
Institut für Informatik
Fachbereich Informatik und Mathematik

Alpha-Renaming of Higher-Order
Meta-Expressions

David Sabel

2017

Frankfurter Informatik-Berichte
Institut für Informatik • Robert-Mayer-Str. 11-15 • D-60325 Frankfurt am Main, Germany

ISSN 1868-8330

Alpha-Renaming of Higher-Order Meta-Expressions

David Sabel?

Goethe-University, Frankfurt am Main, Germany
sabel@ki.informatik.uni-frankfurt.de

Abstract. Motivated by tools for automated deduction on functional programming languages and programs,
we propose a formalism to symbolically represent α-renamings for meta-expressions. �e formalism is an
extension of usual higher-order meta-syntax which allows to α-rename all valid ground instances of a meta-
expression to ful�ll the distinct variable convention. �e renaming mechanism may be helpful for several
reasoning tasks in deduction systems. We present our approach for a meta-language which uses higher-order
abstract syntax and a meta-notation for recursive let-bindings, contexts, and environments. It is used in
the LRSX Tool – a tool to reason on the correctness of program transformations in higher-order program
calculi with respect to their operational semantics. Besides introducing a formalism to represent symbolic
α-renamings, we present and analyze algorithms for simpli�cation of α-renamings, matching, rewriting, and
checking α-equivalence of symbolically α-renamed meta-expressions.

1 Introduction

We focus on automatically proving correctness of program transformations for higher-order programming
languages with cyclic bindings as they occur in functional programming languages with call-by-need semantics
like Haskell (see [2,1,19]). One technique to establish such proofs for program calculi with small-step operational
semantics is the diagram method [19,15] which can roughly be described as follows: First all overlaps between
calculus reductions and a transformation step are computed, then the overlaps are joined by transformation
and reduction steps resulting in a complete set of diagrams, which is then used in an inductive proof1 to show
correctness of the transformation w.r.t. contextual equivalence [9,12]. �is diagram method was e.g. used in [19,15]
and similar techniques are in [21,8,7], where the overlaps and the joins are computed manually by a case-analysis.
In our recently developed LRSX Tool2 we try to automatize these computations for a generic meta-language –
called LRSX. �e input of the tool is a calculus description consisting of the small-step reduction rules and the
transformation rules. Overlaps are computed by a uni�cation algorithm [17] and reductions and transformations
to join the overlaps are applied using a matching algorithm [14].

�e language LRSX uses higher-order abstract syntax [10] extended with a letrec-construct letrec x1 =
s1; . . . ; xn = sn in sn+1 to represent unordered sets of recursive bindings (where the scope of the letrec-bound
variables xi is s1, . . . , sn+1) and meta-variables for expressions, variables, parts of letrec-environments, and
contexts of di�erent classes. �ese constructs are required to model typical small-step reduction rules of call-
by-need program calculi where reduction strategies are expressed by using an appropriate class of evaluation
contexts (see e.g. [2,1,19,18]).

Since more sophisticated methods to reason on meta-expressions with binders (e.g. nominal techniques
[11]) do not support all these constructs, we use a direct approach, where meta-expressions are interpreted
in �rst-order fashion by instantiating them with all possible ground expressions and thus LRSX-expressions
represent (potentially in�nite) sets of (ground) expressions. However, the main data structure for meta-programs
and transformations in the LRSX Tool are so-called constrained expressions that are meta-expressions augmented
by constraints which restrict the instances. For example, consider the transformation (llet):

C[letrec E1 in letrec E2 in S]
llet−−→ C[letrec E1;E2 in S]

which joins two nested letrec-environments and where S is a meta-variable for an arbitrary expression, C is a
meta-variable for an arbitrary context, and E1, E2 are meta-variables for arbitrary letrec-environments. Using
this rule without constraints would e.g. allow to instantiate the meta-variable E1 by the environment which
consists of a single binding3 x = y, meta-variable E2 by an environment which consists of a single binding
y = True, meta-variable S by x, and meta-variable C by the empty context resulting in the instantiated rule
? �is research is supported by the Deutsche Forschungsgemeinscha� (DFG) under grant SA2908/3-1.
1 See [13] for an automation of this step using automated termination provers.
2 http://goethe.link/LRSXTOOL
3 Later in this paper these bindings are wri�en as x.var y, since “.” is used instead of “=” and the function symbol var is

necessary to li� variables to expressions.

letrec x = y in letrec y = True in x→ letrec x = y; y = True in x which however should be forbidden,
since variable y in x = y is a free occurrence in the le� expression, but becomes a bound occurrence (captured
by the binding y = True) in the right expression. So-called non-capture constraints in constrained expressions
enable us to forbid those instantiations. �ey are pairs (s, d) where s is a meta-expression, d is a meta-context
and they are satis�ed by a ground instantiation ρ if context ρ(d) does not capture any variable of ρ(s). For our
example, the constraint (s0, d0) = (letrec E1 in True, letrec E2 in [·]) su�ces.

In turn, if during computing joins, expressions occur which violate the constraints, then in some cases the
diagram calculation fails. For instance, consider the overlap of (llet) with itself and a suggested join (wri�en using
dahed arrows):

letrec E1 in

letrec E2 in

letrec E′2 in S

llet //

llet
��

letrec E1;E2 in

letrec E′2 in S

llet

��letrec E1 in

letrec E2;E
′
2 in S llet

// letrec E1;E2;E
′
2 in S

As explained before, (llet) is constrained by the non-capture constraint (s0, d0). For the step from the upper-le�
expression to the upper-right expression, the constraint ensures that the binders of E2 do not capture variables
of E1, and for the step from the upper-le� expression to the lower-le� expression, the constraint ensures that
the binders of E′2 do not capture variables of E2. However, for closing the overlap the step from the lower-le�
expression to the lower-right expression requires the knowledge that binders of E2;E

′
2 do not capture variables

of E1 and the step from the upper-right to the lower-right expression requires the knowledge that binders of
E′2 do not capture variables of E1, E2. In both cases the required knowledge cannot be inferred from the given
knowledge and thus the suggested join cannot be computed. Moreover, there are indeed concrete instances which
forbid the suggested join, for example, with ρ = {E1 7→ x = z, E2 7→ y = True, E′2 7→ z = True, S 7→ x},
the suggested join would lead to ρ(letrec E1;E2;E

′
2 in S) = letrec x = z; y = True; z = True in x which

illegally captures the variable z.
�e solution to a�ack those problems in a pen-and-paper-proof is to rename binders by fresh α-renamings.

For the above instance, we may α-rename letrec x = z; y = True in letrec z = True in x into letrec x =
z; y = True in letrec z′ = True in x and α-rename letrec x = z in letrec y = True; z = True in S
into letrec x = z in letrec y = True; z′ = True in S and then apply the (llet)-transformations of the
suggested join. �e goal of this paper is to perform such renamings on the meta-level (and not on the (in�nitely
many) concrete instances). �us we want to rename letrec E1;E2 in letrec E′2 in S to guarantee that for
all instantiations ρ the letrec-bound variables of ρ(E′2) do not capture variables of ρ(E1;E2). Furthermore, an
appropriate mechanism of such a symbolic α-renaming must allow to do further reasoning with the expressions.
Our approach a�aches symbolic renamings directly to the subexpressions as deep as possible. Atomic symbolic
renamings are of the form αU,i·U for a meta-variable U (which may be an environment variable, an expression
variable, a context variable) with the meaning that instantiations ρ guarantee that ρ(αU,i·U) is an α-renamed
copy of ρ(U) s.t. the α-renaming is fresh (all introduced variables are new) and s.t. the distinct variable convention
(bound variables are pairwise disjoint from free variables, and all binders bind di�erent variables) holds for
ρ(αU,i·U). Since these renamings e�ect also other sub-expressions, we have to distribute them along the term
and binding structure.

�us to treat α-renamings in a mathematical clean way, we extend the language LRSX by syntactic constructs
to represent the α-renamings. �e extended language is called LRSXα. Adding this kind of syntactic support
for α-renamings should be possible for any meta-language with variable binders, so the use of language LRSX
should be understood as exemplary but not exclusive. Besides the de�nition of the syntax and the (ground term-)
semantics of LRSXα-expressions, further results of this paper target basic reasoning tasks with LRSX- and
LRSXα-expressions. A �rst algorithm performs α-renaming, i.e. it takes an LRSX-meta expression and delivers
an LRSXα-expression s.t. on the semantic level the instances are α-renamed by a fresh renaming. A further
procedure performs simpli�cation of symbolic α-renamings, i.e. it deduces that parts of the symbolic renamings
can be removed. �is procedure is important for our automated tool, since in the tool equivalence of expressions
has to be detected and without simpli�cation of renamings this is impossible in many cases. We provide an
adaption of the matching algorithm from [14] s.t. LRSXα-expressions can be matched against LRSX-expressions
which allows to rewrite LRSXα-expressions. However, this may require to adapt the symbolic α-renaming a�er a
reduction or transformation step and thus we present an algorithm for this task. We �nally present an algorithm
to check α-equivalence of LRSXα-expressions.
Related Work. Syntactic reasoning on expressions with binders w.r.t. α-equivalence can be done by nominal
techniques [11], including nominal uni�cation [20,4,6], nominal matching [3], and nominal rewriting [5] where

2

x, y, z ∈ Var
s, t ∈ HExpr0 ::= letrec env in s | (f r1 . . . rar(f))

where ri ∈ HExprk if oar(f)(i) = k ≥ 0, and
ri ∈ Var, if oar(f)(i) = Var

s ∈ HExprn ::= x.s1 if s1 ∈ HExprn−1 and n ≥ 1

b ∈ Bind ::= x.s where s ∈ HExpr0

env ∈ Env ::= ∅ | b; env

Fig. 1: Syntax of LRS

recently also nominal terms with letrec were analyzed [16]. �e semantics of nominal meta-terms are all α-
equivalent expressions of all instances. Similarly to our constrained expressions, nominal terms allow to use
so-called freshness constraints to forbid unwanted instantiations. In our approach, an α-renamed meta-expression
represents only those α-equivalent expressions which ful�ll the distinct variable convention which seems to
be an indispensable requirement regarding the example of transformation (llet). Using freshness constraints,
instances of nominal meta-terms can be restricted to ensure that the distinct variable convention holds. However,
this requires knowledge about the binders (to form freshness constraints). Our approach is more general since it
includes meta-syntax with meta-variables representing contexts and parts of letrec-environments. Adding them
to nominal techniques seems to be non-trivial and complicated and thus it is not in the scope of the current work
Outline. In Sect. 2 we introduce the ground language LRS and the meta-language LRSX, which is then extended
by symbolic α-renamings in Sect. 3 where we give an algorithm to symbolically α-rename LRSX-expressions. In
Sect. 4 we provide an algorithm for simpli�cation of symbolicα-renamings. In Sect. 5 we present further algorithms
for symbolically α-renamed expressions, i.e. a matching algorithm, an algorithm to refresh the α-renaming a�er a
rewrite step was applied, and an algorithm to check α-equivalence. In Sect. 6 we report on experimental results.
In Sect. 7 we conclude.

2 Languages LRS and LRSX

In this section we introduce two languages. First, we introduce the language LRS which is a generic functional
language with higher-order operators (e.g. like lambda-abstractions) and letrec-expressions which represent
shared and recursive bindings. We then introduce the meta-language LRSX which extends LRS by meta-variables
for variables, expressions, contexts, and letrec-environments. An LRSX-expression represents a set of LRS-
expressions which can be generated by instantiating the meta-variables with LRS-variables, -expressions, -
contexts, or letrec-environments, resp. An LRSX-expression is ground i� it is an LRS-expression. Both languages
are parametrized over a set of function symbols F and a set K of context classes.

2.1 �e Language LRS

De�nition 2.1. �e syntax of LRS is de�ned in Fig. 1. �e four syntactic categories of objects are Var which
is a countably-in�nite set of variables, HExpr which are higher-order expressions, Env representing letrec-
environments, and Bind which are letrec-bindings. Elements s of HExpr have an order(s) ∈ IN0, where HExprn
denotes the elements of HExpr of order n, and where HExpr0 = Expr. Each f ∈ F has a syntactic type
f : τ1 → . . . → τn → Expr, where τi may be Var, or HExprki ; n is called the arity of f , denoted ar(f);
and the order arity oar(f) is the n-tuple (δ1, . . . , δn), where δi = ki ∈ IN0, or δi = Var, depending on the type
of f . We assume that {var, λ} ⊆ F where var is of type Var → Expr and li�s variables to expressions with
oar(var) = (Var), and oar(λ)=(1).

Note that in a higher-order expression x.r, the scope of x is r. �e scope of x in letrec x.s; env in s′ is s, env
and s′.

De�nition 2.2. An LRS-expression s satis�es the let variable convention (LVC) i� a let-bound variable does not
occur twice as a binder in the same letrec-environment. With LV (env) we denote the let-bound variables in an
environment env, i.e. all x s.t. env = env′; x.s.

For instance, the expression letrec x.var x; x.var true in x does not ful�ll the LVC while
letrec x.var x; y.var true in x does.

With the next de�nition we formally de�ne the notion of an α-renaming of an LRS-expression. It is insu�cient
to de�ne such a renaming as a mapping from variables to variables (and li�ing it to expressions), since for example,
we want to rename the expression λx.λx.var x into λx1.λx2.var x2 which shows that the renaming of variable
occurrences depends on their positions. For this reason, we use a formal notion of positions of expressions:

3

De�nition 2.3. Let < be a total order on variables. A position is a sequence of natural numbers, where we use
Dewey-notation for the sequences. For (a higher-order) expression or a binding r that satis�es the LVC, the positions
of r, Pos(r), are inductively de�ned as follows where w.l.o.g. we assume xi < xj for 1 ≤ i < j ≤ n: Pos(x) := {ε},
Pos(f r1 . . . rn) := {ε} ∪

⋃n
i=1{i.p | p ∈ Pos(ri)}, Pos(letrec x1.s1; . . . ;xn.sn in t) := {ε} ∪

⋃n
i=1{i.p |

p ∈ Pos(xi.si)} ∪ {(n+1).p | p ∈ Pos(t)}, and Pos(x.r) := {ε, 1} ∪ {2.p | p ∈ Pos(r)}. Given a position
p ∈ Pos(r), with r|p, we denote the term at position p which is inductively de�ned by r|ε := r, x.r|1 := x,
x.r|2.p := r|p, (f r1 . . . rn)|i.p := ri|p for 1 ≤ i ≤ n, (letrec x1.s1; . . . ; xn.sn in t)|i.1 := xi for 1 ≤ i ≤ n,
(letrec x1.s1; . . . ; xn.sn in t)|i.2.p := si|p for 1 ≤ i ≤ n, and (letrec x1.s1; . . . ; xn.sn in t)|n+1.p := t|p. A
position p is a variable position of r if r|p is a variable, and it is a binder position i� p = q.1, and r|q is a higher-order
expression of order > 0 or a letrec-binding. For a construct r, we denote with BPos(r) the binder positions of r. With
BV (r) we denote the set of bound variables of r, i.e. BV (r) = {r|p | p ∈ BPos(r)}.

If r|p = x and p is not a binder position of r, the occurrence of x at p is a bound or a free occurrence of x: if there
exists a proper pre�x q′ of p s.t. either q = q′ or q = q′.i and r|q is a letrec-expression s.t. r|q.1 = x and q.1 is a
binder position, then x at position p is a bound occurrence, otherwise it is a free occurrence. For a bound occurrence
of x at p, its corresponding binder is q.1 (wri�en binder(r, p) = q.1) where q is maximal. For r, the set of free
variables is FV (r) := {r|p | rp = x and x at position p is a free occurrence}. We set Var(r) := FV (r) ∪ BV (r).
For an expression r, an α-renaming A : BPos(r) → Var computes a variable for each binder position where the
following condition must hold: For each free occurrence of x at position p in r, there does not exist a pre�x q′ of p s.t.
either q = q′ or q = q′.i and r|q is a letrec-expression s.t. A(q.1) = x and q.1 is a binder position. Application
of A to r, wri�en A(r), replaces each binder x at binder position p by A(p) and consistently replaces each bound
occurrence of x which has p as corresponding binder by A(p). An α-renaming A is a fresh α-renaming for r if
Cod(A) ∩Var(r) = ∅ and A(p) 6= A(p′) whenever p 6= p′.

�e condition on α-renamings implies that the renaming cannot capture free variables. For fresh α-renamings,
it always holds.

Example 2.4. For expression s = λx.λx.var x, the positions of s are Pos(s) =
{ε, 1, 1.1, 1.2, 1.2.1, 1.2.1.1, 1.2.1.2, 1.2.1.2.1} and s|1.2.1.1 = (x.λx.var x)|2.1.1 = (λx.var x)|1.1 =
(x.var x)|1 = (var x)|ε = var x. �e positions 1.1, 1.2.1.1, 1.2.1.2.1 are variable positions where
BPos(s) = {1.1, 1.2.1.1} are binder positions, the occurrence of x at position 1.2.1.2.1 is a bound occurrence
where the corresponding binder is 1.2.1.1. �e α-renaming A = {1.1 7→ x1, 1.2.1.1 7→ x2} is a fresh α-renaming
for s and A(s) = λx1.λx2.var x2 while A′ = {1.1 7→ y, 1.2.1.1 7→ y} is an α-renaming (which is not fresh for s)
s.t. A′(s) = λy.λy.var y.

For expression s = λx.var y, the mapping {1.1 7→ y} is not anα-renaming, since the condition onα-renamings
is violated for the free occurrence of y at position 1.2.1.

Applying a fresh α-renaming to an expression ensures that the distinct variable convention4 holds for the
expression.

De�nition 2.5. An expression s satis�es the distinct variable convention (DVC) i� BV (s) ∩ FV (s) = ∅ and all
binders bind di�erent variables.

A position p ∈ Pos(r) is an expression position i� r|p ∈ HExpr0. Contexts are LRS-expressions where at one
such position, the expression is replaced by the context hole [·]. We write d[s] for the operation of �lling the hole
of context d by expression s. With CV (d) we denote the set of variables x which are captured if they are plugged
into the hole of d, i.e. if the hole of d is at position p then x ∈ CV (d) i� the occurrence of x at position p.1 in
d[var x] is a bound occurrence. A context class K ∈ K is a set of contexts and a class K is non-binding if for all
contexts d of class K, CV (d) = ∅.

�e following lemma expresses how to iteratively construct a fresh α-renaming. In the lemma, ς represents a
substitution that maps variables to variables and applying ς to an LRS-expression means to apply ς to all free
variable occurrences.

Lemma 2.6. �e following cases show how to construct a fresh α-renaming from fresh α-renamings for the direct
subexpressions:

1. LetAi be freshα-renamings for si for i = 1, . . . , n s.t. Cod(Ai)∩Cod(Aj) = ∅ for all i 6= j. LetA′(i.p) := Ai(p)
for p ∈ Dom(Ai) and i = 1, . . . , n. �en A′ is a fresh α-renaming for (f s1 . . . sn) and A′(f s1 . . . sn) =
f A1(s1) . . . An(sn).

2. Let A be a fresh α-renaming for s, y 6∈ {x} ∪ Cod(A), ς = {x 7→ y}. Let A′(1):=y and A′(2.p):=A(p) for all
p ∈ Dom(A). �en A′ is a fresh α-renaming for x.s and A′(x.s)=y.(ς(A(s)).

4 Sometimes called Barendregt’s variable convention.

4

x, y, z ∈ Var ::=X | x
s, t ∈ HExpr0 ::= S |D[s] | letrec env in s | (f r1 . . . rar(f))

where ri ∈ HExprk if oar(f)(i) = k ≥ 0, and
ri ∈ Var, if oar(f)(i) = Var.

s ∈ HExprn ::= x.s1 if s1 ∈ HExprn−1 and n ≥ 1

b ∈ Bind ::= x.s where s ∈ HExpr0

env ∈ Env ::= ∅ | E; env | b; env

Fig. 2: Syntax of LRSX, where X,S,D,E are meta-variables.

3. Let Ai be fresh α-renamings for si for i = 1, . . . , n+1, s.t. Cod(Ai)∩ Cod(Aj) = ∅ for all i 6= j {y1, . . . , yn}∩
(
⋃
Cod(Ai) ∪

⋃
Var(si)) = ∅, and ς =

⋃n
i {xi 7→ yi}. Let A′(i.1) := yi for i = 1, . . . , n, A′(i.2.p) :=

Ai(p) for all p ∈ Dom(Ai) and i = 1, . . . , n, A′(n+1.p) := An+1(p) for all p ∈ Dom(An+1). �en A′

is a fresh α-renaming for letrec x1.s1; . . . ; xn.sn in sn+1, and A′(letrec x1.s1; . . . ; xn.sn in sn+1) =
letrec y1.ς(A1(s1)); . . . ; yn.ς(An(sn)) in ς(An+1(sn+1)).

4. Let A be a fresh α-renaming for s and A′ be a fresh α-renaming for d s.t. Cod(A) ∩ Cod(A′) = ∅, and p be the
position of the hole in d. Let A′′(p) := A(p) for p ∈ Dom(A) and A′′(p.q) := A′(q) for q ∈ Dom(A′), and let
ς = {x 7→ y | x ∈ CV (d), binder(d[x], p) = q.1 and A′(q.1) = y}. �en A′′ is a fresh α-renaming for d[s] and
A′′(d[s]) = A(d)[ς(A′(s))].

We de�ne two notions of equivalence. While ∼let extends syntactic equivalence by treating letrec-
environments as sets of bindings, the relation ∼α extends ∼let by allowing α-renaming:

De�nition 2.7. LRS-expressions s1, s2 are α-equivalent, if there exist fresh α-renamings Ai for si, s.t. A1(s1) =
A2(s2). Let∼let be the re�exive-transitive closure of permuting bindings in a letrec-environment and∼α (extended
α-equivalence) be the re�exive-transitive closure of combining ∼let and α-equivalence.

2.2 �e Meta-Language LRSX

�e language LRSX (see Fig. 2) extends LRS by meta-variables X for variables, S for expressions, E for envi-
ronments, and D for contexts where cl(D) ∈ K denotes the context class of D. �e semantics of meta-variables
X,Y are all concrete variables of type Var, expression variables S represent any ground expression of type
Expr, environment variables E represent all ground environments of type Env, and a context variable D with
cl(D) = K represents all contexts of class K.

De�nition 2.8. A meta-variable substitution ρmaps a �nite set of meta-variables to variables, expressions, environ-
ments, and contexts respecting their types and classes. With Dom(ρ) (Cod(ρ), resp.) we denote the domain (co-domain,
resp.) of ρ and ρ is ground i� it maps all variables in Dom(ρ) to LRS-expressions.

We use the LVC and DVC as well as ∼let also for LRSX-expressions where the sets of variables include
concrete variables as well as meta-variables representing concrete variables. We also use Var(·), BV (·), FV (·),
LV (·) on the extended syntax. With MV (s) we denote the set of meta-variables occurring in s.

We de�ne constraint tuples and constrained expressions:

De�nition 2.9. A constrained LRSX-expression is a pair (s,∆) where s is an LRSX-expression, and ∆ =
(∆1, ∆2, ∆3) is a constraint tuple s.t.∆1 is a �nite set of context variables, called non-empty context constraints;∆2

is a �nite set of environment variables, called non-empty environment constraints; and∆3 is a �nite set of pairs (t, d)
where t is an LRSX-expression and d is an LRSX-context, called non-capture constraints (NCCs, for short). A ground
substitution ρ satis�es∆ i� ρ(D) 6= [·] for allD ∈ ∆1; ρ(E) 6= ∅ for allE ∈ ∆2; andVar(ρ(t))∩CV (ρ(d)) = ∅ for
all (t, d) ∈ ∆3. If there exists a ground substitution ρ that satis�es∆, then we say∆ is satis�able. �e set of concretiza-
tions of a constrained LRSX-expression (s,∆) is: γ(s,∆) := {ρ(s) | ρ is ground, ρ(s) ful�lls the LVC, ρ satis�es ∆}.
For an LRSX-expression s, we de�ne γ(s) = γ(s, (∅, ∅, ∅)).

Example 2.10. For ∆ = (∅, ∆2, ∆3) with ∆2 = {E1, E2}, and ∆3 = {(letrec E1 in c, letrec E2 in [·])},
the constrained expression (letrec E1 in letrec E2 in S,∆) represents all LRS-expressions that are nested
letrec-expressions s.t. both letrec-environments are non-empty and the let-variables of the inner environment
are distinct from all variables occurring in the outer environment.

An example where a non-empty context constraint is required is the following reduction rule from
the calculus Lneed [18] which copies an abstraction into a needed position in a letrec-environment:
letrecE;X.λW.S;Y.A1[varX] inA[varY]→ letrecE;X.λW.S;Y.A1[λW.S] inA[varY]. IfA1 is empty,
then the target of the copy operation should be the variable Y in A[varY]. �us the case A = [·] should be
excluded which can be expressed by se�ing ∆1 = {A1}.

5

ξU∈SAR ::= 〈〉 | αU,i : η
η ∈ RS ::= 〈rc1, . . . , rcn〉, n ≥ 0
rc ∈ RC ::= {arc1, . . . , arcm}, m ≥ 0

arc ∈ ARC ::= αx,i | LV (αE,i) | CV (αD,i)

Fig. 3: Symbolic α-renamings

x, y, z ∈ Var ::= η·X | η·x
s, t ∈ HExpr0 ::= ξS ·S | ξD·D[s] | letrec env in s | (f r1 . . . rar(f))

where ri ∈ HExprk if oar(f)(i) = k ≥ 0, and
ri ∈ Var, if oar(f)(i) = Var.

s ∈ HExprn ::= x.s1 if s1 ∈ HExprn−1 and n ≥ 1

b ∈ Bind ::= x.s where s ∈ HExpr0

env ∈ Env ::= ∅ | ξE ·E; env | b; env

Fig. 4: Syntax of LRSXα

3 α-Renaming of Meta-Expressions

3.1 �e Language LRSXα

While for ground expressions, α-renaming is a well-known task, our se�ing is di�erent. We want to apply
α-renaming to the meta-expressions of LRSX, which of course cannot be computed for meta-variables until they
are instantiated and become concrete expressions. Hence we have to introduce extra symbols and constructs to
represent the symbolic renaming. �us, we extend the syntax of LRSX where meta-variables S,D,E,X and
variables x come with an additional symbolic α-renaming, wri�en as ξ·S, ξ·D, ξ·E, η·X , or η·x, respectively5.
We now de�ne the syntax of symbolic renamings and renaming sequences.

De�nition 3.1. �e syntax of symbolic α-renamings ξ and renaming sequences η is de�ned by the grammar given
in Fig. 3. A renaming sequence η ∈ RS is a sequence of renaming components. We use list notation for sequences
and write rc : η to split a sequence into its head rc and tail η. A renaming component rc ∈ RC is a set of atomic
renaming components. An atomic renaming component arc ∈ ARC is a symbol CV (αD,i), or a symbol LV (αE,i)
for a context meta-variable D and an environment meta-variable E, or a symbol αx,i where x is a concrete variable
x or a meta-variable X for variables. For expression-, context-, and environment-variables U , a symbolic α-renaming
ξU ∈ SAR is either empty or a sequence αU,i : η, and for variables X or x it is a renaming sequence η. As notation,
we write c instead of 〈c〉 or {c} and 〈c1, . . . , cn〉++〈cn+1, . . . , cm〉 means 〈c1, . . . , cm〉. �e language LRSXα
(see Fig. 4) extends the syntax of LRSX by adding symbolic α-renamings ξ to each occurrence of meta-variable
S,E,D and renaming sequences η to all occurrences of concrete variables x or meta-variables X . A constrained
LRSXα-expression is a pair (s,∆) where s is an LRSXα-expression and∆ = (∆1, ∆2, ∆3) is a constraint tuple,
s.t. ∆1 is a set of context variables, ∆2 is a set of environment variables, and ∆3 is a set of pairs (t, d) where t is an
LRSXα-expression and d is an LRSXα-context.

We informally explain the meaning of symbolic α-renamings. Let ρ be a ground substitution. Component αU,i
represents a fresh α-renaming of expression ρ(U) where the parameter i is required, since there may be several
fresh renamings for the meta-variable U . Note that αU,i can only occur as the �rst component of a sequence of
renamings applied to U . Components αx,i represent fresh renamings of variable ρ(x). Component CV (αD,i)
represents the restriction of αD,i to those bound variables of ρ(D) which a�ect the context hole. Component
LV (αE,i) represents the restriction of αE,i to the let-variables of ρ(E). Sets of renamings represent composed
renamings where the order is irrelevant, while in sequences of renamings, the order is relevant (they have to
be applied from le� to right). Sets and sequences of symbolic α-renamings induce a notion of equivalence of
symbolic α-renamings:

De�nition 3.2. �e relation ≈ is the smallest equivalence relation satisfying c ≈ c for c = αU,i or an atomic
renaming component c; 〈rc1, . . . , rci−1, {}, rci+1, . . . , rcn〉 ≈ 〈rc1, . . . , rci−1, rci+1, . . . , rcn〉; if rci ≈ rc′i for
i = 1, . . . , n then 〈rc1, . . . , rcn〉 ≈ 〈rc′1, . . . , rc′n〉; if there exists a permutation π on {1, . . . , n} s.t. arci ≈ arc′π(i)
then {arc1, . . . , arcn} ≈ {arc′1, . . . , arc′n}.

We do not distinguish symbolic α-renamings up to ≈. To embed LRSX-expressions into LRSXα, we identify
〈〉·U with U and let ε : LRSXα→ LRSX be the mapping that erases all renamings.

5 Note that this notation is similar and also related to the notation of suspensions π·X in nominal syntax (see e.g. [20]).

6

We formulate the notion of well-formedness for LRSXα-expressions which can be viewed as the side condition
that in sets of renaming components there is at most one renaming component for each meta-variable or variable:

De�nition 3.3. We say an LRSXα-expression s is well-formed i� s does not have a renaming sequence which
contains a set rc of atomic renaming components, s.t. αx,i, αx,j ∈ rc for some x and some i 6= j, or
LV (αE,i), LV (αE,j) ∈ rc for some E and some i 6= j, or CV (αD,i), CV (αD,j) ∈ rc for some D and some
i 6= j. A constrained LRSXα-expression (s,∆) is well-formed, i� s is well-formed and for all (t, d) ∈ ∆3 the
expression t and the context d are well-formed.

We de�ne the formal semantics of symbolic α-renamings.

De�nition 3.4. Let (s,∆) be a well-formed, constrained LRSXα-expression and ρ be a ground substitution with
Dom(ρ) = MV (s) ∪MV (∆) s.t. ρ(ε(s)) ful�lls the LVC. With VarCod(ρ) we denote the variables which appear
in the co-domain of ρ, i.e. VarCod(ρ) =

⋃
{Var(ρ(U)) | U ∈ Dom(ρ)}. A ground and fresh α-renaming for

s and ρ is a function τ s.t. for all U ∈ MV (s), τ maps αU,i to a fresh α-renaming τ(αU,i) = AU,i for ρ(U),
τ(αX,i) is the substitution {ρ(X) 7→ yX,i} and τ(αx,i) is the substitution {x 7→ yx,i} where all co-domains are
fresh and disjoint, i.e. Cod(AU,i) ∩ Cod(AU ′,i′) = ∅ for i 6= i′ or U 6= U ′, Cod(τ(αx,i)) ∩ Cod(ταx′,i′) = ∅ for
i 6= i′ or x 6= x′, Cod(AU,i) ∩ VarCod(ρ) = ∅, Cod(αx,i) ∩ VarCod(ρ) = ∅, Cod(AU,i) ∩ Cod(ταx,j) = ∅; and
for each environment variable E, with ρ(E) = x1.s1; . . . ; xn.sn, τ(αE,i) = AE,i, τ(LV (αE,i)) is the substitution
{xj 7→ AE,i(j.1) | j = 1, . . . n}; and for each context variable D, with ρ(D) = d where p is the position of the hole
in d, τ(αD,i) = AD,i, AD,i(d) = d′, τ(CV (αD,i)) is the substitution induced by τ between CV (d) and CV (d′),
i.e. {x 7→ x′ | x ∈ CV (d), binder(d[x], p) = q.1 and AD,i(q.1) = x′}; and τ({c1, . . . , cn}) = τ(c1) ◦ · · · ◦ τ(cn)
s.t. τ(c1) ◦ · · · ◦ τ(cn) = τ(cπ(1)) ◦ · · · ◦ τ(cπ(n)) for all permutations π on {1, . . . , n}; and τ(〈c1, . . . , cn〉) is the
composition τ(c1) ◦ · · · ◦ τ(cn).

Applying τ and ρ to s and ∆ �rst replaces every occurrence ξU ·U in s by ξU ·ρ(U) and then replaces ξU by the
corresponding substitution or α-renaming, i.e. by τ(ξU)(ρ(U)) or τ(η)(ρ(x)). We write (τ(ρ(s)), τ(ρ(∆)) for this
process. For a constrained LRSXα-expression (s,∆), the concretizations are:

γ(s,∆) :=

τ(ρ(s)) ρ is a ground substitution for s,∆ s.t. ρ(s)
ful�lls the LVC, τ is a ground and fresh
α-renaming for s,∆, ρ and τ ◦ ρ satis�es ∆

 .

For LRSXα-expressions s, we de�ne γ(s) = γ(s, (∅, ∅, ∅)).

We use ∼let also for LRSXα-expressions where we allow permutation of bindings and environment variables
and also allow to apply ≈ to α-renamings.

3.2 Performing Symbolic Alpha-Renaming

We describe how to perform symbolic α-renaming, i.e. how to transform an LRSX-expression s into an LRSXα-
expression s′, s.t. the instances of s′ are α-renamed copies of the instances of s (which are LRS-expressions).
�e algorithm to symbolically α-rename s, �rst α-renames all proper subexpressions of s and then introduces
a renaming for s, which is then moved downwards, since it may a�ect occurrences of free variables in the
subexpressions.

De�nition 3.5. Let s be an LRSX-expression. �e function AR(s) (using the auxiliary function sift shown in
Fig. 5) computes an LRSXα-expression for s. For a constrained LRSX-expression (s,∆), we compute a symbolically
α-renamed expression as (AR(s), ∆).

Example 3.6. We α-rename the expression λX.λX.var X :

AR(λX.λX.var X) = λAR(X.λX.var X)
= λαX,1·X.sift(αX,1,AR(λX.var X))
= λαX,1·X.sift(αX,1, λαX,2·X.sift(αX,2, var 〈〉·X))
= λαX,1·X.sift(αX,1, λαX,2·X.var αX,2·X)
= λαX,1·X.λαX,2·X.var 〈αX,2, αX,1〉·X)

Note that the renaming component αX,1 in 〈αX,2, αX,1〉·X can be omi�ed, since the renaming component αX,2
is applied �rst and renames all occurrences of (instances of) X . We will focus on such simpli�cations of symbolic
α-renamings in the subsequent section.

7

AR(x) = 〈〉·x
AR(S) = αS,i·S
AR(D[s]) = αD,j ·D[sift(CV (αD,j),AR(s))]
AR(f s1 . . . sn) = f AR(s1) . . .AR(sn)
AR(x.s) = αx,i·x.sift(〈αx,i〉,AR(s))
AR(letrec x1.s1; . . . ;xm.sm;E1; . . . ;En in s)

= letrec αx1,i1 ·x1.sift(η,AR(s1));
. . . ;
αxm,im ·xm.sift(η,AR(sm));
〈αE1,j1 , η1〉·E1; . . . ; 〈αEn,jn , ηn〉·En

in sift(η,AR(s))
where η = (

⋃m
k=1{αxk,ik}) ∪ (

⋃n
k=1{LV (αEk,jk)})

and ηk = η \ LV (αEk,ik)

sift(η, x.s) = x.sift(η, s)
sift(η, f s1 . . . sn) = f sift(η, s1) . . . sift(η, sn)
sift(η, η′·S) = (η′++ η)·S
sift(η, η′·D[s]) = (η′++ η)·D[sift(η, s)]
sift(η, letrec z1.s1;. . .;zm.sm;η1·E1;. . .;ηn·En in s)

= letrec z1.sift(η, s1); . . . ; zm.sift(η, sm);
(η1 ++ η)·E1; . . . ; (ηn++ η)·En

in sift ′(η, s)
sift(η, η′·x) = (η′++ η)·x

Fig. 5: Adding symbolic α-renamings to an LRSX-expression. All αU,i on right hand sides of equations are
assumed to be fresh and pairwise distinct. For LRSX-expression s, AR(s) computes a symbolically α-renamed
LRSXα-expression.

As a further example, we consider the symbolic α-renaming of the expression
letrec E1;E2;E3 in letrec E4 in S:

AR(letrec E1;E2;E3 in letrec E4 in S) =
letrec 〈αE1,1, {LV (αE2,1),LV (αE3,1)}〉·E1;

〈αE2,1, {LV (αE1,1),LV (αE3,1)}〉·E2;
〈αE3,1, {LV (αE1,1),LV (αE2,1)}〉·E3;

in letrec 〈αE4,1, {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·E4;
in 〈αS,1,LV (αE4,1), {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·S

In this example no further simpli�cation of the symbolic renamings is possible. However, if we assume that there
are non-capture constraints (letrec Ei in c, letrec Ej in [·]) for all i 6= j ∈ {1, 2, 3, 4}, then in any instance
the let-variables of Ei do not bind variables of Ej and thus the LRSXα-expression could be simpli�ed to

letrec 〈αE1,1, 〉·E1; 〈αE2,1〉·E2; 〈αE3,1〉·E3; in
letrec 〈αE4,1〉·E4 in

〈αS,1,LV (αE4,1), {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·S

�e simpli�cation algorithm in the subsequent section will infer those simpli�cations.

Lemma 3.7. If LRSX-expression s ful�lls the LVC and it does not contain an environment variable E twice in the
same environment, then AR(s) is well-formed.

�e construction of the symbolic α-renaming and the semantics of symbolic α-renamings together with Lemma 2.6
imply:

Proposition 3.8. Let s be an LRSX-expression and s′ = AR(s). �en for each s ∈ γ(s), there exists s′ ∈ γ(s′) s.t.
s ∼α s′ and for each s′ ∈ γ(s′) there exists s ∈ γ(s) s.t. s ∼α s′. Furthermore all s′ ∈ γ(s′) ful�ll the strong DVC.

4 Simpli�cation of α-Renamings

In this section we present an algorithm to simplify symbolic α-renamings. As a preparation we �rst consider
a preprocessing step of non-capture constraints, i.e. we compute so-called atomic NCCs which are pairs (u, v)
where u and v are of the form ξ·U . For a set S of NCCs, the function split

NCC
is de�ned by

split
NCC
(S) :=

⋃
(s,d)∈S

{(u, v) | u ∈ VarM (s), v ∈ CVM (d)}

8

VarM (η·x) = {η·x} VarM (η·x.s) = {η·x} ∪VarM (s)
VarM (ξ·S) = {ξ·S} VarM (f s1 . . . sn) =

⋃
iVarM (si)

VarM (ξ·D[s]) = {ξ·D} ∪VarM (s)
VarM (letrec env in s) = VarM (env) ∪VarM (s)

VarM (env) ={ξ·E | ξ·E; env′ = env}
∪
⋃
{{η·z} ∪VarM (s) | η·z.s; env′ = env}

CVM (η·x) = ∅ CVM (ξ·D[d]) = CVM (ξ·D)∪CVM (d)
CVM (ξ·S) = ∅ CVM (η·x.d) = {η·x}∪CVM (d) CVM ([·]) = ∅
CVM (ξ·D) = ∅, if cl(D) is non-capturing
CVM (ξ·D) = {ξ·D}, otherwise
CVM (f s1 . . . d . . . sn) = CVM (d)
CVM (letrec env in d) = CVM (env)∪CVM (d)
CVM (letrec η·z.d;env in s) = CVM (env)∪{η·z}∪CVM (d)

CVM (env) ={ξ·E | ξ·E;env ′=env} ∪ {η·z | η·z.s;env ′=env}

Fig. 6: �e functions VarM and CVM

where the functions VarM , and CVM are shown in Fig. 6.
Computation of VarM and CVM implies:

Lemma 4.1. Let (s, d) be an NCC, ρ be a ground substitution, and τ be a ground and fresh α-renaming for s, d, ρ.
�en CV (τ(ρ(d))) = {τ(ρ(η·x)) | x ∈ CVM (d)}∪{LV (τ(ρ(ξ·E))) | E ∈ CVM (d)}∪{CV (τ(ρ(ξ·D))) | D ∈
CVM (d)} and Var(τ(ρ(s))) = {Var(τ(ρ(u))) | u ∈ VarM (s)}.

As a further preparation for simpli�cation, we de�ne notions of equivalence and subsumption for symbolic
renamings and also a notion for a symbolic representation of the variables of instances.

De�nition 4.2. �e relation =num identi�es renaming components and sequences up to the number i in αU,i, i.e.
it is de�ned by αU,i =num αU,j , where U may be E,D, S,X, x, CV (αD,i) =num CV (αD,j), LV (αE,i) =num

LV (αE,j). We extend =num to renaming sequences ξU and η in the obvious way. Compared to =num, the relation
≥num is de�ned on atomic renaming components only and it also holds if an αU,i component is replaced by LV (αU,j)
or CV (αU,j), i.e. ≥num is de�ned as arc1 ≥num arc2 if arc1 =num arc2, and αE,i ≥num LV (αE,j), αD,i ≥num

CV (αD,j), for all i, j, E,D. A renaming η1 is an instance of a renaming η2 if η1 = η2 or if η1 = rc1 : η′1 and
η2 = rc2 : η′2, rc1 ⊆ rc2, η′1 is an instance of (rc2 \ rc1) : η′2. A renaming η1 is a weak instance of a renaming η2 if
η1 is an instance of η2 or η1 = rc1 : η′1 and η2 = rc2 : η′2, rc1 ⊆w rc2, η′1 is a weak instance of (rc2 \ rc1) : η′2.
Here rc1 ⊆w rc2 holds if for all arc ∈ rc1 there exists an arc′ ∈ rc2 with arc =num arc′.

Example 4.3. �e instance relation allows to (partially) order sets of renamings, for exam-
ple the renaming 〈αS,1,CV (αD2,1), {CV (αD1,1),LV (αE1,1)},LV (αE2,1)〉 is an instance of
〈αS,1, {CV (αD1,1),CV (αD2,1),LV (αE1,1)},LV (αE2,1)〉. �e weak instance relation addition-
ally allows to switch between the copies of atomic renaming components, and thus e.g.
〈αS,1,CV (αD2,2), {CV (αD1,1),LV (αE1,2)},LV (αE2,1)〉 is not an instance but a weak instance of
〈αS,1, {CV (αD1,1),CV (αD2,1),LV (αE1,1)},LV (αE2,1)〉.

De�nition 4.4. A set V of symbolic set-variables is a �nite set of elements, x, VAR(U), and Cod(arc). With
MV (V) we denote the meta-variables occurring in V (i.e. U in VAR(U) and all meta-variables occurring as index of
some arc in Cod(arc)). For a setMV of meta-variables withMV ⊆ MV (V), a ground substitution ρ forMV and
a ground α-renaming τ for ρ andMV , we de�ne τ(ρ(V)) :=

⋃
v∈V τ(ρ(v)) where τ(ρ(VAR(U)))) := Var(ρ(U)),

τ(ρ(x)) = {ρ(x)}, and τ(ρ(Cod(arc))) = Cod(τ(arc)).

Simpli�cation removes renaming components if they cannot have an e�ect on the corresponding meta symbol.
Information is gathered from the renamings and from the NCCs in ∆3.

De�nition 4.5 (Simpli�cation Algorithm). Let (s,∆) be a constrained LRSXα-expression. �e simpli�cation
algorithm replaces occurrences ξ·U (η·x, resp.) in s by ξ′·U (η′·x, resp.) if ξ·U |=∆ ξ′·U (η·x |=∆ η′·x, resp.) can be
inferred by the inference rules shown in Fig. 7 (a). In the premises some of the rules use sets V of symbolic set-variables
occurring in judgments V, η |=∆ η′ which are de�ned by the rules shown in Fig. 7 (b) and the predicate arc 6�∆ v
which is de�ned in Fig. 7 (c).

Axioms (IdX), (IdU), and (IdEta) allow to keep the renaming and rules (TrX) and (TrU) enable transitivity of
simpli�cation. Rule (RemDup) removes a duplicated renaming component in a sequence. Rule (SubstX) removes

9

(IdU)
ξ·U |=∆ ξ·U

(TrU)
ξ1·U |=∆ ξ2·U and ξ2·U |=∆ ξ3·U

ξ1·U |=∆ ξ3·U
(SimU)

{VAR(U),Cod(αU,i)}, η `∆ η′

αU,i : η·U |=∆ αU,i : η
′·U

U 6= x

(IdX)
η·x |=∆ η·x

(TrX)
η1·x |=∆ η2·x and η2·x |=∆ η3·x

η1·x |=∆ η3·x
(SimX)

{x}, η `∆ η′

η·x |=∆ η′·x
(SubstX)

ξ·x |=∆ (({αx,i} ·∪rc) : η)·x
ξ·x |=∆ 〈αx,i〉·x

(RemDup)
arc ≥num arc

′

η1 ++(arc ·∪rc):η2 ++(arc′ ·∪rc′):η3·U |=∆ η1 ++(arc ·∪rc):η2 ++ rc′:η3·U

(SimNCCU)
(ξU ·U, x) ∈ split

NCC
(∆3), ξ

′
U is a weak instance of ξU

ξ′U ++{αx,i} ·∪rc : η2·U |=∆ ξ′U ++ rc : η2·U
U 6= y (SimNCCX)

(η·y, x) ∈ split
NCC
(∆3), η

′ is a weak instance of η
η′++{αx,i} ·∪rc : η2·y |=∆ η′++ rc : η2·y

(a) Judgments ξ·U |=∆ ξ′·U and η·x |=∆ η′·x mean that LRSXα-expression ξ·U (η·x, resp.) can be simpli�ed to ξ′·U (η′·x,
resp.).

(RMarc)
∀v ∈ V :arc 6�∆ v V, rc:η `∆ rc:η′

V, ({arc} ·∪rc):η `∆ rc:η′
(IdEta)

V, η `∆ η
(Order)

V, 〈rci : {arc1, . . . , arci−1, arci+1, . . . , arcn} : η `∆ η′

V, {arc1, . . . , arcn} : η `∆ η′

(Parc)
V ∪{Cod(arc) | arc ∈ rc}, η `∆ η′

V, rc : η `∆ rc : η′
(MSet)

∀i 6= j : xi 6= xj , ∀i 6= j : αxi,ki 6�∆ xj , V, η1 ++{αx1,k1 , . . . , αxn,kn}:η2 `∆ η3

V, η1 ++〈αx1,k1 , . . . , αxn,kn〉++ η2 `∆ η3

(b) Judgment V, η `∆ η′ means that for the variables represented by V , η can be simpli�ed to η′

(Cod)
arc1 6�∆ Cod(arc2)

(EmCV)
cl(D) is non-binding
CV (αD,i) 6�∆ v

(NccDU)
(U,D) ∈ split

NCC
(∆3)

CV (αD,i) 6�∆ VAR(U)
(NccDX)

(x,D) ∈ split
NCC
(∆3)

CV (αD,i) 6�∆ x

(NccEU)
(U,E) ∈ split

NCC
(∆3)

LV (αE,i) 6�∆ VAR(U)
(NccEX)

(x,E) ∈ split
NCC
(∆3)

LV (αE,i) 6�∆ x
(NccUX)

(U, x) ∈ split
NCC
(∆3)

αx,i 6�∆ VAR(U)

(NccXX)
(x=x6=x′=x′) ∨ {(x′, x), (x, x′)} ∩ split

NCC
(∆3) 6= ∅

αx,i 6�∆ x′

(c) �e predicate arc 6�∆ v holds i� arc cannot rename the variables represented by v

Fig. 7: Simpli�cation of symbolic α-renamings

10

(SimU)

(Order)

(RMarc)

(NccEU)
(Ei, Ej) ∈ split

NCC
(∆3)

LV (αEj ,1) 6�∆ VAR(Ei)
(Cod)

LV (αEj ,1) 6�∆ Cod(αEi,1)
(RMarc)

(NccEU)
(Ei, Ek) ∈ split

NCC
(∆3)

LV (αEk,1) 6�∆ VAR(Ei)
(Cod)

LV (αEk,1) 6�∆ Cod(αEi,1)
(IdEta)

{VAR(Ei),Cod(αEi,1)}, 〈〉 `∆ 〈〉
{VAR(Ei),Cod(αEi,1)}, 〈LV (αEk,1)〉 `∆ 〈〉

{VAR(Ei),Cod(αEi,1)}, 〈LV (αEj ,1),LV (αEk,1)〉 `∆ 〈〉
{VAR(Ei),Cod(αEi,1)}, {LV (αEj ,1),LV (αEk,1)} `∆ 〈〉
〈αEi,1, {LV (αEj ,1),LV (αEk,1)}〉·Ei |=∆ 〈αEi,1〉·Ei

Fig. 8: Derivation for Example 4.6

further renaming components for a renaming for x if the �rst component is αx,i. Rule (SimX) performs simpli�ca-
tion of symbolic α-renamings applied to x- or X-variables, where the symbolic set of variables in the premise
is the singleton containing the to-be-simpli�ed variable. Rule (SimU) perform simpli�cation for meta-variables
U which are not X-variables. Hence the α-renaming starts with αU,i and the symbolic set of variables consists
of VAR(U) and the co-domain of αU,i, Rules (SimNCCU) and (SimNCCX) allow to remove a component αx,i
if an NCC ensures that x cannot occur in ξ′U ·U or η′·y, resp. Rule (RMarc) removes the �rst atomic renaming
component of a sequence of components provided that it cannot rename any variable represented by the symbolic
set of variables. Rule (Parc) processes the �rst renaming component in a sequence, by adding the co-domain of
the component to the symbolic set of variables, and then proceeds with the tail of the sequence. Rule (Order)
allows to order a set of atomic renaming components for further simpli�cation, rule (MSet) allows to transform
a sequence of atomic renaming components αxi,ji into a set of components provided that it is guaranteed that
the ground instances of all variables xi are pairwise di�erent. �e predicate 6�∆ is de�ned in Fig. 7 (c) where
arc 6�∆ v expresses that atomic renaming component arc cannot rename the set of variables represented by v.
�e rules use the NCCs or some other easy fact to ensure that the property holds.

Example 4.6. We reconsider the expressions from Example 3.6. Applying the simpli�cation algo-
rithm to the constrained expression (λαX,1·X.λαX,2·X.var 〈αX,2, αX,1〉·X, (∅, ∅, ∅)) results in
(λαX,1·X.λαX,2·X.var 〈αX,2〉·X, (∅, ∅, ∅)) since

(SubstX)

(IdX)
〈αX,2, αX,1〉·X |=∆ 〈αX,2, αX,1〉·X
〈αX,2, αX,1〉·X |=∆ 〈αX,2〉·X

As a further example, consider (s,∆) = (s, (∅, ∆2, ∆3)) with

s = letrec 〈αE1,1, {LV (αE2,1),LV (αE3,1)}〉·E1;
〈αE2,1, {LV (αE1,1),LV (αE3,1)}〉·E2;
〈αE3,1, {LV (αE1,1),LV (αE2,1)}〉·E3;

in letrec 〈αE4,1, {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·E4;
in 〈αS,1,LV (αE4,1), {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·S

∆2 = {E1, E2, E3, E4}
∆3 = {(letrec Ei in c, letrec Ej in [·]) | i, j ∈ {1, 2, 3, 4}, i 6= j}

Applying the simpli�cation algorithm results in (s′, ∆) with

s′ = letrec 〈αE1,1, 〉·E1; 〈αE2,1〉·E2; 〈αE3,1〉·E3; in
letrec 〈αE4,1〉·E4 in

〈αS,1,LV (αE4,1), {LV (αE1,1),LV (αE2,1),LV (αE3,1)}〉·S

since 〈αEi,1, {LV (αEj ,1),LV (αEk,1)}〉·Ei |=∆ 〈αEi,1〉·Ei can be derived for all i, j, j with {i, j, k} = {1, 2, 3}
(see Fig. 8).

We show correctness of the simpli�cation algorithm by proving correctness of the inference rules:

Proposition 4.7. Let M be a set of meta-variables and ∆ be a constraint tuple where MV (∆) ⊆ M . Let ρ be
ground substitution forM and τ be a ground α-renaming for ρ andM , s.t. ρ and τ satisfy ∆.

1. (Correctness of 6�∆) Let v be a symbolic set-variable and arc be an atomic renaming component (overM), s.t.
arc 6�∆ v. �en for each x ∈ τ(ρ(v)), the identity τ(arc)(x) = x holds.

2. (Correctness of `∆) Let V be a set of symbolic set-variables and η be a sequence of renaming components with
components overM , s.t. V, η `∆ η′. �en for each x ∈ τ(ρ(V)), we have τ(η)(x) = τ(η′)(x).

11

3. (Correctness of |=∆)
(a) Let η, η′ be symbolic α-renamings with components over M , s.t. η·x |=∆ η′·x. �en τ(η)(ρ(x)) =

τ(η′)(ρ(x)).
(b) Let ξ, ξ′ be symbolic α-renamings with components over M , and let U ∈ M s.t. ξ·U |=∆ ξ′·U . �en

τ(ξ)(ρ(U)) = τ(ξ′(ρ(U))).

Proof. For part (1), we inspect all rules in Fig. 7 (c). For rule (Cod), the claim holds, since τ(ρ(v)) =
τ(ρ(Cod(arc′))) = Cod(τ(arc)) is a set of fresh variables which cannot be renamed by τ(arc). For (EmCV),
the claim holds, since Dom(τ(CV (αD,i))) = ∅ if D is non-binding. For rule (NccDU), the premise ensures
that CV (ρ(D)) ∩ Var(ρ(U)) = ∅ and with Dom(τ(CV (αD,i))) = CV (ρ(D)) this implies that the equation
Dom(τ(CV (αD,i))) ∩ Var(ρ(U)) = ∅ holds. For (NccDX), the premise ensures that CV (ρ(D)) ∩ {ρ(x)} = ∅
and since Dom(τ(CV (αD,i))) = CV (ρ(D)) this shows that the equation Dom(τ(CV (αD,i))) ∩ {ρ(x)} = ∅
holds. For rule (NccEU), the premise ensures that LV (ρ(E)) ∩Var(ρ(U)) = ∅ and since Dom(τ(LV (αE,i))) =
LV (ρ(E)) this shows that the equation Dom(τ(LV (αE,i))) ∩ Var(ρ(U)) = ∅ holds. For (NccEX), we have
LV (ρ(E)) ∩ {ρ(x)} = ∅ by the premise and with Dom(τ(LV (αE,i))) = LV (ρ(E)) this shows that the equation
Dom(τ(LV (αE,i))) ∩ {ρ(x)} = ∅ holds. For (NccUX), the premise ensures that {ρ(x)} ∩ Var(ρ(U)) = ∅ and
since Dom(τ(αx,i)) = {ρ(x)} this shows Dom(τ(αx,i)) ∩Var(ρ(U)) = ∅. For rule (NccXX), the premise ensures
that ρ(x) 6= ρ(x′) and since Dom(τ(αx,i)) = {ρ(x)} this shows Dom(τ(αx,i)) ∩ {ρ(x′)} = ∅.

For part (2), we inspect the inference rules and use an induction on the height of the derivation tree. �e
induction base is covered by rule (IdEta) which is obviously correct. Otherwise, we inspect the �nal rule which is
applied in the derivation:

For rule (RMarc), the condition ∀v ∈ V : arc 6�∆ v and part 1 ensure that τ({arc}∪rc:η)(x) = τ(rc:η)(x) for
x ∈ τ(ρ(V)). Applying the induction hypothesis to the second part of the premise shows τ(rc:η)(x) = τ(rc:η′)(x)
for all x ∈ τ(ρ(V)) which shows the claim.

For rule (Parc), the induction hypothesis shows that τ(η)(x) = τ(η′)(x) for all x ∈ τ(ρ(V ∪ V ′)) with
V ′ = {Cod(arc) | arc ∈ rc}. Since τ(arc:η)(x) = τ(η)(τ(arc)(x)), τ(arc:η′)(x) = τ(η′)(τ(arc)(x)) and
τ(arc)(x) ∈ τ(ρ(V ′)) for all x ∈ τ(ρ(V)) this implies τ(arc:η)(x) = τ(arc:η′)(x) for all x ∈ τ(ρ(V)).

For rule (Order), we have τ({arc1, . . . , arcn}:η)(x) = τ(arci:{arc1, . . . , arci−1, arci+1, . . . arcn}:η)(x) for
all x ∈ τ(ρ(V)) by the de�nition of ground α-renamings.

For rule (MSet), the premise ensures that τ(〈αx1,k1 , . . . , αxn,kn〉)(x) = τ(〈αxπ(1),kπ(1)
, . . . , αxπ(n),kπ(n)

〉)(x)
for all permutations π on {1, . . . , n}: all variables xi are pairwise di�erent, all variables αxi,ki 6�∆ xj for all i 6= j
ensures that τ(αxi,ki)(ρ(xj)) = ρ(xj) for all i 6= j (see part 1). Since τ(arc:η)(x) = τ(η)(τ(arc)(x)) for all η,
we thus have τ(η1 ++〈αx1,k1 , . . . , αxn,kn〉++ η2)(x) = τ(η1 ++{αx1,k1 , . . . , αxn,kn}:η2)(x) for all x ∈ τ(ρ(V)).
Now the induction hypothesis shows the claim.

For proving part (3a), we use induction on the height of the derivation tree for η·x `∆ η′·y. If the height is 1,
then one of the rules (IdX), (RemDup), or (SimNCCX) is applied: For rule (IdX), the claim obviously holds, for
rule (RemDup), the claim holds, since arc ≥num arc′ ensures that Dom(arc′) ⊆ Dom(arc) and thus applying arc′
has no e�ect. For rule (SimNCCX), the premise (η·y, x) ∈ split

NCC
(∆3) ensures that ρ(x) 6∈ τ(η)(ρ(y)), and the

second condition of the premise (i.e. η′ is a weak instance of η) also ensures that ρ(x) 6∈ τ(η′)(ρ(y)), since the
di�erence between η′ and η is that some sets of renaming components in η may be sequences of components
in η′ and that a di�erent variant αU,j of a renaming αU,i is used. However, since the co-domain of τ(αU,i′) is
always a set of fresh variables, we have ρ(x) ∈ τ(ρ(η·y)) ⇐⇒ ρ(x) ∈ τ(ρ(η′·y)).

Since Dom(τ(αx,i)) = {ρ(x)}, we thus have for renaming τ(αx,i), τ(η′:{αx,i})(ρ(y)) = τ(η′ρ(y)) and thus
also τ(ρ(η′:{αx,i} ·∪rc:η2·y)) = τ(ρ(η′:{rc:η2·y)) which shows the claim.

For the induction step, we consider the last rule application in the derivation tree. If (TrX) is applied, then the
induction hypothesis shows τ(η1)(ρ(x)) = τ(η2)(ρ(x)) and τ(η2)(ρ(x)) = τ(η3)(ρ(x)) and thus τ(η1)(ρ(x)) =
τ(η4)(ρ(x)). If (SimX) is applied, then part 2 shows τ(η)(ρ(x)) = τ(η′)(ρ(x)). If (SubstX) is applied, then
the induction hypothesis shows τ(η1)(ρ(x)) = τ(({y/x} ∪ rc):η2)(ρ(x)) Since τ(rc:η2)(τ({y/x})(ρ(x))) =
τ(rc:η2)((ρ(x) 7→ y)ρ(x)) = τ(rc:η2)(y) = y where the last equation holds, since y must be fresh, and thus
y 6∈ Dom(τ(rc:η2)), we have τ(η1)(ρ(x)) = y.

For part (3b), we use induction on the height of the derivation tree. For the induction base, the rules (IdU),
(RemDup), (SimNCCU) have to be considered. For rule (IdU), the claim holds, for rule (RemDup) the reasoning is
analogous to part (3a) of this proof, and for (SimNCCU), the premise (ξU ·U, x) ∈ split

NCC
(∆3) ensures that ρ(x) 6∈

Var(τ(ρ(ξU ·U))) and the second premise ensures that also ρ(x) 6∈ Var(τ(ρ(ξ′U ·U))), since Var(τ(ρ(ξ′U ·U))) ∩
Var(τ(ρ(ξU ·U))) is a set of fresh variables di�erent from ρ(x). �us, the renaming τ(αx,i) has no e�ect for
τ(ρ(ξ′U ·U)) and the claim holds. If rule (TrU) is used, then the claim holds by the induction hypothesis and
transitivity of =. If ξ·U `∆ ξ′·U is derived by rule (SimU) where ξ = αU,i:η and ξ′ = αU,i:η

′, then let τ(αU,i) =
AU,i. By part 2 we have τ(η)(x) = τ(η′)(x) for all x ∈ τ(ρ({VAR(U),Cod(αU,i)})) = Var(ρ(U)) ∪ Cod(AU,i).
�is shows τ(αU,i:η)(ρ(U)) = τ(η)(AU,i(ρ(U))) = τ(η′)(AU,i(ρ(U))) = τ(αU,i:η

′)(ρ(U)). ut

12

Applying the previous proposition for all occurrences η·x and ξ·U which are transformed by the simpli�cation
algorithm shows:

�eorem 4.8. �e simpli�cation algorithm does not change the set of concretizations, i.e. for a constrained LRSXα-
expression (s,∆) s.t. s ful�lls the LVC and s does not contain an environment variable twice in the same environment,
the simpli�ed expression (s′, ∆), we have γ(s,∆) = γ(s′, ∆).

5 Algorithms for LRSXα-Expressions

In this section we show how to perform rewriting of LRSXα-expressions by matching LRSXα-expressions to
apply rewrite steps, and by refreshing the α-renaming to guarantee that the distinct variable convention holds a�er
applying a rewrite step. We �nally present an algorithm to test extended α-equivalence of LRSXα-expressions
which, for instance, is necessary during diagram computation to check whether a diagram is closed.

5.1 Rewriting Meta-Expressions

Meta letrec rewrite rules (see [14]) are rewrite rules of the form `→∆ r where ` and r are LRSX-expressions and
∆ is a constraint tuple. Applying a rewrite rule to a constrained expression (s,∇) consists of matching ` against
s s.t. the constraints in ∇ imply the constraints in ∆. Given a matcher (i.e. a substitution σ with σ(`) ∼let s)
the reduction is s→ σ(r) (or more precisely (s,∇)→ (σ(r),∇∪ σ(∆))). In [14] the letrec matching problem
was de�ned and analyzed for LRSX-expressions. However, as argued before, o�en transformations are not
applicable, since ∇ does not imply ∆ (see the example for an (llet) overlap in Sect. 1). Here α-renaming of s
o�en helps to satisfy the constraints. Hence, we formulate an adapted form of a letrec matching problem where
(s,∇) is a constrained LRSXα-expression. Our matching equations are of the form ` E s where s is a meta-
expression with instantiable meta-variables and ` is meta-expression with meta-variables that act like constants.
In addition ` may contain symbolic α-renamings (i.e. ` is an LRSXα-expression), but s is an LRSX-expression.
To distinguish the meta-variables we use blue font for instantiable meta-variables and red font and underlining
for �xed meta-variables. With MVI(·) and MVF (·) we denote functions to compute the sets.

De�nition 5.1. A letrec matching problem with α-renamed expressions is a tuple P = (Γ,∆,∇) where Γ is a set
of matching equations s E t s.t. s is anLRSX-expression, t is anLRSXα-expression,MVI(t) = ∅;∆ = (∆1, ∆2, ∆3)
is a constraint tuple over LRSX, called needed constraints; ∇ = (∇1,∇2,∇3) is a constraint tuple over LRSXα,
called given constraints, whereMVI(∇i) = ∅ for i = 1, 2, 3 and ∇ is satis�able; and for all expressions in Γ , the
LVC must hold. �e following occurrence restrictions must hold: every variable of kind S occurs at most twice in
Γ ; every variable of kind E or D occurs at most once in Γ . A matcher σ of P is a substitution s.t. for any ground
substitution ρ together with a ground renaming τ with Dom(ρ) = MVF (P) s.t. τ ◦ ρ satis�es∇, τ(ρ(σ(s))), τ(ρ(t))
ful�ll the LVC for all s E t ∈ Γ , we have τ(ρ(σ(s))) ∼let τ(ρ(t)) for all s E t ∈ Γ , and there exists a ground
substitution ρ0 with Dom(ρ0) = MVI(ρ(σ(∆))) s.t. τ(ρ0(ρ(σ(∆)))) is satis�ed.

�e letrec matching problem (with LRSX-expressions, only) and corresponding matchers for LRSX-expressions
are de�ned analogously but all expressions are LRSX-expressions, and no ground renaming τ is involved.
�e additional substitution ρ0 in the de�nition of a matcher is used for the case that rewrite rules ` →∆ r
introduce meta-variables, i.e. if there are meta-variables which occur in r but not in `. �en the existence of
ρ0 ensures that always a ground instance can be constructed. An example for a rewrite rule which introduces
meta-variables is the rule (abs) which shares the arguments of a function symbol application: (f s1 . . . sn)→∆

letrec X1.s1; . . . ;Xn.sn in (f (varX1) . . . (varXn)) where ∆ contains NCCs that ensure that X1, . . . , Xn

are fresh w.r.t. s1, . . . , sn.
In [14] a sound and complete matching algorithm for the letrec matching problem (with LRSX-expressions,

only) is given. �is algorithm takes a letrec matching problem as input and computes a constructed solution Sol
and in a �nal step it checks whether the given constraints in ∇3 imply the required constraints in ∆3. Except
for this �nal step the algorithm can be reused to solve the letrec matching problem for LRSXα-expressions
and computing matchers as follows: Let (Γ,∆,∇) be a letrec matching problem with α-renamed expression.
Transform the LRSXα-expressions on right-hand sides of Γ and in ∇ into LRSX-expressions by replacing all
occurrences ξ · U , ξ′ · U with ξ ≈ ξ′ by a single fresh �xed meta-variable U ′ (of the same kind as U) and by
replacing η·x, η′·x with η ≈ η′ by a fresh variable x′. Now apply the matching algorithm for LRSX of [14] until a
solution (SolF , ∆F ,∇F) is produced. �en construct (SolO, ∆O,∇O) by replacing U ′ by ξ · U and x′ by η·x
in (SolF , ∆F ,∇F). Now the following check whether ∆O implies∇O is performed. If it succeeds, then SolO is
delivered as a matcher.

13

Varsym(η·x) =
{
{Cod(αx,i)} if η = αx,i ∪ rc : η′
{x} ∪ SVsym(η), otherwise

Varsym(ξ·U)= {VAR(U)} ∪ SVsym(ξ)

CVsym(ξ·x) =

{
{Cod(αx,i)} if ξ = αx,i ∪ rc : η
{x} ∪ SVsym(η)

CVsym(η·U)=

{
SVsym(η), if η = αU,i ∪ rc : η′
{VAR(U)} ∪ SVsym(η) otherwise

SVsym(〈rc1, . . . ,rcn〉) =
⋃
i SVsym(rci)

SVsym({arc1, . . . ,arcn})=
⋃
i SVsym(arci)

SVsym(αU,i) = {Cod(αU,i)}
SVsym(LV (αU,i)) = {Cod(αU,i)}
SVsym(CV (αU,i)) = {Cod(αU,i)}

�e relation ./ is the symmetric closure of the axioms:

x ./ y if x 6= y x ./ Cod(αU,i) VAR(U) ./ Cod(αU′,i)
Cod(αU,i) ./ Cod(αU′,i′) if U 6= U ′ or i 6= i′.

Fig. 9: �e functions Varsym and CVsym and the relation ./

De�nition 5.2. Let∆ = (∆1, ∆2, ∆3) and∇ = (∇1,∇2,∇3) be constraint tuples over LRSXα s.t.MVI(∇) = ∅
and MVF (∆) ⊆ MVF (∇). �en ∆ implies ∇ if D ∈ ∆1 =⇒ D ∈ ∇1, E ∈ ∆2 =⇒ E ∈ ∇2, and for all
(ξ·u, ξ′·v) ∈ split

NCC
(∆3) one of the following cases applies:

1. ξ·u = 〈〉 · x and ξ′·v = 〈〉 · y where x 6= y.
2. (ξ·u, ξ′·v) ∈ split

NCC
(∇3).

3. u = v and u = D or u = E with E 6∈ ∆2.
4. u 6= v and u = S, or u = D or u = E, or u = X .
5. u 6= v or v = D, or v = E, or v = X .
6. ξ′ = 〈〉 and v = E or v = D and (v, v) ∈ split

NCC
(∇3).

7. ξ = 〈〉, ξ′ = 〈〉, and (u, v) is of the form (X, y), (x, Y), (X,Y), (x, D), (X,D), (x, E), (X,E) where in all
cases (v, u) ∈ split

NCC
(∇3).

8. v1 ./ v2 for all (v1, v2) ∈ (Varsym(ξ·u) × CVsym(ξ′·v)), where Varsym(ξ·u) computes symbolic variables
which represent the set of free and bound variables that may occur in concretizations of ξ·u and CVsym(η·v)
computes symbolic variables which may capture variables in the concretizations of ξ′·v and the relation v1 ./ v2
symbolically checks whether the sets of variables represented by v1 and v2 are disjoint (see Fig. 9).

For a ground substitution ρ and a ground α-renaming τ for ρ, let CVA(τ(ρ(η·x))) := {τ(η)(ρ(x))},
CVA(τ(ρ(ξ·D))) := CV (τ(ξ)(ρ(D))), and CVA(τ(ρ(ξ·E))) := LV (τ(ξ)(ρ(E))). Note that for an NCC (s, d),
Var(τ(ρ(s))) = {Var(τ(ρ(ξ·u))) | ξ·u ∈ VarM (s)} and CV (τ(ρ(d))) = {CVA(τ(ρ(ξ·u))) | ξ·u ∈ CVM (s)}
which justi�es to work with the split NCCs.

Lemma 5.3. Assume that∆ implies∇. Let ρ be a ground substitution forMVF (∇) and τ be a ground renaming
for ρ, s.t. τ ◦ ρ satis�es∇. �en there exists a ground substitution ρ0 with Dom(ρ0) = MVI(ρ(∆)) s.t. τ(ρ0(ρ(∆)))
is satis�ed.

Proof. Let (ξ·u, ξ′·v) ∈ split
NCC
(∆3) s.t. one of the cases of the implication check applies. We consider the di�erent

cases and use the following instantiation ρ0 for instantiable meta-variables: ρ0(S) = λxS .xS for a fresh variable
xS ; ρ0(D) = [·] if D 6∈ ∆1, and ρ0(D) = d where d is a context with CV (d) = ∅; ρ0(E) = ∅ if E 6∈ ∆2 and
ρ0(E) = xE .var xE , otherwise where xE is a fresh variable; ρ0(X) = xX for a fresh variable xX .

In case (1), (ξ·u, ξ′·v) = (〈〉·x, 〈〉·y) and the constraint is satis�ed. In case (2), (ξ·u, ξ′·v) ∈ split
NCC
(∇3) implies

Var(τ(ξ)ρ(u)) ∩ CVA(τ(ξ
′)ρ(v)) = ∅. For case (3), assume that u = v and u = D or u = E with E 6∈ ∆2. �en

τ(ρ(ξ·u)) = τ(ρ(ξ′·v)) = u, and Var(τ(ρ0(ρ(ξ·u)))) = CVA(τ(ρ0(ρ(ξ
′·u)))) = ∅.

For case (4), assume that u 6= v and u = S, or u = D or u = E, or u = X . then Var(τ(ρ0(ρ(ξ·u))) =
{τ(ξ)·ρ0(u)} contains only fresh variables and these variables must be disjoint from CVA(τ(ξ

′)·ρ0(ρ(v)))), since
the variables in ρ0(ρ(u)) must be pairwise distinct from the variables in ρ0(ρ(v)).

For case (5), assume that u 6= v, v = D, or v = E, or v = X . �en ρ0(ρ(v)) = ρ0(v) and CVA(ρ0(v)) contains
only fresh variables which cannot occur in ρ0(ρ(u)). and thus CVA(τ(ξ′)ρ0(ρ(v))) ∩Var(τ(ξ)(ρ0(ρ(u)))) = ∅.

14

For case (6), let ξ′ = 〈〉, v = E or v = D, and (v, v) ∈ split
NCC
(∇3). �en Var(ρ(v)) ∩ CVA(ρ(v)) = ∅

must hold, which requires that ρ(v) = ∅ (for v = E), ρ(v) = d with CVA(d) = ∅ (for v = D). In all cases
CVA(ρ(v)) = ∅ and thus Var(τ(ρ0(ρ(ξ·u)))) ∩ CVA(ρ0(ρ(v))) = ∅.

For case (7), ξ = ξ′ = 〈〉, (v, u) ∈ split
NCC
(∇3)∪NCCdvc , and (u, v) is of the form (X, y), (x, Y), (X,Y), (x, D),

(X,D), (x, E), or (X,E). It su�ces to show thatVar(ρ(v))∩CVA(ρ(u)) = ∅ impliesVar(ρ(u))∩CVA(ρ(v)) = ∅.
For (u, v) ∈ {(X, y), (x, Y), (X,Y)} this holds since Var(y) = CVA(y) for every variable y. For (u, v) = (x, U)
or (X,U) where U is an D or E-variable, CVA(ρ(v)) ⊆ Var(ρ(v)) and Var(ρ(u)) = CVA(ρ(u)) and thus
Var(ρ(v)) ∩ CVA(ρ(u)) = ∅ implies Var(ρ(u)) ∩ CVA(ρ(v)) = ∅.

For case (8), assume that v1 ./ v2 for all (v1, v2) ∈ Varsym(ξ·u)× CVsym(ξ′·v). �en also Var(τ(ρ(ξ·u))) ∩
CVA(τ(ρ(ξ

′·v))) = ∅ holds, which can be veri�ed using the de�nition of ./, Varsym , and CVsym and the interpre-
tation of symbolic set variables in De�nition 4.4. ut

Soundness of the matching algorithm for LRSX [14] implies:

�eorem 5.4. �e matching algorithm for LRSXα is sound.

Example 5.5. As an example for rewriting which also illustrates the necessity of simpli�cation,
consider the transformation letrec X.S in var X →∅,∅,(S,λX.[·]) S, called (ucp), which in-
lines the binding X.S where the NCC (S, λX.[·]) guarantees that X does not occur in S. For
the constrained expression (letrec Y.S0 in var Y, (∅, ∅, (S0, λY.[·]))), α-renaming results in
(letrec αY,1·Y.〈αS0,1, αY,1〉·S0 in var αY,1·Y, (∅, ∅, (S0, λY.[·]))).

Matching this expression against the le� hand side of the transformation (ucp) fails for the sub-
stitution σ = {X 7→ αY,1·Y, S 7→ 〈αS0,1, αY,1〉·S0}, since validity of the NCC σ(S, λX.[·]) =
(〈αS0,1, αY,1〉·S0, λαY,1·Y.[·]) cannot be inferred. If simpli�cation is applied before the matching,
then simpli�cation of (letrec αY,1·Y.〈αS0,1, αY,1〉·S0 in var αY,1·Y, (∅, ∅, (S0, λY.[·]))) results in
(letrec αY,1·Y.αS0,1·S0 in var αY,1·Y, (∅, ∅, (S0, λY.[·]))) and matching this expression against the le� hand
side of (ucp) delivers the matcher σ = {X 7→ αY,1·Y, S 7→ αS0,1·S0} and validity of the NCC σ(S, λX.[·]) =
(αS0,1·S0, λαY,1·Y.[·]) can be inferred since split

NCC
({(αS0,1·S0, λαY,1·Y.[·])} = {(αS0,1·S0, αY,1·Y)} and

VAR(S0) ./ Cod(αY,1) and Cod(αS0,1) ./ Cod(αY,1).

5.2 Refreshing α-Renamings

Matching can be used to rewrite constrained symbolically α-renamed expressions. However, a�er applying such
a rewrite step, the concretizations may no longer ful�ll the strong DVC. For instance, consider a meta letrec
rewrite rule that copies a subexpression: letrec X.S in C[var X] →∆ letrec X.S in C[S]. Applying the
rule to letrec αX,1·X.αS0,1 · S0 in var αX,1·X results in letrec αX,1·X.αS0,1 · S0 in αS0,1 · S0. �e same
α-renaming αS0,1 is used for both occurrences of S0 which violates the DVC for instances of the expression.
An approach to deal with this problem could be to generalize the symbolic α-renamings to again symbolically
α-rename the expressions. However, this approach seems to be not easily tractable (for instance, this would require
to introduce renaming components of the form αξ·S,i which represents an α-renaming of already α-renamed
expressions). We choose a simpler approach that uses the existing α-renamings and refreshes them:

De�nition 5.6 (Refreshing Alpha-Renamings). A renumbering of a symbolic α-renaming modi�es αU,i com-
ponents by replacing αU,i (or αx,i resp.) with αU,j (αx,j ,resp.) where j is a fresh number. Let (s,∆) be a constrained
LRSXα-expression. �e function refresh(s,∇) renumbers all occurrences of αU,i and replaces CV (αU,i) with
CV (αU,j) and LV (αU,i) with LV (αU,j) respecting the scopes. For bound variables 〈〉·x or meta-variables 〈〉·U it
introduces a fresh α-renaming αx,i or αU,i and adds it to the meta-variable and si�s the corresponding renaming
downwards, analogous to AR and sift shown in Fig. 5.

Proposition 5.7. Let (s,∆) be a constrained LRSXα-expression and (s′, ∆) = refresh(s,∆). �en for each
s ∈ γ(s,∆) there exists s′ ∈ γ(s′, ∆) with s ∼α s′ and for each s′ ∈ γ(s′, ∆) there exists s ∈ γ(s,∆) with s ∼α s′

Proof. Replacing αU,i- and αx,i-renamings by fresh copies implies that the corresponding ground α-renamings
use new sets of variables in their co-domain, which is due to the consistent replacement, also consistent for the
concretizations.

5.3 Checking α-Equivalence

We �nally provide a test for checking extend α-equivalence.

15

De�nition 5.8. Let s and s′ be LRSXα-expressions. �e extended α-equivalence check for s and s′ �rst guesses
an order of the environment variables and bindings in all letrec-environments in s and in s′ and then recursively
works along the structure of s and s′ in parallel and tries to renumber all symbolic α-renamings s.t.

– for each binder αx,i·x in s at position p and αx′,i′ ·x′ in s′ at position p, replace αx,i by αx,k in s and replace
αx′,i′ by αx′,k in s′, where k is a fresh number. Perform these replacements for all occurrences of αx,i and αx′,i′ ,
resp. in the scope of the binder at position p.

– for each occurrence of αU,i : η·U in s at position p and αU,i′ : η′·U at position p in s′, replace αU,i by αU,k in s
and αU,i′ by αU,k′ in s′. Perform the replacements for all occurrences of αU,i in s and αU,i′ in s′.

If the structures of s and s′ are di�erent or if position p in s′ does not exist or is not of the demanded form, then
fail. Otherwise, let the modi�ed expressions be s0 and s′0. Replace αx,k by the substitution {x 7→ yk} (where yk is a
fresh variable) and replace αX,k by the substitution {X 7→ Yk} where Yk is a fresh meta-variable. Let s1 and s′1 be
the resulting expressions. Check whether the expressions s1 and s′1 are equivalent w.r.t. ∼let . If this check succeeds,
then deliver success else fail.

Given two constrained LRSXα-expressions (s,∆) and (s′, ∆′), the extended α-equivalence check is valid, if the
extended α-equivalence check for s and s′ is valid, and ∆ implies ∆′ as well as ∆′ implies ∆ using the implication
check from De�nition 5.2, where all meta-variables are treated as �xed meta-variables.

Proposition 5.9. Let s and s′ be LRSXα-expressions and let ρ be a ground substitution for ε(s) and ε(s′) and τ be
a ground renaming for ρ. �en the extended α-equivalence τ(ρ(s)) ∼α τ(ρ(s′)) holds.

Proof. Let s0, s′0, s1, s′1 be the modi�ed expressions of the α-equivalence check. First observe that with the
extension ρ0 of ρ s.t. ρ0(Yk) = τ(ρ(αX,k·Xk)) and ρ0(U) = ρ(U) for all meta-variables which are not replaced
by the modi�cation from s0 to s1 and s′0 to s′1, we have τ(ρ(s0)) ∼α τ(ρ0(s1)) and τ(ρ(s′0)) ∼α τ(ρ0(s

′
1)).

Clearly, we also have τ(ρ(s0)) ∼α τ(ρ(s)) and τ(ρ(s′0)) ∼α τ(ρ(s′)), since only the co-domains of α-renamings
are modi�ed. Since s1 and s′1 are equivalent w.r.t. ∼let , this also holds for τ(ρ0(s1)) and τ(ρ0(s′1)) and thus we
have τ(ρ(s)) ∼α τ(ρ(s′)).

Soundness of the implication check and the previous proposition imply correctness of the extended α-
equivalence check:

�eorem 5.10. Let (s,∆), (s′, ∆′) be constrained LRSXα-expressions which pass the extended α-equivalence check.
Let ρ be a ground substitution with Dom(ρ) = MV (s) ∪ MV (s′) ∪ MV (∆) ∪ MV (∆′) and let τ be a ground
renaming for ρ s.t. τ ◦ρ satis�es∆1, ∆2, ∆

′
1, ∆

′
2. �en τ ◦ρ satis�es∆ i� τ ◦ρ satis�es∆′ and τ(ρ(s)) ∼α τ(ρ(s′)).

6 Experiments

�e LRSX Tool (available from http://goethe.link/LRSXTOOL) tries to automatically prove correctness
of transformations by the diagram method. A�er computing the overlaps, it tries to join them by applying letrec
rewrite steps and symbolic α-renaming. We tested the LRSX Tool with the calculus Lneed [18], and the calculus
LR [19] (which extends Lneed by data constructors for lists, booleans and pairs together with corresponding
case-expressions, and seq-expressions and thus represents an untyped core language of Haskell). Table 1 shows
the numbers of computed overlaps, corresponding joins, and the number of those joins which use the alpha-
renaming procedure. �e row marked with→ represent the overlaps between le� hand sides of transformations
and standard reductions, while← represent the overlaps between right hand sides of transformations and standard
reductions. Due to branching in unjoinable cases, the number of joins is higher than the number of overlaps. Note
that the strategy of the LRSX Tool is to avoid α-renamings, and thus α-renaming is applied only, if no join was
found before without performing renaming. �e results show that α-renaming is necessary in about 20 percent of
the cases (except for overlaps of le� hand sides in the calculus Lneed). With the help of α-renaming all computed
overlaps could be closed and the correctness of program transformations (16 transformations for Lneed and 43
transformation for LR) could be shown automatically.

7 Conclusion

We presented an extension of the meta-language LRSX by symbolic α-renamings. We introduced algorithms
for simpli�cation of renamings, matching, reduction, and checking extended α-equivalence. �e algorithms are
implemented and used in the LRSX Tool, and our experiments show that the approach for α-renaming is successful
in automatically proving correctness of program transformations. Further work is to use the approach in other
inference procedures and to investigate whether it can be adapted for nominal techniques.

16

overlaps # meta joins # meta joins
with α-renaming

Calculus Lneed

→ 2242 5425 93
← 3001 7273 1402
Calculus LR
→ 87041 391264 73601
← 107333 429104 93230

Table 1: Statistics of executing the LRSX Tool

References

1. Zena M. Ariola and Ma�hias Felleisen. �e call-by-need lambda calculus. J. Funct. Program., 7(3):265–301, 1997.
2. Zena M. Ariola, Ma�hias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. A call-by-need lambda calculus. In

POPL 1995, pages 233–246. ACM, 1995.
3. Christophe Calvès and Maribel Fernández. Nominal matching and alpha-equivalence. In WoLLIC 2008, volume 5110 of

LNCS, pages 111–122. Springer, 2008.
4. Christophe Calvès and Maribel Fernández. A polynomial nominal uni�cation algorithm. �eor. Comput. Sci., 403(2-3):285–

306, 2008.
5. Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965, 2007.
6. Jordi Levy and Mateu Villaret. Nominal uni�cation from a higher-order perspective. In RTA 2008, volume 5117 of LNCS,

pages 246–260. Springer, 2008.
7. Elena Machkasova. Computational soundness of a call by name calculus of recursively-scoped records. In WRS 2007,

ENTCS, 2007.
8. Elena Machkasova and Franklyn A. Turbak. A calculus for link-time compilation. In ESOP 2000, volume 1782 of LNCS,

pages 260–274. Springer, 2000.
9. James Hiram Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, MIT, 1968.

10. Frank Pfenning and Conal Ellio�. Higher-order abstract syntax. In PLDI 1988, pages 199–208. ACM, 1988.
11. Andrew Pi�s. Nominal techniques. ACM SIGLOG News, 3(1):57–72, 2016.
12. Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. �eoret. Comput. Sci., 1:125–159, 1975.
13. Conrad Rau, David Sabel, and Manfred Schmidt-Schauß. Correctness of program transformations as a termination problem.

In IJCAR 2012, volume 7364 of LNCS, pages 462–476. Springer, 2012.
14. David Sabel. Rewriting of higher-order-meta-expressions with recursive bindings. Frankfurter Informatik-Berichte 2017-1,

Goethe-University Frankfurt am Main, 2017. h�p://goethe.link/�b-2017-1.
15. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with locally bo�om-avoiding choice: Context

lemma and correctness of transformations. Math. Structures Comput. Sci., 18(03):501–553, 2008.
16. Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal uni�cation of higher order expressions

with recursive let. In LOPSTR 2016, 2016. informal proceedings.
17. Manfred Schmidt-Schauß and David Sabel. Uni�cation of program expressions with recursive bindings. In PPDP 2016,

pages 160–173. ACM, 2016.
18. Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. Simulation in the call-by-need lambda-calculus with letrec.

In RTA 2010, volume 6 of LIPIcs, pages 295–310. Schloss Dagstuhl, 2010.
19. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s strictness analysis. J. Funct. Programming,

18(04):503–551, 2008.
20. Christian Urban, Andrew M. Pi�s, and Murdoch Gabbay. Nominal uni�cation. In CSL 2003, volume 2803 of LNCS, pages

513–527. Springer, 2003.
21. Joe B. Wells, Detlef Plump, and Fairouz Kamareddine. Diagrams for meaning preservation. In RTA 2003, volume 2706 of

LNCS, pages 88 –106. Springer, 2003.

17

http://goethe.link/fib-2017-1

	Alpha-Renaming of Higher-Order Meta-Expressions

