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Abstract

Many experiments have suggested that the brain operates close to a critical state, based on

signatures of criticality such as power-law distributed neuronal avalanches. In neural net-

work models, criticality is a dynamical state that maximizes information processing capaci-

ties, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a

favorable candidate state for brain function. Although models that self-organize towards a

critical state have been proposed, the relation between criticality signatures and learning is

still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural

network (SORN). Investigating criticality in the SORN is of particular interest because it has

not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-

temporal pattern learning through a combination of neural plasticity mechanisms and it

reproduces a number of biological findings on neural variability and the statistics and fluctua-

tions of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-

organizes into a dynamical state that shows criticality signatures comparable to those found

in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but

not to maintain it. Furthermore, onset of external input transiently changes the slope of the

avalanche distributions – matching recent experimental findings. Interestingly, the mem-

brane noise level necessary for the occurrence of the criticality signatures reduces the mod-

el’s performance in simple learning tasks. Overall, our work shows that the biologically

inspired plasticity and homeostasis mechanisms responsible for the SORN’s spatio-tempo-

ral learning abilities can give rise to criticality signatures in its activity when driven by random

input, but these break down under the structured input of short repeating sequences.

Introduction

A popular hypothesis states that neural circuits operate near a second order phase transition, a

so called critical point [1, 2]. A critical state has also been argued to possess maximal informa-

tion processing aspects including computational performance during classification tasks [3],
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dynamical range [4], information transmission and storage capacity [5, 6]. In order to always

operate near this state, however, neural circuits should self-organize to adapt to a great variety

of inputs while still maintaining all those properties. Although this precise adaptation was

argued to be the result of constant plasticity action [7–10] or dynamic neuronal gains [11], the

principles dominating the self-organization in the brain are still not clearly understood.

Typically, experiments in brain circuits look indirectly for a phase transition state by assess-

ing criticality signatures. These signatures are approximate power-law distributions of the

sizes and durations of neuronal avalanches, i.e. spatio-temporal clusters of spikes or other suit-

ably defined “events”. Power-laws have been found in networks in vitro [1, 12–14], and in

anaesthetized animals [15]. For awake mammals, criticality signatures were found for coarse

measures like local field potentials (LFP), while spiking activity resembles a subcritical regime

[16–19]. Last, large scale fMRI measurements also support the criticality hypothesis [20] and

links between supercriticality and epileptic seizures in humans have been proposed [21].

From a theoretical perspective, many computational models have studied how neural net-

works can be tuned towards and away from criticality and how they are able to maintain it

over time [7, 8, 22–30]. For example, deterministic networks combining short-term and long-

term plasticity have been shown to have power-law distributed avalanches [9]. Typically, previ-

ous studies either described how models are tuned to criticality by plasticity rules or they

investigated information processing properties of critical networks. Whether the plasticity

mechanisms responsible for spatio-temporal learning also can tune a network to criticality

remains an open question [31].

Here we addressed the following question: can a neural network driven by a combination

of plasticity mechanisms that allow a network to learn patterns show signatures of criticality?

In order to investigate network self-organization towards a regime showing stable criticality

signatures, we have chosen a Self-Organizing Recurrent Neural Network, or SORN. The origi-

nal SORN [32] is a network of excitatory and inhibitory binary neurons combining spike-tim-

ing dependent plasticity (STDP), with homeostatic regulation of firing thresholds and synaptic

normalization. This model has been shown to possess sequence and spatio-temporal learning

abilities [32, 33]. Furthermore, it has recently been used to explain a wide range of findings on

spontaneous brain activity, the variability of neural responses, and the relationship between

the two [34]. Beyond this, a variant of the SORN including a form of structural plasticity (SP)

has been shown to reproduce the distribution and fluctuation patterns of synaptic efficacies

observed in cortex and hippocampus [35] while being capable of learning an artificial gram-

mar [36]. This model has also been demonstrated to exhibit the spontaneous formation of syn-

fire chains [37] and a novel deferred chaos effect [38]. Additionally, a model from the SORN

family with leaky integrate-and-fire neurons, LIF-SORN, has also been demonstrated to repro-

duce non-random features of cortical synaptic wiring via the interaction of the different plas-

ticity mechanisms [39].

Here, we model the original SORN with additional plasticity mechanisms (inhibitory STDP

and SP) [35] and observe power-law distributions for both duration and size of neuronal ava-

lanches, suggesting that the SORN might self-organize into a critical state under specific mem-

brane noise levels. Although this self-organization requires plasticity, we show that plasticity

was not necessary to maintain the criticality signatures in the network’s spontaneous activity.

Furthermore, we find that, while neuronal membrane noise is a requirement for the presence

of the power-laws, external input can drive the network away from the putative critical regime,

matching evidence found in the ex-vivo turtle brain [29]. The description of criticality signa-

tures in the spontaneous activity of a recurrent network model showing learning abilities, and

their break-down under external input, is unprecedented and helps to clarify how self-organi-

zation due to plasticity underlies both phenomena at the same time.

Criticality meets learning
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Methods

Recurrent network model

The model we used belongs to the self-organizing recurrent network (SORN) family of models

[32] and was almost identical to the model introduced in [35], differing slightly in the synaptic

normalization rule: in addition to the normalization of incoming excitatory connections, we

added a separate normalization of incoming inhibitory connections, in agreement with experi-

mental evidence [40]. It is important to point out that both the model in [35] and our SORN

model had three additional features when compared to the original SORN model [32]: the

action of inhibitory spike-timing dependent plasticity (iSTDP), a structural plasticity mecha-

nisms (SP) and the addition of neuronal membrane noise. Those features are described in

detail in the following paragraphs.

Our SORN was composed of a set of threshold neurons divided into NE excitatory and NI

inhibitory units, with NI = 0.2 × NE. The neurons were connected through weighted synapses

Wij (going from unit j to unit i), which were subject to synaptic plasticity. The network allowed

connections between excitatory neurons WEE, from excitatory to inhibitory neurons WIE, and

from inhibitory to excitatory neurons WEI, while connections between inhibitory neurons and

self-connections were absent. Each neuron i had its own threshold, which did not vary with

time for the inhibitory neurons, TI
i , and was subject to homeostatic plasticity for the excitatory

neurons, TE
i ðtÞ.

The state of the network, at each discrete time step t, was given by the binary vectors x(t) 2
{0, 1}NE

and y(t) 2 {0, 1}NI
, corresponding to the activity of excitatory and inhibitory neurons,

respectively. A neuron would fire (“1” state) if the input received during the previous time

step, a combination of recurrent synaptic drive, membrane noise x
E=I
i and external input uExt

i ,

surpassed its threshold. Otherwise it stayed silent (“0” state), as described by:

xiðt þ 1Þ ¼ Y
XNE

j¼1

WEE
ij ðtÞxjðtÞ �

XNI

k¼1

WEI
ik ðtÞykðtÞ þ uExt

i ðtÞ þ x
E
i ðtÞ � TE

i ðtÞ

" #

; ð1Þ

yiðt þ 1Þ ¼ Y
XNE

j¼1

WIE
ij ðtÞxjðtÞ þ x

I
iðtÞ � TI

i

" #

; ð2Þ

in which Θ is the Heaviside step function. Unless stated otherwise, ξ represents the unit’s inde-

pendent Gaussian noise, with mean zero and variance σ2 = 0.05, and was interpreted as neuro-

nal membrane noise due to the extra input from other brain regions not included in this

model. The external input uExt was zero for all neurons, except during the external input exper-

iment and the learning tasks, in which subsets of units received supra-threshold input at spe-

cific time steps. Each time step in the model represented the time scale of STDP action, being

roughly in the 10 to 20 ms range.

The synaptic weights and neuronal thresholds were initialized identically to previous works

[35, 38]: WEE and WEI started as sparse matrices with connection probability of 0.1 and 0.2,

respectively, and WIE was a fixed fully connected matrix. The three matrices were initialized

with synaptic weights drawn from a uniform distribution over the interval [0, 0.1] and normal-

ized separately for incoming excitatory and inhibitory inputs to each neuron. The thresholds

TI and TE were drawn from uniform distributions over the intervals ½0;TI
max� and ½0;TE

max�,

respectively, with TI
max ¼ 1 and TE

max ¼ 0:5. After initialization, the connections and thresholds

evolved according to five plasticity rules, detailed below. It is important to highlight that the
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connectivity between excitatory neurons varied over time due to the action of plasticity on

WEE.

First, excitatory to excitatory connections followed a discrete spike-timing dependent plastic-
ity rule (STDP) [41]:

DWEE
ij ðtÞ ¼ ZSTDP½xiðtÞxjðt � 1Þ � xjðtÞxiðt � 1Þ�: ð3Þ

The rule increased the weight WEE
ij by a fixed small quantity ηSTDP every time neuron i fired

one time step after neuron j. If neuron i fired one step before neuron j, the weight was

decreased by the same amount. Negative and null weights were pruned after every time step.

Second, inhibitory to excitatory connections were subject to a similar rule, the inhibitory

STDP (iSTDP). It played a role in balancing the increase of activity due to STDP and regulat-

ing the overall network activity. Every time an inhibitory neuron j fired one time step before

an excitatory neuron i, the connection WEI
ij , if existent, was increased by ηinh/μIP, in which μIP

represented the desired average target firing rate for the network (given as a parameter to the

model). However, if the synapse was successful (i.e., if neuron j firing kept neuron i silent in

the next time step), WEI
ij was reduced by a bigger value ηinh. These rules could be simply written

as:

DWEI
ij ðtÞ ¼ � Zinhyjðt � 1Þ½1 � xiðtÞð1þ 1=mIPÞ�: ð4Þ

Third, both WEE and WEI were subject to yet another form of plasticity, the synaptic nor-

malization (SN). It adjusted the incoming connections of every neuron in order to limit the

total input a neuron could receive from the rest of the network, thus limiting the maximum

incoming recurrent synaptic signal. This rule did not regulate the relative strengths of the con-

nections (shaped by both STDP and iSTDP), but the total amount of input each neuron

receives. SN could be written as an update equation, applicable to WEE and WEI, and executed

at each time step after all other synaptic plasticity rules:

WijðtÞ  WijðtÞ=
X

j

WijðtÞ: ð5Þ

Fourth, the structural plasticity (SP) added new synapses between unconnected neurons. It

added a random directed connection between two unconnected neurons (at a particular time

step) with a small probability pSP, simulating the creation of new synapses in the cortex. The

probability was set to pSP(NE = 200) = 0.1 for a network of size NE = 200, and pSP scaled with

the square of the network size:

pSPðNEÞ ¼
NEðNE � 1Þ

200� 199
pSPð200Þ ð6Þ

The new synapses were set to a small value ηSP = 0.001, and while most of them were

quickly eliminated due to STDP action in the subsequent time steps, the life-times of active

synapse followed a power-law distribution [35].

Last, an intrinsic plasticity (IP) rule was applied to the excitatory neurons’ thresholds. To

maintain an average firing rate for each neuron, the thresholds adapted at each time step rely-

ing on a homeostatic plasticity rule, keeping a fixed target firing rate HIP for each excitatory

neuron. The target firing rate, unless stated otherwise, was drawn from a normal distribution

HIP � N ðmIP; s
2
IPÞ. However, for simplicity, it could be set to the network average firing rate

μIP, thus being equal for all neurons [35]. We set μIP = 0.1 and s2
IP ¼ 0, or equivalently, 10% of

active excitatory neurons (on average) fire per time step. Assuming one time step equals 10 to
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20 ms, these constants resulted in an average firing rate in the 5 − 10 Hz range.

DTE
i ¼ ZIP½xiðtÞ � mIP�: ð7Þ

Unless stated otherwise, all simulations were performed with the learning rates from [35]:

ηSTDP = 0.004, ηinh = 0.001 and ηIP = 0.01.

Phases of network development

As observed before [35], the spontaneous activity of the SORN showed three different self-

organization phases regarding the number of active excitatory to excitatory synapses when

driven only by Gaussian noise (Fig 1A). After being randomly initialized, the number of active

connections fell quickly during the first 105 time steps (the decay phase) before slowly increas-

ing (growth phase) until stabilizing after around two million time steps (stable phase), where

only minor fluctuations are present. In order to avoid possible transient effects, we concen-

trated our analyses only on the stable phase, discarding the first 2 × 106 time steps. In this

sense, we measured neuronal avalanches in the regime into which the SORN self-organizes

driven only by membrane noise and its own plasticity mechanisms.

Neuronal avalanches definition via activity threshold

It is important to highlight that the SORN is fundamentally different from classical self-orga-

nizing critical models such as the Bak-Tang-Wiesenfeld Sandpile model [42] or branching pro-

cesses regarding the lack of separation of time scales, i.e. no pause is implemented between any

two avalanches [43] (see also the discussion in [18]). Importantly, such a separation of time

scales also does not apply to neural activity in vivo. Each SORN neuron could receive input

from other neurons, the noisy drive ξ, and an additional input (during the extra input experi-

ment), all of which occurred at every time step.

Motivated by those fundamental differences, a distinct definition of neuronal avalanches

based on thresholding the neural activity has been used in a previous model [25]. Similarly, we

Fig 1. SORN regimes and neuronal avalanches. (A) Fraction of active connections in the SORN, starting from a random connected graph with 0.1 active

connections. It exhibits three self-organization phases: decay, growth, and stable. (B) Activity threshold θ for a typical snapshot of SORN activity a(t) (150 time

steps). Avalanche duration is indicated in blue and avalanche size in shaded red. The neuronal avalanches were measured only during the stable phase.

https://doi.org/10.1371/journal.pone.0178683.g001

Criticality meets learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0178683 May 26, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0178683.g001
https://doi.org/10.1371/journal.pone.0178683


introduced here a threshold θ for the network activity a(t):

aðtÞ ¼
XNE

i¼0

xiðtÞ ð8Þ

In more detail, a constant background activity θ was subtracted from a(t) for all time steps

t, allowing for frequent silent periods and neuronal avalanches’ measurements. θ was set to

half of the mean network activity ha(t)i, which by definition is ha(t)i = μIP = 0.1. For simplicity,

θ was rounded to the nearest integer, as a(t) can only assume integer values. Each neuronal

avalanche could be described by two parameters: its duration T and size S. An avalanche

started when the network activity went above θ, and T was the number of subsequent time

steps during which the activity remained above θ. S was the sum of spikes exceeding the

threshold at each time step during the avalanche (Fig 1B, red area). More specifically, for an

avalanche starting at the time step t0, S was given by:

S ¼
Xt0þT

t¼t0

ðaðtÞ � yÞ ð9Þ

As the activity included all the network’s neurons, subsampling effects [19, 44, 45] could be

ruled out. Furthermore, as the target firing rate was HIP = 0.1, 10% of the excitatory neurons

were active, on average, at every time step, which made quiescent periods a rare occurrence.

External input

In order to study the effects of external input on the SORN self-organization, we chose an

adapted version of a condition previously designed to investigate neural variability and sponta-

neous activity in the SORN [32, 34]. The condition consisted of presenting randomly chosen

“letters” repeatedly to the network (i.e., at each time step, a random “letter” was chosen with

equal probability and presented to the network). In our case, we chose a total of 10 different

letters. Each letter gave extra input to a randomly chosen, non-exclusive subset of UE = 0.02 ×
NE excitatory neurons, closely following a previous probabilistic network model [29]. The sub-

sets corresponding to each letter were fixed at the beginning and kept identical until the end of

each simulation. Neurons which did not receive any input had uExt
i ðtÞ ¼ 0 for all t, while neu-

rons matched with a specific letter received a large additional external input uExt
i ðtÞ ¼ 107 at

the time step in which the letter was presented, making sure that the neuron spiked.

We followed the approach introduced in a previous experimental procedure in the turtle

visual cortex [29]: the SORN was initially simulated up until the stable phase (2 × 106 time

steps), when external input was turned on and neuronal avalanches were measured during a

transient period and after readaptation. A single neuronal avalanche was considered part of

the transient period if it started during the first 10 time steps after external input onset.

According to our time step definition due to STDP action, this transient window was roughly

in the 100 − 200 ms range, approximately the same time window employed for the experimen-

tal data [29]. After the transient period, neuronal avalanches were again measured for 2 × 106

time steps after readaptation.

Learning tasks

We analyzed the network performance and the occurrence of the aforementioned criticality

signatures in two simple learning tasks, which allowed us to compare our results to previous

work [32].

Criticality meets learning
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The first task was a Counting Task (CT), introduced in [32], in which a simpler SORN

model (without the iSTDP and SP mechanisms and membrane noise) has been shown to out-

perform static reservoirs. The CT consisted of a random alternation of structured inputs:

sequences of the form “ABBB. . .BC” and “DEEE. . .EF”. Each sequence was shown with equal

probability and contained n + 2 “letters”, with n repetitions of the middle letters “B” or “E”.

Each letter shown to the network represented the activation of a randomly chosen, non-exclu-

sive subset of UE excitatory neurons at the time step in which it was shown.

The second task, which we call Random Sequence Task (RST), consisted also in the repro-

duction of “letters” of a large sequence of size L, initially chosen at random from an “alphabet”

of AS different letters. The same random sequence was repeated during a single simulation, but

different simulations received different random sequences as input. This task definition

allowed not only for the description of the SORN’s learning abilities under a longer, more vari-

able input but also, in the case of large L, for the analysis of criticality signatures under an

approximately random input.

For both tasks, the SORN performance was evaluated as in [32]. Starting from the random

weight initialization, we simulated the network for Tplastic = 5 × 104 time steps with all plasticity

mechanisms active. The performance was evaluated by training a layer of readout neurons for

Ttrain = 5000 time steps in a supervised fashion (using the Moore-Penrose pseudo-inverse

method) and measured the correct prediction of the next input letter. The input at time step t
was predicted based on the network internal state x0(t), calculated similarly to Eq (1), but

ignoring the u(t) input term. The performance was calculated based on a sample of additional

Ttest = 5000 time steps for both tasks. For CT, however, we ignored the first letter of each

sequence during the performance calculation, as the two sequences are randomly alternated.

The additional free parameters included in the simulation of the learning tasks were chosen

based on previous SORN implementations: UE = 0.05 × NE and AS = 10. The membrane noise

was kept as Gaussian noise, with standard deviation σ = 0.05. Additionally, for the CT, we also

looked at the performance in the case of no membrane noise (σ = 0) and of no iSTDP and SP

action, in order to have a direct comparison between this model and the original SORN model

[32].

Power-law fitting and exponents

The characterization of power-law distributions may be affected by large fluctuations, espe-

cially in their tails, which leads to common problems ranging from inaccurate estimates of

exponents to false power-laws [46]. In our model, in order to fit the neuronal avalanche distri-

butions of duration T and size S and calculating their exponents α and τ, respectively:

f ðTÞ � T � a; ð10Þ

f ðSÞ � S� t; ð11Þ

we relied on the powerlaw python package [47]. The package fits different probability distribu-

tions using maximum likelihood estimators. We used exponential binning when plotting the

avalanche distributions, with exponential bin size bs = 0.1 (the measurement of the exponents

did not depend on the particular bin choice). Additionally, even though the left cut-offs of our

data were f(T) = 1 and f(S) = 1, those points were not visible in the plots due to the binning,

which considered the bin centers. We compared different distributions provided by the pack-

age, of which pure power-laws provided the best fit, but for simplicity only pure power-laws

and power-laws with exponential cutoffs are shown in the results (see S1 Table for a compari-

son of parameters). In order to account for finite size effects in the pure power-law fits, the
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exponents for duration α and size τ were estimated between a minimum Xmin and a maximum

Xmax cutoff, with X 2 {T, S}. For the majority of our results (SORN with NE = 200 and NI = 40),

we used the following parameters: Tmin = 6, Tmax = 60, Smin = 10, Smax = 1500, chosen based on

the goodness of the power-law fit. The maximum cutoff was scaled accordingly for bigger net-

works. For the power-law with exponential cutoff, we kept the same Xmin and removed Xmax:

f ðxÞ � x� a�e� b�x: ð12Þ

with α� being the power-law exponent and β� the exponential cut-off.

The ratio between the power-law distributions’ exponents, a� 1

t� 1
is also predicted by renorma-

lization theory to be the exponent of the average size of avalanches with a given duration hSi
(T):

hSiðTÞ � T
a � 1

t � 1:
ð13Þ

This positive power-law relation is obeyed by dynamical systems exhibiting crackling noise

[48] and has been also found in in vitro experiments [13].

Results

As criticality has been widely argued to be present in biological neural systems, we first identi-

fied the presence of its most common signature in a recurrent network shaped by biologically

inspired plasticity mechanisms. We showed that neuronal avalanches with power-law distrib-

uted durations and sizes appear after network self-organization through plasticity.

We then described how synaptic plasticity and units’ membrane noise are necessary for the

emergence of the criticality signatures. In agreement with experimental evidence [29], we also

verified that while random external input can break down the power-laws, subsequent adapta-

tion is able to bring the network back to a regime in which they appear. Last, we showed that

the same power-laws break down under simple structured input of sequence learning tasks.

SORN shows power-law avalanche distributions

We simulated a network of NE = 200 excitatory and NI = 40 inhibitory neurons for 5 × 106

time steps. The neuronal avalanches were measured after the network self-organization into

the stable phase, and the activity threshold θ was fixed as half of the mean activity of the

SORN. Both neuronal avalanche duration T (Fig 2A) and size S (Fig 2B) distributions were

well fitted by power-laws, but for different ranges. For the size, the power-law distribution fit-

ted approximately two orders of magnitude, while the duration is only well fitted for approxi-

mately one before the cut-off. The faster decay observed in the distribution’s tails could not be

fitted by a power-law with exponential cut-offs, and was hypothesized to be the result of finite

size effect. Indeed, with increasing network size the power-law distributions extended over

larger ranges (Fig 2D–2F), and the exponents remained roughly the same (avalanche’s dura-

tion: α� 1.45; avalanche’s size: τ� 1.28). Thus, both for simplicity and for a reduced simula-

tion time, we kept the SORN size constant for the rest of the results (NE = 200, NI = 40).

The expected relation between the scale exponents a� 1

t� 1
from Eq (13) inferred from the

power-law fitting, however, did not match the exponents obtained from the avalanche raw

data (Fig 2C), although the average avalanche size did follow a power-law as a function of ava-

lanche duration, with exponent γdata� 1.3. It is worth noting that, although the predictions

were not compatible, our numerical exponent γdata agreed with the one calculated directly

from experimental data from cortical activity in a previous experimental study [13].
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The activity threshold θ, which defines the start and end of avalanches, should in principle

affect the avalanches’ distributions since the slope of the power-laws might depend on its pre-

cise choice. Small thresholds should increase the avalanches’ duration and size while reducing

the total number of avalanches. Large thresholds are expected to reduce the avalanche dura-

tions and sizes while also reducing the number of avalanches. An adequate threshold θ has

been suggested as half of the network mean activity ha(t)it [25], which we have been using so

far in this work. While different thresholds resulted in different exponents (see S2 Table for

the range of estimated exponents for T and S), power-law scaling was robust for a range of θ
values, roughly between 10% and 25% activity percentiles (Fig 3). This window contained the

previously used half mean activity ha(t)it/2 (roughly 10% activity percentile for a network of

size NE = 200). Therefore, we could verify that the avalanche definition in terms of θ was

indeed robust enough to allow for a clear definition of power-law exponents. The unusual left

cut-off for the avalanche size, observed independently of the threshold value, was arguably a

consequence of our avalanche size definition, Eq (9). In particular, removing the explicit

Fig 2. Power-law distributed neuronal avalanches in the SORN’s stable phase. (A), (B) Normalized distributions of duration T and size S

of neuronal avalanches, respectively, for NE = 200. The raw data points of 50 independent SORN simulations are shown in gray. The power-law

fit is shown in blue/red and the power-law with exponential cut-off fit is shown in black for comparison. (C) Avalanches’ average size hSi(T) as a

function of duration, for simulated data (gray) and theoretical prediction (red). The dashed black line shows a power-law with exponent γ = 1.3,

approximately fitting the raw data from SORN simulations. (D), (E) Scaling of avalanches’ distributions for networks of different sizes. Dashed

lines show the exponents α and τ calculated from pure power-laws for NE = 200 (shown in the top row). (F) Power-law range for networks of

different sizes, obtained by estimating the cut-off point. All distributions show combined data of 50 independent simulations.

https://doi.org/10.1371/journal.pone.0178683.g002

Criticality meets learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0178683 May 26, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0178683.g002
https://doi.org/10.1371/journal.pone.0178683


dependence on θ changed the left cut-off shape, but did not affect the power-laws ranges or

exponents (see S1 Fig for one example of alternative avalanche size definition).

Criticality signatures are not the result of ongoing plasticity

We investigated the role of the network plasticity on the signatures of criticality. The first ques-

tion we asked is whether plasticity is necessary to drive the SORN into a regime where it shows

signatures of criticality, or if they also appear right after random initialization. Thus, we com-

pared our results to a SORN with no plasticity action, which is equivalent to a randomly initial-

ized network. The avalanche distributions observed in the random networks, for both

duration and size, did not show power-laws, as shown in Fig 4A and 4B (red curves), resem-

bling exponential distributions rather than power-laws and indicating that plasticity was

indeed necessary for the self-organization.

After verifying that the combination of plasticity mechanisms was indeed necessary to drive

the network from a randomly initialized state towards a state in which the power-laws appear,

we asked whether this result is purely due to the continued action of such mechanisms. If the

power-laws appear only when plasticity is active, they could be a direct result of the ongoing

plasticity. If the power-laws hold even when all plasticity is turned off after self-organization,

this supports the interpretation that the plasticity mechanisms drive the network structure to a

state where the network naturally exhibits criticality signatures. We compared, therefore, our

previous results with the distributions found for a frozen SORN: a network where all plasticity

mechanisms where turned off after self-organization.

The SORN was simulated up until the stable phase, when the simulation was divided in

two: a normal SORN and the frozen SORN. We used the same random seed for the membrane

noise in both cases (Gaussian noise with mean zero and variance σ2 = 0.05), so that differences

due to noise are avoided. Furthermore, initialization bias could also be ruled out as the

Fig 3. Robustness to choice of activity threshold. (A) Activity distribution function for a SORN with NE = 200. The shaded area shows the

approximate region where the power-laws hold. The activity peak, as expected due to the target firing rate, is 10% of the number of excitatory

neurons. (B) Avalanche size distribution for different activity thresholds θ set as activity percentiles. Although showing different exponents, the

power-laws hold for different thresholds (as seen, for example, for θ set at the 5th or 10th percentiles of the activity distribution). Curves show

combined data from 50 simulations.

https://doi.org/10.1371/journal.pone.0178683.g003
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networks had the same initialization parameters and thus were identical up to the time step

when plasticity was turned off. The frozen SORN resulted in virtually identical power-law dis-

tributions for durations and sizes (Fig 4, top row), and the only significant differences were

observed in their tails. With frozen plasticity, an increase in the number of large avalanches

was observed. This effect can be partly explained by the absence of homeostatic mechanisms

that control network activity in the normal SORN. Likewise, freezing individual mechanisms

(as for example, the IP) did not affect the overall avalanche duration and size distributions

(Fig 4, bottom row, and S2 Fig), indicating that they were not the result of continued action of

any particular plasticity rule from the model.

Fig 4. SORN with frozen plasticity. (A), (B) Distribution of avalanche durations and sizes, respectively, for NE = 200

units, comparing typical SORNs (black), randomly initialized SORNs without plasticity action (red) and SORNs with all

five plasticity mechanisms frozen at the stable phase (cyan). (C), (D) Distribution of avalanche durations and sizes,

respectively, for the same network size, comparing SORNs with frozen IP (red) and frozen STDP, iSTDP, SN and SP

(cyan) at the stable phase. Curves are combined data from 50 independent simulations, and shaded regions show the

effects of variations in the activity threshold (θ between the 5th and 25th percentiles of the activity distribution).

https://doi.org/10.1371/journal.pone.0178683.g004
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Taken together, these results showed that the SORN’s plasticity mechanisms allowed the

network to self-organize into a regime where it showed signatures of criticality. However, the

continued action of the plasticity mechanisms was not required for maintaining these critical-

ity signatures, once the network has self-organized.

Noise level contributes to the maintenance of the power-laws

The standard deviation σ of the membrane noise ξ was one of the model parameters that influ-

enced the SORN’s dynamics. Therefore, our next step was to investigate whether the criticality

signatures depend on the distribution of ξ and its standard deviation σ.

As expected, we found that the avalanche and activity distributions suggested three different

regimes, represented here by three different levels of noise. In the case of high noise levels (σ2

= 5), the neurons behaved as if they were statistically independent, thus breaking down the

power-laws and showing binomial activity centered at the number of neurons expected to fire

at each time step (i.e. the mean of the firing rate distribution HIP). Low noise levels resulted in

a distribution of avalanche sizes resembling a combination of two exponentials, while the

activity occasionally died out completely for periods of a few time steps. A close look at the ras-

ter plots of excitatory neuronal activity (Fig 5E–5G) also revealed that large bursts of activity

only happened at intermediate noise levels, while low noise levels resulted mostly in short

bursts and high noise levels resulted in Poisson-like activity. Therefore, we concluded that,

together with the plasticity mechanisms, the noise level determined the network dynamical

regime. The activity distribution (Fig 5B) supported the hypothesis of a phase transition, as it

went from a binomial distribution for high noise levels to a distribution with faster decay and

maximum near zero for lower noise levels.

To further investigate the contribution of noise to the maintenance of the criticality signa-

tures, we tested if other types of noise could have a similar effect on the network’s dynamic

regime, and how diffused this noise needed to be in order to allow for the appearance of the

power-laws. First, we switched from Gaussian noise to random spikes: each neuron received

input surpassing its threshold with a small probability of spiking ps at each time step. Using ps

as a control parameter in the same way as the Gaussian noise variance, we could reproduce all

the previous findings: three different distribution types and a transition window, in which the

power-law distributions of neuronal avalanches appear (Fig 5C).

Last, we found that limiting the noise action to a subset of units, while keeping all plasticity

mechanisms on, abolishes power laws completely (see S3 Fig). Different subset sizes were com-

pared (10%, 5% and 0% of the excitatory units were continuously active), and the activity

threshold θ was set again to ha(t)it/2, but now excluding the subset of continuously active

units. We concluded that the power-laws require not only a specific noise level, but also noise

distribution across the network units.

Network readaptation after external input onset

We tested whether the onset of external input is able to break down the power-laws we have

measured so far. Experimental evidence suggests a change in power-law slope in the transient

period after onset of an external stimulus [29]. This work proposed that network readaptation

due to short term plasticity brings the criticality signatures back after a transient period, imply-

ing self-organization towards a regime in which power-laws appear.

Our version of external input consisted of random “letters”, each of which activated a subset

of UE excitatory neurons. We compared neuronal avalanche distributions in two different

time periods: directly after external input onset and after network readaptation by plasticity.

The activity threshold θ was kept the same for both time periods.
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The results agreed with the experimental evidence (Fig 6): an external input resulted in flat-

ter power-laws (Fig 6, red curve), in agreement with experimental observations (Fig 1 in [29]).

As in the experiment, we also observed a readaptation towards the power-laws, after a transient

period (Fig 6, cyan curve). Furthermore, the flatter power-laws and the subsequent readapta-

tion also appeared under weaker external inputs (uExt
i � 1). This finding supported the hypoth-

esis that plasticity was responsible for driving the SORN towards a critical regime, even after

transient changes due to external stimulation.

Absence of criticality signatures under structured input in simple learning

tasks

So far, we have observed criticality signatures in the model’s spontaneous activity and activity

when submitted to a random input. We focus now on the activity under structured input of

two learning tasks: a Counting Task (CT) [32] and a Random Sequence Task (RST). For details

on their implementation, see the Learning tasks subsection.

Fig 5. Noise level influences the SORN dynamical regime. Left, top row: avalanches’ size (A) and activity (B) distributions for SORN with different

Gaussian noise levels: low (σ2 = 0.005), intermediate (σ2 = 0.05) and high (σ2 = 5). Very weak or strong noise levels break down the power-laws, suggesting a

different non-critical regime. Left, bottom row: Avalanches’ size (C) and activity (D) distributions for the random spike noise source (see text), showing a

similar effect. Gray dashed lines are binomial distributions (n = NE = 200, p = μIP = 0.1), the theoretical prediction for independent neurons, and shaded areas

show the effects of variations in the activity threshold (θ between the 5th and 25th percentiles of the activity distribution). All curves show combined data of 50

independent simulations. (E), (F), (G) Typical raster plots of excitatory unit activity at low, intermediate and high Gaussian noise levels, respectively, for NE =

200.

https://doi.org/10.1371/journal.pone.0178683.g005
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In the CT, the external structured input consisted of randomly alternated sequences of

“ABBB. . .BC” and “DEEE. . .EF”, with n middle repeated letters. Differently from the former

random external input, these sequences were presented during the whole simulation, one letter

per time step. First, we measured the avalanche distributions for duration and size and verified

that the power-laws did not appear in this case, independently of n (Fig 7A and 7B), although

the distributions appeared smoother and more similar to power-laws for large values of n. This

finding suggested that structured input did not allow for the appearance of the power-laws,

and in this case our plasticity mechanisms could not drive the network towards the supposed

critical regime. Second, we measured the performance of the SORN in the CT by training a

readout layer and calculated its performance in predicting the input letter of the next time

step. We found that our model was capable of maintaining a performance higher than 90%

when the membrane noise was removed (σ = 0), which is consistent with the results obtained

in the original SORN model for the same task [32]. With the addition of membrane noise (σ =

0.05), however, we saw a decay in the overall performance, particularly for long sequences.

In the RST, a different form of external input was used: in the beginning of each simulation,

we defined a random sequence of size L, which would be repeated indefinitely. We observed

that under this type of input the power-laws again did not appear (Fig 7E and 7F), but, as

observed in the CT, longer sequences showed smoother curves. The performance, however,

stayed above *88% for L� 100, demonstrating that our SORN implementation is capable of

learning random sequences.

In summary, both learning tasks highlighted our model’s learning abilities and showed that

the addition of plasticity mechanisms (iSTDP and SP) to the original SORN [32] does not

breakdown its learning abilities. The presence of membrane noise, however, diminished the

overall model performance for the CT. Furthermore, we showed that the structured input of

Fig 6. SORN readaptation under external input. (A), (B) Duration and size distributions, respectively, after external input onset:

transient readaptation period (red) and remaining 2 × 106 time steps (cyan). Before input and Readaptation curves show combined

data from 50 independent simulations. Input onset curves show data from 250 input onset trials, and shaded regions show the

effects of variations in the activity threshold (θ between the 5th and 25th percentiles of the activity distribution).

https://doi.org/10.1371/journal.pone.0178683.g006
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both learning tasks was sufficient to break down the power-law distributions of avalanche size

and duration.

Discussion

The hypothesis of criticality in the brain as discussed here, which states that neural circuits

possess dynamics near a phase transition state, is largely based on experimental measurements

of power-law distributed neuronal avalanches. This hypothesis, however, is still very contro-

versial, in particular because power-law distributions can be generated by a number of other

mechanisms but criticality [43], for example by thresholding activity of certain kinds of sto-

chastic systems or superposition of exponentials [49, 50]. Thus power-law scaling of physical

quantities is not sufficient to demonstrate criticality. For that reason, our avalanche analysis

alone is not sufficient to prove that the SORN self-organizes towards a critical point. Instead,

we highlight that the combination of plasticity mechanisms in the model is sufficient to pro-

duce the same criticality signatures typically observed in experiments, independently of the

question whether these systems are critical or not.

Fig 7. Learning tasks. (A) SORN performance for the Counting Task for sequences of different sizes, with (blue) and without (red) membrane noise. Original

SORN refers to the model without iSTDP, SP and membrane noise, as introduced in [32](B), (C) Duration and size distributions, respectively, during the

Counting Task for different input sequence sizes n (in the presence of membrane noise). (D) SORN performance for the Random Sequence Task for

sequences of different sizes. (E), (F) Duration and size distributions, respectively, during the Random Sequence Task for different input sequence lengths L.

Curves show the average of 50 independent simulations and error bars show the 5%–95% percentile interval.

https://doi.org/10.1371/journal.pone.0178683.g007
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Our results suggest that the combination of biologically inspired Hebbian and homeostatic

plasticity mechanisms is responsible for driving the network towards a state in which power-

law distributed neuronal avalanches appear, but such plasticity action is not required for the

maintenance of this state. The power-law distributions of avalanche durations and sizes in the

SORN’s spontaneous activity replicate a widely observed phenomenon from cultured cortical

networks [1, 13, 51] to awake animals [18, 52, 53]. Notably, the network also reproduces the

short transient period with bigger and longer neuronal avalanches and subsequent readapta-

tion after external input onset, which has been observed in the visual cortex of a turtle brain

[29]. Our results are also in line with previous observations of power-laws in the externally

driven case [54].

Additional previous studies have already identified plasticity mechanisms that tune a net-

work to criticality. For example, networks of spiking neurons with STDP [8, 24] and a model

of anti-Hebbian plasticity [55] showed critical dynamics. The earliest example of self-organiza-

tion towards criticality in plastic neural networks is probably the network by Levina et al., who

made use of dynamical synapses in a network of integrate-and-fire neurons [7, 23]. Further-

more, it is known that networks without plasticity can be fine-tuned to a critical state, where

they show favorable information processing properties, both in deterministic [5, 22, 56] and

stochastic [12, 25, 57] systems, or they can attain states close to criticality, e.g. operate on a

Widom line [27] or a Griffith phase [58]. Those models are very important to describe the

properties of a network already in a critical state. Beyond those results, here we have shown for

the first time criticality signatures arising in a network model designed for sequence learning

via a combination of Hebbian and homeostatic plasticity mechanisms.

The SORN’s criticality signatures, in the form of avalanche distributions, were best fit by

power-laws (see S1 Table). The measured exponents for duration and size, α = 1.45 and τ =

1.28, were both smaller than those expected for random-neighbor networks (2 and 3/2, respec-

tively). This discrepancy may be due to the fact that the SORN has a complex dynamic topol-

ogy that differs from a random network after self-organization. The power-laws typically

spanned one or two orders of magnitude for the durations and sizes, respectively, which is

comparable to experimental data. Before and after the power-law interval, the size distribution

often showed a right and a left cutoff. While the right cutoff typically arises from finite size

effects [59], the left cutoff is not characteristic for classical critical systems such as the branch-

ing network [60], possibly being the result of our avalanche definition based on thresholding

the network activity. However, left cutoffs have been observed for neural avalanche distribu-

tions in cortex (e.g. [18, 29]). Therefore, the SORN avalanche distributions are indeed compat-

ible with experimental ones.

The SORN was initially conceived combining biologically inspired plasticity mechanisms

(STDP, IP and SN) and has been shown to outperform static reservoirs in sequence learning

tasks such as the Counting Task (CT) [32]. We showed that the addition of two other plasticity

mechanisms (iSTDP and SP) [35] not only was able to reproduce the previous results but also

increased the performance on the CT for large sequences. The addition of membrane noise,

however, lowered the overall performance, particularly for bigger sequences in this particular

task. Interestingly, previous work has shown that a SORN model with such addition is capable

of solving a challenging grammar learning task [36]. In our experiments, even though a spe-

cific level of membrane noise led to the appearance of criticality signatures (σ� 0.05), the

same noise level did not increase the model’s learning abilities for simple tasks when compared

to the noise-free case.

While our model showed criticality signatures in its spontaneous activity, the activity under

structured external input when performing learning tasks did not lead to power-law distribu-

tions of avalanche size and duration, arguably driving the network away from a critical regime.
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Despite the computational advantages of critical dynamics in models, subcritical dynamics

may be favorable in vivo (see discussion in [18]), because in vivo subcriticality allows for a

safety margin from the unstable, supercritical regime, which has been associated with epileptic

seizures [21]. Interestingly, it seems that learning of patterns and structured input may bring a

network to such a regime that does not show power-law distributed neuronal avalanches,

which has also been observed for cortical activity of behaving animals [18].

Note that here the term ‘criticality signatures’ refers to power-law scaling for avalanche

durations and sizes, a notion of criticality inspired by Bak, Tang & Wiesenfeld [42] and widely

observed in experiments [1]. This ‘avalanche criticality’ may differ from other critical phase

transitions, e.g. the transition between order and chaos [18]. It is remarkable that, nonetheless,

our results are consistent with those of perturbation analyses of the SORN that also suggested

that with learning of structured input the network deviates from a critical state [32].

The extent to which the criticality signatures may be important for the development of

learning abilities in recurrent networks is a topic for future studies. It has been argued that crit-

icality is beneficial for information processing [3, 56], which suggests that this state may also

have advantages for learning. However, our finding that the level of membrane noise necessary

for the occurrence of power-laws leads to suboptimal performance in simple learning tasks

suggests that the relationship between criticality and learning may be more complex.

Supporting information

S1 Fig. Alternative size definition and binning. (A) Example of avalanche size distribution

and power-law fit for an alternative avalanche size definition: S0 ¼
Pt0þT

t0
aðtÞ. The main effect

of removing the explicit dependence of S on θ is seen before the left cut-off. The power-law

exponent τ, however, remains largely unaffected, τ� 1.3 (compare to Fig 2B). (B) Effects of

exponential binning in the avalanche distributions. Changing the exponential bin size bs does

not result in changes of the exponents. Results are shown for a network of NE = 200, combin-

ing data from 50 independent simulations.

(TIFF)

S2 Fig. Additional distributions of duration and size for the SORN with partially frozen

plasticity. (A), (B) Distributions of avalanche durations and sizes, respectively, for a network

of size NE = 200, comparing a typical SORN (black) with a SORN with frozen iSTDP (blue)

and frozen STDP, SN, IP and SP (cyan). (C), (D) Distributions of avalanche durations and

sizes, respectively, for a network of the same size, now comparing a typical SORN (black) with

a SORN with frozen STDP and SP (blue) and frozen iSTDP and IP (cyan). Results are com-

bined data from 36 independent simulations.

(TIFF)

S3 Fig. Limiting noise to a subset of excitatory neurons breaks down the power-laws. (A),

(B) Distributions of avalanches’ size and activity, respectively, for SORN with noise limited to

randomly chosen subsets of excitatory neurons. Percentages indicate the percent of excitatory

units receiving the random spike noise at each time step. All curves show combined data of 100

independent simulations, with θ set at ha(t)it/2 (after removal of the always active neurons).

(TIFF)

S1 Table. Fit parameters for Fig 2 (NE = 200, NI = 40). Comparison between exponential and

power-law fits for the curves in Fig 2A and 2B (raw data from 50 independent SORN trials

with 106 time steps each). The goodness of fit R is the loglikelihood ratio between power-laws
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and the indicated distributions (a positive R means that data is more likely power-law distrib-

uted, while a negative R means the compared distribution is more likely a better fit). For fur-

ther details, check the powerlaw package detailed description [47].

(TIFF)

S2 Table. Exponents α and τ for different activity thresholds θ (NE = 200, NI = 40). Power-

law exponents for duration and size for the activity thresholds θ described in Fig 3. Rexp is the

goodness of fit (loglikelihood ratio between a power-law and an exponential fit) in each

case [47].

(TIFF)
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