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Abstract. We will report on a some efforts recently made in order to gain a better un-
derstanding of some IR properties of the 3-point gluon Green function by following both
lattice and continuum QCD approaches.

1 Introduction

The ongoing intense exploration of the infrared (IR) sector of Quantum Chromodynamics (QCD) has
led into the detailed scrutiny of the fundamental Green’s functions of the theory using large-volume
lattice simulations (see, for instance [1–5], together with a variety of continuum approaches (see,
for instance [6–12]). Even though off-shell Green’s functions are not physical quantities, given their
explicit dependence on the gauge-fixing parameter and the renormalization scheme, they encode valu-
able information on fundamental nonperturbative phenomena such as confinement, chiral symmetry
breaking, and dynamical mass generation, and constitute the basic building blocks of symmetry-
preserving formalisms that aim at a veracious description of hadron phenomenology (see, for in-
stance [13–18]).

Two very recent papers [19, 20] made an effort to investigate further a few key features of the
3-point gluon Green function by both exploiting up-to-date lattice data and accomodating the results
within alternative continuum approaches. We will briefly review here these two works.

2 Connected and 1-PI 3-gluon Green’s functions

Let us first properly define the connected and the usual 1-particle irreducible (1-PI) 3-gluon Green
functions and describe then how they can be nonperturbatively obtained.
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Figure 1. (color online) Lattice results for the renormalized connected form factor TR in the symmetric (left)
and asymmetric (right) momentum configuration. For both data sets the renormalization point µ = 4.3 GeV was
chosen. The same scale is used in both plots which reveals the similar behavior of the two form factors.

2.1 Definitions and generalities

The connected three-gluon vertex is defined as the correlation function (q + r + p = 0)

Gabc
αµν(q, r, p) = 〈Aa

α(q)Ab
µ(r)Ac

ν(p)〉 = f abcGαµν(q, r, p), (1)

where the sub (super) indices represent Lorentz (color) indices and the average 〈·〉 indicates functional
integration over the gauge space. In terms of the 1-PI function, one has

Gαµν(q, r, p) = gΓα′µ′ν′ (q, r, p)∆α′α(q)∆µ′µ(r)∆ν′ν(p), (2)

with g the strong coupling constant. In the Landau gauge, the transversality of the gluon propagator,
viz.,

∆ab
µν (q) = 〈Aa

µ(q)Ab
ν(−q)〉 = δab∆(p2)Pµν(q), (3)

where Pµν(q) = δµν − qµqν/q2, implies directly that G is totally transverse: q·G = r ·G = p·G = 0.
In what follows we will consider two special momenta configurations. The first one is the so-

called symmetric configuration, in which q2 = r2 = p2 and q ·r = q · p = r · p = −q2/2; in this case,
there are only two totally transverse tensors, namely

λtree
αµν(q, r, p) = Γ

(0)
α′µ′ν′ (q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p),

λS
αµν(q, r, p) = (r − p)α(p − q)µ(q − r)ν/r2, (4)

where Γ
(0)
αµν is the usual tree-level vertex. Indicating with Ssym and T sym (respectively, Γ

sym
S and Γ

sym
T )

the corresponding form factors in the decomposition of G (respectively, Γ) in this momentum config-
uration, Eq. (2) implies the relation

T sym(q2) = gΓ
sym
T (q2) ∆3(q2),

Ssym(q2) = gΓ
sym
S (q2) ∆3(q2). (5)
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In particular, the T sym form factor can be projected out through

T sym(q2) =
Wαµν(q, r, p)Gαµν(q, r, p)
Wαµν(q, r, p)Wαµν(q, r, p)

∣∣∣∣∣∣
sym

, (6)

with W = λtree + λS /2.
The second configuration we will study, which will be called ‘asymmetric’ in what follows, is

defined by taking the q → 0 limit, while imposing at the same time the condition r2 = p2 = −p·r. In
this configuration λS

αµν ∼ rαrµrν becomes totally longitudinal, and the only transverse tensor one can
construct is obtained by the q→ 0 limit of λtree (obviously omitting the q projector), i.e.,

λtree
αµν(0, r,−r) = 2rαPµν(r). (7)

Thus one is left with a single form factor, which can be projected out through

T asym(r2) =
Wαµν(q, r, p)Gαµν(q, r, p)
Wαµν(q, r, p)Wαµν(q, r, p)

∣∣∣∣∣∣
asym

= gΓ
asym
T (r2) ∆(0) ∆2(r2), (8)

where now W = λtree.
All the quantities defined so far are bare, and a dependence on the regularization cut-off must be

implicitly understood. Within a given renormalization procedure, the renormalized Green’s functions
are calculated in terms of the renormalized fields AR = Z−1/2

A A, so that

∆R(q2; µ2) = Z−1
A (µ2) ∆(q2),

T sym
R (q2; µ2) = Z−3/2

A (µ2)T sym(q2), (9)

and similarly for the asymmetric configuration. Within the MOM scheme that we will employ, one
then requires that all the Green’s functions take their tree-level expression at the subtraction point,
namely

∆R(q2; q2) = Z−1
A (q2) ∆(q2) = 1/q2,

T sym
R (q2; q2) = Z−3/2

A (q2) T sym(q2) = g
sym
R (q2)/q6. (10)

The first equation yields the renormalization constant ZA as a function of the bare propagator, which
when substituted into the second equation provides a renormalization group invariant definition of the
three-gluon MOM running coupling [21, 22]:

gsym(q2) = q3 T sym(q2)
[∆(q2)]3/2 = q3 T sym

R (q2; µ2)
[∆R(q2; µ2)]3/2 . (11)

In the asymmetric configuration the relation is slightly different, as in this case one has

T asym
R (r2; r2) = Z−3/2

A (r2) T asym(r2) = ∆R(0; q2) gasym
R (r2)/r4, (12)

implying

gasym(r2) = r3 T asym(r2)
[∆(r2)]1/2∆(0)

= r3 T asym
R (r2; µ2)

[∆R(r2; µ2)]1/2∆R(0; µ2)
. (13)
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Finally, in both cases the above equations yield for the 1-PI form factors the relation

gi(µ2) Γi
T,R(`2; µ2) =

gi
R(`2)

[`2∆(`2; µ2)]3/2 , (14)

where i indicates either the symmetric or the asymmetric momentum configuration, and, correspond-
ingly, `2 = q2, r2.

This latter result is of special interest because it establishes a connection between the three-gluon
MOM running coupling, which many lattice and continuum studies have paid attention to, and the
vertex function of the amputated three-gluon Green’s function, a fundamental ingredient within the
tower of (truncated) SDEs addressing non-perturbative QCD phenomena. In fact, these quantities are
related only by the gluon propagator ∆, which, after the intensive studies of the past decade, is very
well understood and accurately known.

2.2 Lattice results

The matrix elements in Eqs. (1) and (3) can be obtained as, respectively, 2- and 3-points gluon corre-
lation functions from the lattice and, after the appropriate projections described in the previous sub-
section, be applied to yield the 1-PI and connected 3-gluon form factors, related by Eqs. (5) and (8).
In order to do so, in [19], quenched SU(3) configurations at several large volumes and different bare
couplings β, obtained employing the tree-level Symanzik gauge action, were exploited: 220 config-
urations at β = 4.20 for a hypercubic lattice of length L = 32 (corresponding to a physical volume
of 4.54 fm4) and 900 configurations at β = 3.90 for a L = 64 lattice (physical volume 15.64 fm4).
The data extracted from these new gauge configurations have been supplemented with the one derived
from the old configurations of [23], obtained using the Wilson gauge action at several β (ranging from
5.6 to 6.0), lattices (from L = 24 to L = 32) and physical volumes (from 2.44 to 5.94 fm4).

In Fig. 1 we plot the form factor T renormalized at µ = 4.3 GeV for both the symmetric (left
panel) and asymmetric (right panel) momentum configuration. In the symmetric case T sym

R displays a
zero crossing located in the IR region around 0.1–0.2 GeV, after which the data seems to indicate that
some sort of divergent behavior manifests itself. In the asymmetric case the situation looks less clear
as data are noisier, as a result of forcing one momentum to vanish.

Then, once the connected 3-gluon form factors and gluon propagators obtained, Eqs. (11) and (13)
allow us for the computation of the running coupling in different schemes. In the next section, we will
focus, in particular, in the first one corresponding to the so-called MOM symmetric 3-gluon coupling.
Apart from the previous gauge-field lattice configurations, for the coupling analysis and comparison
purpose, we have furthermore exploited the unquenched lattice configurations with two degenerate
light dynamical (u and d) and two heavier (s and c) flavors which made possible a successful deter-
mination of the MS running coupling at the Z0-mass scale [24].

3 Analysis of results

We will now briefly describe the analysis of results already made and presented (including many more
details) in refs. [19, 20], mainly addressed to understand a few striking features taking place in the
low-momentum domain.

3.1 Gluon Green’s function free of quantum fluctuations

First, as described in [19], the lattice-gauge fields have been deprived from their short-distance UV
fluctuations by applying the so-called Wilson flow technique, which has proven to be an essential tool
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in modern non-perturbative studies of QCD [25, 26]. Then, the flown gauge fields have been again
projected to Landau-gauge and used to compute 3-gluon form factors and couplings, as previously
described. The so-obtained results have finally been analyzed in terms of the quasi-classical solutions
of the SU(3) gauge action.

The gauge-field classical solution from an ensemble of instantons, Ba
µ, can be described in terms

of the coined as ratio-ansatz [27] which, specially far away from all the instantons’ centers or in the
vicinity of one of them, can be approximated by

g0 Ba
µ(x) = 2

∑
i

Raα
(i) η

α
µν

yνi
y2

i

φρi

(
|yi|

ρi

)
; (15)

where yi = (x − zi) and ηαµν is the ’t Hooft symbol, that should be replaced by ηαµν when summing over
anti-instantons as i = A. Raα

(i) represents the color rotations embedding the canonical SU(2) instanton
solution in the SU(3) gauge group (i.e., α = 1, 2, 3 and a = 1, 2, . . . 8). provided that the profile
function φ behaves as

φρ(z) =


f (ρz)

f (ρz) + z2 '
1

1 + z2 z � 1

f (ρz)
z2 z � 1

, (16)

where f (z) is the shape function which can be obtained by minimizing the action per particle for some
statistical ensemble of instantons defining the semiclassical background. This function essentially
drives the large-distance behavior of the gauge field due to one-instanton contributions and incorpo-
rates also the nonlinear effects resulting from the average classical interaction of the other instantons
in the background. According to [28], this shape function and the large-distance drop can be ap-
proximated as being independent of the low-distance scale ρ fixing the instanton size. However, the
profile function φ, defined to match both large- and low-distance behaviors, needs to break this scale
independence as we did explicitly in Eq. (16).

Then, as explained in [23], the gauge-field Green functions can be semi-classically obtained within
the instanton background as

gm
0 G(m)(k2) =

k2−m

m4m−1 n 〈 ρ3mIm(kρ) 〉 (17)

where the compact notation G(3) = T sym and G(2) = ∆ is used, n is the instanton density,

I(s) =
8π2

s

∫ ∞

0
zdzJ2(sz)φ(z) (18)

and 〈. . . 〉 expresses the average over the distribution of instantons within the statistical ensemble
defining the background. Thus, (11) gives for the symmetric running coupling in the instanton field:

αsym(k2) =
(gsym(k2))2

4π
=

k6

4π

(
G(3)(k2)

)2(
G(2)(k2)

)3 =
k4

18πn
〈ρ9I3(kρ)〉2

〈ρ6I2(kρ)〉3
. (19)

Whichever the shape function f (x) might be, the topological condition f (0) = 1 guarantees that
I(s)=18π2/s3 when s→ ∞ and then

〈ρ9I3(kρ)〉2

〈ρ6I2(kρ)〉3
' 1 + O

(
δρ2

k2ρ̄4

)
, (20)
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where ρ̄ =
√
〈ρ2〉 and δρ2 = 〈(ρ − ρ)2〉 stand for the mean square width of the radii distribution. On

the other hand, only relying on the sufficient cut-off of f (x) at large distances, one would be left with

〈ρ9I3(kρ)〉2

〈ρ6I2(kρ)〉3
' 1 + 48

δρ2

ρ̄2 + O

(
k2δρ2,

δρ4

ρ̄4

)
. (21)

for the low-momentum domain. Had we considered a zero width for the radii distribution, the coupling
defined by Eq. (19) would plainly behave as a scale-independent k4-power law for all momenta.

-0.5 0 0.5 1

Log[k /1 GeV]

-5

-4

-3

-2

-1

0

L
o

g
[α

3
-g

(k
2
)]

β=5.6-6.2

β=2.37 (20
3
x40)

β=3.90 (64
4
)

β=4.20 (32
4
)

k
4
-behavior

Figure 2. The MOM three-gluon coupling defined in
Eq. (11) obtained from all the different quenched
lattice simulations described in the text.

As can be seen in in 2, the coupling obtained with Eq. (11) for all quenched non-flown gauge fields
behaves accordingly to (21), at low momenta. It should be first noticed that, as corresponding to the
RGI nature of the RHS of Eq. (11), all the data from different simulations with different actions and
set-up’s show a very good physical scaling. However, the main feature to be underlined is that, before
applying the Wilson flow, a momentum scale, lying around 1 GeV (in the ballpark of ΛQCD), separates
clearly two regimes, the one above this scale where quantum corrections manage to build the well-
known perturbative logarithmic running and that below, where the power law from Eq. (19) appears
to rise. The intercept of the low-momenta logarithmic line, as is highlighted by the above-mentioned
good scaling, is a physical quantity, and can be very well used for a cheap calibration of the lattice
spacing. Its value estimated from data is 1.44 GeV−4 and, by neglecting the radii distribution width,
one would be left for the instanton density with n = 7.7(1) fm−4.

We have now considered only the quenched lattice configurations at β = 4.20 and the unquenched
ones at β = 1.95, applied the Wilson flow technique which is designed to destroy all the short-distance
fluctuations in the gluon correlations, computed again the symmetric running coupling and displayed
the results displayed in Fig. 3. The characteristic diffusion length of the Wilson flow is controlled for a
parameter, the flow time: the longer is the former the larger the latter. Three different flow times (τ=4,8
and 15 in lattice units) have been considered and the resulting behaviours at both low- and large-
momentum domains can be strinkingly well explained by Eqs. (19-21). Additionally, the intercepts of
the large-momentum lines provide with an estimate for the instanton density at different flow times:
n = 3.5(1), 1.75(4),0.98(5) fm−4 at τ = 4, 8,15, for the quenched case; and n = 6.8(5), 3.0(2) fm−4

at τ = 8, 15, for the unquenched case. Furthermore, the larger the flow time the lower momenta the
non-enhanced linear behavior of Eq. (20) appears to extend down for. This suggests that the instanton
size grows with the flow time, at least in a first stage, when the instanton density is as high as we
obtain and the instanton-anti-instanton annihilation is the mechanism dominating the evolution of the
quasi-classical solutions.

On the other hand, according to Eq. (21), wherever the momenta satisfy k2δρ2 � 1, the intercept
for the low-momentum line is shifted up by log(1 + 48δρ2/ρ̄2) ' 48/ ln 10 δρ2/ρ̄2. Therefore, one
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Figure 3. The MOM three-gluon coupling defined in Eq. (11) obtained from quenched data with β = 4.20 (left
panel) and unquenched with β = 1.95 (right panel) lattice simulations at different flow times.

can get δρ2/ρ̄2 ' 0.014 (quenched) and 0.013 (unquenched), from the comparison of the intercepts
in Fig. 3. These numbers compare very well with independent estimates obtained by direct instanton
detection after cooling lattice gauge configurations in the quenched approximation [19]. Finally, at
zero flow time, the unquenched instanton density can be estimated to be 1.55 times larger than the
quenched one, if both unknown distribution widths are taken to be the same, from the difference be-
tween the intercepts. This number however relies on how sensible is the quenched lattice calibration.

3.2 The low-momentum zero-crossing from ghost-loops

Another noteworthy feature taking place at very low momentum, which deserved a careful analy-
sis in ref. [20], is the appearance of a zero-crossing and a negative logarithmic singularity at zero-
momentum (many independent analyses within the SDE formalism, employing a variety of techniques
and truncation schemes, have found the same in the 3-point [29–32] and the 4-point [33, 34] gluon
sector, and also when light quarks are included [35]), the underlying origin of this phenomenon is the
masslessness of the propagators circulating in the nonperturbative ghost loop diagram contributing
to the SDE of n-point Green’s functions [29]. Specifically, employing a nonperturbative Ansatz for
the gluon-ghost vertex that satisfies the correct STI, the leading IR contribution from the ghost-loop,
denoted by Πc(q2), is given by [29]

Πc(q2) =
g2CA

6
q2F(q2)

∫
k

F(k2)
k2(k + q)2 , (22)

where CA is the Casimir eigenvalue in the adjoint representation, and
∫

k ≡ µ
ε/(2π)d

∫
ddk is the dimen-

sional regularization measure, with d = 4−ε and µ is the ’t Hooft mass; evidently, in the limit q2 → 0,
the above expressions behave like q2 log q2/µ2. Even though this particular term does not interfere
with the finiteness of ∆(q2), its presence induces two main effects: (i) ∆(q2) displays a mild maximum
at some relatively low value of q2, and (ii) the first derivative of ∆−1(q2) diverges logarithmically at
q2 = 0. The form of the renormalized gluon propagator that emerges from the complete SDE analysis
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Figure 4. (color online) Comparison between the lattice results for the renormalized connected and 1-PI form
factors TR and gΓT,R and the SDE prediction in the symmetric (left panels) and asymmetric (right panels) config-
urations. The band appears bounded by the results obtained with fits of (24) to lattice propagators for L = 72 and
L = 96, and aims at giving an indication of the variation of the results. For the quantity Γ

sym
T,R (lower left panel)

we also plot (dashed line) the semiclassical approximation derived from (19) in the previous section.

may be accurately parametrized in the IR by the expression

∆−1
R (q2; µ2) =

q2→0
q2

[
a + b log

q2 + m2

µ2 + c log
q2

µ2

]
+ m2, (23)

with a, b, c, and m2 suitable parameters, which captures explicitly the two aforementioned effects.
Note that ∆−1

R (0; µ2) = m2, and that the ‘protected’ logarithms stem from gluonic loops.
Higher order n-point functions (n > 2) are also affected in notable ways by the presence of ghost

loops in their diagrammatic expansion1. Eventually, a logarithmic divergence appears, which drives
the n-point funtion from positive to (infinitely) negative values, causing invariably the appearance of a
zero crossing. Use of the ‘background quantum’ identities [36, 37], which relate background Green’s
functions with quantum ones, reveals that the same behavior is expected for quantum external legs,
modulo a (finite) function determined by the ghost-gluon dynamics [29]. The exact position of the
zero crossing is difficult to estimate, because it depends on the details of all finite contributions that are
‘competing’ against the logarithm coming from the ghost loop; however, it is clear that the tendency,
in general, is to appear in the deep IR.

In particular, for the form factors under scrutiny, one expects the (configuration independent) IR
behavior

Γi
T,R(`2; µ2) '

`2→0
F(0; µ2)

∂

∂`2 ∆−1
R (`2; µ2), (24)

where F(0) ≈ 2.9 at µ = 4.3 GeV [2], which can be compared with the lattice results for the 1-PI
form factors that can be obtained with the help of the relations Eqs. (5) and (8). The results are shown
in Fig. 4. While it is evident that in the symmetric case a good description of the IR data is achieved,
in the asymmetric case the positive excess in the data coupled to the large errors make it more difficult
to discern the low momentum behavior of T asym

R and Γ
asym
T,R .

1We refer to ghost loops that exist already at the one-loop level. Ghost loops nested within gluon loops do not produce
particular effects, because the additional integrations over virtual momenta soften the IR divergence.
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There is an interesting conclusion one might draw from the behavior of these form factors. The
semiclassical result based on the multi-instanton background description [19, 23] discussed in the
previous section for the symmetric configuration (dashed line in the lower left panel of Fig. 4) clearly
fails in accounting for the data at very deep IR momenta. This can be very well understood once
we notice that at such low momenta (where the zero crossing takes place), the dynamics is entirely
dominated by massless ghosts; plainly, this is a quantum effect that cannot be captured within the
framework of a semiclassical approach.

4 Conclusions

Thus, we have reviewed some recent results that, relying on a very general and firm ground, strongly
support that the classical solutions of the SU(3) gauge theory explain the pattern exhibited by two- and
three-gluon Green functions either at low-momenta or, after the efficient killing of the UV fluctuations
around the classical minima of the theory, for all momenta. The removal of UV fluctuations by the
Wilson flow gets rid of the fundamental QCD scale, ΛQCD, introduced at the quantization level of
the theory. A feature of the three-gluon Green function, taking place in its very deep IR domain,
escaped to this semiclassical description: the existence of a negative logaritmic singularity at zero
momentum which causes the appearance of a zero-crossing, owing to the masslessness of the ghost
which contributes via nonperturbative ghost-loops in the SDE of the gluon Green’s functions. This is
an important phenomenon, with dynamical implications [29, 38], that can be hardly captured within
the framework of a semiclassical approach.
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