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Zusammenfassung

Der Begriff der Supraleitung beschreibt das Phänomen eines verschwindenden elektrischen
Widerstandes in einem Material, welches dann als Supraleiter bezeichnet wird, unterhalb
einer typischerweise sehr niedrigen kritischen Temperatur. Seit der Entdeckung der Su-
praleitung in Quecksilber im Jahre 1911 wurden viele weitere Supraleiter gefunden. Dazu
gehören unter anderem die kupferbasierten Supraleiter, welche bereits in vielen techni-
schen Gebieten Anwendung finden, die vor allem als Modellsysteme interessanten orga-
nischen Supraleiter mit relativ niedrigen kritischen Temperaturen, und die relativ jungen
eisenbasierten Supraleiter, die in Zukunft möglicherweise für technische Anwendungen in
Frage kommen. Die kritische Temperatur, unterhalb der Supraleitung auftritt, konnte in
Wasserstoffverbindungen unter extremen Drücken kürzlich sogar in Temperaturbereiche
angehoben werden, die während eines kalten antarktischen Winters anzutreffen sind.

Aufgrund ihrer besonderen Eigenschaften sind Supraleiter ein vielversprechender Ersatz
für normalleitende Komponenten, die derzeit noch in den meisten elektronischen Geräten
Anwendung finden. So können sie als Material für nahezu verlustfreie Kabel zur Ener-
gieübertragung, als Spulenmaterial in Magneten für die Erzeugung starker Magnetfelder
oder in verschiedenen elektronischen Geräten, wie zum Beispiel in Detektoren für Magnet-
felder, eingesetzt werden. Trotz dieser offensichtlichen Vorteile hängen die Kosten bei der
Verwendung supraleitender Materialien in erster Linie vom Kühlaufwand ab, der benötigt
wird, um den supraleitenden Zustand zu erreichen. Daher ist die Suche nach einem Su-
praleiter mit kritischer Temperatur oberhalb der Zimmertemperatur, welcher schließlich
ein spezialisiertes Kühlsystem überflüssig machen würde, eines der wichtigsten Projekte
derzeitiger Forschung im Bereich der Festkörperphysik.

Während eine Theorie der Supraleitung in einfachen Metallen basierend auf der Wechsel-
wirkung von Gitterschwingungen und Elektronen bereits in den 1950er Jahren entwickelt
wurde, hat sich inzwischen herausgestellt, dass viele Supraleiter in dem Sinne unkonven-
tionell sind, dass ihr Verhalten nicht durch die zuvor genannte Theorie beschrieben wird.
Unkonventionelle Supraleitung zeichnet sich gegenüber der konventionellen Supraleitung
in erster Linie darin aus, dass die räumliche Symmetrie des zum supraleitenden Zustand
gehörigen Ordnungsparameters eine andere ist. Während konventionelle Supraleiter einen
räumlich uniformen Ordnungsparameter besitzen, weist der Ordnungsparameter unkonven-
tioneller Supraleiter eine Struktur auf. Selbstverständlich wurden zur Beschreibung unkon-
ventioneller Supraleiter alternative theoretische Ansätze entwickelt, aber die Debatte über
deren Korrektheit dauert weiterhin an. Derzeit werden vorwiegend Theorien basierend auf
Spin- oder Ladungsfluktuationen diskutiert. Letztlich führt das Fehlen einer vollständigen
Theorie der Supraleitung jedoch dazu, dass eine gezielte Suche nach einem Supraleiter
bei Zimmertemperatur praktisch unmöglich ist. Neue theoretische Ansätze werden daher
ständig entwickelt, müssen ihren Wert aber zuerst durch die korrekte Vorhersage des supra-
leitenden Ordnungsparameters und weiterer Materialeigenschaften beweisen. Insbesondere
für die Vorhersage der Übergangstemperatur in unkonventionellen Supraleitern existiert
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jedoch, überwiegend aufgrund vieler technischer Schwierigkeiten bei der Lösung der zu-
grundeliegenden Modelle, noch keine quantitative Theorie.
Die vorliegende Arbeit stellt einen Beitrag zur Suche nach einer Theorie der unkonventio-

nellen Supraleitung dar. Konkret wird eine Theorie der Supraleitung diskutiert, welche auf
Spinfluktuationen durch Elektron-Elektron-Wechselwirkungen basiert und durch ihren Er-
folg bei der Beschreibung der in den 1980er Jahren aufgekommenen kupferbasierten Supra-
leiter im Laufe der letzten Jahrzehnte eine gewisse Popularität erlangt hat. Dabei handelt es
sich um die sogenannte Näherung zufälliger Phase für das Hubbard-Modell. Das Hubbard-
Modell ist ein einfaches Modell, welches Elektronen beschreibt, die sich auf einem Gitter
bewegen können. Zwischen den Elektronen gibt es eine starke Coulombabstoßung, wenn sie
sich auf demselben Gitterplatz befinden. Erweiterungen des Hubbard-Modells existieren,
zum Beispiel als Hubbard-Modell mit mehreren Orbitalen pro Gitterplatz, welches auch
Terme wie die Interorbitalcoulombabstoßung, die Hundschen Regeln und Paarhüpfterme
berücksichtigt. In Dimensionen größer als eins ist keine exakte Lösung des Hubbardmo-
dells bekannt, weshalb man bei seiner Lösung auf Näherungsverfahren angewiesen ist.
Eines dieser Verfahren ist die zuvor genannte Näherung zufälliger Phase. Diese basiert
auf einer Störungsentwicklung der Suszeptibilität und summiert bestimmte elektronische
Prozesse bis zu unendlicher Ordnung in der Wechselwirkung auf, während andere Prozesse
vernachlässigt werden. Dadurch ergibt sich eine letztlich unkontrollierte Approximation,
die praktisch jedoch sinnvolle Ergebnisse bei verhältnismäßig niedrigem Rechenaufwand
liefert, sodass auch Modelle mit mehreren Orbitalen und komplizierten Wechselwirkungen
untersucht werden können. Diese Methode wird in der vorliegenden Arbeit als diagram-
matische Vielteilchentheorie detailliert hergeleitet und auf Modellsysteme angewendet, die
im Rahmen der Dichtefunktionaltheorie für bestimmte Materialklassen aus ab initio Rech-
nungen konstruiert werden. Die Dichtefunktionaltheorie ist eine etablierte Technik zum
Berechnen der elektronischen und magnetischen Eigenschaften von Materialien ausgehend
nur von deren Kristallstruktur. Sie basiert auf der Idee, dass die Energie eines Vielteil-
chensystems ein Funktional der Elektronendichte ist. Ausgehend von dieser Idee lässt sich
eine prinzipiell exakte iterative Methode zum Finden der Grundzustandsdichte und der
Grundzustandswellenfunktion eines Vielteilchensystems formulieren. Die vorliegende Ar-
beit stellt die grundlegenden Theoreme und die zugehörigen Beweise detailliert vor. Die
praktische Umsetzung dieser Theorie in Computerprogrammen erfordert jedoch gewisse
Näherungen, welche ebenfalls erläutert werden, die wiederum eine korrekte Beschreibung
komplizierter Vielteilchenphänomene wie der Supraleitung verhindern. Nichtsdestotrotz
gibt die Methode Aufschluss über die Eigenschaften des Normalzustandes eines Materi-
als, in welchem bei niedrigen Temperaturen Supraleitung auftritt. Der in dieser Arbeit
entwickelte Ansatz benutzt die aus den ab initio Rechnungen gewonnenen Informationen
und kombiniert sie mit einer diagrammatischen Vielteilchentechnik, um sich dem supra-
leitenden Zustand vom normalleitenden Zustand aus anzunähern. Solch eine Kombination
verschiedener Rechentechniken bedeutet einen hohen Implementierungsaufwand in Form
von Computerprogrammen. Den gesamten Programmcode in dieser Arbeit abzudrucken
wäre weder der Übersichtlichkeit des Gesamtwerks, noch dem Verständnis der Methode
zuträglich. Weil die Herleitung der Methode jedoch bereits einige Näherungen enthält, die
auf Anforderungen einer numerischen Implementierung eingehen, wird die Umsetzung als
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Computerprogramm umfassend erläutert.
Die erste Klasse von Materialien, auf welche die zuvor beschriebenen Rechenmethoden

in der vorliegenden Arbeit angewendet werden, sind quasi-zweidimensionale organische La-
dungstransfersalze. Diese quasi-zweidimensionalen organischen Materialien sind seit mehr
als zwei Jahrzehnten ein Gebiet aktiver Forschung, welche im Laufe der Zeit viele chemi-
sche Verbindungen mit zahlreichen Polymorphen hervorgebracht hat. Organische Ladungs-
transfersalze sind jedoch nicht nur aufgrund ihrer chemischen Flexibilität, sondern auch
aufgrund ihrer unter anderem durch Druck oder Bestrahlung leicht manipulierbaren Eigen-
schaften für die Festkörperforschung interessant. Ein Beispiel für diese leichte Einstellbar-
keit von gewünschten Eigenschaften ist der kürzlich experimentell beobachtete reversible
Metall-Isolator-Übergang in Abhängigkeit der Probenabkühlrate. Dieses Phänomen wird in
der vorliegenden Arbeit basierend auf Rechnungen im Rahmen der Dichtefunktionaltheorie
und mit Hilfe von Literaturergebnissen zum Hubbard-Modell auf dem anisotropen Drei-
ecksgitter erklärt. Insbesondere wird gezeigt, dass die Konformationen von Molekülen in
molekularen Festkörpern erheblichen Einfluss auf die elektronischen Eigenschaften haben
können. Dies führt aufgrund metastabiler Konformationen, welche sowohl die Coulombab-
stoßung auf den Molekülen, als auch die kinetische Energie der Elektronen beeinflussen,
unter anderem zu dem beobachteten Metall-Isolator-Übergang. Zudem wurden an organi-
schen Materialien, insbesondere an der Untergruppe der sogenannten Kappa-Typ Materia-
lien, eine Vielzahl von Experimenten zur Bestimmung der Eigenschaften des supraleitenden
Zustandes durchgeführt. Obwohl sich inzwischen die Meinung etabliert hat, dass organische
Ladungstransfersalze unkonventionelle Supraleiter sind, so bleiben die experimentellen Er-
gebnisse in Bezug auf die genaue Symmetrie des supraleitenden Ordnungsparameters doch
widersprüchlich.
Zudem ist die komplizierte experimentelle Situation nur schwer mit dem theoretischen

Konsens zu vereinbaren, der lediglich eine bestimmte Symmetrie vorhersagt, die nur in
einem Bruchteil der Experimente tatsächlich beobachtet wird. Die meisten der relevan-
ten theoretischen Arbeiten basieren jedoch auf einem stark vereinfachten Modell. In der
vorliegenden Arbeit werden diese Vereinfachungen vermieden, indem die Modelle für orga-
nische Ladungstransfersalze, im Gegensatz zu den zuvor genannten Studien, aus ab initio
Rechnungen konstruiert werden. Das neue Modell basiert im Gegensatz zu früheren nicht
auf einem anisotropen Dreiecksgitter von dimerisierten Molekülen, sondern auf einem ver-
allgemeinerten Shastry-Sutherland-Gitter der einzelnen Moleküle. Zudem wird die Cou-
lombabstoßung nicht pro Moleküldimer, sondern auf jedem einzelnen Molekül betrachtet.
Schließlich wird gezeigt, dass die existierenden theoretischen Ergebnisse von diesem neu-
en Modell in einem bestimmten Grenzfall reproduziert werden. Darüber hinaus zeigt das
vollständige Modell jedoch einen Phasenübergang zwischen zwei supraleitenden Zuständen
mit unterschiedlicher Symmetrie. Mit deren Hilfe lassen sich die meisten der experimen-
tellen Ergebnisse erklären. Das auf ab initio Rechnungen basierende Modell hat daher das
Potential die sich bereits über mehrere Jahrzehnte erstreckende Diskussion über die Sym-
metrie des supraleitenden Ordnungsparameters in quasi-zweidimensionalen organischen
Ladungstransfersalzen vom Kappa-Typ zu entscheiden. Darüber hinaus werden verschie-
dene Ansätze für weitere Forschung auf Grundlage des neuen Modells vorgeschlagen.
Die zweite Klasse von Materialien, welche im Rahmen dieser Arbeit untersucht wird,
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sind eisenbasierte Supraleiter. Obwohl es sich dabei um ein recht junges Forschungsgebiet
handelt, wurde bereits eine Vielzahl von supraleitenden eisenbasierten Verbindungen her-
gestellt. Wie in den quasi-zweidimensionalen organischen Materialien lässt sich der physi-
kalische Grundzustand leicht durch äußeren Druck, aber auch durch veränderte chemische
Zusammensetzung und die damit einhergende Dotierung mit Ladungsträgern einstellen.
Das Verhalten vieler Materialien in dieser Klasse ist jedoch noch nicht gut verstanden.
In der vorliegenden Arbeit wird zuerst der supraleitende Zustand von Eisenselenid unter-

sucht, welches mit Lithium und Ammoniak interkaliert ist. Zu dieser Verbindung existiert
eine Vielzahl von Analoga, die durch Verwendung anderer Alkali- oder Erdalkalimetalle
und eines anderen Lösungsmittels erzeugt werden. All diese Materialien teilen sich je-
doch die Eigenschaft, dass ein größerer Abstand zwischen den Eisenselenidlagen die kri-
tische Temperatur der Supraleitung im Vergleich zu reinem Eisenselenid erhöht. Leider
ist dieser Effekt jedoch empirisch auf eine Erhöhung der kritischen Temperatur auf et-
wa 46 Kelvin beschränkt. Mit Hilfe der Dichtefunktionaltheorie wird in der vorliegenden
Arbeit gezeigt, dass der erhöhte Abstand zwischen den Eisenselenidlagen zu einer Reduk-
tion der elektronischen Dimensionalität führt. Anschließend wird der Einfluss der Elektro-
nendotierung auf die Struktur der nichtwechselwirkenden Suszeptibilität im Impulsraum
analysiert. Diese Untersuchung gibt Aufschluss darüber, warum in elektronendotiertem Ei-
senselenid bisher keine magnetische Ordnung gemessen wurde. Darauf folgt eine Analyse
des supraleitenden Zustandes basierend auf der Näherung zufälliger Phase als Funktion
des Abstandes zwischen den Eisenselenidlagen und der Elektronendotierung. Es zeigt sich,
dass die Annäherung an eine perfekt zweidimensionale elektronische Struktur die kritische
Temperatur des supraleitenden Überganges erhöht. Des Weiteren ergibt die Untersuchung
des Einflusses von Ladungsdotierung, dass sich die supraleitende Übergangstemperatur
durch Elektronendotierung mittels der interkalierten Alkaliatome einstellen lässt. Dieses
Verhalten wird im Rahmen einer Analyse der elektronischen Zustandsdichte, und damit
verbunden der nichtwechselwirkenden Suszeptibilität, plausibel gemacht. Die vorliegende
Studie stellt daher insbesondere eine wertvolle Ressource für Kristallzüchter dar, die sich
mit der Optimierung interkalierten Eisenselenids befassen.
Das zweite Material aus der Familie der eisenbasierten Supraleiter, welches in der vor-

liegenden Arbeit untersucht wird, ist KFe2As2 unter Hochdruck. Dieses Material erlangte
unter anderem dadurch Berühmtheit, dass es als eines von wenigen eisenbasierten Materia-
lien ohne die Notwendigkeit chemischer Dotierung bei niedrigen Temperaturen supraleitend
ist. Unter Hochdruck ereignet sich in KFe2As2 bei einem bestimmten kritischen Druck ein
Volumenkollaps von mehreren Prozent, der mit einer starken Erhöhung der kritischen su-
praleitenden Temperatur einhergeht. Solche volumenkollabierten Phasen sind bereits aus
anderen Eisenpniktidverbindungen wie CaFe2As2 bekannt, jedoch wurde bisher angenom-
men, dass solche volumenkollabierten Phasen niemals Supraleitung zeigen. Das besondere
Verhalten von KFe2As2 wird hier mit Hilfe der Dichtefunktionaltheorie und der Näherung
zufälliger Phase erklärt. Es wird gezeigt, dass sich die elektronische Struktur von KFe2As2
durch den Volumenkollaps abrupt ändert. Zu Vergleichszwecken wird die nichtwechselwir-
kende Suszeptibilität im Impulsraum sowohl für volumenkollabiertes KFe2As2, als auch
für kollabiertes CaFe2As2 berechnet. Diese zeigt in CaFe2As2 keine auffälligen Strukturen,
wohingegen in KFe2As2 die üblichen Siganturen eisenbasierter Supraleitung zu sehen sind.
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Durch die intrinsiche Lochdotierung dieses Materials besitzt es im Gegensatz zu anderen
Eisenpniktiden auch in der volumenkollabierten Phase sowohl Loch-, als auch Elektro-
nenzustände im Bereich der Fermienergie, ganz ähnlich wie andere Verbindungen ohne
Volumenkollaps und ohne starke Dotierung. Daher ist es plausibel, dass sich KFe2As2 in
der volumenkollabierten Phase ähnlich verhält wie unkollabierte Eisenpniktide und dass
der Mechanismus der Supraleitung in diesen Materialien identisch ist.
Zu guter Letzt widmet sich die vorliegende Arbeit der Unterfamilie der Eisengerma-

nide. Diese sind isoelektronisch und isostrukturell zu Eisenpniktiden und Eisenchalco-
geniden. Da die elektronischen Zustände dieser Materialien im Bereich der Fermienergie
praktisch identisch sind, könnte man erwarten, dass auch Eisengermanide gute Supralei-
ter sind. Tatsächlich sind diese jedoch entweder bei sehr niedrigen Temperaturen oder
überhaupt nicht supraleitend. Um diesem Phänomen auf den Grund zu gehen, widmet
sich die vorliegende Arbeit einem bisher vernachlässigten Bestandteil vieler Eisenpniktide
und -germanide. So wurden Alkali-, Erdalkali- und Übergangsmetallatome zwischen den
zweidmensionalen Eisengermanid- oder Eisenpniktidschichten bisher nur als Ladungsreser-
voire wahrgenommen, die ansonsten für die Physik der eisenbasierten Supraleiter irrelevant
sind. In der vorliegenden Arbeit wird jedoch gezeigt, dass diese entscheidend an der Un-
terdrückung der Supraleitung in Eisengermaniden beteiligt sind. Eine eingehende Analyse
der Eisengermanide zeigt, dass diese im Gegensatz zu Eisenpniktiden oder -chalcogeniden
ferromagnetische statt antiferromagnetische Tendenzen aufweisen. Mittels des erweiterten
Stoner-Formalismus wird geklärt, dass diese ferromagnetischen Tendenzen, entgegen eini-
ger Spekulationen in der Literatur, nicht auf den Volumenkollaps oder die Lochdotierung ei-
niger Eisengermanidverbindungen zurückgehen, sondern generell in allen Eisengermaniden
auftreten. Stattdessen haben die Zustände der zuvor nur für Ladungsreservoire gehaltenen
Atome in den Zwischenebenen einen entscheidenden Einfluss auf die elektronische Struk-
tur in der Nähe der Fermienergie. Tatsächlich führt die Anwesenheit di- und trivalenter
Ionen in den Zwischenebenen der Eisengermanide zu einem starken Abflachen bestimmter
elektronischer Zustände in der Nähe des Ferminiveaus. Zudem konnten durch Modifikation
der Kristallstruktur im Bereich der zuvor nur für Ladungsreservoire gehaltenen Alkalia-
tome zwischen den eisenhaltigen Schichten sogar in einem Eisenpniktid ferromagnetische
Tendenzen induziert werden. Obwohl deren mikroskopischer Ursprung noch ungeklärt ist,
zeigt dies, dass das Auftreten von Ferromagnetismus in eisenbasierten Verbindungen auch
nicht von der Anwesenheit von Germanium abhängt, sondern dass ein bis dato unbe-
kannter Effekt am Werk ist, der auch in bereits bekannten supraleitenden Verbindungen
versteckt eine Rolle spielen könnte. Die vorliegende Studie widerlegt die weit verbreitete
Annahme, die Atome zwischen den eisenhaltigen Schichten stellten lediglich Ladungsreser-
voire dar und könnten ansonsten vernachlässigt werden. Stattdessen wird vorgeschlagen,
die üblichen Modelle für eisenbasierte Supraleiter auf alle Konstituenten der kristallografi-
schen Einheitszelle zu erweitern, um zu einem vollständigen Verständnis der Abwesenheit
von Supraleitung in Eisengermaniden zu kommen.
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Abstract

The term superconductivity describes the phenomenon of vanishing electrical resistivity
in a certain material, then called a superconductor, below a critical typically very low
temperature. Since the discovery of superconductivity in mercury in 1911 many other
superconductors have been found and the critical temperature below which superconduc-
tivity occurs could recently be raised to the temperatures encountered in a cold antarctic
winter.

Superconductors are promising materials for applications. They can serve as nearly loss-
free cables for energy transmission, in coils for the generation of high magnetic fields or
in various electronic devices, such as detectors for magnetic fields. Despite their obvious
advantages, the cost for using superconductors, however, depends a lot on the cooling
effort needed to realize the superconducting state. Therefore, the search for a supercon-
ductor with critical temperature above room-temperature, which would avoid the need for
any specialized cooling system, is one of the main projects of contemporary research in
condensed matter physics.

While a theory of superconductivity in simple metals has already been developed in the
1950s, it has meanwhile been recognized that many superconductors are unconventional in
the sense that their behavior does not follow the aforementioned theory. Unconventional
superconductors differ from conventional superconductors mainly by the momentum- and
real-space symmetry of the order parameter, which is associated with the superconducting
state. While conventional superconductors have a uniform order parameter, unconven-
tional superconductors can have an order parameter that bears structure. Of course, alter-
native theoretical descriptions have been suggested, but the discussion on the right theory
for unconventional superconductivity has not yet been settled. Ultimately, this lack of a
general theory of superconductivity prevents a targeted search for the room-temperature
superconductor. Any new theoretical approach must, however, prove its value by correctly
predicting the structure of the superconducting order parameter and further material prop-
erties.

In this work we participate in the search for a theory of unconventional superconductiv-
ity. We discuss the theory of superconductivity mediated by electron-electron interactions,
which has been popular in the last few decades due to its success in explaining various
properties of the copper-based superconductors that emerged in the 1980s. We give a
detailed derivation of the so-called random phase approximation for the Hubbard model in
terms of a diagrammatic many-body theory and apply it in conjunction with low-energy
kinetic Hamiltonians, which we construct from first principles calculations in the frame-
work of density functional theory. Density functional theory is an established technique for
calculating the electronic and magnetic properties of materials solely based on their crystal
structure. Its practical implementations in computer codes, however, do for example not
describe complicated many-electron phenomena like the superconducting state that we are
interested in here. Nevertheless, it can provide important information about the properties
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of the normal state of the material, which superconductivity emerges from. In our theory
we use these information and approach the superconducting state from the normal state.
Such an interfacing of different calculational techniques requires a lot of implementa-

tion work in the form of computer code. Inclusion of the computer code into this work
would consume by far too much space, but since some of the decisions on approximations
in the calculational formalism are guided by the feasibility of the associated computer
calculations, we discuss the numerical implementation in great detail.
One class of materials that we apply our computer codes to are quasi-two-dimensional

organic charge transfer salts. Quasi-two-dimensional organic materials have been a topic
of active research for more than two decades. This family of materials contains many com-
pounds with various polymorphs. Those materials are not only chemically very flexible,
but their properties can also easily be tuned by application of pressure or irradiation. An
example of this tunability is the reversible cooling-rate dependent metal-to-insulator tran-
sition, which has recently been demonstrated experimentally. A multitude of experiments
has also been performed to elucidate the nature of the superconducting state in organic
charge transfer salts, and in particular on the kappa-type materials, which denote a certain
subclass of quasi-two-dimensional organics. Although the consensus seems to be that the
mechanism in these materials must be unconventional, experimental results on the precise
symmetry of the order parameter remain contradictory.
The complex experimental situation in turn can not be reconciled with a theoretical

consensus that predicts a certain symmetry of the order parameter, which is only found
by a fraction of the experiments. Most of those theoretical predictions are, however, based
on a certain simplified model. We construct a model from first principles calculations,
discarding simplifications made in previous studies, and arrive at a description, which
reproduces previously obtained theoretical results in a certain limit. Moreover, we find a
phase-transition between two different symmetries for the order parameter in our model,
which is, therefore, able to explain most of the experimental results in the literature. Our
model has the potential of settling the decades-long discussion about the symmetry of the
superconducting state in kappa-type organic charge transfer salts.
The other class of materials we are interested in are iron-based superconductors. Despite

being a relatively young field of research, iron-based superconductors have been synthe-
sized in a great variety of compositions. Like the quasi-two-dimensional organic materials
they are easily tunable by pressure, but also by charge doping through varied chemical
composition. The behavior of many compounds in this class of materials is still not well
understood. We start by investigating the superconducting state of iron selenide interca-
lated with lithium and ammonia. There are many analogous compounds produced from
other alkaline or alkaline earth atoms and a different solvent. However, they all share the
characteristic that larger separation of the iron selenide layers enhances superconductivity
compared to bulk FeSe and that the superconducting transition temperature seems to be
limited to about 46 Kelvin. We show that superconductivity is enhanced as the larger sep-
aration of the iron selenide layers makes the electronic properties of the material almost
two-dimensional. Furthermore, the exact value of the superconducting transition temper-
ature is tuned by the level of electron doping from the alkaline atoms into the iron selenide
layers. Our study provides important guidance to experimentalists trying to design new
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intercalates of iron selenide.
The second iron-based material we are interested in is KFe2As2 under high pressure.

This material undergoes a large abrupt change in volume, the so-called collapse, at very
high pressures. Such collapsed phases have been observed in other iron pnictides, but
they always turned out to be non-superconducting. However, KFe2As2 features supercon-
ductivity in the collapsed phase at even higher temperatures than in the non-collapsed
low-pressure crystal structure. We explain this behavior by a reconstruction of the elec-
tronic structure upon the volume collapse and the hole doping of KFe2As2 compared to
other iron pnictides.
Finally, we investigate the family of iron germanide materials. These are isoelectronic

and isostructural to iron pnictides and chalcogenides. Based on the fact that their low-
energy electronic structure is virtually identical to that of most iron-based superconductors,
one would also expect iron germanides to be good superconductors. They, however, either
superconduct at much lower temperatures or not at all. Challenging the previous notion
that alkaline or alkaline earth atoms between the iron germanide or iron pnictide layers only
play the role of charge reservoirs, we show that they are decisive in inducing ferromagnetic
tendencies in iron germanides, which in turn suppress superconductivity in this class of
materials. We present an analysis of these ferromagnetic tendencies within the extended
Stoner formalism and demonstrate that ferromagnetism in iron germanides is a general
trait. Using structural modifications only in the interlayer region previously deemed a
charge reservoir, we are able to also induce ferromagnetism in a hypothetical iron pnictide
compound, proving that not even the presence of germanium is a necessary condition
for ferromagnetic tendencies to appear. Our study suggests that the common notion of
interlayer atoms being irrelevant for the physics of iron-based superconductors beyond their
role as charge reservoirs is incorrect. We propose instead that superconductivity in iron-
based materials can only be fully understood based on models that include all constituents
of the crystallographic unit cell.
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Chapter 1

Introduction

In this first chapter Hamiltonians governing the physics of solids, methods to solve these
Hamiltonians, and the phenomenon of superconductivity are discussed. Subsequently, the
classes of materials investigated in this thesis are introduced.

1.1 From the ab initio Hamiltonian to the lattice

description of solids

Solid state systems consist of a collection of atoms, containing positively charged nuclei
and negatively charged electrons. Therefore, the only fundamental interaction of interest
for a solid state physicist is the electromagnetic interaction between the nuclei and the
electrons. The so-called ab initio Hamiltonian describing these interactions is given by

H = Tnuc + Tel + Vnuc−nuc + Vel−el + Vnuc−el (1.1)

= −
∑
α

~2∇2
α

2Mα

−
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j

~2∇2
j

2me

+
1

4πε0
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α<β

ZαZβe
2

|Rα −Rβ|
+
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j<k

e2

|rj − rk|
−
∑
j,α

Zαe
2

|rj −Rα|

)
,

(1.2)

where the first two terms Tnuc and Tel denote the kinetic energy of the nuclei and the
electrons, the terms Vnuc−nuc, Vel−el and Vnuc−el describe the nucleus-nucleus, electron-
electron and nucleus-electron interactions respectively. The term ab initio is used in this
context, because Eq. 1.2 contains the full Coulomb interaction without any approximations.
The main reason why the ab initio Hamiltonian is hard to solve lies in the nature of

the interaction term, through which each particle in the system of interest interacts with
all other particles in that system. Therefore, the Hamiltonian cannot be separated into
one-particle contributions and the problem has to be solved within a full many-body de-
scription. An exact solution of this problem is only feasible for few numbers of interacting
particles, such as in small molecules, because the state space within a full quantum me-
chanical description grows exponentially with the number of involved particles.
For this reason, constructing an optimal approximate solution to the full ab initio prob-

lem is one of the key objectives of solid state physics. The most basic, although optional,
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simplification of Eq. 1.2 is the decoupling of ion and electron dynamics, which goes by the
name of Born-Oppenheimer approximation. Further approximations can be introduced
either in the form of approximate algorithms for solving the full ab initio problem or by
treating an effective problem in a reduced state space.
Today, the first approach is widely used under the label of density functional theory

(DFT), which exactly reformulates the ab initio problem in a form that is amenable for
numerical approximations to the interaction terms. Density functional theory programs
are commercially available and employed to solve problems ranging from dye chemistry to
the magnetic properties of crystals.
The alternative route, i.e. solving effective problems, is often taken by solid state physi-

cists. In crystalline systems the discrete nature of the atomic positions can be exploited
to formulate an effective lattice problem, replacing the continuum ab initio Hamiltonian
(Eq. 1.2). In second quantization the effective lattice Hamiltonian including one- and
two-electron terms is given by

H = −
∑
ijσ

tijc
†
iσcjσ +

∑
ijklσσ′

V jk
il c

†
iσc

†
jσ′ckσ̄′clσ, (1.3)

where σ denotes the spin of the electrons and {i, j, k, l} are generalized lattice site and
atomic orbital indices. The operators c†iσ and ciσ create and annihilate an electron with
spin σ on the lattice site and orbital indexed by i. The nature of the atoms on the crystal
lattice is now encoded in the effective parameters tij and V jk

il . Usually, the treatment is
restricted to a small number of active orbitals, which considerably simplifies the problem.
Such simplifications are often justified based on a separation of energy scales. For example,
electrons strongly bound in low-energy states cannot be expected to play a role in processes
that involve energies orders of magnitude smaller than the binding energy.
The challenge is now to choose the set of active orbitals and interaction terms so that

the physics of interest is correctly described. This difficult problem is at the heart of what
is called modelling a physical system. In this thesis a hybrid approach is taken, where
the one-electron terms tij are calculated within a restricted subset of states using density
functional theory, and the two-electron interaction terms are treated as parameters.
By restricting the two-electron interaction terms to intra-atomic processes, which means

discarding off-site interactions, the problem is reduced to the multi-orbital Hubbard Hamil-
tonian

H =H0 +Hint

=−
∑

i,j,l1,l2σ

tl1l2ij c†il1σcjl2σ + U
∑
i,l

nil↑nil↓ +
V

2

∑
i,l1,l2 6=l1

nil1nil2

− J

2

∑
i,l1,l2 6=l1

Sil1 · Sil2 +
J ′

2

∑
i,l1,l2 6=l1,σ

c†il1σc
†
il1σ̄
cil2σ̄cil2σ,

(1.4)

where i, j now denote only lattice sites, the li denote atomic orbitals and σ is the spin of
the electrons. The number operator is given by nilσ = c†ilσcilσ. The interaction parameters
are the intra-orbital Coulomb repulsion (U), the inter-orbital Coulomb repulsion (V ), the
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Hund’s rule coupling (J) and the pair-hopping term (J ′). Effective Hamiltonians of this
form are routinely considered in the modelling of transition metal compounds.
In cases where only one orbital per lattice site is relevant, the problem can be simplified

to take the form of the single-orbital Hubbard Hamiltonian

H = H0 +Hint = −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (1.5)

where only the hopping and intra-orbital Coulomb repulsion terms remain. This type of
Hamiltonian is the minimal model for the physics of strongly correlated electrons and often
used in the context of cuprate or organic superconductors.

1.2 Superconductivity

Superconductivity is a quantum mechanical phenomenon that manifests itself macroscopi-
cally in the total vanishing of electrical resistivity and the perfect expulsion of any magnetic
fields from a sample. After the initial 1911 discovery of superconductivity in mercury be-
low a temperature of 4.2 K [1] many other elements and more complex materials have been
found to superconduct below a material-specific critical temperature Tc [2].
The phenomenon gained widespread attention with the advent of copper-based high-

temperature superconductors [3], which were quickly improved to superconduct above the
boiling point of nitrogen (77 K) [4], allowing the switch from liquid helium to this much
cheaper cooling medium. Meanwhile, the record critical temperature has been raised to
203 K in sulfur hydride under extremely high pressures [5]. Devices built from superconduc-
tors comprise sensitive magnetometers, power cables and superconducting electromagnets,
such as those used in magnetic resonance imaging.
The first microscopic theory of superconductivity was developed by Bardeen, Cooper

and Schrieffer (BCS) in 1957 [6]. It is built around the idea that the interaction between
electrons and lattice vibrations, called phonons, can lead to an effective attraction between
electrons. The ground state of the superconductor is formed by bound pairs of electrons
with opposite momentum k and spin σ, whose average excitation energy above the Fermi
sea is about ∆ = kBTc. Therefore, unlike conduction electrons in a metal, these so-called
Cooper pairs do not scatter, which explains the lack of resistivity at temperatures below
Tc. For historical reasons, superconductors that follow the predictions of the BCS theory or
its extensions are called conventional. This class comprises, for example, elements, simple
alloys and hydrogen-rich materials.
Obviously, there are also several classes of unconventional superconductors, where the

electron pairing is not believed to be of phononic origin. This class of materials comprises,
for example, cuprates, organic charge transfer salts and iron-based compounds. For all of
these materials the electron pairing mechanism has been speculated to have a magnetic
origin [7]. Physics of this kind is contained in the Hubbard Hamiltonian (Eq. 1.5), which
describes repulsive interactions in real-space. When Fourier transformed into momentum
space, these interactions can however be attractive for certain regions in k-space and lead
to electron pairing. In multi-orbital models (Eq. 1.3 and 1.4) several interaction terms
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Figure 1.1: Structural formula of the bis-ethylenedithio-tetrathiafulvalene (BEDT-TTF
or ET) molecule. The outermost carbon atoms are implied to bond to two
hydrogen atoms each.

compete with each other, but again the electron-electron interaction can become attractive
in momentum space.
A complete microscopic theory of superconductivity mediated by magnetic fluctuations

has not been developed yet, because of difficulties in solving realistic multi-orbital Hamil-
tonians. Even the single-orbital Hubbard model poses a considerable challenge and no
exact solution exists in dimensions larger than one. Therefore, a variety of approximations
has been introduced, based on which some properties of unconventional superoconductors
can be calculated.
While conventional superconductors feature a near uniform excitation gap ∆, a momen-

tum dependence of this excitation gap is a hallmark of unconventional superconductivity.
In cuprate superconductors it has been established experimentally that the gap ∆k goes
to zero in so-called nodal regions and changes sign under rotation by 90 degrees [8]. Usu-
ally, the symmetry of the superconducting gap is classified using spherical harmonics. For
example, the superconducting order parameter in cuprates has a dx2−y2 symmetry.
The symmetry of the superconducting gap, and in particular the nodal structure, cru-

cially influences thermodynamic and transport properties in unconventional superconduc-
tors. Therefore, most theoretical studies concentrate on predicting the symmetry of the
superconducting state, which is a qualitative property, instead of trying to quantitatively
predict the critical temperature, which strongly depends on the approximations employed.

1.3 Kappa-type organic charge transfer salts

A charge transfer complex is comprised of molecules which exchange charges and get
stabilized by the resulting electrostatic forces. The electron donor molecules are called
cations, while the electron acceptors are called anions. Some charge transfer complexes
can condense in crystallized form.
Many different donor molecules are available and form crystals with certain electron

acceptor complexes. The electron donor complex of central interest for this thesis is
bis-ethylenedithio-tetrathiafulvalene (C10H8S8), often abbreviated as BEDT-TTF or ET,
which is shown in Fig. 1.1. The molecule contains three double bonds, so that it can easily
donate electrons to an acceptor molecule. A wide variety of acceptor complexes exists,
many of them forming polymeric chains.
The combination of ET donors and various acceptor molecules yields a large family of

materials, the ET-based organic charge transfer salts. Interestingly, the ET molecules
can be packed in various different ways that result in distinct physical behavior [9]. The
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Figure 1.2: (a) Schematic three-dimensional arrangement of ET molecules (depicted as
blue plates) and anions (red plates) within an organic charge transfer salt.
Figure adapted from Ref. [10]. (b) Various possible packing motifs (top view)
within the two-dimensional ET layer. The unit cells are shown as grey shaded
areas. Figure adapted from Ref. [9].

compound name usually carries a prepended greek letter indicating the packing motif, for
example κ-(ET)2I3, because many organic charge transfer salts exist as polymorphs.

Materials based on ET are often called quasi-two-dimensional for the reason that they
feature a layered structure of donors and insulating acceptors. The schematic crystal
structure and some packing motifs of the donor layer are shown in Fig. 1.2. The focus of
the present thesis lies on the κ-motif, in which dimers of ET molecules donate one electron
to the anion layer, which in turn becomes insulating. The ET molecules are connected in
a quasi-two-dimensional network consisting of dimers rotated with respect to each other.
On average half a hole resides on each ET molecule.

Based on the fractional band filling one would expect metallic conductance for κ-type
materials. Experimentally they are however found to show a wide variety of behaviors
including bad metallicity, Mott insulator, unconventional superconductor and quantum
spin-liquid [9, 11–15], which can be tuned by the application of pressure. The competi-
tion of many exotic states of matter is the hallmark of organic charge transfer salts and
other quasi-two-dimensional materials. Similarities between the superconducting states of
cuprates and organics have been noted in the literature [16].

The current theoretical understanding of κ-type organics is based on the anisotropic
triangular lattice model with on-site Coulomb repulsion (see Eq. 1.5), also called the
anisotropic triangular lattice Hubbard model. Obviously, this model does not correspond
to the complex geometry of the κ-layer shown in Fig. 1.2. However, the anisotropic trian-
gular lattice Hubbbard model can be obtained as a simplification of a realistic Hamiltonian
in a certain limit [17, 18].

The anisotropic triangular lattice Hubbard model has been quite successful at explaining
the overall phase-diagram of κ-type organics, reproducing the bad metal, Mott insulator
and quantum spin-liquid ground states observed in experiment. Many theoretical meth-
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(a) (b)

Figure 1.3: Phase diagram of the anisotropic triangular lattice Hubbard model calculated
using (a) the path-integral renormalization group [23] and (b) cluster dynam-
ical mean field theory [25]. The parameter t′/t is the ratio of the hopping
amplitudes on a triangle, where t′ is associated with one side of the triangle
and t with the other two sides. A perfect triangular lattice is reached in the
limit t′/t = 1. The parameter U/t controls the strength of the Coulomb re-
pulsion. The phases encountered are antiferromagnetic insulator (AFI, AF),
non-magnetic insulator (NMI, SL), paramagnetic metal (PM, M) and d-wave
superconductor.

ods, such as the fluctuation-exchange approximation (FLEX) [19–22], the path-integral
renormalization group [23], cluster dynamical mean field theory [24–26], variational Monte
Carlo [27–30] and exact diagonalization [31, 32] have been used to calculate the phase
diagram of the anisotropic triangular lattice Hubbard model and they all roughly agree
with each other (see Fig. 1.3).

Currently, the existence of a superconducting phase in the anisotropic triangular lattice
Hubbard model is controversial. Those studies that do find evidence for superconductivity
(see for example Refs. [19, 25]) predict it to have the same type of d-wave order parameter
as in high-temperature cuprate superconductors [7].

Interestingly, the experimental situation is even more confusing. Even though su-
perconducting κ-type charge transfer salts have been investigated in studies of specific
heat [12, 33–37], surface impedance [38], thermal conductivity [39], millimeter-wave trans-
mission [40], scanning tunneling spectroscopy (STS) [41–44] and elastic constants [45],
the nature of superconductivity or even the symmetry of the order parameter could not
be determined definitely yet. Some of the experiments are in favor of s-wave symme-
try [12, 33, 34], while other studies have proposed d-wave states with contradictory posi-
tions of the nodes in the superconducting order parameter [35–43]. Evidence for a mixed-
symmetry order parameter was recently provided in Refs. [44, 45] and evidence for phase
separation of different d-wave states has recently been reported in Ref. [43].

Furthermore, a reversible cooling-rate dependent metal-to-insulator transition has re-
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KFe As

Figure 1.4: (a) Characteristic iron-arsenide layer of iron-based superconductors. For the
central iron atom the imperfect tetrahedral coordination of the surround-
ing arsenic atoms is visible. (b) Crystal structure of KFe2As2, which is a
representative of the 122 family of iron pnictides.

cently been observed in κ-(ET)2Cu[N(CN)2]Br [46–48]. It has been associated with a
freezing of intramolecular degrees of freedom, namely the orientation of ethylene end-
groups within an ET molecule. With the exception of Ref. [49], this effect has surprisingly
been interpreted as a sole consequence of lattice disorder, although a metal-to-insulator
transition controlled by geometric frustration and correlation strength is present in the
anisotropic triangular lattice Hubbard model (see Fig. 1.3). The effect of different molec-
ular conformations on the electronic structure of κ-type charge transfer salts has been
investigated in a single material using the extended Hückel method [50]. For ET molecules
in vacuum more calculations are available [48, 51, 52].
Within this thesis the origin of the reversible cooling-rate dependent metal-to-insulator

transition and the symmetry of the superconducting pairing are clarified within a theoret-
ical approach.

1.4 Iron-based superconductors

Superconductivity in iron-based materials was initially discovered in 2008 in the layered
LaO1−xFxFeAs compound [53]. Subsequently, a large variety of materials containing either
layers of iron and pnictogen atoms or iron and chalcogen atoms have been synthesized [54].
The prototypical crystal structure is shown in Fig. 1.4. The near-tetrahedral pnictogen
or chalcogen environment of the iron atoms leads to a splitting of the iron atomic energy
levels, so that only dxz and dyz remain degenerate. A large energy gap exists between
the t2g (dxy, dxz, dyz) and eg (dx2−y2 , dz2) states. Minor energy gaps are induced within
these manifolds by the distortion of the tetrahedra. Therefore, the physics of iron-based
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(a) (b)

Figure 1.5: (a) Schematic phase diagram of Ba1−xKxFe2As2 [56]. Upon replacement of
barium by potassium, which increases the nominal oxidation state of iron
from Fe2+ to Fe2.5+, the ground state evolves from an antiferromagnetic metal
to a high-temperature s-wave superconductor at intermediate doping and
finally to a low-temperature d-wave superconductor in the KFe2As2 limit.
(b) Pressure phase diagram of Ca(Fe0.972Co0.028)2As2 [57], in which a metallic
antiferromagnet evolves into a superconductor and finally into a metallic
volume-collapsed phase with increasing pressure.

superconductors is a multi-orbital problem.

Most iron pnictides and chalcogenides can be classified in so-called families, which share
a common structural motif and nominal chemical composition. For example, materials
like BaFe2As2, CaFe2As2 and KFe2As2 are called the 122-family of iron pnictides. LiFeAs
and NaFeAs are typical representatives of the 111-family and LaOFeAs is the prototypical
compound of the 1111-family. Because the nominal charge distribution in iron arsenide
layers is Fe2+As3− or Fe2.5+As3−, additional atoms or layers, which are often insulating,
must reside between the iron arsenide layers for charge neutrality. Iron selenide is the
most important member of the 11-family. It does not need any spacer layer, because the
nominal charge distribution is Fe2+Se2−. However, spacer layers can also be inserted into
iron selenide, which leads to so-called intercalates [55].

Often the spacer layers can be modified chemically, so that they inject or remove elec-
trons from the iron pnictide or iron chalcogenide layer without introducing defects in the
conductive layer. Such modifications are crucial in establishing high-temperature super-
conductivity, as most stoichiometric iron arsenide compounds (so-called parent compounds)
are antiferromagnetic metals (see Fig. 1.5). The highest value of the superconducting tran-
sition temperature Tc achieved by electron doping of bulk materials is roughly 55 K in iron
pnictides [58] and slightly lower in iron chalcogenides. Strongly electron-doped monolayers
of iron selenide have also received a lot of attention, because they were recently reported
to show superconductivity above 100 K [59]. Iron-based superconductors are however not
only sensitive to charge doping, but also to pressure, which can be used to tune between
different ground states (see Fig. 1.5).
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The situation in iron pnictides and chalcogenides is decidedly different from that in iron
germanide materials, which are isoelectronic and isostructural to the parent compounds of
iron-based superconductors. Iron germanides are either non-supercon-ducting [60–63] or
have been reported to superconduct at very low temperatures [64, 65].
Superconductivity in iron-based materials has become a vast field of research, where

questions are often centered on the behavior of materials as a function of temperature,
pressure or charge doping. Since a complete theory of superconductivity in these materials
is currently missing, many slightly different theoretical approaches have been developed to
explain the properties of individual materials or entire sub-families. Fortunately, density
functional theory, a standard theoretical method, has been applied to iron-based super-
conductors with great success.
However, to obtain information on the superconducting state, further calculations are

necessary. The model usually considered in this context is the multi-orbital Hubbard
model (Eq. 1.4), which is very hard to solve because of the rapid growth of the Hilbert
space with system size. Therefore, adequate approximations have been developed, which
usually rely to some degree on input from density functional theory to take into account
the material-specific details.
Within this thesis one of these approximations will be used to elucidate the importance

of electron doping for high-temperature superconductivity in intercalated iron selenide and
to investigate the pairing symmetry of KFe2As2 under pressure. Furthermore, a hidden
ferromagnetic instability in iron-based superconductors is uncovered, which suppresses
superconducting transition temperatures in iron germanides and is expected to be an
important ingredient in a quantitative theory of superconductivity in iron-based materials.
Alternatives to the microscopic modelling attempted in this work exist in the form of

effective Ginzburg-Landau type models for the phase transitions in iron-based materi-
als [66–68]. These do not attempt to model materials based on atomic electronic states,
but rather rely on the important symmetries of the problem to explain the qualitative
phenomena instead of trying to generate quantitative results.





Chapter 2

Density functional theory

Density functional theory (DFT) is a standard method for solving the many-electron prob-
lem. It is a formally exact reformulation of the ab initio Hamiltonian based on the idea
that any property of a system of many interacting particles can be viewed as a functional
of its ground state density [69].
Although the reformulation is formally exact, any practical implementation of density

functional theory has to rely on approximations to the electron-electron interaction and
has to expand the electronic wavefunctions in a certain basis set. The precise nature of
these approximations is a matter of choice, which is usually associated with a tradeoff
between accuracy and computation time.
Within this chapter the theoretical foundations of density functional theory and as-

pects of practical implementation are explained. Furthermore, the prediction of crystal
structures and the construction of lattice Hamiltonians from density functional theory are
discussed. The presentation within this chapter is based on Ref. [69].

2.1 Born-Oppenheimer approximation

The first step in making the treatment of the ab initio Hamiltonian (Eq. 1.2) feasible is
the decoupling of the nuclei and the electronic degrees of freedom, which goes by the name
of Born-Oppenheimer approximation [70]. It is based on the idea that the dynamics of the
nuclei is much slower than the electron dynamics, because the ratio of the electron mass
over the nuclear mass is about m/M ∼ 10−4 to 10−5.
Neglecting the kinetic energy of the nuclei, the ab initio Hamiltonian can be written as

Hel = Tel(r) + Vnuc−nuc(R) + Vel−el(r) + Vnuc−el(r, R) (2.1)

= −
∑
j

~2∇2
j

2me

+
1

4πε0

(∑
α<β

ZαZβe
2

|Rα −Rβ|
+
∑
j<k

e2

|rj − rk|
−
∑
j,α

Zαe
2

|rj −Rα|

)
, (2.2)

where r = {r1, r2, . . . , rNel
} denotes the set of all electron positions and R = {R1,R2, . . . ,

RNnuc} denotes the set of all nuclear positions.
Assuming that the Schrödinger equation associated with Eq. 2.2 can be solved for a fixed

set of nuclear parameters R, the solution is given by

Hel φα(r, R) = εα(R)φα(r, R), (2.3)
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where α denotes a set of electronic quantum numbers and φα(r, R) is the electronic wave-
function, which depends on the nuclear configuration R in a parametric way. Note how
fixing the nuclear environment has effectively reduced the full problem of nuclei and elec-
trons to finding the electronic configuration within a fixed external potential provided by
the nuclei.
Of course, the solution ψ(r, R) of the full ab initio Hamiltonian (Eq. 1.2) can be recovered

from the solution of Eq. 2.3 as

H ψ(r, R) = E ψ(r, R), (2.4)

because the full wavefunction ψ(r, R) can be expanded in terms of the solutions φα(r, R)
of the electronic problem for each fixed set of nuclear parameters R.

ψ(r, R) =
∑
α

χα(R)φα(r, R) (2.5)

Here, χα(R) are the R-dependent expansion coefficients for each set of electronic quan-
tum numbers α. The summation over α is necessary for taking into account all possible
configurations of the electronic system.
Within this framework the secular equation (Eq. 2.4) can be rewritten as

0 = (H − E)ψ(r, R) = (Hel + Tnuc − E)ψ(r, R) (2.6)

=
∑
α

(εα(R) + Tnuc − E)χα(R)φα(r, R), (2.7)

where we inserted the expansion of the full wavefunction (Eq. 2.5) and used the electronic
Schrödinger equation (Eq. 2.3). This reformulation is formally exact and the complexity
of the problem is still present, but hidden in the expansion coefficients χα(R).
The objective is now to find a good approximation to these expansion coefficients that

allows for an effective separation of electronic and nuclear dynamics. We start by integrat-
ing out the electronic degrees of freedom after multiplying Eq. 2.7 with φ∗

β(r, R) from the
left.

0 =
∑
α

∫
dr φ∗

β(r, R) (Hel + Tnuc − E)χα(R)φα(r, R) (2.8)

= [εβ(R)− E]χβ(R) +
∑
α

∫
dr φ∗

β(r, R)Tnuc χα(R)φα(r, R)︸ ︷︷ ︸
=Tnuc χβ(R)+

∑
α

Aβα(R)χα(R)

(2.9)

Neglecting the matrix elements Aβα(R), a step which will be justified at the end of this
section, we obtain an effective Schrödinger equation for the expansion coefficients χα(R)
given by

[Tnuc + εβ(R)]χβ(R) = E χβ(R), (2.10)

where the eigenenergies εβ(R) of the reduced Hamiltonian (Eq. 2.2) take the role of an
effective potential for the nuclei.
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Using these results, a recipe for solving the full ab initio Hamiltonian can now be for-
mulated, provided that the nuclear positions R are known:

1. Solve the electronic Schrödinger equation (Eq. 2.3) within the fixed external potential
provided by the nuclei.

2. Solve the effective Schrödinger equation (Eq. 2.10) for the expansion coefficients of
the full wavefunction.

3. Reconstruct the full wavefunction from Eq. 2.5.

In case the configuration of the nuclei is not known, a self-consistent cycle of these steps
might be necessary, where, based on a trial set of R, successively improving approximations
for R are calculated from step 3 and re-inserted in step 1 until the full wavefunction
converges. This formalism can be used to predict the spatial distribution of atoms within
molecules and crystals, which is discussed in one of the following sections.
Now we are left with the task of providing a justification for neglecting the matrix

elements Aβα(R), which are given by

Aβα(R) = − ~2

2MR

∑
α

∫
dr

[
2φ∗

β(r, R)
∂φα(r, R)

∂R

∂

∂R
+ φ∗

β(r, R)
∂2φα(r, R)

∂R2

]
(2.11)

=
1

2MR

∑
α

∫
dr
[
2φ∗

β(r, R) (pR φα(r, R)) pR + φ∗
β(r, R)

(
p2Rφα(r, R)

)]
. (2.12)

The pR are the momentum operators acting within the Hilbert space of the nuclei. The R-
dependence of the electronic wavefunctions φα(r, R) stems mostly from the electron-nucleus
interaction, which depends only on the relative distance between electron and nucleus (see
Eq. 2.2). Therefore, we can transform the momentum operators pR that act on φα(r, R)
into pr, which acts within the Hilbert space of the electrons. Within this approximation
we calculate the expectation value for Aβα(R), which is given by∑

αβ

χβ(R)Aβα(R)χα(R) ∝
1

M
〈pel〉〈pnuc〉+

1

2M
〈p2el〉. (2.13)

Now we need approximations for the kinetic energy of the electrons and the nuclei.
Assuming an effective harmonic potential for the nuclei and one Hartree (1Ha = me4/~2)
as the energy scale of the kinetic energy of the electrons, we can roughly estimate the
kinetic energy of the nuclei. We assume one Bohr, denoted by a0 = ~2/(me2) as the
typical displacement of nuclei from their equilibrium position. The kinetic energy of the
nuclei is then given by

Tnuc ≈ ~
√
Tel/a20
M

=

√
m

M
Tel. (2.14)

The second term on the right-hand side of Eq. 2.13 is a factor m/M smaller than the
kinetic energy of the electrons and therefore also a factor

√
m/M smaller than the kinetic
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energy of the nuclei. Using
√
TnucTel ≈

√
m/M〈pnuc〉/〈pel〉 and Eq. 2.14, the first term on

the right-hand side of Eq. 2.13 can be approximated by

1

M
〈pel〉〈pnuc〉 ≈

1

M
4

√
m

M
〈pnuc〉2 ≈ 4

√
m

M
Tnuc. (2.15)

Therefore, the expectation value of Aβα(R) is at least one order of magnitude smaller than
the kinetic energy of the nuclei, which should again be about two orders of magnitude
smaller than the kinetic energy of the electrons. This justifies neglecting the contribution
from Aβα(R) in Eq. 2.9 and, therewith, the decoupling of electron and nucleus dynamics
within the Born-Oppenheimer approximation.

In this section we assumed that Eq. 2.3 can in principle be solved, but we did not specify
how this is done in practice. Formulating the electronic problem in a way that it can be
solved is the objective of the next section.

2.2 Foundations of density functional theory

2.2.1 Hohenberg-Kohn theorem

The basic theorems of density functional theory, which establish the unique connection
between ground state density and external potential, were introduced by Hohenberg and
Kohn in 1964 [71]. They are valid for any kind of particles, possibly with complicated
interactions, moving in a fixed external potential. Therefore, they naturally apply to the
problem of interacting electrons moving in the potential provided by fixed nuclei. The
presentation of the theorems and proofs closely follows Ref. [69].

Theorem 1. The external potential Vext(r) of any system of interacting particles is deter-
mined uniquely, except for a constant, by the ground state particle density n0(r).

Proof. The proof proceeds by reductio ad absurdum. We assume that there are two external
potentials V

(1)
ext (r) and V

(2)
ext (r), which differ by more than a constant, but lead to the same

ground state density n0(r). If the external potentials are different, so are the corresponding
Hamiltonians H(1) and H(2) and the corresponding ground state wavefunctions ψ(1) and
ψ(2). Assuming that the ground state is non-degenerate, we obtain the inequality

E(1) = 〈ψ(1)|H(1)|ψ(1)〉 < 〈ψ(2)|H(1)|ψ(2)〉, (2.16)

which holds because ψ(2) is not the ground state wavefunction of H(1). The last term in
Eq. 2.16 can be rewritten as

〈ψ(2)|H(1)|ψ(2)〉 = 〈ψ(2)|H(2)|ψ(2)〉+ 〈ψ(2)|H(1) −H(2)|ψ(2)〉 (2.17)

= E(2) +

∫
dr
[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r). (2.18)
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As Eq. 2.16 is also true under exchange of indices (1) and (2), we obtain two inequalities
by inserting Eq. 2.18.

E(1) < E(2) +

∫
dr
[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r) (2.19)

E(2) < E(1) +

∫
dr
[
V

(2)
ext (r)− V

(1)
ext (r)

]
n0(r) (2.20)

Adding Eqs. 2.19 and 2.20 a contradiction is obtained.

E(1) + E(2) < E(2) + E(1) (2.21)

Therefore, the external potential Vext(r) is uniquely determined by the ground state density
n0(r).

Corollary 1. It follows that the many-body wavefunction for ground and excited states
of that system is determined by the ground state particle density n0(r). Therefore, all
properties of the system are completely determined by the ground state particle density
n0(r).

Proof. Theorem 1 states that the Hamiltonian is uniquely determined by the ground state
density n0(r). Therefore, the corresponding set of ground state and excited state wavefunc-
tions can be obtained as eigenfunctions of the associated Schrödinger equation (Eq. 2.3).
Based on these many-body wavefunctions any property of the system can be calculated.

Theorem 2. A universal energy functional E[n] in terms of the density n(r) can be defined
and is valid for any external potential Vext(r). For any particular external potential Vext(r)
the exact ground state energy of the system is the global minimum value of this functional
and the density n(r) that minimizes the value of the energy functional is the exact ground
state density n0(r) of the system.

Proof. Corollary 1 states that all properties of the system are determined by the ground
state density n0(r). Therefore, the kinetic energy and the energy contribution from
electron-electron interaction can be viewed as a functional of the particle density n. In
analogy to the Hamiltonian given by Eq. 2.1 we define an energy functional.

EHK[n] = Tel[n] + Enuc-nuc + Eel-el[n] +

∫
drVext(r)n(r) (2.22)

= FHK[n] +

∫
drVext(r)n(r) + Enuc-nuc (2.23)

The Hohenberg-Kohn functional FHK[n] contains the kinetic energy of the electrons and
the electron-electron interaction term. By construction this functional is universal for all
electronic systems, since the constituent terms are functionals only of the electron density.
Now we take a ground state density n(1)(r) corresponding to an external potential

V
(1)
ext (r). This fixes the unique ground state energy E(1), which is equal to the value of

the energy functional for that density.

E(1) = EHK[n
(1)] = 〈ψ(1)|H(1)|ψ(1)〉 (2.24)
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Considering some other density n(2) with associated wavefunction ψ(2) leads to an inequal-
ity, if we substitute ψ(2) into Eq. 2.24, since ψ(2) is not the ground state wavefunction of
H(1).

E(1) = 〈ψ(1)|H(1)|ψ(1)〉 < 〈ψ(2)|H(1)|ψ(2)〉 = E(2) (2.25)

Therefore, it is clear that the value of the energy functional EHK[n] for any density that is
not the ground state must be larger than the ground state energy. Therefore, the functional
EHK[n] has a unique global minimum for n = n0(r).

Corollary 2. The functional E[n] alone is sufficient to determine the exact ground state
energy and density.

Proof. The value of the energy functional for a particular density configuration n(r) can
be obtained from Eq. 2.23. It follows from theorem 2 that a minimization of the energy
functional EHK[n] with respect to the density n(r) yields the ground state density n0(r).

The Hohenberg-Kohn theorem however provides no practical way to find the ground
state density and in particular still requires the evaluation of the full electron-electron
interaction (see Eq. 2.23), as well as the many-body Schrödinger equation (see Eq. 2.3) in
order to obtain the many-body wavefunction and calculate any properties of the system
beyond the ground state density. These shortcomings are addressed in the next subsection.

2.2.2 Kohn-Sham auxiliary system

In order to devise a feasible calculational method from the formally exact Hohenberg-Kohn
theorem further developments are necessary. The most serious problem of the Hohenberg-
Kohn method is that a full solution of the many-body Schrödinger equation is still required
to calculate properties of the system of interest.
The Kohn-Sham approach, formulated in 1965 [72], is to replace the interacting prob-

lem (Eq. 2.2) by an effective non-interacting problem, which has the same ground state
density, but is much easier to solve, as it only involves single-particle wavefunctions in a
much smaller Hilbert space. However, as density is the basic variable, the properties of
the original interacting system and the Kohn-Sham auxiliary system are identical. The
existence of the auxiliary non-interacting system is not obvious and has to be put as an
assumption for which no rigorous proof exists. Therefore, the Kohn-Sham approach can
be summarized as a set of two assumptions.

Assumption 1. The exact ground state density can be represented by the ground state
density of an auxiliary system of non-interacting particles.

Assumption 2. The auxiliary Hamiltonian consists of the kinetic energy operator and an
effective local potential Veff(r).

Following this prescription, we define the Kohn-Sham energy functional EKS[n] in anal-
ogy to the Hohenberg-Kohn energy functional (Eq. 2.23).

EKS[n] = FKS[n] +

∫
drVext(r)n(r) + Enuc-nuc (2.26)
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The functional FKS[n] contains the kinetic energy of the electrons and their interaction
with the effective potential, which replaces the complicated electron-electron interaction
term. In particular, the functional FKS[n] can be written as the sum of the kinetic energy
functional Tel[n], the Hartree energy functional EHartree[n], which describes the classical
Coulomb interaction of a density with itself, and all other electron-electron interactions,
which are put into the exchange-correlation functional Exc[n].

FKS[n] = Tel[n] + EHartree[n] + Exc[n] (2.27)

The Hartree contribution can be calculated explicitly from the charge density distribution
n(r).

EHartree[n] =
1

8πε0

∫
dr dr′

n(r)n(r′)

|r− r′|
(2.28)

In practical calculations it is more convenient to deal with the problem of solving an equa-
tion instead of finding the ground state density distribution n(r) by optimizing the value of
the energy functional. Therefore, we construct the Kohn-Sham Hamiltonian HKS(r) and
the corresponding Schrödinger-like equation by taking the variation of the Kohn-Sham
energy functional EKS[n] (Eq. 2.26 and 2.27) with respect to the wave function and in-
troducing energy eigenvalues εi as Lagrange multipliers. The Kohn-Sham Hamiltonian is
given by

HKS(r) = − ~2

2me

∑
j

∇2
j +

δEHartree[n]

δn(r)
+
δExc[n]

δn(r)
+ Vext(r) (2.29)

= − ~2

2me

∑
j

∇2
j + VHartree(r) + Vxc(r) + Vext(r)︸ ︷︷ ︸

=VKS(r)

, (2.30)

while the corresponding Schrödinger-like equation reads

(HKS(r)− εi)ψi(r) = 0. (2.31)

Although the Kohn-Sham Schrödinger-like equation (Eq. 2.31) is formally similar to the
full many-body Schrödinger equation (Eq. 2.3), the Kohn-Sham equation is much easier
to solve, because it only involves single-particle wavefunctions coupled effectively through
the exchange-correlation potential Vxc(r), whereas the many-body Schrödinger equation
includes these exchange and correlation processes explicitly in the many-body wavefunc-
tion.
Nevertheless, the exchange-correlation functional contains in principle the full complex-

ity of the original many-body problem. However, it turns out that the explicit separation
into kinetic energy, long-range Hartree interaction and exchange-correlation term makes it
possible to approximate Exc[n] by a nearly local functional.
Eventually, it is evident that the Kohn-Sham equation has to be solved self-consistently,

because the Hartree and exchange-correlation potentials depend on the electron density,
which is the result we are looking for. The recipe for obtaining the ground state density
distribution n(r) can be summarized as follows:
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1. Propose an initial electron density n(r).

2. Solve the Kohn-Sham equation (Eq. 2.31) to obtain the eigenfunctions ψi(r).

3. Calculate the new density from the wavefunctions via n(r) =
∑
i

|ψi(r)|2.

4. If initial and calculated density do not agree based on a certain measure, restart from
step 1 using the calculated density as the new initial density.

The wavefunctions ψi(r) and energy eigenvalues εi obtained with the converged ground
state density n0(r) are usually interpreted as eigenstates and eigenenergies of the original
many-body Hamiltonian. However, this interpretation can not be justified rigorously, just
like the entire Kohn-Sham ansatz.
The two most important practical aspects of solving the Kohn-Sham equation are the

choice of approximation for the exchange-correlation functional and the choice of wave-
function basis set. These are elucidated in the next sections.

2.3 Practical approximations

2.3.1 Local density approximation

The local density approximation (LDA) mimics the exact exchange-correlation functional
Exc[n], which can in principle depend on the electron density in a non-local way, by a local
functional ELDA

xc [n].

Exc[n] ≈ ELDA
xc [n] =

∫
drn(r) εLDA

xc

(
n(r)

)
(2.32)

The value of εLDA
xc

(
n(r)

)
as a function of the density n(r) can be calculated from the

homogeneous electron gas, which has the property of full locality by construction. The
homogeneous electron gas has been solved with stochastic methods [73] and analytic rep-
resentations of the resulting dependence of the exchange-correlation energy on the density
are available [74].
Although the density distribution in real systems might be inhomogeneous, density func-

tional theory in the local density approximation still gives reasonable results. That is the
case, because the homogeneous electron gas is just an intermediate trick to obtain a local
expression for the exchange-correlation energy, which can be evaluated like a function of
the density n(r) at any point in space. The actual density distribution in DFT-LDA can
still be inhomogeneous and the validity of this approximation is only limited by the extent
to which the true exchange-correlation functional Exc[n] is non-local in the density.
Of course, such a treatment is not without problems. First, there is in general no way

to know the error of an approximation to the exchange-correlation functional, except for
a few cases where an exact solution is available. Second, the tendency towards electron
localization is systematically underestimated, which leads to too large bandwidths and
the absence of Mott insulating behavior in LDA. Therefore, many strongly correlated
electron systems are predicted to be metallic in LDA, while they are in reality insulating.
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For example, LDA overestimates the bandwidth of iron states in iron-pnictides by about
a factor of three and predicts all κ-type organics as metallic, while some of them are
insulating. Superconducting pairing is also not included in LDA. Calculations for systems
with spin-polarization are however possible by introducing spin explicitly into the Kohn-
Sham equation.

2.3.2 Generalized gradient approximation

The generalized gradient approximation (GGA) improves upon LDA by taking into ac-
count also powers of the gradient of the density |∇mn|. Within the generalized gradient
approximation the exchange-correlation functional can be written as

Exc[n] ≈ EGGA
xc [n] =

∫
drn(r) εGGA

xc

(
n(r), |∇n(r)|, |∇2n(r)|, . . .

)
. (2.33)

Of course there are many ways in which such an approximation can be constructed. There-
fore, many variants of GGA exist. The most popular version used in solid state physics is
the GGA by Perdew, Burke and Ernzerhof (PBE) [75], which, for example, improves over
the ionization energies predicted for several small molecules by LDA.
The possiblities in constructing exchange-correlation potentials are sheer endless. Ap-

proaches beyond LDA and GGA, for example, calculate the exchange term exactly or mix
exact exchange with a density functional (so-called hybrid functionals). In this thesis we
employ only the LDA and GGA-PBE functionals, because we are interested mostly in the
conducting state and the superconducting state, for which further many-body calculations
are indispensable. DFT calculations are usually reliable, if the quantity of interest de-
pends little on the choice of the exchange-correlation functional, given that there is not
systematic problem with the exchange-correlation functionals employed.

2.4 Basis sets

2.4.1 Full-potential local-orbital formulation

For a numerical solution of the Kohn-Sham equation both the potential terms in the
Hamiltonian and the electronic wavefunctions must be represented numerically with high
accuracy. The full-potentuial local-orbital (FPLO) method introduced by Koepernik and
Eschrig [76] expands both the potential terms and the electronic wavefunctions in terms
of real spherical harmonics YL(r) localized at the atomic positions, where L = {n, l,m}
contains the principal quantum number n, the angular momentum quantum number l and
the magnetic quantum number m. For example, the crystal potential is given by

v(r) =
∑

R+s,L

vs,L(|r−R− s|)YL(r−R− s), (2.34)

which converges rapidly in L. Therefore, a cutoff Lmax can be introduced in practice to
make the number of coefficients finite in a physically meaningful way. R is a vector of the
Bravais lattice and s is the coordinate of an atom within the unit cell.
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The electronic state labelled by crystal momentum k and band index n is constructed
from a linear combination of Bloch sums.

|kn〉 =
∑
RsL

|RsL〉cknLs eik(R+s) (2.35)

Inserting Eq. 2.35 into the Kohn-Sham equation (Eq. 2.31) transformed into momentum
space and multiplied with a localized state from the left yields∑

RsL

[〈0s′L′|H|RsL〉︸ ︷︷ ︸
=HL′L

0s′Rs

−〈0s′L′|RsL〉︸ ︷︷ ︸
=SL′L

0s′Rs

εkn]cknLse
ik(R+s−s′) = 0, (2.36)

where HL′L
0s′Rs and S

L′L
0s′Rs are the Hamiltonian and overlap matrix elements respectively.

In this form the problem includes all electrons within the unit cell explicitly. The main
advantage of a local basis is that locality of the electronic states can be used to significantly
reduce the dimension of the electronic problem. States strongly localized close to the atomic
nucleus do not significantly deviate from the states of an isolated atom, because close to
an atomic nucleus the actual crystal potential (Eq. 2.34) does not deviate significantly
from the potential of that atom alone. Therefore, a distinction between core and valence
orbitals can be introduced as a physically motivated approximation.
The core orbitals are orthonormal and have well-defined energy levels. Here, the index

c denotes a core state, while v denotes a valence state.

〈R′s′c′|Rsc〉 = δc′cδR′+s′,R+s (2.37)

H|Rsc〉 = |Rsc〉εsc (2.38)

Using these relations we can write down a simplified overlap matrix S, which consists of
four blocks.

S =

(
Scc Scv

Svc Svv

)
=

(
δc′cδR′+s′,R+s 〈R′s′c′|Rsv〉
〈R′s′v′|Rsc〉 〈R′s′v′|Rsv〉

)
(2.39)

The block-partitioned overlap matrix (Eq. 2.39) and Eq. 2.38 can in turn be used to express
the Hamiltonian in block-form

H =

(
Hcc HccScv

S†
cvHcc Hvv

)
, (2.40)

where the matrix elements are given by

Hcc = 〈R′s′c′|H|Rsc〉 = εsc δc′cδR′+s′,R+s (2.41)

Hvv = 〈R′s′v′|H|Rsv〉. (2.42)

In this representation it is evident that the numerical effort of calculating all matrix
elements has been reduced to calculating the elements of the overlap matrices Scv and Svv

and the matrix elements of the valence-valence Hamiltonian Hvv.
The special form of overlap matrix and Hamiltonian can be used to further simplify

the Kohn-Sham equation (Eq. 2.36), so that it reduces to calculating the energies and



2.4 Basis sets 21

eigenfunctions only for the valence states, involving, however, the overlap matrix between
core and valence states Scv. This is achieved by introducing a decomposition for the overlap
matrix.

S = AB =

(
1 0
Avc Avv

)(
1 Bcv

0 Bvv

)
=

(
1 Bcv

Avc AvcBcv + AvvBvv

)
(2.43)

Comparison of the expanded expression (Eq. 2.43) to the original block-form (Eq. 2.39)
reveals the relation between matrices A, B and S.

Scv = Bcv = A†
vc (2.44)

Svv − S†
cvScv = AvvBvv (2.45)

The inverse matrices, which will also be needed, are given by

A−1 =

(
1 0

−A−1
vv S

†
cv A−1

vv

)
(2.46)

B−1 =

(
1 −ScvB

−1
vv

0 B−1
vv

)
. (2.47)

By writing C = cknLs and E = diag(εkn) the Kohn-Sham equation (Eq. 2.36) can be rewritten
as

HC = SCE. (2.48)

Here, we make use of the matrix expansion S = AB (Eq. 2.43) and multiply by the inverse
of A (Eq. 2.46) from the left. Furthermore, we insert unity as 1 = B−1B to the right of
the Hamiltonian.

A−1HB−1︸ ︷︷ ︸
=H′

BC︸︷︷︸
=D

= A−1SCE = BC︸︷︷︸
=D

E (2.49)

This generates an effective eigenvalue problem H ′D = DE, where the matrix H ′ is given
by

H ′ = A−1HB−1 =

(
1 0

−A−1
vv S

†
cv A−1

vv

)(
Hcc HccScv

S†
cvHcc Hvv

)(
1 −ScvB

−1
vv

0 B−1
vv

)
(2.50)

=

(
Hcc 0
0 A−1

vv

[
S†
cvHccScv +Hvv

]
B−1

vv

)
(2.51)

We choose Dcc = 1 and Dvc = Dcv = 0, so that the only non-trivial part of the resulting
Kohn-Sham equation is the valence-valence part given by

A−1
vv

[
S†
cvHccScv +Hvv

]
B−1

vv Dvv = DvvEv. (2.52)

After solving this equation for Dvv, the coefficients of the wavefunctions can be obtained
from C = B−1D.
As a consequence of the core-valence distinction, the presence of a large fraction of

core states accelerates practical calculations, since the relevant matrices have smaller di-
mensions, which significantly reduces the numerical effort for multiplication and diago-
nalization. Of course, the actual FPLO implementation relies on many more numerical
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technicalities, which are documented in Ref. [76]. The presentation of the method given
here is solely meant to convey the general idea of the FPLO method.
In summary, the FPLO scheme provides an efficient way to solve the Kohn-Sham equa-

tions relying only on the physically motivated approximations of (i) a cutoff in the angular
momentum in the real spherical harmonics expansion for potentials and wavefunctions and
(ii) a distinction of core and valence electrons.

2.4.2 Projector augmented wave formulation

The projector augmented wave (PAW) method was introduced by Blöchl in 1994 [77]. It
is based on a representation of wavefunctions in terms of both plane waves and localized
functions. The main idea behind the PAW formalism is that electronic wavefunctions in
a solid are smooth functions of the spatial coordinates, except for the regions close to the
nucleus. The expansion of smooth functions in terms of plane waves requires few expansion
coefficients for convergence and leads to an efficient numerical representation. However,
the regions of space close to the nuclei require special care, because there might be localized
states, which are very hard to expand in terms of plane waves. In the PAW method this
problem is solved by introducing non-overlapping so-called augmentation spheres around
the nuclei, in which the wavefunctions are subject to special treatment by means of a linear
transformation T .
We define a smooth wavefunction |ψ̃〉, which is expanded in terms of some basis, for

example plane waves, labelled by m.

|ψ̃〉 =
∑
m

cm|ψ̃m〉 (2.53)

The full wavefunction, possibly including rapid variations as a function of space, is related
to the smooth wavefunction by a linear transformation.

|ψ〉 = T |ψ̃〉 =
∑
m

cm|ψm〉 (2.54)

Therefore, the full wavefunction |ψ〉 can be expressed in terms of the smooth wavefunction
|ψ̃〉 and the difference between full and smooth wavefunction within the augmentation
sphere.

|ψ〉 = |ψ̃〉+
∑

R+s,m

cR+s,m(|ψR+s,m〉 − |ψ̃R+s,m〉) (2.55)

Since the full and the smooth wavefunctions are assumed to be identical outside of the
augmentation sphere, the linear operator T must be unity plus a sum of atom-centered
contributions.

T = 1 +
∑

R+s,m

TR+s,m (2.56)

The expansion coefficients can be written as the projection of the smooth wavefunction
|ψ〉 onto some functions |p̃〉, which live inside the augmentation spheres.

cR+s,m = 〈p̃R+s,m|ψ̃〉 (2.57)
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Inserting this expression into Eq. 2.56, we can infer the explicit form of the linear trans-
formation T .

|ψ〉 = |ψ̃〉+
∑

R+s,m

〈p̃R+s,m|ψ̃〉(|ψR+s,m〉 − |ψ̃R+s,m〉) (2.58)

= |ψ̃〉+
∑

R+s,m

〈p̃R+s,m|(|ψR+s,m〉 − |ψ̃R+s,m〉)|ψ̃〉 (2.59)

=

[
1 +

∑
R+s,m

〈p̃R+s,m|(|ψR+s,m〉 − |ψ̃R+s,m〉)

]
︸ ︷︷ ︸

=T

|ψ̃〉 (2.60)

The expression for the projection operator T obviously involves the full wavefunction
|ψ〉. At first glance it seems that the partitioning of wavefunctions into smooth and rapidly
varying contributions is useless, since knowledge of the full wavefunction is still required.
The point of Eq. 2.60 is, however, that knowledge of both smooth and full wavefunction
are only required within the augmentation sphere, which does not overlap with the aug-
mentation sphere of other atoms. Therefore, the transformation T can be precalculated
for each element in the periodic table from an atomic DFT program.

Using Eq. 2.60, the Kohn-Sham equation (see Eq. 2.31) within the PAW formalism can,
therefore, be rewritten completely in terms of the smooth wavefunctions |ψ̃〉.

T †HT |ψ̃n(k)〉 = εn(k)T
†T |ψ̃n(k)〉 (2.61)

After solving Eq. 2.61 for the smooth wavefunction, the full wavefunction |ψ〉 can be
reconstructed using the linear transformation T (Eq. 2.60). The introduction of the linear
transformation only reduces the numerical effort for storing accurate wavefunctions, but
not the number of states for which the Kohn-Sham equation must be solved.

In principle the PAW Kohn-Sham equation yields the wavefunction for all states in the
solid. Since the PAW formalism contains the distinction of different areas of space by
construction, it is natural to classify also the electronic states into core states, which only
live within the augmentation spheres, and valence states that contribute also beyond the
augmentation spheres. The fact that core states localized within the augmentation sphere
do not deviate significantly from their atomic configuration when put in a solid leads to
the so-called frozen core approximation, in which a selection of core states is considered
fully occupied and orthogonal to all other states [78].

In practice this means that, within the frozen core approximation, only valence states
are considered in the expansion of full and smooth wavefunctions. The size of the Hamil-
tonian matrix is, therefore, reduced compared to a full calculation. Note, however, that
the frozen core approximation, in contrast to the prescription used in the FPLO method
(see Eq. 2.52), also discards the valence-core interaction. A computationally efficient im-
plementation of the PAW formalism of course requires many further technicalities, which
are discussed, for example, in Ref. [79].
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2.5 Structural optimization

Density functional theory within the Born-Oppenheimer approximation in principle pro-
vides a way to calculate the total energy of a collection of atoms. The equilibrium arrange-
ment of the atoms is realized when the total energy reaches its global minimum, that is
where the forces on the nuclei vanish. Density functional theory can be used to calculate
forces on the nuclei and predict stable crystal structures.
The basis of calculating quantum mechanical forces is the so-called force theorem [80],

also called Hellmann-Feynman theorem.

Theorem 3. The derivative of the total energy with respect to a parameter is given by the
expectation value of the derivative of the Hamiltonian with respect to that parameter.

∂E

∂λ
= 〈ψ(λ)|∂H(λ)

∂λ
|ψ(λ)〉 (2.62)

Proof. We only need elementary quantum mechanics, such as 〈ψ|ψ〉 = 1, 〈ψ|H = 〈ψ|E
and H|ψ〉 = E|ψ〉. The proof proceeds as follows:

∂E

∂λ
= ∂λ〈ψ(λ)|H(λ)|ψ(λ)〉 (2.63)

= 〈∂ψ(λ)
∂λ

|H(λ)|ψ(λ)〉+ 〈ψ(λ)|∂H(λ)

∂λ
|ψ(λ)〉+ 〈ψ(λ)|H(λ)|∂ψ(λ)

∂λ
〉 (2.64)

= 〈ψ(λ)|∂H(λ)

∂λ
|ψ(λ)〉+ E(λ) ∂λ 〈ψ(λ)|ψ(λ)〉︸ ︷︷ ︸

=1

(2.65)

= 〈ψ(λ)|∂H(λ)

∂λ
|ψ(λ)〉 (2.66)

Theorem 3 can be used directly to calculate the forces on the nuclei Fl from the Kohn-
Sham energy functional (Eq. 2.26) or, equivalently, the Kohn-Sham Hamiltonian (Eq. 2.30).
The nuclear coordinates are given by Rl.

Fl = −∂EKS

∂Rl

= −
∫
dr
∂Vext(r)

∂Rl

n(r)− ∂Enuc-nuc

∂Rl

(2.67)

The last term in Eq. 2.67 is the trivial Coulomb-interaction between the nuclei, which does
not appear in the Kohn-Sham Hamiltonian, but is of course relevant for the forces on the
nuclei. Additional terms may appear if the basis of wavefunctions is not complete or the
wavefunctions are not exact eigenstates of the Hamiltonian. Therefore, the expression for
the force can depend on the actual implementation in the respective DFT code.
The forces calculated in this way can be used to solve the full ab initio problem in

Born-Oppenheimer approximation or to minimize the force on the nuclei, neglecting their
kinetic energy. In the latter approach any numerical optimization algorithm can be used
to find the minimum in total energy as a function of the nuclear positions Rl.
Optimally, the algorithm exploits the gradient information, that is the forces provided

by the DFT program, to approach the minimum in energy. In this thesis we use the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [81].
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2.6 Wannier functions

The solutions of the Schrödinger equation in a periodic potential, such as encountered in
crystalline systems, are the Bloch functions ψnk(r) with periodic functions unk(r) for each
band index n.

ψnk(r) = unk(r) e
ikr (2.68)

An alternative representation of the electronic wavefunction is given by so-called Wan-
nier functions [82], which are localized in space. They are not eigenstates of the Hamilto-
nian, but they can be used to analyse chemical bonding and provide an efficient basis for
real materials calculations. The Wannier functions wnR(r) are given by

wnR(r) =
V

(2π)3

∫
BZ

dk e−ikrψnk(r), (2.69)

where V is the volume of the real-space primitive cell and R is a lattice vector. Wannier
functions are orthonormal. The inverse transformation is given by

ψnk(r) =
∑
R

eikRwnR(r). (2.70)

Bloch functions ψnk(r) and Wannier functions wnR(r) are obviously connected by a unitary
transformation.
The main advantage of using a Wannier representation, including a limited number of

bands, as opposed to the full DFT wavefunction is that many physical properties depend
only on states in a certain energy window in the vicinity of the Fermi energy. The easiest
way to construct Wannier functions is by projection. We select a manifold of DFT bands
labelled by m and an equal number of corresponding localized trial orbitals gn(r). The
projection of Bloch states |ψmk〉 onto the localized states can be expressed in terms of
matrix elements Pmn(k) = 〈ψmk|gn〉.

|φnk〉 =
mmax∑

m=mmin

|ψmk〉〈ψmk|gn〉 =
mmax∑

m=mmin

|ψmk〉Pmn(k) (2.71)

Since the sum over m is not complete, the resulting states |φnk〉 are not orthonormal.
Orthonormality can, however, be achieved by means of Löwdin-orthonormalization using
the overlap matrix Smn(k) = 〈φmk|φnk〉. The orthonormalized states are given by

|ψ̃nk〉 =
mmax∑

m=mmin

|φmk〉[Smn(k)]
−1/2. (2.72)

The new Bloch-like states span only the bands that were chosen for the projection (Eq. 2.71).
Therefore, Wannier functions are particularly helpful in constructing effective models of
reduced dimension by retaining only a set of orbitals/bands that is expected to be relevant.
For practical calculations it is more convenient to store the Hamiltonian in real-space

than eigenvalues and wavefunctions for selected momenta k, since both of the latter can in
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Figure 2.1: Comparison of DFT and Wannier bands for FeSe calculated from FPLO.
The Wannier states included are the Fe 3d states of the two iron atoms in
the crystallographic unit cell.

principle be reconstructed for arbitrary k from the real-space Hamiltonian. This procedure
goes by the name of Wannier interpolation [82]. Using the Fourier transformation of the
Wannier states, the Hamiltonian in the Wannier subspace can be written as

HW
nm(k) = 〈ψ̃nk|H|ψ̃mk〉 =

∑
R

eikR 〈n0|H|mR〉︸ ︷︷ ︸
=tnm

0R

, (2.73)

where |mR〉 denotes the real-space Wannier functions given by Eq. 2.69.
Such a representation is particularly compact, since the matrix elements tnm0R should

decay rapidly with increasing distance R between the Wannier function centers due to the
localization of the Wannier states |mR〉. The matrix elements tnm0R can be calculated from
a converged DFT calculation and provide a way to construct the kinetic part of lattice
Hamiltonians (see Eq. 1.4). Calculating Wannier representations of the full Hamiltonian
is especially simple within the FPLO method, since it expresses all quanitities in terms
of local functions, which can naturally be used as the localized trial wavefunctions gn(r)
required in the Wannierization procedure (see Eq. 2.71).
The Wannier Hamiltonian HW

nm(k) is in general not a diagonal matrix. The eigenenergies
and eigenstates can, however, be obtained numerically from a diagonalization of HW

nm(k)
using standard numerical libraries. In cases where multiple Wannier function centers are
located within the same unit cell one also has to store the intra-cell distance vectors
previously denoted as s and transform R → R+ s in Eq. 2.73.
As an example, a comparison of the DFT and Wannier bandstructures of FeSe are shown

in Fig. 2.1. Both bandstructures are calculated using the FPLO method. The Wannier
calculation is based on the Fe 3d states of the two iron atoms in the crystallographic unit
cell. The DFT calculation actually contains many more bands both above and below the
energy window shown in Fig. 2.1.
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The band manifold shown is comprised mainly of Fe 3d and Se 4p states. The iron states
are predominant between -3 and +3 eV, while the selenium states are predominant between
-6 and -3 eV. In the Wannier calculation the block of bands, which is dominated by iron
states in the DFT calculation, becomes composed exclusively of iron states. Therefore, the
Wannier construction of the low-energy model neglects the selenium states. It is of course
also possible to include the Se 4p states and neglect all other states lying outside of the
shown window. The inclusion of more orbitals increases the dimensions of the Hamiltonian
matrix, which results in increased cost of diagonalization. The set of orbitals used for the
Wannier construction is a matter of choice, usually based on the energy scale of the problem
under investigation. Any quantity that involves energy scales below 2 eV can probably be
calculated with high accuracy using the Fe 3d Wannier representation of FeSe.
Here it should be noted that Wannierization of the electronic bandstructure of FeSe in

terms of iron states works very well in the sense that DFT and Wannier bandstructures
are hardly discernible on the energy scale shown in Fig. 2.1. As hybridizations between the
constitutents of the unit cell become more involved, few-band Wannier models can deviate
strongly from the DFT bandstructure they are based on, if too few atomic orbitals are
included in the low-energy model.
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The Green’s function formalism

This chapter deals with the method of Green’s functions, which can be used to find ap-
proximate solutions to Hamiltonians which cannot be solved exactly, such as the Hubbard
Hamiltonian (see Eq. 1.4 and 1.5) in dimensions larger than one.
In the method of Green’s functions the Hamiltonian is partitioned in a part that can be

solved exactly and a part that cannot be solved exactly. The idea behind an approximate
solution is to treat the part without exact solution as a perturbation to the part for which
an exact solution is feasible. The exact solution of the full Hamiltonian is then expressed
as a series in terms of the part for which no exact solution exists. To arrive at a practical
approximation, the series is truncated or restricted to a certain subclass of terms, which
can be rewritten in a closed form.
The method of Green’s functions can be formulated both at zero and at finite tempera-

ture. The latter is particularly useful, since it is amenable to implementation in computer
programs. Both formulations are introduced in this chapter, where we follow the presen-
tation in Ref. [83].

3.1 Green’s functions at zero temperature

3.1.1 Interaction representation

Quantum mechanics can be formulated in three formally different, but equivalent ways
in the sense that they yield identical expectation values: the Schrödinger representation,
in which wavefunctions are time-dependent and operators are independent of time, the
Heisenberg representation, in which wavefunctions are independent of time and operators
are time-dependent, and the Dirac or Interaction representation, in which both wavefunc-
tions and operators are time-dependent.
At first glance the interaction representation seems like a complication, but it becomes

useful when the Hamiltonian H can be split in an exactly solvable part H0 and an inter-
action term V , for which no exact solution exists.

H = H0 + V (3.1)

The time-dependence of the operators within the interaction representation is given by:

O(t) = eiH0tOe−iH0t (3.2)
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The time-dependence of the wavefunctions within the interaction representation is given
by

ψ(t) = eiH0te−iHt︸ ︷︷ ︸
=U(t)

ψ(0), (3.3)

where U(t) = eiH0te−iHt is the time-evolution operator. In general the operators H0 and V
do not commute, so that the exponentials cannot be combined.
The wavefunction in interaction representation fulfills a differential equation that in-

volves the interaction term V .

∂tψ(t) = ieiH0t(H0 −H)e−iHtψ(0)

= −ieiH0tV e−iHtψ(0)

= −ieiH0tV e−iH0teiH0te−iHtψ(0)

= −iV (t)ψ(t)

(3.4)

While a given operator at any time can be obtained trivially from H0 (Eq. 3.2), the
wavefunction at general time t however requires a solution for the full Hamiltonian H
(Eq. 3.3). Within the interaction representation the problem of finding the wavefunction
at general time t therefore reduces to finding the time-evolution U(t) operator for the given
full Hamiltonian.
The differential equation for the time-evolution operator is given by

∂tU(t) = −iV (t)U(t), (3.5)

which is equivalent to Eq. 3.4. The solution of this differential equation is given by a
time-ordered series:

U(t) = 1 +
∞∑
n=1

(−1)n

n!

t∫
0

dt1

t∫
0

dt2 · · ·
t∫

0

dtn T [V (t1)V (t2) · · ·V (tn)] (3.6)

= T exp

−i t∫
0

dt1V (t1)

 (3.7)

T here denotes the time-ordering operator, which acts on a group of time-dependent oper-
ators and arranges them so that the timepoints are ordered with the earliest times to the
right.
The representation of the time-evolution operator in terms of a series itself does not

achieve anything with respect to solving the full Hamiltonian. However, it can be used to
define further quantities, which allow for a transparent approximation scheme to the full
problem.

3.1.2 S matrix

The S matrix is a generalization of the time-evolution operator U(t) (Eq. 3.7). In contrast
to U(t) it connects two arbitrary timepoints and therefore acquires matrix-structure.

ψ(t) = S(t, t′)ψ(t′) (3.8)
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The S matrix has various properties, which will be used in further derivations.

S(t, t′) = U(t)U †(t′) (3.9)

S(t, t) = 1 (3.10)

S†(t, t′) = S(t′, t) (3.11)

S(t, t′)S(t′, t′′) = S(t, t′′) (3.12)

Completely analogous to the time-evolution operator U(t), the S matrix can be expressed
in terms of a time-ordered exponential of the interaction part V of the Hamiltonian.

S(t, t′) = T exp

−i t∫
t′

dt1V (t1)

 (3.13)

The important property of the S matrix is that it can be used to connect the ground state
wavefunction φ0, corresponding to the exactly solvable part of H0 of the full Hamiltonian,
and the ground state wavefunction ψ(0) of the full Hamiltonian via the theorem of Gell-
Mann and Low [84].

ψ(0) = ψ0 = S(0,−∞)φ0 (3.14)

3.1.3 Real-time Green’s functions at zero temperature

A basic quantity of interest is the one-particle retarded Green’s function, which contains
all information about single-particle properties of the system.

Gr(λ, t− t′) = −iΘ(t− t′)〈cλ(t)c
†
λ(t

′)〉 (3.15)

Here, Θ(t) denotes the Heaviside function, while c and c† are the electron annihilation and
creation operators respectively. The relevant quantum numbers are denoted by λ. In the
present form the Green’s function cannot be evaluated, because the expectation value has
to be taken with respect to the ground state wavefunction of the full Hamiltonian, which
we do not know.
Now we assume we want to obtain a time-ordered expectation value with respect to the

ground state wavefunction ψ0 of the full Hamiltonian. The states and operators are given
in the Heisenberg representation.

G(λ, t− t′) =− i〈ψ0|Tcλ(t)c
†
λ(t

′)|ψ0〉
=− iΘ(t− t′)〈ψ0|cλ(t)c

†
λ(t

′)|ψ0〉+ iΘ(t′ − t)〈ψ0|c†λ(t
′)cλ(t)|ψ0〉

=− iΘ(t− t′)〈ψ0|eiHtcλe
−iHteiHt′c†λe

−iHt′|ψ0〉
+ iΘ(t′ − t)〈ψ0|eiHt′c†λe

−iHt′eiHtcλe
−iHt|ψ0〉

(3.16)

Inserting the interaction representation for the operators (Eq. 3.2) and using the theorem
of Gell-Mann and Low (Eq. 3.14) we can rewrite the expectation value, so that the S
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matrix appears.

G(λ, t− t′) =− iΘ(t− t′)〈ψ0| eiHte−iH0t︸ ︷︷ ︸
=U†(t)=S(0,t)

cλ(t) e
iH0te−iHt︸ ︷︷ ︸

=U(t)=S(t,0)

eiHt′e−iH0t′︸ ︷︷ ︸
=U†(t′)

c†λ(t
′) eiH0t′e−iHt′︸ ︷︷ ︸

=U(t′)

|ψ0〉

+ iΘ(t′ − t)〈ψ0|eiHt′e−iH0t′c†λ(t
′)eiH0t′e−iHt′eiHte−iH0tcλ(t)e

iH0te−iHt|ψ0〉

=− iΘ(t− t′)〈φ0|S(−∞, 0)S(0, t)cλ(t)S(t, 0)S(0, t
′)c†λ(t

′)S(t′, 0)S(0,−∞)|φ0〉
+ iΘ(t′ − t)〈φ0|S(−∞, 0)S(0, t′)c†λ(t

′)S(t′, 0)S(0, t)cλ(t)S(t, 0)S(0,−∞)|φ0〉

=− iΘ(t− t′)〈φ0|S(−∞, t)cλ(t)S(t, t
′)c†λ(t

′)S(t′,−∞)|φ0〉
+ iΘ(t′ − t)〈φ0|S(−∞, t′)c†λ(t

′)S(t′, t)cλ(t)S(t,−∞)|φ0〉 (3.17)

At this point we need another identity from the paper of Gell-Mann and Low [84].

〈φ0|S(−∞, 0) =
〈φ0|S(∞, 0)

〈φ0|S(∞,−∞)|φ0〉
(3.18)

Using Eq. 3.18 we can rewrite Eq. 3.17 in a more compact form.

G(λ, t− t′) = −i〈φ0|Tcλ(t)c
†
λ(t

′)S(∞,−∞)|φ0〉
〈φ0|S(∞,−∞)|φ0〉

(3.19)

This result is extremely important, since it allows for the evaluation of expectation values
based on the known ground state wavefunction φ0 corresponding to H0 and the S matrix.
The unperturbed Green’s function G0 will also be needed later on. It is defined by a

vanishing perturbation V = 0, so that the S matrix becomes the identity (S = 1).

G0(λ, t− t′) = −i〈φ0|Tcλ(t)c
†
λ(t

′)|φ0〉 (3.20)

3.1.4 Wick’s theorem

The evaluation of the S matrix in Eq. 3.19 proceeds by inserting the exponential represen-
tation given by Eq. 3.13 expanded in a series. Here, we only concentrate on the enumerator,
but in principle the same has to be done for the denominator.

G(λ, t− t′) =− i

∞∑
n=0

(−i)n

n!

∞∫
−∞

dt1

∞∫
−∞

dt2 · · ·
∞∫

−∞

dtn

× 〈φ0|Tcλ(t)c
†
λ(t

′)V (t1)V (t2) · · ·V (tn)|φ0〉
〈φ0|S(∞,−∞)|φ0〉

(3.21)

Although one can hardly make any statement about convergence of the series in Eq. 3.21,
there is now hope that some of the terms in this series can be evaluated, at least for low
expansion order n.
For this purpose, we need to calculate expectation values of time-ordered products of

operators. The number of creation and annihilation operators in the product must always
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be equal, because the system has to return to the ground state φ0 after all operators have
been applied. Otherwise the expectation value vanishes.
What complicates the evaluation of such time-ordered products most is the large number

of possible combinations. The task of going through all possible combinations is consid-
erably simplified by Wick’s theorem [85]. In the presentation of this theorem we rely on
Ref. [86].
First, we define the product of a set of operators A,B,C, . . . as normal, if all creation

operators appear to the left of the annihilation operators and if the sign corresponds to
the parity of the permutation of Fermi operators needed to achieve the correct ordering.
The normal product of operators A,B,C, . . . is denoted as N(A,B,C, . . .), while the time-
ordered product is denoted by T (A,B,C, . . .). The pairing of two operators is then given
by

AB = T (AB)−N(AB). (3.22)

Theorem 4. Any time-ordered product of operators can be expressed as a sum of all
possible normal-ordered products with all possible pairings.

T (ABCD · · ·XY Z) =N(ABCD · · ·XY Z) +N(ABCD · · ·XY Z)

+N(ABCD · · ·XY Z) + · · ·+N(ABC · · ·XY Z)
(3.23)

Proof. The simultaneous permutation of operators on both sides of Eq. 3.23 obviously does
not influence its validity. Therefore, we assume without loss of generality that operators
ABCD · · ·XY Z are time-ordered. Starting from the time-ordered product, the normal-
ordered product is obtained by performing all operator permutations needed for bringing
the creation operators to the left of the annihilation operators. The result is a sum of
normal-ordered products with pairings only of those operators, which appear in different
order in the time-ordered and normal-ordered products. However, the permutation pro-
cedure actually generates all possible pairings, since the pairing of operators for which
time-order and normal-order are identical vanishes according to Eq. 3.22. This proves
Wick’s theorem (Eq. 3.23).

The expectation value of the normal-ordered product with the ground state, however,
vanishes by definition. Therefore, the expectation value of a time-ordered product of two
operators is equal to their pairing.

〈φ0|AB|φ0〉 = 〈φ0|T (AB)|φ0〉 (3.24)

Taking the ground state expectation value of Eq. 3.23, consequently, leads to a much
simpler expression.

〈T (ABCD · · ·XY Z)〉 =〈T (AB)〉〈T (CD)〉 · · · 〈T (Y Z)〉
± 〈T (AC)〉〈T (BD)〉 · · · 〈T (Y Z)〉 ± · · ·

(3.25)

Such products of averages over pairs of time-ordered operators can in fact be evaluated
easily. The calculation of the Green’s function defined in Eq. 3.21 is only limited by the
fact that evaluation of an infinite number of terms is in practice not feasible.
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x x′

Figure 3.1: Feynman diagram representation of the unperturbed Green’s function
G0(x, x

′).

Fortunately, a diagrammatic representation of the pairings between operators exists,
which allows for a more intuitive approach. In particular it allows for selecting specific
contributions out of the infinite number of possible pairings, sometimes also called con-
tractions, possibly based on physical intuition. Based on such a selection process many
different approximate schemes for calculating expectation values have been developed. The
diagrammatic language is introduced in the following subsection.

3.1.5 Feynman diagrams

A diagrammatic representation of the terms in Eq. 3.21 is given by so-called Feynman
diagrams [87]. In those diagrams sets of space-time coordinates, denoted by x = (t, r), are
represented as points in the plane. Points that appear as arguments x and x′ of a single
unperturbed Green’s function G0(x, x

′) are connected by a solid line. The unperturbed
Green’s function is, therefore, represented by the diagram in Fig. 3.1. Points x1 and x2
that belong to a two-point interaction V (x1 − x2) are connected by a wavy line.

In order to demonstrate the use of Feynman diagrams to represent higher-order contri-
butions to the full Green’s function defined by Eq. 3.21, we follow Ref. [86] and assume an
interaction in real-space of the form

V =
1

2

∫
dr1dr2 c

†
α(r1)c

†
β(r2)U(r1 − r2)cβ(r2)cα(r1). (3.26)

Inserting this interaction into Eq. 3.21, the order n = 1 term is given by

δG1(x, x
′) =

1

2〈φ0|S(∞,−∞)|φ0〉

∫
dx1dx2

× 〈Tcα(x)c
†
β(x

′)c†γ(x1)c
†
δ(x2)cδ(x2)cγ(x1)〉U(r1 − r2)δ(t1 − t2).

(3.27)

The matrix element in the enumerator of Eq. 3.27 can be rewritten using Eq. 3.25 and the
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(a)

x x′x1

x2
(b)

x x′x1 x2

(c)

x x′x2

x1

(d)

x x′x2 x1

(e)

x x′

x1 x2

(f)

x x′

x1 x2

Figure 3.2: Feynman diagrams representing the six products of Green’s functions in
Eq. 3.28. Diagram (a) corresponds to the first term in Eq. 3.28, diagram
(b) corresponds to the second term and so on.

definition of the unperturbed Green’s function given by Eq. 3.20.

〈Tcα(x)c
†
β(x

′)c†γ(x1)c
†
δ(x2)cδ(x2)cγ(x1)〉

=− 〈Tcα(x)c†γ(x1)〉〈Tcδ(x2)c
†
δ(x2)〉〈Tcγ(x1)c

†
β(x

′)〉
+ 〈T (cα(x)c†γ(x1)〉〈Tcγ(x1)c

†
δ(x2)〉〈Tcδ(x2)c

†
β(x

′)〉
− 〈Tcα(x)c

†
δ(x2)〉〈Tcγ(x1)c

†
γ(x1)〉〈Tcδ(x2)c

†
β(x

′)〉
+ 〈Tcα(x)c

†
δ(x2)〉〈Tcδ(x2)c

†
γ(x1)〉〈Tcγ(x1)c

†
β(x

′)〉
− 〈Tcα(x)c

†
β(x

′)〉〈Tcγ(x1)c†γ(x1)〉〈Tcδ(x2)c
†
δ(x2)〉

+ 〈Tcα(x)c
†
β(x

′)〉〈Tcδ(x2)c†γ(x1)〉〈Tcγ(x1)c
†
δ(x2)〉

= iGαγ
0 (x, x1)G

δδ
0 (x2, x2)G

γβ
0 (x1, x

′)− iGαγ
0 (x, x1)G

γδ
0 (x1, x2)G

δβ
0 (x2, x

′)

+ iGαδ
0 (x, x2)G

γγ
0 (x1, x1)G

δβ
0 (x2, x

′)− iGαδ
0 (x, x2)G

δγ
0 (x2, x1)G

γβ
0 (x1, x

′)

+ iGαβ
0 (x, x′)Gγγ

0 (x1, x1)G
δδ
0 (x2, x2)− iGαβ

0 (x, x′)Gδγ
0 (x2, x1)G

γδ
0 (x1, x2)

(3.28)

The diagrammatic representation of the terms in Eq. 3.28 is shown in Fig. 3.2. Diagrams
(a),(c) and (b),(d) are so-called connected diagrams that pairwise have the same topology.
Diagrams (e) and (f) are so-called disconnected diagrams, meaning that not all lines in the
diagram are connected to the external coordinates x and x′.
The distinction between connected and disconnected diagrams can be used to further

simplify Eq. 3.21, especially with respect to the matrix element 〈φ0|S(∞,−∞)|φ0〉 in the
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denominator, which we have ignored so far. The theorem related to this simplification is
explained in the next subsection.

3.1.6 Linked cluster theorem

The linked cluster theorem can be used to simplify the calculation of Green’s functions
using diagrammatic techniques [86]. In particular it states that unconnected diagrams can
be neglected when calculating expectation values.

Theorem 5. The Green’s function can be written purely in terms of connected diagrams.

G(λ, t− t′) = −i〈φ0|Tcλ(t)c
†
λ(t

′)S(∞,−∞)|φ0〉con (3.29)

Proof. We first consider a term of fixed order in n from Eq. 3.21. Now we pick some
particular contraction from the right-hand side of Eq. 3.25, which contains a disconnected
part. For a diagram to be disconnected means that at least one of the interaction terms
V (t) is not connected in any way to the external operators cλ(t) and c

†
λ(t

′). Obviously, the
expectation value corresponding to such a diagram can be factorized into a connected part
and an unconnected part.

δGn(λ, t− t′) =− i
(−i)n

n!

∫
dt1 · · · tn 〈φ0|Tcλ(t)c

†
λ(t

′)V (t1)V (t2) · · ·V (tn)|φ0〉

=− i
(−i)n

n!

∫
dt1 · · · dtm 〈φ0|Tcλ(t)c

†
λ(t

′)V (t1) · · ·V (tm)|φ0〉con

×
∫
dtm+1 · · · dtn 〈φ0|TV (tm+1) · · ·V (tn)|φ0〉

(3.30)

Furthermore, all diagrams that are generated by just permuting the operators Vi(t) give
the same contribution. The number of possible combinations in which m out of n total
operators are connected is given by M = n!/(m!(n −m)!). Therefore, among all possible
contractions, there are M diagrams that give exactly the same contribution as the term
written out in Eq. 3.30.

MδGn(λ, t− t′) =− i
(−i)m

m!

∫
dt1 · · · tn 〈φ0|Tcλ(t)c

†
λ(t

′)V (t1) · · ·V (tm)|φ0〉con

× (−i)n−m

(n−m)!

∫
dtm+1 · · · dtn 〈φ0|TV (tm+1) · · ·V (tn)|φ0〉

(3.31)

Now we lift the constraint of all terms belonging to a particular expansion order n and
instead focus on all contractions that involve the same connected part and contain some
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arbitrary disconnected part.

∞∑
n=m

[MδGn(λ, t− t′)]

=− i
(−i)m

m!

∫
dt1 · · · tn 〈φ0|Tcλ(t)c

†
λ(t

′)V (t1) · · ·V (tm)|φ0〉con

×
[
1− i

∫
dtm+1〈φ0|V (tm+1)|φ0〉

− 1

2

∫
dtm+1dtm+2〈φ0|TV (tm+1)V (tm+2)|φ0〉+ · · ·

+
(−i)k

k!

∫
dtm+1 · · · dtm+k〈φ0|TV (tm+1) · · ·V (tm+k)|φ0〉+ · · ·

]
(3.32)

The term within the rectangular brackets on the right-hand side of Eq. 3.32 is, however,
precisely the series expansion of S(∞,−∞) defined by Eq. 3.13. Therefore, the matrix
element in the enumerator of Eq. 3.19 for the Green’s function can be expressed as

〈φ0|Tcλ(t)c
†
λ(t

′)S(∞,−∞)|φ0〉
=〈φ0|Tcλ(t)c

†
λ(t

′)S(∞,−∞)|φ0〉con〈φ0|S(∞,−∞)|φ0〉.
(3.33)

Therefore, the expectation value of the S matrix in the denominator (see Eq. 3.19) drops
out and we arrive at the final expression of the Green’s function in terms of connected
diagrams.

G(λ, t− t′) = −i〈φ0|Tcλ(t)c
†
λ(t

′)S(∞,−∞)|φ0〉con (3.34)

= −i
∞∑
n=0

(−i)n

n!

∞∫
−∞

dt1 · · · dtn 〈φ0|Tcλ(t)c
†
λ(t

′)V (t1) · · ·V (tn)|φ0〉con (3.35)

The proof of the linked cluster theorem for the Green’s function can be carried out
analogously also for correlation functions of higher order [86]. Therefore, any ground state
expectation value can in principle be calculated by summing up all connected Feynman
diagrams or, in practice, by summing up a carefully chosen finite subset of those diagrams.

3.1.7 Real-frequency Green’s functions at zero temperature

So far, we only considered Green’s functions in real-time. The previous chapter on density
functional theory however discussed at length how to obtain the electronic bandstructure
of solids. Therefore, it is logical to consider Green’s functions with frequency ω as a
variable. Frequency ω and energy E are directly related by E = ~ω. Time and frequency
are conjugate variables. Therefore, we can obtain the Green’s function in real-frequencies
by Fourier-transforming the real-time Green’s function.
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At this point we go back to the definition of the one-particle retarded Green’s func-
tion (Eq. 3.15). We assume that the system we are interested in can be solved exactly.
That means, the interaction term V in the Hamiltonian vanishes. We represent the time-
dependent operators according to Eq. 3.2 and insert two complete basis sets. The energy
relative to the ground state of the state with quantum numbers λ is denoted as Eλ.

Gr
0(λ, t− t′) = −iΘ(t− t′)〈cλ(t)c

†
λ(t

′)〉

= −iΘ(t− t′)
∑
n,m

〈φ0|eiH0t|n〉〈n|cλe−iH0(t−t′)c†λ|m〉〈m|e−iH0t′ |φ0〉 (3.36)

= −iΘ(t− t′)e−iEλ(t−t′) (3.37)

Now we rewrite Eq. 3.37 with u = t− t′ and execute the Fourier transformation.

Gr
0(λ, ω) =

∞∫
−∞

du eiuωGr
0(λ, u) = −i

∞∫
−∞

duΘ(u)eiuωe−iEλu (3.38)

= −i
∞∫
0

du eiu(ω−Eλ) (3.39)

=
−1

ω − Eλ

[
eiu(ω−Eλ)

]∞
0

(3.40)

This expression has two obvious problems: First, it does not converge at the upper limit.
Second, it is singular for ω = Eλ. Both problems can be somewhat redeemed by artificially
introducing a small imaginary part iη in the frequency (ω → ω + iη), which provides
convergence for the integral and suppresses the sharp singularity in the denominator.

Gr
0(λ, ω) = lim

η→0

1

ω − Eλ + iη

[
e−uηeiu(ω−Eλ)

]0
∞ = lim

η→0

1

ω − Eλ + iη
(3.41)

Nevertheless, the limit of η → 0 is hard to control and not well-suited for numerical
treatment. In the next section we develop the formalism of Green’s functions at finite
temperatures, which provides additional insight and is more amenable to numerical calcu-
lations.

3.2 Green’s functions at finite temperature

3.2.1 Imaginary-time Green’s functions

Within a temperature-dependent formalism expectation values must be calculated as aver-
age over thermodynamic ensembles. If we would introduce the thermodynamic weighting
factor e−βH with β = (kBT )

−1 and temperature T into the real-time formalism, the inter-
action V would occur both in the thermodynamic weighting factor and in the e−iV t term
of the S matrix (see Eq. 3.13), which makes the formalism unpleasant to work with.
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An alternative is provided by the notion of complex time and complex temperature. The
expressions e−βH and e−iHt are similar in that they contain the Hamiltonian H as the non-
trivial part, which suggests that treating them simultaneously may be possible. Within
the Matsubara method time is indeed treated as a complex temperature given by τ = it.
The related formalism will be explained in the following.
We define the electron Green’s function as a function of quantum numbers λ and complex

timepoints τ and τ ′.

G(λ, τ − τ ′) = −〈Tτcλ(τ)c
†
λ(τ

′)〉 (3.42)

= −Tr
[
e−β(H−µN−Ω)Tτe

τ(H−µN)cλe
−(τ−τ ′)(H−µN)c†λe

−τ ′(H−µN)
]

(3.43)

The angular brackets 〈· · · 〉 also imply taking the thermodynamic average within a grand-
canonical ensemble. The chemical potential is denoted by µ and N is the particle number.
The quantity e−βΩ is defined by taking the trace over e−β(H−µN). Note that Tτ denotes the
time-ordering operator, not the temperature. Since the trace is invariant under cyclic per-
mutations and the operator H−µN commutes with itself and the scalar Ω, Eq. 3.43 can be
rewritten as a function of the difference in imaginary-time only. The second imaginary-time
variable τ ′ can in principle be neglected.

G(λ, τ − τ ′) =−Θ(τ − τ ′)Tr
[
e−β(H−µN−Ω)e(τ−τ ′)(H−µN)cλe

−(τ−τ ′)(H−µN)c†λ

+Θ(τ ′ − τ)Tr
[
e−β(H−µN−Ω)e−(τ−τ ′)(H−µN)c†λe

(τ−τ ′)(H−µN)cλ

]
(3.44)

From Eq. 3.44 it is apparent that the imaginary-time Green’s function has a specific
property due to the cyclic invariance of the trace.

G(λ, τ − β) = −G(λ, τ) (−β < τ < 0) (3.45)

For bosons the same equality holds, but without the minus sign. Eq. 3.45 means that
all information about the imaginary-time Green’s function is contained in the window
−β < τ < 0, proving indeed the equivalence of temperature and imaginary time.

3.2.2 Imaginary-frequency Green’s functions

Building on Eq. 3.45 one can define the Green’s function in imaginary-frequencies, also
called the Matsubara Green’s function, on a discrete set of frequencies ωn.

G(λ, iωn) =

β∫
0

dτ eiωnτG(λ, τ) (3.46)

The inverse transformation is given by

G(λ, τ) =
1

β

∑
n

e−iωnτG(λ, iωn). (3.47)
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Using Eq. 3.45 and the previously defined inverse transformation one can infer the values
of the discrete so-called Matsubara frequencies ωn.

0 =G(λ, τ) +G(λ, τ − β)

=
1

β

∑
n

e−iωnτ
(
1 + eiωnβ

)︸ ︷︷ ︸
=0

G(λ, iωn) (3.48)

The condition −1 = eiωnβ is fulfilled for ωn = (2n + 1)π/β with n being an integer. For
bosons one obtains 1 = eiωnβ and ωn = 2nπ/β. Furthermore, the difference between two
fermionic Matsubara frequencies is a bosonic Matsubara frequency.
Numerical calculations involving real-frequency Green’s functions G(λ, ω) would require

us to artificially discretize the frequency-axis and sample the Green’s function on that
discretized axis. The accuracy of such a sampling is highly questionable due to the diver-
gent nature of the real-frequency Green’s function (see Eq. 3.40). Within the Matsubara
method the frequency axis is naturally discrete, which makes it perfectly suitable for nu-
merical calculations.
Now we derive an explicit expression for the unperturbed Matsubara Green’s function.

First, we need the Baker-Campbell-Hausdorff theorem. For operators A and B it reads

eABe−A =
∞∑
n=0

1

n!
[A,B]n, [A,B]0 = B, [A,B]n = [A, [A,B]n−1]. (3.49)

Using the commutators [c†αcα, cβ] = −δαβcβ and [c†αcα, c
†
β] = δαβc

†
β one can write out

the series in Eq. 3.49. At every stage of the recursion the same operators are reproduced,
but in the case of the annihilator an additional minus sign is acquired. Therefore, the
operators can actually be pulled out of the series, which gives an exponential that con-
tains only scalars and considerably simplifies the imaginary-time evolution of creation and
annihilation operators for the free system.

cλ(τ) = eτ(H0−µN)cλe
−τ(H0−µN) =

∞∑
n=0

[−τ(Eλ − µ)]n

n!
cλ = e−τ(Eλ−µ)cλ (3.50)

c†λ(τ) = eτ(H0−µN)c†λe
(−τ(H0−µN))n =

∞∑
n=0

[τ(Eλ − µ)]n

n!
c†λ = eτ(Eλ−µ)c†λ (3.51)

To derive the explicit expression for the unperturbed Matsubara Green’s function we
start from the unperturbed imaginary-time Green’s function (Eq. 3.42) and insert Eqs. 3.50
and 3.51. The thermodynamic expectation value of the fermionic number operator c†c is
of course the Fermi function nF .

G0(λ, τ) =−Θ(τ)e−τ(Eλ−µ)〈cλc
†
λ〉+Θ(−τ)e−τ(Eλ−µ)〈c†λcλ〉 (3.52)

=− e−τ(Eλ−µ) {Θ(τ)[1− nF (Eλ − µ)]−Θ(−τ)nF (Eλ − µ)} (3.53)

=− e−τ(Eλ−µ) {Θ(τ)− nF (Eλ − µ)} (3.54)
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Now we calculate the Fourier transform of Eq. 3.54 according to Eq. 3.46. We use that
eiβωn = −1 for fermions and the explicit form of the Fermi function given by nF (E) =
1/(1 + eβE).

G0(λ, iωn) =−
β∫

0

dτ eiωnτe−τ(Eλ−µ) {Θ(τ)− nF (Eλ − µ)} (3.55)

=− (1− nF (Eλ − µ))

β∫
0

dτ eτ(iωn−(Eλ−µ)) (3.56)

=−
1− 1

1+eβ(Eλ−µ)

iωn − Eλ + µ

[
eτ(iωn−(Eλ−µ))

]β
0

(3.57)

=
1− e−β(Eλ−µ)

1+e−β(Eλ−µ)

iωn − Eλ + µ
(1 + e−β(Eλ−µ)) (3.58)

=
1

iωn − Eλ + µ
(3.59)

Eq. 3.59 is the final expression for the unperturbed Matsubara Green’s function. Within
the Matsubara formalism the temperature dependence appears only implicitly within the
Matsubara frequencies ωn, which makes it very elegant and computationally efficient. In
particular, the Matsubara method automatically cures all problems of the real-frequency
formalism (see Eq. 3.41) at the price of yielding results on the imaginary-frequency axis.
The diagrammatic method introduced for Green’s functions in real-valued variables can
also be applied to Matsubara Green’s functions using analogous expressions.
To compare with experiments, which are obviously done in real-frequencies, one in gen-

eral has to perform a so-called analytic continuation to the real-frequency axis. This is
sometimes a non-trivial procedure, but of little concern to the calculations presented in
this thesis, as we will see in the following chapter.





Chapter 4

Random phase approximation for the
multi-orbital Hubbard model

In this chapter we introduce the so-called random phase approximation, often abbrevi-
ated as RPA, which is a method for calculating properties of electronic systems with a
high density [88–90]. When represented in terms of Feynman diagrams it corresponds to
the summation of a series of diagrams with particular topology up to infinite order [91].
Therefore, the method does not rely on a small expansion parameter and can be expected
to give relevant results also in the non-perturbative regime. Furthermore, the expansion
up to infinite order can be expressed in a closed form, which makes the RPA method a
computationally efficient tool.

We apply the RPA to the single- and multi-orbital Hubbard model, where we calcu-
late the two-particle pairing vertex, which contains information about the symmetry of
the superconducting order parameter. For the single-orbital Hubbard model the complete
derivation of the RPA method is contained in the literature [92, 93], while the docu-
mentation for the multi-orbital case is somewhat terse [94]. Nevertheless, the method is
well-established and extensive literature with applications, also to multi-orbital systems,
exists [95–103].

In this chapter we present the derivation for the multi-orbital formalism in all relevant
detail. The results we obtained agree with the existing literature [94]. Furthermore, we
develop a numerical implementation of the method, which is general and efficient. In
particular, we do not make any assumption about the dimensionality of the electronic
structure (2D or 3D), the number of active sites in the unit cell (single-site or multi-site)
or the number of orbitals associated with each active site (single-orbital or multi-orbital).
The only assumption we make is that a Fermi surface exists when only the kinetic part of
the model Hamiltonian is diagonalized. Such a general implementation allows us to apply
the RPA method to both organic superconductors, which can be represented by two-
dimensional multi-site and single-orbital models, and iron-based superconductors, which
are represented by three-dimensional single-site multi-orbital models, within a unified com-
putational framework.
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4.1 Preparations for the analytical derivation

4.1.1 Kubo formula on the Matsubara axis

The time-ordered expectation value of an operator Ai after a small perturbation of a
physical system by operator Aj, where i and j denote a set of quantum numbers, is given
by the so-called Kubo formula [83].

χij(q, νn) =

β∫
0

dτ e−iνnτ 〈TτAi(q, τ)Aj(−q, 0)〉 (4.1)

It defines the so-called susceptibility χij associated with operators Ai and Aj. The sus-
ceptibility is a two-particle Green’s function, which we write on the Matsubara frequency
axis as the Fourier transformation of a time-ordered two-particle expectation value. The
momentum is denoted by q. We assume momentum conservation, which leads to the dif-
ferent signs of the momentum q in operators Ai(q, τ) and Aj(−q, 0) in Eq. 4.1. Note that
the susceptibility is a function of bosonic Matsubara frequencies νn.

In the following subsections we will show that susceptibilities are two-particle Green’s
functions that are rather easy to calculate. Therefore, we will later on expand the two-
particle pairing vertex in terms of those susceptibilities, considering fluctuations both in
the charge and in the spin channel. First, we, however, need to elaborate on the form of
those susceptibility terms.

4.1.2 Unperturbed charge susceptibility

Using the generalized density operator

ns(q) =
∑
kα

c†sα(k+ q)csα(k), (4.2)

in which s denotes the orbital and α the spin of the electrons, we define the unperturbed
charge susceptibility χ0.

(χ0)
s
t (q, iνn) =

1

2

β∫
0

dτ e−iνnτ 〈Tτns(q, τ)nt(−q, 0)〉. (4.3)

Now we insert the explicit representation of the density operators in terms of fermion
operators (Eq. 4.2) and apply Wick’s theorem (Eq. 3.25) to the time-ordered expectation
value in Eq. 4.3. Note that the Green’s function depends on the difference of the imaginary
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timepoints appearing in the associated operators (see Eq. 3.42).

(χ0)
s
t (q, iνn) =

1

2

β∫
0

dτ e−iνnτ
∑
kk′

∑
αβ

〈Tτc†sα(k+ q, τ)csα(k, τ)c
†
tβ(k

′ − q, 0)ctβ(k
′, 0)〉 (4.4)

=
1

2

β∫
0

dτ e−iνnτ
∑
kk′

∑
αβ

× [Gsα(k, 0)Gtβ(k
′, 0)δq,0 −Gsα(k

′,−τ)Gtβ(k, τ)δk+q,k′ ] δαβδst (4.5)

For now, we assumed that the Hamiltonian does not allow for a change in the orbital
quantum numbers s, t and the spin quantum numbers α, β. The first term in Eq. 4.5
contributes only for q = 0. Since we are mainly interested in the momentum-dependence
of the susceptibility, we drop this term. The second term carries a negative sign due to
time-ordering. This leaves us with a simple expression for the charge susceptibility.

(χ0)
s
t (q, iνn) = −1

2

β∫
0

dτ e−iνnτ
∑
k,αβ

Gtβ(k, τ)Gsα(k+ q,−τ)δαβδst (4.6)

4.1.3 Unperturbed spin susceptibility

Using generalized Abrikosov pseudo-fermion operators

Ss(q) =
1

2

∑
αβ

c†sα(k+ q)σαβcsβ(k), (4.7)

in which s denotes the orbital and α, β the spins of the electrons, we define the unperturbed
spin susceptibility χ1.

(χ1)
s
t (q, iνn) =

2

3

β∫
0

dτ e−iνnτ 〈TτSs(q, τ) · St(−q, 0)〉 (4.8)

Here, the vector of Pauli matrices is denoted as σ, which is given by

σ = (σx, σy, σz), σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (4.9)
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Now we insert the explicit representation of the spin-operators (Eq. 4.7) and the Pauli
matrices into Eq. 4.8 and execute the scalar product of spin-operators.

(χ1)
s
t (q, iνn) =

1

6

β∫
0

dτ e−iνnτ
∑
kk′α

〈Tτ

×
[
2c†sα(k+ q, τ)csᾱ(k, τ)c

†
tᾱ(k

′ − q, 0)ctα(k
′, 0)

+ c†sα(k+ q, τ)csα(k, τ)c
†
tα(k

′ − q, 0)ctα(k
′, 0)

− c†sα(k+ q, τ)csα(k, τ)c
†
tᾱ(k

′ − q, 0)ctᾱ(k
′, 0)
]
〉 (4.10)

Now we apply Wick’s theorem (Eq. 3.25) to Eq. 4.10 and again neglect the term with
q = 0. As for the charge susceptibility, we get a negative sign due to time-ordering.

(χ1)
s
t (q, iνn) = −1

6

β∫
0

dτ e−iνnτ
∑
kαβ

[
Gtβ(k, τ)Gsα(k+ q,−τ)(δαβ + 2δαβ̄)

]
δst (4.11)

Comparing the expressions for the unperturbed charge susceptibility (Eq. 4.6) and the
unperturbed spin susceptibility (Eq. 4.11), we see that they are actually equal in the
paramagnetic case, where Gsα = Gsᾱ.
Since we will assume that superconductivity emerges from a paramagnetic metal, we

can calculate the unperturbed paramagnetic susceptibility and concentrate on it as the
central object of our theory. Nevertheless, the spin quantum number can not be neglected
in further calculations, since this would lead to diagram counting errors. This point will
become more clear in a later section.

4.1.4 Explicit expression for the unperturbed paramagnetic
susceptibility

We now derive an explicit expression for the unperturbed paramagnetic susceptibility. In
contrast to the previous subsections we assume a multi-orbital kinetic Hamiltonian, which
allows for transitions between different orbitals. The unperturbed imaginary-frequency
Matsubara Green’s function connecting orbitals s and p is defined as a generalization of
Eq. 3.59.

Gsq(k, iωn) =
∑
λ

as∗λ (k)aqλ(k)

iωn − Eλ

(4.12)

Here, we assume that the chemical potential µ is already absorbed into the energy eigen-
values Eλ of the kinetic Hamiltonian. The momentum is denoted as k. The summation
over electronic bands is indicated by the sum over λ. Orbital and band space are connected
by matrix elements asλ(k), which result from the diagonalization of the kinetic part of the
Hamiltonian. The star in Eq. 4.12 denotes the complex conjugate.
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k, ωn

q, νn

k+ q, ωn + νn

q, νns q

t p

Figure 4.1: Feynman diagram representing the unperturbed susceptibility χpq
st (q, iνn).

Now we insert the Fourier transform of the imaginary-time Green’s function (Eq. 3.47)
into Eq. 4.6, in which we also perform the summation over spins. Furthermore, we use the
imaginary-frequency Matsubara Green’s function as defined in Eq. 4.12.

χpq
st (q, iνn) =− 1

β2

β∫
0

dτ e−iνnτ
∑

k,ωn,ω′
n

[
e−iωnτGpt(k, iωn)e

iω′
nτGsq(k+ q, iω′

n)
]

(4.13)

=− 1

β2

∑
k,ωn,ω′

n

Gpt(k, iωn)Gsq(k+ q, iω′
n)
eiβ(νn−ωn+ω′

n) − 1

i(−νn − ωn + ω′
n)

(4.14)

Since we sum over all positive and negative Matsubara frequencies, the fraction in Eq. 4.14
does not contribute, except when −νn = ωn − ω′

n. In that case we have to use l’Hopsital’s
rule to evaluate the fraction.

lim
−ν→ωn−ω′

n

eiβ(−νn−ωn+ω′
n) − 1

i(−νn − ωn + ω′
n)

(4.15)

= lim
−ν→ωn−ω′

n

iβ
(
eiβ(−νn−ωn+ω′

n) − 1
)

i
= β (4.16)

The unperturbed susceptibility, therefore, becomes a Matsubara sum over a product of
Green’s functions.

χpq
st (q, iνn) = − 1

β

∑
k,ωn

Gpt(k, iωn)Gsq(k+ q, iωn + iνn) (4.17)

The Feynman diagram associated with this product is shown in Fig. 4.1. The external
interaction lines colored in black only indicate that momentum transfer takes place, but
are not specified further yet.
Now we insert the explicit form of the Matsubara Green’s function in orbital space

(Eq. 4.12).

χpq
st (q, iνn) =− 1

β

∑
k,ωn

∑
l,m

ap∗l (k)atl(k)a
s∗
m(k+ q)aqm(k+ q)

× 1

iωn − El(k)

1

iωn + iνn − Em(k+ q)
(4.18)
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The summation over Matsubara frequencies can be evaluated via the residue theorem. In
the last step we used the definition of the Fermi function.

1

β

∑
ωn

1

iωn − El(k)

1

iωn + iνn − Em(k+ q)
(4.19)

=− 1

β

[
lim

z→El(k)

1

z + iνn − Em(k+ q)

−β
1 + eβz

+ lim
z→−iνn+Em(k+q)

1

z − El(k)

−β
1 + eβz

]
(4.20)

=
nF (El(k))− nF (Em(k+ q))

El(k)− Em(k+ q) + iνn
(4.21)

Using Eq. 4.21 we can rewrite the unperturbed paramagnetic susceptibility.

χpq
st (q, iνn) =−

∑
k,l,m

ap∗l (k)atl(k)a
s∗
m(k+ q)aqm(k+ q)

× nF (El(k))− nF (Em(k+ q))

El(k)− Em(k+ q) + iνn
(4.22)

In this form the paramagnetic susceptibility is a tensor of four orbital indices, the mo-
mentum transfer q and the bosonic Matsubara frequency νn. Clearly, it describes bosonic
excitations, which are associated with energy- and momentum-state transitions in the elec-
tronic bandstructure. Indeed, the diagonalization of the kinetic part of the Hamiltonian is
all we need to calculate the unperturbed paramagnetic susceptibility. The continuation to
the real-frequency axis can be performed by replacing iνn → ν + iη and taking the limit
of η → 0.

4.1.5 Connection between static susceptibility and real-space
ordering

In this section we illustrate the physical meaning of the static susceptibility χ(q, 0). We
start by writing down the momentum-space spin susceptibility (Eq. 4.8) in terms of the
real-space spin operators.

χ1(q, 0) =
2

3

∑
i,j

eiq·(Ri−Rj)〈S(Ri, 0) · S(Rj, 0)〉 (4.23)

For simplicity we now assume that the spins are classical, so that we can obtain the
expectation values easily. As an example, we choose two-dimensional antiferromagnetic
stripe order, in which up and down spins alternate along the x-direction (lattice constant
a), while spins do not alternate along the y-direction (lattice constant b). This situation is
shown in Fig. 4.2. Using −1 = eiπ and neglecting the irrelevant prefactors we obtain the
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Figure 4.2: Two-dimensional spin pattern, in which up and down spins alternate along
the x-direction. This spatial configuration is usually referred to as antiferro-
magnetic stripe order.

following susceptibility:

χ1(q, 0) =
∑
m,n

(−1)meiqxmaeiqynb (4.24)

=
∑
m

ei(qx±π/a)ma
∑
n

eiqynb (4.25)

=δ(qx ± π/a) δ(qy) (4.26)

The result in Eq. 4.26 relates to the so-called ordering vector q = (qx, qy) = (±π/a, 0)
associated with the antiferromagnetic stripe pattern proposed earlier.

These considerations reveal that static ordering tendencies are encoded into the static
susceptibility of a system. Although we only treated real-space spin ordering in the exam-
ple, ordering vectors can also be associated with other order parameters (see, for example,
Eq. 4.3).

4.2 Analytical derivation in terms of Feynman

diagrams

4.2.1 Fourier transformation of the interaction Hamiltonian

The aim of this section is to go beyond the unperturbed susceptibility and calculate higher
order terms. The full susceptibility up to infinite order can be written in analogy to the
series expansion of the Green’s function (Eq. 3.35). The spin quantum numbers are now
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denoted as α, β, δ, ε.

χpq
st (q, iνn) =A

β∫
0

dτ e−iνnτ
∑
kk′

∑
αβδε

∞∑
n=0

(−1)n

n!

×

〈
Tτc

†
pα(k, τ)c

†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)Sn

〉
con

(4.27)

With respect to the previous definition of the susceptibility we relabelled the momenta
q → −q, k → k+ q and k′ → k′ − q. The prefactor A and the restrictions to spin indices
α, β, δ, ε have to be adapted to the charge and spin channel respectively.

To the charge channel terms with α = ε, β = δ contribute with prefactor A = 1/2 (see
Eq. 4.4). To the spin channel terms α = δ, β = ε, α 6= β contribute with prefactor A = 1/3,
terms α = β = δ = ε contribute with prefactor A = 1/6 and terms α = ε, β = δ, α 6= β
contribute with prefactor A = −1/6 (see Eq. 4.10).

Using greek letters to denote tuples of all relevant quantum numbers, the general form
of the interaction term, which occurs in higher expansion orders, is given by

S =
1

2

β∫
0

dτ
∑
γδλµ

(γδ|V |λµ)c†γc
†
δcµcλ. (4.28)

The fermionic operators all carry the same index τ in imaginary-time, which means that
the interaction is instantaneous.

Since our aim is to calculate the susceptibility in momentum-space (see Eq. 4.27), we
need to express also the interaction terms (Eq. 4.28) in momentum-space. Our Hamil-
tonian of interest is the multi-orbital Hubbard model (Eq. 1.4), which consists of four
interaction terms in real-space. Their momentum-space representation is obtained via
Fourier transformation.

We start with the intra-orbital Coulomb repulsion and insert the Fourier transformation
of the fermionic operators with respect to lattice site coordinates x. The orbital is denoted
by index l and σ represents the spin.

U
∑
xu

nxu↑nxu↓ =
U

2

∑
xuσ

nxuσnxuσ̄ (4.29)

=
U

2

∑
xuσ

c†uσ(x)cuσ(x)c
†
uσ̄(x)cuσ̄(x) (4.30)

=
U

2

∑
xx′uσ

δxx′︸︷︷︸
=
∑
q

eiq(x−x′)

c†uσ(x)c
†
uσ̄(x

′)cuσ̄(x
′)cuσ(x) (4.31)
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=
U

2N2

∑
uσ

∑
xx′

∑
qkk′

k′′k′′′

c†uσ̄(k)c
†
uσ(k

′)cuσ̄(k
′′)cuσ(k

′′′) eix(q+k−k′′′)︸ ︷︷ ︸
=δk,k′′′−q

eix
′(k′−k′′−q)︸ ︷︷ ︸
δk′,k′′+q

(4.32)

=
U

2

∑
uσ

∑
qkk′

c†uσ(k+ q)c†uσ̄(k
′ − q)cuσ̄(k

′)cuσ(k) (4.33)

The factor N−2, where N is the number of lattice sites, is introduced by the Fourier
transformation of the fermionic operators and then cancelled by the summations over
lattice sites x and x′.
In the same way we obtain the Fourier transformation of the inter-orbital Coulomb

repulsion.

V

2

∑
x,u,v 6=u

nxunxv =
V

2

∑
x,σ

u,v 6=u

(
nxuσnxvσ + nxuσnxvσ̄

)
(4.34)

=
V

2

∑
u,u6=v

σ

∑
qkk′

[
c†uσ(k+ q)c†vσ(k

′ − q)cvσ(k
′)cuσ(k)

+ c†uσ(k+ q)c†vσ̄(k
′ − q)cvσ̄(k

′)cuσ(k)
]

(4.35)

The Hund’s rule coupling (inter-orbital exchange) term contains contributions of the
same structure as inter-orbital Coulomb repulsion (see Eq. 4.35).

−J
2

∑
x,u,v 6=u

Sxu · Sxv =− J

8

∑
u,u6=v

σ

∑
qkk′

(
2c†uσ(k+ q)c†vσ̄(k

′ − q)cvσ(k
′)cuσ̄(k)

+ c†uσ(k+ q)c†vσ(k
′ − q)cvσ(k

′)cuσ(k)

− c†uσ(k+ q)c†vσ̄(k
′ − q)cvσ̄(k

′)cuσ(k)
)

(4.36)

Finally, the pair hopping term has a slightly different structure in orbital-space compared
to the inter-orbital exchange (see Eq. 4.36).

J ′

2

∑
x,σ

u,v 6=u

c†xuσc
†
xuσ̄cxvσ̄cxvσ =

J ′

2

∑
u,u 6=v

σ

∑
qkk′

c†uσ(k+ q)c†uσ̄(k
′ − q)cvσ̄(k

′)cvσ(k) (4.37)

Since we have now written down the interaction part of the Hamiltonian in momentum-
space and imaginary-time, we can proceed to evaluate higher order terms of the pertur-
bation expansion for the susceptibility (Eq. 4.27). We calculate all first order (n = 1)
terms, which can be written in terms of the unperturbed susceptibility (Eq. 4.17). This
calculation is carried out separately for each of the interaction terms and we determine
the corresponding contributions to the perturbation expansion. Afterwards, we collect all
terms and construct and expansion up to infinite order in the spirit of the random phase
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approximation. We show that, for the multi-orbital Hubbard model, a matrix equation
can be used to generate all diagrams that can be expressed as products of unperturbed
susceptibilities. Finally, we use the perturbation expansion for the susceptibility to con-
struct an approximation for the two-particle pairing vertex and explain how to obtain the
momentum-space symmetry of the electron pairing from this object.

4.2.2 Diagrammatic expansion for the intra-orbital Coulomb
repulsion

We calculate all possible connected pairings of the first-order term in the perturbation
expansion of the susceptibility (Eq. 4.27) using the Fourier transformation of the intra-
orbital Coulomb repulsion (Eq. 4.33). The interaction vertex is implicitly assumed to be
inserted at imaginary-time τ ′′.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cuσ̄(k

′′′)cuσ(k
′′) (4.38)

We neglect all terms, which cannot be written in terms of the unperturbed susceptibility
and those which contribute only for vanishing external momentum q = 0. Out of all
4! = 24 possible pairings only four fulfill our criteria.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cuσ̄(k

′′′)cuσ(k
′′) (4.39)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cuσ̄(k

′′′)cuσ(k
′′) (4.40)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cuσ̄(k

′′′)cuσ(k
′′) (4.41)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cuσ̄(k

′′′)cuσ(k
′′) (4.42)

The corresponding Feynman diagrams are shown in Fig. 4.3. The interaction line colored in
blue represents the intra-orbital Coulomb repulsion. The external interaction lines colored
in black only indicate that momentum transfer takes place, but are not specified further
yet.
The spin indices α, β, δ and ε are determined from the condition that no Green’s

function contains different spin operators. This condition is imposed by the kinetic Hamil-
tonian, which does not allow for transitions between states with different spin (see Eq. 1.4).
Furthermore, some of the internal momenta can be determined by imposing momentum
conservation. For example, in Eqs. 4.39 and 4.40 the internal momentum q′ at the intra-
orbital Coulomb vertex must be equal to q (see Fig. 4.3).
Note that Fig. 4.3 contains only two types of topologically equivalent diagrams. Dia-

grams (a) and (b) (often called bubble diagrams), as well as diagrams (c) and (d) (often
called ladder diagrams) become identical after relabelling the spin variable σ → σ̄. There-
fore, they give the same contribution to the susceptibility. For diagrams (a) and (b) it



4.2 Analytical derivation in terms of Feynman diagrams 53

(a)

q

k′ − q

k′

q

k

k+ q

qsσ

tσ

qσ̄

pσ̄

uσ

uσ

uσ̄

uσ̄

(b)

q

k′ − q

k′

q

k

k+ q

qsσ̄

tσ̄

qσ

pσ

uσ̄

uσ̄

uσ

uσ

(c)

q

k− q′

k+ q− q′ k+ q

k

q′ qsσ

tσ̄

qσ

pσ̄

uσ uσ

uσ̄ uσ̄

(d)

q

k− q′

k+ q− q′ k+ q

k

q′ qsσ̄

tσ

qσ̄

pσ

uσ̄ uσ̄

uσ uσ

Figure 4.3: Feynman diagrams of the first order contribution in the intra-orbital Coulomb
repulsion to the susceptibility corresponding to the operator pairings in (a)
Eq. 4.39, (b) Eq. 4.40, (c) Eq. 4.41 and (d) Eq. 4.42.

is already obvious from the Feynman diagram that they can be written as a product of
two unperturbed susceptibilities. Diagrams (c) and (d) can also be written as products
over unperturbed susceptibilities after grouping the Green’s functions on both sides of the
intra-orbital Coulomb vertex, since the momentum summations decouple after relabelling
k− q′ → k′.

The diagrams also carry a minus sign depending on whether the number of fermion
operator permutations needed for grouping the connected creators and annihilators is even
(positive sign) or odd (negative sign). Therefore the diagrams corresponding to Eqs. 4.39
and 4.40 carry positive sign, while the diagrams corresponding to Eqs. 4.41 and 4.42 carry
negative sign.

As explained in the previous subsection, the spin indices α, β, δ and ε give a prefactor
for the contribution of each diagram to charge and spin susceptibility. Eqs. 4.39 and 4.40
imply that α = ε, β = δ and α 6= β. Therefore, both diagrams contribute to the charge
susceptibility with a prefactor of A = 1/2. Taking into account the additional minus sign
from the expansion order (see Eq. 4.27) the first order contribution in the intra-orbital
Coulomb repulsion to the charge susceptibility, therefore, reads

−
∑
u

χuu
st (q)Uχ

pq
uu(q). (4.43)

For the spin susceptibility we get contributions from Eqs. 4.41 and 4.42, which imply
α = δ, β = ε and α 6= β, with prefactor A = 1/3 and from Eqs. 4.39 and 4.40 with
prefactor A = −1/6. The signs of the prefactors and the additional negative sign from the
expansion order cancel all negative signs of the individual diagrams, so that the first order



54 Chapter 4 Random phase approximation for the multi-orbital Hubbard model

contribution in the intra-orbital Coulomb repulsion to the spin susceptibility reads

+
∑
u

χuu
st (q)Uχ

pq
uu(q). (4.44)

At this point we already have enough information to write down the random phase
approximation for the single-orbital Hubbard model. In the single-orbital case the tensor
χpq
st becomes a scalar. Generating higher order diagrams only means we insert additional

interaction vertices into the bubble and ladder topology diagrams. A mixture of both
is not allowed, because the kinetic Hamiltonian forbids Green’s functions that mix spin.
Therefore, the charge and spin susceptibilities of the single-orbital Hubbard model differ
only by a minus sign.

χc = χ0 − χ0Uχ0 + χ0Uχ0Uχ0 − . . . = χ0 − χ0Uχc (4.45)

χs = χ0 + χ0Uχ0 + χ0Uχ0Uχ0 + . . . = χ0 + χ0Uχs (4.46)

Here, χc denotes the charge susceptibility, χs denotes the spin susceptibility and χ0 de-
notes the unperturbed susceptibility. Note that we implicitly used the sum formula for a
geometric series and assumed that the series converges, which implies |Uχ0| < 1.

In fact, Eqs. 4.45 and 4.46 can be solved for the susceptibilities at infinite expansion
order.

χc =
χ0

1 + Uχ0
(4.47)

χs =
χ0

1− Uχ0
(4.48)

The most important advantage of restricting the diagrammatic expansion to terms that
can be written as products of susceptibilities is apparent from Eqs. 4.47 and 4.48. The
restriction in diagram topology yields a closed form for the expansion up to infinite order
in terms of only the unperturbed susceptibility and the interaction strength. Of course,
such expressions are much easier to evaluate than calculating higher order terms explicitly,
since they come with a strongly increasing numerical cost due to additional indices that
we have to sum over.

For the multi-orbital Hubbard model we will now follow a similar strategy. From the
first order contributions to the susceptibilities we will calculate the elements of interaction
tensors U c and U s corresponding to each term in the multi-orbital Hubbard model. We
will then construct the susceptibilities up to infinite order in analogy to Eqs. 4.47 and 4.48.

In Eqs. 4.43 and 4.44 we have already determined some of the elements in the interaction
tensor.

(U c)aaaa = U (4.49)

(U s)aaaa = U (4.50)
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Figure 4.4: Feynman diagrams of the first order contribution in the inter-orbital Coulomb
repulsion to the susceptibility corresponding to the operator pairings in (a)
Eq. 4.53, (b) Eq. 4.54, (c) Eq. 4.55 and (d) Eq. 4.56.

4.2.3 Diagrammatic expansion for the inter-orbital Coulomb
repulsion

Now we calculate the contributions to the susceptibility, which are first order in the inter-
orbital Coulomb repulsion, in the same way we treated the inter-orbital Coulomb repulsion.
Again we use the perturbation expansion of the susceptibility (Eq. 4.27), but now we insert
the Fourier transformation of the inter-orbital Coulomb repulsion (Eq. 4.35). This results
in two terms for which we have to calculate the connected pairings.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.51)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.52)

Again only four out of the 24 possible pairings for each of Eqs. 4.51 and 4.52 satisfy the
criteria we formulated before. Those are:

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.53)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.54)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.55)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.56)
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Figure 4.5: Feynman diagrams of the first order contribution in the inter-orbital Coulomb
repulsion to the susceptibility corresponding to the operator pairings in (a)
Eq. 4.57, (b) Eq. 4.58, (c) Eq. 4.59 and (d) Eq. 4.60.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.57)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.58)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.59)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.60)

We now use a light blue colored wiggly line to represent the inter-orbital Coulomb repulsion.
The Feynman diagrams associated with the possible pairings of Eq. 4.51 are shown in
Fig. 4.4, while the diagrams for possible pairings of Eq. 4.52 are shown in Fig. 4.5.
Due to the two different orbital indices at the interaction vertex the contributions to the

charge susceptibility have a more complicated orbital structure than in the intra-orbital
Coulomb case. Eqs. 4.53, 4.54, 4.57 and 4.58 each give a contribution of

−
∑
u,v 6=u

χuu
st (q)

V

2
χpq
vv(q), (4.61)

while Eqs. 4.55 and 4.56 each give a contribution

+
∑
u,v 6=u

χuv
st (q)

V

2
χpq
uv(q). (4.62)
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Therefore, we can write down two further elements of the interaction tensor. Note however
that a minus sign is already absorbed in the definition of the charge susceptibility (see
Eq. 4.45).

(U c)bbaa = 2V (4.63)

(U c)abab = −V (4.64)

To the spin susceptibility Eqs. 4.59 and 4.60 (α = δ, β = ε, α 6= β) each contribute

+
∑
u,v 6=u

χuv
st (q)

V

3
χpq
uv(q). (4.65)

Eqs. 4.53 and 4.54 (α = β = δ = ε) each contribute

−
∑
u,v 6=u

χuu
st (q)

V

6
χpq
vv(q), (4.66)

while Eqs. 4.55 and 4.56 (α = β = δ = ε) each contribute

+
∑
u,v 6=u

χuv
st (q)

V

6
χpq
uv(q). (4.67)

Furthermore, Eqs. 4.57 and 4.58 (α = ε, β = δ, α 6= β) contribute

+
∑
u,v 6=u

χuu
st (q)

V

6
χpq
vv(q). (4.68)

With these information we can write down the elements of the interaction tensor in the
spin channel for the inter-orbital Coulomb repulsion.

(U s)bbaa = 0 (4.69)

(U s)abab = V (4.70)

4.2.4 Diagrammatic expansion for the Hund’s rule coupling

Now we calculate the first order contributions to the susceptibility using the Fourier trans-
form of the Hund’s rule coupling terms (Eq. 4.36). We obtain three terms for which we
have to calculate all possible connected pairings.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ(k

′′′)cuσ̄(k
′′) (4.71)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.72)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.73)
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As before, only four pairings for each of Eqs. 4.71, 4.72 and 4.73 fulfill our criteria for
inclusion into the diagrammatic expansion. The terms in Eqs. 4.72 and 4.73 are actually
identical to Eqs. 4.51 and 4.52, which we analyzed in the section on the inter-orbital
Coulomb repulsion. For further reference we again list all relevant pairings.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ(k

′′′)cuσ̄(k
′′) (4.74)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ(k

′′′)cuσ̄(k
′′) (4.75)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ(k

′′′)cuσ̄(k
′′) (4.76)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ(k

′′′)cuσ̄(k
′′) (4.77)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.78)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.79)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.80)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ(k
′′′ − q′)cvσ(k

′′′)cuσ(k
′′) (4.81)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.82)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.83)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.84)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†vσ̄(k
′′′ − q′)cvσ̄(k

′′′)cuσ(k
′′) (4.85)

We now use an orange colored dashed line to represent the Hund’s rule coupling. The
Feynman diagrams associated with Eq. 4.71 are shown in Fig. 4.6. The diagrams repre-
senting pairings of Eqs. 4.72 and 4.73 are the same as in Figs. 4.4 and 4.5, but with the
inter-orbital Coulomb interaction lines replaced by Hund’s rule interaction lines.
Now we collect the contributions to the charge susceptibility. Eqs. 4.76 and 4.77 each

contribute

−
∑
u,v 6=u

χuv
st (q)

J

4
χpq
uv(q). (4.86)
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Figure 4.6: Feynman diagrams of the first order contribution in the Hund’s rule coupling
to the susceptibility corresponding to the operator pairings in (a) Eq. 4.74,
(b) Eq. 4.75, (c) Eq. 4.76 and (d) Eq. 4.77.

Eqs. 4.78 and 4.79 each contribute

+
∑
u,v 6=u

χuu
st (q)

J

8
χpq
vv(q), (4.87)

while Eqs. 4.80 and 4.81 each contribute

−
∑
u,v 6=u

χuv
st (q)

J

8
χpq
uv(q). (4.88)

Furthermore, Eqs. 4.82 and 4.83 each contribute

−
∑
u,v 6=u

χuu
st (q)

J

8
χpq
vv(q). (4.89)

From these terms we obtain the total contribution of the Hund’s rule coupling to the
interaction tensor in the charge channel.

(U c)bbaa = 0 (4.90)

(U c)abab =
3

4
J (4.91)

To the spin channel Eqs. 4.74 and 4.75 each contribute

+
∑
u,v 6=u

χuu
st (q)

J

6
χpq
vv(q), (4.92)
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while Eqs. 4.84 and 4.85 each contribute

+
∑
u,v 6=u

χuv
st (q)

J

12
χpq
uv(q). (4.93)

Eqs. 4.78 and 4.79 each contribute

+
∑
u,v 6=u

χuu
st (q)

J

24
χpq
vv(q), (4.94)

while Eqs. 4.80 and 4.81 each contribute

−
∑
u,v 6=u

χuv
st (q)

J

24
χpq
uv(q). (4.95)

Furthermore, Eqs. 4.76 and 4.77 each contribute

+
∑
u,v 6=u

χuv
st (q)

J

12
χpq
uv(q), (4.96)

while Eqs. 4.82 and 4.83 each contribute

+
∑
u,v 6=u

χuu
st (q)

J

24
χpq
vv(q). (4.97)

Finally, we obtain the total contribution of the Hund’s rule coupling to the interaction
tensor in the spin channel.

(U s)bbaa =
1

2
J (4.98)

(U s)abab =
1

4
J (4.99)

4.2.5 Diagrammatic expansion for the pair-hopping term

In this subsection we calculate the first order contribution to the susceptibility using the
Fourier transformation of the pair-hopping term (Eq. 4.37). We have to investigate all
possible pairings for the following product of operators:

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cvσ̄(k

′′′)cvσ(k
′′) (4.100)

As for all previous interaction terms, only four pairings of Eq. 4.100 fulfill our criteria.
Those are:

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cvσ̄(k

′′′)cvσ(k
′′) (4.101)
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Figure 4.7: Feynman diagrams of the first order contribution in the Hund’s rule coupling
to the susceptibility corresponding to the operator pairings in (a) Eq. 4.101,
(b) Eq. 4.102, (c) Eq. 4.103 and (d) Eq. 4.104.

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cvσ̄(k

′′′)cvσ(k
′′) (4.102)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cvσ̄(k

′′′)cvσ(k
′′) (4.103)

c†pα(k, τ)c
†
sβ(k

′, 0)ctδ(k
′ − q, 0)cqε(k+ q, τ)c†uσ(k

′′ + q′)c†uσ̄(k
′′′ − q′)cvσ̄(k

′′′)cvσ(k
′′) (4.104)

We now use a magneta colored dotted line to represent the pair-hopping interaction. The
Feynman diagrams associated with Eq. 4.100 are shown in Fig. 4.7.
To the charge susceptibility Eqs. 4.101 and 4.102 each contribute

−
∑
u,v 6=u

χuv
st (q)

J ′

2
χpq
vu(q). (4.105)

The total contribution of the pair-hopping term to the interaction tensor in the charge
channel is given by

(U c)baab = J ′. (4.106)

To the spin susceptibility Eqs. 4.103 and 4.104 each contribute

+
∑
u,v 6=u

χuv
st (q)

J ′

3
χpq
vu(q), (4.107)

while Eqs. 4.101 and 4.102 each contribute

+
∑
u,v 6=u

χuv
st (q)

J ′

6
χpq
vu(q). (4.108)
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Therefore, the total contribution of the pair-hopping term to the interaction tensor in the
spin channel is given by

(U s)baab = J ′. (4.109)

4.2.6 Tensor formulation of the multi-orbital susceptibility

In the previous subsections we calculated the elements of the interaction tensor, which
appears in the random phase approximation for the charge and spin susceptibility in the
multi-orbital Hubbard model.

(U c)aaaa = U (U c)bbaa = 2V (U c)abab =
3

4
J − V (U c)baab = J ′ (4.110)

(U s)aaaa = U (U s)bbaa =
1

2
J (U s)abab =

1

4
J + V (U s)baab = J ′ (4.111)

In analogy to the scalar equations of the single-orbital case (Eqs. 4.45 and 4.46) we can
write down tensor equations for the susceptibilities in the multi-orbital case. Here, we
suppressed the momentum argument q in each of the susceptibilities.

(χc)pqst = (χ0)pqst −
∑
ab
cd

(χ0)abst (U
c)cdab(χ

0)pqcd + . . . = (χ0)pqst −
∑
ab
cd

(χ0)abst (U
c)cdab(χ

c)pqcd (4.112)

(χs)pqst = (χ0)pqst +
∑
ab
cd

(χ0)abst (U
s)cdab(χ

0)pqcd + . . . = (χ0)pqst +
∑
ab
cd

(χ0)abst (U
s)cdab(χ

s)pqcd (4.113)

This set of equations is very elegant, since it automatically generates, in expansion orders
n ≥ 2, also all allowed terms with mixed types of interaction vertices. That is possible,
because we have restricted ourselves to contributions that can be represented as products
of susceptibilities and interaction vertices. Therefore, incrementing the expansion order
simply means multiplication by another interaction vertex and another susceptibility. The
rules for such a multiplication are completely determined by the susceptibility terms that
are first order in the interaction vertices and which we have used to determine the inter-
action tensors (Eqs. 4.110 and 4.111).
As in the single-orbital case, the charge and spin susceptibilities up to infinite expansion

order can be obtained by inverting Eqs. 4.112 and 4.113 in orbital space.

(χc)pqst =
[(

(χ0)pqst

)−1

+
(
(U c)pqst

)−1]−1

(4.114)

(χs)pqst =
[(

(χ0)pqst

)−1

−
(
(U s)pqst

)−1]−1

(4.115)

Since the interaction tensor is simply a collection of constant numbers, the random phase
approximation for the charge and spin susceptibilities up to infinite expansion order can be
obtained at the cost of calculating the unperturbed multi-orbital susceptibility and invert-
ing it in orbital space. In fact, computational efficiency is the most important advantage
of the RPA method.
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k k′

−k −k′

pσ qσ

tσ̄ sσ̄

Γpq
st

Figure 4.8: Feynman diagram representing the two-particle interaction V pq
st (k,k

′, iνn).

4.2.7 Approximation for the two-electron pairing vertex in
terms of susceptibilities

In this subsection we approach the main goal of this chapter, namely the calculation of
the two-electron pairing vertex, which characterizes the symmetry of the superconducting
pairing in momentum and orbital space. The perturbation expansion of the particle-
particle interaction can be written down similar to the perturbation expansion for the
susceptibility (see Eq. 4.27). Again we use greek letters to denote the spins.

V pq
st (k,k

′, iνn) =

β∫
0

dτ e−iνnτ
∑
kk′

∑
σ

∞∑
n=0

(−1)n

n!

×

〈
Tτc

†
tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)Sn

〉
con

(4.116)

The corresponding Feynman diagram is shown in Fig. 4.8. Because we are interested in
spin-singlet superconductivity, we have fixed the spins at the external legs to have opposite
directions. We also introduce the two-particle vertex Γpq

st , which is generated from V pq
st by

cutting off all external legs.
Since diagrams that are zeroth order in the interaction do not contribute to Γpq

st , we now
calculate all possible diagrams that are first order in the interaction. The relevant pairings
are:

U

2
c†tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)c†uσ(k
′′ + q′)c†uσ̄(k

′′′ − q′)cuσ̄(k
′′′)cuσ(k

′′)

(4.117)

V

2
c†tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)c†uσ(k
′′ + q′)c†vσ̄(k

′′′ − q′)cvσ̄(k
′′′)cuσ(k

′′)

(4.118)

−J
4
c†tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)c†uσ(k
′′ + q′)c†vσ̄(k

′′′ − q′)cvσ(k
′′′)cuσ̄(k

′′)

(4.119)
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Figure 4.9: Feynman diagrams of the first order contribution in the interactions to the
two-particle interaction vertex corresponding to the operator pairings in (a)
Eq. 4.117, (b) Eq. 4.118, (c) Eq. 4.119, (d) Eq. 4.120 and (e) Eq. 4.121. Note
the twist in orbital and spin indices on the left side of diagram (c).

J

8
c†tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)c†uσ(k
′′ + q′)c†vσ̄(k

′′′ − q′)cvσ̄(k
′′′)cuσ(k

′′)

(4.120)

J ′

2
c†tσ̄(−k, 0)c†pσ(k, 0)cqσ(k

′, τ)csσ̄(−k′, τ)c†uσ(k
′′ + q′)c†uσ̄(k

′′′ − q′)cvσ̄(k
′′′)cvσ(k

′′)

(4.121)

Note how Eq. 4.119 includes a twist in the operator pairings with respect to the other
pairings. This twist gives an additional minus sign, which cancels the sign in the prefactor.
The associated Feynman diagrams are shown in Fig. 4.9, in which we omit to show the
internal momenta for clarity. After performing the sum over spins σ, we get the following
contributions from those diagrams:(

Γ1
)aa
aa

= U
(
Γ1
)bb
aa

= V +
1

4
J

(
Γ1
)ab
ab
=

1

2
J

(
Γ1
)ba
ab
= J ′ (4.122)

These contributions can in fact be represented in terms of the interaction tensors in the
charge and spin channel we determined before (see Eqs. 4.110 and 4.111).(

Γ1
)pq
st

=
1

2

[(
U c
)pq
st
+
(
U s
)pq
st

]
(4.123)

Now we turn to the diagrams, which include a charge or spin susceptibility in random
phase approximation to infinite order. Since the possibilities of connecting a charge or spin
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Figure 4.10: Feynman diagrams that contribute to the two-particle vertex. Diagrams
(a) and (b) have bubble topology, while diagrams (c) and (d) have twisted
ladder topology. Diagrams (a) and (c) are second order in the interaction
vertices, while diagrams (b) and (d) are third order.

susceptibility to the external legs is described precisely by the interaction tensors U c and
U s, we already know that further terms in the two-particle vertex must have the structure
U cχcU c and U sχsU s. The question is only what the correct prefactors to those terms are.

To find those prefactors, we concentrate on the Feynman diagrams with only intra-
orbital Coulomb (U) interaction vertices. Since we have seen before that a generalization
of the single-orbital case using the interaction tensors U c and U s is justified, we can obtain
the formulas for the multi-orbital case in this way. We have also conducted extensive
calculations for the Feynman diagrams contributing to the two-particle vertex in the multi-
orbital case, taking into account second and third order diagrams in the interaction vertices.
The derivations are by far too long to be shown here, but confirmed the validity of the
derivation via the single-orbital case.

The interesting diagrams in the perturbation expansion of the two-particle vertex are of
bubble and twisted ladder topology (see Fig. 4.10). In Fig. 4.10(a) we see that diagrams,
which are even order in the interaction vertices, do not contribute to the two-particle vertex,
since the internal susceptibility parts of the diagram include Green’s functions, which mix
spins. Such mixing of different spins is, however, forbidden by the kinetic Hamiltonian
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and, therefore, such even order diagrams evaluate to zero, in contrast to the odd order
term shown in Fig. 4.10(b). The twisted ladder diagrams shown in Fig. 4.10(c) and (d)
contribute in all orders.
Since the pairs of internal counterpropagating Green’s functions can be written as sus-

ceptibilities, we can evaluate the contributions from the diagrams shown in Fig. 4.10. The
factorial prefactor from the expansion order (see Eq. 4.116) is cancelled by the number
of possible contractions that lead to a diagram with identical symmetry. Therefore, the
diagram in Fig. 4.10(b) contributes U3χ2(k − k′), while diagrams in Fig. 4.10(c) and (d)
contribute U2χ(k+k′) and U3χ2(k+k′) respectively. Finally, we can write down the con-
tribution up to infinite order in the interaction vertices for the bubble and twisted ladder
diagrams. Summing up all contributions from bubble type diagrams we get:

U3χ2(k− k′) + U5χ4(k− k′) + U7χ6(k− k′) + . . . (4.124)

=U3χ2(k− k′)
[
1 + U2χ2(k− k′) + U4χ4(k− k′) + . . .

]
(4.125)

=
U3χ2(k− k′)

1− U2χ2(k− k′)
(4.126)

=
U2

2

[ χ(k− k′)

1− Uχ(k− k′)
− χ(k− k′)

1 + Uχ(k− k′)

]
(4.127)

From the twisted ladder diagrams we get:

U2χ(k+ k′) + U3χ2(k+ k′) + U4χ3(k+ k′) + . . . (4.128)

=U2χ(k+ k′)
[
1 + Uχ(k+ k′) + U2χ2(k+ k′) + . . .

]
(4.129)

=U2 χ(k+ k′)

1− Uχ(k+ k′)
(4.130)

Noting that Eqs. 4.127 and 4.130 contain the charge and spin susceptibilities (see Eqs. 4.47
and 4.48) and including the first order contribution (see Eq. 4.123), we can write the two-
particle vertex as

Γpq
st (k,k

′) =
1

2

[(
U s
)ab
st

(
χs
)cd
ab
(k− k′)

(
U s
)pq
cd
−
(
U c
)ab
st

(
χc
)cd
ab
(k− k′)

(
U c
)pq
cd

]
+
(
U s
)ab
st

(
χs
)cd
ab
(k+ k′)

(
U s
)pq
cd
+

1

2

[(
U c
)pq
st
+
(
U s
)pq
st

]
. (4.131)

The charge and spin susceptibilities that are meant to be inserted here, are the random
phase approximated ones (see Eqs. 4.114 and 4.115).
At the beginning of the chapter we stated that we want to investigate spin-singlet su-

perconductivity. In this subsection we, however, assumed only a pairing between elec-
trons with different spin, which does not yet make a singlet. Therefore, the singlet-
symmetrization has to be applied explicitly to the two-particle vertex.(

Γs
)pq
st
(k,k′) =

1

2

[
Γpq
st (k,k

′) + Γpq
st (k,−k′)

]
(4.132)
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After the singlet-symmetrization the result presented in Eq. 4.131 agrees with the liter-
ature result in Ref. [94].

(
Γs
)pq
st
(k,k′) =

3

2

(
U s
)ab
st

(
χs
)cd
ab
(k± k′)

(
U s
)pq
cd
− 1

2

(
U c
)ab
st

(
χc
)cd
ab
(k± k′)

(
U c
)pq
cd

+
1

2

[(
U c
)pq
st
+
(
U s
)pq
st

]
. (4.133)

Note that we neglected the frequency dependence of the susceptibilities. In principle it
can be re-introduced by treating all momenta as a combined momentum and Matsubara
frequency variable k = (k, iνn).

4.2.8 Eigenvalue equation for the two-electron pairing vertex

The two-particle vertex Γpq
st contains information about electron-pairing mediated by the

charge and spin fluctuation processes included in the RPA diagram expansion. Currently,
this object is still written in orbital space. We, however, would like to know the symme-
try of the superconducting pairing for electrons that live on the Fermi surface. The idea
is now to set all frequencies to zero and transform the singlet-symmetrized two-particle
vertex Γpq

st into band space. This is done by applying the matrix elements from the diago-
nalization of the kinetic Hamiltonian and summing out all orbital indices. Here, we make
the approximation that the electrons in the pair have the same band index.

Γmn(k,k
′) = Re

[∑
pq
st

ap∗m (k)at∗m(−k)
(
Γs
)pq
st
(k,k′, ν = 0) aqn(k

′)asn(−k′)

]
(4.134)

In this form, the two-particle vertex is accessible to calculations. We can discretize the
Fermi surface and insert those discretized momenta for k and k′. Furthermore, from
Eq. 4.134 we see that the band index m is associated with momentum k and the band
index n is associated with momentum k′. Those combinations can be calculated easily from
the kinetic Hamiltonian. Therefore, we can determine Γmn(k,k

′) for a set of discretized
momenta and diagonalize this object in the combined indices (m,k) and (n,k′). The
eigenfunctions we find this way are possible symmetries of the superconducting gap on the
Fermi surface.
A restriction to the Fermi surface is plausible, since both momentum and energy have to

be conserved in all diagrams we consider. If we restrict ourselves to the Fermi surface, only
momentum conservation is in question and the weight of diagrams is controlled only by the
momentum dependence of the charge and spin susceptibilities. If we had allowed Feynman
diagrams with nonzero energy transfer, we would have introduced a lot of new diagrams
out of which only few would have given a finite contribution, since momentum and energy
conservation can only be fulfilled for few out of all diagrams. In fact, this approximation
has been quantified in Ref. [96]. Note, however, that the two-particle pairing vertex might
be peaked at finite frequency, if there are electronic bands that come close to, but do not
cross the Fermi level. We will not apply our formalism to such cases.
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The calculational procedure discussed previously can be put into equations by consid-
ering an eigenvalue problem for the two-particle vertex, in which the pairing amplitude λ
and a dimensionless symmetry function g(k) appear. Note that the momenta are not yet
restricted to the Fermi surface.

λg(kn) = −
∑
km

Γ(km,kn)g(km) (4.135)

The negative sign appears, since we want the maximally attractive solution to have the
largest positive eigenvalue. Now we explicitly restrict the energies to the Fermi surface.

λg(kn)δ(Ekn − EF ) = −
∑
km

Γ(km,kn)g(km)δ(Ekm − EF )δ(Ekn − EF ) (4.136)

We rewrite this expression by exploiting a property of the delta distribution and the defi-
nition of the so-called Fermi velocity.

δ(Ekn − EF ) =
δ(kn − kF )

|∇knE(k)|k=kn

=
δ(kn − kF )

~|v(kn)|
(4.137)

That means we can solve an effective eigenvalue equation, in which all momenta are re-
stricted to the Fermi surface.

λg(kn) = −
∑
km

Γ(km,kn)

~|v(km)|
g(km) (4.138)

This equation allows us to extract a symmetry function, which characterizes the supercon-
ducting state in momentum space, and a dimensionless measure for the pairing strength.
The strategy for an efficient numerical solution of the eigenvalue problem and all necessary
preceding calculations are detailed in a separate section.

4.2.9 Diagrammatic structure of the two-particle vertex in the
multi-orbital case

Based on the derivation of the two-particle vertex in the single-orbital case, one could
assume that diagrams in the expansion for the multi-orbital case have only bubble and
twisted ladder topology as shown in Fig. 4.10.
While the intra-orbital Coulomb interaction indeed only generates diagrams with those

topologies, the multi-orbital case naturally comes with the possibility of having diagrams
with mixed interaction vertices, which allow for new arrangements of the Green’s function
lines. In Fig. 4.11 we show a few examples of such diagrams, which are generated by the
perturbation expansion for the two-particle vertex at second order in the interaction tensor
and which involve the intra-orbital and inter-orbital Coulomb interactions. Note that the
inter-orbital Coulomb interaction involves same spin, as well as different spin interactions
(see Eq. 4.35).
The two internal Green’s function lines in Fig. 4.11(a) and (b) can be written as an

unperturbed susceptibility. Therefore, this type of vertex correction diagrams is naturally



4.3 Numerical implementation 69

(a)

k k′

−k −k′

pσ qσ

tσ̄ sσ̄

uσ uσ

uσ̄ uσ̄

uσ̄

uσ̄

vσ̄

vσ̄

(b)

k k′

−k −k′

pσ qσ

tσ̄ sσ̄

uσ uσ

vσ̄ vσ̄

uσ̄

uσ̄

vσ̄

vσ̄

Figure 4.11: Feynman diagrams with vertex correction topology that contribute to the
two-particle vertex Γbb

ab(k,k
′) at second order in the interaction vertices.

generated from the perturbation expansion of the two-particle pairing vertex. In partic-
ular we found that all mixed interaction diagrams generated by the multi-orbital tensor
formulation of RPA (see Eq. 4.131) are physical in the sense that they could in principle
also be generated from a perturbation expansion.

4.3 Numerical implementation

4.3.1 Prerequesites

Before we can turn to the implementation of the unperturbed susceptibility, we need an
efficient code for solving the kinetic Hamiltonian in momentum space. For bandstructure
calculations, a direct implementation of Eq. 2.73, which we reprint here for ease of reading,
in terms of a momentum-dependent Hamiltonian matrix HW

nm(k) that uses the orbitals n
and m as row and column indices is usually sufficient.

HW
nm(k) = 〈ψ̃nk|H|ψ̃mk〉 =

∑
R

eikR 〈n0|H|mR〉︸ ︷︷ ︸
=tnm

0R

Since we, however, want to calculate susceptibilities, we will need to acccess the eigenener-
gies and matrix elements that connect orbital and band space possibly for on the order of
105 different momenta k. Although the cost for building and diagonalizing the Hamiltonian
once is negligible, the accumulated cost for all diagonalizations is not.
Unfortunately, the use of space group symmetries would significantly complicate the

implementation. Therefore, we decided to use only the self-adjoint property of the Hamil-
tonian and restrict the calculation of the Hamiltonian matrix to the upper triangle. A
numerical library that can handle such matrices and avoids overhead from unnecessary
function calls is the free software library Eigen. It is implemented as a C++ template
library and, therefore, it can be compiled directly into the programs that use it, possibly
even employing function inlining. This strategy is particularly successful whenever the
function call for the diagonalization is not negligible compared to the actual computation
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time needed for diagonalizing the Hamiltonian. Since we are dealing with matrices of size
up to about 8× 8 entries, this an important ingredient of our optimization strategy.
Furthermore, we implement the diagonalization routine for the Hamiltonian not as a

standalone program, but as a class, in which all data structures are initialized once. For
every individual diagonalization process we reuse these data structures. Furthermore,
we store all hopping amplitudes t and all associated hopping vectors R along with the
diagonalization routine to avoid reading those input parameters more than once. With
these optimizations we found that the subroutines for solving the kinetic Hamiltonian are
sufficiently fast.

4.3.2 Efficient calculation of the unperturbed susceptibility

Since we have previously defined a two-particle pairing vertex at zero frequency (see
Eq. 4.134), we will concentrate here on calculating the unperturbed susceptibility at zero
excitation frequency. When calculating at finite excitation frequency one has to decide ei-
ther for a calculation on the imaginary-frequency axis, with bosonic Matsubara frequencies
and a subsequent numerical continuation to the real-frequency axis, or a direct calculation
on the real-frequency axis. In the former case the calculation on the naturally discretized
Matsubara axis is rather simple, but the numerical continuation to the real-frequency axis
is a major issue. A direct calculation on the artificially discretized real-frequency axis is
usually computationally more demanding, since the sampling has to be done with a very
fine grid. However, these are technical details that we mention only for completeness, but
they are not important for the calculations we are about to perform.
For ease of reading we reprint Eq. 4.22 for the unperturbed susceptibility, which we

evaluate at zero Matsubara frequency (νn = 0).

χpq
st (q, iνn) =−

∑
k,l,m

ap∗l (k)atl(k)a
s∗
m(k+ q)aqm(k+ q)

× nF (El(k))− nF (Em(k+ q))

El(k)− Em(k+ q) + iνn

Before we discuss in detail the algorithm for calculating this object, we have to turn our
attention to some problems of Eq. 4.22. Obviously, the difference of band energies in the
denominator can become zero, which will lead to a divergence for νn = 0. Often such
problems are cured by adding a small imaginary part, as discussed, for example, in the
context of Eq. 3.41. However, the susceptibility in total does not actually diverge, since
the difference of Fermi functions in the enumerator also vanishes. In fact, we can evaluate
the case El → Em with l’Hospital’s rule.

lim
El→Em

nF (El(k))− nF (Em(k+ q))

El(k)− Em(k+ q)
= −β eβEm

(eβEm + 1)2
(4.139)

In practive we apply this expression if the magnitude of the difference in energies becomes
smaller than 0.1 µeV.
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Furthermore, we have to deal with the fact that we neglected in the analytical derivation
some diagrams that contribute only for q = 0. Therefore, the zero momentum susceptibil-
ity calculated from Eq. 4.22 is wrong and shows a discontinuous jump when compared to
values for nonzero momenta. Numerically this problem is easy to cure. When calculating
the susceptibility at q = 0 we simply insert the values for the susceptibility calculated for
the momentum q = (10−13, 10−13, 10−13) measured in units of the reciprocal lattice vectors.
Now that we have discussed how to solve the numerical problems of the susceptibility

formula, we can formulate the algorithm for carrying out the actual calculation. We
first note that we are dealing with two distinct momentum variables: the momentum k,
which we sum over, and the momentum q, for which we evaluate the susceptibility. The
momentum variable k must sample the entire Brillouin zone, for example using a regular
grid, while the momentum q could be restricted to a few values of interest, for example a
high-symmetry path in the Brillouin zone. In the worst case it also samples the Brillouin
zone. Therefore, the number of samples for q is equal or significantly smaller than the
number of samples for k.
For the calculation of the susceptibility this means we first calculate the energies and

matrix elements for a momentum k and then calculate the contribution of the susceptibility
for all momenta q. In this way, we can save the matrix elements ap∗l (k) and atl(k) and
the energy El(k) during the entire program loop over q. If we had reversed the order of
momentum loops, we would have had to recalculate all matrix elements and all energies.
Saving the matrix elements and energies for all k requires an unpractical amount of memory
and the problematic number of Hamiltonian diagonalizations anyway comes from the terms
with momentum k+q, because they result in nk·nq diagonalizations. One could in principle
reduce this to on the order of nk diagonalizations by folding all momenta k+q back to the
first Brillouin zone and reconstruct the energies and matrix elements from the saved data
for momenta k. This would, however, require an extremely high resolution in k, since the
matrix elements can vary quite rapidly.
An alternative approach is the introduction of improved techniques for carrying out the

summation over k in order to reduce the necessary resolution in this variable. Tetrahedron
integration methods have been discussed in the literature [104]. Such optimizations were,
eventually, not necessary in our case. From Eq. 4.22 one can furthermore see that the
unperturbed susceptibility obeys the symmetry χpq

st (q) =
(
χts
qp(q)

)∗
at νn = 0. Finally,

we parallelize the susceptibility calculation over the momentum variable q using the free
software OpenMPI framework.

4.3.3 Finding the Fermi surface

Since we build our algorithm on a Fermi surface approximation, we have to clarify how to
represent the Fermi surface numerically. We choose to discretize it in terms of a finite set
of points.
In two dimensions points on the Fermi surface can in principle be found easily by follow-

ing the band energies on a grid and finding pairs of points between which the band energy
changes sign. Between those two points the Fermi surface can be found by solving a linear
interpolant for the momentum corresponding to zero energy. This prescription, however,
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(a) (b)

Figure 4.12: (a) The two-dimensional regular grid of band energies is shown in grey. The
Fermi surface, represented by black dots, is found by linear interpolation.
The segments are shown as black lines. (b) Further points, shown here in
red, are inserted into the segments between the points found from interpo-
lation on the grid. The positions of the inserted points are corrected via
Newton-Raphson iteration, so that they do not necessarily lie on the black
segments any more.

has a severe disadvantage. Namely, small parts of the Fermi surface will be represented
by few points, whereas large parts will be represented by many. Although this imbal-
ance seems natural at first glance, small parts of the Fermi surface can have a very large
contribution to the two-particle pairing vertex, if their Fermi velocity becomes small (see
Eq. 4.138). Therefore, we rather seek to converge all results with respect to the number of
points on the discretized Fermi surface.

One way to increase the resolution of the discretization would of course be to simply
increase the resolution of the regular grid on which we carry out the linear interpolation.
This, however, leads to many unnecessary evaluations of the kinetic Hamiltonian. We
rather fix the resolution of the regular grid, so that all parts of the Fermi surface are
found, possibly with very low resolution. Then we use a contouring algorithm to build a
set of two-point segments that characterize the Fermi surface. Compared to a collection
of single points this has the advantage that we do not have to increase the overall grid
resolution to find further points on the Fermi surface. Instead we can purposefully insert
new points into each segment (see Fig. 4.12). These points will in general not lie exactly on
the Fermi surface, but very close to it. Therefore, we correct the position of those points
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Figure 4.13: Triangle on the Fermi surface defined by the vertices vi, vj and vk. The
centroid is denoted as c, while the fourth Fermi surface point m forms a
pyramid with the three vertices. The grey base triangle is not used in the
calculation of the two-particle pairing vertex.

using the iterative Newton-Raphson method.

xi+1 = xi −
f(xi)

f ′(xi)
(4.140)

In fact, we employ this equation to solve the function f = E(k+λkF ) for the parameter λ,
at which the energy vanishes (E = 0). The direction in which we correct the point position
is given by the Fermi momentum kF , which is directly proportional to the Fermi velocity.
Thus, we can iteratively refine the position of the inserted points until they lie on the
Fermi surface within a small numerical threshold. Although using numerical derivatives
in the Newton-Raphson method is usually disencouraged in the literature [105], it works
very well here, leading to convergence within one to three iteration steps, because most
inserted points are already very close to their exact counterparts.

For the three-dimensional case we use a representation of the Fermi surface in terms
of triangles as implemented in the free software GNU triangulated surface library. In
contrast to the two-dimensional case, we can not simply use the corners of the triangles
to construct a point cloud on which we carry out all calculations, since the maximally
achievable resolution at constant number of points is much lower in three dimensions
compared to two. Therefore, we choose to represent every surface triangle, given by the
library in terms of its vertices vi, vj and vk, by its centroid c.

c =
1

3
(vi + vj + vk) (4.141)

Since the centroid c does not lie exactly on the Fermi surface, we again use the Newton-
Raphson method (Eq. 4.140) to construct an associated point m that does lie on the
Fermi surface. The point m and the vertices vi, vj and vk form a pyramid (see Fig. 4.13).
In the calculation of the two-particle vertex we let the point m represent the surface of
that pyramid, excluding the base plane. We calculate this surface area from elementary
geometry and let it enter Eq. 4.138 as an additional weighting factor. The Fermi velocity
is calculated at the point m.
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4.3.4 Efficient calculation of the two-particle pairing vertex

Calculating the two-particle vertex following Eq. 4.133 we first need to construct the charge
and spin susceptibilities at momentum k − k′, where k and k′ lie on the Fermi surface.
We have to evaluate the susceptibility for the momentum combinations k− k′ and k+ k′,
because of the singlet-symmetrization (see Eq. 4.132). If we have m points on the Fermi
surface, this will result in 2m2 evaluations of the susceptibility. If we increase the resolution
on the Fermi surface to about 1000 points, this would already require the calculation of
susceptibility tensors for two million different momenta. Although we cannot get around
evaluating the susceptibility for that many momentum combinations, we can greatly reduce
the numerical effort by employing interpolation. If we sample the susceptibility on a regular
grid of, for example, 253 ≈ 1.6 · 104 points and construct the rest of the needed data from
interpolation, the calculation can be carried out at much lower cost.
For the susceptibility interpolation works very well, since we have calculated it at finite

temperature, which results in a smooth momentum dependence. We use simple trilinear
interpolation for each element of the susceptibility tensor in orbital space. Our interpola-
tion algorithm is based on the elemental volume of the regular grid around our point of
interest.

f(x, y, z) =f000 (1− x)(1− y)(1− z) + f100 x(1− y)(1− z)

+ f010 (1− x)y(1− z) + f001 (1− x)(1− y)z

+ f101 x(1− y)z + f011 (1− x)yz

+ f110 xy(1− z) + f111 xyz (4.142)

The function values on the corners of the elemental volume are denoted by fijk with
i, j, k = {0, 1}. The scaled coordinates within that elemental volume are given by x, y, z,
where f000 is equivalent to x = y = z = 0.
Since the sampled susceptibility tensor can become so large that it does not fit into

random access memory, we have to devise a system to save those samples to a hard disk.
Once the data are saved, it becomes a problem to find the right elements in the sampled
data. For this purpose we use a binary format, in which the data positions of all elements
in the binary file can be calculated from the regular grid indices next to the momentum
point of interest. A trivial plain text format would be far too slow, since we would have
to search line by line through the entire file to locate the needed data. Alternatively, we
also implemented loading the entire binary susceptibility file into random access memory,
if its size does not exceed a certain threshold. This can result in a significant speedup for
the interpolation process in the case of small susceptibility files.
A further advantage of interpolation is that we do not need to recalculate the unper-

turbed susceptibility if we change the number of points on the Fermi surface. Eventually,
calculating the susceptibility only for a few momenta scattered in three-dimensional space
would also make the data useless for plotting the susceptibility, for example in a certain
momentum plane, whereas this is in fact very easy for the samples on a regular grid.
Since the two-particle vertex in orbital space is an extremely large object with four

orbital and two momentum indices (see Eq. 4.133), we never save it explicitly, but directly
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calculate its contribution to the two-particle vertex in band space (see Eq. 4.134), which
has only two band indices left, which are actually identical to its momentum indices. The
Fermi velocity (see Eq. 4.137) can be calculated easily by replacing the derivative by a
numerically evaluated finite difference. Furthermore, the calculation of the two-particle
vertex can be trivially parallelized over one of the momentum indices, for example k,
using OpenMPI. In particular this parallelizes the numerically intense calculation of the
charge and spin susceptibilities from the precalculated unperturbed susceptibilities. The
eigenvalues and eigenvectors of the two-particle vertex according to Eq. 4.138 are finally
obtained using the Eigen library. We do not use parallelization at this point, since efficient
libraries for parallel linear algebra with dense matrices are not yet available.
The eigenvectors of the two-particle pairing vertex are the symmetry functions g(k),

which can be interpreted as the superconducting order parameter in momentum space.
The eigenvalues are the pairing amplitudes λ. The symmetry function corresponding to
the largest eigenvalue is predicted to be realized.
In the case of a three-dimensional pairing calculation, the symmetry function is given

on a set of points scattered in three-dimensional space. For reconstructing the symmetry
function on two-dimensional cuts without redoing any pairing calculations we use radial
basis function interpolation from the free software library ALGLIB.
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Before we start to discuss superconductivity in organic charge transfer salts, we take a
brief detour via the phenomenon of metastable molecular conformations in those materials.
Since we are dealing with molecular crystals, it is natural to assume that not only inter-
molecular, but also intra-molecular degrees of freedom can be relavant for the physics of
those materials.
In fact, it was realized in the very early days of organic superconductors that the su-

perconducting transition temperature Tc of the first ambient pressure ET-based supercon-
ductor β-(ET)2I3 can be enhanced from 1.5 K to 8 K by application of shear and pressure.
It was shown that degrees of freedom within the ET molecules, which are disordered at
ambient pressure, become ordered by the application of pressure [106–112]. These degrees
of freedom are the conformations of the terminal ethylene groups within the ET molecules,
which can be aligned either parallel or canted, often also referred to as eclipsed or staggered
(see Fig. 5.1).
The properties of κ-(ET)2X materials are very sensitive to disorder. Irradiation experi-

ments have shown that lattice disorder lowers the Tc of κ-(ET)2Cu(SCN)2 [113] and causes
electron localization in κ-(ET)2Cu[N(CN)2]Br [114]. It was also recognized that disorder
is introduced into these materials by the metastability of eclipsed and staggered ethylene
endgroups, which can display a glass-like freezing upon cooling [9, 48, 50, 115–117]. The
energetically favorable configuration is not universal for different packing motifs and anions
X.
Recently, it was shown that ethylene endgroup disorder can be used to reversibly tune

κ-(ET)2Cu[N(CN)2]Br through a metal-to-insulator transition [46–48]. Since κ-(ET)2X
are believed to have a common phase diagram, which is mainly controlled by the value
of the on-site Coulomb repulsion U over the electronic bandwidth, it is natural to ask
whether endgroup disorder could be related to at least one of the two. Nevertheless,



78 Chapter 5 Molecular conformations in kappa-type organic charge transfer salts

changes in physical properties in the presence of ethylene endgroup disorder have so far
been interpreted as a consequence of lattice disorder, with the exception of recent scan-
ning tunneling spectroscopy experiments [49]. Surprisingly, the effect of different ethylene
endgroup configurations on the electronic structure, and especially the electronic band-
width, of κ-(ET)2X has only been investigated in a single material using the extended
Hückel method [50], while calculations for ET molecules and dimers in vacuum are avail-
able [48, 51, 52].

In this chapter we examine the electronic structure of endgroup ordered crystals in both
staggered and eclipsed conformation for various members of the κ-(ET)2X family of mate-
rials using density functional theory calculations. For each material and conformation we
construct a low-energy effective Hamiltonian via a Wannier downfolding scheme. We find
that ethylene endgroup configurations of ET molecules influence the electronic bandwidth
of the crystalline materials investigated here. We present a simplified interpretation of
our results in terms of the anisotropic triangular lattice Hubbard model and connect our
findings to recent experiments, especially emphasizing the possibility that changes in the
electronic structure through ethylene endgroup disorder and strongly enhanced electron
correlation are relevant for explaining the metal-to-insulator transition in addition to com-
monly considered lattice disorder. Our findings were written up in a publication [118],
which this chapter is based on.

5.1 Methodology and calculation setup

The crystal structures of materials with ethylene endgroup disorder show great uncertain-
ties regarding the positions of atoms within and next to the ethylene groups. The positions
of hydrogen atoms can often not be inferred from X-ray diffraction experiments and po-
sitions given in the literature are often calculated with simple analytical approximations.
Furthermore, we would also like to investigate materials for which the crystal structure of
only one of the possible endgroup conformations has been reported in the literature.

We first take a look at κ′′-(ET)2Cu[N(CN)2]Cl, for which crystal structures in both
endgroup conformations have been determined [119]. Important information is contained
in the so-called displacement ellipsoids obtained from the X-ray diffraction experiment.
These represent the amount of uncertainty regarding the measured positions of atoms
within the crystal. In Fig. 5.1 we show the displacement ellipsoids within an ET molecule
of κ′′-(ET)2Cu[N(CN)2]Cl according to Ref. [119]. Ethylene endgroup disorder is included
on the right end of the molecule in the form of fractionally occupied atomic positions.
Furthermore, we see that the positions of the terminal carbon and the adjacent sulfur atoms
are much more uncertain than those in the center of the molecule. Hydrogen positions have
no experimental uncertainty, since they are calculated.

Based on this analysis and the previously mentioned requirements, we formulate a
method to obtain comparable crystal structures for various materials in both endgroup
conformations. Namely, we take experimental crystal structures and keep all atomic posi-
tions fixed except for those within the ethylene endgroups and the adjacent sulfur atoms.
The endgroup and adjacent sulfur positions are optimized using the GPAW implementa-
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C H S

relaxed fixed relaxed relaxed fixed relaxed(a) (b)

Figure 5.1: ET molecule with displacement ellipsoids from the experimental structure
determination of κ′′-(ET)2Cu[N(CN)2]Cl. The size of the ellipsoids scales
with the amount of uncertainty regarding the respective atomic position.
Ethylene endgroup disorder is included on the right end of the molecule.
The eclipsed conformation is shown in (a), while (b) shows the staggered
conformation. The bars above the molecule indicate which parts of the ET
molecules are relaxed in our DFT calculations and which atomic positions
remain at their experimental values.

tion [120] for the PAW formulation of density functional theory. Since we use the local
L-BFGS algorithm to optimize the total energy, we can obtain relaxed crystal structures
for both the ground state and the metastable endgroup conformations. In cases where
one of the endgroup conformations is experimentally not available, we simply set up the
endgroup atoms manually and relax them as for the experimental structures. The GPAW
calculations were performed using 2× 2× 2 k-point grids and GGA exchange-correlation
functional [75]. The atomic positions were minimized until forces were below 10meV/Å,
while the unit cell parameters were left unaltered.

We apply this recipe to the materials κ-(ET)2Cu[N(CN)2]I, κ
′′-(ET)2Cu[N(CN)2]Cl and

κ-(ET)2Cu2(CN)3 (T = 200 K), for which both endgroup conformations have been mea-
sured experimentally [115, 119, 121]. The crystal structure of κ-(ET)2Cu[N(CN)2]I has
been measured both at T = 127K and T = 295K. If not denoted otherwise, we use the
low temperature structure. The room temperature structure serves as a consistency check.
Furthermore, we apply it to the material of interest κ-(ET)2Cu[N(CN)2]Br, for which the
crystal structure in one of the conformations is missing in the literature [115].

Subsequently, we performed DFT calculations within the FPLO method [76] to calculate
the electronic bandstructure based on the optimized crystal structures. We used 6× 6× 6
k-point grids and the GGA exchange-correlation functional [75]. From those DFT cal-
culations we constructed low-energy models using projective molecular orbital Wannier
functions as implemented in FPLO [122]. The states included into the Wannier Hamilto-
nian are the highest occupied (HOMO) and lowest unoccupied molecular orbitals (LUMO)
of all (ET)+2 dimers within the crystal. The resulting Hamiltonian is 3/4-filled and con-
sists of four bands corresponding to the four ET sites. We keep the largest four elements
(t1,t2,t3,t4) of the kinetic Hamiltonian (see Fig. 5.2). The lattice sites are located at the
center of the innermost C-C bond within each ET molecule.

The 3/4-filled model can be related to the anisotropic triangular lattice Hubbard model
by projecting out only the LUMO states, which results in a 1/2-filled model with two bands.
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Figure 5.2: Molecular Wannier function of an ET molecule in staggered and eclipsed
configuration for κ-(ET)2Cu[N(CN)2]Br. The arrows denote the directions of
dominant hopping processes (t1,t2,t3,t4). Figure taken from Ref. [118].

On the level of the hopping parameters this can be done using geometric formulas [17].

t = (|t2|+ |t4|)/2 (5.1)

t′ = |t3|/2 (5.2)

Even the intra-orbital Coulomb repulsion within the anisotropic triangular lattice model
can be estimated as

U ≈ 2|t1|. (5.3)

This method of obtaining a t, t′ and U LUMO-only model (or so-called dimer model)
has recently been criticized, because this estimate for U implies that the unscreened inter-
molecular Coulomb repulsion V1 within an (ET)+2 dimer vanishes. In DFT parametrizations
of this model, V1 was, however, found to be non-negligible [51, 52, 123]. Furthermore, cal-
culations in constrained random phase approximation have shown sizeable screening effects
in the LUMO-only model not accounted for in the geometric formulas [124]. Nevertheless,
dimer approximated Hamiltonians and subsequent many-body calculations show remark-
able success in explaining most of the qualitative properties of ET based materials [25, 32].
Therefore, the approximate dimer model is sufficient for the case we investigate here.
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material low-energy conf. ∆E in meV
κ-(ET)2Cu2(CN)3 staggered 130

κ′′-(ET)2Cu[N(CN)2]Cl eclipsed 72
κ-(ET)2Cu[N(CN)2]Br eclipsed 110
κ-(ET)2Cu[N(CN)2]I staggered 38

Table 5.1: Lowest energy conformations of the ethylene endgroups determined from our
DFT relaxed structures. The energy difference ∆E to the high energy con-
formation is calculated per ET molecule from the FPLO total energies. Table
taken from Ref. [118].

5.2 Results and discussion

First, we investigate the energy difference between eclipsed and staggered states based on
the FPLO total energies. The energy differences and ground state molecular conformations
are given in Table 5.1. Values for the energy differences calculated with GPAW are in
good agreement. The energy ordering of staggered and eclipsed configurations comes
out correctly for all investigated materials with the exception of κ-(ET)2Cu[N(CN)2]I at
T = 295K, where the energy difference is the smallest and the distribution of endgroup
configurations measured experimentally was found to be 51%:49% [115, 119, 121].
The value for ∆E we determined is the energy difference between the two local min-

ima of the energy corresponding to staggered and eclipsed configurations, which is not
to be confused with the activation energy. The latter denotes the height of the poten-
tial barrier between those minima, which can be significantly larger than ∆E [46, 116].
Instead, our DFT calculated values constitute a lower bound for the activation energy:
κ-(ET)2Cu[N(CN)2]I with the smallest energy difference is known to be completely end-
group disordered at room temperature [115] and κ′′-(ET)2Cu[N(CN)2]Cl contains about
20% disorder at room temperature [119], while in the other two materials the amount of
endgroup disorder is in a range of few percent.
The electronic bandstructures obtained from the molecular Wannier function analysis of

the DFT results are shown in Fig. 5.3 for both eclipsed and staggered ethylene endgroup
configurations. In all bandstructures shown the difference between staggered and eclipsed
configurations lies in the electronic bandwidth. Going from eclipsed to staggered, the
overall bandwidth increases, while the width of the two bands closest to the Fermi level
decreases.
We analyse these bandstructures using a minimal model [18] for a κ-packed layer of

individual ET molecules (Fig. 5.2) using the four largest parameters (t1,t2,t3,t4), also com-
monly denoted as (b1,p,b2,q). These hopping parameters are given in Table 5.2. Parameters
t1 (b1) and t3 (b2) decrease from staggered to eclipsed configurations, while t4 (q) increases
and t2 (p) remains about constant.
These changes in hopping parameters can be rationalized based on the Wannier func-

tions shown in Fig. 5.2. Although the molecular Wannier function hardly resides on the
terminal ethylene groups, overlaps with neighboring ET molecules are influenced by the
configuration of the endgroups through the direction of their bonds with the neighboring
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Figure 5.3: Electronic bandstructure of all investigated materials for staggered and
eclipsed ethylene endgroup configurations. Staggered ethylene endgroups pro-
duce a larger overall bandwidth than eclipsed ones, but reduce the width of
the two bands closest to the Fermi level. Figure taken from Ref. [118].

sulfur atoms.

Especially the hopping t3 is strongly enhanced, because the tails of the Wannier function
on the neighboring ET molecule are enlarged. The Wannier functions remain largely
unaltered in the direction that corresponds to t2. Therefore, this parameter largely remains
constant. In the direction of t4 the tail on the neighboring ET molecule is enhanced in
the staggered configuration, but the Wannier function on the central molecule turns away
from this tail because of the altered sulfur-ethylene bond direction. Consequently, t4 is
reduced. The relative changes in t1 are rather small, which is consistent with our analysis
of the Wannier functions.

Finally, we analyze the effective Hubbard model on the anisotropic triangular lattice
(t,t′,U) corresponding to each set of (t1,t2,t3,t4) to understand the metal-insulator transition
in κ-(ET)2Cu[N(CN)2]Br. Fig. 5.4 shows the result of our dimer model estimates. The
change from eclipsed to staggered ethylene group configuration universally increases both
the frustration t′/t and the relative strength of the Coulomb repulsion U/t, i.e. U over the
bandwidth.

Comparison of our findings with cellular dynamical mean-field theory [25] and exact
diagonalization results for the anisotropic triangular lattice Hubbard model [32] explains
why κ-(ET)2Cu[N(CN)2]Br can be tuned into a Mott insulating [46, 47] state by acti-
vating the energetically less favorable endgroup configuration: First, the material in its
lowest energy configuration is already close to a Mott insulating phase. Second, the lowest
energy configuration is the eclipsed one, so U/t can be strongly increased by activating
the staggered configuration. Therefore, the system crosses the phase transition line and a
Mott insulator is realized.
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material t1 t2 t3 t4 t′/t U/t
κ-(ET)2Cu2(CN)3 I eclipsed 167 84.9 70.4 30.3 0.61 5.8

staggered x 176 78.0 81.4 18.7 0.84 7.3
κ′′-(ET)2Cu[N(CN)2]Cl M eclipsed x 174 97.3 50.5 35.9 0.38 5.2

staggered 188 93.4 64.0 26.6 0.53 6.3
κ-(ET)2Cu[N(CN)2]Br SC eclipsed x 178 99.0 59.5 35.8 0.44 5.3

staggered 187 97.1 70.2 24.9 0.58 6.1
κ-(ET)2Cu[N(CN)2]I, 127 K M eclipsed 152 101 47.2 29.2 0.36 4.7

staggered x 170 99.0 52.4 18.9 0.44 5.8
κ-(ET)2Cu[N(CN)2]I, 295 K M eclipsed 153 92.0 49.9 31.5 0.40 4.9

staggered 164 92.0 54.8 22.2 0.48 5.8

Table 5.2: Values of the molecule model parameters (t1,t2,t3,t4) in meV, also commonly
denoted as (b1,p,b2,q). Dimer model parameters are given as ratios t′/t and
U/t calculated from (t1,t2,t3,t4) using Eqs. 5.1, 5.2 and 5.3. The second column
states the experimental ground state of the respective material (I=insulator,
M=metal, SC=superconductor). The x in the fourth column marks the low
energy configuration of the ethylene endgroups. Table taken from Ref. [118].

Note that the phase diagram of the anisotropic triangular lattice Hubbard model is not
entirely settled and slightly different results have been obtained using other numerical
methods [23, 31].

5.3 Summary and outlook

We demonstrated that DFT reliably reproduces the ground state ethylene endgroup con-
figuration for various κ-phase materials. While previous discussion of endgroup conforma-
tions in the literature considered only lattice disorder a relevant issue, we have shown that
the relative orientation of ethylene endgroups within ET molecules crucially influences the
electronic bandwidth of κ-type organic charge transfer salts. Switching an ET molecule
from eclipsed to staggered configuration decreases the electronic bandwidth and in turn
enhances the relative strength of the Coulomb repulsion, bringing the material closer to a
Mott insulating state.
Recent experiments, where κ-(ET)2Cu[N(CN)2]Br was reversibly switched from a metal-

lic to an insulating state by tuning the endgroup configurations, can be understood based
on our picture. In κ-type materials that are not close to any phase transition, the effects of
ethylene endgroup disorder may not manifest as dramatically as in κ-(ET)2Cu[N(CN)2]Br.
Based on our estimates of model parameters, similar behavior may be encountered in
κ′′-(ET)2Cu[N(CN)2]Cl.
The effect of disorder was, however, neglected entirely in our study. Since we only

investigated endgroup ordered crystals, the actual mechanism of the metal-to-insulator
transition may also involve the disorder of hopping parameters and Coulomb repulsion.
The length scale on which this disorder manifests is currently unknown. In particular, it
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Figure 5.4: Parameter ratios t′/t and U/t in the effective dimer model. The direction of
the arrows indicates the direction of change in the model parameters going
from the low to the high energy configuration of the ethylene endgroups.
Eclipsed (E) endgroup configurations are located on the left side (small U/t)
of the plot, while staggered (S) endgroup configurations are located on the
right side (large U/t). Figure taken from Ref. [118].

is an open question how, in the actual experiments, the few percent of ET molecules that
are in the high-energy conformation corresponding to the Mott state can drive the entire
sample insulating.
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Even though the subject of superconductivity in kappa-type organic charge transfer salts
is several decades old, no consensus regarding the nature of the superconducting state
has been reached. As discussed in the introductory section, the variety of experiments
performed on these materials, as well as the multitude of accompanying contradictory
interpretations, is outstanding. Since this situation is in contrast to the unanimity of theo-
rists regarding the symmetry of the superconducting state in anisotropic triangular lattice
Hubbard model, which only explains a small fraction of experiments on superconductivity,
a fresh theoretical approach is needed.
In particular, the dimer model on the anisotropic triangular lattice is only an approxima-

tion with a priori unclear range of applicability to the real lattice structure of κ-(ET)2X
charge transfer salts. In a seminal paper [125] Kuroki et al. investigated the supercon-
ducting pairing taking into account the realistic lattice structure and in fact found a phase
transition between dx2−y2- and dxy-symmetric states when lowering the degree of dimeriza-
tion.
We build upon the idea by Kuroki et al. and derive a set of realistic molecule-based low-

energy models for superconducting κ-(ET)2X materials from density functional theory
calculations. After identifying the parameter region relevant for the real materials, we
investigate the symmetry of the superconducting pairing in this model within a random
phase approximation spin-fluctuation approach. Our results show that the position of
many materials in the phase diagram is close to a phase-transition line between states
with extended s + dx2−y2 and dxy pairing symmetry. Furthermore, we clarify that the
customary dimer model not only fails in the limit of weak dimerization, but also when
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the in-plane anisotropy of hopping integrals becomes too large, which we find to be the
case for all investigated materials. We simulate tunneling spectra in the superconducting
state for selected cases and compare our findings to scanning tunneling spectroscopy (STS)
experiments, which we analyze in great detail.

This chapter is based on two publications: the theoretical foundations are explained
in Ref. [126], while the combined theoretical and experimental STS study is contained in
Ref. [44].

6.1 Methods and models

6.1.1 Ab initio calculations and model Hamiltonian

We use density functional theory calculations within the FPLO method [76] to calculate
the electronic bandstructure. For the exchange-correlation functional we employ the gen-
eralized gradient approximation [75]. All calculations are converged on 6 × 6 × 6 k-point
grids. We use crystal structures from Refs. [127–129]. In the case of Ref. [127], where
crystal structures were measured for several temperatures, we use the data taken at 100 K.

In contrast to the customary dimer approximation, we model the κ-(ET)+2 layer taking
into account each individual ET molecule as a lattice site (see Fig. 6.1). Tight-binding
parameters are obtained from projective molecular orbital Wannier functions as imple-
mented in FPLO [122]. Therefore, the number of bands in the tight-binding model is
equal to the number of ET molecules in the crystallographic unit cell. With the molecular
Wannier function method almost perfect representations of the DFT bandstructures can
be obtained and ambiguities from fitting procedures are avoided. The latter is especially
important for many-body calculations based on the obtained low-energy Hamiltonians.

In the following model investigation, we only keep the four largest in-plane hopping ele-
ments (t1,t2,t3,t4) between ET molecules [see Fig. 6.1(a)]. The resulting hopping structure
is a generalization of the Shastry-Sutherland lattice [130], which is reached in the limit of
t2 = t4 and t3 = 0. In cases where the unit cell contains multiple κ-type layers, we discard
all but one of the layers after the Wannierization procedure, because the interlayer coupling
is negligible. In some of the investigated compounds, the crystal symmetry is lowered with
respect to the high-symmetry orthorhombic space group Pnma of κ-(ET)2Cu[N(CN)2]Br,
which leads to a small additional splitting of the hoppings ti into t̃i and t̃

′
i. For simplicity,

this particular anisotropy is discarded in our study by averaging the hopping integrals as
ti = (t̃i + t̃′i)/2. As a result, we obtain the kinetic part of a four-band Hamiltonian which
is 3/4-filled and of the same form for all materials investigated.

Alternatively, because ET molecules in κ-type arrangement are quite strongly dimerized,
it is popular to approximate the κ-(ET)+2 layer by dimers on an anisotropic triangular
lattice, integrating out the intra-dimer degrees of freedom. The parameters of this dimer
model can be calculated directly from the molecule model using geometric formulas [17],
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Figure 6.1: (a) Molecule model of the κ-(ET)+2 layer. Individual ET molecules are repre-
sented by white and dark grey ellipsoids. The four dominant hopping integrals
are (t1,t2,t3,t4). Note the pronounced asymmetry in magnitude between t2
and t4, which is indicated here by different line thickness. (b) Dimer ap-
proximated κ-(ET)+2 layer. Two molecules are contracted into one dimer site
indicated by a bold shaded circle. The intra-dimer hopping integral t1 is
integrated out, while t2 and t4 are averaged. Therefore, the dimer model is
characterized by only two hopping parameters {t,t′}={(|t2| + |t4|)/2,|t3|/2}.
In both subfigures the unit cell considered in our work is indicated by a bold
magenta colored line. Figure taken from Ref. [126].

which we introduced in the previous chapter (see Eqs. 5.1 and 5.2).

t = (|t2|+ |t4|)/2
t′ = |t3|/2

By convention the dimer approximation uses the crystallographic unit cell containing two
dimers [see Fig. 6.1(b)]. Therefore, the dimer-approximated Hamiltonian consists of two
bands, which are half-filled. Note that based on the geometric formulas, any anisotropy
between t2 and t4 of the molecule model is discarded when going from the molecule to
the dimer model. With few exceptions [131], the dimer approximated model nevertheless
reproduces well the low-energy part of the original bandstructure. It has recently been
demonstrated that improved estimates for dimer model parameters can be obtained by a
Wannier function calculation [121, 124, 132].
The two-band dimer model can be unfolded to a one-band model by transforming to

a unit cell of half the size and rotated by 45 degrees. The so-obtained model is directly
related to the square lattice Hubbard model, but with an additional coupling along one
of the diagonals. Results obtained in the one-band model are, therefore, rotated by 45
degrees with respect to the physical Brillouin zone of organic charge transfer salts, so
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Figure 6.2: (a) The inner bold lines show Brillouin zone and Fermi surface of a generic
κ-(ET)2X material. The outer dashed lines show Brillouin zone and Fermi
surface of the unfolded one-band dimer model. (b) dxy order parameter in
the physical Brillouin zone. Nodes are located in the x- and y-directions.
(c) dx2−y2 order parameter in the unfolded Brillouin zone. Nodes are located
along the Brillouin zone diagonals. The different designation is only due to
a rotation of the coordinate axes by 45◦. (d) dx2−y2 order parameter in the
physical Brillouin zone. (e) dxy order parameter in the unfolded Brillouin
zone. Figure taken from Ref. [126].

that, e.g., different d-wave order parameters exchange their designation when going from
one to the other Brillouin zone (see Fig. 6.2). Thus, the same physical order parameter
which has dxy-symmetry in the realistic four molecule/two dimer unit cell [Fig. 6.2(b)] has
dx2−y2-symmetry in the model one dimer/one band unit cell [Fig. 6.2(c)]. In our study, we
always work in the physical unit cell containing two dimers [Fig. 6.2(b) and (d)]. We refer
to the small backfolded part of the Fermi surface close to the Brillouin zone boundary as
the elliptic part of the Fermi surface, while we call those sheets running almost parallel to
the ky-direction quasi-1D.

An overview of unit cell and hopping paths for molecule and dimer model is shown in
Fig. 6.1. Now we list the kinetic part of the Hamiltonian for the dimer model in one- and
two-band representation, and for the four-band molecule model. We denote the unit cell
parameters in x- and y-direction as a and b respectively. The multi-band Hamiltonians
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are given as matrix elements 〈i|Hhop|j〉, where states |i〉 denote the orbitals living on a
dimer/molecule with site index i. Only unique matrix elements are listed. The rest of the
elements are generated by using 〈i|Hhop|j〉 = 〈j|Hhop|i〉∗. In all models there is only one
orbital per lattice site. The single-band representation of the dimer model is given by:

Hhop(k) = 2t [cos(kxa) + cos(kyb)] + 2t′ [cos(kxa) cos(kyb)− sin(kxa) sin(kyb)] (6.1)

The two-band representation of the dimer model can be written as:

〈0|Hhop|0〉 = 〈1|Hhop|1〉 = 2t′cos(kxa) (6.2)

〈0|Hhop|1〉 = 2t
(
1 + eikxa + eikyb + eikxaeikyb

)
(6.3)

The four-band molecule model is given by:

〈0|Hhop|1〉 = t1 + t3 e
ikxa (6.4)

〈0|Hhop|2〉 = t4
(
1 + e−ikyb

)
(6.5)

〈0|Hhop|3〉 = t2
(
1 + e−ikxa

)
(6.6)

〈1|Hhop|2〉 = t2 e
−ikyb

(
1 + e−ikxa

)
(6.7)

〈1|Hhop|3〉 = t4 e
−ikxa

(
1 + e−ikyb

)
(6.8)

〈2|Hhop|3〉 = t1 + t3 e
−ikxa (6.9)

To obtain the correct electron filling, one has to introduce a chemical potential µ, so that
H0 = Hhop − µ

∑
iσ c

†
iσciσ is 1/2-filled for the dimer model in either representation and

3/4-filled for the molecule model.

6.1.2 RPA spin-fluctuation calculations

In κ-(ET)2X materials there is strong evidence for antiferromagnetic spin-fluctuations
[133]. Therefore, we investigate the superconducting state of these materials based on the
RPA spin-fluctuation approach in the singlet channel. Compared to the FLEX approxima-
tion used in Ref. [125], our RPA method uses only states at the Fermi level and neglects
the electronic self-energy correction. While this approximation prevents us from making
quantitative statements about the superconducting transition temperature Tc, it reduces
significantly the numerical cost compared to FLEX, so that we can calculate the momen-
tum structure of the superconducting order parameter for numerous input parameter sets
and with high angular resolution. Competing magnetically ordered or paramagnetic Mott
insulating states are not investigated in our study. Furthermore, we do not investigate
possible time-reversal symmetry-breaking superconducting states or spin-triplet pairing.
The kinetic Hamiltonians discussed before (see Eqs. 6.1 to 6.9) are used in a multi-site

single-orbital Hubbard model in analogy to Eq. 1.5.

H =H0 +Hint

=
∑
ijσ

tij(c
†
iσcjσ + h.c.) +

U

2

∑
iσ

niσniσ̄ (6.10)
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Here, σ represents the spin and niσ = c†iσciσ. The sum over i runs over all ET sites in the
unit cell. The interaction strength U is treated as a parameter. Note that the Coulomb
repulsion on a dimer and the Coulomb repulsion on a molecule are not identical. Especially
the role of intermolecular Coulomb repulsion in κ-(ET)2X materials is currently unclear.
The investigation of interaction terms beyond on-site repulsion is an important topic of
future research.
The calculation of susceptibility and two-particle vertex follows the presentation in Chap-

ter 4. However, since the interaction term defined in Eq. 6.10 is local and we have only
one orbital per lattice site, we can restrict the calculation to the diagonal elements of the
multi-orbital susceptibility tensor and use scalar equations for the RPA-enhanced suscep-
tibilities.

χs,RPA
L (q) =

χ0
L(q)

1− Uχ0
L(q)

(6.11)

χc,RPA
L (q) =

χ0
L(q)

1 + Uχ0
L(q)

(6.12)

Here, χL with L = {llll} denotes the diagonal element of the susceptibility tensor associ-
ated with an ET site indexed by l. Note that this formulation allows us to treat multiple
inequivalent ET sites in the unit cell, keeping the individual q-dependence of their associ-
ated susceptibilities. Therefore, the symmetry of the susceptibility follows the symmetry of
the ET layer in the crystallographic unit cell, which is important for checking the simplified
four-parameter model against ab initio Hamiltonians, which can have monoclinic, as, e.g.,
in κ-(ET)2Cu(NCS)2, or even triclinic symmetry, as in κ-α′

1-(ET)2Ag(CF3)4(TCE).
The total spin susceptibility is given by the sum over all site-resolved contributions.

χs(q) =
1

2

∑
L

χs,RPA
L (q) (6.13)

All other equations are used exactly as presented in Chapter 4. For the numerical cal-
culations we evaluated the susceptibility χ0(q) using 50 × 50 point grids for q and the
integrated-out variable k (see Eq. 4.22). The inverse temperature in the susceptibility cal-
culation is fixed to β = 160/t1 for the molecule model and β = 60/t for the dimer model.
These values result in about the same effective temperature. For the models considered
here about 250 points on the Fermi surface yield sufficient resolution. The intra-orbital
Coulomb repulsion parameter U is chosen in all calculations so that the leading eigen-
value in the effective eigenvalue equation for the two-particle pairing vertex (Eq. 4.138) is
λ = 0.99±0.001. For most combinations of input parameters this leads to a clear separation
of the leading and the first subleading eigenvalue. The pairing symmetries corresponding
to the leading and sub-leading eigenvalues do not change as a function of U .

6.1.3 Simulation of tunneling spectra in the superconducting
state

The central quantity measured in scanning tunneling spectroscopy (STS) experiments on
superconductors is the local density of states (DOS) in the superconducting phase. We
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start from the standard Bardeen-Cooper-Schrieffer (BCS) theory for isotropic s-wave su-
perconductors. A simple approximate extension allows us to treat realistic Fermi surfaces
and unconventional pairing symmetries derived from ab initio calculations combined with
RPA spin-fluctuation theory as presented before. Coauthor Michaela Altmeyer contributed
significantly to the development of the formalism presented in this subsection.

To derive an approximation for the DOS of a superconductor, we start with the Hamil-
tonian for Cooper pairs with vanishing total momentum [6].

H =
∑
k,σ

εkσc
†
kσckσ +

∑
k,k′

U(k,k′)c†k↑c
†
−k↓c−k′↓ck′↑ (6.14)

The interaction can be treated in mean field theory (δ(c†c†) = c†c† − 〈c†c†〉), where
terms quadratic in δ are neglected. The resulting Hamiltonian is diagonalized using the
Bogoliubov-Valatin transformation, which introduces quasiparticle creation and annihila-
tion operators γ†kσ and γkσ. The quasiparticle excitation energies are given as

Ek =
√
ε2k + |∆k|2, (6.15)

where

∆k = ∆(k) =
∑
k′

U(k,k′)〈c−k′↓ck′↑〉. (6.16)

The BCS Hamiltonian can be rewritten in terms of the quasiparticle creation and anni-
hilation operators.

HBCS =
∑
k,σ

Ekγ
†
kσγkσ +

∑
k

εk −
∑
k,k′

U(k,k′)〈c†k↑c
†
−k↓〉〈c−k′↓ck′↑〉 (6.17)

The excitation spectrum of the quasiparticles Ek is gapped and defined only for positive
energies. The density of states of quasiparticles in an isotropic s-wave superconductor can
be calculated from the normal state density of states ρ(ε) and the constant superconducting
gap ∆k = ∆.

ρqp(E) =
1

N

∑
k

δ(E − Ek) (6.18)

=

∫
dε ρ0(ε)

√
ε2 + |∆|2
ε

δ(ε−
√
E2 − |∆|2) (6.19)

=

{
ρ0(
√
E2 − |∆|2) E√

E2−|∆|2 E > |∆|

0 E < |∆|
(6.20)

The previous derivation assumed an isotropic gap and an energy dispersion of free elec-
trons to identify the normal state DOS ρ0. For realistic electronic structure and anisotropic
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gap ∆k this factorization of contributions is not easily possible due to the non-trivial mo-
mentum dependence of both functions:

ρqp(E) =

∫
dε

1

N

∑
k

δ(ε− εk)δ(|E| −
√
ε2 + |∆k|2) (6.21)

6=
∫
dε ρN(ε) δ(|E| −

√
ε2 + |∆k|2) (6.22)

However, in a widely used ansatz [134, 135] the electrons with effective mass m∗ are
considered to be free, i.e. the Fermi surface is approximated by a concentric circle, and
the gap only depends on the angle θ.

ρqp(E) ≈
1

(2π)2
m∗Re

∫
dθ

|E|√
E2 − |∆(θ)|2

(6.23)

We introduce in this expression a finite quasiparticle lifetime [136] by adding an imagi-
nary part Γ to the quasiparticle excitation energies. This allows us to carry out calculations
with finite angular resolution and facilitates comparison to experiment. Furthermore, we
improve upon the circular integration by replacing it with a summation over the discretized
realistic Fermi surface and drop the irrelevant prefactors to obtain the final expression for
the quasiparticle DOS in our study:

ρqp(E) ∝
∑
k

Re
|E + iΓ|√

(E + iΓ)2 −∆(k)2
(6.24)

In this form, the connection to the ab initio and RPA spin-fluctuation calculations is easily
obtained: the vectors k in Eq. 6.24 all lie on the Fermi surface determined from the ab initio
derived tight-binding model and the gap ∆(k) on the Fermi surface can be substituted by
the symmetry function gi(k) extracted from RPA (see Eq. 4.138). Note that the overall
energy scale of the superconducting gap is not included in gi(k) because our formalism
neglects the electronic self-energy and lacks a self-consistency condition.
We checked that our approximation agrees well with a direct calculation of the quasi-

particle spectrum based on Eq. 6.17, which is numerically several orders of magnitude
more costly. For this purpose we used one of our results for the gap-symmetry of κ-
(ET)2Cu[N(CN)2]Br and calculated the quasiparticle DOS from Eq. 6.24 using a small
broadening of Γ = 0.07 meV and the electron DOS from Eq. 6.17 employing a tetrahedron
integration method [137] on a 4000 × 4000 × 2 point grid for the momentum k. In the
latter case we inserted the microscopically calculated gap symmetry according to Eq. 6.16.
The comparison of results is shown in Fig. 6.3. Peak positions are identical. Only the

background far away from the Fermi level is not well represented by the quasiparticle
approximation. This, however, must be the case, since the quasiparticle formalism ne-
glects the electronic bandstructure, which is fully taken into account in a calculation based
directly on Eq. 6.17.
The quasiparticle DOS ρqp(E) corresponds to the local density of states (LDOS) mea-

sured in STS experiments. In order to achieve a direct comparison to the experimental
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Figure 6.3: Comparison of unbroadened electron DOS and broadened (Γ = 0.07 meV)
quasiparticle DOS for identical gap symmetry and magnitude.

results provided by the group of Hans-Joachim Elmers [44], we also have to take into ac-
count thermal broadening via the Fermi function and a scaling variable x that cancels the
effect of parasitic conduction paths. Using the variable V for the bias voltage in the STS
experiment, we have the following relation for the experimentally measured spectrum:

S(V ) ∝
∫ ∞

−∞
dE [ρqp(E)(1− x) + x]

−df(E + eV )

dV
(6.25)

The experimental data also had to be corrected for effects such as electronic disorder [49,
118] via the density of states of the Anderson-Hubbard model [138]. Since the idea of how
to apply the results for the Anderson-Hubbard model to our experimental situation were
already developed by our experimental coauthors, we refer the reader to Ref. [49] and the
supplemental information of Ref. [44] for further details.

6.2 Results and discussion

6.2.1 Ab initio calculations

Using DFT calculations and subsequent Wannier downfolding we determine the param-
eter sets (t1,t2,t3,t4) corresponding to superconducting κ-(ET)2X materials with anions
X ∈{Ag(CF3)4(TCE), I3, Ag(CN)2·H2O, Cu(NCS)2, Cu[N(CN)2](CN), Cu[N(CN)2]Br},
as well as polymorphs κ-α′

1-(ET)2Ag(CF3)4(TCE) and κ-α′
2-(ET)2Ag(CF3)4(TCE), that

also contain charge-ordered insulating α′-type layers. The calculated parameters are listed
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i material Tc in K t1 t2 t3 t4 t2/t1 t3/t1 t4/t1 t4/t2
1 κ-(ET)2Ag(CF3)4(TCE) 2.6 168 102 60.8 33.4 0.610 0.362 0.199 0.362
2 κ-(ET)2I3 3.6 180 119 52.2 31.7 0.661 0.289 0.176 0.266
3 κ-(ET)2Ag(CN)2·H2O 5.0 185 104 60.4 23.6 0.567 0.326 0.173 0.305
4 κ-α′

1-(ET)2Ag(CF3)4(TCE) 9.5 166 97.6 65.8 35.3 0.588 0.396 0.213 0.362
5 κ-(ET)2Cu(NCS)2 10.4 190 102 82.4 17.5 0.538 0.387 0.092 0.171
6 κ-α′

2-(ET)2Ag(CF3)4(TCE) 11.1 165 98.4 66.7 36.3 0.596 0.404 0.220 0.369
7 κ-(ET)2Cu[N(CN)2](CN) 11.2 175 100 78.5 17.3 0.574 0.344 0.099 0.172
8 κ-(ET)2Cu[N(CN)2]Br 11.6 177 95.6 60.0 36.2 0.541 0.339 0.205 0.379

Table 6.1: Values of the molecule model parameters (t1,t2,t3,t4), also commonly denoted
as (b1,p,b2,q), for selected superconducting κ-(ET)2X materials. All values
are given in meV. Hopping integrals for the (ET)2Ag(CF3)4(TCE) family are
averages of the parameters given in Ref. [131], where we used the same method
and settings to calculate the parameters as in the present study. Crystal
structures for these materials were taken from Refs. [128, 129]. All other
crystal structures are taken from Ref. [127]. The values for Tc are taken from
Refs. [127, 139–141]. Table taken from Ref. [126].

in Table 6.1. In the case of (ET)2Ag(CF3)4(TCE) polymorphs (TCE abbreviates 1,1,2-
trichloroethane) we rely on a previous ab initio calculation with identical setup [131]. The
small asymmetry of hoppings due to the lowered symmetry in these materials is averaged
out to obtain a four-parameter model. For the original models, see Ref. [131].

We observe that all materials fall into a narrow region of parameters: t1 ∈ [165,190] meV,
t2 ∈ [95.6,119] meV, t3 ∈ [52.2,82.4] meV and t4 ∈ [17.3,36.3] meV. Normalizing t2, t3 and
t4 with respect to t1, this means all materials lie in the range t2/t1 ∈ [0.538,0.661],
t3/t1 ∈ [0.289,0.404] and t4/t1 ∈ [0.099,0.220]. Note the pronounced anisotropy between
t2 and t4. These intervals of t2/t1, t3/t1 and t4/t1 obtained from the ab initio calculations
determine the parameter ranges for our following model investigation.

We sorted the materials according to their superconducting transition temperature Tc,
but we found no correlation of Tc with either t1, t2, t3 or t4. The ratios t2/t1, t3/t1 or t4/t1
are also not obviously connected to Tc.

6.2.2 Pairing symmetry in the dimer model

First, we apply the RPA spin-fluctuation formalism to the dimer model in the range
t′/t ∈ [0,1]. We evaluate the superconducting order parameter in fine steps of t′/t and
compare the leading eigenfunctions. In all cases we find that a dxy state is the leading
pairing symmetry.

Relating the dimer model back to the one-band model explained in the methods section,
the dxy state we find is identical to the dx2−y2 state of the square lattice Hubbard model after
unfolding the Brillouin zone (see Fig. 6.2). Typical superconducting κ-(ET)2X materials
lie in the region t′/t . 0.65 [118, 124, 143], where a dxy-solution is to be expected, as
the dimer model is basically a square lattice of hoppings t, perturbed by the additional



6.2 Results and discussion 95

diagonal coupling t′. The diagonal coupling t′ breaks the C4-symmetry of the underlying
square lattice and gives the Fermi surface its elliptic shape, but the dominant terms in the
Hamiltonian remain square lattice-like. For a full account of possible pairing symmetries
in the one-band Hubbard model on the square lattice, see Ref. [142].
An early theoretical study of the antiferromagnetic phase of κ-type materials concluded

that the two molecules within a dimer carry the same spin and that the spins are flipped
between neighboring dimers [18], giving rise to (π, π) magnetic order as in the parent
compounds of high-temperature cuprate superconductors [7]. This result is consistent
with our observation that a dimerized model gives a dxy order parameter in the physical
Brillouin zone, which becomes a dx2−y2-symmetry in the unfolded zone of the one-band
model (see Fig. 6.2), again emphasizing the deep connection between cuprates and quasi-
two-dimensional organic superconductors.
We would also like to note that the authors of Ref. [43], referring to the physical Brillouin

zone, invoked a dxy superconducting symmetry close to insulating patches and a dx2−y2 state
in the bulk to explain the findings of their STS study on deuterated κ-(ET)2Cu[N(CN)2]Br.
As the antiferromagnetic insulating state is dimerized (see Ref. [18]), the dimer approxima-
tion naturally applies and gives a dxy order parameter in accordance with the experimental
observation. What remains to be answered in an approach beyond the dimer model, as
presented in the next sections, is why the superconducting order parameter of the bulk is
dx2−y2 .

6.2.3 Pairing symmetry in the molecule model

The obvious step for going beyond the dimer model is to use the original crystal lattice,
i.e. the molecule model explained before (see Fig. 6.1). In order to compare the results
of the molecule model to those of the dimer model we do the following consideration: via
the geometric formulas (Eqs. 5.1 and 5.2) the four-parameter molecule model is mapped
onto a two-parameter dimer model. With this procedure we are left with two adjustable
parameters in the molecule model whose variation discloses important features of the
systems, not captured in the resulting dimer model which remains unchanged. These
adjustable parameters are: the degree of dimerization t1/max(t2, t3, t4) and the in-plane
anisotropy t4/t2.
The degree of dimerization obviously decides whether the dimer approximation applies

to a material or not. Its influence on the superconducting pairing was quantified by
Kuroki et al., who found a transition to a dx2−y2 state in the physical Brillouin zone at low
dimerization (see Ref. [125]).
Less obvious is how this dx2−y2 state emerges from the underlying hopping structure and

how important the anisotropy between t2 and t4 is for the pairing state. To investigate
these issues, we construct a series of molecule models with fixed value of t3/t1 = 0.333 and
vary the ratio t4/t2 in the range [0,1] (for the values realized in real materials see Table 6.1).
We fix the sum of t2 and t4 so that the molecule models correspond to the same dimer
model t3/(t2 + t4) = t′/t = 0.6. The maximum value of t2 is, therefore, tmax

2 = 0.556 and
its minumum value is tmin

2 = 0.278. As t4 is increased, the in-plane anisotropy decreases
and the dimerization defined as t1/max(t2, t3, t4) increases.
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q1

q2

Figure 6.4: Comparison of molecule models (a)-(d) with different ratios of t4/t2, which
all correspond to the same dimer model (e) with t′/t = 0.6. The top panel
shows the spin susceptibilities, where arrows q1 and q2 indicate the main
features, while the bottom panel shows the leading eigenfunction of the su-
perconducting gap equation on the Fermi surface. In the molecule models
t3/t1 = 0.333 is fixed, while the ratio of t4/t2 is varied under the condition
t3/(t2 + t4) = t′/t = 0.6. Figure taken from Ref. [126].

In Fig. 6.4 we show the spin susceptibilities and leading pairing symmetries in the
molecule model as a function of t4/t2 compared to the associated dimer model. In the
isotropic limit t4/t2 = 1 we find a dxy-symmetric state, similar to the one found in the
dimer model [compare Fig. 6.4(d) and Fig. 6.4(e)]. Upon lowering t4/t2 the maxima of the
superconducting gap shift towards the position where the nodes in a dxy-symmetric state
are and additional nodes appear on the quasi-1D part of the Fermi surface close to (±π, 0).
As this shift is equivalent to a rotation by 45 degrees, the state with eight nodes can be
expected to have a significant dx2−y2 contribution. In the limit of t4 � t2 the additional
set of nodes on the quasi-1D part of the Fermi surface vanishes [see Fig. 6.4(a)]. The
remaining four nodes are situated close to the Brillouin zone boundary, where the smaller
elliptic part of the Fermi surface is folded back. The details of the pairing symmetry are
discussed further below. In what follows we investigate the origin of the gap maxima shifts.

As an example we show in Fig. 6.5 how extrema of the gap magnitude with opposite sign
appear where parts of the Fermi surface can be connected by a wave-vector q that shows
a peak in the spin susceptibility. Note that in Fig. 6.5 the Brillouin zone is shifted by a
vector (π, π), because the relevant vectors q connect pieces of the Fermi surface across the
boundaries of the Brillouin zone used in Fig. 6.4.

Now we come back to the discussion of the results presented in Fig. 6.4. At t4/t2 = 0
peaks appear at q1 ≈ (±0.7π, 0) and q2 ≈ (±π/2,±π), the dominant contribution to
the spin susceptibility being the peak at q2. As t4/t2 is increased, the position of q1

remains about the same, while q2 shifts towards (±π/4,±π/2) and decreases in intensity.
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Figure 6.5: (a) Spin susceptibility of the molecule model at t2/t1 = 0.417, t3/t1 = 0.333
and t4/t1 = 0.139 with arrows q1 and q2 indicating the main features. The
data shown are the same as in Fig. 6.4(b). (b) Superconducting gap function
on the Fermi surface for the same parameter values as in (a). Vectors q1 and
q2 are the same as in (a) and connect parts of the Fermi surface with different
signs of the gap. Note that the plot range of the Brillouin zone is shifted by
a vector (π, π) compared to Fig. 6.4. Figure taken from Ref. [126].

At t4/t2 = 1, the peak at q1 becomes the dominant contribution to the spin susceptibility.
Since we do not work in the limit of infinite dimerization, even the case t4/t2 = 1 does
not reproduce the dimer model spin susceptibility exactly. The similarities are, however,
apparent.

These peak shifts in the spin susceptibility are reflected in the pairing symmetry: the
gap maxima of different sign in the dxy-symmetry are separated by a wave-vector q1,
while q2 is responsible for the sign change between the upper and lower half of the elliptic
Fermi surface. Furthermore, q2 enforces an enlarged nodal region close to (±π, 0), since
it would otherwise connect parts of the Fermi surface with the same sign of the gap. In
the intermediate region of t4/t2, q2 connects the 1D parts of the Fermi surface, where it
induces an additional set of nodes. The large gap on the elliptic part of the Fermi surface
is connected to the 1D sheets by q1. The shift of the vertical lines in the susceptibility,
which widen towards kx ≈ ±π/2, merely reflect the changing shape of the Fermi surface.
For t4 � t2 the additional set of nodes on the 1D sheets vanishes, because they are no
longer connected by q2, which now points from 1D sheet to the elliptic parts just like q1.
This consideration shows that the pairing symmetry transition in the molecule model is
driven by a peculiar competition between q1 and q2 nesting vectors.

Now we connect the structure of the susceptibility and the superconducting pairing to
the underlying lattice model. The feature at q1 is obviously connected to the t3 hopping
parameter, since it is the only hopping exclusively in x-direction (see Fig. 6.6). All other t-
parameters can only be responsible for a four-peak structure, as they occur pointing along
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Figure 6.6: Hopping structure in the molecule model for the κ-(ET)+2 layer. The dark
grey arrows indicate the connection between hopping parameters and the
symmetry functions appearing in the solution of the superconducting gap
equation. Figure taken from Ref. [126].

both diagonals of the physical unit cell. The influence of the competition between t2, t3
and t4 on the feature at q2 is, however, hard to quantify directly. Therefore, we decompose
the superconducting order parameter in terms of extended s- and d-wave basis functions
fi appropriate for a square lattice geometry. For each of the d-wave basis functions, we
also take into account the associated extended s-wave function, because we expect that a
significant extended s-wave component could mix with the d-wave states to accomodate
the orthorhombicity of the model:

fs1(k) = coskx + cosky

fdx2−y2
(k) = coskx − cosky

fs2(k) = coskx · cosky
fdxy(k) = sinkx · sinky

(6.26)

Rotated into the Brillouin zone of κ-type materials, gap functions fdxy and fs2 are to be
expected from antiferromagnetic exchange along square-like bonds (t2, t4), while fs1 and
fdx2−y2

correspond to exchange paths along diagonal bonds (t3), see Fig. 6.6.
Following an idea of coauthor Harald O. Jeschke, we fit the pairing symmetries calcu-

lated from RPA to a linear combination of the previously defined pairing symmetries and
determine their relative contributions ci.

g̃(k) = cs1fs1 + cdx2−y2
fdx2−y2

+ cs2fs2 + cdxyfdxy (6.27)

For the dxy state we find cdxy = 1 and all other contributions zero, i.e. except for the not
well reproduced extended nodal region close to (±π, 0) the dimer model and the molecule
model at t4/t2 . 1 are dominated by the square-lattice physics of t or t2, t4 respectively. For
the dx2−y2-like solution at t4 � t2 we find negligible contributions from fs1 and fdxy , domi-
nant fs2 and sub-dominant fdx2−y2

. For increasing t4/t2 the ratio of coefficients cdx2−y2
/cs2

decreases, i.e. the square-lattice physics becomes dominant when the asymmetry between
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t2 and t4 is removed. Using the symmetry functions fi, all details of the superconducting
gap in the dx2−y2-like state including the additional nodes can be reproduced by Eq. 6.27.
Our findings provide a clear picture of the pairing competition in the molecule model:

in the realistic region of parameters, where the dimerization measured by t1/max(t2, t3, t4)
and the anisotropy of t2 and t4 are finite, the competition of square-like (t2, t4) and
diagonal (t3) hopping realizes a unique linear combination of functions fdx2−y2

and fs2
as the leading pairing symmetry. We refer to this linear combination as s± + dx2−y2 , or
extended s+dx2−y2 . The s-wave contribution is equivalent to the s± pairing state believed
to be realized in iron-based superconductors (see e.g. Ref. [54]) and has been overlooked
entirely in the literature on quasi-two-dimensional organic charge transfer salts. When the
lattice becomes more square-like (t4 . t2), i.e. the molecule model approaches the dimer
limit, the dxy-symmetry known from the dimer model takes over. In other words, in the
context of realistic modelling of κ-type materials, the dxy symmetry found in the dimer
model (dx2−y2 in the unfolded one-band model) is mostly an artifact of the underlying
approximation to the real lattice structure (Eqs. 5.1 and 5.2).
Finally, we checked our results obtained with the four parameter molecule model against

the original hopping structure obtained from projective Wannier functions, which includes
longer range processes. As expected, the differences induced by the distance cutoff and
parameter averaging are negligible.

6.2.4 Pairing symmetry phase diagram of the molecule model

To complete our study of the pairing symmetry competition, we investigated the leading
pairing symmetry of the molecule model as a function of t2/t1, t3/t1 and t4/t1 in the range
of parameters realized in actual superconducting κ-type materials.
In Fig. 6.7 we show the obtained phase diagram, which consists of a dxy-symmetric phase

at low t2/t1 and t3/t1, while the rest of the phase diagram shows a s± + dx2−y2 state. The
consecutively numbered symbols in Fig. 6.7 correspond to the position of real materials as
listed in Table 6.1 within this phase diagram. As we scanned the phase diagram several
times for different fixed t4/t1, materials were sorted into the cut with the closest value of
t4/t1.
At low t2/t1 the phase boundary is almost horizontal, i.e. independent of the precise

value of t2/t1. For larger values of t2/t1 the model becomes more asymmetric with respect
to t2 and t4 and a smaller diagonal coupling t3 is sufficient to drive the system into the
s± + dx2−y2 state. The size of the dxy-symmetric region is obviously determined by the
value of t4/t1 as explained in the previous section.
In the numerical calculations we observed that the leading two pairing symmetries are

almost degenerate in a broad parameter region. This is to be expected, because the
s±+ dx2−y2 state emerges precisely as a compromise between two different nesting vectors,
of which one rather fits to a pure dxy-symmetry. To clarify this degeneracy, we calculated
the eigenvalues of the leading and sub-leading solutions of the gap equation at fixed t2/t1
and t3/t1 and varied t4/t2 in the range [0,1]. Fig. 6.8 shows the eigenvalues of both possible
pairing states as a function of the in-plane anisotropy t4/t2. We observe a pronounced
asymmetry: While the dxy state is competitive even for low values of t4/t2, the s±+dx2−y2
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Figure 6.7: Superconducting phase diagram of the individual molecule model. Different
symmetries of the superconducting order parameter are color coded. A dxy

symmetry of the pairing interaction is favored when the orthorhombicity of
the system is small, i.e. when t4 . t2 and t3 � t2. In the rest of the phase
diagram an extended s + dx2−y2 symmetry prevails. The numbered symbols
correspond to the location of real materials in the phase diagram, enumerated
as in Table 6.1. Materials were sorted into the subplot to which their true
value of t4/t1 is closest. Figure taken from Ref. [126].

state quickly becomes irrelevant when approaching the isotropic case (t4/t2 = 1).

Finally, based on our parameter estimates, all materials investigated lie in the s±+dx2−y2

region of the phase diagram. Materials particularly close to the phase transition line are
κ-(ET)2I3, κ-(ET)2Ag(CN)2·H2O and κ-(ET)2Cu[N(CN)2]Br. These can be expected to
realize the s± + dx2−y2 order parameter with eight nodes.

When materials are close to the phase transition line, small changes of the hopping
parameters might drive them into the dxy state, which is always present as a sub-dominant
pairing symmetry. For such local changes of parameters, for instance lattice defects [113,
114] or disorder of molecular conformations could be responsible. In Ref. [118] we have



6.2 Results and discussion 101

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0  0.1  0.2  0.3  0.4  0.5

t4/t2

t4/t1

λ

t2/t1=0.5

t3/t1=0.33

s±+dx2
−y

2

dxy
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t4/t2 = 1. Only t4 was varied. The other parameters were fixed to t2/t1 = 0.5
and t3/t1 = 0.33. Figure taken from Ref. [126].

shown that different conformations of ET molecules result in decidedly different ratios of
t4/t2. The degree of conformational disorder can be controlled experimentally by adjusting
the sample cooling rate [46, 48].
In Ref. [18] a square lattice-like antiferromagnetic order was found for the insulating

state of κ-type materials. Therefore, we expect significant competition between antiferro-
magnetism and dxy-symmetric superconductivity, while the s + dx2−y2-symmetric state is
realized farther away from the magnetically ordered insulating phase. Within this picture,
recent results by Oka et al. [43], who interpreted their experiment in terms of patches with
a dxy order parameter and a dx2−y2-symmetric bulk, can be qualitatively explained.
At this point we would like to emphasize that most experimental studies assume a

four-node d-wave order parameter upon data analysis, which excludes from the start the
detection of the s±-component we found. In particular, the realization of the s± + dx2−y2

state with eight nodes which lie along the diagonals and close to the crystallographic axes,
may explain the considerable disagreement in the experimental literature regarding the
node positions.

6.2.5 Simulation of scanning tunneling spectroscopy

Most transport experiments on κ-(ET)2X materials have proven to be difficult to interpret
and could not resolve the symmetry of the superconducting pairing so far. However, recent
improvements in sample preparation for low-temperature scanning tunneling spectroscopy
(STS) experiments have allowed for progress towards a resolution of the superconducting
order parameter [43, 44, 49].
Therefore, in this section we simulate tunneling spectra in the superconducting state for

molecule model parameters t2/t1 = 0.4375, t4/t1 = 0.1 and various values of t3/t1: a four-
node s±+dx2−y2 state is obtained for t3/t1 = 0.5, an eight-node s±+dx2−y2 state for t3/t1 =
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Figure 6.9: Gap function on the Fermi surface (top panel), magnitude of the gap function
versus angle measured with respect to the kx direction (mid panel) and sim-
ulated quasiparticle density of states in the superconducting state (bottom
panel). In all cases we assumed an energy scale ∆0 = 10 meV. Only t3/t1 is
varied. Other parameters are fixed to t2/t1 = 0.4375 and t4/t2 = 0.1. Max-
ima of the superconducting gap magnitude are labelled with capital letters.
Nodes of the superconducting order parameter are labelled with greek let-
ters. All nodes and maxima not labelled explicitly are symmetry equivalent
to the labelled ones. Column (a) shows the case of s± + dx2−y2-symmetry
with four nodes (t3/t1 = 0.5). Column (b) shows the results for s± + dx2−y2-
symmetry with eight nodes (t3/t1 = 0.3475). Column (c) shows the dxy case
(t3/t1 = 0.25). Figure taken from Ref. [126].

0.3475 and dxy for t3/t1 = 0.25. We employ the representation of the superconducting gap
in terms of symmetry functions introduced in Eq. 6.27, which we multiply with a prefactor
∆0 = 10 meV to obtain a spectrum with reasonable energy scale. The gap on the Fermi
surface is then given by ∆(k) = ∆0 g̃(k). We use this expression together with Eq. 6.24 to
calculate the quasiparticle density of states ρqp, which corresponds to the local density of
states (LDOS) observed in STS experiments. The finite quasiparticle lifetime is modelled
by Γ = 0.07 meV. In the dxy case we ignore the small anisotropy found in the RPA
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calculation.
In Fig. 6.9 we show (i) the obtained gap on the Fermi surface, (ii) the magnitude of the

gap versus angle measured from the kx-direction and (iii) the simulated tunneling spectrum
for the three cases investigated.
The magnitude of the gap versus the angle is distributed anisotropically on the Fermi

surface [Fig. 6.9(a-c) top panel]. Maxima of the gap magnitude are indicated by arrows
labelled with capital letters, while nodes in the gap are indicated by arrows labelled with
greek letters. The global maximum of the gap magnitude (labelled A or D) resides in
all cases on the elliptic part of the Fermi surface, while the second largest maximum
(labelled B or E) is located on the quasi-one-dimensional part. A third smallest maximum
(labelled C) is possible on the quasi-1D sheet. In the dxy-case the nodes labelled γ appear in
addition to the expected set of nodes δ, because the Fermi surface touches the Brillouin zone
boundary. The γ-nodes lead to the second maximum (labelled E) of the gap magnitude
[Fig. 6.9(a-c) middle panel], but are otherwise irrelevant for the low-energy physics. Since
the three possible gap structures share two maxima of slightly different size, the simulated
quasiparticle DOS looks quite generic [Fig. 6.9(a-c) bottom panel]. A two-peak structure
is observed far away from the Fermi level, which corresponds to the energy values of the
two largest maxima in the gap magnitude.
Important differences are, however, revealed at low energies: the dxy state is featurelessly

V-shaped [Fig. 6.9(c) bottom panel], while the spectrum of the eight-node state has an
additional peak close to 2 meV [Fig. 6.9(b) bottom panel], which is linked to the small
gap (labelled C) on the quasi-1D sheet. This leads to an outer and an inner V-shape with
different slopes. For the four-node s±+dx2−y2 state we observe a peculiar dip around 1 meV
in the quasiparticle spectrum [Fig. 6.9(a) bottom panel]. This corresponds to the minimum
value of the gap magnitude on the quasi-one-dimensional part of the Fermi surface. Inside
of this dip a V-shaped region emerging from the β-nodes is again observed.
We emphasize that our predictions are to be taken as qualitative, not quantitative,

regarding the overall energy scale and the relative gap sizes. The main features explained
before are, however, robust. The detection of such low-energy structures is certainly not
an easy task, but we believe it will be possible with state-of-the-art equipment and proper
sample preparation.
In a first attempt to do this, the group of Hans-Joachim Elmers performed STS experi-

ments on in situ cleaved single crystals of κ-(ET)2Cu[N(CN)2]Br, for which we predicted
an s± + dx2−y2 mixed-symmetry order parameter with eight nodes. In fact they could
resolve the signatures of three conductance peaks in the second derivative of the measured
conductance [see Fig. 6.10(a)], which correspond to the three gap maxima we found for
the eight node state [see Fig. 6.9(b)].
Using the decomposition of the microscopically calculated superconducting order param-

eter into symmetry functions (Eq. 6.26), we investigate whether quantitative agreement
with the experimentally measured S(V ) can be reached by fine-tuning some parameters.
In this process the symmetry of the superconducting state is kept fixed to the theoretical
prediction (mixed extended s+dx2−y2). We re-evaluate Eqs. 6.24 and 6.25 with parameter
sets {∆0, cs1 , cd1 , cs2 , x, Γ} until optimal agreement with the experimental spectra in the
interval [−12,+12] meV is reached. The corresponding calculated spectra are shown in
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Figure 6.10: (a) Second derivative of the conductance spectrum dI/dV/T (V ) at T = 5 K.
Arrows labeled by A, B and C indicate three pairs of minima which are sym-
metric to the origin, corresponding to the coherence peaks partially seen in
(b). (b) Conductance spectra S(V ) = 1/[B(V )T (V )] dI/dV of the super-
conducting state as a function of eV = E − EF at different temperatures
measured parallel to the layered crystal structure. The red lines show map-
pings of Eq. 6.25 to the measured data. Figure taken from Ref. [44].

Fig. 6.10(b) as solid red lines. The optimal parameter values listed in Table 6.2 are consis-
tent throughout the investigated parameter range. Only the origin of the non-monotonous
behavior of Γ is currently unclear. Therefore, the experimental results are fully consistent
with the order parameter with eight nodes that we predicted.

6.3 Summary and outlook

In summary, we investigated the superconducting state of κ-(ET)2X charge transfer salts
in an individual molecule model based on a combination of ab initio density functional
theory and random phase approximation spin-fluctuation calculations. We obtained ki-
netic parameters of the molecule Hamiltonian for eight superconducting κ-type materials
using projective Wannier functions. We found that the superconducting order parameter
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T (K) cs1 cd1 cs2 ∆0 (meV) Γ (meV) x
5 -0.109 -0.276 -0.615 12.218 0.690 0.520
7 -0.128 -0.280 -0.592 10.638 0.641 0.603
9 -0.064 -0.317 -0.620 7.376 0.000 0.466
11 -0.158 -0.200 -0.642 2.984 0.035 0.188

Table 6.2: Values of the parameters in Eq. 6.25 obtained by mapping the calculated S(V )
to the experimental spectra. Table taken from Ref. [44].

in a realistic molecule model is different from the one in the usual dimer approximated
Hamiltonian for all investigated materials. The superconducting phase diagram of the
molecule description is dominated by an extended s+ dx2−y2-symmetry that emerges from
the competition between square-like and diagonal hopping processes on the original κ-type
lattice, while the physics of the dimer model is reproduced also for finite dimerization in the
limit of isotropic parameters t4 . t2. The anisotropy of square-like hoppings t2 and t4 is,
however, not negligible in real materials. For precisely this reason, the dimer approxima-
tion does not apply to superconducting κ-(ET)2X charge transfer salts. It overestimates
the importance of square lattice physics through the averaging contained in the geometric
formulas, which are exact only in the limit of infinite dimerization.
Furthermore, the s±+dx2−y2 state, which features nodes both along the crystallographic

axes and the Brillouin zone diagonals, may explain the multitude of contradictory exper-
imental results regarding the nodal positions. We also simulated tunneling spectroscopy
experiments for all nodal configurations encountered in our phase diagram. The difference
between those pairing states unfortunately manifests itself only at very low energies, mak-
ing experimental detection difficult, but not impossible. Based on the ab initio calculated
model parameters we found that the well-studied material κ-(ET)2Cu[N(CN)2]Br is situ-
ated near the phase transition line between s± + dx2−y2 and dxy superconducting states,
which supports the interpretation of recent scanning tunneling spectroscopy experiments.
A question unanswered by our study is why superconducting transition temperatures

among quasi-two-dimensional charge transfer salts can differ by more than a factor of four.
As there is no obvious connection between Tc and the parameters of the kinetic Hamilto-
nian, a method that can qualitatively reproduce the ordering of transition temperatures
in real materials is required to elucidate this issue.
In conclusion, we believe that a significant part of the physics in quasi-two-dimensional

charge transfer salts has unfortunately been overlooked so far, because theory has adhered
to the dimer model for too long and too many experiments have been interpreted based on
a dichotomy of dxy and dx2−y2 states, which is inappropriate for the orthorhombic lattice
realized in κ-(ET)2X materials.
It is an interesting open question, whether the magnetic, insulating and possible quantum

spin-liquid states known from the anisotropic triangular lattice are also present in the
molecule model. The investigation of these phases is left for future studies.
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We now focus our attention on iron-based superconductors. After their discovery in 2008,
transition temperatures were quickly improved to ∼ 56 K by chemical substitution [144].
Recently, the possible discovery of superconductivity with Tc = 65 K [145] and even Tc ∼
100 K [59] in single-layer FeSe films grown by molecular beam epitaxy on SrTiO3 showed
that temperatures close to and above the boiling point of liquid nitrogen (77 K) may be
achievable. These results have initiated an intensive debate regarding the origin of the
high superconducting temperatures and the role played by electron doping via substrate,
dimensionality and lattice strain.
While bulk FeSe has a Tc of only 8-10 K, it has been known for some time that it

can be substantially enhanced to 40 K or higher by alkaline intercalation [146]. Materials
with a single alkaline A = K, Cs, Rb between FeSe layers of nominal form AxFe2−ySe2
have been studied intensively, and display a wide variety of unusual behaviors relative to
the iron pnictide superconducting materials [147]. These include likely phase separation
into an insulating phase with block antiferromagnetism and ordered Fe vacancies, and
a superconducting phase that is strongly alkaline deficient and whose Fermi surface, as
measured by angle-resolved photoemission spectroscopy, apparently contains no hole-like
Fermi surface pockets, in contrast to iron pnictides. Since the popular spin fluctuation
scenario for s± pairing relies on near nesting of hole and electron pockets, it has been
speculated that a different mechanism for pairing may be present in these materials, but
even within the spin fluctuation approach, different gap symmetries including d-wave pair-
ing have been proposed [99, 148–150]. The gap symmetry and structure is, therefore, still
controversial [151, 152].
In addition to the unusual doping, speculation on the origin of the higher Tc has centered

on the intriguing possibility that enhancing the FeSe layer spacing improves the two-
dimensionality of the band structure and, hence, Fermi surface nesting [153, 154]. In
an effort to investigate this latter effect, organic molecular complexes including alkaline
atoms were recently intercalated between the FeSe layers [55, 153–159], yielding transition
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Figure 7.1: Idealized crystal structure of Li0.5(NH3)Fe2Se2. For a detailed discussion
of experimental crystal structures see Refs. [55, 155]. Figure taken from
Ref. [101].

temperatures of up to 46 K. The most intensively studied materials incorporate molecules
including ammonia, for example Li0.56(NH2)0.53(NH3)1.19Fe2Se2 with Tc = 39 K [155] and
Li0.6(NH2)0.2(NH3)0.8Fe2Se2 with Tc = 44 K [55]. The crystal structure of a stoichiometric
version of these materials is shown in Fig. 7.1. Recently, Noji et al. [154] compared data
on a wide variety of FeSe intercalates and noted a strong correlation of Tc with interlayer
spacing, corresponding to a nearly linear increase between 5 to 9 Å, followed by a rough
independence of spacing with further increase between 9 to 12 Å.

In this chapter we study the question of how exactly doping and interlayer distance
influence Tc in molecular intercalates of FeSe, whether these effects are separable, and
what gives rise to the apparent upper limit for Tc in this family of iron chalcogenides.
Using a combination of DFT calculations for the electronic structure of several materials in
this class together with model calculations of spin fluctuation pairing based on these band
structures, we argue that strength and wave-vector of spin fluctuations in lithium/ammonia
intercalated FeSe can be controlled by tuning the Li+:NH−

2 ratio in the spacer layer. We
show that the evolution of Tc with electron doping can be understood from the shape of
the density of states close to the Fermi level. As long as hole pockets are present, we
find that the superconducting pairing is of s± character and identify a subleading dx2−y2

instability. We believe that our interpretation is valid in a broad class of related materials.
Our findings have been published in Ref. [101], which this chapter is based on.
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7.1 Methods and materials

We performed density functional theory calculations for Li0.5(NH2)y(NH3)zFe2Se2 at vari-
ous ratios of NH−

2 to NH3 content, starting from the experimentally determined structures
Li0.56(NH2)0.53(NH3)1.19 [155] and Li0.6(NH2)0.2(NH3)0.8 [55], which include fractionally oc-
cupied atomic sites for lithium, hydrogen and nitrogen. In order to accommodate the
experimental stoichiometry we construct a 2 × 1 × 1 (4 Fe) supercell for the former, and
a 2× 2× 1 (8 Fe) supercell for the latter compound. We replace all fractionally occupied
nitrogen positions by fully occupied positions. Since hydrogen positions are not known
precisely from experiment, we arrange the hydrogen atoms so that we obtain NH3 groups
with angles of about 108◦ as encountered in ammonia and further relax these positions
within the local density approximation (LDA) [74] with the projector augmented wave
(PAW) basis [77] as implemented in GPAW [120] until forces are below 2 meV/Å. In
the 2 × 1 × 1 supercell we place the lithium atom in one half of the unit cell and leave
the lithium position in the other half unoccupied. In the 2 × 2 × 1 supercell we arrange
the lithium atoms in a checkerboard pattern of occupied and vacant sites (Fig. 7.1). We
used 6 × 6 × 6 k-point grids within the GPAW code and checked the remaining forces in
the FPLO code with a 12 × 12 × 12 k-point mesh. We found the atomic positions to be
sufficiently converged.

Initially, we only consider charge neutral NH3 ammonia groups in the spacer and no
NH−

2 . In this way, we obtain idealized structures with formula units Li0.5(NH3)Fe2Se2 and
Li0.5(NH3)2Fe2Se2, where chalcogen height and unit cell parameters are chosen as in the
experimental structures [55, 155]. Both structures belong to space group P1 because of
NH3 situated in the spacer layer. Note that by setting up both structures with neutral
NH3, we are able to disentangle possible effects of the structural differences from the effect
of doping through the composition of the spacer layer.

The experimentally available samples [55, 155] contain both NH3 and NH−
2 . The radical

NH−
2 neutralizes the charge donated to the FeSe layer by Li+ and reduces the doping level.

In order to capture this compensation of charge in our simulations, we use the virtual crys-
tal approximation (VCA) starting from supercells Li0.5(NH3)Fe2Se2 and Li0.5(NH3)2Fe2Se2,
which correspond to the maximally electron doped compounds. The VCA can be used to
interpolate continuously between the properties of an atom with nuclear charge Z and its
neighbors in the periodic table of elements with nuclear charges Z−1 or Z+1. In the study
presented here, we fractionally replaced nitrogen (Z = 7) by carbon (Z = 6). Because
of the different valence of nitrogen and carbon this procedure interpolates between charge
neutral ammonia (NH3) and a methyl radical (CH−

3 ). Since ammonia (NH3) and methane
(CH4) are structurally similar, VCA should provide a sufficient description of the spacer
layer. The use of VCA has the advantage that doping is treated in a continuous and rather
isotropic, but not rigid band fashion. We checked these calculations by removing hydrogen
atoms explicitly instead of doing VCA and found the differences to be negligible.

The analysis of the band structure of these supercells is done within FPLO and we use
LDA as exchange-correlation functional [74]. We then use projective Wannier functions as
implemented in FPLO [122] to downfold the band structure. In our tight binding models,
we keep the Fe 3d and Se 4p states. The energy window we used for the downfolding spans
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Figure 7.2: Fermi surface in the 16 band tight binding model for (a) r = 0.0 and (b)
r = 0.25 in the 2-Fe Brillouin zone at kz = 0. The colors indicate the weights
of Fe 3d states. Figure taken from Ref. [101].

approximately the range from −6 eV to +2 eV. In order to obtain band structure and
Fermi surface of the supercells in the conventional two iron unit cell, we use our recently
developed technique [160] to translationally unfold the 32 and 64 band supercell models to
a 16 band model of the 2 Fe equivalent Brillouin zone. For calculations of susceptibility and
superconducting pairing, we use subsequent glide reflection unfolding [160] of the bands to
obtain the 8 band model of the 1 Fe equivalent Brillouin zone.
The static susceptibility is calculated on a 30× 30× 10 k-point mesh at an inverse tem-

perature of β = 40 eV−1. To explore how the superconducting state depends on interlayer
spacing and doping, we use the three-dimensional version of our RPA implementation for
the multi-orbital Hubbard model (Eq. 1.4). We keep the selenium states in the entire
calculation, but consider interactions only between Fe 3d states. We assume spin rotation-
invariant interaction parameters U = 1.35 eV, V = U/2 and J = J ′ = U/4. The effective
interaction in the singlet pairing channel is constructed via the multi-orbital RPA proce-
dure explained before. The effective eigenvalue equation is then solved using ∼ 1000 points
on the three-dimensional Fermi surface.

7.2 Results and discussion

First, we investigated the properties of the maximally electron doped compounds in our
study, Li0.5(NH3)Fe2Se2 (ammonia poor) and Li0.5(NH3)2Fe2Se2 (ammonia rich). Both
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Figure 7.3: Band structure in the 16 band tight binding model for (a) r = 0.0 and (b)
r = 0.25 in the 2-Fe Brillouin zone. The colors indicate the weights of Fe 3d
states. Figure taken from the supplemental information of Ref. [101].

feature at the Fermi level two large electron pockets in the corners of the 2 Fe Brillouin
zone and two small hole pockets around Γ. This confirms that the lithium atoms donate
electrons to the FeSe layer. Both systems have the same electron doping, but different
interlayer spacing. This is observed in the kz-dispersion of the Fermi surface, where the
smaller interlayer distance of the ammonia poor compound leads to a slightly increased
corrugation of the cylinders.

In the experimentally realized compounds Li0.56(NH2)0.53(NH3)1.19 and Li0.6(NH2)0.2
(NH3)0.8 the spacer layer nominally donates a charge of 0.015 and 0.2 electrons per iron
atom respectively. These doping levels are lower than in our model materials Li0.5(NH3)
Fe2Se2 and Li0.5(NH3)2Fe2Se2. To investigate the doping dependence of the electronic
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structure at a given interlayer spacing, we consider Li0.5(NH3)Fe2Se2 and hole dope it by
means of the virtual crystal approximation as explained above. To simplify the nota-
tion, we label compounds from now on not by their full chemical formula, but by an index
r = {0.0, . . . , 0.25}, which refers to the chemical formula Li0.5(NH2)0.5−2r(NH3)0.5+2rFe2Se2.
r = 0.25 refers to the compound Li0.5(NH3)Fe2Se2 with maximal electron doping, where
lithium nominally transfers a quarter of an electron to each iron atom. Increasing the
NH−

2 content immediately brings up a third hole pocket to the Fermi level, which is three-
dimensional at intermediate doping and becomes two-dimensional once the charge intro-
duced by lithium is fully compensated by NH−

2 groups. r = 0 denotes the compound where
the charge introduced by lithium is nominally compensated by NH−

2 and no electrons are
donated to the FeSe layer. The Fermi surfaces of the end members (r = 0.0 and r = 0.25)
are shown in Fig. 7.2. The electronic band structure on a high-symmetry path is shown in
Fig. 7.3.

To understand the effects of electron doping on a microscopic level, we constructed five
band Fe-only models by downfolding also the Se 4p states using an energy window ranging
from −3 eV to +2 eV. As shown in Fig. 7.4, the nearest neighbor hopping t1 in the Fe 3dxy
orbital is affected much stronger by the electron doping than the next-nearest neighbor
hopping t2. Therefore, the hole pockets do not only shrink because the electron doping
raises the Fermi level, but also because the nearest neighbor hopping in the Fe 3dxy orbital
decreases steeply as a function of electron doping

The band structure effects of changing individual hopping parameters have been worked
out in great detail in Ref. [162]. In the materials investigated here, the change in t1 serves
to shift the hole bands down (see Fig. 7.3), which gives rise to an increased density of
states at the Fermi level. In Fig. 7.5 we plot the orbital resolved density of states for the
8 band model at r = 0.25. The positive slope close to the Fermi level and the edge of the
hole bands at +0.1 eV are clearly visible.
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r = 0.25. Figure taken from the supplemental information of Ref. [101].

Next, we investigate the doping dependence of spin fluctuations. The non-interacting
static susceptibility on the high-symmetry path calculated in the 1-Fe Brillouin zone for
r = 0.0 and r = 0.25 is shown in Fig. 7.6. In the undoped compound (r = 0.0) the
structure of the static susceptibility resembles strongly what is found for materials like
LaFeAsO or BaFe2As2. The electron doping notably shifts the maximum from X = (π, 0)
towards M = (π, π) and the former valley at M transforms into a peak. The absence of a
(π, 0) peak in electron doped compounds suggests why no orthorhombic phase or stripe-like
magnetism have been found in FeSe intercalates so far [163].

The shifts of the dominant vectors of spin fluctuations can be understood from nesting
properties and orbital character on the Fermi surface in the 1-Fe Brillouin zone. The
undoped compound (r = 0.0) is dominated by (π, 0) nesting of electron and hole pockets,
whereas the electron doped compound (r = 0.25) (see Fig. 7.7) features scattering between
electron and hole pockets with altered wave vector competing with scattering between
electron pockets. The dominant contributions to the static susceptibility originate from
the dxy and dxz/yz orbitals.

Now we focus on the superconducting state. For all values of electron doping (structures
r = 0.0 to r = 0.25) and interlayer spacing (structures Li0.5(NH3)Fe2Se2 and Li0.5(NH3)2
Fe2Se2) considered we find the leading instability to be of nodeless s± character, while
subleading solutions are of nodal s± and dx2−y2 type (see Fig. 7.8 for structure r = 0.25).
These are the leading states expected in the case of a nearly 2D system with both hole
and electron pockets. Repulsive electron-hole dxz/yz and dxy interactions favor nodeless s±
pairing, while inter-electron pocket interactions, orbital weight variations around the Fermi
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Figure 7.6: Summed static susceptibility (upper panel) and its diagonal components χaa
aa

(lower panel) in the 8 band tight binding model for r = 0.0 (a,c) and r = 0.25
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taken from Ref. [101].

surface, and intraband Coulomb interactions are known to frustrate the s± interaction and
drive nodal behavior and eventually d-wave interactions when hole pockets disappear [150,
164].

We observe that the source of the moderate quantitative enhancement of Tc with electron
doping lies in an increased density of states at the Fermi level. For both the dxy and the
dxz/yz orbitals the slope of density of states near the Fermi level is positive [Fig. 7.9 (b)]
so that electron doping leads to an enhanced susceptibility and superconducting pairing
strength as the doping approaches the edge of the hole bands, which appears as a sharp
drop of the dxy DOS (see Fig. 7.5). The small initial decrease of the pairing eigenvalue at
low electron doping [Fig. 7.9 (a)] is a consequence of the degraded nesting.

Alternatively, when we keep the electron doping levels fixed to the same value and
analyze only the interlayer spacing effect (structures Li0.5(NH3)Fe2Se2 with c = 8.1 Å and
Li0.5(NH3)2Fe2Se2 with c = 10.3 Å), we find that the Fermi surface turns completely two-
dimensional for a c-axis length between 8.1 Å and 10.3 Å, where Tc saturates in experiment.
Analyzing the susceptibility and superconducting pairing for both structures, we find no
qualitative differences. Quantitatively, the perfectly two-dimensional Fermi surface of the
ammonia rich compound leads to an increased susceptibility and larger pairing eigenvalue
than in the ammonia poor compound. The increased pairing eigenvalue would correspond
to an enhanced Tc.
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Figure 7.8: Solutions of the linearized gap equation on the Fermi surface within the 8
band tight binding model for r = 0.25 in the 1-Fe Brillouin zone at kz = 0.
The relevant instabilities are (a) nodeless s±, (b) nodal s± and (c) dx2−y2 . We
assume spin rotation-invariant interaction parameters U = 1.35 eV, V = U/2,
J = J ′ = U/4. Figure taken from Ref. [101].

Our calculations show that both increasing electron doping and lattice spacing contribute
to enhancing Tc. However, experimentally it is found that the ammonia poor compound
(larger electron doping) with smaller c-axis shows a higher Tc (Li0.6(NH2)0.2(NH3)0.8Fe2Se2,
Tc = 44 K) than the ammonia rich compound (smaller electron doping) with larger c-axis
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(Li0.56(NH2)0.53(NH3)1.19Fe2Se2, Tc = 39 K). Therefore, the variations in lattice parameters
observed experimentally cannot be the source of the enhancement of Tc. Within our
picture, this leaves only the electron doping level as the controlling parameter. Hence, we
conclude that Tc is mainly controlled by the electron doping level when the Fermi surface
is mostly two-dimensional. Therefore, it is unlikely that Tc can be enhanced further by
intercalation of larger molecules.

7.3 Summary

We investigated the Lix(NH2)y(NH3)zFe2Se2 family of FeSe intercalates and found that
the FeSe layer is moderately electron doped. The electron doping moves the Fermi level
towards the edge of the hole-bands, which gives rise to increased superconducting transition
temperatures due to an increase in the density of states at the Fermi level. We also showed
that recently achieved interlayer distances in FeSe intercalates already produce a two-
dimensional Fermi surface, which is optimal for Tc. Further experimental work should
therefore concentrate on the charge doping through the spacer layer.



Chapter 8

Symmetry of the superconducting
pairing in KFe2As2 under pressure

D. Guterding, S. Backes, H. O. Jeschke, R. Valent́ı,
Phys. Rev. B 91, 140503(R) (2015).

After treating electron doped intercalates in the last chapter, we now focus our attention
on extremely hole doped bulk materials. The family of AFe2As2 (A= Ba, Ca, Eu, K, Sr)
superconductors, also called 122 materials, has been intensively investigated in the past
due to their richness in structural, magnetic and superconducting phases upon doping
or application of pressure [57, 165–169]. One phase whose properties have been recently
scrutinized at length is the collapsed tetragonal (CT) phase present in BaFe2As2, CaFe2As2,
EuFe2As2, and SrFe2As2 under pressure and in CaFe2P2 [170–177]. The structural collapse
of this phase has been shown to be assisted by the formation of As 4pz-As 4pz bonds
between adjacent Fe-As layers giving rise to a bonding-antibonding splitting of the As pz
bands [178]. It has been argued that this phase does not support superconductivity due to
the absence of hole cylinders at the Brillouin zone center and the corresponding suppression
of spin fluctuations [173, 179, 180]. However, recently Ying et al. [181] investigated the
hole-doped end member of Ba1−xKxFe2As2, KFe2As2, under high pressure and observed a
boost of the superconducting critical temperature Tc up to 12 K, precisely when the system
undergoes a structural phase transition to a CT phase at a pressure pf Pc ∼ 15 GPa. These
authors attributed this behavior to possible correlation effects. Moreover, measurements of
the Hall coefficient showed a change from positive to negative sign upon pressure, indicating
that the effective nature of charge carriers changes from holes to electrons with increasing
pressure. Similar experiments are also reported in Ref. [182].
KFe2As2 has a few distinct features: at ambient pressure, the system shows super-

conductivity at Tc = 3.4 K and follows a V-shaped pressure dependence of Tc for mod-
erate pressures with a local minimum at a pressure of 1.55 GPa [183]. The origin of
such behavior and the nature of the superconducting pairing symmetry are still under
debate [150, 184–189]. However, it has been established by a few experimental and the-
oretical investigations based on angle-resolved photoemission spectroscopy, de Haas-van
Alphen measurements, and density functional theory combined with dynamical mean field
theory (DFT+DMFT) calculations that correlation effects crucially influence the behavior
of this system at P = 0 GPa [161, 190–196]. Application of pressure should nevertheless
reduce the relative importance of correlations with respect to the bandwidth increase. In
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fact, recent DFT+DMFT studies on CaFe2As2 in the high-pressure CT phase show that
the topology of the Fermi surface is basically unaffected by correlations [197, 198]. One
could argue though, that at ambient pressure CaFe2As2 is less correlated than KFe2As2
and, therefore, in KFe2As2 correlation effects may be still significant at finite pressure.

In order to resolve these questions, we performed density functional theory (DFT) and
DFT+DMFT calculations for KFe2As2 in the CT phase. The DMFT part of the work was
done by coauthor Steffen Backes. Our results show that the origin of superconductivity
in the collapsed tetragonal phase in KFe2As2 lies in the qualitative changes in the elec-
tronic structure (Lifshitz transition) experienced under compression to a collapsed tetrag-
onal phase and correlations play only a minor role. Whereas in the tetragonal phase at
P = 0 GPa KFe2As2 features predominantly only hole pockets at the Brillouin zone center,
at P ∼ 15 GPa in the CT phase significant electron pockets emerge at the Brillouin zone
boundary, which together with the hole pockets at the Brillouin zone center favor a super-
conducting state with s± symmetry, as we show in our calculations of the superconducting
gap function using the random phase approximation (RPA) spin fluctuation approach.
Moreover, our results in the tetragonal phase of KFe2As2 at P = 10 GPa suggest a change
of pairing symmetry from dxy (tetragonal) to s± upon entering the collapsed phase (see
Fig. 8.1). This scenario is distinct from the physics of the CT phase in CaFe2As2, where the
hole pockets at the Brillouin zone center are absent. For comparison, we will present the
susceptibility of collapsed tetragonal CaFe2As2, which is representative for the collapsed
phase of AFe2As2 (A= Ba, Ca, Eu, Sr). Our findings also suggest an explanation for the
change of sign in the Hall coefficient upon entering the CT phase in KFe2As2. This chapter
is based on a publication [102], in which we summarized our results.

8.1 Methods

Density functional theory calculations were carried out using the FPLO code [76]. For the
exchange-correlation functional we use the generalized gradient approximation (GGA) by
Perdew, Burke, and Ernzerhof [75]. All calculations were converged on 20×20×20 k-point
grids.

The structural parameters for the CT phase of KFe2As2 were taken from Ref. [181].
We used the data points at P ≈ 21 GPa, deep in the CT phase, where a = 3.854 Å and
c = 9.6 Å. The fractional arsenic z-position (zAs = 0.36795) was determined ab-initio via
structural relaxation using the FPLO code. We also performed calculations for the crystal
structure of Ref. [182], where a preliminary experimental value for the arsenic z-position
was given. The electronic structure is very similar to the one reported here. For the CT
phase of CaFe2As2 we used experimental lattice parameters from Ref. [199] (T = 40 K,
P ≈ 21 GPa) and determined the fractional arsenic z-position (zAs = 0.37045) using
FPLO. All Fe 3d orbitals are defined in a coordinate system rotated by 45◦ around the
z-axis with respect to the conventional I 4/mmm unit cell.

Furthermore, we constructed 16-band tight-binding models from the DFT results using
projective Wannier functions as implemented in FPLO [122]. We keep the Fe 3d and As
4p states, which correspond to an energy window from −7 eV to +6 eV. Subsequently,
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Figure 8.1: Crystal structure, schematic Fermi surface (dashed lines) and schematic su-
perconducting gap function (background color) of KFe2As2 in the one-Fe
Brillouin zone before and after the volume collapse. The Lifshitz transi-
tion associated with the formation of As 4pz-As 4pz bonds in the CT phase
changes the superconducting pairing symmetry from dxy to s±. Figure taken
from Ref. [102].

we unfold the 16-band model using our recently developed glide reflection unfolding tech-
nique [160], which produces an effective eight-band model of the three-dimensional one-Fe
Brillouin zone.

We analyze these eight-band models using the 3D version of our RPA implementation.
The arsenic states are kept in the entire calculation, but the multi-orbital interactions are
considered only between Fe 3d states. For calculating the susceptibility we used 30×30×10
k-point grids and an inverse temperature of β = 40 eV−1. The pairing interaction is
constructed using about 800 points on the three-dimensional Fermi surface. The multi-
orbital Hubbard model includes the on-site intra (inter) orbital Coulomb interaction U
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Figure 8.2: Electronic bandstructure of the collapsed tetragonal phase in (a) CaFe2As2
and (b) KFe2As2. The path is chosen in the one-Fe equivalent Brillouin zone.
The colors indicate the weights of Fe 3d states. Figure taken from Ref. [102].

(V ), the Hund’s rule coupling J and the pair hopping energy J ′. We assume spin rotation-
invariant interaction parameters U = 2.4 eV, V = U/2, and J = J ′ = U/4. Because of
the large bandwidth in the collapsed tetragonal phase, these comparatively large values
are necessary to bring the system close to the RPA instability. Note however, that the
symmetry of the superconducting gap in this system does not change, even if significantly
reduced parameter values are considered.
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Figure 8.3: Fermi surface of the collapsed tetragonal phase in (a) CaFe2As2 and (b)
KFe2As2 at kz = 0. The full plot spans the one-Fe equivalent Brillouin zone,
while the area enclosed by the grey lines is the two-Fe equivalent Brillouin
zone. The colors indicate the weights of Fe 3d states. Figure taken from
Ref. [102].

8.2 Results and discussion

The electronic bandstructure in the collapsed tetragonal phase of CaFe2As2 and KFe2As2
is shown in Fig. 8.2. These results already reveal a striking difference between the CT
phases of CaFe2As2 and KFe2As2: while the former does not feature hole bands crossing
the Fermi level at Γ and only one band crossing the Fermi level at M (π, π, 0), the latter
does feature hole-pockets at both Γ and M in the one-Fe equivalent Brillouin zone. The
reason for this difference in electronic structure is that KFe2As2 is strongly hole-doped
compared to CaFe2As2.

In Fig. 8.3 we show the Fermi surface in the one-Fe equivalent Brillouin zone at kz = 0.
In both cases, the Fermi surface is dominated by Fe 3dxz/yz character. The hole cylinders
in KFe2As2 span the entire kz direction of the Brillouin zone, while only a small three-
dimensional hole-pocket is present in CaFe2As2 (below the resolution of Fig. 8.3). For
KFe2As2, the hole-pockets at M (π, π, 0) and the electron pockets at X (π, 0, 0) are clearly
nested, while no nesting is observed for CaFe2As2. It is important to note here, that the
folding vector in the 122 family of iron-based superconductors is (π, π, π), so that the hole-
pockets at M (π, π, 0) will be located at Z (0, 0, π) after unfolding the bands to the effective
one-Fe picture [160].
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Figure 8.4: Summed static susceptibility (top) and its diagonal components χaa
aa (bottom)

in the eight-band tight-binding model for [(a) and (c)] CaFe2As2 and [(b) and
(d)] KFe2As2 in the one-Fe Brillouin zone. The colors identify the Fe 3d states.
Figure taken from Ref. [102].

After qualitatively identifying the difference between the CT phases of CaFe2As2 and
KFe2As2, we calculate the non-interacting static susceptibility to verify that the better
nesting of KFe2As2 generates stronger spin fluctuations. At first glance, the observable
static susceptibility displayed in Fig. 8.4 is comparable for CaFe2As2 and KFe2As2. A key
difference is however revealed upon investigation of the largest elements, i.e. the diagonal
entries χaa

aa. These show that in CaFe2As2 the susceptibility has broad plateaus, while in
KFe2As2 the susceptibility has a strong peak at X (π, 0, 0) in the one-Fe Brillouin zone,
which corresponds to the usual s± pairing scenario that relies on electron-hole nesting. In
CaFe2As2 the pairing interaction is highly frustrated, because there is no clear peak in
favor of one pairing channel.

We have also performed spin-polarized calculations for KFe2As2 at P ≈ 21 GPa in order
to confirm the antiferromagnetic instability we find in the linear response calculations. Out
of ferromagnetic, Néel and stripe antiferromagnetic order only the stripe antiferromagnet
is stable with small moments of 0.07µB on Fe, in agreement with our calculations for the
susceptibility.

The leading superconducting gap function of KFe2As2 in the CT phase is shown in
Fig. 8.5. As expected from our susceptibility calculations, the pairing symmetry is s-wave
with a sign-change between electron and hole-pockets. While the superconducting gap is
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Figure 8.5: Leading superconducting gap function (s±) of the eight-band model in the
one-Fe Brillouin zone of KFe2As2 in the CT phase at (a) kz = 0 and (b)
kz = π. Figure taken from Ref. [102].

nodeless in the kz = 0 plane, the kz = π plane does show nodes where the orbital character
changes from Fe 3dxz/yz to Fe 3dxy. Note that this kz = π structure of the superconducting
gap is exactly the same as in the well studied LaFeAsO compound [96], which shows that
the CT phase of KFe2As2 closely resembles usual iron-based superconductors, although it
is much more three-dimensional than, e.g., in LaFeAsO.

We have also calculated the superconducting gap function for KFe2As2 at P = 10 GPa
in the tetragonal phase and find dxy as the leading pairing symmetry [102]. The dominant
dx2−y2-solution obtained in model calculations based on rigid band shifts [150, 185] is also
present in our calculation, but as a sub-leading solution. Our results strongly suggest
that the Lifshitz transition, which occurs upon entering the collapsed tetragonal phase,
changes the symmetry of the superconducting gap function from d-wave (tetragonal) to
s-wave (CT) (see Fig. 8.1). The possible simultaneous change of pairing symmetry, density
of states and Tc potentially opens up different routes to understanding their quantitative
connection.

In order to estimate the strength of local electronic correlations in collapsed tetrag-
onal KFe2As2, we performed fully charge self-consistent DFT+DMFT calculations. We
found that the strength of local electronic correlations in the CT phases of KFe2As2 and
CaFe2As2 [49, 197] are comparable. As in CaFe2As2, the effects of local electronic correla-
tions on the Fermi surface are negligible. The higher Tc of the collapsed phase in absence
of strong correlations raises the question how important strong correlations are in general
for iron-based superconductivity. This issue demands further investigation.

Finally, the change of dominant charge carriers from hole-like to electron-like states
measured in the Hall-coefficient under pressure [181] is naturally explained from our calcu-
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lated Fermi surfaces. While KFe2As2 is known to show only hole-pockets at zero pressure,
the CT phase features also large electron pockets. On a small fraction of these electron
pockets, the dominating orbital character is Fe 3dxy (Fig. 8.3). It was shown in Ref. [200]
that quasiparticle lifetimes on the Fermi surface can be very anisotropic and long-lived
states are favored where marginal orbital characters appear. As Fe 3dxy character is only
present on the electron pockets, these states contribute significantly to transport and are
responsible for the negative sign of the Hall coefficient.

8.3 Summary

We have shown that the electronic structure of the collapsed tetragonal phase of KFe2As2
qualitatively differs from that of other known collapsed materials. Upon entering the CT
phase, the Fermi surface of KFe2As2 undergoes a Lifshitz transition with electron pockets
appearing at the Brillouin zone boundary, which are nested with the hole pockets at the
Brillouin zone center. Thus, the spin fluctuations in collapsed tetragonal KFe2As2 resemble
those of other iron-based superconductors in non-collapsed phases and the superconducting
gap function assumes the well-known s± symmetry. This is in contrast to other known
materials in the CT phase, like CaFe2As2, where hole pockets at the Brillouin zone center
are absent and no superconductivity is favored. Based on our LDA+DMFT calculations,
the CT phase of KFe2As2 is significantly less correlated than the tetragonal phase, and
mass enhancements are comparable to the CT phase of CaFe2As2. Finally, we suggest that
the change of dominant charge carriers from hole-like to electron-like can be explained from
anisotropic quasiparticle lifetimes.
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Non-trivial role of interlayer cations
in iron-based superconductors
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arXiv:1610.08626.

After the initial discovery of high-temperature superconductivity in doped LaFeAsO [53],
a large variety of other iron pnictide and chalcogenide have been shown to be superconduc-
tors [54], with some reports of the transition temperature Tc as high as 100 K [59]. On the
other hand, isoelectronic and isostructural iron germanides are either non-superconducting
[60–63] or possibly superconduct at very low temperatures [64, 65]. The currently most
intensively debated material is YFe2Ge2, for which superconductivity below 2 K has been
reported [65]. Its electronic structure is very similar to that of CaFe2As2 in the collapsed
tetragonal phase, but with significant hole-doping [65, 201, 202]. This led to specula-
tion [65] about a connection between superconductivity in YFe2Ge2 and the collapsed
phase of the extreme hole-doped pnictide, KFe2As2 [102, 181, 182]. Furthermore, Wang et
al. [203] recently found YFe2Ge2 to be close to a magnetic instability and X-ray absorp-
tion and photoemission experiments show evidence for strong spin fluctuations [204] and
moderate correlation effects [205] in this material.
It is generally agreed that magnetism plays an important role in superconductivity of

Fe-based superconductors (FeBS) [54, 206–212]. It is, therefore, natural to ask whether
the magnetic tendencies in iron germanides are fundamentally different from those in iron
pnictides and chalcogenides and why that is the case. In a first attempt to understand
the lack of superconductivity in Fe germanides, a few authors investigated the electronic
properties of the isoelectronic and isostructural materials MgFeGe and LiFeAs [213–215].
The former is a paramagnetic metal, while the latter is a superconductor. An important
conclusion was that the dominant magnetic exchange interactions in MgFeGe are ferro-
magnetic, while those in LiFeAs are antiferromagnetic. The microscopic origin of this
different behavior was, however, not further explored.
In this chapter we show that (i) ferromagnetism is a general trait in iron germanides,

which is detrimental for superconductivity, and that (ii) the ferromagnetic itendencies
arise from the interaction of the cation spacer with the FeGe layer. In fact, the hole-
doping or collapse of the c-axis in YFe2Ge2 are not essential for this behavior, but the
key is in substitution of As by Ge and the corresponding substitution of monovalent or
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Figure 9.1: Crystal structures of RbFe2As2, YFe2Ge2, NaFeAs and MgFeGe. The unit
cells and interatomic distances are true to scale. The numbers next to the
unit cells indicate the nominal valence of atoms at the same vertical positions.
Figure taken from Ref. [219].

divalent spacers by divalent or trivalent cations, respectively. This modifies the electronic
bandstructure in a wide range of energies at and away from the Fermi level and creates
ferromagnetic tendencies, which suppress superconductivity. Hence, one can go from As to
Se/Te, i.e., right in the periodic table, and find further FeBS, but not to the left towards
Ge. In agreement with recent NMR measurements [216], our study highlights the role of
ferromagnetic fluctuations in determining the value of Tc in FeBS.

Our analysis shows that conventional low-energy models of FeBS, which only incorporate
the d and p states of Fe with the nearest cations, are not sufficient to explain key features
of FeBS. Although these models usually reproduce the Fermi surface very well, they do not
reflect the physical instabilities of the actual materials, because they neglect the interaction
with the spacer between the FeX (X=As, Se, Ge,...) layers. Although bulk FeSe does not
contain spacer layers, our arguments might be relevant for intercalates [55, 101], alkali-
dosed thick-films [218] and monolayered FeSe on SrTiO3 [59]. This chapter is based on
Ref. [219], in which our findings are published.

9.1 Methods and materials

We compare isoelectronic iron arsenides and iron germanides from (i) the so-called hole-
doped 122-family where iron is in a nominal oxidation Fe2.5+ with d5.5 occupation [161,
196, 220] and (ii) the so-called 111-family with Fe2+ in a d6 configuration [161, 221, 222].
The crystal structures of RbFe2As2, YFe2Ge2, NaFeAs and MgFeGe are shown in Fig. 9.1,
where we also indicate the nominal valences of the atoms in each compound. Lattice
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constants and internal positions were taken from experiment [63, 223–225].
The most obvious structural difference between iron arsenides and iron germanides is

a shrinking of the c-axis (Fig. 9.1). From NaFeAs to MgFeGe it is not as pronounced as
from RbFe2As2 to YFe2Ge2, where Ge pz-pz bonds may form (in MgFeGe direct Ge-Ge
bonding is not possible). Although these materials are isoelectronic, the germanides have
a stronger charge transfer between the FeX (X= As, Ge) and the spacer layers.
The isoelectronic substitution of As by Ge, Rb by Y, and Na by Mg was simulated

within the virtual crystal approximation (VCA). To disentangle effects originating from
direct atomic substitution from effects coming from small changes of bond-distances and -
angles in real materials, we performed all calculations for the 122-family with the structural
parameters of YFe2Ge2 [223] and those for the 111-family with the structural parameters
of MgFeGe [63].
We calculate the magnetic exchange interactions based on a 2 × 2 × 1 supercell con-

taining eight Fe atoms. This leads to 17 inequivalent magnetic configurations for the 122-
compounds and 13 inequivalent configurations for the 111-compounds. We used 83 k-point
grids for converging these magnetic calculations. The Heisenberg exchange couplings were
extracted by mapping DFT total energies of all inequivalent magnetic configurations to
a classical Heisenberg model for each composition. These calculations were performed by
coauthor Harald O. Jeschke.
We also analyze the density of states by using the extended Stoner model [226, 227],

which is a simple tool for understanding the origin of itinerant ferromagnetism. Within
the extended Stoner theory the total magnetization energy can be written as

E(m) =
1

2

m∫
0

m′dm′

N̄(m′)
− Im2

4
, (9.1)

where m is the magnetzation and N̄(m) is the paramagnetic density of states averaged
between the Fermi levels of the spin-up and the spin-down channels. In the limit of m→ 0
the effective Stoner DOS is simply the total DOS at the Fermi level. For all other moments
m the effective Stoner DOS is the average total DOS within an increasingly large energy
window around the Fermi energy. The density of states is evaluated within the rigid-band
approximation starting from the paramagnetic state. The first term is the one-electron
energy, because the change in energy for a single electron upon generating a moment m
is half the energy difference ∆(m) between the Fermi levels of the spin-up and spin-down
channels. Using ∆(m)N̄(m) = m we get

dE

dm
=

∆(m)

2
=

m

2N̄(m)
. (9.2)

Integrating this expression one obtains the first term in Eq. 9.1. The second term is the
so-called Stoner parameter, which parametrizes the ferromagnetic exchange-interactions
between electrons in an averaged form.
Now we derive the conditions under which the paramagnetic state is unstable towards

ferromagnetism. We start by finding the extrema in the energy for Eq. 9.1. These are
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given by

0
!
=
dE

dm
= N̄(m)−1 − I. (9.3)

Next we find the condition under which this extremum is a minimum in the magnetization
energy. It is given by

0
!
<
d2E

dm2
=

1

2N̄(m)
−m

dN̄(m)/dm

2N̄(m)2
− I

2
= −mdN̄(m)/dm

2N̄(m)2
, (9.4)

where we used I = N̄(m)−1. Since all moments m and effective densities of states are
positive, the resulting condition is

0 > dN̄(m)/dm. (9.5)

Combining Eqs. 9.3 and 9.5 we find that the paramagnetic state is unstable towards
ferromagnetism if the conditions 1/I = N̄(m) and 0 > dN̄(m)/dm are fullfilled at some
m, where N̄(m) is the paramagnetic density of states averaged over an energy window
that contains a sufficient number of states to realize an Fe moment m, and I is the Stoner
parameter.
The Stoner parameter I can be obtained from fixed-moment spin-polarized DFT calcu-

lations by inserting the DFT energies for E(m) into Eq. 9.1, using the paramagnetic DFT
density of states to calculate N̄(m) and performing a numerical optimization to obtain
the value of I on the parabolic term in Eq. 9.1. The effective Stoner parameter I was
calculated from a fit to DFT total energies of ferromagnetic configurations with a moment
of up to 3 µB per iron site. All calculations for the Stoner analysis were converged using
203 k-point grids.

9.2 Results and discussion

We first calculated the DFT energies of various spin configurations. By means of the
VCA we interpolated between RbFe2As2 and YFe2Ge2 [via SrFe2(As0.5Ge0.5)2] and between
NaFeAs and MgFeGe. Using a two-dimensional Heisenberg model to parametrize the DFT
energies we observe that the nearest-neighbor exchange coupling J1 universally changes
from antiferromagnetic to ferromagnetic when going continuously from As to Ge without
changing the electron count, while all other exchange couplings are almost unaffected
(Fig. 9.2). Only in the 111-family the next-nearest-neighbor exchange J2 is also reduced,
but it does not change sign. At the germanide end-point the ferromagnetic J1 becomes
the dominant exchange interaction.
Remarkably, we also obtained a large ferromagnetic J1 for NaFeAs after we expanded

the structure used for Fig. 9.2 by 10% along the c-axis but kept all distances within the
FeAs layer unchanged by the expansion. These results indicate that NaFeAs can also be
turned ferromagnetic by separating the FeAs layers and by shifting Na further away from
the layers.
From this analysis we conclude that previous suggestions [203] that iron germanides

and iron pnictides show similar magnetic behavior don’t hold. While both families have a
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Figure 9.2: Calculated Heisenberg exchange parameters for (a) the VCA interpolation
between RbFe2As2 and YFe2Ge2 [via SrFe2(As0.5Ge0.5)2] and (b) the VCA
interpolation between NaFeAs and MgFeGe. Lines are guides to the eye. The
error bars represent the statistical errors of the fit. The inset of (b) shows
the structure of the two-dimensional Heisenberg model we use to fit the DFT
energies. J1 is the nearest-neighbor coupling in the square lattice of Fe atoms,
while J2 is the next-nearest neighbor coupling. J3 and J4 are longer-range
exchange couplings. Positive values of J correspond to antiferromagnetic
exchange. Note that all calculations were performed in the crystal structures
of YFe2Ge2 and MgFeGe respectively. Figure taken from Ref. [219].

stripe antiferromagnetic ground state, the nature of excitations is entirely different. This is
reflected in the presence of a nearest neighbor ferromagnetic exchange J1 in iron germanides
and antiferromagnetic J1 in the iron pnictides albeit the very similar crystal structure and
electronic structure at the Fermi level. In particular, the results on the expanded NaFeAs
suggest that the origin of this different behavior lies dominantly on the relative distance
of the spacer to the FeX plane.

A further distinctive feature of the germanides is that the magnetism of Fe in YFe2Ge2
appears to be rather peculiar. There is a low- and a high-moment solution for Fe, the
former more stabilized for shorter Fe-Ge bond length (in pnictides, either a high-spin
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Figure 9.3: (a),(b),(e),(f) Fit of Eq. 9.1 to the fixed-moment energies calculated from
DFT. (c),(d),(g),(h) Same data as in (a),(b),(e),(f) after subtracting the one-
electron energies (first term in Eq. 9.1) and dividing by −m2/4. Figure taken
from Ref. [219].

solution is realized, or magnetism collapses completely).

To understand in a simple framework the origin of the magnetic behavior presented
before we investigate the effective density of states N̄ as a function of the magnetic moment
m within the extended Stoner model. We first calculated the Stoner parameter for each
material. The results are shown in Fig. 9.3. The values for the Stoner parameters are
1.331 eV (RbFe2As2 in YFe2Ge2 structure), 1.388 eV (YFe2Ge2), 1.392 eV (NaFeAs in
MgFeGe structure) and 1.435 (MgFeGe). Note that the fit is good in the high moment
region. The deviation for low moments probably originates from an admixture of non-Fe
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Figure 9.4: Effective density of states in the extended Stoner model as a function of mag-
netic moment for (a) RbFe2As2 and YFe2Ge2 and (b) NaFeAs and MgFeGe.
The colored bars on the right y-axis indicate the calculated inverse Stoner
parameters 1/I for the respective case. All calculations were performed in
the crystal structures of YFe2Ge2 and MgFeGe respectively. Figure taken
from Ref. [219].

states, which increases the effective Stoner parameter. This would also explain why the fit
is generally worse for germanide compounds, where also a significant amount of interlayer
cation states is at the Fermi level. Since we use extended Stoner theory only as a qualitative
tool, these discrepancies are of minor importance.

Upon analyzing the various materials we observe that (i) iron germanides have in general
a higher DOS at the Fermi level and (ii) a significant number of states is shifted from higher
energies towards the Fermi level, as compared to pnictides. This is signalled by the strong
increase of the effective DOS at low moments (see Fig. 9.4 where results for YFe2Ge2
versus RbFe2As2 and MgFeGe versus NaFeAs are shown). Interestingly, the changes in
the high-moment region (m ∼ 2.4 µB) are marginal, while they are considerable in the
low-moment region (m < 1.0 µB). Furthermore, we find that the Stoner parameter I is
almost independent of the material and that 1/I lies between 0.7 eV−1 and 0.75 eV−1.
Therefore, by looking for crossings of N̄(m) with 1/I in Fig. 9.4, we establish that the
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Figure 9.5: Total density of states calculated from DFT for (a) RbFe2As2, (b) YFe2Fe2,
(c) NaFeAs and (d) MgFeGe. The shaded areas below the curves correspond
to the energy range needed to realize a moment of 1.0µB or 2.4µB per iron
within the extended Stoner model. All calculations were performed in the
crystal structures of YFe2Ge2 and MgFeGe respectively. Figure taken from
Ref. [219].

extended Stoner criterion for ferromagnetism is fulfilled in iron germanides, but not in
pnictides. Moreover, the metastability of different magnetic moments in YFe2Ge2 [203] is
also evident from this analysis, since the effective DOS almost fulfills the extended Stoner
criterion also for large moments of about 2.5 µB.
Fig. 9.5 shows the total calculated DOS for RbFe2As2 vs. YFe2Ge2, and NaFeAs vs.

MgFeGe, where we colored the energy regions corresponding to magnetic moments of
m = 1.0 µB (blue) and m = 2.4 µB (red) in the extended Stoner model. The energy range
corresponding tom = 1.0 µB is compressed when going from arsenides to germanides, while
the energy range corresponding to m = 2.4 µB even increases marginally in germanides.
As the density of states in the window shown is dominated by Fe states, this implies that
the bandwidth of some of the Fe states must be selectively reduced in iron germanides,
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Figure 9.6: Electronic bandstructure for (a) RbFe2As2, (b) NaFeAs, (c)
SrFe2(As0.5Ge0.5)2, (d) Na0.5Mg0.5FeAs0.5Ge0.5, (e) YFe2Ge2 and (f)
MgFeGe. The weights of Fe 3d orbitals are indicated by the colors. The
areas shaded in light grey highlight regions in which bands become more flat
when going from the arsenide to the corresponding germanide compound via
VCA. All calculations were performed in the crystal structures of YFe2Ge2
and MgFeGe respectively.

while the overall bandwidth is about constant.

The electronic bands in the relevant energy range are shown in Fig. 9.6. The energy
and momentum regions in which the bands become flat when going from the arsenide to
the corresponding germanid compound via VCA are shaded in light grey. The analysis
shows that in this energy window mostly Fe 3dxz/yz states are affected by the substitution
of elements.

9.3 Summary and outlook

We have established in this work that iron germanides have a general tendency towards
ferromagnetism which proves detrimental for superconductivity, even though the Fermi
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surface is very similar to that of isoelectronic pnictides. Most importantly, this tendency
can be traced down to the flattening of some bands near the Fermi level and a modified
electronic bandstructure in a wide range of energies at and away from the Fermi level. Nei-
ther the collapse of the c-axis, nor the hole-doping of the 122 germanides are essential for
the emergence of ferromagnetism. However, the character and position of the intercalating
species, normally considered irrelevant and not included in any theory or model, plays a
decisive role.
Our findings have important implications for iron-based superconductivity in general:

(i) The Fermi surface geometry and topology is an important, but not the only condition
for emerging superconductivity. The character of spin fluctuations, even on the level of
the simple ferromagnetic-antiferromagnetic dichotomy, may be qualitatively different in
seemingly similar materials. (ii) A quantitative theory of Tc in iron-based superconductors
must include the interaction between all constituents of the unit cell, including, in some
cases, the so-called space-fillers. (iii) While FeGe layers per se are not necessarily ferro-
magnetic, the fact that they have to be spaced with different elements (e.g., Mg vs. Na,
or Y vs. Sr) drives them ferromagnetic. (iv) In a more general way, it does matter what
we place next to or on top of an Fe-ligand layer. This observation may be directly related
to an apparent role that interfacial effects play in high-Tc Fe chalcogenides, such as FeSe
monolayers deposited on specially prepared surfaces or KxFe2−ySe2 filaments embedded in
the magnetic K2Fe4Se5 phase.
The microscopic explanation for the differences between iron pnictides and isoelectronic

germanides is an important subject of further study and will likely elucidate further the
conditions for superconductivity in iron-based materials.
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Summary and Outlook

In this work we developed a scheme for investigating the symmetry of the superconducting
state in quasi-two-dimensional organic charge transfer salts and iron-based materials using
a combination of ab initio density functional theory calculations and diagrammatic many-
body theory in the form of the random phase approximation. After a general introduction
in chapter 1, we explained the fundamentals of density functional theory and low-energy
model construction in chapter 2. In chapter 3 we presented the formalism of Green’s
functions, its representation in terms of Feynman diagrams and its application to the
many-body problem. The diagrammatic approach to the problem of the order parameter
of superconductivity mediated by spin fluctuations is developed in chapter 4. We put
particular emphasis on the approximations needed for the formalism to be practical and
its efficient numerical implementation.

Based on density functional theory, in chapter 5 we uncovered the importance of molec-
ular conformations for the electronic structure of kappa-type organics, contributing an
important ingredient to the explanation of the experimentally observed cooling-rate de-
pendent metal-to-insulator transition. In the same class of materials we revealed in chap-
ter 6, using a combination of density functional theory and random phase approximation, a
phase transition between two superconducting states with different symmetry of the order
parameter, potentially resolving a two-decades-long controversy among experimentalists.

Our fresh theoretical approach based on the molecular lattice also raises questions re-
garding the nature of magnetically ordered insulating and possible quantum spin-liquid
states that have been observed in kappa-type materials. These, however, will likely not be
answered using our RPA approach. Suitable techniques could be, for example, exact diag-
onalization, the density matrix embedding technique [228] or cluster dynamical mean-field
theory [229], since these methods are not based on an analytic expansion including only
diagrams of certain topology. Furthermore, the role of inter-molecular Coulomb repulsion,
which we neglected in our studies, should be clarified in future work.

In the field of iron-based superconductors we could resolve material-specific questions
regarding intercalates of iron selenide (see chapter 7) and the high-pressure superconduct-
ing phase of KFe2As2 (see chapter 8). We showed that the superconducting transition
temperature in intercalated iron selenide is controlled by the dimensionality of the ma-
terial, intimately connected to the distance between FeSe layers, and the electron doping
level. Our prediction that Tc is maximized in the two-dimensional limit and for large
electron doping has meanwhile been confirmed by several experimental works [230–233].
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For KFe2As2 we showed that its electronic structure after the pressure-induced structural
collapse shares some features with undoped pnictides in a non-collapsed phase, thereby
explaining the unexpected appearance of superconductivity in a collapsed phase of iron
pnictides.
Furthermore, we believe that our work on iron germanides in chapter 9 will stimulate

the field to explore new ways of microscopic modelling, since it challenges all assumptions
that low-energy models of iron-based superconductors depend on. An important topic of
future research is to find the microscopic origin of the ferromagnetic tendencies that we
uncovered and the minimal model of iron-based materials that contains them.
The application of RPA to the problems and materials discussed in this thesis would not

have been possible without extensive development work. We created a tight-binding code
that can treat multi-site and multi-orbital models in a unified framework and implemented
an interface to density functional theory for supplying the kinetic part of the underlying
Hubbard model with virtually unlimited complexity. We structured the equations for the
RPA approach to superconductivity in a away that allows for massive parallelization of
the necessary calculations. Building upon these developments we created an advanced
implementation of the RPA method, which can easily treat models with eight orbitals,
such as the up to now rarely investigated dp-model of iron-based superconductors adopted
in this work, and is fast enough to solve thousands of model Hamiltonians in the four
orbital case, as demonstrated in the context of organic charge transfer salts.
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