
W41 −

1
2
W42 +

1
4
W43

) 4∏
i=1

∑
{x⃗i}

W11(⃗xi). (5.104)
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Figure 5.13.: Convergence test of the chain- and cluster resummed effective theory com-
pared to the previous cluster results. Left: At h1 = 0.8. Right: At h1 = 1.0
(resummed κ2 curve directly behind the κ4 equivalent).

The partitioning of the temporal sums is currently not known, but the general structure
is on the form

An = hn2

n−1∑
m=1

pnmWnm

n∏
i=1

∑
{x⃗i}

W11(⃗xi). (5.105)

The motivation for choosing this specific set of terms is based on the integrability of the
solution. We choose a ladder embedding, meaning that we choose x⃗i = x⃗1, and embed
the star so that all of its ends lie on the same lattice point. We compute the sum over n
for this embedding, assuming that pnm is n independent, for a fixedm

∞∑
n=1

A∗
nm = (2d)

∞∑
n=1

hn2 trWnmW
n
11

= (2d) tr

(
(h1W)m

∞∑
n=1

hn2W
n
11

(1+ h1W)n

)
= (2d)h2W11 tr

(
(h1W)m

1−W11 + h1W

)
. (5.106)

So whereas theWnm andWn
11 by themselves are not integrable in general, the sum is.

The assumption that pnm is n independent still has to be investigated and confirmed. If
it is inversely proportional to n, the sum would result in a logarithm. The sum overm
could also prove beneficial.

5.4.4 Results

With the resummation schemes in place, we are in a position where we can assess their
effectiveness by comparing to our previous results. In addition to this we will expand
upon the analysis of the thermodynamic functions which we started in section 5.3.3.

Convergence

We first check the convergence of the new results. This is plotted in figure 5.13, where
we again plot the strong coupling baryon number density as a function of the effective
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Figure 5.14.: Left: Convergence properties of the resummed theory towards lighter
quarks. Right: Continuum extrapolation properties of the resummed
theory.

coupling constant. In the left plot we have extended the region of convergence signif-
icantly compared to the unsummed result. Comparing the plot to the equivalent Padé
plot in figure 5.10 (left), we see a comparable increase in convergence. This is both
expected and reassuring as both schemes produce rational expressions for the grand
canonical partition function, and the slightly superior convergence of the Padé is also
understood, as it is not restricted to any particular set of diagrams and might therefore
predict higher order behaviour. The resummed result, on the other hand, has the advan-
tage of being rigorous as well as providing insight into the underlying theory. The right
hand side of figure 5.13 shows the convergence behaviour after onset for the resummed
and unsummed expressions. We see that the resummation is evenmore effective at these
extreme parameter ranges, whereas convergence is not significantly weakened, as is the
case for its unsummed counterpart.
We continue the resummation analysis by checking convergence of physical values

as we move towards lighter quarks and finer lattices. The scan in meson mass is plotted
in figure 5.14 (left), where we see a significant improvement compared to the previous
results, figure 5.9 (right) (notice the difference in scale). The scan in lattice spacing,
which is important for the continuum limit extrapolation, is shown in figure 5.14 (right),
where we once more see a definite, however smaller, improvement. It is clear from
these studies that the resummation schemes provide a much greater improvement to the
convergence of the results than additional orders in the expansion, and moving forward,
effort should be focussed on structural improvements rather than systematical.

Saturation

Next we want to analyse the issue of lattice saturation discussed in section 3.4.1. Most
importantly, we want to verify that this problem vanishes in the continuum, as it has
to if our theory is to describe physical systems. Figure 5.15 shows the baryon number
density as a function of the chemical potential for ever finer lattices. At smaller lattice
spacings the baryon number density increases, especially in the onset and half-filling
regions. It is therefore clear that we resolve this particular lattice artefact as we move
towards the continuum. For instance, the line at a = 0.12fm saturates both quicker, and
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Figure 5.15.: Left: Baryon number density as a function of chemical potential for smaller
and smaller lattice sizes. Right: The continuum extrapolation of the same
quantity.

at lower densities, than the same system at a = 0.07fm. Another interesting observation
regarding the difficulty of studying the dense regime is made by observing the a-scaling
of the curves at greater values of µ. We see that they split further and further apart
as we increase µ due to saturation, which in turn makes the continuum extrapolation
more challenging. This is also reflected in figure 5.14 (right), where the curve at higher
chemical potential has a much steeper slope. The right hand side of figure 5.15 shows
the continuum extrapolated results for the baryon number density, and we see that this
quantity does not saturate.

Equation of state

We finally turn our attention to the study of the Equation of State (EoS) for heavy QCD in
the cold and dense regime. Figure 5.16 shows the path traced out in a pressure vs density
plot with varying chemical potential. The finite lattice spacing paths are plotted in red
and green, and they clearly eventually curve upwards. This is because of saturation,
and with increasing chemical potential above saturation, the density will stay constant,
while the pressure will continue to rise. The expected asymptotes are also shown in the
same plot, in matching colours to their corresponding plot points, given by

nB(saturation)
/
m3
B = 2Nf

/
(amB)

3 . (5.107)

This curvature disappears in the continuum extrapolation, approaching a straight curve

P

m4
B

∝ 0.04929(29)

(
nB

m3
B

)5/3

. (5.108)

This scaling is the same as for a free gas of non-relativistic fermions, which is remarkable
given the fact that we based the computations on a theory of quarks and gluons expanded
around the strong coupling regime. The emergence of a system of baryonic degrees of
freedom interacting weakly, is fully dynamical, and a result of the computation.

Digging deeper, we can compare the slope to that of the EoS for non-relativistic
fermions, which should give some information regarding which degrees of freedom con-
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Figure 5.16.: Equation of state for the heavy quark effective theory at two different lattice
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tribute to the dynamics. The fermionic EoS is

Pf

m4
f

=
1

5

(
6π2

gf

)2/3(
nf

m3
f

)5/3

, (5.109)

where gf is the number of degrees of freedom. Extracting this number from the fit would
give a staggering gf = 484(4), which is around five times larger than what might be ex-
pected from the static theory. The static theory for Nf = 2, Nc = 3 describes a system
of 91 ”baryons”, including fully degenerate nucleons, as well as all higher excitations,
which are all equally weighted as there is no mechanism that favours any particular
quark combination. This means that we not only have three quark baryons, but also
combination such as hexaquarks (dibaryon), enneaquarks (tribaryon) and dodecaquarks
(tetrabaryon). We note that the hexaquarks and dodecaquarks are bosonic in nature,
which might have an effect on the dense dynamics below half-filling, after which the
system only sees the quark degrees of freedom, and the statistics of combinations be-
comes irrelevant.
To further study this, we plot the density and the pressure separately as a function

of chemical potential, and compare their scaling to the predictions of non-interacting
fermions. Figure 5.17 (left) shows the density as a function of chemical potential, which
also scales according to the free fermion hypothesis. However, extracting the degrees
of freedom yields gf(nb) = 37. Finally, figure 5.17 (right) shows the pressure scaling,
and gives gf(P) = 0.02. This shows that the degrees of freedom are still not properly un-
derstood. One possible explanation is that the bosonic baryons condense, and therefore
do not contribute to the pressure in the cold and dense regime, however still adding to
the baryon number. There are still open questions to be answered regarding this topic,
and future studies, such as variations of Nc, might prove to be enlightening.
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Right: Similar plot for the continuum extrapolated pressure as a function
of (µB/mB)5/2.

5.5 Further applications
In this final section, we will review two further applications of the analytic treatment
of the effective theories where numerical approaches are less adequate. We first sum-
marise the implementation of different continuous groups, especially higher Nc, in
section 5.5.1. Subsequently, in section 5.5.2 we round off this chapter with a look at
the extraction of the Yang Lee zeros, which were introduced in section 3.1.2. Both of
these topics are in progress, and remain as avenues of future research.

5.5.1 Large-Nc limit

A topic of great interest is the behaviour of gauge theories with fermions, when the
number of colours, Nc, is modified. This was first explored by ’t Hooft [1974], who
discovered that a simplification arises in the large-Nc limit, and that 1/Nc could work
as a hidden candidate for a possible expansion parameter. More specifically, in this limit
the mesons and pure glue states dominate, and are free (in the vacuum). This was further
explored by Witten [1979], who hastened the development of this limit’s mathematical
structure, and its possible implications for QCD. In a sense, QCD sits at theworst possible
value forNc, with SU(2) being much simpler than QCD, as well as not possessing a sign
problem. On the other side we have SU(4), SU(5), …, which are closer to the large-Nc
limit, and can thus benefit from the simplifications that arise. There is great interest in
higherNc from a conformal field theory perspective, as there exists a line in theNf

/
Nc

plane that separates conformal and non-conformal field theories, which is known as the
conformal window [Dietrich and Sannino, 2007]. An introduction to lattice studies of
large-Nc can be found in [Lucini and Panero, 2014].

We already pointed out the reduced numerical cost of simulating the effective theory
at higher Nc in section 4.9, as compared to a full scale lattice gauge theory implemen-
tation. Furthermore, the graphs that enter analytic computations do not change as we
increase Nc. This means that in the strong coupling limit, all we have to do is recom-
pute the z-functions using the methods outlined in the appendices for every Nc. The
baryon number density for different gauge groups is plotted in figure 5.18. We see
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Figure 5.18.: ”Baryon” number density as a function of chemical potential at different
values of Nc computed with the effective theory. Expected Nc = ∞ in
black.

that at higher and higher values of Nc, the transition becomes steeper and steeper. We
have defined nB by dividing out a factor ofNc from the quark number density, a colour
neutral state requires at least Nc quarks. The behaviour at increasing Nc can be easily
seen from the static determinants in table A.2. The static determinant will always have
a fugacity coefficient raised to power Nc at highest order. This means that the onset
is exponentially suppressed by Nc, and the saturation exponentially enhanced. In the
limit this gives a natural transition which matches physical intuition. As the number
of quarks needed to form a baryon increases, it becomes more and more energetically
expensive to create one. The silver blaze phenomenon is therefore strengthened, and in
the actual limit, one will always have a first order transition to nuclear matter, indepen-
dent of the temperature. It would be very interesting to use the effective theory to find
the liquid gas endpoint as a function of Nc, κ and T . Similar to the fact that such an
endpoint exists at a critical temperature depending on the quark mass, it also exists for
any temperature and κ at a critical Nc. However, this can only be seen if one includes
gauge corrections, as the transition point is defined by an interplay between the fermion-
gauge interactions. We already see that our effective coupling h2 ∝ N−1

c , and will thus
become small. The gauge sector on the other hand has graphs that do not suffer from
this suppression, and will therefore compete with the quarks.

5.5.2 Yang Lee zeros

Finally we discuss another future prospect of the effective theory, namely the evaluation
of its complex Yang Lee zeros. An advantage of the Yang Lee zeros is that it outlines
a clear cut systematic procedure for how to approach non-analyticities from a series
expansion. Previous studies of zeros of gauge theory partition functions have proven to
be fruitful [Barbour et al., 1992, 1993], as well as being successfully applied to random
matrix theories [Halasz et al., 1997a], motivating a similar study of the effective theory.
Having a fully analytic framework at our disposal is also beneficial for these kinds of
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Figure 5.19.: Complex zeros of the Z2 partition function on a 2×2×2 cube with periodic
boundaries.

studies.
We start away from the thermodynamic limit, using the logarithmically resummed Z2

effective action

Z2 =

∫ [
dU
]
0
detQNfstat

∏
⟨x⃗,y⃗⟩

(
1−

κ2

Nc

(
W11(⃗x) −W11(⃗x)

)(
W11(y⃗) −W11(y⃗)

))Nt
.

(5.110)
As the volume increases, approaching the thermodynamic limit, the partition function
becomes an ever higher degree polynomial in fugacity, and thus has ever more complex
zeros. Similarly, increasing Nt will also alter the degree of the polynomial, showing a
more intricate structure when moving towards continuum physics.

The zeros of the Z2 partition function on a 2 × 2 × 2 lattice with periodic spatial
directions and a temporal extent of 1 is plotted in figure 5.19. Already at these small
lattices we see an interesting structure, which starts developing the three-fold symmetry
of SU(3). Along with increasing volume, we expect even more complexity, while artifi-
cial zeros should disappear. However, due to the need for an exact analytic expression
when evaluating the zeros, the integral in eq (5.110) becomes exceedingly expensive in
its evaluation, and the number of terms to evaluate in a naive approach scales as 26NtN3

s .
So, even for a 1 × 23 lattice, the number of terms for the integral would be ∼ 2.8 · 1014.
Most of the terms are of course the same, and we therefore see the need for methods of
extracting the zeros that take advantage of these symmetries.
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6
Summary and discussion

The effective theory approach to to the study of cold and dense QCDmanages to probe a
region of the phase diagram in which traditional first principle methods fail. Themethod
is based on expanding a system of strongly interacting, heavy quarks around these two
limits. By the use of various expansion techniques, the effective theory systematically
approaches continuum physics of cold and dense, heavy QCD.

This thesis’ main objective has been the continued improvement of the heavy quark
effective theory. We started out by introducing both continuum, and lattice gauge theo-
ries in chapter 2. We focussed on the symmetry properties of the systemswe study, and
how these influence large scale dynamics. In chapter 3 we generalised gauge theories
to the realm of thermodynamics and statistical mechanics, and saw how these systems
regularised on a space-time lattice. Application of lattice methods to dense systems was
stressed, and a longer analysis of the difficulty of, and possible remedies to, simulating
finite chemical potential physics was given.

Chapter 4 was dedicated to a detailed summary of the derivation of the effective
theory. The two expansion schemes, namely the character expansion around β = 0,
g ∞, and the hopping parameter expansion κ = 0, mq ∞, were introduced, and
their effects on the effective theory discussed. Two important resummation schemes
was introduced, an exponential resummation, which improve thermodynamic studies,
as well as a logarithmic one, for further analytic evaluation. Then the cold and dense
regime, in which the existence of heavy temporal quark lines are favoured over anti-
quark lines were introduced, and the combinatorics of the computation of the expansion
coefficients simplified. Finally, the full O(κ8u5N4

t) effective theory action was derived,
followed by a short discussion on its numerical prowess.

In chapter 5 the main objective of the present work was discussed, specifically the
fully analytical treatment of the effective theory. We started by introducing the renowned
linked cluster expansion for thermodynamic systems, and then showed howone canmap
the lowest order effective theory, Z2, onto this approach. This was unfortunately not suf-
ficient for a complete study of the higher order effective theory term, and thus a more
general, polymer linked cluster expansion, was developed. We used this new systematic
approach to map the complete O(κ8u5N4

t) effective theory onto this framework, and
were consequently able to present an analytic study of the higher order contributions to
the cold and dense limit of heavy QCD.
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Summary and discussion

In the subsequent section we employed the full power of the analytic approach and
discussed three potent resummation schemes inaccessible to numerical methods. First
up was the chain resummation, which makes use of recursive integrability of a specific
combination of terms to predict an infinite chain of quark interactions. This specifically
adds interactions at arbitrary distances to the effective theory, improving its ability to
describe the correct thermodynamics for macroscopic systems. In the same spirit we
introduced another resummation on the cluster expansion level , which helps to increase
the accuracy of the expansion as compared to numerical methods. This is only a fraction
of the full LCE resummation machinery, and can therefore be extended in the future to
include additional long range effects, normally beyond the limits of computations based
on series expansions. Finally, a hypothetical ladder resummation which would work as
a nearest neighbour coupling renormalisation was presented. The results were then re-
examined in the fully resummed analytic computation. We showed the equation of state
in the continuum, where it has the same scaling as the EoS for non-relativistic weakly
interacting fermions. The effective theory dynamically extracts the baryonic degrees of
freedom, showing the properties of confinement from a strong coupling, heavy quark
foundation. A further analysis of the degrees of freedom predicted by this equation of
state shows us that there are still questions left to explore.
Finally, a short overview of further applications of the effective theory was presented.

This included the extension to higherNc gauge groups, which is of great interest to the
adS/CFT community, and the analytic evaluation of the Yang Lee zeros. The latter is
important to the study of non-analyticities and phase transitions.
The presentwork demonstrated that the effective theory approach, the spatial hopping

expansion, has a rich structure and that there are still undiscovered and unexplored
future research topics, which we will discuss next.
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7
Research Perspectives

Although we have answered many questions regarding the properties and applications
of the effective theory in this thesis, we have also asked new ones, and been organically
lead onto the path of new research. First and foremost, applications of the effective
theory to large-Nc studies, opening up communication with the adS/CFT community,
was elaborated in section 5.5.1. Also, the application of the analytic expressions to
studies of Yang Lee zeros was outlined.

Furthermore, questions regarding the nature of the continuum extrapolated results
remain unanswered, and additional research is in order. One possible avenue of future
investigation is a more thorough analysis of the analytic contributions to said effect.
Additional insight could be reached through the large-Nc study, as the polyquark states
have different statistical properties depending on the gauge group. Finally one could
explore the corrections to the ground state energy of the different baryonic states, and
see whether it is possible to manipulate the degrees of freedom in such a way that the
continuum physics alter, following predictable patterns.

Another research prospect is the computation of susceptibilities, such as Polyakov
loop susceptibilities. These quantities are a paramount ingredient in the study of phase
transitions for series expansion studies. The linked cluster method proposes a system-
atic way of computing these quantities in the thermodynamic limit, and is given by the
set of n-rooted graphs with connectivity properties depending on the variable of study.
We believe that these can be extended to the polymer linked cluster in a straightfor-
ward manner, and should prove immediately beneficial to our continued efforts in the
Frankfurt lattice group.

Other projects using the same formalism have already been initiated in our working
group, for instance the study of isospin chemical potential. This was already explored
with the O(κ4) effective theory action in [Langelage et al., 2014] using numerical meth-
ods. It can be extended to the realm of analytics by applying the methods outlined in
this thesis. Another project also in progress is the evaluation of the canonical partition
function constructed through Fourier transforming the effective theory grand canoni-
cal partition function. This could provide an additional extraction point for the nucleon
binding energy, which remains a future goal. It could also help illuminate the question
of the nature of our continuum physics.

In addition to all of this, we have seen that resummation schemes, as well as system-
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Research Perspectives

atic improvement of the theory are more important than order by order results. Effort
should therefore be put towards the development of these methods. This includes apply-
ing the cluster expansion resummation strategy, and looking to it for inspiration when
devising resummation formulas on the level of the effective action. Recursive improve-
ment patterns, such as coarse graining techniques, are also of great interest. Finally, we
have based the study on an unimproved Wilson fermion action. Order a improvement
schemes are therefore massively helpful in reducing continuum extrapolation errors.
All in all, we conclude that the powerful approaches described in this thesis are very

promising, and are currently being adopted by other groups, showing a broad interest
and faith in the approach [Scior and von Smekal, 2015, 2016; Rindlisbacher and de For-
crand, 2016].
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A
Analytical Tools For SU(N)

The analytic computations contained herein revolve around various SU(N) dependent
quantities, andwe therefore need a basis for computing these. In this appendixwe look at
how to compute all the necessary components such as the Haar measure in section A.1,
the character integrals in section A.2, integrals over group polynomials in section A.3
and finally the fermionic functions of the effective theory in sections A.4, and A.5.

A.1 Computing the Haar measure
Our first goal is to obtain the invariant group measure of a group element expressed in
terms of its spectral decomposition. Any matrix representation of an U(N) matrix has
unitary eigenvalues λi = eiθi only, where

∑
i θi = 0 mod 2π for the elements of SU(N).

We write a matrix U that is a representation of U(N) in its decomposed form

U =WΛW†, (A.1)

where Λ = diag(eiθ1 , ..., eiθn), andWW† = 1R. A change in U is therefore

dU =WdΛW† +W
[
W†dW,Λ

]
W†. (A.2)

Using the standard unitary matrix metric, ||M||2 = tr(M†M), the size of an infinitesimal
square in this coordinate space is

ds2 = tr(dU†dU) =
∑
i

dθ2i + 2
∑
i>j

∣∣eiθi − eiθj∣∣2∣∣(W†dW)ij
∣∣2. (A.3)

Since one identifies the set of coordinates to the metric through ds2 = gµνdξ
µdξν, it is

natural to construct the measure as

dU(x) =
√

detg(x)
∏
µ

dξµ. (A.4)

To reconcile these two formulae we use the Baker-Campbell-Hausdorff formula to ex-
pressW†dW in terms of the generators of U(dR)

(W†dW)ij = i(Ta)ijfab(w)dwb ≡ Qijk(w)dwk (A.5)
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with f being some function of the parameters of the generator decomposition. The gen-
eral coordinates will thus be a combination of the eigenvalue angles θi and the param-
eters wi. The determinant of the metric factorise into parts dependent on these coordi-
nates, and we get

detg(x) ∼
(
detQ(w)

)2∏
i>j

∣∣eiθi − eiθj∣∣4. (A.6)

Since we are concerned with the integrals over the eigenvalues only, one can integrate
out the wi, and get the invariant measure

dU =
∏
i>j

∣∣eiθi − eiθj∣∣2
H(U)

∏
i

dθi, (A.7)

where we have identified the Haarmeasure,H(U). Although this relation is only true for
U(N), it can be trivially extended to SU(N) through the previously mentioned restriction,∑
i θi = 0 mod 2π.
The Vandermonde determinant is introduced to facilitate the calculation of the Haar

measure

∏
i>j

(zi − zj) = detM =

∣∣∣∣∣∣∣∣∣
1 z1 · · · zN−1

1

1 z2 · · · zN−1
2

... ... . . . ...
1 zN · · · zN−1

N

∣∣∣∣∣∣∣∣∣ , (A.8)

which can be used to rewrite the Haar measure

H(U) =
∏
i>j

∣∣zi−zj∣∣2 = detM†M =

∣∣∣∣∣∣∣∣∣
N

∑
i zi

∑
i z

2
i · · ·

∑
i z
N−1
i∑

i z
†
i N

∑
i zi · · ·

∑
i z
N−2
i... ... ... . . . ...∑

i z
†N−1
i

∑
i z

†N−2
i

∑
i z

†N−3
i · · · N

∣∣∣∣∣∣∣∣∣. (A.9)

The fundamental representation of SU(N) hasN−1 independent eigenvalues. We know
that ∑

i

zmi = trUm ≡ χm, (A.10)

correspond to them’th powered character. One can therefore use the Cayley-Hamilton
theorem to determine how these angles depend on each other. The Cayley-Hamilton
equation reads

MN + cN−1M
N−1 + · · ·+ c1M+ (−1)N detM 1R = 0, (A.11)

where the coefficients can be computed recursively using the Faddeev-LeVerrier algorithm

cN−m = −
1

m

m∑
k=1

cN−m+k tr(M
k). (A.12)

The first and last coefficient are cN = 1 and c1 = (−1)N detM, as can be inferred from
eq (A.11).
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A.2. χrχs integrals

Using the defining properties of SU(N), detU = 1 and U†U = 1, we can multiply
eq (A.11) with powers ofU† and trace the equation to find relations between the different
fundamental characters, and thus reduce the number of unknowns in the Haar measure.

For instance, for SU(3), χ2 = χ2 − 2χ∗, giving

H(U) =

∣∣∣∣∣∣
3 χ χ2 − 2χ∗

χ∗ 3 χ

χ∗2 − 2χ χ∗ 3

∣∣∣∣∣∣ = 27− 18 |χ|2 + 8Reχ3 − |χ|4. (A.13)

A.2 χrχs integrals
A specific set of integrals we encounter often are integrals of the form

Inm =

∫
dUχ(U)nχ(U†)m. (A.14)

These can be most easily calculated through their trigonometric decomposition. Using

χ(U) =
∑N

α=1e
iθα

χ(U†) =
∑N

α=1e
−iθα

∑N

α=1θα = 0 mod 2π, (A.15)

eq (A.14) yields

Inm =

∫ [
dθ
]
i
H(U)δ

(∑
θi = 0

)∑
{ni}

∑
{mi}

n∏
k=1

m∏
l=1

kl

nk!ml!
einkθk−imlθl , (A.16)

with sums over integer partitions so that

N∑
i=1

(n,m)i = (n,m). (A.17)

As the pure phase integrals give∫π
−π

dαeinα = δ(n), for n ∈ Z , (A.18)

only combinations where the exponential’s arguments cancel will give a non-zero con-
tribution, and calculating the integral reduces to finding these combinations.

A.2.1 Integrals over characters of SU(3)

As this is not a problem that is solvable in general, we specialise to the group SU(3). In
this case we only have two free angles, which we label θ and ϕ. The full integral is

Inm =

∫
dθdϕH(θ,ϕ)

(
eiθ + eiϕ + e−i(θ+ϕ)

)n(
e−iθ + e−iϕ + ei(θ+ϕ)

)m
=

∫
dθdϕH(θ,ϕ)

∑
{li}

∑
{ki}

n!

l1!l2!l3!

m!

k1!k2!k3!
eiθ(l1−l3−k1+k3)+iϕ(l2−l3−k2+k3). (A.19)
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Ĩnm 1 χχ∗ (χχ∗)2 (χχ∗)3 (χχ∗)4 (χχ∗)5 (χχ∗)6

1 1 1 2 6 23 103 513
χ3 1 3 11 47 225 1 173 6529
χ6 5 21 98 498 2 709 15 565 93 500
χ9 42 210 1 122 6 336 37 466 230 230 1 461 330
χ12 462 2 574 15 015 91 091 571 428 3 688 932 24 410 334
χ15 6 006 36 036 223 652 1 429 428 9 372 168 62 833 836 429 568 036

Table A.1.: Some integrals over the characters of SU(3) where the integrand is made up of
the product of the topmost row with the leftmost column. All other integrals
are zero due to the selection rule of eq (A.35).

We define the measure-less integral Jnm =
∫
[dθ]i χ

nχ∗m, which is

Jnm = (2π)2
∑
{li}

∑
{ki}

n!

l1!l2!l3!

m!

k1!k2!k3!
δ
(
l1− l3−k1+k3

)
δ
(
l2− l3−k2+k3

)
. (A.20)

Carrying out the explicit sums over four variables yields

Jnm = (2π)2
n∑
l=0

m∑
k=0

n!

l! (k+ n−m
3

)! (2n+m
3

− l− k)!

m!

k! (l+ m−n
3

)! (2m+n
3

− l− k)!

(A.21)
where the remaining variables l and k are restricted by the requirement that the factorials
all have non-negative arguments. Since the Haar measure itself is expressed in terms of
the characters, we see from eq (A.13) that

In,m = 27 Jn,m − 18 Jn+1,m+1 + 4 Jn+3,m + 4 Jn,m+3 − Jn+2,m+2. (A.22)

It is easy to see that Jnm is symmetric in its indices, Jnm = Jmn, and by extension,
so it Inm. We introduce the normalised integral, Ĩnm = Inm/I00, the value of some
of which are listed in table A.1. Analysing the sequences one notices that they have
deep combinatorial connections [OEIS, 2011]. For instance, the first row of this table is
the sequence of permutations of Sn with longest increasing subsequence length <= 3
(A005802). The first column of the table on the other hand corresponds to the 3 dimen-
sional Catalan numbers (A005789). A more thorough review of the combinatorics of
SU(3) can be found in [Unger, 2014].

A.2.2 Characters of plaquettes

Another set of integrals that appears often, are those of characters over plaquettes shar-
ing a common link, such as the ones in section 4.3. These integrals are of the form

Frnm(V ,W) =

∫
dUχr(VU)

nχr(WU
†)m. (A.23)

In [Bars and Green, 1979] the authors introduced a recursive formula to evaluate the
diagonal integrals of this form in the fundamental representation of U(N), namely the
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A.3. gn(g−1)m integrals

integrals Ffnn(V ,V†). The procedure is as follows. First one introduces a new integral

Gn({Vi}) =

∫
dU χf(V1U) · · ·χf(VnU)χf(V†

1U
†) · · ·χf(V†

nU
†), (A.24)

and verifies that by using the special form (An)kl = δikδlq, (A†
n)kl = δqkδlj for some

of the integers i, j,q, the final factors of G simplify when summing over k∑
kGn({Vi}) = δijGn−1({Vi}

′). (A.25)

Due to the properties of the integrand of G, it has to be U(N) × U(N) invariant, and we
can therefore decompose any G into its invariant combinations. For instance, the two
lowest orders yield

G1(A1) =

∫
dU χf(A1U)χf(A

†
1U

†) = C1 χf(A1A
†
1), (A.26)

G2(A1,A2) =

∫
dU χf(A1U)χf(A2U)χf(A

†
1U

†)χf(A
†
2U

†)

= C1

(
χf(A1A

†
1)χf(A2A

†
2) + χf(A1A

†
2)χf(A2A

†
1)
)

+ C2

(
χf(A1A

†
1A2A

†
2) + χf(A1A

†
2A2A

†
1)
)
. (A.27)

One then inserts the special form forAn on the left and right hand side of the equations
and systematically determine the unknown parameters Ci.

A.3 gn(g−1)m integrals
In this section we present a method of computing integrals over matrix representations
of the SU(N) members, namely integrals of the form eq (2.25)

I
k1,l1,...,km,lm
i1,j1,...,in,jn

=

∫
dUUi1j1 · · ·UinjnU

†
k1l1

· · ·U†
kmlm

. (A.28)

Although there are multiple ways to approach this, we will closely follow the paper of
Creutz [1978a; 1978b]. First we introduce the generating functional

W(J,K) =

∫
dU exp

(
tr
(
JU+ KU†)) (A.29)

noting that we can use it to reexpress I

I
k1,l1,...,km,lm
i1,j1,...,in,jn

=

(
δ

δJi1j1
· · · δ

δJinjn

δ

δKk1l1
· · · δ

δKkmlm

)
W(J,K)

∣∣∣∣
J=K=0

. (A.30)

We then use the cofactor expansion of U† to remove the dependence on K

U
†
ij =

1

detU

(
cof UT

)
ij

=
1

(N− 1)!
ϵj,i1,...,iN−1

ϵi,j1,...,jN−1
Ui1j1 · · ·UiN−1jN−1

. (A.31)
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where we have introduced the completely anti-symmetric tensors ϵ. We factor out the
dependence on K of the generating functional

W(J,K) = exp

(
tr
(
K cof

δ

δJ

))∫
dU exp

(
tr(JU)

)
W(J)

. (A.32)

Using a determinant expansion ofW(J), which is allowed due to the fact thatW(VUW) =
W(U) for arbitrary matricesW,V ∈ SU(3) [Creutz, 1978a], we finally obtain

W(J) =

∞∑
i=0

2! · · · (N− 1)!

i! · · · (i+N− 1)!

(
det J

)i
. (A.33)

Although this expression is a little unwieldy, we immediately see a selection rule for the
integrals. Using the fact that the determinant of an N × N matrix is a polynomial of
N’th power of its elements

detM =
1

N!
ϵi1,...,iNϵj1,...,jNMi1j1 · · ·MiNjN , (A.34)

only factors of N’th power derivatives of W will survive when we set J = 0. Since the
cofactor is a N− 1’th power polynomial we get the selection rule∫

dUUnU†m ̸= 0 ⇐⇒ n+ (N− 1)m = 0 (mod N). (A.35)

Finally, we compute the most used integral of this thesis

Iklij =

∫
dUUijU

†
kl

=
1

(N− 1)!
ϵl,i1,...,iN−1

ϵk,j1,...,jN−1

∫
dUUijUi1j1 · · ·UiN−1jN−1

=
1

(N− 1)!
ϵl,i1,...,iN−1

ϵk,j1,...,jN−1

(
δ

δJij

δ

δJi1j1
· · · δ

δJiN−1jN−1

)
W(J)

∣∣∣∣
J=0

=
1

N!(N− 1)!
ϵl,i1,...,iN−1

ϵk,j1,...,jN−1
ϵi,i1,...,iN−1

ϵj,j1,...,jN−1

=
1

N!(N− 1)!
(N− 1)! δil (N− 1)! δjk =

1

N
δilδjk. (A.36)

A.4 Static determinant
With the measure and various link integrals at hand, it is time we approach the two
fundamental fermionic quantities of the effective theory, namely the static determinant
and one-site interactive loop terms. The latter we will cover in the next section, and we
will focus on the static determinant here, namely

detQstat =
∏
x⃗

det(1+ h1W(⃗x))2 det(1+ h̄1W
†(⃗x))2. (A.37)
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SU(N) det(1+ h1W)

1 1+ h1

2 1+ h2
1 + h1χ1

3 1+ h3
1 + h1χ1 +

1
2
h2
1(χ

2
1 − χ2)

4 1+ h4
1 + h1χ1 +

1
2
h2
1(χ

2
1 − χ2) +

1
6
h3
1(χ

3
1 − 3χ1χ2 + 2χ3)

5
1+ h5

1 + h1χ1 +
1
2
h2
1(χ

2
1 − χ2) +

1
6
h3
1(χ

3
1 − 3χ1χ2 + 2χ3)

+ 1
24
h4
1(χ

4
1 − 6χ21χ2 + 3χ22 + 8χ1χ3 − 6χ4)

Table A.2.: Static determinants calculated in various groups SU(N) with the independent
characters χi = tr(Ui).

Since these factors are all independent quantities, we can focus on determining a single
determinant det(1 + h1W), restricting ourselves to W ∈ SU(N) for the current study.
The determinant can be rewritten using the trace log identity together with the Mercator
series, giving

det(1+ h1W) =

N∑
n=0

∑
{ki}n

N∏
l=1

(−1)(l+1)kl

lklkl!
h
lkl
1 tr(Wl)kl , (A.38)

with indices {ki}n summed over a range bounded by the equations∑N

i=1 ki = n, and
∑N

i=1 iki ⩽ N. (A.39)

The highest power term of the Mercator series is fixed by the fact that detW = 1, and
we can thus reduce it out of the problem using the Cayley-Hamilton equation (A.11).
The static determinants of groups SU(1 5) are listed in table A.2.

A.5 Wnm terms

The last group dependent quantity of interest is the effective theory nodes, which have
the form

Wnm = tr
(h1W)m

(1+ h1W)n
, (A.40)

and need to be rewritten in terms of the characters. There aremultiple ways toworkwith
these quantities. First of all, they can be studied directly though their series expansion

Wnm = tr
(
(h1W)m

∞∑
k=0

(
k+ n− 1

k

)
(−h1W)k

)
(A.41)

which is useful for some particular identities. Alternately one can rewrite it in terms of
its independent factors

Wnm =

N−1∑
i=0

ai trW
i, (A.42)
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then use a combination of its series expansion and the Cayley-Hamilton theorem to ma-
nipulate the expression and solve for ai. Finally, one can construct a generating func-
tional to convert between the different variables. One such functional can conveniently
be constructed using the expression for the static determinant

G(α,β) = log det(α+ βh1W), (A.43)

from which
Wnm =

(−1)n−1

(n− 1)!

∂(n−m)

∂α(n−m)

∂m

∂βm
G(α,β)

∣∣∣∣
α=β=1

. (A.44)

The generating functional can in turn be calculated with the methods outlined in the
previous sections.
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B
Additional analytic results

In this chapter we summarise all additional analytic results which are either too lengthy,
or do not fit in the main text.

B.1 Non graphical O(κ8) effective action

The effective action to O(κ8N−1
t )

Seff = S0 + S2 + S4 + S6 + S8 + O
(
κ10,

1

Nτ

)
(B.1)

S0 = −
∑
x

log detQstat(x), (B.2)

S2 = h2Nf
∑
x

∑
i

W1,1(x)W1,1(x+ i), (B.3)

S4 =− h2
2Nf

∑
x

∑
i,j

W2,1(x)W1,1(x+ i)W1,1(x+ j)

− h2
2N

2
f

∑
x

∑
i

W2,1(x)W2,1(x+ i), (B.4)

S6 = +
1

3
h3
2Nf

∑
x

∑
i,j,k

[
W3,1(x) −W3,2(x)

]
W1,1(x+ i)W1,1(x+ j)W1,1(x+ k)

+h3
2Nf

∑
x

∑
i,j,k

W2,1(x)W2,1(x+ i)W1,1(x+ i+ j)W1,1(x+ k)

+2h3
2N

2
f

∑
x

∑
i,j

[
W3,1(x) −W3,2(x)

]
W2,1(x+ i)W1,1(x+ j)

+
1

6
h3
2Nf

∑
x

∑
i

[
W3,1(x)W3,1(x+ i) +W3,2(x)W3,2(x+ i)

]
−
4

3
h3
2N

3
f

∑
x

∑
i

W3,1(x)W3,2(x+ i), (B.5)
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S8 = +
1

12
h4
2Nf

∑
x

∑
i,j,k,l

[
W4,1(x) − 4W4,2(x) +W4,3(x)

]
W1,1(x+ i)W1,1(x+ j)

×W1,1(x+ k)W1,1(x+ l)

+h4
2Nf

∑
x

∑
i,j,k,l

[
W3,1(x) −W3,2(x)

]
W2,1(x+ i)W1,1(x+ i+ j)

×W1,1(x+ k)W1,1(x+ l)

+h4
2Nf

∑
x

∑
i,j,k,l

W2,1(x)W2,1(x+ i)W2,1(x+ j)

×W1,1(x+ i+ k)W1,1(x+ j+ l)

+h4
2N

2
f

∑
x

∑
i,j,k

[
W4,1(x) − 4W4,2(x) +W4,3(x)

]
W2,1(x+ i)

×W1,1(x+ j)W1,1(x+ k)

+h4
2N

2
f

∑
x

∑
i,j,k

[
W3,1(x)W3,1(x+ i) − 2W3,1(x)W3,2(x+ i) +W3,2(x)W3,2(x+ i)

]
×W1,1(x+ j)W1,1(x+ i+ k)

+2h4
2N

2
f

∑
x

∑
i,j,k

[
W3,1(x) −W3,2(x)

]
W2,1(x+ i)W2,1(x+ j)W1,1(x+ j+ k)

+h4
2N

2
f

∑
x

∑
i,j

W2,1(x)W2,1(x)W2,1(x+ i)W2,1(x+ j)

+
1

2
h4
2N

2
f

∑
x

∑
i,j

W2,1(x)W2,1(x+ i)W2,1(x+ j)W2,1(x+ i+ j)

+
1

3
h4
2Nf

∑
x

∑
i,j

[
W4,1(x)W3,1(x+ i) − 2W4,2(x)W3,1(x+ i) + 2W4,2(x)W3,2(x+ i)

−W4,3(x)W3,2(x+ i)
]
W1,1(x+ j)

−
4

3
h4
2N

3
f

∑
x

∑
i,j

[
2W4,2(x)W3,1(x+ i) −W4,3(x)W3,1(x+ i) +W4,1(x)W3,2(x+ i)

− 2W4,2(x)W3,2(x+ i)
]
W1,1(x+ j)

+
1

12
h4
2Nf

∑
x

∑
i,j

[
W4,1(x) − 4W4,2(x) +W4,3(x)

]
W2,1(x+ i)W2,1(x+ j)

+
2

3
h4
2N

3
f

∑
x

∑
i,j

[
W4,1(x) − 4W4,2(x) +W4,3(x)

]
W2,1(x+ i)W2,1(x+ j)

+
1

12
h4
2N

2
f

∑
x

∑
i

[
W4,1(x)W4,1(x+ i) + 12W4,2(x)W4,2(x+ i)

+W4,3(x)W4,3(x+ i)
]

+
2

3
h4
2N

4
f

∑
x

∑
i

[
W4,1(x)W4,3(x+ i) + 2W4,2(x)W4,2(x+ i)

]
−
2

3
h4
2N

2
f

∑
x

∑
i

[
W4,1(x)W4,2(x+ i) +W4,2(x)W4,3(x+ i)

]
. (B.6)

The sums over the spatial indices {i, j,k, l} are over all spatial directions. At the leading
order in temperature all gauge corrections come from rescaling the coupling constants
h1 and h2. Away from the low temperature limits new gauge corrections will appear as
was demonstrated in section 4.8.3.
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B.2 Integrated LCE n-point functions

Below are all z-functions needed for the analytical calculation of the O(κ8) action; eval-
uated with Nc = 3 and Nf = 2. The definition of the z-functions is found in eq (5.21).
The integrals can be computed with the methods outlined in appendix A,

z0 = 1+ 20h3
1 + 50h6

1 + 20h9
1 + h

12
1 , (B.7a)

z(11) = 15h3
1 + 75h6

1 + 45h9
1 + 3h12

1 , (B.7b)
z(21) = 21h3

1 + 70h6
1 + 21h9

1, (B.7c)
z(31) = 28h3

1 + 35h6
1 − 7h9

1, (B.7d)
z(32) = −7h3

1 + 35h6
1 + 28h9

1, (B.7e)
z(41) = 36h3

1 − 40h6
1 + h

9
1, (B.7f)

z(42) = −8h3
1 + 75h6

1 − 8h9
1, (B.7g)

z(43) = h3
1 − 40h6

1 + 36h9
1, (B.7h)

z(11)2 = 6h3
1 + 95h6

1 + 96h9
1 + 9h12

1 , (B.7i)
z(11)(21) = 7h3

1 + 105h6
1 + 56h9

1, (B.7j)
z(11)(31) = 8h3

1 + 100h6
1 − 20h9

1, (B.7k)
z(11)(32) = −h3

1 + 5h6
1 + 76h9

1, (B.7l)
z(11)3 = h3

1 + 90h6
1 + 188h9

1 + 27h12
1 , (B.7m)

z(21)2 = 8h3
1 + 135h6

1 + 8h9
1, (B.7n)

z(11)2(21) = h
3
1 + 100h6

1 + 148h9
1, (B.7o)

z(11)4 = 60h6
1 + 312h9

1 + 81h12
1 . (B.7p)

B.3 Higher order z-functions

So far we have only encountered z-functions of order ⩽ 2Nf. This has the advantage
that the resulting integrals over the characters enter only in polynomial form. This is
due to the fact that theWnm term is

Wnm =
wnm

det n(1+ h1W)
(B.8)

wherewnm is a polynomial in the characters. As the denominator enters to power 2Nf
in the integrand from the static determinant, the resulting integral only has polynomials
of the characters, which we saw how to solve in appendix A.2. For higher orders, an
expansion is needed. The simplest option is to expand the expression forWnm directly

Wnm = tr

(
(h1W)m

(1+ h1W)n

)
= tr

(
(h1W)m

∞∑
k=0

(
k+ n− 1

k

)
(−h1W)k

)
(B.9)

In this case the expression is a series in W, and the higher powers of the W matrices
have to be rewritten to lower order ones using the Cayley-Hamilton equation. A direct
computation of z(11)5 has been carried out as an example, and the order by order results
are compared to the full result in figure B.1 (left).
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Figure B.1.: Expansions schemes for the higher order z-functions atNf = 2. Left: Direct
expansion in theW matrices. Right: Reshuffling of the expansion to a series
in h1.

Unfortunately, the convergence of this series is particularly slow, and will for any
finite order diverge from the correct result at h1 = 1. To amend this, one can shuffle the
expansion either into a series in the full characters by including the lower orders from
the static determinant, or one can reorder it into a pure expansion in h1, also here taking
the already existing orders of the static determinant into account. The latter choice is
plotted in figure B.1 (right), where the improved convergence is clearly visible. At 12th
order the expression is almost exact, and it reaches the full result at 15th order. Above
this order the remainder of the series’ coefficients are all zero.
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