
April 2017 | Volume 8 | Article 4581

Review
published: 26 April 2017

doi: 10.3389/fimmu.2017.00458

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Hermann Einsele,  

University of Würzburg, Germany

Reviewed by: 
Reem Al-Daccak,  

Institut national de la santé et  
de la recherche médicale  

(INSERM), France  
Stanislaw Stepkowski,  

University of Toledo, USA

*Correspondence:
Markus Granzin  

markus.granzin@miltenyibiotec.com;  
Evelyn Ullrich  

evelyn.ullrich@kgu.de

Specialty section: 
This article was submitted to 

Alloimmunity and Transplantation,  
a section of the journal  

Frontiers in Immunology

Received: 28 January 2017
Accepted: 04 April 2017
Published: 26 April 2017

Citation: 
Granzin M, Wagner J, Köhl U, 

Cerwenka A, Huppert V and Ullrich E 
(2017) Shaping of Natural  

Killer Cell Antitumor Activity by  
                       Ex Vivo Cultivation.  

Front. Immunol. 8:458.  
doi: 10.3389/fimmu.2017.00458

Shaping of Natural Killer Cell 
Antitumor Activity by Ex Vivo 
Cultivation
Markus Granzin1*, Juliane Wagner2,3, Ulrike Köhl4, Adelheid Cerwenka5,6, Volker Huppert7 
and Evelyn Ullrich2,3*

1 Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA, 2 Division for Stem Cell Transplantation and Immunology, 
Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany, 3 LOEWE Center 
for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany, 4 Institute of Cellular Therapeutics, 
Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany, 5 Innate 
Immunity Group, German Cancer Research Center, Heidelberg, Germany, 6 Division of Immunbiochemistry, Medical Faculty 
Mannheim, Heidelberg University, Heidelberg, Germany, 7 R&D Reagents, Miltenyi Biotec GmbH,  
Bergisch Gladbach, Germany

Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since 
they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an 
attractive option to increase NK cells in numbers and to improve their antitumor potential 
prior to clinical applications. Consequently, various strategies to generate NK cells for 
adoptive immunotherapy have been developed. Here, we give an overview of different 
NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. 
So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture 
and expand NK cells. The selection of the respective cytokine combination is an import-
ant factor that directly affects NK cell maturation, proliferation, survival, distribution of 
NK cell subpopulations, activation, and function in terms of cytokine production and 
cytotoxic potential. Importantly, cytokines can upregulate the expression of certain 
activating receptors on NK cells, thereby increasing their responsiveness against tumor 
cells that express the corresponding ligands. Apart from using cytokines, cocultivation 
with autologous accessory non-NK cells or addition of growth-inactivated feeder cells 
are approaches for NK  cell cultivation with pronounced effects on NK  cell activation 
and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the 
killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells 
become frequently dysfunctional in cancer patients, for instance, by downregulation of 
NK cell activating receptors, disabling them in their antitumor response. In such scenario, 
ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to 
overcome immunosuppression. In this review, we summarize the current knowledge 
on NK cell modulation by different ex vivo cultivation strategies focused on increasing  
NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically 
discuss the technical and regulatory aspects and challenges underlying NK cell based 
therapeutic approaches in the clinics.

Keywords: natural killer cells, natural killer cell cultivation, natural killer cell expansion, natural killer cell therapy, 
natural killer cell cytotoxicity, ex vivo stimulation
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iNTRODUCTiON

As an important part of the innate immune system, natural killer 
(NK) cells are deployed as first line of defense against aberrant 
cells caused by viral infections or malignancies. Human NK cells 
can be identified via their morphology as large granular lym-
phocytes, and via their surface marker profile, as they express 
by definition CD56, but not CD3. The NK  cell compartment 
can be further divided into subpopulations. There are two main 
NK cell subsets that can be distinguished, the CD56highCD16neg 
subpopulation, which has mostly immune modulatory function, 
mainly accomplished by interferon (IFN)-γ secretion, and the 
CD56lowCD16pos fraction with direct cytotoxic capacity (1–3). 
NK  cell activation is based on a balanced system integrating 
signals from activating and inhibitory receptors. Inhibitory sig-
nals derive mainly from germ-line encoded inhibitory killer cell 
immunoglobulin-like receptors (KIRs). Ligands for inhibitory 
KIRs, in humans major histocompatibility complex (MHC) class 
I molecules, are highly expressed by healthy cells and thereby 
prevent NK cell activation. Malignant cells often downregulate 
MHC class I molecules on their surface to evade T  cell attack 
(4). However, these so-called “missing-self ” cells are recognized 
by NK  cells through inhibitory receptors, and as signals from 
activating receptors prevail, NK  cells become active and react 
against the encountered targets. Alternatively, NK  cells can be 
activated by overexpression of stress-induced surface ligands on 
infected or abnormal cells, which are recognized by activating 
receptors, such as the natural cytotoxicity receptors (NCRs) 
NKp30, NKp44, and NKp46, and the so-called C-type lectin-like 
receptors, such as NKG2D (1, 5–9). In this case, activating signals 
outbalance inhibitory self-signals and lead to NK cell activation. 
Furthermore, NK  cells become activated upon encounter of 
antibody-coated targets by CD16, which binds to the Fc portion 
of the antibody and mediates a strong activating signal. By means 
of activating and inhibitory receptors, NK  cells, unlike T and 
B-lymphocytes, can react immediately without prior priming or 
antigen presentation.

Activated NK  cells execute effector functions through dif-
ferent mechanisms. NK cells mediate direct cytotoxicity via the 
exocytosis pathway with release of cytotoxic granules, which 
contain granzymes and perforin, resulting in lysis of the target 
cell (10). In addition, NK cells induce apoptosis of target cells by 
expression of death receptor ligands, such as Fas ligand or tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) (11). 
Production and release of IFN-γ by NK cells after activation also 
has multiple functional consequences, with particular relevance 
in tumor surveillance, as IFN-γ inhibits tumor angiogenesis, has 
antimetastatic activity, and acts pro-apoptotic (12, 13).

The ability of tumor cells to bypass the immune response is a 
basic prerequisite for cancer formation and progression. Within 
immune editing, tumors undergo genetic, epigenetic, and pheno-
typic changes, thereby becoming a heterogeneous cell population 
that is hardly visible to or assailable by immune cells due to down-
regulation of tumor antigens and NCR ligands (14). Additionally, 
malignant cells suppress NK cells by blocking the NKG2D recep-
tor via shedding of NKG2D ligands (15–17) or upregulation of 
inhibitory MHC class I molecules (18, 19). Immunosuppressive 

cytokines such as transforming growth factor-β, interleukin 
(IL)-10, or immunosuppressive enzymes, such as indoleamin 
2,3-dioxigenase, further impair antitumor NK  cell responses of 
cancer patients (20–22).

Ex vivo modulation of NK  cell receptor expression is 
therefore an important tool to overcome immune response 
inhibition. A number of studies reported an upregulation of 
DNAM-1, NKG2D, and other NK  cell-activating receptors 
under certain culture conditions, mostly involving stimulation 
by IL-2 (23–26). In addition, other ILs such as IL-12, IL15, IL-18, 
or IL-21 and Type I IFNs shape the NK cell receptor expression 
profile (27–31).

Natural killer cells can play an important role for cellular 
immunotherapy and the adoptive transfer of NK cells represents 
an attractive strategy to treat cancer patients (32, 33). In this 
context, ex vivo expansion of NK cells prior to their clinical appli-
cation is not only required to increase the applicable cell doses but 
it is also reasonable to pre-activate and modify their antitumor 
features. For ex vivo cultivation, NK cells from different sources 
can be stimulated with different cytokines, and, to reach efficient 
expansion rates, NK cells are cultured among autologous acces-
sory cells or together with different types of growth-inactivated 
autologous or allogeneic feeder cells (Figure  1). Of note, it is 
possible to genetically engineer NK cells ex vivo to further aug-
ment their antitumor activity, for example, to integrate chimeric 
antigen receptors against distinct tumor antigens (34, 35). In this 
review, we focus on the cultivation of NK cells without genetic 
modifications. Many different protocols exist for ex vivo expan-
sion of NK cells, all with different features and capacities. Here, we 
give a comprehensive overview of strategies to obtain appropriate 
amounts of functional NK cells. We will discuss starting material 
and culture systems as well as the use of cytokines, feeder cells, 
and other additives.

STARTiNG MATeRiAL FOR NK CeLL 
eXPANSiON AND ROLe OF NK  
CeLL PURiTY

Until recent, 92% of clinical studies used NK cells from peripheral 
blood, either donor (79% of recruiting trials) or patient derived 
(13% of recruiting trials) (36). Alternatives are the use of NK cell 
lines, or the differentiation of NK cells from umbilical cord blood 
or pluripotent stem cells (37–39). NK cell lines, such as NK-92, 
avoid the need for donor selection and enable the production 
of large cell doses to treat patients on a flexible schedule (40). 
Nevertheless, NK  cell lines require growth inactivation mainly 
achieved by irradiation, possibly reducing their antitumor poten-
tial due to short in vivo persistence. Differentiation of NK cells 
from cord blood CD34+ cells is attractive because of the “off-the-
shelf ” availability from a cord blood bank. Similarly, NK  cells 
from pluripotent stem cells are a promising concept for the future 
but still in early development (39, 41). In this overview, we focus 
on peripheral blood-derived NK cells, currently the main source 
for NK cells for clinical use.

The NK cell purity, meaning the frequency of NK cells among 
other cells, is an important factor for the intended therapeutic 
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FiGURe 1 | Scheme showing main components utilized for ex vivo natural killer (NK) cell activation and expansion procedures.
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application. For ex vivo expansion, NK cells are often cultured 
within a mixture of cells, such as PBMC, thereby avoiding further 
purification. Whereas the cultivation of NK  cells among other 
accessory cells is a practical strategy for autologous therapeutic 
settings, it may be critical for allogeneic applications, since non-
NK cells may induce unwanted side effects. Alloreactive T cells 
are a major risk factor for the patient, as they mediate “graft-
versus-host disease” (GvHD), a severe complication following 
allogeneic hematopoietic stem cell transplantation (HSCT) 
(42). Furthermore, donor-derived B cells can lead to B cell lym-
phoproliferative disorder after reactivation of an Epstein–Barr 
virus (EBV) infection (43, 44), and they can cause the passenger 
lymphocyte syndrome (45), both critical side effects for the 
patient. Therefore, purification of NK  cells might be required 
and is realized so far in most clinical settings by magnetic cell 
separation, for instance, by depletion of CD3-expressing cells and 
subsequent enrichment for CD56-expressing cells (26, 46–49). 
In addition, a first proof of concept is shown for good manu-
facturing practice (GMP)-compliant fluorescence-activated cell 
sorting to purify for NK cell subsets, such as NK cells expressing 
a single KIR (50).

CYTOKiNe-iNDUCeD NK CeLL 
eXPANSiON

Aims of adoptive transfer of ex vivo expanded NK cells are the 
enhancement of natural cytotoxicity and homing to tumor sites 
under maintenance of “self ” protection. Studies performed with 
cytokine-stimulated NK  cells or PBMC have shown the safety 
of this approach and indicated some clinical responses upon 
adoptive NK cell transfer following HSCT. In the next paragraph, 
we summarize ex vivo NK cell expansion protocols starting with 
purified NK cells (Table 1) or PBMC (Table 2). Concepts admin-
istering cytokines in the presence of growth-inactivated feeder 
cells will be discussed in later sections of this article.

THe ROLe OF iL-2

Interleukin-2 plays an important role in activation of NK  cells 
via binding to the IL-2 receptor (IL-2R), a heterotrimeric protein 
expressed on NK cells and other immune cells. This led to the 
interest in both (i) using IL-2 for stimulation of autologous 
NK cells in cancer patients and (ii) ex vivo activation and expan-
sion of allogeneic donor NK cells for adaptive immunotherapy. 
At the beginning of the 1980s, researchers around Rosenberg 
and colleagues showed that IL-2 exposed lymphokine-activated 
killer (LAK) cells were able to attack autologous fresh tumor cells 
and that this effect could mainly be ascribed to NK cells (71, 72). 
Nevertheless, in first clinical trials using adoptive transfer of LAK 
cells and IL-2 therapy, the clinical response did not exceed the 
efficacy of IL-2 monotherapy (73).

Importantly, during the last 20 years, it has been elaborated 
that NK cells play a major role in the regulation of the balance 
between GvL and GvHD after allogeneic HSCT, especially haploi-
dentical HSCT (33, 74–78), demonstrating improved anticancer 
activity while avoiding GvHD. In order to make haploidentical 
NK  cells available for clinical use, large-scale GMP-conform 
manufacturing protocols were established. After starting with 
a leukapheresis product that was depleted for CD3+ cells and 
enriched for CD56+ cells, cultivation in medium containing IL-2 
(1,000 U/mL) for up to 2 weeks yielded 0.1–3 × 109 CD56+CD3− 
NK cells (Table 1), sometimes sufficient for multiple infusions to 
patients with hematological malignancies (26). Median NK cell 
expansion was fivefold and median NK  cell purity was >94 
with <0.1% T cell contamination (26). Ex vivo stimulation with 
IL-2 induced elevated cytokine secretion by NK cells, enhanced 
intracellular STAT3/AKT signaling, and upregulation of various 
NCRs and NKG2D receptors (52). Depletion of CD3 cells from 
leukapheresis products without subsequent CD56 enrichment 
and short-term activation with IL-2 overnight led to a final prod-
uct containing 40% NK cells (Table 2). In all cases, IL-2-activated 
NK cells demonstrated a much higher cytotoxic activity against 
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K562 target cells compared to unstimulated NK cells (26, 43, 52, 
53, 60). In addition, after cryopreservation and thawing, NK cells 
showed a moderate to high viability when activated with IL-2, 
whereas the viability of unstimulated NK cells was low (26).

Transfer into the clinic in 2004 and 2005 with first patient stud-
ies using those IL-2-activated donor NK cells were performed in 
parallel in Europe and the US, for both, haploidentical HSCT (53), 
and in the non-transplant setting (43). In the latter one, Miller 
and coworkers used IL-2 expanded haploidentical NK to treat 
43 patients with advanced cancer (43), with 19 of them suffering 
from acute myeloid leukemia, followed by studies in patient with 
ovarian and breast cancer and B-cell non-Hodgkin lymphoma 
(60, 79). Importantly, the authors reported in  vivo persistence 
and even expansion of the alloreactive donor NK cells in patients 
pretreated with high dose preparative regimen, consisting of 
5 days of 60 mg/kg intravenous cyclophosphamide and 25 mg/m2 
intravenous fludarabine (43). Of note, successful NK cell engraft-
ment was dependent on the patients’ pretreatment regimen, 
which was also responsible for the patients’ elevated IL-15 plasma 
concentrations (43). In addition, it was demonstrated that in vivo 
persistence of donor NK cells at day 7 after infusion and success-
ful in vivo expansion (more than 100 donor-derived NK cells per 
microliter of patient blood 14 days after transfer) correlated with 
leukemia clearance (60). Expansion of host regulatory T cells was 
associated with low numbers of NK cells (60). In parallel, Koehl 
et al. reported on three pediatric patients with multiply relapsed 
leukemia (still in blast persistence at HSCT) treated with repeated 
transfusions of IL-2-activated donor NK cells post-haploidentical 
HSCT (53), which led to complete remission remaining for sev-
eral weeks up to some months. In the following clinical study, 
they also demonstrated a small clinical benefit in patients with 
various malignancies receiving IL-2-activated compared to 
patients receiving resting NK cells only (80). Interestingly, IL-2-
stimulated NK  cells but not unstimulated NK  cells promoted 
NK cell trafficking and changes in the distribution of leukocyte 
subpopulations in the peripheral blood. In the meanwhile, safety 
and feasibility using IL-2-activated and -expanded NK cells for 
adaptive immunotherapy has been demonstrated in various 
clinical studies as summarized in a recent review by Koehl and 
others (33).

iMPACT OF iL-15 ON NK CeLL 
eXPANSiON

Carson et  al. postulated that NK  cells might be dependent on 
other cytokines than IL-2 such as IL-15 (81, 82). The trimeric 
IL-15 receptor on NK cells shares two subunits with the IL-2R, 
but not CD25 forming the high affinity IL-2R. Therefore, they 
also share some functions, e.g., maintenance of NK cell survival 
(82). Similarities and differences between IL-2 and IL-15 effects 
on NK cells have been extensively reviewed elsewhere, and IL-15 
might be the preferable cytokine for cancer therapy as it inhibits 
activation-induced cell death and it is considered safe (83–85). In 
addition, compared to IL-2, IL-15 leads to more sustained antitu-
mor capacity of NK cells via signaling through mammalian target 
of rapamycin and stress-activated gene expression (86). However, 
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TAbLe 2 | Ex vivo cultivation of natural killer (NK) cells with accessory cells.

Protocol features Starting material/
culture system

NK cell expansion 
rate

NK cell purity NK cell phenotype NK cell function Setting Reference

IL-2 PBMC, CD3 depleted 
in bags and flasks

N/A (overnight) 33% NK 0.1% T cells N/A N/A Clinical (60)

N/A (14–16 h) 26.7% Enhanced cytotoxicity In vitro (61, 62)

N/A (overnight) 40% NK 0.9% T cells Enhanced cytotoxicity In vitro (43)

IL-15 PBMC, CD56 enriched 23 (20 days) 98% NK Expression of NKp30, NKp44, NKp46, 
NKG2D, and 2B4

Cytotoxic in vitro Clinical (63)

IL-15  
+ IL-21

PBMC, CD3 depleted 3.7 CD56+/CD122+ 
(2–3 weeks)

>90% CD56+/CD122+

<0.3% CD3+/CD56−

<3% CD3+/CD56+

67% CD56+CD16+ Cytotoxic against K562 and patient bone 
marrow blasts

Clinical (64)

OKT-3  
+ IL-2

PBMC in plates 193 (21 days) ~55% NK
~22% T cells

N/A Substantial cytotoxicity against K562 In vitro (65)

PBMC in flasks 1,625 (20 days) ~65% NK
~22% T cells

Upregulated: 2B4, CD8, CD16, CD27, 
CD226, NKG2C, NKG2D, NKp30, NKp44, 
NKp46, LIR-1, KIR2DL3, and CXCR3
Downregulated: CCR7

Increased cytotoxicity against tumor cell 
lines and primary MM cells In vitro

In vitro (25)

PBMC 1,036 (total cells) 
(19 days)

~30% NK
~40% T cells

Upregulated: NKG2A, LILR-B1, NKG2D, 
NKp30, NKp44, and NKp46

In vitro cytotoxicity increases during culture Clinical (66)

PBMC in a bioreactor, 
flasks, and plates

77—bioreactor
530—bags
770—flasks (20 days)

38%—bioreactor
31%—bags
44%—flasks

Bioreactor compared to flasks: higher 
expression of CD11b, NKG2D, and NKp44

Bioreactor compared to flasks: higher 
cytotoxicity

In vitro (67)

OKT-3  
+ IL-2 + Alemtuzumab

PBMC in plates, flasks, 
and bags

646 (14 days)
1,537 (18 days)

60% NK
37% T cells
<0.1% B cells

Upregulated: 2B4, NKG2D, NKp30, NKp44, 
KIR2DL1, LIR-1, and CD16
Downregulated: CCR7

Increased cytotoxicity
In vitro and in vivo

Clinical (68)

OKT-3  
+ IL-2 + IL-15

PBMC or 
CD56+ + CD56− (1:1) 
in flasks and bioreactor 
(Cellbag)

PBMC: 112 With PBMC: 34% Upregulated: NKp30, NKp44, DNAM-1, 
NKG2D, and CD11a

Increased activity against neuroblastoma 
cell lines in vitro and in vivo

Preclinical 
model

(69)
1:1 Mix: 89 (21 days) With “1:1 Mix”: 92%

aCD16 mAb  
+ OK432 + IL-2

PBMC in flasks and 
bags

637–5,712 (day 21) 79% NK 8.4% T cells 
(day 21)

Upregulated: NKG2D, NKp44, and CD69

Downregulated: CD16 (transient)

Increased cytotoxicity against tumor cell 
lines and primary cancer cells in vitro

In vitro (70)

ADCC activity
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recent data revealed that continuous IL-15 signaling causes  
functional exhaustion of NK cells by decreased fatty acid oxidation, 
resulting in lower cytotoxicity in vitro and decreased tumor control 
in vivo (87). Thus, optimal dosing and timing of IL-15 is critical for 
ex vivo NK cell activation. Purified NK cells expanded using IL-15 
exhibit upregulation of NCRs and CD69 and cytolysis of leukemia 
and primary ALL blasts (51). Enhanced cytotoxicity of IL-15-
stimulated NK cells against leukemia and rhabdomyosarcoma cell 
lines could be attributed to NCRs, DNAM-1 and NKG2D (54). 
Using IL-15 to expand NK cells from CD56-enriched PBMC for 
20 days resulted in a 23-fold expansion of CD3−CD56+ NK cells with 
a final purity of about 98% (63). NK cells generated with the latter 
protocol were transferred to 15 non-small lung cancer patients in a 
phase I clinical trial in two to four doses of 0.2–29 × 106 NK cells/
kg, showing the safety of the approach (63).

iL-21 eNHANCeS NK CeLL eFFeCTOR 
FUNCTiONS

The cytokine IL-21, in combination with IL-2 or IL-15, is utilized 
in some protocols for NK cell stimulation (55, 64). IL-21 belongs 
to the IL-2 family and signals through a heterodimer consisting 
of the common γ-chain and the IL-21 receptor α-chain. Activated 
CD4+ T cells are the main producers of IL-21 and IL-21 affects 
many different cell types expressing the IL-21 receptor, including 
NK cells (88). IL-21 plays a role in the development of NK cells 
from bone marrow progenitors (89), and, in mice, it dampens 
the expansion of NK cells but is required for functional NK cell 
maturation (90, 91). Recently, expansion of “memory-like” 
NK cells has been shown to be IL-21 dependent in the context of 
tuberculosis infection (92). Wendt et al. observed increased pro-
liferation of CD56bright human NK cells (55), but another group 
reported no effect of IL-21 on the proliferation of NK cells from 
healthy human donors and from HIV patients (93). Moreover, 
IL-21 is known to trigger apoptosis, resulting in a shorter lifespan 
of NK  cells in  vitro (90, 94). Thus, the time span NK  cells are 
exposed to IL-21 appears critical (95, 96). Besides its effect on 
NK  cell proliferation, IL-21 enhances the effector functions of 
NK cells, including secretory and cytotoxic functions as well as 
enhanced ADCC responses (93, 97, 98). Culturing CD3-depleted 
PBMC for 13–20 days with IL-21 and IL-15 without additional 
feeder cells yields activated NK cells with a purity of >90%, which 
were applied in a clinical trial with 41 leukemia patients receiving 
infusions of donor-derived NK cells 2–3 weeks after HSCT (64). 
Although the NK  cells expanded weakly under this condition 
(3.7-fold), they possessed potent cytotoxic activity against pri-
mary bone marrow blasts prior to transplantation, and infusions 
with a median dose of 2 × 108 NK cells/kg were well tolerated and 
correlated with a reduction in leukemia progression compared to 
historical controls (64).

iL-12/15/18 iNDUCeD MeMORY  
NK CeLLS

Interleukin-12 was originally discovered as NK cell-stimulating 
factor, inducing proliferation, enhanced cytotoxicity, and 

production of IFN-γ by NK cells when added to PBMC (99, 100).  
IL-12 is produced by DCs, macrophages, and B  cells, and its 
receptor consists of two subunits (α and β), which mediate 
signaling through members of the JAK–STAT family (101). 
IL-2 enhances the response of NK  cells to IL-12 by increasing 
the expression of the IL-12 receptor and STAT4, a relevant fac-
tor for IL-12 signaling (102). Furthermore, it was revealed that 
IL-12-mediated IFN-γ production of NK cells requires priming 
with IL-18, a cytokine also known to enhance IL-15-induced 
NK cell proliferation (103, 104). Due to the synergistic effects, it 
seems reasonable to combine the different cytokines for ex vivo 
stimulation of NK cells. In this context, the combination of IL-12, 
IL-15, and IL-18 raised special interest, as it leads to the so-called 
“cytokine-induced memory-like” (CIML) NK cells in mice and 
humans, which exhibit an increased capacity to produce IFN-γ 
upon re-stimulation at later time points (56, 105). Importantly, 
this memory response is a cell intrinsic effect that is passed on 
to offspring cells and is maintained up to several months (56). 
In mice, the intrinsic ability for mediated IFN-γ production 
coincided with demethylation of the conserved non-coding 
sequence 1 in the IFN-γ locus (106). Furthermore, adoptive 
transfer of CIML NK cells had a clear antitumor activity against 
established melanoma or lymphoma in  vivo, which required 
IL-2 from CD4+ T cells (57, 106). For both, murine and human 
NK cells, IL-12, IL-15, and IL-18 together induce an increased 
expression of CD25, making CIML NK cells responsive to low 
concentrations of IL-2 in vitro and in vivo (57, 58). Thus, there is 
a clear rationale to apply adoptive transfer of ex vivo-generated 
CIML NK cells together with IL-2 injections as a combination 
therapy. Recently, CIML NK  cells together with low dose IL-2 
therapy were evaluated in a first-in-human phase I clinical trial 
with promising results, as clinical response was observed in five 
of nine treated patients (107).

AUTOLOGOUS ACCeSSORY CeLLS AND 
AUTOLOGOUS FeeDeR CeLLS FOR NK 
CeLL eXPANSiON

Although cytokines efficiently activate NK cells and result in cell 
products with advanced effector functions, cytokines alone do 
not allow pronounced ex vivo expansion (Table 1). Consequently, 
in addition to the activation with cytokines, stimuli from autolo-
gous accessory cells can be used to further enhance the expansion 
of NK cells to overcome the hurdle of limited NK cell doses for 
adoptive NK cell therapy (Table 2). Outgrowth of NK cells from 
the whole PBMC fraction is more effective than cultivation of 
pure NK cells, because other cell types provide additional factors 
for NK cell proliferation. CD14+ cells, for instance, enhance the 
ex vivo NK cell proliferation via direct cell contact and soluble 
factors (108, 109). After activation, for instance by concanavalin 
A, T cells also trigger NK cell proliferation (110).

Stimulation of PBMC with IL-2 and the clinically approved 
anti-CD3 antibody OKT-3 leads to a profound outgrowth of 
NK cells (25, 65–67, 111), probably by activation of T cells and 
this is utilized by several clinical protocols for NK cell cultivation. 
Nevertheless, starting the culture from PBMC goes along with 
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extensive coexpansion of unwanted CD3+/CD56− T  cells and 
CD3+/CD56+ NK-like T (NKT) cells, accounting for the majority 
of cells in the final cellular product. Surprisingly, infusion of this 
heterogeneous cell product without removal of potentially allore-
active T cells did not cause side effects, such as GvHD, in a safety 
trial with five cancer patients, evaluating the cultivated cellular 
product in an allogeneic setting (66). This can be explained by 
the fact that T cells may lose their alloreactivity during extended 
ex vivo expansion (112). Thus, low NK cell purities may be less 
critical for long-term cultivated cellular products compared to 
NK cells directly obtained from a donor, but more clinical data 
are required to prove this hypothesis. Of note, the approach also 
allows efficient expansion of functional patient-derived NK cells, 
as shown for B cell chronic lymphocytic leukemia and multiple 
myeloma patients, enabling therapy with autologous NK  cells 
and further circumventing possible safety risks of therapy with 
donor-derived cells (25, 111).

Starting with PBMC enriched for CD56 cells together with the 
corresponding non-CD56 PBMC in a 1:1 mixture favors a 89-fold 
NK cell expansion with a final product consisting of 92% NK cells 
after 21  days (69). Alternatively, adding irradiated autologous 
PBMC to the culture is a strategy to benefit from these “feeder 
cells” for NK  cell activation and expansion but to avoid their 
coexpansion (Table 3). Of note, to make a clear difference, we use 
the term “feeder cells” for all inactivated cells that are added to the 
culture, whereas cocultured non-NK cells that are not inactivated 
are defined as “accessory cells.” Besides its growth inactivating 
function, irradiation can induce upregulation of stress-regulated 
surface molecules on PBMC, such as ULBP1–3, that further trig-
ger NK cell activation, e.g., through NKG2D (113). Still, irradiated 
autologous PBMC induce only weak NK cell proliferation without 
additional activation of the feeder cells (e.g., only 16-fold expan-
sion within 2 weeks) (24). Whereas irradiated autologous PBMC 
previously activated with IL-2, OKT-3 and RetroNectin allow a 
median 4,720-fold NK cell expansion after 3 weeks with a NK cell 
purity of 91% starting from PBMC (114). To obtain a more pure 
final product with 98% NK cells, it is possible to start the culture 
with already CD3-depleted PBMC and add irradiated autologous 
PBMC as feeder cells together with IL-2 and OKT-3 (23). The 
highest purity can be achieved by cell sorting, representing also 
the method of choice to expand defined NK cell subpopulations. 
As demonstrated by Siegler et al., GMP-sorted and highly pure 
single KIR+ NK cells can be expanded 160- to 390-fold in 19 days 
with IL-2, IL-15, OKT-3, and irradiated autologous PBMC (50).

NK CeLL eXPANSiON wiTH ALLOGeNeiC 
FeeDeR CeLLS

Using irradiated allogeneic cells as feeder cells is another option 
to stimulate NK cell expansion ex vivo (118) (Table 4). Compared 
to autologous PBMC, allogeneic PBMC may be even more effi-
cient as feeder cells for NK stimulation. Accordingly, in a study 
testing the expansion of NK cells from patients with advanced 
lymphomas or terminal solid tumors, 300-fold NK expansion 
was obtained with irradiated allogeneic PBMC feeder cells from 
healthy donors, whereas only 169-fold expansion was achieved 
with irradiated autologous PBMC feeder cells from the patients 

(115). Furthermore, whereas the availability of autologous feeder 
cells is limited, as they have to be obtained directly from the 
patient, for allogeneic feeder cells it is possible to utilize estab-
lished cell lines. Cell lines can be grown easily to sufficient num-
bers and different cell lines in fact trigger NK cell proliferation, 
such as HFWT, K562, RPMI 1866, Daudi, KL-1, MM-170, and 
different EBV-transformed lymphoblastoid cell lines (EBV-LCL) 
(99, 119–122).

Culturing PBMC together with the Wilms tumor cell line 
HFWT and IL-2 leads to significant NK cell expansion (124, 145), 
and interestingly under this condition NK  cells not only arise 
from mature CD3−CD56+ NK cells but also from CD3−CD14−C
D19−CD56− NK cell precursors expressing CD122 (146). In 2004, 
early clinical data showed that adoptive transfer of autologous 
NK cells generated by coculture with irradiated HFWT is safe and 
patients with recurrent malignant glioma partially responded to 
the treatment (125).

Another advantage of cell lines is that it is relatively easy to 
genetically modify them and to integrate additional factors for 
NK  cell stimulation. In recent years, modified K562 cells have 
been utilized, such as K562 expressing membrane-bound IL-15 
and 41BBL (K562-mb15-41BBL) (126). While unmodified K562 
only induce a weak NK cell proliferation (2.5-fold NK cell expan-
sion in 1 week), with K562-mb15-41BBL the NK cell number can 
be significantly increased by 20- or 1,000-fold in 1 or 3  weeks 
(126). In addition, stimulation of NK  cells with K562-mb15-
41BBL demonstrated that NK  cells actually have a substantial 
proliferative potential ex vivo, with up to 30 population doublings 
and 5.9 × 104-fold NK cell expansion (147). NK cells expanded 
with K562-mb15-41BBL exhibit enhanced natural cytotoxicity 
against several allogeneic and autologous tumors in  vitro, effi-
ciently mediate ADCC and showed antitumor efficacy in mouse 
xenograft models for the treatment of sarcoma and myeloma  
(128, 148, 149). Of note, in a clinical trial assessing adoptive 
transfer of K562-mb15-41BBL following HSCT, acute GvHD 
occurred in five of nine patients, although the donors were 
completely HLA matched and the doses of injected NK  cells 
and cotransferred T cells were low (1–10 × 105 and ≤2 × 104/kg) 
(131). These observations suggested that the acute GvHD was 
T cell mediated, but NK cells apparently may promote this severe 
side effect indirectly (150). Importantly, another group utilized 
NK cells expanded with a similar K562 variant expressing 41BBL 
and IL-15 in another treatment setting and did not observe GvHD, 
although up to 1 × 108 NK cells/kg were administered (129).

Furthermore, Denman and colleagues revealed that K562 
expressing 41BBL and membrane-bound IL-21 instead of IL-15 
are even more effective for ex vivo expansion of NK  cells, and 
weekly restimulation with this cell line supports a sustained 
NK cell proliferation over several weeks (134). In coculture with 
K562 expressing membrane-bound IL-21 and 41BBL, NK cells 
show an increased telomere length and enhanced activation 
of the STAT-3 signaling pathway, explaining the positive effect 
for sustained expansion of NK cells over long time (134, 151). 
Adoptive transfer of NK  cells expanded with K562 expressing 
membrane-bound IL-21 and 41BBL into tumor-bearing mice 
improved the survival of the animals, indicating a therapeutic 
effect of these NK cells (135).
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TAbLe 3 | Ex vivo cultivation of natural killer (NK) cells with autologous feeder cells.

Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Irr. autologous 
PBMC (depleted 
for CD3−/CD56+ 
cells) + IL-2 + IL-15

PBMC, CD3 depleted, and CD56 
enriched in flasks

16 (14 days) 97% NK

0.2% T cells

Upregulated: NKG2D, DNAM-1, 
NKp30, NKp44, CD158a, and 
CD158e

Efficient degranulation and lysis of K562 In vitro (24)

In vitro

Irr. autologous PBMC 
activated with OK432, 
FN-CH296 and 
OKT-3 + IL-2

PBMC in flasks and bags 4,720 
(21–22 days)

91% NK Strong expression of NKG2D and 
CD16

Elevated cytotoxicity that is maintained for up to 4 weeks 
after infusion to patients

Clinical (114)
~12% NK-like 
T and T

Irr. autologous 
PBMC + OKT-3 + IL-2

PBMC, CD3 depleted, and CD56 
enriched in plates

169 (14 days) 84% NK Upregulated: CD16, CD56, NKG2D, 
NKp30, and NKp44

Increased cytotoxicity against tumor cell lines in vitro In vitro (115)

PBMC, CD3 depleted in flasks 
and bags

278–1,097 
(21–26 days)

91–98% NK Most cells express NKG2D, CD16, 
CD94, NKp46, KIR2DL1, KIR3DL1, 
and KIR2DL2/3

Efficient lysis of tumor cell lines in vitro; persistence in 
patients up to several months; cytotoxic potential is lost 
in vivo, while ability for ADCC is maintained

Clinical (116)

PBMC, CD3 depleted in bags 691 (14 days) 98% NK Upregulated: NKG2C, NKp30, 
NK44, CXCR4, CD25, CD62L, and 
CD69

Increased cytotoxicity against tumor cell lines in vitro; 
antitumor effect and ADCC activity in a leukemia xenograft 
mouse model; up to 4 days persistence in patients

Preclinical 
model

(23)
0.06% T cells

758 (14 days) 98% NK Clinical (117)
0.4% T cells

Irr. autologous 
PBMC (depleted 
for CD3−/CD56+ 
cells) + OKT-3 + IL-2

PBMC, CD3 depleted, and CD56 
enriched in plates and flasks

546 (14 days) 94.9% NK

2.2% T cells

Upregulated: NKG2D, NKp30, 
NKp44, tumor necrosis factor-
related apoptosis-inducing ligand, 
and DNAM-1

Downregulated: NKp80

Increased cytotoxicity against tumor cell lines in vitro In vitro (113)

Irr. autologous 
PBMC + OKT-3  
+ IL-2 ± IL-15

PBMC, CD3 depleted, and CD56 
enriched in plates and bags

117/63 in 
bags (±IL-15)

Bags:  
45% NK

Upregulated: NKG2D, NKp44 High cytotoxicity against K562 and high productivity of 
IFN-γ

In vitro (50)

993 in plates 
(19 days)

0.6% T cells

Good manufacturing practice 
killer cell immunoglobulin-like 
receptor (KIR) sorted NK cells 
in bags

160–390 ~100% NK Single KIR + NK cells Anti-leukemic activity against primary acute myeloid 
leukemia cells in vitro and in vivo

Preclinical 
model

(50)
>0.01% 
T cells
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TAbLe 4 | Ex vivo cultivation of natural killer (NK) cells with allogeneic feeder cells.

Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Irr. allogeneic PBMC activated 
with ConA + IL-2

In vivo IL-2 primed PBMC 
depleted for non-NK cells 
in flasks

1–148 (14 days) 64–98% NK N/A Cytotoxic activity against leukemic  
cell lines

Clinical (123)

Irr. allogeneic PBMC activated 
with ConA, PHA and 
ionomycin + IL-2 + IL-15

PBMC, depleted for CD3, 
CD4, CD19, and CD33 
in bags

80–200 
(15 days)

91% CD56

0.3% CD3 
(day 12)

Upregulated: CD16, CD25 Increased cytotoxicity against tumor  
cell lines in vitro; decreased frequency  
of INF-g producing cells

In vitro (118)

Irr. allogeneic 
PBMC + OKT-3 + IL-2

PBMC, CD3 depleted, and 
CD56 enriched in plates

300 (14 days) 94% NK Upregulated: CD16, CD56, NKG2D, 
NKp30, and NKp44

Increased cytotoxicity against tumor cell  
lines in vitro

In vitro (115)

Irr. HFWT + IL-2 PBMC in flasks 113 (2 weeks) 86% CD56+/
CD16+

N/A Cytotoxic against tumor cell lines in vitro Clinical (124, 125)

Irr. Jurkat/KL-1 + IL-2 PBMC in flasks ~130 (2 weeks) 40–90% NK Upregulated: CD54, CD11a, CD48, CD2, 
CD49d, CD58, NKp30, NKp44, 2B4, 
DNAM-1, NKG2D, CD25, and CD69

Downregulated: CD16

Increased cytotoxicity against tumor cell  
lines in vitro and antitumor activity in vivo

Preclinical 
model

(121)

Irr. K562 expressing 
membrane-bound IL-15 and 
41BBL + IL-2

PBMC in plates 1,089 (3 weeks) “Virtually 
pure”

N/A N/A In vitro (126)

PBMC in bags 23, 152, and 
277 after 7, 14, 
and 21 days

96.8% NK

3.1% T cells  
(day 21)

Marked differences of gene expression 
profile compared to unstimulated or IL-2-
stimulated NK cells

Increased cytotoxicity against tumor cell  
lines in vitro and antitumor activity in vivo

Preclinical 
model

(127)

PBMC 447 (days 
10–14)

88% NK

2.2% T cells  
(day 14)

Upregulated genes for cytolytic activity, 
cytokines, chemokines, activating 
receptors, adhesion molecules, cell cycle 
regulators, and multiple pathways

Increased cytotoxicity against primary MM cells  
in vitro and in vivo; high productivity of IFN-γ

Preclinical 
model

(128)

PBMC in G-Rex, bags 442—G-Rex

227—bags 
(10 days)

70% NK

5–35% 
T cells

Upregulated: NKp30, NKp44, NKG2D, 
CD26, CD70, and CXCR3

Downregulated: CD16, CD62L

Increased cytotoxicity and ADCC against primary  
tumor cells in vitro; robust in vivo proliferation  
post-infusion

Clinical (129, 130)

Irr. K562 expressing 
membrane-bound IL-15 and 
41BBL + IL-15

PBMC, CD3 depleted, and 
CD56 enriched

1,000 (21 days) N/A Upregulated: CD56, NKG2D, tumor 
necrosis factor-related apoptosis-inducing 
ligand (TRAIL), CD158a, CD158b, and 
CD158e1

Increased cytotoxicity in vitro independent  
of killer cell immunoglobulin-like receptor mismatch;  
NK infusion contributed to acute graft-versus- 
host disease in first clinical trial

Clinical (131, 132)

Plasma membrane particles 
of K562 expressing IL-15 and 
41BBL + IL-2

PBMC in plates and flasks 1,265 (17 days) 86% 
NK cells

9% T cells

2% NK- 
like T

Upregulated: NKp30, NKp44, NKp46, 
NKG2D, 2B4, NKG2A, TRAIL, and Fas 
ligand (FasL)

Downregulated: CD16

Increased cytotoxicity against leukemic cell lines  
and primary acute myeloid leukemia (AML)  
cells in vitro

In vitro (133)

Irr. K562 expressing 
membrane-bound IL-21, 
41BBL, CD64, CD86, and 
CD19 + IL-2

PBMC in flasks 4.8 × 104 
(21 days)

21.7% 
T cells

High expression of natural cytotoxicity 
receptors, CD16, and NKG2D

Cytotoxic against tumor cell lines in vitro;  
capable of ADCC; increased telomere length

In vitro (134)

2,363  
(14 days)

83% NK Upregulated: DNAM-1, NKG2D, CD16, 
and CD56

Cytotoxic and capable of ADCC against  
neuroblastoma cell lines in vitro and in vivo

Preclinical 
model

(135)
9.1% T cells

(Continued)
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Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Plasma membrane particles 
of K562 expressing 
membrane-bound IL-21 and 
41BBL + IL-2

PBMC 825 (14 days)

>105 (28 days)

>90% NK 
(day 14)

N/A Increased cytotoxicity against leukemic  
cell lines and primary AML cells in vitro;  
enhanced proliferation in vivo

Preclinical 
model

(136)

Irr. allogeneic PBMC; irr. EBV 
transformed lymphoblastoid 
cell lines (EBV-LCL) (LAZ 388 
cells) + PHA + IL-2

PBMC depleted for CD3 
and monocytes in bags 
and plates

~43 
(31–21 days)

90% NK
<5% T cells

N/A Increased cytotoxicity against tumor  
cell lines in vitro

Clinical (137, 138)

Irr. EBV-LCL (TM-LCL) + IL-2 PBMC, CD3 depleted, and 
CD56 enriched in bags

800–1,000 
(2 weeks)

98% NK Upregulated: TRAIL, FasL, NKG2D, 
NKp30, NKp44, NKp46, CD48, CD25, 
LTB, MX1, and BAX

Increased cytotoxicity against tumor  
cell lines in vitro

In vitro (139, 140)

Irr. EBV-LCL (SMI-LCL) + IL-2 PBMC, CD3 depleted, and 
CD56 enriched in bags

3,637 
(24–27 days)

99.7% NK Clinical (141)

PBMC, CD3 depleted, 
and CD56 enriched in 
CliniMACS Prodigy

850 (14 days) >99% NK Upregulated: TRAIL, FasL, NKG2D, 
NKp30, NKp44, and DNAM-1

Increased cytotoxicity and ADCC  
against tumor cell lines in vitro

In vitro (142)

Irr. EBV-LCL 
(SMI-LCL) + IL-2 + IL-21

PBMC depleted for non-
NK cells (research kit) in 
plates and flasks

2,900 (14 days)
2.7 × 1011 
(46 days)

>99% NK Upregulated: TRAIL, NKG2D, and 
DNAM-1

Cytotoxic against tumor cell lines in vitro  
and in vivo; enhanced and  
sustained production of IFN-γ and TNF-α

Preclinical 
model

(96)

Lysate of CTV-1 PBMC, CD3 depleted, and 
CD56 enriched
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cell lines and primary tumors in vitro
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The stimulatory effect of EBV-LCL on NK cell proliferation 
was discovered more than 30 years ago (152). In 1994, an early 
clinical trial already evaluated the adoptive transfer of autologous 
NK cells expanded with the LAZ 388 cell line to treat 10 patients 
with metastatic renal cell adenocarcinoma (137). More recently, 
the cell lines TM-LCL and SMI-LCL were reported for NK cell 
expansion, allowing around 800-fold expansion of highly pure 
NK cells within 2 weeks (139–142). NK cells generated with these 
EBV-LCL feeder cells are currently applied in a study testing them 
for adoptive transfer in an autologous setting with intended doses 
up to 1 × 109 NK cells/kg (141). Recently, it was reported that 
repeated stimulation with SMI-LCL in IL-2-containing medium 
and adding IL-21 only at start of cultivation enables 1011-fold 
NK cell expansion after 6 weeks, to our knowledge representing 
the most efficient protocol to expand NK  cells at the moment 
(96). NK cells generated with the latter method are highly cyto-
toxic in vitro, show a sustained high productivity of IFN-γ and 
TNF-α, similar to CIML NK cells, and they efficiently controlled 
melanoma in a xenograft mouse model (96).

Although feeder cells, and allogeneic feeder cell lines in 
particular, make it possible to generate substantial numbers of 
NK cells for adoptive therapy, from a regulatory point of view this 
strategy has drawbacks as feeder cell lines must be qualified as 
safe for human use. The cell line qualification of modified K562 
cells, for instance, includes costly viral testing and assays to prove 
absence of bacterial and Mycoplasma contamination (153). In this 
context, lysates from cell lines containing the NK cell-stimulating 
factors could be an alternative to the intact feeder cells to minimize 
regulatory concerns. It was demonstrated that short cultivation of 
NK cells with lysate of the leukemia cell line CTV-1 primes NK cells 
to specifically lyse cell lines that are resistant to resting NK cells 
(143). Interestingly, the priming effect of CTV-1 on NK cells is KIR 
independent and does not require supplementation of cytokines, 
such as IL-2 or IL-15, making this an unique approach for NK cell 
activation (154). NK cells primed with CTV-1 were evaluated in 
the first UK clinical trial of a cell therapy regulated as a medicine, 
with an anti-leukemia effect in four of seven treated patients and no 
evidence of NK cell infusion-related toxicities (144). Another step 
forward from a regulatory standpoint could be to add only specific 
fragments of feeder cells to the culture that are responsible for the 
desired NK cell activation, instead of using intact feeder cells or 
their lysates. Of note, NK cells can be expanded ex vivo with IL-2 
and plasma membrane particles prepared from K562-expressing 
membrane-bound IL-15 and 41BBL with a rate of expansion that 
is comparable to stimulation with intact feeder cells and far bet-
ter than stimulation with soluble IL-15, 41BBL, and IL-2 (133). 
Plasma membrane particles from K562 expressing membrane-
bound IL-21 and 41BBL work for ex vivo NK cell expansion as well  
and may be an option for in vivo NK cell expansion, as demon-
strated in a first proof of concept using a mouse model (136).

TeCHNiCAL ASPeCTS OF NK CeLL 
eXPANSiON

In general, one encounters technical challenges and opportunities 
when manufacturing NK cells as medicinal products, as reviewed 
recently (155). In this section, we focus on technical options for 

NK cell culture, ranging from simple cell culture plates for small 
scale experiments to highly standardized and automated systems 
for clinical scale. The selection of the adequate culture system is 
based on the intended application of the cells. Most preclinical 
experimental studies grow NK cells in cell culture plates or tissue 
culture (T) flasks. These are commonly used and very convenient 
to test and compare different culture additives in parallel, e.g., 
different cytokine concentrations. However, for clinical applica-
tions in large scale, cultivation in plates and flasks is rather inap-
propriate for different reasons. First, due to the small volume of 
T flasks, numerous T flasks have to be handled at the same time, 
with for instance 51 T flasks for the treatment of a single patient 
(116). In addition, T flasks have to be opened from time to time 
for medium exchange or harvesting of cells, bearing the risk of 
contaminating the cellular product. Although the likelihood of 
contamination for each T flask is reduced to a minimum by sterile 
workflows in safety cabinets, the remaining risk potentates by the 
number of flasks.

To overcome the drawbacks of small cell culture vessels, clini-
cal NK cell cultivation is often done in cell culture bags, which 
make it possible to culture high volumes in a closed system, 
as all required steps can be done by sterile welding of tubing 
connections for the transfer of media, harvesting of cells, etc. 
Unfortunately, different reports describe that the NK cell expan-
sion performance is reduced after transition of a protocol from 
T flasks to larger scale in cell culture bags (50, 67). In addition, 
bag systems still require several labor-intensive interventions 
during the culture, especially when different cultures are set up 
in parallel.

The G-Rex vessel is another system avoiding frequent process-
ing steps for exchange of medium during the culture. In contrast 
to normal cell culture flasks, the bottom of the G-Rex is highly gas 
permeable, ensuring optimal CO2 exchange and O2 supply for the 
cells. Thus, by its design, G-Rex flasks can be filled directly with a 
high level of cell culture medium and exchange of medium is not 
necessary for long time. For NK cell culture, G-Rex were used for 
example for 10 days of culture without any cell manipulation or 
feeding, and resulted in higher fold expansion of NK cells com-
pared to cell culture bags (130). Unfortunately, although G-Rex 
are scalable in general, multiple G-Rex flasks are still required to 
achieve high cell numbers for clinical trials, which can be cum-
bersome and costly, and G-Rex flasks are still an open system and 
may require adaption to a closed system (156).

Automated systems combine the need for reduced interven-
tions during the culture with a closed system. Automation of the 
cell manufacturing ensures constant product quality without the 
need for highly skilled experts, is finally cost saving, and may 
be required for cellular therapy to become available beyond 
specialized academic centers (157). Although early integration of 
automation is associated with higher capital costs in the develop-
ment phase, it allows a smooth transition at later stages of clinical 
development (158). A first feasibility study of automated NK cell 
cultivation with a stirred bioreactor was already published in 
1996, showing advantages of the bioreactor culture over manu-
ally handled controls (159). More recently, different investigators 
report automated NK cell expansion procedures with a rocking 
motion bioreactor (67, 69, 156, 160), yielding 2–10 × 109 NK cells 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


12

Granzin et al. Antitumor Activity of Ex Vivo-Cultivated NK Cells

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 458

under GMP-compliant conditions. However, the latter system 
still needs preceding manual cultivation, because relatively high 
cell numbers are required as inoculum for the automated culture  
(67, 69, 156, 160). Alternatively, fully automated NK cell expan-
sion with an automated cell processing device can be performed 
for clinical use, with as little as 106 NK  cells being sufficient 
to initiate the automated culture that can yield up to 2.7 × 109 
NK cells after stimulation with clinical grade feeder cells (142). Of 
note, in addition to the culture process, the cell processing device 
is designed for GMP-compliant cell separation, concentration, 
and washing applications, so that combined NK cell purification, 
cultivation, and final formulation of the cellular product is pos-
sible fully automated (161). Thus, the whole processing, from the 
starting material, such as a leukapheresis product, to the finally 
expanded NK cells, readily prepared for infusion, can be covered 
by a single instrument.

Centralized processing of NK cell products probably will be 
carried out mainly in specialized centers for manufacturing of 
cellular products. Consequently, after ex vivo cultivation, storage 
of the NK cell product and shipment to the location of use will 
be needed. Compared to naive NK cells, IL-2-activated NK cells 
are less sensitive to freezing, as they show higher recovery and 
viability after thawing (26). Still, different groups state that cryo-
preservation of cultivated NK cells goes along with a drop in cell 
viability and cytotoxicity, whereas the latter can be restored by a 
short re-stimulation, e.g., by a short resting in IL-2-containing 
medium (139, 156). Poor survival of the NK cells can be an issue 
during further in vitro culture post thawing, so that shipping of 
freshly formulated cells for direct infusion may be advantageous 
(129). Interestingly, some groups recently claim that freezing 
and thawing does not influence the cytotoxicity or the prolifera-
tive ability of cultivated NK cells in their hands (24, 68). These 
divergent observations possibly result from different cultivation 
methods and different protocols for freezing and thawing, which 
should be investigated further. Without freezing, transport of 
the readily prepared cells in an appropriate time frame is chal-
lenging, and any delay during the shipment affects the quality of 
the cellular product with critical consequences for the patient. 
Alternatively, automated and closed systems for cell processing 
open the way for scale out strategies and de-centralized NK cell 
manufacturing directly at the location of intended use, avoiding 
the freezing and shipment process (142). But, although de-cen-
tralized manufacturing in the clinics seems promising, cellular 
therapeutics are very complex and still in early development, so 
that manufacturing by well-trained specialists in specific facilities 
is reasonable at that state.

ReGULATORY ASPeCTS OF NK CeLL 
CULTivATiON FOR CLiNiCAL USe

Apart from technical difficulties, one has to consider regulatory 
aspects for the use of ex vivo-generated NK cells with regulations 
varying in time and geographical policies (153). In Europe, 
for instance, cytokine-activated and -expanded NK  cells are 
currently classified as advanced therapy medicinal products 
and will be regulated accordingly either centralized or under 
the hospital exemption by the member states [Regulation (EC) 

No 1394/2007; Directive 2001/83/EC and Regulation (EC)  
No 726/2004]. Quality aspects related to somatic cell therapy 
medicinal product as defined in guidelines (CPMP/BWP/3088/ 
99; EMEA/CHMP/410869/2006; Ph. Eur. 0784: Ph. Eur. 5.14) will 
apply to the identity, potency, and activity. The establishment of 
correspondingly adequate in process and quality controls as well 
as of process target values and product specifications will have  
to take into account the variability of the primary effector cell as 
the starting material (162).

CONCLUSiON AND OUTLOOK

Comparing different protocols for NK cell cultivation in detail is 
challenging as these are extremely heterogeneous. The duration 
of ex vivo NK cell cultivation ranges from a few hours for short 
NK cell activation up to several weeks for long-term expansion, 
different starting materials are in use with varying NK cell purities, 
different cytokines are combined at different doses, and NK cells 
often are cocultured with different feeder cells at different NK-to-
feeder ratios. Nevertheless, overall differently ex vivo expanded 
NK cells exhibit some common characteristics.

In general, ex vivo cultivated NK cells show an increased cyto-
toxicity and may become even responsive against tumor targets 
previously appearing resistant to NK cell lysis. This explains the 
use of IL-2 or IL-15 in virtually every protocol, as it is known 
since a long time that both cytokines amplify NK  cell activity  
(81, 163). However, upon NK cell activation with different stimuli, 
including IL-2 and IL-15, downregulation of CD16 surface 
levels occurs by metalloproteases-mediated shedding of CD16 
(164–166). The Fc receptor CD16 is crucial for NK cells to per-
form ADCC and would be of particular importance for potential 
combination therapies using NK cells together with therapeutic 
antibodies. Of note, although reduced levels of CD16 on NK cells 
are observed for several NK cell cultivation protocols the NK cells 
still mediate ADCC (70, 129, 142). Nevertheless, inhibition of the 
relevant metalloproteases to maintain CD16 on NK cells could 
be an option to further increase the ADCC function of ex vivo 
activated NK cells (164, 167).

Another clinically highly relevant aspect is the tumor-induced 
immunosuppression as important challenge for all cell therapeu-
tic strategies. Remarkably, it ruled out from most preclinical and 
clinical NK cell studies that NK cells may gain the capability to 
overcome tumor immunosuppression. Different research groups 
have reported signs of NK cell suppression in cancer patients such 
as a lower expression of NK cell receptors, e.g., NCRs, NKG2D, 
DNAM-1, and 2B4 (22, 25, 168–170), the shedding of tumor cell 
ligands, such as NKp30 and NKG2D (171–174), or the release 
of blocking NKG2D ligands, such as MICA and ULBP3, via 
tumor-derived exosomes (175, 176). Notably, ex vivo cultivation 
of patient-derived NK cells is often possible with same efficacy 
as for donor-derived NK cells (25, 111) and can normalize the 
NK  cell phenotype and activation (25). Additionally, elevated 
levels of NKG2D on ex vivo-activated NK  cells can scavenge 
shed NKG2D ligands and counter their inhibitory effect (177). 
Furthermore, the high cytotoxicity of ex vivo expanded NK cells 
has been shown to be independent of KIR inhibition for some 
protocols (107, 132).
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In comparison to other cell therapeutic approaches using,  
e.g., T cells, donor-derived allogeneic NK cells mediate GVL with-
out an elevated risk for GVHD or even with a GVHD-reducing 
effect, as reported in mice and men (74, 75, 77, 78). However, con-
tradictory results regarding GVHD induction have been reported 
in clinical trials assessing adoptive transfer of NK cells expanded 
with K562 feeder cell variants expressing 41BBL and IL-15 (129, 
131). These reports show that there are still open questions that 
have to be unraveled to better understand the complex role of 
NK cells and their specific subsets in the bidirectional regulation 
of GVL and GVHD.

In conclusion, many different protocols are in use to expand 
NK cells in vitro, each with its specific advantages and disadvan-
tages in regard of cell numbers, function, and handling efforts. 
The data summarized in this review underline the complexity 
related to the design of an optimal NK cell therapeutic protocol 
that should be not only reliable and safe in use but also highly 
efficient in targeting different forms of malignancies. With this 
in mind, additional studies need to be envisioned that not only 
further address ex vivo NK  cell purification, expansion, and 
activation strategies but also the final clinical setting including 
pre-conditioning, dosing, and timing of the NK cell application. 
Efforts for harmonization of protocols at the European and 
worldwide level should be undertaken to ensure highest quality 

and efficacy of the NK cell product for clinical application. Finally, 
with regard to the possible tumor-mediated immunosuppression, 
therapeutic concepts have to be developed that either directly 
strengthen NK cells to deal with the hostile tumor environment 
and/or specifically counteract tumor-induced immunosuppres-
sive mechanisms.
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