
Institut für Informatik
Fachbereich Informatik und Mathematik

Rewriting of Higher-Order-Meta-Expressions

with Recursive Bindings

David Sabel

2017

Frankfurter Informatik-Berichte
Institut für Informatik • Robert-Mayer-Str. 11-15 • D-60325 Frankfurt am Main, Germany

ISSN 1868-8330

1

Rewriting of Higher-Order-Meta-Expressions with Recursive
Bindings

David Sabel?

Goethe-University, Frankfurt am Main, Germany
sabel@ki.informatik.uni-frankfurt.de

Abstract. We introduce rewriting of meta-expressions which stem from a meta-language that
uses higher-order abstract syntax augmented by meta-notation for recursive let, contexts, sets
of bindings, and chain variables. Additionally, three kinds of constraints can be added to meta-
expressions to express usual constraints on evaluation rules and program transformations. Rewriting
of meta-expressions is required for automated reasoning on programs and their properties. A
concrete application is a procedure to automatically prove correctness of program transformations
in higher-order program calculi which may permit recursive let-bindings as they occur in functional
programming languages. Rewriting on meta-expressions can be performed by solving the so-called
letrec matching problem which we introduce. We provide a matching algorithm to solve it. We
show that the letrec matching problem is NP-complete, that our matching algorithm is sound and
complete, and that it runs in non-deterministic polynomial time.

1 Introduction

We are interested in meta-languages which are capable to represent the syntax and semantics of program
calculi in form of a reduction semantics with evaluation contexts (see e.g. [21]). We are particularly
interested in extended lambda-calculi with call-by-need evaluation which model the (untyped) core
languages of lazy functional programming languages like Haskell (see [2,1,18]). A common construct are
cyclic let-expressions representing an unordered set of recursive bindings and a body which can reference
the bindings. With those letrec-expressions recursive functions and sharing can easily be expressed.

To represent those program calculi, we introduced the meta-language LRSX in [16]. It uses higher-order
abstract syntax [11] extended with a letrec-construct letr and further meta-constructs which stem from
modeling small-step reduction rules. For example, the following reduction rule

letr x1=A1[x2], . . . , xn−1=An[xn], xn=(λy.s0) s1 in A′[x1]
→ letr x1=A1[x2], . . . , xn−1=An[xn], xn=(letr y=s1 in s0) in A′[x1]

performs a (sharing-variant) of β-reduction at a needed position (assuming that A,Ai represent eval-
uation contexts). However, the search for the reduction position is modeled by the informal notion
x1=A1[x2], . . . , xn−1=An[xn] for a chain of bindings (of arbitrary length). Our meta-language provides
so-called chain-variables to represent the chains on the meta level. The example also shows that the meta-
syntax requires a notion of contexts for different context classes. The rule letr Env1 in letr Env2 in s→
letr Env1,Env2 in s where Env1,Env2 represent arbitrary letrec-environments joins two nested letrec-
environments. Our meta-language supports this representation by providing meta-variables for (parts of)
letr-environments. The rule also requires that scoping is respected, i.e. let-bindings of Env2 must not
capture variables in Env1. That is why we use so-called constrained expressions, which are meta-expressions
augmented by constraints which restrict the ground instances of the expression. Hence our meta-language
is capable to model higher-order program calculi with recursive bindings, e.g., the calculus Lneed [17]
which is a call-by-need lambda calculus with letr, as well as the calculus LR [18] which extends Lneed by
constructs of core languages for Haskell.

We focus on automated proofs of the correctness of program transformations for program calculi which
are representable using LRSX. In this paper we are concerned with applying rewrite rules to constrained
expressions. One application of this rewriting is the diagram method (see [18,14] and also [20,9,8]) which
is a syntactic method to prove the correctness of program transformations. One step of the method is to
compute joins for overlaps which are pairs (s, t) of constrained expressions that stem from overlapping
standard reductions of the calculus with program transformation steps. To compute joins, rewriting of s
and t w.r.t. a set of rules consisting of standard reductions of the calculus and also program transformations
has to be performed to find a common successor of s and t.

?This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA2908/3-1.

x, y, z ∈ Var ::=X | x
s, t ∈ HExpr0 ::=S |D[s] | letr env in s | (f r1 . . . rar(f))

where ri ∈ HExprk if oar(f)(i) = k ≥ 0, and ri ∈ Var, if oar(f)(i) = Var.

s ∈ HExprn ::=x.s1 if s1 ∈ HExprn−1 and n ≥ 1

b ∈ Bind ::=x.s where s ∈ HExpr0

env ∈ Env ::= ∅ |E; env |Ch[x, s]; env | b; env

Fig. 1. Syntax of LRSX, the constructs X,S,D,E,Ch are meta-variables.

Results. We focus on solving the so-called letrec matching problem. Instances of the problem can be
used to perform rewriting of constrained expressions. We sketch the matching algorithm MatchLRS
which and argue that it is sound and complete w.r.t. the letrec matching problem (Theorem 4.13), and
that it runs in non-deterministic polynomial time. Furthermore, we show that the letrec matching problem
is NP-complete (Theorem 4.15). Also an implementation of the matching algorithm exists, it is used in
the LRSX Tool1 – a tool to automatically prove correctness of program transformations.

Related and Previous Work. Higher-order abstract syntax was introduced in [11] for implementing
higher-order unification and matching. Since our approach should be applicable to descriptions of program
calculi, we have to combine several techniques and thus require a matching algorithm which can treat
meta-variables representing environments, chains, contexts, and expression variables. An approach for
syntactic reasoning on higher-order expressions and binders are nominal techniques [12] which reason
w.r.t. α-equivalence, including nominal unification [19,4,7], nominal matching [3], and nominal rewriting
[6]. However, our focused functional languages contain letrec (see e.g. [5] for a discussion on reasoning
with more general name binders) and require more sophisticated constructs which are not available for
nominal reasoning. A recent approach is [15] where a nominal unification algorithm including recursive
bindings is given. However, it cannot deal with environment, context and chain variables. Thus we use a
syntactic approach excluding alpha-equivalence.

In [16] a unification algorithm for LRSX-expressions was developed which also removed several restrictions
on the input problem which were present in an earlier attempt [13] to unify expressions with letrec. Usually
unification is more complicated than matching (since matching is a unification problem where variables
occur only on one side of the equations), but for our meta-expressions the situation is different, since i)
the occurrence restrictions on meta-variables occurring in the unification problems in [16] are too strong
for symbolic rewriting and our application (computing joins as part of the diagram method), ii) since
we want to rewrite meta-expressions, meta-variables occur on both sides of matching equations, however
with a different meaning: on one side the variables can be instantiated by the matcher, while on the other
side they represent sets of expressions, environments, contexts, variables or chains which are fixed, iii)
the matching problem is defined on constrained expressions and a matcher has to ensure that the given
constraints imply the needed constraints, while the unification algorithm in [16] is not designed to handle
this.

Outline. In Sect. 2 we recall our meta-language LRSX. In Sect. 3 we introduce constrained expressions, the
notion of meta letrec rewrite rules, and the letrec matching problem. Sect. 4 contains the matching algorithm
MatchLRS, and we prove soundness and completeness of MatchLRS, and show NP-completeness of
the letrec matching problem. We conclude in Sect. 5.

2 The Meta-Language

We recall the syntax of the meta-language LRSX (see also [16]) which covers several extended lambda
calculi (e.g. [18,10,2]). It is parametrized over a set F of function symbols and a finite set K of context
classes. However, to avoid complex definitions, in this paper we work with four context classes only, and
thus assume K = {Triv ,A, T , C} where Triv only contains the empty context, A are applicative contexts,
T are top-contexts, and C are arbitrary contexts.

The syntax of the language LRSX(K,F) is defined in Fig. 1 with four syntactic categories of objects
(called types): Var is a countably-infinite set of variables, HExpr are higher-order expressions, Env are
letrec-environments, and Bind are letrec-bindings. Elements o of HExpr have an order order(o) ∈ IN0,
where HExprn denotes the elements of HExpr of order n. We set Expr = HExpr0. Every f ∈ F
has a syntactic type of the form f : τ1 → . . . → τn → Expr, where τi may be Var, or HExprki ; n
is called the arity of f , denoted ar(f); and the order arity oar(f) is the n-tuple 〈δ1, . . . , δn〉, where

1 http://goethe.link/LRSXTOOL

2

http://goethe.link/LRSXTOOL

δi = ki ∈ IN0, or δi = Var, depending on the type of f . We write oar(f)(i) to extract δi. For f ∈ F ,
sp(f) ⊆ {i | 1 ≤ i ≤ ar(f), oar(f)(i) = 0} denotes the set of strict positions of f . In F there is at
least a unary operator var of type Var→ Expr which lifts variables to expressions, where ar(var) = 1,
oar(var) = 〈Var〉, and sp(var) = ∅, and the operator λ with ar(λ)=1, oar(λ)=〈1〉, and sp(λ)=∅.

To distinguish concrete term variables, meta-variables, and meta-symbols, we use different fonts and
lower- or upper-case letters: concrete term-variables of type Var are denoted by x, y, and x, y are used
as meta-symbols to denote a concrete term variable or a meta-variable. Similarly, lower-case letters s, t
denote expressions, env denotes environments, and b denotes bindings. Meta-variables are written in
upper-case letters, where X,Y are of type Var, S is of type Expr, E is of type Env, D is a context
variable, and Ch is a two-hole environment-context variable (chain variable, for short) which must be
of the type Var→ Expr→ Env, and occurs with a Var-argument x, and an Expr-argument s. Each
context variable has a class cl(D) ∈ {A, T , C} and each Ch-variable has a class cl(Ch) ∈ {Triv ,A}. An
LRSX-expression s is ground (an LRS-expression, often written as s) iff it does not contain any meta-variable.

Contexts are expressions, where the symbol [·] : Expr (the hole) is permitted to occur instead of one
subexpression. With D we denote meta-variables for contexts, d represents a concrete context (i.e. an
LRS-expression with a hole), and d denotes LRSX-contexts, i.e. contexts, that may contain meta-variables.
Filling the hole of d with s is written as d[s]. Multi-contexts with k > 1 holes are written with several
hole symbols [·1], . . . , [·k]. A context class K ∈ K is a set of contexts. Classes A, T , C are defined by the
following grammar where DA, DT , DC are context-variables s.t. cl(DC) ∈ {A, T , C}, cl(DT) ∈ {A, T },
and cl(DA) = A; and where f, g ∈ F s.t. oar(f)(i) = 0 and oar(g)(i) = m:

dA∈A::=DA | [·] | f s1 . . . si−1 dA si+1 . . . sn where i ∈ sp(f)

dT∈T ::=DT | [·] | letrx.dT ; env in s | letr env in dT | f s1 . . . si−1 dT si+1 . . . sn if oar(f)(i) = 0

dC∈C::= DC | [·] | letrx.dC ; env in s | letr env in dC | g s1 . . . si−1 x1. . . . xm.dC si+1 . . . sn

The class Triv contains only the empty context [·] and there are no context variables for this class. We
use the ordering Triv < A < T < C, since C ⊇ T ⊇ A ⊇ Triv .

Example 2.1. Since oar(λ)=〈1〉, λ must be applied to a higher-order expression of order 1. The identity
function is represented by applying λ to x.(var x) written as λx.(var x). Applications can be represented
by a function symbol app with ar(app)=2, oar(app)=〈0, 0〉, and sp(app)= {1}. The context λx.[·] is a
C-context but neither a top- nor an application context, the context (app S [·]) is a C- and T -context, but
not an application context (since 2 6∈ sp(app)), while the context (app (app [·] S1) S2 is an A-context.

Example 2.2. If oar(f)(i)=Var, then the ith argument of function symbol f must be a variable. For
instance, with the definition appx ∈ F , oar(appx) = 〈0,Var〉 we introduce an application where the
second argument is restricted to variables (e.g. in [10] such applications occur). Constructors can be
represented by a function symbol f where sp(f)=∅ and oar(f) is a tuple of only 0-s. For example, the
list constructors are nil and cons with ar(nil)=0, oar(nil)=〈〉, ar(cons)=2, oar(cons)=〈0, 0〉, and
sp(cons)=sp(nil)=∅.

Definition 2.3. For any syntactic object r, let MV (r) be the set of meta-variables occurring in r.
In a higher-order expression x.r, the scope of x is r. The scope of x in letr x.s; env in s′ or
letr Ch[x, s]; env in s′ is s, env, Ch and s′. With FV (r) we denote the set of variables x that are
not bound by some higher-order binder, a let-binding, or the x in Ch[x, s], and with BV (r) we denote the
set of bound variables. We write Var(r) for FV (r) ∪ BV (r). For environment env, LV (env) denotes the
let-bound variables in env, i.e. all x s.t. env = env ′;x.s or env = env ′; Ch[x, s]. For a ground context d,
CV (d) (the captured variables) denotes the set of variables x which become bound if plugged into the hole
of d. Every context class except for Triv must contain a non-empty context d, s.t. CV (d) = ∅, and for
every variable y it contains a context dy s.t. Var(dy) = {y}2. Let ∼let be the reflexive-transitive closure of
permuting bindings in a letr-environment, and ∼α (extended α-equivalence) be the reflexive-transitive
closure of combining ∼let and α-equivalence.

Definition 2.4. Meta-variables represent ground expressions, environments, and contexts. The semantics
of meta-variables X,Y are all concrete variables of type Var, expression variables S represent any ground
expression of type Expr, and environment variables E represent all ground environments of type Env.
The semantics of a context variable D with cl(D) = K are all contexts of context class K. The construct

2 Note that these assumptions can be satisfied, if app ∈ F , since Var(app [·] (var y)) = {y} and
CV (app [·] (var x)) = ∅.

3

Ch[x, s] with cl(Ch) = K stands for x.d[s] or chains x.d1[(var x1)]; x1.d2[(var x2)]; . . . ; xn.dn[s] with fresh
variables xi, and contexts d, di from the context class K.

A substitution ρ maps a finite set of meta-variables to variables, expressions, environments, and contexts
respecting their types and classes. With Dom(ρ) (Cod(ρ), resp.) we denote the domain (co-domain, resp.)
of ρ. Substitutions for chain-variables Ch map two-hole environment-contexts to two-hole environment
contexts and they must be of the form {Ch[·1, ·2] 7→ [·1].d1[(var x1)];x1.d2[(var x2)]; . . . ;xn.dn[·2]} where
di are (meta) contexts of class cl(Ch). A substitution ρ is ground iff it maps all variables in Dom(ρ) to
LRS-expressions.

Example 2.5. The rule

letr x1=A1[x2], . . . , xn−1=An[xn], xn=(λy.s0) s1 in A′[x1]
→ letr x1=A1[x2], . . . , xn−1=An[xn], xn=(letr y=s1 in s0) in A′[x1]

can be written in LRSX as

letrE; Ch[X1, app (λY.S0)S1] inA[varX1]→ letrE; Ch[X1, letrY.S1 inS0] inA[varX1]

where Ch is a chain-variable of class A.

Definition 2.6. An LRSX-expression s satisfies the let variable convention (LVC) iff a let-bound variable
does not occur twice as a binder in the same letr-environment; and s satisfies the distinct variable
convention (DVC) iff BV (s) and FV (s) are disjoint and all binders bind different variables.

We use this definition for concrete and for X-variables. E.g., s=letrX.varX;Y.varY inS fulfills the
LVC, while for ρ={X 7→x, Y 7→x, S 7→var x}, the LVC is violated for ρ(s), since there are two let-binders
for x in the same environment.

3 Constrained Meta-Expressions and Letrec Rewrite Rules

Definition 3.1. A constrained meta-expression (s,∆) consists of an LRSX-expression s and a constraint
tuple ∆ = (∆1, ∆2, ∆3) s.t. ∆1 is a finite set of context variables, called non-empty context constraints;
∆2 is a finite set of environment variables, called non-empty environment constraints; and ∆3 is a finite
set of pairs (t, d) where t is an LRSX-expression and d is an LRSX-context, called non-capture constraints
(NCCs, for short). A ground substitution ρ satisfies ∆ iff for i = 1, 2, 3, ρ satisfies ∆i, where ρ satisfies
∆1 iff ρ(D) 6= [·] for all D ∈ ∆1; ρ satisfies ∆2 iff ρ(E) 6= ∅ for all E ∈ ∆2; and ρ satisfies ∆3 iff
Var(ρ(t)) ∩CV (ρ(d)) = ∅ for all (t, d) ∈ ∆3. If there exists a ρ that satisfies ∆, then ∆ is satisfiable. The
concretizations of (s,∆) are γ(s,∆) := {ρ(s) | ρ is a ground substitution, ρ(s) fulfills the LVC, ρ satisfies
∆}.

Example 3.2. For ∆ = (∆1, ∆2, ∆3) = (∅, {E1, E2}, {(letr E1 in c, letr E2 in [·])})), the constrained
expression (letr E1 in letr E2 in S,∆) represents all LRS-expressions that are nested letr-expressions
s.t. both letr-environments are non-empty and the let-variables of the inner environment are distinct
from all variables occurring in the outer environment.

An example that requires non-empty context constraints is the following reduction rule from the
calculus Lneed [17] which copies an abstraction into a needed position in a letr-environment by following
indirections:

letrE; Ch1[Xn, λX.S]; Ch[Y,A1[varXn]] inA[varY]
→ letrE; Ch1[Xn, λX.S]; Ch[Y,A1[λX.S]] inA[varY]

where cl(Ch)=A, cl(Ch1)=Triv . If A1 is empty, then the target of the copy operation should be the
variable Y in A[varY]. Thus the case A1 = [·] should be excluded which can be expressed by setting
∆1 = {A1}.

Example 3.3. Reconsider the reduction rule in Example 2.5: The rule must not be applied to instances
where the variable y occurs in expression s1, since otherwise, the variable y is captured in the generated
letr-expression (letr y = s1 in s0). To forbid such captures (and instances) we can add the NCC
(S1, λY.[·]) to the rule.

4

CVM (D[d]) = CVM (D)∪CVM (d)
CVM (x.d) = {x}∪CVM (d)
CVM (D) = ∅, if cl(D)=A
CVM (D) = {D}, if cl(D) 6=A

CVM (letr env in d) = CVM (env)∪CVM (d)
CVM (letr z.d;env in s) = CVM (env)∪{z}∪CVM (d)
CVM (letrCh[z, d];env in s) = CVM (env)∪{Ch, z}∪CVM (d)
CVM (f s1 . . . d . . . sn) = CVM (d)

CVM (x) = ∅
CVM (S) = ∅
CVM ([·]) = ∅

CVM (env) =
⋃
{{Ch, z}|Ch[z, s];env ′=env}∪{E | E;env ′=env}∪{z | z.s;env ′=env}

Fig. 2. The function CVM

When computing with NCCs it is often easier to split the NCCs into atomic NCCs (u, v) where u, v
are variables or meta-variables (of any kind): For a constraint tuple (∆1, ∆2, ∆3), let splitncc(∆3) :=⋃

(s,d)∈S{(u, v) | u ∈ VarM (s), v ∈ CVM (d)}, where VarM (s) := MV (s) ∪ Var(s), and CVM collects all
concrete variables that capture variables of the context hole, and all meta-variables which may have
concretizations that introduce capture variables. (see Fig. 2 for the definition CVM). For an atomic NCC
(u, v) and a ground substitution ρ, let VarA(ρ(u)) = Var(ρ(u)) and CVA(ρ(x)) = {ρ(x)}, CVA(ρ(D)) =
CV (ρ(D)), CVA(ρ(E)) = LV (ρ(E)), CVA(ρ(Ch)) = LV (ρ(Ch)). Note that for an NCC (s, d) and a ground
substitution ρ the equalities Var(ρ(s)) = {VarA(ρ(u)) | u ∈ VarM (s)} and CV (ρ(d)) = {CVA(ρ(u)) | u ∈
CVM (d)} hold. For instance, a constraint tuple ∆ = (∆1, ∆2, ∆3) is satisfiable iff splitncc(∆3) does not
contain a pair (u, u) where u is a variable x, a meta-variable X, or an E-variable with E ∈ ∆2.

For example, for ∆ = (∅, ∅, {(var Z, λX.λY.[·]), (letrec E in S, letr Z.var Z;E in [·])})
we have splitncc(∆3) = {(Z,X), (Z, Y), (E,Z), (S,Z), (E,E), (S,E)} which is satisfiable, but for
∆ = (∅, {E}, {(var Z, λZ.λY.[·]), (letrec E in S, letr Z.var Z;E in [·])}) we have splitncc(∆3) =
{(Z,Z), (Z, Y), (E,Z), (S,Z), (E,E), (S,E)} which is not satisfiable since (Z,Z) ∈ splitncc(∆3) and also
since (E,E) ∈ splitncc(∆3) where E must not be instantiated by the empty environment since E ∈ ∆2.

We define letrec rewrite rules to rewrite LRS-expressions. The rules have occurrence restrictions for the
meta-variables which make the corresponding unification and matching problems easier to solve. They are
sufficient to express reductions and transformations of usual program calculi (see also [16]). The semantics
of meta letrec rewrite rules are all ground instances of the rule which satisfy the corresponding constraints.
The rules are always applied to the top of expressions, since the strategy and the corresponding positions
are expressed by the contexts used in the left and right hand sides of the rules.

Definition 3.4. Let `, r be LRSX-expressions, ∆ be a constraint tuple, s.t. MV (∆) ⊆ MV (`) ∪MV (r),

and n be a name. Then `
n−→∆ r is called a meta letrec rewrite rule, provided the following restrictions hold:

For expressions ` and r, every variable of type S occurs at most twice in an expression; every variable of
kind E,Ch, D occurs at most once in an expression; and Ch-variables occurring in ` must occur in one
letr-environment only, i.e. ` is of the form d[letrCh1[x1, s1]; . . . ; Chk[xk, sk]; env in t] s.t. d, t, env , si
do not contain any Ch-variable. Furthermore, for any ground substitution ρ that satisfies ∆, ρ(`) fulfills the
LVC iff ρ(r) fulfills the LVC. A meta letrec rewrite rule represents a (perhaps infinite) set of rewrite rules,

i.e. the semantics is: γ(`
n−→∆ r) := {(ρ(`), ρ(r)) | ρ is a ground substitution for `, r, s.t. ρ(`), ρ(r) fulfill

the LVC, ρ satisfies ∆}. Given a set S of meta letrec rewrite rules, we write s
n−→ t if (s, t) ∈ γ(`

n−→∆ r)

with `
n−→∆ r ∈ S. We write s −→ t if some rule named n exists in S s.t. s

n−→ t.

Example 3.5. The reduction rule used in Examples 2.5 and 3.3 and the reduction rules from Example 3.2
can be written as meta letrec rewrite rules:

• letrE; Ch[X1, app (λX.S0)S1] inA[varX1]
lbeta−−−→(∅,∅,{(S1,λX.[·])}) letrE; Ch[X1, letrX.S1 inS0] inA[varX1]

• letrE1 in letrE2 inS
llet-in−−−→(∅,{E1,E2},{(letrec E1 in c,letrec E2 in [·])}) letrE1;E2 inS

• letrE; Ch1[Xn, λX.S]; Ch[Y,A1[varXn]] inA[varY]
cp-e−−→({A1},∅,∅) letrE; Ch1[Xn, λX.S]; Ch[Y,A1[λX.S]] inA[varY]

Note that the NCC in rule named llet-in is needed to ensure that the rule does not introduce a capture of
variables occurring in the environment E1 by bindings from environment E2.

To apply a meta letrec rewrite rule `
n−→∆ r to LRS-expression s, we need to find a ground substitution

ρ s.t. ρ(`) ∼let s and ρ satisfies ∆. This task can be performed by a matching algorithm and also by the
unification algorithm from [16]. However, our goal is to apply meta letrec rewrite rules to constrained
meta-expressions, i.e. for constrained expression (s,∇), we want to compute successors (ti,∇′i) of (s,∇)

w.r.t. `
n−→∆ r. This rewriting has to be sound, i.e. whenever t ∈ (ti,∇′i), then there exists s ∈ (s,∇)

s.t. s
n−→ t ∈ γ(`

n−→∆ r). Thus we have to guarantee that if (s,∇) is symbolically rewritten to (ti,∇′i),

5

then this is also possible for every ground instance of s which satisfies ∇. We therefore introduce the
letrec matching problem and in the subsequent section an algorithm to solve this problem.

Usually matching means to solve directed equations of the form s E t where s is a meta-expression
with meta-variables and t is a ground expression. However, our matching equations are of the form s E t
where s is a meta-expression with instantiable meta-variables and t is meta-expression with meta-variables
which are treated like “meta-constants”. We thus distinguish two sets of meta-variables, instantiable
meta-variables and fixed meta-variables. We use blue font for instantiable meta-variables and red font and
underlining for fixed meta-variables. With MVI(·) and MVF (·) we denote functions to compute the sets.

Definition 3.6. A letrec matching problem (LMP, for short) is a tuple P=(Γ,∆,∇) where Γ is a set of
matching equations s E t s.t. MVI(t) = ∅; ∆=(∆1, ∆2, ∆3) is a constraint tuple, called needed constraints;
∇=(∇1,∇2,∇3) is a constraint tuple, called given constraints, where MVI(∇i)=∅ for i = 1, 2, 3, ∇ is
satisfiable, for all expressions in Γ , the LVC must hold, and every instantiable variable of kind S occurs at
most twice in Γ ; every instantiable variable of kind E,Ch, D occurs at most once in Γ . A matcher of P is
a substitution σ where Dom(σ) = MVI(Γ), MVI(σ(s)) = ∅ and MVF (σ(s)) ⊆ MVF (P) for all s E t ∈ Γ ,
s.t. for any ground substitution ρ with Dom(ρ) = MVF (P) which satisfies ∇, ρ(σ(s)), ρ(t) fulfill the LVC
for all s E t ∈ Γ , we have ρ(σ(s)) ∼let ρ(t) for all s E t ∈ Γ and there exists a ground substitution ρ0
with Dom(ρ0) = MVI(ρ(σ(∆))) s.t. ρ0(ρ(σ(∆))) is satisfied.

If MVI(Γ) = MVI(∆), then the definition of a matcher ensures that the given constraints ∇ imply the
needed constraints ∆.

Example 3.7. The LMP ({s E t}, ∆,∇) with s = letr E1 in S1, t = letr E2 in S2, ∆ =
(∅, {E1}, {(S1, letr E1 in [·])}), and ∇ = (∅, {E2}, ∅) has no matcher: The substitution σ = {E1 7→
E2, S1 7→ S2} is not a matcher, since the given constraints do not imply the needed constraints: For

instance, for ρ = {E2 7→ x.var x, S2 7→ var x} we have ρ(σ(s)) = ρ(t), ρ satisfies ∇, but ρ(σ(∆)) is not
satisfied, since the NCC ρ(σ((S1, letr E1 in [·]))) = (var x, letr x.var x in [·]) is violated. However, the
substitution σ is a matcher of the LMP (s E t,∆,∇′) with ∇′ = (∅, {E2}, {(S2, letr E2 in [·])}).

Note that the unification algorithm in [16] cannot be reused for matching, since its occurrence restrictions
are too strong (fixed meta-variables may occur more often and chain variables may occur on the right
hand sides of matching equations) and the algorithm cannot infer whether the given constraints ∇ imply
the needed constraints ∆.

As a further note, we explain the role of the additional substitution ρ0 in the definition of a matcher.
It is needed for the case that the transformation or reduction introduces “fresh” variables. E.g., in

letr X.c S1 in S2 →(∅,∅,∆3) letr X.c (var Y);Y.S1 in S2

with ∆3 = {(var X,λY.[·]), (S1, λY.[·]), (S2, λY.[·])}, the constraints ensure that Y is fresh. Matching the
left hand side of the rule against some expression, for instance, letr u.c (var y) in var u, will not instantiate
the variable Y . Thus, after instantiation, the NCCs in ∆3 become {(var u, λY.[·]), (var v, λY.[·])}. Validity
depends on the instantiation of Y . The definition of a matcher allows us to choose an instance that satisfies
the constraints (e.g. ρ0 = {Y 7→ w}). Any instantiation which satisfies the NCCs is valid, and thus to use
matching for symbolic reduction, we can also keep the constraints (instead of using a ground instance)
and add them to the given constraints on the result. We show that a matcher indeed can be used to apply
meta letrec rewrite rules to constrained expressions:

Proposition 3.8. Let (s,∇) be a constrained expression, `
n−→∆ r be a meta letrec rewrite rule, σ be a

matcher for ({` E s}, ∆,∇), and ρ be a ground substitution, s.t. ρ satisfies ∇, ρ(s) and ρ(σ(`)) fulfill the

LVC. Then there exists a ground substitution ρ0 s.t. ρ(s)
n−→ ρ0(ρ(σ(r))) ∈ γ(`

n−→∆ r).

4 Solving the Letrec Matching Problem

We present the algorithm MatchLRS. A state of MatchLRS is a tuple (Sol , Γ,∆,∇) where Sol is a
computed substitution and (Γ,∆,∇) is a LMP, where Γ consists of expression-, environment, binding-,
and variable-equations. For (Γ,∆,∇), the state is initialized with (Id , Γ,∆,∇) where Id is the identity. A
final state is of the form (Sol , ∅, ∆,∇). The output of MatchLRS is either a final state or Fail . The rules

of MatchLRS are inference rules
S

S1 | . . . | Sn
s.t. for given state S, the algorithm non-deterministically

branches into derived states S1, . . . , Sn. This non-determinism is don’t know non-determinism. Rule
application between the rules is don’t care non-determinism. Variables occurring in S1, . . . , Sn but not in S

6

(SolX)
(Sol ,Γ ·∪{X E x},∆)

(Sol◦{X 7→x},Γ [x/X],∆[x/X])
(SolS)

(Sol ,Γ ·∪{S E s},∆)

(Sol◦{S 7→s},Γ [s/S],∆[s/S])
(DecH)

Γ ·∪{x.s E y.t}
Γ ·∪{x E y, s E t}

(DecL)
Γ ·∪{letrenvin s E letrenv ′in t}

Γ ·∪{env E env ′, s E t}
(DecF)

Γ ·∪{f s1 . . . sn E f t1 . . . tn}
Γ ·∪{s1 E t1, . . . , sn E tn}

(DecD)
Γ ·∪{D[s] E D[t]}

Γ ·∪{s E t}

(CxPx)
(Sol , Γ ·∪{D[s] E D′[s′]},∆,∇)

(Sol ◦ σ, Γ ·∪{D′′[s] E s′},∆σ,∇) s.t. σ={D 7→D′[D′′]},cl(D′′)=cl(D)

if D∈∆1 ⇐⇒ D′∈∇1

and cl(D′) ≤ cl(D)

(ElX)
Γ ·∪{x E x}

Γ
(CxCG)

(Sol ,Γ ·∪{D[s] E D′[s′]},∆,∇)

(Sol◦σ,Γ ·∪{s E D′[s′]},∆σ,∇) where σ = {D 7→[·]}
if D 6∈∆1, cl(D′) >cl(D)

(ElS)
Γ ·∪{S E S}

Γ
(CxGuess)

(Sol , Γ ·∪{D[s] E t},∆,∇)

(Sol ◦ {D 7→ [·]}, Γ ·∪{s E t},∆[[·]/D],∇)
| (Sol , Γ ·∪{D[s] E t}, (∆1 ·∪{D},∆2,∆3),∇)

if D 6∈ ∆1, t 6= D′[s] with
D′ 6∈ ∇1 or cl(D′) > cl(D)

(CxF)
(Sol , Γ ·∪{D[s] E f s1 . . . sn},∆,∇)

|
i ∈ I, where I = sp(f), if cl(D)=A, I = {i | oar(f)(i) = 0} if cl(D)=T , I = {i | oar(f)(i) 6= V } if cl(D) = C

(Sol ◦ σi, Γ ·∪{D′[s] E si},∆σi,∇) s.t. D′, X1, . . . , Xm are fresh, cl(D′) = cl(D),
and σi = {D 7→ f s1 . . . si−1X1 . . . Xm.D

′ si+1 . . . sn},

if D∈∆1

(CxL)
(Sol , Γ ·∪{D[s] E letr env in s′},∆,∇)

(Sol ◦ σ, Γ ∪ {D′[s] E s′},∆σ,∇) s.t. σ = {D 7→ letr env in D′}, cl(D′) = cl(D)
| (Sol ◦ σ, Γ ∪ {E;Ch[X,D′[s]] E env},∆σ,∇) s.t.
σ = {D 7→letrE;Ch[X,D′] in s′}, cl(D′)=cl(D), cl(Ch)=A

if D ∈ ∆1,
cl(D) ≥ T

Fig. 3. Rules of MatchLRS for expression and binding equations

are always meant as fresh variables. The non-failure rules of MatchLRS are shown in Figs. 3 and 4. Rules
(SolveX) and (SolveS) solve, and (ElX) and (ElS) eliminate an expression equation. Rules (DecF), (DecH),
(DecL), and (DecD) decompose function symbols, higher-order binders, bindings, letrec-expressions, and
contexts. Other rules on expressions treat equations of the form D[s] E t, where (CxPx) covers the case
that t is D′[t′] and D′ is a prefix of D where D must be at least as general as D′. If D′ is non-empty, but D
may be empty, then rule (CxGuess) is applicable. If the class of D′ is strictly more general than the class of
D, D must be instantiated by the empty context (rule (CxCG)). Rules (CxF) and (CxL) match the context
variable against a function symbol or a letr-expression. Rules (EnvEm) and (ElE) eliminate, and (SolveE)
solves an environment equation. Rule (EnvAE) solves a set of environment variables by instantiating them
with ∅, where env is non-empty if env = b; env ′, env = Ch[y, s]; env , or env = E′; env with E′ ∈ ∇2.
Rule (EnvB) is applicable if the right hand side of the equation contains a binding which may be matched
against a binding, a part of a non-empty environment variable, or a part of a chain-variable, where four
cases are possible: the binding coincides with, the binding is a prefix, a proper infix, or a suffix of the
chain. Rule (EnvE) applies if the right hand side of an equation contains a fixed environment variable
which has to be matched with a part of an instantiable variable. Rule (EnvC) covers the cases that a fixed
chain-variable on the right hand side must be matched against the same variable on the left hand side, an
instantiable environment variable, or and instantiable chain-variable.

In Fig. 5 the failure rules of MatchLRS are defined. The NCC-implication check (used in rule
(NCCFail)) decides whether the given NCCs imply the needed NCCs of a LMP:

Definition 4.1. Let (Sol , ∅, ∆,∇) be a final state of MatchLRS for input (ΓI , ∆I ,∇I). The set
NCClvc :=

⋃
{NCClvc(r) | r ∈ {Sol(s), t}, s E t ∈ ΓI}, where NCClvc(·) on expressions is defined in

Fig. 6, contains atomic NCCs that are implied by the LVC. The NCC-implication check is valid iff for all
(u, v) ∈ splitncc(∆3) one of the following cases holds:

1. u = x and v = y where x 6= y.

2. (u, v) ∈ splitncc(∇3) ∪NCClvc.

3. u = v and u = Ch or u = D or u = E with E 6∈ ∆2.

4. u 6= v and u ∈ {Ch, S,D,E,X}.
5. u 6= v and v = Ch, or v = D, or v = E, or v = X.

6. u = E or u = Ch with cl(Ch) = Triv and (u, u) ∈ splitncc(∇3) ∪NCClvc.

7. v ∈ {E,Ch, D} and (v, v) ∈ splitncc(∇3) ∪NCClvc.

8. (u, v) is (X, y), (x, Y), (X,Y), (x, D), (X,D), (x, E), (X,E), (x,Ch), (X,Ch), (Ch1, x), (Ch1, X),
(Ch1, E), (Ch1, D), or (Ch1,Ch2) where cl(Ch1) = Triv and in all cases (v, u) ∈ splitncc(∇3)∪NCClvc.

7

(EnvAE)
(Sol ,Γ ·∪{E1, . . . ,En E ∅},∆)

(Sol◦σ,Γ ,∆σ) s.t. σ={Ei 7→ ∅}ni=1

if ∀i:Ei 6∈∆2 (ElE)
Γ ·∪{E;env1 E E;env2}
Γ ·∪{env1 E env2}

(EnvEm)
Γ ·∪{∅ E ∅}

Γ

(EnvE)
(Sol ,Γ ·∪{env E E; env ′},∆,∇)

|
∀E′:env=E′;env1 and E 6∈∇2 =⇒ E′ 6∈∆2

(Sol ◦ σ,Γ ·∪{E′′; env1 E env ′},∆σ,∇) with σ={E′ 7→E′′;E}
if env 6= E; env1, ∃E:env=E;env1

s.t. E 6∈ ∇2 =⇒ E 6∈ ∆2

(SolveE)
(Sol ,Γ ·∪{E E env},∆,∇)

(Sol ◦ σ, Γ,∆σ,∇) where σ={E 7→env}

if E ∈ ∆2

⇐⇒
env is non-
empty

(EnvB)
(Sol , Γ ·∪{env E b; env ′},∆,∇)

|
∀b′:env=b′;env′′

(Sol , Γ ·∪{b′ E b, env ′′ E env ′},∆,∇)

| |
∀E:env=E;env′′
(Sol ◦ σ, Γ ·∪{E′; env ′′ E env ′},∆σ,∇) where σ = {E 7→ b;E′}

||
∀Ch:env=Ch[y,s];env′′

(Sol ◦ σ, Γ ·∪{y.D[s] E b, env ′′ E env ′},∆σ,∇)
where σ = {Ch[·1, ·2] 7→ [·1].D[·2]} and cl(D) = cl(Ch)

| |
∀Ch:env=Ch[y,s];env′′

(Sol ◦ σ, Γ ·∪{y.D[X] E b,Ch2[X, s]; env ′′ E env ′},∆σ,∇)
where σ = {Ch[·1, ·2] 7→[·1].D[X];Ch2[X, ·2]}, cl(D)=cl(Ch2)=cl(Ch)

| |
∀Ch:env=Ch[y,s];env′′

(Sol ◦ σ,Γ ·∪{Y .D1[X] E b,Ch1[y,D2[Y]];Ch2[X,s];env ′′ E env ′},∆σ,∇)
where σ={Ch[·1, ·2]7→Ch1[·1, D2[Y]];Y .D1[X];Ch2[X, ·2]}, cl(Di)=cl(Chi)=cl(Ch)

| |
∀Ch:env=Ch[y,s];env′′

(Sol ◦ σ, Γ ·∪{X1.D[s] E b,Ch1[y,D′[X1]]; env ′′ E env ′},∆σ,∇) where
σ={Ch[·1, ·2] 7→Ch1[·1, D′[X1]];X1.D[·2]}, cl(D)=cl(D′)=cl(Ch1)=cl(Ch)

(EnvC)
(Sol , Γ ·∪{env1 E Ch[y, s]; env2},∆,∇)

|
∀Ch:env1=Ch[y′,s′];env′

1

(Sol ◦ σ, Γ ·∪{y′ E y, s′ E s, env ′1 E env2},∆σ,∇)

| |
∀E:env1=E;env′

1

(Sol ◦ σ, Γ ·∪{E′; env ′1 E env2},∆σ,∇) where σ = {E 7→ E′;Ch[y, s]}

||
∀Ch1:env1 = Ch1[y1, s1]; env

′
1 and cl(Ch1) ≥ cl(Ch)

|
∀(d, t) ∈ splitcl(Ch1)(s)

(Sol ◦ σ,Γ ·∪{env ′1 E env2, y1 E y, s1 E t},∆σ,∇) with σ={Ch1[·, ·] 7→Ch[·, d[·2]]}

||
∀Ch1:env1 = Ch1[y1, s1]; env

′
1and cl(Ch1) ≥ cl(Ch)

|
∀(d, t) ∈ splitcl(Ch1)(s)

(Sol ◦ σ, Γ ·∪{Ch2[y1, D[var y]]; env ′1 E env2, s1 E t},∆σ,∇)
where σ={Ch1[·1, ·2] 7→Ch2[·1, D[var y]];Ch[y, d[·2]]}, cl(D)=cl(Ch2)=cl(Ch1)

| |
∀Ch1 : env1 = Ch1[y1, s1]; env

′
1and cl(Ch1) ≥ cl(Ch)

(Sol ◦ σ, Γ ·∪{Ch2[X, s1]; env ′1 E env2, D[var X] E s, y1 E y},∆σ,∇)
where σ = {Ch1[·1, ·2] 7→ Ch[·1, s];Ch2[X, ·2]} and cl(D)=cl(Ch2)=cl(Ch1)

| |
∀Ch1 : env1 = Ch1[y1, s1]; env

′
1and cl(Ch1) ≥ cl(Ch)

(Sol ◦ σ,Γ ·∪{Ch2[y1, D[X]];Ch3[Y , s1]; env ′1Eenv2, D1[Y]Es},∆σ,∇)
where σ={Ch1[·1, ·2]7→Ch2[·1, D[X]];Ch[y, s];Ch3[Y , ·2]} and cl(D)=cl(D1)=cl(Ch2)=cl(Ch3)=cl(Ch1)

Fig. 4. Rules of MatchLRS for environment equations. In rule (EnvC) the function splitK is defined as fol-
lows: splitTriv (t) = {([·], t)}; splitA(f s1 . . . sn) = {([·], (f s1 . . . sn))} ∪ {(f s1 . . . si−1 d si+1 . . . sn, s

′) | (d, s′) ∈
splitA(si), i ∈ sp(f)}; splitA(A[s]) = {([·], A[s])} ∪ {(A[d], s′) | (d, s′) ∈ splitA(s)}; and splitA(t) =
{([·], t)}, if t 6= (f s1 . . . sn) and t 6= A[s].

8

Let (Sol , Γ,∆,∇) be the state of MatchLRS and (ΓI ,∆I ,∇I) be the LMP from the input. The algorithm delivers
Fail if Γ contains an equation

(VarFail) x E y, x E Y , X E x, or X E Y .
(ExFailF) (f s1 . . . sn) E t s.t. t = (f ′ t1 . . . tm) and f 6= f ′, t = letr env in t′, t = S, or t = D[s].
(ExFailL) letr env in sEt and t is (f s1 . . . sn), S, or D[s].
(ExFailS) S E t where t = (f s1 . . . sn), t = letr env in s, t = S1 with S 6= S1, or t = D[t′].
(CxFailF) D[s] E t where t 6= D[s′]

(CxFailI) D[s] E t where D ∈ ∆1 and t=f with ar(f)=0, or t=S, or t=D2[t′] with cl(D2)>cl(D), or
t=(f s1 . . . sn) with cl(D)∈{A, T }, n> 0, oar(f)=(l1, . . . , ln), and ∀i : (li 6=0), or t=(f s1 . . . sn)
with cl(D)=A and sp(f) = ∅, or t=(f s1 . . . sn) with n>0 and oar(f)(i)=V for all i, or t=D2[t′]
with D2 6∈∇1, or t=letr env in t′ and cl(D)=A.

(EFailEm) env E ∅ or ∅ E env where env is non-empty.
(EFailB) b; env E env ′ where env ′ 6= b′; env ′′.
(EFailCI) Ch1[z, s]; env E env ′ where env ′ 6= b; env ′′, and env ′ 6= Ch2[z′, s′]; env ′′ s.t. cl(Ch1)≥cl(Ch2).

(EFailCFR) env E Ch1[z, s]; env ′, where env 6= E; env1, env 6= Ch2[z′, s′]; env1 with cl(Ch1)≤cl(Ch2), and
env 6= Ch1[z′, s′]; env1.

(EFailCFL) Ch[z, s]; env E env ′ where env ′ 6= Ch[z′, s′]
(EFailEL) E; env E env ′ and env ′ 6= E; env ′′.
(EFailER) envEE; env ′, env 6=E′; env ′′, and env 6=E; env ′′.

(EFailEE) E1; . . . ;EnEE′1; . . . ;E′m, ∀i:Ei∈∆2,∀i:E′i 6∈∆2.

If Γ = ∅ then MatchLRS delivers Fail if

(LVCFail) for s E t ∈ ΓI , Sol(s) does not fulfill the LVC, or
(NCCFail) the NCC-implication check (Def. 4.1) is invalid.

Fig. 5. Failure rules of MatchLRS

NCClvc (s) = {(x, y) | x.s; y.s′;env ∈ E} ∪ {(x, y) | x.s;Ch[y, s′];env ∈ E}
∪{(x, y) | Ch[x, s];y.s′;env ∈ E} ∪ {(x, y) | Ch[x, s];Ch ′[y, s′];env ∈ E}
∪{(x,E) | x.s;E;env ∈ E} ∪ {(x,E) | Ch[x, s];E;env ∈ E}
∪{(x,Ch) | x.s;Ch[y, s];env ∈ E} ∪ {(x,Ch) | Ch ′[x, s];Ch[y, s];env∈E}
∪{(Ch, E) | Ch[y, s];E;env ∈ E , cl(Ch) = Triv}
∪{(Ch1,Ch2) | Ch1[y, s];Ch2[y′, s′];env ∈ E , cl(Ch1) = Triv}

Fig. 6. Computing the set NCClvc(s) where E is the set of all letr-environments in s

Example 4.2. We illustrate MatchLRS on the LMP ({s E t}, ∆,∇) with

s = letr Ch[X,S1] in S2 ∆ = (∆1, ∆2, ∆3) = (∅, ∅, {(S1, λX.[·])})
t = letr Y .app S3 S4 in S5 ∇ = (∇1,∇2,∇3) = (∅, ∅, {(S3, λY .[·])})

where cl(Ch) = A. After applying rules (DecL) and (SolveS), the state of MatchLRS is ({S2 7→
S5},Ch[X,S1] E Y .app S3 S4, ∆,∇). Now rule (EnvB) is applicable and branches into four states for the

chain-variable Ch, where all but the first case result in Fail , since they imply that Ch contains more than one
binding. For the remaining case, the state of MatchLRS is ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2]}, X.A[S1] E
Y .app S3 S4, ∆,∇). Applying (DecH) and then (SolveX) results in ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→
Y }, A[S1] E app S3 S4, ∆,∇). Now rule (CxGuess) is applied which branches into two cases.

If A is guessed as empty, then the next state is ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→ Y }, S1 E
app S3 S4, ∆[Y /X],∇). Applying (SolveS) yields ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].[·2], X 7→ Y , S1 7→
app S3 S4}, ∅, ∆′,∇) where ∆′ = (∅, ∅, {(app S3 S4, λY .[·])}). However, the NCC-implication check
fails since splitncc(∆3) = {(S3, Y), (S4, Y)}, splitncc(∇3) = {(S3, Y)}, and NCClvc = ∅ and thus for the
atomic NCC (S4, Y) ∈ splitncc(∆3) none of the cases of Definition 4.1 holds. Thus this branch ends with
Fail .

In the second case A is added to the set ∆1, i.e. with ∆′′ = ({A}, ∅, {(S1, λY .[·])}) the new state is
({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→ Y }, A[S1] E app S3 S4, ∆

′′,∇). Rule (CxF) is applied and results
in (assuming that sp(app) = {1}) ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→ Y ,A 7→ app A′ S4}, A′[S1] E
S3, ∆

′′,∇). Now rule (CxGuess) is applied and branches into two cases: for the case that A′ is guessed to
be non-empty, rule (CxFailI) is applicable and leads to Fail , and for the case that A′ is guessed to be empty,
the next state is ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→ Y ,A 7→ app [·] S4}, S1 E S3, ∆

′′,∇) and rule
(SolveS) results in the state ({S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→ Y ,A 7→ app [·] S4, S1 E S3}, ∅, ∆′′′,∇)
where ∆′′′ = (∅, ∅, {(S3, λY .[·])}). The NCC-implication check is valid since splitncc(∆3) = {(S3, Y)} and

9

(S3, Y) ∈ splitncc(∇3). Thus the algorithm delivers the matcher {S2 7→ S5,Ch[·1, ·2] 7→ [·1].A[·2], X 7→
Y ,A 7→ app [·] S4, S1 E S3}.

We define the notion of a matcher for an (intermediate) state of MatchLRS:

Definition 4.3. For LMP P = (ΓI , ∆I ,∇I) and state S = (Sol , Γ,∆,∇) of MatchLRS for input P , a
matcher of state S is a substitution σ where Dom(σ) = MVI(Γ), σ(U) = σ(Sol(U)) for all U ∈ Dom(Sol),
MVI(σ(s)) = ∅ and MVF (σ(s)) ⊆ MVF (P) for all s E t ∈ ΓI , s.t. for any ground substitution ρ
with Dom(ρ) = MVF (P) which satisfies ∇, ρ(σ(s)), ρ(t) fulfill the LVC for all s E t ∈ ΓI , we have
ρ(σ(s)) ∼let ρ(t) for all s E t ∈ Γ , and there exists a ground substitution ρ0 with Dom(ρ0) = MVI(ρ(σ(∆)))
s.t. ρ0(ρ(σ(∆))) is satisfied.

We show soundness of the NCC-implication check.

Lemma 4.4. Let S = (Sol , ∅, ∆,∇) be a state of MatchLRS for input P = (ΓI , ∆I ,∇I) s.t. s, t
fulfill the LVC for all s E t ∈ ΓI and the NCC-implication check is valid for S. Let ρ be a ground
substitution with Dom(ρ) = MVF (P) which satisfies ∇, ρ(Sol(s)), ρ(t) fulfill the LVC for all s E t ∈ ΓI , and
ρ(Sol(s)) ∼let ρ(t) for all s E t ∈ ΓI . Then there exists a ground substitution ρ0 with Dom(ρ0) = MVI(ρ(∆))
s.t. ρ0(ρ(∆)) is satisfied.

Proof. We first show that all atomic NCCs in NCClvc are satisfied by each ground substitution ρ which
fulfills the conditions of the lemma. For (x, y) ∈ NCClvc , x, y are let-variables of the same environment and
thus ρ must map x and y to distinct concrete variables, since otherwise the LVC is violated w.r.t. ρ. For
(x,E) ∈ NCClvc, either ρ(E) = ∅ and thus CVA(ρ(E)) = ∅, or ρ(E) = x1.s1; . . . ; xn; sn where ρ(x) 6= xi,
since otherwise the LVC would be violated for the environment containing E and let-variable x. For
(x,Ch) ∈ NCClvc either ρ(Ch) = [·1].d[·2] where CVA(ρ(Ch)) = ∅ and thus (ρ(x), ρ(Ch)) is satisfied, or
ρ(Ch) = [·1].d[x1]; . . . ; xn.[·2] where ρ(x) 6= xi must hold, since otherwise the LVC is violated for the
environment that contains Ch and let-variable x. For (Ch, E) ∈ NCClvc, the atomic NCC is satisfied if
ρ(E) = ∅ or ρ(Ch) = [·1].[·2], and otherwise VarA(ρ(Ch)) is exactly the set of let-bound variables in ρ(Ch)
which must be pairwise disjoint from the let-bound variables in ρ(E) since otherwise the LVC is violated
for the environment containing Ch and E. For (Ch,Ch ′) the same argument applies: VarA(ρ(Ch)) is
exactly the set of let-bound variables in ρ(Ch) and CVA(ρ(Ch ′)) is exactly the set of let-bound variables
in ρ(Ch ′), and thus both sets must be pairwise disjoint to satisfy the LVC.

Now let (u, v) ∈ splitncc(∆3) s.t. one of the cases of the NCC-implication check applies. We consider
the different cases and use the following instantiation ρ0 for instantiable meta-variables: ρ0(Ch) = [·1].[·2]
for all Ch; ρ0(S) = λxS .xS for a fresh variable xS ; ρ0(D) = [·] if D 6∈ ∆1, and ρ0(D) = d where d is a
context with CV (d) = ∅ (see Definition 2.3); ρ0(E) = ∅ if E 6∈ ∆2 and ρ0(E) = xE .var xE , otherwise
where xE is a fresh variable; ρ0(X) = xX for a fresh variable xX .

1. If (u, v) = (x, y), then the constraint is satisfied.
2. If (u, v) ∈ splitncc(∇3) ∪NCClvc then VarA(ρ(u)) ∩ CVA(ρ(v)) = ∅ and ρ(u), ρ(v) are ground.
3. If u = v and u = Ch or u = D or u = E with E 6∈ ∆2, then ρ(u) = ρ(v) = u, and VarA(ρ0(u)) =

CVA(ρ0(u)) = ∅.
4. If u 6= v and u = Ch, or u = S, or u = D or u = E, or u = X, then VarA(ρ0(ρ(u))) = ρ0(u) contains

only fresh variables and these variables must be disjoint from CVA(ρ0(ρ(v))).
5. If u 6= v and v = Ch, or v = D, or v = E, or v = X, then ρ0(ρ(v)) = ρ0(v) and CVA(ρ0(v)) contains

only fresh variables which cannot occur in ρ0(ρ(u)).
6. If u = E or u = Ch with cl(Ch) = Triv and (u, u) ∈ splitncc(∇3), then VarA(ρ(u)) ∩ CVA(ρ(u)) = ∅

must hold which is only possible if ρ(u) = ∅ (for u = E) or ρ(u) = [·1].[·2] (for u = Ch). In both cases
VarA(ρ(u)) = ∅ holds, and thus VarA(ρ0(ρ(u))) ∩ CVA(ρ0(ρ(v))) = ∅ for any v.

7. If v = E, v = Ch, or v = D and (v, v) ∈ splitncc(∇3), then VarA(ρ(v)) ∩ CVA(ρ(v)) = ∅ must hold,
which requires that ρ(v) = ∅ (for v = E), ρ(v) = [·1].d[·2] with CVA(d) = ∅ (for v = CC), ρ(v) = d with
CVA(d) = ∅ (for v = D). In all cases CVA(ρ(v)) = ∅ and thus VarA(ρ0(ρ(u))) ∩ CVA(ρ0(ρ(v))) = ∅.

8. For the case that (v, u) ∈ splitncc(∇3)∪NCClvc and (u, v) is of the form (X, y), (x, Y), (X,Y), (x, D),
(X,D), (x, E), (X,E), (x,Ch), (X,Ch), (Ch1, x), (Ch1, X), (Ch1, E), (Ch1, D), or (Ch1,Ch2) where
cl(Ch1) = Triv , it suffices to show that if VarA(ρ(v)) ∩ CVA(ρ(u)) = ∅, then also VarA(ρ(u)) ∩
CVA(ρ(v)) = ∅. For (u, v) ∈ {(X, y), (x, Y), (X,Y)} this holds since VarA(y) = CVA(y) for every
variable y. For (u, v) = (x, U) or (X,U) where U is an D-, E-, or Ch-variable, CVA(ρ(v)) ⊆ VarA(ρ(v))
and VarA(ρ(u)) = CVA(ρ(u)) and thus VarA(ρ(v))∩CVA(ρ(u)) = ∅ implies VarA(ρ(u))∩CVA(ρ(v)) = ∅.
For (u, v) = (Ch1, x) or (u, v) = (Ch1, U) where cl(Ch1) = Triv and U is an X-, E-, D-, or Ch-variable,
we have VarA(ρ(u)) = CVA(ρ(u)) and also CVA(ρ(v)) ⊆ VarA(ρ(v)) and thus VarA(ρ(u)) = CVA(ρ(u))
and thus VarA(ρ(v)) ∩ CVA(ρ(u)) = ∅ implies VarA(ρ(u)) ∩ CVA(ρ(v)) = ∅. ut

10

We now prove completeness of the NCC-implication check:

Lemma 4.5. Let S = (Sol , ∅, ∆,∇) be a final state of the matching algorithm for input P = (ΓI , ∆I ,∇I)
which passes the LVC check but the NCC-implication check is not valid for S. Then S has no matcher.

Proof. Assume that S and P are given as in the claim and that the NCC-implication check for S is
invalid. By definition of a matcher of state S, Sol can be the only matcher of state S. Soundness of the
matching algorithm implies that for all ground substitutions ρ with Dom(ρ) = MVF (P), ρ satisfies ∇,
ρ(Sol(s)), ρ(t) fulfill the LVC for all s E t ∈ ΓI , also ρ(Sol(s)) ∼let ρ(t) holds for all s E t ∈ ΓI . Thus we
have to show that there exists such a ρ s.t. for all ground substitutions ρ0 with Dom(ρ0) = MVI(ρ(∆3))
we have ρ0(ρ(∆)) is invalid.

Let ρ be the following ground substitution on fixed meta-variables: ρ(X) = xX , ρ(S) = λxS .xS , ρ(E) = ∅
if E 6∈ ∇2 and E = xE .var xE if E ∈ ∇2, ρ(Ch) = [·1].[·2] ρ(D) = [·] if D 6∈ ∇1 and ρ(D) = d 6= [·] with
CV (d) = ∅, otherwise (see Definition 2.3), where all variables xX , xS , xE are fresh. By the definition of a
LMP ∇ is satisfiable and the LVC holds for all expressions Sol(s), t with s E t in ΓI . Thus one can verify
that also ρ must satisfy ∇, and the LVC must hold for ρ(Sol(s)), t for all s E t ∈ ΓI .

Since state S fails the NCC-implication check, there exists (u, v) ∈ splitncc(∆3) where none of the
cases of the NCC-implication check applies.

First assume that u is an instantiable variable. Then u = v and u = E with E ∈ ∆2 or u = X
must hold. We have ρ(u) = ρ(v) = u. Any ground substitution ρ0 must instantiate E with at least
one binding (X with a concrete variable, resp.), i.e. ρ0(ρ(u)) = x.s; env (ρ0(ρ(u)) = x, resp.). But then
x ∈ VarA(ρ0(ρ(u))) and x ∈ CVA(ρ0(ρ(u))) and thus ρ0(ρ(∆3)) is invalid.

If u is not an instantiable meta-variable, then v cannot be an instantiable meta-variable, since otherwise
case (5) of the NCC-implication check would hold.

Thus the remaining cases are that u and v are fixed meta-variables or concrete variables. We consider
all possible cases: If (u, v) = (x, x) then ρ0(ρ(∆3)) is invalid for any ρ0. For all other cases, we modify the
definition of ρ, i.e. we provide a substitution ρ′ with ρ′(U) = ρ(U) for all U 6∈ {u, v}, and ρ′(u) and ρ′(v)
are defined in Table 1, where ‘n.a.’ means not applicable, since u or v is not a meta-variable, variables
xU occurring in the columns for ρ′(u).ρ′(v) are always fresh and pairwise distinct, cl(ChTriv) = Triv ,
cl(ChA) = A. Note that the context d in the last five rows always exists due to our assumption in
Definition 2.3. We have to verify that ρ′ still satisfies ∇: This holds for all cases, since splitncc(∇)∪NCClvc

cannot contain (u, v) (due to item (2)), (u, u) or (v, v) (either since both are concrete variables, or due
to items (6), (7), (8)), and also either VarA(ρ′(v)) ∩ CVA(ρ′(u)) = ∅, or (v, u) 6∈ splitncc(∇) ∪ NCClvc

since either (v, u) is impossible (e.g. for u = S) or due to items (6), (7), (8). Furthermore, one has to
verify that ρ′ satisfies the LVC for Sol(s), t with s E t ∈ ΓI which holds since ρ satisfies the LVC for
these expressions and since (u, v) 6∈ NCClvc (or (v, u) 6∈ NCClvc for specific cases). Finally, we verify that
VarA(ρ′(u))∩CVA(ρ′(v)) 6= ∅ in all cases, and thus for all ground instantiations ρ0, the atomic NCC (u, v)
is violated for ρ0 ◦ ρ′. Hence, ρ0(ρ′(∆3)) is violated for all ρ0.

Lemma 4.6. Let S = (SolS , ΓS , ∆S ,∇S) be a state of the matching algorithm and
S

S1 | . . . | Sn
be a rule in

Figs. 3 and 4. If σ is a matcher of state Si = (Sol i, Γi, ∆i,∇i), then σ is a matcher of state S.

Proof. This follows by inspecting all rules, verifying that the rules respect the constraints in ∆ w.r.t. the
given constraints in ∇, verifying that every instance of Sol i is also an instance of SolS , and verifying that
for each instance σ of Sol i σ(s) ∼let t for all s E t ∈ Γi also implies σ(s) ∼let t for all s E t ∈ ΓS .

Now we are able to prove soundness of MatchLRS:

Proposition 4.7. The matching algorithm is sound, i.e. let P be a LMP and the matching algorithm
delivers S = (Sol , ∅, ∆,∇) for input P where S passes the failure-tests, then Sol is a matcher of P .

Proof. Let P = (Γ, (∆I,1, ∆I,2, ∆I,3),∇) be a LMP and S1 be the initial state of the matching
algorithm for input P . Let S1 → . . . → Sn be a derivation of the matching algorithm where
Sn = (Soln, ∅, (∆n,1, ∆n,2, ∆n,3),∇) is an accepted state or Sn = Fail . We use induction on n. If
n = 1, then any matcher of state S1 is also a matcher of P . If n > 1, then consider the last derivation
step Sn−1 → Sn. By the induction hypothesis we have that a matcher for state Sn−1 is also a matcher for
P . If Sn is Fail , then soundness holds. If Sn is an accepted state, then Lemma 4.6 shows that a matcher
of Sn is also a matcher of Sn−1 and by the induction hypothesis we thus have that a matcher of Sn is a
matcher for P . We finally observe that Soln is a matcher which is also ensured by Lemma 4.4, since it
shows that ∆n is satisfiable. Moreover, ∆n is equal to Soln(∆I,3) and thus the obtained ρ0 in Lemma 4.4
can also be used to show that ρ0(ρ(Soln(∆I))) is satisfiable.

11

(u, v) ρ′(u) ρ′(v)

(x, Y) n.a. x
(x, D) n.a. letr x.var x in [·]
(x, E) n.a. x.var x
(x,Ch) n.a. [·1].var x; x.[·2]
(Y , x) x n.a.
(X,Y) xX xX
(Y ,D) xY letr xY .var xY in [·]
(Y ,E) xY x.var x
(Y ,Ch) xY [·1].var xY ; xY .[·2]
(S, x) var x n.a.

(u, v) ρ′(u) ρ′(v)

(S,X) var xX xX ,
(S,E) var xS xS .xS
(S,Ch) var xS [·1].var xX ; xX .[·2]
(S,D) var xS letr xS .var xS in [·]
(E, x) x.var x n.a.
(E,X) xX .var xX xX ,
(E1, E2) xE1 .var xE2 xE2 .var xE2

(E,Ch) xE .var xCh [·1].var xCh ; xCh .[·2]
(E,D) xE .var xD letr xD.var xD in [·]

(u, v) ρ′(u) ρ′(v)

(ChTriv , x) [·1].var x; x.[·2] n.a.
(ChTriv , X) [·1].var xX ; xX .[·2] xX ,
(ChTriv , E) [·1].var xCh ; xCh .[·2] xCh .var xCh

(ChTriv
1 ,Ch2) [·1].var xCh ; xCh .[·2] [·1].var xCh ; xCh .[·2]

(ChTriv , D) [·1].var xCh ; xCh .[·2] letr xCh .var xCh in [·]
(ChA, x) [·1].d[xCh]; xCh .[·2] s.t. Var(d) = {x} n.a.
(ChA, X) [·1].d[xCh]; xCh .[·2] s.t. Var(d) = {xX} xX ,
(ChA, E) [·1].d[xCh]; xCh .[·2] s.t. Var(d) = {xE}, xE .var xE
(ChA1 ,Ch2) [·1].d[xCh1]; xCh1 .[·2] s.t. Var(d) = {xCh2} [·1].var xCh2 ; xCh2 .[·2]

(ChA, D) [·1].d[xCh]; xCh .[·2] s.t. Var(d) = {xD} letr xD.var xD in [·]

Table 1. Modifications of ρ depending on (u, v)

For completeness, we inspect the rules, verify that branching covers all cases, and derive:

Lemma 4.8. Let S be a state of the matching algorithm and
S

S1 | . . . | Sn
be a rule in Figs. 3 and 4. If σ is

a matcher of S, then σ is a matcher of some state Si.

Lemma 4.9. Let S = (Sol , ∅, ∆,∇) be a final state of the matching algorithm for input P = (ΓI , ∆I ,∇I)
which passes the LVC check but the NCC-implication check is not valid for S. Then S has no matcher.

As a further property we require that MatchLRS never does get stuck in a non-final state.

Proposition 4.10. The matching algorithm does not get stuck.

Proof. We check that at long as Γ is non-empty, at least one rule is applicable. First consider the case
that Γ contains variable equations: Then either (SolveX), (ElX) or failure rule (VarFail) is applicable. If Γ
contains binding equations, then rule (DecH) is applicable. If Γ contains an expression equation s E t then
we distinguish the cases for s: If s = S, then rule (ElS) or failure rule (ExFailS) is applicable. If s = S, then
rule (SolveS) is applicable. If s = (f s1 . . . sn), then rule (DecF) or (ExFailF) is applicable. If s = x.s′ then
rule (DecH) is applicable. If s = letr env in s′, then rule (DecL) or (ExFailL) is applicable. If s = D[s′],
then rule (DecD) or (CxFailF) is applicable. If s = D[s′], then we distinguish the cases for t: If t = D′[s′]
and cl(D′) ≤ cl(D) then either rule (CxPx) or (CxGuess) is applicable, and if cl(D′) > cl(D) then rule
(CxGuess) or (CxCG) is applicable. If t = f s1 . . . sn then one of the rules (CxGuess), (CxF), (CxFailI) is
applicable. If t = S then rule (CxFailI) is applicable. If t is a letr-expression then rule (CxGuess), (CxL),
or (CxFailI) is applicable.

Finally, we consider the case that Γ contains an environment equation env E env ′. If env ′ = ∅, then
one of the rules (EnvEm), (EnvAE), or (EFailEm) is applicable. If env ′ = Ch[z, s]; env′, then rule (EFailEm)
is applicable if env is empty; or rule (EFailCFR) is applicable, if env 6= E′; env0, env 6= Ch ′[z′, s′]; env0

with cl(Ch ′) ≥ cl(Ch), or env 6= Ch[z′, s′]; env0; or rule (EnvC) or (SolveE) is applicable, if env contains
some E′, some Ch ′[z′, s′] with cl(Ch ′) ≥ cl(Ch), or Ch[z′, s′]. Now let env ′ be non-empty s.t. env ′ does
not contain Ch-variables and env ′ = b; env ′′. If env is empty then (EFailEm) is applicable. If env contains
Ch-variables then (EFailCFL) is applicable. Now assume env is non-empty and contains no Ch-variables. If
env contains bindings or Ch- or E-variables, then rule (EnvB) or (SolveE) is applicable. Now assume that
env contains only E-variables then (EFailEL) or (ElE) is applicable. and E variables then either (EFailCFL),
(EFailEL), (ElE), or (EnvC) Now assume that env ′ is non-empty and that it does not contain bindings and
Ch-variables. Then env ′ = E1; . . . ;Em. If env is empty, then (EFailEm) is applicable. If env contains a
binding, then (EFailB) is applicable. If env contains a Ch-variable then (EFailCFL) is applicable. If env

12

contains a Ch-variable then (EFailCI) is applicable. The remaining cases are that env contains only E′

and E′′ components. If env contains no E′-variables and no component Ei then (EFailER) is applicable. If
env contains Ei, then rule (ElE) is applicable. Now assume env contains only E′-variables. If env = E′

then (SolveE) is applicable. If env = E′; env0 with Ei ∈ ∆2 or E′ 6∈ ∆2 then (EnvE) is applicable. If
env = E′1; . . . ;E′k and Ei 6∈ ∆2 for all i = 1, . . . ,m and E′i ∈ ∆2 for all i = 1, . . . , k then (EnvFailEE) is
applicable.

We show termination of MatchLRS:

Proposition 4.11. MatchLRS always terminates with Fail or with an accepted state.

Proof. For a state (Sol , Γ,∆,∇), let µ = (µ1, µ2, µ3, µ4, µ5) where µ1 is the number of letr-expressions
in Γ , µ2 is the number of bindings in environment equations in Γ (equations x.s E x′.s′ are counted as
binding equations, not as environment equations), µ3 is the number of occurrences of fixed chain variables
in Γ , µ4 is the size of Γ and µ5 is the number of context variables occurring in Γ that are not in ∆1. We
use the lexicographic ordering on the measure µ and show that each rule application strictly decreases the
measure or leads to Fail . The rule (CxL) strictly decreases µ1. The rule (EnvB) does not increase µ1 and
strictly decreases µ2. The rule (EnvC) does not increase µ1 and µ2 but strictly decreases µ3. All other
rules except for the second branch of (CxGuess) do not increase µ1, µ2, µ3 and strictly decrease µ4. The
second branch of (CxGuess) does not increase µ1, µ2, µ3, µ4 but strictly decreases µ5. Proposition 4.10
shows that for all non-final states a rule is applicable.

Now completeness of MatchLRS can be proved:

Proposition 4.12. The matching algorithm MatchLRS is complete, i.e. if a LMP P = (Γ,∆,∇) has a
matcher σ, then there exists an accepted state S = (σ, ∅, ∆S ,∇S) of the matching algorithm for input P .

Proof. For applications of non-failure rules this follows from Lemma 4.8. For the failure rules this can be
verified by inspecting the rules, where Lemma 4.9 shows that invalidity of the NCC-implication check
implies that P has no matcher. Proposition 4.11 shows that MatchLRS terminates and does not get
stuck.

Theorem 4.13. MatchLRS is sound and complete.

Proposition 4.14. All derivations of the matching algorithm are of polynomial height in the size of the
input, and the size of each state is polynomial in the size of the input.

Proof. We again use the measure µ = (µ1, µ2, µ3, µ4, µ5) from the proof of Proposition 4.11. We estimate
the number of applications of each derivation rule. First assume that µ0 = (µ0,1, µ0,2, µ0,3, µ0,4, µ0,5) is
the measure µ for the initial state. Clearly all components of µ0 are bounded by the size of the input.

Rule (CxL) strictly decreases µ1 (in both cases) and all other rules do not increase µ1. Thus the
total number of (CxL)-steps is bounded by µ1. Each application of (CxL) does not increase µ2, µ3,
and can increase µ4 by at most 2, and increase µ5 by at most 1. Thus in the derivation the measure
(µ0,2, µ0,3, µ0,4, µ0,5) plus the increase over all (CxL)-steps is bounded by (µ0,2, µ0,3, 2µ0,1+µ0,4, µ0,1+µ0,5).

Now we consider the derivation without counting the (CxL) steps. Rule (EnvB) strictly decreases µ2

and all other remaining rules do not increase µ2. Thus there at most µ2-applications of rule (EnvB).
Each application of µ2 does not increase µ3, may increase µ4 by at most 7, and may increase µ5 by
at most 2. Thus adding the increase of all (EnvB) steps to the initial measure for (µ3, µ4, µ5) leads to
(µ0,3, 7µ0,2 + 2µ0,1 + µ0,4, 2µ0,2 + µ0,1 + µ0,5).

Now we consider the derivation without counting the (CxL) and (EnvB) steps. Rule (EnvC) strictly
decreases µ3 and all other remaining rules do not increase µ3. Thus there at most µ0,3 applications of
(EnvC). Each (EnvC) application may increase µ4 by at most 5, and may increase µ5 by at most 2. Thus
adding the increase of all (EnvC) steps to the initial measure for (µ4, µ5) leads to (5µ0,3 + 7µ0,2 + 2µ0,1 +
µ0,4, 2µ0,3 + 2µ0,2 + µ0,1 + µ0,5). Now we consider the derivation without counting the (CxL), (EnvB),
(EnvC) steps. All remaining do not increase µ4 and except for the second branch of (CxGuess) they strictly
decrease µ4. Thus there at most (5µ0,3 + 7µ0,2 + 2µ0,1 + µ0,4) of those steps. Each of these steps may
increase µ5 by at most 2 (only rules (CxPx), (CxF), (CxL) can increase µ5). Thus adding this increase leads
to 2µ0,4 + 12µ0,3 + 16µ0,2 + 5µ0,1 + µ0,5. for µ5. Since the second branch of (CxGuess) does not increase
µ1, µ2, µ3, µ4 but strictly decreases µ5 there at most 2µ0,4 + 12µ0,3 + 16µ0,2 + 5µ0,1 + µ0,5. applications of
the second branch of (CxGuess).

By inspecting all rules, we verify that the size increase of each rule application is constant and thus
also the size of each state is of the matching algorithm is polynomially bounded by the size of the input.

13

Theorem 4.15. The matching algorithm runs in non-deterministic polynomial time, and the letrec
matching problem is NP-complete.

Proof. All derivations of MatchLRS are of polynomial height in the size of the input (Proposition 4.14).
Propositions 4.7 and 4.12 imply that MatchLRS is an NP-decision procedure for the LMP. To show NP-
hardness, we reduce the Monotone one-in-three-3-SAT problem to the LMP. Let C = {C1, . . . , Cn} be an in-
stance of the Monotone one-in-three-3-SAT problem where Ci = {Si,1, Si,2, Si,3} and Si,j are propositional
variables. For each clause Ci, generate the matching equation letr Yi,1.Si,1;Yi,2.Si,2;Yi,3.Si,3 in (var xi) E
letr yi,1.xf ; yi,2.xf ; yi,3.xt in (var xi) where Yi,j , yi,j , xi are fresh for i and Si,j are expression variables
corresponding to the propositional variables. The LMP is solvable iff the Monotone one-in-three-3-SAT
instance is satisfiable: Si,j is mapped to var xt (var xf , resp.) iff propositional variable Si,j is true (false,
resp.).

We demonstrate how to use the matching algorithm to perform reductions and transformations on the
meta-expressions. Note that the main difference between a compute meta rewrite step defined below and
the direct use of the matcher in Proposition 3.8 is the treatment of the additional substitution ρ0: In a
computed meta rewrite step the requirements on ρ0 are added to the constraint tuple and thus no explicit
construction of ρ0 is necessary.

Definition 4.16. Let (s,∇) be a constrained expression, (`
n−→∆ r) be a meta letrec rewrite rule,

(Sol , ∆′,∇) be an accepted output of the matching algorithm for input ({` E s}, ∆,∇), then (s,∇)
n
=⇒

(Sol(r),∇∪∆′) is a computed meta rewrite step.

The properties of MatchLRS and matchers imply:

Theorem 4.17. Let (s,∇)
n
=⇒ (t,∇′) and ρ(s) ∈ γ(s,∇). For all ground substitutions ρ0 s.t. ρ0 ◦ ρ

satisfies ∇′ and Dom(ρ0)=MV (ρ(t))∪MV (ρ(∇′)), we have ρ(s)
n−→ ρ0(ρ(t)). Moreover, at least one such

substitution ρ0 exists.

5 Conclusion

We presented an approach to rewrite higher-order meta expressions of the language LRSX by introducing
the letrec matching problem and developing the algorithm MatchLRS. We obtained soundness and
completeness for MatchLRS, and NP-completeness of the letrec matching problem. The presented
algorithms are implemented in the LRSX Tool, and are part of an automated method to prove correctness
of program transformations for program calculi expressible in LRSX.

References

1. Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. J. Funct. Program., 7(3):265–301,
1997.

2. Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. A call-by-need lambda
calculus. In POPL 1995, pages 233–246. ACM, 1995.

3. Christophe Calvès and Maribel Fernández. Nominal matching and alpha-equivalence. In WoLLIC 2008,
volume 5110 of LNCS, pages 111–122. Springer, 2008.

4. Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theor. Comput. Sci.,
403(2-3):285–306, 2008.

5. James Cheney. Toward a general theory of names: Binding and scope. In MERLIN 2005, pages 33–40. ACM,
2005.

6. Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965, 2007.
7. Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In RTA 2008, volume

5117 of Lecture Notes in Computer Science, pages 246–260. Springer, 2008.
8. Elena Machkasova. Computational soundness of a call by name calculus of recursively-scoped records. In

WRS 2007, ENTCS, 2007.
9. Elena Machkasova and Franklyn A. Turbak. A calculus for link-time compilation. In ESOP 2000, volume

1782, pages 260–274. Springer, 2000.
10. Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A semantic theory for an embedded

coordination language. Sci. Comput. Program., 46(1-2):99–135, 2003.
11. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI 1988, pages 199–208. ACM, 1988.
12. Andrew Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57–72, 2016.

14

13. Conrad Rau and Manfred Schmidt-Schauß. A unification algorithm to compute overlaps in a call-by-need
lambda-calculus with variable-binding chains. In UNIF 2011, pages 35–41, 2011.

14. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with locally bottom-avoiding
choice: Context lemma and correctness of transformations. Math. Structures Comput. Sci., 18(03):501–553,
2008.

15. Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal unification of higher order
expressions with recursive let. In LOPSTR 2016, 2016. informal proceedings.

16. Manfred Schmidt-Schauß and David Sabel. Unification of program expressions with recursive bindings. In
PPDP 2016, pages 160–173. ACM, 2016.

17. Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-calculus
with letrec. In RTA 2010, volume 6 of LIPIcs, pages 295–310. Schloss Dagstuhl, 2010.

18. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct.
Programming, 18(04):503–551, 2008.

19. Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unification. In CSL 2003, volume 2803,
pages 513–527. Springer, 2003.

20. J. B. Wells, Detlef Plump, and Fairouz Kamareddine. Diagrams for meaning preservation. In RTA 2003,
volume 2706, pages 88 –106. Springer, 2003.

21. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. Comput., 115(1):38–94,
1994.

15

