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Abstract

Proteins are biological macromolecules that are encoded within an organism’s genome. They are
responsible for essential functions within an organism. Each protein consists of a set of amino acids
that are connected together into a sequence in a peptide chain. Based upon this amino acid
sequence and external factors (solvent, membrane etc.), a protein adopts a three-dimensional shape
with specific functional properties. Proteins can be classified based on their surrounding into globular
proteins located in the cytosol and membrane proteins located in a cell'’s membrane. Globular
proteins contain only a few hydrophobic amino acids, whereas membrane proteins contain
significantly more hydrophobic residues that interact with the hydrophobic membrane bilayer.
Furthermore, the set of membrane proteins can be subdivided into two sub-classes that are defined
by the regular structural elements with which the proteins cross the membrane: a-helical and B-
barrel-like. Other structural elements like 315- or m-helices were also shown to occur in membrane
proteins but only in local segments and not as longer regular structural elements. The spatial
arrangement of secondary structure elements is called tertiary structure. Proteins can be clustered to
families sharing a common fold that describes a generalized tertiary structure among a set of
proteins. The use of spatial information from tertiary structures allows for a detection of transport
pathways, binding pockets or bonding interactions. An arrangement of several tertiary structures of
protein subunits into larger complexes is described by the quaternary structure of a protein. The
interaction between different subunits has been shown to be crucial for a binding and transport of
substrates through the membrane. In general, the location of membrane proteins in the membrane
makes them responsible for a cell’s function (e.g., transport), thus they are prominent drug targets.
However, the extraction of membrane proteins from the hydrophobic membrane bilayer to
determine high-resolution crystal structures is still a difficult task; thus only 2 % of all solved proteins
structures are membrane proteins. Computational methods that allow for the detection of
evolutionarily related protein sequences, structures or of important sequence patterns may help to
gain deeper insights into membrane protein structures and their functions. This study will give an
overview of such computational methods on a representative set of membrane proteins and will

provide ideas for future computational and experimental research on membrane proteins.

A reliable and recent data set of membrane proteins was required to analyze and understand
homology and evolutionary events between membrane proteins on a sequence and structural level.
For this purpose | have updated an earlier, manually-curated data set of homologous membrane
proteins (HOMEP) to more recent versions in 2010 (HOMEP2) and 2013 (HOMEP3), using an

automated clustering approach (chapter 2). For both data sets, all membrane proteins listed in the

\



PDB_TM database were downloaded as coordinate files from the Protein Data Bank and separated
according to their overall fold: a-helical and B-barrel-like. Only crystal structures with a resolution
better than 3.5 A were considered to exclude non-reliable protein structures with a low resolution.
Each protein structure was then split into its individual chains. For all pairs of proteins sharing the
same number of membrane helices, a pairwise structural alignment was generated (using SKA for
HOMEP2 and SKA as well as TM-align for HOMEP3). For the resulting structural alignments and their
underlying sequence alignments specific similarity scores (PSD score of SKA, TM-score of TM-align)
were calculated and threshold values were used for these scores to cluster protein chains to a
common family. This clustering process resulted in a set of 81 a-helical proteins within 22 families
and 177 alignments for HOMEP2. The newer data set HOMEP3 (generated 3 years later than
HOMEP2) used an updated clustering approach and contains 152 a-helical proteins in 40 families
with 354 alignments and 68 B-barrel-like proteins in 8 families with 319 alignments. Both data sets

were used as a standard gold reference set for subsequent work.

In a first step (chapter 3), a-helical membrane protein sequences were used to determine descriptors
that are suitable to describe an evolutionary relationship between homologous a-helical membrane
proteins. So far, most sequence alignment methods were optimized on general data sets and only
few sequence alignment methods were designed for membrane proteins, which have distinct
evolutionary and structural properties different from globular proteins. These methods typically
considered information about the membrane by using membrane-specific substitution matrices or by
assigning different gap penalties in membranous and non-membranous segments. In this study, |
have updated and applied the sequence alignment program AlignMe, which was initially created as a
basic version in my diploma thesis. The program was extended to allow for position-specific
substitution matrices and membrane propensity predictors as an input. Single input descriptors
(substitution matrices, hydrophobicity, secondary structure and membrane propensities) were tested
alone and in combination with each other in different modes of AlignMe by optimizing gap penalties
on the HOMEP2 data set, which was used as a reference set. Most accurate alignments on the
HOMEP2 data set were observed when using position-specific substitution information (P),
secondary structure propensities (S) and transmembrane propensities (T) in the AlignMePST mode.
These alignments were even more accurate than those of other commonly used sequence alignment
methods but that was not surprising since AlignMe was optimized on HOMEP2. Thus, homology
models were built for all protein pairs of HOMEP2 and evaluated using structural similarity scores.
Homology models based upon alignments using the different AlignMe modes were shown to be
more accurate than those based on alignments of other alignment methods. Moreover, AlignMePST,
AlignMePS and AlignMeP modes were then tested together with other sequence alignment methods

also on an independent reference set of membrane protein sequence alignments from the BAIIBASE

Vil



collection. The combination of secondary-structure propensities (S) in combination with evolutionary
information in form of position-specific substitution matrices (P) in the AlignMePS mode resulted in
the most accurate alignments over a broad range of sequence similarities when compared to
available methods. The application of transmembrane predictions (T) in addition to evolutionary
information and secondary-structure predictions in the AlignMePST mode improved the alignment
accuracy significantly for distantly-related proteins for which sequence information is less
informative but resulted in less accurate alignment of closely-related proteins from the BAIIBASE set
relative to AlignMePS. The open source code of AlignMe is available at http://www.forrestlab.org
and https://sourceforge.net/projects/alignme/, along with an online server and the HOMEP2 data

set. This work was published in March 2013 in PLOS ONE.

The majority of frequently used computational methods for chemists and biologists are made
available with a web server allowing for an easy access of those programs. In order to also allow an
easier usage of the AlignMe program, | have implemented a web server of AlignMe (chapter 4) that
provides the optimized settings and gap penalties for the AlignMeP, PS and PST modes. The server
requires two sequences in fasta format as input and combines information about each sequence
from multiple sources to produce a pair-wise alignment (PW mode). In addition, the alignment
accuracy of the AlignMe web server is compared with those of other recent webservers on the set of
membrane protein sequence alignments from the BAIIBASE reference 7 set. Again, the alignments of
AlignMe are shown to be more accurate than those of other programs, especially for very distantly
related proteins for which the inclusion of membrane protein information has been shown to be
suitable. Another mode that is provided on the AlignMe website allows for the alignment of two
multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode).
Each input multiple sequence alignment is converted into a hydrophobicity profile based upon a
hydrophobicity scale and is then averaged over the provided set of sequence homologs. The two
profiles are then aligned with each other. The HP mode enables a qualitative comparison of
transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which
can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server
provides user-friendly access to a set of tools for the analysis and comparison of membrane protein
seqguences. An access is available at http://www.bioinfo.mpg.de/AlignMe. This work was published in

the NAR web server issue in July 2014.

Besides sequence similarity, also structural similarity can be applied to detect evolutionarily and
functionally related positions or fragments of two protein structures (chapter 5). Although many
structural alignment methods are available, there is a lack of programs that are optimized on and for

membrane proteins. All available studies have assessed alignment accuracy and consistency only on
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general protein data sets and did not explicitly consider the distinct class of membrane proteins.
Thus, the choice of a suitable program is not apparent to a user who wants to generate structural
alignments of membrane proteins. Consequently, | compared 13 widely-used pairwise structural
alignment methods on an updated reference set of homologous membrane protein structures
(HOMEP3) that includes a-helical and B-barrel-like membrane proteins. Each pair of protein
structures was aligned and the underlying sequence alignment was then used to construct homology
models as in chapter 3. The model accuracy compared to the known structures was assessed using
scoring functions that were not used by the tested structural alignment methods (e.g., AL4 or CAD-
score). The analysis shows that fragment-based approaches such as FR-TM-align are the most useful
ones for aligning structures of membrane proteins but none of the fragment-based approaches was
clearly superior to all other methods. Moreover, fragment-based approaches are more suitable for a
comparison of protein structures that have undergone large conformational changes, whereas rigid
approaches were more suitable for proteins that were solved in the same or a similar state but again
no method showed a significantly higher accuracy than all other. Additionally, all methods lack a
measure to rate the reliability of the accuracy for a specific position within a structure alignment and
thus a user does not know if a position is confidently aligned or not. In order to solve these problems,
| propose a consensus-type approach by combining alignments from four different methods, namely
FR-TM-align, DaliLite, MATT and FATCAT. A confidence value that describes the agreement between
the methods is assigned to each position of the alignment. This work has been published in August

2015 in the journal “PROTEINS: structure, function and bioinformatics”.

Consensus alignments were then generated for each pair of proteins of the HOMEP 3 data set and
subsequently analyzed for single evolutionary events within membrane-spanning segments (chapter
6). In addition, | checked all membrane proteins of the HOMEP3 data set for irregular structures (e.g.,
310- and m-helices) using structural assignment methods and a custom script to detect m-helices.
Interestingly, single insertions and deletions (InDels) were observed in different families of
membrane-spanning segments in which an a-helix in one protein was aligned with a gap to a m-helix
in the other protein. In agreement with a recent study, a single gap was observed in G-Protein
coupled receptors in TM2 and TM5 but in slightly different positions than proposed before. In both
cases, binding specificity might be influenced by the presence or absence of an a- or a m-helix. A
single InDel was also observed in the proton pathways of proteins belonging to the family of
cytochrome c oxidase subunit I. The activity of the D- and K-pathways might be dependent on the
presence and absence of -helices in TM2 and TM9. Also among proteins belonging to the FIRL fold,
a single gap was observed in TM1 of AdiC compared to LeuT. An additional arginine is present in LeuT
that points into the extracellular pathway at a position that is known to be important for the

protein’s function. Last, consensus structural alignments of energy coupling factor (ECF) transporters

IX



also reveal a single gap with high confidence in a m-helical segment of BioY that is aligned to a-helical
segments in ThiT and RibU. Both proteins contain an amino acid with a large side chain that points
into a cavity that is crucial for transport specificity whereas in BioY a glycine is present at this

position.

This study shows that computational methods need to be adapted and optimized for membrane
proteins in order to achieve results with a higher accuracy. Membrane-specific information has been
shown to be suitable for aligning distantly related proteins on a sequence level. Such information is
not incorporated into structural alignment programs so far. However, structural alignment methods
that allow for fragment-based flexibility were shown be a suitable choice for membrane proteins that
undergo conformational changes. Interestingly, single insertions and deletions could be observed
with the help of consensus alignments in the conserved membrane-spanning segments of membrane
proteins. The detection of such single InDels might help to identify crucial residues for a proteins’

function.



Zusammenfassung

Proteine sind biologische Makromolekiile, die im Genom eines Organismus kodiert sind und im
Organismus fir essentielle Funktionen verantwortlich sind. Jedes Protein besteht aus einer Sequenz
miteinander verbundener Aminosduren, welche eine Peptidkette formen. Basierend auf dieser
Aminosduresequenz und externen Faktoren (Solvens, Membran etc.) nimmt ein Protein eine drei-
dimensionale Struktur mit spezifischen Eigenschaften an. Schon anhand ihrer Umgebung kénnen
Proteine in zwei Klassen eingeteilt werden. Es gibt globuldre Proteine, die sich im Zytosol befinden
und Membranproteine, die sich in der Zellmembran befinden. Im Gegensatz zu globularen Proteine
beinhalten Membranproteine signifikant mehr hydrophobe Reste, die mit der hydrophoben
doppelschichtigen Zellmembran interagieren. Die Klasse der Membranproteine kann weiterhin
basierend auf den vorwiegend vorherrschenden Sekundarstrukturelementen in a-helikale und B-
Fass-dhnliche Proteine unterteilt werden. Die raumliche Anordnung aller Sekundérstrukturelemente
wird Tertidrstruktur genannt. Mit Hilfe einer generalisierten Tertidrstruktur (einer so genannten
Faltung, ,fold“) lassen sich Membranproteine in unterschiedliche funktionelle Familien einteilen. Eine
rdumliche  Anordnung verschiedener Tertidrstrukturen von Proteinuntereinheiten  wird
Quartarstruktur genannt. Durch die Interaktion zwischen verschiedenen Proteinuntereinheiten von
Membranproteinen sind Bindung und Transport von Substraten durch die Membran moglich,
weswegen Membranproteine Hauptziele fir die Wirkstoffentwicklung sind. Allerdings ist die
Bestimmung hochauflésender Kristallstrukturen fiir Membranproteine immer noch eine schwierige
Aufgabe, bedingt durch ihre Lage in der hydrophoben doppellagigen Membran, weswegen nur 2%
aller kristallisierten Proteine zur Klasse der Membranproteine gehoren. Computergestiitzte
Anwendungen zur Erkennung von evolutiondr verwandten Proteinsequenzen, -strukturen oder
wichtiger Sequenzmuster konnen dabei helfen weitere Einblicke in Strukturen von
Membranproteinen und deren Funktionen zu gewinnen. Diese Arbeit wird sowohl eine Ubersicht
Uber die Genauigkeit solcher computergestiitzten Methoden geben als auch eine Anwendung zeigen,

um funktionell wichtige Proteinsegmente in Membranproteinen zu finden und zu analysieren.

Zur Bestimmung evolutiondrer Ereignisse zwischen Membranproteinen auf Sequenz- und
Strukturebene wird ein zuverldssiger und aktueller Datensatz von homologen Membranproteinen
bendtigt. In Kapitel 2 werden zwei Aktualisierungen eines manuell erstellten Datensatzes homologer
Membranproteine (HOMEP) beschrieben: HOMEP2 und HOMEP3. Die Aktualisierungen wurden
mittels eines automatisierten Klassifizierungsverfahrens durchgefihrt (Kapitel 2). Fir beide
Datensdtze wurden alle Membranproteine (gelistet in der PDB_TM Datenbank) als Strukturdateien
von der Protein Data Bank heruntergeladen und in a-helikale und B-Fass-dhnliche Proteine unterteilt.

Anschliefend wurde jede Proteinstruktur in ihre individuellen Ketten aufgeteilt. Fir alle Proteinpaare
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mit der gleichen Anzahl von Transmembransegmenten wurde ein paarweises strukturelles Alignment
generiert. Die Proteinketten wurden basierend auf Ahnlichkeitswerten, die fiir die strukturellen
Alignments (PSD-score von SKA und TM-score von TMe-align) und deren zugrunde liegenden
Sequenzalignments berechnet wurden, in verschiedene Familien eingeteilt. Dies resultierte in einem
Satz von 81 a-helikalen Proteinen in 22 Familien und 177 Alignments fir HOMEP2. Fir den
aktuelleren Datensatz HOMEP3 wurde ein verbesserter Klassifizierungsansatz verwendet, der zu 152
a-helikalen Proteinen in 40 Familien mit 354 Alignments und 68 B-Fass-dhnlichen Proteinen in 8
Familien mit 319 Alignments fiihrte. Beide Datensatze wurden als Gold-Standard-Referenz fiir

anschlieBende Analysen benutzt.

In einem ersten Schritt (Kapitel 3) wurde nach Deskriptoren gesucht mittels welcher das evolutionare
Verhiltnis zwischen homologen a-helikalen Membranproteinen passend beschrieben werden kann.
Bisher wurde der GroRteil der Programme fir Sequenzalignments auf generellen Datensatzen
optimiert, obwohl Membranproteine deutlich andere evolutiondre und strukturelle Eigenschaften
besitzen als globulédre Proteine. Einige Programme wurden speziell fir Membranproteine entwickelt,
doch diese berilcksichtigten bisher nicht Hydrophobizitatsprofile oder
Transmembranwahrscheinlichkeitswerte als Eingabe fir Alignments. Im Rahmen dieser Arbeit wurde
das speziell fir Membranproteine erstellte Alignmentprogramnm AlignMe, von dem eine erste
Version bereits im Rahmen meiner Diplomarbeit erstellt wurde, zu einer neueren Version erweitert
und anschlieBend angewendet. Die Erweiterung von AlignMe erlaubt nun Alignments basierend auf
positions-spezifischen Substitutionsmatrizen (PSSMs) und Transmembran-
wahrscheinlichkeitsvorhersagen. Einzelne Proteindeskriptoren (z.B. Substitutionsmatrizen oder
Sekundarstrukturvorhersagen) wurden sowohl einzeln als auch in Kombination miteinander in
verschiedenen Modi von AlignMe getestet. Hierflir wurden Strafwerte fiir Liicken im Alignment (,,gap
penalties”) auf dem HOMEP2-Datensatz optimiert. Die akkuratesten Alignments wurden erzielt,
wenn eine positionsspezifische  Substitutionsmatrix (P) in  Kombination mit einer
Sekundarstrukturvorhersage (S) und Transmembranwahrscheinlichkeiten (T) im AlignMePST-Modus
verwendet wurden. Es war nicht Gberraschend, dass diese Alignments akkurater waren als die
anderer, haufig verwendeter Programme, da die Referenzalignments des HOMEP2-Datensatzes
sowohl fiir die Optimierung als auch fiir die Auswertung genutzt wurden. Deshalb wurden
anschlieBend Homologie-Modelle fiir alle Proteinpaare des HOMEP2-Datensatzes basierend auf den
zugrunde legenden Alignments der verschiedenen getesteten Programme generiert. Homologie-
Modelle der verschiedenen AlignMe Modi waren akkurater als die Homologie-Modelle anderer
Programme. In einem letzten Schritt wurden die AlignMe Modi zusammen mit anderen Programmen
auf einem unabhidngigen Referenzdatensatz bestehend aus Sequenzalignments von

Membranproteinen (BALIBASE Referenz 7) getestet. Die Kombination einer
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Sekundarstrukturvorhersage (S) mit einer positionsspezifischen Substitutionsmatrix (P) im AlignMePS
Modus resultierte in den akkuratesten Alignments (Uber eine groBe Spanne von
Sequenzidhnlichkeitswerten im Vergleich zu anderen verfligbaren Methoden. Die zusatzliche
Anwendung von Transmembranwahrscheinlichkeiten (T) im AlignMePST-Modus verbesserte die
Akkuratheit der Alignments signifikant fir entfernt verwandte Proteine, resultierte aber relativ zu
AlignMePS in weniger akkuraten Alignments von nah verwandten Proteinen. Der Open Source Code
von AlignMe ist verfligbar unter http://www.forrestlab.org, zusammen mit dem HOMEP2-Datensatz.

Dieses Kapitel wurde im Marz 2013 in PLOS ONE veroffentlicht.

Die Mehrheit der haufig verwendeten Computerprogramme fiir Chemiker und Biologen ist (iber
Webserver verfligbar, die einen einfachen Zugriff auf diese Programme ermdoglichen. Um ebenso die
Verwendung von AlignMe zu vereinfachen, wurde ein Webserver fiir AlignMe programmiert (siehe
Kapitel 4), welcher optimierte Einstellungen fir die AlignMeP-, PS- und PST-Modi sowie einen
schnellen Modus zur Verfligung stellt. Fir ein paarweises Sequenzalignment werden zwei
Aminosduresequenzen im Fasta-Format bendétigt. Diese Sequenzen werden dann basierend auf den
ausgewdhlten Modi und den entsprechenden Proteindeskriptoren miteinander verglichen und
aligniert. Ein Vergleich mit anderen Webservern basierend auf den BALIBASE-Referenz-7-Alignments
zeigte, dass die Alignments der verschiedenen Modi des AlignMe Webservers akkurat sind,
insbesondere bei sehr entfernt verwandten Proteinen, fiir welche die Einbeziehung von
Transmembranwahrscheinlichkeiten vorteilhaft ist. Neben dem Modus fir paarweise Alignments
(PW-Modus) steht auf der AlignMe Webseite auch ein Modus zur Verfligung, mit welchem man ein
Alignment von zwei multiplen Sequenzalignments basierend auf einem gemittelten
Hydrophobizitatsprofil generieren kann (HP Modus). Hierzu wird jedes der beiden eigegebenen
multiplen Sequenzalignments basierend auf einer Hydrophobizitdtsskala in ein Hydrophobizitatsprofil
Ubersetzt und anschlieBend Uber den Satz von Sequenzhomologen gemittelt. Diese beiden Profile
werden dann miteinander aligniert. Dieser HP-Modus ermoglicht einen qualitativen Vergleich der
Transmembrantopologie von zwei Membranproteinen. Der AlignMe Webserver ist verfiigbar unter:
http://www.bioinfo.mpg.de/AlignMe/. Dieses Kapitel wurde im Juli 2014 im jahrlichen NAR

Webserver Issue veroffentlicht.

Eine Detektion evolutiondr und funktionell verwandter Sequenzpositionen kann nicht nur basierend
auf der Aminosauresequenz geschehen, sondern auch auf struktureller Ebene (Kapitel 5). Ebenso wie
fiir Sequenzalignment-Programme besteht auch bei Programmen fiir Strukturalignments ein Mangel
an Programmen, die fir Membranproteine optimiert sind. Daher ist die Wahl eines passenden
Programms fiir einen Benutzer, der Strukturalignments von Membranproteinen generieren mochte,

nicht einfach. Aus diesem Grund wurden 13 haufig verwendete Programme fir paarweise
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Strukturalignments auf einem aktualisierten Referenzdatensatz von homologen
Membranproteinstrukturen (HOMEP3) getestet und verglichen. Fiir jedes Paar von Proteinstrukturen
wurde ein Strukturalignment generiert, und das zugrundeliegende Sequenzalignment wurde dann
benutzt, um Homologiemodelle zu generieren, deren Genauigkeit anschlieBend ausgewertet wurde.
Dazu wurden die Homologiemodelle mit den bereits bekannten Kristallstrukturen verglichen und
deren Ahnlichkeit wurde mit Hilfe von Bewertungsfunktionen ausgewertet (z.B. AL4 oder CAD-score).
Diese Analyse zeigte, dass fragmentbasierte Methoden (z.B. FR-TM-align) akkurate
Strukturalignments generieren. Allerdings ist keines der getesteten Programme signifikant besser ist
als alle anderen Programme. Des Weiteren zeigte sich, dass sich fragmentbasierte Programme zum
Vergleich von Proteinstrukturen eignen, die in unterschiedlichen Konformationen kristallisiert sind.
Im Gegensatz dazu sind rigide Programme besser geeignet fiir Proteine, die in einer dhnlichen
Konformation kristallisiert wurden. Allerdings besitzt keines der getesteten Programme einen
Messwert fir eine positionsspezifische Zuverlassigkeit der generierten Alignments, so dass ein
Benutzer nicht weil}, welche Fragmente akkurat aligniert sind oder welche eher problematisch sind.
Um dieses Problem zu losen, wurde ein Konsensus-dhnlicher Ansatz vorgeschlagen, der die
Alignments von vier verschiedenen Methoden miteinander kombiniert: FR-TM-align, DaliLite, MATT
und FATCAT. Fir jede Position des Konsensus-Alignments wird ein Konfidenzwert berechnet, welcher
die Ubereinstimmung der Alighments der verschiedenen Programme beschreibt. Dieses Kapitel

wurde 2015 im Journal “PROTEINS: structure, function and bioinformatics” ver6ffentlicht.

Mit Hilfe von Konsensus-Alignments wurden dann alle Proteinpaare des HOMEP3-Datensatzes
analysiert, um einzelne evolutiondre Vorkommnisse in Transmembransegmenten zu entdecken
(Kapitel 6). Zusatzlich wurden die Proteine von HOMEP3 auf irreguldre Strukturelemente untersucht
mit Hilfe von Methoden, die zur Bestimmung von Sekundarstrukturelementen (z.B. SST) dienen, und
einem eigenen Skript, um m-helikale Elemente zu finden. Interessanterweise traten einzelne
evolutiondre Insertionen und Deletionen (InDels) in den Transmembransegmenten von vier
verschiedenen Proteinfamilien auf. In allen Fallen war eine a-Helix in einem Protein zu einer m-Helix
im jeweils anderen Protein aligniert. In Ubereinstimmung mit einer aktuellen Studie wurden einzelne
Gaps in den Membranhelices 2 und 5 der Familie der G-Protein-gekoppelten Rezeptoren gefunden.
An diesen Stellen der Proteine kdnnte die Spezifitdt der Substratbindung abhéngig sein kénnte von
der An- oder Abwesenheit einer a- oder m-Helix. Allerdings scheinen die Gaps an einer leicht
verschobenen Stelle zu sein als bisher angenommen. Ein einzelner InDel wurde ebenfalls in den
Protonenpfaden der Untereinheit | der Cytochrom-C-Oxidasen entdeckt. Die Aktivitdt der D- und K-
Pfade kdnnte abhangig von der An- oder Abwesenheit von m-Helices in den Membranhelices 2 und 9
sein. Auch in Proteinen mit einer FIRL-Faltung wurde in Membranhelix 1 von AdiC im Vergleich zu

LeuT ein einzelner InDel gefunden. In LeuT ist ein zusatzliches Arginin an einer funktionell wichtigen
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Position vorhanden. Ein letztes Beispiel fiir einen einzelnen InDel |dsst sich in der Familie der ,energy
coupling factor (ECF)“-Transporter finden, in welcher ein n-helikales Segment von BioY zu einem a-
helikalen Segment in ThiT und RibU aligniert ist. ThiT und RibU besitzen eine Aminosaure mit langer
Seitenkette, die in eine fir die Transportspezifitdt wichtige Vertiefung deutet, wohingegen in BioY an

dieser Stelle ein Glycin vorhanden ist.

Diese Doktorarbeit verdeutlicht, dass computergestiitzte Methoden an den speziellen Satz von
Membranproteinen angepasst und optimiert werden miissen, um akkurate Ergebnisse zu erhalten.
Insbesondere flir Sequenzalignments von entfernt verwandten Proteinen zeigte sich eine
membranspezifische Information als nitzlich. Fiir Strukturalignments wurde eine solche Information
bisher allerdings nicht verwendet, doch fragment-basierte flexible Programme fir
Strukturalignments zeigten sich als gute Wahl fir Alignments von Membranproteinstrukturen, die in
unterschiedlichen Konformationen kristallisiert wurden. Interessanterweise konnten mit Hilfe von
Konsensus-Alignments einzelne InDels von Aminosduren in Transmembransegmenten von
Membranproteinen gefunden werden. Die Detektion solcher InDels kann helfen, funktionell wichtige

Aminosaurereste eines Proteins zu finden.
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1 Introduction

1.1 Globular & Membrane Proteins

Proteins are biological macromolecules that are located within all cells being responsible for essential
functions within an organism (i.e. enzymatic catalysis, control of cell growth and differentiation by
cell signaling, transport of molecules through cells etc.). Each protein is encoded within an organism’s
genome and can be synthesized by a translation of the genomic code to a set of amino acids
connected with each other. In general, all proteins are composed of twenty standard amino acids
(see Figure 1.1) that are connected together in a peptide chain by peptide bonds between the amino
and carboxyl groups of adjacent amino acids (see Figure 1.2). Next to the twenty standard amino
acids, there are also certain organisms that contain selenocysteine (Johansson, et al., 2005) and
certain archea that contain pyrrolysine (Srinivasan, et al.,, 2002) within their protein sequences.
Based upon the amino acid sequence and external factors (chaperone, solvent, membrane), proteins
are able to adopt a three-dimensional shape and specific functional properties. This evolutionarily
differentiation allows for a classification of proteins to gain deeper insights into their evolutionarily
and functional relationships. A major distinction between proteins can be made by classifying them
based upon their environment, which has a major influence on the amino acids composition and
three-dimensional structure of a protein. Proteins can be classified into a large set of globular
proteins located in the cytosol and to a smaller set of membrane proteins that are located within a
cell’s membrane. Globular proteins are surrounded by a hydrophilic environment that causes a low
content of hydrophobic residues within these proteins. The majority of hydrophobic residues in
globular proteins is typically located within the inside of the proteins but there are also some
hydrophobic residues at the surface of globular proteins for providing interaction patterns with other
proteins or molecules (Moelbert, et al., 2004). In contrast to globular proteins, membrane proteins
are located within a hydrophobic environment of the membrane lipid bilayer. Therefore, they
contain significantly more hydrophobic amino acids than globular proteins (Gromiha and Suwa, 2003;
Ulmschneider and Sansom, 2001). These hydrophobic amino acids are located predominantly on
surfaces of the membrane protein facing the membrane bilayer. Hydrophilic amino acids are typically
observed within loop segments outside of the membrane or at interaction sites within the

membrane protein (e.g., ligand binding or helix-helix packing).



Amine Group

Carboxyl Group

Figure 1.1 Generic structure of amino acids. All amino acids contain an amine group (NH;) and a
carboxyl group (CO,H). The rest (R) represents a side chain that is specific for each amino acid type
(e.g., R = H for Alanine or R = CH, for Valine).

N-terminal end

C-terminal end

Figure 1.2 Generic structure of a peptide chain. Amino acids are connected together into a peptide
chain by peptide bonds between the amino and carboxyl groups of adjacent amino acids.

The impermeable membrane bilayer does not only influence the composition and structure of
proteins, it also makes membrane proteins a crucial class of proteins that are responsible for
important cell functions like transport, signaling and cell adhesion, as well as recognition. This
functional importance is reflected by the fact that ~30% of all proteins of genomes, that have been
sequenced so far, belong to the class of membrane proteins (Jones, 1998; Krogh, et al., 2001; Nugent
and Jones, 2009). Accordingly, membrane proteins constitute >50% of targets for active
pharmacological drugs on the market (Drews, 2000; Hopkins and Groom, 2002; Uhlen, et al., 2015)

(see Figure 1.3).



Targets for approved drugs (n=618)

30 %

38 %

4 %

1% 16%

Il multi-pass membrane protein
M single-pass membrane protein
[ multi-pass and single-pass membrane protein
M secreted
I membrane and secreted isoforms
soluble, intracellular protein

Figure 1.3. Classification of the localization of proteins that are targeted by pharmaceutical drugs,
which are approved by the FDA. Figure taken from (Uhlen, et al., 2015).

However, there is a lack of structural data for membrane proteins because only 2 % of all solved
protein structures belong to the class of membrane proteins. They are represented by ~1700 high-
resolution structures in the Protein Data Bank (Berman, et al.,, 2003) of which ~540 are unique
(http://blanco.biomol.uci.edu/mpstruc/, May 2015). The over-expression and extraction of
membrane proteins from the hydrophobic membrane-bilayer to determine experimentally high-
resolution X-ray structures is still a difficult task (Ostermeier and Michel, 1997) but there is a steady
increase of the number of crystallized high-resolution membrane protein structures and complexes
(Bill, et al., 2011; White, 2004). In this context, computational methods may help to understand and
gain deeper insights into important features of membrane proteins. They allow for the detection of
evolutionarily related proteins, structure predictions, the identification of important sequence
patterns and many more aspects for enlightening a protein’s properties (Arinaminpathy, et al., 2009).
Consequently, computational methods are commonly used during structure elucidation and for
explaining the occurrence and function of a solved structure. However, computational methods are
typically developed for proteins in general and do not differentiate between globular or membrane
proteins, despite their differences. This lack of computational methods for membrane proteins is
addressed by this study that will give an overview of recent developments of computational methods
on membrane proteins and will provide ideas as well as improvements for future research on

membrane proteins.



1.2 Protein Properties & Structures of Membrane Proteins

1.2.1 General

First of all, the main properties of membrane proteins have to be detected for being able to apply
computational methods upon this class of proteins. Membrane proteins themselves can be divided
into two sub-classes that are defined by local regular protein structures: a-helical and B-barrel-like
membrane proteins. These regular structures describing local three-dimensional protein shapes are
called secondary structure elements and were discovered within three-dimensional structures of
crystallized peptide structures (Pauling, et al., 1951). The hydrogen-bonding patterns as well as the
dihedral angles of a segment of consecutive amino acids define the type of secondary structure
element. A Ramachandran plot (Ramachandran, et al., 1963) allows for a fast overview of a protein’s
phi- (torsion angle around the N-C, bond) and psi- (torsion angle around the C,-C bond) angles.
Specific combinations of those angles correspond to specific secondary structure types (see Figure
1.4). The most common well-ordered secondary structure elements are a-helices followed by B-
sheets, 319- and m-helices. Each of these secondary structure types has unique features that will be
described in the next chapters. Besides these regular structures, there are also unordered secondary

structure elements that all belong to the very common group of coils.
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Figure 1.4 Torsion angles in a polypeptide chain. (A) Two angles that define the conformation of the
polypeptide chain are the phi-torsion angle (¢) around the N-C, bond and the psi-torsion angle () of
the C4-C bond. (B) Torsion angles of a B-sheet. (C) Torsion angles of an a-helix. Figures B and C are
adapted from (Berg, 2010).



1.2.2 a-helical Structures

The most prevalent secondary structure type is the a-helical structure. a-helices are amino acid
peptides that are arranged in a right-handed helical structure with 3.6 amino acids per turn, an
average rise of 1.56 A per residue and an hydrogen bond between the carbonyl oxygen of every i and
the amid proton of every i+4 residue (see Figure 1.5). Such a regular intra-chain hydrogen-bonding
pattern stabilizes the a-helical structures in an energetically favorable conformation with a high

number of electrostatic dipole-dipole interactions.

The relative frequencies and propensities of specific amino acids in helical segments were analyzed
for predicting a-helical structures in proteins (Chou and Fasman, 1978; Pace and Scholtz, 1998).
Including evolutionarily information (Jones, 1999) as well as the usage of more complex
computational methods (i.e. machine learning) (Karplus, 2009) improved the accuracy of predicting

helical segments and other secondary structure types.

(A)

Figure 1.5 Generic structure of an a-helix. (A) Cartoon representation of an a-helix. (B) Detailed
representation showing a hydrogen bonding pattern between the carbonyl oxygen of every i and the
amide proton of every i+4 residue. Figure taken from (Berg, 2010).



Membrane-spanning segments adopting an a-helical structure were shown to contain more non-
polar (alanine, valine, glycine) or large hydrophobic (phenylalanine, leucine, isoleucine) amino acids
compared to non-membranous helical segments (Senes, et al., 2000). In interfacial segments at the
border of the membrane, aromatic residues (tyrosine, phenylalanine) or residues that have the
ability to form H-bonds (histidine) were observed more frequently than usual. Charged or polar
residues (aspartate or glutamate) occur less frequently in membrane-spanning segments in general,
and if so then they require interactions that satisfy their binding energy (e.g., Q32 of chain J from the
chicken ubiquinol cytochrome c oxidoreductase is part of a membrane helix and might interact with a
lipid head group) (Ulmschneider and Sansom, 2001). The basic amino acids arginine and lysine are
also rarely observed in membrane-spanning segments. Interestingly, arginine and lysine have been
observed to occur (three to four times) more often in the cytoplasmic domain than in the periplasmic
domain. This amino acid distribution within non-membranous loop segments is also known as the
positive-inside rule (von Heijne, 1989). Alterations (mutations or deletions) in terminal non-
membranous loop segments were shown to change the orientation in which a protein is inserted into
a membrane (e.g., adding four positively charged lysine residues to the N-terminus of a leader

peptidase caused a topology change from a Ngy-Cou: toplogy to a N;,-Ci, toplogy (von Heijne, 1989).

The distribution of specific amino acids within a-helices was furthermore examined based upon
experimental and computational analysis and several hydrophobicity scales were developed
(Koehler, et al.,, 2009) and used for predicting a-helical segments crossing the membrane
(Dobrowolski, et al., 2007). Additionally, more complex computational methods were developed that
include evolutionarily information for predicting membrane-spanning helices (Nugent and Jones,
2009; Viklund and Elofsson, 2008). However, the correct assignment of the first and last residue of a
membranous a-helix is still a challenging task caused by several properties of the protein and the
membrane itself. First of all, membrane helices do not cross the membrane in a straight way. Aside
from being tilted and not straight in the membrane, they can contain twists, kinks or even broken,
unwound fragments (Werner and Church, 2013). Second, there are re-entrant helices that enter and
leave the membrane on the same side (Viklund, et al., 2006). At last, the membrane can vary in its
size from 27 — 42 A (Ulmschneider and Sansom, 2001). All these aspects cause membrane helices to
vary between 22 and 32 residues. Aside from these residues within the membrane, a membrane-
spanning helix also extends into non-membranous segments, which is another factor that

contributes to the length of the helix.



1.2.3 B-strands, -sheets & —barrels

The second most common secondary structure elements are B-strands. A B-stranded structure is a
single polypeptide chain with a backbone in an almost fully stretched conformation. Several B-
strands located next to each other and connected by hydrogen bonds are called B-sheets. Three
types of B-sheets exist that are all named according to their hydrogen-bonding pattern: parallel,

antiparallel or mixed B-sheets (see Figure 1.6).

Transmembrane proteins with B-barrels mostly appear in the asymmetric outer membrane of
bacteria, chloroplasts and mitochondria. In gram-negative bacteria, only B-barrel proteins are located
within the outer membrane whereas in mitochondria and chloroplasts there are a-helical as well as
B-barrel-like proteins (Wimley, 2003). However, there are also two atypical B-TM proteins (MspA and
a-hemolysin) in gram-positive bacteria that typically do not contain B-barrel-like proteins (Remmert,
et al., 2010). The B-strands are arranged predominantly in antiparallel B-sheets like a barrel with a

hydrogen-bonding between the first and the last strand (see Figure 1.7).

Figure 1.6 Generic structure of B-strands. B-strands that are connected with hydrogen bonds to B-
sheets are called either parallel or anti-parallel B-sheets dependent on the orientation of the B-
strands to each other. A protein that contains both types (parallel and anti-parallel) has overall mixed
B-sheets. Figures taken from (Berg, 2010).



The amino acid composition of membrane-spanning segments of B-barrel-like proteins is mainly
influenced by the hydrophobic membrane-bilayer and the hydrophilic pore or plug domain inside of
the barrel. Thus, membrane-spanning segments in B-barrels have a high propensity of charged
residues (asn, asp, gln, glu, arg, lys) located at positions that are facing the pore and hydrophobic
residues at positions that are facing the membrane bilayer (Gromiha and Suwa, 2005). This
observation of alternating amino acids was applied for predicting membrane-spanning B-strands
using Hidden Markov Models (e.g., PRED-TMBB (Bagos, et al., 2004), PROFtmb (Bigelow, et al.,
2004)).

Another difference between a-helical and B-barrel-like proteins is the membrane they are located in.
a-helical proteins are located in symmetric phospholipid bilayers (e.g., eukaryotic membranes and
prokaryotic inner membranes) whereas B-barrel-like proteins are inserted in an asymmetric
membrane (e.g., prokaryotic outer membranes) with phospholipids on one and lipopolysaccharides
on the other side. Accordingly, there is also a rule for the location of positively charged amino acids
in non-membranous loop segments of B-barrels. Positively charged amino acids (e.g., R, K) occur
prevalently in the extracellular cap (Jackups and Liang, 2005) and were shown to interact with non-
membranous fragments of lipopolysaccharides (LPS) (Ferguson, et al., 2000; Kukkonen, et al., 2004)
resulting in a positive-outside rule for B-barrel-like proteins opposite to the positive-inside rule for a-

helical proteins (Jackups and Liang, 2005).

(A) (B)

Figure 1.7 Chain A of the NanC porin (PDB code: 2WIJR) as an example for a B-barrel-like structure.
(A) View from the side. (B) View from top.



As for a-helical proteins, the observed B-sheet forming propensities (Fooks, et al., 2006; Minor and
Kim, 1994) of amino acids were used in computational methods to predict membrane-spanning
segments of B-barrel-like proteins (Hayat and Elofsson, 2012; Randall, et al., 2008). However, an
accurate prediction of membrane-spanning B-strand segments is more difficult than the prediction of
a-helical transmembrane segments. The simple usage of hydrophobicity is not sufficient because the
hydrophobicity pattern is not perfectly regular due to twists within the sheets (Remmert, et al.,
2010). Additionally, the B-strands of B-barrel-like proteins are much shorter than a-helices with a
length between 8 and 15 residues and a rise of 2.7 + 0.5 A per residue in a membrane of size 19 - 35
A depending on the thickness of the membrane bilayer (Ulmschneider and Sansom, 2001; Wimley,

2002).

1.2.4 Less Frequent Secondary Structure Types

Around 10 % of helical structures are 3;p-helices. They contain, as the name suggests, 3 residues and
10 atoms per turn. Their radius of 1.9 A is smaller than the one of an a-helix whereas the average rise
per residue is with 2.0 A higher than the rise of an a-helix (Enkhbayar, et al., 2006; Pal, et al., 2002)
(see Figure 1.7). Accordingly, packing and van-der-Waals contacts between residues within 3o-
helices are not optimal. This explains a less frequent occurrence of 3,5-helical segments compared to
a-helical segments (Vieira-Pires and Morais-Cabral, 2010). Hence, 310-helices are assumed to occur in
important protein segments like binding sites (i.e. copper or heme) or to be involved in signal
transduction (Pal and Basu, 1999). Similar to a-helices and B-strands, 3i5-helices are commonly
annotated in protein structure files of the Protein Data Bank and they can be detected by all standard
secondary structure assignment programs (DSSP (Kabsch and Sander, 1983), STRIDE (Heinig and
Frishman, 2004) etc.).

A secondary structure element that has been observed only rarely in proteins (<1%), is the so-called
ni-helical element (Riek, et al., 2001; Weaver, 2000). n-helices contain 4.4 residues and 16 atoms per
turn, resulting in a helix with a radius of 2.8 A and an average rise per residue of 1.1 A (Fodje and Al-
Karadaghi, 2002; Riek, et al., 2008) (see Figure 1.8). The high diameter creates a loss of van-der-
Waals contacts between amino acids within a m-helix causing the ni-helical elements to be less stable
and energetically unfavorable compared to regular a-helical segments (Riek and Graham, 2011).
Similar to 34¢-helices, m-helical elements are only observed in small fragments of a helix. Therefore,
ni-helical structures are typically missed by the assignment of secondary structure programs and are
falsely declared as a-helices (Cooley, et al., 2010). However, ni-helices have been discovered to occur

at functional sites within proteins (Cartailler and Luecke, 2004; Gonzalez, et al., 2012; Riek and

9



Graham, 2011; Riek, et al., 2001; Weaver, 2000) and a recently developed secondary structure

assignment method (SST (Konagurthu, et al., 2012)) considers nt-helices explicitly.

Finally, there are kinks that are defined as a single amino acid or as a stretch of amino acids that

causes a change of the orientation of a helix. Typically, kinks are induced by the occurrence of a

proline within an a-helical segment (Huang and Chen, 2012). Proline residues have been shown to be

strong helix breakers (i.e. cytochrome c oxidoreductases) (Ulmschneider and Sansom, 2001).

Although there are computational methods (i.e. TMkink (Meruelo, et al., 2011), Helanal (Langelaan,

et al., 2010) etc.) to discover kinks within helices, there is still no standard definition of assigning the

residue located at the center of the kink or defining a cut-off of a minimal kink that distinguishes a

kink from a regular a-helical structure (Werner and Church, 2013).

Type 310-helix a-helix ni-helix
Residues per turn 3 3.6 4.4
Atoms per turn 10 13 16

View from top

l‘\

Helical radius

View from side

Rise per residue

2.0A

1.56 A

1.1A

Hydrogen bonds

i—i+3

i —i+4

i— i+5

Figure 1.8 Structural differences of 3,4, a- and n-helices. Structure figures are taken from (Riek, et al.,

2001)
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1.2.5 Tertiary Structures

The spatial arrangement of secondary structure elements is called tertiary structure. A general
example of a tertiary structure is the B-barrel described in chapter 1.2.3. More specific is the term
“fold” that describes in a generalized form a tertiary structure being common among a set of
evolutionarily related proteins (e.g., FIRL for proteins having a five transmembrane-helix inverted
topology repeat, LeuT-like fold). A definition of a new fold or an assignment of proteins to different
folds typically requires human knowledge since a fold is a rather visual definition. Thus, accurate
classifications of proteins into different fold families (e.g., SCOP (Murzin, et al., 1995), CATH (Orengo,
et al.,, 1997) or HOMEP (Forrest, et al., 2006)) are not fully automated and still rely on manual
assignments but there are also less error-sensitive approaches for mapping proteins automatically to

different fold families (Holm and Sander, 1996).

The use of spatial information from tertiary structures allows for a better detection of specific
protein domains, bonding interactions and pathways within a protein than it is possible by applying
only sequence or secondary structure information. This increase of dimensionality in information
consequently also increases the complexity and difficulty of predicting the tertiary structure of a
protein. Two computational principles are applied to address this issue: template-based approaches

(e.g., homology modeling) and non-template-based methods (e.g., ab initio modeling).

Template-based methods require the presence of at least one evolutionarily related (homologous)
protein to the protein of interest that shares a similar tertiary structure as the protein of interest.
This template protein has to be detected (e.g., by a database search method) followed by a more
detailed detection of homologous amino acids in the protein sequences of the template and target
proteins (e.g., by an alignment method). Further details about homology and homology modeling are

described the next chapter.

If a homologous template structure is not present, homology modeling is not suitable and there are
several other methods that can be applied. First, there are ab initio methods referring to fragment
based approaches. The three-dimensional shape of a protein is predicted by building up the
structures from fragment pieces. Second, there are template-free methods using evolutionarily
couplings (Hopf, et al., 2014). Correlated evolutionarily events within a protein were observed to be
suitable for identifying residues that are close in space. Based on the couplings between such residue
pairs, a three-dimensional model can be build up. Last, threading algorithms also do not require

detailed information of the homology to be known beforehand but they need a template structure.
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These threading algorithms apply statistical knowledge deduced from known information about

evolutionarily and structural events (Gront, et al., 2012; Wu and Zhang, 2008).

1.2.6 Quaternary Structures

The quaternary structure of a protein describes the arrangement of three-dimensional structural
elements in larger complexes. A protein can be composed of single units (monomers with a single
polypeptide chain) as well as of multiple units (2: dimer, 3: trimer, etc. with multiple polpypeptide
chains). Multiple protein units can be stabilized with each other (e.g., via hydrogen bonds) and/or
can be interacting with each other (e.g., via van der Waals forces). The similarity between multiple
subunits is described by the suffixes homo for units that are identical and hetero for units that differ
from each other. The interaction of these units has been shown to be crucial for binding and
transport of substrates through the membrane. An example from the HOMEP3 data set for a
guaternary structure is the homotrimeric structure of the multidrug transporter AcrB (PDB code:
4DX5 (Eicher, et al., 2012), Table A.3) consisting of three different subunits with a similar sequence
that are connected with each other by loops which also stabilize the protein. Each of the subunits can
be in one of three states: loose, tight and open. A substrate (e.g., acridine) can be bound to a
monomer of ArcB being in the loose state, is transported through the protein in the tight state and
finally released in the open state. During the conformational change of one monomer, a synchronous
conformational change of the two other monomers is observed reflecting an alternating access
mechanism that allows for the transport of protons and substrates through the membrane (Eicher, et

al., 2014; Pos, 2009).

1.3 Sequence & Structural Homology Between Proteins

1.3.1 Definition of Homology

A structural or sequence-based similarity between proteins can arise from distinct evolutionarily
events. Analogous structures share a similar function or structure but evolved independently from
each other in a process called “convergent evolution”. These proteins are similar but do not share a
common ancestor. In contrast, two proteins are called homologs if they share a common ancestor
during evolution. There are two types of homologous proteins: paralogs and orthologs. Paralogs are
created by a duplication event within the genome of an organism whereas orthologs are genes in
different species that descended from the same ancestral sequence present in the last common
ancestor of both proteins. Single or multiple evolutionarily events (insertions, deletions, mutations)

within the sequence of the common ancestor cause differences in sequence and structure of
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homologous proteins. Despite the large changes on the sequence level, the overall fold of
homologous proteins typically stays similar during evolution as does the function (Shakhnovich, et
al., 2005). A homology between two or more proteins can be detected by a comparison of the
sequences and/or structures of the proteins of interest. For this purpose, each amino acid of a
sequence has to be assigned to the evolutionarily corresponding amino acid of the other sequence(s)
in a so-called alignment. This assignment of evolutionarily-related amino acids can be carried out on
a sequence (Altschul, et al., 1990; Needleman and Wunsch, 1970), structural (Holm and Sander,
1993) or both levels (Tang, et al., 2003). Several (computational) methods have been developed for
comparing protein sequences by generating an alignment and assessing the quality of the alignment
being generated. The choice of the method for comparing/aligning proteins is dependent on the

information that is available for the proteins of interest (Fiser, 2010).

1.3.2 Sequence-based Comparison of Proteins in General

The lowest informational content is stored in the amino acid sequence of a protein, followed by its
secondary structure, tertiary and quaternary structure. Nonetheless, protein comparisons on a

sequence level have been shown to be useful for detecting homology between proteins.

In the case of sequence alignments, the amino acid sequences of both proteins are represented as
strings and evolutionarily related amino acids are assigned to each other based upon their similarity.
Evolutionarily related amino acids that are assigned to each other are called matches if they are
similar or mismatches if they are not identical (i.e. point mutations). Insertions or deletions within a

sequence are represented by so-called gaps.

The main target of sequence alignment methods is an accurate assignment of evolutionarily related
residues. For this, several computational methods were developed that each detects similarity
between two (or more) protein sequences in a distinct way. All of these alignment approaches only

require the amino acid sequence as an input for their alignment.

The first sequence alignment method for matching two protein sequences was the algorithm of
Needleman and Wunsch (Needleman and Wunsch, 1970). The idea of the Needleman-Wunsch
algorithm is to maximize the number of identical or similar amino acids by using a dynamic
programming approach. For this, similarity between two positions is defined in a generalized
similarity matrix (i.e. BLOSUM, PAM — see chapter 3.2.2.1) that has positive values for similar and
negative values for non-similar amino acids. Evolutionarily insertions and deletions (gaps) are
penalized by negative values. The final alignment is the one that leads to the highest similarity score.

More details about alignment concepts can be found in chapter 3. Similar to this approach to align
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the full sequences of proteins, there is also the Smith-Waterman algorithm (Smith and Waterman,
1981) that was developed for local alignments of protein sequences. Local alignments are also
applied by the BLAST (Basic Local Alignment Search Tool) algorithm (Altschul, et al., 1990) that
locates short matches between two proteins using a heuristic seed-based method. All these
algorithms require a high sequence similarity between two proteins for obtaining an accurate
assignment of evolutionarily related sequence positions. However, proteins have been shown to be
homologs despite a low sequence identity (e.g., a low number of conserved residues during
evolution) by sharing a similar tertiary structure and/or function. Consequently, more advanced
computational methods were developed that include more (evolutionarily) information and/or more

flexible algorithms.

First, position-specific evolutionarily information was included in the process of comparing proteins.
A commonly used database search method that uses such information is PSI-BLAST (Altschul, et al.,
1997) that applies several iterations to obtain evolutionarily related protein sequences. The first
iteration of PSI-BLAST is identical to a standard BLAST search. Based upon the highest-scoring results
of this search and the underlying multiple sequence alignment, a profile in the form of a position-
specific substitution matrix (PSSM) is generated. A PSSM contains for each sequence position
substitution values to all other amino acids and therewith allows assigning different substitution
rates to strongly conserved and highly flexible sequence positions. The obtained PSSM is then used in
the next iteration instead of the substitution matrix that was used in the step before. This process is

iteratively continued for a defined number of steps.

The usage of three or more evolutionarily related sequences in a multiple sequence alignment is
based on a similar idea. Including evolutionarily related sequences into an alignment increases the
likelihood of identifying evolutionarily conserved sequence positions, which then helps to generate

an accurate alignment (Edgar, 2004; Liu, et al., 2010; Notredame, et al., 2000).

Another idea is the increase of flexibility within the sequence alignment algorithm. Position-specific
gap penalties were introduced to account for the fact that insertions or deletions have a different
likeliness to occur at specific protein segments. Such protein segments can be defined by properties
inherent of a protein like its hydrophobicity (Thompson, et al., 2002) or by the evolutionarily
composition of each sequence position as implemented in alignment methods based upon Hidden
Markov Models (HMMs) (Eddy, 2011). However, evolutionarily information might not be adequate to
describe the relationship between two distantly related proteins that share a low sequence identity
but have an overall similar fold. For the incorporation of structural elements during evolution,

methods were developed that also include secondary structure information in the form of secondary
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structure predictions or known three-dimensional information along with evolutionarily information

for the alignment process (Remmert, et al., 2011; Yang and Honig, 2000).

Interestingly, all these methods are commonly used for alignments of membrane proteins although
they were developed upon general data sets including all kinds of proteins. However, membrane
proteins have a different amino acid composition and distinct evolutionarily patterns within their
membrane-spanning segments due to the interactions of these segments with the membrane-
bilayer. This lack of membrane specific information can result in inaccurate alignments especially in
the case of distantly related homologs (Forrest, et al., 2006). Consequently, | developed a
membrane-specific alignment method for membrane proteins that was optimized on a reference set

of membrane protein alignments, which will be described in the next chapters.

1.3.3 Sequence-based Comparison of Membrane Proteins

One of the main characteristics of membrane-spanning proteins, the annotation of their membrane-
spanning segments, has been applied by two multiple sequence alignment methods (STAM (Shafrir
and Guy, 2004) and PRALINE™ (Pirovano, et al., 2008)). Both methods apply different evolutionarily
substitution rates for membranous (i.e. PHAT (Ng, et al., 2000)) and non-membranous protein
segments (i.e. BLOSUMG62 (Henikoff and Henikoff, 1992)) in order to improve alignment accuracy.
During the alignment process, STAM first separates out the transmembrane segments and aligns
them independently whereas PRALINE™ keeps the sequences undivided. STAM and PRALINE™ both
only consider evolutionarily information in the alignment process. Additional information like
membrane propensities, hydrophobicity or secondary structure probabilities are not considered.
However, the application of hydrophobicity for comparing membrane protein sequences has been
shown to be successful for detecting homology between membrane proteins (Lolkema and
Slotboom, 1998; Lolkema and Slotboom, 1998; Lolkema and Slotboom, 2005). Unfortunately, this
principle to align proteins by their hydrophobicity profiles has neither been automated nor been

tested systematically on a set of membrane protein families.

1.3.4 Sequence to Structure Modeling

Generating a three-dimensional structure of a sequence for which a structure is not known is
possible by applying discovered homology between a sequence without known structure (target) and
a sequence with known structure (template) in a process called homology modeling. The idea of
homology modeling is that evolutionarily-related amino acids of two proteins are located in a similar
spatial arrangement. Therefore, accurate alignments are required to ensure a correct detection of a

template structure as well as a correct assignment of evolutionarily-related residues. Based upon an
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underlying sequence alignment, amino acids of the target protein are assigned to amino acids of the
template protein and modeled according to this assignment using spatial constraints, energy
functions or other biophysical parameters (i.e. surface-accessibility, van-der Waals interactions etc.)
(Eswar, et al., 2006; Kelm, et al., 2010; Sali and Blundell, 1993). The final result of homology modeling

is a three-dimensional model of the target protein for which a structure was not known so far.

Homology models can give insights into important structural features of a protein that cannot be
deduced directly from a protein’s sequence. The structural information of a homology model enables
the prediction of binding sites, transport pathways or protein-protein interaction sites. These
predictions can help to guide the design of constructs for elucidating a protein’s structure (i.e. X-ray
crystallography, NMR) and can offer new insights into the understanding of a protein’s function

(Faraldo-Gomez and Forrest, 2011; Radestock and Forrest, 2011; Schushan, et al., 2012).

A shortcoming of homology modeling is the lack of structural information for sequence fragments
without an underlying template due to insertion or deletion events between target and template
sequence during evolution. Such insertions or deletions typically occur less frequently in conserved
segments than in variable protein segments. The modeling of loop segments is addressed by special
modeling programs, which consider the characteristic amino acid composition and evolutionarily
divergence of loop segments. There are two strategies for loop modeling: modeling loops ab initio
(e.g., ModLoop that relies on the loop modeling routine in Modeller (Fiser and Sali, 2003)) or using a
database search method to detect fragments that can be inserted as loops into the protein (e.g.,
FREAD (Choi and Deane, 2010)). Nonetheless, the accuracy of segments modeled without underlying
template structure is lower than the one of segments that are modeled based on a template
structure. Another factor that weakens the quality of a homology model is the similarity of the target
and template sequences. A lower sequence similarity decreases the alignment accuracy so that less

accurate homology models may be generated (Forrest, et al., 2006).

Several homology modeling approaches have been developed and are tested bi-annually in CASP
(Critical Assessment of Techniques for Protein Structure Prediction) experiments (Kryshtafovych, et
al., 2013). Recent results of CASP show that a reliable detection of homologous proteins, accurate
alignments and a good score for constructing the model improve the model quality but that there are
advantages and disadvantages for all methods on all steps of the homology modeling process.
Consequently, an overall perfect homology modeling strategy that performs best for all types of

proteins does not exist (Kryshtafovych, et al., 2013).
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1.3.5 Structure-based Comparisons of Proteins

The availability of two homologous protein structures enables a comparison on a structural level by
structural alignment programs. Recent studies have evaluated methodologies and accuracies of a
diverse set of structural alignment methods (Berbalk, et al., 2009; Kolodny, et al., 2005; Sadowski and

Taylor, 2012; Slater, et al., 2012).

All structural alignment methods tested are based on the assignment of evolutionarily-related amino
acids of homologous proteins that are in a similar secondary structure type and orientation in three-
dimensional space. Consequently, spatial information of protein structures or fragments is used in
combination with a distance measure describing the similarity of those proteins or protein fragments
in order to superimpose their three-dimensional protein structures. Similar to sequence alignment
methods, the output consists of a set of aligned amino acids as well as a similarity measure of the
two proteins, but this similarity measure is structure- and not sequence-based. An additional output
of structural alignment programs is a structure superimposition that can be used for a visualization of

the alignment.

Challenges for all structural alignment programs are the protein’s structural flexibility and dynamics.
A protein solved in a given state is represented by a single conformation (rigid) for an alignment
although the protein is dynamic and has a tendency to adopt a set of different conformations
(flexible). Homologous protein structures that are solved in different states are harder to align than
those that are crystallized in exactly the same state (Menke, et al., 2008; Ye and Godzik, 2003). In
general, homologous proteins are not solved exactly in the same conformation or even not in the
same state. Consequently, users of structural alignment programs have to be aware of the
conformation and structural state of the proteins to be aligned. And again, alignment accuracy is
dependent on the similarity of the protein structures used, with an increased accuracy for proteins

with a higher similarity.
Consequently, all structural alignment programs have their advantages and disadvantages according

to all evaluation studies of structural alignment programs mentioned above. There is no outstanding

program that generates accurate structural alignments for all types of proteins.
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1.3.6 Rating Structural Accuracy and Similarity of Protein Models

The accuracy of a structural protein model can be measured by either internal scores rating the

energy of a protein structure or by comparing the model to its original X-ray structure.

First, there are scores that rate the energy of a protein structure (e.g., DOPE score (Discrete
Optimized Protein Energy score) from Modeller (Eswar, et al., 2006)). Models that are assigned to
have a low energy score are more likely to be correct than those that have received a high energy
score. Unfortunately, such scoring functions were optimized on general data sets that contain
predominantly soluble proteins. This results in mean force potentials that are not suitable for
membrane proteins (Heim and Li, 2012; Ray, et al., 2012). There are also some membrane-protein
potentials but they are either not precise (e.g., ProQM (Ray, et al., 2010)) or not user-friendly

(Rosetta-Membrane (Yarov-Yarovoy, et al., 2006)).

Another approach for comparing structures of proteins (models) with each other is implemented by
distance-based geometric scores. In the CASP experiments, homology models are compared to the
original X-ray structures of their corresponding proteins using a variety of structural similarity scores
(Kryshtafovych, et al., 2013). Global superposition scores (i.e. RMSD, GDT_TS, AL4, TM-score, see
chapter 5.2.2) compare the arrangement of the backbone atoms of a homology model and X-ray
structure with each other. Model structures are assigned to be more accurate, the more similar the
arrangement of their backbone atoms is to those of the original X-ray structures. In contrast,
superposition-free model scores do not directly calculate spatial distances between the two proteins
of interest. An example of such a score is the CAD-score (Olechnovic, et al., 2012) that compares

differences in residue-residue contact areas of two protein structures.

Structural as well as sequential similarity annotations can be used to define similarity between
proteins for generating protein data sets. Besides providing an overview of the relationship between
protein sequences, such a protein data set of homologous protein sequences can also be applied for
assessing the quality of a specific method or score. Moreover, protein data sets are commonly used
as a reference for optimizing a method or a score on these data sets. Different types of protein data

sets are described in the next chapter.
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1.4 Databases for Proteins and Membrane Proteins

Much information about proteins (amino acid sequence, secondary and tertiary structure) as well as
the relationship between different classes of proteins is stored in a variety of databases; each of

them addressing a specific need.

First of all, there are databases that are collections of proteins without explicit information about the
relationship between those proteins. The most comprehensive databases are those containing
protein sequences with and without known structures (e.g., UniProtKB (UniProt, 2013) with a size of
547599 protein sequences (status: 4-Feb-2015), see web.expasy.org/docs/relnotes/relstat.html).
The UniRef100 (UniProt Reference Clusters) database merges identical sequences from UniProtkB
into single UniRef entries (Suzek, et al., 2007) and is therefore non-redundant. UniRef100 sequences
are also clustered at a 90% or 50% level using CD-HIT (Li and Godzik, 2006) to generate the
corresponding UniRef90 and UniRef50 databases. Aside from these databases, which contain
sequence information only, structural information about proteins that have been solved by X-ray
crystallography, NMR or EM is stored in the Protein Data Bank (PDB) (Berman, et al., 2003).
Derivations of the Protein Data Bank are the OPM (Orientations of Proteins in Membranes) (Lomize,
et al., 2006) and PDB_TM (Protein Data Bank of transmembrane proteins)(Kozma, et al., 2013;
Tusnady, et al., 2005) data banks that both contain only membrane proteins that were extracted
from the PDB. Both databases contain similar proteins but those proteins sometimes have slightly
different membrane annotations caused by the distinct computational approaches that were used
for generating these database. For the OPM database, a protein is handled as a rigid body that floats
in a hydrophobic membrane bilayer and an energy function that describes the spatial arrangement of
the protein structure in the lipid bilayer is minimized for this protein. This energy function considers
the accessible surface area of each atom, solvation parameters for each atom and an interfacial
water concentration profile (Lomize, et al.,, 2006). For the PDB_TM database, the detection of
membrane-spanning segments is divided in two steps. In the first step, the BIOMOLECULE record of
the PDB file is analyzed in order to detect internal symmetry between protein subunits. Symmetry in
a protein can help to guide the detection of the membrane axis because the rotational axis might be
parallel to the membrane bilayer normal. In a second step, an objective function is applied to detect
membrane-spanning protein fragments by considering three protein properties: water-accessibility,
hydrophilicity and a structure factor, which considers the straightness of a secondary structure, turns
and chain ends (Tusnady, et al., 2004). More details about the PDB_TM database can be found in

chapter 2.2.
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Next, there are databases that have classified proteins into families sharing a similar fold or function.
PROSITE (Sigrist, et al., 2010; Sigrist, et al., 2013) is a database of protein domains, families and
functional sites. Each protein family or domain is represented by associated patterns and/or profiles.
Patterns are manually defined observations that describe a protein family whereas profiles are
statistical descriptors of a multiple sequence alignment of the family similar to a Hidden Markov
Model. These profiles contain position-specific scores for amino acids and position-specific gap
penalties (for opening and extending a gap). Thus, each family is represented by a multiple sequence
alignment as well as by a Hidden Markov Model. The SCOP (Structural Classifications of Proteins)
database (Murzin, et al., 1995) contains structural classifications of protein structures in general
based upon structural superimpositions of those proteins, similar to the HOMSTRAD (Mizuguchi, et
al., 1998; Stebbings and Mizuguchi, 2004), FSSP (Holm and Sander, 1996) (Holm and Sander, 1996)
and CATH (Class, Architecture, Topology, Homology) (Orengo, et al., 1997) databases. More
specialized is the data set of “membrane proteins of known 3D structure” that only contains
membrane protein structures that are classified into specific functional families

(http://blanco.biomol.uci.edu/mpstruc/).

Moreover, some databases also contain direct information about the relationship between two or
more proteins described in the form of sequence alignments of each family. In Pfam (Punta, et al.,
2012), for example, protein families are represented by motifs in form of multiple sequence
alignments and Hidden Markov Models. BALIBASE (Bahr, et al., 2001; Thompson, et al., 2005;
Thompson, et al., 1999) is a manually refined database of multiple sequence alignments for a diverse
set of protein families (including membrane proteins, repeats, circular permutations etc.). Pairwise
information in the form of pairwise alignments and homology models based upon those alignments
is stored in ModBase and HOMEP. ModBase is a database of annotated protein structure models
derived from an automated modeling pipeline that relies on PSI-BLAST and Modeller (Pieper, et al.,
2014). More specific is the manually created HOMEP data set with a set of homologous membrane

proteins, pairwise alignments and corresponding homology models (Forrest, et al., 2006).

Finally, there are specialized databases for more specific requests like searching for protein motifs
(i.e. PRINTS (Attwood, et al., 2003; Scordis, et al., 1999), protein-protein interactions (i.e. STRING
(von Mering, et al., 2005)) and many more protein-specific properties or relationships among

proteins.
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1.5 Outline of this Work (Research Question, Problem Statement)

Computational approaches for proteins (i.e. alignments, databases) were typically developed,
optimized and evaluated using general protein data sets, although there is the distinct class of
membrane proteins. This dissertation addresses this issue by studying and evaluating computational
approaches and ideas to understand homology and evolutionarily events among membrane proteins

on a sequence and structural level. The outline of this work is as follows:

First, a reliable and recent data set of membrane proteins is required to be able to understand
membrane proteins. Thus in chapter 2, | updated a an earlier data set of homologous membrane
proteins that | used in my diploma thesis (Stamm, 2010) to more recent versions in 2010 (HOMEP2)

and 2013 (HOMEP3) using automated clustering approaches.

In a next step (chapter 3), the challenge of aligning a-helical membrane proteins accurately is
addressed. A novel sequence alignment package for membrane proteins (AlignMe), which |
developed together with colleagues and reported on in my diploma thesis (Stamm, 2010), has been
developed further to allow for more input options (e.g., position-specific substitution matrices or
membrane prediction propensities) and was optimized using these new inputs on the HOMEP2 data
set. The applicability and accuracy of different modes of AlignMe were then tested and compared to
other recent sequence alignment methods using a sequence-based comparison to reference
alignments of the HOMEP2 data set. This study includes more alignment methods (e.g., MSAProbs or
ProbCons) than my diploma thesis. In addition, alignment accuracy was also assessed using homology
modeling on HOMEP2 and a sequence-based evaluation on an independent benchmark set of
membrane protein alignments (BALIBASE reference 7), which has not been done previously. This

work was published in March 2013 in PLOS ONE (Stamm, et al., 2013).

The implementation of a webserver for AlignMe is described in chapter 4. The alignment accuracy of
AlignMe is compared to those of other recent webservers for aligning protein sequences.
Additionally, the alignment of family-averaged hydropathy profiles using AlignMe (Khafizov, et al.,
2010) and the corresponding implementation into the AlignMe web server is described. This work

was published in the NAR web server issue in July 2014 (Stamm, et al., 2014).

Chapter 5 contains an assessment of the accuracy of structural alignment methods for membrane
proteins using the HOMEP3 data set that includes a-helical and B-barrel-like proteins. As in chapter 3,
homology modeling is used as an assessment criterion for alignment accuracy and additionally, a

deeper insight into structural similarity scores (i.e. superposition-dependent vs. superposition free

21



scores) is provided. This work was published in the journal “PROTEINS: structure, function and

bioinformatics “ in August 2015 (Stamm and Forrest, 2015).

Evolutionarily events within transmembrane segments of membrane proteins are examined in
chapter 6. Four different structural alignment methods that were shown to generate accurate
alignments (see chapter 5.3.8) were used to generate a consensus alignment for each protein pair
within HOMEP3. These consensus alignments included confidence values for each alignment position
and enabled the identification of reliable single insertions and deletions (InDels) within several
membrane protein families. Detected InDels were examined for changes within secondary structure

elements and their effect on protein-specific functions such as ligand specificity.

Finally, all results are discussed and the key findings, as well as the impact of this dissertation on
membrane protein research, are summarized in chapter 7. Possible improvements of the current
work are also discussed. Additionally, an outlook for future perspectives on the topic of membrane

protein alignment is provided.
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2 Automated Generation of Homologous Membrane Protein Data

Sets (HOMEP2 & HOMEP3)

2.1 Introduction

Protein data sets are collections of membrane protein sequences, structures or other biological
information about proteins. The inherent information that is stored in a protein data set is
dependent on the topic that a data set addresses like information retrieval or the optimization or
evaluation of computational methods (i.e. database searches, clustering methods etc.). Accordingly,
there are general protein data sets as well as data sets that are composed only of membrane protein
structures that will be discussed in the following chapter. Similar to the general data sets, which are
mentioned in chapter 1.4, different types of membrane protein data sets exist (see Table 2.1 for an

overview of membrane protein databases), which are described here in more detail:

First, there are membrane protein data sets that are collections of membrane proteins without an
evolutionarily annotation between the proteins. Annotations of membrane-spanning segments (i.e.
number of TM segments, location of TM segments etc.) are stored in several databases: CGDB, OPM
and PDB_TM. For CGDB (coarse-grained model database), coarse-grained simulations of proteins,
lipids and water were applied to assemble the lipids around the protein (Sansom, et al., 2008)
whereas for OPM (Orientations of Proteins in Membranes) (Lomize, et al., 2006) an implicit solvent
model of the lipid bilayer is used (Lomize, et al., 2006; Lomize, et al., 2007) and for PDB_TM (Protein
Data Bank of transmembrane proteins) (Kozma, et al., 2013; Tusnady, et al., 2004; Tusnady, et al.,
2005) an objective function that considers solvent accessibility, hydrophobicity and structural
features is applied for inserting a membrane protein into a membrane (Tusnady, et al., 2005). In
contrast to CGDB, which is a fixed set of proteins, OPM and PDB_TM are updated on a regular basis.
Besides structural information, also functional and experimental information can be retrieved from
the Membrane Protein Data Bank (MPDB) (Raman, et al., 2006). Record entries of the MPDB contain
structural, functional and experimental information of integral, anchored and peripheral membrane
proteins and peptides that have been revealed by X-ray, NMR or EM experiments. Direct information

of the relation between the proteins is not provided by these data banks.

Another type of membrane protein databases includes evolutionarily information between the
proteins they consist of. The Transporter Classification Database (TCDB) contains sequence,
structural, functional and evolutionarily information about (putative) transporter proteins (Saier, et

al., 2006). Similarly, TransportDB is composed of cytoplasmic membrane transporters and outer
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membrane channels (Ren, et al., 2007). A more specific database is the GPCRDB (Horn, et al., 2003)
that stores large amounts of heterogeneous data (e.g., sequence information, binding constants,
homology models etc.) about G-Protein coupled receptors. Also for B-barrel-like proteins, there are
specific databases like OMPdb (Tsirigos, et al., 2011) that contains classifications of integral B-barrel
outer membrane proteins from gram-negative bacteria into distinct families based upon functional
and structural criteria. However, all these databases contain only a subset of all membrane protein

classes, hence they are too specific for a general analysis on membrane proteins.

Other data sets are specialized on certain organisms like the ARAMEMNON database that provides
membrane protein data of nine plant species (Schwacke, et al., 2003). A more general data set for all
types of membrane proteins is the set of “membrane proteins of known 3D structure” in which all
types of membrane protein structures that have been solved are classified to specific functional
families (http://blanco.biomol.uci.edu/mpstruc/). More specialized by considering only NMR
structures is the set of “membrane proteins of known structure determined by NMR”

(http://www.drorlist.com/nmr/MPNMR.html).

More explicit information about the evolutionarily relationship between proteins is contained in data
sets that provide alignments of their proteins. The HOMEP (HOmologous MEmbrane Protein) data
set from 2006 (Forrest, et al., 2006) contains 36 proteins in 11 families including homology models
and underlying alignments of different quality (good models vs. decoy models) for each pair of
proteins within a family. This data set has been used to test scoring functions for membrane protein
structures (Heim and Li, 2012) or to test the quality of database searches (Bernsel, et al., 2008).
Another data set of membrane proteins that addresses the alignment accuracy of membrane
proteins is the Reference 7 set of BAIIBASE (Bahr, et al., 2001) generated in 2001, which was shown
to be adequate for evaluating the alignment quality of a membrane protein alignment method
(Chang, et al., 2012). This set contains 435 membrane proteins in 8 superfamilies, namely 7tm, acr,

photo, dtd, ion, msl, Nat and ptga, each superfamily aligned in a multiple sequence alignment.

A shortcoming of both data sets (HOMEP and BALIBASE reference 7) is their age, meaning a lack of
recent sequence and structure information of newly solved membrane proteins. For this reason, new
versions of HOMEP were created that will be described in this chapter. The HOMEP2 data set of 2010
was used for the optimization of AlignMe (see chapter 3). In 2013, an updated version of HOMEP2
called HOMEP3 was applied for assessing the accuracy of structural alignment methods (see chapter

5) and for locating single evolutionarily deletions and insertions (see chapter 6).
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Table 2.1 - Overview of Membrane Protein Databases

Type of database Name URL
Databases with PDB_TM http://pdbtm.enzim.hu/
annotations on OPM http://opm.phar.umich.edu/
membrane-spanning CGDB http://sbcb.bioch.ox.ac.uk/cgdb/
segments
Structural, functional and MPDB http://www.mpdb.tcd.ie/
experimental data of
membrane proteins
Membrane protein family- | TCDB http://www.tcdb.org/
specific databases with TransportDB http://www.membranetransport.org/
evolutionarily information | GPCRDB http://www.gpcr.org/7tm/

OMPdb http://www.ompdb.org/
Membrane protein data of | ARAMEMNON | http://aramemnon.uni-koeln.de/
nine plant species
Pairwise alignments and HOMEP, http://www.forrestlab.org/software_databases/
homology models of HOMEP2,
membrane proteins HOMEP3
Multiple alighments of BALIiBASE http://www.lbgi.fr/balibase/

membrane proteins

reference 7
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2.2 PDB_TM Database as a Starting Set for Clustering Membrane Proteins

A manual assignment of proteins to specific membrane protein families has become too time-
consuming with the increase in unique membrane proteins structures that have been solved (see
Figure 2.1). Consequently, an automated clustering method is needed to regenerate an updated set
of membrane protein families. Additionally, a computational approach might discover protein

relationships that are not detectable by a manual annotation.
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Figure 2.1 Statistics about unique membrane protein structures that have been solved according to
the database “Membrane Proteins of known 3D structure”, http://blanco.biomol.uci.edu/mpstruc/

The Protein Data Bank of Transmembrane Proteins (PDB_TM) (Kozma, et al., 2013; Tusnady, et al.,
2005) is a good starting set for clustering membrane proteins to families of homologous sequences.
This database was created with the TMDET algorithm (Tusnady, et al., 2004) scanning all PDB entries
in regular time intervals resulting in a steady increase of the data bank (see Figure 2.2). In a first step,
the TMDET algorithm filters the PDB data bank by excluding virus and pilus proteins as well as
nucleotide sequences. For all other sequences, the biological oligomer is then build by using the
BIOMOLECULE record stored within the PDB File. Non-biological contacts, which result from the
crystallization process, are removed. This generation of an oligomer helps to identify symmetry
within the protein that facilitates the search of a membrane location based upon an objective
function. Three protein properties are examined and combined into this objective function. First, the
water-accessible surface area in the structure is calculated for each amino acid within the protein
sequence. Second, all amino acids are classified into hydrophilic (A, C, D, E, H, K, N, P, Q, R, S) and
hydrophobic (F, G, I, L, M, V, W, Y) residues, which was shown to be as adequate as using

hydrophobicity scales. Last, a structure factor is incorporated by analyzing the three-dimensional
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fragments of the protein for their likeliness to contain turn or ends of chains as well as for their
straightness. Membrane-spanning segments are assumed to contain hydrophobic residues that are
exposed to the solvent (in case of membrane proteins, this is the membrane) and are assumed to

form a regular structure.

For proteins that are detected as membrane proteins, the number of membrane segments is
annotated as well as a residue-specific annotation of whether amino acids are inside or outside of
the membrane. All information observed is stored in an XML-file that can be easily accessed and
evaluated by custom computational scripts. For this study, | developed several scripts to process data

from the PDB_TM data bank using C++, Perl and Bash.
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Figure 2.2. Total number of membrane proteins (including single-spans) that are in the PDB_TM
database as a function of time. Statistics taken from http://pdbtm.enzim.hu/?_=/statistics/growth
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2.3 Common Principles of Clustering Membrane Proteins to a Set of Homologous

Proteins for HOMEP2 and HOMEP3

The HOMEP2 and HOMEP3 data sets are both based upon the membrane proteins that are listed in
the PDB_TM database. Several principles that are applied for clustering membrane proteins are
similar for the HOMEP2 and the HOMEP3 data sets. For both HOMEP data sets, all protein structure
coordinate files listed in the PDB_TM database were downloaded from the Protein Data Bank and
filtered in order to include only high-resolution structures with a resolution <3.5 A. NMR structures,
theoretical models or structures with a resolution >3.5 A were therefore discarded. The extracted
proteins were then separated according to their overall fold: a-helical or B-barrel-like; and each
protein structure was split into its individual chains. For all pairs of proteins sharing the same number
of membrane segments pairwise structural alignments were generated using a structural alignment
method. The resulting structural alignments as well as the underlying sequence alignment of each
protein pair were subsequently analyzed for their similarity using specific similarity scores. Threshold
values were then used for clustering proteins with adequate similarity scores to a common family. In
case of identical proteins or protein chains, the protein (chain) with the better resolution or if the
resolution was equal, the one with the smaller R-factor was chosen to be the representative for that

type of protein (chain) within a family.

2.4 Initial Generation of HOMEP?2

In the case of HOMEP2, structural alignments for each protein pair were generated using SKA (Petrey
and Honig, 2003; Yang and Honig, 2000) and their similarity was rated using a structural similarity
score (PSD) as well as two sequence similarity scores (one based upon structure alignment, the other

on a pure sequence-based alignment).

Typically, the RMSD score (Kabsch, 1976) is used to rate the similarity between two protein
structures. For each amino acid (i), the structural differences between corresponding C,-atoms (v;

and w;) of the two superimposed structures of length L, is calculated:

2

oL

RMSD(v,w):\/:z[:] (vi—w,) (2.1)
aln

The squaring term makes the RMSD score very sensitive to large local deviations and differences in

the lengths of the template (Moult, et al.,, 1997; Moult, et al., 1995). Therefore, the PSD (Protein

Structural Distance) score calculated by SKA was used as a measure of the structural similarity
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between two superimposed structures instead. In contrast to the RMSD score, the PSD score is less
sensitive to large outliers because it averages them down. The PSD score is based upon the number
of secondary structure elements a for Protein A and b Protein B, the alignment score of the
secondary structure elements s(A,A) for the self-alignment of Protein A, and s(A,B) for the alignment
of Protein A with Protein B, an RSMD term and two adjustable parameters (x,y) for the sensitivity and
accuracy of the PSD score. The parameters x and y were set to the 3 A and 5 A respectively in the SKA
program because these values were shown to result in PSD scores that can be used to classify
proteins from the SCOP database accurately with a low number of positives, especially for low PSD

thresholds (Yang and Honig, 2000).

PSD(A,B) =

log [<maxc(lc;,ol;)2 <§%flf1§> ] 2 +<@>2 (2.2)

The PSD score approaches zero for two identical proteins and increases for more distant protein
structures. Two protein structures are assumed to be close homologs if their PSD score is below 0.4

and distant homologs if their PSD score is below 1.2.

For the sequence similarity, two similarity scores were calculated based either on a structural
alignment or on a sequence alignment. In general, structural alignments are more accurate than
sequence alignments but structural alignments might be less accurate in cases of proteins solved in
different states. In such cases, structural alignment programs might align residues that are close in
space but are evolutionarily not related. Sequence only methods do not face this issue. Accordingly,
the sequence similarity of two proteins is measured here based on a structural and on a sequence
alignment. First, the sequence similarity of a protein is calculated based on the sequence alignment
that is also generated by SKA alongside the generation of the structural alignment. This sequence
alignment is based on the spatial assignment of amino acids from the structural alignment. In a
second approach, the sequence similarity is calculated based upon a pairwise protein sequence
alignment without spatial information. Therefore, a simple Needleman-Wunsch algorithm and a
BLOSUMG62 substitution matrix are applied for generating the sequence alignment. Two protein
structures are assumed to be identical if they had a sequence identity above 85 % according to the

Needleman-Wunsch alignment and above 95 % according to an alignment obtained with SKA.

Using these three scores, a protein and two other proteins were clustered to a common group in a
first step if they were close or distant structural homologs (i.e. PSD score <1.2 for close (i.e. within

the same SCOP superfamily) or <0.4 for distant homologs) without being identical (i.e. sequence

29



similarity <95% based on a structural alignment). A group was then assigned as a family if all proteins
within that group fulfilled the clustering criteria to all other proteins of that group (see blue dots in
Figure 2.3). Otherwise, a second clustering step was applied to filter out incorrectly clustered
proteins. Therefore, all close homologs (i.e. PSD value below 0.4) were clustered to a common family
(e.g., the same SCOP family, red and green dots in Figure 2.3). Subsequently, distant homologs were
added if they were homologous (PSD score below 1.2) to all other proteins of that group (see yellow
dots in Figure 2.3). In the final step, pairwise alignments of all sequences in each family generated
using AlignMe (using BLOSUM®62, and standard gap opening and extension penalties of 10 and 1,
respectively) were used to identify redundant sequences (>85% sequence identity): for two chains of
the same protein, only the one with the longest sequence, or the lower total B-factor was retained;
for two chains of different proteins, only the one with the higher resolution, or with the smaller R-

factor, was retained.

This clustering strategy resulted in a data set of 81 proteins within 22 families and 177 alignments.
This data set is called HOMEP2 and captures a variety of protein folds and diversity among proteins
(i.e. transporters, channels, signal transduction proteins etc.). Additionally, HOMEP2 captures a large
range of protein chain sizes from 2 to 12 membrane-spanning helices with the smallest protein chain
sequence containing 101 and the longest sequence containing 535 amino acids. A detailed overview
of HOMEP2 is shown in Table A.1 and Table A.2. Due to this amount and diversity of proteins,
HOMEP2 was used as a representative membrane protein data set for optimizing the gap penalties of
a novel alignment program called AlignMe and for assessing the different alignment input descriptors

that were used to generate the alignments, see chapter 3.

mmssssm PSD-Threshold 0.4

PSD < 1.2 and related
to all within the cluster

PSD-Threshold 1.2

Figure 2.3 Clustering principle used for generation of the HOMEP2 data set. Proteins are represented
by dots. Dots with the same color are assigned to the same family. Grey dots do not belong to any
family. The detailed clustering procedure is described in chapter 2.4.
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2.4.1 Modifications of HOMEP2

After an initial optimization of the gap-penalties for AlignMe using substitution matrices (see chapter
3 for more details), | found some sequence-based alignments of HOMEP2 to be highly different from
the reference alignments of HOMEP2. Even alignments of proteins that were found to be close
homologs were concerned. Thus, | had a closer look at these alignments to find the cause of this

inaccuracy.

Since the structural alignment method of SKA applies only spatial information, some positions can be
aligned due to their close spatial distance although they are obviously evolutionarily not related.
Some alignments contained a large internal gap flanked by one or two terminal residues instead of a
large N- or C-terminal gap due to the misleading alignment of SKA. Those terminal residues were

manually moved to the other end of the gap, resulting instead in a long terminal gap.

Additionally, a large cytoplasmic domain inserted in the human B-2-adrenergic receptor (PDB code:
2RH1) for the purposes of enhancing crystallization was removed from the sequence of the
corresponding protein chain because this insertion domain does not belong to the original sequence
of human B-2-adrenergic receptor and caused an unusual large internal gap in alignments of the
human B-2-adrenergic receptor to other G-protein coupled receptors. Such large internal gaps were

not representative for the alignments in HOMEP2.

2.5 HOMEP3

More recently, a steady increase of available structural information on membrane proteins required
an update of the HOMEP2 data set, which was generated in 2010. The clustering strategy was

changed to address two issues that had subsequently been detected in HOMEP2:

First of all, inaccuracies in alignments generated with SKA were observed for the family of G-protein
coupled receptors (see chapter 3). SKA had difficulties aligning homologous GPCRs that were
crystallized in different states but the alignments of SKA did not contain a measure of their accuracy
for specific pairs of amino acids. Consequently, all positions in the alignment of SKA were treated as
being correct and accurate although they were incorrect. This issue might lead to errors in clustering
as well as to errors in optimizing or evaluating programs on HOMEP. A solution to this problem is the
application of another structural alignment method. TM-align was shown to produce accurate
structural alignments (Sadowski and Taylor, 2012) including the reliable TM-score (Template
Modeling score (Zhang and Skolnick, 2004)) that can be applied to clustering of proteins (Dai and
Zhou, 2011).
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Similar to the PSD score, the TM-score accounts for large outliers by using a distance-dependent

weighting scheme in which the contribution from largely deviating residue pairs is reduced.

TM-score = max ;ELI;Z (2.3)
Ltarget ' di
I+ —+

d, |

With Ligger being the number of residues in the target and d; being the distance between the ith pair

of residues. Additionally, the TM-score includes the term d, for normalizing the match difference so
that the distance-downweighting varies with the protein size, resulting in a score that is less size-

dependent than scores that square differences (e.g., RMSD):

dy=124-3L,,...—15-1.8 (2.4)

The TM-score ranges between 0 (worst case) and 1 (perfect match). Protein structures were shown
to share a similar fold if they share a TM-score (Template Modeling score) above 0.5 (Xu and Zhang,
2010). Hence, TM-align was applied alongside SKA with its PSD score (see chapter 2.4) for generating
structural alignments of all protein pairs that were extracted from the PDB_TM database and that

share the same number of TM segments (see chapter 2.3).

Another drawback of HOMEP2 is that the clustering principle generates only families with at least
three homologous proteins and misses protein families that consist of only two proteins. A change in
the clustering strategy for HOMEP3 allows for the detection of such small families and thereby also
the inclusion of more diverse biological information to the data set. Two different hierarchical
clustering steps were applied. First, similar to HOMEP2, all proteins that were assumed to be
homologs were clustered in an agglomerative step into a group and a group was then assigned as a
family if all proteins within that group fulfilled the clustering criteria to all other proteins of that
group. Instead of using another agglomerative clustering step with a higher identity cut-off at this
stage as for HOMEP2, a divisive hierarchical clustering was applied that allows for families containing
only two proteins. Specifically, in cases of families with proteins that were not related to all other
proteins of that family, the protein that fulfilled the clustering criteria to the least number of other
proteins was removed from that group. In cases, two or more proteins fulfilled the clustering criteria
to the least number of other proteins, the protein that had on average the most inaccurate structural
similarity score compared to all other proteins of the family was removed from that group. This

procedure was repeated until all proteins within a group fulfilled the homology criteria with each
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other, and these were then assigned to a new family. All proteins that were removed from that group
were then assigned to a new group and checked for their homology criteria as mentioned before.
This hierarchical clustering principle was repeated until either no more proteins were excluded from

a group or all excluded proteins shared no homology criteria with each other.

Two data sets were clustered, one set based upon structural alignments of SKA including the PSD
score and one set using structural alignments by TM-align and its TM-score. These two sets were
compared with each other for their similarity. In cases of families containing different proteins, a
manual inspection was necessary to inspect the cause of the difference. This process ensures that the
clustering method is not biased by a certain structural alignment method or structural similarity
score and is moreover robust against errors inherent to structural alignment programs. For testing
the accuracy of structural alignment methods (see chapter 5) HOMEP3 was used as a set of clustered
proteins without any reference alignments. Using the four most accurate structural alignment
methods out of this analysis, reference alignments with confidence values were then generated for

the HOMEP3 data set (see chapter 6).

The new clustering principle resulted in a data set called HOMEP3 containing 152 a-helical proteins in
40 families with 354 alignments and 68 B-barrel-like proteins in 8 families with 319 alignments (see
Figure 2.4). Aside from the new set of B-barrel-like proteins, HOMEP3 contains 15 new families of a-
helical proteins and 78 proteins that are either added newly to the data set or that were solved at a

higher resolution. More details about the HOMEP3 data set are available in Table A.3 and Table A.4.
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Figure 2.4 Composition of the HOMEP3 data set of homologous membrane protein structures. A.
Distribution of family size for a given number of membrane-spanning segments for a-helical (blue)
and B-barrel-like proteins (green). B. Distribution of families with different numbers of proteins. Most
families of a-helical proteins (blue) contain 2-4 known protein structures, whereas the B-barrel-like
families (green) contain more proteins per family.
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3 AlignMe - an Optimized Program for Aligning Helical Membrane

Protein Sequences

3.1 Introduction

Sequence alignment methods allow for the identification of evolutionarily related amino acids in
homologous protein sequences (see chapter 1.3.2). The application of a simple generalized
substitution matrix using the Needleman-Wunsch algorithm for generating a pairwise sequence
alignment results in accurate results for homologous protein sequences that share a high sequence
identity (>60% identical residues). However, the alignment accuracy decreases with decreasing
pairwise sequence similarity since evolutionarily information is not sufficient to describe
relationships of distantly related proteins (e.g., with a sequence identity <25 %) (Forrest, et al., 2006;
Kryshtafovych, et al., 2005; Tress, et al., 2005). Consequently, more advanced alignment methods
that include additional information about the protein and/or are based on a more sophisticated

alignment algorithm were developed for the alignment of low-similarity protein sequences.

The inclusion of the evolutionarily information contained in a set of homologous sequences is
implemented in various multiple protein sequence alignment (MSA) methods like T-Coffee
(Notredame, et al., 2000), MUSCLE (Edgar, 2004), ProbCons (Do, et al., 2005) and MSAProbs (Liu, et
al., 2010) and has been shown to be successful in generating accurate alignments even for protein
pairs within the twilight zone (e.g., sequence identity of 25-30 %). Two of these multiple sequence
methods, T-Coffee and MUSCLE, were tested for their accuracy on the original HOMEP data set and
were found to produce relatively accurate alignments for membrane protein sequence pairs (Forrest,

et al., 2006).

A more accurate alignment method for protein sequence pairs of HOMEP is the profile-to-profile
alignment program HMAP (Tang, et al., 2003) that creates profiles for each sequence before aligning
them. These profiles include evolutionarily information in the form of substitution matrices,
homologous sequences, structural propensities and structural relationships. Similarly, PSI-Coffee
(Chang, et al.,, 2012) uses profiles of multiple sequences for generating a multiple sequence
alignment. The alignment of profiles is also provided by the BCL::Align program (Dong, et al., 2008). A
weighted scoring function in BCL::Align combines several protein properties like general and
position-specific scoring matrices, secondary structure predictions and a variety of chemical
properties. This scoring function of BCL::Align was optimized on a general data set and did not

consider membrane proteins explicitly although a term for hydrophobicity is included. Complex
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information about a protein’s properties can also be represented in the form of a Hidden Markov
Model (HMM). HHalign (S6ding, 2005) is one of the most readily-available HMM-alignment methods
used to align HHMs that were generated by a database search method. In addition to evolutionarily
information, this approach also provides the option to include a secondary structure prediction from
PSIPRED. With this combination of protein information, HHalign has been shown to generate
accurate alignments based upon which accurate models of water-soluble proteins can be generated.
This approach has been implemented in the HHpred structure prediction protocol (Hildebrand, et al.,

2009).

None of the above mentioned methods include membrane-specific information during the alignment
process, although this environment was shown to be a crucial determinant of the amino acid
composition of membrane proteins (see chapter 1.2.2). The hydrophobic character of a-helical
membrane segments inspired the early use of hydropathy profiles for locating TM segments in a
protein sequence (Kyte and Doolittle, 1982). In these hydropathy profiles, a value describing the
hydrophobicity according to a particular scale is assigned to each sequence position. A variety of such
scales have been developed using biochemical, biophysical or theoretical considerations (e.g., the
HWVH (Hessa, et al., 2005) or UHS (Koehler, et al., 2009) scales, see chapter 3.2.2.3 for more details).
Depending on the scale that is used, slight differences occur in the profile for a given protein, but all
scales allow for the visual identification of hydrophobic membrane-spanning regions in a hydropathy
plot. Typically, window averaging is used to smooth out details of these profiles and to simplify a
visual inspection of the hydrophobicity profiles (Rose, 1978). Based upon this observation of
hydrophobicity profiles, an alignment strategy for membrane proteins was developed for which
membrane proteins were aligned based upon their hydropathy profiles (Lolkema and Slotboom,
1998). This strategy allowed for the detection of structurally homologous proteins despite their low
pairwise sequence identity (Lolkema and Slotboom, 1998; Lolkema and Slotboom, 1998; Lolkema and

Slotboom, 2005).

Other methodologies developed specifically for membrane proteins consider the distinct amino acid
composition of membranous- and non-membranous protein segments. The MSA methods STAM
(Shafrir and Guy, 2004) and PRALINE™ (Pirovano, et al., 2008), which were developed specifically for
membrane proteins, apply both a membrane-specific substation matrix (PHAT (Ng, et al., 2000)) for
membrane-spanning segments and a generalized non-specific substitution matrix (BLOSUMG62
(Henikoff and Henikoff, 1992)) for segments outside of the membrane. The difference between the
two methods is their approach to handle membranous and non-membranous segments during the
alignment. In STAM, transmembrane segments are first separated out and aligned independently

whereas in PRALINE™ such a division is not present and the sequences are kept undivided.
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Using specific substitution rates depending on a protein’s environment has also been shown to
improve accuracy of pairwise-sequence-to-structure alignments. Substitution rates that depend on
secondary structure, membrane propensities and solvent accessibility were applied in the program
“membrane FUGUE”. Membrane protein alignments generated using “membrane FUGUE” were
more accurate than those generated with FUGUE, which is the equivalent approach for water-soluble
proteins (Hill, et al.,, 2011). A recent development of membrane FUGUE, called MP-T, also
incorporates homologous membrane protein sequences into a multiple sequence alignment in order
to guide and improve pairwise sequence-to-structure alignments (Hill and Deane, 2012). MP-T was
shown to perform well compared to other standard alignment methods tested using a membrane
protein data set as a reference. At the time of the development and evaluation of AlignMe, MP-T was

not available and thus has not been compared to AlignMe for its accuracy.

Two more recently developed methods that were optimized for membrane protein sequences (TM-
Coffee and KalignP) unfortunately hold significant drawbacks. TM-Coffee is a version of PSI-Coffee
that includes evolutionarily information in the form of evolutionarily profiles, which were obtained
by a database search (Chang, et al., 2012). In contrast to PSI-Coffee, TM-Coffee includes only
membrane protein sequences in the profiles. Tests on the BALIBASE reference set 7 for membrane
proteins revealed a slightly better performance of TM-Coffee by some measures compared to other
programs (i.e. MSAProbs) but TM-Coffee was also significantly slower. In contrast, the fast and low-
memory usage method Kalign2, which is an update of Kalign, can handle position-specific gap
penalties (i.e. in TM segments) but has been shown to be less accurate on the reference set 7 of

BALIBASE than ProbCons or T-Coffee (Shu and Elofsson, 2011).

These drawbacks of alighment methods optimized for membrane proteins (e.g., high computational
costs, no significant improvement of alignment accuracy, or non-applicability for local calculations)
result in a less frequent usage of these programs. Additionally, multiple sequence alignment methods
require a set of homologous protein sequences that might not be present for some membrane
protein families. Currently, a common practice for membrane protein researchers is to apply

standard (multiple) sequence alignment methods to gain insights into proteins of their interest.

This chapter addresses the issue of pairwise alignments for membrane protein sequences. The initial
version (1.0) of a novel membrane protein alignment program, AlignMe, was designed and written in
2010 in cooperation with Dr. Rene Staritzbichler, with the help of important discussions with Dr.
Kamil Khafizov, to test properties of a protein that might be useful for generating an accurate
pairwise sequence alignment even for evolutionarily distantly-related proteins. A preliminary analysis

was done in my diploma thesis (Stamm, 2010), showing that a combination of a substitution matrix

36



together with a secondary structure prediction and a membrane prediction generates accurate
alignments. However, this evaluation was too much biased towards the reference data set. The gap
penalties for a certain input combination for AlignMe were optimized on the same reference data set
on which they were then subsequently evaluated. Thus, the high accuracy of AlignMe was not
surprising and an evaluation on external data sets was outstanding. In addition, several other
descriptors for membrane proteins (e.g.,, membrane predictors, position-specific substitution
matrices etc.) were not tested so far. Thus, | updated the AlignMe program to allow for more
sophisticated protein descriptors (e.g., membrane predictions by other computational methods or
position-specific substitution matrices) resulting in version 1.1 of AlignMe. | used this new version of
AlignMe to test the applicability of generalized or position-specific substitution matrices,
hydrophobicity scales, secondary structure and membrane predictions for aligning membrane
proteins. Gap penalties for the dynamic programming algorithm of AlignMe were optimized for each
set of alighnment inputs, using alignments of the HOMEP2 data set (see chapter 2.4) as a reference.
The best of the different AlignMe strategies were then compared to a set of other commonly used
methods using homology models of the HOMEP2 data set as well as to independent reference

alignments of the BALIBASE reference 7 set of membrane proteins.

The work that is presented in this chapter was published in PLOS One in March 2013 (Stamm, et al.,
2013). The open source code of AlignMe is available at https://sourceforge.net/projects/alignme/,

and at http://www.forrestlab.org/, along with an online server and the HOMEP2 data set.
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3.2 Methods

3.2.1 General Description of Similarity Between Homologous Proteins

AlignMe (for Alignment of Membrane proteins) is a pairwise protein sequence alignment tool
implemented in C++ that has been developed for and tested upon membrane protein sequences. The
underlying algorithm in AlignMe is a Needleman-Wunsch dynamic programming algorithm with a set
of affine gap penalties. Initially, the optimal descriptors for an alignment of membrane proteins were
not known and thus, AlignMe was designed to support single and multiple protein descriptors of

different types for explaining similarity between two (membrane) protein sequences.

The similarity Sim between two residues (i, j) at a given alignment position is defined as a linear
combination of substitution rates from M input substitution matrices (S), and differences between

property values (V) from N input profiles at that specific sequence position:

Sim,-,j ZZZ(Wm*Si,j)_Zi,v(wn*Wi_VjD (3.1)

This formalism allows for a flexible combination of any number of substitution rates (e.g., generalized
or position-specific) with any number of profile values. In this study, transmembrane location
propensities (e.g., predictions or hydrophobicity values) or secondary structure predictions are used
in form of profiles. A profile assigns a value that describes a specific protein property (e.g., likelihood
of being within the membrane) to each sequence position. The similarity term Sim also provides
weights (w) for each input with which inputs can be scaled relative to each other in order to minimize
any bias towards a specific input during the alignment process. For example, a hydrophobicity scale
containing values from —-3.0 to 1.0 (i.e., a range of 4.0) would be assigned w = 5 when used in
combination with a substitution matrix whose values range from -5 to 15 (i.e., a range of 20). In this
example, the range of the hydrophobicity scale and the substitution matrix are assigned a 1:1 ratio so
that both input properties contribute equally to the alignment process. Such a weighting ratio of 1:1

was applied for all tested input combinations in this work.

Another parameter that is required for global alignments using a Needleman-Wunsch algorithm to
define similarity between two protein sequences, aside from mutation rates, is the possibility of
insertions and deletions. These evolutionarily aspects are reflected by gap penalties. A gap-opening
penalty describes the likelihood that an insertion starts and a gap-extension penalty is the likelihood
that an existing gap is extended. The basic Needleman-Wunsch algorithm has only these two types of

gap penalties, but substitution rates at the C- or N-terminal domains of protein sequence have been
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observed to occur with a different likelihood than point mutations in the middle of a protein’s
sequence. These differences are caused by the insertion or deletion of additional terminal domains
(Dong, et al., 2008; Huang, 1994; Thompson, et al., 1994). AlignMe addresses this observation with

the possibility to assign different gap-opening and gap-extension penalties according to whether a

terminal
e

terminal
o

gap is at a terminus (p and p , respectively), or not ( p, and p,, respectively) (Edgar,

2004; Thompson, et al., 1994).

These alignment options might be sufficient for aligning soluble protein sequences, but in case of
membrane protein sequences, different evolutionarily rates were observed for TM segments and for
non-membranous segments, with a higher conservation rate for TM segments (Stevens and Arkin,
2001). Insertions and deletions are less likely to occur in conserved segments and consequently the
gap penalties should be higher in these segments (Thompson, et al., 2002). Accordingly, AlignMe has
the option to apply different gap penalties for conserved and non-conserved protein segments based
on a certain input criteria that can be defined by the user (i.e. hydrophobicity values or membrane
propensities). Given a threshold value for one of the input parameters, gap penalties are then

defined by the threshold (i.e., either above or below the threshold). In case of hydrophobicity scales,

above

positions with values above the threshold (i.e., hydrophobic) receive different gap penalties ( P,

below
e

below
o

above
e

and p ) than those below the threshold ( p and p ) representing hydrophilic positions.

above above below below terminal

This scheme assigns six gap penalty types in total, namely p™", p,"", p, ", p, , D,

terminal
. .

and p

3.2.2 Inputs Tested that Define Similarity Between a Pair of Proteins

An accurate alignment of two membrane protein sequences requires an adequate description of the
similarity between these two proteins (see previous chapter). Therefore, multiple properties of a
protein were tested for their suitability to describe similarity between a pair of membrane proteins:
(position-specific) substitution matrices, hydrophobicity scales, secondary structure and membrane
propensity predictions. In a first step, all inputs were tested on their own for their suitability to
generate accurate pairwise alignments. Subsequently, the protein descriptors that resulted on their
own in the most accurate alignments were then tested in combination with each other to evaluate
whether the inclusion of a second additional similarity criteria increases the alignment accuracy or

not. Finally, three different alignment input descriptors were used in combination with each other.

Significance between alignments of different approaches (or AlignMe inputs) were measured using

the Wilcoxon signed ranked test (Wilcoxon, 1946) and were deemed to be significant when p<0.05.
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3.2.2.1 Substitution Matrices

Substitution matrices describe the probability that an amino acid is replaced by another amino acid
or stays conserved during evolution. Seven different substitution matrices were compared, each of

them optimized on or for a special type of proteins.

First of all, there are substitution matrices that reflect a specific evolutionarily divergence within a
general protein data set they are constructed upon. The BLOSUM matrix series was derived from
observed amino acid exchanges in block alignments of sequences with a certain degree of
evolutionarily divergence (Henikoff and Henikoff, 1992). Similarly, the PAM matrices are also
described by a series of matrices. PAM matrices were trained on a set of closely homologous
sequences using a Markovian model of amino-acid replacement (Dayhoff, et al., 1978). This training
principle was also applied for generating the VTML matrices, but in contrast to the PAM matrices, a
large set of distantly related homologs was used for training the VTML matrices (Miiller, et al., 2002;

Miiller and Vingron, 2000).

Unlike those matrices that were optimized on general (water-soluble) protein data sets, the JTT
(Jones, et al., 1994) and PHAT (Ng, et al., 2000) matrices were optimized for a-helical membrane
proteins by taking substitution rates between membrane protein sequences into account. For the JTT
matrix, an approach similar to the one for the BLOSUM matrix series was applied by using blocks of
aligned transmembrane protein sequences sharing a certain degree of divergence. Even more
specialized is the PHAT matrix that considers only substitution rates calculated from alignments of
either predicted transmembrane segments or hydrophobic regions from proteins stored in the

BLOCKS+ database.

Moreover, | tested the bbTM matrix (Jimenez-Morales, et al., 2008), which was constructed from a
set of B-barrel-like protein sequences. The bbTM matrix was included to test whether substitution
rates for B-barrel-like membrane proteins could also be suitable for aligning a-helical membrane

protein sequences.

3.2.2.2 Position-Specific Substitution Matrices (PSSMs)

Generalized substitution matrices contain position-independent substitution rates and assume that
evolutionarily substitution rates are the same for all amino acids within a protein sequence.
However, evolutionarily rates may differ in conserved protein segments compared to non-conserved
protein fragments. This idea of evolutionarily variability in different positions along the sequence is

provided by position-specific substitution matrices (PSSMs).
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The position-specific substitution rates (S) of two proteins (i and j) were compared with each other in
AlignMe using a simple approach. The similarity between an amino acid (A) in the first sequence (i)
and an amino acid (B) in the second sequence (j) is the average value of the corresponding mutation
from A to B (stored in the PSSM of the first sequence) and the reverse substitution B to A (stored in

the PSSM of the second sequence):
Sim,; =0.5%(S\ 5 +55.,) (3.2)

For each sequence of the HOMEP2 data set, a PSSM was generated by a PSI-BLAST search on the
Uniref90 database dated 28" April 2009 that was performed during the PSIPRED predictions for each

seqguence.
3.2.2.3  Hydrophobicity Scales

As for evolutionarily rates, similarity between amino acids can be described by similarities or
differences of hydrophobicity stored within the amino acid sequence. For this analysis, six different
hydrophobicity scales were tested, each addressing a different aspect of membrane proteins. Several
of those scales were derived from experimental free energies of transfer of amino-acids between
ethanol and water (Nozaki and Tanford, 1971), including the scales reported by Hopp and Woods
(HW) (Hopp and Woods, 1981) and by Wimley and White (WW) (Wimley and White, 1996). A
combination of such transfer-free energies with known structural properties or theoretical
considerations was applied for constructing the scales of Kyte and Doolittle (KD) (Kyte and Doolittle,
1982) and the Goldman, Engelman and Steitz scale (GES) (Engelman, et al., 1986), while Eisenberg
and Weiss (EW) created a consensus of five other scales (Eisenberg, et al., 1982). White, von Heijne
and colleagues (HWvH), derived a hydrophobicity scale from probabilities of a-helical segments
inserting into a biological membrane (Hessa, et al.,, 2005), whereas the knowledge-based unified
hydrophobicity scale (UHS) (Koehler, et al., 2009) was constructed from the distribution of amino
acid types in known protein structures. When using hydrophobicity scales, any position with V; >0
was assigned to the membrane and this threshold was also used for assigning gap penalties to

hydrophobic and hydrophilic segments.

The membrane-spanning segments of a protein also contain non-hydrophobic residues that are
involved in binding sites, protein translocation or protein-protein interaction. Thus, hydrophobicity
profiles considering each sequence position separately are very fuzzy. A manual visual detection or
annotation of membrane-spanning segments is not possible. However, single outliers can be

averaged out by creating a smoothed profile using a sliding window approach. In such smoothed
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hydrophobicity profiles, a value at a given residue is replaced with an average over a window of
residues centered at that position, and then that window is processed along the protein sequence
(Kyte and Doolittle, 1982). Here, rectangular, triangular or sinusoidal windows of length L = 13 were
tested (Koehler, et al.,, 2009). The sinusoidal shape mimics the amphipathic periodicity of a
transmembrane helix, so that values that are 3.6 positions away from the center are given equal
weight, while other positions contribute less. More details about sliding windows can be found in my

diploma thesis, pages 19ff (Stamm, 2010).
3.2.2.4  Membrane Propensity Predictions

Although using hydrophobicity information within alignments can be useful for detecting homology
between a pair of membrane protein sequences, hydrophobicity alone cannot predict reliably the
location of transmembrane helices because hydrophobic residues can also be present within
hydrophobic patches outside of the membrane and hydrophilic patches can be present within
membrane-spanning segments. Hence, the challenge of predicting accurately membrane-spanning
segments was addressed by more sophisticated predictors which were also tested here for their

applicability to sequence alignments.

Three different predictors for a-helical transmembrane segments were evaluated: TMHMM (Krogh,
et al., 2001), OCTOPUS (Viklund and Elofsson, 2008) and MEMSAT-SVM (Nugent and Jones, 2009).
Each of them applies a different machine-learning algorithm with Hidden Markov Models for
TMHMM, neural networks for OCTOPUS and a support vector machine (used for binary classification)
that is applied by MEMSAT-SVM. Whereas predictions of TMHMM rely on the raw sequence only,
those of OCTOPUS and MEMSAT-SVM consider additional evolutionarily information included in
PSSMs. These PSSMs were obtained from a PSI-BLAST search against the corresponding
recommended database, namely the Uniprot_Sprot database (on 1* August 2010) for MEMSAT-SVM
and a version of Uniref90 filtered for transmembrane proteins (from 4" August 2010) for OCTOPUS

(Viklund and Elofsson, 2008).

The per-residue membrane propensity was extracted from the results of each program and used as a
profile input for AlignMe. Predictions of OCTOPUS and TMHMM contain a 0 to 1 propensity of a
residue to be located within the membrane (1) or not (0). For both these programs, positions with
per-residue membrane propensities >0.5 were defined as being in the membrane. In case of
MEMSAT-SVM, there are no absolute borders that define the membrane propensity, but there is a
threshold of 0; positions are assigned as being in the membrane if their propensities are >0, or not if

their propensities are negative.
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3.2.2.5  Secondary Structure Predictions

Two different secondary structure predictors were tested: Jufo (Meiler and Baker, 2003) and PSIPRED
(Jones, 1999) with version 2.6 and 3.2 of PSIPRED. Both predictors are based upon the results of a
PSI-BLAST search for the protein of interest. Thus, PSI-BLAST searches were run for each method on
the corresponding recommended database, i.e., Uniprot_Sprot (from 1* August 2010) and Uniref90

(from 28" April 2009), respectively.

Each method produces a three-state prediction of the probability of a position being in a coil, a-helix
or B-sheet. This probability can vary between 0 (secondary structure type not present at that
position) and 1 (secondary structure type present at that position). A position was assigned to be in a

certain state (e.g., a-helical) if the predicted probability thereof was >0.5.

All three probabilities were used as input profiles for AlignMe alone as well as in combination with

each other, with each state contributing one third of the whole.
3.2.3 Alignment Difference Score (AD score) as an Alignment Accuracy Measure

The accuracy of a sequence alignment is often evaluated using a score that counts the fraction of
correctly aligned positions with respect to the reference alignment (Edgar, 2009; Edgar, 2010) (see
Figure 3.1). However, this simple score becomes less useful for assessing the alignment accuracy of
more distantly related protein sequences due to its lack of discriminating between different degrees
of mismatches. A structural element (e.g., an a-helix) that is partially misaligned to an equivalent
helix (e.g., to gaps; see Figure 3.1c) would receive the same score like in the case of a helix being
shifted by single residue only (see Figure 3.1b). A more useful starting point for analysis and
homology modeling is clearly the latter example that contains more residues with an underlying
template structure of a similar secondary structure type like the original structure. Consequently,
other scores consider also the shift size, defined as the number of positions that a residue in the test
alignment is displaced from its aligned column in the reference alignment. For example, the fraction
of positions aligned within a certain shift size has been used (Tang, et al., 2003), with the
disadvantage that it introduces an arbitrary cut-off in the accuracy measure. In a more advanced
strategy, the Cline score penalizes shifts asymptotically, so that it emphasizes residues that are close
to their correct position and undervalues errors of greater than four positions (Cline, et al., 2002). A
drawback of all these approaches is that none of them takes into account residues that should be
aligned to a gap (e.g., evolutionarily insertions or deletions of segments). Thus, | developed a new
scoring scheme (AD score), which takes into account shifted residues and considers insertions and

deletions more explicitly.
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Figure 3.1 Determination of the fraction of correctly aligned positions. A reference alignment (a)
between two sequences is used to score two test alignments (b, c). The alignment of the residues in
bold is correct in both test alignments, and thus the fraction of correctly-aligned positions will be 2/7
or 28,6% in both cases. However, the alignment of the other residues is more useful in predicted
alignment 1 (b) than in predicted alignment 2 (c), although this difference is not captured when
considering only the correctly aligned positions. Hypothetical helical segments in each sequence are
marked with thick black bars.

The Alignment Difference (AD) score that | developed and use here is similar to the mean shift error
(MSE) score (Moult, et al., 1998) or the position shift error (PSE) score (Raghava, et al., 2003), and
takes into account the full extent of any shifts. Residues aligned to other amino acids (and not to
gaps) in the reference alignment (bold residues in Figure 3.2a) are assessed within the test alignment
and their shift value is calculated. The shift value describes how many positions a residue in a test
alignment is shifted compared to its position in the reference alignment. A score of zero is assigned
to a sequence position if its amino acids are correctly aligned in the test alignment, whereas shifted

positions are penalized by the shift value, as in the MSE score (see Figure 3.2b).

In the AD score, gap-containing columns are considered explicitly in the test alignment, but these
columns are treated differently than those that contain aligned amino acids: the shift value of such
columns is defined as the mean of the shift values for the two residues either side of the aligned gap
(see Figure 3.2c and d). The final total AD score is the sum of the (negative) shift values of all columns
of the reference alignment divided by its length. Thus, a perfect alignment has a total AD score of
zero, while more negative values represent less accurate alignments. The AD score correlates with
the fraction of correctly aligned positions, but the two measures deviate at low values, and thus the

AD score provides distinct information in that realm (see Figure 3.3).

However, | have to note that although the AD score contains information about shift size,
information regarding the direction of the shift is missing. Consequently, a mis-alignment of two a-
helices in which one helix is disrupted by the insertion of single gaps (Figure 3.2f) receives the same
AD score as an alignment in which the entire helix is shifted by a single position (Figure 3.2g).
However, single or short gaps that disrupt a secondary structure element were so far not observed in
alignments of membrane-spanning segments and thus were typically also penalized highly even
within the alignment process itself (e.g., CLUSTAL W (Thompson, et al.,, 2002)). The gap penalty

optimization itself favors to match frequently occurring patterns (e.g., helix aligned against a helix,

44



Figure 3.2f) over less frequent patterns (e.g., gaps in helices, Figure 3.2g); so the drawback caused by

the lack of directionality of the AD score is negligible.
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Figure 3.2 Determination of the Alignment Difference (AD) score. (a, b) Two residues (bold) that are
aligned in the reference alignment (a) have a shift value of 1 in the test alignment (b). (c, d) The
accuracy of a column containing a gap (c) is determined by identifying the two residues adjacent to
the gap (residues B and C), and calculating the mean of their shift values in the test alignment (d). For
residue B the shift value is 0, and for residue C the shift value is 1, so the shift value of this gapped
column is 0.5. (e, f, g) Note that the AD score does not penalize the direction of the shift. Thus, two
structural elements (residues CDEF) aligned in a reference alignment (e) have the same AD score for
the test alignment, whether the element is divided (f) or shifted as a whole (g).

3.2.4 Optimization of Gap Penalty Sets

A Needleman-Wunsch algorithm requires suitable gap penalties reflecting the likelihood of
evolutionarily insertions or deletions in addition to suitable descriptors that describe evolutionarily
mutations (see chapter 3.2.1). However, suitable gap penalties are not known for aligning membrane
proteins or for using hydrophobicity, secondary structure or membrane predictions for an alignment
process. For AlignMe, the optimization of 4 or 6 gap penalties (see chapter 3.2.1) is required, but a
systematic optimization (Edgar, 2009) is not computationally feasible for optimizing such a large
number of gap penalties. In the case of six different gap penalties: if each gap penalty were allowed
to range from 0 to 10 in increments of 0.1, a systematic search would require 100° = 10** alignments.
Consequently, a Monte Carlo scheme was used to optimize the gap penalty values (e.g., 4 or 6 gap

penalties) for each input and each combination of inputs tested.
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In each step of the optimization process, pairwise alignments for all pairs of proteins of HOMEP2
were created using the current set of gap penalties and subsequently analyzed for their accuracy
using the AD score. A drawback during this optimization process could be the fact that families within
the HOMEP2 data set have different sizes, causing the optimization to be biased towards large
families. Therefore, all AD scores of protein-pairs within a family of HOMEP2 were averaged by the
size of each family (m). The overall alignment accuracy for a given set of gap penalty parameters is

the sum over all scores for each family (n) in HOMEP2.

n
m Alignment accurac airwise
Alignment accuracy(total) = Z 21 Alig Y@ ) (3.3)
m
1

Starting with a randomly selected set of values (between 0 and 30) for each gap penalty parameter,
the search procedure then involved random modifications of one or more gap penalty values from
those values, or from the optimal values identified so far. The range of allowed modifications was
initially set to be very small (with a maximal step size of 0.06) to encourage a detailed examination of
the score landscape around the current optimal gap penalty combination. A given combination of
gap penalties was accepted if the overall alignment accuracy score was better than the best score
found so far, in which case the maximal step size was reset to its initial (minimal) value. Otherwise,
that combination of gap penalties was rejected and the search space was expanded by increasing the
maximum step size by 0.06. However, the gap penalty values were limited to the range from 0 to 30,
with a maximum step size of 30 (e.g., 500 rejections). If no improvements were found after reaching
the maximum step size, the search was repeated, starting with the initial maximal step size of 0.06.
The search was finished if new gap penalty sets were rejected more than 1000 times in a row
because then the search space was examined in detail twice without finding a better gap penalty

combination than the current optimal gap penalty combination.

For each set of input descriptors, this optimization procedure was repeated 20 times in parallel with
different initial gap penalty values, which was found to be sufficient for reasonable convergence (see
Table 3.1). The gap penalty parameters for which the alignments had the best alignment accuracy
score were then used for that set of input descriptors. As a validation of this optimization idea,
optimized gap penalty sets were compared to those that were reported previously for a specific

input descriptor. The optimal gap penalties obtained with my optimizing procedure using the JTT
membrane substitution matrix werep, =16.3,p, =13, pffrmi"“[ =1.7 and pfrmi"al =0.6,

consistent with typical values (e.g. (Saigo, et al., 2006)), providing confidence in the optimization

procedure.
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Table 3.1. Total AD scores of 20 optimization runs for AlignMePST mode

# of total p below above below above terminal terminal
test run| AD score| '’ ? ¢ ¢ ? ¢

5 -17.39 2.14 296 3.10 3.06 0.07 1.18
17 -17.42 213 277 295 297 0.04 1.24
16 -17.43 223 3.09 3.18 3.19 0.13 1.27
9 -17.45 2.16 288 3.03 3.04 0.20 1.25
4 -17.49 1.84 270 3.05 293 1.26 1.18
11 -17.60 209 270 291 2093 4.47 1.16
12 -17.63 203 253 260 2.63 3.44 1.12
13 -17.69 1.73 262 339 293 0.64 1.13
19 -17.73 1.88 2.02 268 2.52 1.60 1.10

-17.73 1.62 204 277 242 1.01 1.08
1 -17.95 242 583 312 323 0.05 1.39

-17.96 192 556 270 281 0.01 1.32
3 -17.98 228 524 298 3.20 0.02 1.37
20 -18.23 1.89 857 322 311 1.95 1.51
7 -18.25 203 1460 2.83 211 0.25 1.06
6 -18.31 231 1449 330 2.58 0.10 1.46
15 -18.42 2.14 2385 3.52 2387 0.04 1.60
10 -18.59 2.21 2427 375 2.20 0.05 1.25
14 -20.75 | 15.13 3.92 2.83 3.22 6.77 1.88

Total alignment accuracy (AD) scores were calculated for optimized gap penalties of 20 runs using a
PSSM, a secondary structure prediction of PSIPRED and a membrane prediction of OCTOPUS as an
input. Higher total AD scores correspond to more accurate alignments (with 0 being a perfect
alignment) for all protein pairs tested. Similar gap penalties were observed for the top-ranking
optimization runs.

Other parameters that could be optimized are the weights that are assigned to each input descriptor
and that define the contribution of that input descriptor to the final alignment. However, an
optimization of these weights was found to be computationally impractical because the search
increases by the power of N, with N being the number of weights to be optimized. Moreover, initial

tests of optimizing weight parameters did not converge reliably.

3.2.5 Parameters of Other Alignment Methods Tested

Alignments were also calculated with HMAP (Tang, et al., 2003), T-Coffee v8.9.1 (Notredame, et al.,
2000), MUSCLE v3.7 (Edgar, 2004), ProbCons v1.12 (Do, et al., 2005), MSAProbs v0.9.4 (Liu, et al.,
2010) and HHalign v1.5.0 (S6ding, 2005). For MSAs, sequence homologues for each of the sequences
were identified using a PSI-BLAST search on the non-redundant (nr) database dated 4™ August 2010,
with five iterations, an E-value cut-off of 10 and a maximum of 2500 sequences. Sequences in the
PSI-BLAST results that were more than twice the length of the query were filtered out. The remaining

sequences were clustered using UCLUST (Edgar, 2010) with the original sequence taken as the
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representative of the first cluster and a sequence identity cut-off of 65 %. This is a reasonable
sequence identity cut-off that falls into the limits of 50% and 70% pairwise sequence identity, which
were shown to be the optimal cut-offs for clustering a database (Park, et al., 2000). Additionally, this
cut-off was already applied successfully in an earlier study (Tang, et al., 2003). This clustering
principle to reduce the number of input sequences was necessary for T-Coffee, ProbCons and
MSAProbs, which are extremely memory- and cpu-intensive, in order to make the test over the
whole HOMEP2 dataset computationally tractable, and so, for all the tested MSA methods (including
MUSCLE) | used the suggested T-Coffee protocol, namely selecting the 25 “most—informative”
homologues of each sequence (including the query) from the UCLUST clustered results (Notredame,

et al., 2000).

There are two different possible approaches for generating a MSA from two query sequences and
their respective homologues. In the standard approach, all results of both PSI-BLAST searches
(including the two query sequences) are combined and aligned as a single large MSA, before
extracting the two query sequences for scoring. The second approach, which is called the “profile-
profile” strategy, is to create MSAs for each query and its homologues. The resulting two MSAs or
“profiles” are then aligned to one another to create a single MSA, from which the query sequences

are then extracted for scoring.

A similar strategy to the MSA “profile-to profile” approach was applied by HHalign and HMAP, which
both construct profiles for each sequence and then subsequently generate profile-to-profile
alignments based upon these profiles. In HHalign, each query is described by a Hidden Markov Model
(HMM) based on the results from a PSI-BLAST search (as for AlignMePSSMs, see chapter 3.2.2.2), as
well as by secondary structure predictions from PSIPRED, generated as described above (see chapter
3.2.2.5). Those HMMs were then globally aligned to each other by using the “-mact 0.0” maximum
accuracy flag and by assigning all other parameters their default values. In HMAP, one of the
sequences was assigned to be the query, and its profile included evolutionarily information from a
PSI-BLAST search (obtained as for HHalign and AlignMePSSMs, see chapter 3.2.2.2) combined with a
predicted secondary structure from PSIPRED v3.2; the other sequence was assigned to be the
template, and its profile was similar except that the secondary structure was assigned from the
known spatial information using DSSP, where available. The two profiles were then globally aligned
using HMAP using the flag for global alignments to allow for a direct comparison with the global

alignment method AlignMe.

| also tested TM-Coffee (Chang, et al., 2012), but found the computational cost prohibitive for the

large number of pairwise alignments in the BAIIBASE set (see chapter 3.2.7). STAM, PRALINE™ and
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MP-T were not available for local installation, and therefore could also not be tested on the large

reference data sets.
3.2.6 Evaluations Based on Homology Modeling

An assessment regarding the alignment accuracy of all methods tested here relies on building
homology models based on pairwise alignments, and comparing them to their native crystal
structures. This evaluation principle is independent from the reference alignments that were used for
optimizing the gap penalties of AlignMe and so is able to detect whether AlignMe is over-optimized
on the HOMEP2 data set or if the optimization process resulted in parameters that can be
generalized. However, it has to be noted that the gap penalties of AlignMe are based on an
optimization against the HOMEP2 data set, which might have a positive influence on the ability of
AlignMe to generate alignments that are useful for building accurate homology models of those

same proteins.

For every pair of protein sequences from HOMEP2, each protein was modeled using the structure of
the other protein as a template based on an alignment from each alignment method tested here. In
each case, five models were created using Modeller v9.9 with default settings (Sali and Blundell,
1993). The model with the best (lowest) DOPE energy score was chosen as the top model for
subsequent analysis. With this selection procedure, the influence of Modeller to generate a single
accurate model is averaged down. The top model was then evaluated using two different measures
of structural similarity: the GDT_TS score (global distance test total score) and the AL4 score (% of

residues aligned within 10 A) (Forrest, et al., 2006; Zemla, 2003).

The GDT_TS score, which stands for global distance test (total score), is defined as the percentage of
C,-atom pairs from the model and the native structure averaged over four different cut-off distances
(i.e. 1, 2, 4 and 8 A) and correlates well with the percentage of correctly aligned residues (Figure
3.3b). The advantage of the GDT_TS score is that only correctly modeled positions are rewarded,
without a penalty for inaccurately modeled regions. Nonetheless, the score is still dependent on the

size of the protein.

1 G(c)
GDT_TS(%) = 22021’2,4’8 —2 %100 (3.4)

target
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Figure 3.3. Correlations between alignment accuracy measures. All measures were calculated based
on HOMEP2 alignments generated with AlignMePST. (a, b) Fraction of correctly aligned positions
plotted against either the AD score (a) or the corresponding model quality measured using GDT_TS
(b). (c) The percentage of residues correctly aligned within a shift of 4 positions is plotted against the
corresponding model quality measured using the AL4 score. Correlation coefficients are: (a) 0.90, (b)
0.92 and (c) 0.88.

By contrast the AL4 score allows a clearer discrimination between low-accuracy models than the
GDT_TS score, since it identifies the largest subset of C,-atoms of the model that can be
superimposed with the target structure (of size Ligger) below a certain cut-off distance G(c) of 10 A,

corresponding to an approximate shift of four alignment positions (Figure 3.3c).

AL(%) =2

x 100 (3.5)

target

For helical membrane proteins, such small shift errors of four positions can still be readily overcome
by manual adjustments to the alignment, and therefore it is deemed to be a useful cut-off for the
analysis. In other words, the AL4 is a suitable measure of model quality because it focuses on all

models that can be refined manually.
3.2.7 BALIBASE Reference 7 Test Set

Another independent assessment of alignment accuracy was obtained using the Reference 7 set of
BAIiBASE (Bahr, et al., 2001; Bahr, et al., 2001) as a gold standard for membrane protein alignments.
This set contains 435 membrane proteins in 8 superfamilies, namely 7tm, acr, photo, dtd, ion, msl,
Nat and ptga, each multiply aligned. The first three of these families are represented to some extent
in the GPCR, multidrug efflux and (bacterio)rhodopsin families, respectively, of HOMEP2 (Table A.1).
During the evaluation, alignments were generated for all pairs of sequences in each of the 8

superfamilies. Since | evaluate pairwise sequence alignments, | calculated the fraction of correctly
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aligned residues as well as the average shift error for each pairwise alignment, rather than SP (Sum of
Pairs) or TC (Total Column) scores, which are sometimes used to describe the accuracy of MSAs and

require more than two sequences in an alignment.

The so-called ‘core’ regions provided by BAIIBASE were not analysed explicitly, as they have been
shown to correspond only weakly to conserved secondary structures (Edgar, 2010) or membrane-
spanning elements in this set (see Table 3.2). Instead, | analysed segments in each pairwise alignment
that were predicted to be membrane-embedded in both sequences by MEMSAT-SVM (e.g.,
membrane propensity values higher than 0). MEMSAT-SVM was chosen as a confident predictor
because it was shown to be the most accurate among all membrane predictors tested in this study
(see chapter 3.3.1.4). Additionally, by using MEMSAT-SVM a bias in the analysis towards one of the

alignment methods that uses OCTOPUS is avoided (AlignMePST; see chapter 3.3.2).

Table 3.2. Percentage of positions in ‘core’ regions predicted as TM segments by MEMSAT-SVM

‘ 7tm ‘ acr ‘ dtd ‘ ion ‘ msl ‘ photo ‘ ptga

MEMSAT-SVM‘ 91,0% | 84,4 % | 80,0% | 33,4% | 98,2% | 80,0% | 22,0%

Overlap between BAIIBASE definition of ‘core’ region, and predicted membrane-spanning segments
according to a prediction from MEMSAT-SVM.
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3.3 Results

| first describe the alignment accuracy of all input descriptors tested using AlignMe individually, and
then describe the selection of input descriptors tested in combination with each other for the
identification of the optimal combination of alignment descriptors for the alignment of membrane
protein sequences. To make the comparison between descriptors as fair as possible, gap penalties
were optimized and evaluated for their alignment accuracy for each single descriptor and each set of
combined input descriptors tested. So far, | first constructed an updated set of homologous
membrane protein structures (HOMEP2; see chapter 2.4), and structure-based pairwise sequence
alignments of these proteins were used as a gold standard for assessing alignment accuracy. Input
descriptors of AlignMe were considered to be effective and accurate if the AlignMe alignments had
both a high number of correctly aligned positions and a small shift error in relation to the reference
alignments of HOMEP2, measured as less negative AD scores (see chapters 3.2.3 and 3.2.4). By also
considering the shift error, | expect to help identify methods that are effective for very distantly
related proteins. The findings are described for single inputs (chapter 3.3.1) and then for
combinations of inputs (chapter 3.3.2). Finally, | compare three of the optimized AlignMe strategies
with available alignment programs using reference alignments of the HOMEP2 set (chapter 3.3.3) as

well as homology models (chapter 3.3.4) and the BAIIBASE reference set 7 (chapter 3.3.5).

3.3.1 Single Input Descriptors

A set of substitution matrices, hydrophobicity scales (with and without window-averaging),
secondary structure and transmembrane predictions were tested as individual inputs (see chapters
3.2.2.1 - 3.2.2.5). In all cases, the highest alignment accuracy score (AD score), which was found

during the optimization, is shown.

3.3.1.1 Alignment Accuracy Using (Position-Specific) Substitution Matrices

Comparing alignments constructed using different general substitution matrices (Figure 3.4a), the
closest agreement with the reference alignments was obtained with the membrane-specific JTT
matrix, followed by the general-purpose VTML matrix, although the differences between JTT and the
others were not very significant (p = 0.01 to 0.33; Figure 3.4a). The substitution rates of both
matrices are suitable for aligning proteins of the HOMEP2 data set because they were obtained from
a set of protein sequences similar to those in HOMEP2. In the case of JTT, the values for the matrix
were obtained using blocks of aligned transmembrane sequences of diverse sequence identity and
for the VTML matrix, a large set of distantly related homologs were used for obtaining substitution

rates.
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Figure 3.4 Comparison of alignment accuracy when using single input descriptors in AlignMe. The
total alignment accuracy score (AD score) for all a-helical proteins in the HOMEP2 dataset is plotted
for each of the input descriptors using their optimized gap penalties, and arranged according to
increasing score for different (a) substitution matrices, (b) hydrophobicity scales (with no smoothing),
(c) other transmembrane predictions or (d) secondary structure predictions. Sequence segments
with hydrophobic, helical or transmembrane scores above a given threshold could be assigned the
same (gray bars; without threshold) or different (black bars; with threshold) gap penalty values from
segments below that threshold (see chapter 3.2 for definition of threshold values and abbreviations).

However, alighnments using position-specific substitution rates from PSSMs were significantly more
accurate (AD score = —24.0; p < 10°) than those generated using general substitution matrices, which
do not account for position-flexible substitution rates. This result underlines the fact that

evolutionarily rates vary along a protein sequence.
3.3.1.2 Alignment Accuracy Using Hydrophobicity Scales

Representing sequences by their hydrophobicity values (without averaging their values over a sliding
window) is, in essence, equivalent to using a substitution matrix, except with a focus on one specific
physicochemical property. Applying a set of four gap penalties, which treats all non-terminal gaps as
equivalent, (gray bars) for constructing alignments using hydrophobicity scales (Figure 3.4b) results in

slightly (not significantly) less accurate alignments than those generated with the best of the
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generalized substitution matrices. The accuracy increased if non-terminal gap penalties were allowed
to differ within the transmembrane segments (e.g., different gap penalties in hydrophobic and in
hydrophilic fragments), but again the differences to the most accurate generalized substitution
matrices were not statistically significant (Figure 3.4b black bars; see chapter 3.2.1). The alignments
generated using the KD, HWvH and WW hydrophobicity scales were significantly more accurate (p >
0.05) than those generated with other hydrophobicity scales (Figure 3.4.b, black bars), but not

significantly different from one another (p < 0.05).

An interesting observation is that the KD and HWvVH scales resulted in the most accurate alignments,
since the KD scale, one of the first hydrophobicity scales developed, is based on a consensus of
biophysical and structural data (Kyte and Doolittle, 1982), whereas the HWvH scale was obtained
more recently from biochemical studies of helix insertions into membrane bilayers (Hessa, et al.,
2005). The similarity of the results indicates that these two distinct strategies are both able to

describe membrane proteins well.

Next, all hydrophobicity scales were used for testing the effect of window averaging on the
alignment accuracy. Independent of the shape of the sliding window used (e.g., rectangular,
triangular or sinusoidal — see chapter 3.2.2.3), alignments using window averaging were less accurate
compared to those without window averaging and treating all non-terminal gaps as equivalent (see
Figure 3.5). Allowing the gap penalties to differ in hydrophobic and hydrophilic fragments (e.g., a set
of 6 gap penalties) improved the alignment accuracy, but it still remained lower than without
averaging. This decrease in alignment accuracy is presumably caused due to a loss of position-specific
information that was shown to increase the alignment accuracy for substitution matrices significantly

(see Figure 3.4a).

Overall, the usage of hydrophobicity values as in a hydropathy plot (see Figure 3.5) did not
significantly improve the alignment accuracy compared to alignments using generalized substitution
matrices and moreover resulted in significantly less accurate alignments compared to those

generated using PSSMs (see Figure 3.4a).
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Figure 3.5 Comparison of alignment accuracy when using hydrophobicity scales as input descriptors
in AlignMe. The different hydrophobicity scales were either not smoothed (“no smoothing”) as
shown also in Figure 3.4, or window-averaged using a rectangular-, sinusoidal- or triangular-shaped
window for averaging. See legend to Figure 3.4 for more details.

3.3.1.3 Alignment Accuracy Using Secondary Structure Predictions

When representing the sequences as profiles of predicted secondary structure types, the alignments
in closest agreement with the reference alignments were obtained using PSIPRED3.2 predictions
(Figure 3.4d) compared to those of PSIPRED 2.6 and Jufo. However, only the difference between Jufo
and PSIPRED3.2 is statistically significant (p = 0.01, gray bars) whereas the differences between the
different PSIPRED versions are not significant (p > 0.05). This non-significant difference is caused by a
disproportionate contribution of good PSIPRED2.6 alignments in the (large) aquaporin family, which
have a major influence on the Wilcoxon-signed rank test for calculating significance; this contribution
is not reflected in the total AD scores in Figure 3.4d because AD scores are averaged over families
(see chapter 3.2.3). Interestingly, the alignment accuracy relative to the reference alignments
correlates with the accuracy of the corresponding transmembrane prediction method, with

PSIPRED3.2 being more accurate (75.3% of residues are correctly predicted) than the other methods
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tested (74.0% for PSIPRED2.6, and 70.4% for Jufo; p < 0.05) for the HOMEP2 protein set, using DSSP
assignments as a reference (Kabsch and Sander, 1983). Notably, allowing the penalties for gaps in
predicted a-helical structure elements to differ from those in other regions improved the alignment

accuracy significantly (black bars, Figure 3.4d).
3.3.1.4 Alignment Accuracy Using Membrane Propensity Predictions

More sophisticated methods for predicting the location of membrane-spanning helices than the
usage of hydrophobicity scales, are those of TMHMM, OCTOPUS and MEMSAT-SVM. Here, again, the
alignment accuracy correlates with that of the underlying prediction method. Using PDB_TM
assignments as a reference for a position-specific membrane propensity, MEMSAT-SVM is a
significantly more accurate predictor (88.2% of the residues in HOMEP2 are correctly predicted),

followed by OCTOPUS (86.4%) and TMHMM (83.0%) (compare with Figure 3.4c).

Treating all non-terminal gaps as equivalent, alignments generated using MEMSAT-SVM alone were
not significantly more accurate than those obtained using a hydrophobicity scale or a substitution
matrix. As for the hydrophobicity scale based alignments, the MEMSAT-SVM and OCTOPUS-based
alignments became significantly more accurate when penalties were assigned differently to gaps in
membrane and non-membrane segments (black bars, Figure 3.4c). The alignments generated based
upon predictions of MEMSAT-SVM were also significantly (p < 10) more accurate than those using
other membrane propensity predictors and those generated using the best of the hydrophobicity

scales (KD, Figure 3.4b).

Comparing all the alignments generated with a single input descriptor, | find that the alignments that
were significantly most similar to the reference alignments, and therefore also most accurate, were
obtained using position-specific matrices (PSSMs), followed by secondary structure predictions
(PSIPRED3.2, p = 2x10°), and transmembrane predictions (MEMSAT-SVM, p = 5x10°) (Figure 3.4).
This finding reflects the more detailed information included in the evolutionarily profiles compared

to the secondary structure and transmembrane predictions.
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3.3.2 Combined Input Descriptors

Using the results for single inputs, | next tested alignments for which the best two or three input
descriptors were used in combination, since inclusion of complementary information is expected to
progressively improve alignment accuracy (see, e.g., (Forrest, et al., 2006; Kelley, et al., 2000)).
Therefore, | tested evolutionarily information combined with transmembrane and secondary
structure predictions, a combination of membrane and secondary structure predictions and a

combination of all three of them.

3.3.2.1 PSSMs Combined with a Transmembrane Prediction

A potentially useful combination for membrane proteins is evolutionarily information with the
addition of transmembrane information containing membrane likeliness propensities for each
sequence position that is stored in a smoothed profile. The latter can be in the form of either a
hydrophobicity value (e.g., using a sliding window approach) or a transmembrane prediction
propensity generated by a sophisticated prediction method. Interestingly, in AlignMe, nearly all such
combinations of evolutionarily information with membrane propensities resulted in significantly
more accurate alighnments than those based on the corresponding individual input parameters.
However, this improvement required an extended gap-penalty scheme that allowed gap penalties to
differ between membrane and non-membrane regions (black bars, Figure 3.6a). Otherwise, a
significant improvement of accuracy was not observed if all non-terminal gaps are treated as
equivalent. Surprisingly, alignments based on PSSMs were significantly more accurate when
combined with OCTOPUS (total AD score of —20.4, Figure 3.6a) than with MEMSAT-SVM (total AD
score of —22.8, Figure 3.6a), even though MEMSAT-SVM predictions are more accurate per se
(chapter 3.3.1.4). This apparent contradiction can be explained by several factors that influence the
alignment accuracy, which are listed here in the order of their likeliness. One possible explanation
may be that OCTOPUS predictions of two related proteins match one another better in an alignment
than those of MEMSAT-SVM. Another explanation may be that the OCTOPUS predictions have a
simpler form, perhaps providing more orthogonal (complementary) information to the PSSMs than
the more detailed and smoothed profiles obtained from MEMSAT-SVM (Figure 3.7). Alternatively,
the fact that the MEMSAT-SVM values are more evenly distributed over a wider range of values than
the OCTOPUS scores (Figure 3.7) and are thus given a smaller weighting (see chapter 3.2.1) could

mean that the MEMSAT-SVM scores can have less influence on the alignments.
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3.3.2.2 PSSMs Combined with a Secondary Structure Prediction

Combining secondary structure with evolutionarily information has already been shown to improve
alignment quality of profile-to-profile alignments for water-soluble proteins (e.g., (Tang, et al.,
2003)). Using AlignMe, a similar improvement is observed in the HOMEP2 alignments when
combining evolutionarily rates of PSSMs with secondary structure information of PSIPRED
predictions. Compared to the most accurate alignments using secondary structure predictions (total
AD score of —27.2) or evolutionarily information (total AD score of —24.0) as a single input, the
combination of both produces significantly more accurate alignments (total AD score of —21.6, p =

0.04; Figure 3.6b, black bars).
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Figure 3.6 Comparison of alignment accuracy when using multiple input descriptors in AlignMe.
Combinations included: (a) PSSMs with hydrophobicity descriptors or transmembrane predictions;
(b) secondary structure prediction with PSSMs or transmembrane predictions; or (c) PSSMs, PSIPRED
and OCTOPUS together. The scores obtained using PSSMs or PSIPRED alone are indicated with gray
lines for reference. Gap penalties were assigned differently to sequence segments above or below a
threshold (black bars), and the threshold was defined using the inputs marked by *. For example, in
the PSIPRED* & OCTOPUS combination, the threshold was assigned using PSIPRED. See legend for
Figure 3.4 for further details.
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3.3.2.3 Secondary Structure Prediction Combined with a Transmembrane Prediction

Also a combination of secondary structure likeliness with membrane propensities might add
additional information to the alignment since only a combination of both methods can distinguish
between membrane-spanning a-helices, non-membranous a-helices and other types of secondary
structure elements. Alignments using a combination of a secondary structure prediction with a
transmembrane prediction were also significantly more accurate (total AD score of —23.7 for PSIPRED
combined with OCTOPUS; Figure 3.6b) than alignments using each descriptor on its own (total AD
score of —27.2 for PSIPRED and —52.9 for OCTOPUS; Figure 3.4), with OCTOPUS again being the best
choice of transmembrane predictor (Figure 3.6b). In these combinations, when assigning gap
penalties differently to structured regions (chapter 3.2.1), the latter may be defined using either
secondary structure or membrane propensity. | found that using a-helix positions for this distinction
(OCTOPUS and PSIPRED*, total AD score of —23.7, Figure 3.6b) led to significantly (p = 0.03) more
accurate alignments than when using the transmembrane positions for assigning the thresholds

(OCTOPUS* and PSIPRED, total AD score of —24.2, Figure 3.6b).
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Figure 3.7 Profiles of the predicted membrane propensity from the three different transmembrane
helix prediction methods tested for AlignMe. Predictions were generated for the chloride channel
protein with PDB identifier 1KPL. The y-axis label contains the header of the corresponding column in
the output from the prediction method.
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Two major observations can be obtained from these results. First, the increase in alignment accuracy
proves the assumption that that secondary structure and transmembrane predictions contain
complementary information, consistent with the fact that not all secondary structure elements in a
membrane protein are located within the membrane. Indeed, among the 60% of the residues that
are outside the membrane in HOMEP2 structures (as defined by PDB_TM), 46.2% of residues are a-
helical, and 7.4% are in a B-strand. Moreover, not all transmembrane segments are fully helical
(Kauko, et al., 2008), and include segments of coil (7.5% of residues) and even B-sheet (0.1% of
residues). A combination of both methods includes all information whereas each method on its own
misses either membrane information (e.g., secondary structure predictors) or additional secondary
structure information of coils and sheets within membranous and non-membranous segments (e.g.,
membrane predictors). Another observation is that gap insertion should be disfavored in all
structured regions, whether in the membrane or not. Consequently, a gap-penalty scheme that is
based on secondary structure propensities allows for more accurate alignments. Nevertheless, no
matter how the different regions are assigned to define an extended gap-penalty scheme, the
alignments are significantly more accurate using an extended gap penalty scheme than when the

same gap penalty values are used in both structured and unstructured regions (Figure 3.6b).

3.3.2.4  Combinations of PSSMs with Secondary Structure and Transmembrane Predictions

All combinations of two input descriptors were shown to result in more accurate alignments.
Consequently, | tested the three protein descriptors with the most useful and complementary
information (PSSM, OCTOPUS and PSIPRED3.2) in combination with each other. This combination
increased the alignment accuracy significantly (total AD score = —17.6, p < 0.05, Figure 3.6c) even
though a simple gap penalty was used, which only differentiates between terminal and non-terminal
open and extension gap penalties. A further significant increase was obtained by assigning gap
penalties according to secondary structure propensity (total AD score = -17.3, p < 0.05, Figure 3.6¢),

but not by transmembrane position (total AD score =—-17.6, p = 0.32, Figure 3.6c).

Interestingly, input descriptors that led to the most accurate alignments when used alone were not
always the most effective when they were used in combination with complementary input
descriptors of another type (e.g., OCTOPUS contributed more in combination than alone, and the
converse was found for MEMSAT-SVM; Figure 3.4 and Figure 3.6). Presumably, single input
descriptors may contain detailed information to produce an accurate alignment, whereas in
combination that information may become redundant or even conflicting with the other input

descriptor that is used. Clearly this suggests that it would be desirable to optimize the parameters on
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all combinations of all descriptors as well as optimizing the contribution (e.g., weights) of each input

descriptor to the alignment, but unfortunately this is not computationally tractable at this time.

For subsequent evaluations | decided to compare three different versions of AlignMe for their
accuracy on HOMEP2 as well as on the BALIBASE reference 7 set. All three modes of AlignMe contain
different input descriptors to test whether the inclusion of additional information increases the
alignment accuracy also significantly on an independent data set or not. For reference, | tested one

version, called AlignMeP, that uses only evolutionarily information (PSSM), with gap penalties of

p,=1536, p, =088, p" =1.69 and p""" =0.25. In the AlignMePS version, secondary

o

structure information (PSIPRED3.2) was used besides evolutionarily information of PSSMs, with

pbelow — 622 ) pi}elow — 137 )

o

optimized gap penalties of p“”“=6.80, p*”*=228,

pmm =029 and p™™“ =0.86. Finally, | tested the effect of including transmembrane
information from OCTOPUS in addition to PSSMs and PSIPRED3.2 within AlignMePST. For this

pbelow — 214 ) pebelow — 306 )

o

combination, gap penalties of pzbm =296, pfbm =3.06,

pm =007 and p"" =1.18 were shown to generate accurate alignments for that

combination. In both AlignMePS and AlignMePST versions, a-helicity was used to define the gap

penalty assignment threshold of 0.5 based on the a-helical propensities obtained with PSIPRED 3.2.

3.3.3 Comparison of AlignMe with Other Sequence Alignment Methods on the HOMEP2

Data Set

| compared the three AlignMe versions, i.e., evolutionarily information without (AlignMeP) or with
secondary structure propensities (AlignMePS) or with additional matching of membrane probabilities
(AlignMePST), to several available multiple-sequence alignment programs (e.g., ProbCons,
MSAProbs, T-Coffee and Muscle), as well as the pairwise profile-to-profile alignment program HMAP,
and the HMM-HMM alignment program HHalign (see chapter 3.2.5). Here, | first assess alignment
accuracy using sequence alignments of the structure-based HOMEP2 reference dataset that was
used for training. Then | evaluate the accuracy of homology models built from those alignments as a
reference-independent measure of alignment quality. In both cases, the HOMEP2 reference data set
is split up into three groups of close homologues (>30% identical residues), homologues with

moderate similarity (15-30%) and those with low similarity (<15%).

At first sight, alignments generated with AlignMe contain the highest number of correctly aligned
residues and the lowest shift errors for all three different similarity levels within the HOMEP2 data

set compared to other sequence alignment methods. However, the different modes of AlignMe (P,
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PS and PST) are ranked differently depending on the sequence similarity of the proteins that are
aligned. Additionally, the significance between the different modes and all MSA methods tested has

to be considered.

For pairs of membrane protein sequences in the HOMEP2 set within the group of low (0-15 %) and
moderate (15-30 %) similarity, AlignMe alignments have significantly more (~2 %) correctly-aligned
positions than all other methods (Table 3.3 and Figure 3.8a, c, e) with all three modes being not
significantly different from each other for the group of low similarity proteins and with AlignMeP and
PS being most accurate for the group of moderate similarity. In the case of close homologues (>30%
identical residues) in the HOMEP2 set, alignments generated by AlignMeP and PS have the highest
number of correctly aligned residues but AlignMePST and HHalign alignments also have a high

fraction of correctly aligned residues, for example (Table 3.3 and Figure 3.8c).

Table 3.3 Accuracy of alignments generated using different methods on the HOMEP2 data set

0-15 % (44) 15-30 % (71) 30-85 % (62)

% correct shift % correct shift % correct shift
AlignMeP 30.1* 431 72.0 1.15 88.2 0.25%
AlignMePS 30.6* 3.35 71.5 1.16 87.9% 0.28
AlignMePST 30.7 2.73 70.4 0.85 87.5 0.21
AlignMePST x-fold 30.3 2.89 70.4 0.89 87.3 0.30
MSAProbs 28.3 7.22 68.6 1.08 85.7 0.24*
HHalign 17.3 10.50 61.8 1.75 86.5* 0.29*
HMAP 24.9 7.00 68.6 1.27 85.3 0.32
MUSCLE 26.4 9.41 68.5 1.13 85.5 0.31
MUSCLE profile-profile 25.6 9.77 63.6 1.65 75.6 0.86
ProbCons 26.7 8.30 67.0 1.34 84.2 0.31
T-Coffee 25.3 7.55 66.5 1.27 83.4 0.32
T-Coffee profile-profile 14.5 35.22 55.9 2.25 70.7 1.09

Results are sorted according to the level of sequence similarity of the sequence pair, in percentage
identity. The number of pairwise alignments is shown in parentheses. The percentage of correctly
aligned residues (% correct) and average shift error size (shift) with respect to the structure-based
reference alignments (see chapter 3.2.3) are reported. *Values marked with an asterisk in this and all
other subsequent tables are not significantly different from those of AlignMePST (p-value > 0.05)
based on a pairwise Wilcoxon signed rank test. All other values are significantly different from those
of AlignMePST. Entries in bold in this table, and all subsequent tables, indicate the highest or best
scores in that column, including all values that are not significantly different from the best scores.
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For all similarity groups, misaligned residues are shifted for fewer positions in AlignMe alignments,
particularly when transmembrane information is included (see Table 3.3). A significant difference in
the average shift error from AlignMePST to all other methods is observed for proteins sharing a low
and moderate sequence identity but not for protein pairs sharing a high sequence identity for which
the average shift error is similarly low for HHalign, MSAProbs, AlignMeP and AlignMePST alignments
(see Table 3.3 and Figure 3.8b, d, and f). The significant reduction in shift errors reflects optimization

of the gap penalties to the shift-size sensitive AD score.

It has to be noted that the reduction in shift errors obtained by matching transmembrane predictions
(AlignMePST cf. AlignMePS) does come at the cost of some correctly-aligned positions, especially for
sequences with moderate similarity (15-30 %). As mentioned above, for homology modeling of
distantly-related pairs of proteins with low sequence identity it can be useful to reduce the
magnitude of large shift errors since manual adjustment of an alignment can be aided relatively
easily by conservation mapping once the helices are approximately aligned. For similar reasons, it is
also interesting to know whether homologous transmembrane helices have been matched to some
extent, as many (although not all) functional residues (e.g., residues involved in ligand binding or
transport) lie in these regions. The matching of transmembrane helices in the HOMEP2 set by
AlignMe appears to be particularly effective: using AlignMePS and AlignMePST, 297% of the known
transmembrane helices overlap by at least half of their residues, and 262% of the helices (at least
10% more than the next best method) overlap by at least 90% of their residues (Table 3.4). These
enhancements are achieved largely by the inclusion of secondary structure information (compare
AlignMePS to AlignMeP), and to some extent by the matching of transmembrane predictions
(compare AlignMePS to AlignMePST). However, even without transmembrane predictions,
AlignMePS also matches these membrane-spanning segments of distant homologs (0-15%)
significantly better (8-12% more overlap by at least half of their residues) than another method that

considers secondary structure (HMAP), at least on the HOMEP2 training set.

All these results based on HOMEP2 are perhaps unsurprising given that the gap penalties are
optimized for this data set. Consequently, an independent evaluation is required that does not rely

on the data that AlignMe is optimized upon.
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using (a, ¢, e) the percentage of correctly-aligned residues, or (b, d, f) the average shift error, shown
for all alignments as a box and whisker plot. Alignments are sorted according to the percentage

Figure 3.8 Accuracy of HOMEP2 alignments generated by different methods. Accuracy is measured
identity between the sequences, namely (a, b) <15%, (c, d) 15-30% or (e, f) >30%.



Table 3.4 Percentage of transmembrane segments in the HOMEP2 set that are correctly aligned by
each method

0-15 % (44) 15-30 % (71) 30-85 % (62)
fSO f90 fSO f90 fSO f90
AlignMeP 93.65 52.80 98.64 95.54 100.00* 99.31*
AlignMePS 97.00 62.43* 99.49* 96.85* 100.00* 99.08*
AlignMePST 98.32 63.73 100.00 97.17 100.00 99.77
MSAProbs 90.42 53.01 99.49* 95.90* 100.00* 99.31%*
HHalign 70.50 28.61 97.05 76.97 100.00* 95.72*
HMAP 85.83 54.31 99.49* 96.87* 100.00* 99.08*
MUSCLE 82.92 49.59 99.60* 93.89 100.00* 99.04
MUSCLE profile-profile 82.20 48.90 98.08 86.30 99.46* 88.16
ProbCons 89.73 52.17 99.49* 95.78* 100.00* 99.04
T-Coffee 88.02 51.18 99.49* 95.42 100.00* 98.85
T-Coffee profile-profile 38.32 18.75 95.56 66.68 97.33 73.12

Transmembrane segment definitions are taken from the structures according to the PDB_TM
database (see Methods); matching is defined as correct if 50% (f°) or 90% (f*°) of the residues are
aligned. Results are sorted according to the level of sequence similarity of the sequence pair. The
number of pairwise alighnments is shown in parentheses. See legend for Table 3.3 for further details.

An obvious concern regarding the robustness of the AlignMe method(s) is an overtraining of the gap
penalties for specific input descriptors due to the limited number of membrane protein structures
available in the HOMEP2 data set. | first tested the robustness of the gap penalty optimization
process by using cross-validation. The optimization of a set of 6 gap penalties using the input
descriptors of the AlignMePST method (PSSM, secondary structure prediction by PSIPRED 3.2 and a
transmembrane prediction of OCTOPUS) was repeated 11 times by leaving out 2 of the 22 families of
HOMEP2 and thus using only 20 of the 22 families for the optimization process. In each case, the
resultant gap penalties were used to evaluate the alignment accuracy of the remaining two families.
As shown in Table 3.3 (see AlignMePST x-fold), the accuracy of the alignments using these gap
penalties was similar to that obtained by training and testing on the whole HOMEP2 set. Moreover,
the mean and standard deviation of the gap penalties of the cross-validation for the AlignMePST

combination indicates relatively small variations between the different cross-folds (i.e., after

optimization on different subsets): p*”* =3.00 + 0.27, p™*"“=3.16 + 0.46, p."" =2.06 % 0.16,
pfdow =2.86 + 0.25, p:frmmal =0.97 +1.48 and pf’mml = 1.23 + 0.06. These results suggest that the

gap penalties are not significantly over-trained on a particular family of the HOMEP2 dataset, and
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thus should be applicable to other membrane protein sequences, which are not included in the

HOMEP2 data set yet.

3.3.4 Evaluation of Alignment Accuracy Based on Homology Modeling

Another concern addressing the alignment accuracy of the different AlignMe modes is the
optimization of their gap penalties and the subsequent evaluation based on the same reference
sequence alignments. An independent assessment criterion is necessary to ensure that AlignMe is
not over-optimized on the HOMEP2 data set and that the alignment parameters of AlignMe can also
be applied to sequences that are not reflected directly by the HOMEP2 data set. Accordingly,
structural (homology) models were generated with Modeller v.9.9 using all pairwise sequence
alignments that were generated so far by all methods (AlignMe, MSA methods, profile-profile
methods). The models that were generated by Modeller were then compared to the native
structures by calculating structural similarity scores (e.g., GDT_TS and AL4 values — see chapter
3.2.6), and also compared to “gold standard” models built using the reference sequence alignments

extracted from the SKA structural alignments.

First, the percentage of correctly modeled protein fragments was examined using the GDT_TS score,
which is also closely correlated to the number of correctly aligned residues. According to the GDT_TS
score, several methods (e.g., AlignMe, MSAProbs etc.) have a similar accuracy on average (Table 3.5
and Figure 3.3). However, alignments generated with any of the AlignMe modes result in fewer very
poor models (with GDT_TS < 20%), while there are models based on alighments of other methods
whose GDT_TS scores are as low as 5% for distantly related proteins of the HOMEP2 set (Figure 3.9a).
Next, the AL4 score that correlates well with the average shift error (see Figure 3.3) was applied to
analyze homology model accuracy. This score discriminates better between low-accuracy models
(Figure 3.9b). Models based on AlignMePS and AlignMePST alignments have significantly higher AL4

scores (up to 5% higher) than the best of the other alignment methods (see Table 3.5).

Both results show that alignments of all AlignMe modes contain a low shift error (cf. Table 3.3) due
to the optimization towards less negative AD scores. Additionally, | have to note that models built
from the structure-based reference alignments are the most accurate (SKA; Table 3.5 and Figure 3.9).
This indicates that an optimization against these reference alignments was a useful procedure but

also that there remains room for improvement in alignment methods.
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Table 3.5 Accuracy of homology models constructed based on HOMEP2 data set alighments

0-15 % (88)

15-30 % (142)

30-85% (124)

GDT_TS AL4 GDT_TS AL4 GDT_TS AL4
AlignMeP 34.74 73.97 67.53* 90.75 83.94* 97.65
AlignMePS 38.06 79.97* 67.40* 90.52 83.79* 97.33
AlignMePST 36.30 80.48 67.36 92.19 83.96 98.03
MSAProbs 36.71% 75.00 67.33* 90.81 84.17* 97.76
HHalign 25.08 59.06 61.38 87.71 83.12 97.63
HMAP 36.33* 74.97 67.31% 90.44 83.25 97.04
MUSCLE 32.95 69.02 66.00 90.66 82.89 97.31
Muscle profile-profile 32.56 69.35 62.19 88.82 75.75 94.24
ProbCons 35.28* 72.78 67.16* 90.22 83.29 97.46
T-Coffee 35.30* 72.20 66.78 90.42 83.38 97.57
T-Coffee profile-profile 18.27 37.85 59.30 86.58 73.03 92.95
SKA structure-based® 46.38 85.42 71.12 93.99 85.51 98.18*

®Reference alignments generated by the structure alighment program, SKA. The number of models is
shown in parentheses. See legend for Table 3.3 for further details.
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Figure 3.9 Accuracy of homology models built from HOMEP2 alignments generated by different
methods. Accuracy is measured using the (a, c, e) GDT_TS and (b, d, f) AL4 scores of homology

models compared to the known structures. Alignments are sorted according to the percentage

identity between the sequences, namely (a, b) <15%, (c, d) 15-30% or (e, f) >30%.
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3.3.5 Comparison of AlignMe with Other Sequence Alignment Methods on the BALIBASE

Reference 7 Test Set

The alignment accuracy of the various alignment methods was also evaluated on an independent
data set of membrane protein sequences (reference set 7 of BAIIBASE; see chapter 3.2.7). This
second assessment is also required to prove that the alignment parameters of AlignMe are not over-
optimized on the HOMEP2 data set and that AlignMe also generates accurate alighnments for protein
sequences not included in HOMEP2. The BALIBASE reference 7 dataset contains manually-curated
multiple-sequence alignments, based on PFAM alignments and was optimized to improve amino acid
and secondary structure matching. At the time of the data set construction, no structural information
was available to help guide the dataset generation (Bahr, et al., 2001) and such structural data is still
missing for the majority of the proteins within that set. Consequently, | analyze the accuracy of all
pairwise alignments in BAIIBASE, but | am not able to generate homology models for this data set.
Finally, | separate out the results for closely- and distantly-related protein sequences to gain a deeper

insight into the influence of sequence similarity on the alignment quality.

Interestingly, the results vary depending on the average sequence identity of the proteins within
each family. For the “ion” family, which has a very low average sequence identity (11.7 % - see Table
3.6), significantly more accurate alignments were obtained with AlignMePST showing that matching

of transmembrane segments is favorable for protein pairs sharing a low sequence identity.

For the next 5 families, which follow in the order of increasing average sequence identity, AlignMePS
alignments were found to statistically have the significantly highest number of correctly aligned
residues. The inclusion of secondary structure-specific information seems to be useful at those
sequence identity levels (14.3 % to 26.9 % - see Table 3.6), whereas membrane-specific information
becomes less useful. Finally, alignments of AlignMeP are shown to be most accurate for the families
with the highest sequence identity (e.g., 27.3 % of photo and 35.3 % of msl — see Table 3.6) but those

|II

alignments are not significantly better than those of AlignMePS for the “msl” family. The application
of PSSMs alone seems to be useful only if the sequence identity is high enough, because the
alignment accuracy of AlignMeP drops significantly compared to other methods the lower the
sequence identity gets. Overall, AlignMePS alignments have the most correctly aligned residues in
BAIIBASE set 7 on average, including those not represented in the training set, followed by

AlignMePST and the profile-to-profile method HMAP, which has also high-ranking scores for four out

of the eight families.
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Table 3.6 Percentage of residues that are correctly aligned in pairwise sequence alignments from the
BAIiBASE reference set 7, sorted by sequence identity of the protein families

ion Nat ptga 7tm dtd acr photo  msl mean

AlignMeP 38.9 43.5 42.1 42.5 67.1 87.0 87.9 82.5 61.4
AlignMePS 45.2 66.2 64.8 65.9 76.0 89.7 87.6 82.3 72.2
AlignMePST 48.1 58.6 58.8 59.4 71.2 86.3 82.9 76.5 67.7
MSAProbs 24.5 53.3 45.9 54.7 64.4 89.0 73.4 70.6 59.5
HHalign 39.1 48.9 42.3 384 42.7 49.5 67.3 59.9 48.5
HMAP 32.8 61.9 54.9 61.4 65.3 87.6 83.4 78.5 65.7
MUSCLE 27.9 56.8* 48.4 56.6 70.3 89.5 80.5 76.1%* 46.7
MUSCLE profile-profile  18.5 47.1 39.7 48.2 67.4 88.5 70.4 64.1 55.5
ProbCons 23.8 52.0 44.1 54.4 63.7 88.7 69.3 66.8 57.9
T-Coffee 25.5 50.6 44.2 55.1 63.7 88.8 67.5 67.5 57.9
T-Coffee profile-profile ~ 10.8 14.5 27.0 40.2 52.9 86.2 52.1 53.0 42.1
Number® 1326 1711 1275 8128 1485 903 528 91

Sequence identity (%)° 11.7+ 14.3¢ 159+ 182+ 187+ 269+  27.3#1 35.3%
13.8  10.8 12.1 9.7 11.5 11.3 6.9 13.5

Mean = mean percentage of correctly-aligned residues over averages for eight families. *“Number of
pair-wise alignments. ®Mean (tstandard deviation) of the percentage sequence identity between
pairs of alignments in each family. See legend for Table 3.3 for further details.

All families of BALIBASE reference 7 consist of different subgroups of proteins that are more closely
related to each other than to proteins of other subgroups (Bahr, et al., 2001). Accordingly, | split up
the BALIBASE set into sequences assigned to the same subgroup (Table 3.7) or to different subgroups
(Table 3.8). The high ranking of the various AlignMe methods (with AlignMePS being the most
accurate method) and of HMAP remains for alignments of both closely and distantly-related
sequence pairs (Table 3.7 and Table 3.8). The average sequence similarity is higher for sequences
assigned to the same subgroup (Table 3.7) than for sequences assigned to different subgroups (Table
3.8). Accordingly, alignments of AlignMeP, that are based on evolutionarily information only, are
more accurate for closely related sequences from the same subgroup (ranked 2™ Table 3.7) than for
those from different subgroups (ranked 7" Table 3.8). Indeed, AlignMeP alignments are significantly
more accurate for the most similar sequences (in the dtd and photo families, Table 3.7) showing that
membrane profile or secondary structure matching is not beneficial for closely related sequences.
Nevertheless, secondary structure and transmembrane information becomes progressively more
useful as the similarity decreases, especially for those assigned to different subgroups (Table 3.8)
whereas the accuracy of alignments based upon evolutionarily information only (AlignMeP)

decreases significantly as the similarity decreases.
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Table 3.7 Percentage of residues that are correctly aligned in pairwise sequence alignments assigned

to the same subgroup within the BAIIBASE reference set 7, sorted by sequence identity of the
alignments in each protein family

ion ptga 7tm Nat acr msl dtd photo mean
AlignMeP 62.8 83.4 67.6 80.6 93.4 82.0 90.3 94.7 81.8
AlignMePS 64.9 83.9 74.2 81.8 93.9 81.7 89.6 94.0 83.0
AlignMePST 62.9 81.7 68.4 79.3 92.4 78.3 86.9 91.4 80.2
MSAProbs 443 67.5 62.5 71.1 92.5% 74.4 84.5 88.8 73.2
HHalign 51.6 52.0 43.9 64.8 56.0 58.6 66.4 84.3 59.7
HMAP 50.6 75.2 69.2* 77.5* 917 80.9 82.8 90.6* 77.3
MUSCLE 47.0 72.3 62.6 72.4 93.0 78.0* 85.0 88.6 74.9
MUSCLE profile-profile  25.1 60.8 53.5 54.3 91.6 62.6 74.7 74.1 62.1
ProbCons 43.8 66.5 62.1 69.7 92.2 69.9 83.7 83.6 71.4
T-Coffee 45.9 69.8 64.7 72.5 92.2 76.8 85.2 87.0 74.3
T-Coffee profile-profile  45.3 66.3 63.5 70.4 92.1 71.4 84.1 83.6 72.1
Number 551 559 1082 282 420 51 84 122
Sequence identity (%) 22.1+ 26.7+ 28.0+ 31.3t 344+ 436t 49.5+ 52.2+

16.6 11.0 20.0 16.7 12.9 12.7 19.1 18.1

See legend to Table 3.6 for more details.
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Table 3.8 Percentage of residues that are correctly aligned in pairwise sequence alignments assigned
to different subgroups within the BAIIBASE reference set 7, sorted by sequence identity of the
alignments in each protein family

ion ptga Nat 7tm dtd photo acr msl mean
AlignMeP 21.9 9.9 36.2 38.6 65.7 85.9 81.4 83.3 52.9
AlignMePS 31.2 49.9 63.1 64.7 75.2 85.7 86.0 83.0 67.3
AlignMePST 375 41.0 54.5 58.0 70.3 80.3 81.0 74.2 62.1
MSAProbs 10.5 29.0 49.8 53.5 63.2 68.8 85.9 65.9 53.3
HHalign 30.2 34.8 45.8 37.6 41.3 62.2 43.8 61.6 44.6
HMAP 20.1 39.2 58.9 60.2 64.3 81.3 83.9 75.5%* 60.4
MUSCLE 14.3 29.8 53.7 55.7 69.4* 78.1 86.5 73.7* 57.7
MUSCLE profile-profile  13.7 23.2 45.7 47.4 67.0 69.3 85.7 66.1 52.3
ProbCons 9.5 26.6 48.6 53.2 62.5 65.0 85.8 62.9 51.7
T-Coffee 13.5 34.3 46.5 55.3 63.6 72.8 86.1 69.7 55.2
T-Coffee profile-profile  11.5 26.9 46.7 53.8 62.5 62.6 85.9 62.7 51.6
Number 775 716 1429 7046 1401 406 483 40
Sequence identity (%) 4.3+t 7.5+ 10.9+ 16.7+ 16.8+ 19.8+ 20.4+ 24.7+

1.0 1.6 3.9 5.4 7.6 5.5 1.6 3.3

See legend to Table 3.6 for more details.
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3.4 Discussion

In this work, | have applied and improved a sequence alignment method called AlignMe, for which |
trained gap penalty sets in combination with specific input descriptors on a dataset of membrane
protein structural homologues (HOMEP2). Three different strategies (AlignMeP, AlignMePS and
AlignMePST) were assessed in comparison with other available alignment methods using HOMEP2
for an initial evaluation for alignment accuracy, homology modeling accuracy for a second evaluation
and the independent BAIIBASE membrane protein dataset (set 7) for a final evaluation. The results of
the comparisons to the HOMEP2 data set were not surprising since the AlignMe parameters were
optimized on that data set and consequently, all AlignMe modes were suitable for aligning (and
modeling) proteins from the HOMEP2 data set. However, the independent analysis on the reference
7 subset from BAIiBASE suggests that versions of AlignMe that match secondary structure prediction
profiles may be generally useful for aligning membrane proteins (AlignMePS and AlignMePST; Table
3.6 - Table 3.12) and that membrane-specific information is suitable as additional information to an
alignment if the pairwise sequence identity between two proteins decreases below 10 % (see Table
3.6 - Table 3.12). Overall, AlignMePS alignments are more accurate than those of the profile-to-
profile methods HMAP and HHalign, both of which also use secondary structure information directly,
indicating that the training of AlignMePS specifically on a membrane protein dataset was
advantageous and that the discovered parameters can be generalized to proteins that are not

included in the HOMEP2 data set.

For closely-related sequence pairs within BALIBASE, the usage of secondary structure and
membrane-specific information (AlignMePS and AligneMePST) decreased the pairwise alignment
accuracy compared to alignments based upon evolutionarily information only. Thus, | checked the
matching of the transmembrane profiles that were used for AlignMePST alignments. Differences
between the two membrane propensity profiles, which were generated by OCTOPUS, were
calculated at every position in each alighnment, summed up, normalized by calculating the total
difference by the alignment length, and finally all differences were averaged over all HOMEP2
alignments. Indeed, the difference between the membrane-propensity profiles of two proteins is
smaller (0.056) when using the transmembrane predictions in AlignMePST than without (in
AlignMePS; 0.085), confirming that the predicted transmembrane profiles match more closely in
AlignMePST alignments. The fact that transmembrane matching does not improve alignment
accuracy for the closely-related BAIIBASE sequence pairs may be caused by the error rate of >10 %
inherent in the membrane propensity prediction by OCTOPUS (see chapter 3.2.2.4). Consequently,
incorrectly predicted protein positions are matched in the AlignMePST mode for obtaining a low

difference between the two membrane propensity profiles. Indeed, the matching of OCTOPUS
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predictions in the reference structure-based alignments is almost as poor (profile difference score of
0.079) as the matching in the AlignMePS alignments showing that OCTOPUS profiles contain errors
and that a perfect matching of them might be unfavorable. Such prediction errors can potentially be
cancelled out in the context of a sequence alignment if the predictions for both sequences are
incorrect in the same way, but this is not always the case, and the likelihood of errors canceling
diminishes as the sequences diverge in similarity. An update of AlignMe with future membrane

prediction methods that have an improved accuracy might solve or at least diminish that problem.

As mentioned above, another source of errors for the AlignMePST strategy (especially in the
transmembrane regions) may be discrepancies between the secondary structure and
transmembrane predictions. Quantifying the matching of secondary structure prediction profiles as
described above indicates that the secondary structure profiles match less well in alignments
generated with transmembrane predictions (profile difference score for AlignMePST is 0.060) than
those without (profile difference score for AlignMePS is 0.055). In other words, transmembrane

matching occurs at the expense of secondary structure matching.

A third possible cause of the reduced accuracy for closely-related sequences using AlignMePST is that
including a third parameter (the transmembrane prediction besides evolutionarily information and
secondary structure prediction) in the score for each position diminishes the contribution of the

PSSM to the total alignment in a deleterious way.

The above discussion notwithstanding, the BAIIBASE results indicate that incorporating
transmembrane matching is useful for very distantly-related proteins (e.g., sequence identity < 15 %),
particularly for reducing the overall shift error (Table 3.10 - Table 3.12). The observations for the
accuracy in the transmembrane segments, however, are somewhat contradictory: the overlap of the
known transmembrane regions in the HOMEP2 alignments is increased significantly by including
transmembrane profiles (Table 3.4), whereas in the predicted transmembrane regions of the
BAIiBASE alignments there were fewer correctly aligned positions than with, e.g. T-Coffee (Table 3.9).
Again, this may reflect conflicts between the secondary structure and transmembrane predictions,
which might be addressed in future by adjusting the procedure so that secondary structure
information is used only in regions not predicted to be in the membrane. However, such an approach
might fail to align kinks in membrane segments properly since information about non-helical
elements within membrane-spanning segments is missing. Unfortunately, | do not yet have sufficient
data at low sequence identities to test this hypothesis more thoroughly and must await the

availability of larger reference sets.
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Table 3.9 Percentage of residues that are correctly aligned in the predicted transmembrane regions
of pairwise sequence alignments from the BAIIBASE reference set 7, sorted by protein family name

7tm acr dtd ion msl Nat photo ptga mean
AlignMeP 54.6 96.0 76.5 36.1 96.7 44.6 91.8 40.3 67.1
AlignMePS 92.6 98.0 90.1 58.3 97.1 73.6 96.0 67.2 84.1
AlignMePST 87.0 95.6 86.2 57.8 95.7 64.2 93.9 58.1 79.8
MSAProbs 95.8 98.0 89.5 62.7 96.5 69.5 91.7 723 84.5
HHalign 51.9 37.6 51.8 37.1 76.3 50.0 71.6 31.5 51.0
HMAP 95.1 97.6 82.8 61.5 96.0* 72.4 96.7 69.3 83.9
MUSCLE 89.5 97.6 89.1 49.7 95.0* 64.9 91.7 57.2 79.3
MUSCLE profile-profile 79.9 97.4 89.0 30.2 92.9 53.9 85.8 47.6 72.1
ProbCons 95.7 97.9 89.6 61.6 96.5 67.9 90.6 69.8 83.7
T-Coffee 95.8 98.1 89.9 65.7 96.4 66.5 88.2 69.8 83.8
T-Coffee profile-profile 75.5 98.0 83.9 12.3 91.2 18.2 71.8 49.0 62.5

Mean = mean over averages for eight families. See legend for Table 3.3 for further details.

A concern about the current study is the fact that no structural informational was available to aid
with the alignments when the BAIIBASE reference set 7 was constructed, and therefore it is possible
that these alignments contain errors whose effect | cannot yet know (Edgar, 2010). Likewise, there
might also be errors in the HOMEP2 alighnments that were generated by a single structural alignment
method (SKA), which generates a rigid superimposition of the protein structures. The accuracy of
structural alignments for flexible protein segments was shown to be higher if a fragment-based
method like FR-TM-align was used (Pandit and Skolnick, 2008). Therefore, | would recommend using

a flexible structural alignment method for generating an updated reference data set.

Nevertheless, the relatively consistent ranking of the different methods on both the BAIIBASE and
HOMEP?2 sets, i.e., with AlignMePS, MSAProbs and HMAP frequently high-ranking, and the profile-

profile MSA methods ranked towards the bottom, suggests that my findings are reasonably robust.

Of the other available sequence alignment methods tested, alignments of the profile-to-profile
alignment method HMAP were most frequently ranked towards the top (Table 3.3 - Table 3.12), and
T-Coffee and MSAProbs alignments were also frequently very accurate, particularly in the
transmembrane regions of the BAIIBASE set (Table 3.9). Recently, MSAProbs and ProbCons were
tested on this same BAIiBASE reference 7 set (Chang, et al., 2012); however, in that study, they were
assessed for their ability to construct MSAs rather than pair-wise alignments, which are in the focus

here. It should also be reiterated that when testing the MSA methods on BAIIBASE, | did not
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construct a single MSA containing only the BAIIBASE sequences, but rather, for each pair of
sequences, | additionally included 24 homologues of those sequences identified by PSI-BLAST and
clustered by UCLUST, in order to make the results comparable to those of AlignMe, HHalign and
HMAP (see chapter 3.2.5). A consequence of this approach was that TM-Coffee, a slower method
also shown to perform well for MSA of BAIIBASE set 7 (Chang, et al., 2012), was too computationally

expensive to be tested in the current study.

The profile-to-profile alignments strategy used with MUSCLE and T-Coffee typically resulted in fewer
correctly-aligned positions and larger shifts compared to alignments of the other methods tested
(Table 3.3 - Table 3.12). Also profile-to-profile alignments of HHalign for the BAIIBASE set had
surprisingly low fractions of correctly-aligned positions (Table 3.6 - Table 3.9), although the shift
errors in the alignments for this method were among the smallest (Table 3.10 - Table 3.12) and the
scores on the low sequence-identity ion family were consistently high-ranking (Table 3.6 - Table 3.8
and Table 3.10 - Table 3.12). This low performance of the profile-profile methods may reflect that
greater deviations are present in the two profiles than in the sequences themselves, making them
more difficult to align. Since the selection of sequence homologues appears to be an important
parameter (Hill and Deane, 2012), in future work | plan to analyze the influence of the database
search parameters on the accuracy of the different alignment methods, and to test not only
evolutionarily information generated by PSI-BLAST but also those generated by programs such as

SHRIMP (Bernsel, et al., 2008), HMMER3 (Eddy, 2011), and HHblits (Remmert, et al., 2011).

Finally, | have to point out that this study focuses on a-helical membrane protein sequences, so that
gap penalties were obtained that are optimal for long helices and are not biased by the inclusion of
short B-stranded regions (Hill and Deane, 2012). Optimization against B-barrel proteins is likely to
lead to different gap penalty sets, and may result in methods that are particularly useful for that
membrane protein architecture. And as the size of the database of (a-helical and B-barrel-like)
membrane protein structures grows, further assessment of pairwise and multiple sequence
alignment methods will be useful. Nevertheless, the results presented here suggest that there is
potential for using the specific properties of membrane proteins for training and design in a way that

aids the alignment of their sequences.
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Table 3.10 Average shift error in pairwise alignments of the BAIIBASE reference set 7

ion Nat ptga 7tm dtd acr photo msl mean
AlignMeP 29.92 48.71 3398 47.58 9.83 1.09 0.31* 0.59* 15.38
AlignMePS 28.83 2.46 3.12 3.67 1.71 0.33 0.36 0.42 5.11
AlignMePST 13.83 3.24 5.39 11.82 3.46 0.42 0.31 0.47 4.87
MSAProbs 37.00 2.42* 599 5.17 4.29 0.34 1.36 0.84 6.87
HHalign 15.89 4.81 7.96 9.91 6.37 1.61 0.84 1.78 6.15
HMAP 35.66 1.95 6.18 4.61 6.84 0.31 0.52 0.58 7.08
MUSCLE 49.39 6.01 12.97 1042 3.31 0.34 0.73 0.64 10.48
MUSCLE profile-profile 57.33 11.53 18.23 22.06 3.86 0.40 1.28 1.20 14.49
ProbCons 41.46 3.20 7.91 5.60 4.78 0.35* 1.70 1.09 8.22
T-Coffee 39.93 4.62 6.69 4.50 4.73 0.35* 1.60 1.09 7.90
T-Coffee profile-profile 64.15 42,50 12.03 17.50 8.48 0.45 2.15 2.22 18.69

Families are sorted by the average sequence identity (see Table 3.6). Mean = mean over averages for

eight families. See legend for Table 3.3 for further details.

Table 3.11 Average shift error in pairwise alignments assigned to the same subgroup within the
BAIIBASE reference set 7

ion ptga 7tm Nat acr msl dtd photo mean
AlignMeP 12.35 0.79 16.19 1.45* 0.16* 0.72 0.62 0.18 4.06
AlignMePS 6.69 0.73 2.38 1.35 0.16 0.46* 0.58* 0.20* 1.57
AlignMePST 5.57 0.65 8.44 1.45 0.16 0.44 1.09 0.16 2.24
MSAProbs 2191 2.97 3.90 1.85 0.19 0.70 1.25 0.48 4.16
HHalign 6.03 3.14 8.56 2.37 1.32 1.94 2.66 0.29 3.29
HMAP 1791 2.03 2.93 1.40 0.20 0.55* 3.96 0.26 3.66
MUSCLE 17.67 5.73 9.13 3.56 0.19 0.63 0.99 0.37 4.78
MUSCLE profile-profile 42.37 8.06 15.17 10.81 0.23 1.31 2.36 1.01 10.16
ProbCons 23.82 3.98 4.40 2.44 0.22 1.01 1.55 0.65 4.76
T-Coffee 1990 1.98 3.42 2.23 0.21 0.58 1.08 0.56 3.74
T-Coffee profile-profile 23.86 3.11 3.62 2.66 0.22 0.79 1.13 0.62 4.50

Families are sorted by the average sequence identity (see Table 3.7). Mean = mean over averages for

eight families. See legend for Table 3.3 for further details.

77



Table 3.12 Average shift error in pairwise alignments assigned to different subgroups within the

BAIiBASE reference set 7

ion ptga Nat 7tm dtd photo acr msl mean
AlignMeP 42.41 59.90 58.04 5240 10.38 0.35 1.90 0.43 28.23
AlignMePS 44.56 4.99 2.67 3.87 1.78 0.40 0.48 0.35 7.39
AlignMePST 19.71 9.10 3.60 12.34 3.61 0.35 0.65 0.50 6.23
MSAProbs 47.73 8.35 2.53 5.37 4.47 1.62 0.47 1.01 8.94
HHalign 22.90 11.73 5.29 10.12 6.60 1.01 1.86 1.56 7.63
HMAP 48.28 9.43 2.06 4.87 7.01 0.60 0.41 0.60* 9.16
MUSCLE 71.94 18.63 6.49 10.61 3.45 0.83 0.48 0.65 14.13
MUSCLE profile-profile 67.96 26.17 11.67 23.11 3.95 1.36 0.55 1.05 16.98
ProbCons 54.01 10.98 3.35 5.81 4.97 2.01 0.46 1.20 10.35
T-Coffee 34.91 5.23 4.90 4.32 4.05 1.67 0.44 0.75 7.03
T-Coffee profile-profile 51.36 9.48 5.01 4.62 4.95 1.90 0.47 1.46 9.91

Families are sorted by the average sequence identity (see Table 3.8). Mean = mean over averages for
eight families. See legend for Table 3.3 for further details.
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4 A Web Server for Aligning Membrane Protein Sequences

4.1 Introduction

The majority of frequently used computational programs for biologists and chemists are available via
a web server that enables easy access to these programs. Web servers do not require the user to
have specific hardware or to install specific software locally. All users will receive the same results of
their input queries and will always use the latest version of the software including recent bug fixes
and improvements of the software. Examples of prominent web servers that are commonly used for
the analysis of membrane protein sequences are those of database search methods like PSI-BLAST or
HHblits, secondary structure prediction methods like PSIPRED or membrane prediction methods like
MEMSAT-SVM or OCTOPUS (see Table 4.1). Other servers that allow for the alignment of multiple
protein sequences like MUSCLE, T-Coffee, ClustalW or the more recent version Clustal Q (Sievers, et
al., 2011) are also often used for membrane protein sequences although they were not developed

with membrane proteins in mind (see Table 4.3).

In fact, only a few sequence alignment programs have been developed and/or optimized for the
alignment of pairs of, or multiple, membrane protein sequences yet (see chapter 3). Consequently, |
created a website for two different modes of AlignMe to provide an accessible interface to the
AlignMe software with the intention that more users will use this program than if it was only
available as a standalone installation package. The interface allows for two different types of
alignments (see Figures 4.1 and 4.4). In the first mode, accurate pair-wise (PW) sequence alighments
can be generated, such as those required for comparative modeling. The user has to provide two
sequences in the standard fasta format as input and AlignMe will combine information about each
sequence from multiple sources, producing a pairwise (PW) alignment. The second mode allows for
an alignment of two sets of sequence homologues, by a comparison of their family-averaged
hydrophobicity profiles (HP); this mode is based on the methodology of Lolkema and Slotboom
(Lolkema and Slotboom, 1998; Lolkema and Slotboom, 1998), which has been shown to be useful for
analysis of transmembrane topologies (Fenollar-Ferrer, et al., 2014; Khafizov, et al., 2010; Lolkema
and Slotboom, 1998; Lolkema and Slotboom, 1998). These two different modes of AlignMe and their
implementation into a website will be described in this chapter. This work was also published in the

2014 edition of the Nucleic Acid Research annual web server issue (Stamm, et al., 2014).
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Table 4.1. Overview of commonly used webservers for analyzing (membrane) protein sequences

Type of method Name URL

Database search PSI-BLAST http://www.ebi.ac.uk/Tools/sss/psiblast/
method HHblits http://toolkit.tuebingen.mpg.de/hhblits/
Membrane propensity | OCTOPUS http://octopus.cbr.su.se/

predictor MEMSAT-SVM | http://bioinf.cs.ucl.ac.uk/psipred/?memsatsvm=1
Secondary structure PSIPRED 3.2 http://bioinf.cs.ucl.ac.uk/psipred/

propensity predictor

4.2 The AlignMe PW Sequence-to-Sequence Alignment Mode

AlignMe uses the standard Needleman-Wunsch algorithm in serial C/C++ code for pairwise
alignments, and the only required input is two protein sequences in standard fasta format. For the
PW sequence alignment mode, four different optimized parameter sets are provided that have each
been shown to be suited for aligning sequences at a specific similarity level (see chapter 3). These
default settings utilize different types of inputs alone or in combination with each other: (position-
specific) substitution matrices; secondary structure predictions; and transmembrane propensities in
the form of transmembrane predictions or hydrophobicity scales. AlignMe has also been designed to
be flexible in handling other input descriptors reflecting protein properties for describing similarity
between two proteins. Such similarity measures will then be used to guide the pairwise alignment.
The web server provides a high level of flexibility so that the user may customize the inputs and

alignment parameters.

4.2.1 Standard Parameter Sets

For standard usage, the web server provides four optimized sets of gap penalties and input
parameters that result in accurate alignments dependent on the similarity between the two protein

sequences of interest:

1) AlignMePST: This mode is useful for aligning distantly related proteins, with a sequence
identity <15 % (see chapter 3.3). Based upon the two input sequences, a set of inputs is
generated by the server that is then used for the alignment process: a Position-Specific
Substitution Matrix (P) based upon a PSI-BLAST search on the UniRef90 database (see
chapter 3.2), a secondary structure prediction (S) of PSIPRED 3.2 and a transmembrane
prediction (T) from OCTOPUS. An alignment with these predictions typically takes minutes,
with PSI-BLAST being the most time-consuming step. The duration of the alignment is

dependent on the length of the protein sequences that are aligned.
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2)

3)

4)

AlignMePS: This mode is recommended for aligning low-homology proteins (~15-45%
sequence identity) (see chapter 3.3). This version is similar to AlignMePST but omits the
membrane prediction.

AlignMeP: With this mode, closely related proteins (>45%) can be aligned accurately (see
chapter 3.3). This approach only considers sequence information since it uses only the PSSM
with none of the structure predictions.

Fast: The fast mode is useful for situations in which a quick response is required, i.e. for
detecting if two proteins could be related to each other. For this mode, the time-consuming
PSI-BLAST search is omitted and thus, alignments are generated in less than 5 seconds.
However, these alignments are less accurate because they are based only upon a general
substitution matrix (VTML (Miiller, et al., 2002; Miiller and Vingron, 2000)) combined with a
hydrophobicity scale (HWvH (Hessa, et al., 2005)). This combination was the most accurate of
the fast strategies tested (i.e., of the combinations that do not require results from PSI-BLAST

search) (see chapter 3.3).
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AlignMe

AlignMe Sequence to . Alignment of t\_No AlignMe
Home Sequence Alignment Multiple Sequence Alignments FAQ

Help/Examples: or have a look at the FAQ!

1) Sequences ™

Enter a sequence in fasta format Enter another sequence in fasta format

...or upload a fasta file? ...or upload another fasta file?

[ ] Choose File WIRIEEEIEED] [ ] Choose File I no file selected

2) Usage of own or optimized predefined parameters ™

a-helical membrane proteins

AlignMe PST
B Most accurate alignments for very distantly related proteins (<15% identity)
(~9 mins for a 179 and 215-residue sequence pair)

AlignMe PS
B Most accurate alignments for low-homology proteins (~15-45% identity)
(~5 mins for a 179 and 215-residue sequence pair)

AlignMe P
B Most accurate alignments for very closely related proteins (>45% identity)
(~5 mins for a 179 and 215-residue sequence pair)

Fast, but less accurate alignments (~3 sec.)
based on a substitution matrix and a hydrophobicity scale

Usage of own alignment parameters
B user defined parameters

. Show detailed alignment parameters!
|

3) Submission

Enter an e-mail address if you wish to receive an e-mail with your result
Recommended for "Most accurate alignments™” and alignments with automated PSSM calculations, PsiPred or OCTOPUS predictions

Figure 4.1 Screenshot of the AlignMe website (Jan, 2015) showing the option to select 4 different
predefined modes for aligning a-helical membrane proteins.




4.2.2 Available Input Descriptors

Aside from the described default parameter sets, the web server allows also the usage of the same
input parameters that can be used with the local version of AlignMe. The web users can upload their
own alignment parameters (e.g., custom substitution matrices, hydrophobicity scales or predictions)
or can choose between three types of input descriptors that are provided by the server for the
alignment: (position-specific) substitution matrices; hydrophobicity scales; or per-residue profiles,
such as transmembrane predictions (Table 4.2). In addition, hydrophobicity scales can be either used
similar to a substitution matrix with a single-residue specific substitution rate or they can be window-
averaged in different ways (rectangular, triangular, zigzag, sinusoidal) over any length of a window.
There are no limits on the number of matrices, scales or profiles that can be combined. However, the
different input parameters should be weighted according to the range of values within that scale to

prevent bias (see chapter 3.1); details are provided in the user manual.

Table 4.2 Overview of input parameters available as ‘user-defined parameters’ on the AlignMe web
server

Substitution matrices Hydrophobicity scales (Predicted) profiles
Custom matrix Custom scale Custom profile
BLOSUMG62 Eisenberg & Weiss PSIPRED 3.2 prediction
PHAT Hessa, White & von Heinje  OCTOPUS prediction
SLIM Kyte & Doolittle
VTML Wimley & White

PSSM from PSIPRED

For details see chapter 3.2.2.
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4.2.3 Outputs of the AlignMe Web Server

The output from the PW sequence-to-sequence mode includes the pair-wise alignment of the two
amino-acid sequences provided in ClustalW format, the corresponding sequence identity, and the
percentage of matched positions. For each prediction (e.g.,, membrane or secondary structure
prediction) or hydrophobicity scale used for the alignment process, also a plot (generated by gnuplot)
is shown. This plot illustrates per-residue profiles and thereby provides a simple representation of
the similarity between the two proteins that are aligned (see Figure 4.2). Aside from this visual
representation of the alignment, the table of hydrophobicity and/or prediction values for each
alignment position is also displayed at the bottom of the results page, allowing the user to use these
values for representing the data in different custom formats locally. Finally, a summary of the input
parameters (e.g., weights and types of inputs) that were used for the alignment is also provided. All
the output files can be downloaded separately or together as a single (archive) file. Results are stored
for 14 days on the server and can be retrieved using a Job Identifier (ID), which is provided on the

results page.
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Figure 4.2 Screenshot of the results page of the AlignMe website (Jan, 2015) showing the aligned
hydrophobicity profiles based upon an alignment using the example sequences (two proteins of the
cytochrome bgf family from HOMEP2, PDB codes: 4GD3 chain A and 2ZT9 chain A) with the alignment
parameters from the fast mode of AlignMe. Gaps are shown as bars in corresponding colors
underneath the profile.
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4.3 Other Online Servers for the Alignment of Membrane Protein Sequences

Since the development of AlignMe in 2010/11 and the evaluation of the alignment accuracy of
AlignMe in 2011/12, several other alignment programs were developed whose accuracy has not yet
been analyzed as described in chapter 3. Among these programs is MP-T, which uses environment-
specific substitution matrices for generating sequence-to-structure alignments (Hill and Deane,
2012). MP-T is limited to alighnments for which at least one structure of the two proteins of interest is
known and therefore is not applicable for a pairwise alignment that is only based on sequence
information. As yet, MP-T cannot directly be used and evaluated via a webserver, but it is
implemented within an online membrane protein homology modeling workflow called Memoir

(Ebejer, et al., 2013)

Two other programs specifically designed with membrane proteins in mind are PRALINE™ (Pirovano,
et al., 2008) and TM-Coffee (Chang, et al., 2012) (see Table 4.3). Neither program could be compared
with AlignMe previously, as they are available exclusively as webservers and so could not be tested
on the large HOMEP2 and BALIBASE reference 7 data sets (see chapter 3.3.3 and 3.3.5). Also a
number of sequence alighnment web servers not designed specifically for membrane proteins were
developed recently, including Clustal Q (Sievers, et al.,, 2011), PicXAA (Sahraeian and Yoon, 2010;
Sahraeian and Yoon, 2011) and PSI-Coffee (Chang, et al., 2012) (see Table 4.3). For all these
programs, it is not yet clear whether any of them is able to generate more accurate pairwise
alignments than AlignMe for membrane protein sequences. Therefore, | will also demonstrate in this
chapter that the accuracy of alignments obtained with the AlignMe webserver is comparable or
better than those of alignments generated with the following currently-available webservers: Clustal

Q, PicXAA, PRALINE™ ProbCons, PSI-Coffee, TM-Coffee.

Table 4.3 Overview of recent webservers for aligning (membrane) protein sequences

Type of method Name URL
Pairwise sequence alignment of AlignMe http://www.bioinfo.mpg.de/AlignMe/
membrane proteins
Multiple sequence alignment of PRALINE™ http://www.ibi.vu.nl/programs/pralinewww/
membrane proteins TM-Coffee http://tcoffee.crg.cat/apps/tcoffee/do:tmcoffee
MUSCLE http://www.drive5.com/muscle/
T-Coffee http://www.tcoffee.org
Multiple sequence alignment PSI-Coffee http://tcoffee.crg.cat/apps/tcoffee/do:psicoffee
methods optimized on general ClustalW http://www.clustal.org/clustal2/
protein data sets Clustal Q http://www.clustal.org/omega/
PicXAA http://gsp.tamu.edu/picxaa/
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4.4  Alignment Accuracy of the AlignMe PW Mode Compared to Other Web Servers

As described before in chapter 3.3.5, AlignMe performed well (Stamm, et al.,, 2013) compared to
other sequence alignment programs such as MSAProbs (Liu, et al., 2010) or HMAP (Tang, et al., 2003)
on the BALIBASE reference 7 set of membrane proteins (Bahr, et al., 2001; Thompson, et al., 1999).
However, neither MSAProbs nor HMAP are available as web servers whereas other alignment
programs of interest were exclusively available as web servers (see chapter 4.3). In this chapter, |
compare the accuracy of alignments based on the AlignMe PW sequence-to-sequence mode to those
from other available alignment web servers. These methods include ProbCons, the third most
accurate alignment method on the BALIBASE set 7 (Stamm, et al., 2013), Clustal Q, PSI-Coffee, TM-
Coffee, PicXAA and PRALINE™. For each of these multiple sequence alignment methods, all
sequences of a family were submitted as one single input set of sequences and aligned with the
default parameters provided on the website of each server to obtain one multiple sequence
alignment (MSA) per family, for a total of 8 multiple-sequence alignments. From these MSAs, pair-
wise sequence alignments were extracted and accuracy scores were then calculated for each pair of

sequence within a family (Tables 4.4 and 4.5)

Table 4.4 Percentage of residues aligned correctly in pairwise sequence alignments from the
BALIBASE reference set 7, sorted by sequence identity of the protein families

ion Nat ptga 7tm dtd acr photo msl| mean

AlignMeP 38.90 43.50 42.10 42.50 67.10 87.00 87.90 82.50 61.4
AlignMePS 45.20 66.20 64.80 65.90 76.00 89.70 87.60 82.30* 72.2
AlignMePST 48.10 58.60 58.78 59.40 71.20 86.30 82.90 76.50 67.7
AlignMe fast 40.94  53.33 54.86 60.93 66.67 82.13 79.94 77.45 64.5
Clustal Q 45.75  64.26 63.54 65.17 74.89 88.89 88.78 81.49 71.6
PicXAA 36.96 61.27 59.48 60.25 68.36 88.74 81.06 80.31 67.1
PRALINE™ 3198 56.94 63.19 61.60 73.07 87.74 81.39 78.33 66.8
ProbCons 26.32  52.84 45.43 54.37 63.41 85.88 77.90 74.25 60.0
PSI-Coffee 27.11  51.01 47.97 57.09 64.82 89.19 77.43 73.80 61.1
TM-Coffee 25.84  49.65 47.38 55.25 65.42 88.44 76.39 68.40 59.6
Number® 1326 1711 1275 8128 1485 903 528 91

Sequence identity (%)b 11.7+ 14.3% 15.9+ 18.2% 18.7+ 26.9+ 27.3%1 35.3%
13.8 10.8 12.1 9.7 11.5 113 6.9 13.5

Entries in bold in all tables, indicate the highest or best scores in that column. *Values marked with
an asterisk in all tables are not significantly different from the highest/best score in a column
according to a pairwise Wilcoxon signed rank test. Mean = mean percentage of correctly-aligned
residues over averages for eight families. °Number of pair-wise alignments. *Mean (+standard
deviation) of the percentage sequence identity between pairs of alignments in each family.
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In general, the different modes of AlignMe resulted in the most accurate alignments, with
significantly higher fractions of correctly aligned residues (Table 4.4) and low average shift errors

(Table 4.5), although the alignments of Clustal Q also had low average shift errors for several families.

The alighnment accuracy obtained using a given AlignMe mode depends on the sequence similarity of
the proteins being aligned; the results shown here are consistent with the ranges described in
chapter 3.3.5. For all the sequence identity ranges mentioned, the percentage of correctly aligned
residues is significantly higher using the corresponding AlignMe version than any other program
tested. The “fast” version of AlignMe is generally less accurate than the three slower versions but it
appears to provide a compromise between the PST, PS and P parameter sets. On average, the fast
mode is still ranked 6" among 10 approaches, suggesting that it can provide a useful first pass
approach, for example, to approximate the sequence identity. Among the other web servers tested,
alignments generated by Clustal Q contained the highest proportion of correctly aligned residues and

the smallest shift errors, followed by PicXAA and PRALINE™.

Table 4.5 Average shift error in pairwise alignments of the BALIBASE reference set 7

ion Nat ptga 7tm dtd acr photo msl| mean
AlignMeP 29.92 4871 3398 47.58 9.83 1.09* 0.31 0.59 21.50
AlignMePS 28.83 2.46 3.12 3.67 1.71 0.33 0.36* 0.42* 511
AlignMePST 13.83 3.24 5.39* 11.82  3.46 0.42 0.31 0.47 4.87
AlignMe fast 28.18 4.21 10.10 4.27 4.14 0.84 0.58 0.71 6.63
Clustal Q 20.77 2.71 2.87 3.63 3.87 0.38 0.61* 0.40 4.40
PicXAA 28.73 3.18 4.36 4.90 5.12 0.37 0.86 0.43 5.99
PRALINE™ 64.03 7.89 3.01 4.27 7.28 0.95*  0.89 0.43 11.09
ProbCons 36.99 2.86 5.97 5.05 10.87 0.37 1.30 0.56 8.00
PSI-Coffee 27.01 4.30 5.15 4.05 5.81 0.32 1.18 0.70 6.06
TM-Coffee 27.66 5.18 6.21 4.61 8.95 0.38 1.39 0.70 6.89
Number® 1326 1711 1275 8128 1485 903 528 91
Sequence identity (%)b 11.7+ 143+ 159+ 182+ 18.7+ 269+  27.3z%1 35.3+

13.8 10.8 121 9.7 11.5 11.3 6.9 135

The shift error is calculated as the number of positions by which a given residue is misaligned
summed over the length of the alignment and averaged over all alignments. Families are sorted by
the average sequence identity. Mean = mean over averages for eight families. See legend for Table
4.4 for more details.
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4.5 Alignment of Family-Averaged Hydropathy Profiles (HP) Using two Multiple

Sequence Alignments

Another mode that is provided on the AlignMe website for aligning membrane protein sequences is
the HP mode that allows for the alignment of family-averaged hydropathy profiles (HP) which has
been shown to be useful for detecting evolutionarily relationships between distantly related
membrane protein sequences (Fenollar-Ferrer, et al., 2014; Khafizov, et al., 2010 ). The shape of a
hydrophobicity profile is based on the transmembrane topology of a membrane protein with strong
peaks in the most hydrophobic transmembrane segments. These hydrophobic transmembrane
helices are generally conserved during evolution and thus, corresponding averaged hydropathy
profiles among a protein family can contain similar global features even in very distantly related
proteins (see Figure 4.3). Despite lacking detailed position-specific information and a significance
score for similarity, a comparison of hydropathy profiles (HPs) can provide an intuitive overview of
the similarities between the transmembrane topologies of two proteins (Khafizov, et al., 2010;
Lolkema and Slotboom, 1998; Lolkema and Slotboom, 1998). Averaging each of the input profiles
over a set of sequence homologues, in a so-called family-averaged HP, can smooth out noise and
sequence-specific detail, making comparisons much clearer (Khafizov, et al., 2010; Lolkema and
Slotboom, 1998; Lolkema and Slotboom, 1998). To date, the ability to generate these aligned HPs has
not been readily available to the community. The AlignMe web server provides a simple interface to

such alignments in the profile-to-profile alignment mode (see Figure 4.4).

VcINDY NaPi-lla

RUT R U1 VcINDY NaPi-lla

Hydrophobicity

-2 2] RU2 RU2
0 50 100 150 200 O 50 100 150 200
Alignment position Alignment position

Figure 4.3 Hydrophobicity profiles based on the alignment of the family-averaged hydropathy
profiles (HP) of the two repeat units (repeat unit 1, left and repeat unit 2, right) in NaPi-Il (red line)
and VcINDY (black line) using AlignMe showed that they share a common fold despite their low
sequence identity (7% similarity of NaPi-lla and VcINDY based on a AlignMePS alignment) (Fenollar-
Ferrer, et al., 2014). Figure taken from (Fenollar-Ferrer, et al., 2014).
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4.5.1 Inputs for the HP Mode

The alignment of family-averaged hydropathy profiles (HP) requires two reference sequences of
interest as well as corresponding sequence homologs that are already aligned to those reference
sequences in form of a multiple sequence alignment. In a first step, the user would typically carry out
a database search for sequence homologues of each query protein (e.g., with PSI-BLAST) if no
sequence homologs are previously known, and in the next step align each set of homologues with a
multiple-sequence alignment program, such as Clustal Q. If homologous sequences are already
known then the user can also use those for generating a MSA. Both steps are independent of the
AlignMe server and the user has the free choice of using any method for generating MSAs. The only
requirement of the HP mode is that all protein sequences (including gaps) in a MSA have the same
length. After submitting the two MSAs to the HP mode of AlignMe server an alignment will be
generated based upon a Needleman-Wunsch algorithm and a hydrophobicity scale. In general, a
single sequence may also be provided but the lack of homologous sequences is likely to result in a
less accurate alignment. For pairwise sequence alignments, the PW mode of the AlignMe server is

the better choice.
4.5.2 Standard Parameter Sets

The pre-defined default parameter set that is provided on the web server for HP alignments is based
upon a previous study for the identification of five transmembrane helix domains using HP
alignments (Khafizov, et al., 2010). In this study, the protein sequences were aligned using profiles
based on values from the HWvH hydrophobicity scale (Hessa, et al., 2005) that are smoothed using a
13-residue long, triangular sliding window. Using these hydropathy profiles, a systematic
optimization procedure of the gap penalties was executed in a first step in order to detect the best
combination of gap penalties for a search of homologous five transmembrane helix domains. The
ideal gap penalties were assumed to be the ones that ranked hydropathy profile alignments of
known five transmembrane sequences with each other higher than alignments of these protein
sequences with random sequences. In a second step, the obtained gap penalties were slightly
modified in order to align accurately family-averaged hydropathy profiles of sequences from the FIRL
fold. The value for the terminal gap penalties was decreased because terminal gaps occur frequently
in alignments of sequences that differ in length or number of membrane helices. The gap penalties
that were used are as follows: p&Pove = 2.5, pgbove - 10, pbelow = 1.0, plelow = 0.85,
pLerminal - 0 25 and pLeT™inel = 0.25, where the hydrophobicity threshold used to assign “above”

and “below” was -0.5 (see Experimental Procedures section in (Khafizov, et al., 2010)). These gap
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penalties differ from those of the AlignMe PW modes (see chapter 3.3.2) because a different input

was used to describe similarity between the protein sequences.

An additional parameter for HP alignments is the fraction of allowed gaps that checks for the
percentage of gaps within a specific column of the MSA (e.g., a fraction of allowed gaps of 0.8 means
at least 80% of positions within that column have an amino acid and at the most 20 % have a gap).
Only columns that have more amino acids than defined by the threshold of the fraction of allowed
gaps are considered for the alignment process. All other columns are discarded and not considered
anymore. With this parameter, low confidence columns in the input MSA that contain a high number
of gaps can be omitted from the alignment process. This value can vary between 1 (a column
contains no gaps) and a value close to 0 (a column contains only one amino acid aligned to gaps in all

other homologous sequences).

With the gap penalties and the value for the fraction of allowed gaps, AlignMe calculates the average
hydrophobicity value for every confident position (i.e. column) in the MSA, resulting in a family-
averaged hydropathy profile. However, if the family contains many insertions and deletions in a given
column of the alignment (specified by the fraction of allowed gaps), then that column is not

considered for the alignment and also not displayed in the resulting output plots.

Similar to the PW mode, the HP mode also allows users to apply different hydrophobicity scales (see

Table 4.2) and/or custom gap penalties as well as their own values for the fraction of allowed gaps.
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AlignMe Sequence to Alignment of two AlignMe
Home Sequence Alignment Multiple Sequence Alignments FAQ

Help/Examples: or have a look at the FAQ!

1) Multiple Sequence Alignments ®

Enter a multiple sequence alignment Enter another multiple sequence alignment
with sequences in fasta format with sequences in fasta format

...or upload a file? ...or upload another file?

[ ] Choose File JlRilERC\EIAES] [ ] Choose File [l ET]

2) Usage of own or optimized predefined parameters (optional) »
a-helical membrane proteins

fast ~ 3 sec.

(substitution matrix & hydrophobicity scale)

Usage of own alignment parameters

B user defined parameters

. Show detailed alignment parameters!

3) Submission

Enter a E-Mail address if you want to have an E-Mail with your results (not required)

=
=

Figure 4.4 Screenshot of the AlignMe website (Jan, 2015) showing the querylet for the HP mode of
AlignMe
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4.5.3 Outputs

The output of the HP mode of AlignMe consists of a sequence alignment in ClustalW format and a
hydropathy plot. An alignment of the two reference sequences of both MSAs is shown in ClustalW
format. Gaps in the alignment that were present in the original MSAs are represented by a “.”
symbol, whereas gaps introduced during the alignment of the averaged hydropathy profiles are
indicated with a “-” symbol. Based upon this alignment, a hydropathy plot is generated that displays
the position-specific alignment of the underlying hydrophobicity of the reference sequences as in the
fast alignment option of the PW mode (Figure 4.5). Similar to the PW mode, also in the HP mode,

parameters and results can be downloaded separately or together in a single file.

MSA1 starting with ALP1_Saccharomyces_cerevisiae
MSAZ2 starting with LeuT_Aquifex_aeolicus
+— [GAPS IN MSA1 starting with ALP1_Saccharomyces_cerevisiae]
s 05 ¢ [GAPS IN MSA2 starting with LeuT_Aquifex_aeolicus]
T ) used threshold of -0.5
= |1 [
T 0 ) I J | (| M lh
|| A | | |
£ n | Y* ‘{h { VM
o ‘“ | f | i1 f | [ ! ‘
2 MANA O T T
= 05 | |! - w]{ i Ill i i {\‘ | hi A M
o WL N LERBW r
) \ [ {v ! | |
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IS “u‘ VLA A N \r, an Vo
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Figure 4.5 Screenshot of the results page of the AlignMe website (Jan, 2015) showing the aligned
hydrophobicity profiles of the first sequences from each submitted multiple sequence alignment. The
alignment was generated with the default parameters using the example multiple sequence
alignments with the protein sequence of ALP1 from Saccharomyces cerevisiae as a representative of
the first multiple sequence alignment and the protein sequence of LeuT from aquifex aeolicus as a
representative of the second multiple sequence alignment.
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4.5.4 Example Applications of HP alignments

Hydrophobicity profiles have been used in a number of studies to assess the topological similarity of
two proteins with very low or undetectable sequence similarities. For example, evolutionarily
relationships have been illustrated between neurotransmitter:sodium symporters (NSS),
sodium:solute symporters (SSS) and members of the amino-acid/polyamine/organocation (APC)
superfamily (Lolkema and Slotboom, 2008). The crystal structures of the Na‘/galactose symporter
VvSGLT (SSS family), the leucine transporter LeuT (NSS family) and the amino acid transporter AroP
(APC family) were shown to share a common five-helix inverted repeat fold despite their low
sequence identities among each other (<20 % sequence similarity). Members of those families were
collected by BLAST searches and aligned using ClustalW. Based upon those alignments, an averaged
‘family hydropathy profile’ was calculated using a hydrophobicity scale and a sliding window
approach. Those profiles were then aligned using the MemGen alignment approach (Lolkema and
Slotboom, 1998) with manually defined penalties for insertions of gaps (see Figure 4.6) (Lolkema and
Slotboom, 2008). This idea was already applied previously for the classification of numerous
secondary transporters (Dobrowolski, et al., 2007; Lolkema and Slotboom, 2003; Lolkema and

Slotboom, 2005).

Hydrophobicity

1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Paosition

1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
Pasition

Figure 4.6 Family hydropathy profile alignments (not generated by AlignMe). (A) Hydropathy profile
of the SSS family in red aligned to those of the NSS family in blue (B) Hydropathy profile of the SSS
family in red aligned to those of the APC family in blue. Gaps are shown as boxes in corresponding
colors above the profile. This figure is taken from (Lolkema and Slotboom, 2008).

93



averaged hydrophobicity

SSS

0 100
position in alignment

Figure 4.7 Family-averaged hydropathy profiles of the internal repeat units 1 (black) and 2 (red) for
the following families: (A) APC, (B) BCCT, (C) NCS1, (D) NSS, (E) SSS. Gray horizontal lines represent
the threshold above which a position is defined as membrane-spanning for the assignment of gaps.
Gaps in the alignments are shown as bars underneath the profiles, in corresponding colors. This
Figure is taken from (Khafizov, et al., 2010).

Hydropathy profiles were also used to compare and analyse internal structural repeats of similar
transporters (see Figure 4.7) (Fenollar-Ferrer, et al., 2014; Khafizov, et al., 2010). Protein sequences
for each family were again identified with a database search (i.e. PSI-BLAST) and aligned with a
multiple sequence alignment method (i.e. MUSCLE). However, in this study, the profiles were aligned

using the HP mode of AlignMe with the default parameters mentioned in chapter 4.5.2 (Khafizov, et

al., 2010).
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Furthermore, evolutionarily relationships have been shown between the 2-hydroxycarboxylate
transporters (2HCT) and so-called ESS transporter families (Dobrowolski, et al., 2007; ter Horst and
Lolkema, 2012); between a multidrug and toxin extrusion (MATE) transporter and the inner
membrane flippase Wzx (Islam, et al.,, 2012); as well as between SLC34 and SLC13 families of
transporters (Fenollar-Ferrer, et al., 2014) by using hydropathy profiles. The same basic approach
was also used in a comparison of members of the sodium-phosphate transporter family NaPi-Il

(Forster, et al., 2002) and to identify a putative ancestral half-transporter (Khafizov, et al., 2010).

4.6 Conclusions

With these two modes, the AlignMe web server provides user-friendly access for the analysis and

comparison of membrane protein sequences.

In the PW option, the user can readily compute pair-wise membrane protein sequence alignments
suitable, e.g., for homology modeling. A comparison to recent web severs for aligning protein
sequences showed that a good accuracy is achieved by using different PW alignment parameter sets
depending on the sequence identity range of the proteins of interest (see Table 4.4, Table 4.5 and
chapter 4.4), which agrees with the observations that were made for AlignMe beforehand (see
chapter 3). For an estimation of the sequence identity or structural homology of the protein pairs,
the user might first use the fast mode of AlignMe, or compare the hydropathy profiles by aligning

two MSAs, respectively.

The second functionality provided by the AlignMe web server, namely HP alignments, allows for
gualitative comparison of transmembrane topologies (and therefore potentially the 3D folds) based
upon the hydrophobicity profiles of two multiple sequence alignments of membrane proteins, even
for protein pairs with a low sequence similarity. This HP mode provides for the first time a user-
friendly interface for the method originally developed by Lolkema and Slotboom (Lolkema and

Slotboom, 1998; Lolkema and Slotboom, 1998).

The web server can be accessed at http://www.bioinfo.mpg.de/AlignMe and supports all major web
browsers (Mozilla Firefox, Google Chrome, Internet Explorer, Edge, Safari). A login to the website is
not required but an email address can be submitted if users wish to receive their alignment results
via email. In addition, the AlignMe manual and Unix source code are available for download at

http://www.bioinfo.mpg.de/AlignMe/download/.
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5 Evaluation of Structural Alignment Methods on HOMEP3

5.1 Introduction

Structural alignment programs allow for a comparison of one or more proteins on a structural level
by including spatial and secondary structure information. This enables structural alignment programs
to be used for the detection of evolutionarily-related protein segments (i.e. repeats), for clustering
and classifying large data sets of protein structures and for the generation of reference data sets
containing structure as well as sequence alignments. An accurate detection and assignment of
evolutionarily and homologous residues or fragments is based on the accuracy of the method being
used and thus various structural alignment approaches that are available have been assessed by
recent studies for their accuracy (Berbalk, et al., 2009; Kolodny, et al., 2005; Sadowski and Taylor,
2012; Slater, et al., 2012). However, these studies agree with the observation that there is no
outstanding structural alignment program a user can rely on. Consequently, the authors advise to use
several structural alignment programs, especially for low-similarity protein structures, in parallel and
then evaluate the quality of the alignment by analyzing the structural alignment manually (Slater, et
al., 2012), by assessing the underlying sequence alignment (Berbalk, et al., 2009) or by using
geometrical match measures on the aligned structures (Kolodny, et al., 2005) to determine the most
accurate alignment among a set of alignments. Membrane proteins were not explicitly considered in
those studies or by any of the tested structure alignment methods although they consist of major
fold classes (e.g., distinct SCOP superfamilies) that are all influenced by the hydrophobic surrounding
of the membrane bilayer. Integral membrane proteins might therefore favor structural
conformations and local interactions that are energetically discouraged in soluble proteins and vice
versa. Within the group of membrane proteins, two major folds types are present: a-helical and B-
barrel-like membrane proteins. Consequently, one cannot assume that structural alignment
programs that perform well on general data sets of proteins are also accurate on the particular fold
types that are unique to membrane proteins. All these observations address the problem that an
analysis of the accuracy of structural alignment programs for their performance on both major folds
of membrane proteins (e.g., a-helical and B-barrel-like) is required to identify reliable structural
alignment methods for membrane proteins and to understand if there is still room for improvement
in advanced methods (e.g., by using membrane specific information to guide the alignment process).

For such an analysis, a recent membrane protein data set is required.

My evaluation of structural alignment methods is based upon the HOMEP3 data set including 40 a-

helical and 8 B-barrel-like membrane protein families (see Chapter 2 for more details on HOMEP3). In
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this chapter, the accuracy of 13 structural alignment methods (see Table 5.1) is assessed using this
dataset by generating homology models based upon alignments from all methods. These models
were then ranked using geometrical and physicochemical measures to ensure a comprehensive
evaluation. Finally, the four best structural alignment methods are used in a consensus approach that

allows an estimation of the confidence level of each alignment position.

5.2 Methods

5.2.1 Overview of Structural Alignment Methods Tested

In this study, 13 structural alignment methods differing in their superimposition approaches, internal
scoring schemes, and handling of flexible regions were tested and compared with each other: CE
(Shindyalov and Bourne, 1998), DaliLite (Holm and Park, 2000; Holm and Rosenstrom, 2010), FATCAT
(Veeramalai, et al., 2008; Ye and Godzik, 2004), FR-TM-align (Pandit and Skolnick, 2008), LovoAlign
(Martinez, et al., 2007), MAMMOTH (Ortiz, et al., 2002), MATT (Menke, et al., 2008), PPM (Csaba, et
al., 2008), SABERTOOTH (Teichert, et al., 2007), SAP (Taylor, 1999; Taylor, 2000), SHEBA (Jung and
Lee, 2000), SKA (Yang and Honig, 2000), and TM-align (Zhang and Skolnick, 2005). All these methods
differ substantially in their superimposition approach (i.e. rigid vs. fragment-based), internal scoring
scheme (RMSD vs. TMScore) or in their handling of flexible regions (see Table 5.1). For FATCAT, two
different alignments were generated by either setting the flag “-flexible” to false for the rigid mode

(FATCAT rigid) or to true for the flexible mode (FATCAT).

These methods were all available for installation, commonly used, and/or shown to out-perform
other available methods. For each method, pairwise structure alignments were generated for all
pairs of proteins within each family of HOMEP3. Because some methods produce different
alignments depending on which protein is listed first, alignments were generated using both

combinations of each pair of proteins.

Some methods provided structural alignments and the corresponding sequence alignments whereas
other methods provided only a structural alignment. If a sequence alignment was provided then that
alignment was used for subsequent analysis. Otherwise, the underlying sequence alignment was
extracted from the structural alignment with a customized script that constructs a sequence
alignment based on the assignment of matched residues in the structural alignment. Non-matched
residues were aligned to gaps. For CE, DaliLite, FATCAT, MAMMOTH, PPM and SAP some C- and N-
terminal residues were missing in the structural alignments. For those alignments, C- and N-terminals

had to be added to the alignment by aligning them against gaps.
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Based upon these alignments, homology models were then generated and finally evaluated using

structural similarity scores that describe the quality of the model (see Figure 5.1).

Table 5.1 Overview of pairwise structural alignment methods

Method °Fragments | DP? Score Alignment

CE 8-residue N RMSD Combinatorial extension of locally aligned fragment

pairs based on intra-structural distances

DaliLite 6-residue N Dali Joins optimally-matched fragments based on a Monte

Carlo search

FATCAT 8-residue S Flexible chaining of aligned fragment pairs allowing for
twists

FR-TM-align Y Y TM-score Matching aligned fragment pairs

LovoAlign Y STRUCTAL | “Low Order Value Optimization” using dynamic

& RMSD programming

MAMMOTH RMSD Matching molecular models obtained from theory

MATT 5-8-residue RMSD Aligning fragment pairs allowing temporarily for twists

and translations

PPM PPM Phenotypic plasticity applied to measure the cost of

morphing structures

SABERTOOTH Matching profiles of vectorial representations of two

protein structures

SAP Y Intra Iterated double dynamic programming of matrix of
RMSD intra-structure residue-residue distance differences
SHEBA Comparing a list of primary, secondary and tertiary

structural profiles

SKA Y PSD Double dynamic programming to align secondary

structure alignments

TM-align Y TM-score | Optimize intra-structure residue-residue distance matrix

using dynamic programming

Methods are listed in alphabetical order. TM-score: template modeling score. DP = methods using
dynamic programming. *For methods that use fragments in the optimization phase, the fragment
length is provided. The DALI score measures the difference between intra-structure residue-residue
distances. Methods also differ in the construction of initial alignments, which are then refined to
identify better-scoring alignments. Flexible aligners typically use a sum of the similarities of all
aligned fragment pairs, to which a penalty is added for each breakage between fragments.
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Figure 5.1 Example workflow for generating and evaluating a homology model. Two proteins (A and
B) are aligned with each other using a structural alignment method. The underlying sequence
alignment is then submitted to Modeller with a template structure of Protein B to generate a model
of Protein A. The quality of the model is evaluated by a comparison of the model structure with its
original X-ray structure using a model score (e.g., GDT_TS).

5.2.2 Evaluation by Modeling Using Structural Similarity Scores

The major challenge in assessing structural alignment accuracy is the lack of a standard score that
ranks the quality of structural alignments. Although efforts have been made to address this issue
recently (Collier, et al., 2014), those strategies are not yet publicly available. Here, | rely on the fact
that a homology model based upon an accurate alignment results in a more accurate model
compared to the original crystal structure than a model based upon a less accurate alignment. Thus,
for each pair of sequences, each sequence was modeled using the other as a template, and vice versa
(see Figure 5.1). Models were generated using five cycles of optimization in Modeller v9.10 (Sali and
Blundell, 1993), and the best of these five models was selected for comparison based on the GDT_TS

score of the model relative to the known structure (see below). This approach is similar to the
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evaluation of sequence alignment methods (see chapter 3.2.6) but for this purpose, more structural
similarity measures (ALO, AL4, GDT_TS, RMSD, TM-score, CAD score) were used to rate and rank the

model quality.
52.2.1 ALO&AL4 scores

A simple structural similarity score that has been used before for assessing homology models is the
AL4 score (see chapter 3.2.6 for more details). The AL4 score identifies the largest subset of C,-atoms
of the model that can superimposed with target structure below a cut-off distance of 10 A. This cut-
off corresponds to the shift of 4 residues in an alignment or one helical turn in the protein structure.
Besides the AL4 score, also the ALO score (Kopp, et al., 2007) was applied in this study. The threshold
of the ALO score is 3.8 A and corresponds roughly to the distance between adjacent C,-atoms in a

regular a-helical protein structure.

A characteristic of both scores is their insensitivity to small and very extreme structural distances by
omitting explicit differences of distances between two amino acids in the score. For example, two

amino acids that are only 1 A away are treated similar to those that are 9 A away by the AL4 score.
5.2.2.2 Global Distance Test — Total Score (GDT_TS)

Another score that has been used before is the GDT_TS score, which stands for global distance test
(total score). The GDT_TS score identifies the number of structurally-equivalent pairs of atoms below
four different specific distance thresholds (G(c) = 1,2, 4 and 8 A) The advantage of the GDT_TS score
is that only correctly modeled positions are rewarded, without a penalty for inaccurately modeled
regions. Nonetheless, the score is still dependent on the size of the protein (see chapter 3.2.6 for

more details).

A variant of the GDT_TS score with a better resolution for high-accuracy models by focusing more on
correctly modeled segments is the GDT_HA score (Kopp, et al., 2007), that applies cut-off distances

being the half of those of the GDT_TS score, with G(c) being 0.5, 1, 2 and 4:

1 G(c)
GDT_HA (%) = ZEC=O.5,1,2, 4|7 100 (5.1)

target

The GDT_TS, GDT_HA as well as the ALO and AL4 were so far only used for assessing homology model

guality and have not been applied in any of the tested structural alignment methods.
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5.2.2.3 RMSD (Root Mean Square Deviation) Score

A score that has been applied not only for ranking the similarity between two protein structures with
identical amino acid sequences but also for superimposing two distinct protein structures in a
structural alignment method (e.g., in CE or SAP) is the RMSD (Root Mean Square Deviation) score
(Kabsch, 1976). However, the RMSD score is sensitive to large outliers because it squares the
distance differences between the pairs of equivalent C,-atoms (see chapter 2.4 for more details). This
domination of small outliers makes the RMSD score powerful for closely related proteins in which
small structural deviations should be detected. Structures in which the differences are distributed
evenly among the entire protein sequences receive smaller and thus better RMSD scores than
structures that are overall similar but have small fragments that differ significantly. Consequently,
the RMSD score is less useful for more distantly related proteins, especially if there are segments

modeled without an underlying template structure (i.e. insertions or deletions).

However, the HOMEP data set contains many pairs of proteins of different lengths, as well as
proteins that share a low sequence identity, resulting in difficult alignment cases. In both cases, parts
of the target protein are poorly modeled because evolutionarily related residues are misaligned or an
underlying template structure fragment is missing. The sensitivity to similarity of template and target
and to the length of the sequences might dominate the score and mislead the assessment of
homology models. These issues were discovered during the first CASP experiments (Moult, et al.,
1997; Moult, et al., 1995). The RMSD score is therefore not useful for evaluating the alignment

accuracy of structural alignments based upon the HOMEP data set.

5.2.2.4 Template Modeling (TM)-Score

Another score that has been applied for the superimposition of two protein structures is the TM-
score that is applied in the structural alignment programs TM-align and FR-TM-align. In contrast to
the RMSD score, the TM-score is sensitive to small distance differences and also accounts for large
outliers with a distance-dependent weighting scheme that averages down the contribution of largely
deviating pairs of residues to the final score. The TM-score has also been applied for the generation
of the HOMEP3 data set (see chapter 2.5 for more details on the TM-score). The TM-score ranges
between 0 (worst case) and 1 (perfect match) and a TM-score higher than 0.5 suggests that two

structures might be homologous (Xu and Zhang, 2010).

101



5.2.2.5 Packing-based Contact Area Difference (CAD) Score

A drawback of geometrical scores (e.g., GDT_TS, ALO) is that they only consider the correctness of the
Co-backbone and lack information about the correctness of residue side chain modeling although
they could in principle also include all atoms of a protein into their calculation. However, the correct
orientation of the side chains is crucial for hydrophobic interactions within the membrane-spanning
segments of membrane proteins in which hydrophobic amino acids are facing the lipids of the
membrane bilayer. Hydrophobic interactions occur also at protein-protein contacts (in water-soluble
and in membrane proteins) being crucial for the packing of a protein as well. Additionally, the
orientation of charged (or other types of) amino acids is important in binding sites or transport
pathways of membrane proteins. Steric clashes of side chains or uncommon distortions should
therefore be penalized by a geometrical score that accounts for their biological inappropriateness.
The CAD (Contact Area Difference) score (Olechnovic, et al., 2012) considers the orientation of side
chains by computing residue-residue contact surface areas using Voronoi tessellation for both the
model (M) and template reference structure (T). The residue-residue contact areas of each residue
pair (i,j) in the model (M) and template (T) are compared to each other. Rearrangements of domains,
fragments or side chains are penalized without any threshold. Consequently, the CAD score captures

essential geometrical properties of the template and the modeled structure:

CAD, ; = min(‘T

@)~

M

W) ’T(w‘)) (5.5)

and the CAD-score of the model is:

CAD,. .
E(i.j)EG @)

E T (5.6)
iec D

CAD-score =1-

A CAD score of 1 indicates that all residues in the model have the same contact surface areas and
thus exactly the same orientation as in the reference structure, whereas a score of 0 corresponds to
a total disagreement without any contact surface areas being in common between model and
template structure. In this study, the CAD-score that is based upon the surface area of all atoms (AA-
CAD) is applied because it has been shown to be most accurate among all variants of the CAD score

(Olechnovic, et al., 2012).

In general, the CAD score could also be used for optimizing a structural alignment procedure but so
far, the CAD score is only used as an assessment score and has not been implemented in a structural

alignment method.
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The RMSD, GDT_TS, ALO and AL4 scores were calculated using the LGA package (Zemla, 2003), and
the CAD, GDT_HA and TM-score scores were obtained using the CADscore package (Olechnovic, et
al., 2012).

5.2.3 Strategies for Ranking the Accuracy of Structural Alignment Methods

The structural alignment programs can be ranked by the reliability and accuracy of the alignments
they produce. Whereas accuracy describes the average quality of a set of alignments, reliability
reflects the deviation of the accuracy among a set of alignments. Both measures are valuable
parameters for users who want to have high quality alignments (high accuracy) for all alignments
(high reliability). Consequently, two different ranking schemes are applied for testing the

performance of the structural alignment methods used in this study.

The first ranking scheme (Reqn) reflects an accuracy measure for all structural alignment methods.
For each of the aforementioned structural similarity scores (S), each structural alignment method
was assigned a mean score (Speqn) Over the scores S,, of all models m in the set of M models (i.e., all

aligned pairs of protein structures from the HOMEP3 data set):

M
1
Smean = M z Sm (5'7)

m=1

Subsequently, a rank (Reqn) is assigned to each method by comparing the S,,.., values of all methods
with each other. The best rank with the value 1 is assigned to the most accurate method with the
highest S..., value. All other methods are sorted in an ascending order so that an increasing rank
Rean reflects a decreasing alignment accuracy showing the relative overall accuracy of a method
among others. The R,.q, ranking is equivalent to the so-called AR score (Reddy Ch, et al., 2006) and

has been renamed for clarity.

The second ranking scheme (R ejianiiity) reflects the reliability of a method and assesses whether there
are, among a set of alignments, large outliers (positive as well as negative) of the alignment accuracy
for a specific method. For every model m (each alignment pair), a structural similarity score was
calculated, and based upon this score a rank R,, was assigned to each structural alignment method
based on their scores for that model. These rankings were computed and averaged over all M models

to obtain R.jiapiiey for each method:
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M
1
Rrealibility = M z Ry, (5.8)

m=1

Again, the best rank with the value 1 (Rieiabiity = 1) is assigned to the most reliable structural
alignment method, which is on averaged ranked higher than all other structural alignment methods.
An increasing rank corresponds to less reliable methods. This measure (Reiasiity) is €quivalent to the

RA score from Reddy (Reddy Ch, et al., 2006).

This combination of the two measures Rpmeqn and Rieliaiiity allows for a confident quality assessment of
structural alignment methods. If a method is ranked relatively well (e.g., a good rank of 1 out of 14
methods) or poorly (e.g., a poor rank of 14) according to both ranking schemes, then it can be
assumed that the rank is confident without any large outliers. If a method is accurate (e.g., Rmean = 2)
and reliable (e.g., Rreiiabiity = 2) then all corresponding models are assumed to be accurate, whereas a
high rank of both scores (e.g., Rreiiabiity=9, Rmean=9) shows that a method performs poorly for all
protein pairs (see Table 5.2). However, the two measures Ryean and Rrejiaviity d0 NOt have necessarily to

agree with each other and two cases can be observed.

First, a structural alignment method can have a good rank for Ry, (e.g., 2), but a poor rank for
Rreiiaviiity (€-8-, 9). Such a method generates poor models in most cases (poor Riejiaiity Value) but has
some overtly accurate models as outliers that raise the R, score. Second, a structural alignment
method can have a poor rank for Rpean (€.8., 9), but a good rank for Ryejigpiity (€.8., 2). Such a method
generates accurate models in most cases (good Ryejiaiity Value) but has some overtly poor outliers

lowering the Rpeq, score (see Table 5.2).

Table 5.2 Explaining model quality by the agreement of different ranking schemes

Good Riefiavility Fank Poor Riejiability Fank
Good Rpean rank Overall accurate models Poor models in most cases but a
few overtly accurate models in a
few cases
Poor Rpeqn rank Accurate models in most cases Overall poor models
with a few overtly poor outliers

Similar Rmean and Rreigpiity Values identify methods that perform overall accurate (good ranks) or
inaccurate (poor ranks) without outliers, whereas inconsistent Rimean and Rrejiabiity Values are present
for methods that have some (positive or negative) outliers in the alignment accuracy.
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5.2.4 Model Selection

As mentioned before (chapter 5.2.1), for each alignment that was obtained, five models were
generated using Modeller v.9.10 to explore different modeling solutions using different random
seeds in order to no get stuck with a bad model. These five models were then compared to the
original crystal structure using a geometrical measure and the model with the best (highest) score

was then used as a representative for the underlying alignment (see Figure 5.1).

However, the selection of the representative model might also be dependent on the geometrical
score that was applied to obtain the “best” model. To identify the most reasonable, representative
model out of 5 models for representing an alignment, three structural similarity scores (GDT_TS, AL4
and CAD) as well as the DOPE score, which is a statistical energy function, were considered. All
structural alignment methods were ranked four times using in each case one of these scores for
selecting the best models based upon their alignments. The structural alignment methods were then
ranked using the measures Rpmean and Rieliavivity, Which have been described in the previous chapter.
Subsequently, the rankings Rmesn and Rrejiabiviey based upon the four different geometrical scores and
their representatives were compared to check whether the process of selecting the best model
influences significantly the ranking of the structural alignment methods or not. Results are described

in chapter 5.3.1 in more detail.

5.2.5 Consistency of Alignments Between Homologous Protein Sequences

Accurate structural alignment methods are expected to align evolutionarily-related protein sequence
positions to each other. Consequently, an attribute of an accurate method is that the alignment
denoted AB of a pair of homologs (protein A with protein B) can be deduced from alignments of the
two proteins with a third homolog (AC and BC). Based upon the alighments AC and BC, an alignment
of AB is derived using protein C as a reference sequence. The derived alignment AB is then compared
to the original alignment of AB. From the original alignment of AB, each amino acid of Protein A and
B are checked if they are aligned to the same position in the derived alignment AB (see Figure 5.2).
The number of consistently aligned residues is counted and divided by the lengths of Proteins A and

B. This procedure is repeated for all possible combinations of those three proteins.
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Original Alignment A, C Original Alignment B, C

SeqA 1 2 - 3 SeqB 4 - 5 6
SeqC 7 8 9 10 SeqC 7 8 9 10

N

Derived Alignment A, B

SeqgA 1 2 - 3
SeqgB 4 - 5 6

| comparison

Original AlignmentA, B

SeqA 1 2 3
SeqB 4 5 6

Figure 5.2 An alignment of proteins A and B is derived from two other alignments (AC and BC) with
Protein C as a reference. This derived alignment is then compared to its original alignment.

Another useful metric is the “average shift error” of the inconsistent positions. For consistent
positions, the average shift error is 0. In case of inconsistent positions (A; aligned to B; with j being

derived I= joriginal

different in the derived alignment compared to the original alignment: j ), the difference

between the aligned positions is calculated: |j*™¢ I= jo9in|

. Here | considered only ungapped
positions. To obtain the average shift error E(AB/C) for the alignment AB, relative to AC and BC, the

shift error is summed over all inconsistent positions, and divided by the sum of L, and Ls.
5.2.6 Statistical Analysis

Differences between inputs were assessed using the Wilcoxon signed ranked test (Wilcoxon) and

were deemed to be significant when p<0.05.
5.3 Results

A first step before evaluating the accuracy of homology models is the choice of a representative
model from a set of models that were generated based upon an alignment. Chapter 5.3.1 describes
the selection of a specific score that ensures that the best representative model is selected from a
set of models. For each structural alignment method, a representative model was chosen for each
protein pair and based upon these models subsequent analysis was carried out. In chapter 5.3.2,
structural similarity scores were compared and correlated with each other. Subsequently, three
structural similarity scores were used for the analysis of the models that were generated by each

structural alignment method. Three features of structural alignment programs were shown to
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contribute to their alignment accuracy: their inherent scoring scheme for which results are described
in chapter 5.3.3; their ability to allow for a fragment-based superimposition described in chapter
5.3.4; and the usage of conformational rigidity or flexibility in their alignments which is described in
chapter 5.3.5. Additionally, the alignments were checked for their alignment coverage in chapter
5.3.6 and their self-consistency for alignments of homologous proteins in chapter 5.3.7. Last, a
consensus approach that allows for obtaining confidence values by fusing multiple structural

alignments to a single alighment is presented in chapter 5.3.8.

5.3.1 Selection of a Representative Model

The geometrical measure that is used for selecting a representative model out of 5 models obtained
with Modeller was analyzed for its influence on the subsequent ranking of the different structural
alignment methods. A structural alignment method was never ranked more than 3 positions higher
or lower according to its Reqsn that was based upon models that were selected by either the
structural similarity scores AL4, GDT_TS, CAD or the Modeller internal DOPE score. Ryeq, Values were
identical in 83.7% and 88.9% of cases for a-helical and B-barrel proteins, respectively, and the Ryean
rankings for a given method never deviated by more than three ranks. Similar results were obtained
if the structural alignment methods were ranked according to their Rygjiabiity Value. Rrejiapiiy Values
were identical in 70.7% and 77.4% of all cases for a-helical and B-barrel proteins, respectively, and

also never deviated more than three positions.

Accordingly, the AL4, GDT_TS, CAD and DOPE scores are all similarly suitable for selecting the most
adequate model among a set of initial models. Since the GDT_TS score has been shown to be a useful
measure for assessing protein similarity in previous CASP studies, all models that were evaluated in
the subsequent chapters were selected among a set of 5 models generated by Modeller v.9.10 by

using the model with the highest GDT_TS score.

5.3.2 Correlation of Structure Similarity Scores

The usage of different similarity scoring schemes does not guarantee that they evaluate different
quality aspects of a homology model. Consequently, an efficient and effective comparison of the
different structure alignment methods is best achieved by using complementary structure similarity
scores. For each structural alignment method, a representative model was chosen for each pair of
proteins in the HOMEP3 data set and all similarity scores were calculated by comparing the model to
its original X-ray structure. The generated structural similarity scores for each protein pair were then
correlated by calculating a Pearson correlation coefficient between them to check whether they

contain complementary information or not.
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The geometrical distance-based scores GDT_TS, GDT_HA and ALO are strongly correlated with one
another for both a-helical and B-barrel-like proteins (see Table 5.3) reflecting the fact that these
three scores all consider short-range similarity, in a length-independent way (e.g., considering the
fraction of residues that are aligned within a threshold of 4 A). The TM-score is also highly correlated
with the GDT_TS and ALO score due to its inclusion of global as well as of local information. However,
the usage of global information results in a weaker correlation to the GDT_HA score. The AL4 score is
less well correlated than the TM-score with the other threshold-dependent scores because of the 10
A threshold that makes the AL4 score being dominated by long-range distance differences over
detailed local spatial information. Not surprisingly, the RMSD score is not correlated at all with any of
these distance-dependent scores (see Table 5.3) due to its tendency to penalize small fractions of
outliers too strongly. Aside from these geometrical dependent distance measures, there is the CAD
score that includes environment-based information by its usage of contact areas between atoms.
Interestingly, the CAD score is better correlated with the threshold-based modeling scores GDT_TS
and GDT_HA that focus on highly-accurately aligned positions (< 2A) than with the ALO (cut-off of 4

R) or AL4 score (cut-off of 10 A), both of which consider longer-range differences (see Table 5.3).

Based on these results, three different scores were selected for subsequent analysis: the GDT_TS
score which is sensitive for local deviations and averages out large outliers, the AL4 score which
counts all correctly aligned residues below a threshold of 10 A and the CAD score which compares
the contact areas of all atoms between two homology models, although there may be some overlap

between the conclusions based on CAD and GDT_TS.

Table 5.3 Correlation between model quality assessment scores

B-barrels

GDT GDT ALO  TM-score AL4 CAD RMSD

_TS _HA
GDT_TS 0.98 0.98 0.94 086 097 -0.43
= 2 GDT_HA 0.98 0.93 0.88 076 097 -0.37
% T ALO 096 0.90 0.96 090 093 -0.44
< © TM-score 0.91 0.85 0.92 086 0.90 -0.48
s o AL4 0.79 0.68 0.83 0.91 0.79 -0.56
CAD 090 0.90 0.85 0.79 0.71 -0.42

RMSD -0.57 -0.60 -0.60 -0.60 -0.67 -0.56

Scores are correlated for either B-barrels (upper right), or a-helical proteins (lower left). Structural
similarity scores were correlated using a Pearson correlation coefficient. Entries in bold indicate
scores that are highly correlated with each other (Pearson correlation coefficient >0.9).
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5.3.3 Structural Alignment Methods with Length-Independent Scoring Schemes Generate

Better Alignments

A correlation of the structural similarity scores allows for an assessment of the different structural
alignment methods using three of these scores: CAD, AL4 and GDT_TS. The structural alignment
methods differ in their inherent scoring scheme for obtaining the optimal superimposition of two
protein structures as well as in their algorithms for optimizing this score by a superimposition (see

Table 5.1).

Structural alignment methods that apply a score that down-weights the contribution of incorrectly
modeled fragments to the total score (e.g., TM-score in TM-align, Dali score in DaliLite) were
generally more accurate and were ranked better than methods that apply a score that squares the
spatial differences between two structures for a superimposition (e.g., URMS in Mammoth, RMSD

score in CE and SAP; Table 5.4 and Table 5.5).

The negative influence on the alignment accuracy of squaring spatial distances between two protein
structures is exemplified by CE, which applies simultaneously a fragment-based approach as well as
an RMSD score. Although fragment-based approaches are shown to be advantageous for generating
accurate alignments, the inclusion of an RMSD score results in the least accurate and worst ranked
alignments (and models) of the fragment-based approaches for both a-helical (Table 5.4) and B-

barrel-like proteins (Table 5.5).

Similar to the results for a general protein data set (Sadowski and Taylor, 2012), the Template
Modeling score (TM-score) seems to be most useful for aligning membrane proteins, since both
methods that apply the TM-score (FR-TM-align and TM-align) were the highest ranking and most
accurate methods for a-helical proteins. Another score that seems adequate to obtain accurate
structural alignments is the Dali score used in DaliLite, which down-weights large outliers similar to
the TM-score. However, the Dali score is more suitable for aligning B-barrel-like proteins (rank of 3
for DaliLite comparing all methods with each other, Table 5.5) than for aligning a-helical proteins

(rank of 8 of DaliLite among all methods, Table 5.4).
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Table 5.4 Ranking of structural alignment methods for the subset of a-helical membrane proteins

c iy = T

2 .20 o) =

T.“ go I: = go Q I9 g

= < < < k= o <

= 2B E T g 2§ & o 3 3

score| Type |& 2 X £ 3 3 ¥ & § 3 8 & & =
CAD* | Rmean 1 4 3 2 5 8 10 9 7 6 11 12 13 14
Rreliability 1 2 4 3 8 5 7 6 11 10 12 9 13 14
mean (%)| 63.3 63.3 63.3 63.3 63.3 62.8 62.4 62.7 62.8 62.9 62.3 62.0 60.7 59.7
stdev (%) | 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.09

AlL4 Rmean 2 1 3 6 4 9 5 11 7 10 8 14 12 13
Rreliability 1 2 4 6 7 5 3 8 10 11 9 12 14 13
mean (%)| 94.8 94.8 94.5 93.9 94.2 93.1 94.2 92.8 93.6 92.9 93.4 90.0 90.9 90.4
stdev(%)| 70 69 7.2 93 81 129 83 112 83 9.2 83 17.0 109 14.7

GDT | Rmean 1 2 3 5 4 9 10 8 6 7 11 12 13 14
Rreliability 1 2 7 8 6 3 4 5 10 11 9 12 13 14
mean (%)|71.1 71.0 70.6 70.1 70.4 69.5 69.7 69.7 70.0 69.6 69.4 67.2 66.2 63.3
stdev (%) | 14.8 14.8 14.8 16.0 15.8 17.9 16.1 16.5 15.6 15.8 159 19.6 16.7 184
ave” Rmean 13 23 30 43 43 87 83 93 6.7 7.7 100 12.7 12.7 13.7
Rreliabiity | 1.0 2.0 50 57 70 43 47 63 103 10.7 100 11.0 13.3 13.7

The structural alignment methods are sorted according to the sum of their average Rmean and Rireliability
rankings, with the most accurate alignments on the left side of the table. The mean and standard
deviation (stdev) of each score over all pairs of alignments are given. *CAD score multiplied by 100.
®Mean ranking over all three scores. Entries in bold indicate the highest or best scores in that column
and those that are not significantly different from the highest/best score, according to the Wilcoxon
signed rank test, with p < 0.05.
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Table 5.5 Ranking of structural alignment methods for the subset of B-barrel membrane proteins

T
N

& ® c o =

© c - o0 (@]

! oo Q = = = =
= 5 2 5 S & - 2
Score | Type |H & = £ £ g g $ @ o S o Z
E £ 8 &£ & 5 5§ 8 §F & 6 a & =
CAD Rmean | 2 4 1 5 3 6 8 9 7 10 11 12 14 13
Rreliability|] 1 2 5 3 4 7 6 8 9 10 12 13 11 14

mean |54.4 54.1 54.4 54.1 54.2 54.1 53.1 52.6 53.6 52.6 51.5 47.5 46.9 47.1

stdev |{0.09 0.10 0.09 0.09 0.09 0.09 0.11 0.11 0.10 0.11 0.11 0.10 0.15 0.11

AL4 (%) | Rmean 1 2 4 3 6 5 8 9 7 10 11 12 14 13
Rreliabitity|] 1 2 7 3 5 8 4 6 11 10 9 13 12 14
mean |90.5 90.1 89.3 89.8 88.9 89.1 87.0 86.1 87.7 85.7 85.7 82.7 66.8 79.9

stdev [10.5 11.2 11.2 11.0 12.6 115 17.6 17.6 12.4 16.9 15.5 14.7 359 17.7

GDT_TS| Rmean 1 3 2 4 6 5 8 10 7 9 11 12 14 13
Rreliabitity|] 1 2 3 4 5 6 8 7 10 11 9 13 12 14
mean |63.9 63.1 63.4 62.9 62.0 62.6 59.5 58.7 61.0 59.0 58.3 50.4 46.1 47.4

stdev [14.9 15.7 15.3 15.5 16.6 159 19.4 209 16.4 19.3 19.2 19.0 30.3 20.3

ave. Rmean | 1.3 3.0 23 40 50 53 80 93 70 9.7 11.0 12.0 14.0 13.0

Rreliabiity| 1.0 2.0 5.0 33 47 7.0 6.0 7.0 10.0 10.3 10.0 13.0 11.7 14.0

See legend to Table 5.4 for details.

5.3.4 Rigid Superimpositions Compared to Fragment-Based Superimpositions

Besides the inherent scoring scheme, another major difference between the tested structural
alignment approaches is their algorithms for optimizing the inherent similarity score by a

superimposition procedure.

Some methods measure structural similarity based upon a rigid superimposition of the total
structures (e.g., CE or TM-align) whereas other methods allow for a flexible protein structure
alignment by focusing more on an optimal match of local protein substructures than on the total
structure overall (e.g., FATCAT flexible mode, FR-TM-align, MATT). Interestingly, 3 out of 5 top-
ranking methods for a-helical proteins are fragment based methods (FR-TM-align, FATCAT and
MATT, Table 5.4). Comparison of the results obtained for a-helical proteins using the TM-align and
FR-TM-align methods (Table 5.4) clearly demonstrates the increased accuracy obtained using

fragments, since all other aspects of these methods, including the scoring function (both use the

111



Template Modeling score), are the same. Models based upon alignments from FR-TM-align are more
accurate and ranked higher than their counterparts based on TM-align alignments for a-helical-
proteins (Table 5.4). The only case in which TM-align is ranked higher than FR-TM-align is according
to the Rpairwise ranking based upon an assessment using the AL4 score (Table 5.4). However, that

difference is only marginal and the results are not statistically significantly different from each other.

Similar results as for a-helical proteins were obtained for B-barrel-like proteins (Table 5.5). Again,
fragment-based approaches (FR-TM-align, FATCAT, Dalilite) were ranked higher than methods that
apply a rigid superimposition, with FR-TM-align again being the best choice among all methods.
Intriguingly, the DaliLite method appears to be better suited to B-barrel proteins than to a-helical
proteins (Table 5.4 and Table 5.5). | speculate that this is because DaliLite compares the intra-
structural distance matrices of two proteins: the distance matrices of B-barrel proteins are likely to
be a distinctive mixture of small and large distances, unlike the matrix of many short distances that

would be characteristic of a-helical proteins.

5.3.5 Conformational Flexibility of Membrane Proteins

All structural alignment methods consider only one state of a membrane protein during the
alignment process. This assumption fits to very rigid proteins like cytochrome bc, or Light Harvesting
Complexes, which change the electronic state of their bound co-factor during function. In contrast to
those rigid proteins, there are also some flexible membrane proteins that can adopt distinct
conformations to be able to transport substrates or to transmit signals. Two examples for such
conformations are the inward- and the outward-facing states of a transporter. In the inward-facing
state of a protein, its binding side is exposed to the inside of a cell and allows the uptake of ligands
and substrates from the cell or their release into the cell. The outward-facing state is the counterpart
to the inward-facing state and allows the uptake and release of ligands and substrates from the
exterior environment of a cell. These two conformational states are exemplified in HOMEP3 by the
Major Facilitator Superfamily (MFS), which contains two structures (GlpT and LacY; PDB codes: 1PW4
and 2CFQ) that have been determined in inward-facing states, and two structures (FucP and XylE;
PDB codes: 307Q and 4GCO0) solved in outward-facing states. The differences in these states mainly
arise from the repositioning of two six-transmembrane-helix domains relative to one another, so as

to open a pathway into the membrane from one or other side of the membrane (Figure 5.3).

The results obtained when aligning these MFS structures indicate that the performance depends on
the question being asked. | demonstrate this by comparing the results obtained using FATCAT with

the rigid-body fitting option, or in its ‘flexible’ (fragment-based) mode, using a spatial structural
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similarity score (GDT_TS) or an environmental-based structural similarity score (CAD score). For
comparison of structures in the same conformation, using FATCAT with the rigid-body fitting option
resulted in more accurate models than using FATCAT in ‘flexible’ mode (Table 5.6a). For those cases, |
also found that the distance-threshold based GDT_TS scores and the packing-based CAD score both

described the results well, and agreed well with one another (Table 5.6a).

Inward-open

Outward-open

Figure 5.3 Alternate conformations in the family of Major Facilitator Superfamily transporters. Two
structures reflect inward-facing conformations (GIpT and LacY; PDB codes: 1PW4 and 2CFQ) and two
reflect outward-facing conformations (FucP and XylE; PDB codes: 307Q and 4GCO0). The proteins are
shown as cartoon helices, viewed from along the plane of the membrane with the outside of the cell
toward the top, and colored according to the rainbow, from blue (N-terminal) to red (C-terminal).
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Table 5.6 Comparison of models in the MFS transporter family based on alignments generated using
FATCAT in flexible and rigid-body fitting modes for structures in similar or different conformational
states.

a) same states GDT_TS CAD

template model | rigid flexible | rigid flexible

1PW4 2CFQ 48.5 44.3 49.8 48.8
2CFQ 1PW4 | 46.4 42.3 49.3 48.2
307Q 4GCO 50.1 45.5 50.3 49.6
4GCO 307Q | 56.0 51.0 54.2 53.4

b) different states

1PW4 307Q | 373 40.2 47.5 50.9
1PW4 4GCO 38.8 32.4 45.8 46.7
2CFQ 307Q | 34.9 37.3 46.5 49.8
2CFQ 4GCO 33.2 30.9 45.0 45.2
307Q 1PW4 | 36.1 38.3 49.0 50.2
307Q 2CFQ 36.3 353 46.9 50.3
4GCO 1PW4 | 415 33.7 50.1 50.1

4GCO 2CFQ 38.9 34.6 48.4 49.2

Structural similarity scores for MFS transporter proteins that have been reported in an inward-facing
conformation (GIpT and LacY; PDB codes: 1PW4 and 2CFQ) or an outward-facing conformation (FucP
and XylE; PDB codes: 307Q and 4GC0). Entries in bold indicate the best score of the flexible or rigid-
body mode. Chain A is used in all cases.

The applicability of structural similarity scores like the GDT_TS or CAD score is also affected by
conformational changes because they compare two rigid structures with each other. For all structural
similarity scores, the highest score is achieved if two protein structures match each other perfectly
with the assumption that these structures are in the same conformational state. The more the
conformation of two structures changes, the more their structural similarity can change (e.g.,
increase of C,-C, distances or changes of contact areas between molecule spheres). Consequently,
two structures of the same protein that are in very different states might not be detected as being

structurally similar by a structural similarity scoring scheme.

During the homology modeling process the model adopts the conformation of the template structure
even if the expected target structure would be in a different conformation. In such cases, a spatial-
based structural similarity score (e.g., GDT_TS) might be inappropriate because helical segments may

be correctly modeled as helices but may be arranged in a different orientation towards each other.
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An environmental based structural similarity score like the CAD score might be expected to better
capture the changes inherent in repositioning large domains relative to one another. Consistent with
this expectation, the models are ranked differently when using the GDT_TS and CAD scores (Table
5.6b). According to the CAD score, the flexible mode of FATCAT results in more accurate alignments
for structures solved in different conformations than the mode of FATCAT that relies on rigid-body
fitting (Table 5.6a). Similar results are also obtained if only the membrane-spanning segments of MFS

transporters are considered (Table 5.7).

This example illustrates that introducing fragmentation and therewith flexibility is particularly useful
for aligning proteins that are in different conformations, whereas proteins solved in a similar state

are preferably aligned using a rigid-based superimposition.

Table 5.7 Comparison of models in the MFS transporter family based on alignments generated using
FATCAT in flexible and rigid-body fitting modes for structures in similar or different conformational
states considering membrane-spanning segments only

a) same states GDT_TS CAD
template  model rigid  flexible | rigid flexible
1PW4 2CFQ 52.0 48.5 0.525 0.532
2CFQ 1PW4 54.6 514 0.532 0.526
307Q 4GCO 64.5 60.4 0.581 0.563
4GCO 307Q 67.4 64.0 0.598 0.596

b) different states

template model rigid  flexible | rigid flexible
1PW4 307Q 49.4 519 0.532 0.562
1PW4 4GCO 51.6 449 0.532 0.527
2CFQ 307Q 44.6 48.6 0.489 0.539
2CFQ 4GCO 45.7 43.4 0.510 0.525
307Q 1PW4 48.6 514 0.538 0.550
307Q 2CFQ 45.7 454 0.517 0.550
4GCO 1PW4 53.2 453 0.568 0.528
4GCO 2CFQ 47.3 43.3 0.523 0.531

See legend to Table 5.6 for more details.

115



Unfortunately, none of the programs includes an option that recognizes the states of the proteins
(e.g., by defining the states of the input structures) although that might be useful for considering the
degree of flexibility that has to be introduced for an accurate superimposition of the protein
structures. FATCAT and MATT have the option to set a flag that allows for more levels of flexibility
but they are not able to active or deactivate this flag on their own. Currently, the decision of allowing

for flexibility has to be made ad hoc by the user.

5.3.6 Alignment Coverage

The accuracy of structural alignment methods is directly reflected by their ability to correctly insert
gaps at evolutionarily variant positions (e.g., insertions or deletions). Accordingly, structural
alignment methods that are not able to capture homology correctly may align too many residues
(over-align) that are evolutionarily not related, resulting in a rather short alignment, or they might
miss correct relationships between evolutionarily related positions and insert too many gaps (under-

align).

To test whether the different methods tend to over- or under-align, two values were calculated: the
alignment coverage and the average alignment length (Table 5.8). The alignment coverage is the
average percentage of the two structure lengths that are aligned. For the average alignment length,
the lengths of all alignments for a specific alignment method were summed up and divided by the
number of alighments. The values of the percentage of aligned residues and the average alignment
length were compared to that of the most accurate method, which in this case is FR-TM-align
(evaluation shown in Table 5.4 and Table 5.5). Structural alignment programs that produce shorter
alignments than those generated using FR-TM-align are therefore assumed to likely over-align
whereas methods that produce longer alignments tend to under-align amino acids. For both a-helical
and B-barrel proteins, SAP and PPM tended to significantly under-align membrane protein structures,
whereas MAMMOTH and SHEBA tended to over-align them (Table 5.8), which explains their overall

poor to average performance in terms of model accuracy (see Table 5.4 and Table 5.5).
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Table 5.8 Alignment coverage in the alignments generated using different structure alignment
programs

a-helical proteins B-barrels
%aln length %aln length
MAMMOTH 85.4%  333.8 | MAMMOTH 79.0% 455.2
SHEBA 84.8%  336.0 | SHEBA 76.0% 461.7
FATCAT 843%  336.8 | LovoAlign 75.5% 462.9
LovoAlign 84.1%  337.3 | FATCAT 75.5% 463.2

FATCAT rigid 83.9% 337.9 | FATCATrigid 75.2% 463.8
TM-align 82.5% 340.5 | FR-TM-align 73.4% 468.2
FR-TM-align 82.5% 340.5 | TM-align 73.2% 468.6

SABERTOOTH 79.4% 346.9 | SABERTOOTH 73.8% 468.6

SKA 78.4% 349.1 | DaliLite 69.4% 481.0
CE 78.1% 350.0 | MATT 66.2% 489.8
MATT 77.7% 351.3 | SKA 66.4% 490.2
DaliLite 78.5% 356.8 | CE 65.6% 496.8
SAP 82.7% 359.2 | PPM 59.1% 512.0
PPM 70.5% 366.6 | SAP 57.5% 602.4

%aln: percentage of structure that is aligned. Values of FR-TM-align used as a reference are shown in
bold.

5.3.7 Self-Consistency of Alignments for Homologous Proteins

Moreover, | checked whether a method that produces accurate alignments also produces self-
consistent alignments, or not, by comparing the correct consistency and the average shift error of
consistency in triplets of homologous sequences (as described in chapter 5.2.5) with structural
similarity scores for the models of the corresponding alignments. In general, the correct consistency,
measured as the percentage of positions that are consistent, was found to be moderately correlated
with model quality, assessed using either the CAD, AL4 or GDT_TS scores. This observation was made
both for a-helical proteins (Pearson correlations of 0.80, 0.66, and 0.78, respectively for CAD, AL4
and GDT_TS) and for B-barrel-like proteins (Pearson correlation of 0.79, 0.67, and 0.78, respectively).

The average shift error of consistency is even less correlated to the quality of the homology models
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for a-helical proteins (Pearson correlations of -0.36, -0.56, and -0.38, respectively for CAD, AL4 and
GDT_TS) as well as for B-barrel-like proteins (-0.49, -0.75 and -0.55, respectively). Consequently, the
accuracy of a set of alignments cannot be deduced from their shift error of consistency but the value
of their correct consistency gives a good hint for the accuracy of the alignments since the correlation

is not too bad.

Next, the ranking of the structural alignment methods based on their accuracy was compared to their
ranking according to their consistency. In agreement with Sadowski (Sadowski and Taylor, 2012),
alignments generated using SAP contained a higher proportion of self-consistent positions for a-
helical proteins (second highest after Dalilite, see Table 5.9) even though they scored poorly in terms
of accurate alignments and models according to structural similarity scores (see Table 5.4 and Table
5.5). This discrepancy can be explained by the observation that when amino acids are inconsistently
aligned, the average shift error in their position tends to be large (Table 5.9). SAP therefore seems to
incorrectly align some parts of the structures, but for all pairs of homologs, the errors in the structure
alignments are the same. Interestingly, methods that produced the most accurate alignments
according to the model scores (e.g., FR-TM-align and FATCAT rigid) also exhibited low shift errors
(Table 5.9), suggesting that even though there are inconsistencies between the alignments, these
errors are quite small, with the correct residue only one to four positions away. In a-helical proteins,
such errors may reflect a subtle shift in the pitch of individual helices, since the repetitive nature of a

helix may lead to multiple similar solutions with the helix shifted up and down by a turn.

For the set of B-barrel-proteins, the alignments were generally less consistently aligned than those of
the a-helical proteins, and the average shift error was significantly higher (Table 5.9). These
differences between the two folds may be explained by the higher number of residues that are
loosely-packed in B-barrels, because the reduced number of constraints on their positions means
that they tend to be less consistently aligned than those that are well-packed or buried, as noted
previously (Sadowski and Taylor, 2012). Moreover, the internal pseudo-symmetry of a B-barrel could
lead to many possible solutions that are shifted by one or two B-strands, and therefore lead to very
large shift errors. Compared to the set of a-helical proteins, the ranking of the structural alignment
methods according to their consistency and average shift error of consistency agrees better with the
ranking observed using modeling and structural similarity scores (compare Table 5.5 with Table 5.9).
DaliLite generates the most accurate alignments that are also the most consistent with the lowest

shift in consistency among all structural alignment methods tested.
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Table 5.9 Self-consistency of non-gapped positions in the alignments generated using different
structure alignment programs.

a-helical proteins B-barrels
%correct E %correct E
SABERTOOTH| 85.9% 0.59 |DaliLite 74.2% 2.84
FR-TM-align 87.2% 0.60 [FR-TM-align 71.9% 2.95
TM-align 87.2% 0.60 |FATCAT 72.0% 3.32
SHEBA 87.7% 0.60 |MATT 71.0% 4.46
FATCAT rigid 88.4% 0.61 |SHEBA 69.5% 4.68
SAP 88.5% 0.76 |PPM 48.2% 4.79
MATT 86.7% 0.84 [TM-align 68.8% 5.19
DaliLite 88.7% 1.05 |FATCAT rigid 68.1% 5.23
FATCAT 87.4% 1.09 MAMMOTH 51.6% 5.59
SKA 80.6% 1.36 |LovoAlign 59.6% 9.17
PPM 79.4% 1.46 |SAP 45.5% 9.79
MAMMOTH 69.4% 1.54 |SKA 58.6% 10.06
CE 76.7% 1.79 [SABERTOOTH 57.1% 10.60
LovoAlign 79.2% 2.25 |CE 43.6% 26.57

Results are sorted according to the average shift error, E. Entries in bold indicate the highest scores

in that column.

In general, consistency and accuracy were shown to be two distinct measurements that evaluate

different aspects of an alignment and are not necessarily correlated with each other. A method can

generate highly consistent alignments of a set of homologous protein sequence although those

alignments are inaccurate but the inaccuracies can be distributed similarly among all alignments

(e.g., SAP). Nonetheless, accurate alignment methods (e.g., FR-TM-align or FACAT rigid) were also

shown to generate fairly consistent alignments. Interestingly, alignments of a-helical proteins were

more self-consistent than those of B-barrel-proteins.
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5.3.8 A Consensus Approach to Obtain Confidence Values for Aligned Positions

Structural alignments of membrane proteins have been used as reference data sets for assessing
different computational approaches, like sequence alignment methods (Hill and Deane, 2012). In all
these studies, a single structural alignment from a single structural alignment program was used as a
reference for each pair of sequences. However, my comparisons and analysis indicate that none of
the structural alignment methods performs significantly better than all other methods in producing
accurate alignments neither for a-helical proteins (Table 5.4) nor for B-barrel-like proteins (Table
5.5). This observation is consistent with those that were made for the accuracy of structural
alignment programs for water-soluble proteins (Berbalk, et al., 2009; Sadowski and Taylor, 2012;
Slater, et al., 2012). Applying a single method to generate a reference data set may therefore result
in some errors in the reference data and mislead the results for optimizations and assessments on
that set. Specifically, incorrectly assigned positions would be treated as correct (false positives) and
correctly-aligned positions would be treated as incorrect (false negatives). Unfortunately, such errors

in the reference alignment cannot be identified easily by a manual inspection of the alignment.

In order to avoid inaccuracies in structural (reference) alignments, | propose a consensus-based
structural alignment approach that considers the alignments of four structural alignment methods to
generate a consensus alignment, similar to consensus approach used for transmembrane helix
prediction in TOPCONS (Bernsel, et al., 2008), which was shown to produce some of the most
accurate predictions. In a consensus approach, an observation (e.g., alignment of two residues) is
assumed to be more likely a true observation, the more methods agree with each other on that
observation. For a consensus approach to structural alignments, | selected the structural alignment
methods that were shown to generate the most accurate alignments according to the GDT_TS and
CAD scores: FR-TM-align, FATCAT rigid, MATT and DaliLite (see Tables 5.4 and 5.5). TM-align was
excluded because the underlying algorithm and score is too similar to that of FR-TM-align and the
models of FR-TM-align and TM-align were not significantly different (p>0.5) from each other. Thus,
TM-align does not introduce any additional information to the alignment that is already contained
within FR-TM-align. Similarly, for FATCAT, the rigid-body mode was chosen instead of the flexible

mode, because the former produced more accurate alignments overall (see Table 5.4 and Table 5.5).
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Figure 5.4 A consensus structure-based alignment fragment with confidence values. Two protein
structures were aligned with four different structural alignment methods: FR-TM-align, FATCAT,
MATT and DaliLite. The resulting alignments were then fused using the sequence of one of the
protein structures as a reference. Depending on the agreement between the four methods,
confidence values were assigned as very strong (i.e., all methods concur, confidence value of 9, dark
green), strong (three methods agree, confidence value of 6, pale green), moderate (two methods

agree, confidence of 3, orange), and weak (only one method found this solution, confidence value of
1, red).

For all structure pairs of HOMEP3, | calculated the agreement between the results of four structural
alignment methods using a custom computational program. This program fuses the underlying
sequence alignments of the structural alignments to a consensus alignment and calculates a
confidence score for each alignment position depending on the agreement of the four alignments
used. This confidence score is a measure of the reliability at each alignment position and ranges from
very strong (i.e., all methods concur, confidence value of 9), strong (three methods agree, confidence
value of 6), moderate (two methods agree, confidence of 3) to weak (only one method found this
solution, confidence value of 1), see Figure 5.4. This script is available for download at

www.bioinfo.mpg.de/AlignMe/download/ConsensusAlignment.zip.

It has to be noted that an agreement between methods is not necessarily a good reflection of the
accuracy of a position, since they could all be incorrect. However, correlating the different
confidence levels with the position-specific model accuracy of the corresponding positions shows
that alignment positions with the highest agreement between the four methods typically correspond
to accurately modeled positions, with an error in position <4 A (Figure 5.5). Moreover, as the
confidence level decreases, so does the model accuracy (Figure 5.5). Consequently, positions with a
high confidence level are the most reliable; these values could be useful for constructing “gold
standard” reference alignments for evaluations of other methods on membrane proteins. Alignment
positions with low confidence values should be treated with caution and potentially checked

manually for their correctness.
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Figure 5.5 Correlation of residue accuracy with confidence values based on a consensus of FR-TM-
align, FATCAT, MATT and DaliLite alignments. From all consensus alignments of the a-helical subset
of HOMEP3, the position-specific confidence level was extracted for positions in which amino acids
were aligned, i.e., excluding gapped positions. For each considered position, the distance (in A) of the
corresponding C,-atom in the homology model to that in the native X-ray structure was calculated.
This value then was averaged over the models built based on each of the four structural alignment
methods. The plot contains the normalized distribution of averaged C,-distances for each of the
confidence levels (see Figure 5.4).

5.4 Discussion

In this chapter, | compared structural alignment methods in order to identify a method that is
suitable for reliably aligning membrane protein structures, which should be useful for many studies
of membrane protein structure prediction or analysis and shows future challenges for the structure-
based alignment of membrane-protein structures. Overall, the evaluation showed that there is no
single outstanding method that generates more accurate alignments than all other methods tested.

This result agrees with studies on more general data sets including mainly water-soluble proteins.

In using structural similarity scores for comparing the different methods, several trends became
clear. First, the selection of representative homology model out of a set of 5 models was not
dependent on the similarity score (AL4, GDT_TS, CAD or DOPE score) that was used to find the best
model. This result is not surprising since none of the scores was optimized on and for membrane

proteins. An assessment score for homology models that considers explicitly membrane protein-
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specific attributes might be more sensitive to differences between good and poor models of
membrane protein structures and thus be a more efficient score for finding a good model out of a set

of models.

Next, a correlation of all structural similarity scores showed that three different scores are useful for
rating the structural similarity between membrane protein structures: the threshold-based AL4
score, the distant-dependent GDT_TS score that averages out large outliers and the contact-area
based CAD score that considers the agreement of spheres between two protein structures. However,
all of these scores showed to be correlated to a certain degree. The RMSD score, which was only
weakly correlated to all other scores, was left out for a subsequent analysis because it was shown to
be an inaccurate similarity measure for protein structures. Again, none of these structural similarity
scores was explicitly designed for membrane proteins in mind although such membrane-specific

information could give insights into the correctness of the modeled membrane-spanning segments.

Moreover, two properties of structural alignment programs were shown to have a major influence
on their alignment accuracy: length-dependent scoring schemes and fragment-based alignments.
First, the methods that use length-independent scores that minimize the contribution of large
outliers for optimizing their superimpositions such as TM-score produced the most accurate
alignments of membrane proteins. Scores that squared spatial distances were shown to generate less
accurate alignments (e.g., RMSD score in CE). This observation could be biased by the use of GDT_TS,
AL4 and CAD scores for assigning the accuracy of the different methods, because these scores are

quite strongly correlated with the TM-score.

A second striking observation is that the fragment-based approaches typically resulted in overall
more accurate alignments than the rigid-body fitting methods. This was particularly clear when
comparing the alignment accuracy of the fragment-based structural alignment method FR-TM-align
with its rigid-based counterpart TM-align; both being similar in all other aspects. In most cases, FR-
TM-align is similar or more accurate (ranked the same or better) than TM-align, showing that using
fragments for aligning structures is an effective strategy. FATCAT, in contrast typically gave more
accurate alignments when it was used in its “rigid” mode, rather than in its “flexible” mode.
Importantly, the fragment-based flexible mode of FATCAT was most useful for comparing structures
with very large conformational differences, such as the inward- versus outward-facing conformations
of the major facilitator superfamily transporters, whereas the rigid-body mode resulted in more
accurate alignments when comparing structures of similar conformational states. Thus, introducing a
high flexibility seems to be more useful for cases in which template and target structure are in very

different conformations rather than applying it for alignments of structures that are in the same
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state. Unfortunately, none of the programs includes an option that recognizes the states of the
proteins (e.g., by defining the states of the input structures) although that might be useful for
considering the degree of flexibility that has to be introduced for an accurate superimposition of the
protein structures. FATCAT and MATT have the option to set a flag that allows for greater levels of

flexibility, but they are not able to activate or deactivate this flag on their own.

| conclude that, as discussed previously for globular proteins (Collier, et al., 2014), there is room for
improvement in structure alignment programs, both in terms of alignment accuracy and alignment
consistency (Sadowski and Taylor, 2012). Introducing membrane information has been shown to
result in accurate sequence alignments of membrane proteins (AlignMePST mode, chapter 3.3.2 and
Figure 3.6) and thus might be a suitable protein descriptor that could be used within the
superimposition procedure of membrane proteins for improving the alignment quality.
Unfortunately, such membrane-specific information has not been applied so far in any structural
alignment program. For example, for each structure, the transmembrane-spanning segments could
be identified, and used as an additional criterion in the fitting. Also the application of the packing
based CAD score, that has been shown to be suitable to assess protein structures in different
conformations, could help to improve the alignment accuracy of membrane proteins solved in

distinct conformations.

In the meantime, a consensus approach using FR-TM-align, FATCAT, MATT and DaliLite provides a
useful strategy for evaluating structural alignment quality since there is no superior method that
outperforms all other methods in its accuracy. Confidence scores are assigned to each alignment
position and were shown to give insights into the alignment accuracy. Using such a consensus
alignment with confidence values allows for producing the most accurate possible alignments of
membrane protein structures. A data set of membrane proteins similar to HOMEP could also be built
using a set of consensus alignments with confidence values. Optimizations of programs (e.g.,
alignment programs or membrane propensity predictors) on such a data set could include the
confidence values into their calculations and the optimization could be driven by protein segments
that are aligned with high confidence values. This would minimize the contribution of erroneous
alignment segments into the optimization process. Moreover, the usage of confidence values allows
for confirming the identification of mutations and insertions/deletions that rarely occur in proteins

(e.g., gaps in membrane-spanning segments).
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6 Single Insertions and Deletions (InDels) Within Membrane
Segments and Their Influence on the Function of Homologous

Membrane Proteins

6.1 Introduction

Membrane-spanning segments are typically treated as being evolutionarily conserved (i.e. free of
insertions or deletions) by sequence alignment methods (Pirovano, et al., 2008; Shafrir and Guy,
2004) or during homology modeling (Fenollar-Ferrer, et al.,, 2014; Radestock and Forrest, 2011)
because of their hydrophobicity and inaccessibility to aqueous solution, which are both caused by
the location and interaction of the membrane protein with the hydrophobic membrane bilayer (see
chapter 1.2.1). Indeed, a fully regular hydrogen-bonding pattern that stabilizes the protein backbone
is typical in membrane proteins and occurs either in the form of a-helices (see chapter 1.2.2) or B-

sheets (see chapter 1.2.3).

However, in a recent study, a-helical G-protein coupled receptors (GPCRs) were analyzed for
structural anomalies such as bulges and kinks within their membrane-spanning segments (Gonzalez,
et al., 2012). Single as well as double evolutionarily insertions or deletions (InDels) were observed
when comparing homologous GPCRs within two membrane segments (TM2 and TM5). Accordingly,
the twist angles of these fragments showed irregularities from the angles typical for a-helices and
instead were similar to those of 3,5- or m-helices (see Figure 1.8 in chapter 1.2.4). In TM2, sequence
fragments with twist angles (~120°) characteristic of a 3i¢-helix and an i=i+3 hydrogen bonding
pattern were found in chemokine receptor (CXCR4) and p-opioid receptor (mOR), whereas other
proteins (e.g., B:adrenoreceptor (B1AR), B, adrenoreceptor (B2AR)) had twist angles (~75°)
characteristic of a m-helix and an i=i+5 hydrogen bonding pattern. In squid rhodopsin (s-Rhod), an
even longer m-helical segment with a twist angle of 40° was found. The authors of this evaluation
(Gonzalez, 2012 #53} did not report homologous proteins with corresponding residues in an a-helical
conformation. As a result, alignments of TM2 containing these five proteins contained gaps in the
middle of the membrane. Similarly, TM5 of one known GPCR structure (i.e. a-2 adrenergic receptor
(A2AR)) contains m-helical twist angles and an i=i+5 hydrogen bonding pattern at a sequence
position for which in all other sequences an a-helix with an i=i+4 hydrogen bonding pattern is
present; therefore the A2AR sequence of TM5 is aligned to a gap in the other sequences. Both helices

TM2 and TM5 have been shown to contribute to GPCR function. In TM2, a conserved S/TxP motif is
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responsible for receptor activation and modulation (Govaerts, et al., 2001); the proline is crucial for
receptor activation and the amino acids two positions before proline (threonine or serine) modulate
the activation signal. TM5 contains residues that are involved in ligand binding and that contribute to
the stabilization of the active state (Cherezov, et al., 2007). Consequently, single InDels can influence
characteristic properties of a protein if they are a located at such functionally-important protein
segments. Additionally, single InDels cause a change in the hydrogen bonding pattern and alter the
secondary structure state from the typical a-helical structure to a tighter 315-helix or a wider m-helical
structure. This changes the spatial orientation of the residues involved, allowing their side chains to

point into different regions than can be possible with a canonical helix.

ni-helices have also been discovered at functional sites in other protein families (Cartailler and
Luecke, 2004; Gonzalez, et al., 2012; Riek and Graham, 2011; Riek, et al., 2001; Weaver, 2000) like
those of globular proteins (e.g., human squalene synthase, PDB code: 1EZF) or membrane proteins
(e.g., cytochrome c oxidase, PDB code: 20CC) despite their rare occurrence (< 5 %, (Cartailler and
Luecke, 2004)) in protein structures. Their rarity is a consequence of their energetically less favorable
conformation than the one of a-helices (Riek, et al., 2001; Weaver, 2000). The decrease of stability in
ni-helices is caused by a loss of side-chain to side-chain interactions in comparison to a-helices due to
the enlarged radius of the helix (2.8 A compared to 2.3 A of an a-helix) (see Figure 1.8). Additionally,
the dihedral angles of the backbone associated with m-helices (¢ from -47 to -71 and { from -70 to
-41) (Cartailler and Luecke, 2004; Fodje and Al-Karadaghi, 2002) are less favorable than those of a-
helices. An analysis of 10 proteins that contained a m-helical structural element revealed that in 8 out
of those 10 proteins the m-helical fragment was directly involved in specific binding events (Weaver,
2000). For the two other proteins, the m-helices were not directly involved in binding but were also
expected to contain important amino acids (e.g., for communication between active sites or the
stabilization of the protein state). Consequently, a m-helix might have a significant impact on a

proteins function being worth its energetic cost compared to an energetically more favorable a-helix.

Similarly, 319-helices are also reported to be present in functional segments (e.g., copper or heme
binding sites) or are assumed to be involved in signal transduction (Pal and Basu, 1999) although
their packing properties are also not optimal because of non-optimal van-der-Waals contacts
between residues within a 3,p-helix (Vieira-Pires and Morais-Cabral, 2010). However, all these studies
analyzed only structural propensities of proteins and not the evolutionarily relationship between
homologous proteins or whether there are InDels that are associated with irregularities of a-helices.
Thus, these studies did not observe a connection between 3;p-helices and InDels or m-helical

elements and InDels.
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To date, a barrier to an automated and detailed analysis of structural irregularities in membrane-
spanning segments has been the lack of high-resolution crystal structures of membrane proteins. An
exact and confident spatial positioning of the amino acids is required to define structural elements as
either 34¢-, a- or m-helical (or any other state). Additionally, to make connections between structural
propensities and evolutionarily events requires the knowledge of structures of one or more
homologous proteins, ideally in the same functional state. The latter is important because changes of
conformation can also alternate a-helical elements into m -helical elements or 3:5-helices and vice

versa (Armen, et al., 2003).

The issue of missing high-resolution structures assigned to homologous families is addressed by the
set of homologous high-resolution membrane protein structures in HOMEP3 (see chapter 2.5).
Moreover, my recent work shows that a combination of 4 different structural alignment methods can
be used to generate a consensus alignment with confidence values, which helps to ensure that only
reliable InDels will be considered for the analysis (see chapter 5.3.8). The application of a consensus
alignment addresses the issue that a single structural alignment method does not align all structures
correctly (see chapter 5.3). Aligned amino acids and gaps were deemed to be reliable if at least three
structural alignment methods agreed with their assignment of an amino acid to another amino acid
of the homologous protein sequence or to a gap. Although there still is a risk that only a single
method might find the correct alignment and all other structural alignment methods fail to find a
correct superimposition, positions with a high confidence score were shown to correspond to more

accurately modeled residues than those with a low confidence score (see Figure 5.5).

In this chapter, all homologous proteins of the HOMEP3 data set are analyzed for structural
irregularities that are caused by single InDels between evolutionarily related proteins (e.g.,
conversion of a-helical elements to 34o- or m-helical structures). Subsequently, all detected InDels
were analyzed for possible contribution to a protein’s function (e.g., enhancement or inhibition of

characteristic protein functions such as protein transport or ligand binding).
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6.2 Methods

6.2.1 Computational Methods for Detecting Secondary Structure Elements

There are two ways to analyze the secondary structure propensity of residues in a protein
computationally: analyzing the known three-dimensional amino acid positions of a crystal structure
using a secondary structure assignment method or predicting secondary structure states based on a
sequence using a prediction method that is based upon generalized properties obtained from a set of
protein structures. The most commonly used secondary structure assignment methods are DSSP
(Kabsch and Sander, 1983) and STRIDE (Frishman and Argos, 1995). The assignments by DSSP are
based upon a “Dictionary of Secondary Structures of Proteins” that relies on hydrogen bonding
patterns between consecutive nitrogen and carbonyl groups of the backbone. For each hydrogen
bond, a value describing the energy of that bond is calculated using a Coulomb approximation and
hydrogen bond is defined when the bond energy is below -0.5 kcal/mol. STRIDE also applies a
hydrogen-bond energy function, but additionally considers the dihedral torsion angles of the
backbone in order to discard hydrogen bond patterns if their ¢ and | angles are unfavorable.
Moreover, STRIDE elongates structural elements if their adjacent amino acids have favorable angles.
Both programs (DSSP and STRIDE) were optimized for the detection of regular secondary structure
elements such as a-helices and B-sheets. Such consecutive and consistent regular structures (e.g.,
long a-helices or B-strands) are energetically preferred compared to irregular structures (e.g., coils,
3,0~ or rt-helices) or to secondary structure elements that contain only a single or a few amino acids.
Long secondary structure elements were assumed to occur more frequently in a protein than very
short consecutive fragments (e.g., of less than three amino acids) of alternating states. Consequently,
single structural irregularities might not be detected by secondary structure assignment methods like
DSSP or STRIDE. However, a recent secondary structure assignment method called SST (Konagurthu
and Lesk, 2013) considers explicitly secondary structure elements that occur less frequently in
proteins: 31p-helices and m-helices. For a secondary structure assignment of a protein, SST applies a
Bayesian method of minimum message length (MML) inference (Konagurthu, et al., 2012). Bayes’
theorem describes the probability of an event based on specific conditions. In SST, the coordinates of
the protein correspond to the event and the conditions are proposed secondary structure elements
based on ideal models following the Pauling and Corey geometry (Pauling, et al., 1951), which are
used as a hypothesis to explain the observed data. In addition, the amount of information is
minimized that is required to explain the three-dimensional coordinates of a specific amino acid in
relation to the three-dimensional location of other amino acids in the protein of interest. After the

detection of regular secondary structure elements like a-helices or B-strands, SST applies a
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subsequent step to detect 35- and m-helices. This step is not present in DSSP and STRIDE and
therefore, SST might provide useful insights into the occurrence of 3,0- and m-helical segments in

membrane proteins.

Secondary structure prediction methods (e.g., PSIPRED or Jufo) can also be applied for obtaining
information about the secondary structure properties of a protein, but those predictors are less
accurate since they do not explicitly include the known three-dimensional information of the protein
of interest and provide typically only a three-state prediction of a residue being in a helix, sheet or
coil. There are also two predictors (SSpro8 and another eight-class structure predictor) that explicitly
consider m-helices but their accuracy was still lower than 70 % and they had difficulties to predict 34,-
or ni-helical elements (Wang, et al.,, 2011). Consequently, secondary structure prediction methods
were not applied in this work, which accordingly was focused on atomic-resolution structures instead

of sequence data.

6.2.2 Computational Methods to Detect mt-helical Structure Elements

A reliable detection of m-helices is required for analyzing their influence on a protein’s structure. The
recent secondary structure assignment program SST supports the detection of m-helical fragments
but has not been tested for its accuracy on a membrane protein data set. Another computational
method that was designed explicitly for detecting m-helices in protein crystal structures is a perl
script called m-HUNT (Cooley, et al., 2010). m-HUNT assigns a residue to be in a m-helical conformation
if a secondary structure assignment of DSSP for that protein has found at least two sequential
residues with the most likely hydrogen bonding pattern of i>i+5 with strengths of <-0.5 kcal/mol.
Additionally, the torsion angles of those residues were required to be within the wide range of valid
a-helical angles (-180°<¢< 0°, -120°<<45°) (Pauling and Corey, 1951) to avoid incorrect annotations
of m-helices in coiled segments. Unfortunately, this script was not available for download or upon

request.

Consequently, | developed an in-house automated script, written in perl called n-Detector that is
similar to the m-HUNT script, but that applies some more rules for detecting m-helices, in order to
make a more conservative and confident assignment. m-Detector requires the three-dimensional
coordinates of the protein (taken from the PDB) and an analysis of hydrogen bonding patterns and
angels by DSSP of the same PDB as an input. An amino acid of a protein is assigned by n-Detector to

be in a m—helical conformation if the following four observations are true:
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1) A hydrogen bonding pattern of i=i+5 (values of 5 and -5) is present in at least one of the four
H-bond interaction columns in the DSSP raw output file. Two of those columns list the
relative positions of the hydrogen donor interaction partners (N-H->0) and two other
columns list the relative positions of the hydrogen acceptor interaction partners (O->H-N).
The first two columns describe the most likely interactions, and the second two columns

describe the second most likely hydrogen bonding patterns.

2) All backbone angles of the segment from i-4 to i+4 are within the range of ¢ (-180° to 0°) and

U (-120° to 45°) according to DSSP calculations.

3) The C,-C, distances of i=i+2 and i—i+3 are larger than those of an ideal a-helix (>5.4 A for

i—i+2 and >5.3 A for i=>i+3 with the values in A representing those of a canonical a-helix).

4) The C4-C, distances of i=i+4 and i=>i+5 are smaller than those of an ideal canonical a-helix
(<6.8 A for i>i+4 and <9.2 A for i->i+5 with the values in A representing those of a canonical

a-helix).

The first two rules are similar to those of the m-HUNT script. In (1) m-Detector considers not only the
likeliest, but the two most likely hydrogen bonding patterns, because DSSP has a preference over an
i->i+4 hydrogen bonding pattern compared to an i=i+5 hydrogen bonding pattern. Although DSSP is
able to predict an i=i+5 hydrogen bonding pattern for some residues, it assigns the first and the last
residues of a m-helix as being part of the surrounding a-helices. Consequently, the minimal length of
a m-helix is not met because there are too few residues left in a potential n-helical state and the n-
helix stays undetected. For m-Detector, no further restrictions are made regarding the DSSP
assignments that are used as input, whereas the m-HUNT script is more restrictive and requires at
least two sequential residues with an i=>i+5 hydrogen bonding pattern with strengths of <-0.5
kcal/mol according to the DSSP output (Cooley, et al., 2010). Next, in (2), the surrounding backbone
dihedral angles are required to correspond to a-helical structures in order to exclude coiled
segments that adopt by chance a structure similar to a n-helix. The threshold values are the same as
those of the m-HUNT script (Cooley, et al., 2010). Then two more rules are applied (3 and 4), which
were not used in the m-HUNT script, in order to make the assignment more reliable: C,-C, distances
of consecutive residues have been shown to be correlated with the occurrence of m-helices in a

previous study (Riek, et al., 2008).

Secondary structure assignments were generated for all proteins in the HOMEP3 data set using DSSP

2.0.4, STRIDE and SST. Additionally, m-Detector was used for discovering n-helices in HOMEP3 to test
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whether DSSP and STRIDE really fail to correctly detect m-helices and to confirm the assigned n-
helical positions in proteins by SST. An explicit detection of 3,9-helices was not implemented because
it can be assumed that DSSP and STRIDE assign 3ip-helices properly; reports contradicting that

assumption could not be found.

6.2.3 Consensus Structural Alignments for the Reliable Identification of (Single) InDels in

HOMEP3

A meaningful comparison of secondary structure elements between homologous proteins requires a
reliable alignment of those proteins. However, the evaluation of the accuracy of structural alignment
programs on general protein data sets (Sadowski and Taylor, 2012; Slater, et al., 2012) as well as on
HOMEP3 (see chapter 5) showed that all structural alignment methods had their pros and cons and

that there is no superior method that can be universally relied on.

As concluded in Chapter 5.3.8, a consensus approach combining results from several structural
alignment methods might therefore help to identify amino acids that are aligned consistently by
several structural alignment methods. For the present analysis, consensus alignments were
generated based on pairwise structural alignments that were obtained for all protein pairs in the 40
families from the a-helical subset of the HOMEP3 data set using DaliLite, FR-TM-align, FATCAT (rigid
mode) and MATT. For the first consensus alignment, the first sequence (a) was used as a reference
sequence to which the second sequence (b) from each of the four alignments was added. Differences
between the four alignments of a given pair sometimes required the insertion of additional gaps into
one of the second sequences (b). Those additional gaps are represented by a “.” within the final
consensus alignment (rather than “-“ for a gap from each pairwise alignment). This procedure was
then repeated using the second sequence (b) as a reference to which the first sequences (a) were

added.

In each consensus alignment, an alignment of two amino acids (or of an amino acid with a gap) that
are matched in the same way by all structural alignment methods receives a high confidence value
(i.e. 9 if all methods agree) reflecting a high probability of being correctly aligned, since the different
scoring and superimposition procedures of the different structural alignment methods all agree on
the alignment of that pair of amino acids. The less the structural alignment methods agree with each
other, the lower the confidence value of the concerned aligned amino acids (i.e. 1 if only one method

had that pair of amino acids aligned — see red colored columns in Figure 6.1A, B and C).

In a subsequent step, position specific membrane-propensity assignments from the PDB_TM

database were used as a reference to define membranous and globular protein segments for each
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protein sequence. All consensus alignments were then analyzed to identify single insertions and
deletions (InDels) that were within membrane-spanning segments and received a high confidence

score in the consensus alignment (i.e. at least 3 out of 4 methods agree with each other).

Families that contained single InDels in membrane-spanning segments were further analyzed. Based
on the pairwise consensus alignments, a multiple sequence alignment was manually generated. In
cases for which the consensus alignments differed from each other, the corresponding crystal
structures were checked manually and a multiple sequence alignment was created upon these

results (Figure 6.1D).

2GSM,A 2GSM,A

3MK7,A - FR-TMalign 300R,B - FR-TMalign

3MK7,A - FATCAT rigid 300R,B - FATCAT rigid
3MK7,A - MATT 300R,B - MATT

3MK7,A - DaliLite 300R,B - DaliLite

Confidence Confidence
¢ D
3MK7,A =
2GSM,A F TV G - GV T G
300R,B - FR-TMalign
3MK7,A Y GM S - T F E G

300R,B - FATCAT rigid
300R,B AF L G A GV W G

300R,B - MATT

> o0 > x| v

300R,B - DaliLite

Confidence

Figure 6.1 Based on consensus alignments (A-C) between cytochrome c oxidase from Rhodobacter
sphaeroides (PDB code: 2GSM), cbbs cytochrome c oxidases (PDB code: 3MK7) and a nitric oxide
reductase (PDB code: 300R) a multiple sequence alighment was manually created by assigning
corresponding residues to each other (D). In case of differences between the consensus alignments,
manual visual investigations on a structural level were done in order to understand the relationships
between the proteins for generating the final multiple sequence alignment.
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6.3 Results

6.3.1 Occurrence of Secondary Structure Elements in HOMEP3

The overall percentages of secondary structure assignments of DSSP, STRIDE and SST are quite
similar for residues identified as a-helical (DSSP: 64.9%, STRIDE: 67.6%, SST: 67.7%) or B-strand
conformations (DSSP: 3.7%, STRIDE: 3.9 %, SST: 4.3%) in the structures of HOMEP3. On the residue
level, all three methods also agree with each other for most of the protein residues that are assigned
as being a-helical (29241 sequence positions are assigned by all three programs in an a-helix, Figure
6.2A, out of a total of 36477 assigned by any method as a-helical) or being in a B-strand (1842
residues out of 3741, Figure 6.2B). Interestingly, the overlap of residues being assigned to two

methods is higher for DSSP and STRIDE than their agreements with SST.

All methods are also capable of detecting 31-helices (DSSP: 3.0%, STRIDE: 2.8%, SST: 1.8%) but the
overlap between the three programs is lower than for residues being assigned as being a-helical or in
a B-strand (241 out of 2379 assignments; compare Figure 6.2C with Figure 6.2A and B). Again, there is
a strong agreement between DSSP and STRIDE and a weaker agreement of these methods with SST,
which assigns fewer residues to 3;p-helices (865 total) than the other methods (1481 and 1577

residues, respectively).

As a fourth secondary structure type, m-helical residues were only rarely annotated by DSSP and
STRIDE. DSSP assigned 11 m-helices (0.12%, 57 residues) and STRIDE only 3 m-helices (0.02%, 15
residues) that were also detected by the SST program (Figure 6.2D) that in contrast assigned 2377

residues (5.1%) from 136 proteins as being in a nt-helical state (Figure 6.2D).

The n-Detector script assigned even more protein residues as being m-helical (8.2%, 3958 residues,
Figure 6.3). This difference presumably reflects the fact that the m-Detector script assigns a minimal
length of eight amino acids for a m-helix whereas SST also allows for smaller t-helical fragments, with
as few as three. n-Detector might therefore incorrectly assign a-helical positions adjacent to a mt-helix
as being m-helical. SST and m-Detector agree nonetheless for 466 residues in membrane-spanning
segments and 255 residues outside of the membrane. Interestingly, SST detects more non-
membranous m-helical segments than n-Detector (Figure 6.3). This reflects the fact that SST does not
require m-helical segments to be surrounded by a-helical segments and thus, a few coiled regions are

(incorrectly) assigned as being m-helical by SST.
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residues in a-helical states B residues in B-strand states

SST SST

STRIDE STRIDE

(@}

residues in 3ip-helical states D residues in m-helical states
SST

SST

DSSP STRIDE DSSP STRIDE

Figure 6.2 Venn Diagram of assigned secondary structure states by SST, DSSP and STRIDE. The
numbers of residues were counted that were assigned by one or more secondary structure
assignment programs to be in (A) an a-helix, (B) a B-strand, (C) a 319-helix or (D) a rt-helix.
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The usage of either m-Detector or SST has both advantages and disadvantages. The n-Detector script
has strict criteria in order to detect n-helices only flanked by a-helical elements, but might incorrectly
assign too many residues as a ri-helical (false positives), including residues that are in a a-helical state
flanking a m-helix rather than in the m-helix itself. SST is able to assign m-helical propensities to small
fragments, but might also incorrectly assign residues of a coil to be in a m-helical conformation,
because SST does not check the secondary structure elements adjacent to the m-helix. For these
reasons, a combination of SST and the m-Detector script was used for subsequent analysis to ensure
that each one of the identified m-helical elements is reliable. Specifically, secondary structure

elements were treated as n-helical if they were identified as being rt-helical by both approaches.

Residues in mt-helical and/or membranous states

SST

1170

17576

mn-Detector Membrane definition

from PDB_TM

Figure 6.3 Venn Diagram of residues that were predicted by SST and/or m-Detector to be in a m-helix
and/or in a membrane-spanning segment according to definitions taken from the PDB_TM database.
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6.3.2 Single InDels in Confident Positions of Consensus Alignments

A reliable analysis of evolutionarily events between secondary structure elements of homologous
proteins requires knowledge of the quality of the underlying alignment of those proteins.
Confidently-aligned positions (i.e. confidence value 26 where at least 3 out of 4 methods agree on
the alignment of two residues or of a residue against a gap) were detected for 70.4% of positions of
the consensus HOMEP3 alignments. Considering only positions in the alignments that contain two
aligned amino acids (i.e. excluding positions that are aligned against a gap) in the reference
sequence, this confidence value increases to 86.3%. Accordingly, amino acids that are aligned against
a gap are on average less confidently-aligned because the structural alignment methods disagree
especially in choosing the proper assignment of the start and the end of the gap. This issue also
occurs for some single InDels in rt-helices that receive lower confidence values (confidence value of 6,
Figure 6.4) than the aligned amino acids of the surrounding a-helix (confidence value of 9, Figure

6.4).

Interestingly, 50.3% of all positions that were confidently aligned were in transmembrane segments,
although only 37.9% of all protein residues are located within the membrane. Thus, 93.4% of all the
membrane-spanning residues are confidently-aligned showing that membrane-spanning segments
are conserved and thus easier to align (structurally) by all methods than non-membranous segments

which also contain coiled fragments.

Within these confidently-aligned transmembrane regions, | found a total of 166 single InDels that
were manually analyzed for their correctness by visually comparing the affected protein structures
with each other on a structural level. Consistent with earlier observations (Gonzalez, et al., 2012),
single inDels were found in TM2 and TM5 of the family of GPCRs. Moreover, | identified conserved
single InDels in TM2 and TM9 of cytochrome c oxidases (subunit 1), in TM1 of LeuT relative to AdiC,
and in TM5 of ECF transporters. These single InDels were subsequently analyzed for their secondary

structure states and for possible implications for the protein’s functionality.
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2A65, chain A L GNF L RF PV Q
30B6, chain A - FR-TM-align S GV FL - L P AN
308B6, chain A - FATCAT rigid S GV FL - L P AN
30B6, chain A - MATT S GV F - L L P AN
30B6, chain A - DalilLite S GV FL - L P AN
Confidence 9 9 9 96 6 9 9 9 9

Figure 6.4 Consensus alignment of the central segment of TM1 of LeuT (2A65) and AdiC (30B6)
belonging to the family of the FIRL fold. Four different structural alignment programs were applied to
align the sequence of 30B6 against the reference sequence of 2A65. The first and the last four
columns are aligned consistently by all four methods and receive a confidence value of 9. The two
columns in the middle that contain a single gap are only consistently aligned by three methods (FR-
TM-align, FATCAT rigid, DaliLite) and thus receive a confidence value of 6.

6.3.3 Single InDels in TM2 and TM5 of G-Protein Coupled Receptors

A membrane protein family for which single InDels have previously been observed (see chapter 6.1)
is the group of G-protein coupled receptors (GPCR). GPCRs constitute one of the largest and most
well-studied families among integral membrane proteins. Their main function is the transfer of
endogenous and exogenous signals across the membrane by their interaction with intracellular
heterotrimeric G-proteins. Those signals can be induced by a wide variety of ligands like hormones,
lipids, ions or by sensory stimuli. A common structural feature of all GPCRs is their conserved 7TM
fold that is present across different sub-classes of GPCRs (e.g., opioid receptors or S1P1 lipid
receptors) although they share a sequence identity of ~25% or lower. In a previous study, structural
differences between different GPCRs were analyzed based on a manual superimposition of their
structures. This analysis showed that single InDels occur in two membrane helices of those proteins:
TM2 and TM5 (Gonzalez, et al., 2012). The generated consensus alignments of the GCPR family of
HOMEP3 confirm both observations made by Gonzalez because the consensus alignments contain
single InDels with high confidence values in TM2 and TM5. However, the results obtained with the

consensus alignments differ slightly from those reported previously, and will be discussed below.

According to Gonzalez (Gonzalez, et al.,, 2012) TM2 contains a consecutive two-residue gap in a
mouse opioid receptor (m-uOR, PDB code: 4DKL) and a human S1P1 lipid receptor (h-S1PR, PDB
code: 3V2Y), compared to the crystal structure of squid rhodopsin (s-Rhod, PDB code: 2Z73), with
gaps being aligned to V86 and N87 of squid rhodopsin (Figure 6.5a). In contrast, my consensus
alignment shows two single gaps in TM2 that are separated by two amino acids; the gaps are aligned
to V86 and F89 of s-Rhod (see Figure 6.6a). An analysis of the crystal structures shows that TM2
adopts an a-helical structure in opioid receptors like m-uOR and a long n-helix with two more
residues in rhodopsins like s-Rhod. Interestingly, the residues V86 and F89 of s-Rhod are located in

the bulges of the long m-helix and occupy space that is not occupied by the residues in the a -helix of
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m-pOR. Thus, the observation of two single InDels corresponds better to the crystal structures than

two consecutive gaps.

A single InDel in TM2 is observed for B-adrenergic GPCRs (e.g., h-B2AR, PDB code: 2RH1), a dopamine
D; receptor (h-D3R, PDB code: 3PBL), muscarinic acetylcholine receptors (e.g., h-M3R, PDB code:
4DAJ) and an human histamine H1 receptor (h-H1R, PDB code: 3RZE) in comparison to the crystal
structure of s-Rhod (PDB code: 2Z73) (Gonzalez, et al., 2012) (Figure 6.5a). Those proteins contain a
short m-helical structure at this segment, which is aligned to a long n-helical segment with an
additional residue in s-Rhod. However, my consensus alignments show that this single gap is aligned
to F89 of rhodopsin (Figure 6.6a) rather than to V86 as stated previously (Gonzalez, et al., 2012)
(Figure 6.5a).

Interestingly, residues in TM2 were shown to be spatially close to the ligand binding pocket for
proteins that adopt an a-helical conformation or a long m -helical conformation in TM2. For the
human kappa opioid receptor (h-KOR, PDB code: 4DJH), residues V108, T111, Q115, V118 were
shown to be <4.5 A from the ligand binding pocket (Figure 6.6a), and receptor homology models
suggested that V108 and V118 are crucial for selectivity of the antagonist JDTic (Wu, et al., 2012).
Similarly, a residue (Q107) of the nociceptin/orphanin FQ peptide receptor (h-ORL, PDB code: 4EA3)
that is located close to the m-helix was also shown to be located spatially close to the binding pocket,
and mutations of Q107 to alanine caused a ten-fold-loss in binding (Thompson, et al., 2012). In
h-S1PR, Y98 and Q101 are located in a long m-helical segment and are spatially closer than 4.0 A to
the h-S1PR agonist binding pocket (Hanson, et al., 2012). In contrast to those examples, residues in
TM2 of proteins with a short m-helix in TM2 were previously not supposed to be involved in ligand

binding (e.g., h-D3R or h-B2AR, Figure 6.6a).

a) alignment of membrane helix 2 b) alignment of membrane helix 5
4DkL ML A T S - - T L p® 3vay 1 - 1T v F T ™Y
3v2v  ®L A G VvV - - A Y p” 2RHL s 1 v s F vy V7%
3L LV AT - L Vv M P 3L Ps v.s s F vy L'
4DA) ™11l G V - 1 S M N* 2z73 “F I L G F F ™
3RZE ®I'V G A - V V M p¥ DKL ®*F 1 F A F 1 M™®
2RH1 vV M 6 L - A v v p® 3RZE A I I N F Yy ™™
2z73 T F s L V N G F p”° 4DA) A 1 I A F Y M™

Figure 6.5 Manually created sequence alignment of GPCRs based on visual analysis of their structures
only; adapted from Figure 3 of Gonzalez et al (Gonzalez, et al., 2012). (a) Alignment of TM2 and (b)
Alignment of TM5.
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a) Alignment of membrane helix 2

m-puOR (4DKL) "°L A -TL-PFQ*
d-oOR (4EJ4) LATS-TL-PFQ®
h-S1PR(3V2Y) ®L A GV - AY - T AN
h-ORL-1(4EA3) *“LVLL -TL -PFQY”
h-kOR@4DJH) "LV TT -TM- P F Q"
h-D3R(3PBL) “LVATL VM- P WYV
h-M3R(4DAJ) ™I I GV I SM- NL F*
h-M2R(3UON) " GV F SM - NL Y¥®
h-HIR(3RZE) "I VGA V VM - P M N*
h-A2aR(4ElY) “A VGV LA Il - P F A®
t-81AR(4AMJ) ®*V VGLLVYV -P F G*®
h-82AR(2RH1) *VMGLA VYV - P F G”
s-Rhod (2Z73) *T F VNG P LM
b) m-pOR (4DKL) c) s-Rhod (2273)

il

Figure 6.6 Manually created multiple sequence alignment of transmembrane helix 2 (TM2) of G-
protein coupled receptors of known structure based on pairwise consensus structural alignments. (a)
A sequence alignment based upon underlying structural alignments shows that single gaps occur
within TM2 between different types of G-protein coupled receptors. Amino acids that were spatially
close to the binding pocket are shown with a brownish background. (b) TM2 adopts an a-helical
structure in opioid receptors like m-uOR, (c) or contains a long m-helix in rhodopsins such as s-Rhod.
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a) alignment of membrane helix 5

h-S1PR(3V2Y) 2T TV - FT L L L2*
h-B2AR(2RH1) *%S | VS F YV P L2
t-B1AR(4AMJ) 22S I I SFY | P L2
h-D3R(3PBL) S VV S FYLP F®
h-ORL-1(4EA3) *F LFSF I VP V%
s-Rhod (2Z73) *°F I LGF FGP |23
h-M2R(3UON) “'/A 1 AAFY L P V™
h-M3R (4DAJ) A | AAF Y MP V8
h-H1IR(3RZE) A | INFY L P T2
h-A2aR (4ElY) '2F FACV LV P L™
h-kOR(4DJH) #'F 1 FAFV I P V>
m-pOR(4DKL) #’F I FAF 1 MP V2%¥
d-oOR(4EJ4) 2°F L FAFV VP |2

b) h-S1PR (3V2Y) ) h-B2AR (2RH1)

Figure 6.7 Manually created multiple sequence alignment of membrane helix 5 of G-protein coupled
receptors based on pairwise consensus alignments. (a) A multiple sequence alignment based upon
underlying structural alignments reveals that a h-S1PR (PDB code: 3V2Y) contains one amino acid less
in TM5 compared to all other GPCRs. (b) h-S1PR contains an a-helix in TM2 whereas (c) all other
GPCRs (i.e. 2RH1) contain a mt-helix in TM5.

In TM5, h-S1PR (PDB code: 3V2Y) contains an a-helix which is aligned with a single gap to all other
known GPCRs structures that instead contain a short m-helical segment in this helix. Interestingly, the
consensus alignments show a confident gap in the sequence of the hS1PR between residues V209
and F210 (Figure 6.7a), whereas a single InDel was reported between T207 and T208 in the study of
Gonzalez et al (Gonzalez, et al., 2012) (Figure 6.5b). A closer look at the crystal structures of the
GPCRs shows that a single gap between V209 and F210 seems to be more reasonable. h-S1PR
contains an a-helix with a phenylalanine side chain that is oriented toward the binding site (Figure
6.7b). A series of point mutations along the hydrophobic ligand binding pocket showed that a
mutation F210L decreased CYM-5422 (ligand-)induced ERK phosphorylation and binding (Hanson, et
al., 2012). In contrast, all other GPCRs contain a single additional residue prior to that phenylalanine,

and therefore adopt a rt-helical structure. The m-helix alters the orientation of the phenylalanine side
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chain so that the residue prior to the phenylalanine can point into the binding pocket (e.g., 5207 in
B2AR (2RH1), Figure 6.7c). In summary, this analysis confirms that single InDels can be identified
reliably with consensus alignments and that an InDel can alter the orientation of side-chains in key

regions of a membrane protein structure.

6.3.4 Single InDels in the Proton Pathways of Cytochrome C Oxidase Subunit |

Another protein family in HOMEP3 in which two single InDels were observed based on the consensus
alignments, is the family of cytochrome c oxidases (subunit 1). The number of subunits in cytochrome
c oxidases varies among species, but subunit | (with 12 TM helices) and subunit Il (with 2 TM helices)
are known to be highly conserved among various species. The cytochrome c oxidase represents
complex IV of the respiratory electron transport chain and reduces oxygen to water using electrons
carried by cytochrome c. The oxidase then transports protons through the membrane to establish an
electrochemical potential that then can be used by the ATP synthases to synthesize ATP. At least two
distinct proton pathways have been discovered so far in subunit | of the cytochrome c oxidases: the
D- and K-pathways, which are both named for residues within subunit | whose mutations cause a
blockage of the corresponding pathway. Specifically residue D132 (located in TM2) is the namesake
of the D-pathway and residue K362 (located in TM9) is the namesake of the K-pathway (Fetter, et al.,

1995; Garcia-Horsman, et al., 1995; Thomas, et al., 1993).

In the cytochrome c oxidase of Rhodobacter sphaeroides (PDB code: 2GSM), TM2 was shown to be
involved in the active D-pathway for conducting protons to the active site and to the external bulk
phase (Qin, et al., 2006). Interestingly, TM2 contains two consecutive m-helical segments (M106 to
V110 and A114 to G118, Figures 6.8a and e). Similar observations can be made for the bovine
cytochrome c oxidase (PDB code: 3AG3, (Muramoto, et al., 2010)) and the cytochrome c oxidase of
Paracoccus denitrificans (PDB code: 3HB3, (Koepke, et al., 2009)) both also having an active D-
pathway and two m-helical segments in TM2 at the evolutionarily related sequence positions (Figure
6.8e). Interestingly, the D-pathway is active neither in the cbbs cytochrome c oxidases (PDB code:
3MK7,Figure 6.8b) (Buschmann, et al., 2010) that contains a single nt-helix within TM2 (V64 to F68),
nor in the nitric oxide reductases (PDB code: 300R, Figure 6.8c) (Hino, et al., 2010), which contains
only regular a-helical segments in TM2. Thus, a structural variation in TM2 caused by InDels (Figure
6.8e) may be correlated with inactivation or activation of the D-pathway. However, this proposal has
not been suggested before and so far experimental data is missing that shows an involvement of the

ni-helices in the activation of the D-pathway.
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Similar results are observed for the K-pathway. The K-pathway is active in the cytochrome c oxidase
of Rhodobacter sphaeroides (Qin, et al., 2006) and in the cbbs cytochrome c oxidase (Buschmann, et
al., 2010), which both contain only a-helical residues in TM9 (Figure 6.8a, b and d). In contrast, the
nitric oxide reductase contains a m-helical element (L320 to V324) and thus an additional amino acid
(A322) in TM9 (Figure 6.8c and Figure 6.8d). This InDel may be related to inactivation of the K-
pathway that is not active in nitric oxide reductase (Hino, et al., 2010), in contrast to cytochrome c

oxidase and cbbs cytochrome c oxidase.

Interestingly, if these observations hold true, the cytochrome c oxidases would provide examples in
which the insertion of a residue into a short n-helical segment of TM2 (e.g., in cbbs cytochrome c
oxidase) or the insertion of two residues into a long a-helix (e.g., in nitric oxide reductase) results in a
long m-helical segment with two consecutive m-helices and an activation of a pathway, whereas an
insertion of a residue into an a-helical segment of TM9 results in a m-helical segment and an
deactivated pathway. In other words, the insertion of a residue may lead to the opposite functional

effect in terms of activation or deactivation of a pathway, depending on the position of the insertion.
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a) cytochrome c oxidase (2GSM) b) cbb; cytochrome c oxidase (3MK7)

K-pathway: active K-pathway: active
D-pathway: active D-pathway: inactive
¢) nitric oxide reductase (300R) d) alignment of membrane helix 9
2GSM ¥'F TV G - GV T G*
7
? ""Q,; 3HB3 **F TVG - GV T G*
Fk 30G3 F TVG - GLT G
3MK7 Y GM S - T F E G*
R” 300R A F L G A G VW G*

K-pathway: inactive
D-pathway: inactive

e) alignment of membrane helix 2

2GSM™HGILMM FVVIPAL GGFGNY"?
3HB3 “HGVL MMFFVV IPALFGGFGNY™
3AG3 “‘HAFVM I FFMVMPIMIGGFGNW
BMK7 “HT NA V | AFGGCAL-FATSYY”
300R “HTNL L I -VWLLFGF-MGAAY Y?®

Figure 6.8 Protein structures and manually created multiple sequence alignment of cytochrome ¢
oxidases subunit | based on pairwise consensus alignments. Structures are shown for (a) cytochrome
c oxidase from Rhodobacter sphaeroides (PDB code: 2GSM), (b) cbbs cytochrome c oxidase (PDB
code: 3MK7) and (c) a nitric oxide reductase (PDB code: 300R) with TM2 colored in dark blue, TM6 in
orange and TM9 in light blue. Corresponding multiple sequence alignments of (d) TM9 and (e) TM2
suggest an influence of single InDels on the activation or deactivation of the D- and K-pathways.
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6.3.5 ASingle InDel in TM1 of LeuT Compared to AdiC

A single InDel in a membrane-spanning segment is also observed in the superfamily of the five
transmembrane-helix inverted-repeat, LeuT-like (FIRL) fold proteins. As the name of the family
suggests, these proteins consist of two sets of five transmembrane helices that are topologically
related despite sharing a low sequence identity (Forrest and Rudnick, 2009). The inverted structural
repeats allow for an alternating access mechanism and a pathway in which substrate transport across
the membrane is coupled to the transport of sodium ions (e.g., LeuT, Mhp1 and vSGLT), betaine (e.g.,

CaiT), arginine (e.g., AdiC) or other ligands.

Two proteins sharing the FIRL fold are the bacterial L-arginine/agmatine antiporter AdiC (PDB code:
30B6, (Kowalczyk, et al., 2011)), which belongs to the acid/polyamine/organocation (APC)
transporter subfamily, and the sodium-coupled amino-acid transporter LeuT (PDB code: 2A65,
(Yamashita, et al., 2005)), which belongs to the neurotransmitter/sodium symporter (NSS) subfamily.
These proteins have been shown to be likely evolved from a common ancestor in a previous study
(Khafizov, et al., 2010). An alignment of the first membrane helix (TM1) of the two proteins contains
a single InDel with a high confidence value (Figure 6.9c). Both proteins have been crystallized in a
similar but not identical conformation (LeuT: outward-facing occluded, AdiC: outward-facing open)
and share a higher sequence identity of their first membrane helix (33.3% similarity) than overall
(14.3% similarity based on an alignment using AlignMePST). This high sequence similarity indicates

that TM1 is conserved in these two proteins and that InDels were not expected.

AdiC contains an a-helical structure in TM1 at positions S26 to N34 (Figure 6.9b) (Kowalczyk, et al.,
2011), whereas there are m-helical structural elements assigned by SST for LeuT from L25 to F28
followed by a-helical elements and by n-Detector from R30 to E37 surrounded by a-helical elements.
Interestingly, there is no overlap between the assignments from SST and m-Detector but they both
detected a non-regular a-helical structure in TM1 of LeuT. This irregularity might be caused by the
insertion of the additional arginine (R30) that points into the extracellular pathway and forms the so-
called “extracellular gate” with D404 in TM10 (Figure 6.9a) (Yamashita, et al., 2005), whose mutation
in other NSS transporters causes a complete loss of transport function (e.g., mutations of R69 in GAT-
1, (Ben-Yona and Kanner, 2012) or R104C in SERT (Henry, et al., 2003)). Although there are many
evolutionarily steps between AdiC and LeuT, the arginine in LeuT is known to be important for its
function; it’s presence in a m-bulge was not previously commented upon, and this structural
framework would seem to be important for its orientation into the pathway. The comparison with
AdiC makes clear that this feature is specific to NSS transporters: a similar charged residue in AdiC

might provide an electrostatic barrier to binding for its positively-charged residues.
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a) LeuT (2A65) b) AdiC (30B6)

c) alignment of membrane helix 1
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Figure 6.9 Residues in TM1 of LeuT (2A65) and AdiC (30B6). (a) LeuT contains an arginine that is
located close to the ligand leucine (shown as spheres). (b) AdiC contains a gap in the same sequence
position that is close to the ligand arginine (shown as spheres). (c) This InDel is also visible in the
underlying sequence alignment that was taken from the corresponding pairwise consensus
alignment.

6.3.6 ASingle InDel in TM5 of ECF transporters

Energy coupling factor (ECF) transporters enable the uptake of vitamins and micronutrients (Erkens,
et al., 2012) and consist of three subunits: a S-component, a T-component and an energy-coupling
module. The S-component contains six transmembrane helices, provides substrate-binding specificity
and is connected with a second membrane protein (the T-component) to two non-membranous
nucleotide-binding domains (energy coupling modules) that are evolutionarily related to those of the

ATP-binding cassette (ABC) transporters (Erkens, et al., 2012).

The HOMEP3 data set contains two structures of homologous proteins that are S-components of ECF
transporters: ThiT (PDB code: 3RLB), which is specific for thiamin (Erkens, et al., 2011) and BioY (PDB
code: 4DVE), which binds biotin (Berntsson, et al., 2012). Another ECF transporter structure that is
not included in HOMEP3 due to its low (3.6 A) resolution is RibU (PDB code: 3P5N), which has a
binding site for riboflavin (Zhang, et al., 2010). Despite its low resolution, the structure of RibU still
might reveal and/or confirm evolutionarily information in comparison to ThiT and BioY, which were

both solved at high resolution (2.00 A and 2.09 A, respectively).
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Consensus structural alignments of ThiT, RibU and BioY reveal a single gap with high confidence in a
ni-helical segment of TM5 of BioY that is aligned against a-helical segments of ThiT and RibU (Figure
6.10). Interestingly, K121 in TM5 of ThiT, which is located next to the single gap, has been proposed
to be crucial for substrate translocation by forming a salt bridge with Q38 in loop 1 (Erkens, et al.,
2011). Amino acids from TM4-6 and loopl were also shown to interact in RibU in order to form
hydrogen bonds for recognizing and binding riboflavin (Zhang, et al., 2010). The structures of both
ThiT and RibU contain an amino acid with a large side chain that points into a cavity that could be
crucial for transport specificity: K121 in ThiT (Figure 6.10b), and M123 in RibU (Figure 6.10c). In
contrast, BioY contains a m-helical segment in TM5 with an amino acid having a small side chain
(G129, Figure 6.10a and d) at a potentially important position for substrate translocation. However,
the influence of TM5 on protein binding or transport has not been examined in BioY yet. | propose
that the differences in TM5 contribute to the exquisite substrate transport specificity exhibited by
the different ECF transporters. A biochemical analysis of the role of its additional phenylalanine

(F128) via a single-point deletion, would be of interest to provide further support for this proposal.

a) BioY (4DVE) ) RibU (3P5N)

b) ThiT (3RLB) d) alignment of membrane helix 5
J BioY (4DVE) >V L L F V | F'®

ThiT(3RLB) "8V L L - Y F F'

RibU (3P5N) T | V - T 1 V%

Figure 6.10 Residues in TM5 of Energy-Coupling Factor (ECF) Transporters. The bound ligand is
shown as purple spheres. (a) TM5 adopts a m-helical shape in BioY (4DVE), whereas TM5 is a-helical
in (b) ThiT and (c) RibU. (d) A manually created multiple sequence alignment based on pairwise
consensus alignments shows the single InDel within TM5.
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6.4 Discussion

To date, single evolutionarily events (InDels) have been assumed not to occur in conserved
membrane-spanning segments of homologous membrane proteins. When constructing alignments
for homology modeling, for example, single gaps are typically removed manually from TM segments
to account for the conservation of those segments. My analysis of single InDels within TM segments
reveals that this concept of fully-conserved membrane-spanning segments does not hold for all types
of membrane proteins and that single InDels in transmembrane segments can be crucial for a
protein’s function. Consequently, membrane segments should be treated carefully during manual
modifications of membrane protein alignments because single InDels may be responsible for altering

a protein’s function (i.e. binding, communication, transport).

The reliable detection of these InDels was made possible by the application of a consensus approach
for structural alignments that allows for the identification of confidently aligned pairs of
evolutionarily related amino acids of two homologous proteins. Moreover, a systematic analysis
using consensus alignments on a large data set of homologous membrane proteins (HOMEP3)
allowed for the identification of single InDels in TM segments. These InDels were shown to occur
between homologous proteins in four different membrane protein families: GPCRs, cytochrome c
oxidases, FIRL fold transporters and ECF transporters. In all cases, a single evolutionarily event (e.g.,
an insertion or deletion) is assumed to cause a change from an a-helical to a m-helical structure or

vice versa.

These computational results are a preliminary step for further biological analysis of single InDels and
ni-helical structural elements in membrane proteins. Up to now, the detection of residues that are
crucial for function, whether for binding affinity or pathway formation, has been tested via
substitutions (e.g., by mutating large side-chains to small side-chains). The analysis of single InDels
further suggests that functional properties may often be dependent on the presence of m-helical
bulges that contain additional residues. The role of such residues on pathway closure could be tested
using the family of cytochrome c oxidases. A residue could be inserted in TM9 of cbbsz cytochrome ¢
oxidase (PDB code: 3MK7) to test whether this insertion results in a m-helical structure that
deactivates the K-pathway as in the nitric oxide reductase (PDB code: 300R) that contains a m-helix in
TM9 and but lacks a K-pathway. Also the deletion of a residue could be applied to the m-helical
element in TM9 of nitric oxide reductase to test whether the structure changes to an a-helix and
thereby activates a K-pathway. A role for InDels in binding specificity could be tested with BioY from

the class of ECF transporters, where the phenylalanine in the m-helical segment in TM5 could be
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deleted to test whether this influences the specificity of BioY to bind biotin and, if the structure of

this mutant could be determined, whether the local structure changes from a m-helix to an a-helix.

More investigations could also be carried out on the relationship of the proteins belonging to the
superfamily of the five transmembrane-helix inverted-repeat, LeuT-like (FIRL) fold proteins. In this
study, a representative protein structure was chosen for a specific protein type without considering
the conformational state of the protein. A more reliable comparison might be possible by collecting
all proteins of the FIRL fold that are solved in exactly the same state (e.g., outward open). A
subsequent structural comparison would then not be influenced by conformational changes.
Additionally, the conservation (of functional residues) of the amino acid sequences in the FIRL fold
could be checked using weblogos (evolutionarily conservation patterns) of the relevant regions if it is

possible to collect a large diverse set of protein sequences for proteins of the FIRL fold.

Additionally, | recommend to test for other examples of functional properties conferred by InDels by
searching for homologous protein sequences to a target protein that are highly similar (>99%) but
that contain a single InDel in membrane-spanning segments. Such proteins could be tested for their
specificity using transport or binding assays. Since there are only a few changes in those proteins, any

differences in the results of the assay analysis are likely to be directly related to the InDels.

The increasing number of membrane proteins solved at high resolution also allows for a further
detection of m-helices on an updated set of HOMEP in the future. This might also help to detect
single InDels in other membrane protein families and to better understand the evolutionarily

relationships between homologous membrane proteins.
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7 Conclusion & Future Work

7.1 Improved Accuracy of Computational Methods for Membrane Proteins can be

Achieved by Including Membrane Specific Information

So far, alignments of protein sequences and protein structures were optimized and tested only on
general proteins data sets in which the distinct class of membrane-proteins was under-represented.
This study examined the alignment accuracy of sequence (chapter 3) and structural alignment
programs (chapter 5) on the important group of membrane proteins. For this, | created two different
versions of the HOMEP data set (chapter 2), of which both were used to assess the alignment quality

of membrane protein sequences or structures.

In chapter 3, | used structural reference alignments of HOMEP2 to identify protein descriptors that
can be applied for aligning membrane protein sequences accurately. Results obtained from a
database search (e.g., PSSMs from PSI-BLAST), secondary structure predictions (e.g., PSIPRED),
membrane prediction methods (e.g.,, OCTOPUS) and other protein descriptors (e.g., substitution
matrices, hydrophobicity scales) were tested for this purpose. The results showed that the inclusion
of specific protein information for the alignment process should be dependent on the similarity of
the proteins to be aligned. For closely related proteins, the usage of evolutionarily information in
form of a PSSM (AlignMeP mode) is sufficient to generate accurate alignments, whereas proteins
with lower similarity require more protein descriptors to be aligned properly. For low-homology
proteins (15-45% sequence identity), the additional usage of secondary structure information besides
evolutionarily information (AlignMePS mode) was shown to improve the alignment accuracy. Even
more striking is the result that the additional usage of membrane-specific information in the
AlignMePST mode increased the alignment accuracy for very distant homologs with a sequence
identity below 15% (chapter 3.3). The alignments of AlignMe as well as models based upon them
were shown to be more accurate (chapter 3.3) than those of more sophisticated alignment methods
with more complex algorithms (e.g., alignments based on Hidden Markov Models from HHalign,
chapter 3.2.5) although a simple Needleman-Wunsch algorithm was applied for AlignMe (chapter
3.2.1). Thus, it would be interesting to know if the inclusion of membrane-specific information in
more complex computational methods (e.g., HHalign or HMAP) would increase their alignment

accuracy for distant homologs.

A similar conclusion as for sequence alignhment methods can be made for the structural alignment

methods that were analyzed in chapter 5 for their ability to align membrane protein structures
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accurately. Several programs were shown to generate accurate alignments but there was no

outstanding method that performed significantly better than all other methods.

This result could be caused by the fact that none of these structural alignment methods included
explicit information about membrane-spanning segments or was optimized on a set of membrane
proteins. For AlignMe, the inclusion of membrane-specific information increased the alignment
accuracy significantly and accordingly, | suggest to test if the inclusion of membrane-specific
attributes (e.g., membrane propensities, hydrophobicity etc.) into the structural alignment process
increases the alignment accuracy of membrane proteins. The fold of homologous membrane
proteins in a family is mainly defined by the membrane-spanning helices. A preference of aligning
residues of membrane-spanning helices with each other compared to residues located within coiled
segments might help to narrow down the search space for a correct superimposition. Another
reduction of the search space could be achieved by the definition that large coiled segments (more
than 10 residues) could be excluded from being located in a membranous environment of the aligned
structures. Short coiled segments should still be allowed in membranous segments because they
have been observed in several membrane protein families (e.g., unwound segments in the middle of
TM1 and TM6 in LeuT from the FIRL fold or two re-entrant loops in proteins belonging to the family

of aquaporins).

7.2 Using Anchors on Known Conserved Residues in Pairwise Alignments of AlignMe

could Improve the Alignment Accuracy

For some membrane proteins, important residues or motifs (e.g., those that are involved in ligand
binding) are known to be conserved and thus are also known be aligned with each other in
homologous membrane proteins even without knowing the rest of the alignment. An example can be
found in the family of the G-Protein coupled receptors that contain an E/DRY-motif that regulates
ligand binding and is involved in a subsequent conformational change of the receptor (Rovati, et al.,
2007). Conserved motifs in distantly related proteins can also be identified using the alignment of
family-averaged hydropathy profiles, which | implemented in the AlignMe web server (chapter 4.5).
In those family-averaged hydropathy alignments, local conserved segments are aligned reliably but in

global alignments non-conserved segments might be incorrectly aligned.

Consequently, it would be of advantage if known conserved residues could be fixed for an alignment
process by aligning these residues first and building the rest of the alignment using these restrictions.

Currently, a modified version of AlignMe, in which anchors with varying strength are used to guide
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the alignment to align pre-defined residues with each other, is tested by Rene Staritzbichler and

Kamil Khafizov.

7.3 Novel Membrane Protein Descriptors are Available and could be Tested Using

AlignMe

There also are continuous improvements of other computational methods that describe membrane
protein properties. Thus, new programs are available that have not been tested for their applicability
to describe membrane protein properties for alignments. Among these methods are database search
programs like HHblits (Remmert, et al., 2011), the secondary structure prediction method SPINE-X
(Faraggi, et al., 2012), membrane prediction methods like HMMpTM (Tsaousis, et al., 2014) or WRF-
TMH (Hayat and Khan, 2013) and a combined secondary structure and membrane prediction method
called BCL::Jufo9D (Leman, et al., 2013). | suggest to test whether the data they produce improve the
alignment accuracy of AlignMe. The outputs of these programs should be tested alone as well as in

combination with the current best alignment descriptors for AlignMe.

Additionally, combinations of two or more input descriptors of the same type could be tested. So far,
only distinct input descriptors have been tested in combination with each other (e.g., a secondary
structure prediction with a membrane prediction) but also two similar protein descriptors (e.g., the
secondary structure predictors PSIPRED and Jufo) could be used at the same time for an alignment. A
consensus prediction could be created based upon two predictions in which a position with a similar
assignment by both predictors get a higher confidence value than a position for which the predictors
disagree. Using confidence values for the inclusion of a prediction into the alighnment process could

emphasize consistently and therewith correctly predicted propensities.

Moreover, AlignMe was optimized for aligning a-helical membrane proteins and is therefore not
suitable for aligning the distinct group of B-barrels, since their sequences and structures exhibit
distinct properties (chapter 1.2.3). The membrane propensity prediction method OCTOPUS that is
used in AlignMe is only able to predict a-helical membrane-spanning segments (chapter 3.2.2.4). For
an alignment of B-barrel-like membrane proteins, different membrane propensity predictors like
BOCTOPUS (Hayat and Elofsson, 2012) and TMBpro (Randall, et al., 2008) that are able to predict
membrane-spanning segments for B-barrels need to be tested. Additionally, the evaluation of
structural alignment methods also showed slightly different results between the groups of a-helical-
and B-barrel-like membrane proteins. DaliLite was shown to be more suitable for aligning B-barrels

rather than for aligning a-helical membrane proteins (chapter 5.3). Accordingly, a set of parameters
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that is suitable for aligning B-barrels could be identified and optimized similarly as it has been done

previously for a-helical proteins.

7.4 Gap Penalties could be Optimized for AlignMe on a Set of Consensus Alignments

with Confidence Values

Besides protein descriptors, gap penalties are required for generating a pairwise sequence alignment
with a Needleman-Wunsch algorithm as implemented by AlignMe. In chapter 3, gap penalties were
optimized against a reference set of pairwise sequence alignments of the HOMEP2 data. Those
sequence alignments were based on general structure alignments from the structural alignment

method SKA (chapter 2.4).

An optimization process for gap penalties requires correct structural reference alignments. However,
there were errors in the alignments of proteins belonging to the group of GPCRs and consequently
similar errors were present in alignments of AlignMe for this protein family. This result suggests that
the optimization of gap penalties should be carried out against a consensus alignment with
confidence values so that erroneous data from the structural reference alignments does not
influence the optimization process. For example, a change of gap penalties could be considered to
increase the alignment accuracy only if amino acids from positions sharing a high confidence value

are aligned more accurately (e.g., have a smaller shift) than before.

Aside from optimizing gap penalties, | also propose to optimize the weights that are used to adjust
the input descriptors for the alignment (e.g., predictions) towards each other. The increase of a
specific protein attribute (e.g., membrane propensity) might also increase the alignment accuracy (or
vice versa). Unfortunately, a computational solution to address an optimization of weights and gap
penalties at the same time is currently not available because the search space increases by the power

of N, with N being the number of parameters to be optimized (as mentioned in chapter 3.2.4).

7.5 Several Structural Similarity Scores could be Tested for their Ability to Align

Membrane Protein Structures

A property of structural alignment programs that has been shown to contribute significantly to their
alignment accuracy is their internal scoring scheme that is applied during the superimposition
process of two structures (chapter 5.3.3). My analysis on the HOMEP3 data set showed that scores

that averaged out large outliers (e.g., TM-score, Dalilite score) were shown to be more adequate for
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aligning proteins than scores that squared the differences between the two structures (e.g., RMSD,

URMS).

Interestingly, the TM-score that was applied in FR-TM-align and TM-align is also available for
assessing the quality of homology models and showed a high correlation to other structural similarity
scores like the GDT_TS, ALO or AL4 score (chapter 5.3.2). These other scores might also be suitable
being used during the alignment process of proteins structures. Thus, | suggest to test these
structural similarity scores for their ability to describe the similarity of two different protein
structures during a superimposition process and to compare their accuracy with each other (e.g., by

replacing the TM-score in FR-TM-align with the GDT_TS score).

Another score that showed a correlation with the TM-score is the CAD score (chapter 5.3.2) that
compares contact areas of amino acids in two protein structures with each other. The CAD score was
shown to capture conformational changes of proteins (i.e. repositioning of helices or domains
relative to each other) better than a spatial-based structural similarity score (e.g., GDT_TS). A new
approach for aligning structures of membrane proteins could be the inclusion of the CAD score into
the alignment process of a protein structural alignment method. The application of such an
environmental based structural similarity score could facilitate the superimposition process of two
similar structures being solved in different states and could result in more accurate alignments. For
membrane proteins, it would also be useful to have a CAD score that considers the membranous

environment of membrane-spanning segments in its contact areas.

7.6 m-helices should be Given More Importance in Computational Methods

The updated HOMEP3 data set (chapter 2.5) and the combination of different structural alignments
in a consensus alignment with confidence values (chapter 5.3.8) allowed the identification of single
insertions and deletions (InDels) in membrane-spanning protein segments as described in chapter 6.
Single InDels were observed at alignment positions in which m-helical segments were aligned to a-
helical segments. Additionally, those single InDels were observed to occur at positions that
contribute to a protein’s function. These observations suggest that secondary structure assignment
methods should account for these structural differences by including m-helical definitions in their
assignments instead of averaging them out as in DSSP or STRIDE. Similarly, | recommend the
inclusion of irregular secondary structure elements like 31¢-helices or m-helices in secondary structure

prediction methods so that those predictors also account for these important structural elements.

Additionally, current homology model approaches or alignment processes that eliminate or forbid

single gaps in membrane-spanning segments should be revised and checked for their biological
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validity. Sequence alighment methods like AlignMe could also be tested for including more than the
current three secondary structure states (helix, sheet and coil) into their alignment process (i.e. by
also including m-helical or 3i0-helical propensities). A further extension of AlignMe could be the
application of different gap penalties for all secondary structure types instead of using only one
secondary structure type as it is currently implemented in the AlignMePST mode that uses six gap
penalties dependent on the assignment of positions to be in a a-helical, non-a-helical or terminal
segments (chapter 3.3.2). Additionally, it could make sense to favor an alignment of a m-helical
segment against a single gap in an a-helix to better account for single insertions or deletions in the
alignment. Similarly, structural alignment methods could consider structural irregularities by allowing

single insertions or deletions in their alignments if they are surrounded by regular a-helical elements.

7.7 Membrane Protein Reference Data Sets Require Constant Updates and Reliable

Structural Alignment Methods

A future evaluation of sequence and structural alignment methods might require an additional
update of the HOMEP data sets. The HOMEP2 data set of 2010 already had to be updated in 2013 to
the HOMEP3 data set due to the increased number of newly solved high-resolution structures of
membrane proteins. However, since the generation of HOMEP3 in March 2013, 564 new non-unique
membrane protein structures (519 a-helical and 45 B-barrel-like proteins) were added to the
PDB_TM database (version: 2015-02-20), which have not been assigned so far to any existing or new
family of the HOMEP data set. Regarding this steady increase of crystallized membrane protein
structures, | suggest to update HOMEP on a regular basis for considering all available protein
structure information. The semi-automated scripts that | developed to generate HOMEP allow for
such regular updates, although the step of generating pairwise structural alignments between all
proteins is computationally expensive and | recommend limiting updates to a yearly basis. In chapter
2.5, | also demonstrated that using two structural alignment methods (i.e. SKA and TM-align)
consolidate the confidence of proteins being assigned to a specific family. One idea to improve this
clustering approach further was the use of more structural alignment methods. In chapter 5.3.8, |
described an approach to generate consensus alignments with confidence values for each pair of
proteins in HOMEP3 and used them in chapter 6 to detect confident single insertions and deletions in
in membrane-spanning segments. Accordingly, a consensus alignment could also be used for
clustering proteins to a specific family if only confident alignment positions are used for calculating
the similarity scores that are used for the clustering process (i.e. PSD and TM-score). The manual step
for checking the correct assignment of proteins to a specific family might thereby become
unnecessary. The analysis of structural alignments from proteins being solved in different

conformations (chapter 5.3.5) suggests that another potential improvement during the clustering
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process might be achieved by aligning proteins that were crystallized within the same conformation
with rigid alignment methods (e.g. FATCAT nonflexible) and proteins that were crystallized within
different states (e.g., inward facing vs. outward facing conformation) with flexible, fragment-based
structural alignment methods (e.g., FR-TM-align). | suggest to use different structural alignment
methods depending on the conformations of the aligned proteins in order to increase the number of
aligned positions that receive a high confidence score resulting in an increased accuracy of the
reference alighments. However, the knowledge about the state in which a protein is crystallized has
to be known beforehand, but this information is not available by the data stored in the Protein Data
Bank. | support the idea of a computational approach for detecting exact protein conformations (e.g.,
inward-facing vs. outward-facing) because such a method might help to gain deeper insights into the

relationships between two protein structures.

7.8 The AlignMe Web Server Needs to be Updated with the Latest Developments

The AlignMe web server that | made available for an easy access to AlignMe and its different
alignment modes (chapter 4) had 1330 visitors in 2014, including both new and returning users.
Recently, the AlignMe web server was used to align terminal domains of serotonin transporters
(Fenollar-Ferrer, et al., 2014), homologs of the vesicular monoamine transporter (Yaffe, et al., 2014)
and for other proteins using the mode to align family-averaged hydropathy profiles (see chapter
4.5.4 for more examples). This shows it was useful to implement a web server for AlignMe to get
potential users aware of AlignMe and also to use it. Consequently, the AlignMe web server also
needs to be updated with all changes that will be applied to the AlignMe software or to the HOMEP
data set in future so that visitors of the website are always able to use the most recent versions of
AlignMe and HOMEP. Potential future updates of the AlignMe web server could include the
application of anchors to pairwise alignments (chapter 7.2), updated alignment descriptors (chapter
7.3) or updated gap penalties (chapter7.4). Additionally, it would be useful for the scientific
community to get easy access via a web server to two approaches that were explained in this study.
First, a web server could be set up that allows users to detect m-helical segments in protein
structures. Users would have to submit a three-dimensional coordinate file of the protein (e.g., via a
PDB file) to the server for which a detection of m-helical conformations is then performed using the
n-Detector script (see chapter 6.2.2). The output could be a list of residues within m-helical
conformations and a three-dimensional coordinate file with a highlighting on those residues. Next, a
web server that easily allows for generating consensus alignments as described in chapter 5.3.8
would be useful. Users would have to submit two protein structures that are then aligned using four
different structural alignment methods. The output could be a consensus alignment with confidence

values as well as the four different structure alignments that were generated.
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A. Appendix

Table A.1. Proteins in the HOMEP2 data set, listed by family

PI%B Name Source Tz)s
2R6G  THE CRYSTAL STRUCTURE OF THE E. COLI MALTOSE ESCHERICHIA COLI K12 2.80

TRANSPORTER

0 3D31  MODBC FROM METHANOSARCINA ACETIVORANS METHANOSARCINA ACETIVORANS  3.00

0 20NK  ABC TRANSPORTER MODBC IN COMPLEX WITH ITS ARCHAEOGLOBUS FULGIDUS 3.10
BINDING PROTEIN MODA

1 2NQ2 AN INWARD-FACING CONFORMATION OF A PUTATIVE HAEMOPHILUS INFLUENZAE 2.40
METAL-CHELATE TYPE ABC TRANSPORTER

1 2QI9  ABC-TRANSPORTER BTUCD IN COMPLEX WITH ITS ESCHERICHIA COLI 2.60
PERIPLASMIC BINDING PROTEIN BTUF

2 3BO9W  THE 1.3 ARESOLUTION STRUCTURE OF NITROSOMONAS  NITROSOMONAS EUROPAEA 1.30
EUROPAEA RH50 AND MECHANISTIC IMPLICATIONS FOR
NH3 TRANSPORT BY RHESUS FAMILY PROTEINS

2 1U7G CRYSTAL STRUCTURE OF AMMONIA CHANNEL AMTB ESCHERICHIA COLI 1.40
FROM E. COLI

2 2B2H AMMONIUM TRANSPORTER AMT-1 FROM A. FULGIDUS ARCHAEOGLOBUS FULGIDUS 1.54
(AS)

3 2W2E  1.15 ANGSTROM CRYSTAL STRUCTURE OF P.PASTORIS PICHIA PASTORIS 1.15
AQUAPORIN, AQY1, IN A CLOSED CONFORMATION AT PH
3.5

3 2F2B  CRYSTAL STRUCTURE OF INTEGRAL MEMBRANE METHANOTHERMOBACTER 1.68
PROTEIN AQUAPORIN AQPM AT 1.68A RESOLUTION MARBURGENSIS STR.

3 3GD8 CRYSTAL STRUCTURE OF HUMAN AQUAPORIN 4 AT 1.8 HOMO SAPIENS 1.80
AND ITS MECHANISM OF CONDUCTANCE

3 2B60 ELECTRON CRYSTALLOGRAPHIC STRUCTURE OF LENS OVIS ARIES 1.90
AQUAPORIN-0 (AQPO) (LENS MIP) AT 1.9A RESOLUTION, IN
A CLOSED PORE STATE

3 209G CRYSTAL STRUCTURE OF AQPZ MUTANT L170C ESCHERICHIA COLI 1.90
COMPLEXED WITH MERCURY.

3 3D9S HUMAN AQUAPORIN 5 (AQP5) - HIGH RESOLUTION X-RAY  HOMO SAPIENS 2.00
STRUCTURE

3 3LLQ  AQUAPORIN STRUCTURE FROM PLANT PATHOGEN AGROBACTERIUM TUMEFACIENS 2.01
AGROBACTERIUM TUMERFACIENS STR. C58

3 3CN5 CRYSTAL STRUCTURE OF THE SPINACH AQUAPORIN SPINACIA OLERACEA 2.05
SOPIP21 S115E, S274E MUTANT

3 3C02  X-RAY STRUCTURE OF THE AQUAGLYCEROPORIN FROM PLASMODIUM FALCIPARUM 2.05
PLASMODIUM FALCIPARUM

3 1LDF  CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL ESCHERICHIA COLI 2.10
FACILITATOR (GLPF) MUTATION W48F, F200T

3 3KLY PENTAMERIC FORMATE CHANNEL VIBRIO CHOLERAE 2.10

3 1J4AN  CRYSTAL STRUCTURE OF THE AQP1 WATER CHANNEL BOS TAURUS 2.20

4 1MOL  BACTERIORHODOPSIN/LIPID COMPLEX AT 1.47 A HALOBACTERIUM SALINARUM 1.47
RESOLUTION

4 2JAF  GROUND STATE OF HALORHODOPSIN T203V HALOBACTERIUM SALINARIUM 1.70

4 1H2S  MOLECULAR BASIS OF TRANSMENBRANE SIGNALLING BY = NATRONOMONAS PHARAONIS 1.93
SENSORY RHODOPSIN II-TRANSDUCER COMPLEX

4 1XIO  ANABAENA SENSORY RHODOPSIN NOSTOC SP. PCC 7120 2.00

4 3A7K  CRYSTAL STRUCTURE OF HALORHODOPSIN FROM NATRONOMONAS PHARAONIS 2.00
NATRONOMONAS PHARAONIS DSM 2160

4 2El4 TRIMERIC COMPLEX OF ARCHAERHODOPSIN-2 HALOBACTERIUM SP. AUS-2 2.10

5 10TS STRUCTURE OF THE ESCHERICHIA COLI CLC CHLORIDE ESCHERICHIA COLI 2.51
CHANNEL AND FAB COMPLEX

5 1KPL  CRYSTAL STRUCTURE OF THE CLC CHLORIDE CHANNEL SALMONELLA TYPHIMURIUM 3.00
FROM S. TYPHIMURIUM

6 2ZT9 CRYSTAL STRUCTURE OF THE CYTOCHROME B6F NOSTOC SP. PCC 7120 3.00
COMPLEX FROM NOSTOC SP. PCC 7120

6 1Q90 STRUCTURE OF THE CYTOCHROME B6F CHLAMYDOMONAS REINHARDTII 3.10
(PLASTOHYDROQUINONE : PLASTOCYANIN
OXIDOREDUCTASE) FROM CHLAMYDOMONAS
REINHARDTII

7 3CX5 STRUCTURE OF COMPLEX Il WITH BOUND CYTOCHROME = SACCHAROMYCES CEREVISIAE 1.90
C IN REDUCED STATE AND DEFINITION OF A MINIMAL
CORE INTERFACE FOR ELECTRON TRANSFER.

7 2A06  BOVINE CYTOCHROME BC1 COMPLEX WITH BOS TAURUS 2.10

STIGMATELLIN BOUND
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10

10

10

1"
1"

12

12
12

12

13
13

14

14

15

15

16

16
17

17

17

17

17

17

17

17

2QJY
3L70
1v54
2GSM
3HB3
1v54
1M56

1QLE

2DYR
2GSM
3HB3

3B44
2NR9

2RH1

2773
3KJ6

2VT4

2CFQ
1PW4

2J8S

2V50

3EAM
2VLO

1JBO

2WSsC
1RZH

1RZH

2WJN

2WJN

1EYS

1EYS

3BZ1

3BZ1

CRYSTAL STRUCTURE OF RHODOBACTER SPHAEROIDES
DOUBLE MUTANT WITH STIGMATELLIN AND UQ2
CYTOCHROME BC1 COMPLEX FROM CHICKEN WITH
TRIFLOXYSTROBIN BOUND

BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY
OXIDIZED STATE

CATALYTIC CORE (SUBUNITS | AND Il) OF CYTOCHROME
C OXIDASE FROM RHODOBACTER SPHAEROIDES

HIGH RESOLUTION CRYSTAL STRUCTURE OF
PARACOCCUS DENITRIFICANS CYTOCHROME C OXIDASE
BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY
OXIDIZED STATE

STRUCTURE OF CYTOCHROME C OXIDASE FROM
RHODOBACTOR SPHAEROIDES (WILD TYPE)
CRYO-STRUCTURE OF THE PARACOCCUS
DENITRIFICANS FOUR-SUBUNIT CYTOCHROME C
OXIDASE IN THE COMPLETELY OXIDIZED STATE
COMPLEXED WITH AN ANTIBODY FV FRAGMENT

BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY
OXIDIZED STATE

CATALYTIC CORE (SUBUNITS | AND Il) OF CYTOCHROME
C OXIDASE FROM RHODOBACTER SPHAEROIDES

HIGH RESOLUTION CRYSTAL STRUCTURE OF
PARACOCCUS DENITRIFICANS CYTOCHROME C OXIDASE
CRYSTAL STRUCTURE OF GLPG W136A MUTANT

CRYSTAL STRUCTURE OF GLPG, RHOMBOID PEPTIDASE
FROM HAEMOPHILUS INFLUENZAE

HIGH RESOLUTION CRYSTAL STRUCTURE OF HUMAN B2-
ADRENERGIC G PROTEIN-COUPLED RECEPTOR.
CRYSTAL STRUCTURE OF SQUID RHODOPSIN

CRYSTAL STRUCTURE OF A METHYLATED BETA2
ADRENERGIC RECEPTOR- FAB COMPLEX

TURKEY BETA1 ADRENERGIC RECEPTOR WITH
STABILISING MUTATIONS AND BOUND CYANOPINDOLOL
SUGAR FREE LACTOSE PERMEASE AT NEUTRAL PH

CRYSTAL STRUCTURE OF THE GLYCEROL-3-PHOSPHATE
TRANSPORTER FROM E.COLI

DRUG EXPORT PATHWAY OF MULTIDRUG EXPORTER
ACRB REVEALED BY DARPIN INHIBITORS

THE MISSING PART OF THE BACTERIAL MEXAB-OPRM
SYSTEM: STRUCTURAL DETERMINATION OF THE
MULTIDRUG EXPORTER MEXB

AN OPEN-PORE STRUCTURE OF A BACTERIAL
PENTAMERIC LIGAND- GATED ION CHANNEL

X-RAY STRUCTURE OF A PENTAMERIC LIGAND GATED
ION CHANNEL FROM ERWINIA CHRYSANTHEMI (ELIC)
CRYSTAL STRUCTURE OF PHOTOSYSTEM I: A
PHOTOSYNTHETIC REACTION CENTER AND CORE
ANTENNA SYSTEM FROM CYANOBACTERIA
IMPROVED MODEL OF PLANT PHOTOSYSTEM |

PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT
FROM RHODOBACTER SPHAEROIDES WITH ASP L213
REPLACED WITH ASN AND ARG M233 REPLACED WITH
CYS IN THE CHARGE-NEUTRAL DQAQB STATE (TRIGONAL
FORM)

PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT
FROM RHODOBACTER SPHAEROIDES WITH ASP L213
REPLACED WITH ASN AND ARG M233 REPLACED WITH
CYS IN THE CHARGE-NEUTRAL DQAQB STATE (TRIGONAL
FORM)

LIPIDIC SPONGE PHASE CRYSTAL STRUCTURE OF
PHOTOSYNTHETIC REACTION CENTRE FROM
BLASTOCHLORIS VIRIDIS (HIGH DOSE)

LIPIDIC SPONGE PHASE CRYSTAL STRUCTURE OF
PHOTOSYNTHETIC REACTION CENTRE FROM
BLASTOCHLORIS VIRIDIS (HIGH DOSE)

CRYSTAL STRUCTURE OF PHOTOSYNTHETIC REACTION
CENTER FROM A THERMOPHILIC BACTERIUM,
THERMOCHROMATIUM TEPIDUM

CRYSTAL STRUCTURE OF PHOTOSYNTHETIC REACTION
CENTER FROM A THERMOPHILIC BACTERIUM,
THERMOCHROMATIUM TEPIDUM

CRYSTAL STRUCTURE OF CYANOBACTERIAL
PHOTOSYSTEM I (PART 1 OF 2). THIS FILE CONTAINS
FIRST MONOMER OF PSII DIMER

CRYSTAL STRUCTURE OF CYANOBACTERIAL

RHODOBACTER SPHAEROIDES
GALLUS GALLUS

BOS TAURUS

RHODOBACTER SPHAEROIDES
PARACOCCUS DENITRIFICANS
BOS TAURUS

RHODOBACTER SPHAEROIDES

PARACOCCUS DENITRIFICANS

BOS TAURUS
RHODOBACTER SPHAEROIDES
PARACOCCUS DENITRIFICANS

ESCHERICHIA COLI

HAEMOPHILUS INFLUENZAE 86-
028NP

HOMO SAPIENS,
ENTEROBACTERIA PHAGE T4
TODARODES PACIFICUS

HOMO SAPIENS
MELEAGRIS GALLOPAVO

ESCHERICHIA COLI
ESCHERICHIA COLI

ESCHERICHIA COLI

PSEUDOMONAS AERUGINOSA
PAO1

GLOEOBACTER VIOLACEUS
ERWINIA CHRYSANTHEMI

SYNECHOCOCCUS ELONGATUS

PISUM SATIVUM
RHODOBACTER SPHAEROIDES

RHODOBACTER SPHAEROIDES

RHODOPSEUDOMONAS VIRIDIS

RHODOPSEUDOMONAS VIRIDIS

THERMOCHROMATIUM TEPIDUM

THERMOCHROMATIUM TEPIDUM

THERMOSYNECHOCOCCUS

ELONGATUS

THERMOSYNECHOCOCCUS

2.40

2.75

1.80

2.00

2.25

1.80

2.30

3.0

1.80

2.00

2.25

1.70
2.20

2.40

2.50
3.40

2.7

2.95
3.30

2.54

3.00

2.90

3.3

2.50

3.30
1.80

1.80

1.86

1.86

2.20

2.20

2.90

2.90
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18

18

19

19

19

19

19

19

19

20

20

20

20
20

21

21

1RH5
27JS
2H88
2H88

120Y

2WDQ

120Y

2WDQ
1KF6

2A65

3GIA
2JLN

3L1L
2WIT

1TWPG

2ZXE

PHOTOSYSTEM Il (PART 1 OF 2). THIS FILE CONTAINS
FIRST MONOMER OF PSII DIMER
THE STRUCTURE OF A PROTEIN CONDUCTING CHANNEL

CRYSTAL STRUCTURE OF SECYE TRANSLOCON FROM
THERMUS THERMOPHILUS WITH A FAB FRAGMENT
AVIAN MITOCHONDRIAL RESPIRATORY COMPLEX Il AT 1.8
ANGSTROM RESOLUTION

AVIAN MITOCHONDRIAL RESPIRATORY COMPLEX Il AT 1.8
ANGSTROM RESOLUTION

CRYSTAL STRUCTURE OF MITOCHONDRIAL
RESPIRATORY COMPLEX Il FROM PORCINE HEART AT 2.4
ANGSTROMS

E. COLI SUCCINATE:QUINONE OXIDOREDUCTASE (SQR)
WITH CARBOXIN BOUND

CRYSTAL STRUCTURE OF MITOCHONDRIAL
RESPIRATORY COMPLEX Il FROM PORCINE HEART AT 2.4
ANGSTROMS

E. COLI SUCCINATE:QUINONE OXIDOREDUCTASE (SQR)
WITH CARBOXIN BOUND

E. COLI QUINOL-FUMARATE REDUCTASE WITH BOUND
INHIBITOR HQNO

CRYSTAL STRUCTURE OF LEUTAA, A BACTERIAL
HOMOLOG OF NA+/CL-- DEPENDENT
NEUROTRANSMITTER TRANSPORTERS

CRYSTAL STRUCTURE OF APCT TRANSPORTER

STRUCTURE OF MHP1, A NUCLEOBASE-CATION-
SYMPORT-1 FAMILY TRANSPORTER
STRUCTURE OF ARG-BOUND ESCHERICHIA COLI ADIC

CRYSTAL STRUCTURE OF THE SODIUM-COUPLED
GLYCINE BETAINE SYMPORTER BETP FROM
CORYNEBACTERIUM GLUTAMICUM WITH BOUND
SUBSTRATE

CRYSTAL STRUCTURE OF THE SR CA2+-ATPASE WITH
MGF4

CRYSTAL STRUCTURE OF THE SODIUM - POTASSIUM
PUMP IN THE E2.2K+.PI STATE

ELONGATUS
METHANOCALDOCOCCUS
JANNASCHII

THERMUS THERMOPHILUS
GALLUS GALLUS

GALLUS GALLUS

SUS SCROFA

ESCHERICHIA COLI

SUS SCROFA

ESCHERICHIA COLI

ESCHERICHIA COLI

AQUIFEX AEOLICUS VF5
METHANOCALDOCOCCUS
JANNASCHII

MICROBACTERIUM LIQUEFACIENS

ESCHERICHIA COLI

CORYNEBACTERIUM
GLUTAMICUM

ORYCTOLAGUS CUNICULUS

SQUALUS ACANTHIAS

3.20

3.20

1.74

1.74

2.40

2.40

2.40

2.40

2.70

1.65

2.32

2.85

3.00
3.35

2.30

2.40

The numbers in the first column refer to the following families: (0) ABC transporters - efflux, (1) ABC
transporters - influx, (2) Ammonium transporters, (3) Aquaporins, (4) Bacterial rhodopsins, (5) CIC
transporters, (6) Cytochrome bgf, (7) Cytochrome bc,, (8) Cytochrome c oxidases - 2TM-helix subunit,
(9) Cytochrome c oxidases - 7TM-helix subunit, (10) Cytochrome c oxidases - 12TM-helix subunit, (11)
GlpG, (12) GPCR, (13) MFS transporters, (14) Multi-drug exporters, (15) Pentameric ion channels, (16)
Photosystem [, (17) Photosystem I, (18) Protein conducting channels, (19) Reductases, (20) LeuT-fold
transporters, (21) Sodium/potassium pumps.
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Table A.2. Sequence identities between pairs of proteins in the same HOMEP family, based on their
SKA structural alignments

Chain ID from

Chain ID from

% sequence

Family PDB1 PDB1 PDB2 PDB2 PSD value identity
0 3D31 C 2R6G G 0.47 19.5
0 20NK C 2R6G G 0.50 20.5
0 3D31 C 20NK C 0.07 50.8
1 2NQ2 A 2QI9 B 0.34 31.9
2 1U7G A 3BOW A 0.26 18.3
2 3BOW A 2B2H A 0.28 18.6
2 1U7G A 2B2H A 0.13 34.1
3 209G A 3KLY C 0.57 7.3
3 1J4N A 3KLY C 0.58 8.3
3 3CN5S A 3KLY C 0.50 9.3
3 1LDF A 3KLY C 0.52 9.7
3 2B60 A 3KLY C 0.57 9.7
3 2F2B A 3KLY C 0.38 9.9
3 3LLQ A 3KLY C 0.47 9.9
3 3C02 A 3KLY C 0.47 10.4
3 3GD8 A 3KLY C 0.52 10.4
3 2W2E A 3KLY C 0.44 11
3 3D9S D 3KLY C 0.47 131
3 2W2E A 3C02 A 0.14 17.8
3 3CN5S A 3C02 A 0.22 20.5
3 3GD8 A 3C02 A 0.13 21.9
3 2W2E A 1LDF A 0.15 22.4
3 1J4N A 3C02 A 0.17 23.2
3 2W2E A 2F2B A 0.11 23.2
3 3C02 A 209G A 0.12 23.6
3 2W2E A 209G A 0.13 23.8
3 2B60 A 2W2E A 0.11 241
3 3C02 A 3D9S D 0.15 24.2
3 2B60 A 3C02 A 0.16 24.3
3 3LLQ A 3C02 A 0.10 24.3
3 3GD8 A 1LDF A 0.13 24.7
3 2W2E A 3LLQ A 0.12 24.8
3 2W2E A 3D9S D 0.19 25.2
3 3CN5S A 1LDF A 0.16 25.3
3 1J4N A 1LDF A 0.14 254
3 2B60 A 1LDF A 0.17 254
3 3CN5S A 209G A 0.13 26.4
3 1J4N A 2F2B A 0.17 26.7
3 3D9S D 1LDF A 0.13 26.9
3 2B60 A 2F2B A 0.09 271
3 2W2E A 3GD8 A 0.13 27.2
3 3LLQ A 1LDF A 0.15 27.8
3 2W2E A 1J4N A 0.18 281
3 3CN5S A 2F2B A 0.17 28.2
3 209G A 1LDF A 0.15 28.3
3 2W2E A 3CN5S A 0.18 28.4
3 3GD8 A 209G A 0.15 28.5
3 3C02 A 2F2B A 0.15 28.7
3 3LLQ A 3CN5S A 0.08 28.8
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3LLQ
1LDF
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3GD8
3D9S
3CN5S
2B60
3LLQ
209G
3GD8
1J4N
1J4N
2B60
3GD8
2B60
3GD8
2B60
3LLQ
1XI10
1H2S
2JAF
1H2S
1XI10
1H2S
1H2S
1MOL
2El4
2El4
2El4
2El4
2JAF
2El4
2JAF
1KPL
1Q90
2QJY
2QJY
2A06
2A06
3CX5
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3D9S
3CN5S
3CN5S
3D9S
3GD8
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1J4N
3D9S
3D9S
209G
3A7K
3A7K
1XI10
2JAF
1MOL
1MOL
1XI10
3A7K
1H2S
3A7K
1XI0
2JAF
1MOL
1MOL
3A7K
10TS
27719
3CX5
3L70
2QJY
3CX5
3L70
3L70
3HB3
2GSM
2GSM
1M56
1QLE
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2GSM
3HB3
3HB3
2NR9
3KJ6
2RH1
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0.12
0.09
0.12
0.16
0.12
0.14
0.14
0.14
0.11
0.10
0.12
0.11
0.15
0.13
0.14
0.08
0.09
0.13
0.04
0.06
0.07
0.05
0.09
0.02
0.14
0.10
0.13
0.13
0.15
0.09
0.11
0.07
0.09
0.11
0.17
0.10
0.09
0.02
0.04
0.04
0.03
0.09
0.09
0.06
0.03
0.03
0.02
0.07
0.07
0.03
0.04
0.05
0.06
0.04
0.04
0.02
0.09
0.59
0.48

29.7
30.5
31.1
315
31.9
32.1
32.6
32.6
32.7
32.9
33.1
33.6
33.8
33.8
33.9
37.0
38.7
45.3
45.4
45.8
471
51.7
56.2
72.5
20.2
21.5
24.4
25.3
27.3
27.7
28.5
291
29.8
30.2
31.2
31.2
315
55.2
57.1
76.6
76.6
45.0
45.3
46.4
50.3
51.2
73.6
32.6
34.0
57.1
481
49.6
70.6
515
52.4
82.3
36.0
6.3
18.0
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2773
3KJ6
2VT4
2VT4
1PW4
2J8S
2VLO
2WsC
3BZ1
2WJN
1EYS
1EYS
3BZ1
3BZ1
1RZH
3BZ1
2WJN
3BZ1
3BZ1
1RZH
2WJN
1EYS
1RZH
1EYS
1RZH
2WJN
1RZH
1EYS
2WJN
3BZ1
1RZH
2WJN
2WJN
1RZH
2WJN
1EYS
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0.35
0.52
0.24
0.11
0.72
0.36
0.29
0.39
0.66
0.37
0.42
0.52
0.59
0.43
0.42
0.39
0.36
0.41
0.33
0.44
0.19
0.21
0.19
0.24
0.23
0.18
0.22
0.24
0.22
0.11
0.06
0.02
0.04
0.05
0.03
0.02
0.58
0.65
0.77
0.52
0.11
0.87
0.94
0.58
0.54
0.56
0.09
0.46
0.47
0.89
0.19
0.21
0.38
0.43
0.60
0.33
0.03
0.01
1.06

20.5
24.6
54.4
61.5
8.7
68.5
21.7
74.3
12.5
131
15.0
15.0
15.0
151
15.7
15.8
16.1
16.1
16.3
16.6
23.2
23.5
25.5
25.8
26.7
26.7
27.5
28.6
29.3
29.6
46.8
58.1
59.0
59.5
65.1
65.6
15.8
6.7
7.0
7.2
7.2
7.4
7.8
8.3
8.4
9.1
9.9
10.0
10.0
10.7
11.6
1.7
14.3
14.6
15.9
18.5
70.0
76.8
5.5
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20
20
20
20
20
20
20
20
20
21

2A65
3GIA
2WIT
2WIT
2A65
2JLN
2WIT
2A65
3GIA
2ZXE

>>>>»>»>>>>> >

2JLN
2JLN
3GIA
2A65
3GIA
3L1L
3L1L
3L1L
3L1L
1WPG

>>»>»>»>>>>> >

1.03
0.91
0.88
0.96
1.07
0.84
0.90
1.19
0.49
0.65

6.6
71
7.8
8.0
8.1
8.1
8.7
9.4
16.8
27.9

SKA structural alignments were generated between pairs of protein chains, and the PSD value and
the percentage sequence identity for the corresponding sequence alignment were computed. See

legend to Table Al for more details.
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Table A.3. a-helical proteins in the HOMEP3 data set, listed by family

# PDBID Name Source F({E)S
2YEV STRUCTURE OF CAA3-TYPE CYTOCHROME OXIDASE THERMUS THERMOPHILUS 2.36
2GSM CATALYTIC CORE (SUBUNITS | AND Il) OF CYTOCHROME C RHODOBACTER SPHAEROIDES 2.00

OXIDASE FROM RHODOBACTER SPHAEROIDES

0 3AG3 BOVINE HEART CYTOCHROME C OXIDASE IN THE NITRIC ~ BOS TAURUS 1.80
OXIDE-BOUND FULLY REDUCED STATE AT 100 K

0 3HB3 HIGH RESOLUTION CRYSTAL STRUCTURE OF PARACOCCUS PARACOCCUS DENITRIFICANS 2.25
DENITRIFICANS CYTOCHROME C OXIDASE

1 2XQU MICROSCOPIC ROTARY MECHANISM OF ION ARTHROSPIRA PLATENSIS 1.84
TRANSLOCATION IN THE FO COMPLEX OF ATP SYNTHASES

1 4F4S STRUCTURE OF THE YEAST F1FO ATPASE C10 RING WITH SACCHAROMYCES CEREVISIAE 1.90
BOUND OLIGOMYCIN

1 2X2V STRUCTURAL BASIS OF A NOVEL PROTON-COORDINATION BACILLUS PSEUDOFIRMUS OF4 2.50
TYPE IN AN FIFO-ATP SYNTHASE ROTOR RING

1 2WGM COMPLETE ION-COORDINATION STRUCTURE IN THE ROTOR ILYOBACTER TARTARICUS 2.35
RING OF NA- DEPENDENT F-ATP SYNTHASE

2 2QKS CRYSTAL STRUCTURE OF A KIR3.1-PROKARYOTIC KIR BURKHOLDERIA XENOVORANS 2.20
CHANNEL CHIMERA

2 3SPC INWARD RECTIFIER POTASSIUM CHANNEL KIR2.2 IN GALLUS GALLUS 2.45
COMPLEX WITH DIOCTANOYLGLYCEROL PYROPHOSPHATE
(DGPP)

2 3SYA CRYSTAL STRUCTURE OF THE G PROTEIN-GATED INWARD MUS MUSCULUS 2.98
RECTIFIER K+ CHANNEL GIRK2 (KIR3.2) IN COMPLEX WITH
SODIUM AND PIP2

3 4H33 CRYSTAL STRUCTURE OF A VOLTAGE-GATED K+ CHANNEL LISTERIA MONOCYTOGENES 3.10
PORE MODULE IN A CLOSED STATE IN LIPID MEMBRANES,
TETRAGONAL CRYSTAL FORM

3 3LDC HIGH RESOLUTION OPEN MTHK PORE STRUCTURE METHANOTHERMOBACTER 1.45
CRYSTALLIZED IN 100 MM K+ THERMAUTOTROPHICUS

3 2IH3 ION SELECTIVITY IN A SEMI-SYNTHETIC K+ CHANNEL MUS MUSCULUS 1.72
LOCKED IN THE CONDUCTIVE CONFORMATION

30UF STRUCTURE OF A K+ SELECTIVE NAK MUTANT BACILLUS CEREUS 1.55
2H88 AVIAN MITOCHONDRIAL RESPIRATORY COMPLEX Il AT 1.8 GALLUS GALLUS 1.74

ANGSTROM RESOLUTION

4 1ZOY CRYSTAL STRUCTURE OF MITOCHONDRIAL RESPIRATORY SUS SCROFA 2.40
COMPLEX Il FROM PORCINE HEART AT 2.4 ANGSTROMS

5 3VR8 MITOCHONDRIAL RHODOQUINOL-FUMARATE REDUCTASE  ASCARIS SUUM 2.81
FROM THE PARASITIC NEMATODE ASCARIS SUUM

5 1ZOY CRYSTAL STRUCTURE OF MITOCHONDRIAL RESPIRATORY SUS SCROFA 2.40
COMPLEX Il FROM PORCINE HEART AT 2.4 ANGSTROMS

5 2WDQ E.COLI SUCCINATE:QUINONE OXIDOREDUCTASE (SQR)  ESCHERICHIA COLI 2.40
WITH CARBOXIN BOUND

5 2H88 AVIAN MITOCHONDRIAL RESPIRATORY COMPLEX Il AT 1.8 GALLUS GALLUS 1.74
ANGSTROM RESOLUTION

6 2ZT9 CRYSTAL STRUCTURE OF THE CYTOCHROME B6F NOSTOC SP. PCC 7120 3.00
COMPLEX FROM NOSTOC SP. PCC 7120

6 1Q90 STRUCTURE OF THE CYTOCHROME B6F CHLAMYDOMONAS REINHARDTII 3.10
(PLASTOHYDROQUINONE : PLASTOCYANIN
OXIDOREDUCTASE) FROM CHLAMYDOMONAS REINHARDTII

7 2BHW PEA LIGHT-HARVESTING COMPLEX Il AT 2.5 ANGSTROM  PISUM SATIVUM 2.50
RESOLUTION

7  3PL9 CRYSTAL STRUCTURE OF SPINACH MINOR LIGHT- SPINACIA OLERACEA 2.80
HARVESTING COMPLEX CP29 AT 2.80 ANGSTROM
RESOLUTION

8 2VV5 THE OPEN STRUCTURE OF MSCS ESCHERICHIA COLI 3.45

8 3UDC CRYSTAL STRUCTURE OF A MEMBRANE PROTEIN THERMOANAEROBACTER 3.35

TENGCONGENSIS, ESCHERICHIA

9 1JB0 CRYSTAL STRUCTURE OF PHOTOSYSTEM I: A SYNECHOCOCCUS ELONGATUS 2.50
PHOTOSYNTHETIC REACTION CENTER AND CORE
ANTENNA SYSTEM FROM CYANOBACTERIA

9 2WSC IMPROVED MODEL OF PLANT PHOTOSYSTEM | PISUM SATIVUM 3.30

10 3TLW THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL GLOEOBACTER VIOLACEUS 2.60
LOOP2-21' OXIDIZED MUTANT IN A LOCALLY-CLOSED
CONFORMATION (LC2 SUBTYPE)

10 3RQW CRYSTAL STRUCTURE OF ACETYLCHOLINE BOUND TOA  DICKEYA DADANTII 2.91
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10

11

11

12

12

13

13

14

14

14

14

14

14

14

14

15

15

15

15

15

15

15

15
15

15
15

15

16

16

17

17

17

3RHW

3UmM7

3UKM

3PCV

2H8A

4GD3

27719

3ARC

2WJN

1RZH

1EYS

1RZH

1EYS

2WJN

3ARC

3LLQ

3CN5

2F2B

209G

2B60O

2W2E

1LDF

3NE2
3GD8

1J4N
3D9S

3C02

3ARC

3ARC

3QF4

4AYT

3QF4

PROKARYOTIC PENTAMERIC LIGAND-GATED ION CHANNEL,
ELIC

C. ELEGANS GLUTAMATE-GATED CHLORIDE CHANNEL
(GLUCL) IN COMPLEX WITH FAB AND IVERMECTIN
CRYSTAL STRUCTURE OF THE HUMAN TWO PORE DOMAIN
K+ ION CHANNEL TRAAK (K2P4.1)

CRYSTAL STRUCTURE OF THE HUMAN TWO PORE DOMAIN
POTASSIUM ION CHANNEL K2P1 (TWIK-1)

CRYSTAL STRUCTURE ANALYSIS OF HUMAN LEUKOTRIENE
C4 SYNTHASE AT 1.9 ANGSTROM RESOLUTION
STRUCTURE OF MICROSOMAL GLUTATHIONE
TRANSFERASE 1 IN COMPLEX WITH GLUTATHIONE
STRUCTURE OF E. COLI HYDROGENASE-1 IN COMPLEX
WITH CYTOCHROME B

CRYSTAL STRUCTURE OF THE CYTOCHROME B6F
COMPLEX FROM NOSTOC SP. PCC 7120

CRYSTAL STRUCTURE OF OXYGEN-EVOLVING
PHOTOSYSTEM Il AT 1.9 ANGSTROM RESOLUTION

LIPIDIC SPONGE PHASE CRYSTAL STRUCTURE OF
PHOTOSYNTHETIC REACTION CENTRE FROM
BLASTOCHLORIS VIRIDIS (HIGH DOSE)

PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT
FROM RHODOBACTER SPHAEROIDES WITH ASP L213
REPLACED WITH ASN AND ARG M233 REPLACED WITH CYS

IN THE CHARGE-NEUTRAL DQAQB STATE (TRIGONAL FORM)

CRYSTAL STRUCTURE OF PHOTOSYNTHETIC REACTION
CENTER FROM A THERMOPHILIC BACTERIUM,
THERMOCHROMATIUM TEPIDUM

PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT
FROM RHODOBACTER SPHAEROIDES WITH ASP L213
REPLACED WITH ASN AND ARG M233 REPLACED WITH CYS

IN THE CHARGE-NEUTRAL DQAQB STATE (TRIGONAL FORM)

CRYSTAL STRUCTURE OF PHOTOSYNTHETIC REACTION
CENTER FROM A THERMOPHILIC BACTERIUM,
THERMOCHROMATIUM TEPIDUM

LIPIDIC SPONGE PHASE CRYSTAL STRUCTURE OF
PHOTOSYNTHETIC REACTION CENTRE FROM
BLASTOCHLORIS VIRIDIS (HIGH DOSE)

CRYSTAL STRUCTURE OF OXYGEN-EVOLVING
PHOTOSYSTEM Il AT 1.9 ANGSTROM RESOLUTION
AQUAPORIN STRUCTURE FROM PLANT PATHOGEN
AGROBACTERIUM TUMERFACIENS

CRYSTAL STRUCTURE OF THE SPINACH AQUAPORIN
SOPIP2 1 S115E, S274E MUTANT

CRYSTAL STRUCTURE OF INTEGRAL MEMBRANE PROTEIN
AQUAPORIN AQPM AT 1.68A RESOLUTION

CRYSTAL STRUCTURE OF AQPZ MUTANT L170C
COMPLEXED WITH MERCURY.

ELECTRON CRYSTALLOGRAPHIC STRUCTURE OF LENS
AQUAPORIN-0 (AQPO) (LENS MIP) AT 1.9A RESOLUTION, IN A
CLOSED PORE STATE

1.15 ANGSTROM CRYSTAL STRUCTURE OF P.PASTORIS

AQUAPORIN, AQY1, IN A CLOSED CONFORMATION AT PH 3.5

CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL
FACILITATOR (GLPF) MUTATION W48F, F200T
ARCHAEOGLOBUS FULGIDUS AQUAPORIN

CRYSTAL STRUCTURE OF HUMAN AQUAPORIN 4 AT 1.8 AND
ITS MECHANISM OF CONDUCTANCE
CRYSTAL STRUCTURE OF THE AQP1 WATER CHANNEL

HUMAN AQUAPORIN 5 (AQP5) - HIGH RESOLUTION X-RAY
STRUCTURE

X-RAY STRUCTURE OF THE AQUAGLYCEROPORIN FROM
PLASMODIUM FALCIPARUM

CRYSTAL STRUCTURE OF OXYGEN-EVOLVING
PHOTOSYSTEM Il AT 1.9 ANGSTROM RESOLUTION
CRYSTAL STRUCTURE OF OXYGEN-EVOLVING
PHOTOSYSTEM Il AT 1.9 ANGSTROM RESOLUTION
CRYSTAL STRUCTURE OF A HETERODIMERIC ABC
TRANSPORTER IN ITS INWARD- FACING CONFORMATION
STRUCTURE OF THE HUMAN MITOCHONDRIAL ABC
TRANSPORTER, ABCB10

CRYSTAL STRUCTURE OF A HETERODIMERIC ABC
TRANSPORTER IN ITS INWARD- FACING CONFORMATION

CAENORHABDITIS ELEGANS
HOMO SAPIENS

HOMO SAPIENS

HOMO SAPIENS

RATTUS NORVEGICUS
ESCHERICHIA COLI
NOSTOC SP. PCC 7120
THERMOSYNECHOCOCCUS

VULCANUS
RHODOPSEUDOMONAS VIRIDIS

RHODOBACTER SPHAEROIDES

THERMOCHROMATIUM TEPIDUM

RHODOBACTER SPHAEROIDES

THERMOCHROMATIUM TEPIDUM

RHODOPSEUDOMONAS VIRIDIS

THERMOSYNECHOCOCCUS
VULCANUS

AGROBACTERIUM TUMEFACIENS
STR.

SPINACIA OLERACEA

METHANOTHERMOBACTER
MARBURGENSIS STR. MARBURG
ESCHERICHIA COLI

OVIS ARIES

KOMAGATAELLA PASTORIS

ESCHERICHIA COLI

ARCHAEOGLOBUS FULGIDUS
HOMO SAPIENS

BOS TAURUS

HOMO SAPIENS
PLASMODIUM FALCIPARUM
THERMOSYNECHOCOCCUS
VULCANUS
THERMOSYNECHOCOCCUS
VULCANUS

THERMOTOGA MARITIMA
HOMO SAPIENS

THERMOTOGA MARITIMA

3.26
3.31
3.40
1.90
3.20
3.30
3.00
1.90

1.86

1.80

2.20

1.80

2.20

1.86

1.90
2.01
2.05
1.68
1.90

1.90

2.10

3.00
1.80

2.20
2.00

2.05
1.90
1.90
2.90
2.85

2.90
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17

18
18

18

19

19

19

20

20

20

20

21
21

21
21
22

22

23

23

23

23

23

23

23

23

23

23

23
23

23

23

24

24

24

25

4A82

3D31
20NK

3RLF

3RLB

4DVE

3RGB

4DXW

3RVY

3BEH

2R9R

3KCU
4FC4

3TDS
3KLY
2NR9

2X0V

3PBL

4EJ4

3RZE

4EA3

4DAJ

3UON

4DKL

1U19

2RH1

4DJH

2773
4AMJ

4EIY

3vay

1M56

3AG3

1QLE

3AM6

FITTED MODEL OF STAPHYLOCOCCUS AUREUS SAV1866 HOMO SAPIENS 2.00

MODEL ABC TRANSPORTER IN THE HUMAN CYSTIC

FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR

VOLUME MAP EMD-1966.

MODBC FROM METHANOSARCINA ACETIVORANS METHANOSARCINA ACETIVORANS  3.00

ABC TRANSPORTER MODBC IN COMPLEX WITH ITS BINDING ARCHAEOGLOBUS FULGIDUS 3.10

PROTEIN MODA

CRYSTAL STRUCTURE OF THE MALTOSE-BINDING ESCHERICHIA COLI 2.20

PROTEIN/MALTOSE TRANSPORTER COMPLEX IN AN

OUTWARD-FACING CONFORMATION BOUND TO MGAMPPNP

CRYSTAL STRUCTURE AT 2.0 A OF THE S-COMPONENT FOR LACTOCOCCUS LACTIS SUBSP. 2.00

THIAMIN FROM AN ECF- TYPE ABC TRANSPORTER CREMORIS

CRYSTAL STRUCTURE AT 2.1 A OF THE S-COMPONENT FOR LACTOCOCCUS LACTIS SUBSP. 2.09

BIOTIN FROM AN ECF- TYPE ABC TRANSPORTER CREMORIS

CRYSTAL STRUCTURE OF PARTICULATE METHANE METHYLOCOCCUS CAPSULATUS 2.80

MONOOXYGENASE FROM METHYLOCOCCUS CAPSULATUS

(BATH)

CRYSTAL STRUCTURE OF NAVRH, A VOLTAGE-GATED ALPHA PROTEOBACTERIUM HIMB114 3.05

SODIUM CHANNEL

CRYSTAL STRUCTURE OF THE NAVAB VOLTAGE-GATED ARCOBACTER BUTZLERI 2.70

SODIUM CHANNEL (ILE217CYS, 2.7 A)

STRUCTURE OF A BACTERIAL CYCLIC NUCLEOTIDE MESORHIZOBIUM LOTI 3.10

REGULATED ION CHANNEL

SHAKER FAMILY VOLTAGE DEPENDENT POTASSIUM RATTUS NORVEGICUS 2.40

CHANNEL (KV1.2-KV2.1 PADDLE CHIMERA CHANNEL) IN

ASSOCIATION WITH BETA SUBUNIT

STRUCTURE OF FORMATE CHANNEL ESCHERICHIA COLI O157:H7 2.24

FNT FAMILY ION CHANNEL SALMONELLA ENTERICA SUBSP. 2.40
ENTERICA SEROVAR

CRYSTAL STRUCTURE OF HSC F194| CLOSTRIDIUM DIFFICILE 1.98

PENTAMERIC FORMATE CHANNEL VIBRIO CHOLERAE 2.10

CRYSTAL STRUCTURE OF GLPG, RHOMBOID PEPTIDASE HAEMOPHILUS INFLUENZAE 2.20

FROM HAEMOPHILUS INFLUENZAE

CRYSTAL STRUCTURE OF E.COLI RHOMBOID PROTEASE ESCHERICHIA COLI 1.65

GLPG, NATIVE ENZYME

STRUCTURE OF THE HUMAN DOPAMINE D3 RECEPTORIN  HOMO SAPIENS, ENTEROBACTERIA 2.89

COMPLEX WITH ETICLOPRIDE PHAGE T4

STRUCTURE OF THE DELTA OPIOID RECEPTOR BOUND TO MUS MUSCULUS, ENTEROBACTERIA 3.40

NALTRINDOLE PHAGE T4

STRUCTURE OF THE HUMAN HISTAMINE H1 RECEPTOR IN HOMO SAPIENS, ENTEROBACTERIA 3.10

COMPLEX WITH DOXEPIN PHAGE T4

STRUCTURE OF THE N/OFQ OPIOID RECEPTOR IN COMPLEX HOMO SAPIENS, ESCHERICHIA COLI 3.01

WITH A PEPTIDE MIMETIC

STRUCTURE OF THE M3 MUSCARINIC ACETYLCHOLINE RATTUS NORVEGICUS, 3.40

RECEPTOR ENTEROBACTERIA PHAGE T4

STRUCTURE OF THE HUMAN M2 MUSCARINIC HOMO SAPIENS, ENTEROBACTERIA 3.00

ACETYLCHOLINE RECEPTOR BOUND TO AN ANTAGONIST  PHAGE T4

CRYSTAL STRUCTURE OF THE MU-OPIOID RECEPTOR MUS MUSCULUS, ENTEROBACTERIA 2.80

BOUND TO A MORPHINAN ANTAGONIST PHAGE T4

CRYSTAL STRUCTURE OF BOVINE RHODOPSIN AT 2.2 BOS TAURUS 2.20

ANGSTROMS RESOLUTION

HIGH RESOLUTION CRYSTAL STRUCTURE OF HUMAN B2- HOMO SAPIENS, ENTEROBACTERIA 2.40

ADRENERGIC G PROTEIN- COUPLED RECEPTOR. PHAGE T4

STRUCTURE OF THE HUMAN KAPPA OPIOID RECEPTOR IN  HOMO SAPIENS, ENTEROBACTERIA 2.90

COMPLEX WITH JDTIC PHAGE T4

CRYSTAL STRUCTURE OF SQUID RHODOPSIN TODARODES PACIFICUS 2.50

TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MELEAGRIS GALLOPAVO 2.30

MUTATIONS AND BOUND BIASED AGONIST CARVEDILOL

CRYSTAL STRUCTURE OF THE CHIMERIC PROTEIN OF HOMO SAPIENS, ESCHERICHIA COLI 1.80

A2AAR-BRIL IN COMPLEX WITH ZM241385 AT 1.8A

RESOLUTION

CRYSTAL STRUCTURE OF A LIPID G PROTEIN-COUPLED HOMO SAPIENS, ENTEROBACTERIA 2.80

RECEPTOR AT 2.80A PHAGE T4

STRUCTURE OF CYTOCHROME C OXIDASE FROM RHODOBACTER SPHAEROIDES 2.30

RHODOBACTOR SPHAEROIDES (WILD TYPE)

BOVINE HEART CYTOCHROME C OXIDASE IN THE NITRIC BOS TAURUS 1.80

OXIDE-BOUND FULLY REDUCED STATE AT 100 K

CRYO-STRUCTURE OF THE PARACOCCUS DENITRIFICANS PARACOCCUS DENITRIFICANS 3.00

FOUR-SUBUNIT CYTOCHROME C OXIDASE IN THE

COMPLETELY OXIDIZED STATE COMPLEXED WITH AN

ANTIBODY FV FRAGMENT

CRYSTAL STRUCTURE OF THE PROTON PUMPING ACETABULARIA ACETABULUM 3.20

RHODOPSIN AR2 FROM MARINE ALGA ACETABULARIA
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25
25

25

25
25
25
25

25

26

26

26

26

27

27

27

28

28

29

29
30

30

30

31

31

32

32
32

33
33

33

33
34

34

34

34
35

1XIO
1MOL

3QAP

2JAF
2El4

3QBG

3UG9

3DDL

3CX5

2A06

2QJY

3L70

3NDO

10TS

1KPL

3K3F

4EZC

2NQ2

1L7v
27JS

1RH5

3MP7

3AR7

2ZXE

1U7G

2B2H
3BOW

2WSsC
1JBO

1JBO

2WSsC
1PW4

307Q

4GCO

2CFQ
2V50

ACETABULUM

ANABAENA SENSORY RHODOPSIN NOSTOC SP. PCC 7120
BACTERIORHODOPSIN/LIPID COMPLEX AT 1.47 A HALOBACTERIUM SALINARUM
RESOLUTION

CRYSTAL STRUCTURE OF NATRONOMONAS PHARAONIS NATRONOMONAS PHARAONIS
SENSORY RHODOPSIN Il IN THE GROUND STATE
GROUND STATE OF HALORHODOPSIN T203V HALOBACTERIUM SALINARIUM

TRIMERIC COMPLEX OF ARCHAERHODOPSIN-2 HALOBACTERIUM SP. AUS-2
ANION-FREE BLUE FORM OF PHARAONIS HALORHODOPSIN NATRONOMONAS PHARAONIS

CRYSTAL STRUCTURE OF THE CLOSED STATE OF CHLAMYDOMONAS REINHARDTII
CHANNELRHODOPSIN

CRYSTALLOGRAPHIC STRUCTURE OF XANTHORHODOPSIN, SALINIBACTER RUBER

A LIGHT- DRIVEN ION PUMP WITH DUAL CHROMOPHORE

STRUCTURE OF COMPLEX Ill WITH BOUND CYTOCHROME C SACCHAROMYCES CEREVISIAE
IN REDUCED STATE AND DEFINITION OF A MINIMAL CORE

INTERFACE FOR ELECTRON TRANSFER.

BOVINE CYTOCHROME BC1 COMPLEX WITH STIGMATELLIN BOS TAURUS

BOUND

CRYSTAL STRUCTURE OF RHODOBACTER SPHAEROIDES = RHODOBACTER SPHAEROIDES
DOUBLE MUTANT WITH STIGMATELLIN AND UQ2

CYTOCHROME BC1 COMPLEX FROM CHICKEN WITH GALLUS GALLUS
TRIFLOXYSTROBIN BOUND

X-RAY CRYSTAL STRUCTURE OF A SLOW CYANOBACTERIAL SYNECHOCYSTIS

CL-/H+ ANTIPORTER

STRUCTURE OF THE ESCHERICHIA COLI CLC CHLORIDE ESCHERICHIA COLI

CHANNEL AND FAB COMPLEX

CRYSTAL STRUCTURE OF THE CLC CHLORIDE CHANNEL SALMONELLA TYPHIMURIUM
FROM S. TYPHIMURIUM

CRYSTAL STRUCTURE OF THE UREA TRANSPORTER FROM DESULFOVIBRIO VULGARIS
DESULFOVIBRIO VULGARIS

CRYSTAL STRUCTURE OF THE UT-B UREA TRANSPORTER BOS TAURUS

FROM BOS TAURUS

AN INWARD-FACING CONFORMATION OF A PUTATIVE HAEMOPHILUS INFLUENZAE
METAL-CHELATE TYPE ABC TRANSPORTER.

BACTERIAL ABC TRANSPORTER INVOLVED IN B12 UPTAKE ESCHERICHIA COLI

CRYSTAL STRUCTURE OF SECYE TRANSLOCON FROM THERMUS THERMOPHILUS

THERMUS THERMOPHILUS WITH A FAB FRAGMENT

THE STRUCTURE OF A PROTEIN CONDUCTING CHANNEL METHANOCALDOCOCCUS
JANNASCHII

LATERAL OPENING OF A TRANSLOCON UPON ENTRY OF PYROCOCCUS FURIOSUS

PROTEIN SUGGESTS THE MECHANISM OF INSERTION INTO

MEMBRANES

CALCIUM PUMP CRYSTAL STRUCTURE WITH BOUND TNP- ORYCTOLAGUS CUNICULUS

ATP AND TG IN THE ABSENCE OF CA2+

CRYSTAL STRUCTURE OF THE SODIUM - POTASSIUM PUMP SQUALUS ACANTHIAS

IN THE E2.2K+.PI STATE

CRYSTAL STRUCTURE OF AMMONIA CHANNEL AMTB FROM ESCHERICHIA COLI

E. COLI

AMMONIUM TRANSPORTER AMT-1 FROM A. FULGIDUS (AS) ARCHAEOGLOBUS FULGIDUS

THE 1.3 A RESOLUTION STRUCTURE OF NITROSOMONAS  NITROSOMONAS EUROPAEA
EUROPAEA RH50 AND MECHANISTIC IMPLICATIONS FOR

NH3 TRANSPORT BY RHESUS FAMILY PROTEINS

IMPROVED MODEL OF PLANT PHOTOSYSTEM | PISUM SATIVUM

CRYSTAL STRUCTURE OF PHOTOSYSTEM I: A SYNECHOCOCCUS ELONGATUS
PHOTOSYNTHETIC REACTION CENTER AND CORE
ANTENNA SYSTEM FROM CYANOBACTERIA
CRYSTAL STRUCTURE OF PHOTOSYSTEM I: A
PHOTOSYNTHETIC REACTION CENTER AND CORE
ANTENNA SYSTEM FROM CYANOBACTERIA
IMPROVED MODEL OF PLANT PHOTOSYSTEM | PISUM SATIVUM

CRYSTAL STRUCTURE OF THE GLYCEROL-3-PHOSPHATE = ESCHERICHIA COLI
TRANSPORTER FROM E.COLI

CRYSTAL STRUCTURE OF A MAJOR FACILITATOR ESCHERICHIA COLI
SUPERFAMILY (MFS) TRANSPORTER, FUCP, IN THE

OUTWARD CONFORMATION

THE STRUCTURE OF THE MFS (MAJOR FACILITATOR ESCHERICHIA COLI
SUPERFAMILY) PROTON:XYLOSE SYMPORTER XYLE BOUND

TO 6-BROMO-6-DEOXY-D-GLUCOSE

SUGAR FREE LACTOSE PERMEASE AT NEUTRAL PH ESCHERICHIA COLI

THE MISSING PART OF THE BACTERIAL MEXAB-OPRM PSEUDOMONAS AERUGINOSA PAO1
SYSTEM: STRUCTURAL DETERMINATION OF THE

SYNECHOCOCCUS ELONGATUS

2.00
1.47

1.90

1.70
2.10
1.80
2.30

1.90

1.90

2.10
2.40
2.75
3.20
2.51
3.00
2.30
2.36
2.40

3.20
3.20

3.20

2.90

2.15
2.40
1.40

1.54
1.30

3.30
2.50

2.50

3.30
3.30

3.14

2.60

2.95
3.00
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MULTIDRUG EXPORTER MEXB

35 4DX5 TRANSPORT OF DRUGS BY THE MULTIDRUG ESCHERICHIA COLI 1.90
TRANSPORTER ACRB INVOLVES AN ACCESS AND A DEEP
BINDING POCKET THAT ARE SEPARATED BY A SWITCH-

LOOP

35 3NE5 CRYSTAL STRUCTURE OF THE CUSBA HEAVY-METAL ESCHERICHIA COLI 2.90
EFFLUX COMPLEX FROM ESCHERICHIA COLI

36 3HB3 HIGH RESOLUTION CRYSTAL STRUCTURE OF PARACOCCUS PARACOCCUS DENITRIFICANS 2.25
DENITRIFICANS CYTOCHROME C OXIDASE

36 3AG3 BOVINE HEART CYTOCHROME C OXIDASE IN THE NITRIC BOS TAURUS 1.80
OXIDE-BOUND FULLY REDUCED STATE AT 100 K

36 300R CRYSTAL STRUCTURE OF NITRIC OXIDE REDUCTASE FROM MUS MUSCULUS 2.70
PSEUDOMONAS AERUGINOSA IN COMPLEX WITH ANTIBODY
FRAGMENT

36 3MK7 THE STRUCTURE OF CBB3 CYTOCHROME OXIDASE PSEUDOMONAS STUTZERI 3.20

36 2GSM CATALYTIC CORE (SUBUNITS | AND II) OF CYTOCHROME C RHODOBACTER SPHAEROIDES 2.00
OXIDASE FROM RHODOBACTER SPHAEROIDES

37 4DJK STRUCTURE OF GLUTAMATE-GABA ANTIPORTER GADC ESCHERICHIA COLI 3.10

37 2A65 CRYSTAL STRUCTURE OF LEUTAA, A BACTERIAL HOMOLOG AQUIFEX AEOLICUS 1.65
OF NA+/CL--DEPENDENT NEUROTRANSMITTER
TRANSPORTERS

37 4AIN CRYSTAL STRUCTURE OF BETP WITH ASYMMETRIC CORYNEBACTERIUM GLUTAMICUM  3.10

PROTOMERS.
37 3GIA CRYSTAL STRUCTURE OF APCT TRANSPORTER METHANOCALDOCOCCUS 2.32
JANNASCHII

37 30B6 STRUCTURE OF ADIC(N101A) IN THE OPEN-TO-OUT ARG+  ESCHERICHIA COLI 3.00
BOUND CONFORMATION

37 2WSW CRYSTAL STRUCTURE OF CARNITINE TRANSPORTER FROM PROTEUS MIRABILIS 2.29
PROTEUS MIRABILIS

37 3DH4 CRYSTAL STRUCTURE OF SODIUM/SUGAR SYMPORTER VIBRIO PARAHAEMOLYTICUS 2.70
WITH BOUND GALACTOSE FROM VIBRIO
PARAHAEMOLYTICUS

38 3RKO CRYSTAL STRUCTURE OF THE MEMBRANE DOMAIN OF ESCHERICHIA COLI 3.00
RESPIRATORY COMPLEX | FROM E. COLI AT 3.0 ANGSTROM
RESOLUTION

38 3RKO CRYSTAL STRUCTURE OF THE MEMBRANE DOMAIN OF ESCHERICHIA COLI 3.00
RESPIRATORY COMPLEX | FROM E. COLI AT 3.0 ANGSTROM
RESOLUTION

39 4A01 CRYSTAL STRUCTURE OF THE H-TRANSLOCATING VIGNA RADIATA 2.35
PYROPHOSPHATASE

39 4AV3 CRYSTAL STRUCTURE OF THERMOTOGA MARITIMA SODIUM THERMOTOGA MARITIMA 2.60

PUMPING MEMBRANE INTEGRAL PYROPHOSPHATASE WITH
METAL IONS IN ACTIVE SITE

The numbers in the first column refer to the following families: (0) Cytochrome c oxidases — 2TM-
helix subunit, (1) ATP synthase rings — 2TM subunit, (2) KIR channels, (3) K*-channels, (4) Complex II
chain C, (5) Complex Il chain D, (6) Cytochrome bgf, (7) Light-harvesting complexes Il, (8) Small
mechanosensitive channels, (9) Photosystem | - subunit XI, (10) Pentameric ligand-gated ion
channels, (11) Two-pore K' ion channels, (12) Glutathione transferases, (13) Cytochrome b-type
subunits, (14) Photosynthetic reaction centres, (15) Aquaporins, (16) Photosystems I, (17)
Heterodimeric ABC transporters, (18) ABC transporters — efflux, (19) ECF transporters, (20) Potassium
channels, (21) Formate channels, (22) GlpG, (23) GPCR, (24) Cytochrome c oxidases - 7TM-helix
subunit, (25) Bacterial rhodopsins, (26) Cytochrome bc,, (27) CIC transporters, (28) Urea transporters,
(29) ABC transporters — influx, (30) Protein conducting channels, (31) P-type ATPases, (32)
Ammonium transporters, (33) Photosystem |, (34) MFS transporters, (35) RND transporters, (36)
Cytochrome c oxidases - 12TM-helix subunit, (37) FIRL-fold transporters, (38) Complex | antiporter-
like subunits, (39) Pyrophosphatases.
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Table A.4. B-barrel-like proteins in the HOMEP3 data set, listed by family

4 PDBID Name Source F({gf
0 1QJ8 CRYSTAL STRUCTURE OF THE OUTER MEMBRANE ESCHERICHIA COLI 1.00
PROTEIN OMPX FROM ESCHERICHIA COL|
0 2ERV CRYSTAL STRUCTURE OF THE OUTER MEMBRANE PSEUDOMONAS AERUGINOSA 2.00
ENZYME PAGL
2F1V  OUTER MEMBRANE PROTEIN OMPW ESCHERICHIA COLI K12 270
1QJP  HIGH RESOLUTION STRUCTURE OF THE OUTER ESCHERICHIA COLI 165
MEMBRANE PROTEIN A (OMPA) TRANSMEMBRANE DOMAIN
0 1P4T CRYSTAL STRUCTURE OF NEISSERIAL SURFACE NEISSERIA MENINGITIDIS 255
PROTEIN A (NSPA)
0 3DZM CRYSTAL STRUCTURE OF A MAJOR OUTER MEMBRANE  THERMUS THERMOPHILUS 2.80
PROTEIN FROM THERMUS THERMOPHILUS HB27
0 3QRA THE CRYSTAL STRUCTURE OF AIL, THE ATTACHMENT YERSINIA PESTIS 1.80
INVASION LOCUS PROTEIN OF YERSINIA PESTIS
0 3GP6 CRYSTAL STRUCTURE OF PAGP IN SDS/MPD ESCHERICHIA COLI 1.40
1178 CRYSTAL STRUCTURE OF OUTER MEMBRANE PROTEASE ~ ESCHERICHIA COLI 2.60
OMPT FROM ESCHERICHIA COLI
1 2X55 YERSINIA PESTIS PLASMINOGEN ACTIVATOR PLA (NATIVE) YERSINIA PESTIS 185
1 2VDF STRUCTURE OF THE OPCA ADHESION FROM NEISSERIA  NEISSERIA MENINGITIDIS 195
MENINGITIDIS DETERMINED BY CRYSTALLIZATION FROM
THE CUBIC MESOPHASE
2 3AEH INTEGRAL MEMBRANE DOMAIN OF AUTOTRANSPORTER ~ ESCHERICHIA COLI 2.00
HBP
3FID  LPXR FROM SALMONELLA TYPHIMURIUM SALMONELLA TYPHIMURIUM 1.90
4E1S  X-RAY CRYSTAL STRUCTURE OF THE TRANSMEMBRANE ~ ESCHERICHIA COLI 185
BETA-DOMAIN FROM INTIMIN FROM EHEC STRAIN O157:H7
2 3QQ2 CRYSTAL STRUCTURE OF THE BETA DOMAIN OF THE BORDETELLA PERTUSSIS 3.00
BORDETELLA AUTOTRANSPORTER BRKA
2 1UYN TRANSLOCATOR DOMAIN OF AUTOTRANSPORTER NALP  NEISSERIA MENINGITIDIS 260
FROM NEISSERIA MENINGITIDIS
2 2WJR NANC PORIN STRUCTURE IN RHOMBOHEDRAL CRYSTAL  ESCHERICHIA COLI 1.80
FORM.
2 4E1T X-RAY CRYSTAL STRUCTURE OF THE TRANSMEMBRANE ~ YERSINIA PSEUDOTUBERCULOSIS ~ 2.26
BETA-DOMAIN FROM INVASIN FROM YERSINIA
PSEUDOTUBERCULOSIS
2 3SLT PRE-CLEAVAGE STRUCTURE OF THE AUTOTRANSPORTER ESCHERICHIA COLI 246
ESPP - N1023S MUTANT
1QD6 OUTER MEMBRANE PHOSPHOLIPASE A ESCHERICHIA COLI 210
3KVN CRYSTAL STRUCTURE OF THE FULL-LENGTH PSEUDOMONAS AERUGINOSA 250
AUTOTRANSPORTER ESTA FROM PSEUDOMONAS
AERUGINOSA
2 1TLY TSX STRUCTURE ESCHERICHIA COLI 3.01
3DWO CRYSTAL STRUCTURE OF A PSEUDOMONAS AERUGINOSA PSEUDOMONAS AERUGINOSA 220
FADL HOMOLOGUE
3 3BRY CRYSTAL STRUCTURE OF THE RALSTONIA PICKETTII RALSTONIA PICKETTII 3.20
TOLUENE TRANSPORTER TBUX
3 3PGU PHE3GLU MUTANT OF ECFADL ESCHERICHIA COLI K-12 170
3 3BSO CRYSTAL STRUCTURE OF THE P. PUTIDA TOLUENE PSEUDOMONAS PUTIDA 260
TRANSPORTER TODX
2X9K STRUCTURE OF A E.COLI PORIN ESCHERICHIA COLI 218
4 3NSG CRYSTAL STRUCTURE OF OMPF, AN OUTER MEMBRANE ~ SALMONELLA ENTERICA SUBSP.  2.79
PROTEIN FROM SALMONELLA TYPHI ENTERICA SEROVAR
4 3VY8 CRYSTAL STRUCTURE OF PORB FROM NEISSERIA NEISSERIA MENINGITIDIS 212
MENINGITIDIS IN COMPLEX WITH CESIUM ION, SPACE
GROUP P63
4 4GEY HIGH PH STRUCTURE OF PSEUDOMONAS PUTIDA OPRE  PSEUDOMONAS PUTIDA 270
4 10SM OSMOPORIN (OMPK36) FROM KLEBSIELLA PNEUMONIAE  KLEBSIELLA PNEUMONIAE 3.20
3UPG LOOP DELETION MUTANT OF SALMONELLA TYPHI SALMONELLA ENTERICA SUBSP.  3.20
OSMOPORIN (OMPC):AN OUTER MEMBRANE PROTEIN. ENTERICA SEROVAR
4  2JIN OSMOPORIN OMPC ESCHERICHIA COLI 2.00
4 2FGQ HIGH RESOLUTION X-RAY STRUCTURE OF OMP32 IN DELFTIA ACIDOVORANS 145
COMPLEX WITH MALATE
4 2POR STRUCTURE OF PORIN REFINED AT 1.8 ANGSTROMS RHODOBACTER CAPSULATUS 1.80
RESOLUTION
4 27ZFG STRUCTURE OF OMPF PORIN ESCHERICHIA COLI 159
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4 3PRN

4  1PHO
4 204V
5 2MPR
5 1AF6
5 1A0S
6 3SZD
6  3T0S
6 3SYB
6 3T24
6 3RBH
6  3JTY
6 3SY7
6  2Y2X
6  2YOL
6 3SzV
6 3SY9
7 3EFM
7 1QFG

3QLB
7 3FHH
7 2HDI
7 1KMO
7 2W16
7 XKW
7 2GUF
7 4EPA

1FEP
7  3CSL
7 4B70
7 3veX

E1M, A104W MUTANT OF RH. BLASTICA PORIN

CRYSTAL STRUCTURES EXPLAIN FUNCTIONAL
PROPERTIES OF TWO E. COLI PORINS

AN ARGININE LADDER IN OPRP MEDIATES PHOSPHATE
SPECIFIC TRANSFER ACROSS THE OUTER MEMBRANE
MALTOPORIN FROM SALMONELLA TYPHIMURIUM

MALTOPORIN SUCROSE COMPLEX
SUCROSE-SPECIFIC PORIN

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OCCK2 (OPDF)

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OCCK4 (OPDL)

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OCCD3 (OPDP)

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
oPDQ

STRUCTURE OF ALGINATE EXPORT PROTEIN ALGE FROM
PSEUDOMONAS AERUGINOSA

CRYSTAL STRUCTURE OF A BENF-LIKE PORIN FROM
PSEUDOMONAS FLUORESCENS PF-5

IMPROVED CRYSTAL STRUCTURE OF PSEUDOMONAS
AERUGINOSA OPRD

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OPDK WITH VANILLATE

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OPDO

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OCCK3 (OPDO)

CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA
OCCD2 (OPDC)

STRUCTURE OF THE ALCALIGIN OUTER MEMBRANE
RECEPTEUR FAUA FROM BORDETELLA PERTUSSIS

E. COLI FERRIC HYDROXAMATE RECEPTOR (FHUA)

ENANTIOPYOCHELIN OUTER MEMBRANE TONB-DEPENDENT PSEUDOMONAS FLUORESCENS

TRANSPORTER FROM PSEUDOMONAS FLUORESCENS
BOUND TO THE FERRI-ENANTIOPYOCHELIN

RHODOBACTER BLASTICUS
ESCHERICHIA COLI

PSEUDOMONAS AERUGINOSA PAO1

SALMONELLA TYPHIMURIUM
ESCHERICHIA COLI
SALMONELLA TYPHIMURIUM
PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

1.90
3.00

1.94

2.40
2.40
2.40
2.31

2.20

2.70

2.40

2.30

PSEUDOMONAS FLUORESCENS PF-5 2.58

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA PAO1

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

BORDETELLA PERTUSSIS

ESCHERICHIA COLI

CRYSTAL STRUCTURE OF THE HEME/HEMOGLOBIN OUTER SHIGELLA DYSENTERIAE,

MEMBRANE TRANSPORTER SHUA FROM SHIGELLA
DYSENTERIAE

CRYSTAL STRUCTURE OF THE COLICIN | RECEPTOR CIR
FROM E.COLI IN COMPLEX WITH RECEPTOR BINDING
DOMAIN OF COLICIN IA.

CRYSTAL STRUCTURE OF THE OUTER MEMBRANE
TRANSPORTER FECA

STRUCTURES OF FPVA BOUND TO HETEROLOGOUS
PYOVERDINES

PYOCHELIN OUTER MEMBRANE RECEPTOR FPTA FROM
PSEUDOMONAS AERUGINOSA

IN MESO CRYSTAL STRUCTURE OF THE COBALAMIN
TRANSPORTER, BTUB

THE CRYSTAL STRUCTURE OF THE FERRIC

YERSINIABACTIN UPTAKE RECEPTOR FYUA FROM YERSINIA

PESTIS
FERRIC ENTEROBACTIN RECEPTOR

UNDEFINED

ESCHERICHIA COLI

ESCHERICHIA COLI K12

PSEUDOMONAS AERUGINOSA

PSEUDOMONAS AERUGINOSA

ESCHERICHIA COLI

YERSINIA PESTIS

ESCHERICHIA COLI K12

STRUCTURE OF THE SERRATIA MARCESCENS HEMOPHORE SERRATIA MARCESCENS
RECEPTOR HASR IN COMPLEX WITH ITS HEMOPHORE HASA

AND HEME

FRPB IRON TRANSPORTER FROM NEISSERIA MENINGITIDIS NEISSERIA MENINGITIDIS
(F5-1 VARIANT)

THE CRYSTAL STRUCTURE OF TRANSFERRIN BINDING
PROTEIN A (TBPA) FROM NEISSERIAL MENINGITIDIS
SEROGROUP B IN COMPLEX WITH FULL LENGTH HUMAN
TRANSFERRIN

NEISSERIA MENINGITIDIS
SEROGROUP B

2.15

1.65

2.59

1.45

2.80

2.33

2.50
3.26

2.60

2.50

2.00

2.7

2.00

1.95

3.20

2.40
2.70

2.60

The numbers in the first column refer to the following families: (0) 8 TM Outer Membrane Proteins,
(1) 10TM Outer Membrane Proteins, (2) 12TM Outer Membrane Proteins, (3) 14TM Outer
Membrane Proteins, (4) 16TM Outer Membrane Proteins, (5) Sugar porins, (6) 18TM Outer
Membrane Proteins (7) 22TM Outer Membrane Proteins.

169



References

Altschul, S.F., et al. (1990) Basic Local Alignment Search Tool, Journal of molecular biology, 215, 403-
410.

Altschul, S.F., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic acids research, 25, 3389-3402.

Arinaminpathy, Y., et al. (2009) Computational analysis of membrane proteins: the largest class of
drug targets, Drug discovery today, 14, 1130-1135.

Armen, R., Alonso, D.O. and Daggett, V. (2003) The role of alpha-, 3(10)-, and pi-helix in helix-->coil
transitions, Protein science : a publication of the Protein Society, 12, 1145-1157.

Attwood, T.K., et al. (2003) PRINTS and its automatic supplement, prePRINTS, Nucleic acids research,
31, 400-402.

Bagos, P.G., et al. (2004) A Hidden Markov Model method, capable of predicting and discriminating
beta-barrel outer membrane proteins, BMC bioinformatics, 5, 29.

Bahr, A., et al. (2001) BAIIBASE (Benchmark Alignment dataBASE): enhancements for repeats,
transmembrane sequences and circular permutations, Nucleic acids research, 29, 323-326.

Bahr, A., et al. (2001) BAIIBASE (Benchmark Alignment dataBASE): enhancements for repeats,
transmembrane sequences and circular permutations., Nucl. Acids Res., 29, 323-326.

Ben-Yona, A. and Kanner, B.l. (2012) An acidic amino acid transmembrane helix 10 residue conserved
in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of
the gamma-aminobutyric acid (GABA) transporter GAT-1, The Journal of biological chemistry, 287,
7159-7168.

Berbalk, C., Schwaiger, C.S. and Lackner, P. (2009) Accuracy analysis of multiple structure alignments,
Protein science : a publication of the Protein Society, 18, 2027-2035.

Berg, J.M., Tymoczko, John L., Stryer, Lubert (2010) Biochemistry. W. H. Freeman.

Berman, H., Henrick, K. and Nakamura, H. (2003) Announcing the worldwide Protein Data Bank,
Nature structural biology, 10, 980.

Bernsel, A., Viklund, H. and Elofsson, A. (2008) Remote homology detection of integral membrane
proteins using conserved sequence features, Proteins, 71, 1387-1399.

Berntsson, R.P., et al. (2012) Structural divergence of paralogous S components from ECF-type ABC
transporters, Proc Nat/ Acad Sci U S A, 109, 13990-13995.

Bigelow, H.R, et al. (2004) Predicting transmembrane beta-barrels in proteomes, Nucleic acids
research, 32, 2566-2577.

Bill, R.M., et al. (2011) Overcoming barriers to membrane protein structure determination, Nature
biotechnology, 29, 335-340.

170



Buschmann, S., et al. (2010) The structure of cbb3 cytochrome oxidase provides insights into proton
pumping, Science, 329, 327-330.

Cartailler, J.P. and Luecke, H. (2004) Structural and functional characterization of pi bulges and other
short intrahelical deformations, Structure, 12, 133-144.

Chang, J.M., et al. (2012) Accurate multiple sequence alignment of transmembrane proteins with PSI-
Coffee, BMC bioinformatics, 13 Suppl 4, S1.

Cherezov, V., et al. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic
G protein-coupled receptor, Science, 318, 1258-1265.

Choi, Y. and Deane, C.M. (2010) FREAD revisited: Accurate loop structure prediction using a database
search algorithm, Proteins, 78, 1431-1440.

Chou, P.Y. and Fasman, G.D. (1978) Prediction of the secondary structure of proteins from their
amino acid sequence, Advances in enzymology and related areas of molecular biology, 47, 45-148.

Cline, M., Hughey, R. and Karplus, K. (2002) Predicting reliable regions in protein sequence
alignments, Bioinformatics, 18, 306-314.

Collier, J.H., et al. (2014) A new statistical framework to assess structural alignment quality using
information compression, Bioinformatics, 30, i512-518.

Cooley, R.B., Arp, D.J. and Karplus, P.A. (2010) Evolutionary origin of a secondary structure: pi-helices
as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality,

Journal of molecular biology, 404, 232-246.

Csaba, G., Birzele, F. and Zimmer, R. (2008) Protein structure alignment considering phenotypic
plasticity, Bioinformatics, 24, i98-104.

Dai, L. and Zhou, Y. (2011) Characterizing the existing and potential structural space of proteins by
large-scale multiple loop permutations, Journal of molecular biology, 408, 585-595.

Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. (1978) A Model of Evolutionary Change in Proteins.
Atlas of Protein Sequence and Structure

Do, C.B., et al. (2005) ProbCons: Probabilistic consistency-based multiple sequence alignment,
Genome Res, 15, 330-340.

Dobrowolski, A., Sobczak-Elbourne, I. and Lolkema, J.S. (2007) Membrane topology prediction by
hydropathy profile alignment: membrane topology of the Na(+)-glutamate transporter GItS,
Biochemistry, 46, 2326-2332.

Dong, E., et al. (2008) BCL::Align - Sequence alignment and fold recognition with a custom scoring
function online, Gene, 422, 41-46.

Drews, J. (2000) Drug discovery: a historical perspective, Science, 287, 1960-1964.
Ebejer, J.P., et al. (2013) Memoir: template-based structure prediction for membrane proteins,

Nucleic acids research, 41, W379-383.

171



Eddy, S.R. (2011) Accelerated Profile HMM Searches, PLoS computational biology, 7, €1002195.

Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space
complexity, BMC bioinformatics, 5, 1-19.

Edgar, R.C. (2009) Optimizing substitution matrix choice and gap parameters for sequence alignment,
BMC bioinformatics, 10, 396.

Edgar, R.C. (2010) Quality measures for protein alignment benchmarks, Nucleic acids research, 38,
2145-2153.

Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26,
2460-2461.

Eicher, T, et al. (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a
deep binding pocket that are separated by a switch-loop, Proc Natl Acad Sci U S A, 109, 5687-5692.

Eicher, T., et al. (2014) Coupling of remote alternating-access transport mechanisms for protons and
substrates in the multidrug efflux pump AcrB, elife, 3.

Eisenberg, D., et al. (1982) Hydrophobic moments and protein structure, Faraday Symposia of the
Chemical Society, 17, 109-120.

Engelman, D.M., Steitz, T.A. and Goldman, A. (1986) Identifying nonpolar transbilayer helices in
amino acid sequences of membrane proteins, Annu Rev Biophys Biophys Chem, 15, 321-353.

Enkhbayar, P., et al. (2006) 3(10)-helices in proteins are parahelices, Proteins, 64, 691-699.

Erkens, G.B., et al. (2011) The structural basis of modularity in ECF-type ABC transporters, Nature
structural & molecular biology, 18, 755-760.

Erkens, G.B., et al. (2012) Energy coupling factor-type ABC transporters for vitamin uptake in
prokaryotes, Biochemistry, 51, 4390-4396.

Eswar, N., et al. (2006) Comparative protein structure modeling using Modeller, Curr Protoc
Bioinformatics, Chapter 5, Unit 5 6.

Faraggi, E., et al. (2012) SPINE X: improving protein secondary structure prediction by multistep
learning coupled with prediction of solvent accessible surface area and backbone torsion angles,

Journal of computational chemistry, 33, 259-267.

Faraldo-Gémez, J.D. and Forrest, L.R. (2011) Modeling and simulation of ion- and ATP-driven
membrane proteins, Current opinion in structural biology, 21, 1-7.

Fenollar-Ferrer, C., et al. (2014) Structural fold and binding sites of the human Na(+)-phosphate
cotransporter NaPi-ll, Biophysical journal, 106, 1268-1279.

Fenollar-Ferrer, C., et al. (2014) Structure and regulatory interactions of the cytoplasmic terminal
domains of serotonin transporter, Biochemistry, 53, 5444-5460.

Ferguson, A.D., et al. (2000) A conserved structural motif for lipopolysaccharide recognition by
procaryotic and eucaryotic proteins, Structure, 8, 585-592.

172



Fetter, J.R., et al. (1995) Possible proton relay pathways in cytochrome c oxidase, Proc Natl Acad Sci
USA, 92, 1604-1608.

Fiser, A. (2010) Template-based protein structure modeling, Methods Mol Biol, 673, 73-94.

Fiser, A. and Sali, A. (2003) ModLoop: automated modeling of loops in protein structures,
Bioinformatics, 19, 2500-2501.

Fodje, M.N. and Al-Karadaghi, S. (2002) Occurrence, conformational features and amino acid
propensities for the pi-helix, Protein engineering, 15, 353-358.

Fooks, H.M., et al. (2006) Amino acid pairing preferences in parallel beta-sheets in proteins, Journal
of molecular biology, 356, 32-44.

Forrest, L.R. and Rudnick, G. (2009) The rocking bundle: a mechanism for ion-coupled solute flux by
symmetrical transporters, Physiology, 24, 377-386.

Forrest, L.R., Tang, C.L. and Honig, B. (2006) On the accuracy of homology modeling and sequence
alignment methods applied to membrane proteins, Biophysical journal, 91, 508-517.

Forster, I.C., et al. (2002) Forging the link between structure and function of electrogenic
cotransporters: the renal type Ila Na+/Pi cotransporter as a case study, Progress in biophysics and
molecular biology, 80, 69-108.

Frishman, D. and Argos, P. (1995) Knowledge-based protein secondary structure assignment,
Proteins: Structure, Function, and Bioinformatics, 23, 566-579.

Garcia-Horsman, J.A., et al. (1995) Proton transfer in cytochrome bo3 ubiquinol oxidase of
Escherichia coli: second-site mutations in subunit | that restore proton pumping in the mutant
Asp135-->Asn, Biochemistry, 34, 4428-4433.

Gonzalez, A., et al. (2012) Impact of helix irregularities on sequence alignment and homology
modeling of G protein-coupled receptors, Chembiochem : a European journal of chemical biology, 13,

1393-1399.

Govaerts, C., et al. (2001) The TXP motif in the second transmembrane helix of CCR5. A structural
determinant of chemokine-induced activation, The Journal of biological chemistry, 276, 13217-13225.

Gromiha, M.M. and Suwa, M. (2003) Variation of amino acid properties in all-beta globular and outer
membrane protein structures, International journal of biological macromolecules, 32, 93-98.

Gromiha, M.M. and Suwa, M. (2005) A simple statistical method for discriminating outer membrane
proteins with better accuracy, Bioinformatics, 21, 961-968.

Gront, D., et al. (2012) BioShell Threader: protein homology detection based on sequence profiles
and secondary structure profiles, Nucleic acids research, 40, W257-262.

Hanson, M.A., et al. (2012) Crystal structure of a lipid G protein-coupled receptor, Science, 335, 851-
855.

Hayat, M. and Khan, A. (2013) WRF-TMH: predicting transmembrane helix by fusing composition
index and physicochemical properties of amino acids, Amino acids, 44, 1317-1328.

173



Hayat, S. and Elofsson, A. (2012) BOCTOPUS: improved topology prediction of transmembrane beta
barrel proteins, Bioinformatics, 28, 516-522.

Heim, A.J. and Li, Z. (2012) Developing a high-quality scoring function for membrane protein
structures based on specific inter-residue interactions, Journal of computer-aided molecular design,
26, 301-309.

Heinig, M. and Frishman, D. (2004) STRIDE: a web server for secondary structure assignment from
known atomic coordinates of proteins, Nucleic acids research, 32, W500-502.

Henikoff, S. and Henikoff, J.G. (1992) Amino-Acid Substitution Matrices from Protein Blocks, Proc Natl
Acad Sci U S A, 89, 10915-10919.

Henry, LK., et al. (2003) Serotonin and cocaine-sensitive inactivation of human serotonin
transporters by methanethiosulfonates targeted to transmembrane domain |, The Journal of

biological chemistry, 278, 37052-37063.

Hessa, T., et al. (2005) Recognition of transmembrane helices by the endoplasmic reticulum
translocon, Nature, 433, 377-381.

Hildebrand, A., et al. (2009) Fast and accurate automatic structure prediction with HHpred, Proteins,
77 Suppl 9, 128-132.

Hill, J.R. and Deane, C.M. (2012) MP-T: improving membrane protein alignment for structure
prediction, Bioinformatics.

Hill, J.R., et al. (2011) Environment specific substitution tables improve membrane protein alignment,
Bioinformatics, 27, i15-23.

Hino, T., et al. (2010) Structural basis of biological N20 generation by bacterial nitric oxide reductase,
Science, 330, 1666-1670.

Holm, L. and Park, J. (2000) DaliLite workbench for protein structure comparison, Bioinformatics, 16,
566-567.

Holm, L. and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D, Nucleic acids research,
38, W545-549.

Holm, L. and Sander, C. (1993) Protein structure comparison by alignment of distance matrices,
Journal of molecular biology, 233, 123-138.

Holm, L. and Sander, C. (1996) The FSSP database: fold classification based on structure-structure
alignment of proteins, Nucleic acids research, 24, 206-209.

Holm, L. and Sander, C. (1996) Mapping the protein universe, Science, 273, 595-603.

Hopf, T.A., et al. (2014) Sequence co-evolution gives 3D contacts and structures of protein
complexes, elLife, 3.

Hopkins, A.L. and Groom, C.R. (2002) The druggable genome, Nature reviews. Drug discovery, 1, 727-
730.

174



Hopp, T.P. and Woods, K.R. (1981) Prediction of Protein Antigenic Determinants from Amino-Acid-
Sequences, Proc Natl Acad Sci U S A, 78, 3824-3828.

Horn, F., et al. (2003) GPCRDB information system for G protein-coupled receptors, Nucl. Acids Res.,
31, 294-297.

Huang, X. (1994) On global sequence alignment, Comput App! Biosci, 10, 227-235.

Huang, Y.H. and Chen, C.M. (2012) Statistical analyses and computational prediction of helical kinks
in membrane proteins, Journal of computer-aided molecular design, 26, 1171-1185.

Islam, S.T., et al. (2012) A cationic lumen in the Wzx flippase mediates anionic O-antigen subunit
translocation in Pseudomonas aeruginosa PAO1, Molecular microbiology, 84, 1165-1176.

Jackups, R., Jr. and Liang, J. (2005) Interstrand pairing patterns in beta-barrel membrane proteins: the
positive-outside rule, aromatic rescue, and strand registration prediction, Journal of molecular
biology, 354, 979-993.

Jimenez-Morales, D., Adamian, L. and Liang, J. (2008) Detecting remote homologues using scoring
matrices calculated from the estimation of amino acid substitution rates of beta-barrel membrane

proteins, Conf Proc IEEE Eng Med Biol Soc, 2008, 1347-1350.

Johansson, L., Gafvelin, G. and Arner, E.S. (2005) Selenocysteine in proteins-properties and
biotechnological use, Biochimica et biophysica acta, 1726, 1-13.

Jones, D.T. (1998) Do transmembrane protein superfolds exist?, Febs Lett, 423, 281-285.

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices,
Journal of molecular biology, 292, 195-202.

Jones, D.T., Taylor, W.R. and Thornton, J.M. (1994) A mutation data matrix for transmembrane
proteins, Febs Lett, 339, 269-275.

Jung, J. and Lee, B. (2000) Protein structure alignment using environmental profiles, Protein
engineering, 13, 535-543.

Kabsch, W. (1976) Solution for Best Rotation to Relate 2 Sets of Vectors, Acta Crystallogr A, 32, 922-
923.

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of
hydrogen-bonded and geometrical features, Biopolymers, 22, 2577-2637.

Karplus, K. (2009) SAM-T08, HMM-based protein structure prediction, Nucleic acids research, 37,
W492-497.

Kauko, A., lllergard, K. and Elofsson, A. (2008) Coils in the membrane core are conserved and
functionally important, Journal of molecular biology, 380, 170-180.

Kelley, L.A., MacCallum, R.M. and Sternberg, M.J.E. (2000) Enhanced genome annotation using
structural profiles in the program 3D-PSSM, J. Mol. Biol., 299, 499-520.

175



Kelm, S., Shi, J. and Deane, C.M. (2010) MEDELLER: homology-based coordinate generation for
membrane proteins, Bioinformatics, 26, 2833-2840.

Khafizov, K., et al. (2010) A study of the evolution of inverted-topology repeats from LeuT-fold
transporters using AlignMe, Biochemistry, 49, 10702-10713.

Koehler, J., et al. (2009) A unified hydrophobicity scale for multispan membrane proteins, Proteins,
76, 13-29.

Koepke, J., et al. (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c
oxidase: new insights into the active site and the proton transfer pathways, Biochimica et biophysica
acta, 1787, 635-645.

Kolodny, R., Koehl, P. and Levitt, M. (2005) Comprehensive evaluation of protein structure alignment
methods: scoring by geometric measures, Journal of molecular biology, 346, 1173-1188.

Konagurthu, A.S. and Lesk, A.M. (2013) Structure description and identification using the tableau
representation of protein folding patterns, Methods Mol Biol, 932, 51-59.

Konagurthu, A.S., Lesk, A.M. and Allison, L. (2012) Minimum message length inference of secondary
structure from protein coordinate data, Bioinformatics, 28, 197-105.

Kopp, J., et al. (2007) Assessment of CASP7 predictions for template-based modeling targets,
Proteins, 69 Suppl 8, 38-56.

Kowalczyk, L., et al. (2011) Molecular basis of substrate-induced permeation by an amino acid
antiporter, Proc Natl/ Acad Sci U S A, 108, 3935-3940.

Kozma, D., Simon, I. and Tusnady, G.E. (2013) PDBTM: Protein Data Bank of transmembrane proteins
after 8 years, Nucleic acids research, 41, D524-529.

Krogh, A., et al. (2001) Predicting transmembrane protein topology with a hidden Markov model:
application to complete genomes, Journal of molecular biology, 305, 567-580.

Kryshtafovych, A., Fidelis, K. and Moult, J. (2013) CASP10 results compared to those of previous CASP
experiments, Proteins.

Kryshtafovych, A., Monastyrskyy, B. and Fidelis, K. (2013) CASP prediction center infrastructure and
evaluation measures in CASP10 and CASP ROLL, Proteins.

Kryshtafovych, A., et al. (2005) Progress over the first decade of CASP experiments, Proteins, 61
Suppl 7, 225-236.

Kukkonen, M., et al. (2004) Lack of O-antigen is essential for plasminogen activation by Yersinia
pestis and Salmonella enterica, Molecular microbiology, 51, 215-225.

Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a
protein, Journal of molecular biology, 157, 105-132.

Langelaan, D.N,, et al. (2010) Improved helix and kink characterization in membrane proteins allows
evaluation of kink sequence predictors, Journal of chemical information and modeling, 50, 2213-

2220.

176



Leman, J.K., et al. (2013) Simultaneous prediction of protein secondary structure and transmembrane
spans, Proteins, 81, 1127-1140.

Li, W. and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein
or nucleotide sequences, Bioinformatics, 22, 1658-1659.

Liu, Y., Schmidt, B. and Maskell, D.L. (2010) MSAProbs: multiple sequence alignment based on pair
hidden Markov models and partition function posterior probabilities, Bioinformatics, 26, 1958-1964.

Lolkema, J.S. and Slotboom, D.-J. (2008) The major amino acid transporter superfamily has a similar
core structure as Na'-galactose and Na'-leucine transporters, Mol Membr Biol, 25, 567 - 570.

Lolkema, J.S. and Slotboom, D.J. (1998) Estimation of structural similarity of membrane proteins by
hydropathy profile alignment, Mol Membr Biol, 15, 33-42.

Lolkema, J.S. and Slotboom, D.J. (1998) Hydropathy profile alignment: a tool to search for structural
homologues of membrane proteins, FEMS Microbiol Rev, 22, 305-322.

Lolkema, J.S. and Slotboom, D.J. (2003) Classification of 29 families of secondary transport proteins
into a single structural class using hydropathy profile analysis, Journal of molecular biology, 327, 901-

909.

Lolkema, J.S. and Slotboom, D.J. (2005) Sequence and hydropathy profile analysis of two classes of
secondary transporters, Mol Membr Biol, 22, 177-189.

Lomize, A.L., et al. (2006) Positioning of proteins in membranes: a computational approach, Protein
science : a publication of the Protein Society, 15, 1318-1333.

Lomize, A.L., et al. (2007) The role of hydrophobic interactions in positioning of peripheral proteins in
membranes, BMC structural biology, 7, 44.

Lomize, M.A,, et al. (2006) OPM: orientations of proteins in membranes database, Bioinformatics, 22,
623-625.

Martinez, L., Andreani, R. and Martinez, J.M. (2007) Convergent algorithms for protein structural
alignment, BMC bioinformatics, 8, 306.

Meiler, J. and Baker, D. (2003) Coupled prediction of protein secondary and tertiary structure, Proc
Natl Acad Sci U S A, 100, 12105-12110.

Menke, M., Berger, B. and Cowen, L. (2008) Matt: local flexibility aids protein multiple structure
alignment, PLoS computational biology, 4, e10.

Meruelo, A.D., Samish, I. and Bowie, J.U. (2011) TMKink: a method to predict transmembrane helix
kinks, Protein science : a publication of the Protein Society, 20, 1256-1264.

Minor, D.L., Jr. and Kim, P.S. (1994) Measurement of the beta-sheet-forming propensities of amino
acids, Nature, 367, 660-663.

Mizuguchi, K., et al. (1998) HOMSTRAD: a database of protein structure alignments for homologous
families, Protein science : a publication of the Protein Society, 7, 2469-2471.

177



Moelbert, S., Emberly, E. and Tang, C. (2004) Correlation between sequence hydrophobicity and
surface-exposure pattern of database proteins, Protein science : a publication of the Protein Society,
13, 752-762.

Moult, J., et al. (1998) Critical assessment of methods of protein structure prediction (CASP): Round
Il, Proteins, 29, 2-6.

Moult, J., et al. (1997) Critical assessment of methods of protein structure prediction (CASP): round I,
Proteins, Suppl 1, 2-6.

Moult, J., et al. (1995) A large-scale experiment to assess protein structure prediction methods,
Proteins, 23, ii-v.

Midiller, T., Spang, R. and Vingron, M. (2002) Estimating amino acid substitution models: A
comparison of Dayhoff's estimator, the resolvent approach and a maximum likelihood method,
Molecular biology and evolution, 19, 8-13.

Midiller, T. and Vingron, M. (2000) Modeling amino acid replacement, J Comput Biol, 7, 761-776.

Muramoto, K., et al. (2010) Bovine cytochrome c oxidase structures enable O2 reduction with
minimization of reactive oxygens and provide a proton-pumping gate, Proc Natl Acad Sci U S A, 107,
7740-7745.

Murzin, A.G., et al. (1995) SCOP: a structural classification of proteins database for the investigation
of sequences and structures, Journal of molecular biology, 247, 536-540.

Needleman, S.B. and Wunsch, C.D. (1970) A General Method Applicable to Search for Similarities in
Amino Acid Sequence of 2 Proteins, Journal of molecular biology, 48, 443-53.

Ng, P.C., Henikoff, J.G. and Henikoff, S. (2000) PHAT: a transmembrane-specific substitution matrix.
Predicted hydrophobic and transmembrane, Bioinformatics, 16, 760-766.

Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate
multiple sequence alignment, Journal of molecular biology, 302, 205-217.

Nozaki, Y. and Tanford, C. (1971) The solubility of amino acids and two glycine peptides in agqueous
ethanol and dioxane solutions. Establishment of a hydrophobicity scale., J. Biol. Chem., 246, 2211-
2217.

Nugent, T. and Jones, D.T. (2009) Transmembrane protein topology prediction using support vector
machines, BMC bioinformatics, 10, 159.

Olechnovic, K., Kulberkyte, E. and Venclovas, C. (2012) CAD-score: A new contact area difference-
based function for evaluation of protein structural models, Proteins, 81, 149-162

Orengo, C.A,, et al. (1997) CATH--a hierarchic classification of protein domain structures, Structure, 5,
1093-1108.

Ortiz, A.R., Strauss, C.E. and Olmea, O. (2002) MAMMOTH (matching molecular models obtained

from theory): an automated method for model comparison, Protein science : a publication of the
Protein Society, 11, 2606-2621.

178



Ostermeier, C. and Michel, H. (1997) Crystallization of membrane proteins, Current opinion in
structural biology, 7, 697-701.

Pace, C.N. and Scholtz, J.M. (1998) A helix propensity scale based on experimental studies of peptides
and proteins, Biophysical journal, 75, 422-427.

Pal, L. and Basu, G. (1999) Novel protein structural motifs containing two-turn and longer 3(10)-
helices, Protein engineering, 12, 811-814.

Pal, L., Basu, G. and Chakrabarti, P. (2002) Variants of 3(10)-helices in proteins, Proteins, 48, 571-579.

Pandit, S.B. and Skolnick, J. (2008) Fr-TM-align: a new protein structural alignment method based on
fragment alignments and the TM-score, BMC bioinformatics, 9, 531.

Park, J.,, et al. (2000) RSDB: representative protein sequence databases have high information
content, Bioinformatics, 16, 458-464.

Pauling, L. and Corey, R.B. (1951) Atomic coordinates and structure factors for two helical
configurations of polypeptide chains, Proc Natl/ Acad Sci U S A, 37, 235-240.

Pauling, L., Corey, R.B. and Branson, H.R. (1951) The structure of proteins; two hydrogen-bonded
helical configurations of the polypeptide chain, Proc Natl/ Acad Sci U S A, 37, 205-211.

Petrey, D. and Honig, B. (2003) GRASP2: Visualization, surface properties, and electrostatics of
macromolecular structures and sequences, Methods Enzymol., 374, 492-509.

Pieper, U., et al. (2014) ModBase, a database of annotated comparative protein structure models
and associated resources, Nucleic acids research, 42, D336-346.

Pirovano, W., Feenstra, K.A. and Heringa, J. (2008) PRALINE™: a strategy for improved multiple
alignment of transmembrane proteins, Bioinformatics, 24, 492-497.

Pos, K.M. (2009) Drug transport mechanism of the AcrB efflux pump, Biochimica et biophysica acta,
1794, 782-793.

Punta, M., et al. (2012) The Pfam protein families database, Nucleic acids research, 40, D290-301.
Qin, L., et al. (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution
structure of the membrane protein cytochrome c oxidase, Proc Natl Acad Sci U S A, 103, 16117-

16122.

Radestock, S. and Forrest, L.R. (2011) The alternating-access mechanism of MFS transporters arises
from inverted-topology repeats, Journal of molecular biology, 407, 698-715.

Radestock, S. and Forrest, L.R. (2011) Outward-facing conformation of MFS transporters revealed by
inverted-topology repeats, Journal of molecular biology, 407, 698-715.

Raghava, G., et al. (2003) OXBench: A benchmark for evaluation of protein multiple sequence
alignment accuracy, BMC bioinformatics, 4, 47.

Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V. (1963) Stereochemistry of polypeptide
chain configurations, Journal of molecular biology, 7, 95-99.

179



Raman, P., Cherezov, V. and Caffrey, M. (2006) The Membrane Protein Data Bank, Cellular and
molecular life sciences : CMLS, 63, 36-51.

Randall, A., et al. (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction
of transmembrane beta-barrel proteins, Bioinformatics, 24, 513-520.

Ray, A., Lindahl, E. and Wallner, B. (2010) Model quality assessment for membrane proteins,
Bioinformatics, 26, 3067-3074.

Ray, A., Lindahl, E. and Wallner, B. (2012) Improved model quality assessment using ProQ2, BMC
bioinformatics, 13, 224.

Reddy Ch, S. et al. (2006) Homology modeling of membrane proteins: a critical assessment,
Computational biology and chemistry, 30, 120-126.

Remmert, M., et al. (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-
HMM alignment, Nat Methods, 9, 173-175

Remmert, M., et al. (2010) Evolution of outer membrane beta-barrels from an ancestral beta beta
hairpin, Molecular biology and evolution, 27, 1348-1358.

Ren, Q., Chen, K. and Paulsen, I.T. (2007) TransportDB: a comprehensive database resource for
cytoplasmic membrane transport systems and outer membrane channels, Nucleic acids research, 35,
D274-279.

Riek, R.P., et al. (2008) Wide turn diversity in protein transmembrane helices implications for G-
protein-coupled receptor and other polytopic membrane protein structure and function, Molecular
pharmacology, 73, 1092-1104.

Riek, R.P. and Graham, R.M. (2011) The elusive pi-helix, Journal of structural biology, 173, 153-160.

Riek, R.P.,, et al. (2001) Non-alpha-helical elements modulate polytopic membrane protein
architecture, Journal of molecular biology, 306, 349-362.

Rose, G.D. (1978) Prediction of chain turns in globular proteins on a hydrophobic basis, Nature, 272,
586-590.

Rovati, G.E., Capra, V. and Neubig, R.R. (2007) The highly conserved DRY motif of class A G protein-
coupled receptors: beyond the ground state, Molecular pharmacology, 71, 959-964.

Sadowski, M.I. and Taylor, W.R. (2012) Evolutionary inaccuracy of pairwise structural alignments,
Bioinformatics, 28, 1209-1215.

Sahraeian, S.M. and Yoon, B.J. (2010) PicXAA: greedy probabilistic construction of maximum
expected accuracy alignment of multiple sequences, Nucleic acids research, 38, 4917-4928.

Sahraeian, S.M. and Yoon, B.J. (2011) PicXAA-Web: a web-based platform for non-progressive
maximum expected accuracy alignment of multiple biological sequences, Nucleic acids research, 39,

W8-12.

Saier, M.H., Jr., Tran, C.V. and Barabote, R.D. (2006) TCDB: the Transporter Classification Database
for membrane transport protein analyses and information, Nucleic acids research, 34, D181-186.

180



Saigo, H., Vert, J.-P. and Akutsu, T. (2006) Optimizing amino acid substitution matrices with a local
alignment kernel, BMC bioinformatics, 7, 246.

Sali, A. and Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints., J.
Mol. Biol., 234, 779-815.

Sansom, M.S., Scott, K.A. and Bond, P.J. (2008) Coarse-grained simulation: a high-throughput
computational approach to membrane proteins, Biochemical Society transactions, 36, 27-32.

Schushan, M., et al. (2012) A model-structure of a periplasm-facing state of the NhaA antiporter
suggests the molecular underpinnings of pH-induced conformational changes, The Journal of
biological chemistry, 287, 18249-18261.

Schwacke, R., et al. (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane
proteins, Plant physiology, 131, 16-26.

Scordis, P., Flower, D.R. and Attwood, T.K. (1999) FingerPRINTScan: intelligent searching of the
PRINTS motif database, Bioinformatics, 15, 799-806.

Senes, A., Gerstein, M. and Engelman, D.M. (2000) Statistical analysis of amino acid patterns in
transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched

residues at neighboring positions, Journal of molecular biology, 296, 921-936.

Shafrir, Y. and Guy, H.R. (2004) STAM: simple transmembrane alignment method, Bioinformatics, 20,
758-769.

Shakhnovich, B.E., et al. (2005) Protein structure and evolutionary history determine sequence space
topology, Genome Res, 15, 385-392.

Shindyalov, I.N. and Bourne, P.E. (1998) Protein structure alignment by incremental combinatorial
extension (CE) of the optimal path, Protein engineering, 11, 739-747.

Shu, N. and Elofsson, A. (2011) KalignP: improved multiple sequence alignments using position
specific gap penalties in Kalign2, Bioinformatics, 27, 1702-1703.

Sievers, F., et al. (2011) Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega, Molecular systems biology, 7, 539.

Sigrist, C.J.,, et al. (2010) PROSITE, a protein domain database for functional characterization and
annotation, Nucleic acids research, 38, D161-166.

Sigrist, C.J., et al. (2013) New and continuing developments at PROSITE, Nucleic acids research, 41,
D344-347.

Slater, AW., et al. (2012) Towards the development of standardized methods for comparison,
ranking and evaluation of structure alignments, Bioinformatics.

Smith, T.F. and Waterman, M.S. (1981) Identification of Common Molecular Subsequences, Journal of
molecular biology, 147, 195-197.

Soéding, J. (2005) Protein homology detection by HMM-HMM comparison, Bioinformatics, 21, 951-
960.

181



Srinivasan, G., James, C.M. and Krzycki, J.A. (2002) Pyrrolysine encoded by UAG in Archaea: charging
of a UAG-decoding specialized tRNA, Science, 296, 1459-1462.

Stamm, M. (2010) Design and Testing of Membrane Protein Sequence Alignment Tools. Fachbereich
Biowissenschaften. Johann Wolfgang Goethe-Universitaet Frankfurt am Main.

Stamm, M., et al. (2013) Alignment of Helical Membrane Protein Sequences Using AlignMe, PloS one,
8, e57731.

Stamm, M., et al. (2014) AlignMe - a membrane protein sequence alignment web server, Nucleic
acids research, 42, W246-W251

Stamm, M. and Forrest, L. (2015) Structure alignment of membrane proteins: Accuracy of available
tools and a consensus strategy, Proteins, 83, 1720-1732.

Stebbings, L.A. and Mizuguchi, K. (2004) HOMSTRAD: recent developments of the Homologous
Protein Structure Alignment Database, Nucleic acids research, 32, D203-207.

Stevens, T.J. and Arkin, L.T. (2001) Substitution rates in alpha-helical transmembrane proteins,
Protein science : a publication of the Protein Society, 10, 2507-2517.

Suzek, B.E., et al. (2007) UniRef: comprehensive and non-redundant UniProt reference clusters,
Bioinformatics, 23, 1282-1288.

Tang, C.L., et al. (2003) On the role of structural information in remote homology detection and
sequence alignment: New methods using hybrid sequence profiles, Journal of molecular biology, 334,
1043-1062.

Taylor, W.R. (1999) Protein structure comparison using iterated double dynamic programming,
Protein science : a publication of the Protein Society, 8, 654-665.

Taylor, W.R. (2000) Protein structure comparison using SAP, Methods Mol Biol, 143, 19-32.

Teichert, F., Bastolla, U. and Porto, M. (2007) SABERTOOTH: protein structural alignment based on a
vectorial structure representation, BMC bioinformatics, 8, 425.

ter Horst, R. and Lolkema, J.S. (2012) Membrane topology screen of secondary transport proteins in
structural class ST[3] of the MemGen classification. Confirmation and structural diversity, Biochimica
et biophysica acta, 1818, 72-81.

Thomas, J.W., et al. (1993) Site-directed mutagenesis of highly conserved residues in helix VIII of
subunit | of the cytochrome bo ubiquinol oxidase from Escherichia coli: an amphipathic
transmembrane helix that may be important in conveying protons to the binuclear center,
Biochemistry, 32, 11173-11180.

Thompson, A.A., et al. (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a
peptide mimetic, Nature, 485, 395-399.

Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2002) Multiple sequence alignment using ClustalW
and ClustalX. In, Curr Protoc Bioinformatics. pp. Unit 2 3.

182



Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) Clustal-W - Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice, Nucl. Acids Res., 22, 4673-4680.

Thompson, J.D., et al. (2005) BAIiBASE 3.0: latest developments of the multiple sequence alignment
benchmark, Proteins, 61, 127-136.

Thompson, J.D., Plewniak, F. and Poch, O. (1999) BAIiBASE: a benchmark alignment database for the
evaluation of multiple alignment programs, Bioinformatics, 15, 87-88.

Tress, M., et al. (2005) Assessment of predictions submitted for the CASP6 comparative modeling
category, Proteins, 61 Suppl 7, 27-45.

Tsaousis, G.N., Bagos, P.G. and Hamodrakas, S.J. (2014) HMMpTM: improving transmembrane
protein topology prediction using phosphorylation and glycosylation site prediction, Biochimica et

biophysica acta, 1844, 316-322.

Tsirigos, K.D., Bagos, P.G. and Hamodrakas, S.J. (2011) OMPdb: a database of {beta}-barrel outer
membrane proteins from Gram-negative bacteria, Nucleic acids research, 39, D324-331.

Tusnady, G.E., Dosztanyi, Z. and Simon, |. (2005) PDB_TM: selection and membrane localization of
transmembrane proteins in the protein data bank, Nucleic acids research, 33, D275-278.

Tusnady, G.E., Dosztanyi, Z. and Simon, |. (2005) TMDET: web server for detecting transmembrane
regions of proteins by using their 3D coordinates, Bioinformatics, 21, 1276-1277.

Tusnady, G.E., Dosztanyi, Z. and Simon, |. (2004) Transmembrane proteins in the Protein Data Bank:
identification and classification, Bioinformatics, 20, 2964-2972.

Tusnady, G.E., Dosztanyi, Z. and Simon, |. (2005) PDB_TM: selection and membrane localization of
transmembrane proteins in the protein data bank, Nucl. Acids Res., 33, D275-D278.

Uhlen, M., et al. (2015) Proteomics. Tissue-based map of the human proteome, Science, 347,
1260419.

Ulmschneider, M.B. and Sansom, M.S. (2001) Amino acid distributions in integral membrane protein
structures, Biochimica et biophysica acta, 1512, 1-14.

UniProt, C. (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013, Nucleic
acids research, 41, D43-47.

Veeramalai, M., Ye, Y. and Godzik, A. (2008) TOPS++FATCAT: fast flexible structural alignment using
constraints derived from TOPS+ Strings Model, BMC bioinformatics, 9, 358.

Vieira-Pires, R.S. and Morais-Cabral, J.H. (2010) 3(10) helices in channels and other membrane
proteins, The Journal of general physiology, 136, 585-592.

Viklund, H. and Elofsson, A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based
preference scores and an extended topological grammar, Bioinformatics, 24, 1662-1668.

183



Viklund, H., Granseth, E. and Elofsson, A. (2006) Structural classification and prediction of reentrant
regions in alpha-helical transmembrane proteins: application to complete genomes, Journal of
molecular biology, 361, 591-603.

von Heijne, G. (1989) Control of topology and mode of assembly of a polytopic membrane protein by
positively charged residues, Nature, 341, 456-458.

von Mering, C., et al. (2005) STRING: known and predicted protein-protein associations, integrated
and transferred across organisms, Nucleic acids research, 33, D433-437.

Wang, Z., et al. (2011) Protein 8-class secondary structure prediction using conditional neural fields,
Proteomics, 11, 3786-3792.

Weaver, T.M. (2000) The pi-helix translates structure into function, Protein science : a publication of
the Protein Society, 9, 201-206.

Werner, T. and Church, W.B. (2013) Kink characterization and modeling in transmembrane protein
structures, Journal of chemical information and modeling, 53, 2926-2936.

White, S.H. (2004) The progress of membrane protein structure determination, Protein Sci., 13, 1948-
1949.

Wilcoxon, F. (1946) Individual comparisons of grouped data by ranking methods, Journal of economic
entomology, 39, 269.

Wimley, C.W. and White, S.H. (1996) Experimentally determined hydrophobicity scale for proteins at
membrane interfaces, Nature Struct. Biol., 3, 842-848.

Wimley, W.C. (2002) Toward genomic identification of beta-barrel membrane proteins: composition
and architecture of known structures, Protein science : a publication of the Protein Society, 11, 301-

312.

Wimley, W.C. (2003) The versatile beta-barrel membrane protein, Current opinion in structural
biology, 13, 404-411.

Wu, H., et al. (2012) Structure of the human kappa-opioid receptor in complex with JDTic, Nature,
485, 327-332.

Wu, S. and Zhang, Y. (2008) MUSTER: Improving protein sequence profile-profile alignments by using
multiple sources of structure information, Proteins, 72, 547-556.

Xu, J. and Zhang, Y. (2010) How significant is a protein structure similarity with TM-score = 0.5?,
Bioinformatics, 26, 889-895.

Yaffe, D., et al. (2014) Functionally important carboxyls in a bacterial homologue of the vesicular
monoamine transporter (VMAT), The Journal of biological chemistry, 289, 34229-34240.

Yamashita, A, et al. (2005) Crystal structure of a bacterial homologue of Na+/Cl--dependent
neurotransmitter transporters, Nature, 437, 215-223.

184



Yang, A.S. and Honig, B. (2000) An integrated approach to the analysis and modeling of protein
sequences and structures. |. Protein structural alignment and a quantitative measure for protein
structural distance, Journal of molecular biology, 301, 665-678.

Yarov-Yarovoy, V., Schonbrun, J. and Baker, D. (2006) Multipass membrane protein structure
prediction using Rosetta, Proteins, 62, 1010-1025.

Ye, Y. and Godzik, A. (2003) Flexible structure alignment by chaining aligned fragment pairs allowing
twists, Bioinformatics, 19 Suppl 2, ii246-255.

Ye, Y. and Godzik, A. (2004) FATCAT: a web server for flexible structure comparison and structure
similarity searching, Nucleic acids research, 32, W582-585.

Zemla, A. (2003) LGA: A method for finding 3D similarities in protein structures, Nucleic acids
research, 31, 3370-3374.

Zhang, P., Wang, J. and Shi, Y. (2010) Structure and mechanism of the S component of a bacterial ECF
transporter, Nature, 468, 717-720.

Zhang, Y. and Skolnick, J. (2004) Scoring function for automated assessment of protein structure
template quality, Proteins, 57, 702-710.

Zhang, Y. and Skolnick, J. (2005) TM-align: a protein structure alignment algorithm based on the TM-
score, Nucleic acids research, 33, 2302-2309.

185



