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Zusammenfassung 

Modellierung der Wasserspeicherdynamik in großen 
Überschwemmungs- und Feuchtgebieten 

Motivation 

Obwohl Überschwemmungs- und Feuchtgebiete schätzungsweise nur etwa 4% bis 6% 
der eisfreien Landoberfläche der Erde ausmachen (Mitsch und Gosselink 2000, Prigent 
et al. 2007), spielen sie eine wichtige Rolle in biochemischen und hydrologischen Kreis-
läufen. 

Aufgrund des Mangels an konsistenten Daten und Techniken bleibt die Identifizierung 
und Charakterisierung von Feuchtgebieten weltweit weiterhin eine schwierige Heraus-
forderung. Durch unterschiedlichste Fortschritte die räumlichen und zeitlichen Verände-
rungen von Oberflächengewässern mittels Fernerkundung zu bestimmen – wie Verän-
derungen der terrestrischen Wasserspeicherung (Tapley et al. 2004; Chen et al. 2010), 
die Höhe des Wasserspiegels und der Wassertiefe (Alsdorf et al. 2000, 2007; Durand et 
al. 2008, 2010), und die Ausdehnung von Oberflächengewässern (Prigent et al. 2007; 
Papa et al. 2010) – ändert sich diese Situation zunehmend. Variationen in Oberflächen-
gewässern, wie sie von Satelliten beobachtet werden, sind in großräumigen hydrologi-
schen Modellen nicht ausreichend repräsentiert. Diese Modelle stellen jedoch die einzi-
ge Möglichkeit dar, Süßwasserströme in großen Flusseinzugsgebieten für lange histori-
sche Zeitreihen zu berechnen und Vorhersagen zu simulieren.  

Globale hydrologische Modelle (GHMs) sind in der Erdsystemwissenschaft aus vielen 
Gründen wichtig. Einige von ihnen repräsentieren die Wechselwirkung zwischen Land 
und Atmosphäre, wie die Auswirkungen von Bodenfeuchte und Evapotranspiration auf 
das Klima, und den Einfluss von kontinentalem Süßwasser auf den Ozean. GHMs sind 
auch äußerst wertvoll für die menschliche Gesellschaft. Flüsse, Seen und Feuchtgebiete 
bieten Wasser für die Industrie, die Landwirtschaft, die Stromerzeugung und den Haus-
gebrauch. Die zukünftige Bevölkerungszunahme in Bezug auf die veränderte Wasser-
verfügbarkeit durch Flächennutzung und Klimawandel kann die terrestrischen Wasser-
ressourcen stark belasten. GHMs (oder auch Landoberflächenmodelle) kombinieren in 
der Regel Klimadaten mit physiographischen Daten (einschließlich Boden und Vegeta-
tion), um Zeitreihen von Süßwasserströmen (insbesondere Oberflächenabfluss und 
Durchfluss) und der Süßwasserspeicherung zu berechnen.  

Eine verbesserte Quantifizierung, nicht nur der kontinentalen Süßwasserströme sondern 
auch der Süßwasserspeicherung in den verschiedenen Speicherkompartimenten, ermög-
licht ein besseres Verständnis des globalen Wasserkreislaufs und des gesamten Erdsys-
tems. Sie ermöglicht eine bessere Beurteilung der Süßwasserressourcen und deren 
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Auswirkungen auf den globalen Wandel. Kontinentale Wasserspeichervariationen sind 
abhängig von den Merkmalen der einzelnen Speicherkompartimente (z.B. Bodenbe-
schaffenheit und Wurzeltiefe bei der Bodenwasserspeicherung oder die Präsenz von 
Oberflächengewässern bei der Oberflächenwasserspeicherung) und werden durch Kli-
mafaktoren, insbesondere durch Niederschlag, stark beeinflusst (Döll et al. 2012).  

In den letzten Jahren haben Bemühungen in der hydrologischen Modellierung zu Ver-
besserungen bei der Simulation von Feuchtgebieten und der Integration von Überflu-
tungsgebieten in globale hydrologische Modelle geführt. Überschwemmungsgebiete 
spielen eine wichtige Rolle im terrestrischen Wasserkreislauf und haben eine tiefgrei-
fende Bedeutung für die Artenvielfalt (Evans et al. 2010; Schneider et al. 2011b), Me-
thanemissionen (Ringeval et al. 2014; Petrescu et al. 2010), Kohlenstofflagerung (Rich-
ey et al. 2002; Decharme et al. 2008), Grundwasserneubildung (Wolski et al. 2006) und 
den Zeitpunkt von Hochwasserwellen (Richey et al. 1989; Vörösmarty and Moore 1991; 
Coe et al. 2008).  

Die vorhandenen hydrologischen Modelle variieren stark in ihrer Modellkomplexität 
und bieten Potenzial für weitere Entwicklungen (Kapitel 2).  

 

 

Hintergrund und Zielsetzung 

Diese Doktorarbeit ist im Rahmen des Forschungsprojektes REGHYDRO (kombinierte 
Hydrologische Modellierung und Regionale geodätische Schätzung von Wasserspei-
chervariationen in großen Flusseinzugsgebieten mittels GRACE-Daten) entstanden, 
welches Teil des Schwerpunktprogramms der Deutschen Forschungsgemeinschaft 
"Massentransporte und Massenverteilungen im System Erde" (DFG - SPP 1257) war. 
Das Projekt war ein Kooperationsprojekt von Geodäten, Hydrologen und Mathemati-
kern, mit dem Ziel die gegenseitigen Vorteile der Gravitationsfeldanalyse und der hyd-
rologischen Modellierung zu nutzen. 

Die Ozeanzirkulation, die konvektive Strömung im Erdmantel, die Veränderung des 
Meeresspiegels, das Schmelzen von kontinentalen Eisschilden, der Durchfluss und die 
Veränderung des Grundwasserspiegels und der Bodenfeuchtigkeit erzeugen den Trans-
port und die Umverteilung von Massen über die Grenzen zwischen Atmosphäre, Eis, 
Land und Ozean. Veränderungen in der Massenverteilung im Erdsystem verursachen 
Schwankungen im Erdschwerefeld. Solche Änderungen beeinflussen wiederum die Um-
laufbahnen von Satelliten und können durch Satellitenschwerkraftmissionen wie 
GRACE (Gravity Recovery and Climate Experiment) unter Verwendung innovativer 
und hochpräziser Sensorsysteme (http://www.csr.utexas.edu/grace) gemessen werden. 

Ein Ziel des REGHYDRO-Projekts war die Verbesserung der globalen hydrologischen 
Modellierung von Wasserspeichervariationen (und Wasserströmen) in den verschiede-
nen Speicherkompartimenten (Schnee und Eis, Vegetation, Boden, Grundwasser, Ober-



ZUSAMMENFASSUNG 

 XI

flächenwasser einschließlich Überschwemmungsgebieten) unter Verwendung von In-
formationen über die Schwankung des Gravitationsfeldes von GRACE. Im Rahmen des 
Projektes wurde das globale hydrologische Modell WaterGAP durch die Berücksichti-
gung von Grundwasserentnahmen (Döll et al. 2012) sowie die Integration von großen 
Überflutungsgebieten erweitert und verbessert.  

Das übergeordnete Ziel dieser Doktorarbeit ist es, einen Algorithmus zur Modellierung 
von großen zeitlich und räumlich dynamischen Überflutungsgebieten innerhalb des glo-
balen hydrologischen Modells WaterGAP zu entwickeln, welcher die Simulation von 
Wasserströmen und Wasserspeichervariationen in verschiedenen Speicherkompartimen-
ten verbessert. 

Um das Gesamtziel zu erreichen, werden mehrere untergeordnete Ziele definiert. Diese 
beinhalten zum einen die Aufbereitung von Modelleingangsdaten und Validierungsda-
ten und zum anderen generelle Anforderungen an den Überflutungsalgorithmus. Zu 
Letzterem zählt vor allem die globale Anwendbarkeit, d.h. die Simulation dynamischer 
Überflutungsflächen sollte in allen großen Flusseinzugsgebieten – mit unterschiedlichs-
ten klimatischen Verhältnissen, hydrologischen Regimen, Vegetationsbedeckung und 
natürlichen saisonalen Schwankungen – akzeptable Ergebnisse liefern. Das neue Mo-
dell, WaterGAP mit Überflutungsalgorithmus (WaterGAP 2.2b_fpl), sollte auf dem 
neuesten Stand der Forschung sein. Dies bedarf einer ausführlichen Analyse der Mo-
delleigenschaften bereits bestehender großskaliger hydrologischer und gekoppelter 
Landoberflächen-Routing Modelle, welche die Modellierung großflächiger Überflu-
tungsgebiete beinhalten. WaterGAP 2.2b_fpl sollte in der Lage sein, das Wasser nicht 
nur flussabwärtsgerichtet zu leiten, sondern auch Rückstaueffekte zu modellieren. 

 

Unter Berücksichtigung des oben dargestellten Gesamtbildes sowie der Anforderungen 
aus dem Projekt REGHYDRO werden folgende Forschungsfragen definiert, die inner-
halb der einzelnen Kapitel dieser Dissertation bearbeitet und beantwortet werden: 

1) Führt die Implementierung dynamischer Überflutungsgebiete in WaterGAP zu 
einer Verbesserung der Modellgüte hinsichtlich des Durchflusses, der Ausdeh-
nung von Oberflächengewässern und/oder der Variationen im Gesamtwasser-
speicher? Wenn ja, in welchen spezifischen geografischen Gebieten sind die 
Verbesserungen am deutlichsten?  

2) Wie wirkt sich die rückwärtsgerichtete Strömung (Rückstaueffekte) auf den mo-
dellierten Durchfluss, die Ausdehnung von Oberflächengewässern und die Was-
serspeichervariationen aus? Wie verändert sich die räumliche Verteilung der 
großen Überschwemmungsgebiete und der Variationen im Gesamtwasserspei-
cher im Einzugsgebiet des Amazonas bei der Modellierung von Rückstaueffek-
ten? 
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3) Was ist der Beitrag der Wasserspeicherung in Überschwemmungs- und Feucht-
gebieten zu Variationen im Gesamtwasserspeicher und Variationen im Durch-
fluss? 

4) Was sind die einzugsgebietsspezifischen Ursachen der beobachteten Unterschie-
de zwischen den Variationen im Gesamtwasserspeicher abgeleitet von GRACE 
und Variationen simuliert mit dem WaterGAP Global Hydrological Model 
(WGHM)? 

 

 

Methoden 

Um einen Algortihmus zur Modellierung dynamischer Überflutungen zu entwickeln, ist 
es zunächst wichtig, die modellinternen Prozesse von WaterGAP näher zu untersuchen, 
um herauszufinden, von welchen Größen die Wasserspeichervariation in den Über-
schwemmungs- und Feuchtgebieten abhängig ist und in wie weit diese, sowie die Aus-
dehnung von Oberflächengewässern plausibel wiedergegeben werden (Kapitel 3). Dazu 
werden in Kapitel 3 die Korrelation zwischen Durchfluss und der Ausdehnung von 
Oberflächengewässern, sowie der Einfluss auf die maximale Wassertiefe in den Über-
schwemmungs- und Feuchtgebieten auf die Speichervariationen in verschiedenen Kom-
partimenten und im Gesamtwasserspeicher untersucht. Außerdem wurde, wie in Kapi-
tel 3 vorgestellt, als Grundlage für die Validierung der modellierten Überschwem-
mungsdynamik ein Datensatz von Zeitreihen natürlich überschwemmter Gebiete (NIA, 
naturally inundated areas) generiert. Der Datensatz NIA basiert auf einer Zeitreihe 
(1993-2004) monatlicher, von Beobachtungen mehrerer Satelliten abgeleiteter, Über-
schwemmungsgebiete (Prigent et al. 2007, Papa et al. 2010), von denen künstlich her-
vorgerufenen Überschwemmungsflächen – hauptsächlich bewässerte Reisanbauflächen 
(MIRCA2000, Portmann et al. 2010) – subtrahiert wurden. 

Die Methoden des Ansatzes zur Modellierung zeitlich und räumlich dynamischer Über-
flutungsgebiete umfassen im Wesentlichen fünf Punkte:  

1) die Initialisierung der Überflutung,  
2) die Interaktion zwischen Fluss und Überflutungsgebiet,  
3) die Schätzung der Ausdehnung der überfluteten Fläche und der Wassertiefe im 

Überflutungsgebiet,  
4) der Wassertransport zwischen den Gitterzellen und  
5) die Fließgeschwindigkeiten im Fluss und Überflutungsgebiet.  

Die Methodik zu den einzelnen Punkten wird in den folgenden Absätzen kurz zusam-
mengefasst. 

Die Initialisierung der Überflutung wird durch den bordvollen Durchfluss bestimmt. In 
WaterGAP ist der bordvolle Durchfluss eine zeitlich konstante Eingangsgröße für jede 
0,5° Gitterzelle, berechnet mit einem statistischen Ansatz zur Hochwasseranalyse (Par-
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tial Duration Series; Verzano 2009, Schneider et al. 2011a). Eine im Rahmen dieser 
Doktorarbeit durchgeführte Analyse hat ergeben, dass die Frequenz, an denen der bord-
volle Durchfluss – der Grenzwert zur Überflutungsinitiierung – überschritten wird, in 
vielen Gebieten zu gering ist (Amazonas, Ob; Kapitel 4.3.1), weshalb ein Parameter zur 
Reduzierung dieser Eingangsgröße eingeführt wurde.  

Wird der bordvolle Durchfluss überschritten, fließt überschüssiges Wasser in das an-
grenzende Überflutungsgebiet. Sinkt der Durchfluss im Fluss wieder, fließt Wasser aus 
dem Überflutungsgebiet zurück in den Fluss. Die Menge Wasser, die vom Fluss in das 
Überflutungsgebiet oder umgekehrt fließt, wird mit Hilfe einer Exponentialfunktion in 
Abhängigkeit vom aktuellen Durchfluss und dessen Differenz zum bordvollen Durch-
fluss berechnet (Kapitel 4.3.2).  

Eine kumulative Verteilungsfunktion relativer Geländehöhen – eine hypsographische 
Kurve – wird verwendet, um das Höhenprofil des Überflutungsgebietes zu beschreiben, 
wobei angenommen wird, dass sich eine Überflutung ausgehend von den niedrigsten 
Gebieten in einer Gitterzelle entwickelt. So lassen sich mit dem Wasservolumen im 
Überflutungsgebiet die Wassertiefe und die entsprechende dynamische Ausdehnung 
bestimmen. Die hypsographische Kurve für jede Gitterzelle basiert auf hochaufgelösten 
(3 Bogensekunden) digitalen Geländemodellen, deren Daten als Eingangsgrößen für 
WaterGAP aufbereitet wurden. So beinhaltet jede Halbgradgitterzelle in WaterGAP 100 
Untergitter mit entsprechenden Geländehöhen. Um eine globale Abdeckung zu ermögli-
chen, wurden zwei digitale Geländemodelle (DEM – digital elevation model) kombi-
niert: HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivati-
ves at multiple Scales, Lehner et al. 2008b) und ACE (Altimeter Corrected Elevations, 
Smith 2009). Diese DEMs können Fehler aufweisen (Löcher, Artefakte) und spiegeln – 
beeinflusst durch Bebauung oder Bewuchs – nicht immer die Höhe des Erdbodens wie-
der. Die auf SRTM (Shuttle Radar Topography Mission) Daten basierenden HydroS-
HEDs Daten wurden in dem zu weiten Teilen dicht bewaldeten Einzugsgebiet des Ama-
zonas um eine angenommene durchschnittliche Vegetationshöhe von 17 m korrigiert 
(Kapitel 4.4.1).  

Der Wassertransport zwischen den einzelnen Gitterzellen ist in WaterGAP durch eine 
globale Durchflussrichtungskarte (global Drainage Direction Map DDM30, Döll und 
Lehner 2002) vorgegeben. In WaterGAP 2.2b_fpl kann das Wasser nicht nur im Fluss, 
sondern auch im Überflutungsgebiet weitergeleitet werden. Durch die Implementierung 
der DEM-Daten in WaterGAP 2.2b_fpl, ist es erstmals möglich, Wassergradienten zwi-
schen Gitterzellen zu berechnen. Der Nutzer hat die Wahl zwischen einem ausschließ-
lich stromabwärts gerichteten Wassertransport (kinematik) und einem Wassertransport, 
welcher, im Falle eines negativen Wassergradienten, anteilig Wasser stromaufwärts 
gerichtet transportiert und somit Wasserrückstaueffekte simuliert (backwater) (Kapi-
tel 4.5).  
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Im Überflutungsgebiet wird eine höhere Rauigkeit angenommen, so dass die Fließge-
schwindigkeit hier langsamer ist als im Fluss (Kapitel 4.6). 

 

Schließlich werden die Modellergebnisse eingehend analysiert, mit geeigneten Be-
obachtungsdaten validiert und Unsicherheiten identifiziert. 

 

 

Ergebnisse und Diskussion 

Im Folgenden wird die Beantwortung der Forschungsfragen zusammengefasst. 

 

Führt die Implementierung dynamischer Überflutungsgebiete in WaterGAP zu einer 
Verbesserung der Modellgüte hinsichtlich des Durchflusses, der Ausdehnung von Ober-
flächengewässern und/oder der Variationen im Gesamtwasserspeicher? Wenn ja, in 
welchen spezifischen geografischen Gebieten sind die Verbesserungen am deutlichsten?  

Auf globaler Ebene hat sich die Modellgüte von WaterGAP aufgrund der Implementie-
rung des Algorithmus zur Modellierung dynamischer Überflutungen deutlich verbessert. 
Die Verbesserungen umfassen alle analysierten Modellausgabegrößen: Durchfluss 
(auch die Fließgeschwindigkeit im Fluss), Wasserspeichervariationen und Oberflächen-
gewässerausdehnung. Die Modellverbesserung ist im Amazonasbecken am größten, 
welches mehr als jedes andere Einzugsgebiet durch seine ausgedehnten Überschwem-
mungs- und Feuchtgebiete gekennzeichnet ist. Diese nehmen etwa 20% der Einzugsge-
bietsfläche ein (Melack und Forsberg 2001) und beeinflussen maßgeblich die Speiche-
rung und Weiterleitung von Hochwasserwellen (Richey et al. 1989). 

Im Vergleich zur früheren WaterGAP-Modellversion 2.2b (WG22b) stimmt der model-
lierte Durchfluss in der WaterGAP-Modellversion, die den Überflutungsalgorithmus 
enthält (WG22b_fpl) besser mit beobachteten Durchflüssen überein, insbesondere hin-
sichtlich der saisonalen Variation und des zeitlichen Verlaufs von geringen und hohen 
Durchflüssen. Durch das Vorhandensein von Überflutungsgebieten, werden Durchfluss-
spitzen und Hochwasserwellen im Fluss abgeschwächt und tägliche Schwankungen im 
Durchfluss minimiert (Kapitel 5.4.2). 

Die Implementierung des Überflutungsalgorithmus in WaterGAP führte zu einer besse-
ren Simulation der Variation im Gesamtwasserspeicher (TWS (total water storage)-
Variation) für die Mehrheit der acht im Detail untersuchten Flusseinzugsgebiete (Ama-
zonas, Paraná, Mississippi, Ob, Lena, Ganges, Nil, Niger). TWS-Variationen steigen in 
den meisten Regionen der Erde aufgrund höherer Wasserspeichervariation in Über-
schwemmungs- und Feuchtgebieten. Die größeren TWS-Variationen passen besser zu 
den von GRACE abgeleiteten TWS-Variationen. Im Vergleich zu GRACE ist die Mo-
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dellverbesserung am deutlichsten in den Einzugsgebieten des Amazonas und Mississip-
pi. Im Amazonasbecken ist die Modellgüte, auch was den Zeitpunkt und die Lage der 
maximalen saisonalen TWS-Variation betrifft, gestiegen. Im Vergleich zu GRACE 
werden die saisonalen und zwischenjährlichen Amplituden des Gesamtwasserspeichers 
jedoch noch global unterschätzt, und die Modellgüte für arktische Einzugsgebiete (Ob 
und Lena) bleibt auch bei der Anwendung des Überflutungsalgorithmus in WaterGAP 
relativ gering oder verringert sich sogar (Ob). Eine Ursache dafür könnten Unsicherhei-
ten in der Modellierung von Schnee und Schneeschmelze in WaterGAP sein. 

Die Modellverbesserung von WG22b_fpl zum ehemaligen WG22b ist besonders deut-
lich hinsichtlich der Simulation der Ausdehnung von Oberflächengewässern 
(SWE (surface water extent)), welche sich in jeglicher Hinsicht – Lage des Überflu-
tungsgebietes, Zeitpunkt der maximalen Ausdehnung, saisonale Schwankungen und 
durchschnittliche Ausdehnung – und in allen acht analysierten großen Flusseinzugsge-
bieten verbessert hat. Im Amazonasbecken stieg die Korrelation von modellierten und 
beobachteten (von Satellitenbeobachtungen abgeleiteten natürlichen Überschwem-
mungsgebiete NIA) monatlichen SWE im Zeitraum 1993 bis 2004 von R² = 0,59 für 
WG22b auf R² = 0,83 für WG22b_fpl. Obwohl die saisonale Variation von SWE durch 
die Implementierung des Überflutungsalgorithmus in WaterGAP gestiegen ist, ist sie im 
Vergleich zu den satellitengestützten Beobachtungen im Amazonasbecken immer noch 
zu gering. 

 

Wie wirkt sich die rückwärtsgerichtete Strömung (Rückstaueffekte) auf den modellierten 
Durchfluss, die Ausdehnung von Oberflächengewässern und die Wasserspeichervaria-
tionen aus? Wie verändert sich die räumliche Verteilung der großen Überschwem-
mungsgebiete und der Variationen im Gesamtwasserspeicher im Einzugsgebiet des 
Amazonas bei der Modellierung von Rückstaueffekten? 

Die Modellierung von Wasserrückstaueffekten innerhalb von WaterGAP 2.2b_fpl 
(WG22b_fpl b; b für Rückstau, engl. backwater) führt zu einer signifikanten Verbesse-
rung der Modellergebnisse für das Einzugsgebiet des Amazonas. Für andere Einzugsge-
biete variiert die Auswirkung der Simulation von Wasserrückstaueffekten: verbesserte 
Modellgüte für einige Modellausgabegrößen, Verschlechterung für andere und in vielen 
Fällen ohne signifikante Veränderung der Modellgüte. 

Wasserrückstaueffekte im Amazonasbecken verursachen eine Abschwächung und Ver-
zögerung der Flutwelle, wodurch, im Vergleich zu WaterGAP 2.2b_fpl mit ausschließ-
lich flussabwärts gerichteter Strömung (WG22b_fpl k; k für kinematisch), die Korrela-
tion mit den zu beobachteten Durchflussdaten steigt. 

Durch die Modellierung von Wasserrückstaueffekten stimmt der Zeitpunkt der maxima-
len Oberflächengewässerausdehnung (SWE) besser mit den Satellitenbeobachtungen 
überein. Die Verbesserung ist, mehr oder weniger stark, in allen analysierten Flussein-
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zugsgebieten zu verzeichnen. In vielen Regionen der Welt (vor allem im Einzugsgebiet 
des Amazonas und des Paranás) verbesserten sich außerdem die räumlichen Muster 
saisonaler Schwankungen in der Ausdehnung von Oberflächengewässern. Im Fall des 
Amazonasbeckens sank die saisonale Variation der SWE insbesondere im flussabwärts-
gelegenen Teil des Einzugsgebietes, was, im Vergleich zu WG22b_fpl k, zu einer bes-
seren Übereinstimmung mit der räumlichen Verteilung der beobachteten natürlichen 
Überschwemmungsgebiete (NIA) führt. Die Verbesserung der Modellgüte durch die 
Modellierung von Wasserrückstaueffekten in Bezug auf die monatlichen Zeitreihen der 
SWE auf Einzugsgebiets- und Untereinzugsgebietsebene, kann auf die geringeren sai-
sonalen Schwankungen zurückgeführt werden. Besonders bei Niedrigwasserständen (in 
der Trockenzeit) bleibt die Ausdehnung der Überschwemmungs- und Feuchtgebiete 
größer. 

Eine der wichtigsten Erwartungen an die Modellierung von Wasserrückstaueffekten 
bestand darin, die räumliche Verteilung saisonaler Variationen im Gesamtwasserspei-
cher (TWS) im Amazonasbecken zu verbessern. Während GRACE die maximale saiso-
nale TWS-Variation im zentralen Teil des Amazonasbeckens beobachtet, simuliert Wa-
terGAP die höchsten saisonalen TWS-Variationen in der Nähe der Flussmündung (Ka-
pitel 5.4.4). Die Erwartungen wurden erfüllt; verglichen mit GRACE erreicht 
WG22b_fpl b von allen WaterGAP-Modellvarianten die besten Modellgütewerte. Die 
Verbesserungen waren jedoch kleiner als ursprünglich erwartet. Die Einbeziehung von 
Wasserrückstaueffekten in WG22b_fpl erhöht die saisonale Variation des Gesamtwas-
serspeichers an den Mündungen der Amazonas-Nebenflüsse Tapajos und Madeira, aber 
der Einfluss auf saisonale TWS-Schwankungen im zentralen Amazonas (an den Mün-
dungen des Purus und des Rio Negro in den Amazonas-Hauptstrom) ist klein. Es gibt 
mehrere mögliche Gründe für die Diskrepanzen zwischen den Ergebnissen von GRACE 
und WaterGAP: Unsicherheiten in den GRACE-Lösungen, Fehler durch die Filterung 
der Datenprodukte und unzureichende Modellierung hydrologischer Prozesse in Water-
GAP sind nur einige davon. Eine große Unsicherheit in WaterGAP ist die Simulation 
absoluter Höhen des Wasserspiegels und somit der Wasserspiegelgradienten – die 
Grundlage für die Modellierung von Wasserrückstaueffekten. Ein Vergleich zwischen 
modellierten Wasserspiegelhöhen und beobachteten Wasserspiegelhöhen von To-
pex/Poseidon (Abschnitt 5.4.1) an 80 Altimetrie-Stationen in 6 großen Flusseinzugsge-
bieten zeigt, dass WG22b_fpl b gute Ergebnisse simuliert in Bezug auf saisonale und 
zwischenjährliche Variationen der Wasserspiegel. Jedoch überschätzt WaterGAP die 
absoluten Werte der beobachteten Wasserspiegelhöhen für die meisten der 80 Stationen. 
Die Differenz der modellierten und beobachteten mittleren Wasserspiegelhöhen ist in 
tiefer gelegenen Regionen kleiner, als in höher gelegenen Regionen. Dies deutet darauf 
hin, dass die Minimalhöhe der Gitterzellen (Höhe des Ausflusses des Wassers in die 
stromabwärts gelegene Gitterzelle), die als Eingangsgröße auf Grundlage der digitalen 
Geländemodelle ins Modell eingeht, nicht mit den beobachteten Höhenmessungen über-
einstimmt. 
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Was ist der Beitrag der Wasserspeicherung in Überschwemmungs- und Feuchtgebieten 
zu Variationen im Gesamtwasserspeicher und Variationen im Durchfluss? 

Der einflussreichste Faktor für die Variation des Durchflusses in WaterGAP ist der 
Oberflächenabfluss, der hauptsächlich durch den Niederschlag bedingt ist. Weitere Fak-
toren sind Wasserentnahmen, Grundwasserrückflüsse und bei WaterGAP 2.2b mit 
Überflutungsalgorithmus (WG22b_fpl) auch Rückflüsse vom Überflutungsgebiet in den 
Fluss. Der Anteil, in den jeder Faktor zu Variationen im Durchfluss beiträgt, unter-
scheidet sich stark von Region zu Region. In WG22b_fpl ist der Beitrag der Wasser-
speicherung von Überschwemmungs- und Feuchtgebieten zu Variationen im Durchfluss 
in Gebieten mit großen und dauerhaften Überflutungen hoch; die Variation im Durch-
fluss nimmt mit der Anwesenheit von Überflutungsgebieten aufgrund der Abschwä-
chung von Spitzendurchflüssen ab (siehe Kapitel 5.4.2). 

In WG22b_fpl – sowohl mit ausschließlich stromabwärts gerichteter Fließrichtung, als 
auch mit teilweise stromaufwärts gerichteter Fließrichtung (Wasserrückstau) – ist die 
Speichervariation in Überschwemmungs- und Feuchtgebieten eine der vier Hauptbeitra-
genden für saisonale Variationen im Gesamtwasserspeicher (TWS); im Amazonasbe-
cken sogar der wichtigste. In der Mehrzahl der Einzugsgebiete werden saisonale TWS-
Variationen durch Schwankungen im Bodenwasserspeicher dominiert. In borealen und 
arktischen Flusseinzugsgebieten spielt der Schneewasserspeicher eine große Rolle. 

 

Was sind die einzugsgebietsspezifischen Ursachen der beobachteten Unterschiede zwi-
schen den Variationen im Gesamtwasserspeicher abgeleitet von GRACE und Variatio-
nen simuliert von dem WaterGAP Global Hydrological Model (WGHM)? 

Der Vergleich auf globaler Skala zwischen monatlichen und saisonalen Variationen im 
Gesamtwasserspeicher (TWS) von WaterGAP 2.2b_fpl und GRACE zeigt im Allge-
meinen ähnliche räumliche und zeitliche Muster. Für die meisten Regionen auf der Erde 
ist die Korrelation hoch. Dennoch sind im globalen Durchschnitt die saisonalen und 
zwischenjährlichen Amplituden im Gesamtwasserspeicher für WaterGAP kleiner als für 
GRACE. Hinsichtlich der monatlichen Zeitreihen der TWS-Variationen auf Einzugsge-
bietsebene ist die Modellgüte in tropischen Einzugsgebieten (Amazon, Paraná, Ganges, 
Niger) am größten und in arktischen und gemäßigten Einzugsgebieten (Ob, Lena, Mis-
sissippi) relativ niedrig (siehe Kapitel 5.4.4). 

Die Diskrepanzen zwischen TWS-Variationen simuliert von WaterGAP und denen ab-
geleitet von GRACE können mehrere Ursachen haben.  

Die drei Hauptfehlerquellen von GRACE beim Auflösen hydrologischer Signale sind 
Messfehler, Leakage-Fehler und Fehler im Atmosphärendruck (Seo und Wilson 2005). 
Die Signale von GRACE leiden unter Leakage-Fehlern (Signalverlaufen) von einer Re-
gion zur anderen, wodurch bei der Analyse von spezifischen Regionen wie Flussein-
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zugsgebieten die Signale von umliegenden Gebieten beeinflusst werden. Der Atmosphä-
rendruck ist eng mit der Gesamtmasse der Atmosphäre verknüpft. GRACE-Signale un-
terliegen Restsignalen und Aliasing-Effekten von Variationen anderer Massen, die wäh-
rend der GRACE-Datenverarbeitung entfernt wurden (hauptsächlich die Masse der At-
mosphäre und des Ozeans; z.B. Seo et al. 2008). Fehler die vom Schwerefeld herrühren 
sind Mess- und Verarbeitungsfehler. Diese werden durch Anwendung einer Nachbear-
beitungsfiltertechnik reduziert (Swenson und Wahr 2006). Dabei ist eine Filtertechnik 
erstrebenswert, die sowohl GRACE-Schwerkraftfeldfehler als auch Signalverluste an 
der Grenze der interessierenden Region minimiert (Werth et al. 2009).  

Für einen direkten Vergleich zwischen aus GRACE abgeleiteten TWS-Variationen und 
modellierten TWS-Variationen müssen die Modellausgabegrößen genauso gefiltert 
werden wie die GRACE-Daten (Güntner et al. 2009). Diese Filterung wirkt sich jedoch 
signifikant auf die saisonalen Amplituden der Wasserspeichervariationen in Einzugsge-
bieten aus und könnte eine Ursache für die Unterschätzung der saisonalen TWS-
Variation von WaterGAP im Vergleich zu GRACE sein. Die Analyse von Chen et al. 
(2007) zeigt, dass die gaußsche Glättung (Filterung) auch zu nicht zu vernachlässigen-
den Phasenverschiebungen führt, möglicherweise aufgrund asymmetrischer spektraler 
Leckage-Fehler aus umliegenden Bereichen. 

Unterschiede zwischen modellierten und beobachteten Variationen im Gesamtwasser-
speicher können auch von Defiziten in der Modellierung hydrologischer Prozesse in 
WaterGAP herrühren. In tropischen und gemäßigten Einzugsgebieten könnten dies De-
fizite in der Modellierung der Grundwasserdynamik sein. WaterGAP beinhaltet zwar 
ein Grundwasserspeicherkompartiment und berechnet Basisabfluss und Grundwasser-
neubildung, dennoch gibt es Verbesserungsbedarf in der Modellierung von der Wech-
selwirkung zwischen Grundwasser und Oberflächengewässern. Eine weitere, in vielen 
globalen hydrologischen Modellen erwähnte, Unsicherheit könnte in der Modellierung 
der Evapotranspiration liegen (Ramilien et al. 2005; Alkama et al. 2010). In borealen 
und arktischen Einzugsgebieten wird oft die Modellierung von Schnee und Schnee-
schmelze als mögliche Unsicherheit genannt (van Beek and Bierkens 2009; Yamazaki 
et al. 2011; Decharme et al. 2012; Müller Schmied et al. 2016). In diesen Gebieten ist 
hauptsächlich die Variation im Schneespeicher für die Variation im Gesamtwasserspei-
cher verantwortlich. 

 

 

Schlussbetrachtung und Ausblick 

Das Ziel dieser Dissertation – die Weiterentwicklung des globalen hydrologischen Mo-
dells WaterGAP zur Verbesserung der Simulation von Wasserströmen und Wasserspei-
chervariationen in verschiedenen Speicherkompartimenten – wurde erfolgreich umge-
setzt.  
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Im Rahmen dieser Arbeit entwickelte ich einen neuen Ansatz zur Simulation zeitlich 
und räumlich dynamischer Überflutungsgebiete auf globaler Ebene. Dieser Ansatz führ-
te zu einem neuen Algorithmus in WaterGAP, der basierend auf hochauflösenden digi-
talen Geländemodellen, erstmals die Berechnung der Ausdehnung von Oberflächenge-
wässern und Wasserspiegelhöhen sowie die Simulation von Wasserrückstaueffekten 
ermöglicht.  

Die neue Modellversion WaterGAP 2.2b_fpl wurde zur Modellierung von Durchfluss, 
Fließgeschwindigkeit in Flüssen, Wasserspeicher, Wasserhöhen und Oberflächengewäs-
ser auf globaler Ebene angewendet. Die Modellergebnisse wurden eingehend gegen 
Bodenmessungen und Fernerkundungsdaten validiert und zeigen im Allgemeinen eine 
gute Übereinstimmung mit den Beobachtungsdaten. Im Vergleich zur bisherigen Versi-
on WaterGAP 2.2b hat sich die Modellgüte deutlich verbessert; insbesondere im Ein-
zugsgebiet des Amazonas. Allerdings sind, im Vergleich zu den Beobachtungen, die 
saisonalen Schwankungen der Ausdehnung von Oberflächengewässern und die Variati-
onen im Gesamtwasserspeicher in vielen Regionen auf der Erde noch zu niedrig. Eine 
detaillierte Analyse der Modellergebnisse suggeriert, dass im Amazonasbecken die Ein-
führung von Wasserrückstaueffekten wichtig war, um Wasserspeichervariationen und 
Oberflächengewässerausdehnung realistischer zu modellieren.  

Zukünftige Bemühungen sollten sich auf die Simulation von Wasserspiegelhöhen kon-
zentrieren, um eine bessere Modellierung der Fließrichtung des Wassers entsprechend 
des Wasserspiegelgradienten zu erzielen. Dies impliziert Verbesserungen in der Fehler-
korrektur der ins Modell eingehenden Daten auf der Grundlage digitaler Geländemodel-
le (DEMs) und in der Simulation der Geometrie des Flussbettes (Höhe und Breite des 
Flusses).  

Um die Modellgüte in bestimmten Regionen weiter zu verbessern, empfehle ich die 
Anpassung der global konstanten Modellparameter auf Einzugsgebiets- oder Teilein-
zugsgebietsebene. Dies sind Modellparameter, die die Überflutungsinitiierung, die 
Wechselwirkung zwischen Fluss und Überflutungsgebiet, die Vegetationskorrektur der 
DEM-Daten und die Wasserrückstaumenge beeinflussen.  

Zukünftig könnte außerdem eine Verbesserung der Interaktion zwischen Grund- und 
Oberflächenwasser angestrebt werden. Da WaterGAP 2.2b_fpl nun in der Lage ist, 
Wasserspiegelgradienten zu berechnen, könnte die Grundwasserneubildung als Funkti-
on der Wasserspiegelhöhen und der Tiefe des Grundwasserstands modelliert werden. 
Dies würde ein gradientenbasiertes Grundwassermodell erfordern. Mit der Information 
über den Grundwasserspiegel könnte wiederum der diffuse Austausch zwischen 
Grundwasser und Landoberfläche simuliert werden, was eine direkte Versorgung von 
Überschwemmungs- und Feuchtgebieten über das Grundwasser sowie eine Nachver-
dampfung des Grundwassers ermöglichen würde. 
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Abstract 

Floodplains and other wetlands depend on seasonal river flooding and play an important 
role in the terrestrial water cycle. They influence evapotranspiration, water storage and 
river discharge dynamics, and they are the habitat of a large number of animals and 
plants. Thus, to assess the Earth’s system and its changes, a robust understanding of the 
dynamics of floodplain wetlands including inundated areas, water storages, and water 
flows is required.  

This PhD thesis aims at improving the modeling of large floodplains and wetlands with-
in the global-scale hydrological model WaterGAP, in order to better estimate water 
flows and water storage variations in different storage compartments. Within the scope 
of this thesis, I have developed a new approach to simulate dynamic floodplain inunda-
tion on a global-scale. This approach introduces an algorithm into WaterGAP, which 
has a spatial resolution of 0.5 degree (longitude and latitude) globally. The new ap-
proach uses subgrid-scale topography, based on high-resolution digital elevation mod-
els, to describe the floodplain elevation profile within each grid cell by applying a hyp-
sographic curve. The approach comprises the modeling of a two-way river-floodplain 
interaction, the separate downstream water transport within the river and the floodplain 
– both with temporally and spatially different variable flow velocities – and the flood-
plain-groundwater interactions. The WaterGAP version that includes the floodplain al-
gorithm, WaterGAP 2.2b_fpl, estimates floodplain and river water storage, inundated 
area and water table elevation, and also simulates backwater effects. 

WaterGAP 2.2b_fpl was applied to model river discharge, river flow velocity, water 
storages, water heights and surface water extent on a global-scale. Model results were 
comprehensively validated against ground observations and remote sensing data. Over-
all, the modeled and observed data are in agreement. In comparison to the former ver-
sion WaterGAP 2.2b, the model performance has improved significantly. The im-
provements are most remarkable in the Amazon River basin. However, the seasonal 
variation of surface water extent and total water storage anomalies are still too low in 
many regions on the globe when compared to observations. A detailed analysis of the 
simulated results suggests that in the Amazon River basin the introduction of backwater 
effects is important for realistically simulating water storages and surface water extent. 
Future efforts should focus on the simulation of water levels in order to better model the 
flow routing according to water slope. To further improve the model performance in 
specific regions, I recommend that the globally constant model parameters that affect 
inundation initiation, river-floodplain interaction, DEM correction for vegetation, and 
backwater amount at basin or subbasin-scale be adjusted. 
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CHAPTER 1 

Introduction 
1 Introduction 

1.1 Motivation and Background 

This PhD work is part of the research Project REGHYDRO in the framework of the 
Priority Program of the German Research Foundation "Mass transport and mass distri-
bution in system Earth" (DFG - SPP 1257), which involves cooperation between geode-
sists, hydrologists, and mathematicians to exploit the mutual benefits of gravity field 
analysis and hydrological modeling.  

Ocean circulation, convective flow in the Earth’s mantle, sea level changes, the melting 
of continental ice sheets, river discharge, and changes in groundwater levels and soil 
moisture generate transport and the redistribution of masses across the borders between 
atmosphere, ice, land and oceans. Changes in the distribution of masses in the Earth’s 
system cause variations in the earth’s gravity field. Such changes, in turn, affect the 
orbits of satellites and can be measured by satellite gravity missions like GRACE 
(Gravity Recovery and Climate Experiment), using innovative and highly precise sensor 
systems (http://www.csr.utexas.edu/grace/).  

One goal of the REGHYDRO project (Combined Hydrological Modelling and Regional 
Geodetic Estimation of Water Storage Variations in Large River Basins Using GRACE 
Data) was the improvement of global-scale hydrological modelling of water storage 
variations (and flows) in the different storage compartments (snow and ice, canopy, soil, 
groundwater, surface water including floodplains) using information on the variation of 
the gravity field from GRACE.  

"Improved quantification of not only continental freshwater flows but also freshwater 
storage in [the] different compartments [...] enables a better understanding of the global 
water cycle and the overall Earth system. It allows a better assessment of freshwater 
resources and how they are impacted by global change. [...] Continental water storage 
variations depend on characteristics of the storage compartments (e.g. soil texture and 
rooting depth in the case of soil water storage or the existence of surface water bodies in 
the case of surface water storage) and are strongly driven by climate, in particular pre-
cipitation. In global-scale assessments, natural freshwater flows and storages are mod-
elled by global hydrological models or land surface models. These models generally 
combine climate data with physiographic data (including soil and vegetation) to com-
pute time series of freshwater flows (in particular runoff and river discharge). Some of 
the [existing] models do not include all relevant storage compartments such as surface 
water bodies and groundwater" (Döll et al. 2012, p. 2).  
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Within the framework of the REGHYDRO project, the WaterGAP Global Hydrology 
Model (WGHM) was expanded to introduce the withdrawal of groundwater (Döll et al. 
2012) and large floodplains and wetlands into the model. As will be described later in 
more detail, this PhD work is located in this context.  

Although wetlands and floodplains are estimated to cover only about 4% to 6% of the 
Earth's ice-free land surface (Mitsch and Gosselink 2000; Prigent et al. 2007), they play 
a major role in biochemical and hydrological cycles. "Approximately 60% of the world 
wetlands are inundated only during some portion of the year, leading to large seasonal 
and interannual variability of their extents [and storage]" (Papa et al. 2007, p. 1).  

Due to the lack of consistent data and techniques, identifying and characterizing wet-
lands globally continues to be a difficult challenge. Fortunately this situation is rapidly 
changing, with various progress in the estimation of spatial and temporal variations in 
surface water from space, such as changes in terrestrial water storage (Tapley et al. 
2004; Chen et al. 2010), water surface elevation and water depth (Alsdorf et al. 2000, 
2007; Durand et al. 2008, 2010), and water surface extent (Prigent et al. 2007; Papa et 
al. 2010). For instance, Papa et al. (2010) used a multisatellite technique to develop a 
monthly dataset of surface water extent for more than one decade (1993-2004) with a 
spatial resolution of 773 km² (see Chapter 3). Variations in surface water, as observed 
by satellites, are not adequately represented in large-scale hydrological models, which 
are the only feasible instrument for simulating freshwater flows in large river basins 
applicable for large historical time series and predictions (Yamazaki et al. 2011). Recent 
efforts in hydrological modelling have led to improvements in wetland simulation, and 
to the inclusion of floodplains in global hydrological models. However, model complex-
ity varies strongly, holding potential for further developments (Chapter 2). 

For reasons of clarity and the readability of this thesis, an overview of the current state 
of the research field (regarding the existing global and continental-scale hydrological 
models containing macro-scale floodplain modelling, as well as a short review of avail-
able input data) was omitted from the introduction, but is presented in Chapter 2. 

1.2 Research Objectives 

As mentioned above, this PhD work is part of the research project REGHYDRO, which 
has the purpose of improving the global-scale hydrological model WaterGAP by intro-
ducing the withdrawal of groundwater, and large floodplains and wetlands into the 
model.  

The overall objective of this PhD work is to develop an algorithm to improve the mod-
elling of large floodplains and wetlands within the global-scale hydrological model Wa-
terGAP, for the better estimation of water flows and water storage variations in different 
storage compartments. In order to meet the overall objective, several subordinate objec-
tives are defined:  
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1) Monthly time series of flood inundation extent and water heights are to be deter-
mined on a global-scale. Additional model input data, such as subgrid elevation data 
from suitable digital elevation models, is therefore required, and needs to be generat-
ed. 

2) Improved estimations of water storage variations in large wetlands and floodplains 
have to be obtained.  

3) Independent validation data has to be processed, or even generated, to validate model 
output. 

4) The model algorithm should be applicable on a global-scale. To be more precise, the 
simulation of dynamic floodplain inundation should provide acceptable results for 
large river basins in all climatic environments, encompassing a wide variety hydro-
logical regime, vegetation cover and natural seasonality. 

5) The model algorithm should account for backwater effects in flow routing. 

6) The new model version of the global hydrological model WaterGAP, which finally 
includes the algorithm for dynamic floodplain inundation, should be on the current 
stage of research. This requires a detailed analysis of the model properties of already 
existing macro-scale hydrological models, and coupled land surface and river routing 
models, which include the modeling of large floodplains. 

7) Inaccuracies in model outputs have to be identified and properly evaluated in the 
analysis and interpretation of the results. 

 

Taking into consideration the overall picture briefly depicted above, as well as the re-
quirements within the framework of the REGHYDRO project, the following main re-
search questions are specified: 

1) Does the implementation of dynamic floodplain inundation in WaterGAP lead to 
improvements in model performance regarding river discharge, surface water extent, 
and/or total water storage variations? If so, which specific geographic areas are im-
proved most? 

2) What is the effect of backwater flows on modeled river discharge, surface water ex-
tent and water storage variations? How does the spatial distribution of large flood-
plains/wetlands and total water storage variations in the Amazon River basin change 
when modeling backwater effects?  

3) What is the contribution of water storage in floodplains and wetlands to total water 
storage variation and variations in river discharge?  

4) What are the river basin-specific causes of the observed discrepancies between varia-
tions in total water storage, such as variations derived by GRACE, and by the Wa-
terGAP Global Hydrological Model (WGHM)? 
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1.3 Theses outline 

In addition to the general introduction (Chapter 1), this thesis consists of six chapters. 

As a background to approach the objectives mentioned above, the state of the art of 
knowledge in modelling large floodplains and wetlands is summarized in Chapter 2. 
The literature review describes the strengths and weaknesses of the existing hydrologi-
cal models and the available input data, and identifies opportunities for new develop-
ments. The global hydrological model WaterGAP, for which the implementation of 
floodplain inundation modelling is the main goal of this thesis, is also described in 
Chapter 2.  

Another requisite for this study, presented in Chapter 3, is the analysis of satellite-
derived time series of naturally inundated areas, as well as the analysis of current model 
outputs of surface water storage variations from WaterGAP. Because the contents of 
Chapter 3 are mainly based on an already published paper, it forms a largely independ-
ent study with corresponding introductory, main and closing sections.  

With reference to the objectives of this study (Section 1.2) and the scientific background 
(Chapter 2), the methods of this study are defined in Chapter 4. The methods not only 
involve modelling concepts of the dynamic floodplain inundation approach within Wa-
terGAP and suitable ways of model parameterization, but also comprise methods of 
validation and assessment of model efficiency. 

The results – model outputs – are described and analyzed in Chapter 5, including model 
validation. 

Chapter 6 brings the results together into a comprehensive discussion of the limitations 
and potentials of the modelling concept. Chapter 6 also answers the research questions 
defined in Section 1.2.  

Finally, Chapter 7 summarizes the main findings of this thesis and draws a conclusion, 
with the outlook for further research. 
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CHAPTER 2 

State of the Art 
2 State of the Art 

2.1 Global Hydrological Models containing macro-scale floodplain modeling – 

strengths, weaknesses, and challenges 

Global Hydrological Models (GHMs) are important in Earth’s System Science for many 
reasons. Some GHMs simulate the land-atmosphere interaction, for example, the impact 
on climate due to soil moisture and evapotranspiration, and the influence of continental 
freshwater on the ocean. GHMs are also extremely valuable for the human society. Riv-
ers, lakes, and wetlands provide water for industry, agriculture, electricity generation 
and household use. The future increase in population – in relation to changes in climate 
and water availability from land-use – may greatly stress terrestrial water resources.  

Based on their origin, GHMs can be categorized into different types. Land Surface 
models (LSMs) were developed in atmospheric science to simulate energy balance at 
soil, vegetation and atmosphere interfaces on finer time scales (often hours); they origi-
nally do not have a flow routing. Macro-scale Hydrological Models (MHMs) were de-
veloped in the field of global hydrology and water resources to simulate the hydrologi-
cal cycle and water availability.  

GHMs have been improving constantly, increasing both functionality and resolution. 
Many of the LSMs add routing, reservoirs, human water abstractions and inundation; 
thus, becoming more MHM-like. In a similar way, MHMs add energy balances or plant 
physiology, or are coupled with river routing models; thus, becoming more LSM-like. 
Sood and Smakhtin (2015), and Bierkens (2015) reviewed global modeling efforts, 
giving a genealogy of existing GHMs, their applications, recent efforts and directions. 

Recent hydrological modeling efforts have led, among other efforts, to the inclusion of 
floodplain simulation in GHMs. Floodplains play an important role in the terrestrial 
water cycle and have profound significance for biodiversity (Evans et al. 2010; Schnei-
der et al. 2011b), methane emissions (Petrescu et al. 2010; Ringeval et al. 2014), carbon 
storage (Richey et al. 2002; Decharme et al. 2008), groundwater recharge (Wolski et al. 
2006), and flood wave timing (Richey et al. 1989; Vörösmarty and Moore 1991; Coe et 
al. 2008). 

 

Table 2.1 lists GHMs that simulate floodplain inundation, including MHMs distin-
guished in real global hydrological models (ISBA-TRIP, WBM-WTM, PCR-
GLOBWB) and large-scale hydrological models (MGB-IPH, THMB, LISFLOOD-FP), 
as well as coupled LSMs with river routing models (CaMa-Flood, JULES-G2G). 
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Table 2.1 Non-exhaustive overview of the various large-scale models from different communities and their properties focused on floodplain algorithms (ex-
tended from Sood and Smakhtin (2015), and Bierkens (2015)). 
 

Features ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
 (Interactions Be-

tween Soil, Bio-
sphere, and Atmos-
phere - Total Runoff 
Integrating Path-
ways) 

(Water Balance 
Model-Water 
Transport Model) 

(Catchment-based 
Macro-scale Flood-
plain) model (runoff 
used from Land 
Surface Model 
MATSIRO) 

(PCRaster GLOBal 
Water Balance) 
model 

(Modelo de Grandes 
Bacias - Instituto de 
Pesquisas 
Hidráulicas) 

(Terrestrial Hydrolo-
gy Model with Bio-
geochemistry) - 
formerly HYDRA 

(Joint UK Land Envi-
ronment Simulator - 
Grid-to-Grid) 

 

References Decharme et al. 
(2008), Decharme et 
al. (2012), Pedinotti 
et al. (2012) 

Beighley et al. (2009), 
Beighley et al. (2011) 

Yamazaki et al. 
(2011), Yamazaki et 
al. (2012b) 

van Beek and Bier-
kens (2009), Wada et 
al. (2014), Ringeval et 
al. (2014)  

Paiva et al. (2011), 
Paiva et al. (2013) 

Coe (2000), Coe et al. 
(2002), Coe et al. 
(2008) 

Dadson et al. (2010) Bates and De Roo 
(2000), Wilson et al. 
(2007), Trigg et al. 
(2009), Biancamaria 
et al. (2009), Neal et 
al. (2012) 

Type of model Global Hydrology 
Model 
 

Global Hydrology 
Model 
 

Large-scale coupled 
river routing and land 
surface model (runoff 
from MATSIRO) 

Global Hydrology 
Model 
 

Large-scale hydrolog-
ical model 

Large-scale Hydrolog-
ical model 
 

Large-scale coupled 
land surface and 
routing model 
 

Large-scale hydrolog-
ical model 
 

Spatial  
resolution 
and extent 

1.0 degree, global 
extent 

0.5 degree, global 
extent; floodplain 
modeling presented 
only for the Amazon 
River basin on an 
irregular computa-
tional grid 

0.25 degree, global 
extent, river flow 
simulation in conti-
nental-scale rivers on 
unit catchment ele-
ments 

0.5 degree, global 
extent 

Catchment units, 
different basins in 
South America 

5 minute, Amazon 
and Tocantis River 
basins 

0.5 degree, selected 
areas on the globe; 
mainly UK; floodplain 
modeling presented 
for the Niger inland 
delta 

Raster-based dis-
cretisation, resolu-
tion depends on 
input DEM, selected 
areas on the globe 

Validation 
regarding 
floodplain 
inundation 

global: 
floodplain area; 
Niger basin: flood-
plain area 

Amazon river basin: 
floodplain width  

global: floodplain 
area; 
Amazon river basin: 
floodplain area, 
floodplain height 

Amazon river basin: 
floodplain extent and 
depth 

Amazon river basin: 
floodplain area, 
floodplain height 

Amazon river basin: 
floodplain area, 
floodplain height 

Niger inland delta 
(study area 
~13°x10°): 
inundated area 

Ob river basin (study 
area 1°x5°):  
water heights, 
Amazon river basin 
(study area 2°x1.5°): 
water heights, 
Niger inland delta: 
heights and extent 

Temporal daily (internal 20 daily (internal routing daily (internal routing daily daily daily monthly (internal 30- daily (Internal time 
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Features ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
resolution  minutes to 1 hour) time step of 15min) time step of 20-

30min) 
60min) step seconds) 

Drainage 
network 

Hydro1k Derived from ground 
slopes using SRTM 
DEM 

HydroSHEDS + 
SRTM3 and Global 
Drainage Basin Data-
base (GDBD) 

DDM30 SRTM + GTOPO Amazon Basin river 
directions (Costa et 
al. 2002) 

Hydro1k ACE (Ob), SRTM 
(Amazon) 

Inland water 
bodies 

No Yes, Reservoirs only 
(GRanD) 

No (lakes and wet-
lands are treated as 
floodplains; MATSIRO 
includes reservoirs) 

Yes, GLWD; static but 
lake area is a function 
of lake volume 

No Yes, GGHYDRO; static Yes, global lake data-
base GLDBv2; static  

Yes; static but evapo-
ration is a function of 
lake level 

Human water 
use 

No Yes No (MATSIRO: Yes) Yes No Yes Yes, irrigation only Yes 

Vegetation 12 vegetation types 
(ECOCLIMAP 
database) 

Fixed, climatology of 
phenology, irrigated 
area change; 
3 vegetation types, 
forest, grassland, and 
shrubland 

Simple crop growth 
model (MATSIRO) 

Fixed, climatology of 
phenology, irrigated 
area change; 
3 categories natural 
vegetation, rain-fed 
crops, and irrigated 
crops; further subdi-
vided into tall and 
short vegetation. 

Fixed, climatology of 
phenology, vegeta-
tion map of South 
America from Eva et 
al. (2004) 

Fixed, climatology of 
phenology 

Dynamic + phenology 
+ plant physiology; 
Optional: dynamic 
vegetation using 
TRIFFID 

LAI-observed, 
LAI Climatology 

Channel ge-
ometry (river 
width and 
depth) and 
bankfull/flood 
initiation 
conditions 

As a function of river 
discharge and a basin 
specific coefficient; 
bankfull height is 
calculated as a non-
linear function of 
river width 

As a function of 
drainage area 
(bankfull depth and 
width and floodplain 
width based on rela-
tionships presented 
in Gummadi 2008) 

As a function of 
discharge (channel 
width and bank 
height determined as 
a function of maxi-
mum 30 day up-
stream runoff) 

As a function of 
discharge (channel 
depth and width 
calculated using 
hydraulic relation-
ships after (Allen et 
al. 1994)); bankfull 
discharge based on  
statistical relation-
ship between climate 
indicators and ob-
served bankfull dis-
charge for 296 sta-
tions (Vörösmarty et 
al. 1998), extrapolat-

As a function of 
drainage area (chan-
nel width and bank 
height), coefficients 
determined using 
cross section profiles 
from 341 gauge 
stations located in 
the Brazilian Amazon 

As a function of 
drainage area (river 
stage height and 
width); coefficients 
determined based on 
visual inspection of 
observed hydro-
graphs in the Amazon 
River basin) 

Not specified Amazon: cross-
sections and bankfull 
depth from sonar 
survey data; Ob: 
constant width and 
depth; Niger: as a 
function of discharge 
(using hydraulic 
relationships after 
Leopold and Mad-
dock 1953 with coef-
ficients from Hey and 
Thorne 1986) 
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Features ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
ed over the world. 

River - flood-
plain interac-
tion 

The flood reservoir 
fills when the river 
height exceeds the 
critical river bankfull 
height, and vice 
versa; 
river-floodplain in-
teraction as a func-
tion of river-
floodplain water 
slope 

When discharge 
exceeds the bankfull 
capacity of the chan-
nel, a portion of it is 
routed along the 
floodplain;  
backflow to river if 
discharge is below 
bankfull capacity; 
river water level 
equals floodplain 
water level 

That water spilling 
from the river chan-
nel (flood initiation 
storage) is stored in 
the floodplain.  
river water level 
equals floodplain 
water level 
 

The volume of water 
in excess of bankfull 
discharge floods the 
surrounding areas; 
no backflow to river 
necessary as flood-
plains are treated as 
regular river stretch-
es; 
river water level 
equals floodplain 
water level 

No interaction (water 
level (and flooded 
area) is calculated 
regarding river bot-
tom elevation which 
is the lowest surface 
elevation of the DEM 
within a catchment); 
river water level 
equals floodplain 
water level 

The volume of river 
water in excess of 
river bankfull volume 
(flood initiation vol-
ume) is added to the 
floodplain reservoir; 
backflow to the river 
if river water storage 
is below flood initia-
tion storage 

Overbank flows flood 
fractions of land 
cover types 

When bankfull depth 
is exceeded, water is 
transferred from the 
channel to the over-
lying floodplain grid. 

Surface  
elevations 

GTOPO30;  
30 arc sec, global 
coverage 

SRTM;  
3 arc sec, near global 
coverage (±60°N) 

SRTM30 + GTOPO30;  
30 arc sec, global 
coverage 

Hydro1k;  
~30 arc sec, global 
coverage 

SRTM + GTOPO; 
30 arc sec, global 
coverage; 
correction for river 
bottom level estima-
tion and vegetation 
correction (17 m 
except for areas with 
low vegetation (Eva 
et al. 2004)) 

SRTM; 
3 arc sec, near global 
coverage (±60°N); 
vegetation correction 
(23 m for areas 
where forest is the 
predominant vegeta-
tion type (Eva et al. 
2004; Hess et al. 
2003)) 

Hydro1k; 
~30 arc sec, global 
coverage 

ACE (Ob), SRTM 
(Amazon);  
~30 arc sec (100 m); 
vegetation correction 
in Amazon region 
(data obtained doing 
fieldwork) 

Floodplain 
area 
(CDF - cumula-
tive distribu-
tion function 
of subgrid 
surface eleva-
tions) 

CDF, cumulative 
distribution of sub-
grid elevations 

No CDF, cumulative 
distribution of sub-
grid elevations (36 
points) 

Optionally fixed or 
variable area option.  
If variable: floodplain 
storage is distributed 
over subgrid cells 
based on a CDF - 
cumulative distribu-
tion of relative eleva-
tions 

As a function of 
water level (sum of 
surface water pixels 
inside a floodplain 
catchment that is 
lower than the water 
level) 

CDF (only the value if 
half of the grid cell is 
flooded is used); to 
avoid runaway flood-
ing maximum flooda-
ble area is used as 
input (unpublished 
data from Hess et al.) 

CDF (using only the 
mean and the stand-
ard deviation of the 
logarithm of eleva-
tion). A prorated 
fraction of the preex-
isting surface types is 
converted to have an 
“open water” land 
cover type. 

The values of water 
depth at each cross-
section are overlain 
onto a DEM (or the 
inundation extents at 
each cross section 
are linearly interpo-
lated). 

Routing Kinematic wave Kinematic wave for 
first-order tributary 
channels, 

Diffusive wave Kinematic wave Hydrodynamic model 
in flat reaches of the 
main rivers, Musk-

Kinematic wave, 
diffusive wave for 
floodplains 

Kinematic wave Diffusive wave for 
channels and flood-
plains 
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Features ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
Muskingum-Cunge 
for interbasin chan-
nels and floodplains 

ingum-Cunge method 
in upstream areas 

 

Flood routing 
direction 

No floodplain flow 
routing 

Along the river net-
work;  
channel and flood-
plain gradients iden-
tical 

No floodplain flow 
routing 

No floodplain flow 
routing; floodplains 
treated as regular 
river stretches with 
increased resistance 

No floodplain flow 
routing; 
the floodplains act 
only as storage areas 

According  to the 
maximum water 
slope between 
neighboring grid cells 

No floodplain flow 
routing 

According  to the 
maximum water 
slope between 
neighboring grid cells 

Flow velocity 
v (including 
specifications 
of the rough-
ness coeffi-
cient n) 

Variable in time and 
space; 
nr varies arbitrary 
from upstream areas 
to the river mouth 
(0.04-0.06),  
nf according to the 
vegetation type 
(0.035 - 1.0); slope 
taken from STN-30p 
DEM (0.5° resolution) 

Variable in time and 
space; 
nr=0.04, nf=0.07 

Variable in time and 
space; 
n=0.03 for the Ama-
zon river basin 

Variable in time and 
space;  
increased wetted 
perimeter and Man-
ning's n in case of 
flooding --> increased 
hydraulic resistance 
(decreased vr) 
nr=0.04, nf=0.1 

Constant in time, 
variable in space;  
nr= 0.035-0.04 (dif-
ferent values for 
different large river 
basins aiming at 
fitting hydrographs) 

Constant in time, 
variable in space 

Constant in time and 
space: vr=1.0 m/s, 
vf=0.2 m/s 

Not explicitly consid-
ered by the model, vr 
[m/s] at high/ low 
water: Solimoes 1.3/ 
0.77, Purus 0.86/ 
0.26; 
nr usually 0.01 - 0.04, 
nf usually 0.03 - 0.15. 
Can be set individual-
ly for each grid cell. 

Soil and 
Groundwater 
dynamics 

Vertical soil, ground-
water reservoir 

Vertical soil, ground-
water reservoir 

Vertical soil, ground-
water reservoir 
(MATSIRO) 

Vertical soil, ground-
water reservoir or 
lateral  groundwater 
(optional) 

Soil reservoir and 
groundwater reser-
voir 

Vertical soil, ground-
water reservoir 

Vertical soil   Vertical soil, ground-
water reservoir 

Floodplain-
groundwater 
interaction 

Yes No No No No No No No 

Institutes 
responsible 
for model 
development 

Centre National de 
Recherchés 
Météorologiques, 
France 

University of New 
Hampshire (USA),  
City University of 
New York (USA) 

IIS, University of 
Tokyo (Japan) 

Utrecht University 
(Netherlands), Delta-
res (Netherlands) 

Instituto de Pesquisas 
Hidráulicas – IPH, 
Universidade Federal 
do Rio Grande do Sul 
– UFRGS (Brasil) 

SAGE, University of 
Wisconsin-Madison 
(USA) 

Centre for Ecology 
and Hydrology (UK), 
Met Office (UK) 

University of Bristol 
(UK) 
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All of the models listed in Table 2.1 except MGB-IPH – which uses catchment units – 
run in a grid format, most of them with a spatial resolution from 0.25 degree to 
1.0 degree (WBM-WTM, PCR-GLOBWB, JULES-G2G with 0.5 degree, CaMa-Flood 
with 0.25 degree, and ISBA-TRIP with 1 degree); 0.5 degree is approximately 3100 km² 
at the equator. Only two models – THMB and LISFLOOD-FP – have a finer spatial 
resolution (≤ 5 minutes). The temporal resolution of the model outputs is one day, ex-
cept JULES-G2G, which gives outputs on a monthly time step.  

Although GHMs run on global or continental-scales, the simulated floodplain inunda-
tion is validated only for limited regions of the globe. Only CaMa-Flood and ISBA-
TRIP show results on modeled floodplain area on a global-scale (Yamazaki et al. 2011; 
Decharme et al. 2012). Most models validate floodplain area and/or floodplain height 
for the Amazon River basin (WBM-WTM, CaMa-Flood, PCR-GLOBWB, MGB-IPH, 
THMB). Modeled floodplain area in the Niger inland delta is validated using JULES-
G2G and LISPLOOD-FP (Dadson et al. 2010; Neal et al. 2012). The latter also simu-
lates water heights in relatively small regions located in the Amazon (Wilson et al. 
2007; Trigg et al. 2009) and Ob river basins (Biancamaria et al. 2009). 

Due to its enormous size, the limited number of hydraulic restrictions along its reaches, 
and the critical role of its extensive floodplain system, the Amazon River basin is of 
special interest in simulating water storage and transmission of the flood wave (Richey 
et al. 1989), with major impacts on ecology and biogeochemistry (Melack and Forsberg 
2001; Richey et al. 2002; Melack and Hess 2004). 

Although an explicit representation of inland water bodies is important for the calcula-
tion of, for example, evapotranspiration within a grid cell, most of the models do not 
account for inland water bodies (ISBA-TRIP, MGB-IPH) or consider them as static 
(WBM-WTM, CaMa-Flood, THMB, JULES-G2G). Only two models calculate the area 
of inland water bodies as a function of storage (PCR-GLOBWB) or lake level 
(LISFLOOD-FP). As Coe et al. (2008) have suggested, an over-prediction of discharge 
may be, among other causes, attributed to an underestimation of evaporation from the 
land surface. Similar errors could arise when man-made reservoirs due to dam construc-
tion are not represented within the model (Decharme et al. 2012).  

River flow is highly affected by human activities such as dam construction, water with-
drawals and irrigation (Dadson et al. 2010; Yamazaki et al. 2011; Decharme et al. 
2012). Human water use is simulated by most of the GHMs listed in Table 2.1 except 
ISBA-TRIP, CaMa-Flood, and MGB-IPH. However, due to the lack of data on a global-
scale, there are still uncertainties in modeling human water use; these include the verifi-
cation of regulated groundwater pumping, artificial channel networks and the amount of 
water transferred, as well as the amount of water recycled to estimate consumptive wa-
ter use (Wada et al. 2014). 
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GHMs use multiple datasets to represent drainage network and surface elevation. The 
main differences between the datasets and their application are the various spatial reso-
lutions and the correction against hydrology and vegetation. The models use the datasets 
with a spatial resolution of either 3 arc seconds or 30 arc seconds, and a global or near 
global coverage. When only elevation data from the Shuttle Radar Topography Mission 
(SRTM) is used (WBM-WTM, THMB), latitudes north of 60°N and south of 60°S are 
not covered (the same is true for HydroSHEDS, as it is based on SRTM data). Most 
GHMs (except WBM-WTM, MGB-IPH, and LISFLOOD-FP) use drainage networks, 
which were corrected for hydrological applications, whereas only two of the models 
listed in Table 2.1 – PCR-GLOBWB and JULES-G2G – apply hydrologically corrected 
surface elevations (Hydro1k and HydroSHEDS). Paiva et al. (2013) have corrected 
SRTM and GTOPO30 data for river bottom level estimation in the MGB-IPH model. 
Three models (MGB-IPH, THMB, LISFLOOD-FP) correct surface elevations against 
vegetation, at least in areas with high and dense vegetation (Table 2.1).  

It is important to emphasize, as most authors do, that the data input from digital eleva-
tion models (DEMs) is a possible source of major errors within GHMs. Currently, due 
to recent advances in remote sensing technologies enhancing the collection of topo-
graphic data, various types of DEMs have become available.  

The Global 30 Arc-Second Elevation data set (GTOPO30) provided from the U.S. Geo-
logical Survey (USGS) was derived from several raster and vector sources of topo-
graphic information, which imply differing vertical accuracy and possible errors (e.g. 
caused by map digitizing and elevation surface interpolation). The vertical accuracy is 
stated as ± 30 m (absolute error at 90% confidence interval; 
http://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm).  

Similar to GTOPO30, spaceborne DEMs such as ASTER GDEM (Rauter et al. 2009) 
and the SRTM dataset also suffer from random noise (artifacts, holes, gaps) caused by 
operating platform maneuver errors. Additionally, spaceborne DEMs are affected by 
surface objects such as trees, buildings, and bridges. The SRTM has a linear vertical 
absolute height error of less than 16 m (Farr et al. 2007), which includes errors related 
to vegetation. The SRTM data is based on an interferometric SAR technique, and re-
turns the majority of its signal from near the top of the canopies in areas with dense 
vegetation (Farr et al. 2007). Because ASTER GDEM is not as sharp as the SRTM data, 
and because it appears to contain less spatial detail (Rauter et al. 2009; Jacobsen 2010; 
Chang et al. 2010), it is preferential to use SRTM data in GHMs.  

Another DEM used in GHMs (Table 2.1) is the Altimeter Corrected Elevations (ACE2) 
dataset (Smith and Berry 2009). This DEM is a combination of SRTM and altimetry 
data. As ACE2 replaces SRTM pixels over rainforest areas, it corrects SRTM errors 
caused by dense vegetation. In contrast to the SRTM, the altimeter data is able to pene-
trate vegetation cover and reflects the signal from the underlying ground surface. 
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Furthermore, altimetry data is used for high latitudes north of 60°, which are not cov-
ered by SRTM.  

Several authors (Beighley et al. 2009; Paiva et al. 2013; Wilson et al. 2007; Neal et al. 
2012; Yamazaki et al. 2012a) have stated that in order to improve the accuracy of the 
hydrodynamic simulations, it is essential to correct raw DEM data against vegetation 
and other artifacts. For the DEMs GTOPO30 and SRTM, hydrologically corrected 
products are available; these products are HYDRO1k (USGS product) and Hy-
droSHEDS (Hydrological data and maps based on SHuttle Elevation Derivative at mul-
tiple Scales; Lehner et al. 2008b). The hydrological corrections particularly imply 
stream burning and void filling to ensure that the flow stays within the river channel, but 
there is no vegetation correction. Yamazaki et al. (2012a) have presented another meth-
od for correcting raw SRTM data in floodplain modeling. Nevertheless, further im-
provements to the DEM adjustment algorithm are still essential. The typical resolutions 
and accuracies of spaceborne DEMs may not be fine enough to represent small channels 
that connect floodplains and local depressions in floodplains, or to derive channel slopes 
and relationships among water storage, water level and inundated area (Wilson et al. 
2007; Beighley et al. 2009; Yamazaki et al. 2011). Improvements in Light Detection 
And Ranging (LiDAR) technology have made the acquirement and application of high-
resolution DEM data increasingly popular, especially within the field of flood inunda-
tion modeling. Airborne LiDAR DEMs are preferred due to their higher horizontal reso-
lution, vertical accuracy (~0.1 m), and ability to separate the bare-ground from vegeta-
tion and built structures (Sanders 2007; Shen et al. 2015). However, the availability of 
high resolution LiDAR DEMs is generally limited to few locations, and thus they are 
not applicable in continental-scale or even global-scale hydrological models (Yamazaki 
et al. 2012b). 

In GHMs, the channel geometry is usually calculated as either a function of river dis-
charge with constant or basin specific coefficients to approximate hydraulic 
relationships, or a function of drainage area (Table 2.1). Flooding occurs in all of the 
GHMs when the river channel reaches its maximal capacity. The GHMs use a threshold 
for flood initiation, which is either bankfull discharge, bankfull height, or bankfull stor-
age. It is important to note that the estimation and calculation of channel geometry, 
channel slope, and the flood initiation parameter are challenging tasks in GHMs that 
contain macro-scale floodplain modeling. In general, model results are highly sensitive 
to these parameters, and their uncertainty has been described as a possible source of 
errors by many authors (Coe et al. 2008; Yamazaki et al. 2011; Decharme et al. 2012; 
Paiva et al. 2013). Especially river width and river bankfull depth are critical parameters 
because they define the water holding capacity of a river channel during flooding. A 
number of studies have begun to use satellite observations to determine river channel 
width and water depth (Durand et al. 2008; Pavelsky and Smith 2008; Durand et al. 
2010). Recently, a Global Width Database for Large Rivers (GWD-LR) which contains 
time constant river width calculated from satellite-based water masks and flow direction 
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maps with a near global (60°N-60°S) coverage has become available (Yamazaki et al. 
2014). Corroboration with newly remote sensing techniques is a challenging task, and 
the implementation of satellite-derived channel parameters could be an alternative to 
parameter estimation based on empirical equations.  

In almost all of the models, the water spilling from the river channel flows completely 
or proportionately into the floodplain. An exception to this is MGB-IPH, in which there 
is no interaction between river and floodplain. Here the lowest surface elevation of the 
digital elevation model is assumed to represent the river bottom (not the bankfull stage), 
so that the calculated flooded area includes the river and the floodplain. Once on the 
floodplain, most models use a cumulative distribution function (CDF) of the surface 
elevations to determine the floodplain extent and water height.  

The water exchange between the channel and the floodplain is known to be complex 
(Alsdorf et al. 2005; Alsdorf et al. 2007), and its simulation ought to be improved in 
several models (e.g. Yamazaki et al. 2011; Decharme et al. 2012). However, in order to 
further enhance the simulation of mass transfer between rivers and floodplains, it would 
be necessary to consider the detailed physics of floodplain infilling and draining 
(Yamazaki et al. 2011). 

An important difference among GHMs lies in the method of routing, which can be di-
vided broadly into two categories: 1) separate routing in rivers and floodplains (WBM-
WTM, THMB, LISFLOOD-FP) and 2) floodplains acting only as storage areas and 
treated as regular river stretches (ISBA-TRIP, CaMa-Flood, PCR-GLOBWB, MGB-
IPH, JULES-G2G). All GHMs of the first category allow a backflow of water from the 
floodplain to the river in the same grid cell if the flood initiation threshold is not 
reached. In addition, all of them – with the exception of WBM-WTM – allow backwater 
flows to upstream grid cells (THMB only for floodplains, not for rivers) or a diffuse 
routing of floodwater to all neighboring grid cells according to maximum water slope 
(THMB, LISFLOOD-FP). From the second category, only ISBA-TRIP includes back-
flow from the floodplain to the river and only CaMa-Flood allows backwater effects 
(Table 2.1). Backwater flows are especially important in the Amazon river basin 
(Meade et al. 1991) and, if not considered, they may be a reason for underestimation of 
flooding (Coe et al. 2008) or overestimation of flow velocity (Han et al. 2009).  

There are three different methods for processing flow velocity: 1) constant in space and 
time (JULES-G2G), 2) constant in time but variable in space according to various rela-
tionships with the topography or aiming at fitting hydrographs at basin or subbasin-
scale (MGB-IPH, THMB), and 3) variable in time and space according to the river and 
floodplain geomorphology and the water level gradient using the Manning-Strickler 
equation (ISBA-TRIP, WBM-WTM, CaMa-Flood PCR-GLOBWB).  

Because flow velocity changes in accordance with actual river discharge (Leopold and 
Maddock 1953), it is meaningful to transport the water within a hydrological model that 
has a river flow velocity variable in space and time. Among all of the models described 
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in Table 2.1, only WBM-WTM explicitly distinguishes between river and floodplain 
flow velocity. ISBA-TRIP and PCR-GLOBWB reduce flow velocity in rivers if flood-
ing occurs (Table 2.1). Within the Manning-Strickler equation, river flow velocity is 
calculated as a function of actual discharge, river bed roughness, and river slope. Never-
theless, observations have revealed that flow velocities differ between rivers and flood-
plains (Alsdorf et al. 2007) and should, therefore, be modeled separately. 

Except for ISBA-TRIP, none of the GHMs include floodplain-groundwater interactions. 
ISBA-TRIP calculates infiltration of water from floodplains to soil, and from soil the 
water drains to the groundwater reservoir (Decharme et al. 2008). As demonstrated by 
Wolski et al. (2006), Fan and Miguez-Macho (2010), and Miguez-Macho and Fan 
(2012), a rising groundwater table can support surface water bodies, thus floodplains as 
well, by maintaining a saturated substrate. Nevertheless, none of the GHMs include 
detailed groundwater table depth information to be able to calculate water flows from 
groundwater to floodplains. It is important to emphasize that a lack of infiltration from 
rivers and floodplains to soil and groundwater may cause an over-prediction of dis-
charge and prevent floodplain dewatering (Wilson et al. 2007; Dadson et al. 2010). Such 
a lack of infiltration is also a major source of soil moisture in semi-arid and arid regions 
and may cause an underestimation of evapotranspiration if not considered within the 
model (Wolski et al. 2006). 

 

In summary, the GHMs listed in Table 2.1 have several strengths but also some weak-
ness. None of the models includes together the following features:  

 inland water bodies with variable area 

 high resolution and hydrologically corrected surface elevation 

 vegetation correction of surface elevations in areas with high and dense vegeta-

tion 

 the two-way exchange between river and floodplain  

 separate routing in rivers and floodplains, simulating backwater effects for both 

rivers and floodplains 

 flow velocity for rivers and floodplains, both variable in time and space 

 floodplain - groundwater interactions 

The purpose of this PhD work, as described in more detail in the objectives (Sec-
tion 1.2), is to develop a floodplain algorithm for the global hydrology model Wa-
terGAP. The WaterGAP model which contains macro-scale floodplain modeling will 
implement all of these characteristics within a single model. 
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2.2 WaterGAP 

2.2.1 Overview and model history 

The freshwater model WaterGAP (Water Global Assessment and Prognosis) was creat-
ed to assess water availability and water use on a global-scale. It comprises two main 
components: a Global Hydrology Model (WGHM, e.g. Döll et al. 2003, Müller 
Schmied et al. 2014) to simulate the continental water cycle, and a Global Water Use 
Model to estimate water consumption and water withdrawals for agriculture (livestock 
and irrigation; Döll and Siebert 2002), industry (manufacturing and cooling of thermal 
power plants; Vassolo and Döll 2005; Voß and Flörke 2010), and domestic water use 
(Voß et al. 2009). Additionally, a sub-module (GWSWUSE - Ground Water Surface 
Water Use) computes the fractions of total water use, abstracted from either surface 
waters (lakes, reservoirs, and rivers) or groundwater (Döll et al. 2012).  

WaterGAP has been developed at the Center for Environmental Systems Research 
(CESR) of the University of Kassel (Germany) since 1996, and since 2003 also at the 
Institute of Physical Geography of the University of Frankfurt/Main (Germany). Since 
the initial publications of WaterGAP (Alcamo et al. 2003; Döll et al. 2003), it has been 
continuously improved. 

WaterGAP calculates flows and storages of water for the whole land area of the globe, 
except Antarctica, at a spatial resolution of 0.5 geographical latitudes by 0.5 geograph-
ical longitudes (55 km by 55 km at the Equator) and a temporal resolution of one day. 
Model input includes spatially distributed physiographic information such as character-
istics of soil type, land cover, topography, hydrogeology, and the location and area of 
surface water bodies (wetlands, lakes, and reservoirs) as well as time series of climate 
data like temperature, precipitation, and solar radiation, among others.  

The model is able to compute both historical developments and future projections of 
different hydrological variables, water availability and water use. It is applied to assess 
water scarcity and water stress (Smakhtin et al. 2004; Alcamo et al. 2007), quantify the 
impact of human actions on freshwater (Döll et al. 2009), and study climate change ef-
fects on the global freshwater system (Döll 2009; Döll and Zhang 2010; Döll and Mül-
ler Schmied 2012), irrigation water requirements (Döll and Siebert 2002), and droughts 
and floods (Lehner et al. 2006b). 

WaterGAP has been applied in a number of international projects such as the Millenni-
um Ecosystem Assessment, the UN Global Environmental Outlooks, the UN World 
Water Development Reports, the EU-funded Projects SCENES and WATCH, and pro-
jects funded by the German Research Foundation (DFG) like REGHYDRO. With re-
gard to the latter project, global hydrological modeling and regional geodetic estimation 
using GRACE data were combined in order to improve the characterization of regional 
gravity field features using WaterGAP and global-scale hydrological modeling of water 
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storage variations (and flow) using information on the variation of the gravity field from 
GRACE (Adam et al. 2010; Döll et al. 2012). 

2.2.2 Simulation of hydrological processes within WaterGAP 

The simulation of hydrological processes within WaterGAP is done by the WaterGAP 
Global Hydrology Model (WGHM). It computes time-series of water flows and storages 
– e.g. groundwater recharge, evapotranspiration, river discharge and water storages var-
iations in canopy, snow, soil, lakes, wetlands, rivers, and groundwater – considering the 
anthropogenic water demand.  

Figure 2.1 provides a schematic representation of the major vertical and lateral hydro-
logical processes of WGHM.  

 
Figure 2.1 Schematic representation of the vertical and lateral water balance as computed by 
the WaterGAP Global Hydrological Model (WGHM) (modified from Döll et al. 2012), includ-
ing human water use. In the flow chart, boxes represent the water storage compartments, and 
arrows the water fluxes (inflows, outflows); Epot: potential evaporation, Ea: actual evaporation, 
Ec: evaporation from the canopy, Rl: runoff from land, Rg: groundwater recharge, Rs: surface 
runoff, Qbase: baseflow, fswb: fraction surface water body. 



CHAPTER 2: STATE OF THE ART 

17 
 

A daily water balance is calculated for the fraction of continental area for each of the 
66896 grid cells (Figure 2.1). A vertical water balance simulates interception by canopy, 
snow accumulation, and water throughfall to soil. The resulting runoff is routed within 
the grid cell in a lateral water balance through a groundwater store and various surface 
water stores, and finally, contributes to river discharge. Grid cell discharge (river and 
floodplain discharge) is routed with a variable flow velocity (Section 4.6) to the next 
downstream cell (kinematic wave, Section 4.5.1) according to a river network derived 
from the global drainage direction map DDM30 (Döll and Lehner 2002). The location 
and maximum size of lakes, reservoirs and wetlands are based on the Global Lakes and 
Wetland Database (GLWD) (Lehner and Döll 2004), with an addition of more than 
6000 man-made reservoirs (Döll et al. 2009; Lehner et al. 2011). Whereas so-called 
‘local’ surface water bodies are only fed by runoff produced within the grid cell, so-
called ‘global’ surface water bodies also receive water inflow from upstream cells (Sec-
tion 4.4.2). For each surface water body, precipitation and evapotranspiration are com-
puted. Groundwater storage is affected by groundwater recharge beneath lakes, wet-
lands and floodplains in (semi-)arid regions, and diffuse groundwater recharge (Fig-
ure 2.1), which is calculated as a function of total runoff, soil texture, hydrogeology, 
relief and the existence of permafrost or glaciers (Döll and Fiedler 2008). Water with-
drawal from the hydrological system as well as consumptive water use of the different 
sectors, computed by the Water Use Model of WaterGAP, can optionally be taken out 
of the grid cell. Since water requirements cannot always be satisfied in any grid cell at 
any time, WGHM allows for the extraction of the unsatisfied portion from a neighbor-
ing grid cell.  

Each grid cell of WGHM is provided with information from different datasets. Im-
portant inputs include static input maps of soil and land cover (see Table 2.2 in Verzano 
2009) as well as time series of climate data for precipitation, temperature, cloudiness, 
and number of wet days. Monthly climate data are downscaled to daily data; in the case 
of precipitation, the available number of wet days per month are used. The current mod-
el version WaterGAP 2.2b uses monthly climate data, except for precipitation, from the 
Climate Research Unit CRU TS 3.2 (Harris et al. 2014). Monthly time series of 0.5° 
gridded precipitation is provided by the Global Precipitation Climatology Center GPCC 
version 6 (Schneider et al. 2014).1  

WaterGAP 2.2b is tuned in a basin-specific manner against long-term average observed 
discharge at 1323 gauging stations around the world (WaterGAP 2.1g and WaterGAP 
2.1h at 1235 gauging stations) by adjusting one to three model parameters (Hunger and 
Döll 2008). The discharge data is provided by the Global Runoff Data Center (GRDC).  

 
                                                
1 Climate data input for the former WaterGAP model versions 2.1g and 2.1h (applied for the 
analysis presented in Chapter 3) is CRU TS 2.1 Mitchell and Jones 2005 and GPCC v3 Rudolf 
and Schneider 2005. 
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A thorough model description of the WaterGAP 2.2 version, including 1) the Global 
Hydrology Model, 2) the calibration and regionalization approach upon which Wa-
terGAP is based, and 3) the Global Water Use Model can be found in the appendix of 
Müller Schmied et al. (2014). The homogenization approach of the climate forcing is 
described in Müller Schmied et al. (2016). Changes to WaterGAP 2.2, leading to the 
version 2.2a, are documented in Döll et al. (2014). No publication is yet available which 
concerns the latest version WaterGAP 2.2b. This version contains – in addition to minor 
modification (e.g. to inland sinks) – an adapted calibration scheme (that allows up to 
10% uncertainty of measured river discharge). 

Former model versions and developments that have been made since the first publica-
tion on WaterGAP in 2003 are described, for example, in Kaspar (2004), Verzano 
(2009), Hunger and Döll (2008), Döll and Fiedler (2008), Döll et al. (2012), and Döll 
and Müller Schmied (2012).  

2.2.3 Model version applied in this thesis 

WaterGAP 2.2b has been developed within the timeframe of this PhD work. Therefore, 
it was used to implement the final floodplain algorithm, as well as for the more recently 
performed final results. 

The development and testing of the floodplain algorithm as well as the preliminary tests 
of surface water extension and surface water storage variations (Chapter 3) were ac-
complished at an earlier stage of this PhD work. For this reason, WaterGAP 2.1g and 
WaterGAP 2.1h were applied for these analyses. 
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CHAPTER 3 

Analysis of satellite-derived naturally inundated areas and surface wa-
ter storage as a basis for floodplain modeling 
3 Analysis of satellite-derived naturally inundated areas and surface water storage as a basis for floodplain modeling 

3.1 Global-scale analysis of satellite-derived time series of naturally inundated 

areas as a basis for floodplain modeling1 

3.1.1 Introduction  

Wetlands play an important role in the terrestrial water cycle, influencing evapotranspi-
ration, water storage, and river discharge dynamics. In addition, they are the habitat of a 
large number of animals and plants. Thus, to assess the Earth’s system and its changes, 
a good understanding of the dynamics of wetlands, including inundated areas, water 
storages, and water flows is required. Global hydrological and land surface models sim-
ulate wetlands and seasonally inundated areas with strongly varying degrees of com-
plexity, and some do not simulate them at all. Decharme et al. (2008) described an ad-
vanced approach for simulating the inundation of floodplain within a global land surface 
model, at a spatial resolution of 1° by 1°. In this model, the floodplain reservoir fills 
when the river height exceeds a critical value. The flooded fraction of the grid cell is 
determined based on the 1 km by 1 km Digital Elevation Model HYDRO1k 
(http://edcdaac.usgs.gov/gtopo30/hydro). With a spatial resolution of 5’ by 5’, Coe et al. 
(2008) computed the dynamics of flooded areas in the Amazon basin, using basin-
specific information on river width, and river stage at which flooding begins as a func-
tion of upstream drainage area. To represent subgrid-scale morphology, a cumulative 
distribution function was derived from the Shuttle Radar Topography Mission (SRTM) 
90m elevation data (Farr et al. 2007) (aggregated to 1 km resolution), and a quantitative 
relation between inundated areas and water stored in the inundated floodplain was de-
rived.  

While the models of Decharme et al. (2008) and Coe et al. (2008) aim at simulating the 
inundation of floodplains that occurs when river channels can no longer contain all the 
flowing water, the WaterGAP Global Hydrology Model WGHM (Döll et al. 2003), with 
a spatial resolution of 0.5° by 0.5°, simulates all types of inland wetlands (including 
floodplains, freshwater marshes, swamp forests, bogs, fens and salt pans) but does not 
distinguish between the different types. The location of wetlands and their extent are 

                                                
1 Based on Adam, L., Döll, P., Prigent, C. and Papa, F.: Global-scale analysis of satellite-
derived time series of naturally inundated areas as a basis for floodplain modeling, Advances in 
Geosciences, 2010. 
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prescribed by the Global Lakes and Wetlands Database GLWD (Lehner and Döll 2004). 
The size of wetlands does not vary explicitly over time. However, in the current version 
of WGHM, evaporation is modeled as a function of water storage, so that wetland area 
is implicitly assumed to reduce with decreasing storage. Wetland evaporation is reduced 
by 10% when actual storage is half of the maximum storage and becomes zero when 
storage is zero (Hunger and Döll 2008). 

In the Amazon basin, which is characterized by seasonal large-scale inundations of 
floodplains, WGHM was found to overestimate the lateral transport velocity of water. 
Because of that, the modeled seasonal discharge peaks too early in the year ( Döll et al. 
2003; Fiedler and Döll 2010). In addition, compared to seasonal water storage variations 
as obtained from satellite-derived gravity fields, WGHM underestimates the amplitude 
of the seasonal water storage variations in the Amazon basin (Fiedler and Döll 2010; 
Werth and Güntner 2010). This may be explained by an underestimation of wetland 
storage capacity, because maximum storage height of wetlands is assumed to be 2 m 
globally, a value that is probably too small for the wetlands in the Amazon basin. There-
fore, wetland storage in the Amazon basin is fully exploited throughout most of the 
year. If the river flow velocity is decreased by a factor of 3 (or more, depending on the 
discharge station), a good agreement between observed and simulated seasonality of 
river discharge and water storage is obtained. This indicates that WGHM might under-
estimate the storage capacity of the wetlands in the Amazon, and is a motivation for 
improving the dynamic modeling of wetlands in WGHM, in particular, the modeling of 
floodplains and other wetlands which depend on seasonal river flooding. The develop-
ment of a new model algorithm requires data of the dynamics of inundation areas, in 
addition to discharge data and data on total water storage variations in the river basin as 
provided by satellite-derived gravity fields. 

The objective of this study was to analyze time series of inundated areas derived from 
satellite observations, as the first step towards improved floodplain inundation modeling 
in WGHM. In Section 2, we present a global-scale data set of time series of naturally 
inundated areas that can be used for developing and validating a floodplain inundation 
model for WGHM. This data set is based on a monthly time series of inundated areas 
that was derived from multiple satellites for the time period 1993-2004 ( Prigent et al. 
2007; Papa et al. 2010). In Section 3, we compare this time series with the static wet-
land extent in the Global Lakes and Wetlands Database GLWD. In Section 4, we show 
a first analysis of the relation between the dynamics of observed river discharge and 
inundation extent for selected 0.5° grid cells located in the Amazon and Ob river basins, 
to identify how flooding can be modeled as a function of computed river discharge. 
Additionally, inundation extent is compared to modeled river discharge of WGHM for 
three large river basins: Amazon, Mississippi, and Ob. 
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3.1.2 Naturally inundated areas 

A monthly time series of inundated areas for 1993-2004, in percent of the total land 
area, was derived from a multisatellite method employing passive microwave land sur-
face emissivities obtained from SSM/I and ISCCP observations, ERS scatterometer re-
sponses, and AVHRR visible and near-infrared reflectances. The satellite observations 
are mapped to an equal area grid with a cell size of 773 km² (0.25° x 0.25° resolution at 
the equator) (Prigent et al. 2007; Papa et al. 2010). Inundated areas detected by satellites 
include man-made inundations, in particular, those from irrigation of paddy rice. A pre-
liminary exercise was performed by Prigent et al. (2001), subtracting the monthly mean 
rice field extents provided by Matthews et al. (1991) from the initial satellite-derived 
estimates. Here, to obtain time series of naturally inundated areas (NIA) that can serve 
as a basis for validating modeled floodplain inundation dynamics, the extent of irrigated 
rice as estimated in the MIRCA2000 data set by Portmann et al. (2010) was subtracted 
from the 1993-2004 time series of monthly satellite-derived inundated areas. MIR-
CA2000 is a global data set of monthly irrigated and rainfed crop areas, with a spatial 
resolution of 5 arc minute. The data set provides growing areas of 26 crop classes for 
each month of the year, covering all major food crops, cotton, crop categories (perenni-
al, annual, and fodder grasses) as well as multicropping systems and maximizes con-
sistency with census-based national and subnational statistics (Portmann et al. 2010). 
Irrigated rice areas are not available as time series, but as 12 monthly values that are 
representative of the situation around the year 2000, such that the same monthly rice 
area was subtracted for all of the years. The satellite derived inundated areas of Papa et 
al. (2010) were upscaled from their original resolution of an equal area grid with a cell 
size of 773 km2 to the 0.5° grid cells of WGHM (by intersecting the two grids and cal-
culating an area weighted sum for each 0.5° cell), while rice areas were upscaled from 
5’ grid cells (by aggregation). Please note that the basic statistical information used to 
derive the seasonality of growing areas in MIRCA2000 is mostly at the spatial scales of 
countries or regions. Coastal cells (cells not included in the data set of inundated areas 
(Papa et al. 2010) or not totally covered by the 0.5° cells of WGHM) have been exclud-
ed from the data set due to the fact that satellites observations cannot distinguish be-
tween oceans (or large permanent inland water bodies) and inundation areas. Fig-
ure 3.1a shows the mean annual growing area of irrigated rice, with a global value of 
0.61 x 106 km². Subtracting monthly irrigated rice areas from of satellite-derived inun-
dated areas leads to a reduction of up to 7.8% in August (the month where the maxi-
mum global inundation occurs). Figure 3.1b shows the resulting annual mean of NIA. 
The overall spatial pattern appears to be plausible, with floodplain inundation of some 
large rivers like the Amazon and the Paraná being clearly recognizable. Temporal vari-
ability of wetlands varies strongly, with low coefficients of variation of the monthly 
values between 1993 and 2004 occurring in the Amazon basin (Figure 3.1c). Very high 
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values of the coefficient of variation generally correlate with low mean annual inunda-
tion values.  

 
Figure 3.1 Annual average growing area of irrigated rice, in percent of cell area (a), annual 
average naturally inundated area (average over all months between January 1993 and December 
2004) based on Papa et al. (2010) and Portmann et al. (2010), in percent of cell area (b), and 
variability of naturally inundated areas as expressed by the coefficient of variation (c). Irrigated 
rice and surface water extent values are aggregated to 0.5° cells. 
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3.1.3 Comparison between satellite-based inundated areas and GLWD 

The wetlands in GLWD encompass “freshwater marshes, floodplains”, “swamp forest, 
flooded forest” and “intermittent wetland/lake” as well as rivers, bogs, coastal wetlands, 
saline wetlands, and three classes of wetland complexes (Lehner and Döll 2004). They 
cover approximately 9 million km2 or 7% of the global land area excluding Antarctica 
and Greenland. The first three types are seasonally inundated, covering 4.4 million km2 

or 3.3% of the global land area. According to GLWD, lakes and reservoirs cover 2.7 
million km2 or 2% of the global land area (Lehner and Döll 2004). To compare GLWD 
to the satellite-derived NIA data set, GLWD was aggregated to 0.5° grid cells, and all 
coastal cells, large lakes not included in NIA, and wetland complexes of GLWD were 
removed. All wetland classes were aggregated and expressed as open water area in per-
cent of cell area.  

 
Figure 3.2 Difference between the maximum value of naturally inundated areas (NIA) for 
each grid cell during 1993-2004 and the wetland extent of GLWD, in percent of cell area (a), 
and the difference between the mean annual maximum of NIA and the wetland extent of 
GLWD, in percent of cell area (b).  

GLWD is expected to represent a certain maximum extent of inundation as it is based 
on mapping of wetlands. Inundation extent of NIA should always be below the open 
water area of GLWD except possibly in the case of extreme events. We compared 
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GLWD areas to the maximum value of NIA for each grid cell during 1993 and 2004 
(3.2 a) and to the mean annual maximum of NIA (mean of the maximum grid cell value 
of NIA of each of the 12 years) (Figure 3.2 b). For the considered 48574 0.5° grid cells, 
GLWD includes 6.2 million km2 of open water, as compared to 10.1 million km2 for the 
maximum grid-specific NIA and 6.1 million km2 for the mean annual maximum of NIA. 
For 62% of the grid cells, GLWD and maximum NIA differ by less than 5% (in units of 
percent of cell area), while GLWD areas are smaller than NIA for 26% of the grid cells 
(red areas in Figure 3.2a). For the remaining 12%, maximum NIA is smaller than 
GLWD areas (blue areas in Figure 3.2a). When GLWD is compared to the mean annual 
maximum of NIA, in which extreme outliers are excluded and typical seasonal maxima 
are represented, the area with good agreement increases to 70%, while the area where 
GLWD is smaller than NIA decreases to 16% (Figure 3.2b). 

The NIA values may be considerably smaller than GLWD if the maximum inundation 
extent during the time span in which the map representation of the wetland had been 
done was not reached during 1993-2004. This is likely the case in central Australia, 
where large salt lakes are included in GLWD that are flooded only once in a few dec-
ades. But there are also other reasons. For example, NIA does not include the extensive 
wetlands in the Congo basin, in particular, the 60,000 km2 large RAMSAR Grands Af-
fluents wetland at the middle reaches of the Congo (www.ramsar.org). This may be due 
to the presence of highly dense vegetation in the region which limits the ability of the 
multi-satellite technique to clearly capture the inundations. 

Where NIA is larger than GLWD, this may be caused either by the omission of wetland 
areas in GLWD or by an erroneous identification of inundation by remote sensing. Sat-
ellite observation may overestimate the extent of actual open water areas because very 
wet soils may be wrongly identified as inundated. This is likely the case in Northwest-
ern Europe (Netherlands, Belgium, Northern Germany, England and Norway). In South 
and Southeast Asia, the problem of wet soils may contribute to the overestimation but it 
appears equally likely that GLWD is missing some wetlands there. For four selected 
grid cells in these problematic areas in Northwestern Europe and South Asia, GLWD 
open water extent (a constant) was compared to the satellite-derived time series of natu-
rally inundated areas (Figure 3.3). For the two cells over Europe, the satellite values 
appear to be implausibly high. Even though there are a considerable amount of lakes in 
the cell close to the Baltic (Figure 3.3a), the open water surface increases much less in 
spring as the satellite data, and it appears to be likely that the satellite algorithm misin-
terprets wet spring soils (after melting of snow) as inundated. The cell in Northwestern 
Germany (Figure 3.3 b) has an average of the satellite-derived inundated area that ex-
ceeds the size of Lake Constance or Lake Balaton, such that these large areas may also 
represent wet soils. To understand the comparison for the two South Asian cells, please 
note that in GLWD, approximately the areas of Bangladesh is indicated as one large 
floodplain. The cell shown in Figure 3.3 c is located inside this GLWD floodplain area, 
the cell of Figure 3.3 d just outside. According to the satellite data, the latter is less ex-
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tensively inundated during the monsoon season than the former, but it appears plausible 
that significant inundation during the monsoon season occurs also outside the floodplain 
area indicated in GWLD. 

 
Figure 3.3 Comparison of inundation extent (in percent of 0.5° grid cell) of the time series of 
satellite-derived naturally inundated areas (1993-2004) and the wetland extent of GLWD (a 
constant) for four selected grid cells in Northwestern Europe and South Asia (right column). 
The left-hand column shows the location of the selected cells and the annual average of NIA 
(for legend see Figure 3.1 b). 

3.1.4 Relation between inundation area and river discharge 

Flow dynamics in floodplains are expected to depend on river discharge. In order to 
develop an algorithm that simulates the flow of water between the channel and the 
floodplain, it is useful to first analyze the relation between river discharge and inunda-
tion in the same grid cell as well as on a basin wide scale. We compared the extent of 
naturally inundated areas to 1) observed river discharge obtained from the Global Run-
off Data Centre GRDC (grdc.bafg.de) at three gauging stations in the Amazon and Ob 
river basins (Figure 3.4) and to 2) modeled river discharge of WGHM for three large 
river basins (Figure 3.5 and 3.7).  
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Prigent et al. (2007) showed for the Amazon that their inundation estimates fit well to 
higher resolution SAR estimates, even though the number of pixels with low inundated 
area fraction was underestimated, and the number of pixels with very high fractions was 
overestimated. As expected from several prior investigations in different areas (Papa et 
al. 2006, 2007, 2008b and 2010, Prigent et al. 2007, Azarderakhsh et al. 2011), the tem-
poral variation of natural inundation exhibits a close correlation with in situ, but as well 
with modeled river discharge variations. For the mainstream Amazon at Obidos, there is 
a high correlation of river discharge and inundated area in the grid cell. In the driest 
months, at least 20% of the cell area remains inundated. For a much smaller tributary, 
the Rio Jari at São Francisco, flooding only occurs, typically during one month of the 
year, which is approximately the month with the highest discharge (time lag 0-1 month) 
(Figure 3.4). On the basin-scale, natural inundation extent correlates well with modeled 
river discharge from WGHM (R = 0.86). The variability is relatively low in both data 
sets with the standard deviation being less than 30% of the mean values (Table 3.2). The 
results show strong seasonal cycles with highest values from March to May and lowest 
values from October to November as illustrated in Figure 3.5 and Figure 3.5. 

 
Figure 3.4 Comparison of time series of observed river discharge (GRDC) at three gauging 
stations in the Amazon and Ob river basins, and the extent of naturally inundated areas in the 
same 0.5° grid cell.  

The station Salekhard at the Ob River is located in the permafrost region and is domi-
nated by snow. In the case of snow, satellite estimates cannot be obtained. Open surface 
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water is visible only from July to September (Figure 3.4), when also meltwater dis-
charges are high and snowmelt accumulates at the surface due to the low relief. Here, a 
high correlation between river discharge and open water extent can be observed but the 
largely inundated areas may be primarily a function of temperature than of river dis-
charge. Similar seasonal cycles can be observed for the whole river basin (Figure 3.5). 
Flooding occurs only in the summer month from May to September (Figure 3.6) with a 
maximum in June, which coincides with the maximum of modeled discharge. In the 
southern part of the basin, the maximum inundation extent happens two months earlier 
than at Salekhard station in the northern part of the basin (Figure 3.7). Papa et al. 
(2008b) had already shown the close correlation of snow melt with inundation extent in 
arctic river basins. Here, this is also confirmed by the large difference in variability of 
the datasets. Whereas the standard deviation of modeled river discharge is only 40% of 
the mean discharge, the variability of inundation extent rises up to 130% of the mean 
monthly inundation extent (Table 3.2).  

The time series of natural inundation extent and modeled river discharge also agree well 
for the Mississippi river basin, although the correlation coefficient (R = 0.77) is lower 
than in the Amazon and Ob river basins. River discharge slightly decreases from 1993 
to 2000 and increases from 2001 to 2004. This development cannot be observed from 
the values of inundation extent (Figure 3.5). The variability of inundation extent is 
about 20% higher than the variability of modeled river discharge (Table 3.2). Looking 
at the monthly averages and differences in the monthly cycle (Figure 3.5 and 3.6), river 
discharge peaks in April, one month earlier than inundation extent.  

Maximum inundation shows a time lag of 0–2 months with respect to river discharge. 
On a basin-scale the maximum lag correlation for the two time series is zero months. 
Similar correlations between the temporal dynamics of surface water extent and river 
discharge have also been identified in previous studies cited above.  

 



CHAPTER 3: SATELLITE-DERIVED INUNDATED AREAS AND SURFACE WATER STORAGE 

28 
 

 

 

 
Figure 3.5 Comparison of time series (1993-2004) and seasonal cycles (monthly averages 
1993-2004) between modeled river discharge and the extent of naturally inundated areas for the 
three river basins: Amazon, Mississippi, and Ob (from top to bottom). 

 
Figure 3.6 The mean monthly cycle of discharge responses to inundation extent for the three 
river basins: Amazon, Mississippi, and Ob (from left to right). The numbers in the figures 
represent the months of the year. 

Table 3.2 Comparison of monthly values of NIA with modeled river discharge from 1993 to 
2004 for different river basins and on a global-scale. The table contains values of the Coefficient 
of Correlation (R), the Coefficient of Determination (r²), the maximum correlation when lag 
times are considered (Rmax), the time lag at maximum correlation between inundation extent 
and river discharge in month (TimeLag), the mean (Mean) and standard deviation (sd) of NIA 
and modelled river discharge in percent of grid cell area and km³ respectively, and the standard 
deviation in percent to the mean (Var [%]). 
River  
Basin R r² Rmax 

Time 
Lag 

NIA River Discharge 
Mean sd Var [%] Mean sd Var [%] 

Ganges 0.94 0.88 0.94 0 8.09 8.11 100 3.27 2.84 87 
Mekong 0.91 0.82 0.91 0 6.19 5.03 81 3.28 2.66 81 
Ob 0.87 0.75 0.87 0 2.29 3.09 135 1.30 0.52 40 
Amazon 0.86 0.75 0.86 0 3.24 0.77 24 13.18 3.61 27 
Parana 0.86 0.73 0.86 0 4.67 1.53 33 2.63 0.74 28 
Nil 0.57 0.32 0.83 -1 1.56 0.57 36 1.29 0.80 61 
Mississippi 0.77 0.59 0.77 0 1.80 1.12 63 1.42 0.58 41 
Euphrates 0.59 0.34 0.59 0 2.86 1.91 67 0.43 0.28 65 
Danube 0.32 0.10 0.32 0 0.33 0.33 101 1.78 0.77 43 
       

   
 Global 0.80 0.64 0.93 1 1.41 0.90 64 1.08 0.21 20 
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Figure 3.7 shows the geographical structures of the three river basins for natural inunda-
tion extent (a) and river discharge (b), in which the first map always displays the maxi-
mum values, the second map the variability, and the third map the month during which 
the maximum value occurred. 

Spatial patterns in the Amazon River basin of inundation extent and river discharge, for 
both maximum values and variabilities, are very similar (Figure 3.7). For the most part, 
high values occur along the main stem and the big tributaries. The inundation in the 
southern part of the river basin, at the Mamore river, does not coincide with high river 
discharge values. The month of the maximum of both datasets depends mainly on pre-
cipitation (Papa et al. 2010). South of the Equator, maximum values occur in the months 
of the northern hemisphere winter, whereas the northern part of the basin is character-
ized by high values in months of northern hemisphere summer.  

The Mississippi River basin is characterized by a humid eastern part and a semiarid 
western part with almost no inundation and very low river discharge. Inundation extent 
and variability are highest along the lower and middle Mississippi, with a large inunda-
tion area north of the inflow of the Ohio River. Maximum variation in river discharge is 
along the main stem of Mississippi and along large tributaries. Spatial patterns of the 
month of maximum coincide very well between inundation extent and modeled river 
discharge. In most areas, river discharge peaks about one month earlier than inundation 
extent. Maximum values occur from late summer to December in the area of the Arkan-
sas River draining the Rocky Mountains, to January/ February in the southern part of 
the basin and until May/ June in the northern part of the basin.  

Inundation extent and river discharge in the Ob River basin are high along the main 
rivers of Ob and Irtysh. Unlike river discharge, there is an area of large inundation with 
high variability located around the inflow of the Irtysh into the Ob River. Because of 
latitude depending snow melting, we found equally to Papa et al. (2008b) the propaga-
tion from south to north regarding the month during which maximum inundation occurs. 
General spatial patterns of inundation extent and river discharge agree well, with maxi-
mum values from April to May in the southern part of the basin, and from May to June 
in the northern part of the basin. Even though, the river discharge for some grid cells in 
the center part of the basin occurs in the winter month, which cannot be explained. 
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Figure 3.7 Comparison between the extent of naturally inundated areas (a) and modelled river 
discharge (b) for the three river basins: Amazon, Mississippi and Ob. From left to right: mean 
annual maximum [%, km³], mean monthly variation [%, km³] and average month of maximum 
for each year [month], in the time period 1993-2004.  
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3.1.5 Conclusions 

In order to support the improved modeling of floodplain inundation in the global hydro-
logical model WGHM, we combined a multisatellite data set of inundated areas (Papa et 
al. 2010) for the time period 1993-2004 with data on monthly irrigated rice areas around 
the year 2000 (Portmann et al. 2010). The resulting global-scale time series of monthly 
naturally inundated areas (NIA) (spatial resolution 0.5°) was compared to the static wet-
land extent in GLWD (used as input to WGHM) to better understand the validity and 
applicability of both data sets. We conclude that NIA can be used as an independent 
validation data set for dynamic floodplain models, but future work is required to identi-
fy areas where NIA overestimates inundation extent due to very wet soils, and where 
the satellite retrieval algorithm may not be able to identify inundated areas (e.g. in 
densely vegetated areas). GLWD mostly represents the maximum of surface water ex-
tent except in cases of extreme flooding, but in some regions (e.g. South Asia) is quite 
possible that wetland areas need to be added. To determine how flooding can be mod-
eled as a function of computed river discharge, the relation between the dynamics of 
naturally inundation extension and both observed and modeled river discharge was ana-
lyzed. In summary, a correlation between inundated area and river discharges was 
found, with certain phase shifts of the maxima. Very good agreement was determined 
particularly in the seasonal and interannual variations of the data sets. The comparison 
of spatial patterns of inundation extent and modeled river discharge in the three river 
basins show similar distributions of monthly variations, maximum values, and the 
month when the maximum occurs. However, in some regions inundation spreads over 
large areas, whereas changes in river discharge are principally limited to the main 
streams. 

This study allows for a better understanding of the dynamics of naturally inundated are-
as, which contributes to the development of an improved model algorithm for dynamic 
floodplain inundation in WGHM. The results of the comparison between natural inun-
dation extent, in situ river discharge, and modeled river discharge allow a cross-
validation of the data sets, and encourage the use of the satellite-derived time series of 
naturally inundated areas for model validation. 

3.2 Analysis of surface water storage compartments in WGHM: A comparison to 

GRACE for the Amazon 

3.2.1 Background 

Compared to seasonal total water storage (TWS) variations as derived from GRACE 
(see Section 4.7.1 for details on GRACE data), TWS variations from WGHM are 
strongly underestimated for the Amazon basin (Figure 3.8). The underestimation is 
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comparable to that of the GLDAS-NOAH model (by a factor of 1.8), which does not 
consider any groundwater or surface water storage at all (Landerer and Swenson 2012). 
As the Amazon River basin is characterized by its massive floodplain system, this un-
derestimation may be due to the inappropriate modeling of floodplain dynamics, be-
cause globally, TWS variations of WGHM are higher as compared to GPS analyses 
(Fritsche et al. 2012). To obtain improved estimates of inundation extent and water stor-
age variations in large floodplains, a dynamic floodplain model will be developed and 
included into WGHM. As a basis for floodplain modeling, the current model output of 
surface water storages in WGHM are analyzed in this study (focusing on the Amazon 
River basin). 

 

 
Figure 3.8 Total water storage of WGHM (version 2.1h) and GRACE in the Amazon River 
basin in the time period 08/2002-08/2009 (left: mean of time series).  

 

“GRACE solutions were smoothed using the non-isotropic filter DDK3 (Kusche et al. 
2009). To allow a consistent comparison to WGHM results, the filtered results were 
interpolated to the WGHM 0.5° grid such that basin averages of TWS variations could 
be computed as averages over the respective WGHM grid cells. In order to compare 
TWS variations modeled with WGHM to GRACE-derived TWS variations, WGHM 
model output was smoothed using the same procedure” (Döll et al. 2012, p. 5). The fil-
tering leads to reduced amplitudes of TWS variations of WGHM (Figure 3.8 and 3.9). 

 

In this study, two model versions of WGHM are used. Version 2.1g is used to analyze 
water storage variations in the individual surface water storage compartments of 
WGHM. This analysis was done at an earlier stage of the PhD work, when version 2.1h 
was still under development. The improved model version 2.1h was then used to com-
pare model results to GRACE. In version 2.1g the demand on water use is satisfied only 
from surface water, whereas in version 2.1h withdrawals are taken also from groundwa-
ter. As there is very little water use in the Amazon basin, the difference between both 
model versions is small, and the differences between 2.1g and 2.1h shown in Figure 3.9 
(solid black and blue lines) are due to the different time periods evaluated (2.1g: 1961-
90, 2.1h: 8/2002-8/2009).  
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3.2.2 Analysis and Results 

In this section, I analyze the water storage variations in the individual surface water 
storage compartments of WGHM for the Amazon River basin.  

The main research questions are:  
1) Do wetland storage and TWS variations increase with increasing wetland storage 

capacity?  
2) What are the differences in spatial distribution of seasonal water storage variations 

of WGHM compared to GRACE?  
 

Please note that in WGHM, Smax serves to normalize outflow from wetlands, such that 
with higher Smax, outflow Qout is reduced for the same actual water storage S in the wet-
land, with 

ܳ௢௨௧ = ݇ ∗ ܵ ∗ (
ܵ

ܵ௠௔௫
)ଶ.ହ 3.1 

where k is the outflow coefficient and S can exceed Smax. 

 

First, water storage was calculated with the standard version of WaterGAP 2.1g, which 
assumes a maximum wetland storage capacity Smax of 2 m. The total water storage var-
iation in WGHM 2.1g is mainly attributed to river channel storage (Figure 3.11). Wet-
lands and lakes hardly show seasonal water storage variations. It seems that wetlands 
and lakes are always at full capacity and this might be the reason for missing seasonal 
variations. In addition to the surface water storages, WGHM considers canopy, snow, 
soil, and groundwater storage for the contribution to TWS; however, these four other 
storages should be independent of Smax. 

 

In a second step, the maximum wetland storage capacity in the model was increased by 
a factor of 2.5 and 10.  

The absolute values of water storage in surface water compartments and of TWS, and 
the average normalized long-term mean (1961-1990) values – calculated with different 
maximum wetland storage capacities (2 m, 5 m, 20 m) in WaterGAP and averaged over 
the Amazon River basin – are shown in Figure 3.10 and 3.11. The average values for 
wetland and total water storage increase with higher wetland Smax (Figure 3.10). When 
Smax is increased by a factor of 10, TWS increases on average by a factor of 2.7 (wetland 
storage by a factor of 8.4). Wetland and total water storage variations increase; wetland 
storage variations on average by a factor of 4.2, and total water storage variations by a 
factor of 1.2 (Figure 3.11). The higher maximum wetland depth has almost no effect on 
lake and reservoir water storage and their variations. River water storage variation 
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slightly decreases with higher wetland storage capacities (Figure 3.11). With the crea-
tion of more wetland storage capacity, less water is stored in the river channel. This 
strengthens the assumption that in the standard version of WGHM, wetlands are always 
full of its capacity. Furthermore, there is a noticeable shift in time of maximum and 
minimum water storage. By increasing the maximum wetland storage capacity by factor 
10, maximum and minimum water storages occur about one month later than in the 
standard version of WGHM (Figure 3.11), and the phase of TWS from WGHM and 
GRACE become more similar (Figure 3.9). Then, both GRACE and WGHM show the 
lowest TWS in October. However, since the model output of WaterGAP 2.1g is not 
filtered, the results should be interpreted with caution when compared to GRACE. 
 

 
Figure 3.9  TWS variation of WGHM (different model versions) and GRACE in the time peri-
od 2002-2009 in the Amazon River basin.  

 

This study shows that with higher wetland storage capacity, the seasonal variation of 
floodplain/wetland storage and of TWS increases (Figure 3.10 – Figure 3.12). Due to 
the increased water retention in the wetlands, there is a time shift of maximum and min-
imum TWS, such that WGHM fits better to GRACE. In addition, interannual variation 
of TWS is increased (Figure 3.12).  
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Figure 3.10  Basin-averaged time series of individual surface water storage compartments and 
of TWS. Calculated with WGHM 2.1g with 2 m (a), 5 m (b) and 20 m (c) wetland storage ca-
pacity. Long-term average 1961-1990 for the Amazon basin. 

 

 
Figure 3.11  Average normalized long-term mean (1961-1990) monthly values of surface water 
storages and of TWS, for the Amazon Basin with different maximum wetland storage capacities 
(2 m, 5 m, 20 m).  
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Figure 3.12  Average normalized monthly wetland and total water storages for the Amazon 
Basin with different maximum wetland storage capacities (2 m, 20 m), for 1961-1990.  

 

 

To assess the spatial distribution of TWS variation, TWS variation was quantified in 
two ways. Seasonal TWS variation was determined from mean monthly TWS values, as 
the difference between TWS in the calendar month with the highest TWS and TWS in 
the calendar month with the lowest TWS. In addition, the mean interannual variability 
of monthly TWS was determined by computing, from the time series, the difference 
between the highest and the lowest TWS value of each calendar month, and then aver-
aging over the 12 calendar months. 

 

The spatial distribution of total water storage variation of WGHM (version 2.1h filtered) 
compared to GRACE is shown in Figure 3.13 (seasonal TWS variation) and Figure 3.14 
(mean interannual variability of monthly TWS). Interannual variability is approximately 
half of the seasonal variability. In both cases, WGHM and GRACE storage variations 
are highest along the Amazon mainstream. Generally, water storage variations are 
strongly underestimated by WGHM compared to GRACE (already shown in Fig-
ure 3.8), and there is a spatial shift of maximum total water storage variation in WGHM. 
Whereas the maximum seasonal total water storage variation in GRACE is located in 
the central part of the Amazon River basin, where the main tributaries flow into the 
mainstream, the maximum in WGHM is located in the most downstream part of Ama-
zon (Figure 3.13). The GRACE maximum occurs where there is a high density of sea-
sonal wetlands/floodplains, while the WGHM maximum occurs where, due to flow ac-
cumulation, the highest river discharges and thus the highest river storages variations 
occur. According to remote-sensing data on inundation extent (Papa et al. 2010), a par-
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ticularly high density on seasonal floodplains can be observed along the main river near 
the water mouths of the tributaries Rio Purus, Rio Negro and Rio Madeira, and in the 
Llanos de Mojos, a flat area in the southern part of the Amazon river basin (rivers Beni 
and Mamore). In the static GLWD, seasonal flooded areas are located mainly along the 
main river and their tributaries, as well as in a big area in the western part of the Ama-
zon basin (Rio Marañon). The maximum of the mean interannual variability of monthly 
TWS of WGHM is also shifted downstream as compared to GRACE, but only a little 
bit, much less than the maximum of seasonal TWS variation (Figure 3.14). However, in 
the upstream areas of the basin, seasonal TWS variations of WGHM fit rather well to 
those of GRACE, while the interannual variability is strongly underestimated every-
where.  

 

 
Figure 3.13  Seasonal TWS variation [mm] in the Amazon River basin (2002-2009) of WGHM 
(left) and GRACE (right). WGHM version: 2.1h filtered. 

 
Figure 3.14  Mean interannual variability of monthly TWS [mm] in the Amazon River basin 
(2002-2009) of WGHM (left) and GRACE (right). WGHM version: 2.1h filtered. 
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3.2.3 Outlook 

In the current version of WGHM, the distribution and extent of surface water compart-
ments are based on a static Global Lakes and Wetland Database (GLWD) (Lehner and 
Döll 2004). It is quite possible that in some areas GLWD does not represent the maxi-
mum of surface water extent as it should (Adam et al. 2010). The water (inflow from 
upstream grid cells and runoff produced inside the grid cell) in WGHM is always trans-
ported through all storage compartments. Therefore, storage variations in WGHM main-
ly depend on river discharge and flow accumulation. The floodplain/wetland depth 
(maximum storage capacity) is set to 2 m in the standard version of WGHM. 

With the new approach of modeling dynamic floodplain inundation, water is stored on 
floodplains only if river discharge exceeds a certain threshold, the bankfull flow. The 
floodplain extent and the maximum storage capacity of floodplains/wetlands are not 
static but variable, based on water storage above bankfull flow and the surface elevation 
of the floodplain. Furthermore, the flow velocity on floodplains is smaller than in the 
river channel, as we assume a higher roughness coefficient on floodplains.  

 

Floodplain wetlands are complex ecosystems and highly variable in flooding time, ex-
tent and duration of flooding. With the new approach to model dynamic floodplain in-
undation in WGHM, the spatial distribution, as well as the amplitude of seasonal water 
storage variations, is expected to be improved. By merging a digital elevation model 
(DEM) with the hydrological model, WGHM will be able, for the first time, to model 
flood inundation extent and water heights. As floodplains are inundated when the rivers 
overflow their banks, and the inundation extent is based on surface elevation, the loca-
tion and spatial distribution of floodplains should be improved. This study shows, that 
with increasing wetland storage capacity in WGHM, wetland storage and TWS varia-
tions in the Amazon River basin increase. Since in the new approach, storage capacity 
of floodplain wetlands depends on their elevation profile, it is expected to obtain a bet-
ter result of seasonal water storage variations, when compared to GRACE.  
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CHAPTER 4 

Methods - A new approach to simulate dynamic floodplain inundation 
on a global-scale 
4 Methods - A new approach to simulate dynamic floodplain inundation on a global-scale 

4.1 Introduction 

In this chapter, I introduce the methods of simulating dynamic floodplain inundation 
within WaterGAP, with a focus on the changes in the water balance of rivers and flood-
plains. First of all, I present the overall equations for modeling the water balance for 
rivers and floodplains, and I also give an overview of the relevant parameters and varia-
bles; the most important are represented in a schematic figure (Section 4.2). Then, in the 
subsequent sections I explain how the variables used in the water balance equations are 
calculated and derived. These sections are composed of: the flood initiation with river-
floodplain interaction (Section 4.3), the estimation of floodplain area and area of other 
surface water bodies (Section 4.4), the flow routing among grid cells (Section 4.5), and 
the calculation of flow velocities for rivers and floodplains (Section 4.6). Finally, in 
Section 4.7 I explain how the model validation data and the model efficiency criteria are 
applied.  

4.2 Water balance equations for rivers and floodplains 

The Global Hydrology Model of WaterGAP (WGHM) calculates daily water balances 
for the land areas and for the open water bodies of the individual grid cells. Within each 
grid cell, the runoff produced inside the cell and the inflow from the upstream cell(s) are 
transported through a series of storage compartments. The resulting cell outflow then 
becomes the inflow of the downstream cell (Figure 4.1).  
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Figure 4.1 Schematic representation of the vertical and lateral water balance as computed by 
the WaterGAP Global Hydrological Model (WGHM) (modified from Döll et al. 2012), includ-
ing human water use. In the flow chart, boxes represent the water storage compartments and 
arrows the water fluxes (inflows, outflows); Epot: potential evaporation, Ea: actual evaporation, 
Ec: evaporation from the canopy, Rl: runoff from land, Rg: groundwater recharge, Rs: surface 
runoff, Qbase: baseflow, fswb: fraction surface water body. 

The major vertical and lateral hydrological processes of WGHM are explained in detail 
in Section 2.2. In the scope of this PhD work, I implemented a new storage compart-
ment into the WaterGAP code: the floodplain storage. Thus, the former model processes 
(shown in Figure 2.1) change by replacing the global wetland storage based on GLWD 
with the floodplain storage compartment (Figure 4.1). 

The water balance equations for rivers (r) and floodplains (f) are formulated as ordinary 
differential equations:  

݀ܵ௥,௙

ݐ݀
= ௥,௙ܨ − ௥,௙ܭ ∗ ܵ௥,௙  4.2 

The change of water volume in the storage compartment (S) [km³] for each time step (t) 
is calculated as the net inflow to the compartment (F) [km³/d] reduced by the water stor-
age times an outflow coefficient (K) [1/day].  
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The analytical solution of Equation 4.2 provides the storage at the end of each time step 
t as a function of the storage at the end of the last time step (t-1): 
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As the time step is 1 day, each analytical solution has the form: 
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The outflow coefficient (K) is calculated as the ratio between the flow velocity of the 
river or floodplain (ν) [km/d] and the river channel length in the grid cell (l) [km]:  

௥,௙ܭ =
௥,௙ߥ

݈
 4.5 

The calculation of flow velocity of rivers and floodplains is explained in detail in Sec-
tion 4.5. In order to represent real river channel length (l), the direct distance between 
grid cells is multiplied by an individual meandering factor for each 0.5° grid cell, de-
rived from HydroSHEDS 15 arc-sec river network (Verzano 2009).  

The net inflow of the river compartment (Fr) and floodplain compartment (Ff) respec-
tively is calculated as the sum of all prescribed inflows and outflows of the compart-
ments: 

௥ܨ = ܳ௜௥ − ܳ௥௙ + (ܲ − (ܶܧܲ ∗ ௥ܣ −  ௦ 4.6ܣܰ

௙ܨ = ܳ௜௙ + ܳ௥௙ + (ܲ − (ܶܧܲ ∗ ௙ܣ − ௚ܴ௙ ∗  ௙ 4.7ܣ

where Qi [km³/d] is the inflow into the river/floodplain from upstream cell including 
runoff produced within the cell and the outflow of global lakes and reservoirs, Qrf 
[km³/d] is the flow from the river channel into the floodplain (+) or vice versa (-) (see 
Equation 4.8, Section 4.3.2), P and PET is precipitation and potential evaporation on 
grid cells in km³ (for calculation/ data sources see Section 2.2.2), NAs [km³/d] are the net 
water abstractions from the river (for calculation see Döll et al. 2012), Rgf [km/d] repre-
sents groundwater recharge beneath floodplains2. Precipitation, potential evaporation, 
and groundwater recharge are calculated for river and floodplain area respectively. Be-
cause of that, these variables are multiplied by the area fraction of the water bodies. The 
way in which river area fraction (Ar) [%/100] is calculated is explained in Section 4.4.2. 
The floodplain area fraction (Af) [%/100] is determined by applying the hypsographic 
approach (Section 4.4.1).  
 

                                                
2 Groundwater recharge is calculated only in semi-arid areas with 10 mm per day (Döll et al. 2014). 
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Table 4.3 List of parameters and variables. The gray lines represent variables which are visu-
alized in Figure 4.2. 

Symbol Name Unit 
Af Dynamic flooded area (fractional area of a grid cell inun-

dated) 
%/100 

Ar River area fraction per grid cell %/100 
d Distance between target and downstream grid cell m 
Db River channel water depth at Qb  m 
Df Floodplain water depth m 
Dr River channel water depth m 
Hf Floodplain water height m 
Hr River water height m 
F Sum of all prescribed inflows and outflows of the storage 

compartment 
km³/d 

K Outflow coefficient d 
l L*meandering factor m, km 
L River channel length in the grid cell m 
NAs Net water abstraction from surface water km³/d 
nr, nf Roughness coefficient for river and floodplain - 
p Percentage of water flowing from river to floodplain or 

vice versa (if Qi > Qb) 
% 

pmin Minimum percentage of water flowing from river to flood-
plain or vice versa (if Qi > Qb) 

% 

P Precipitation mm 
PET Potential evaporation mm 
Qr River discharge km³/month, km³/d, 

m³s-1 (gauging stations) 
Qb Bankfull flow m³s-1, km³/d  
Qf Floodplain discharge m³s-1, km³/d  
Qi Inflow from river from upstream cell including runoff pro-

duced within the cell 
m³s-1, km³/d 

Qif Inflow from floodplain from upstream cell including runoff 
produced within the cell 

m³s-1, km³/d 

Qra Actual river channel flow (≥Qb) (maximum river channel 
capacity at a given time) 

m³s-1, km³/d 

Qrf Flow from river channel to floodplain or vice versa m³s-1, km³/d  
r Area reduction factor for surface water bodies and river - 
rQb Bankfull flow reduction factor - 
R Hydraulic radius for river and floodplain m 
Rg Groundwater recharge mm/d, km/d 
s Water surface slope m/m 
Sr, Sf Water storage for river and floodplain km³ (WGHM-output), m³ (in 

WGHM)  
Sb Water storage at bankfull  m³ 
νr, νf Flow velocity of river or floodplain ms-1 
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Symbol Name Unit 
W River channel width m 
x River discharge above or below actual river channel flow 

(Qi-Qra) 
m³/s 

z Land surface elevation m 
zmin Minimum land surface elevation per 0.5° grid cell (bank 

height, outflow level of the grid cell) 
m 

□ 0.5° grid cell  

 
Figure 4.2 Schematic figure of model parameters and variables, and hypsographic curve; for 
legend see gray lines in Table 4.3 

4.3 Flood initiation and river - floodplain interaction 

4.3.1 Flood initiation 

Flood initiation is determined by bankfull flow, which is defined as the point at which 
the river channel is at full capacity and the flow just begins to enter the active floodplain 
(Leopold 1994). "In order to estimate bankfull flow on a global-scale, an approach 
needed to be found, which does not depend on in-situ measurements. A number of stud-
ies worldwide have proven a relation between a certain flood return period and the 
bankfull stage" (Verzano 2009, p. 98). Bankfull flow, as it is used as input for Wa-
terGAP, is a time constant value estimated on a global-scale for each of the 0.5° grid 
cells of WaterGAP. It is based on a statistical approach on flood frequency analysis, the 
Partial Duration Series (PDS) approach, which was calculated and validated for Europe 
by Verzano (2009) and Schneider et al. (2011a). For Europe, modeled bankfull flows 
are consistent with observed bankfull flows at gauging stations, but overestimate flood 
peaks (Schneider et al. 2011a).  

Hf
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Until WaterGAP 2.2b, bankfull flow was only used to estimate river width and depth for 
the calculation of river flow velocity (Section 4.6) and it had been validated only for 
Europe (Verzano 2009; Schneider et al. 2011a). In order to implement dynamic flood-
plain modeling in WaterGAP, it was necessary to analyze the bankfull flow and the 
number of months and the volume of water where this threshold for flood initiation is 
passed over on a global-scale.  

In the current model version WaterGAP 2.2b, bankfull flow, when used as a threshold 
for flood initiation, seems to be too high. It is known from observations, that for in-
stance in the middle and downstream Amazon or in the large Siberian river systems 
there are largely endured inundations every year (Papa et al. 2007, 2008b). Figure 4.3 
shows the number of days per year from 1971 to 2009 where river inflow is above bank-
full flow at Obidos (Amazon River basin) and Salekhard (Ob River basin). The mean 
annual duration of flooding is 46 and 7 days at Obidos and Salekhard respectively, 
which appears to be too short compared to observations (Papa et al. 2007; Junk 1997). 
In several years there is even no inundation modeled (Figure 4.3).  

 

 
Figure 4.3 Number of days per year where river inflow is above bankfull flow at Obidos (left) 
and Salekhard (right).  

 

The analysis of bankfull flow used as flood initiation value in WaterGAP 2.2 demon-
strates that the duration of flooding and the return period in many regions is too short 
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(Figure 4.3). Therefore, for modeling dynamic floodplain inundation within WaterGAP, 
the bankfull flow from Schneider et al. (2011b) is multiplied by a reduction factor 
(Qb*rQb). WaterGAP 2.2b_fpl was tested for the Amazon river basin by applying differ-
ent bankfull flow reduction factors (rqb = 0.9,0.8,...,0.5). The best model fit regarding 
modeled river discharge and water surface extension, compared to observed river dis-
charge at gauging stations and satellite derived observed surface water extension, was 
achieved with a bankfull flow reduced to 70%, rqb = 0.7 (for sources of model valida-
tion data see Section 4.7).  

 

For Europe, modeled bankfull flows are in agreement with the observed bankfull flow at 
gauging stations, but overestimate flood peaks (Schneider et al. 2011a). By implement-
ing river-floodplain interactions in WaterGAP, the overestimation of flood peaks could 
be reduced, as floodplains act as temporal water storage and, thereby, reduce flood 
peaks and flow velocity (Schneider et al. 2011a). Note, that the reduced bankfull flow to 
70% represents the flood initiation threshold. River discharge and river stage are still 
rising in the case of flooding, so that maximum river flow should still agree well with 
observed maximum stage discharge; just the flood peaks in WaterGAP are smoothed 
out (Section 4.3.2). 

4.3.2 River - floodplain interaction 

The water flows from the river into the active floodplain if inflow into the river compo-
nent of a cell Qi exceeds the bankfull flow Qb (Figure 4.2). If flooding occurs, the water 
level height on the river equals that on the floodplain and is thus above bank height (B). 
River storage is above the storage at bankfull (Sb). River discharge during flood events, 
here called actual river channel flow Qra (Qra ≥ Qb), which is, in the state of flooding, 
the maximum river channel flow at a given time. From the amount of water above river 
channel capacity x (x>0) not all flows into the floodplain; some of the water stays on 
the river channel. Or vice versa, from the amount of water below river channel capacity 
x (x<0) not all flows back into the river; some of the water remains on the floodplain. 
The flow between river and floodplain (Qrf [m³/s]) is, thus, calculated as a portion of x 
and can be either positive (from river to floodplain, if x>0) or negative (from floodplain 
to river, if x<0): 

ܳ௥௙(ݐ) = ݔ ∗
݌

100
(ݐ)ݔ      ,     = ܳ௜(ݐ) − ܳ௥௔(ݐ − 1) 4.8 

whereas the portion p [%] depends on the relation of x to Qra and is calculated by using 
an exponential function with a predefined minimum (pmin = 60%) (Figure 4.4): 

(ݐ)݌ = (ݔ)݂ = 100 −
100 − ௠௜௡݌

݁ଵ଴∗ |௫(௧)|
ொೝೌ(௧ିଵ)

 4.9 
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When flooding starts, Qra equals bankfull flow (Qb [m³/s]). During flooding Qrf, the flow 
between river and floodplain is taken into account: 

ܳ௥௔(ݐ) = max൫ܳ௜(ݐ) − ܳ௥௙(ݐ), ܳ௕  ൯  4.10 

Furthermore, the floodplain discharge Qf is calculated by adding (or subtracting) Qrf to 
the floodplain inflow Qif from upstream grid cells: 

ܳ௙(ݐ) = ܳ௜௙(ݐ) ± ܳ௥௙(ݐ) 4.11 

If x<0 and the floodplain storage Sf is less than the difference of river water storage 
from last time step Sr(t-1) to current time step Sr(t), all of the water on the floodplain 
flows back into the river. In that case, the flow between river and floodplain Qrf is nega-
tive and equals x (Qrf = min(x, Sf)). 

In order to find a method to calculate p, I tested several equations (some of them shown 
in Figure 4.4) and values for pmin (pmin = 0, 20, 50, 60, 70, 80). To do that, I compared 1) 
modeled river discharge to observed river discharge at gauging stations, and 2) modeled 
surface water extent to satellite derived observed surface water extent; both in the test-
ing region, the Amazon river basin (for sources of model validation data see Sec-
tion 4.7).  

Regarding pmin, best model results are achieved if at least 60% of the water above river 
channel capacity flows into the floodplain. Up to a value of pmin = 60, the larger pmin the 
better the WaterGAP results for both river discharge and surface water extent. With 
pmin-values larger than 60%, modeled river discharge starts getting worse compared to 
observations, due to a decrease in peak flows. 

To find an appropriate equation to calculate p, it was required that the equation com-
plies with the following characteristics: 

1) p depending on the relation from x to Qra: Given that larger rivers have larger 
water storage capacity than small rivers, with equal x the portion of water enter-
ing in the floodplain (p) is less for large rivers than for small rivers. With equal 
Qra, the larger the amount of water above river channel capacity (x), the larger 
the portion of water flowing into the active floodplain. 

2) The portion of x being relatively large already with small amounts of water 
above river channel capacity to ensure a rapid and extensive river-floodplain in-
teraction. Thus, the function is required to have a steep gradient right from the 
beginning of the curve (Figure 4.4). 

3) If flooding occurs, at least always some amount of water staying additionally to 
the bankfull flow in the river channel (p approximates to 100%, but never reach-
es 100%).  

Figure 4.4 shows three of the tested equations for calculating p, whereas only the expo-
nential function fulfills the above-mentioned requirements. 
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Figure 4.4 Portion p [%] of x (water flow exceeding the river channel capacity, x = Qi - Qra); 
pmin is a predefined minimum percentage (set to 60%) and Qra is the actual river channel flow 
Qra in the case of flooding (Qra ≥ Qb, maximum river channel capacity at a given time). In 
addition, two other equations are shown, where the model has been tested for.  

4.4 Water surface extent 

Water surface extent is the sum of the inundation area on the floodplain, determined by 
applying the hypsographic approach (Section 4.4.1), and the area of other water bodies 
in WGHM, which are based on the Global Lakes and Wetland Database GLWD (Sec-
tion 4.4.2). 

4.4.1 Hypsographic Approach 

A cumulative distribution function (CDF) of relative elevations – a hypsographic curve 
– is used to describe the floodplain elevation profile, assuming that flooding starts from 
low regions in a grid cell. Thus, with the volume of water on the floodplain (Sf), the 
floodplain height (Hf) and the corresponding dynamic floodplain extent (Af) can be de-
termined for each 0.5° grid cell (Figure 4.2).  

Low values of floodplain storage imply that less volume of water is necessary to flood a 
certain area of a 0.5° grid cell. These grid cells are characterized by a low slope of the 
CDF and, therefore, also by a relatively small floodplain height compared to grid cells 
with rough terrain and large elevation differences.  

The hypsographic approach with the underlying data is explained in more detail in the 
following paragraphs and figures. 

 

The CDF for each 0.5° grid cell on a global-scale is derived from two digital elevation 
models: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Deriva-
tives at multiple Scales, Lehner et al. 2008b) and ACE2 (Altimeter Corrected Eleva-

(eq. 4.9) 
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tions, Smith 2009), both with a spatial resolution of 3 seconds. HydroSHEDS covers the 
region within ±60°N and ACE2 is applied for latitudes outside these bounds. 

HydroSHEDS DEM is based on high-resolution (3 seconds = ~90 m) elevation data of 
the Shuttle Radar Topography Mission (SRTM), which were corrected for hydrological 
applications. SRTM data were obtained on a near-global-scale (±60°N) by a specially 
modified radar system flown onboard the Space Shuttle Endeavour in February 2000 
(Farr et al. 2007). The hydrological correction implies particularly the assurance that 
“the surface of each river pixel was lower than that of the directly adjacent land pixels” 
(Lehner et al. 2006a, p. 6) and the void-filling of SRTM data by filling the no data voids 
“by means of an iterative neighborhood analysis” (Lehner et al. 2006a, p. 8). This tends 
to force the flow to stay within river channels (Lehner et al. 2008a).  

The ACE2 dataset is a DEM on a global-scale. Within the region bounded by ±60°N, 
the elevation data of SRTM was synergistically merged with Satellite Radar Altimetry. 
Especially over the rainforest, SRTM data was replaced by multi-mission satellite al-
timeter data. Unlike the SRTM radars, where elevation measurements are produced 
from near the top of the canopies (Farr et al. 2007), the radar altimetry is able to sense 
the surface beneath vegetation canopies. “For regions outside the latitude bounds of 
SRTM, all available altimeter data were fused with a range of existing ground truth” 
(Smith and Berry 2009, p. 13). These data include GLOBE (Global Land One-km Base 
Elevation Project) and the original ACE DEM (Topex KU Band, ERS-1, Envisat RA-2 
Ku Band, Jason-1 Ku Band). The overall time span of the used altimeter missions 
reaches from March 1994 to July 2005 (Smith and Berry 2009). Unlike HydroSHEDS, 
ACE2 is not hydrologically corrected. 

When combining HydroSHEDS and ACE2 data to get data on surface elevation on a 
global-scale, 512 of 66896 WaterGAP grid cells could not be covered (155 grid cells 
north of 60°N and 357 south of 60°N), including the regions of Alaska, southeast 
Greenland and some islands like Reunión and Mauritius, Cape Verde, Hawaii and other 
Pacific islands (red regions in Figure 4.7). Furthermore, the Caspian Sea is with 108 
grid cells included in the WaterGAP land mask, but there is no information on surface 
elevation. In these grid cells – with no information on the floodplain elevation profile – 
the algorithm to simulate dynamic floodplain inundation cannot be applied. Instead, 
global wetlands based on GLWD are kept in WaterGAP. This concerns 20 grid cells (of 
total 66896), all of them located in Alaska. 

 

The SRTM dataset, based on an interferometric SAR technique, returns the majority of 
its signal from near the top of the canopies in areas with dense vegetation (Farr et al. 
2007). The highest accuracy losses due to vegetation are in the tropics in dense rainfor-
est areas, also because SRTM was flown in northern hemisphere winter. In contrast, the 
altimeter data is able to penetrate vegetation cover and reflects the signal from the un-
derlying ground surface. In the ACE2 DEM, SRTM pixels over rainforest areas – espe-
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cially in the Amazon and Congo River basins – were replaced with multi-mission satel-
lite altimeter data. The HydroSHEDS DEM is based only on the radar-derived product 
SRTM and, thus, more strongly influenced by vegetation than ACE2.  

Several authors (Beighley et al. 2009; Paiva et al. 2013; Wilson et al. 2007; Neal et al. 
2012; Yamazaki et al. 2012a) have stated that it is essential to correct raw DEM data 
against vegetation and other artifacts for improving the accuracy of the hydrodynamic 
simulations. This requires detailed information about land use or vegetation cover, to be 
able to distinguish abrupt rises in elevation caused by vegetation or by natural landscape 
effects, like river banks.  

Within the scope of this PhD work, I tested different methods for vegetation correction: 
a) some of them based on the implementation of a global vegetation data set into 
WGHM and b) others based on the correction of vegetation only in areas with high and 
dense vegetation. In any case, the correction is done for entire river basins to conserve 
the hydrological corrections of the HydroSHEDS DEM. That means that all surface 
elevations within all grid cells of one river basin are lowered by the same value of vege-
tation height (negative surface elevations are set to zero).  

The global vegetation map from Simard et al. (2011) maps forest canopy heights de-
rived from laser altimetry – also referred to as LIDAR (light detection and ranging) – 
using 2005 data from the Geoscience Laser Altimeter System (GLAS) aboard ICESat 
(Ice, Cloud, and land Elevation Satellite). The spatial resolution is 1 km. The average 
canopy height in the Amazon river basin is 26 m with a standard deviation of 6 m. Veg-
etation correction within WaterGAP was tested using the mean, mean minus standard 
deviation, and mean minus twice the standard deviation of Simard et al. (2011) for each 
river basin respectively. For the vast majority of the river basins the model fit was best, 
compared to observed river discharge and surface water extent data, with no vegetation 
correction. But the Amazon River basin differs considerably. The large seasonal flood-
ing in the Amazon River basin can only be achieved when vegetation correction is ap-
plied. According to that finding, two additional model runs were tested, applying vege-
tation correction of 23 m and 17 m only for the Amazon River basin. These values are 
used in the hydrological models THMB (Coe et al. 2008) and MGB-IPH (Paiva et al. 
2011) respectively. Finally, the best model fit of WaterGAP 2.2b_fpl compared to ob-
servation data is achieved when correcting the DEM by a vegetation height of 17 m, and 
only in the Amazon River basin. 

 

Figure 4.5 shows schematically the generation of input data for WGHM derived from 
the digital elevation models. 
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Figure 4.5 Scheme of input generation for WGHM, derived from DEMs using a cumulative 
distribution function of relative elevations (hypsographic curve) of a 0.5° grid cell. Sf is the wa-
ter storage above bankfull which flows on the active floodplain, Af is the floodplain area, Hf the 
floodplain height and zmin is the minimum elevation of the 0.5° grid cell (outflow level). To re-
duce computational load, only 100 elevation points per grid cell (0.028%) were used in the pro-
gram code to describe the hypsography of each grid cell (dots and vertical black lines on the 
cumulative elevation curve).  

First of all, the DEM elevation data with a spatial resolution of 3 seconds is assigned to 
the 66896 0.5° grid cells of WaterGAP, with each grid cell including 360000 subgrid 
elevation points.  

In a second step, the minimum elevation (outflow level, zmin) of a grid cell is defined 
and the subgrid elevation points are sorted cumulatively. In that way the surface eleva-
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tion profile of the floodplain for each of the 0.5° grid cells in WGHM is described by its 
hypsographic curve, assuming that low regions in a grid cell flood first. In the hypso-
graphic approach, it is assumed that the minimum elevation in the 0.5° cell (zmin) repre-
sents the water height in the river channel at the bankfull stage and is defined as the 
outflow level of the 0.5° grid cell (Figure 4.7). Figure 4.6 shows the subgrid elevation in 
an example grid cell in the Amazon River basin with its flow accumulation, derived 
from HydroSHEDS. It can be seen that the water level height in the river channel is 
quite inhomogeneous. To avoid errors – like negative elevation values or low elevation 
values over surface water caused by void filling of SRTM and/or altimetry data – I dis-
card the lowest 0.001% of the elevation values (value 361 = zmin). This assumes that at 
least one part per thousand of each grid cell remains always covered by water. Each of 
the remaining 359640 elevation points represents 0.000278% of the total 0.5° grid cell 
area A. Floodplain height Hf and floodplain storage Sf are determined for each state of 
flooding (floodplain area Af) of the grid cell area A by using the cumulative elevation 
curve (Figure 4.5). Whereas floodplain storage Sf is calculated as Hf times Af minus the 
area under the curve in the limits from zero to Af.  

In a third step, to reduce computational load, only a fraction of the subgrid elevation 
points per 0.5° grid cell are extracted (Figure 4.5). The hypsographic curve is approxi-
mated using only 100 points per grid cell (0.028%). As flooding in lower regions is 
more frequent, the elevation profile is represented with more data points in the first part 
of the CDF, while higher elevation values are represented with less detail. Considering 
this, the extraction of m number of elevation points (m = 1,2,3,…,100; mmax = 100) 
from the total number of elevations points per grid cell (n(100) = 359640 = nmax) is 
done by using a quadratic function; the equation can be solved by using the method of 
substitution knowing that n(1) = 1 and n(100) = 359640: 

݊(݉) = ⌊ܽ݉ଶ + ܾ + 0.5⌋  

          = ቞
݊௠௔௫ − 1

݉௠௔௫² − 1
݉² +

݊௠௔௫ − ݉௠௔௫²
1 − ݉௠௔௫²

+ 0.5቟ 
4.12 

The first elevation value (m = 1) is the minimum elevation – considered as bankfull 
height – and the last elevation value (m = 100) is the maximum elevation of the 0.5° 
cell. The floor (⌊ ⌋) plus 0.5 in Equation 4.12 ensures integer values.  

Finally, as shown in Figure 4.5, the corresponding values of Af, Hf and Sf for each of the 
100 subgrid elevation points are, in addition to zmin, stored in a table. As the data is tabu-
lated for the same area in each grid cell (each of the 100 subgrid elevation points repre-
sents a certain cell area) Af in percent of cell area is the same for all of the grid cells, 
with a first value of zero and a last value of 99.99 (100% minus the area of the outflow 
subgrid). In contrast, Hf and Sf are different for each of the 66896 grid cells globally, as 
these variables depend on each grid cells unique floodplain elevation profile. The varia-
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bles in the table (Figure 4.5) are an additional input to the global hydrology model 
WGHM and are supplied in the format of arrays3.  

Within WGHM, the floodplain storage (water volume above the river channel capacity) 
is distributed over the cell according to the hypsographic curve, starting from the mini-
mum elevation of the grid cell. The dynamic floodplain area (Af) and height (Hf) is de-
termined by interpolating between the values in the previously prepared table. However, 
Af and Hf would be overestimated if the SRTM digital elevation values were derived 
during low water periods where the water in the river channel is below the bankfull 
stage, and there would be an underestimation of these variables if at the time of obtain-
ing SRTM data, part of the cell area had already been flooded. 

 

 
Figure 4.6 HydroSHEDS elevation [m a.s.l.] (left) and flow accumulation (right) in an 
example of 0.5° grid cell located in the Amazon River basin, demonstrating the inhomogeneity 
of the water level height in river channels.  

 

                                                
3 Details about the tools for WGHM input data preparation, including downscaling of sub grid 
elevation data, CDF generation, determination of flood regarded variables, data extraction, and 
array input generation are described in the appendix. 
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Figure 4.7 Minimum Elevation zmin [m a.s.l] per 0.5° grid cell derived from HydroSHEDS and 
ACE2 digital elevation models. Negative elevations are set to zero. No data value is the -999. 

 

Negative elevation values of the DEMs are set to zero. Negative values may occur due 
to sink cells or erroneous classification of surface elevations in HydroSHEDS and 
ACE2. These errors might lead to artificial rapids, as high changes in surface water 
slope lead to higher flow velocities. However, by correcting these values, real sinks (e.g. 
Dead Sea, Caspian Sea depression) get missed. Setting negative values to zero leads, in 
the case of the Caspian Sea depression, to a completely flat floodplain elevation profile 
(all elevation values are zero). For these grid cells, and also for those not indicated as 
lake or wetland/floodplain in GLWD, WaterGAP would produce a 100% inundated cell 
as soon as bankfull flow is reached. This would result in a strong overestimation of 
evapotranspiration. In case the results showed an overestimation of floodplain extent in 
areas of natural depressions, these areas should be excluded from the correction of nega-
tive elevations.  

4.4.2 Permanent surface water bodies in WGHM 

In WGHM the location of lakes, reservoirs and wetlands, and their extent are static, 
prescribed by the Global Lakes and Wetland Database GLWD (Lehner and Döll 2004). 
Wetlands include all types of inland wetlands like floodplains, freshwater marshes, 
swamp forests, bogs, fens, and salt pans. In the model, all types of surface water bodies 
from GLWD are merged into 4 categories: local lakes, local wetlands, global 
lakes/reservoirs, and global wetlands (Figure 4.7). Whereas surface water bodies de-
fined as local are only fed by precipitation of the grid cell itself, surface water bodies 
defined as global also receive inflow from upstream grid cells.  

In WaterGAP 2.2b the areal fraction of land and surface water bodies is temporally var-
ying (except for global lakes and reservoirs). The area of each storage compartment of 
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surface water bodies (Am) is equal to maximum area (Amax) times a temporally varying 
area reduction factor (r) which is a function of water storage at the previous time step 
(Sm(t-1)):  
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The maximum area of surface water bodies (lakes, reservoirs, and wetlands) is based on 
the global land and wetland database GLWD (Lehner and Döll 2004) and is about 7.5% 
(10133912 km²) of the continental area (Figure 4.8). The surface water bodies area re-
duction factor r implies values between 0 and 1. 

For modeling dynamic floodplain inundation, global wetlands (2.9% (3872986 km²) of 
the continental area) are removed and floodplain storage is added as a new storage com-
partment to WGHM; whereas floodplain area is calculated at each time step based on 
the hypsographic approach (Section 4.4.1).4 Local wetlands from GLWD are kept; as 
they do not receive inflow from other grid cells and flooding from the main river of a 
0.5° grid cell, it is not likely that they reach floodplains of small tributaries (Coe et al. 
2008).  

In case lakes and local wetlands become inundated by river flooding, evaporation may 
be overestimated. To avoid this, it is assured that total area of open surface water (lakes, 
reservoirs, local wetlands, rivers, and floodplains) does not exceed 100% of the conti-
nental area of a grid cell, i.e. the area that is not the ocean.  

                                                
4 Global Wetlands based on GLWD are kept in WaterGAP only in grid cells with no available 
data on surface elevation (Hydrosheds and ACE2; see Chapter 4.4.1). This concerns 20 grid 
cells (of total 66896), all of them located in Alaska.  
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Figure 4.8 Distribution of surface water from the Global Lakes and Wetland Database GLWD 
(Lehner and Döll 2004) merged in 4 categories: local lakes, local wetlands, global 
lakes/reservoirs, and global wetlands. The area in km² of each of the 4 Categories is summarized 
for latitudes and longitudes. The location of the continents is shown on the spatial map. The 
percent information in the legend is the area related to the global continental area of all Wa-
terGAP grid cells. 

4.5 Flow routing 

The lateral transport of water between grid cells (upstream/ downstream relation) is 
based on the global drainage direction map DDM30 (Döll and Lehner 2002). By im-
plementing the floodplain algorithm into WaterGAP, water transport between grid cells 
is calculated not only for river channels but also for floodplains.  

The flow direction and the flow velocity depend on the water level slope s. Until Wa-
terGAP model version 2.2 the slope was time constant and water was always routed 
downstream (kinematic wave). By implementing subgrid surface elevation into Wa-
terGAP, WaterGAP 2.2_fpl is able to calculate water level heights for each grid cell and 
time step. These water level heights are used to calculate a time variable slope with ei-
ther solely downstream routing or downstream with proportional upstream routing 
(backwater effects). Flow routing is calculated with one time step per day applying the 
kinematic wave routing and with 72 time steps per day (20 minutes) applying the rout-
ing option allowing backwater flows, for rivers as well as for floodplains. 

In WaterGAP 2.2_fpl the user can decide whether to use the kinematic wave water flow 
routing with or without backwater flows. By implementing the calculation of water lev-
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el, WaterGAP is able, for the first time, to represent backwater effects (i.e. the water 
stage downstream affects flow velocity upstream). Especially in the Amazon river basin 
backwater effects are very important (Meade et al. 1991). If they are considered, mod-
eled river discharge and flow velocities should improve when compared to observations. 
Large tributaries that drain the southern Amazon River basin (especially the Madeira, 
Tapajós, and Xingu rivers) reach their peak discharges in April, two months earlier than 
the main stem does, which results in backwater conditions in the lowermost 800 km of 
the Amazon main stem. The peak stage at Obidos usually precedes the peak stage 
750 km upriver at Manacapuru (Meade et al. 1991).  

In the following two subchapters I explain in detail both routing approaches: kinematic 
wave and backwater flows. 

4.5.1 Kinematic wave 

In the kinematic wave routing approach, the water channel slope is time constant and 
always positive. This implicates positive flow velocities and immediately discharged 
downstream waters.  

In the kinematic wave approach, the slope s [-] for both rivers and floodplains is calcu-
lated by dividing the difference between the land surface elevation at the outflow (zmin) 
of the target grid cell i and the downstream grid cell j by the river length between these 
grid cells (cell center to cell center): 

Whereas di [m] is the direct distance to the downstream grid cell and mf [-] is the mean-
dering factor (sinuosity).  

The meandering factor mf [-] was derived from the HydroSHEDS 15 arc-second river 
network and ranges from 1 to 6.41 globally with an average sinuosity of 1.17 (Verzano 
2009). The minimum elevation zmin [m] is the lowest sub elevation (outflow level) of a 
grid cell and was derived from HydroSHEDS and ACE2 (±60N) (see Section 4.4.1). 
Due to possible errors of the DEMs and the coarse resolution schematic drainage direc-
tion map, minimum elevation of the target grid cell zmini [m] might be below the mini-
mum elevation of the downstream grid cell zminj [m]. In this case, zmini is set equal to 
zminj. If the slope is zero, it is set to a minimum slope of 0.0001. 

4.5.2 Diffusion wave - backwater effects 

Contrary to the kinematic wave, the diffuse wave equation routes water according to the 
slope of the water surface, allowing an upstream flow of water. Positive flow velocity 
indicates forward flow from upstream to downstream, whereas negative velocity indi-
cates backward flow from downstream to upstream (Figure 4.9). In the case of a nega-

ݏ =
௠௜௡௜ݖ − ௠௜௡௝ݖ

݀௜ ∗ ݂݉
 4.14 
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tive water level gradient and more than one upstream grid cell, water is routed either to 
the grid cell with the largest water level gradient or, if gradients are equal, to the grid 
cell with the biggest drainage area. Water always flows downstream in grid cells where 
no upstream grid cell exist and in grid cells of river mouths (no backwater effects from 
the ocean). The flow direction depends on the water level gradient, in other words, 
whether the slope s [-] is positive or negative. For the diffusion wave approach, 
Equation 4.14 is therefore modified and river slope s [m] is calculated by dividing the 
water level gradient between the target grid cell i and the downstream grid cell j by the 
river length (cell center to cell center):  

ݏ =
൫ݖ௠௜௡௜ + ௙௜ܪ ൯ − ቀݖ௠௜௡௝ + ௙ೕቁܪ

௜ݔ ∗ ݂݉
  , if ܳ௜ > ܳ௕  

4.15 

ݏ =
௠௜௡௜ݖ) − ௕௜ܦ + (௥௜ܦ − ቀݖ௠௜௡௝ − ௥௕௝ܦ + ௥ೕቁܦ

௜ݔ ∗ ݂݉
  , if ܳ௜ < ܳ௕ 

The minimum elevation of a grid cell zmin [m] represents the outflow level of a grid cell 
(bank height) and is obtained from digital elevation models (Section 4.4.1). In the case 
of flooding (if Qi > Qb), the water level of the river is equal to that of the floodplain and 
is above bank height (zmin + Hf, Hr = Hf). Floodplain height Hf [m] is determined by us-
ing the hypsographic approach (Section 4.4.1). In case of no flooding (if Qi < Qb), the 
water level of the river is calculated by adding the river depth (Dr) to the river bottom 
height, which is approximated by subtracting the river depth at bankfull state (Db) from 
the bank height zmin. The river depth under bankfull and non-bankfull conditions is cal-
culated using Equation 4.25 (Section 4.6). 

If zmini is equal to zminj, slope depends only on floodplain height or river depth. In the 
case the slope is zero, it is set to 0.0001 and water is routed downstream. Backwater 
effects are calculated for both rivers and floodplains.  
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Figure 4.9 Sketch of flow routing between grid cells. The slope s specifies the flow direction 
in rivers and floodplains. It is based on the outflow level of the grid cell zmin, the river height Hr, 
and the river length between the target and the downstream grid cell (cell distance xi times a 
meandering factor).  

If water is routed always downstream (kinematic wave routing), river storage is calcu-
lated using an ordinary differential equation containing one independent variable: time 
(dS/dt). This equation is solved analytically in WaterGAP 2.2b. In the diffusive wave 
routing, or rather if backwater flows are allowed, the river storage equation is solved 
using a partial differential equation, as it contains two independent variables: time and 
space. Since this is not solved analytically, a higher temporal model resolution is neces-
sary to avoid numerical instability. 

To avoid numerical instability, Yamazaki et al. (2011) have selected a higher temporal 
resolution for computing diffusion wave (20 minutes) compared to kinematic wave 
(30 minutes) in the CaMa-Flood model. The temporal resolution of WaterGAP 2.2b 
with kinematic wave routing is daily. For computing backwater flows, WaterGAP runs 
stable with a time step of 20 minutes (tested with 40, 30, 20, 15, 10, and 5 minutes).  

A diffusion wave assumes that the direction as well as the flow velocity depend on the 
water level gradient. At this moment, unfortunately, this works only in a restricted way 
for WaterGAP 2.2b_fpl. Actually, river and floodplain depth should be equal when 
flooding occurs. This is not the case in WaterGAP because river and floodplain depth 
are calculated in different ways. The floodplain depth is determined from the floodplain 
elevation profile based on a high resolution digital elevation model (by applying the 
hypsographic approach, Section 4.4.1). On the contrary, due to the lack of data on river 
bathymetry, the river depth is estimated from river storage, transposing the equation of 
cross-sectional area times river length in the grid cell (Equation 4.26). Since river stor-
age is relatively variable in time (not very steady), depending mainly on river inflow, 
river depth and thus the water level gradient and the slope can change strongly within 
only a few days. The flow velocity is highly sensitive to the slope and fluctuates when 
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applying the river slope, depending on the daily water level gradient per grid cell (Equa-
tion 4.15). The latter is therefore only used to derive the flow direction in Wa-
terGAP 2.2b_fpl. Whereas the slope within the flow velocity equation keeps being cal-
culated like in WaterGAP 2.2b, which is time constant and depends on the water level 
gradient of the outflow level of the target and the downstream grid cell (Equation 4.14). 
Once the flow direction has been defined and indicates upstream routing, the total out-
flow of the grid cell should flow to an adjacent upstream grid cell. Unfortunately, if this 
is applied to WaterGAP, river discharge in downstream areas of the river basin gets 
extremely low and huge water masses get stored on floodplains rising into infinity with 
time. Figure 4.10 shows the average water slope for each grid cell in 10³ [m/m] for the 
year 2003 (left) and the number of months in which the water slope is negative (right; 
e.g. 2 month means more than 59 days with negative water slopes in the year 2003). 
Grid cells with average negative water slopes, indicating backwater routing, are accu-
mulated along the main river, an area where backwater conditions have been observed 
(Meade et al. 1991). Anyway, in many of these grid cells, the water slope is negative 
almost the whole year. To circumvent a permanent upstream routing caused by endured 
negative water slopes in some grid cells, I decided to route only a percentage of the cell 
outflow upstream and the remaining amount of water outflow downstream. Best model 
results are achieved by routing only 5 percent (tested with 50, 20, 15, and 5%) of the 
grid cell outflow backward in case water slope is negative. 

 
Figure 4.10 Annual mean daily water slope [10³ m/m] in the Amazon River basin in 2003 as 
computed by WaterGAP 2.2b_fpl with kinematic wave routing (left) and the number of months 
in which the water slope is negative (right).  

In summary, WaterGAP 2.2b_fpl with backwater flows differs from that without back-
water flows (kinematic wave routing) in its higher temporal resolution of 20 minutes 
(compared to 1 day) and 5% backwater flow in case water slope is negative.  
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4.6 Flow velocity on rivers and floodplains 

In WaterGAP 2.2b, a variable flow velocity in rivers was applied. In WaterGAP 2.2b 
with floodplain algorithm, the variable flow velocity is not only calculated for rivers but 
also for floodplains. 

 

Flow velocity for rivers and floodplains is calculated using the Manning-Strickler equa-
tion, which is one of the best-known and most used equations to calculate river flow 
velocities:  

௥,௙ݒ = ݊௥,௙
ିଵ ∗ ܴ௥,௙

ଶ ଷ⁄ ∗ ௥,௙ݏ
ଵ ଶ⁄  4.16 

The advantage of this equation is that the required parameters can be derived from 
available data and it is, nevertheless, sophisticated enough to deliver realistic flow ve-
locity values for a large variety of environmental conditions on a global-scale (Verzano 
2009). In Equation 4.16, for rivers and floodplains respectively, v is the flow velocity in 
m/s, n is the roughness coefficient [-], R [m] is the hydraulic radius, and s is the water 
surface slope [-]. 

 

Verzano (2009) has estimated different river roughness coefficients for each grid cell of 
WaterGAP, ranging from 0.033 to 0.0598 with a global mean of 0.0359, using topo-
graphic and/or geologic information (this requires the definition of mountainous and 
urban areas and the use of additional datasets: GTOPO 30, GRUMP). In previous model 
versions up to WaterGAP 2.1f, a constant river roughness coefficient of 0.044 was ap-
plied (Schulze et al. 2005). In this study, the roughness coefficient for floodplains (nf) 
was set to a constant value of 0.07, recommended by Mays (1996) for floodplains with 
medium to dense brush. 

Wilson et al. (2007) have used the hydrodynamic model LISFLOOD-FP to predict 
floodplain inundation in the central Amazon, applying different roughness coefficients 
for rivers and for floodplains. They noticed that changing nf makes small difference in 
model performance.  

 

The hydraulic radius, R [m], of a specific river cross section or floodplain section, 
changes with actual discharge and, hence, it is the dynamic variable within the Man-
ning-Strickler equation. The hydraulic radius depends on the actual water level and the 
shape of the river bed or floodplain profile, and is calculated dividing cross-sectional 
area CSA [m²] by the wetted perimeter WP [m]:  

ܴ =
ܣܵܥ
ܹܲ

 4.17 
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Assuming that the floodplain profile is shaped as a rectangle, CSA and WP can be calcu-
lated as a function of floodplain width Wf [m] and depth Df [m]: 

௙ܴ =
௙ܣܵܥ

ܹ ௙ܲ
=

௙ܦ ∗ ௙ܹ

௙ܦ2 + ௙ܹ
 4.18 

“For a small floodplain, characterized by a flat bottom and steep sides, the initial in-
crease in stored volume occurs as a rapid increase in area; at higher water levels, vol-
ume increases in the floodplain result in an increase in water depth without much in-
crease in flooded area” (Wolski et al. 2006, p. 65). In Equation 4.18 the floodplain 
width Wf [m] is calculated by the ratio of flooded area Af [m²] and the river channel 
length in flow direction (without meander) (L [m]), and floodplain depth Df [m] is a 
function of water Storage on the floodplain Sf [m³] and flooded area Af [m²]: 

௙ܹ =
௙ܣ

ܮ
 4.19 

௙ܦ = ௙ܵ

௙ܣ
 4.20 

Flooded Area Af [m²], used in Equation 4.19 and 4.20, is determined on the basis of the 
CDF for each grid (see Section 4.4.1). Contrary to floodplains, in WaterGAP 2.2 the 
shape of the river channel is assumed to be trapezoidal, not rectangular. Given the fact 
that under natural conditions, in a flat and broad river bed, depth would decrease faster 
than width with falling discharge, Equation 4.18 for calculating the hydraulic radius R is 
modified assuming a trapezoidal river channel:  

ܴ௥ =
௥ܣܵܥ

ܹ ௥ܲ
=

௥ܦ௥(2ܦ + ௕ܹ௢௧௧௢௠)

௕ܹ௢௧௧௢௠ + ௥ඥ1ܦ2 + 2²
       ,       ௕ܹ௢௧௧௢௠ = ௥ܹ − 2 ∗ ௥ܦ2  4.21 

Whereas the side slope is 0.5, Wbottom [m] is the width of the ground of the river channel 
and Dr [m] is the river channel depth.  

 

Verzano (2009) has described how river width and depth are calculated in Wa-
terGAP 2.2b. Since these equations and their derivations are also important for the 
methods applied in WaterGAP 2.2b with floodplain algorithm, I quote this relevant par-
agraphs:  
"Continuous data on river width and depth is lacking on the global-scale. Based on the 
close relationship between channel form and discharge (Q, [m/s]), Leopold and Mad-
dock (1953) introduced equations, which estimate these parameters as a function of dis-
charge: 

௥ܹ = ܽ ∗ ܳ௕  4.22 

௥ܦ = ܿ ∗ ܳ௙  4.23 

Equations 4.22 and 4.23 can be found in hydrology textbooks (e.g. Mosley and McKer-
char 1993, (p. 8.4.); Dunne and Leopold 1978, (p. 637)) and are frequently applied. 
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Allen et al. (1994) carried out a regression analysis with a dataset of 674 river cross 
sections across the USA and Canada to quantify the best-fit coefficients (a, c) and ex-
ponents (b, f) in the equations, valid for bankfull discharge (Qb): 

௥ܹ = 2.71 ∗ ܳ௕
଴.ହହ଻ 4.24 

௥ܦ = 0.349 ∗ ܳ௕
଴.ଷସଵ 4.25 

During regression analysis, Allen et al. (1994) obtained high coefficients of determina-
tion (R²) of 0.88 and 0.75 for width and depth. In this approach of modeling river veloc-
ity, it is assumed that the hydraulic radius of a non-bankfull river follows the same ge-
ometric rules as bankfull discharge" (Verzano 2009, p. 64; Schulze et al. 2005, p. 134). 

 

The standard version of WaterGAP 2.2b calculates river depth and width after Allen et 
al. (1994), as a function of actual river discharge, even though coefficients are only val-
id for bankfull discharge, not for all of the river discharges. 

Within the scope of this thesis, I implemented a new method into WaterGAP, which 
computes river depth Dr as a function of river storage of previous time step Sr(t-1) [m³] 
instead of actual river discharge:  

௥ܦ = − ௕ܹ௢௧௧௢௠

4
+ ඨ

( ௕ܹ௢௧௧௢௠)ଶ

16
+

௥ܣܵܥ

2
௥ܣܵܥ       ,        =

ܵ௥(௧ିଵ)

݈
 4.26 

Equation 4.26 was derived by transposing the equation of river cross sectional area 
CSAr (see Equation 4.21) to river depth. Where CSAr is calculated by dividing the river 
storage of previous time step Sr(t-1) [m³] by the river length in the grid cell l [m].  

At the initialization time step, river storage is calculated by multiplying river length, 
river depth and river width:  

ܵ௥ = ݈ ∗ ௥ܦ ∗ ௥ܹ 4.27 

For the calculation of river storage at the initialization time step, both river depth and 
width are determined using the equations after Allen et al. (1994), inserting the river 
discharge at bankfull (Equation 4.24 and 4.25). 

Coe et al. (2008) have calculated river width Wr [m] as a function of upstream area A 
[m²]: 

௥ܹ = 0.421 ∗  ଴.ହଽଶ  4.28ܣ

The coefficients are estimated using observed river discharge data from the National 
Water Agency of Brazil (www.ana.gov.br). Within the framework of this thesis, I tested 
different methods for calculating river width (Schulze et al. 2005; Coe et al. 2008; 
Beighley et al. 2009). By doing that, I calculated long term average flow velocities 
(1971-2000) in the Amazon River basin, with the result that a change in river width has 



CHAPTER 4: METHODS 

63 
 

small influence on river velocity (differences are less than 0.01 m/s in almost two-thirds 
of the grid cells).  

The standard version of WaterGAP 2.2b_fpl computes river width as a function of river 
discharge (according to Allen et al. 1994), and river depths as a function of river storage 
of previous time step. Chapter 5.1 presents the effect of changing flow velocity – using 
different equations to calculate river depth – on the results of river discharge and water 
storages in WaterGAP 2.2b_fpl.  

 

The slope s [-] for rivers and floodplains is calculated by dividing the water level gradi-
ent between the target grid cell i and the downstream grid cell j, by the river length be-
tween these grid cells (cell center to cell center) (Equations 4.14 and 4.15). 

In the standard version of WaterGAP 2.2, a time constant channel slope is applied, in 
which water is routed always downstream (kinematic wave approach, Section 4.5.1). In 
WaterGAP 2.2_fpl, backwater flows in river channels are permitted for the first time 
(diffusion wave approach, Section 4.5.2). In that case, river water level slope and thus 
river velocity can be negative. The water level slope is variable in time.  

4.7 Validation Data and model efficiency criteria 

4.7.1 Validation Data 

Model outputs of WaterGAP hydrology model were validated with the following data 
sets: 

1) Total water storage variations: The Gravity Recovery and Climate Experiment 
(GRACE) is a twin-satellite mission of NASA and DLR launched in 2002. GRACE 
measures changes in Earth's gravity field by making accurate measurements of the dis-
tance between the two satellites due to gravitational acceleration, using a microwave 
ranging system and GPS. The spatial resolution is about 400 km. GRACE data with the 
time period from 2002 to 2009 provided by University of Bonn (ITG-Grace 2010) was 
used to validate total water storage variations as calculated by the WaterGAP hydrology 
model. To compare WGHM data with GRACE data, the WGHM data was filtered with 
the same decorrelation filter as the GRACE data (non-isotropic filter DDK3, Kusche et 
al. 2009). 

2) River discharge: Time series of daily and monthly values of river discharge observed 
at gauging stations provided by the Global Runoff Data Centre (GRDC) were used for 
comparison to modeled river discharge and surface water extent from WGHM. The 
GRDC provides river discharge data for more than 9000 stations and data up to 200 
years old (grdc.bafg.de). In this study, generally, a 30-year time series (1971-2000) was 
used for validation. 
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3) Water surface extent: The validation of surface water extent was done by comparing 
the modeled surface water extent with the global data set of naturally inundated areas 
(Adam et al. 2010) and observed inundation extent for the central Amazon region pro-
vided by Hess et al. (2003). The global-scale time series of monthly naturally inundated 
areas (NIA) (spatial resolution 0.5°) is a combination of the multisatellite data set of 
inundated areas (Papa et al. 2010) available for the time period 1993-2004 and data on 
monthly irrigated rice areas around the year 2000 (Portmann et al. 2010) (Section 3.1). 
The information on surface water extent from Hess et al. (2003) is based on 100-m reso-
lution L-band SAR observations from the Japanese Earth Resources Satellite-1 (JERS-
1) and represents low-water (September–October 1995) and high-water (May–June 
1996) conditions in the central Amazon. 

4) Water levels: Observed river water heights were provided from hydroweb (Crétaux et 
al. 2011). These time series are mainly based on altimetry data from Topex/Poseidon. 
The data is available from 1993-2011 and was used for validating river and floodplain 
water heights as simulated by WaterGAP.  

4.7.2 Efficiency criteria for model performance 

In order to evaluate the quality and the behavior of the hydrological model, I compared 
the model output to observed data on river discharge, water surface extent, water 
heights, and water storage. To provide objective assessment, mathematical measures – 
i.e. efficiency criteria – of how well the model simulation fits the observed data are re-
quired. This PhD work addresses comparisons of model-simulated data (M) with the 
observed data (O) for the same set of conditions (i.e., a pairwise comparison) over a 
given time period. Such time period is divided into n time increments that can be of 
arbitrary duration (e.g. monthly or daily time steps). Missing values in observed and/or 
simulated values are removed before computations. 

Numerous model evaluation statistics have been used in hydrological modeling studies 
and reported in the literature (Nash and Sutcliffe 1970; Willmott et al. 1985; Willmott 
1981; Legates and McCabe 1999; Krause et al. 2005; Moriasi et al. 2007; Criss and 
Winston 2008). The quantitative statistics can be classified into three major categories: 
1) Error index statistics, for example Mean Absolute Error (MAE), Root Mean Square 
Error (RMS), and Normalized Root Mean Square Error (NRMS), 2) standard regression 
statistics, for example Pearson product-moment correlation coefficient (r) and Coeffi-
cient of Determination (R²) and 3) dimensionless statistics, for example Nash-Sutcliffe 
efficiency (NSE), Modified Nash-Sutcliffe efficiency (mNSE), Kling-Gupta efficiency 
(KGE), Index of Agreement (d), Modified Index of Agreement (md), Percent Bias 
(pbias), and volumetric efficiency (VE). 

Error index statistics have the advantage that they quantify the error in the units of in-
terest, which makes interpretation easier, but it is difficult to qualify what is considered 
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a low or high error. Standard regression statistics determine the strength of the linear 
relationship between modeled and observed data. They are almost always discussed in 
basic statistics texts and are, consequently, familiar to most scientists, but suffer from 
limitations that make them poor measures of model performance – i.e. insensitivity to 
over- or underestimation. Dimensionless statistics provide a relative model evaluation 
assessment, so that the resulting statistic and reported values can apply to various con-
stituents (Legates and McCabe 1999). 

As none of the methods for quantifying the goodness-of-fit of observations against 
model-calculated values is free of limitations, a combination of different efficiency cri-
teria is currently recommended (Krause et al. 2005; Legates and McCabe 1999). To 
evaluate model efficiency, Moriasi et al. (2007) suggest to use three quantitative statis-
tics in addition to the graphical techniques.  

In this PhD work, I operationally determined model efficiency by calculating the coeffi-
cient of determination R², the Nash-Sutcliffe Efficiency NSC (Nash and Sutcliffe 1970), 
and the volumetric efficiency VE (Criss and Winston 2008). Furthermore, I use graph-
ical methods – scatter plots and hydrographs – for a visual inspection of model perfor-
mance. The reasons why I selected these three statistics to evaluate model performance 
are the following: 1) robustness in terms of applicability to various types of observa-
tions (e.g. discharge and water height) and different locations (e.g. discharge at multiple 
gauges, in various river basins and climatic conditions), 2) widespread use, acceptation, 
and recommendation in published literature, and 3) information on performance ratings. 

 

The coefficient of determination R² describes how much of the variance in the observed 
data is explained by the variance of the modeled data. R² is defined as the squared value 
of the covariance between the two variables divided by the product of their standard 
deviations, and can range from zero to one (Equation 4.29).  

ܴ² =

⎝

⎛ ∑ ( ௜ܱ − തܱ)(ܯ௜ − ഥ)௡ܯ
௜ୀଵ

ට∑ ( ௜ܱ − തܱ)²௡
௜ୀଵ ට∑ ௜ܯ) − ഥ)²௡ܯ

௜ୀଵ ⎠

⎞

ଶ

 4.29 

R² is independent of model bias and oversensitive to model outliers; serious defects al-
ready pointed out by Legates and McCabe (1999) and many others. Only the dispersion 
is quantified. "A model which systematically over- or underpredicts all the time will 
still result in good R² values close to 1.0 even if all predictions were wrong" (Krause et 
al. 2005, p. 90). However, due to the fact that standard regression statistics are almost 
always discussed in basic statistical texts and, consequently, they are familiar to virtual-
ly all scientists, R² continues to be used to determine how well a model simulates the 
observed data. R² is assumed to provide fundamental information on how well the se-
quence of higher and lower values in an observed time series is represented by the mod-
el (Hunger and Döll 2008). 
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The model efficiency proposed by Nash and Sutcliffe (1970) (NSE) is defined as one 
minus the mean squared error between modeled and observed data, normalized by the 
variance of the observed data (Equation 4.30). 

ܧܵܰ = 1 −
∑ ( ௜ܱ − ௜)ଶ௡ܯ

௜ୀଵ
∑ ( ௜ܱ − തܱ)ଶ௡

௜ୀଵ
 4.30 

The efficiencies can range from −∞ to 1. An efficiency of NSE = 1 represents a perfect 
fit of modeled and observed discharge. An efficiency of NSE lower than zero (NSE < 0) 
indicates that the average of the observed time series would be a better estimation than 
the model (Schaefli and Gupta 2007; Gupta et al. 2009). 

In hydrological modeling, NSE is a very commonly used statistic coefficient to measure 
the goodness-of-fit of a model, which provides extensive information on reported val-
ues. Its use is recommended by Moriasi et al. (2007) among others. NSE is considered 
to be more appropriate than R² as it considers, besides the correlation, the standardized 
bias (Legates and McCabe 1999; Krause et al. 2005) and thus reflects the overall fit of a 
hydrograph. One of the main concerns about NSE is the use of the mean observed value 
as a reference, which may lead to an overestimation of the model success for strongly 
seasonal time series and, otherwise, oddly large negative NSE values do not necessarily 
indicate that some model is extremely poor, but only that the time series of observation 
is very steady. A comparison of NSE across basins with different seasonality should be, 
therefore, interpreted with caution (Criss and Winston 2008; Gupta et al. 2009). Another 
problem of NSE, and also R², is that it overemphasizes high values and neglects low 
values (Legates and McCabe 1999; Krause et al. 2005). 

 

Criss and Winston (2008) proposed a volumetric efficiency (VE) to circumvent several 
disadvantages of NSE. VE is calculated by subtracting the ratio between the mean abso-
lute error and the mean of the observations from one (Equation 4.31).  

ܧܸ = 1 −
∑ |M୧ − O୧|୬

୧ୀଵ
∑ O୧

୬
୧ୀଵ

 4.31 

Similar to NSE, VE is dimensionless and ranges from minus infinite to one. Since VE is 
based on the absolute error, not the squared error like NSE, it emphasizes neither high 
nor low values, and reflects a more dynamic sensitivity. In studies where VE has been 
applied for model evaluation, it was found to be effective and robust, and has been rec-
ommended for use (Birkel et al. 2010; Cheng 2015). Especially during low flows or for 
time series with small standard deviation, VE should be preferred over NSE. However, 
as the volumetric efficiency is relatively new, information on value ranges is less avail-
able than for NSC. Furthermore, VE is only applicable for observations with positive 
values; therefore VE is not suitable for evaluating the model performance of average 
normalized data (e.g. average normalized total water storage variations). 
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Only if two of the tree model evaluation statistics exceed certain threshold efficiencies, 
the model is assumed to work well in terms of its internal contribution to the output of 
interest. In general, model simulation is considered to be acceptable when NSE > 0.5 
(Moriasi et al. 2007; Ritter and Muñoz-Carpena 2013). Birkel et al. (2010) set the same 
efficiency thresholds for VE as for NSE and higher efficiency thresholds for R². In this 
PhD thesis, the model performance is quantified by using four grades with ratings listed 
in Table 4.4.  
Table 4.4 Criteria for a goodness-of-fit evaluation.  
Performance rating R² NSE, VE 
Very good > 0.85 - 1 > 0.75 - 1 
Good > 0.75 - 0.85 > 0.65 - 0.75 
Acceptable > 0.6 - 0.75 > 0.5 - 0.65 
Unsatisfactory 0 - 0.6 -Inf - 0.5 

Nevertheless, the listed ratings are taken only as a guideline for interpreting the good-
ness-of-fit of model predictions, as they may differ depending on model applications 
(Beven 2007). Besides that, model performance always depends on the quality of the 
validation data, which is discussed in Chapter 6.  
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CHAPTER 5 

Results 
5 Results 

5.1 Introduction 

In this chapter, I present the results of the global hydrological model WaterGAP with an 
integrated floodplain algorithm (WaterGAP 2.2b_fpl); the algorithm I developed as part 
of this PhD thesis.  

The results of WaterGAP 2.2b_fpl are mainly influenced by three changes compared to 
the former WaterGAP model version 2.2b:  

1) the methods for calculating flow velocities,  
2) the implementation of dynamic floodplain inundation, and  
3) the adjusted model calibration parameters.  

For a better understanding and interpretation of the final results of WaterGAP 2.2b_fpl 
(Section 5.4), I present separately in Section 5.2 and 5.3, the effect on model results of 
the three main differences to the former WaterGAP version 2.2b. 

Section 5.2 displays the effect of changing the method for calculating flow velocity on 
modeled river flow velocity, water storage, and river discharge (using WaterGAP 
2.2b_fpl, not calibrated). The model results are compared to ground observations on 
river flow velocities and river discharge.  

With the implementation of dynamic floodplain inundation into WaterGAP, cell dis-
charge is separated into river and floodplain discharge, and the former static global wet-
lands area of GLWD (see Section 4.4.2) is replaced by the temporally and spacially var-
ying floodplain area. This is described, illustrated and compared to WaterGAP 2.2b in 
Section 5.3 (calculating river depth within the equation of flow velocity as a function of 
river storage at previous time step, as applied in WaterGAP 2.2b_fpl, enables direct 
comparison). Furthermore, the effect of calibrating the floodplain model WaterGAP 
2.2b_fpl on model outputs is also shown. 

Finally, Section 5.4 presents the results of WaterGAP 2.2b_fpl, including the new flow 
velocity method, the floodplain algorithm, and appropriate calibration parameters. This 
section also highlights the overall improvement of WaterGAP 2.2b_fpl with respect to 
the former WaterGAP 2.2b version (in WaterGAP 2.2b river depth within the equation 
of flow velocity is calculated as a function of river discharge) and compares and vali-
dates model output to a number of observed data sets, as well as to a number of studies 
made by other global hydrological and large-scale models which include floodplain 
algorithms. Furthermore, WaterGAP 2.2b_fpl with kinematic wave routing is compared 
to WaterGAP 2.2b_fpl allowing backwater flows (no separate calibration was done for 
the backwater model, as it was assumed that the change in river discharge is – for the 
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majority of regions on the globe – not significant; WaterGAP 2.2b_fpl backwater is run 
with the calibration parameters from WaterGAP 2.2b_fpl kinematic).  

 

For the sake of simplicity, the names of the single WaterGAP model versions are often 
abbreviated. WaterGAP 2.2b is named shortly “WG22b” or even shorter “22b”, Wa-
terGAP 2.2b_fpl (fpl for floodplain) is named “WG22b_fpl” or “22bfpl”. For the flood-
plain model, when referred to either kinematic routing or kinematic routing allowing 
backwater flows, the abbreviation of the model version is followed by “k” for kinematic 
or “b” for backwater.  

5.2 Flow velocity 

In previous model versions of WGHM (WaterGAP 2.1g and earlier versions) the flow 
velocity was constant, 1 m/s. In WaterGAP 2.2b, a variable flow velocity is applied, in 
which both river width and river depth are computed as a function of discharge, based 
on the close relationship between channel form and discharge (Leopold and Maddock 
1953, Equation 4.21 and 4.22). The coefficients used in WaterGAP 2.2b were quantified 
by Allen et al. (1994) during a regression analysis with river cross sections in North 
America; these coefficients are valid for bankfull conditions (Equation 4.23 and 4.24).  

Within the scope of this thesis, I implemented a new method into WaterGAP, which 
computes river depth as a function of river storage of previous time step instead of actu-
al river discharge (Equation 4.26). In the reminder of this section, I present the results of 
variable river flow velocity modeled by WaterGAP 2.2b with floodplain algorithm and 
kinematic wave routing, applying the two methods of river depth calculation. For brevi-
ty, I named "old flow velocity method" (oldFV) the river flow velocity based on river 
depth, which is calculated as a function of river discharge, and "new flow velocity 
method" (newFV) the river flow velocity based on river depth, which is calculated as a 
function of river storage at previous time step. For a direct comparison of modeled re-
sults with the different flow velocity methods, I applied for both model variants the 
same calibration parameters (from WaterGAP 2.2b oldFV). This has to be kept in mind 
when comparing WaterGAP 2.2b newFV with observed data, because model perfor-
mance might change slightly with a new calibration. 

Figure 5.1 compares modeled flow velocities and observed flow velocity in the Amazon 
River basin. The comparison was done at 39 gauging stations, with data available from 
1994 to 2009 with 3 to 13 years of ADCP (Acoustic Doppler Current Profiler) 
measures, depending on gauging station (www.ore-hybam.org/, Table 5.5). The map on 
the top of the figure shows the locations of the gauging stations and the spatial distribu-
tion of average monthly river flow velocity (1971-2000) in the Amazon River basin, 
after having applied the new flow velocity method. The calculated average river flow 
velocity for the Amazon basin is 0.97 m/sec. “It can be seen that river flow velocities in 
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mountains are significantly higher compared to lower regions [Figure 5.1], due to the 
comparably steep river bed slopes” (Verzano 2009). More than half of the Amazon ba-
sin grid cells (59%) have a lower flow velocity than 1 m/sec, the value which was used 
as a constant in previous WaterGAP model versions (26% of the grid cells are below 
0.5 m/s and 16% > 1.5 m/s). The Amazon mainstream sticks out with a slightly higher 
flow velocity compared to the surrounding areas (Figure 5.1). Compared to the old 
method of flow velocity calculation, the new flow velocity is higher in flat regions and 
along major rivers (up to 0.64 m/s higher), and is almost half of the speed in mountain 
areas. The river flow velocity at gauging station locations is reproduced considerably 
better when applying the new versus the old flow velocity method. For 32 of 39 
stations, the average modeled flow velocity is closer to the average observed flow ve-
locity. In 85% of the stations, two of three efficiency criteria show better values when 
applying the new flow velocity compared to the old one (Table 5.5).  

The improvement of model performance can also be stated by looking at the mean 
monthly river flow velocity (1971-2000) at 4 example stations located in the Amazon 
River basin (Figure 5.2). 

However, WaterGAP still underestimates river flow velocity at 24 stations, and the fit in 
seasonality is slightly worse with the new flow velocity method; a statement which can 
be deduced from the lower R² values in almost two-thirds of the stations (Table 5.5). 

When WaterGAP 2.2b with floodplain algorithm is compared to WaterGAP 2.2b with-
out floodplain algorithm, the change in modeled performance regarding river flow ve-
locities is small (slightly better when floodplain algorithm is applied). The grid cells 
average values are a bit higher in WaterGAP 2.2b_fpl compared to WaterGAP 2.2b. 
The spatial pattern of high and low river flow velocities is almost equal within the two 
model variants. 

A comparison of modeled and observed river flow velocities in the Yukon River basin 
leads to similar results to that of the Amazon River basin and is illustrated in the appen-
dix (Appendix 2). 
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Figure 5.1 River flow velocity [m/s] of WaterGAP 2.2b_fpl with kinematic wave routing in 
the Amazon River basin. Top: Mean river flow velocity [m/s] 1971-2000 (newFV) and location 
of gauging stations. Bottom: Comparison of average simulated (WaterGAP 2.2b_fpl with the 
old and new method of calculating river flow velocity) and measured river flow velocity at 39 
gauges in the Amazon River basin. The error bars indicate the standard deviations. Observed 
river flow velocity for the 39 gauges was available from 1994 to 2009 with 3 to 13 years of 
ADCP measures depending on gauging station (see Table 5.5). Data source: ORE HYBAM 
(www.ore-hybam.org/). 
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Figure 5.2 Mean monthly (1971-2000) river flow velocity at 4 stations located in the Amazon 
River basin. The numbers on the x-axis are the number of observations per month in the time 
period 1994-2009. Modeled river flow velocity has been computed by WaterGAP 2.2b with 
floodplain algorithm (22bfpl (kinematic)), applying variable flow velocity with river depths 
based on 1) river discharge (old flow velocity (oldFV)) and 2) river storage of previous time 
step (new flow velocity (newFV). Data source: ORE HYBAM (www.ore-hybam.org/). 

Table 5.5 Gauging stations with flow velocity data: Characteristics and quality criteria. Ob-
served monthly river flow velocity is compared to modeled river flow velocity computed by 
WaterGAP 2.2b_fpl (kinematic), calculating variable flow velocity with river depths based on 
1) river discharge (old flow velocity (oldFV)) and 2) river storage of previous time step (new 
flow velocity (newFV). Source of observed data: ORE HYBAM (www.ore-hybam.org/); for 
station names and station locations see Figure 5.1. 

Station 
Catchment 

area 
[10³ km³] 

ADCP 
start 

ADCP 
end 

No. of 
obser-
vations 

Mean flow 
velocity[m/s] 

obs/oldFV/newFV 

R² 
oldFV/newFV 

NSC 
oldFV/newFV 

VE 
oldFV/newFV 

39 5.88 1997 2008 16 0.85/0.87/0.84 0.48/0.49 -0.08/-1.41 0.48/0.07 
38 6.15 2001 2009 25 0.97/2.38/1.61 -0.12/-0.08-144.50/-31.12 -0.83/-0.32 
37 9.23 2002 2009 17 1.21/0.61/0.77 0.30/0.31 -2.46/-1.25 -0.26/-0.14 
36 21.41 2002 2007 15 1.04/0.90/1.12 0.69/0.70 0.06/0.30 0.09/0.25 
35 21.54 2001 2009 27 0.85/0.23/0.43 0.26/0.25 -10.77/-4.91 -0.40/-0.21 
34 30.73 2001 2009 22 1.38/1.36/1.21 0.67/0.60 0.23/0.03 0.14/0.22 
33 36.87 2003 2008 12 1.93/3.14/2.27 0.50/0.47 -5.09/-0.21 -0.01/0.25 
32 46.16 2001 2009 18 0.96/1.67/1.68 0.35/0.40 -52.79/-54.37 -0.02/-0.01 
31 55.49 2002 2006 7 0.65/1.35/0.94 0.84/0.79 -1.40/0.25 -0.19/0.35 
30 68.20 1996 2008 21 1.19/3.18/2.10 0.85/0.86 -7.87/-1.03 -0.71/0.20 
29 73.19 2003 2008 9 1.60/1.21/1.27 0.88/0.88 -0.15/0.17 0.17/0.34 
28 86.15 2001 2006 5 1.13/0.32/0.65 0.75/0.71 -22.00/-7.41 -0.16/0.20 
27 98.44 2001 2008 17 1.11/0.33/0.68 0.75/0.72 -7.81/-2.15 -0.19/0.08 
26 101.19 2003 2008 13 0.92/0.36/0.54 0.93/0.92 -2.33/-0.67 -0.07/0.19 
25 123.21 2003 2008 12 0.99/0.53/0.77 0.96/0.96 -1.10/0.26 0.04/0.34 
24 126.23 1996 2005 13 1.09/1.71/1.76 0.85/0.84 -4.26/-5.38 0.36/0.28 
23 161.65 2004 2008 10 0.79/0.24/0.40 0.95/0.94 -4.73/-1.79 -0.09/0.27 
22 192.24 2003 2007 5 2.11/0.30/0.59 0.93/0.93 -8.38/-5.66 -0.28/-0.11 
21 212.27 1996 2005 3 1.21/0.41/0.83 0.88/0.99 -41.45/-9.02 -0.12/0.21 
20 218.32 2004 2008 13 0.72/0.28/0.48 0.95/0.93 -0.95/0.12 -0.08/0.21 
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Station 
Catchment 

area 
[10³ km³] 

ADCP 
start 

ADCP 
end 

No. of 
obser-
vations 

Mean flow 
velocity[m/s] 

obs/oldFV/newFV 

R² 
oldFV/newFV 

NSC 
oldFV/newFV 

VE 
oldFV/newFV 

19 272.68 1996 2008 20 1.22/0.33/0.62 0.71/0.72 -8.87/-3.69 -0.17/0.19 
18 283.04 1996 2005 3 1.13/0.40/0.84 1.00/0.96 -20.95/-3.06 -0.12/0.15 
17 305.73 2002 2008 15 1.22/0.33/0.65 0.91/0.90 -4.38/-1.43 -0.16/0.17 
16 353.19 2004 2008 8 0.46/1.50/1.48 0.98/0.96 -12.58/-12.30 -1.29/-1.28 
15 367.59 2003 2008 17 1.28/0.37/0.74 0.81/0.72 -20.95/-6.98 -0.18/0.12 
14 613.77 1996 2008 18 0.81/0.32/0.61 0.95/0.93 -0.68/0.30 -0.08/0.24 
13 745.93 2002 2008 20 1.40/0.45/0.88 0.86/0.76 -11.49/-3.14 -0.13/0.18 
12 980.13 1995 2002 3 1.41/1.29/1.67 1.00/1.00 0.43/0.19 0.38/0.81 
11 982.33 1995 2003 5 1.65/1.52/1.97 0.62/0.50 0.05/-1.09 0.18/0.25 
10 982.33 1995 2001 3 1.27/1.49/1.91 0.99/1.00 -0.26/-5.64 0.26/0.22 

9 1022.21 1995 2003 5 1.49/0.50/1.02 0.76/0.54 -61.43/-13.50 -0.05/0.29 
8 1101.29 1995 2002 3 1.49/0.44/0.87 0.84/0.88 -9.32/-2.81 -0.15/0.25 
7 1151.38 1995 2003 6 1.25/0.52/1.05 0.80/0.60 -13.28/-0.79 -0.07/0.19 
6 1156.27 1995 2002 3 1.63/0.47/0.91 0.99/0.98 -9.27/-2.99 -0.16/0.22 
5 1305.17 1995 2002 6 1.36/0.45/0.87 1.00/0.95 -7.18/-1.57 -0.10/0.29 
4 1807.65 1995 2003 6 1.65/0.59/1.16 0.88/0.90 -12.25/-2.34 -0.13/0.13 
3 2228.52 1994 2006 25 1.22/0.60/1.18 0.76/0.70 -10.89/0.35 -0.04/0.33 
2 2926.70 1995 2003 19 1.21/1.46/2.06 0.94/0.93 -0.52/-10.50 0.23/0.18 
1 4658.80 1995 2007 35 1.34/0.69/1.31 0.94/0.88 -4.03/0.42 -0.02/0.28 

Mean 639.47  13 1.21/0.90/1.09 0.78/0.75 -13.48/-5.02 -0.10/0.15 
Median 218.32  13 1.21/0.53/0.91 0.85/0.86 -7.18/-1.79 -0.09/0.21 

 

To investigate the effect of variable flow velocity on water storage and river discharge, I 
ran WaterGAP with the old and new method of river flow velocity calculation and com-
pared both model outputs.  

Figure 5.3 shows mean monthly values of modeled river flow velocity, river discharge, 
and water storages (total, surface and river water storage) with both old and new flow 
velocity, within the Amazon River basin. River flow velocities in the Amazon River 
basin are highest at peak flow (March) and decline during low discharge (minimum 
discharge and river flow velocity in September). In the basin average, the new river 
flow velocity is lower compared to the old river flow velocity (in mountain areas flow 
velocity is almost halved, but nearly doubled along the main stem). The seasonal varia-
tion is higher, because of the lower minima flow velocities in most of the grid cells. As 
in the old method, the coefficients in the equation of river depth are valid for bankfull 
conditions. The old method is, in times of low flows, less suitable. The new river flow 
velocity leads to lower river water storage and consequently to a lower surface and total 
water storage (Figure 5.3). The other storage compartments computed by WaterGAP, 
like lake water or groundwater storage, show no significant change by applying the new 
instead of the old flow velocity. The river discharge – the timing of maximum and min-
imum – is shifted to one to two month earlier compared to the model simulation with 
the old flow velocity method. 
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Figure 5.3 Averaged variable river flow velocity, river discharge and water storage compart-
ments for the Amazon River basin (1971-2000). Simulated by WaterGAP 2.2b_fpl applying old 
(x) and new (filled dots) river flow velocity. 

Furthermore, in order to evaluate the effect of changing river flow velocity on modeled 
river discharge, I compared modeled river discharge of both model versions (WaterGAP 
2.2b_fpl kinematic with old and new flow velocity) at 40 gauging stations located in the 
Amazon River basin for the period 1961-1996 (depending on data availability; for some 
stations, shorter time series had to be applied; Data source GRDC). These stations are 
part of the 1235 discharge stations worldwide, which were used for WaterGAP model 
calibration. Figure 5.4 exemplifies the comparison for five discharge stations.  

The differences between the two model simulations are, for the most part, quite small. 
Compared to the observed data, both show slightly lower mean discharge values (7 to 8 
percent lower) and lower standard deviations (about one third). The seasonal variability 
fits well with the observed data in most of the stations (about three-quarter of the sta-
tions have a R² value of at least 0.6). Nevertheless, the model performance increases in 
only 20% of the stations applying the new flow velocity instead of the old flow velocity. 
In 24 of 40 stations, at least two of the three efficiency criteria (R², NSE, VE) are worse 
when applying the new flow velocity method. Most notably is the shift in maximum 
discharge to one or two months earlier in some stations (Figure 5.4), which results in 
poorer R² values. 
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Figure 5.4 Effect of the variable flow velocity on average long term monthly discharges 
(1971-2000) at five gauging stations in the Amazon River basin. The dotted lines are observed 
values (GRDC 2013) and the solid lines are the WaterGAP simulations applying dynamic flow 
velocity with river depths based on 1) river discharge (circles) and 2) river storage at previous 
time step (filled circles).  

It can be concluded that the calculation of river depth within the flow velocity equation 
as a function of previous river water storage, instead of river discharge, leads to signifi-
cant improvement of modeled river flow velocities when compared to observation data. 
The effect of a change in flow velocity is also meaningful for river water storage, which 
is lower, but less important for river discharge. 

5.3 Dynamic floodplain inundation and model calibration 

WaterGAP 2.2 is calibrated in a basin-specific manner against mean annual observed 
river discharge at 1319 gauging stations (WaterGAP 2.1g at 1235 gauging stations). The 
adjusted calibration factor is regionalized to grid cells outside the calibration basins 
(Müller Schmied et al. 2014). The observed discharge data is provided by the Global 
Runoff Data Center (GRDC). The calibration routine in WaterGAP 2.2b forces the 
long-term annual simulated discharge to be equal (within ±1 %) to the observed long-
term annual discharge at grid cells representing calibration stations, for the period of 
observations (with a maximum of 30 years of observation being considered) (Müller 
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Schmied et al. 2016). This force is done by varying one soil parameter and up to two 
correction factors within WaterGAP (Döll et al., 2003; Hunger and Döll, 2008). 

To analyze the effect of implementing the floodplain algorithm into WaterGAP and the 
calibration of the final model WaterGAP 2.2b_fpl, I compared three WaterGAP runs 
one another:  

1) WaterGAP 2.2b (WG22b),  
2) WaterGAP 2.2b_fpl, including floodplains and with kinematic wave routing us-

ing the calibration parameters of WG22b (kNoCal), and  
3) WaterGAP 2.2b_fpl, including floodplains with kinematic routing and new (ac-

curate) calibration parameters (kCal).  

To enable a direct comparison, all three models, including WG22b, were calculated 
applying the new flow velocity method (computing river depth as a function of river 
storage of previous time step instead of actual river discharge; see Section 5.2). 

 

Figure 5.5 illustrates monthly averaged modeled discharge in the time period 1971-2000 
in eight major river basins. For the WaterGAP runs with floodplain algorithm both river 
discharge and total discharge (river + floodplain discharge) are shown. By implement-
ing dynamic floodplain inundation, river discharge peak flows are reduced because wa-
ter flows into the adjacent floodplain when the bankfull flow is reached. The sum of 
river and floodplain discharge (total cell discharge) differs from that in WG22b. This is 
mainly due to the fact that water storage on the static GLWD global wetlands differs 
from that on active floodplains in terms of total volume and seasonality. While the wet-
lands of GLWD implemented in WGHM are almost always full of its capacity (Sec-
tion 3.2), the dynamic floodplains show a high variation in storages. In WaterGAP with 
floodplain algorithm, river discharge diminishes slower after peak flow because water 
from the floodplains still drain back into the rivers when river discharge is below bank-
full flow (see e.g. Amazon and Nile in Fig 5.5). With the calibration of the floodplain 
model, mean river discharge and also total discharge rises in four of the eight analyzed 
river basins and stays almost equal in the other four river basins (Figure 5.5). The effect 
of calibration on water storage is proportional to that on river discharge. 
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Figure 5.5 Monthly average modeled river (solid lines) and total discharge (river + floodplain 
discharge, dotted lines) in eight major river basins in the time period 1971-2000. The black lines 
represent WaterGAP 2.2b, the red lines WaterGAP 2.2b_fpl NoCal, and the blue lines Wa-
terGAP 2.2b_fpl Cal. For a better comparison, all of them calculated with the new flow velocity 
method.  

The box plot in Figure 5.6 gives an overview of the model efficiency values R², NSE, 
and VE. Modeled river discharge was compared to observations from 248 gauging sta-
tions (GRDC 2013) located within the eight major river basins (Figure 5.6 left); among 
them, 40 stations located in the Amazon River basin (Figure 5.6 right). The box plots 
represent the median (bold line), the 25% and the 75% quartile (box), and the maximum 
and minimum of the data within 1.5 times the interquartile range (whiskers). Outliers 
are not drawn. It can be clearly seen that with the implementation of the floodplain algo-
rithm into WaterGAP, the model performance increases. Average model performance is 
almost equal for the non-calibrated and the calibrated version. The medians of standard 
deviation and mean river discharge are very similar to the observed discharge in all of 
the three models (not shown). 

 
Figure 5.6 Box plot of model performance simulating river discharge at 248 locations within 
eight major river basins (left); among them, 40 locations within the Amazon River basin (right). 
Simulated river discharge of WaterGAP 2.2b (WG22b), WaterGAP 2.2b_fpl kinematic not cali-
brated (kNoCal) and WaterGAP 2.2b_fpl kinematic calibrated (kCal) compared to observed 
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river discharge from GRDC (GRDC 2013) in the time period 1971-2000 (occasional missing 
data in some stations). All WaterGAP runs apply the new method for calculating river flow 
velocity. Location and additional information of the discharge gauging stations are listed in the 
appendix (Figure A.11, Table A.1). The box plot represents the median, 25% and 75% quartile 
(box), and the 1.5xIQR (whiskers). Outliers are not shown. 

With the implementation of dynamic floodplain inundation into WaterGAP, the former 
static global wetlands area of the Global Lakes and Wetland Database GLWD (see Sec-
tion 4.4.2) is replaced by the temporally and spatially varying floodplain area. 
Figure 5.7a shows monthly average (1971-2000) floodplain area (dashed lines) and total 
surface water extent in the Amazon River basin. The total surface water extent consists 
of the sum of the inundation area on the floodplain, determined by applying the hypso-
graphic approach (Section 4.4.1), and the area of other water bodies in WGHM, which 
are based on the GLWD (Section 4.4.2). Here, the Amazon River basin is illustrative for 
all of the river basins. The seasonal variation of the inundation area in the floodplains, 
and consequently the total surface water extent as well, is higher or even much higher 
than that of the former global wetlands of GLWD; the mean surface water extent is 
lower in all river basins. Note, that the mean value is very much dependent on the pres-
ence and extent of other surface water bodies than floodplain area, for example, local 
wetlands and lakes; by contrast, the seasonality is mainly driven by the dynamic flood-
plain inundation. Floodplain/wetland storage and total water storage behave similar to 
surface water extent, with higher seasonality and lower mean values in WaterGAP 
2.2b_fpl compared to WaterGAP 2.2b (Figure 5.7b). The effect of model calibration on 
surface water extent and water storages is similar to that on river discharge, with equal 
or higher values in the calibrated model version compared to the non-calibrated one. 

  
Figure 5.7 Modeled mean surface water extent (a) and water storages (b) of the Amazon River 
basin in the time period 1971-2000. Plotted lines are labeled in the figure legends. The dashed 
lines in figure (a) represent the floodplain extent only and the solid lines the total surface water 
extent including all surface water bodies. 

a) b) 



CHAPTER 5: RESULTS 

80 
 

5.4 Final results of calibrated WaterGAP 2.2b floodplain model 

5.4.1 Water Level 

Water level and water level changes are evaluated using the HYDROWEB hydrological 
database (Crétaux et al. 2011). The water level time series are mainly based on 
Topex/Poseidon GDRs (Geophysical Data Records). The data is available at a 10 days’ 
time step (the duration of an orbital cycle) from 1993 to 2011 (with occasional missing 
data). The basic data for rivers are the 10 Hz altimetry data. Virtual stations are defined 
corresponding to the intersection of the satellite track with the river 
(http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/General_Info.en.html). Mod-
eled and observed water levels are compared at 80 sites located in 6 major river basins 
(Figure A.11).  

WaterGAP computes relative water heights for rivers and floodplains, in which river 
water levels equal the floodplain water levels in case of flooding. To compare with the 
altimetry data, the minimum elevation of a grid cell (zmin) was added to the relative wa-
ter heights of WaterGAP 2.2b_fpl kinematic (WG22b_fpl k) and WaterGAP 
2.2b_fpl backwater (WG22b_fpl b). 

The modeled water levels are in quite good agreement with the observations. The over-
all R² for the time series of monthly values (1993-2010, if available), averaged over all 
sites per river basin, ranges from 0.8 (Ganges) to 0.98 (Niger and Paraná) in 
WG22b_fpl k; and from 0.36 (Niger) to 0.98 (Amazon and Paraná) in WG22b_fpl b. 
The R² averages over all river basins are 0.94 and 0.78 in WG22b_fpl k and 
WG22b_fpl b respectively. The volumetric efficiency (VE) reaches acceptable values 
only in WG22b_fpl b, ranging from 0.45 (Niger) to 0.9 (Paraná) with an average of 
0.72. NSE values are high only for Ganges (0.95) and Paraná (0.64) in WG22b_fpl b. 

The model performance varies strongly from basin to basin and site to site. At most sites 
the performance of the mean water level is poor, resulting in very low NSE and low VE 
values. The difference of modeled and observed mean water levels is lower in regions 
with elevations close to sea level than at higher altitudes, suggesting that the minimum 
elevation of the grid cells, derived from digital elevation models, does not agree with 
the altimetry measured elevations.  

In both WaterGAP 2.2b_fpl models, the simulated seasonality and interannual variabil-
ity of water heights are in good agreement with the observations (Figure 5.9 and Fig-
ure 5.8). The seasonality is represented slightly better in WG22b_fpl k than in 
WG22b_fpl b, but it overestimates the magnitude. Especially low water levels are ex-
tremely low in WG22b_fpl k compared to observations.  
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The interannual variability of water levels is well simulated with both models in most of 
the six analyzed river basins (Figure 5.8); low water years and high water years (in the 
Amazon River basin, 1993 and 2002, respectively) agree with the observations. 

 
 

Figure 5.8 Scatter diagram of observed versus modeled mean annual water levels [m a.s.l.] for 
80 locations in 6 river basins for the years 1993 to 2010 (for location of altimetry gauging sta-
tions and additional station information see Figure A.11 and Table A.2 in the appendix). Mod-
eled water levels are from WG22b_fpl k (filled circles and solid regression line) and 
WG22b_fpl b (crosses and dashed regression line). 

 

Figure 5.9 shows water level changes at five altimetry sites located in the Amazon River 
basin. Site 1 shows the overestimation of magnitude in WG22b_fpl k exemplarily for 
many of the analyzed 80 observation sites in the six river basins. In contrast, the 
magnitude of water levels is smoothed allowing backwater flows. At some stations, 
where backwater flows last over several months of the year, water level change gets 
close to zero (site 5 in Figure 5.9). The model efficiency of average monthly water lev-
els at the five sites is listed on the bottom of Figure 5.9, indicating a good agreement 
between simulated and observed data (two of three efficiency criteria are within ac-
ceptable range). On average WG22b_fpl b performs slightly better than WG22b_fpl k. 

 

Amazon Ganges Mississippi 

Niger Nile Paraná 
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 Mean Water Level [m]       R²      NSE           VE 

Nr. Station River observed     k     b     k     b     k    b      k     b 
1 T228 Amazon 11.96 -1.16 2.47 0.69 0.88 -81.91 -35.28 -0.12 0.20 
2 822_03,822_02 Amazon 33.30 34.91 34.19 0.65 0.63 -2.65 -3.56 0.9 0.89 
3 493_01 Amazon 41.24 49.76 51.20 0.92 0.79 -26.87 -37.71 0.79 0.76 
4 951_01,908_01 Jupura 38.96 47.78 47.13 0.81 0.76 -22.4 -19.44 0.78 0.79 
5 493_03,493_02 Jupura 42.47 56.90 57.67 0.63 0.77 -55.03 -61.83 0.66 0.64 

Figure 5.9 Observed and modeled mean monthly water level changes (1993-2010) at five 
altimetry gauging stations in the Amazon River basin. The dashed line indicates observed values 
(Hydroweb) and the solid lines represent WG22b_fpl k (circles) and WG22b_fpl b (filled cir-
cles). Mean water levels and model efficiency of average monthly water levels for 
WG22b_fpl k (k) and WG22b_fpl b (b) are listed at the bottom. 

5.4.2 River discharge 

To analyze modeled river discharge of WaterGAP 2.2b, including the algorithm for dy-
namic floodplain inundation (WG22b_fpl), I compared model outputs of both 
WG22b_fpl with kinematic wave routing and WG22b_fpl allowing backwater flows to 
observed river discharge, as well as to modeled river discharge of the former WaterGAP 
version 2.2b (WG22b). The observed data are from the Global Runoff Data Centre 
(GRDC 2013), collected at 248 gauging stations located within eight major river basins: 
Amazon, Ob, Mississippi, Paraná, Ganges, Nile, Niger, and Lena (for locations and sta-
tion information see Figure A.11 and Table A.1).  

In addition to the visual inspection of the hydrographs, the performance of the different 
model simulations were quantified by using the three efficiency criteria: R², NSE, and 
VE (see Section 4.7.2). Modeled river discharge agrees well with observations at most 
of the 248 gauging stations. Model efficiency is highest in the WaterGAP model variant 
with floodplain algorithm and kinematic wave routing (WG22b_fpl k), and lowest in 
model variant allowing backwater flows (WG22b_fpl b). The median model efficiency 
values (R²/NSE/VE) for the three model variants are: 0.67/0.56/0.58 (WG22b), 
0.67/0.59/0.60 (WG22b_fpl k) and 0.64/0.55/0.57 (WG22b_fpl b). Note that 

1: 2: 

3: 4: 5: 
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WG22b_fpl b is not calibrated (calibration parameters are used from WG22b_fpl k); 
NSE and VE values might change with calibration.  

The differences in model performance between the model variants become more notice-
able when looking at the number of stations improved or worsened with the implemen-
tation of the floodplain algorithm. Comparing WG22b_fpl k with WG22b, from the 
total 248 stations, R² values increase at only 91 stations and decrease at 144 stations. In 
contrast, NSE and VE values increase at 124 and 121 stations, and decrease at only 113 
and 106 stations, respectively. At 117 stations, at least two of the three efficiency crite-
ria are higher in WG22b_fpl k compared to WG22b, 114 stations are lower, and 17 are 
equal. The model efficiency is illustrated in more detail (for single river basins) in Fig-
ure A.12 in the appendix. 

Figure 5.10 shows average monthly river discharge at 7 gauging stations located in the 
Amazon River basin. The simulated monthly river discharge shows similar seasonal 
cycles. The hydrographs illustrate reduced peak flows in WG22b_fpl compared to 
WG22b because water flows from the river into the floodplain when the bankfull flow is 
reached. Also, the fact that river discharge diminishes slower after peak flow – as well 
as the high low flows at downstream locations – can be attributed to the implementation 
of the floodplain algorithm into WaterGAP, due to the drainage from the floodplain to 
the river in case river discharge is below bankfull flow and there is still water in the 
floodplain (see Section 5.3). At some stations, usually at locations with larger floodplain 
inundation, the reduced seasonal amplitude in WG22b_fpl compared to WG22b fits 
better to GRDC data, resulting in higher NSE and VE values.  

  
 

 

 

 
Figure 5.10 Monthly average modeled and observed river discharge at seven gauging stations in 
the Amazon River basin in the time period 1971-2000. The gray lines indicate observed data 
from GRDC (2013), the black, red, and blue lines represent modeled data of WG22b, 
WG22b_fpl k, and WG22b_fpl b, respectively. The numbers at the bottom of each plot are the 
model efficiency values for the three model variants compared to GRDC, each with R²|NSE|VE. 
The map on the top left shows the change in model performance between WG22b_fpl k and the 
former WG22b at 40 river discharge stations when at least two of the three efficiency criteria 
are higher (green), equal (yellow), or lower (red). 

 

Aruma-Jusante 34 Altamira 36 

Sao Paulo de Olivenca 38 Manicore 39 Obidos 40 

 Caracarai 27 Barra Do Sao Manuel-Jusante 33 
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Furthermore, at many stations river discharge in WG22b_fpl rises faster after reaching 
its minimum (e.g. at Sao Paulo de Olivenca, Figure 5.10), which is probably the main 
reason for the poorer R² values compared to WG22b. This fact can be attributed to the 
application of the new river flow velocity calculation, in which river depth in the equa-
tion of flow velocity is now calculated as a function of river storage at previous time 
step, instead of current river discharge (Section 5.2).  

For most of the 248 stations, the timing of maximum and minimum river discharge 
agree well with GRDC data. However, WaterGAP tends to model the maximum of river 
discharge too early compared to observations. In the Amazon River basin, peak flow is 
shifted to one or two months earlier at 30% of the stations (12 of 40 stations in all mod-
el variants), whereas maximum river discharge is one month later than the observed at 
only 3 of the 40 stations.  

The correlation of modeled and observed river discharge is on average almost equal for 
WG22b_fpl k and WG22b_fpl b, with an R² of only 0.02 better in the kinematic wave 
model (both at all 248 stations and at the 40 stations in the Amazon River basin). 

“The Amazon main stem has tributaries in both hemispheres. In the south, peak rainfall 
periods occur between December and February, up to 6 months earlier than peak rainfall 
in the northern regions” (May to August) (Birkett et al. 2002). This geographical factor 
accounts for the different timing in maximum river discharge which occurs in the south-
ern gauging stations from February to April and in the northern stations from May to 
July (e.g. station Caracarai in Figure 5.10). Meade et al. (1991) have found that the Am-
azon main stem is subject to backwater effects. Large tributaries which drain the south-
ern Amazon River basin (especially the Madeira, Tapajós, and Xingu rivers) reach their 
peak discharges in April, two months earlier than the main stem does, resulting in 
backwater in the lowermost 800 km of the Amazon main stem, when they flow into it. 
The peak stage at Obidos usually precedes the peak stage 750 km upriver at Mana-
capuru (Meade et al. 1991). The effect of backwater flows can also be seen when look-
ing at the hydrographs in Figure 5.10. Different from other southern gauging stations, 
the observed river discharge at Aruma-Jusante (located at the Purus River approximate-
ly 100 km south of where the Purus flows into the Amazon main stem) peaks in May, 
being similar to the gauging station Obidos located at the Amazon main stem 837 km 
downstream (http://www.grdc.sr.unh.edu/html/Polygons/P3625310.html). This fact is 
well simulated if backwater effects are applied in WaterGAP. Only in the model variant 
WG22b_fpl b, the river discharge at the station Aruma-Jusante peaks in May.  

 

Many authors have reported the attenuation of peak discharge and flood wave due to the 
presence of floodplains (Sippel et al. 1998; Hamilton et al. 2004; Hamilton et al. 2007; 
Alsdorf et al. 2010; Lininger and Latrubesse 2016). At peak discharge, the excess water 
is absorbed by the floodplain so that river discharge increase slows or even stops as the 
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river water spreads onto the floodplain. The water stored on the floodplain by the end of 
the flooding season returns to the channel.  

This observed attenuation of river flow peaks is represented also in WaterGAP, in the 
version including the floodplain algorithm. The effect of floodplains on river discharge 
can be seen in Figure 5.10 (station Obidos and Aruma-Jusante) but becomes even more 
noticeable when looking at daily river discharge. Figure 5.11 shows daily river dis-
charge at stations Caracarai and Manicore, located in the Amazon River basin. The 
daily-scale fluctuations of river discharge at Manicore are suppressed. Manicore is a 
station at the Madeira River, with a large upstream area and extensive floodplains, 
which store water during floods and release it after the flood peaks (Alsdorf et al. 2010). 
In contrast, at Caracarai station, located at Branco River – a smaller tributary with less 
floodplain inundation – each flood wave is not fully attenuated by the floodplains, re-
sulting in higher oscillations of daily river discharge. 

 
Figure 5.11 Time series of modeled and observed daily river discharge at two gauging stations 
in the Amazon River basin (2003-2005). The gray lines indicate observed data from GRDC 
(2013), the black, red, and blue lines represent modeled data of WG22b, WG22b_fpl k, and 
WG22b_fpl b, respectively. The numbers at the bottom of each plot are the model efficiency 
values for the three model variants compared to GRDC, each with R²|NSE|VE.  

5.4.3 Surface Water Extent 

Modeled surface water extent of WaterGAP 2.2b (WG22b), WaterGAP 2.2b_fpl kine-
matic (WG22b_fpl k), and WaterGAP 2.2b_fpl backwater (WG22b_fpl b) are compared 
with each other as well as to observations. Modeled surface water extent refers to the 
sum of the inundation area on the floodplain, determined by applying the hypsographic 
approach (Section 4.4.1), and the area of other water bodies in WGHM, which are based 
on the Global Lakes and Wetland Database GLWD (Section 4.4.2). The observations 
used for model validation are the global-scale time series of monthly naturally inundat-
ed areas (NIA) available for the time period 1993-2004, and the data set from Hess et al. 
(2003) representing low and high-water conditions in the central Amazon in the years 
1995 and 1996. Both data sets are based on satellite observations. The first one is a 
combination of multisatellite data (Papa et al. 2010) and monthly irrigated rice areas 
(Portmann et al. 2010), used to obtain naturally inundated areas excluding man-made 
surface waters (Adam et al. 2010). The second one is a dual-season map for the central 
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Amazon region representing inundation extent under low- and high-water conditions 
(September/ October 1995 and May/ June 1996). This data was derived from high reso-
lution SAR observations by Hess et al. (2003).  

The terms "inundated area" and "surface water extent" are used more or less as syno-
nyms in this study; although the term "inundated area" would be more appropriate for 
areas with higher seasonal change in extent, such as floodplains and wetlands, and "sur-
face water extent" would be more appropriate when referred to the whole area of sur-
face water bodies, including also lakes and reservoirs with less seasonality in their ex-
tent.  

Before comparing the datasets among each other, the following characteristics of the 
datasets must be mentioned:  

1) The NIA dataset excludes inland seas (Caspian Sea, Aral Sea), large lakes such as the 
Great Lakes in North America, for instance, and coastal pixels that are likely contami-
nated by the ocean (Papa et al. 2010; Adam et al. 2010).  

2) GLWD is expected to represent a certain maximum extent of surface water bodies as 
it is based on mapping of wetlands (Lehner and Döll 2004). Within WaterGAP this 
maximum area can shrink (except for global lakes and reservoirs) due to a temporally 
varying area reduction factor that is a function of water storage at previous time step 
(Section 4.4.2).  

3) The wetland mask from Hess et al. (2003) represents a certain maximum wetland 
area in the central Amazon. Additional to the real time flooded areas at high-water stage 
in May/ June 1996, non-flooded areas were also defined as wetlands – areas adjacent to 
or surrounded by flooded areas and displaying landforms consistent with wetlands geo-
morphology (Hess et al. 2003).  

 

Figure 5.12 and 5.13 display global maps of average surface water extent and annual 
average seasonal variation as observed by NIA and as modeled by WG22b and 
WG22b_fpl k, as well as difference maps among one another. Due to the fact that the 
model results of WG22b_fpl k and WG22b_fpl b appear quite similar on a global map, 
only the differences between the two floodplain model variants (WG22b_fpl k and 
WG22b_fpl b) are mapped. All data are averaged for the time period 1993-2004, in 
which observations were available. For all of the WaterGAP grid cells, the average area 
of open water is 2.15 million km² for NIA, and 7.59, 5.83, and 5.85 million km² for the 
three model variants WG22b, WG22b_fpl k, and WG22b_fpl b, respectively.   
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Figure 5.12 Average observed and modeled surface water extent in percent of cell area in the 
time period 1993-2004, and differences between observations and model outputs.  
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Figure 5.13 Annual average of observed and modeled seasonal variation of surface water extent 
in percent of cell area (1993-2004), and differences between observations and model outputs.  

With regard to Figure 5.12 and 5.13, it is striking that the model results show, in gen-
eral, higher average SWE and lower seasonal variation than NIA. With modeling dy-
namic floodplain inundation within WaterGAP, average SWE decreases and the season-
al variation increases; thus model results are closer to observations than the results of 
WG22b. Average modeled SWE in all model variants is very high in northern latitudes 
of North America and Siberia, caused by many local lakes and local wetlands included 
in GLWD. Average observed SWE is especially high in Southeast Asia. NIA and mod-
eled average surface water extent differ by less than 5 percent (in units of percent of cell 
area) in 79% of the grid cells of WG22b and 81% of the grid cells of WG22b_fpl (k and 
b), while average NIA is smaller than modeled areas for 19 and 16 percent of the grid 
cells for WG22b and WG22b_fpl, respectively (red areas in Figure 5.12d and e). Com-
paring the three model variants, average SWE of WG22b is higher than in WG22b_fpl, 
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except for the Beni savanna in southern Amazon and the Caspian Depression (and some 
smaller scattered locations). Allowing backwater flows causes slightly higher average 
values of SWE in the central and lower Amazon and slightly lower values in the Caspi-
an Depression compared to the kinematic wave routing.  

With the exception of some isolated grid cells, the seasonal variation of WG22b is 
smaller than observed NIA all over the world. In contrast, WG22b_fpl shows a higher 
seasonal variation in the Amazon River basin and the Caspian Depression. Within the 
lower Amazon seasonal variation slightly decreases by modeling backwater effects. 

 

Modeled and observed surface water extent within the Amazon River basin is drawn 
spatially in Figure 5.14 and shown as basin average time series in Figure 5.15. 

Due to the fact that the data from Hess et al. (2003) represent a certain maximum extent 
of inundated areas, its spatial distribution is compared to the mean annual maximum of 
NIA and modeled SWE. The mean annual maximum is here preferred to the absolute 
maximum of the monthly time series because extreme outliers are excluded and thus 
typical seasonal maxima are represented. All of the datasets include, more or less inten-
sively, the major interfluvial Amazonian wetlands as classified by Junk et al. (2011) 
(Table 5.6).  

Table 5.6 Important areas of interfluvial wetlands in the Amazon River basin (modified from 
Junk et al. 2011).  
No. Wetland name/ type    Location 

1 Negro river campina/ campinarana  
2 Roraima/ Rupununi savannas  
3 Central Peru savannas and palm forest  
4 Beni savannas  
5 Central floodplains  

 Campinas and campinaras in central Amazonia  

 Large hydromorphic savanna complexes on variable soil types  

 Forests associated with interfluvial wetlands   

Hess et al. (2003) have shown higher SWE than NIA in all regions in the Amazon River 
basin. Especially noteworthy are the many grid cells with no SWE at all within NIA, as 
well as the much lower SWE in the central Peru savanna. Values of SWE modeled by 
WG22b_fpl (both b and k) are in general in between the two observation datasets, ex-
cept the central Amazon region upstream the Purus tributary flows into the main stem, 
with little lower modeled SWE than observed. On the contrary, the former model ver-
sion WG22b seems to miss wetlands in the region of the Negro River campina, the Ro-
raima/ Rupununi savannas, the Beni savannas, and along the Madeira River, where 
modeled SWE is lower than in both of the observation data sets. When comparing 
WG22b_fpl k and WG22b_fpl b, differences of mean annual maximum SWE are quite 
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small. Allowing backwater flows leads to slightly lower values in the central Amazon 
and slightly higher values in the Beni savannas. 
 

 

 
Figure 5.14 Maximum surface water extent in percent of cell area within the Amazon River 
basin as observed by Hess et al. (2003) (wetland mask at high water conditions in May/ June 
1996) and NIA (mean annual maximum 1994-2004) (top), and as simulated by WG22b, 
WG22b_fpl k and WG22b_fpl b (mean annual maximum 1994-2004) (bottom). 

 

Whereas the maxima of SWE diminish when allowing backwater flows, the mean SWE 
increases (Figure 5.15). The basin average time series of modeled SWE (Figure 5.15) 
indicate the huge improvement of model performance achieved by the implementation 
of the dynamic floodplain algorithm into WaterGAP. Only the WG22b_fpl models 
agree well with observations in their seasonal variation and in the timing of low and 
high inundation. Compared to NIA, the mean modeled SWE is higher in the total Ama-
zon, resulting in low model efficiency values of NSE and VE. This is because of the 
lower observed SWE in the region of the central Peru savanna and the Beni savanna, as 
well as the many grid cells where NIA has no inundation and modeled SWE is up to 5% 
of the grid cell area (Figure 5.14). In the central Amazon WG22b_fpl k and 
WG22b_fpl b agree well with NIA, with highest model efficiency when including 
backwater effects (R² = 0.8, NSE = 0.86, VE = 0.91). In WG22b_fpl b minimum SWE 
is higher and the seasonal amplitude lower, which agrees better to the observed NIA. 
When comparing WaterGAP 2.2b_fpl to SWE under low- and high-water conditions 
(September/ October 1995 and May/ June 1996) as observed from Hess et al. (2003), as 
well as when comparing WaterGAP 2.2b_fpl to SWE modeled by the CaMa-Flood 
model from Yamazaki et al. (2011) (black and green crosses in the bottom left of Fig-
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ure 5.15, respectively), WaterGAP 2.2b_fpl shows lower mean SWE and, in the back-
water model, also lower seasonal variation.  
 

 
Figure 5.15 Time series of modeled and observed surface water extent in the Amazon and cen-
tral Amazon River basin (1993-2004). The gray lines represent surface water extent as observed 
by NIA. Modeled SWE of WG22b, WG22b_fpl k, and WG22b_fpl b is shown with black, red, 
and blue lines, respectively. The black crosses in the bottom left figure represent the inundation 
extent under low- and high-water conditions from Hess et al. (2003), and the green crosses rep-
resent SWE as modeled by Yamazaki et al. (2011) at the same time as the observations from 
Hess et al. (2003) (September/ October 1995 and May/ June 1996).  

 

The results in other major river basins on the globe show, similar to the results in the 
Amazon, a clear improvement of SWE modeled by WG22b_fpl compared to WG22b. 
This implies flood localization, timing (month of maximum SWE), seasonal variation, 
and average values of SWE. However, compared to NIA, seasonal variation is still too 
low. Contrary to the Amazon River basin, in other river basins there is often no signifi-
cant change in model performance when backwater effects are applied.  

 

 

Changes in surface water extent affect the actual evapotranspiration (AET). Global AET 
within WaterGAP is calculated as the sum of evapotranspiration from canopy, snow, 
soil, and surface water. It does not include additional evapotranspiration caused by irri-
gation and other human water use. This part of evapotranspiration is called actual water 

Observed (NIA)   WG22b_fpl k (0.83/-5.66/0.45) 
WG22b (0.59/-41.0/-0.52) WG22b_fpl b (0.84/-6.11/0.40) 

Observed (NIA)   WG22b_fpl k (0.82/0.17/0.85) 
WG22b (0.53/-17.27/0.19) WG22b_fpl b (0.80/0.86/0.91) 
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consumption (WCa) (Müller Schmied et al. 2014). "AET has large uncertain-
ties/variability both at global and continental-scale (esp. in Europe and North America). 
As AET is not calibrated directly (but water balance is closed and thus influenced by 
calibration), this is related to the differences in climatic variables" (Müller Schmied et 
al. 2016, p. 22). 

On a global-scale, mean AET are highest around the Equator, consistent with available 
energy (Figure5.16a and b). The change in AET by implementing the floodplain algo-
rithm into WaterGAP (Figure 5.16c) is highly correlated with the change in SWE (Fig-
ure 5.12g). With lower SWE, less water evaporates. The same is true for the differences 
when applying kinematic wave routing (WG22b_fpl k) or when allowing backwater 
flows (WG22b_fpl b) (Figure 5.16d versus Figure 5.12f). The global sums of simulated 
AET in km³ per year for the three model variants during 1971–2000 are: 69448 
(WG22b), 66235 (WG22b_fpl k), and 66280 (WG22b_fpl b). All these values are with-
in the range of estimates reported in the literature (see values in Müller Schmied et al. 
(2014), Table 5). 
 

 

 
Figure 5.16 Mean modeled actual evapotranspiration AET [mm/yr] (1971-2000) of WG22b (a) 
and WG22b_fpl k (b) and differences between the models WG22b and WG22b_fpl k (c) and 
WG22b_fpl k and WG22b_fpl b (d) in mm/yr. 

5.4.4 Water Storage Variations 

The Gravity Recovery and Climate Experiment (GRACE; Tapley et al. 2004), launched 
in 2002, measures mass variation on and near the Earth’s surface based on monthly 
gravity field estimates at spacial scales down to ~400 to 600 km (Tapley et al. 2004). 
Mass variations within the continental water cycle are a major signal component after 
removal of signals from atmosphere and oceans. To evaluate TWS simulated by the 
WaterGAP Global Hydrological Model (WGHM), I use variations of total continental 

a) AET of WG22b          c) WG22b minus WG22b_fpl k 

b) AET of WG22b_fpl k         d) WG22b_fpl k minus WG22b_fpl b 
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water storage (TWS) from GRACE for the time period from August 2002 to August 
2009, provided by the Institute of Theoretical Geodesy (ITG) at University of Bonn 
(ITG-Grace2010). GRACE data must be filtered, or smoothed, to minimize errors from 
spatial noise (Wahr et al. 1998; Swenson and Wahr 2006). Here, for this evaluation, 
ITG-Grace2010 is decorrelated/smoothed using the non-isotropic filter DDK3 (Kusche 
et al. 2009). For a direct comparison of observed and modeled water storage variations, 
modeled TWS variations must be filtered in the same way as the GRACE data (Güntner 
et al. 2009). The filtering in hydrological models leads to reduced TWS variations in 
river basins, possibly due to leakage errors from surrounding areas (Chen et al. 2007; 
Alkama et al. 2010). This is also true for WGHM (see Figure 3.10) and is discussed in 
Section 6.4. 

To compare with GRACE data, the monthly TWS variations modeled by WaterGAP are 
calculated as the sum of water storage variations in canopy, snow, soil, groundwater, 
lakes, reservoirs, wetlands/floodplains, and rivers. After filtering both data sets, 
GRACE and WGHM, the data sets are mapped (back) into spatial grids – the original 
0.5° grid cells of WaterGAP.  

 

Figure 5.17 illustrates the seasonal and interannual TWS variations of GRACE and 
three WaterGAP model variants (WaterGAP 2.2b (WG22b), WaterGAP 2.2b including 
floodplains (WG22b_fpl k), and WaterGAP 2.2b including floodplains and allowing 
backwater flows (WG22b_fpl b) on the global-scale.  

The seasonal TWS variation is the range of variation for each year (8 values) in the time 
period 08/2002 to 08/2009 and the interannual TWS variation is range of variation for 
each month (12 values) in the given time period. 
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Figure 5.17 Seasonal (left) and interannual (right) variation of TWS anomalies [mm EWH] for 
the products: GRACE (grey), WG22b (black), WG22b_fpl k (red), and WG22b_fpl b (blue). 
For each of the three values and each TWS product, the zonal average (a) and the spatial distri-
bution on a global-scale (b) are shown. The model performance of TWS anomalies compared to 
GRACE (spatial averaged time series 08/2002 to 08/2009) is shown for eight major river basins 
and for the global-scale (c).  
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In general, modeled TWS anomalies agree well with observations from GRACE, with a 
similar spatial distribution of high and low values (Figure 5.17a and b). However, the 
seasonal and annual amplitudes are globally underestimated, resulting in very low NSE 
values (Figure 5.17c).  

The spatial maps show that the seasonal variation of TWS is overestimated compared to 
the GRACE (Figure 5.17b) in western North America (Mississippi, St. Laurence), parts 
of Europe, Western Siberia (Ob) and Northwest of South America (River mouth of the 
Amazon River, Orinoco). In contrast, in central South America (west and south Ama-
zon, Tocantis) and the Congo, TWS is underestimated. Largest underestimation of both 
seasonal and interannual TWS variation occurs in the central Amazon and the Congo 
River basin. These findings are confirmed by Figure 5.17a, representing the zonal aver-
age of modeled and observed TWS variations, as well as by Figure 5.19 (Amazon) or 
Figure A.13 (eight major river basins), showing basin averaged monthly TWS varia-
tions. 

The model performance, determined by calculating the correlation coefficient (R²) and 
the Nash-Sutcliff Efficiency (NSE) on a global-scale and for eight major river basins, is 
shown in Figure 5.17c. The statistical measures are determined from the spatially aver-
aged time series of monthly TWS variations in the time period from 08/2002 to 08/2009 
(seasonal variation is calculated for each year (8 values) and the interannual variation is 
calculated for each month (12 values)). The highest efficiency values regarding the sea-
sonal variation of TWS can be recorded in the Paraná and Amazon River basin, and the 
lowest in the Niger and Lena River basin. The model performance regarding the 
interannual variation of TWS anomalies is relatively low for all of the regions on the 
globe, but particularly low in northern latitudes.  

With the implementation of dynamic floodplain inundation into WaterGAP, the season-
al variation of wetland/floodplain storage increases. At the same time, the dynamic in 
the river storage compartment decreases (exemplarily shown for the Amazon River ba-
sin in Figure 5.20). The change of variation within the other storage compartments is 
negligibly small compared to that in rivers and wetlands/floodplains. Merely in the Ni-
ger, Nile, and Paraná River basin the change of variation in groundwater storage (in-
crement) is likewise important to that in the river (see Figure A.14). These three river 
basins have larger arid or semiarid areas where groundwater is recharged from surface 
water bodies (see Figure 4b in Döll et al. 2014). In almost all regions, the reduction of 
seasonal variation in river storage is less than the gain in wetland/floodplain and 
groundwater dynamic (except in the Mississippi and Ganges River basin), so that the 
seasonal variation of TWS increases. With the implementation of the floodplain algo-
rithm into WaterGAP, the model performance improves in four of the eight in detail 
analyzed river basins regarding the annual variation of TWS change, and in five of the 
eight river basins regarding the seasonal variation of TWS changes (Figure 5.17c). The 
results and the model efficiency of the three model variants are very different according 
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to the region. In only one river basin, the Ob, an overall worsening of model results (re-
garding seasonal and interannual TWS variations) was obtained when applying 
WG22b_fpl (both k and b). On the contrary, a clear overall improvement was achieved 
for the Amazon and Mississippi River basin, with highest efficiency values using 
WG22b_fpl b.  

 

Because of its high seasonal amplitude of TWS (see Figure 5.17b center), the Amazon 
River basin is of special interest and its spatial pattern of observed and modeled season-
al TWS variations is enlarged in Figure 5.18. The model results agree well with obser-
vations from GRACE, confirmed by the high to very high values of R² and VE (volu-
metric efficiency). However, basin average seasonal TWS variation is still too low 
compared to GRACE, resulting in low NSE values, and maximum variation is located 
in the downstream, not in the central, Amazon.  

The implementation of the floodplain algorithm into WaterGAP leads to a clear im-
provement of model performance when compared to GRACE. The amplitude of season-
al TWS increases (highest in WG22b_fpl b) and the maximum seasonal TWS variation 
is shifted about 100 km upstream (in both WG22b_fpl k and WG22b_fpl b). The better 
performance of WG22b_fpl b compared to WG22b_fpl k can be mainly attributed to its 
higher seasonal TWS variation located at the mouth of the rivers Tapajos and Madeira 
in the Amazon main stem.  
 

 

 
Figure 5.18 Seasonal variation of TWS anomalies [mm EWH] in the Amazon River basin ob-
served by GRACE and modeled by WG22b, WG22b_fpl k, and WG22b_fpl b.   

 

The time series of basin averaged monthly TWS variations confirm the good overall 
agreement of the filtered model results with GRACE (Figure 5.19 for the Amazon and 
Figure A.13 for eight major river basins).  

      GRACE      WG22b        WG22b_fpl k    WG22b_fpl b 
 
 
 
 
 
 
 
R²:          0.88        0.90      0.94 
NSE:         -0.13        0.11      0.26 
VE:          0.75        0.77      0.79 
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Figure 5.19 Basin-scale mean monthly (right) and monthly TWS variations (left) in millimeter 
equivalent water height (EWH) observed by GRACE (gray) and modeled by WG22b (black), 
WG22b_fpl k (red), and WG22b_fpl b (blue).   

In tropical river basins (Amazon, Paraná, Ganges, Niger) the time series of modeled 
TWS variations are well correlated to the GRACE data (R² ranging from 0.68 to 0.93 
depending on river basin and model version). The correlation over arctic and temperate 
river basins (Lena, Ob, Mississippi) is lower (R² ranging from 0.54 to 0.68) but still 
acceptable (R²>0.6) in at least one of the three model variants (model efficiency values 
of major river basins and its subbasins are listed in Table A.4 in the appendix). At a 
basin-scale WaterGAP underestimates the GRACE signal over tropical basins and tends 
to overestimate over arctic and temperate basins (Figure A.11). In more than half of the 
analyzed river basins the annual cycle of TWS variation (and also river discharge) oc-
curs one month earlier compared to observations. In the Amazon River basin this shift is 
diminished by modeling dynamic floodplain inundation (Figure 5.19). The Amazon is 
the only river basin in which wetland/floodplain storage variation within WG22b_fpl is 
the dominant contributor to variations in TWS.  

The underestimation of TWS variation in the Amazon River basin is, at subbasin-scale 
(subbasins illustrated in Figure A.11), highest in the southern Amazon (downstream the 
river discharge station Porto Velho) and lowest in the central Amazon (upstream the 
river discharge station Obidos). Best model performance is achieved when applying 
backwater effects. 

 

Figure 5.20 shows the mean annual cycle of variations in single water storage compo-
nents and TWS (unfiltered average values 1971-2000) exemplarily for the Amazon Riv-
er basin (for other river basins see Figure A.16).  



CHAPTER 5: RESULTS 

98 
 

 
Figure 5.20 Monthly average variation in TWS and single water storage compartments (1971-
2000) in the Amazon River basin modeled by WG22b, WG22b_fpl k, and WG22b_fpl b (unfil-
tered).   

It becomes clear that the river and wetland storage compartments (wetlands include 
floodplains) are the ones most affected by the implementation of dynamic floodplain 
inundation into WaterGAP. In general (not only in the Amazon River basin), the sea-
sonal variation of wetland storage gets significantly larger and the seasonal variation in 
river storage significantly smaller. This is also confirmed when looking at the portions 
of seasonal water storage variations from single storage compartments within eight ma-
jor river basins (Figure 5.21). The portions refer to the summarized seasonal variation of 
the single storage compartments, not to TWS, enabling a better comparison among the 
model variants and among different river basins. Note, that because of possible phase 
shifts, seasonal TWS variation is not necessarily equal to the sum of seasonal variation 
from the single storage compartments (e.g. in the Lena River basin snow storage peaks 
in April, and river storage variation in June). 

 
Figure 5.21 Average seasonal water storage variations (1971-2000) of single storage compart-
ments in percent. 100% represents the sum of single storage variations of the individual model 
version (unfiltered data) and specific river basin. 
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Within the eight major river basins analyzed in more detail, the contribution of wetland 
storage variation to TWS variation ranges in WG22b only from 3% (Amazon) to 19% 
(Paraná), whereas in WG22b_fpl k/WG22b_fpl b the contribution ranges from 12%/9% 
(Ob) to 38%/39% (Amazon). With the algorithm of dynamic floodplain inundation 
within WaterGAP, wetland storage variation is now under the major four contributors to 
TWS variations (besides variation in soil, groundwater, and snow storage compart-
ments); in the Amazon River basin even the most important contributor. For the majori-
ty of the river basins, the dominant signal on TWS variations is attributed to soil mois-
ture. Over boreal river basins, snow mass plays the major role.  
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CHAPTER 6 

Discussion 
6 Discussion 

6.1 Introduction 

As mentioned in Chapter 1, this PhD thesis is contained within the research project 
REGHYDRO, in which global hydrological modeling and regional geodetic estimation 
of water storage variations using GRACE data are combined to achieve an improved 
characterization of water storage (and flow), as well as of the gravity field in large river 
basins. Our working group – the working group of hydrology at the University of 
Frankfurt am Main – focused on the hydrological component of gravity variations. As 
previously stated, the main purpose of this PhD thesis is to improve water flows and 
storage variations as estimated by the global hydrological model WaterGAP.  

To simulate large floodplains and wetlands inundated by overbank flooding of river 
water, I developed and applied a new algorithm within the WaterGAP Global Hydrolo-
gy Model (WGHM). Introducing this algorithm for dynamic floodplain inundation into 
WaterGAP significantly improved the simulation of river discharge, surface water ex-
tent and storage variations. Through the implementation of subgrid-scale topography, 
WaterGAP is, for the first time, able to represent surface water stages – such as water 
height and inundated area – and simulate backwater effects. 

 

In this chapter, answers to the four research questions (stated in Section 1.2) are provid-
ed and the methods and results are discussed.  

The first question concerns the overall improvement of the model. Special attention is 
paid to the discussion of the results regarding surface water extent and possible causes 
for discrepancies to the validation data sets.  

The second question deals with backwater flows. This implies discussing the methods 
of estimating channel geometry, water levels, and water routing within WaterGAP and 
other hydrological models.  

Finally, the third and fourth questions address storage and discharge variations and in-
clude the discussion on the differences between the model results and GRACE. 
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6.2 General model improvement with emphasis on surface water extent  

Research question 1: Does the implementation of dynamic floodplain inundation in Wa-
terGAP lead to improvements in model performance regarding river discharge, surface 
water extent, and/or total water storage variations? If so, which specific geographic 
areas are improved most? 

On a global-scale, WaterGAP model performance significantly increased due to the 
implementation of the algorithm for modeling dynamic floodplain inundation. The im-
provements comprise all of the analyzed model output variables: river discharge (also 
river flow velocity), water storage variations, and surface water extent. Model im-
provement is most noticeable in the Amazon River basin. Indeed, more than any other 
river basin it is characterized by its vast floodplains and wetlands, which occupy ~20% 
of the watershed (Melack and Forsberg 2001), and affect storage and transmission of the 
flood wave (Richey et al. 1989). 

 

Compared to the former WaterGAP model version 2.2b (WG22b), river discharge im-
proved in WaterGAP which includes the floodplain algorithm (WG22b_fpl), particular-
ly with regard to seasonal variation and timing of high and low flows (attenuation of 
peak discharge and flood wave). In addition to the implementation of the algorithm for 
modeling dynamic floodplain inundation, I implemented a new method for calculating 
river depth in WaterGAP. River depth is now calculated as a function of river storage at 
previous time step, instead of as a function of actual river discharge as it was in WG22b 
(Section 4.6). The change in river depth leads to higher river flow velocity along the 
main stem and large tributaries. A comparison of modeled to observed river flow veloci-
ties in the Amazon River basin exibits higher model efficiency at 85% of the stations 
when the new method for calculating river depth within the river flow velocity equation 
is applied. Nevertheless, the river discharge tends to peak earlier, when applying the 
new river depth, resulting in a lower correlation with the observed discharge. In 
WG22b_fpl, the time lag in peak discharge is balanced by the presence of floodplains, 
absorbing water at peak flows and releasing it afterward. Finally, when comparing mod-
eled and observed (GRDC) monthly discharge (1971-2000) between WG22b_fpl – in-
cluding the floodplain algorithm and the new calculation of river depth – and the former 
model version WG22b, the average correlation (averaging the 248 analyzed gauging 
stations) remains unchanged. 

In WG22b_fpl, unlike in WG22b, the presence of large floodplains is reflected in the 
daily river discharge. Daily-scale fluctuations in river discharge diminish, the larger the 
floodplain is, due to the attenuation of the flood wave (Section 5.4.2, Figure 5.11).  

 



CHAPTER 6: DISCUSSION 

103 
 

The implementation of the floodplain algorithm in WaterGAP led to better estimates of 
total water storage (TWS) variations for the majority of the eight river basins investigat-
ed with more detail. TWS variations increase in most regions of the globe due to higher 
floodplain/wetland storage variation. Indeed, the larger TWS variations fit better to the 
TWS variations derived from GRACE. Compared to GRACE, the model improvement 
is most evident in the Amazon and Mississippi River basin. In the Amazon River basin 
model performance is better, not only for seasonal and annual TWS variation, but also 
for the timing and location of maximum seasonal TWS variation. Compared to GRACE 
however, the seasonal and annual amplitudes of TWS are still underestimated on a 
global-scale. Moreover, the model efficiency for arctic river basins (Ob and Lena) re-
mains relatively poor or even decreases (Ob) when the floodplain algorithm is applied. 
The reasons for the discrepancies between model results and GRACE are discussed in 
detail under research questions three and four. 

 

The model improvement from WG22b_fpl to the former WG22b is particularly evident 
when simulating surface water extent (SWE), which improved in all respects – flood 
localization, timing (month of maximum), seasonal variation, and average values – for 
all of the eight analyzed major river basins. In the Amazon River basin the correlation 
between modeled and observed (satellite-derived naturally inundated areas – NIA) 
monthly SWE (1993-2004) rose from R² = 0.59 for WG22b to R² = 0.83 for 
WG22b_fpl. Although the seasonal variation of SWE increases when applying the 
floodplain algorithm in WaterGAP, it remains too low – except for the Amazon River 
basin – when compared to the satellite-derived observations. 

On a global-scale, modeled SWE was compared to the monthly time series of NIA (Sec-
tion 5.4.3). This data set has been found capable of serving as an independent data set 
for model validation of hydrological models (Adam et al. 2010, König 2011). In some 
regions, however, NIA tends to overestimate the actual fraction of inundation due to 
difficulties of the multi-satellite method to accurately discriminate between very wet 
soils and open water. Comparisons between the multi-satellite data set and high-
resolution SAR images reveal that the former often overestimates SWE in areas with 
large inundation extent as well as after heavy rain; small areas of inundation, converse-
ly, are underestimated or even not detected (Papa et al. 2007; König 2011). Compared 
to WaterGAP, NIA exhibits especially high values of both average SWE and seasonal 
variation in the region of the Ganges River basin. In this region (also the region of the 
Sudd Swamps, characterized by a distinct dry season and clear rainy season), NIA was 
found to be not suitable for model validation (König 2011). Not only single values of 
NIA show differences to the higher resolution remote sensing images of Landsat 7 
(ETM+ band5), but also the seasonal variation of NIA. NIA strongly overestimates 
SWE in the region of Bangladesh; only interannual variations are represented in agree-
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ment to Landsat 7 images and data from the Bangladesh Water Development Board 
(BDWB; www.ffwc.gov.bd), although with much lower amplitude (König 2011).  

On a global-scale, the average modeled SWE remains too high and the seasonal varia-
bility too low (except in the Amazon) when compared to NIA, suggesting that local 
wetlands and/or local lakes in WaterGAP (based on GLWD) are overestimated. Espe-
cially in northern latitudes (North America, Siberia), WaterGAP exhibits a vast extent 
of surface water with almost no seasonal variation. GLWD represents the maximum 
area of surface water bodies in WaterGAP, which shrinks in function of water storage 
(Section 4.4.2). Section 3.2.2 explored the behavior of wetland storage variations in 
WG22b was explored, with the result that by increasing maximum storage capacity, 
seasonal variation in wetlands increases as well. The very low seasonal variation and 
high average values of SWE in high latitudes suggest that local wetlands and local lakes 
are, similar to global wetlands in WG22b, almost always full of its capacity.  

In the Amazon River basin, the seasonal variation of modeled SWE agrees well with the 
seasonal variation of NIA. This was achieved by correcting the vegetation of the digital 
elevation model, which represents the floodplain profile in WG22b_fpl (Section 4.4.1). 
The flatter the floodplain profile of a grid cell, the more area is flooded when water en-
ters the floodplain. The flat floodplain profile is also the reason for the very high sea-
sonal variation in SWE in the region of the Caspian Sea depression. As described in 
Section 4.4.1, correcting the negative elevation values of the DEMs to a value of zero 
leads to a completely flat floodplain elevation profile in areas with real sinks (Dead Sea, 
Caspian Sea depression); thus, even a miniscule amount of water entering the floodplain 
is enough to cover the entire grid cell.  

Seasonal variation of modeled SWE is highly sensitive, not only to the value of vegeta-
tion correction, but also to the parameter of bankfull flow reduction, and is influenced 
by the parameter of river-floodplain interaction (Sections 4.3.1 and 4.3.2; see Appendix 
3.1 for the sensitivity of model output to model parameters). These parameters are con-
stant in space and time; adjusting them at basin-scale or subbasin-scale should result in 
higher model efficiency in specific regions. 

The Amazon River has the largest floodplain in the world along its main stem. This as-
pect has made it the object of numerous research studies (Melack 1984; Richey et al. 
1989; Meade et al. 1991; Sippel et al. 1998; Hess et al. 2003; Alsdorf et al. 2007). Wa-
terGAP-simulated SWE in this region was compared to satellite observations (NIA and 
data from Hess et al. 2003) as well as to SWE modeled by the catchment-based macro-
scale floodplain model CaMa-Flood (Yamazaki et al. 2011). Compared to NIA, Wa-
terGAP model efficiency is very high when applying the floodplain algorithm including 
backwater effects (R² = 0.8, NSE = 0.86, VE = 0.91). However, compared to Hess et al. 
(2003) and CaMa-Flood, the average SWE of WG22b_fpl b (b for backwater) is much 
lower. Whereas the minimum SWE is in good agreement (only slightly underestimated) 
with two of the data sets (NIA and CaMa-Flood), the maximum SWE is underestimated 
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when compared to all of the data sets. In the lower and central Amazon, backwater ef-
fects from the major tributaries Madeira, Tapajos and Xingu are espeacially important 
(Meade et al. 1991). Backwater flows in WaterGAP improve the model performance in 
the central Amazon. However, further improvement of the method to model backwater 
effects in WaterGAP and/or parameter adjustment of WG22b_fpl b should lead to a 
better approximation of model output to observations (see Section 6.3). The slightly 
lower minimum values could also be explained by the possibility that a number of local 
lakes are missing in GLWD. Melack (1984) has observed, via remote sensing, that ap-
proximately 10000 km² along the Amazon River are covered by thousands of permanent 
lakes that range in size from less than a hectare to over 600 km.  

6.3 Backwater effects – river channel geometry – water levels  

Research question 2: What is the effect of backwater flows on modeled river discharge, 
surface water extent and water storage variations? How does the spatial distribution of 
large floodplains/wetlands and total water storage variations in the Amazon River basin 
change when modeling backwater effects?  

To analyze the effect of backwater flows on WaterGAP model outputs, WaterGAP 2.2b 
including the floodplain algorithm (WG22b_fpl), was run twice: one time applying kin-
ematic wave routing (WG22b_fpl k; k for kinematic), and one time applying kinematic 
wave routing allowing for backwater flows (WG22b_fpl b; b for backwater).  

Compared to WG22b_fpl k, modeling backwater effects within WG22b_fpl, using the 
method described in Section 4.5.2, leads to a significant improvement in model results 
for the Amazon River basin. For other river basins, the effect of modeling backwater 
flows varies: model efficiency improves for some output variables, worsens for others, 
and in many cases, displays no significant change. 

 

Backwater effects in the Amazon River basin cause an attenuation and delay of the 
flood wave when compared to WG22b_fpl with kinematic wave routing. The peak stage 
at the downstream gauging station Obidos precedes the peak stage of the 750 km up-
stream station Manacapuru (Meade et al. 1991). WaterGAP river discharge agrees with 
this observation in the model variant where backwater flows are allowed. The modeled 
peak flow at Obidos is in May. In WG22b_fpl k, modeled peak flow at the 800 km up-
stream station Aruma-Jusante is too early (March); whereas in WG22b_fpl b is in May, 
likewise for Obidos (Section 5.4.2).  

The correlation between modeled and observed monthly river discharge is, on average, 
almost equal for both WG22b_fpl k and WG22b_fpl b (R² value 0.02 better in the kin-
ematic wave model). At the Amazon downstream station Obidos, not only are there 
reduced peak flows, but also higher low flows when the floodplain algorithm is applied 
in WaterGAP, with the highest low flows displayed in WG22b_fpl b. However, this 
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increment might be overestimated either due to an overabundance of water on the 
floodplains during low flow periods (which drains back to the river) or because of a too 
low flood-wave speed, or as a result of both. In the first case, the reason for overestima-
tion could be an inadequate parameter for the river-floodplain interaction. In 
WG22b_fpl, this parameter is a function of water exceeding the bankfull flow and the 
actual river channel flow (Section 4.3.2). Alsdorf et al. (2007) have demonstrated, in 
their analysis of interferometric SAR data, that river and floodplain water levels cannot 
be assumed to be the same, unlike the way it is modeled in WG22b_fpl. The water level 
gradient between floodplain and river is currently not considered in WG22b_fpl and 
might influence the amount of water being exchanged. In the second case, the reason for 
overestimation could be attributed to errors in locations and the frequency at which 
backwater flows occur as a result of uncertainties in modeled river channel geometry 
and thus water levels (discussed further down).  

 

The effect of backwater flows with regard to surface water extent is characterized by an 
improvement of the timing in which SWE reaches its maximum. This is true for all of 
the analyzed river basins (with more or less significance). Furthermore, the spatial pat-
terns of seasonal variation of SWE improved for many regions of the globe (most 
notably in the Amazon and Paraná River basin). In the case of the Amazon River basin, 
seasonal variation of SWE decreased, especially in the very downstream part of the ba-
sin. This observed decrease leads to a better agreement with the spatial distribution of 
observed NIA when compared to WG22b_fpl k. The improvement in model perfor-
mance allowing backwater flows regarding the monthly time series of SWE at basin and 
subbasin-scale can be attributed to reduced seasonal amplitudes. Especially during low 
flows (in the dry season), the values of wetland/floodplain extent remain higher.   

 

One of the main expectations of modeling backwater effects was to improve the spatial 
distribution of seasonal total water storage variations in the Amazon River basin. 
Whereas GRACE observes the maximum seasonal TWS variation at the central Ama-
zon, WaterGAP simulates the highest seasonal TWS variations close to the river mouth 
(Section 5.4.4, Figure 5.18). The expectations were met; compared to GRACE, 
WG22b_fpl b achieves the best values in model performance out of all of the Wa-
terGAP model variants. The improvements were, however, smaller than were initially 
expected. The inclusion of backwater flows in WG22b_fpl increases the seasonal TWS 
variation at the mouth of the Amazon tributaries Tapajos and Madeira. However, the 
influence on seasonal TWS variations in the central Amazon (where the Purus and the 
Negro River flow into the Amazon main stem) is small. There are several possible rea-
sons for the discrepancies between GRACE and WaterGAP model results: uncertainties 
in the GRACE solutions, errors caused by filtering the data products, and inadequate 
modeling of the hydrological processes in WaterGAP, among others. This section dis-
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cusses the last point; possible uncertainties of the GRACE data are discussed under the 
research question three and four (Section 6.4).  

 

The modeling of backwater effects, or even diffusion wave routing, within hydrological 
models is based on slope, which requires the simulation of water levels and water level 
gradients from a target grid cell to the adjacent grid cell(s). The simulation of water 
levels, in turn, requires the estimation of the river channel geometry or the floodplain 
profile – in case water is above river channel bank height and floods the surrounding 
areas.  

The lack of globally available data remains a major obstacle in calculating the geometry 
– river widths and depths – of river channels. Channel geometry is highly important to 
hydrological modeling since it significantly influences the cross-sectional area, hydrau-
lic radius, river slope, and river flow velocity. Existing GHMs estimate river width and 
depths as a function of actual river discharge or upstream drainage area (Section 2.1). 
The parameters used in such equations are typically only verified for a limited area and 
for bankfull conditions. Likewise, in WaterGAP 2.2b_fpl river width (and depth at the 
initial time step) is estimated as a function of river discharge by using an equation de-
rived by Allen et al. (1994) from a regression analysis of 674 river cross sections in the 
USA and Canada (Section 4.6). Although this relationship is only valid for bankfull 
conditions, it is used in WaterGAP for all of the river discharges below or above bank-
full, which may cause inconsistencies in the relation between river channel geometry 
and river flow velocity or river storage. WG22b_fpl uses the river storage simulated at 
the initial time step to calculate the river depth at the next time step.  

The calculation of the river water level gradient from one cell to another requires, not 
only an estimation of river depth, but also the absolute river elevation. In WG22b_fpl, 
the absolute river elevation is defined as the outflow level, also called minimum eleva-
tion, of a grid cell (zmin). This minimum elevation of a grid cell, as well as the floodplain 
elevation profile, are obtained by implementing 100 subgrid elevations for each 0.5° 
grid cell based on a combination of two digital elevation models (DEMs: HydroSHEDS 
and ACE2; see Section 4.4.1). The data input from a DEM is a possible source of major 
errors in global hydrological models (an overview of DEMs used in GHMs is provided 
in Section 2.1). Possible sources of errors, depending on the DEM, include: random 
noise (artifacts, holes, gaps), surface objects (trees, buildings, bridges), and hydrological 
correction (steam burning, void filling). Furthermore, the correction of the DEM input 
data for WaterGAP against vegetation and negative elevations (Section 4.4.1) might not 
be adequate for all of the regions where the correction is applied. To remove vegetation 
artifacts from the DEM data, a constant value of 17 m is subtracted in all of the DEM 
pixels in the Amazon River basin. However, vegetation height may vary even in forest-
ed areas. 
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The comparison of modeled to observed water levels from Topex/Poseidon (see Sec-
tion 5.4.1 for more details) at 80 altimetry gauging stations located in 6 major river ba-
sins indicates that WG22b_fpl performs well with regard to both seasonal and interan-
nual water level variations. However, WaterGAP overestimates the absolute values of 
the altimetry observed water levels for most of the 80 stations. Allowing backwater 
flows led to a significant model improvement compared to WG22b_fpl k, with less sea-
sonal variation, and mean water levels much closer to the observed means; although 
mean values are still overestimated. The difference between modeled and observed 
mean water levels is smaller in regions with elevations close to sea level than at higher 
altitudes, suggesting that the minimum elevation of the grid cells, derived from DEMs, 
is not in agreement with the altimetry measured elevations. 

Other studies that compare modeled to observed altimetry data present a variety of out-
comes (Coe et al. 2002; Yamazaki et al. 2011; Yamazaki et al. 2012b; Paiva et al. 2013; 
Wilson et al. 2007). Paiva et al. (2013) and Yamazaki et al. (2012b), for example, have 
compared ENVISAT data to water levels of the MGB-IPH model and the CaMa-Flood 
model in the Amazon River basin. Whereas MGB-IPH strongly underestimates the am-
plitude of modeled water levels, CaMa-Flood results in an overestimation. In contrast to 
the results of WG22b_fpl, Yamazaki et al. (2012b) obtains higher water level peaks in 
their model including backwater flows than in their kinematic wave model, and mean 
water levels, in general, performed well. The model CaMa-Flood has a higher model 
resolution than WaterGAP (0.25° compared to 0.5°), which might be one of the reasons 
for its better performance regarding the simulation of absolute water levels. Another 
reason may be the different methods for extracting errors from the DEM. All of the au-
thors agree that uncertainty in river and floodplain geometry and errors in the topo-
graphic data cause inaccuracies in simulated water levels. However, some discrepancies 
between modeled and observed water levels might also be attributed to errors in the 
altimetry data. Especially low water estimates derived from radar altimetry are associat-
ed with the largest uncertainty (Birkett et al. 2002). 

 

The effect of backwater flows on model outputs is related to the distribution and dura-
tion of negative water slopes, as illustrated in Figure 4.10 (Section 4.5.2) for the Ama-
zon River basin. The longer the duration of negative slopes, the larger the difference in 
model outputs between WG22b_fpl b and WG22b_fpl k. In the Amazon River basin, 
most of the grid cells with negative water slopes are located along the main stem in the 
downstream part of the river basin; fewer grid cells are located in central Amazon 
(where the Purus and the Negro River flow into the main stem), the part in which the 
GRACE signal of seasonal TWS variation is highest and satellite observations (NIA and 
Hess et al. 2003) exhibit an average inundation extent of more than 40% per grid cell. 

The duration of negative water slopes, indicating backwater flows, appears to be too 
high for most of the grid cells. Backwater flows, lasting more than six months of a year, 
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appear to be unrealistic, even in the Amazon. For this reason, at present moment – with 
the methods developed and presented in this PhD thesis – a diffusion wave routing is 
not applicable to WaterGAP (Section 4.5.2). Indeed, diffusion wave routing (routing the 
entire outflow of a grid cell in a direction according to its water slope, as well as adapt-
ing flow velocity corresponding to its water slope) requires a better simulation of the 
river geometry (width and depth) within WaterGAP and a higher accuracy of the mini-
mum surface elevation (outflow level) per grid cell. Ideas regarding how this can be 
improved are stated in the outlook of this thesis (Chapter 7).  

Large-scale hydrological models where a diffusion wave routing is implemented are 
CaMa-Flood (Yamazaki et al. 2011), THMB (Coe et al. 2000; diffusion wave only for 
floodplains, not for rivers, and with a time constant flow velocity), and LISFLOOD-FP 
(Bates and De Roo 2000). The clearest difference in model structure between these 
models and WaterGAP is the higher spatial resolution (Table A.5). They also differ in 
other features, such as the estimation of the channel geometry and the methods for ex-
tracting errors from the DEM. 

6.4 Storage and discharge variations  

Research question 3: What is the contribution of water storage in floodplains and wet-
lands to total water storage variation and variations in river discharge? 

The most influential factor for river discharge variation in WaterGAP is the surface 
runoff, which is primarily driven by precipitation. Other factors include water with-
drawals, groundwater return flows and, in WaterGAP 2.2b with floodplain algorithm 
(WG22b_fpl; fpl for floodplain), also floodplain return flows to the river. The propor-
tion in which each factor contributes to variations in river discharge differs greatly from 
region to region. In WG22b_fpl, the contribution of floodplains/wetlands water storage 
to variations in river discharge is high in areas with large and endured flooding; the var-
iation in river discharge decreases with the presence of floodplains due to the attenua-
tion of peak discharges (see Section 5.4.2).  

In WG22b_fpl (both, applying kinematic wave routing and allowing backwater flows), 
the storage variation in floodplains/wetlands is one of the four major contributors to 
seasonal total water storage (TWS) variations; in the Amazon River basin this contribu-
tor is even the most important one. In the majority of river basins, seasonal TWS varia-
tions are dominated by variations in the soil storage compartment. For boreal and arctic 
river basins, snow mass plays a major role.  
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Research question 4: What are the river basin-specific causes of the observed discrep-
ancies between variations in total water storage, such as variations derived by GRACE, 
and by the WaterGAP Global Hydrological Model (WGHM)? 

Global-scale comparisons between WGHM and first results of GRACE (between 2002 
and 2004), which were carried out by Ramillien et al. (2005) and Schmidt et al. (2006), 
have already presented a good agreement in terms of geographical location of storage 
anomalies, but also revealed differences in the amplitudes of storage variations. Ramil-
lien et al. (2005) have stated that there is no systematic underestimation by the model, 
but that the underestimation clearly depends on the region. These findings are in agree-
ment with the present study.  

The global-scale comparison of monthly to seasonal TWS variations between 
WG22b_fpl and GRACE displays overall similar spatial patterns and temporal storage 
variations. For most of the regions on the globe the correlation is high. Nevertheless, on 
a global average the seasonal and interannual amplitudes are smaller for WaterGAP 
than for GRACE. With regard to the monthly time series of TWS variations at river 
basin-scale, the model efficiency is highest in tropical river basins (Amazon, Paraná, 
Ganges, Niger) and relatively low in arctic and temperate river basins (Ob, Lena, Mis-
sissippi) (see Section 5.4.4). 

There are several reasons that could account for the discrepancies between TWS varia-
tions computed by WG22b_fpl and TWS variations derived from GRACE.  

The three major error sources of GRACE when resolving hydrological signals are 
measurement errors, leakage errors, and atmospheric pressure errors (Seo and Wilson 
2005). GRACE signals suffer from leakage errors from one region to another. When 
analyzing specific regions such as river basins, the signals are influenced by leakage 
from surrounding areas. The atmospheric pressure is closely linked to the total mass of 
the atmosphere. GRACE signals are subject to residual signals and aliasing effects of 
variations from other masses removed during the GRACE data processing (mainly at-
mosphere and ocean mass; e.g. Seo et al. 2008). Gravity field errors – measurement and 
processing errors – are reduced by applying a post-processing filter technique (Swenson 
and Wahr 2006; Werth et al. 2009), whereas a desirable filter technique minimizes both 
GRACE gravity field errors and signal leakage across the border of the region of inter-
est (Werth et al. 2009). GRACE uncertainties are higher over small to medium scale 
river basins than over major basins. Moreover, GRACE uncertainties are high over de-
sert regions and relatively small over high latitudes (Alkama et al. 2010).  

For a direct comparison between TWS variations derived from GRACE and modeled 
TWS variations, the model data must be filtered in the same way as the GRACE data 
(Güntner et al. 2009). This filtering, however, significantly affects the seasonal ampli-
tudes of basin-scale water storage changes (Section 3.2) and might be one reason for the 
underestimation of seasonal TWS variation from WaterGAP when compared to 
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GRACE. The analysis of Chen et al. (2007) indicates that Gaussian smoothing (filter-
ing) also introduces no-negligible phase changes, possibly due to asymmetric spectral 
leakage errors from surrounding areas.  

By comparing monthly TWS variations from WG22b_fpl to GRACE, a time lag of ap-
proximately one month is observed for the majority of the analyzed river basins. 
WG22b_fpl results also indicate time lags in river discharge for some river basins. This 
suggests that, besides possible errors due to data filtering, there might also be deficits in 
modeling hydrological processes within the GHM (global hydrological model). 
Decharme et al. (2010) have found similar time lags when comparing the model output 
of the GHM ISBA-TRIP to GRACE data and to some discharges. Over boreal river 
basins (Ob, Mackenzie), the authors have pointed out the excessive flow velocity in the 
ISBA-TRIP model as the main cause for the time shift. Over tropical and temperate 
basins, one reason for the discrepancies between modeled and observed TWS variations 
could be deficits in simulating groundwater dynamics in the GHM (Decharme et al. 
2010). WaterGAP contains a groundwater storage compartment and simulates baseflow 
and groundwater recharge from surface water bodies. However, it appears important to 
allow the deep water to re-evaporate via diffusive exchanges with the land surface (Fan 
et al. 2007; Miguez-Macho et al. 2007). Currently, none of the GHMs include infor-
mation on water table depth to model groundwater-surface water interactions. Ground-
water supports extensive wetlands primarily fed by surface water through river flooding. 
A steady groundwater drainage from higher grounds maintains the water level in flood-
plain lakes in the dry season (Fan and Miguez-Macho 2010; Miguez-Macho and Fan 
2012). A recent study of de Graaf et al. (2015) presents a new global-scale groundwater 
model by coupling the dynamic land-surface model PCR-GLOBWB and the steady-
state groundwater model MODFLOW. This new groundwater model is able to capture 
the large-scale distribution of groundwater levels and may serve as a starting point for 
modeling groundwater fluctuations and interactions with surface water in global hydro-
logical models (de Graaf et al. 2015). 

Another reason for discrepancies between modeled TWS variations and TWS variations 
derived by GRACE may be the uncertainty in modeling evapotranspiration in GHMs 
(Ramillien et al. 2005; Alkama et al. 2010). When evapotranspiration is underestimated, 
the model tends to overestimate river discharge and TWS, and vice versa. Furthermore, 
evaporation is highly correlated to surface water extent; therefore, when surface water 
extent is over- or underestimated, errors in simulated evapotranspiration are produced. 

The simulation of snow and melting processes within large-scale hydrological models 
have often been mentioned as possible sources of uncertainties (van Beek and Bierkens 
2009; Yamazaki et al. 2011; Decharme et al. 2012; Müller Schmied et al. 2016). 
WG22b_fpl achieves the lowest model performance of simulated TWS variations in the 
Ob, Lena, and Mississippi river basin. In these river basins modeled TWS variations are 
overestimated when compared to GRACE data. Snow storage variation is the major 
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contributor of TWS variation in boreal/arctic river basins, and the third major contribu-
tor in the Mississippi River basin (after soil and wetland storage variations). Further-
more, the Ob River basin is the only river basin with significant lower model perfor-
mance when applying the floodplain algorithm to WaterGAP. In WG22b_fpl, the sum 
of river and wetland storage variation is lower than in the former model version Wa-
terGAP 2.2b, thus snow storage variation gains proportionally in importance.  
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CHAPTER 7 

Conclusions and Outlook 
7 Conclusions and Outlook 

The main objective of this PhD thesis was to further develop the global-scale hydrologi-
cal model WaterGAP, with the purpose of improving the estimation of water flows and 
water storage variations in different storage compartments. The objective was accom-
plished.  

To simulate dynamic floodplain inundation by overbank flows of river water on a glob-
al-scale, I developed a new approach which introduces an algorithm into WaterGAP. 
The new approach uses subgrid-scale topography, based on high-resolution digital ele-
vation models, to describe the floodplain elevation profile within each half degree grid 
cell of WaterGAP by applying a hypsographic curve. In order to develop the approach, 
a detailed analysis of model-internal processes of WaterGAP was conducted. Addition-
ally, for validation purposes, a satellite-derived global data set of naturally inundated 
areas was generated. 

The methodology of the floodplain algorithm in WaterGAP includes the modeling of 
the flood initiation, a two-way interaction between the river and the floodplain, the ex-
tent and the water depth of the floodplain area, the separate transport of river and flood-
plain water between the grid cells with temporally and spatially different variable flow 
velocities, as well as the interaction between the floodplains and the groundwater. 

For the first time, WaterGAP is now able to compute flood inundation extent and water 
heights for each 0.5° grid cell. In addition, the calculation of water level gradients al-
lows WaterGAP, also for the first time, to account for backwater effects. 

WaterGAP including the floodplain algorithm (WaterGAP 2.2b_fpl) is a state-of-the-art 
global-scale hydrological model which combines the strength of various existing large-
scale hydrological models. The essential characteristics of WaterGAP 2.2b_fpl can be 
briefly summarized as follows: although WaterGAP 2.2b_fpl does not contain any ex-
clusive feature (i.e. a feature included in no other global hydrological model GHM) – 
except the unique calibration against long term annual river discharge (Hunger and Döll 
2008; Müller Schmied et al. 2014) – WaterGAP is the only GHM that includes together 
the following features:  

 inland water bodies with variable area 
 high resolution and hydrologically corrected surface elevation 
 vegetation correction of surface elevations in areas with high and dense vegeta-

tion 
 two-way exchange between river and floodplain  
 separate routing in rivers and floodplains, simulating backwater effects for both 

rivers and floodplains 
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 flow velocity for rivers and floodplains, both variable in time and space 
 floodplain-groundwater interactions 

Features of WaterGAP in comparison with other large-scale hydrological models con-
taining floodplain modeling are listed in Table A.15 in the appendix. 

 

The model performance of WaterGAP 2.2b_fpl was analyzed by validating model out-
puts on river flow velocities, river discharge, water storage variations, water heights, 
and surface water extent against comprehensive data sets based on ground observations 
and remote sensing data, as well as by comparing model outputs to the former Wa-
terGAP model version 2.2b. 

On the global-scale, WaterGAP model results significantly improved due to the imple-
mentation of the algorithm for modeling dynamic floodplain inundation. In particular, 
the location and extention of floodplains, as well as the seasonal variation of surface 
water extent and total water storage, are much closer to the observations. The model 
improvement is most remarkable in the Amazon River basin, which is characterized 
more than any other river basin by its extensive floodplains and wetlands. However, 
there are still discrepancies between model outputs and observations. Modeled total 
water storage variation and surface water extent concur with observations regarding 
their geographical distribution; although WaterGAP underestimates seasonal variation 
in most of the regions on the globe. Furthermore, modeled TWS variations, river dis-
charge, and river flow velocities indicate a certain time lag in many regions when com-
pared to observations. The highest discrepancies occur between modeled and observed 
average water levels, albeit strongly varying from site to site. A detailed analysis of the 
simulated results suggests that in the Amazon River basin, the introduction of backwater 
effects is important for realistically simulating water storages and surface water extent. 

 

Further model developments are required to improve the simulation of water levels 
within WaterGAP. Key issues for achieving this goal are the reduction of errors and 
artifacts (holes, vegetation, etc.) in digital elevation models (DEMs), and the improve-
ment of river geometry estimations. One way to improve the simulation of river geome-
try could be by implementing the Global Width Database for Large Rivers (GWD-LR) 
into WaterGAP (developed by Yamazaki et al. 2014). In the equation of Allen et al. 
(1994), the coefficient used to calculate river width at bankfull stage (Equation 4.24) 
could be corrected for each individual grid cell in order to fit with the GWD-LR data-
base. The original resolution of GWD-LR is 3 arc seconds and the coverage is between 
80°N and 60°S. It would also be interesting to investigate the effect of different DEMs 
on model results. 

With a better estimation of water levels and water level gradients, a diffusive wave rout-
ing in WaterGAP might be applicable. It may also be desirable to compute diffused 
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flood water flow to all neighboring grid cells, and not only to the adjacent up- and 
downstream grid cells. This is computed in the model THMB, which includes a bounda-
ry condition to avoid run away flooding (Coe et al. 2008). Diffusive wave routing in 
WaterGAP might require a higher spatial model resolution than the 0.5°. 

To improve the modeling of backwater effects in WaterGAP (or in the future, when 
applying diffusion wave routing), it may be necessary to include ocean tide variation. 
Yamazaki et al. (2012b) have found that anomalies in river discharge, when either con-
sidering or disregarding ocean tide variation in the CaMa-Flood model, reach up to 
1000 km upstream from the river mouth (near the confluence of the Madeira River and 
the Amazon main stem). The differences in river discharge are initiated around the river 
mouth and then propagated to the inland region (Yamazaki et al. 2012b).  

The floodplain algorithm in WaterGAP 2.2b_fpl contains four individual parameters: 
the flood initiation threshold (reduction of bankfull flow), the value for vegetation cor-
rection, the river-floodplain interaction, and the backwater flow. In order to achieve the 
best fit of model outputs on the global-scale – compared to validation data – these pa-
rameters were carefully set to specific values, which remain constant in space and time. 
Further work is necessary to adjust these parameters, making them variable in space 
(setting different values for basins or subbasins), and perhaps also in time.  

Future efforts could also aim at improving the groundwater-surface water interaction in 
WaterGAP. Since WaterGAP 2.2b_fpl is now able to compute water level gradients, 
groundwater recharge could be modeled as a function of water level and ground water 
table depth. This would require a gradient-based groundwater model. With the infor-
mation on water table depth, in turn, the diffusive exchange between the groundwater 
and the land surface could be simulated, allowing for a direct groundwater feeding of 
floodplains and a re-evaporation of groundwater.  

 

 

In conclusion, this PhD work significantly contributed to the improvement of the global 
hydrological model WaterGAP. The improved model allows for a better quantification 
of freshwater flows and freshwater storage for long historical and future time series. 
Additionally, the improved model contributes to a better understanding of the global 
water cycle, and allows a better assessment of freshwater resources and their impact on 
global change. The modeling of temporal and spatial dynamics of floodplains, in partic-
ular, enables a better quantification of surface water extent, evaporation, water storage 
and river discharge dynamics. Changes in the dynamics of floodplains – e.g. caused by 
land use changes or climate change – are important for biodiversity, methane emissions, 
carbon storage, and groundwater recharge. In addition, an improvement of modeling 
hydrological mass variations by WaterGAP serves for a better understanding of the 
space-time patterns of GRACE observations and for the assessment of the limits of the 
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spatiotemporal resolution of gravity fields. WaterGAP has also been used to improve 
regional gravity field features derived from GRACE. 
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Appendices 

1 Appendix to Chapter 4  

1.1 Flood initiation 

 

Figure A.1 Average start month of the longest flood event (river inflow is above bankfull 
flow) considering daily source data from 1970 to 2000 (e.g. Jan means that the first day where 
river inflow exceeds bankfull is in January (day 0-31)). 
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Figure A.2 Average duration of the longest flood event (river inflow is above bankfull flow) in 
days (1971-2000).  

 
Figure A.3 Average number of flood events per year where River inflow is at least three days 
above bankfull flow (1970-2000) (based on daily data source).  
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1.2 Data preparation of digital elevation models (DEMs) as model input for Wa-

terGAP 

1.2.1 HydroSHEDS 

Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales 
(HydroSHEDS): 
Data format: 

 ARC GRID, BIL (vector) 
 projection WGS84 

Spatial resolution: 
 3'', 15'', 30'' (approximately 90m, 500m, 1km at the equator) 
 global (60N - 60S) 

Provided by: 
 USGS; developed by the Conservation Science Program of World Wildlife 

Fund (FFW) 
Citation: 
Lehner, Bernhard; Verdin, K.; Jarvis, A. (2008): New global hydrography derived from 
spaceborne elevation data: Eos, Transactions, AGU, 89(10):93-94. 
 
HydroSHEDS Data preparation as model input for WaterGAP 

General information: 
 To facilitate electronic distribution, all raster data at 3 arc-second resolution 

were divided into five-degree by five-degree tiles. Thus each downloadable Hy-
droSHEDS tile 10 x 10 0.5° cells. 

 Raster attribute table columns: ‘Rowid’ ‘Value’ ‘Count’ 
Amazon: 
 the Amazon basin has 1946 0.5° grid cells 
 30 HydroSHEDS tiles are necessary to cover the whole Amazon basin 
World: 
 HydroSHEDS includes 775 data tiles for the whole world (southern hemisphere: 

245 tiles, northern hemisphere: 530 tiles).  
 276 grid cells of WaterGAP are not covered by HydroSHEDS: 187 cells of 

Alaska, 34 grid cells located in the Caspian Sea and 55 grid cells islands like 
Reunión and Mauritius, Cape Verde, Hawaii and other Pacific islands etc.  

 Another 81 grid cells are covered by the raster dataset but do not include values 
(no value after processing raster to txt). Of these cells, 74 are located in the 
Caspian Sea and 7 are coastal cells (continental area < 20 %). 
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Data preparation 

Download the data DEM 3sec void filled elevation from the website 
http://gisdata.usgs.net/website/HydroSHEDS/viewer.php. The data format is GRID and 
the spacial resolution is 3 arc seconds.  
 
After downloading the data from the website, first of all, the raster data is downscaled 
on a spatial resolution of 0.5° or rather related to the 0.5° cells of WGHM. To get one 
GRID file for each of the 0.5° cells, the raster files are clipped by the 0.5° cell Polygons 
by using GME (Geospatial Modelling Environment, http://www.spatialecology.com/ 
gme/index.htm). The Arc_ID of the 0.5° cells are written in the file name.  
Second, the 0.5° raster files are converted into text files (txt, tab delimited) which are 
the required input format for the WaterGAP preprocessing tools to calculate floodplain 
depth and floodplain storage capacity. The Raster conversion into txt-files does a Py-
thon Script (Linda's Tools --> Raster To TXT (multiple); Toolbox manual available) 
written for ArcMap.  
As a third step, the WaterGAP preprocessing tools (Unix Shell Scripts) reduce the data 
amount to 100 elevation values per 0.5° grid cell and calculate the floodplain depth and 
the storage capacity of the floodplain area for each elevation point. The tools outputs are 
one file per 0.5° grid cell for each of the input variables. The statistical software R is 
used to merge output files to each one file with global coverage. In doing so WaterGAP 
grid cells with no available elevation data are set to -999 or -555 (-999: no DEM Raster 
Data available; -555: DEM Raster Data is available but no elevation values for example 
including values for land masking). 
 
WaterGAP Input Data: 

 Sf – Floodplain Storage [km³]; Source Name: HS_Storage.sh 
 Df – Floodplain Depth [m]; relative Elevation of the floodplain. Df is needed to 

calculate the slope in the diffusive wave equation (if Sr>Sb). Source Name: 
HS_relElev.sh 

 B – Bank height [m]; minimum Elevation of the 0.5° cell. The name of the 
variable in WaterGAP is GALTMOD. Source Name: HS_minElev.sh  

 Af – Floodplain Area [%]; constant for all of the 0.5° cells. First value is zero, 
last value is 99.99972101 (100% minus the area of the outflow pixel). No pre-
processing Tool required. 

 
Requirements and Tool Descriptions: 

Requirements:  
 ArcGIS 9.x or further versions 
 GME for ArcGIS 10.x (http://www.spatialecology.com) 
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 Python 2.5 (with Python extension win32 (http://sourceforge.net/projects/ 
pywin32)) 

 Excel 2007 or further versions 
 
Using Geospatial Modelling Environment (GME) 

 Follow the instructions for downloading and installing GME (http://www.spatial 
ecology.com/gme/index.htm). 

 Start GME.  
 Clip HydroSHEDs raster tiles by the 0.5° cell Polygons (“father_polys.shp”) us-

ing the command cliprasterbypolys (http://www.spatialecology.com/ 
gme/cliprasterbypolys.htm). 

 Note that the polygon layer and raster layers must share the same projection. 
 For multiple raster inputs, like several HydroSHEDs tiles, you can EITHER  
 mosaic multiple tiles to a single raster (ArcGIS: Data Management Tools  

Raster  Raster Dataset  Mosaic To New Raster) before clipping it by poly-
gons OR  

 use a for loop to clip all the raster tiles located in one folder.  
 The for loop requires an index variable name (e.g. i) to define the number of it-

erations. 
To get simple unique raster tile names including the index variable, I renamed 
all HydroSHEDs raster to “dem[i]”. Rename folders using the awk command 
under Linux or, for windows, using for example the free software “Flexible Re-
namer”. 

 GME Syntax Example: 
for(i in 1:245){ 

cliprasterbypol-
ys(raster=paste("D:\Linda\HydroSHEDS_world\SOUTH\dem",i), 
poly="D:\Linda\WaterGAP\X.ESRI.IPG_home.IPG_data\father_polys.
shp", uidfield="ARC_ID",  
out="D:\Linda\HydroSHEDS_world\ClipRasterByPolygons_ArcID",  
prefix="r"); 

}; 

 
The following paragraphs provide more detailed information about the HydroSHEDS 
data preparation tool in ArcMap (1), the WaterGAP preprocessing tools for defining the 
minimum elevation value (2), and the tool for calculating the floodplain Storage capaci-
ty (3) per grid cell. These Tools were developed and programmed by the Author of this 
thesis.: 
 

1) “LA_raster2txt_ArcMap.py”: ArcGIS Tool 
 Converts one or more Rasters (DEM or GRID) into text files (txt, tab de-

limited).  
(First, the tool will convert the rasters into point shape files. Each 0.5° 
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cell includes 600 x 600 HydroSHEDS elevation values as a maximum (at 
the Equator; in higher latitude fewer values) which will be stored in the 
shape files attribute table (dbf-format). This shape is only a temporary 
file. In a second step the shape files attribute tables (binary files) will be 
converted into text files (txt), which are the output files) 

 The input Rasters can be file Rasters or Geodatabase Rasters.  
The output parameter will be a workspace. 

 The name of the output txt tables will be based on the name of the input 
Raster but will be unique for the destination workspace. 

 
2) “HS_minElev.sh”: Unix Shell Script 

 reads the HydroSHEDS elevation files (must be prepared in tab separated 
text files (txt)), each including 600 x 600 values as a maximum (at the 
Equator) 

 sorts the elevation values according to size 
 replaces negative elevations with zero 
 defines the lowest permill of all elevation values, which will be deleted 

(two reasons: a) assuming that at least one part per thousand of each cell 
is always covered by water, and b) reducing erroneous elevation values, 
like negative elevations and sink cells). The lowest elevation value of the 
remaining data represents the minimum elevation of the 0.5° cell. 

 joins all files together in a table with 2 columns delimited with '\t' (the 
first column is the Arc_ID and the second column is the minimum per 
grid cell) 

 
3) “HS_Storage.sh”: Unix Shell Script 

 reads the HydroSHEDS elevation files (they must be prepared in tab sep-
arated text files (txt)), each including 600 x 600 values as a maximum (at 
the Equator) 

 sorts the elevation values according to size 
 replaces negative elevations with zero 
 defines the lowest permill of all elevation values, which will be deleted 

(two reasons: a) assuming that at least one part per thousand of each cell 
is always covered by water, and b) reducing erroneous elevation values, 
like negative elevations and sink cells). The lowest elevation value of the 
remaining data represents the minimum elevation of the 0.5° cell. 

 calculates the volume of water [km³] for each elevation point.  
- Transform the unit of elevation from m to km 
- Read in the cell area [km²] of the corresponding 0.5° cell  
- Calculate area of inundation per elevation value and 0.5° cell (trans-

form percent of inundated area in equivalent area inundated per ele-
vation value in km²) 
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- Sum the volumes up: (((elev-minElev)/1000)*((cellArea* 
Area.per.elev.procent)/100)  
+ ((elev-minElev)/1000)*((cellArea*Area.per.elev.procent)/100) 
etc.) 

 reduces each file using only 100 elevation points (0.028% of all data 
points) 

 joins all files together in a table with 101 columns delimited with '\t' ( the 
first column is the Arc_ID and column 2-101 the corresponding flood-
plain storage values per grid cell) 

1.2.2 ACE2 

ACE2 (ACE - Altimeter Corrected Elevations) 

Data format: 
 ace2 file, convertible in netcdf grd (each download file has a coverage of 15*15 

degrees) 
 datum: WGS84 

Spatial resolution: 
 3'', 9'',30'', 5' (approximately 90m, 280m, 1km, 10km at the equator) 
 global 

Provided by: 
 R. Smith, EAPRS Laboratory, De Montfort University, Leicester UK (supported 

by European Space Agency (ESA)) 
Download:  

 http://tethys.eaprs.cse.dmu.ac.uk/ACE2/ 
 Free registration necessary; Download files from ftp 

Citation: 
Smith, R.: ACE2 3 arc-second dataset, 1.31th edn., EAPRS Laboratory, De Montfort 
University, Leicester UK, available from http://tethys.eaprs.cse.dmu.ac.uk/ACE2, 22 
pp., 2009. 
 
ACE2 Data preparation as model input for WaterGAP 

General information: 
 ACE2 is distributed as 15-degree by 15-degree tiles, with the name referring to 

the South Western edge of the South Western most pixel. Thus each down-
loadable ACE2 tile covers 30 x 30 0.5° cells. 

 In the height files the value used for masking (i.e. land/sea mask) is set to -500 
and the value for voids in the SRTM which are unable to be corrected are set to 
-32768 (information on the web page). 
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World: 
 North of 60° there are 155 grid cells with no data (grid cells with only the value 

-500 (value for land masking)). Except 10 grid cells, all of these are coastal 
cells. 101 grid cells belong to Greenland, including the 10 non-coastal grid cells. 

 
Data preparation 

 Download ACE2 altimeter corrected elevations with the spatial resolution of 3 
seconds from the ftp-Server (http://tethys.eaprs.cse.dmu.ac.uk/ACE2/). 

 Extract files from zip 
 Rename the ACE2 file to .raw so 00N000E_3S_ACE2.raw 
 Write a header file (ENVI-format) for each of the ACE2 tiles, including the ge-

ographic information (upper left corner).  
 There is a C-Script (“GenACEHDR.c “) which generates the header files 
automatically. 

 Convert Raster to ESRI GRID format using ArcCatalog  right Click on .raw-
Raster  Export  Raster To Different Format  define the output raster da-
taset with no extension (default option for ESRI GRID) for example 
D:\Linda\ACE2_v1.31\60N015E 

 By downscaling the Raster data on a spatial resolution of 0.5°, converting 0.5° 
raster files to text files reduce the data amount to 100 elevation values per 0.5° 
grid cell and calculate the floodplain depth and the storage capacity of the 
floodplain area for each elevation point. See the section on data preparation for 
HydroSHEDS data (Appendix 1.2.1) 

1.3 Sensitivity analysis 

The sensitivity of WaterGAP 2.2b_fpl was analyzed by modeling river discharge and 
surface water extent (SWE) within eight large river basins (Figure A.4), applying differ-
ent parameters for: flood initiation threshold (Figure A.5), river - floodplain interaction 
(Figure A.6), vegetation correction (Figure A.7), calculation of river flow velocity (Fig-
ure A.8) and backwater (Figure A.9).  
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Figure A.4 Selected river basins for sensitivity analysis.  

 
The dashed and the dotted black lines in Figure A.5 to A.9 represent modeled river dis-
charge and surface water extent from WaterGAP 2.2b without floodplain algorithm and 
observed data respectively. Both lines serve more as an orientation rather than for com-
parison, as the focus of this analysis is to show how sensitive are the model outputs of 
WaterGAP 2.2b_fpl with changing parameters. The data source of river discharge ob-
servations is the Global Runoff Data Centre (GRDC 2013), which uses monthly time 
series from 1971 to 2000 (with occasional missing data depending on gauging station). 
Observed data on surface water extent is the satellite derived data set on naturally inun-
dated areas (NIA, Adam et al. 2010), which includes monthly values from 1993 to 2004. 
Model output is only considered in the month and locations of observations (grid cells 
of gauging station locations for river discharge and whole river basins for surface water 
extent). 
 
WaterGAP reacts very sensitive to the threshold for flood initiation, the bankfull flow. 
The lower the bankfull flow, the lower the maxima and thus the amplitude of river dis-
charge for surface water extent, and vice versa (Figure A.5). Which of the bankfull flow 
achieves the highest model performance vary strongly among the analyzed river basins 
and among the different model outputs. The average best model fit (considering the 8 
river basins and the two model outputs: river discharge and surface water extent) was 
achieved by applying 70% of the bankfull flow used in WaterGAP 2.2b. 
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Figure A.5 Model sensitivity regarding bankfull flow. Average monthly river discharge and 
SWE for 8 large river basins modelled with WaterGAP 2.2b_fpl kinematic applying the bank-
full flow as used in WaterGAP 2.2b (solid light green lines) and reduced bankfull flows using 
80%, 70% and 60% of the standard input bankfull flow (solid green to black lines). The dashed 
and the dotted black lines represent modeled river discharge and SWE extent from WaterGAP 
2.2b without floodplain algorithm and observed data respectively; they serve for orientation.  

 

After the bankfull flow, the river-floodplain interaction is the most important parameter 
for modeling floodplain inundation in WaterGAP. In the majority of the analyzed river 
basins, best model results were achieved when at least 60% of the water above river 
channel capacity flows into the floodplain. Up to a value of pmin = 60, the larger pmin the 
better the WaterGAP results for both, river discharge and surface water extent. With 

Bankfull Flow Reduction
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pmin-values larger than 60%, modeled river discharge starts getting worse compared to 
observations, due to a decrease in peak flows (Figure A.6). 

  

 
Figure A.6 Model sensitivity regarding pmin (predefined minimum percentage of water flowing 
from river to floodplain or vice versa, in case bankfull flow is exceeded). Average monthly river 
discharge and SWE for 8 large river basins modeled with WaterGAP 2.2b_fpl with kinematic 
wave routing applying a pmin of 30, 50, 60 and 80 (black solid lines to light green lines). The 
dashed and the dotted black lines represent modeled river discharge and SWE from WaterGAP 
2.2b without floodplain algorithm and observed data respectively; they serve for orientation.  

 

Vegetation correction is only significant for the WaterGAP model results on surface 
water extent, not for river discharge (Figure A.7). The elevations of the digital elevation 
model are corrected (reduced) by the assumed value of vegetation height. Thus, the 

River – floodplain interaction: pmin
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floodplain elevation profile gets lower. The higher the value for assumed vegetation 
height, the flatter the floodplain profile and the faster the water spreads out in the case 
of flooding and surface water extent rises. The volume of water – and thus discharge – 
does not change much. It is influenced by precipitation, evapotranspiration and ground-
water infiltration, depending on the surface water extent per grid cell. 

   

 
Figure A.7 Model sensitivity regarding vegetation correction. Average monthly river discharge 
and SWE for 8 large river basins modeled with WaterGAP 2.2b_fpl with kinematic wave rout-
ing applying the different altitude of vegetation correction (see Legend). The dashed and the 
dotted black lines represent modeled river discharge and SWE from WaterGAP 2.2b without 
floodplain algorithm and observed data respectively; they serve for orientation.  
 

Vegetation Correction
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It is noticeable that by computing river flow velocity as a function of river water storage 
of previous time step the basin average maximum river discharge occurs earlier than in 
the other model runs and falls faster after peak flow (Figure A.8). For most of the ana-
lyzed river basins, the effect of changing river flow velocity on river discharge and sur-
face water extent is not as high. In Section 5.2 it was shown that the effect on river wa-
ter storage is much larger. For example in the Amazon River basin, average river water 
storage is much lower when river flow velocity is calculated as a function of river water 
storage at previous time step, caused by higher river flow velocities. 

 

 
Figure A.8 Model sensitivity regarding river flow velocity. Average monthly river discharge 
and SWE for 8 large river basins modelled with WaterGAP 2.2b_fpl kinematic, applying differ-
ent methods of calculating river flow velocity: 1) as a function of river water storage at previous 
time step (solid black lines), 2) as a function of river discharge (solid forest green lines) and 3) 
as a constant value of 1 m/s (solid light green lines). The dashed and the dotted black lines rep-
resent modeled river discharge and SWE from WaterGAP 2.2b without floodplain algorithm 
and observed data respectively; they serve for orientation.  

River Flow Velocity
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WaterGAP model results are very sensitive to the amount of water flowing upstream in 
case of a negative water slope (Figure A.9). The more water is allowed to route up-
stream, the less gets the river discharge in the downstream parts of the river basins 
(more water is stored on the floodplains). In basin averages, model performance regard-
ing river discharge decreases with higher backwater flows, whereas model performance 
regarding water surface extent increases. However, the latter is not very significant, 
while the first is. 

  

 
Figure A.9 Model sensitivity regarding backwater flow. Average monthly river discharge and 
SWE for 8 large river basins modeled with WaterGAP 2.2b_fpl with no backwater effects (solid 
black lines) and with 5% (solid forest green lines) and 10% (solid light green lines) backwater 
routing in case of negative water slopes. The dashed and the dotted black lines represent mod-
eled river discharge and SWE from WaterGAP 2.2b without floodplain algorithm and observed 
data respectively; they serve for orientation.  

Backwater
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2 Appendix to Chapter 5  

2.1 Flow Velocity 

 

Station 

Catchment 
area 

[10³ km³] 
ADCP 
start 

ADCP 
end 

No. of 
obser-
vations 

Mean flow 
velocity[m/s] 

obs/oldFV/newFV 
R² 

oldFV/newFV 
NSC 

oldFV/newFV 
VE 

oldFV/newFV 
5 18.70 1944 1975 11 0.99/0.11/0.27 0.64/0.66 -4.75/-3.14  -0.37/-0.25
4 29.40 1952 1994 99 1.34/1.48/1.41 0.39/0.38 0.03/0.10 0.05/0.18
3 89.83 1951 1994 124 1.27/0.23/0.44 0.90/0.88  -3.29/-1.91  -0.26/-0.08
2 147.25 1956 2010 163 1.11/1.54/1.55 0.89/0.89  -0.02/0.17 0.19/0.36
1 260.28 1956 1966 48 0.95/0.25/0.44 0.94/0.94  -1.15/-0.34  -0.20/0.02

Mean 109.09 89 1.13/0.72/0.82 0.75/0.75  -1.84/-0.12  -0.12/0.05

Figure A.10  Average simulated and measured river flow velocity at 5 gauges in the Yukon 
River basin. Observed river flow velocity for the 5 gauges was used from 1971 to 2010 with 4 
to 40 years of ADCP measures depending on gauging station (Data source: Water Survey of 
Canada). Modeled river flow velocity was computed by WaterGAP 2.2b with floodplain algo-
rithm (22bfpl (kinematic)), applying variable flow velocity with river depths based on 1) river 
discharge (old flow velocity (oldFV)) and 2) river storage of previous time step (new flow ve-
locity (newFV). Top: Mean river flow velocity [m/s] 1971-2000 computed by WaterGAP 
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2.2b_fpl (22bfpl_newFV) and location of gauging stations. Centre left: Comparison of average 
simulated and measured river flow velocity at 5 gauges in the Yukon River basin. The error bars 
indicate the standard deviations. Centre right: Mean monthly river flow velocity at 2 stations. 
The numbers on the x-axis are the number of observations per month. Bottom: Characteristics 
of flow velocity gauging stations and quality criteria. 

2.2 Water Level and River Discharge 

Figure A.11 Location of river discharge gauging stations (red triangles) and altimetry gauging 
stations (yellow squares) used for model testing. River basins zoned into subbasins larger than 
400000 km² (pastel colors). Gauging station information listed in Table A.1 and A.2 (the num-
bers are equal to column "No."). 

Table A.1 River discharge gauging stations used for model testing (GRDC 2013).  

No. Basin River Station Lati 
tude 

Longi 
tude 

Catch-
ment area 
[10³ km³] 

Time se-
ries 

No. of ob-
servations 
1971-2000 

1 Amazon Rio Itacuai Ladario -4.73 -70.30 9.19 1979-1994 192 
2 Amazon Rio Jurua Taumaturgo -8.93 -72.79 15.17 1981-2010 230 

Amazon 

Mississippi Paraná 

Ob 

Ganges 

Nile 

Niger 

Lena 
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No. Basin River Station Lati 
tude 

Longi 
tude 

Catch-
ment area 
[10³ km³] 

Time se-
ries 

No. of ob-
servations 
1971-2000 

3 Amazon Rio Sucunduri Santarem-
Sucunduri -6.80 -59.04 15.24 1973-2010 313 

4 Amazon Rio Itui Seringal Do Itui -4.73 -70.30 18.37 1980-1992 148 
5 Amazon Rio Maicuru Arapari -1.78 -54.40 18.46 1972-2010 339 
6 Amazon Rio Curua Boca Do Inferno -6.57 -54.82 21.33 1973-2010 323 
7 Amazon Rio Acre Rio Branco -9.98 -67.80 24.22 1967-2010 343 

8 Amazon Rio Do Sangue Fazenda Tomba-
dor -11.76 -58.04 27.01 1984-2007 179 

9 Amazon Rio Mapuera Estirao Da An-
gelica -1.10 -57.06 27.69 1970-1999 311 

10 Amazon Rio Paru De Este Fazenda Paquira -0.42 -53.70 30.77 1973-1989 197 

11 Amazon Rio Jiparana Jiparana (Ron-
donia) -10.87 -61.94 33.14 1977-2006 265 

12 Amazon Rio Purus Manoel Urbano -8.88 -69.27 33.34 1981-2009 195 
13 Amazon Rio Jurua Cruzeiro Do Sul -7.63 -72.66 39.54 1967-2010 354 
14 Amazon Rio Uaupes Uaracu 0.48 -69.13 40.00 1977-2010 276 
15 Amazon Rio Tarauaca Envira -7.43 -70.02 45.64 1978-2010 262 
16 Amazon Rio Jari Sao Francisco -0.57 -52.57 52.30 1968-2010 354 
17 Amazon Rio Juruena Fontanilhas -11.36 -58.34 56.97 1978-2007 276 

18 Amazon Rio Javari Estirao Do Re-
pouso -4.34 -70.91 58.20 1980-2010 241 

19 Amazon Rio Negro Cucui 1.22 -66.85 61.50 1980-2010 245 
20 Amazon Rio Jiparana Tabajara -8.93 -62.06 63.43 1977-2006 265 
21 Amazon Rio Iriri Laranjeiras -5.70 -54.25 63.99 1976-2007 151 

22 Amazon Rio Purus Seringal Da 
Caridade -9.04 -68.58 69.75 1967-2010 346 

23 Amazon Rio Ica Ipiranga Velho -2.94 -69.52 107.65 1973-1993 236 
24 Amazon Rio Aripuana Prainha (Velha) -7.21 -60.65 115.24 1974-2010 319 
25 Amazon Rio Guapore Pedras Negras -12.85 -62.90 116.32 1980-2006 230 
26 Amazon Rio Iriri Pedra Do O -4.53 -54.01 122.08 1976-2009 214 
27 Amazon Rio Branco Caracarai 1.82 -61.12 122.88 1967-2010 341 
28 Amazon Rio Sao Manoel Tres Marias -7.61 -57.95 145.10 1975-2009 246 
29 Amazon Rio Jurua Gaviao -4.84 -66.85 167.68 1972-2010 330 
30 Amazon Rio Japura Vila Bittencourt -1.39 -69.43 203.07 1980-2010 250 
31 Amazon Rio Purus Labrea -7.26 -64.80 224.92 1967-2010 354 
32 Amazon Rio Japura Acanaui -1.82 -66.60 246.14 1973-1997 292 

33 Amazon Rio Tapajos Barra Do Sao 
Manuel-Jusante -7.34 -58.16 337.86 1975-2008 260 

34 Amazon Rio Purus Aruma-Jusante -4.73 -62.15 359.44 1975-2010 260 
35 Amazon Rio Tapajos Fortaleza -6.05 -57.64 365.34 1983-2008 180 
36 Amazon Xingu Altamira -3.21 -52.21 440.24 1971-2008 358 
37 Amazon Rio Madeira Porto Velho -8.75 -63.92 977.08 1967-2007 359 

38 Amazon Amazonas (Rio 
Solimoes) 

Sao Paulo De 
Olivenca -3.45 -68.75 994.61 1973-2010 326 

39 Amazon Rio Madeira Manicore -5.82 -61.30 1156.27 1967-2010 328 
40 Amazon Amazonas Obidos -1.95 -55.51 4658.80 1927-1998 329 
41 Ganges Kali Gandaki Kotagaon 28.25 83.75 10.84 1901-2005 169 
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No. Basin River Station Lati 
tude 

Longi 
tude 

Catch-
ment area 
[10³ km³] 

Time se-
ries 

No. of ob-
servations 
1971-2000 

Shringe 

42 Ganges Jia Bhorelli N.T. Road Cross-
ing 27.25 92.75 10.95 1901-2005 95 

43 Ganges Bheri River Jamu 28.75 81.75 13.52 1901-2005 119 
44 Ganges Sunkosi Kampughat 27.25 86.75 19.12 1901-2005 180 
45 Ganges Arun River Turkeghat 27.33 87.19 27.15 1976-1986 132 
46 Ganges Narayani River Devghat 27.71 84.43 32.58 1963-1993 204 
47 Ganges Karnali River Chisapani 28.64 81.29 43.07 1962-1993 276 
48 Ganges Brahmaputra Yangcun 29.28 91.88 158.27 1956-1982 144 
49 Ganges Brahmaputra Pandu 26.13 91.70 411.22 1956-1979 85 
50 Ganges Brahmaputra Bahadurabad 25.18 89.67 515.73 1969-1992 130 
51 Ganges Ganga Farakka 25.00 87.92 918.37 1949-1973 36 
52 Lena Biryuk Biryuk 60.30 119.62 9.07 1950-1994 288 
53 Lena Mamakan Mamakan 57.80 114.03 10.15 1981-1990 120 
54 Lena Muya Taksimo 56.37 114.85 10.42 1965-1990 240 
55 Lena Kalakan Kalakan 55.15 116.77 10.60 1953-1990 177 
56 Lena Ygyatta Ygyatta 63.24 116.24 10.96 1969-1994 182 
57 Lena Sinyaya Tongulakh 61.92 124.55 11.61 1972-1994 223 
58 Lena Kuta Novo-Ilinka 56.85 105.07 11.81 1941-1990 223 
59 Lena Botoma Brolog 61.05 128.65 12.22 1936-1994 276 
60 Lena Timpton Ust-Baralas 56.95 125.45 13.69 1955-1994 276 
61 Lena Tuolba Alekseievka 60.44 124.26 14.09 1936-1999 309 
62 Lena Peleduy Sol'Zavod 59.83 112.40 14.19 1936-1988 210 
63 Lena Kirenga Karam 55.15 107.62 14.27 1966-1990 240 

64 Lena Namana Meiemkide (My-
ankinda) 60.90 120.80 14.74 1944-1999 348 

65 Lena Tsipa Z. Uju 55.58 114.50 16.00 1961-1990 240 
66 Lena Markha Shalagontsy 66.25 114.28 16.30 1974-1999 189 
67 Lena Lena Kachug 53.97 105.88 16.50 1936-1990 240 
68 Lena Aldan Suon-Tiit 58.07 123.72 16.81 1951-1999 348 
69 Lena Morkoka Habardino 64.60 112.52 18.04 1973-1994 189 
70 Lena Vitim Romanovka 53.20 112.77 18.31 1944-1990 196 
71 Lena Mama Lugovsky 58.07 112.88 18.62 1970-1990 240 
72 Lena Amga Buyaga 59.75 127.25 23.67 1901-2005 168 
73 Lena Chona Ust-Markhaya 61.98 109.75 24.09 1965-1974 41 
74 Lena Allakh-Yun Allakh 60.60 134.93 24.14 1945-1999 348 
75 Lena Bolshoy Patom Patoma 60.17 116.80 25.22 1934-1999 348 
76 Lena Sinyaya Peschanoye 61.30 126.92 32.14 1944-1986 178 

77 Lena Olekma Srednaya 
Olekma 55.42 120.55 37.50 1957-1999 317 

78 Lena Tyung Ugulyatsy 64.58 120.03 37.97 1959-1996 234 
79 Lena Lena Gruznovka 55.13 105.23 39.93 1912-1990 240 

80 Lena Yudoma Kurun-
Targyukhah 59.23 135.28 43.02 1944-1998 336 

81 Lena Timpton Ust-Timpton 58.65 127.05 43.72 1952-1999 348 
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82 Lena Kirenga Shorokhovo 57.67 108.12 47.08 1927-1990 240 
83 Lena Amga Amga 60.90 131.98 56.09 1939-1999 348 
84 Lena Vilyuy Ust-Ambardakh 64.08 109.58 59.90 1965-1999 336 
85 Lena Chara Tokko 59.98 119.84 63.70 1934-1994 276 
86 Lena Vitim Kalakan 55.12 116.77 64.48 1953-1990 195 
87 Lena Markha Cumpuruk 64.14 116.55 77.20 1954-1999 327 
88 Lena Aldan Ugino 58.63 128.50 102.74 1973-1994 252 
89 Lena Uchur Chulbu 57.77 130.90 109.54 1954-1999 348 
90 Lena Olekma Kudu-Kel 59.37 121.32 116.01 1936-1999 348 
91 Lena Vilyuy Chernyshevskyi 63.03 112.50 135.94 1959-1994 264 
92 Lena Lena Zmeinovo 57.78 108.32 139.65 1936-1990 240 
93 Lena Vitim Spitsyuno 56.22 115.73 144.13 1976-1990 180 
94 Lena Maya Chabda 59.75 134.75 167.74 1935-1999 348 
95 Lena Vilyuy Suldukar 63.22 113.63 169.34 1967-1994 235 
96 Lena Vitim Bodaibo 57.82 114.17 186.67 1912-1990 240 
97 Lena Vilyuy Suntar 62.15 117.65 208.19 1926-1999 336 
98 Lena Aldan Ust-Mil 59.63 133.03 268.46 1934-1999 348 
99 Lena Lena Krestovski 59.73 113.17 444.58 1936-1999 348 

100 Lena Aldan Ohotsky Perevoz 61.87 135.50 517.81 1926-1999 348 
101 Lena Lena Solyanka 60.48 120.70 773.12 1933-1999 348 
102 Lena Lena Tabaga 61.83 129.60 895.98 1936-1999 348 
103 Lena Lena Stolb 72.37 126.80 2457.20 1951-1994 288 
104 Mississippi Des Moines River Keosauqua, Ia 40.73 -91.96 41.19 1903-2004 360 
105 Mississippi Cimarron River Perkins, Ok 35.96 -97.03 44.60 1939-1991 249 

106 Mississippi Red River Near Burkbur-
nett, Tx 34.11 -98.53 50.82 1960-2006 360 

107 Mississippi Smoky Hill River Enterprise, Ks 38.91 -97.12 52.85 1934-2006 360 

108 Mississippi James River 
(Trib. Missouri) 

Near Scotland, 
Sd 43.19 -97.64 54.31 1928-2006 360 

109 Mississippi Tennessee River Chattanooga, Tn 35.09 -85.28 55.18 1874-2004 360 

110 Mississippi Cheyenne River Near Plainview, 
Sd 44.53 -101.93 55.88 1950-2006 205 

111 Mississippi Milk River Nashua, Mt 48.13 -106.36 57.23 1939-2006 360 

112 Mississippi Platte River 
(North) 

Wyoming-
Nebraska State 
Line 

41.99 -104.05 57.53 1929-2006 360 

113 Mississippi Bighorn River 
Above Tullock 
Creek Near Big-
horn, Mt 

46.12 -107.47 57.89 1945-2006 360 

114 Mississippi Canadian River Near Canadian, 
Tx 35.94 -100.37 62.63 1938-2006 360 

115 Mississippi Ohio River Martins Ferry 40.11 -80.71 63.42 1978-1995 206 
116 Mississippi Republican River Clay Center, Ks 39.36 -97.13 64.03 1917-2006 360 

117 Mississippi 
Illinois River 
(Trib. Upper 
Mississippi 

Valley City 39.70 -90.65 67.92 1938-2006 360 

118 Mississippi Wabash Mount Carmel, 
Ill. 38.40 -87.75 73.80 1927-2006 360 
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119 Mississippi Red River Near Gainesville, 
Tx 33.73 -97.16 79.00 1936-2006 360 

120 Mississippi Tennessee River Savannah, Tn 35.22 -88.26 88.15 1930-2004 360 
121 Mississippi Mississippi St.Paul, Mn 44.93 -93.11 91.18 1892-2005 360 
122 Mississippi Missouri River Virgelle, Mt 48.01 -110.26 91.43 1935-2006 360 

123 Mississippi Red River 
Denison Dam 
Near Denison, 
Tx 

33.82 -96.56 106.87 1924-2006 274 

124 Mississippi Arkansas River Arkansas City 37.06 -97.06 119.27 1902-2006 360 
125 Mississippi Canadian Whitefield, Okla. 35.26 -95.24 125.18 1938-2006 360 
126 Mississippi Red River Index, Ar 33.55 -94.04 129.89 1936-2004 360 

127 Mississippi Missouri River Below Fort Peck 
Dam, Mt 48.04 -106.36 148.36 1934-2006 357 

128 Mississippi Platte River Near Duncan, 
Nebr. 41.37 -97.49 153.76 1928-2004 360 

129 Mississippi Red Alexandria, La. 31.31 -92.44 176.52 1928-1983 153 
130 Mississippi Yellowstone Sidney, Mont. 47.68 -104.16 179.45 1910-2006 360 
131 Mississippi Arkansas Tulsa, Okla. 36.14 -96.01 193.54 1925-2006 360 
132 Mississippi Mississippi Clinton, Iowa 41.78 -90.25 219.22 1873-2004 360 
133 Mississippi Platte Louisville, Nebr. 41.02 -96.16 222.99 1953-2004 360 
134 Mississippi Ohio Louisville, Ky. 38.28 -85.80 236.97 1928-2006 360 

135 Mississippi Missouri Culbertson, 
Mont. 48.13 -104.47 238.52 1941-2006 360 

136 Mississippi Mississippi Keokuk, Ia 40.39 -91.37 308.61 1878-2005 360 
137 Mississippi Arkansas Little Rock, Ark. 34.75 -92.27 405.76 1927-1984 168 
138 Mississippi Mississippi Alton, Ill. 38.89 -90.18 448.67 1927-1987 201 
139 Mississippi Missouri River Bismarck, Nd 46.81 -100.82 483.19 1927-2006 360 
140 Mississippi Ohio Metropolis, Ill. 37.15 -88.74 527.36 1928-2004 360 
141 Mississippi Missouri Yankton, S.D. 42.87 -97.39 722.30 1930-1997 300 

142 Mississippi Missouri Nebraska City, 
Nebr. 40.68 -95.85 1058.41 1929-2004 360 

143 Mississippi Missouri River Kansas City, Mo 39.11 -94.59 1246.29 1928-2006 360 
144 Mississippi Missouri River Boonville, Mo 38.98 -92.75 1291.46 1925-2006 360 
145 Mississippi Missouri Hermann, Mo. 38.71 -91.44 1347.43 1897-2006 360 
146 Mississippi Mississippi Chester, Il 37.90 -89.84 1844.58 1942-2006 360 

147 Mississippi Mississippi Near Arkansas 
City, Ark 33.56 -91.24 2912.84 1928-1980 117 

148 Mississippi Mississippi Vicksburg, Miss. 32.32 -90.91 2951.38 1928-1999 345 
149 Niger Milo Kankan 10.38 -9.30 9.12 1938-2001 334 
150 Niger Mekrou Barou 11.80 2.30 12.09 1901-2005 81 
151 Niger Sota Couberi 11.30 3.30 12.10 1901-2005 198 
152 Niger Niandan Baro 10.30 -9.80 12.14 1901-2005 71 
153 Niger Faga Liptougou 13.30 -0.30 14.96 1901-2005 133 
154 Niger Goroubi Diongore Amont 13.30 1.80 15.02 1901-2005 141 
155 Niger Banifing Kouoro 2 11.75 -5.75 15.07 1901-2005 71 
156 Niger Tinkisso Ouaran 11.30 -9.80 18.12 1901-2005 89 
157 Niger Niger Kouroussa 10.65 -9.87 18.18 1923-2002 300 
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158 Niger Mayo-Kebi Cossi 9.80 13.80 24.26 1901-2005 108 
159 Niger Faro Safaie 8.30 12.80 24.40 1901-2005 6 
160 Niger Bagoe Pankourou 11.25 -6.75 30.27 1901-2005 251 
161 Niger Benoue Riao 8.80 13.80 30.44 1901-2005 113 
162 Niger Baoule Dioila 12.25 -7.25 33.24 1901-2005 240 
163 Niger Sankarani Selingue 11.25 -8.25 33.35 1901-2005 228 
164 Niger Sirba Garbe-Kourou 13.73 1.62 38.97 1956-2002 297 
165 Niger Gorouol Alcongui 14.80 0.30 44.68 1901-2005 214 
166 Niger Bani Douna 13.22 -5.90 99.64 1922-2001 346 
167 Niger Niger Koulikoro 12.87 -7.55 121.08 1907-2002 360 
168 Niger Bani Sofara 13.75 -4.75 132.63 1901-2005 182 
169 Niger Benue Ibi 8.20 9.73 258.33 1970-2002 202 
170 Niger Niger Mopti 14.25 -4.25 286.63 1901-2005 113 
171 Niger Niger Dire 16.27 -3.38 343.07 1924-2001 337 
172 Niger Niger Tossaye 17.25 -0.75 401.98 1901-2005 142 
173 Niger Niger Ansongo 15.75 0.25 563.37 1901-2005 238 
174 Niger Niger Niamey 13.52 2.08 697.60 1929-2001 360 
175 Niger Niger Gaya 11.80 3.30 974.38 1901-2005 147 
176 Niger Niger Lokoja 7.80 6.77 1754.31 1970-2002 319 
177 Nile Grumet Road Crossing -2.30 34.30 9.23 1901-2005 99 
178 Nile Mara Mara Mines -1.80 34.80 15.38 1901-2005 93 
179 Nile Kagera Rusumo -2.80 30.80 30.74 1901-2005 168 
180 Nile Atbara Kilo 3 17.80 34.30 152.16 1901-2005 84 
181 Nile Blue Nile Roseires Dam 11.80 34.30 202.88 1901-2005 144 
182 Nile Sobat Hillet Doleib 9.30 32.30 222.93 1901-2005 113 
183 Nile Victoria Nile Owen Reservoir 0.30 33.30 258.38 1901-2005 120 
184 Nile Blue Nile Khartoum 15.62 32.55 322.59 1900-1982 144 
185 Nile Bahr El Jebel Mongalla 4.80 31.80 470.56 1901-2005 144 
186 Nile White Nile Malakal 9.80 31.80 1350.02 1901-2005 144 
187 Nile White Nile Mogren 15.80 32.30 1581.65 1901-2005 120 
188 Nile Nile Aswan Dam 23.96 32.90 2677.63 1869-1984 168 
189 Nile Nile El Ekhsase 29.80 31.30 2878.97 1901-2005 144 
190 Ob Biya Biysk 52.52 85.27 40.53 1895-2000 324 
191 Ob Om Kalachinsk 55.07 74.58 45.27 1936-1999 348 
192 Ob Iset Mekhonskoje 56.15 64.57 50.62 1936-1989 228 
193 Ob Chulym Teguldet 57.33 88.10 55.60 1936-2000 336 
194 Ob Chernyi Irtish Buran 48.00 85.22 56.16 1938-1987 204 
195 Ob Vakh Yobkhinskoye 61.05 78.55 57.52 1953-1996 191 
196 Ob Tom Tomsk 56.50 84.92 57.88 1918-2000 324 
197 Ob Tura Tiumen 57.15 65.53 59.30 1896-1998 324 
198 Ob Northern Sosva Sosva 63.67 61.88 63.89 1937-1999 348 
199 Ob Konda Altay 60.33 69.00 67.99 1962-1999 339 
200 Ob Ishim Derjavinskoje 51.03 66.37 75.42 1963-1987 182 
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201 Ob Ket (Bolshaya 
Ket) Rodyonovka 58.42 83.67 76.14 1955-2000 300 

202 Ob Tavda Nizhnyaya Tavda 57.68 66.18 87.43 1967-1995 261 
203 Ob Severnaya Sosva Igrim 63.18 64.40 88.07 1958-1999 345 
204 Ob Chulym Zyryanskoje 56.85 86.62 95.33 1936-2000 336 
205 Ob Ob Phominskoje 52.45 84.92 101.62 1953-2000 336 
206 Ob Ishim Petropavlovsk 54.97 69.12 114.61 1959-1987 176 
207 Ob Chulym Baturino 57.78 85.15 130.67 1936-2000 336 
208 Ob Tobol Karkino 56.08 65.92 165.45 1976-1998 268 
209 Ob Ob Barnaul 53.40 83.82 170.56 1922-2000 336 
210 Ob Irtish Shulba 50.38 81.13 180.44 1937-1979 99 
211 Ob Ob Kamen'Na Obi 53.80 81.33 214.73 1936-2000 336 
212 Ob Irtish Semiyarskoje 50.88 78.32 238.81 1960-1987 204 
213 Ob Ob Dubrovino 55.48 83.28 259.53 1962-2000 203 
214 Ob Irtish Omsk 55.02 73.21 326.73 1936-1999 348 
215 Ob Irtish Ekaterininskoje 56.92 74.53 355.91 1980-1999 240 
216 Ob Ob Kolpashevo 58.30 82.88 480.48 1936-2000 336 
217 Ob Irtish Ust-Ishim 57.70 71.17 554.08 1936-1987 116 
218 Ob Ob Prokhorkino 59.52 79.47 744.62 1960-1997 291 
219 Ob Irtish Tobolsk 58.20 68.23 1011.59 1891-1999 346 
220 Ob Irtish Hanti-Mansisk 60.97 69.07 1159.35 1974-1999 236 
221 Ob Ob Belogorje 61.07 68.60 2205.52 1936-1999 305 
222 Ob Ob Salekhard 66.57 66.53 2449.95 1930-2003 348 
223 Paraná Rio Apa Sao Carlos -22.22 -57.30 11.42 1971-2006 324 
224 Paraná Rio Miranda Miranda -20.24 -56.40 14.36 1965-2006 329 
225 Paraná Rio Anhandui Delfino Costa -21.61 -53.05 14.38 1976-2005 286 

226 Paraná Rio Negro Fazenda Rio 
Negro -19.57 -56.20 14.54 1968-1986 185 

227 Paraná Rio Piquiri Balsa Santa Ma-
ria -24.17 -53.74 19.64 1969-2003 360 

228 Paraná Rio Sao Lourenco Acima Do Cor-
rego Grande -16.61 -55.21 20.70 1969-2006 318 

229 Paraná Rio Tibaji Jataizinho -23.25 -50.98 22.44 1931-1999 339 
230 Paraná Iguacu Uniao Da Vitoria -26.23 -51.08 24.94 1930-2007 360 
231 Paraná Rio Taquari Coxim -18.51 -54.76 26.30 1966-2007 311 
232 Paraná Rio Piquiri Sao Jeronimo -17.20 -56.01 26.45 1967-2007 303 

233 Paraná Rio Ivai Porto Paraiso Do 
Norte -23.32 -52.66 28.13 1953-2002 358 

234 Paraná Paraguai Caceres (Dnpvn) -16.08 -57.70 32.73 1965-2007 357 
235 Paraná Salado El Arenal -25.80 -63.80 41.74 1901-2005 116 
236 Paraná Iguacu Salto Ozorio -25.54 -53.03 47.17 1940-1996 312 
237 Paraná Iguacu Salto Cataratas -25.68 -54.43 69.39 1942-2005 360 
238 Paraná Bermejo El Colorado -25.80 -59.80 76.30 1901-2005 80 
239 Paraná Pilcomayo La Paz -22.45 -62.37 97.96 1960-1980 116 
240 Paraná Rio Cuiaba Porto Alegre -17.62 -56.97 103.42 1967-2005 331 
241 Paraná Rio Paranaiba Fazenda Santa Fe -18.80 -50.30 170.14 1901-2005 28 
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242 Paraná Paraguai Porto Esperanca 
(Dnos) -19.60 -57.44 367.21 1963-1995 296 

243 Paraná Parana Uhe Jupia-
Jusante-Jju -20.80 -51.80 478.62 1901-2005 184 

244 Paraná Paraguai Porto Murtinho 
(Fb/Dnos) -21.70 -57.89 485.49 1939-2007 360 

245 Paraná Parana Guaira -24.30 -54.30 816.94 1901-2005 108 
246 Paraná Parana Posadas -27.30 -55.80 947.39 1901-2005 151 
247 Paraná Parana Corrientes -27.97 -58.85 2060.04 1904-1983 152 
248 Paraná Parana Timbues -32.67 -60.71 2486.63 1905-1994 283 

 
Table A.2 Altimetry gauging stations used for model testing (Hydroweb (Crétaux et al. 2011); 
Satellites: Topex/Poseidon, Jason-1). 

Basin River Station 
Lati 
tude 

Longi 
tude 

Catch-
ment area 
[10³ km³] 

Time series 
Water-
GAP 

cell ID 

No. of ob-
servations 
1993-2010 
per 0.5°cell 

No. 

Amazon Amazon 493_01 -1.67 -66.32 249.21 2002-2010 54274 75 1 
Amazon Amazon 908_01 -1.85 -65.64 255.36 2002-2008 54275 136  2 
Amazon Amazon 951_01 -1.90 -65.56 255.36 2002-2010 54275 

 
 

Amazon Amazon 407_02 -3.37 -55.48 490.83 2002-2010 54908 74 3 
Amazon Amazon 493_02 -2.40 -66.17 1234.22 2002-2010 54479 77 4 
Amazon Amazon 493_03 -2.51 -66.14 1234.22 2002-2010 54479    
Amazon Amazon 364_02 -2.91 -65.16 1697.20 2002-2010 54677 144 5 
Amazon Amazon 951_02 -2.50 -65.42 1697.20 2002-2010 54677    
Amazon Amazon 951_03 -2.71 -65.38 1697.20 2002-2010 54677    
Amazon Amazon 822_02 -3.33 -64.53 1737.10 2002-2010 54889 73 6 
Amazon Amazon 822_03 -3.40 -64.55 1737.10 2002-2010 54889    
Amazon Amazon T076 -3.86 -61.69 1832.23 1993-2002 55113 236 7 
Amazon Amazon T152 -3.23 -59.08 2932.85 1993-2002 54900 211 8 
Amazon Amazon T139b -2.70 -56.95 4504.96 1993-2002 54694 268 9 
Amazon Amazon T139h -2.58 -56.90 4504.96 1993-2002 54694    
Amazon Amazon T228 -2.51 -56.50 4523.41 1993-2002 54498 229 10 
Amazon Amazon T215 -1.98 -53.85 5266.47 1993-2002 54299 258 11 
Ganges Ganges tp116_1 29.56 78.04 21.31 1993-2002 40351 265 12 
Ganges Ganges j2_116 27.93 78.86 37.56 2008-2011 41607 82 13 
Ganges Ganges j2_181 27.41 79.63 72.77 2008-2011 41910 80 14 
Ganges Ganges J2_003 25.58 81.59 81.07 2008-2011 42802 82 15 
Ganges Ganges j2_192 25.21 83.00 464.12 2008-2011 43096 65 16 
Ganges Bra J2_231 24.68 89.67 521.32 2008-2011 43384 89 17 
Ganges Ganges j2_079 25.70 84.48 630.36 2008-2011 42808 227 18 
Ganges Ganges tp079_1 25.69 84.47 630.36 1993-2002 42808    
Ganges Ganges 595_02 25.70 84.74 714.88 2002-2008 42809 62 19 
Ganges Ganges 595_03 25.75 84.73 714.88 2002-2008 42809    
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Ganges Ganges 051_01 25.55 85.49 758.51 2002-2008 42810 58 20 
Ganges Ganges tp014_1 25.50 85.70 775.30 1993-2002 43101 240 21 
Ganges Ganges j2_014 25.51 85.70 775.30 2008-2011 43101    
Ganges Ganges 509_01 25.32 86.27 794.68 2002-2008 43102 62 22 
Ganges Ganges 509_02 25.35 86.27 794.68 2002-2008 43102    
Ganges Ganges 967_03 25.27 87.00 800.27 2002-2008 43103 31 23 
Ganges Ganges j2_155 25.29 87.12 901.76 2008-2011 43104 210 24 
Ganges Kos j2_155 25.42 87.18 901.76 2008-2011 43104    
Ganges Ganges tp155_1 25.26 87.11 901.76 1993-2002 43104    
Ganges Ganges 423_01 25.26 87.73 918.37 2002-2008 43105 55 25 
Ganges Ganges 423_02 25.30 87.71 918.37 2002-2008 43105    
Ganges Ganges j2_090 23.93 89.26 937.99 2008-2011 43947 507 26 
Ganges Ganges j2_231 23.92 89.33 937.99 2008-2011 43947    
Ganges Ganges tp090_1 23.92 89.26 937.99 1993-2002 43947    
Ganges Ganges tp231_1 23.92 89.33 937.99 1993-2002 43947    
Ganges Ganges 337_01 23.82 89.52 1478.93 2002-2008 43948 58 27 
Ganges Ganges 795_02 23.42 90.34 1487.40 2002-2008 44229 59 28 
Mississippi Mississippi tp219_2n 41.87 -90.17 230.69 1993-2002 32185 268 29 
Mississippi Mississippi tp219_2s 41.80 -90.22 230.69 1993-2002 32185    
Mississippi Mississippi tp219_1 40.11 -91.49 354.51 1993-2002 33269 100 30 
Mississippi Mississippi tp026_1 35.75 -89.85 2399.30 1993-2002 36332 123 31 
Mississippi Mississippi tp204_1 33.12 -91.13 2912.84 1993-2002 37918 137 32 
Mississippi Mississippi tp117_1 30.84 -91.54 3210.93 1993-2002 39494 252 33 
Mississippi Mississippi tp193_1 29.35 -89.48 3232.18 1993-2002 40485 73 34 
Niger Niger tp122_2 15.16 -0.61 23.84 1993-2002 48233 215 35 
Niger Niger tp085_5 11.31 -6.53 30.27 1993-2002 49535 135 36 
Niger Niger j2_148_1 12.46 -8.08 115.07 2008-2011 49168 176 37 
Niger Niger tp148_1 12.46 -8.08 115.07 1993-2002 49168    
Niger Niger tp135_2 13.42 5.61 131.43 1993-2002 48824 214 38 
Niger Niger j2_085_1 13.90 -5.54 142.06 2008-2011 48612 455 39 
Niger Niger j2_224_1 13.75 -5.73 142.06 2008-2011 48612    
Niger Niger tp085_1 13.92 -5.53 142.06 1993-2002 48612    
Niger Niger tp224_1 13.76 -5.74 142.06 1993-2002 48612    
Niger Niger tp085_3 14.04 -5.49 148.03 1993-2002 48419 209 40 
Niger Niger 545_02 15.25 -4.00 307.48 2002-2010 48025 78 41 
Niger Ben j2_020_1 8.01 7.75 316.28 2008-2011 50968 80 42 
Niger Niger 545_01 15.89 -4.14 316.38 2002-2010 47817 78 43 
Niger Niger j2_046_1 16.06 -3.80 343.07 2008-2011 47605 212 44 
Niger Oro j2_046_4 16.23 -3.87 343.07 2008-2011 47605    
Niger Niger tp046_4 16.20 -3.86 343.07 1993-2002 47605    
Niger Niger 388_01 16.73 -2.56 375.50 2002-2010 47392 120 45 
Niger Niger 459_01 16.67 -2.89 375.50 2002-2010 47392    
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Niger Niger 917_01 16.83 -2.20 381.39 2002-2010 47393 68 46 
Niger Niger 846_01 16.92 -1.80 387.29 2002-2010 47394 64 47 
Niger Niger 302_01 17.01 -1.06 399.04 2003-2010 47176 279 48 
Niger Niger 373_01 17.01 -1.53 399.04 2002-2010 47176    
Niger Niger j2_122_1 17.01 -1.35 399.04 2008-2011 47176    
Niger Niger j2_161_1 17.02 -1.47 399.04 2008-2011 47176    
Niger Niger 831_01 17.00 -0.81 401.98 2002-2010 47177 71 49 
Niger Niger 760_01 16.94 -0.36 428.42 2002-2010 47397 63 50 
Niger Niger 216_01 15.97 0.13 563.37 2002-2010 47826 143 51 
Niger Niger 287_01 15.96 0.15 563.37 2002-2010 47826    
Niger Niger j2_237_1 15.44 0.73 575.25 2008-2011 48035 245 52 
Niger Niger tp237_1 15.43 0.73 575.25 1993-2002 48035    
Niger Niger 130_01 14.37 1.20 646.67 2002-2010 48432 144 53 
Niger Niger 745_01 14.31 1.25 646.67 2002-2010 48432    
Niger Niger 874_03 10.62 4.66 1252.84 2002-2010 49754 154 54 
Niger Niger 874_04 10.90 4.72 1252.84 2002-2010 49754    
Niger Niger j2_135_1 10.96 4.68 1252.84 2008-2011 49754    
Niger Niger j2_211_3 8.37 6.56 1416.71 2008-2011 50771 64 55 
Niger Niger 702_01 6.65 6.65 1766.53 2002-2010 51342 70 56 
Niger Niger 029_01 5.99 6.72 1781.82 2002-2010 51708 73 57 
Niger Niger j2_198_4 4.77 6.10 1787.96 2008-2011 52056 356 58 
Niger Niger tp198_4 4.76 6.10 1787.96 1993-2002 52056    
Nil Nil tp133_1n 6.55 31.41 510.38 1993-2002 51391 269 59 
Nil Nil tp120_2 7.09 30.77 516.49 1993-2002 51203 283 60 
Nil Nil tp196_1 10.68 32.28 1401.52 1993-2002 49809 131 61 
Nil Nil tp018_10 21.30 30.89 2543.18 1993-2002 45266 73 62 
Nil Nil 414_04 22.50 31.87 2566.09 2002-2010 44703 74 63 
Nil Nil 771_01 22.61 32.34 2577.49 2002-2010 44419 72 64 
Nil Nil 227_04 23.40 32.86 2663.50 2002-2010 44136 149 65 
Nil Nil 227_05 23.26 32.90 2663.50 2002-2010 44136    
Nil Nil 227_06 23.18 32.92 2663.50 2002-2010 44136    
Nil Nil 872_03 23.12 32.74 2663.50 2002-2010 44136    
Nil Nil 227_03 23.54 32.83 2677.63 2002-2010 43854 149 66 
Nil Nil 872_01 23.77 32.90 2677.63 2002-2010 43854    
Nil Nil 872_02 23.62 32.86 2677.63 2002-2010 43854    
Nil Nil 414_02 26.07 32.77 2758.59 2002-2010 42424 59 67 
Nil Nil tp159_1 27.05 31.26 2797.31 1993-2002 41821 27 68 
Nil Nil tp170_1 31.38 31.72 2886.93 1993-2002 39262 87 69 
Parana Parana 134_03 -30.16 -59.41 10.70 2002-2010 64424 74 70 
Parana Parana 134_04 -30.21 -59.42 10.70 2002-2010 64424    
Parana Parana tp189_J -25.22 -54.48 830.95 1993-2002 62823 213 71 
Parana Parana tp178_I -27.29 -57.91 958.36 1993-2002 63479 290 72 
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Basin River Station 
Lati 
tude 

Longi 
tude 

Catch-
ment area 
[10³ km³] 

Time series 
Water-
GAP 

cell ID 

No. of ob-
servations 
1993-2010 
per 0.5°cell 

No. 

Parana Parana tp102_E -29.59 -59.60 2169.51 1993-2002 64271 340 73 
Parana Parana tp113_D -29.93 -59.63 2169.51 1993-2002 64271    
Parana Parana 493_02 -30.05 -59.61 2182.87 2002-2010 64423 75 74 
Parana Parana 493_03 -30.10 -59.60 2182.87 2002-2010 64423    
Parana Parana 035_01 -31.16 -60.03 2204.15 2002-2010 64718 72 75 
Parana Parana 035_02 -31.24 -60.01 2204.15 2002-2010 64718    
Parana Parana 579_01 -31.58 -60.64 2406.05 2002-2010 64862 375 76 
Parana Parana tp113_C -31.84 -60.66 2406.05 1993-2002 64862    
Parana Parana tp026_B1 -33.03 -60.57 2486.63 1993-2002 65134 290 77 
Parana Parana tp026_B2 -32.91 -60.64 2486.63 1993-2002 65134    
Parana Parana 134_05 -32.75 -60.13 2491.84 2002-2010 65135 147 78 
Parana Parana 579_04 -32.57 -60.36 2491.84 2002-2010 65135    
Parana Parana 592_09 -33.63 -59.66 2543.93 2002-2010 65255 76 79 
Parana Parana tp189_A -33.87 -58.96 2559.30 1993-2002 65371 281 80 
Parana Parana tp189_O -33.64 -58.81 2559.30 1993-2002 65371     
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Figure A.12 Model efficiency of WaterGAP (WG22b, WG22b_fpl k and WG22b_fpl b) simu-
lating monthly river discharge at 248 locations within eight major river basins in the time period 
1971-2000 (observed data: GRDC 2013).  Top: change in model performance of WG22b_fpl k 
to the former WG22b at 248 gauging stations; at least two of the three efficiency criteria are 
higher (green), equal (yellow), or lower (red). Bottom: Box plot of model efficiency values R², 
NSE and VE, representing the median, 25% and 75% quartile (box) and the 1.5xIQR (whisk-
ers). Outliers are not shown. 

Table A.3 Model efficiency (R², NSE, VE) of WaterGAP 2.2b (22b), WaterGAP 
2.2b_fpl kinematic (k) and WaterGAP 2.2b_fpl backwater (b) simulating monthly river dis-
charge at 40 locations within the Amazon River basin in the time period 1971-2000 (observed 
data: GRDC 2013). Note that WaterGAP 2.2b_fpl backwater is not calibrated. 

No. 
mean R² NSE VE 

observed 22b k b 22b k b 22b k b 22b k b 
1 752.71 726.91 643.75 655.45 0.28 0.25 0.25 0.2 0.17 0.18 0.63 0.62 0.62 
2 393.11 426.36 417.15 425.81 0.6 0.62 0.6 0.58 0.59 0.58 0.51 0.51 0.51 
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No. 
mean R² NSE VE 

observed 22b k b 22b k b 22b k b 22b k b 
3 438.66 455.89 443.67 608.14 0.75 0.78 0.57 0.74 0.76 0.4 0.62 0.64 0.38 
4 861.46 857.4 875.06 882.54 0.22 0.2 0.2 0.22 0.2 0.19 0.58 0.57 0.56 
5 118.91 133.62 116.55 116.09 0.68 0.7 0.71 0.63 0.68 0.69 0.52 0.55 0.56 
6 143.49 612.45 601.15 637.29 0.02 0.02 0.01 -17.28 -15.93 -19.23 -2.49 -2.41 -2.66 
7 359.51 344.81 360.91 367.33 0.65 0.68 0.68 0.63 0.62 0.64 0.55 0.52 0.53 
8 534.41 551.5 531.48 544.53 0.78 0.8 0.78 -3.59 -2.72 -3.29 0.53 0.56 0.54 
9 657.38 716.64 688.38 847.94 0.48 0.46 0.48 0.41 0.41 0.27 0.52 0.52 0.45 

10 494.29 536.18 539.89 564.26 0.67 0.7 0.68 0.41 0.52 0.34 0.63 0.64 0.6 
11 688.2 803.08 797.34 811.77 0.71 0.72 0.7 0.43 0.49 0.41 0.68 0.7 0.68 
12 916.78 855.39 865.62 875.6 0.61 0.6 0.59 0.54 0.51 0.51 0.53 0.49 0.5 
13 925.14 972.16 953.59 971.13 0.73 0.73 0.73 0.69 0.65 0.67 0.64 0.62 0.63 
14 2394.29 2495.36 2436.3 2450.76 0.6 0.58 0.57 0.58 0.56 0.55 0.73 0.72 0.72 
15 1254.78 1265.01 1344.37 1361.85 0.67 0.7 0.69 0.64 0.64 0.63 0.6 0.59 0.58 
16 1037.54 1221.54 1195.19 1381.75 0.72 0.73 0.73 0.32 0.48 0.23 0.61 0.64 0.55 
17 1484.9 1593.97 1520.22 1582.9 0.69 0.72 0.71 -8.09 -5.52 -6.94 0.55 0.6 0.57 
18 2480.45 2406.08 2399.34 2480.86 0.51 0.49 0.48 0.5 0.49 0.48 0.71 0.7 0.7 
19 4856.03 5207.19 4446.55 4561.13 0.76 0.72 0.71 0.73 0.64 0.65 0.78 0.75 0.75 
20 1356.27 1475.08 1431.39 1472.33 0.77 0.78 0.77 0.69 0.75 0.71 0.72 0.75 0.73 
21 1288.25 1398.9 1420.22 1447.61 0.77 0.76 0.76 0.76 0.75 0.75 0.64 0.65 0.64 
22 1388.9 1550.54 1561.18 1571.71 0.68 0.68 0.67 0.63 0.58 0.6 0.52 0.47 0.48 
23 46053.24 5902.15 6515.75 6868.39 0.27 0.28 0.31 -8.1 -7.85 -7.69 0.13 0.14 0.15 
24 3483.42 3595.42 3456.45 3601.44 0.74 0.72 0.72 0.74 0.71 0.72 0.67 0.65 0.65 
25 885.01 982.27 954.98 968.27 0.52 0.67 0.66 0.32 0.62 0.59 0.61 0.7 0.69 
26 2676.62 2593.62 2601.96 2685.97 0.78 0.8 0.78 0.78 0.8 0.78 0.67 0.69 0.67 
27 2830.46 2896.91 2709.35 2779.47 0.9 0.89 0.88 0.89 0.88 0.88 0.81 0.8 0.8 
28 3784.67 4190.39 4026.85 4058.21 0.79 0.73 0.72 0.71 0.7 0.69 0.76 0.74 0.74 
29 4753.63 4802.57 5006.76 5077.45 0.76 0.73 0.72 0.75 0.7 0.69 0.75 0.72 0.71 
30 13584.13 14007.04 13662.75 13878.69 0.66 0.59 0.57 0.63 0.56 0.55 0.78 0.76 0.76 
31 5651.07 5817.02 5823.06 5975.52 0.79 0.82 0.78 0.78 0.76 0.74 0.73 0.71 0.7 
32 14366.35 16452.26 16115.35 17461.39 0.66 0.63 0.61 0.52 0.51 0.29 0.79 0.78 0.74 
33 8145.93 9141.86 8725.73 8744.45 0.81 0.8 0.78 0.52 0.68 0.63 0.75 0.78 0.76 
34 7883.92 6117.34 5618.88 5884.27 0.31 0.24 0.28 0.23 0.08 0.13 0.46 0.4 0.41 
35 10088.15 10172.35 10049 9982.9 0.9 0.85 0.84 0.87 0.83 0.82 0.85 0.83 0.82 
36 8250.98 9507.01 9464.77 9989.87 0.8 0.83 0.81 0.74 0.8 0.72 0.69 0.71 0.66 
37 19538.48 22914.02 19357.72 19728.79 0.74 0.72 0.71 0.59 0.72 0.71 0.72 0.75 0.75 
38 46001.52 46576.25 41674.99 44040.81 0.68 0.55 0.57 0.68 0.42 0.52 0.86 0.8 0.82 
39 26582.21 30319.47 26526.83 26322.13 0.63 0.61 0.56 0.49 0.61 0.55 0.69 0.71 0.69 
40 170356.27 181637.23 174644.22 170356.27 0.69 0.69 0.54 0.57 0.63 0.46 0.86 0.86 0.83 
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2.3 Water Storage 

Table A.4 Model efficiency for major river basins and their subbasins larger than 400000 km² 
comparing monthly values of TWS variations simulated by three WaterGAP model variants 
(WG22b, WG22b_fpl k, and WG22b_fpl b) (all filtered) to GRACE observations in the time 
period from August 2002 to August 2009.  
Basin / Subbasin  R²   NSE   RMSE   

22b fpl k fpl b 22b fpl k fpl b 22b fpl k fpl b 
Amazon 0.88 0.91 0.93 0.84 0.87 0.9 54.29 47.57 41.71 
Upstream Sao Paulo de Olivenca 0.85 0.85 0.84 0.81 0.82 0.8 51.55 50.03 52.13 
Upstream Porto Velho 0.62 0.62 0.62 0.6 0.58 0.56 47.67 48.54 49.74 
Upstream Obidos 0.83 0.88 0.9 0.76 0.82 0.83 76.62 67.06 64.02 
Upstream Altamira 0.87 0.86 0.86 0.84 0.82 0.82 81.45 85.22 85.08 
Ob 0.68 0.67 0.65 0.65 0.62 0.6 31.59 32.9 34.15 
Upstream Salekhard 0.73 0.72 0.69 0.69 0.66 0.64 37.59 39.39 40.81 
Upstream Hanti-Mansisk 0.65 0.63 0.63 0.57 0.53 0.52 35.66 37.2 37.76 
Upstream Ust-Ishim 0.6 0.59 0.58 0.53 0.51 0.48 28.57 29.09 30.02 
Upstream Prokhorkino 0.57 0.54 0.56 0.56 0.53 0.52 40.12 41.45 41.53 
Mississippi 0.58 0.59 0.6 0.48 0.5 0.52 30.76 30.3 29.73 
Upstream Vicksburg 0.35 0.36 0.38 0.14 0.16 0.21 41.57 41.02 39.76 
Upstream Metropolis 0.72 0.71 0.7 0.67 0.68 0.68 40.14 39.98 39.77 
Upstream Nebraska City 0.56 0.56 0.5 0.53 0.53 0.46 33.41 33.51 35.74 
Upstream Bismarck 0.6 0.6 0.5 0.58 0.58 0.5 35.03 35.13 38.34 
Paraná 0.76 0.74 0.68 0.74 0.74 0.68 27.41 27.71 30.67 
Upstream Timbues 0.59 0.39 0.33 0.57 0.36 0.29 41.42 50.63 53.28 
Upstream Corrientes 0.27 0.22 0.22 0.25 0.18 0.19 41.99 43.93 43.73 
Upstream Porto Murtinho 0.67 0.58 0.56 0.64 0.57 0.54 61.49 67.34 69.49 
Upstream Posadas 0.69 0.67 0.58 0.63 0.64 0.56 35.05 34.93 38.39 
Upstream Uhe Jupia-Jusante-JJU 0.89 0.87 0.72 0.78 0.77 0.62 59.23 60.95 78.91 
Ganges 0.9 0.91 0.81 0.87 0.87 0.77 37.63 38.46 51.09 
Upstream Farakka 0.82 0.83 0.66 0.78 0.78 0.61 51.93 52.01 68.11 
Upstream Bahadurabad 0.89 0.89 0.88 0.85 0.82 0.78 39.04 42.16 46.59 
Niger 0.82 0.8 0.76 0.7 0.68 0.65 44.24 45.53 48.22 
Upstream Lokoja 0.74 0.74 0.68 0.65 0.64 0.59 62.11 63.05 67.16 
Upstream Gaya 0.51 0.55 0.52 0.38 0.39 0.35 34.08 33.99 34.99 
Upstream Dire 0.75 0.7 0.67 0.64 0.61 0.6 61.05 63.53 65.08 
Nile 0.69 0.7 0.64 0.63 0.66 0.61 29.58 28.49 30.43 
Upstream El Ekhsase 0.63 0.64 0.6 0.55 0.62 0.58 28.24 26.15 27.31 
Upstream Malakal 0.75 0.68 0.66 0.65 0.61 0.59 50.7 53.62 54.74 
Upstream Mongalla 0.22 0.2 0.03 0.11 0.13 -0.19 51.18 50.65 59.15 
Lena 0.65 0.58 0.54 0.58 0.57 0.54 30.46 30.84 31.95 
Upstream Stolb 0.53 0.5 0.49 0.51 0.5 0.48 34.03 34.18 34.73 
Upstream Solyanka 0.65 0.59 0.56 0.58 0.57 0.54 32.38 32.99 34.02 
Upstream Ohotsky Perevoz 0.64 0.58 0.55 0.63 0.58 0.55 35.37 37.28 38.69 
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Figure A.13 Basin-scale mean monthly (right) and monthly (left) TWS variations [mm EWH] 
observed by GRACE (grey) and modeled by WG22b (black), WG22b_fpl k (red), and 
WG22b_fpl b (blue).  Model results are filtered. 
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Figure A.14 Basin-scale mean monthly (1971-2000) TWS variations and water storage varia-
tions of all single storage compartments [mm EWH] modeled by WG22b (solid), WG22b_fpl k 
(pointed), and WG22b_fpl b (dashed).  Model results are unfiltered. 

 
 

3 Appendix to Chapter 6  
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Table A.5 Non-exhaustive overview of the various large-scale models from different communities (including WaterGAP 2.2_fpl) and their properties focused 
on floodplain algorithms (extended from Sood and Smakhtin (2015), and Bierkens (2015)). 

Features WaterGAP  ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
 (Water-Global 

Analysis and 
Prognosis) model 

(Interactions 
Between Soil, 
Biosphere, and 
Atmosphere - 
Total Runoff 
Integrating Path-
ways) 

(Water Balance 
Model-Water 
Transport Model) 

(Catchment-
based Macro-
scale Floodplain) 
model (runoff 
used from Land 
Surface Model 
MATSIRO) 

(PCRaster 
GLOBal Water 
Balance) model 

(Modelo de 
Grandes Bacias - 
Instituto de 
Pesquisas 
Hidráulicas) 

(Terrestrial Hy-
drology Model 
with Biogeochem-
istry) - formerly 
HYDRA 

(Joint UK Land 
Environment 
Simulator - Grid-
to-Grid) 

 

References Müller Schmied et 
al. (2014), flood-
plain algorithm 
developed and 
presented within 
this PhD work 

Decharme et al. 
(2008), Decharme 
et al. (2012) 

Beighley et al. 
(2009), Beighley et 
al. (2011) 

Yamazaki et al. 
(2011), Yamazaki 
et al. (2012b) 

van Beek and 
Bierkens (2009), 
Wada et al. 
(2014), Ringeval 
et al. (2014)  

Paiva et al. (2011), 
Paiva et al. (2013) 

Coe (2000), Coe et 
al. (2002), Coe et 
al. (2008) 

Dadson et al. 
(2010) 

Bates and De Roo 
(2000), Wilson et 
al. (2007), Trigg et 
al. (2009), Bian-
camaria et al. 
(2009), Neal et al. 
(2012) 

Type of model Global Hydrology 
Model 
 

Global Hydrology 
Model 
 

Global Hydrology 
Model 
 

Large-scale cou-
pled river routing 
and land surface 
model (runoff 
from MATSIRO) 

Global Hydrology 
Model 
 

Large-scale hydro-
logical model 

Large-scale Hydro-
logical model 
 

Large-scale cou-
pled land surface 
and routing model 
 

Large-scale hydro-
logical model 
 

Spatial resolu-
tion and extent 

0.5 degree, global 
extent 

1.0 degree, global 
extent 

0.5 degree, global 
extent; floodplain 
modeling presented 
only for the Ama-
zon River basin on 
an irregular com-
putational grid 

0.25 degree, global 
extent, river flow 
simulation in 
continental-scale 
rivers on unit 
catchment ele-
ments 

0.5 degree, global 
extent 

Catchment units, 
different basins in 
South America 

5 minute, Amazon 
and Tocantis River 
basins 

0.5 degree, select-
ed areas on the 
globe; mainly UK; 
floodplain model-
ing presented for 
the Niger inland 
delta 

Raster-based 
discretization, 
resolution depends 
on input DEM, 
selected areas on 
the globe 

Validation 
regarding 
floodplain inun-
dation 

global: 
floodplain area, 
floodplain height 

global: 
floodplain area 

Amazon river 
basin: 
floodplain width  

Amazon river 
basin: 
floodplain area, 
floodplain height 

Amazon river 
basin: 
floodplain extent 
and depth 

Amazon river 
basin: 
floodplain area, 
floodplain height 

Amazon river 
basin: 
floodplain area, 
floodplain height 

Niger inland delta 
(study area 
~13°x10°): 
inundated area 

Ob river basin 
(study area 1°x5°): 
water heights, 
Amazon river 
basin (study area 
2°x1.5°): water 
heights, 
Niger inland delta: 
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Features WaterGAP  ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
heights and extent 

Temporal reso-
lution  

daily daily (internal 20 
minutes to 1 hour) 

daily (internal 
routing time step of 
15min) 

daily (internal 
routing time step 
of 20-30min) 

daily daily daily monthly (internal 
30-60min) 

daily (Internal 
time step seconds) 

Drainage net-
work 

DDM30 Hydro1k Derived from 
ground slopes 
using SRTM DEM 

HydroSHEDS + 
SRTM3 

DDM30 SRTM + GTOPO Amazon Basin 
river directions 
(Costa et al. 2002) 

Hydro1k ACE (Ob), SRTM 
(Amazon) 

Inland water 
bodies 

Yes, GLWD; 
static but area is a 
function of storage 
(area is reduced 
with decreasing 
storage) 

No Yes, Reservoirs 
only (GRanD) 

No (lakes and 
wetlands are treat-
ed as floodplains; 
MATSIRO in-
cludes reservoirs) 

Yes, GLWD; 
static but lake area 
is a function of 
lake volume 

No Yes, GGHYDRO; 
static 

Yes, global lake 
database 
GLDBv2; static  

Yes; static but 
evaporation is a 
function of lake 
level 

Human water 
use 

Yes No Yes Yes (MATSIRO) Yes No Yes Yes, irrigation 
only 

Yes 

Vegetation Fixed, climatology 
of phenology, 
irrigated area 
change; 
16 land cover 
types 

12 vegetation types 
(ECOCLIMAP 
database) 

Fixed, climatology 
of phenology, 
irrigated area 
change; 
3 vegetation types, 
forest, grassland, 
and shrubland 

Simple crop 
growth model 
(MATSIRO) 

Fixed, climatology 
of phenology, 
irrigated area 
change; 
3 categories natu-
ral vegetation, 
rain-fed crops, and 
irrigated crops; 
further subdivided 
into tall and short 
vegetation. 

Fixed, climatology 
of phenology, 
Vegetation map of 
South America 
from Eva et al. 
(2004) 

Fixed, climatology 
of phenology 

Dynamic + phe-
nology + plant 
physiology; 
Optional: dynamic 
vegetation using 
TRIFFID 

LAI-observed, 
LAI Climatology 

Channel geome-
try (river width 
and depth) and 
bankfull/flood 
initiation condi-
tions 

As a function of 
river discharge 
(channel width 
(and channel depth 
at initial time step) 
calculated using 
hydraulic relation-
ships after Allen et 
al. (1994)) and 
river water storage 

As a function of 
river discharge and 
a basin-specific 
coefficient; bank-
full height is calcu-
lated as a non-
linear function of 
river width 

As a function of 
drainage area 
(bankfull depth and 
width and flood-
plain width based 
on relationships 
presented in 
Gummadi (2008)) 

As a function of 
discharge (channel 
width and bank 
height determined 
as a function of 
maximum 30 day 
upstream runoff) 

As a function of 
discharge (channel 
depth and width 
calculated using 
hydraulic relation-
ships after Allen et 
al. (1994));  
bankfull discharge 
based on a statisti-
cal relationship 

As a function of 
drainage area 
(channel width and 
bank height), 
coefficients de-
termined using 
cross section 
profiles from 341 
gauge stations 
located in the 

As a function of 
drainage area (river 
stage height and 
width); coefficients 
determined based 
on visual inspec-
tion of observed 
hydrographs in the 
Amazon River 
basin) 

Not specified Amazon: cross-
sections and bank-
full depth from 
sonar survey data; 
Ob: constant width 
and depth; Niger: 
as a function of 
discharge (using 
hydraulic relation-
ships after Leo-
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Features WaterGAP  ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
at previous time 
step (channel 
depth); bankfull 
discharge calculat-
ed using the partial 
duration series 
approach (Sec-
tion 4.3.1) 

between climate 
indicators and 
observed bankfull 
discharge for 296 
stations 
(Vörösmarty et al. 
1998). Relation-
ship extrapolated 
over the world. 

Brazilian Amazon pold and Maddock 
(1953) with coef-
ficients from Hey 
and Thorne 
(1986)) 

River - flood-
plain interaction 

When discharge 
exceeds the bank-
full capacity of the 
channel, a portion 
of it is routed 
along the flood-
plain; 
backflow to river 
if inflow from 
upstream is below 
actual discharge; 
river water level 
equals floodplain 
water level 

The flood reservoir 
fills when the river 
height exceeds the 
critical river bank-
full height, and 
vice versa; 
river-floodplain 
interaction as a 
function of river-
floodplain water  
slope 

When discharge 
exceeds the bank-
full capacity of the 
channel, a portion 
of it is routed along 
the floodplain;  
backflow to river if 
discharge is below 
bankfull capacity; 
river water level 
equals floodplain 
water level 

That water spilling 
from the river 
channel (flood 
initiation storage) 
is stored in the 
floodplain.  
river water level 
equals floodplain 
water level 
 

The volume of 
water in excess of 
bankfull discharge 
floods the sur-
rounding areas; 
no backflow to 
river necessary as 
floodplains are 
treated as regular 
river stretches; 
river water level 
equals floodplain 
water level 

No interaction 
(water level (and 
flooded area) is 
calculated regard-
ing river bottom 
elevation which is 
the lowest surface 
elevation of the 
DEM within a 
catchment); 
river water level 
equals floodplain 
water level 

The volume of 
river water in 
excess of river 
bankfull volume 
(flood initiation 
volume) is added 
to the floodplain 
reservoir; 
backflow to the 
river if river water 
storage is below 
flood initiation 
storage 

Overbank flows 
flood fractions of 
land cover types 

When bankfull 
depth is exceeded, 
water is trans-
ferred from the 
channel to the 
overlying flood-
plain grid. 

Surface eleva-
tions 

HydroSHEDS + 
ACE2;  
3 arc sec, global 
coverage 

GTOPO30;  
30 arc sec, global 
coverage 

SRTM;  
3 arc sec, near 
global coverage 
(±60°N) 

SRTM30;  
30 arc sec, near 
global coverage 
(±60°N) 

Hydro1k;  
~30 arc sec, global 
coverage 

SRTM + GTOPO; 
30 arc sec, global 
coverage; 
vegetation correc-
tion (17 m except 
for areas with low 
vegetation (Eva et 
al. 2004)) 

SRTM; 
3 arc sec, near 
global coverage 
(±60°N); 
vegetation correc-
tion (23 m for 
areas where forest 
is the predominant 
vegetation type 
(Eva et al. 2004; 
Hess et al. 2003)) 

Hydro1k; 
~30 arc sec, global 
coverage 

ACE (Ob), SRTM 
(Amazon);  
~30 arc sec (100 
m); 
vegetation correc-
tion in Amazon 
region (data ob-
tained doing 
fieldwork) 

Floodplain area 
(CDF - cumula-
tive distribution 

CDF, floodplain 
storage is distrib-
uted over the 

CDF, cumulative 
distribution of 
subgrid elevations 

No CDF, cumulative 
distribution of 
subgrid elevations 

Optionally fixed or 
variable area 
option.  

As a function of 
water level (sum 
of surface water 

CDF (only the 
value if half of the 
grid cell is flooded 

CDF (using only 
the mean and the 
standard deviation 

The values of 
water depth at 
each cross-section 
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Features WaterGAP  ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
function of sub-
grid surface 
elevations) 

subgrid cells based 
on the cumulative 
distribution of 
relative elevations 
(100 points) 

(36 points) For variable: CDF, 
floodplain storage 
is distributed over 
the subgrid cells 
based on the cu-
mulative distribu-
tion of relative 
elevations 

pixels inside a 
floodplain catch-
ment that is lower 
than the water 
level) 

is used); to avoid 
runaway flooding 
maximum flooda-
ble area is used as 
input (unpublished 
data from Hess et 
al.) 

of the logarithm of 
elevation). A 
prorated fraction 
of the preexisting 
surface types is 
converted to have 
an “open water” 
land cover type. 

are overlain onto a 
DEM (or the 
inundation extents 
at each cross 
section are linearly 
interpolated). 

Routing Optional: kinemat-
ic wave (kw) or 
kw allowing 
backwater flows 
(partial diffusive 
wave) for channels 
and floodplains 

Kinematic wave Kinematic wave 
for first-order 
tributary channels, 
Muskingum-Cunge 
for interbasin 
channels and 
floodplains 

Diffusive wave Kinematic wave Hydrodynamic 
model in flat 
reaches of the 
main rivers, Musk-
ingum-Cunge 
method in up-
stream areas 

Kinematic wave, 
diffusive wave for 
floodplains 
 

Kinematic wave Diffusive wave for 
channels and 
floodplains 

Flood routing 
direction 

Along the river 
network; 
channel and 
floodplain gradi-
ents identical 

No floodplain flow 
routing 

Along the river 
network; 
channel and flood-
plain gradients 
identical 

No floodplain flow 
routing 

No floodplain flow 
routing; flood-
plains treated as 
regular river stret-
ches with in-
creased resistance 

No floodplain flow 
routing; 
the floodplains act 
only as storage 
areas 

According  to the 
maximum water 
slope between 
neighboring grid 
cells 

No floodplain 
flow routing 

According  to the 
maximum water 
slope between 
neighboring grid 
cells 

Flow velocity v 
(including speci-
fications of the 
roughness coef-
ficient n) 

Variable in time 
and space; 
Different flow 
velocities on river 
and floodplain, nr 
variable (global 
mean nr=0.04), 
nf=0.07 

Variable in time 
and space; 
nr varies arbitrary 
from upstream 
areas to the river 
mouth (0.04-0.06),  
nf according to the 
vegetation type 
(0.035 - 1.0); slope 
taken from STN-
30p DEM (0.5° 
resolution) 

Variable in time 
and space; 
nr=0.04, nf=0.07 

Variable in time 
and space; 
n=0.03 for the 
Amazon river 
basin 

Variable in time 
and space;  
increased wetted 
perimeter and 
Manning's n in 
case of flooding --
> increased hy-
draulic resistance 
(decreased vr) 
nr=0.04, nf=0.1 

Constant in time, 
variable in space; 
nr= 0.035-0.04 
(different values 
for different large 
river basins aiming 
at fitting hydro-
graphs) 

Constant in time, 
variable in space 

Constant in time 
and space: vr=1.0 
m/s, vf=0.2 m/s 

Not explicitly 
considered by the 
model, vr [m/s] at 
high/ low water: 
Solimoes 1.3/ 
0.77, Purus 0.86/ 
0.26; 
nr usually 0.01 - 
0.04, nf usually 
0.03 - 0.15. Can be 
set individually for 
each grid cell. 

Soil and 
Groundwater 
dynamics 

Vertical soil, 
groundwater 
reservoir 

Vertical soil, 
groundwater reser-
voir 

Vertical soil, 
groundwater reser-
voir 

Vertical soil, 
groundwater res-
ervoir (MATSI-
RO) 

Vertical soil, 
groundwater res-
ervoir or lateral  
groundwater (op-

Soil reservoir and 
groundwater res-
ervoir 

Vertical soil, 
groundwater reser-
voir 

Vertical soil   Vertical soil, 
groundwater 
reservoir 
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Features WaterGAP  ISBA-TRIP  WBM-WTM/ 
WBMplus  CaMa-Flood  PCR-GLOBWB  MGB- IPH THMB  JULES-G2G  LISFLOOD/ 

LISFLOOD-FP 
tional) 

Floodplain-
groundwater 
interaction 

Yes Yes No No No No No No No 

Institutes re-
sponsible for 
model develop-
ment 

Kassel University 
(Germany),  
Goethe University 
Frankfurt (Germa-
ny) 

Centre National de 
Recherchés 
Météorologiques, 
France 

University of New 
Hampshire (USA),  
City University of 
New York (USA) 

IIS, University of 
Tokyo (Japan) 

Utrecht University 
(Netherlands), 
Deltares (Nether-
lands) 

Instituto de 
Pesquisas 
Hidráulicas – IPH, 
Universidade 
Federal do Rio 
Grande do Sul – 
UFRGS (Brasil) 

SAGE, University 
of Wisconsin-
Madison (USA) 

Centre for Ecolo-
gy and Hydrology 
(UK), Met Office 
(UK) 

University of 
Bristol (UK) 
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