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Abstract. I summarize recent developments in the hard-thermal-loop approach to QCD.
I first discuss a finite-temperature and -density calculation of QCD thermodynamics at
NNLO from the hard-thermal-loop perturbation theory. I then discuss a generalization
of the hard-thermal-loop framework to the magnetic scale g2T , from which a novel non-
Abelian massless mode is uncovered.

1 Introduction

In this proceedings, I overview recent developments in QCD thermodynamics and collective exci-
tations from the hard-thermal-loop (HTL) effective theory. This is an active research area driven
especially by the pending challenges in the study of the quark-gluon plasma (QGP) from the ultra-
relativistic heavy-ion collisions currently carried out at RHIC (BNL, USA), LHC (CERN, Switzer-
land), and forthcoming ones at FAIR (GSI, Germany). The QCD running coupling expected in the
experimental energies is on the order of unity g ∼ O(1), which is some intermediate value neither huge
nor tiny. Besides the intrinsic scale temperature T , collective behaviors of the QGP generate two ther-
mal scales, namely the electric scale gT (perturbative) and the magnetic scale g2T (non-perturbative),
which have different physical origins. These subtleties make it extremely challenging to tackle the
QGP in and out of equilibrium in the phenomenologically relevant regime where g ∼ O(1) using the
continuum QCD method of resummed thermal perturbation theory. For this concern, I summarize in
the following recent developments from the HTL effective theory focusing on thermodynamics from
the electric scale gT and collective excitations from the magnetic scale g2T (see Ref. [1] for a review).

2 Electric scale gT : NNLO thermodynamics from hard-thermal-loop
perturbation theory

The hard-thermal-loop effective theory is the resummation addressing the physics of the electric scale
gT [2, 3]. Hard-thermal-loop perturbation theory (HTLpt) is a reorganization of thermal QCD that
improves the convergence of the perturbation expansion with the help of the HTL effective action [4].
The Minkowskian HTLpt Lagrangian density reads

L = (LQCD +LHTL)
∣∣∣
g→
√
δg

+ ∆LHTL . (1)
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Here LQCD is the QCD Lagrangian density that reads

LQCD = −
1
2

Tr[GµνGµν] + iψ̄γµDµψ +Lgh +Lgf + ∆LQCD , (2)

where Gµν = ∂µAν−∂νAµ− ig[Aµ, Aν] is the gluon field strength tensor, Dµ = ∂µ− igAµ is the covariant
derivative, and ψ is the quark field. The term ∆LQCD contains all the standard QCD counterterms. The
ghost term Lgh depends on the form of the gauge-fixing term Lgf .

The HTL improvement term LHTL reads

LHTL = (1 − δ)im2
qψ̄γ

µ

〈
yµ

y ·D

〉
ŷ
ψ −

1
2

(1 − δ)m2
DTr

Gµα

〈
yαyβ

(y ·D)2

〉
ŷ

Gµβ

 , (3)

where yµ = (1, ŷ) is a light-like four-vector and the angular bracket indicates an average over the
direction of ŷ. The two parameters mD and mq can be identified with the Debye screening mass and
the quark thermal mass, respectively. HTLpt is defined by treating δ as a formal expansion parameter.
By coupling the HTL improvement term (3) to the QCD Lagrangian (2), HTLpt systematically shifts
the perturbative expansion from being around an ideal gas of massless particles to being around an
ideal gas of massive quasiparticles which are more appropriate physical degrees of freedom at high
temperature and/or density.

Physical observables are calculated in HTLpt by expanding in powers of δ, truncating at some
specified order, and then setting δ = 1. This defines a reorganization of the perturbative series in
which the effects of the m2

D and m2
q terms in (3) are included to leading order but then systematically

subtracted out at higher orders in perturbation theory by the δm2
D and δm2

q terms in (3). The HTLpt
Lagrangian (1) reduces to the QCD Lagrangian (2) when we set δ = 1. If the expansion in δ could be
calculated to all orders, the final result would not depend on mD and mq when we set δ = 1. However,
any truncation of the expansion in δ produces results that depend on mD and mq. As a consequence,
a prescription is required to determine mD and mq as a function of T , µ and αs. Note that HTLpt is
gauge invariant order-by-order in the δ expansion.

The HTLpt expansion generates additional ultraviolet divergences. In QCD perturbation theory,
renormalizability constrains the UV divergences to have a form that can be cancelled by the coun-
terterm Lagrangian ∆LQCD. There is yet no proof for the renormalizability of the HTL perturbation
expansion, it has been shown in Refs. [5–13] that it is possible to renormalize the HTLpt thermo-
dynamic potential through NNLO with a counterterm Lagrangian ∆LHTL containing only a vacuum
counterterm, a Debye mass counterterm, a fermion mass counterterm, and a coupling constant coun-
terterm, as listed below

∆E0 =
dA

128π2ε
(1 − δ)2m4

D , (4)

∆m2
D =

11cA − 4sF

12πε
αsδ(1 − δ)m2

D , (5)

∆m2
q =

3
8πε

dA

cA
αsδ(1 − δ)m2

q , (6)

δ∆αs = −
11cA − 4sF

12πε
α2

sδ
2 , (7)

where cA = Nc, dA = N2
c − 1, sF = N f /2, dF = NcN f , and s2F = CF s f with CF = (N2

c − 1)/2Nc. Note
that the coupling constant counterterm (7) is consistent with one-loop running of αs.

The calculation of the thermodynamic potential in HTLpt involves the evaluation of vacuum
diagrams. Defining ℵ(z) ≡ Ψ(z) + Ψ(z∗) with z = 1/2 − iµ̂ and Ψ being the digamma function,
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Ω0 ≡ −dAπ
2T 4/45, and x̂ ≡ x/2πT for dimensionless variables, the NNLO thermodynamic poten-

tial for QCD at finite temperature T and density/chemical potential µ (with µ f being the chemical
potential for quarks with flavor f ) reads [13]

ΩNNLO

Ω0
=

7
4

dF

dA

1
N f

∑
f

(
1 +

120
7
µ̂2

f +
240
7
µ̂4

f

)
−

sFαs

π

1
N f

∑
f

[5
8

(
1 + 12µ̂2

f

) (
5 + 12µ̂2

f

)
−

15
2

(
1 + 12µ̂2

f

)
m̂D −

15
2

(
2 ln

Λ̂

2
− 1 − ℵ(z f )

)
m̂3

D + 90m̂2
qm̂D

]
+

s2F

N f

(
αs

π

)2 ∑
f

[15
64

{
35 − 32

(
1 − 12µ̂2

f

) ζ′(−1)
ζ(−1)

+ 472µ̂2
f + 1328µ̂4

f

+ 64
(
− 36iµ̂ fℵ(2, z f ) + 6(1 + 8µ̂2

f )ℵ(1, z f ) + 3iµ̂ f (1 + 4µ̂2
f )ℵ(0, z f )

)}
−

45
2

m̂D

(
1 + 12µ̂2

f

) ]
+

( sFαs

π

)2 1
N f

∑
f

5
16

[
96

(
1 + 12µ̂2

f

) m̂2
q

m̂D
+

4
3

(
1 + 12µ̂2

f

) (
5 + 12µ̂2

f

)
ln

Λ̂

2

+
1
3

+ 4γE + 8(7 + 12γE)µ̂2
f + 112µ4

f −
64
15

ζ′(−3)
ζ(−3)

−
32
3

(1 + 12µ̂2
f )
ζ′(−1)
ζ(−1)

− 96
{
8ℵ(3, z f ) + 12iµ̂ fℵ(2, z f ) − 2(1 + 2µ̂2

f )ℵ(1, z f ) − iµ̂ fℵ(0, z f )
}]

+

( sFαs

π

)2 1
N2

f

∑
f ,g

[
5

4m̂D

(
1 + 12µ̂2

f

) (
1 + 12µ̂2

g

)
+ 90

{
2 (1 + γE) µ̂2

f µ̂
2
g

−
{
ℵ(3, z f + zg) + ℵ(3, z f + z∗g) + 4iµ̂ f

[
ℵ(2, z f + zg) + ℵ(2, z f + z∗g)

]
− 4µ̂2

gℵ(1, z f )

− (µ̂ f + µ̂g)2ℵ(1, z f + zg) − (µ̂ f − µ̂g)2ℵ(1, z f + z∗g) − 4iµ̂ f µ̂
2
gℵ(0, z f )

}}
−

15
2

(
1 + 12µ̂2

f

) (
2 ln

Λ̂

2
− 1 − ℵ(zg)

)
m̂D

]
+

(cAαs

3π

) ( sFαs

πN f

)∑
f

[
15

2m̂D

(
1 + 12µ̂2

f

)
−

235
16

{(
1 +

792
47

µ̂2
f +

1584
47

µ̂4
f

)
ln

Λ̂

2

−
144
47

(
1 + 12µ̂2

f

)
ln m̂D +

319
940

(
1 +

2040
319

µ̂2
f +

38640
319

µ̂4
f

)
−

24γE

47

(
1 + 12µ̂2

f

)
−

44
47

(
1 +

156
11

µ̂2
f

)
ζ′(−1)
ζ(−1)

−
268
235

ζ′(−3)
ζ(−3)

−
72
47

[
4iµ̂ fℵ(0, z f ) +

(
5 − 92µ̂2

f

)
ℵ(1, z f )

+ 144iµ̂ fℵ(2, z f ) + 52ℵ(3, z f )
]}

+ 90
m̂2

q

m̂D
+

315
4

{(
1 +

132
7
µ̂2

f

)
ln

Λ̂

2

+
11
7

(
1 + 12µ̂2

f

)
γE +

9
14

(
1 +

132
9
µ̂2

f

)
+

2
7
ℵ(z f )

}
m̂D

]
+

ΩYM
NNLO

Ω0
, (8)

where ΩYM
NNLO is the pure-glue contribution to the thermodynamic potential that reads [6]
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ΩYM
NNLO

Ω0
= 1 −

15
4

m̂3
D +

Ncαs

3π

[
−

15
4

+
45
2

m̂D −
135
2

m̂2
D −

495
4

(
ln

Λ̂

2
+

5
22

+ γE

)
m̂3

D

]
+

(Ncαs

3π

)2 [ 45
4m̂D

−
165
8

(
ln

Λ̂

2
−

72
11

ln m̂D −
84
55
−

6
11
γE −

74
11

ζ′(−1)
ζ(−1)

+
19
11

ζ′(−3)
ζ(−3)

)
+

1485
4

(
ln

Λ̂

2
−

79
44

+ γE + log 2 −
π2

11

)
m̂D

]
. (9)

As discussed in Ref. [9], the two-loop perturbative electric mass for gluons introduced by Braaten
and Nieto in Refs. [14, 15] originally at finite T and vanishing µ is the most suitable one for NNLO
HTLpt calculations. The finite T and µ generalization was obtained in Ref. [16] that reads

m̂2
D =

αs

3π

{
cA +

c2
Aαs

12π

5 + 22γE + 22 ln
Λ̂g

2

 +
1

N f

∑
f

[
sF

(
1 + 12µ̂2

f

)
+

cAsFαs

12π

((
9 + 132µ̂2

f

)
+ 22

(
1 + 12µ̂2

f

)
γE + 2

(
7 + 132µ̂2

f

)
ln

Λ̂

2
+ 4ℵ(z f )

)
+

s2
Fαs

3π

(
1 + 12µ̂2

f

) (
1 − 2 ln

Λ̂

2
+ ℵ(z f )

)
−

3
2

s2Fαs

π

(
1 + 12µ̂2

f

)]}
. (10)

The effect of the in-medium quark mass parameter mq in thermodynamic functions is small and it is
thus set to 0 which is the three-loop variational solution for mq following Ref. [9].

By taking derivatives of the thermodynamic potential (8) with respect to T or µ (and then set-
ting µ = 0), one can generate all the thermodynamic functions as well as quark and baryon number
susceptibilities. Sec. 6 in Ref. [13] presents detailed comparisons of various NNLO thermodynamic
functions – including the pressure, energy density, entropy density, trace anomaly, and speed of sound
– with state-of-the-art lattice data, and very good agreements are obtained in the phenomenologi-
cally relevant regime. Sec. 7 in Ref. [13] presents detailed comparisons of various NNLO quark and
baryon number susceptibilities that also show encouraging signals in the phenomenologically relevant
regime. Note that there has been recent progress for the same course of study from dimensional re-
duction [17, 18]. The NNLO thermodynamic calculations have set the stage for real-time applications
of HTLpt.

3 Magnetic scale g2T : collective excitations from hard-thermal-loop
approach to Gribov-Zwanziger quantization

Conventional (resummed) thermal perturbation theory breaks down at the magnetic scale g2T due to
the so-called Linde problem [19, 20]. The non-perturbativeness of the magnetic scale is closely related
to the confining nature of the dimensionally reduced Yang-Mills theory at high T . This suggests
the need of incorporating a confinement mechanism in perturbative expansions even when dealing
with the deconfined QGP phase. A formalism to tackle this issue is the Gribov-Zwanziger (GZ)
quantization from the study of color confinement [21, 22]. It regulates the IR behavior of QCD by
fixing the residual gauge transformations, i.e., Gribov copies, that remain after applying the Faddeev-
Popov procedure. The GZ action is renormalizable, therefore it provides a systematic framework for
perturbative calculations (i.e., g � 1) incorporating confinement effects. The gluon propagator in
Landau gauge reads

Dµν(P) =

[
δµν −

PµPν

P2

]
P2

P4 + γ4
G

, (11)
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where γG is the Gribov parameter. γG is solved self-consistently from a gap equation defined to in-
finite loop orders. Eq. (11) is IR suppressed, manifesting confinement effects, and it is a significant
improvement over the one from the Faddeev-Popov quantization. The gap equation at one-loop order
can be solved analytically at asymptotically high T and gives [23]

γG =
D − 1

D
Nc

4
√

2π
g2T , (12)

where D is the space-time dimensions. Eq. (12) provides a fundamental IR cutoff at the magnetic
scale for the finite-T GZ action.

Self-energies of quarks and gluons are important measures for the collective behavior of the QGP,
since thermal masses, dispersion relations, and spectral functions of collective excitations are derived
from them. The Euclidean one-loop quark self-energy reads

Σ(P) = (ig)2CF
∑∫
{K}
γµS (K)γνDµν(P − K) , (13)

where S (P) is the quark propagator and Dµν(P) is the gluon propagator taken from Eq. (11). It is worth
noting that there have been similar studies for the quark self-energy with non-perturbative gluons at
finite density [24, 25] and in strong magnetic fields [26].

At g � 1 (i.e., high T ), we may apply the hard-thermal-loop systematics in analyzing Eq. (13).
As a result, the gauge-invariant contribution to Eq. (13) reads [27]

Σ(P) ' −(ig)2CF

∑
±

∫ ∞

0

dk
2π2 k2

∫
dΩ

4π
ñ±(k, γG)

4E0
±

×

 iγ0 + k̂ · γ
iP0 + k − E0

± +
p·k
E0
±

+
iγ0 − k̂ · γ

iP0 − k + E0
± −

p·k
E0
±

 , (14)

where k̂ = k/k with k = |k|, E0
± =

√
k2 ± iγ2

G, ñ±(k, γG) ≡ nB(
√

k2 ± iγ2
G) + nF(k) with nB and nF the

Bose-Einstein and Fermi-Dirac distributions, and
∫

dΩ =
∫ 2π

0 dφ
∫ π

0 d cos θ.
The quark thermal mass incorporating effects from g2T reads

m2
q(γG) =

g2CF

4π2

∑
±

∫ ∞

0
dk

k2ñ±(k, γG)
E0
±

. (15)

It reduces to the conventional HTL one, m2
q(0) = CFg

2T 2/8, when setting γG = 0. m2
q(γG) receives

negative contributions from γG, which is a manifestation of anti-screening effects generated by g2T
(see Fig. 1 in Ref. [27] for details). This is a profound signal of the build-up of long-range correlations
in the system.

The dispersion relation is obtained by analytically continuing the self-energy (14) to Minkowski
space and then solving the poles in the corresponding quark propagator iS −1(P) = /P − Σ(P) = 0. In
contrast to the conventional HTL case, there are three poles in the propagator (see Fig. 2 in Ref. [27]
for details). Firstly, the screened quasi-particle excitations are recovered,

ω = ω+(p; γG) , ω = ω−(p; γG) , (16)

which are the so-called particle ω+ and plasmino ω− modes, with ω±(0; γG) = mq(γG) as expected.
Both ω±/mq(γG) and their residues Z± are g-independent in the studied range. This property is iden-
tical to the conventional HTL case, which provides a non-trivial consistency check of the setup. Fur-
thermore, there exists a novel excitation named Gribov pole as in Ref. [27],

ω = ωG(p; γG) . (17)

    
 

DOI: 10.1051/, 07027  (2017) 713707027137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

5



It describes massless fermionic excitations in the QGP with dispersion relation ω = vs p at small
momenta, with vs ≈ 1/

√
3 (speed of sound) independent of g for the studied range. The Gribov mode

“grows” in the (ω, p)-plane while increasing the magnetic scale, and this effectively introduces a new
magnetic scaling behavior to the non-Abelian plasma. At larger momenta than the permitted ones for
each coupling, we hit branch cuts and Landau damping consequently takes place. The Gribov pole
goes along with a residue ZG(p) < 0 that induces positivity violation in the corresponding spectral
functions in the region of space-like momenta. These novel features are direct manifestations of long-
range confinement effects surviving at finite T in the non-Abelian plasma. The results reflect common
features of Gribov-like approaches [21, 22, 28], though the calculation was done via the GZ action. It
is tempting to explore the impact of the setup to heavy-ion phenomenology [29–32].
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