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Abstract

The future heavy-ion experiment CBM (FAIR/GSI, Darmstadt, Germany) will

focus on the measurements of very rare probes, which require the experiment to

operate under extreme interaction rates of up to 10 MHz. Due to high multiplicity

of charged particles in heavy-ion collisions, this will lead to the data rates of up

to 1 TB/s. In order to meet the modern achievable archival rate, this data flow

has to be reduced online by more than two orders of magnitude.

The rare observables are featured with complicated trigger signatures and re-

quire full event topology reconstruction to be performed online. The huge data

rates together with the absence of simple hardware triggers make traditional

latency-limited trigger architectures typical for conventional experiments inap-

plicable for the case of CBM. Instead, CBM will employ a novel data acquisition

concept with autonomous, self-triggered front-end electronics.

While in conventional experiments with event-by-event processing the associ-

ation of detector hits with corresponding physical event is known a priori, it is

not true for the CBM experiment, where the reconstruction algorithms should

be modified in order to process non-event-associated data. At the highest in-

teraction rates the time difference between hits belonging to the same collision

will be larger than the average time difference between two consecutive collisions.

Thus, events will overlap in time. Due to a possible overlap of events one needs

to analyze time-slices rather than isolated events.

The time-stamped data will be shipped and collected into a readout buffer in

a form of a time-slice of a certain length. The time-slice data will be delivered

to a large computer farm, where the archival decision will be obtained after

performing online reconstruction. In this case association of hit information with

physical events must be performed in software and requires full online event



reconstruction not only in space, but also in time, so-called 4-dimensional (4D)

track reconstruction.

Within the scope of this work the 4D track finder algorithm for online re-

construction has been developed. The 4D CA track finder is able to reproduce

performance and speed of the traditional event-based algorithm.

The 4D CA track finder is both vectorized (using SIMD instructions) and

parallelized (between CPU cores). The algorithm shows strong scalability on

many-core systems. The speed-up factor of 10.1 has been achieved on a CPU

with 10 hyper-threaded physical cores.

The 4D CA track finder algorithm is ready for the time-slice-based reconstruc-

tion in the CBM experiment.



Kurzfassung

Eines der Ziele des künftigen Schwerionenexperiments CBM (FAIR, Darm-

stadt, Deutschland) ist es, sehr seltene Teilchen zu messen, die mit extremen

Kollisionsraten von bis zu 10 MHz erzeugt werden. Diese hohe Rate und die Mul-

tiplizität der geladenen Teilchen in Schwerionenkollisionen werden zu Datenraten

von bis zu 1 TB/s führen. Um zu verarbeitbaren Archivierungsraten zu gelangen,

muss der Datenfluss online um mehr als zwei Größenordnungen reduziert werden.

Einige der mit sehr niedrigen Wirkungsquerschnitten erzeugten Teilchen

weisen komplizierte Zerfalltopologien auf, die eine vollständige Rekonstruktion

der Ereignisse in Echtzeit erforderlich machen. Latenzbeschränkte Trigger-

Architekturen, die typischerweise bei herkömmlichen Experimenten eingesetzt

werden, können hier aufgrund der großen Datenraten und des Fehlens von

einfachen Triggersignaturen nicht eingesetzt werden. Stattdessen wird im

CBM-Experiment ein Datenerfassungskonzept mit autonomer, selbst-auslösender

Front-End-Elektronik zum Einsatz kommen.

Während bei herkömmlichen Experimenten die Zuordnung von Detektor-

Treffern einem physikalischen Ereignis entspricht, das über einen Trigger definiert

wird, werden bei CBM die Detektortreffer mit einer Zeitmarke versehen und

ausgelesen, ohne dass a priori bekannt ist, zu welchem Ereignis sie gehören.

Die Rekonstruktionsalgorithmen müssen dahingehend modifiziert werden, dass

nicht ereignisbasierte Daten verarbeitet werden können. Bei den höchsten Kol-

lisionsraten wird die Zeitdifferenz zwischen Treffern derselben Kollision größer

sein als die durchschnittliche Zeitdifferenz zwei aufeinanderfolgender Kollisionen.

Somit werden die Ereignisse zeitlich überlappen. Aufgrund dieser Situation er-

folgt die Analyse auf “Zeitschnitten”. Ein Zeitschnitt umfasst dabei Daten, die

innerhalb eines Zeitintervalls registriert wurden. Die Daten werden mit einer

Zeitmarke versehen, an einen Auslesepuffer in Form eines Zeitschnitts einer be-

stimmten Dauer geschickt und dort gespeichert. Die Zeitschnittdaten werden

an eine große Computerfarm weitergeleitet, wobei die Archivierungsentscheidung

nach dem Durchführen der Online-Rekonstruktion erhalten wird. In diesem Fall

muss die Zuordnung von Trefferinformation zu physikalischen Ereignissen mithilfe

der Software durchgeführt werden. Dieses erfordert eine vollständige Online-



Ereignisrekonstruktion nicht nur im Raum, sondern auch in der Zeit, d.h. eine

vierdimensionale (4D) Spurrekonstruktion.

Im Rahmen dieser Arbeit ist der 4D-Spurfinder-Algorithmus für Echtzeitrekon-

struktion entwickelt worden. Der 4D-Spurfinder, der auf dem zellulären Auto-

maten (Cellular Automaton, CA) basiert, ist in der Lage, die Performanz und

die Geschwindigkeit des ereignisbasierten Algorithmus zu reproduzieren.

Der 4D-CA-Spurfinder ist sowohl vektorisiert (mittels SIMD-Befehlen) und pa-

rallelisiert (zwischen CPU-Kernen). Der Algorithmus zeigt starke Skalierbarkeit

auf Mehrkern-Systemen. Ein Beschleunigungsfaktor von 10,1 wurde mit Hyper-

Threading auf zehn physischen Kernen einer CPU erreicht.

Der 4D-CA-Spunfinder-Algorithmus ist für zeitschnittbasierte Rekonstruktion

für das CBM Experiment ausgearbeitet worden.



To my father.
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Chapter 1

Introduction

In the last decades significant experimental and theoretical efforts worldwide

have been devoted to the investigation of the properties of nuclear matter under

conditions, which are far from normal ones. A wide range of experiments, in-

cluding CBM1 [1] at FAIR2, ALICE3 [2] at CERN4, STAR5 [3] and PHENIX6 [4]

at RHIC7 are committed to exploring this topic. Heavy-ion collision experi-

ments provide a unique opportunity for creating hot and dense nuclear matter,

which can be investigated experimentally. The mission of these experiments,

which are performed worldwide, is to study the structure and the properties of

strongly-interacting matter under extreme conditions by exploring the phase dia-

gram of matter governed by the laws of Quantum-Chromo-Dynamics (QCD). In

the heavy-ion experiments, collisions generate extremely hot and dense matter,

thus recreating conditions similar to those ones, that existed during the first few

microseconds after the Big Bang. Such conditions may still exist in nature, in

the interior of neutron stars, for example.

The CBM experiment at the future FAIR facility in GSI8 is designed to run

at unprecedented in heavy-ion experiments interaction rates of up to 10 MHz.

1Compressed Baryonic Matter
2Facility for Antiproton and Ion Research, GSI, Germany
3A Large Ion Collider Experiment
4Conseil Européen pour la Recherche Nucléaire, Switzerland
5Solenoidal Tracker
6Pioneering High Energy Nuclear Interaction eXperiment
7Relativistic Heavy Ion Collider, BNL, USA
8Gesellschaft für Schwerionenforschung
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Therefore, it will play a unique role in exploring the QCD phase diagram in the

region of densities close to the neutron star core density. High-rate operation

is the key requirement necessary in order to measure with high precision and

statistics rare diagnostic probes, which are sensitive to the dense phase of nu-

clear matter. Such probes are multi-strange hyperons, lepton pairs, and particles

containing charm quarks. Their signatures are complex. This implies a novel

read-out and data acquisition concept with self-triggered front-end electronics

and free-streaming data. The data analysis must be performed in software on-

line, and requires four-dimensional reconstruction routines. This thesis is devoted

in particular to the development of the time-based tracking algorithm for online

and offline data processing in the CBM experiment.

1.1 Strongly interacting matter under extreme

conditions

It is a great challenge to understand the processes, which may have led to the

creation of the physical world as we know it. How did the Universe begin?

Throughout time these fundamental question of our existence has occupied the

minds of scientists all over the world. Modern physics has provided some theories,

but a majority of these answers have only led to more intriguing and more complex

questions and most of our assumptions are still only hypotheses. Our current

understanding of the Big Bang, the first atoms and the structure of matter is

obviously incomplete.

The Big Bang, the prevailing cosmological theory for the origin and the earliest

periods of the Universe evolution, states that our Universe was born in a massive

explosion, and was gradually cooling down from the initial state of extreme energy

densities and temperatures. Thus, the formation of baryonic matter, which is the

building blocks of matter and life as we know it, occurred as a result of the

Universe expansion. According to the theory in this explosion matter must have

gone through phases, not observed under normal conditions, like Quark-Gluon

Plasma (QGP) [5, 6, 7]. In nature matter in the QGP phase may still exist in

the interior of compact stellar objects.
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One of the ways to study baryonic genesis and the structure of matter in the

laboratory is by means of high-energy heavy-ion collisions. For this purpose,

heavy nuclei like those of lead and gold, are collided with the highest energies so

that they form an intermediate hot and dense state, the so-called fireball.

The evolution of the Universe from the Big Bang into what it is today must

have been determined by the fundamental laws of physics that govern the small-

est elementary particles, namely quarks, leptons, and force carrying bosons like

gluons, existing in extremely small regions at huge energies. These conditions are

well beyond the levels of energies generated by high-energy physics (HEP) exper-

iments in modern accelerators. Thus, we need to look deeply into the structure

of matter to understand thoroughly its elementary constituents and the funda-

mental forces acting upon them, in order to explain the origins and the structure

of matter and the Universe.

1.2 The phase diagram of strongly interacting

matter

Under normal conditions, at nuclear matter ground state density and low temper-

atures, nuclear matter exists in the form of protons and neutrons, each containing

three color-charged valence quarks, plus a sea of virtual quark-antiquark pairs and

color-charged gluons. These color-charged particles (quarks and gluons) cannot

be found individually, but only confined with other color-charged particles into a

color neutral groups (hadrons). This property is called color confinement.

The nuclear density typically found in nuclei is less than the density of a

single nucleon (0.3 GeV/fm3) and amounts to about 0.15 GeV/fm3 [8], indicating

that the nucleons are well separated and do not overlap. If we start increasing

compression, moving towards higher densities and more extreme conditions, at

some point the volume available for a single nucleon gets smaller than the natural

size of a nucleon leaving no possibility to distinguish different nucleons. In this

case a single quark can no longer be associated with a certain nucleon, and, thus,

is not confined any more inside the nucleon. A similar effect can be reached

as the temperature increases: frequent collisions between the nucleons lead to
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Abstract 
The CBM Collaboration proposes to build a dedicated heavy-ion experiment to investigate 
the properties of highly compressed baryonic matter as it is produced in nucleus-nucleus 
collisions at the future accelerator facility in Darmstadt. Our goal is to explore the QCD phase 
diagram in the region of moderate temperatures but very high baryon densities. The 
envisaged research program includes the study of key questions of QCD like confinement, 
chiral symmetry restoration and the nuclear equation of state at high densities. The most 
promising diagnostic probes are vector mesons decaying into dilepton pairs, strangeness 
and charm. We intend to perform comprehensive measurements of hadrons, electrons and 
photons created in collisions of heavy nuclei.   
CBM will be a fixed target experiment which covers a large fraction of the populated phase 
space. The major experimental challenge is posed by the extremely high reaction rates of up 
to 107 events/second. These conditions require unprecedented detector performances 
concerning speed and radiation hardness. The detector layout comprises a high resolution 
Silicon Tracking System in a magnetic dipole field for particle momentum and vertex 
determination, Ring Imaging Cherenkov Detectors and Transition Radiation Detectors for the 
identification of electrons, an array of Resistive Plate Chambers for hadron identification via 
TOF measurements, and an electromagnetic calorimeter for the identification of electrons, 
photons and muons. The detector signals are processed by a high-speed data acquisition 
and trigger system.  

 
 
 
 

 
 

Figure 1.1: A scheme of the QCD phase diagram of strongly interacting matter [9].

the fact that quarks are not confined to a certain group. This new state of

matter consisting of unbound quarks and gluons is called QGP. It is generally

believed that the early Universe went through a phase like QGP, where the high

temperature prevented the formation of hadrons from the initial soup of quarks

and gluons.

The modern predictions on the phase diagram of strongly interacting matter

are sketched in Fig. 1.1 in terms of thermodynamical parameters temperature

(T ) and net baryon density (nB), which characterizes the difference between

particles and antiparticles in the system. It includes conjectures which are not

fully established. In general normal conditions correspond to the region of low T

and nB in the diagram, where quarks and gluons are bound into colorless objects

— hadrons. The QGP phase is expected to occur at higher T or/and nB.

The major method used to obtain theoretical predictions for the QCD phase

diagram are lattice QCD calculations [10], which relate the fundamental interac-

tions between quarks and gluons with thermodynamical properties of the QGP,
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such as energy density and temperature. In the region of low net baryon densities

and high temperatures, lattice QCD calculations predict a smooth crossover from

normal hadronic to deconfined matter [11]. The transition temperature, corre-

sponding to this crossover, is estimated between 155 and 165 MeV [12, 13, 14].

At a finite net baryon density, standard numerical lattice simulations do not

work well and still need some modification in order to produce firm predictions.

Therefore our knowledge of the QCD phase diagram at nonzero nB relies ex-

clusively on effective models. At large net baryon density these model calcu-

lations predict a first order transition between hadronic matter and deconfined

QGP [15, 16, 17] instead of the crossover, which means that both of these two

phases are present: the areas of hadron gas coexist with the areas filled with

QGP. It is predicted that crossover and first order transition are denoted with

critical endpoint [15], where strong fluctuations of the physical parameters are

expected.

Another possible phase transition in the QCD diagram apart from decon-

finement is the chiral phase transition. This chiral symmetry is a symmetry of

the QCD Lagrangian in the limit of vanishing quark masses. If a quark has a

zero mass, then the spin of the quark can either be in the direction of motion

(a right-handed quark), or in the opposite direction (a left-handed quark). Since

a massless quark travels at the speed of light, the handedness or chirality of the

quark is independent of any Lorentz frame, from which the observation is made.

This symmetry was found to be spontaneously broken in nature since the

quark masses are finite. However, compared with hadronic scales the masses of

the two lightest quarks, up and down, are very small, so that, at low energies,

the chiral symmetry may be considered an approximate symmetry of the strong

interactions. It is theoretically predicted that at high temperature or net baryon

density the spontaneously broken chiral symmetry is restored.

The chiral phase transition is a transition from chirally symmetric matter at

high temperatures and net baryon densities to the state with broken chiral sym-

metry. Chiral and deconfinement phase transitions are not necessarily equivalent.

A better understanding of chiral phase transition via studying the matter under

extreme conditions, can explain the mechanisms of the origin of hadron masses:

why a hadron, that is composed of light quarks, is much heavier than the sum of
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the masses of its constituents?

Moreover, there are models which predict new phases such as quarkonic

phase [18] and the color superconductor [19, 20] .

The experimental discovery of any of the above mentioned prominent land-

marks and regions of the QCD phase diagram would be a major breakthrough in

our understanding of the properties of nuclear matter.

1.3 Probing strongly interacting matter with

heavy-ion collisions

Experimentally, strongly interacting matter under extreme conditions is produced

and studied in high-energy heavy-ion collision experiments. Different experiments

worldwide are aiming to cover different regions of the QCD phase diagram in order

to get a complete scan of the diagram.

The experiments at the LHC and at top energies of RHIC and SPS9 cover

in their studies the diagram region with very high energy density and equal

numbers of particles and antiparticles, i.e. vanishing net baryon densities. This

region corresponds to conditions close to matter of the early Universe about 10

µs after the Big Bang [21].

On the other hand, the region of small temperatures at large net baryon

densities corresponds to the interior of compact stellar objects like neutron

stars [22, 23]. Several experimental programs are devoted to the exploration

of the high net baryon density region. The STAR and PHENIX experiments at

RHIC aim to scan the beam energies, and to search for the QCD critical end-

point. For the same reason, measurements are performed at CERN-SPS with the

upgraded NA61 detector. At the JINR10 a heavy-ion collider project NICA11 [24]

is planed with the goal of searching for the coexistence phase of nuclear matter.

However, not only beam energy is important in order to investigate dense

matter. The beam luminosity and data taking rate available for a certain detector

play an important role, defining the sort of measurements available for a certain

9Super Proton Synchrotron
10Joint Institute for Nuclear Research, Russia
11Nuclotron-based Ion Collider fAcility
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experiment. The measurements, which possibly can be made by experiments,

are, for instance, the bulk observables and the rare probes.

The freeze-out phase, when no new parcticles can be produced in the col-

lisions, can be studied with measurement of “soft” hadrons production (bulk

observables). The term “bulk” denotes the fact that they directly characterize

the medium produced in the collision.

By contrast, the information of the earlier phases is carried by rare probes,

namely particles built up of heavy quarks (Λ,Σ,Ξ,Ω, J/Ψ, D ...). Moreover, in

order to obtain information on the early and dense phase of the fireball evolution,

one has to measure, for example, multi-differential observables such as the flows

of identified particles as a function of the transverse momentum (pt =
√
p2x + p2y)

of the particles, mass distributions of dileptons and particles containing heavy

quarks as a function of pt. These measurements require high reaction rates, fast

detection and a high-speed data acquisition system.

While every heavy-ion experiment is suited to measure bulk observables, the

sensible use of rare probes requires high luminosity beams as well as detectors

capable of high rate data taking. The collider experiments are typically limited

due to their beam luminosity, while the fixed target experiments have the oppor-

tunity to get significantly higher statistics due to higher reaction rates. In case

of fixed target experiments the reaction rate is mainly limited by the detector

capabilities. Thus, the collider experiments are often constrained to the mea-

surements of bulk observables, due to lower statistics in case of high precision

measurements of rare probes.

In contrast, the research program of the CBM experiment at FAIR is focused

on the measurement of both bulk and rare probes with unprecedented statis-

tics. A combination of high-intensity beams with a high-rate detector system is

planned to be used in order to meet this goal.



Chapter 2

The Compressed Baryonic

Matter (CBM) experiment

2.1 CBM at the Facility for Antiproton and Ion

Research (FAIR)

This chapter is devoted to the physics goals and the detector setup together with

the novel data acquisition and event selection systems of the CBM experiment.

FAIR [25] is a new accelerator facility, situated at the GSI Helmholtz Centre

for Heavy Ion Research in Darmstadt, Germany. It will deliver high intensity

beams of ions (109 particles/s for Au-ions) and antiprotons (1013 particles/s) for

experiments in the fields of nuclear, hadron, atomic and plasma physics.

The layout of the future FAIR complex together with existing GSI facilities

is illustrated in Fig. 2.1. The core of the facility will be two large synchrotrons

with rigidities of 100 Tm and 300 Tm (SIS100 and SIS300, where SIS stands

for SchwerIonenSynchrotron). One of the scientific pillars of FAIR is the CBM

experiment aiming at exploration of the QCD phase diagram at high baryon

densities. The start version of the CBM setup is designed for ambitious nuclear-

matter research program using beams from SIS100. The experiment program

will be extended towards higher beam energies with the full version of the CBM

detector system using high-intensity beams from SIS300.
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9

2.1 Overview

The concept of the FAIR Accelerator Facility has been 
developed by the international science community and 
the GSI Laboratory. It aims for a multifaceted forefront 
science program, beams of stable and unstable nuclei 
as well as antiprotons in a wide range of intensities and 
energies, with optimum beam qualities. 

The concept builds and substantially expands on 
seminal developments made over the last 15 years at 
GSI and at other accelerator laboratories worldwide 
in the acceleration, accumulation, storage and phase 
space cooling of high-energy proton and heavy-ion 
beams. Based on that experience and adopting new 
developments, e.g. in fast cycling superconducting 
magnet design, in stochastic and in high-energy electron 

cooling of ion beams, and also in ultra-high vacuum 
technology, a first conceptual layout of the new facility 
was proposed in 2001. Since then, the layout published 
in the Conceptual Design Report has undergone several 
modifications in order to accommodate additional 
scientific programs and optimize the layout, but also to 
reduce costs and to minimize the ecological impact of 
the project. 

The present layout is shown in Fig. 2.1. A super-
conducting double-synchrotron SIS100/300 with a 
circumference of 1,100 meters and with magnetic 
rigidities of 100 and 300 Tm, respectively, is at the heart 
of the FAIR accelerator facility. Following an upgrade for 
high intensities, the existing GSI accelerators UNILAC 
and SIS18 will serve as an injector. 

2. FAIR Accelerator Facility 

Figure 2.1: Layout of the existing GSI facility (UNILAC, SIS18, ESR) on the left and the planned FAIR facility on the right: the supercon-
ducting synchrotrons SIS100 and SIS300, the collector ring CR, the accumulator ring RESR, the new experimental storage ring NESR, 
the rare isotope production target, the superconducting fragment separator Super-FRS, the proton linac, the antiproton production 
target, and the high energy antiproton storage ring HESR. Also shown are the experimental stations for plasma physics, relativistic 
nuclear collisions (CBM), radioactive ion beams (Super-FRS), atomic physics, and low-energy antiproton and ion physics (FLAIR).
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Antiproton  
Production Target
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Figure 2.1: Layout of the FAIR facility (left side) [25]. The new facility and the existing GSI

complex are shown in red and grey, respectively. Aerial photo of the construction site (right

side) taken on April 22, 2015 [26]

2.2 The CBM physics cases and observables

CBM will investigate collisions of heavy ion and proton beams with fixed targets

at beam energies from 2 to 45 AGeV (GeV per nucleon). The CBM research

program aims to study the structure and the equation-of-state of baryonic matter

at densities comparable with the density of the inner core of neutron stars.

The research program is focused on [1]:

• the study of the equation-of-state of nuclear matter at neutron star densities

• the search for the phase boundary between hadronic phase and quark-gluon

matter, or a region of phase coexistence, and the QCD critical endpoint

• the search for modifications of hadron properties in the dense baryonic

matter and signatures for chiral symmetry restoration

• the search for single and double hypernuclei, heavy multi-strange objects

• the investigation of the production mechanism of charm quarks at threshold

beam energies and the charm propagation in nuclear matter

The experimental and theoretical challenge is to study observables, which ad-

dress the physics cases mentioned above. The observables are the yields and

phase-space distributions of newly produced particles, their correlations and fluc-

tuations.
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The experimental challenge is to measure multi-di�erential observables and particles with very
low production cross sections such as multi-strange (anti-) hyperons, particles with charm and
lepton pairs with unprecedented precision. The situation is illustrated in Fig. 1.4 which depicts
the product of multiplicity times branching ratio for various particle species produced in central
Au+Au collisions at 25 AGeV. The data points are calculated using either the HSD transport
code [12] or the thermal model based on the corresponding temperature and baryon-chemical
potential [14]. Mesons containing charm quarks are about 9 orders of magnitude less abundant
than pions (except for the Â’ meson which is even more suppressed). The dilepton decay of
vector mesons is suppressed by the square of the electromagnetic coupling constant (1/137)2,
resulting in a dilepton yield which is 6 orders of magnitude below the pion yield, similar to the
multiplicity of multi-strange anti-hyperons.
In order to produce high statistics data even for the particles with the lowest production cross
sections, the CBM experiment is designed to run at reaction rates of 100 kHz up to 1 MHz.
For charmonium measurements - where a trigger on high-energy lepton pairs can be generated -
reaction rates up to 10 MHz are envisaged.

Figure 1.4: Particle multiplicities times branching ratio for central Au+Au collisions at 25 AGeV
as calculated with the HSD transport code [12] and the statistical model [14]. For the vector
mesons (fl, Ê, „, J/Â, ÂÕ) the decay into lepton pairs was assumed, for D mesons the hadronic
decay into kaons and pions.

1.3 CBM physics cases and observables
The CBM research program is focused on the following physics cases:
The equation-of-state of baryonic matter at neutron star densities.
The relevant measurements are:

• The excitation function of the collective flow of hadrons which is driven by the pressure
created in the early fireball (SIS100);

• The excitation functions of multi-strange hyperon yields in Au+Au and C+C collisions at
energies from 2 to 11 AGeV (SIS100). At subthreshold energies, � and � hyperons are

Figure 2.2: Particle multiplicities times branching ratio for central Au+Au collisions at

25 AGeV calculated with the HSD transport code [27] and the statistical model [28].

Large beam intensity combined with very high reaction rates results in the

unprecedented statistical significance for the particles with extremely low pro-

duction cross sections. Hence, the CBM detector system is designed to measure

both bulk observables with large acceptance as well as rare diagnostic probes.

Having this unique feature, the CBM experiment is aiming to measure a wide

range of particles with predicted multiplicities varying over many orders of mag-

nitude: starting from the abundant pions up to the rare charmonium states.

In Fig. 2.2 the prediction of particle multiplicities times branching ratio of the

measurable particles calculated with the Hadron-String Dynamics (HSD) trans-

port model or the statistical model for central Au+Au collisions at 25 AGeV

are plotted. Data points below the dashed line correspond to particles that up

to now have not been measured by any experiment at this beam energy. The

CBM collaboration plans to measure all these particles. Different particle species

probe different phases of the fireball evolution depending on their production and

interaction cross sections, decay channels and lifetime.

FAIR will provide heavy-ion beam energies from 2–11 (14) AGeV for Q=0.4 A

(0.5 A) nuclei with the SIS100 synchrotron, and 11–35 (45) AGeV with the

SIS300 synchrotron. According to transport model calculations, already in central
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Au+Au collisions at top SIS100 energies the nuclear fireball will be compressed

to more than 8 times normal nuclear density ρ0 [29]. Such conditions prevail in

core collapse supernovae and in the core of neutron stars [30].

Measurements at FAIR energies will focus on the investigation of the prop-

erties of resonance matter in the vicinity of the phase boundary, and, therefore,

will provide important information on this transition region of the QCD phase

diagram. The heavy-ion beams at FAIR are well suited for the search of the

most prominent landmarks of the QCD phase diagram at high net baryon den-

sities: the first order deconfinment and/or chiral phase transition. Moreover,

the research program includes the study of the equation-of-state of high-density

baryonic mater, and the search for modifications of hadronic properties in the

dense baryonic medium as signutaries for chiral symmetry restoration.

Let us briefly discuss the physics cases and the relevant measurements, which

the CBM research program is focused on [31, 32].

The equation-of-state of baryonic matter at neutron star densities.

The determination of the equation-of-state (EOS) is a major goal of the inves-

tigation of nuclear matter at high energy densities. Furthermore, these studies

may provide a direct experimental signature of the anticipated phase transitions

for deconfinement and chiral symmetry restoration.

The relevant measurements are:

• The excitation function (a function with respect to the collision energy in

the center of mass frame) of the collective flow of hadrons;

Collective flow represents the azimuth anisotropy of the particle yields in the

momentum space and gives valuable information on the space-time evolution of

the fireball. The strength of eliptic flow, measured as a function of transverse

momentum for different particle species, reflects the initial pressure of the sys-

tem [33]. The vanishing of directed flow at a certain beam energy would indicate

a strong softening of the equation-of-state, which means that the density becomes

less sensitive to the change in the pressure.

• The excitation functions of multi-strange hyperon yields in Au+Au and

C+C collisions at energies at 2 to 11 AGeV (SIS100).
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The excitation function of strange hadron yields and phase space distributions

(including multi-strange hyperons) will provide information about the fireball

dynamics and the nuclear matter equation-of-state over a wide range of baryon

densities. At sub-threshold energies, Ξ and Ω hyperons are produced in sequential

collisions involving kaon and Λ particles, and, therefore, are sensitive to the

density in the fireball.

In-medium properties of hadrons.

The restoration of chiral symmetry in dense baryonic matter will modify the

properties of hadrons. The relevant measurements are:

• The in-medium mass distribution of vector mesons (ρ, ω, φ) decaying in

lepton pairs in heavy-ion collisions at different energies (2–45 AGeV), and

for different collision systems (SIS100/300);

The measurement of short-lived vector mesons via their decay into an electron-

positron pair provides a unique possibility for studying the properties of vector

mesons in dense baryonic matter. The lepton pair is called a “penetrating probe”

because it delivers undistorted information on the conditions inside the dense fire-

ball. The invariant masses of the measured lepton pairs permit the reconstruction

of the in-medium spectral function of the ρ, ω, φ mesons, if they decay inside the

medium. Such data is expected to shed light on the fundamental question as to

what extent chiral symmetry is restored at high baryon densities and how this

affects the hadron masses [34].

• Yields and transverse mass (mt =
√
m2 + p2x + p2y) distributions of charmed

mesons in heavy-ion collision as a function of collision energy (SIS100/300).

Particles containing heavy quarks, like charm, can be created in the hard pro-

cesses at the early stage of fireball evolution exclusively, especially at the FAIR

energies near the threshold for the charm-anticharm pair production.

The D-mesons, the bound states of a heavy charm quark and a light quark,

are predicted to be modified in the nuclear medium [35]. To the extent that

these modifications are partly related to in-medium changes of the light-quark

condensate, they offer another interesting option to probe the restoration of chiral

symmetry in dense hadronic matter [35].
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Non-monotonic behavior of the inverse slope of the transverse momentum spec-

tra as a function of the beam energy would signal a change in the nuclear matter

properties at a certain net baryon density. The distribution of the inverse slope

as a function of particle mass is related to the particle freeze-out phase (phase,

when the collisions between particles cease), and, hence, may help to delineate

the early from the late collision stages.

Phase transitions from hadronic matter to quarkyonic or partonic

matter at high net-baryon densities.

A discontinuity or sudden variation in the excitation functions of sensitive

observables would be indicative of a deconfinement transition. The relevant mea-

surements are:

• The excitation function of yields, spectra, and collective flow of strange and

charmed particles in heavy-ion collisions at 6–45 AGeV (SIS100/300);

The yields of rare particles containing strangeness and charm, in particular when

produced at beam energies close to the corresponding threshold, depend on the

conditions inside the early fireball [36].

Enhanced strangeness production was proposed as a possible signal for the

QGP formation [37]. In the parton-parton interaction scenarios strange quarks

are expected to be produced more abundantly than in hadronic reaction scenarios.

As a result, the yields of strange particles, scaled by the number of participating

nucleons, are expected to be higher in heavy-ion collisions with creation of a QGP

than in p+p interactions.

The idea is that the production of strange quark pairs is energetically favored

in the quark-gluon plasma as compared to hadronic matter. The enhancement

is expected to be most pronounced for particles containing two or even three

strange quarks such as Ξ and Ω.

• The excitation function of yields and spectra of lepton pairs in heavy-ion

collisions at 6–45 AGeV (SIS100/300);

The slope of the dilepton invariant mass distribution between 1 and 2 GeV/c2

directly reflects the average temperature of the fireball. The study of the energy

dependence of this slope opens a unique possibility of measuring the caloric curve
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which would be a signature for phase coexistence [38]. This measurement would

also provide indications for the onset of deconfinement and the location of the

critical endpoint.

• Event-by-event fluctuations of conserved quantities like baryon, strange and

net-charge etc. in heavy-ion collisions with high precision as a function of

beam energy at 6–45 AGeV (SIS100/300).

The presence of a phase coexistence region is expected to cause strong fluctuations

from event to event in the charged particle number, baryon number, strangeness-

to-pion ratio, average transverse momentum, etc. Similar effects are predicted to

occur in the vicinity of the QCD critical point.

Hypernuclei, strange dibaryons and massive strange objects.

Nuclei containing at least one hyperon in addition to nucleons offer the fas-

cinating perspective of exploring the third, strange dimension of the chart of

nuclei. Their investigation provides information on the hyperon-nucleon and on

the hyperon-hyperon interaction in particular, which plays an important role in

neutron star models.

Theoretical models predict that single and double hypernuclei, strange

dibaryons and heavy multi-strange short-lived objects are produced via coa-

lescence in heavy-ion collisions with a maximum yield in the region of SIS100

energies [39, 40]. The planned measurements include:

• The decay chains of single and double hypernuclei in heavy ion collisions

at SIS100 energies;

• Search for strange matter in the form of strange dibaryons and heavy multi-

strange short-lived objects. Whether or not these multi-strange particles

decay into charged hadrons including hyperons, which can be identified via

their decay products.

Charm production mechanisms, charm propagation, and in-medium

properties of charmed particles in dense nuclear matter.

Due to the large mass, cc-quark pairs can only be produced in the hard pro-

cesses of the early stage of collision. The created charm quarks either propagate

as charmonium (hidden charm) or pick up light quarks to form pairs of D-mesons
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(open charm) or charmed baryons. The production and propagation of charm in

heavy-ion collisions are expected to be a particularly sensitive probe of the hot

and dense medium.

The majority of charmed quarks are carried away as open charm. During the

evolution of the fireball, charm quarks undergo exchange of the momentum with

the medium. The exchange process depends strongly on the properties of the

medium. Therefore, momentum distributions, correlations, and elliptic flow of

open charm hadrons is an important diagnostic probe of the prevailing degrees

of freedom in the early collision stage.

Also, charmonium states are observables sensitive to the conditions in the

fireball. The suppression of charmonium due to color screening is predicted as a

signature for the quark-gluon plasma [35].

The free color charges in the deconfined phase are expected to screen the

mutual attraction of the charmed quarks and hence prevent the formation of

charmonium states. The relevant measurements are:

• Cross sections, momentum spectra, and collective flow of open charm (D-

mesons) and charmonium in proton-nucleus and nucleus-nucleus collisions

at SIS300 energies.

As discussed above, a substantial part of the CBM physics cases can already

be addressed with beams from the SIS100 synchrotron. A general review of the

physics of compressed baryonic matter, the theoretical concepts, the available

experimental results, and predictions for relevant observables in future heavy-ion

collision experiments can be found in the CBM Physics Book [1].

2.3 The experimental setup

The challenging CBM physics program requires a high performance detector sys-

tem with two configurations: one version optimized for detection of electrons, the

other — for muons.

In the electron configuration the following detectors will be used: Micro-vertex

Detector (MVD), Silicon Tracking System (STS), both placed in a gap of 1 Tm
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(which contain no signal) by a factor of 100 or more. The event selection system will be based
on a fast on-line event reconstruction running on a high-performance computer farm equipped
with many-core CPUs and graphics cards (GSI GreenIT cube). Track reconstruction, which
is the most time consuming combinatorial stage of the event reconstruction, will be based on
parallel track finding and fitting algorithms, implementing the Cellular Automaton and Kalman
Filter methods. For open charm production the trigger will be based on an online search for
secondary vertices, which requires high-speed tracking and event reconstruction in the STS and
MVD. The highest suppression factor has to be achieved for J/Â mesons where a high-energetic
pair of electrons or muons is required in the TRD or in the MUCH. For low-mass electron pairs
no online selection is possible due to the large number of rings/event in the RICH caused by
the material budget of the STS. In the case of low-mass muon pairs some background rejection
might be feasible.

Figure 1.6: The CBM experimental facility with the electron detectors RICH and TRD.

Figure 1.7: The CBM experimental facility with the muon detection system.
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Figure 2.3: The CBM detector setup versions for electron (top) and muon registration (bot-

tom). In the electron configuration the subdetectors are: Micro-vertex Detector (MVD), Sili-

con Tracking System (STS), both placed in a gap of 1 Tm superconducting magnet, then Ring

Imaging Cherenkov Detector (RICH), Transition Radiation Detectors (TRD), Resistive Plate

Chambers for time-of-flight measurements (TOF), Electromagnetic Calorimeter (ECAL) and

Projectile Spectator Detector (PSD) as a hadronic calorimeter. In the muon configuration the

RICH detector will be replaced by the Muon Chambers System (MUCH) and ECAL will be

removed.

superconducting magnet, then Ring Imaging Cherenkov Detector (RICH), Tran-

sition Radiation Detectors (TRD), Resistive Plate Chambers for Time-Of-Flight

measurements (TOF), Electromagnetic Calorimeter (ECAL) and Projectile Spec-

tator Detector (PSD) as a forward hadronic calorimeter.

In the muon configuration the RICH detector will be replaced by the Muon
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Chambers System (MUCH) and ECAL will be removed (Fig. 2.3).

Observables MVD STS RICH MuCh TRD TOF ECAL PSD

π, K, p X (X) (X) X X

Hyperons X (X) (X) X

Open charm X X (X) (X) (X) X

Electrons X X X X X X

Muons X X (X) X

Photons X X

Photons via e± conversions X X X X X X

Table 2.1: The CBM observables. The subdetectors required for a certain observable are

marked as X. The subdetectors marked as (X) can be used optionally to suppress background.

The CBM subdetectors required for the measurement of the different observ-

ables are listed in Tab. 2.1. The system subdetectors are described in detail

below.

2.3.1 The superconducting dipole magnet
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Figure 2.4: (A) Geometry of the superconducting dipole magnet. (B) Magnetic field

distribution in the Y -Z-plane at X=0 [41].
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The superconducting dipole magnet [41] serves to bend charged particle trajec-

tories in order to determine their momenta. The current geometry of the magnet

is shown in Fig. 2.4(A).

It will provide bending power to the tracking detectors MVD and STS. It has

a large aperture of ±25o in polar angle and provides a magnetic field integral of

1 Tm for a sufficient momentum resolution. The magnet should be large enough

to permit the installation and maintenance of the MVD and the STS, which

implies that the size of magnet should be at least 1.3×1.3 m2.

Since in order to meet the requirements the dipole magnet was chosen, the

resulting magnetic field is non-homogeneous. The magnetic field distribution,

calculated with ToSCA-program [42], for the current version of the magnet is

shown in Fig. 2.4(B).

2.3.2 Micro-Vertex Detector (MVD)

The Micro-Vertex Detector [43] design is mainly driven by the goal of deter-

mining the position of a particle interaction or decay point (secondary vertex) by

tracing the reaction products to their common point of origin. In order to achieve

a high secondary vertex resolution, the MVD has to be located close to the tar-

get. The MVD consists of four layers of Monolithic Active Pixel Sensor (MAPS)

(Fig. 2.5(A)) located from 5 cm to 20 cm downstream of the target in a vacuum.

The MAPS principle was originally developed as a digital camera image

sensors. MAPS can be produced in a standard Complementary Metal-Oxide-

Semiconductor (CMOS) process. It allows for the integration of sensor pixels as

well as analog and digital signal processing circuitry on a single chip (for this

reason it is called “monolithic”).

The sensitive component of the pixel is a reversed biased diode (see

Fig. 2.5(B)), while the active volume of the sensor comprises the entire epitaxial

layer, which has a typical thickness of 12–16 µm. When a particle is travers-

ing the chip, ionizing radiation produces electron-hole pairs. The sensing diodes

collect the diffusing electrons and generate a charge signal. The charge signal is

converted into a voltage signal by a dedicated Metal-Oxide-Semiconductor Field-

Effect Transistor (MOSFET) inside the pixel (for this reason it is called “active
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2. Monolithic Active Pixel Sensoren (MAPS)

2.1. Allgemeines

2.1.1. Funktionsprinzip

Monolithic Active Pixel Sensoren (MAPS) werden in einem CMOS-Prozess als einheitlicher Chip
hergestellt. Dabei wird das aktive Volumen durch eine P-dotierte Epitaxialschicht gebildet. Hebt ein
hochenergetisches hindurchfliegendes Teilchen in der Epitaxialschicht Elektronen in das Leitungsband
an, wandern diese durch thermische Di↵usion in der Epitaxialschicht umher, bis sie auf eine Pixeldiode
tre↵en, an der sie durch das elektrische Feld in die Diode gezogen werden. Dazu wird die Pixeldiode
(siehe Abb. 2.1), die aus der P-dotierten Epitaxialschicht und einem n-Well an der Oberfläche besteht,
in Sperrrichtung betrieben. Die bei einem Teilcheneinschlag so eingesammelte Ladung bewirkt an der
Kapazität der Diode eine Spannungsänderung, die verstärkt und ausgelesen wird.

Abbildung 2.1.: Schematischer Aufbau eines Monolithic Active Pixel Sensors nach [6]. Die
Pixeldiode wird durch den pn-Übergang vom schwach p-dotierten Teil der
Epitaxialschicht (P-) zu dem angrenzenden n-dotierten Bereich (N+) gebil-
det.

2.1.2. Latch-Ups

Bei dieser Art von Sensoren können sogenannte Latch-Ups auftreten. Der Begri↵ Latch-Up bezeichnet
einen Kurzschluss in einem Halbleiter-Chip durch einen leitend gewordenen Bereich an einer Stelle,
die einem Thyristor ähnelt. Abbildung 2.2 zeigt für einen CMOS-Inverter zwei Transistoren, die einen
Thyristor bilden. Durch hochenergetische Teilchen, die genügend Ladungsträger im Halbleiter anregen,
oder durch Anlegen von Spannungen außerhalb der Spezifikation kann der Thyristor zum Schalten
gebracht werden, wodurch ein Kurzschluss der Versorgungsspannung entsteht.

Durch den dabei auftretenden hohen Strom könnten die Bondingdrähte, über die der Sensor an-
geschlossen ist, zerstört oder der Sensor durch Wärmeentwicklung beschädigt werden. Um dies zu
verhindern kann der Sensor modifiziert werden, indem für Latch-ups weniger anfällige Strukturen ver-
wendet werden, und zusätzlich empfiehlt sich eine Schutzschaltung, die die Versorgungsspannung der
Sensoren im Falle einer zu hohen Stromaufnahme kurzzeitig abschaltet (siehe Abschnitt 3.2.2).
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Figure 2.5: (A) The 3D view of the MVD model, depicting the sensors (C) and the me-

chanical holding structure including the layout of the stations. (B) Fundamental layout of a

CMOS sensor pixel [44]. (D) The MVD front-end electronics including the flex print cables.

pixel”). The sensors are bonded to a custom-made flex print cable, which con-

nects to the front-end board (Fig. 2.5(C)).

The detector arrangement provides a resolution of secondary vertices of about

50–100 µm along the beam axis.

2.3.3 Silicon Tracking System (STS)

The Silicon Tracking System (STS) [31] is the main tracking detector of the

CBM experiment. Thus, the task of the STS is to provide track reconstruction

and momentum determination of charged particles. The multiplicity of charged

particles is up to 700 per event within the detector acceptance. The required

momentum resolution is of an order of ∆p/p = 1%. This resolution can only

be achieved with an ultra-low material budget and particular restrictions on the

location of power-dissipating front-end electronics in the fiducial volume.
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4.4. OPERATIONAL PRINCIPLE 67

4.4 Operational Principle
A silicon detector is essentially a revers-biased diode with the depleted zone acting
as a solid-state ionization chamber. When a charge particle passes through the
silicon detector, it can either be stopped in the detector or can traverse through it.
When a particle is stopped the particle energy can be measured. However, when
charged particles pass through a silicon detector, many e-h pairs get produced
along the path of the particle. Average energy required to create a single e-h pair
is about 3.6 eV for silicon. The energy loss in silicon can be measured by “counting”
the total number of pairs created.

Figure 4.5: Operational principle of silicon strip detector.

Under the application of reverse-bias, the electrons drift towards the n+-side and
holes to the p+-side. This charge migration induces a current pulse on the read out
electrodes and constitutes the basic electrical signal. Integration of this current
equals the total charge and hence is proportional to the energy loss of the particle.
The high mobility of electrons and holes enables the charge signal to be collected
very quickly. It may be pointed out that only the charge released in the depletion
region can be collected, whereas the charge created in the neutral, non-depleted
zone recombines with the free carriers and is lost. Therefore, the silicon detectors
should be operated with an applied voltage sufficient to fully deplete all the crys-
tal volume. The principle of operation of silicon microstrip detector is shown in
Fig. 4.5. A Minimum Ionizing Particle (MIP) traversing a <111> oriented Si layer
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station 1 station 2

station 3 station 4

station 5 station 6

station 7 station 8

Figure 2.6: Layout of the STS stations. The most upstream station is shown in the upper left
corner, the most downstream station in the bottom. The color codes within the stations denote
commonly read-out sensors. The circles indicate the acceptance between polar angles 2.5¶ and
25¶. Several stations are horizontally enlarged for increased coverage of low-momentum particles
in the dipole magnetic field. Stations 5 and 6 as well as 7 and 8 are of identical construction.
The two circles indicate their respective acceptance, i.e. the smaller radius is for the upstream
station.

Station

A

B

C

Operational principle

Figure 2.6: (A) The layout of the STS stations [31]. (B) The operational principle of the

silicon strip detector [45]. (C) The layout of the 6th STS station. The color codes within the

stations denote commonly read-out sensors. The circles indicate the acceptance between polar

angles 2.5o and 25o.

The STS consists of 8 tracking layers of silicon detectors (see Fig. 2.6(A)). It is

based on double-sided silicon micro-strip sensors with a stereo angle of 7.5o and a

strip pitch of 58 µm. The sensors are mounted onto lightweight support ladders,

which will be read out through multi-line micro-cables with fast electronics at

the periphery of the stations. The STS covers polar angles from 2.5o to 25o.

The system is located within a range of 30 cm to 100 cm from the target,

keeping the spacing between stations at about 10 cm. It is placed inside the

1 m long gap of a superconducting dipole magnet providing the bending power

required for momentum determination with a resolution of ∆p/p = 1%.

The principle of operation of the silicon microstrip detector is shown in

Fig. 2.6(B). The sensitive component of the silicon detector is a reverse biased

diode with the depleted zone acting as a solid-state ionization chamber. When
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3 Introduction: The RICH Concept!

CAMERA 
!  2.4 m2, 55k Ch. 
!  MAPMT: H12700B 

(Hamamatsu) 

MIRROR 
!  SIMAX-glass, Al+MgF2 
!  R = 3m, d ≤ 6mm 
!  11.8 m2 (Tiles of 40×40 cm2) 
!  JLO OLOMOUC 

RADIATOR 
!  CO2; γth = 33 
!  pπ,th = 4.65 GeV/c 

!  Length=1.7 m. V ≈30 m3 

photon detector

photon detector

UV-mirror

Cherenkov
 light cone 

beam pipe 

A
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Operational principle

Figure 2.7: (A) The layout of the RICH stations [46]. (B) The principle of the Cherenkov

radiation. The schematic view of the RICH detector with its imaging UV mirrors. (C) The

Cherenkov-cones are imaged on the detectors as rings.

charged particles pass through an active volume of the detector, many electron-

hole pairs are produced along the path of the particle. Under the application

of reverse-bias, the electrons drift towards the n-side and holes to the p-side.

This charge migration induces a current pulse on the read-out electrodes. The

high mobility of electrons and holes allows for a very fast collection of the charge

signal.

2.3.4 Ring Imaging Cherenkov detector (RICH)

The main task of the RICH detector [46] (Fig. 2.7(A)) is to select electrons

and positrons, in particular to distinguish them from pions in the momentum

range below 10 GeV/c with a pion suppression on the order of 103–104.

The operation principle of the RICH detector is based on the Cherenkov effect.

The Cherenkov radiation is produced when a charged particle travels faster than
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the speed of light in the medium, through which it passes. The particle excites

atoms or molecules around it with the electromagnetic field and they fall back

down to ground level by emitting Cherenkov photons. The emitted Cherenkov

radiation travels at the speed of light in the medium, given by c/n, where c is

the speed of light in a vacuum and n is the index of refraction. It results in

the Cherenkov photons forming a cone-shaped front (Fig. 2.7(B)), whose half

angle is greater for faster particles and media with higher refractive indexes.

The radiation occurs mainly in the visible and UV region of the spectrum. In-

side the detector this Cherenkov light cone is reflected by a focusing mirror to

a position-sensitive photon detector, which allows reconstructing the produced

rings (Fig. 2.7(C)).

The RICH detector will be placed 1.6 m downstream from the target behind

the dipole magnet. It will consist of a 1.7 m long gas radiator at 2 mbar overpres-

sure and two arrays of mirrors (Al+MgF2 coating) and photon detector planes.

The design of the photon detector plane is based on MAPMTs (Multianode

PhotoMultiplier Tubes, e.g. H8500 from Hamamatsu) in order to provide high

granularity, high geometrical acceptance, high detection efficiency of photons also

in the UV region and a reliable operation.

According to in-beam tests with a prototype RICH of real-size length, one has

to expect the order of 100 Cherenkov rings to be seen in a central Au+Au collision

at 25 AGeV due to the large material budget in front of the detector. About

22 photons are measured per electron ring. Simulation studies predict that such

a high value of photons per ring together with high granularity (approx. 55 000

channels in total) allows the achievement of a pion suppression on the order

of 500.

2.3.5 Muon Chambers (MuCh)

Since the CBM strategy is to measure both electrons and muons in order

to combine the advantages of both probes, the muon detector is also a part

of the alternative setup version. The main experimental challenge for muon

measurements at CBM is to identify low-momentum muons in an environment

of high particle densities.

The MuCh (Muon Chamber) [47] in CBM is placed downstream of the STS,
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3.3 Basic Principles of the Straw Tube

Straw tubes are drift chambers (first operation drift chamber [62]) made of a gas filled
conducting cylinder acting as cathode, and a sense wire stretched in the axis of the cylinder.

The electromagnetic interaction between the charged particles traversing the gas inside
straw tube forms the basis of detection. Coulomb interactions between the incoming charged
particles and bound electrons in the gaseous medium result in ionization. Due to the applied
static electric field in the tube, electrons of primary ionization will drift to the positively
charged anode wire and positive ions will move to the cathode. Since the electric field in
the straw tube increases with r−1 towards the anode wire, in the vicinity of the thin wire
(at rc = few wire radii) the electric field gets strong enough so that electrons produced
by the primary interaction can gain enough energy to produce an avalanche like secondary
ionization process called gas amplification. In Fig.3.5 the gas amplification is depicted. A

Figure 3.5: Time development of an avalanche in the Straw tube

typical drop like ionization distribution close to the anode wire develops with all electrons
in the front towards the wire surface and ions outside. Because of lateral diffusion and the
small radius of the anode, the avalanche surrounds the wire; electrons are collected and
positive ions start to drift towards the cathode. From the gas amplification or avalanche,
signal amplification of 104 − 106 is obtained [63]. This leads to a significant simplification of
the measurement electronics. Signals produced by the collected charges are further amplified
by exterior electronics and processed by a data acquisition system (DAQ). The track of a
particle is mapped from the fired wires by registering the drift times of the electrons. Using
these drift times, one can obtain the distance of closest approach of the track to the anode
wire Fig.3.6. In a single straw the coordinate information is a ”cylinder of closest approach”.
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Figure 2.14: Normalized background for different segmentation angles. We have chosen 1-degree
uniform segmentation as our baseline option.

!
Figure 2.15: Schematic representation of the signal generation process in GEM

randomly along the track. Parameters of the Landau distribution are determined with the
HEED [5] package.

• Determination of the number of secondary electrons emitted in the avalanche region for
each primary electron. Exponential gas gain distribution with a default mean gas gain of
104 is used in this step.

• Intersection of secondary electron spots with the pad structure of a module and determina-
tion of the charge arrived at each pad. The default spot radius is set to 0.6 mm as measured
for the triple-GEM detectors during beam tests. Charge arrival time is calculated from
the Monte-Carlo point time plus the primary electron drift time: t = d/v (d -distance
travelled by the primary electron towards the avalanche region, v - drift velocity, v = 100
micro-m/ns by default).

• Time-dependent summation have been performed for charges from all Monte-Carlo points
pad-by-pad and conversion of the charge-vs-time distribution has beed done to get the
timing response of the foreseen MUCH readout electronics. Timing response on a delta-
function-like charge from secondary electrons is simulated by the linear peaking period of 20
ns and the falling edge described as an exponential decrease with 40 ns slope. Response to
several delta-function-like charge signals is described as a convolution in time of responses
from several delta-functions. Random noise of the readout electronics is also added at this
step.

• Application of the threshold to the readout response and determination of the time stamp
(a moment when the response exceeds the threshold value): The charge information is

Much  setup (SIS100/300(??)) 

60 (C+Pb) + 20 Fe + 20 Fe + 30 Fe + 35 Fe + 100 Fe (cm) 
30 cm gap between 2 absorbers 

LMVM @ SIS100 + ToF 
LMVM @ SIS300 + ToF 

J/ψ @ SIS100-300 + ToF 

STS 

ToF 

4 AGeV 8 AGeV 

60 (C +Pb) + 20 Fe + 20 Fe + 30 Fe + 35 Fe + 100 Fe (cm)
                                                         

TOF                                                    

A

B

LMVM @ SIS100 + ToF
LMVM @ SIS300 + ToF

J/Ψ @ SIS100-300 + ToF

                                                                                                                                                                        
                                                                                    

4 AGeV     8 AGeV
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Operational principle (GEM) 

Operational principle (straw tubes) 

Figure 2.8: (A) The scheme of the MuCh detector configurations, optimized for different

physics cases: low-mass vector mesons (shown with red and blue frames) and J/ψ measurements

(shown with a green frame)[47]. The schematic representations of the signal generation process

in the GEM detector (C) and the straw tube detector (B).

which determines the particle momentum. The detector will exploit the standard

technique of absorber filtering.

The approved complete design of the muon detector system consists of 6 hadron

absorber layers and 18 gaseous tracking chambers organised in triplets, placed

behind each absorber slab (Fig. 2.8(A)). The first absorber is located inside the

magnet and for this reason, is made of 60 cm of nonmagnetic carbon, then iron

plates of thickness 20, 20, 20, 30, 35 and 100 cm are installed.

The muon detector system will be built in stages adapted to the beam ener-

gies available. The first two starting versions of MuCh (SIS100-A and SIS100-B)

will comprise 3 and 4 stations suitable for the measurement of low-mass vector

mesons (ρ, ω, φ) in nucleus-nucleus collisions at 4–6 AGeV and 8–14 AGeV, re-

spectively. The third version of the MuCh system (SIS100-C) will be equipped

with an additional iron absorber of 1 m thickness in order to be able to identify

muons from charmonium decay at the highest SIS100 energies.

As for tracking planes, different detector technologies will be used depending

on the hit density and the rate for a particular detector layer. The first two
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stations will consist of the triple Gas Electron Multiplier (GEM) detectors, in

order to cope with the 3 MHz/cm2 hit rate, predicted by simulations. The last

one or two stations will be made of the straw tube detectors, due to smaller hit

rates and larger areas to be covered. As the last tracking station, behind the thick

1 m absorber, four layers of the Transition Radiation Detector (TRD), which is

built for electron identification at CBM, will be used. For the full MuCh version

at SIS300, the 5th station will be made of hybrid GEM+Micromegas technology

and as the 6th station, after the 1 m iron absorber, again the four TRD layers

will be used.

The operational principle of GEM detectors (Fig. 2.8(B)) and straw

tubes (Fig. 2.8(C)) are similar and based on the avalanche effect. Straw tubes

are drift chambers consisting of a gas filled tube with a conductive inner layer

acting as a cathode and an anode wire stretched along the cylinder axis. The de-

tection is based on the electromagnetic interaction between the charged particles

traversing the gas inside a straw tube resulting in the gas ionization. Thanks to

the applied static electric field in the tube, the electrons of the primary ionization

drift towards the anode, while the ions drift towards the cathode. Due to the

high electric field strength near the thin anode wire, the drifting electrons gain

enough energy to produce an avalanche-like secondary ionization process called

gas amplification. Thus, the electric charge collected on the anode is many orders

of magnitude higher than that produced in the primary ionization.

2.3.6 Transition Radiation Detector (TRD)

The Transition Radiation Detector (TRD) [48] task is to improve identification

of electrons and positrons with respect to pions for the momenta larger than

1.5 GeV/c.

The detection is based on the the effect of transition radiation (TR) emission

by an ultrarelativistic charged particle when crossing the boundary between two

media with different dielectric constants. The total energy loss of a charged

particle during the transition depends on its Lorenz factor γ = E/mc2.

For the predicted particle momenta, the probability of producing TR by elec-

trons and positrons (γ > 1.000) is higher than by any other particle, offering the

opportunity to separate them from pions. The multiwire proportional chambers
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Figure 2.9: (A) The scheme of the Transition Radiation detector for SIS100/300 and (B) the

geometry of one detector module [48]. In the module schematic signals produced by a pion and

an electron are shown. The geometric proportions and the field lines in the drift chamber are

accurate [49].

are used to detect produced TR photons.

The current version of the detector consists of 3 stations located at 5 m, 7.2 m

and 9.5 m downstream from the target (Fig. 2.9(A)). Each station consists of

several detecting layers adding up to a maximum of 10 layers in total.

An individual detector module consists of a radiator and a photon detector.

The photon detector is a drift chamber with a 3 cm drift zone and an amplification

region of about 6 mm. The drift electrode is glued directly to the radiator.

The particles pass through the radiator and the generator of the TR and then

enter the conversion and drift region of the readout chamber.

A cross section of a segment of one module of the TRD is shown in Fig. 2.9(B)

along with schematic signals from a pion and an electron detected by the drift

chamber. The electron-to-pion separation is performed by statistical analysis of
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the energy losses in each layer. Additionally, the TRD can serve as a tracking

detector, bridging the gap between the STS and the TOF detectors.

The pion suppression factor obtained with 10 TRD layers is estimated around

100 at an electron efficiency of 90%. For measurements at SIS100 one station of

TRD with maximum 4 detector layers will be used.

2.3.7 Time Of Flight (TOF) detector

pp

K+K-

π+π-

7.1. RATE CAPABILITY STUDIES 91

Figure 7.5: Strip MRPC, featuring a 10-gap 8-strip structure with float-glass electrodes of
0.35 mm, 0.5 mm and 0.7 mm thickness.

Figure 7.6: Efficiency and time resolutions of the 3 modules with different electrode thickness
as function of the HV.

mb

KF Particle Finder with ToF track ID: Au+Au @ 10AGeV SIS100  
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π UrQMD semi 

central events 

Fragments thermal generator 
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Figure 2.10: (A) The scheme of the time-of-flight wall [50]. (B) The structure of the float

glass MRPC with 8-strip readout [51]. The simulated 2D squared mass distribution versus

momentum and (C) its projection (D).

The time-of-flight measurement will be used for the identification of charged

particles: the determination of the particle mass is based on the measurement of

the time of flight, the particle momentum and the particle track length.

The TOF detector [50] (Fig. 2.10(A)) is located at a distance of 6 m from the

target in the SIS100 configuration version and 10 m in case of SIS300.

The required full system time resolution is on the order of 80 ps.

The simulations predict hit rates of up to 20 kHz/cm2. In order to meet these
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Figure 2.11: (A) The layout of the electromagnetic calorimeter ECAL [53]. (B) A sampling

calorimeter scheme and (C) a schematic development of an electromagnetic shower.

requirements MRPC will be used (Fig. 2.10(A)). The MRPC is a stack of resistive

glass plates (Fig. 2.10(B)). High voltage is applied to the external surfaces of the

stack. The pickup electrodes are attached further out. A charged particle ionizes

the gas while traversing. The high electric field amplifies this ionization by an

electron avalanche. The resistive plates stop the avalanche development in each

gap. However, they are transparent to the fast signal induced on the pickup

electrodes by the movement of the electrons. So the total signal is the sum of the

signals from all gaps. For the sake of high efficiency there are many gaps. The

time jitter of the signal depends on the individual gap width. Thus, in order to

achieve good time resolution, the gaps are narrow.

According to simulation studies TOF will provide the separation of kaons from

pions for momenta up to 3.5 GeV/c and protons from kaons for momenta up to

6 GeV/c. The squared mass distributions obtained from the studies are shown

in Fig. 2.10(B) and (C).
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2.3.8 Electromagnetic CALorimeter (ECAL)

A sampling calorimeter, in which the material that produces the particle

shower is distinct from the material that measures the deposited energy, will

be used to measure direct photons and neutral mesons decaying into photons [52]

(Fig. 2.11(A)). The passive absorber and active materials alternate with each

other as it is shown in Fig. 2.11(B).

The working principle of calorimeter is based on the total absorption of the

energy associated with the incoming particle. The particles cause an elec-

tromagnetic shower of electrons, positrons and secondary gammas, and the

summed ionization is proportional to and a good measure for the incoming energy

(Fig. 2.11(C)).

The ECAL will be composed of modules which consist of 140 layers sandwiched

of lead and scintillator sheets. The shashlik modules can be arranged either as a

wall or in a tower geometry with variable distance from the target.

2.3.9 Projectile Spectator Detector (PSD)

The determination of the reaction plane in nucleus-nucleus collisions is crucial

for several measurements, including anisotropic collective flow. The reaction

plane is defined by the impact parameter and the beam direction z (Fig. 2.12(B)).

In CBM, the reaction plane can be measured by the forward hadronic calorimeter,

referred to as the Projectile Spectator Detector [54] (Fig. 2.12(A)).

The PSD will be used to determine the collision centrality as well as the

orientation of the reaction plane. A precise characterisation of the event is of

great importance for the analysis of event-by-event observables. The study of

collective flow requires a well defined reaction plane which has to be determined

by a method not involving particles participating in the collision.

The detector is designed to measure the number of non-interacting nucleons

(spectators) from a projectile nucleus in nucleus-nucleus collisions (Fig. 2.12(B)).

The PSD is a full compensating modular lead-scintillator calorimeter, which pro-

vides very good and uniform energy resolution. It comprises 44 individual mod-
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Projectile spectator detector 13

which contains all standard EM processes and uses a Bertini-style cascade for hadrons below 5 GeV,
and the FTF (Fritiof) model for high energies above 4 GeV. As a cross check an alternative physics list
QGSP_BIC_HP (which enables standard EM processes, Bertini cascade for hadrons of energy below 10
GeV, and QGS model for high energies above 20 GeV) was used.

The model of the CBM subsystems used for the PSD performance study is shown in Fig. 5(left). The
geometry includes a 250 µm thick Au target, eight silicon tracking stations (STS) [34] located 30-100
cm far from the target inside the dipole magnet, the aluminum beam pipe with a variable cross section
and thickness of a few mm, and the PSD. The optimal PSD location is at 8 (15) meters from the target
for collision energies at SIS100 (SIS300). The transverse segmentation of the PSD is illustrated in
Fig. 5(right). It is elongated along the lab x direction and includes 44 modules with a 20⇥20 cm2

cross section in the transverse plane and a beam hole formed by the inner corners of the four central
modules which in Fig. 5(right) are marked in red color. Simulation studies performed with a smaller
(and more expensive) module size of 10⇥10 cm2 showed only marginal improvement of the reaction
plane resolution.

3

2

1
2
0
c
m1

160cm

20cm

Fig. 5: (left) CBM detector geometry used for the PSD performance study. The simulated geometry includes (i) a
250 µm thick Au target, (ii) eight silicon tracking stations STS [34] (black), (iii) a magnetic field generated by the
CBM dipole magnet (dark yellow), (iv) a few mm thick aluminum beam pipe (green), and (v) the PSD (dark gray).
The PSD detector is positioned at 8 (15) m from the target for performance study at SIS100 (SIS300) energies.
(right) Transverse segmentation of the PSD. The PSD geometry is elongated in the horizontal direction and has 44
modules with a square cross section of 20⇥20 cm2. The central region around the beam hole (6 cm diameter) has
a 2⇥ 2 segmentation which allows to use the spectators produced very close to the beam rapidity for anisotropic
flow studies. The modules used to construct subevents PSD1, PSD2, and PSD3 are marked in red, blue, and yellow
color, respectively.

The ion beam is horizontally deflected by the field of the dipole magnet (along the x direction in the
laboratory frame) which has a nominal field integral of about 1 Tm. The PSD is shifted by xshift for
each collision energy, magnetic field strength, and detector distance to the target, such that the beam
always pass the PSD via its beam hole. The magnetic field values used in simulations and the PSD shift
along the x direction for different detector distances from the target are shown in Tab. 1 and Fig. 6(left),
respectively.

For the performance studies, the PSD modules are grouped into three classes (subevents) according to the
illustration in Fig. 5(right). The subevents allow to use the PSD as a standalone detector for centrality
and reaction plane determination. In the following we refer to these subevents as PSD1 (red), PSD2
(blue), PSD3 (yellow), and PSD-full in case all modules are used together.
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Figure 15: (left) Almond shaped overlap zone generated just after an A+A collision where the
incident nuclei are moving along the ±z axis. The reaction plane by definition contains the impact
parameter vector (along the x axis) [55]. (right) Measurements of elliptical-flow (v2) for identified
hadrons plotted as v2 divided by the number of constituent quarks nq in the hadron as a function
of (a) pT /nq, (b) KET /nq [56].
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The expansion parameter v2, called elliptical flow, is predominant at mid-rapidity. In general,
the fact that flow is observed in final state hadrons shows that thermalization is rapid, so that
hydrodynamics comes into play at a time, ⌧0, which is before the spatial anisotropy of the overlap
almond dissipates. At this early stage hadrons have not formed and it has been proposed that the
constituent quarks flow [59], so that the flow should be proportional to the number of constituent
quarks nq, in which case v2/nq as a function of pT /nq would represent the constituent quark flow as a
function of constituent quark transverse momentum and would be universal. However, in relativistic
hydrodynamics, at mid-rapidity, the transverse kinetic energy, mT � m0 = (�T � 1)m0 ⌘ KET ,
rather than pT , is the relevant variable; and in fact v2/nq as a function of KET /nq seems to exhibit
nearly perfect scaling [56] (Fig. 15b).

The fact that the flow persists for pT > 1 GeV/c (Fig. 16a) implies that the viscosity is small [60],
perhaps as small as a quantum viscosity bound from string theory [61], ⌘/s = 1/(4⇡) where ⌘ is the
shear viscosity and s the entropy density per unit volume. This has led to the description of the
“sQGP” produced at RHIC as “the perfect fluid” [9]. An estimate [62] of ⌘/s for nuclear matter
and for several common fluids, as a function of the fractional di↵erence of the temperature from the
critical temperature, at fixed pressure, is shown in Fig. 16b. This particular estimate [62] for the
QGP at RHIC is quite close to the quantum bound (solid line). Also, empirically, for all common
fluids ⌘/s is a minimum at or near the critical point [63] which might suggest that the conditions
at RHIC energies are near the QCD critical point.

5.1 Two-Particle Correlations and Flow

In addition to measuring flow by the correlation of individual particles to the reaction plane, it is
also possible to measure flow by the correlation of two particles to each other. The advantage of

16

Participants

Figure 2.12: (A) The layout of the Projectile Spectator Detector (PSD) [54]. (B) The

reaction plane by definition contains the impact parameter vector (along the X-axis).

ules, each consisting of 60 lead/scintillator layers.

2.4 Data AcQuisition system (DAQ)

Many of the important signals in the CBM physics program are based on rare

probe measurements. In order to obtain statistically sufficient data, the detector

systems are designed to operate at interaction rates of up to 10 MHz for Au+Au

collisions. Together with the high multiplicity of charged particles produced in

heavy-ion collision, it leads to huge data rates (up to 1 TB/s), which must be

reduced online to an archival rate of about 10 GB/s. The CBM data acquisition

and event selection system will perform the task of identifying interesting events

and sending them into storage.

The huge collision rates together with the absence of simple trigger criteria

resulted in a novel DAQ concept for CBM (Fig. 2.13). The conventional DAQ
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Figure 2.13: The CBM data acquisition concept in comparison to conventional systems [55].

Usually, the collected data undergoes several trigger levels, where it gets reduced. This scenario

is inapplicabele for CBM due to the absence of simple triggers. Instead, the first (L1) trigger

will be a High Level Trigger (HLT), running on a computer farm.

system design with triggered front-end electronics permits keeping the event data

for a limited time (about a few µs) until a quick trigger decision is taken. As

soon as a positive decision is chosen, the DAQ sends the selected event either to

a higher trigger level or to the archival storage. This DAQ system with a fixed

trigger latency is not applicable for the case of CBM in the absence of simple

hardware triggers based on the raw data from the detectors.

Unlike the conventional DAQ system in the concept adapted for CBM, all

front-end electronics are self-triggered, where each particle hit is autonomously

detected and the measured hit parameters are stored with precise timestamps in

large buffer pools.

The event building via the association of hits with events is performed later by
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Figure 2.14: The architecture of the First-level Event Selector (FLES) [56].

processing data from these buffers via a high speed network fabric. The selection

and storage of events is performed after (full/partial) event reconstruction in a

large computer farm.

Thus, the role of the data acquisition system is to transport data from the

front-end to processing resources and finally to archival storage. In this case the

system is not limited by decision latency as in a conventional DAQ system, but

only by the total computational throughput.

2.5 First Level Event Selection (FLES)

The name of the CBM online high-level processing farm, First Level Event Se-

lection (FLES), implies there is no low-level event trigger before this stage. The

FLES performs interval/event building on the full input rate of 1 TB/s. After

it the online event analysis includes clusterization and feature extraction, track-

ing in four dimensions (including time) and finally event selection. Assuming an

archiving rate of 1 GB/s and an average event size of about 40 kB a maximum
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event rate of 25 kHz can be accepted for permanent storage. Thus, if the primary

event rate is 10 MHz, the required data reduction factor is at least 400.

The FLES will be a scalable high-performance computer farm. It will consist

of different available types of computing devices, including FPGAs at the first

stages of the system and heterogeneous many-core CPU/GPU architectures to

achieve fast and efficient event reconstruction. The architecture of the First-Level

Event Selection farm is summarized in Fig. 2.14. In total, there are 1000 links at

10 GBit/s transmitting data into FLES.

Online event analysis will be performed by processing nodes estimated to

require in total approximately 60 000 cores (year 2010 equivalent). A high-

throughput network infrastructure will connect all nodes and enable interval

building at the full input data rate of 10 MHz.
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High Performance Computing

HEP has always been a data-intensive domain due to the fundamental feature

of quantum mechanics, namely its probabilistic nature. HEP experiments are

aiming to register rare relevant events, which can only be obtained within a large

number of observations. In order to achieve this challenging goal, particle physics

has done a long way from using bubble chambers with collision rates of about

1 collision per minute to modern HEP detectors with rates counted in MHz.

Thus, modern tracking detectors generate huge amounts of analog data at rates

equivalent to petabytes per second, that is beyond the generally known bounds

to be considered “Big Data”. It poses a great challenge of collecting, storing and

reducing these large volumes of data. The experimental information has to be

analyzed online in order to select and store relevant events, since only reducing

the data volume by orders of magnitude in real time can allow for meeting the

recording rates achievable nowadays. For this reason computing plays a crucial

role in HEP.

In fact, HEP experiments are not only one of the main consumers of High Per-

formance Computing (HPC), but also the area, which is pushing the development

in computer capability by its constantly increasing computational demands.

This chapter will give a brief overview of existing HPC hardware architectures

and software frameworks, which allow for the use of parallel hardware in a con-

venient and efficient way. Special emphasis will be given to the hardware and

software tools, which were used to develop the 4D CA track finder algorithm

within the current thesis.
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3.1 Hardware architecture and its implications

for parallel programming

Until 2004 software developers could improve the speed of single-threaded pro-

grams without much efforts on their part due to the constant increase in frequency

of processors. However, this trend has reached its limits due to the frequency-

power wall and physical limitations of semi-conductor technology.

Instead, all computer manufacturers have turned to a parallel architecture as

the new HPC paradigm. For the developers it meant that the so-called “free

lunch” era [57], when performance was improving with new computer architec-

tures without any contribution from the developers’ side, was replaced by the

parallel era, when the performance improvement may only be gained at the cost

of programming effort.

Modern computer technologies allow performing a number of calculations si-

multaneously. In other words computer architectures nowadays are parallel. In

order to use such architectures efficiently, one needs to exploit distributed cal-

culations within one super computer — a many- or multi-core server, equipped

with vector registers.

Multi-core processors can offer significant performance improvements over

their single-core counterparts for certain kinds of parallelized tasks, often de-

manding new programming paradigms to efficiently utilize the complex archi-

tecture involved [58]. Future trends promise that computing power will further

evolve in a parallel direction, gaining more cores per processing unit and more

elements per vector register.

In this case it is crucial to exploit the full potential of this complex hardware.

In order to get maximum performance out of future computer architectures, de-

velopers should design programs so that the speed of resulting applications scales

with the number of parallel elements in the heterogeneous system. Ideally, im-

plemented algorithms should show linear scalability in a parallel run. Modern

parallel architectures present unique challenges for the software designers since

the structure of these architectures has significant impact on the way work is

scheduled, memory is allocated, and instructions are executed.

Modern applications need to be designed with parallelism in mind from the
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very beginning. However, there is no chance to write software, which fully utilize

the power of modern complicated computer architectures, without understanding

of the hardware, on which the software will be executed.

Thus, achieving this challenging goal is not possible without expertise in un-

derstanding underlying hardware architecture. In order to classify all existing

parallel systems, they were organized into a coherent and simple taxonomy.

3.1.1 Flynn’s taxonomy

By far the most commonly used computer architecture classification is the

taxonomy [59] proposed by Michael Flynn. The classification characterizes com-

puter designs in terms of the number of instructions streams issued at a time

and the number of data elements they operate on. Flynn’s taxonomy classifies

machines according to whether they have one or more than one stream of each

type (Fig. 3.1).

There are four possibilities:

• SISD (Single Instruction stream, Single Data stream),

• SIMD (Single Instruction stream, Multiple Data streams),

• MISD (Multiple Instruction streams, Single Data stream),

• MIMD (Multiple Instruction streams, Multiple Data streams).

The classical von Neumann approach can be described by Single-Instruction-

Single-Data (SISD) type. However, SISD is not necessarily completely sequential

architecture, since some instructions from the same stream may be executed

concurrently (see instruction level parallelism).

The revolutionary alternative was Single-Instruction-Multiple-Data (SIMD),

which appeared in the mid-60s and describes performing the same operation over

a multiple data set simultaneously. This can be done both in signal-threaded

and multi-threaded applications. Multiple-Instruction-Single-Data (MISD) is a

rarely used type. Although there were computer architectures to deal with this

type of parallelism (such as systolic arrays), there are few applications that can

benefit from this type of hardware.

Multiple-instruction-multiple-data (MIMD) programs are by far the most com-

mon type of parallel programs, that correspond to multiple processors, each using
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Figure 3.1: Flynn’s taxonomy, which classifies computer architectures by the number of

instruction and data streams.

its own data and executing its own program independently.

Different types of computer architectures may exhibit four different types of

parallelism. Let us consider each of them in the next section.

3.1.2 Parallelism in hardware

Since the processor parallelism is the primary method of performance im-

provement, it is important to be aware of all available architectural features that

brought substantial performance gain. These features can be roughly classified

in several categories:

• Instruction-Level Parallelism (ILP, e.g., pipelining, out-of-order super-

scalar execution, branch prediction),

• Data-Level Parallelism (DLP, e.g., SIMD, vector computation),

• Task-Level Parallelism (TLP, e.g., multi-threading),

• Memory-Level Parallelism (MLP, e.g., hardware prefetcher).
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Instruction-level parallelism

Multiple instructions from the same instruction stream can be executed concur-

rently, if such feature is provided by the hardware.

If one considers a computer program as a sequence of instructions executed

by a processor, an important characteristic of hardware is the number of instruc-

tions, that can be issued per clock cycle (IPC). Without the instruction-level

parallelism, a processor can only issue less than one instruction per clock cycle

(IPC<1). Such computing units were called subscalar processors.

The situation changed in the mid-1980s when the first super-scalar architec-

tures appeared. It was noticed, that instructions can be re-ordered and combined

into groups of non-dependent instructions, which are then executed in parallel

on corresponding different functional units without changing the result of the

program.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX WBMEM
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Figure 3.2: A canonical five-stage pipeline (IF = Instruction Fetch, ID = Instruction Decode,

EX = Execute, MEM = Memory access, WB = Register write back) (left side) and a five-stage

pipelined superscalar processor, capable of issuing two instructions per cycle (right side). It can

have two instructions in each stage of the pipeline, for a total of up to 10 instructions (shown

in green) being simultaneously executed.

This hardware feature is called pipelining. All modern processors have multi-

stage instruction pipelines. Instructions are broken up into stages (Fig. 3.2, left

side). Each stage in the pipeline corresponds to a different action the processor

performs on that instruction in that stage. A processor with an N -stage pipeline

can have up to N different instructions at different stages of completion and thus

can issue one instruction per clock cycle. This way pipelining tries to keep every

element of the processor busy with some instruction. As a result it increases
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instruction throughput.

In addition to that, modern processors also have multiple execution

units (Fig. 3.2, right side). Thus, combining multiple execution units with pipelin-

ing, processor can issue more than one instruction per clock cycle and achieve

superscalar performance (IPC>1).

Pipelining increases instruction throughput by performing multiple operations

at the same time, but does not reduce instruction latency, which is the time to

complete a single instruction from start to finish, as it still must go through all

steps. Indeed, it may increase latency due to additional overhead from breaking

the computation into separate steps and worse, the pipeline may stall (or even

need to be flushed), further increasing the latency.

Data-level parallelism

According to Flynn’s taxonomy, Data-Level Parallelism (DLP) exploits the SIMD

concept. This type of parallelism is more involving, since for efficient execution

it requires efforts from the developer’s side.

As the name suggests, in case of DLP instructions a single stream of instruc-

tions operates concurrently on a set of several data. Usually this term is applied

to simple ALU functions, like addition or multiplication. The operations are per-

formed on so-called vector registers filled with a set of elements of the same data

type (float, integer etc.) (Fig. 3.3).

va.0

vb.0

+

vc.0

+ + +
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va.1 va.2 va.3
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vector a
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1 instruction 

Figure 3.3: The scheme of SIMD calculations principle: the instruction is executed on a set

of different data within the vector register.

Nowadays SIMD instructions can be found to a different extent on most CPU-
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like processors, including Intel’s SSE, AVX, IMIC, AMD’s 3DNow!, IBM’s Al-

tiVec, SPE for PowerPC etc. The instructions differ in hardware implementations

and register size. For instance, SSE (Streaming SIMD Extensions) works with

128-bit registers, which facilitates simultaneous operation on two 64-bit (8-byte)

double precision numbers, four 32-bit (4-byte) floating point numbers, two 64-bit

integers, four 32-bit integers, eight 16-bit short integers or sixteen 8-bit bytes.

Advanced Vector Extensions (AVX) works with 256 bit registers (8 floats or in-

tegers), IMIC — with 512 bit registers (16 floats or integers). In GPUs SIMT

(Single Instruction Multiple Thread) approach is used, when a group of cores,

each running its own thread, executes the same instruction on a set of multiple

data.

The theoretically achievable speed-up factor of SIMD calculations is deter-

mined by the number of scalar elements processed within a single instruction,

which directly depends on the width of vector register. In addition to that, with

longer vectors the SIMD initial load and memory access latency is amortized over

a greater number of productive cycles, and thus becomes relatively smaller. This

fact explains the long term manufacturing tendency for wider registers.

One more interesting feature of SIMD calculations is that they provide the

opportunity to benefit from switching from double precision to single precision

by the simple consequence of doubling the number of elements in a vector. This

fact brings the issue of algorithm stability in the single precision arithmetic to a

new performance-related level.

On the other hand, DLP has certain requirements for the algorithm, for which

it can be used efficiently. For instance, conditional execution is mostly not ef-

ficient, since it requires expensive data re-arranging or a part of vector width

becomes idle. For this reason originally SIMD calculations were tailored to natu-

rally vectorised problems of matrix-oriented computing and media-oriented image

processing.

Keeping this in mind, one can conclude that not every algorithm can take the

advantage of SIMD calculations. Moreover, after reaching some vector width,

only few naturally vectorised algorithms can benefit from further increase of vec-

tor length due to the fact that there will not be enough elements to fully fill the

vector width.
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For this reason, there is a more recent trend of having more registers, each

register being quite short compared to the traditional length. This offers more

flexibility to the algorithm implementation and allows for more sophisticated

compiler optimizations, while reducing hardware complexity.

Despite the non-trivial task, some compilers provide auto-vectorization. Un-

fortunately, in this case the developer usually has no control over the process and

in the end gets poor speed-up factor in comparison with potential values.

Summarizing, exploiting SIMD instructions in the algorithm implementations

can be a tricky task and strongly depends on the algorithm choice. However

effective use of SIMD instructions promises a great speed-up potential, which

would be unwise to ignore.

Task-level parallelism

When the evolution of hardware design turned in the direction of parallel ar-

chitectures, the vendors started to clone the whole core multiple times, allowing

multiple threads to perform execution in parallel. As a first step, architects

cloned the big cores used in single-core processors multiple times to create multi-

core processors. Although these cores were operating with a lower frequency than

in an equivalent single-core processor for the lower power consumption sake, still

parallel processing provided a much bigger computing power gain than the loss

due to core frequency reduction. However full-sized core cloning is limited and

in order to gain more parallelism, the vendors have created architectures with

simpler cores running at even lower frequencies but numbered in dozens. This

massive level of parallelism of many- and multicore architecture can be exploited

only by the applications, that have a multi-threaded design.

In contrast to DLP, Thread-Level Parallelism (or TLP) exhibits more flexibil-

ity, since in this case generally speaking each thread can perform independent

task. This involves executing individual streams of instructions delegated to dif-

ferent cores of a processor simultaneously. Each process maintains its data and

instructions, so that it may be considered an independent task, even if processes

are performing parts of one global task and synchronized with each other. For

this reason this type of parallelism follows the concept of MIMD architecture, if

we consider Flynn’s taxonomy.
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Figure 3.4: The scheme of task-level parallelism principle. The tasks are distributed between

threads. The execution time is defined by the last thread to finish.

Conceptually, it is straightforward to see why TLP speeds up an execution.

If one considers the threads, which are truly independent, then distributing a

set of threads among available cores on a processor would reduce the elapsed

execution time to the execution time of the last thread to finish, compared to

a sequential version which would require the sum of execution times of all of

the threads. To achieve the maximum performance the work should be evenly

divided among threads in such a way, that they finish execution at the same

time. Fig. 3.4 illustrates these conceptual differences between single threading

and thread-level parallelism, assuming independence and no thread allocating or

scheduling overhead.

Unfortunately, in real life this idealistic scenario is affected by several factors.

The main performance impacting factors are: limited level of execution inde-

pendence and synchronization overhead, scheduling and disproportion in thread

load, limited thread memory.
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Figure 3.5: The tendency of computantional and memory access performance: the discrep-

ancy between improvements in the speed of calculations and memory access is growing [60].

Memory-level parallelism

Following the main parallel architecture trend towards more complexity, modern

computers are being equipped with more cores. With the performance improve-

ment it also brings proportional increase of the data demand. This fact poses a

challenge to the architecture design with regards to memory bandwidth.

From 1986 to 2000, CPU speed improved at an annual rate of 55% while

memory access speed only improved at the rate of 10% (Fig. 3.5). This problem

of growing discrepancy between improvements in the speed of calculations and

memory access is known as Memory Wall. Thus, the latency and limited commu-

nication bandwidth are the main barriers to computer performance improvements

nowadays.

This bottleneck is usually removed or at least attenuated by caching, or in

other words attaching a layered structure of fast, but small memory directly to

each core (Fig. 3.6, left side). Terms “fast” and “small” here mean that main

memory access can be two orders of magnitude slower than first-level cache, while

the main memory is three to five orders of magnitude larger [61]. This cache is

intended to store copies of the data from frequently used main memory locations.

In case of CPU these data copies are coherent, which means that at any moment

the copies stored in any layer of cache are guarantied to coincide with values in the
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Figure 3.6: The average memory access latency in cycle counts for different layers of cache

in CPU (left side). The scheme of hyper-threading technology principle (right side): while one

thread is fetching the data, the other can execute an instruction due to the duplicated register

sets inside one physical core.

main memory. If the cache is used properly, it can greatly reduce the time that

the CPU waits for data to be fetched from the Random-Access Memory (RAM).

If cache is not used in an optimal way, cache misses will occur often. A cache

miss refers to a failed attempt to access a piece of data in the cache, which re-

sults in a main memory access with much longer latency. If single cache misses

generated by a single thread can be grouped and executed in a combined man-

ner, overall performance is improved. The term memory-level parallelism (MLP)

refers to the number of single cache misses that can be generated and executed

in a combined way. Many microarchitectural techniques have been developed to

increase MLP (e.g. prefetchers, which can bring data from the next level mem-

ory hierarchy to the closer cache in advance). Current architectures have ever

growing caches to improve the average memory reference time to fetch or write

instructions or data.

Although there will be bigger caches and higher memory bandwidth in the

future, they must be managed and used in the most efficient manner. First,

when the size of the total data set is larger than the size of cache, we must re-use

the data in the cache as many times as possible before the data is put back to

the main memory to avoid cache misses. Second, in the application, we should
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minimize the number of random memory accesses and try to keep the data locally

in order to benefit from the lined manner of cache reading. There was no efficient

random-access machine model for parallel computing established.

On the other hand, in case of many-core processors, if multiple threads attempt

to write to the same memory location at the same time, they must wait to

resolve conflicts. Thus, having threads writing to different areas of shared memory

would be preferable in decreasing the likelihood of incurring these time-consuming

conflicts.

By far the most popular solution to this problem is Non-Uniform Memory

Access (NUMA) architecture. The idea is to place data used by one particular

core physically closer to that core in the memory. The opposite situation we

could observe in so-called UMA (Uniform Memory Access) architecture, where

each processor must use the same shared bus (or another type of interconnect)

to access shared memory, resulting in a memory access time that is uniform to

all processors.

In the NUMA shared memory architecture, each processor has its own local

memory module, which it can access directly with a distinctive performance ad-

vantage. At the same time, it can also access any memory module belonging to

another processor using a shared bus.

Like most other processor architectural features, ignorance of NUMA can result

in subpar application memory performance. In order to benefit from the NUMA

architecture features, it is important that one keeps the data used by a certain

processor in the corresponding memory slot.

3.2 Architectures specification

This section will briefly illustrate modern computer architecture features on the

examples of several recent microprocessors and computer systems.

3.2.1 CPU architecture

To illustrate the complexity of modern CPUs, let us consider lxir039 server at

GSI (Fig. 3.7). Typically modern CPUs have 2 to 4 sockets. The lxir039 server
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contains 2 Intel Xeon X5550 CPUs, connected with each other via Quick Path

Interconnect (QPI) [62].

The Intel Xeon CPU X5550 is a server processor that was first available for

purchase in March 2009. It operates at a stock clock speed of 2.67 GHz. It has

a 4-core model, resulting in a high multi-tasking potential. In addition to that,

this processor supports Intel Hyper-Threading Technology (HTT) [63].

The HTT results in the fact that for each of 4 cores, that are physically present,

the operating system addresses two virtual or logical cores, and shares the work-

load between them when possible. For this reason the number of independent

instructions in the pipeline gets increased and the advantage of superscalar ar-

chitecture can be used in a more efficient way.

It becomes possible since architecturally a core with HTT consists of two

logical cores, each of which has its own processor architectural state. HTT works

by duplicating certain sections of the processor, those that store the architectural

state, but not duplicating the main execution resources.

Each logical core has its own Advanced Programmable Interrupt Controller

(APIC), and, thus, can be individually halted, interrupted or directed to execute

a specified thread, independently from the other logical processor sharing the

same physical core. Also, each logical core has its own full set of registers.

However, unlike the case of two independent physical cores, the logical core

in a hyper-threaded processor share some execution resources: execution engine,

including Arithmetic Logic Unit (ALU), Floating Point Unit (FPU), and Vector

Processing Unit (VPU), caches, and system bus interface.

The main HTT principle is illustrated in Fig. 3.6 (right side): when one logic

core stalls due to a cache miss or data dependency and is waiting for data, the

other one can use those execution resources to execute another scheduled task.

The extent to which execution can benefit from the presence of HTT depends

on the needs of a certain application and was estimated by Intel to performance

gains of up to 30% [64] .

For example, the lxir039 server at GSI (Fig. 3.7) is equipped with two Intel

Xeon X5550 processors and can operate in total with 16 threads in parallel.

Following the NUMA concept 24 GB of RAM is attached to each CPU. QPI

allows CPUs to access remote memory of each other.
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Figure 3.7: The structure of the lxir039 server at GSI, which is equipped with two Intel

Xeon X5550 processors. Due to HTT, it can operate in total with 16 threads in parallel. Each

core of CPU has 32 KB of L1 cache and 256 KB of L2 cache. 8 MB of L3 cache memory is

shared among the cores of a CPU.

As for the cache memory, each core of the Intel Xeon X5550 CPU has 32 KB

of L1 cache for instructions, 32 KB of L1 cache for data and 256 KB of L2 cache

for data and instructions. In addition, each CPU contains 8 MB of L3 cache

memory, which is shared among the cores of a CPU.

If one keeps in mind, that vector registers contain up to 4 float or integer data

elements due to SSE instructions, the total pure hardware potential speed-up

factor of the lxir039 server with respect to the one-core scalar operation can be

calculated as follows:

f = 2 sockets · 4 cores · 1.3 threads · 4 SIMD ≈ 42.
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3.2.2 GPU architecture

When the increase of CPU clock speed started to stagnate and the computer

architecture vendors started to explore parallel hardware, a new initially non-

general-purpose and highly parallel processor design started to be used in Graph-

ics Processing Unit (GPU). GPUs were initially used for rendering graphics only.

However, this has changed in the course of time.

Figure 3.8: The structure of streaming multiprocessor of the Nvidia GTX 980 GPU [65, 66].

A GPU architecture has several major features, which differ from the CPUs.

First of all, while GPUs can have hundreds or even thousands of cores, these

cores have smaller frequency than a CPU core and are missing some features.
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The missing features include interrupts and virtual memory, which are required

to implement a modern operating system. It has a major consequence on the way

an application for a GPU can be designed. Secondly, the speed of access between

a CPU and its larger pool of RAM is slower than GPUs, which typically contain

a smaller amount of more expensive memory that is very much faster to access.

In other words, CPUs and GPUs have significantly different architectures that

make them better suited to different tasks. A GPU can handle large amounts of

data in many streams, performing relatively simple operations on them, but is

not suited to heavy or complex processing on a single or a few streams of data.

A CPU is much faster on a per-core basis and can perform complex operations

on a single or few streams of data more easily, but is not as efficient in handling

as many streams as GPU simultaneously.

While GPU has many benefits such as more computing power, larger memory

bandwidth and low power consumption with regard to high computing ability,

there are some constraints as far as full utilization of its processing power is

concerned. These constraints make performance optimization more difficult.

On top of this, the debugging environment is not as powerful as in general

CPU. Therefore, developing a code with GPU can take more time and needs more

sophisticated work and fine-tuning. Being heavily parallel, the GPU architecture

requires a developer to cope with massive data partitioning and synchronization.

Often, the algorithms should be heavily redesigned in order to achieve the maxi-

mum possible performance running on GPU, so that a new parallel algorithm for

GPU has to be developed.

Let us consider the architecture specification of one of the most recent NVidia

GPUs — NVidia GTX 980 [65]. Following the trend towards higher core count,

this card has 2048 cuda-cores, which have a fully pipelined integer arithmetic

logic unit (ALU) and floating point unit (FPU).

The cores are grouped into streaming multiprocessors of 128 cores. The struc-

ture of the streaming multiprocessor is illustrated in Fig. 3.8. The L1 data and

instruction cache is shared by all cores within the streaming multiprocessor, while

L2 cache is available to all streaming multiprocessors. The card has 4 GB main

memory with 224.3 GB/s memory bandwidth.
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3.2.3 Intel Xeon Phi architecture

Starting in 2007, Intel was working on developing its own powerful GPU, which

they code-named Larrabee. Unlike many GPUs, Larrabee would not consist

of many special-purpose computing units but of numerous modified Pentium

processors that ran x86 code instead. Armed with experience gained from the

Tera-scale program, Intel was aiming at developing an accelerator card that could

compete with NVidia’s Tesla GPUs. After initial prototypes underwent tests in

research institutions, this resulted in an accelerator card, code-named Knights

Corner, which was commercially available as the Intel Xeon Phi since early 2013.

The Xeon Phi was aimed to combine the advantages of CPU and GPU archi-

tectures: while being highly parallel processing design it allows using standard

CPU programming tools, thanks to its PC-related architecture. For this reason

the Xeon Phi is capable of running existing software with significantly fewer mod-

ifications. It supports CPU programming tools such as MPI, OpenMP and Intel

TBB, etc. Thus, the Xeon Phi has the flexibility of a coprocessor that can also

host an operating system.

The Xeon Phi is available as a PCI Express (Peripheral Component Intercon-

nect Express) card in configurations that differ with respect to the number of

available cores (57, 60, or 61), memory size (6, 8, or 16 GB), clock speed (1053,

1100, or 1238 MHz), and cooling concept (active or passive).

The basic architecture is the same for all cards: the Xeon Phi’s CPU cores

are based on 22 nm manufacturing technology. In this architecture, a single in-

order core is replicated up to 61 times in Intel Xeon Phi [67] design and placed

in a high performance bidirectional ring network with fully coherent L2 caches

(Fig. 3.9). Each of the cores supports four hyper-threads to keep the core’s

computing process busy by pulling in data to hide latency, resulting in up to

244 threads in total.

The data cache allows simultaneous reading and writing. Thus, cache line

replacement can be done within a single cycle. The L1 cache consists of 8 ways

set associative 32 KB L1 instruction and 32 KB L1 data cache. The L1 cache

access time is approximately 3 cycles. L2 cache is 8 way set associative and

512 KB in size shared among four threads and there is a hardware prefetcher to
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Figure 3.9: The structure of the Intel Xeon Phi [68].

prefetch cache data. The L2 caches between the cores are fully coherent. Unlike

most multiple-core processors, the Xeon Phi provides no shared cache between

the cores. The cache is unified, so that it caches both data and instructions. Up

to eight GDDR-5 memory controllers use two channels to connect the memory

(up to 16 GB) to the ring bus, to which the PCIe interface is also connected.

The Intel Xeon Phi cores have dual issue pipelines with Intel 64 instruction

support and 16 floating-point (32-bit) wide SIMD units with FMA support that

can work on 16 single precision or 8 double precision data. The instructions can

be pipelined at a throughput rate of one vector instructions per cycle. Vector

units of cores consist of 32× 512-bit vector registers and 8 mask registers to allow

predicated execution on the vector elements.

The Intel Xeon Phi is a strong competitor on the HPC market, since it of-

fers about three times the raw performance in floating-point operations per sec-

ond (1.2 TFLOPS) for a slightly higher price than, for instance, NVidia Tesla

cards [69]. The next generation of Intel Xeon Phi Knights Landing is about to ap-

pear with 14 nm manufacturing technology, higher number of cores and memory

bandwidth.
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3.3 Software tools for parallel programming

After frequency scaling performance gain was over and CPU manufacturers

started offering CPUs with more computational cores instead of faster CPUs,

this fact had two major consequences on the developers approach towards ap-

plications. First of all, the performance improvement of application nowadays

mostly depends on the developer, who optimizes the application in order to get

the maximum speedup with a certain parallel architecture. Secondly, the ex-

tent to which a certain application can benefit from using parallel architecture

depends on the problem at hand and the choice of algorithm.

Thus, the limiting factor for the performance nowadays is the ability to write

applications in a way that they scale with the core counts of the parallel archi-

tecture. This also means outlining the applications for the concurrency from the

very beginning, so that they can gain speedup from future architectures with

higher core counts without rewriting the code again.

Let us consider several software tools and frameworks, which allow designing

both SIMD-ized and multithreaded parallel applications.

Parallel programming is, first and foremost, a parallel formulation of an algo-

rithm, and only then its implementation in a parallel language. The hardware

provides us two levels of parallelization: a task level parallelism working with

cores and threads, and a data level parallelism working with SIMD vectors.

If the algorithm allows organization of parallel streams of data, which are

processed in the same way, like fit of several tracks, these parts can be SIMDized

and run without using extra hardware, but rather on vectors within the same

threads. For that one can use the auto-vectorization, which is provided by the

compilers. Unfortunately, this brings typically (and unpredictably) about 20%

speedup, which is almost negligible compared to the potential factor 4/8/16. In

order to reach the maximum (depending on the data level parallelism of the

algorithm), one can program using the SIMD extensions directly or using the

SIMD header files or the more advanced Vc library.

In order to reveal the performance potential of parallel architecture, the al-

gorithm and its implementation should be developed under certain conditions.

In order to benefit from vectorization, the algorithm must allow organization of
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parallel streams of data, which need to be processed in the same way. In this

case organization of the data structure becomes particularly important, since the

SIMD vector has to be filled with meaningful data during all stages of algorithm

execution with minimal fraction of the time-costly data snaffle.

3.3.1 Header files with overloaded instructions

After vectorized calculation appeared, the complexity of designing and un-

derstanding efficient algorithms has increased dramatically. This challeging task

can be simplified by implementing supporting methods and concepts. One op-

tion would be to exchange direct employment of complex intrinsics by the use

of supportive header files [70]. The main idea is to overload arithmetic, binary,

logical and comparison operators for the vector types with simple and convenient

operators used for scalar calculations.

The header files overload the SIMD instructions implementing the operands

and inlining the basic arithmetic and logic functions [73], that turn complex and

puzzling code into intuitive, compact and readable syntax. For instance, a simple

code for calculation of a polynomial function of the first order, which is written

using SSE instructions, is:

__m128 y = _mm_add_ps(_mm_mul_ps(a,x),b);

The same function, but implemented using the header file, recovers the scalar-like

form:

fvec y = a*x + b;

with overloading

friend fvec operator+( const fvec &a,

const fvec &b ) {

return _mm_add_ps(a,b); }

friend fvec operator*( const fvec &a,

const fvec &b ) {

return _mm_mul_ps(a,b); }

in the header file.
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As one can see, the code, implemented with support of the header files, pretty

much coincides with a scalar-like version. The CPU-specific SIMD extensions,

hidden in the header files, can be chosen depending on the CPU type, as well as

the true scalar header implementation for debugging and testing.

3.3.2 Vector Classes (Vc)

One more but more profound and extended option of simplifying the usage of

SIMD instructions is the Vc library [71, 72]. The library was designed to support

developers in the creation of portable vectorized code with existing implementa-

tions for SSE, LRBni or a scalar fallback. Its capabilities and performance have

been thoroughly tested. It provides portability of the source code, allowing full

utilization of the hardware SIMD capabilities, without introducing any overhead.

It has an intuitive interface and provides portability between different compil-

ers and compiler versions as well as portability between different vector instruc-

tion sets. Thus an application written with Vc can be compiled for AVX, SSE,

IMIC and others SIMD instructions.

For instance, the code for calculation of a polynomial function of the first

order, which is written using the Vc library looks like:

float_v y = a*x + b;

In a fashion similar to the header files it overloads arithmetic, binary, logi-

cal and comparison operators and functions for the vector types. However, in

addition to that it contains functionality for so-called horizontal operations. In

contrast to common vertical operation (e.g. sum of two vector variables), hori-

zontal operations require the operation to be done within the elements of a single

vector, for instance, sorting the elements of a vector.

Another important functionality included into the Vc library is an option of

vectorised implementation of conditional code. Usually condition branchings in

the algorithm are implemented using an “if” operator. It poses a challenge for

vectorised execution, since requires an option of conditional assignment/write-

masking. Since it was not supported in the original C/C++ sytax, a new syntax

has been offered by the Vc library. For example, an absolute value of a vector

type variable can be calculated as:
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float_m mask = ( a < 0 );

a(mask) = -a;

All negative entries of variable a will be replaced by positive values.

Additionally Vc provides the special functionality to ease the access to arrays

of scalars with vector types. It automatically aligns and pads the memory to allow

fast vector in the full index range. The random memory access functionality is

provided by the gather and scatter functions. For example: gather fills a vector

a from an array A taking elements with indexes stored in a vector I:

a.gather( A, I );

scatter does the opposite — it fills array entries from a vector:

a.scatter( A, I );

Here it is worth mentioning that Vc library with all its rich functionality is a

comprehensive package, which requires a proper installation procedure. For this

reason in some simpler cases, one does not necessarily need to install Vc library

but can use a simpler headers files approach.

3.3.3 Open Multi-Processing (OMP)

At task level parallelism one localizes independent parts of the algorithms and

run them in parallel on different cores or threads with or without synchronization

between the processes. It can be implemented using, for instance, the ITBB or

OpenMP [74] frameworks.

The OpenMP is an API (Application Programming Interface), which sup-

ports multi-platform shared-memory parallel programming. It defines a simple

interface to create a multithreaded application. The API consists of compiler

directives, library routines and environment variables.

OpenMP provides the developer with a certain flexibility, since it exploits

the fork-join parallelism programming model. Due to this programming model

the developer can decide which part of the program should be run in parallel

and which part, if needed, should stay with sequential run. In the beginning of

execution the master thread is created. At the point when the calculation should
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Figure 3.10: An illustration of the OpenMP multithreading join-fork model, where the

master thread forks off a number of threads which execute blocks of code in parallel.

be parallelised additional threads are created and the task is distributed between

them (Fig. 3.10). The model also allows nested parallelism. It means that a

parallel region is created inside an already existing parallel region.

The interface allows the developer to make relatively minor changes in the

code in order to switch to the multithreaded version. The user prompts OpenMP,

which section of the code should be run in parallel, marking the section with a

preprocessor directive:

#pragma omp parallel

There is a special directive, which tells the compiler to auto-parallelize the for

loop with OpenMP:

#pragma omp parallel for

Since OpenMP is designed for shared-memory parallel programming, threads

can communicate with each other via common variables. By default all variables,

which are available to a certain thread, are shared and can be modified. If a

certain variable is declared private, a local copy of this variable will be created

for each thread. The copies are not coherent.

On top of that OpenMP offers a variety of synchronization tools in order

to avoid race conditions and obtain correct results. That includes high level

directives like omp critical, omp atomic and omp barrier, as well as a set of

low level functionality like lock.
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OpenMP also contains a set of runtime library routines, which allow, for in-

stance, setting and checking the number of threads, checking the maximum num-

ber of threads, getting the number of a current thread, checking the number of

cores in a computer, to control the nested parallelism, operating with the simple

lock functionality etc. They can be available by including the file:

#include <omp.h>

As for enabling the OpenMP directives, the only action required from the user

is adding an appropriate flag during the compilation.

3.3.4 POSIX library

Although computer vendors have implemented threads in their operating sys-

tems for decades, there was no standardization until 1995, when a standard for

thread programming was established as part of the Portable Operating System

Interface (POSIX) standard [75, 76]. In particular, POSIX 1003.1c is the portion

of the overall POSIX standard covering threads. It includes the functions and

APIs that support multiple flows of control within a process. Threads created

and manipulated via this standard are generally referred to as Pthreads. Prior to

the establishment of Pthreads, thread APIs were hardware-vendor-specific, which

made portability of thread-parallel applications an oxymoron.

The libraries using this standard are also called Pthreads. To use this library,

the corresponding header file should be included:

#include <pthread.h>

Pthreads defines a set of C programming language types, functions and con-

stants. Pthreads allows creating and manipulating threads manually. For exam-

ple, it allows setting a permanent thread to core affinity, which can be particularly

useful in the case of NUMA architecture.

By default the threads are allocated to processors by the runtime environment,

which takes into account different factors, such as processor usage or machine

load. It can happen, that the thread can migrate to another CPU. For the NUMA

architectures it is preferable to use only local RAM for maximum performance.

And if the thread would be moved to another CPU, all data used by this thread
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would be located in the remote RAM. In order to prevent such migrations, which

can ruin the performance, each thread can be pinned to a certain core.



Chapter 4

Reconstruction of particles

trajectories

The advances in accelerator physics, improved detector technologies together with

increased computing power have enabled the HEP experiments collision rates and

energies, which were never available before. As a direct consequence, the task of

processing the experimental data is getting more and more complicated.

The increased collision energy has led to a more complicated event pattern with

a higher trajectory multiplicity. The modern event rates, in turn, are limiting

the time available to reconstruct the above mentioned complex collision patterns.

The collision patterns are reconstructed via reconstruction of trajectories (tracks)

of charged particles, which leave hit measurements as they cross detector planes.

The event reconstruction consists of four stages:

• track finding,

• track fitting,

• particle identification,

• search for short-lived particles.

Although stages of track finding and track fitting are strongly related, tradi-

tionally they have been seen as two separate tasks. Specifically, the task of track

finding (Fig. 4.1) is a pattern recognition problem of combining into groups hit

measurements from the detector data, produced by the same particle, in order to

reconstruct the trajectory of the particle. After the measured hits are grouped
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Figure 4.1: Traditional steps of track reconstruction: track finding and track fitting. Track

finding groups hit measurments into reconstructed tracks. Track fitting fits reconstructed tracks

in order to obtain track parameters afterwards.

into reconstructed tracks, each track can be individually fitted in order to esti-

mate track parameters out of the measured hits in the presence of noise. This

procedure is called track fitting (Fig. 4.1).

Track finding usually takes as an input raw detector hit measurements at

the very first event reconstruction phase, when no data reduction can be done

yet. Therefore this stage of event reconstruction is often considered the most

challenging and time-consuming part of the whole reconstruction procedure.

However, the tendency is that the borders between the track finding and track

fitting tasks are getting more and more subtle. The connection between the

tasks is becoming stronger. Thus, nowadays the track finding often includes

the estimation of parameters in a way that can help improving the search for

the next measurement for the reconstructed track with refined fitted parameters.

The tendency is mainly driven by the Kalman filter track fitting algorithm and

its recursive nature. Let us consider this method in detail in the next section.
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4.1 Kalman-filter-based track fit

4.1.1 The conventional Kalman filter method

As a result of track finding the detector measurements are grouped into sets of hits

which, ideally, were produced by a specific particle. The task of track fitting is to

estimate track parameters and their errors in order to get kinematical properties

of particles, which will later allow for reconstruction of short-lived particles, and,

finally, for the physics analysis.

Usually track fitting algorithm exploits the so-called track model, which is a

theoretical assumption on the equation of motion for charged particles in the

volume of a tracking detector. Several effects have an influence on the particle

motion, which the track model cannot take into account in a simple way, namely

multiple scattering, ionization and radiative energy loss. These effects add per-

turbations and affect the reconstruction of the particle kinematical properties.

Their influence on the obtained fitted parameters can be correctly taken into ac-

count with a proper track fitting method. The most common algorithm in HEP

nowadays, used for track fitting, is the Kalman filter method [77, 78, 79, 80].

In principle the track parameters can be derived from the hit measurements

by applying the least squares fit. However, in real life cases it is preferable to use

the Kalman filter method, since its recursive nature allows for a computationally

simpler and numerically optimized implementation. Namely, the method in its

calculations needs to operate with matrices, whose dimension equals to the num-

ber of fitted parameters, while the least squares fit operates with a matrix with

the dimensionality of the number of measurements in the track.

The Kalman filter method has found a wide range of applications thanks to

its features, namely:

• an optimal estimate (unbiased with minimal dispersion) as a result of the

fitting procedure,

• its recursive nature, which allows to perform the fitting of a partially re-

constructed track during track finding,

• does not need a global track model valid for the entire track length, but a

local track model valid only between consecutive measurements.
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Let us consider a dynamic system, whose evolution in time is fully described

with a state vector rt, consisting of several system parameters. The fitting pro-

cedure is supposed to provide as a result an estimate of the state vector rt based

on a set of measurements. The Kalman filter method obtains an optimal es-

timate r of the state vector rt based on the measurements of this state vector

mk, k = 1 . . . n, which may be contaminated with noise. The method starts

with an initial approximation r = r0 and improves this estimate in a recursive

way, consistently taking into account each measurement, providing as a result

the optimal estimate after adding the last measurement.

The estimated state vector rt can change from one measurement to the other.

For example, usually measurements are taken at different time and space points.

Therefore before adding the information of k-th measurement to the estimate,

the evaluation of the system by this time has to be taken into account. So that

the estimate and state vector correspond to the same moment. The estimate r

has always some finite precision — the error ξ, defined as the difference between

the estimate and the actual value of the estimated state vector. In order to keep

the track of the error ξ, let us introduce a covariance matrix as follows:

r = rt + ξ, (4.1a)

C = 〈ξ · ξT 〉. (4.1b)

The method assumes a linear model of measurements, which means that the

state vector should linearly depend on the measured parameters. Thus:

mk = Hkr
t
k + ηk, (4.2)

where Hk is called measurement model and ηk is an error of the k-th measure-

ment.

The Kalman filter method assumes that the error of the measurement and the

process noise are unbiased and uncorrelated not only mutually, but also in time

(white noise) and their covariance matrices Vk and Qk are known:

< ηk >=< ξk > = 0,

< ηk · ηT
k > = Vk,

< ξk · ξTk > = Qk.
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The conventional Kalman filter method is derived for a linear dynamical sys-

tem, which means that the evolution of the system between two consecutive

measurements mk−1 and mk is described by a linear equation:

rtk = Fk−1r
t
k−1 + νk, (4.3)

where Fk−1 is a linear propagation operator, which relates the state at step (k−1)

to the state at step k, νk is a random process noise between the measurements

mk−1 and mk, which cannot be taken into account in the prediction matrix Fk−1.

The algorithm works in steps: starting with an initial approximation of the

state vector and the covariance matrix (initialization stage) it estimates the sys-

tem state at the point of the measurement (propagation stage) and corrects this

estimate and updates the covariance matrix, taking into account the measure-

ment with a certain weight (filtration stage). The algorithm performs in a loop

the propagation and the filtration stages until the last measurement is added.

Thus, the equations of Kalman filter fall into 3 groups: initialization, prediction

and filtration, as it is shown in Fig. 4.2. Let us consider specific equations for

each of the stages.

Initialization: The algorithm starts with initializing the state vector with

some initial prediction r0, if one is available, or alternatively with arbitrary val-

ues. In this case the covariance matrix reflects low confidence level of the initial

estimate r0: C0 = I · inf2, where inf stands for a large number.

Prediction/Propagation: If the state vector is expected to change between

two measurements, the estimate and its covariance matrix needs to be changed

accordingly. The current estimate of the state vector and the covariance matrix

at the measurement mk−1 are propagated to the point of the next measurement,

while taking into account the process noise:

r−k = Fk−1r
+
k−1, (4.4a)

C−k = Fk−1C
+
k−1F

T
k−1 +Qk, (4.4b)

where r+k−1, C
+
k−1 — the estimate and the error covariance matrix, obtained at

the previous measurement, r−k , C−k — predicted estimate of the state vector after

the influence of the process noise Qk. For the first time the initialization values

are propagated, since there are no measurements yet at this point.
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Figure 4.2: The block diagram scheme of the conventional Kalman filter [77].
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Filtration/Update: The predicted state vector and the covariance matrix

are updated with the information the new measurement brings, in order to get

their optimal estimate at this stage. First, correction term — the residual, which

is the difference between the estimate and the actual measurement, is calculated:

ζk = mk −Hkr
−
k . (4.5)

The next element of the filtration step is the weight matrixWk, which is calculated

as the inverse covariance matrix of the residual:

Wk = (Vk +HkC
−
k H

T
k )−1. (4.6)

The weight matrix Wk defines the influence of the k-th measurement in the to-

tal χ2-deviation of the obtained estimate r+k from the measurements m1, . . . ,mk:

χ2
k = χ2

k−1 + ζT
k ·Wk · ζk. (4.7)

The state vector estimate is corrected by a weighted residual:

r+k = r−k +Kk · ζk, (4.8)

where the weight is defined by the so-called gain matrix Kk:

Kk = C−k H
T
k ·Wk. (4.9)

One notes that since the gain matrix is proportional to the current covariance

matrix C−k and weight matrix Wk, the strongest influence on the estimate will

have the measurements with higher weights. By contrast, the estimate, which

is already precise, and thus, has a small covariance matrix, will not be changed

significantly.

At last, the covariance matrix of the estimate is calculated:

C+
k = (I −KkHk) · C−k . (4.10)

The algorithm sequentially repeats the prediction and the filtration steps for

each of the n measurements. After filtering the last measurements the vector

r+n — the resulting estimate after all the measurements are filtered is the optimal

estimate of the state vector rtn with the covariance matrix C+
n .
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However, in real life the evolution of a system rtk+1(r
t
k) and the model of mea-

surements mt
k(rt) dependencies often cannot be described by a linear function.

Therefore in order to apply the Kalman Filter method in non-linear cases a pro-

cedure of linearization has to be performed.

For example, in the case of a non-linear model of measurements the function

mk(rtk) ≡ hk(rtk), the function hk(rtk) needs to be expanded in a Taylor series at

the linearization point rlin:

mk(rtk) ≡ hk(rtk) + ηk ≈ hk(rlink ) +Hk(rtk − rlink ) + ηk, (4.11)

where Hk is the Jacobian of hk(rk) at rlink :

Hk(ij) =
∂hk(rk)(i)

∂rk(j)

∣∣∣∣∣
rk=rlink

. (4.12)

In this case the formula to calculate the residual for conventional method (4.5)

is changed in the following way:

ζk = mk − (hk(rlink ) +Hk(r−k − rlink )).

In the same manner the non-linear extrapolation equation (4.4a) can be lin-

earized:

r−k ≡ fk(r+k−1) ≈ fk(rlin) + Fk(r+k−1 − rlink−1) (4.13)

Fk(ij) =
∂fk(r+k−1)(i)

∂r+k−1(j)

∣∣∣∣∣
r+k−1=rlink−1

. (4.14)

The Kalman filter equations in the case of a system with non-linear evolution or

measurement model is called the extended Kalman filter method. The linearized

model differs from the original one, therefore the choice of the linearisation point

rlin is important. The usual way is to take the current estimator rk as the point

of linearization for the k−th measurement.

Unlike its linear version, the extended Kalman filter in a general case is not an

optimal estimator. Moreover, if the initial estimate of the state is wrong, or if the
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process is modeled incorrectly, the filter may diverge, owing to its linearization.

Having stated this, the extended Kalman filter gives a reasonable performance,

and is the standard method for fitting charged particles trajectories in HEP

experiments nowadays.

4.1.2 Kalman-filter-based track fit for CBM

One of the most important applications of the Kalman filter algorithm in HEP is

trajectory fitting in order to reconstruct the parameters of particles produced in

collisions. In this case the state vector r contains track parameters, the propaga-

tion matrix Fk extrapolates the track from one detector station to the next one in

a magnetic field, and the noise matrix Qk takes into account multiple scattering

due to interaction with the detector material.

In the case of the CBM experiment track fit the state vector of track parameters

was chosen in the following form, convenient for a forward detector geometry:

r = {x, y, tx, ty, q/p}, (4.15)

where z-coordinate is directed downstream the beam along the detector, x and y

are track coordinates at a certain z-position, tx ≡ tan θx and ty ≡ tan θy are the

track slopes in the xz and yz planes, and q/p is the charge to inverse momentum

ratio.

In order to estimate the state vector r with the Kalman filter method one

needs to define every needed component of the method, namely: initial values of

the state vector r0 and covariance matrix C0, the model of measurements H and

the propagation matrix Fk, as well as the noise matrix Qk.

In the case of the CBM experiment for a secure convergence the initial state

vector r0 is taken as the estimate of the least squares method using one-component

approximation of a magnetic field in the absence of multiple scattering in the

detector material.

The model of measurement is supposed to set the relation between the mea-

sured detector hits and the state vector. Since the vertex detector of the CBM

experiment consists of double-sided strip sensors, each hit measured in the STS

consists of two independent one-dimensional measurements — strips. These mea-

surements are linearly dependent on the position of particle in the detector plane.
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Thus, the model of measurement H is linear, namely:

Hk = {cos(αk), sin(αk), 0, 0, 0} , (4.16)

where αk is the strip angle.

The propagation matrix Fk serves to define the charged particle motion in the

non-homogeneous magnetic field B. This motion is described as a Lorenz force

with the following differential equations:

dtx/dz = c(q/p)tr( ty(Bz + txBx)− (1 + t2x)By), (4.17a)

dty/dz = c(q/p)tr(−tx(Bz + tyBy) + (1 + t2y)Bx), (4.17b)

tr(z) =
√
t2x + t2y + 1,

here Bx, By, Bz are the field components at a given z on the particle trajectory,

c is the speed of light. These equations cannot be solved analytically in case of

a non-homogeneous magnetic field, since the field components have a complex

coordinate dependence. For this reason the standard Runge-Kutta method [81]

is used in order to obtain the function rtk+1 = fk(rtk). Since the fk(rtk) dependence

appears to be non-linear, the linearization is performed in the same manner as it

was shown in (4.4a) at the track point closest to the measurement rlink giving as

a result the desired propagation matrix Fk.

The next element of the method, which is needed in order to take into account

the multiple scattering in the detector material, is the matrix of noise Qk. The

studies with double sided silicon sensors of 300 µm thickness, similar to the

CBM STS sensors, have shown that a minimum ionizing particle, traversing this

thickness, creates about 24.000 electron-hole pairs [82]. It means that the particle

undergoes at least 24.000 scattering processes, with minimum exchanged energy

of 1.8 eV. According to the central limit theorem it makes it possible to describe

the total scattering angle of the particle with a Gauss distribution as a sum

of a large number of random variables. The width of the distribution is set

with the original Highland-Lynch-Dahl formula [83] for the width of the angular

distribution:

σ(θ) =
13.6 MeV

βcp
q
√
L/X0 [1 + 0.038 ln(L/X0)] , (4.18)
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where β, p, and q are particle velocity, momentum and charge number of the

incident particle, L/X0 is the true path length in radiation length unit. The

resulting matrix of noise Qk has a following form [84]:

Qk = σ2
k(θ)




0 0 0 0 0

0 0 0 0 0

0 0 (t2x + 1)t2r txtyt
2
r 0

0 0 txtyt
2
r (t2y + 1)t2r 0

0 0 0 0 0



. (4.19)

The energy loss of a particle in thin material of the detector system is small in

comparison to the effects considered here and can be neglected.

Historically the Kalman filter implementation was done in a double precision.

However, for modern computer algorithms the stability in the single precision

becomes particularly important for SIMD calculations and optimal usage of cache

memory layered structure. As a result, twofold more data can be stored in the

cache and, as well, twice the size of data can later be packed into a SIMD register

at double speed. However, the direct switching to a single precision has shown

that the 32-bits precision is not sufficient for the Kalman filter track fit and

results in numerically unstable behavior of the algorithm. The main obstacle

in switching the algorithm from the double precision to the single one, is the

discrepancies, that appear due to numerical rounding. As a result one may face

poor fit quality, or even physically unacceptable results like negative diagonal

elements of the covariance matrix.

The discrepancies can arise during the step of updating covariance matrix

when the previous error estimate significantly exceeds the error that must be

taken into account while adding new measurement to the estimate. A similar

problem is faced while adding the first measurement, where infinite errors for the

estimate is replaced by a finite big number.

Therefore the Kalman filter algorithm was modified in order to avoid such

instability due to round-off errors. The algorithm single precision stability was

increased due to the following changes: the initial state vector estimate is obtained

with the least squares fit with magnetic field approximation, a special procedure

of updating the covariance matrix in order to increase correction precision and a

special procedure of filtering the first measurement [77] are introduced.
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4.1.3 The track fit quality assurance

While providing the state vector estimate, a very important issue is a proper

covariance matrix, which contains estimated errors of the track parameters. In

order to study the reliability of parameter error estimation at first, the residuals

ρ of the track parameters, for instance for the x-coordinate, are calculated as:

ρx = xreco − xmc, (4.20)

where xreco and xmc are the reconstructed and the true Monte Carlo values of the

x-coordinate. A measure of the reliability of the fit are the normalized residual

(pull) distributions of the fitted track parameters. Pulls are determined according

to the formula:

Px =
ρx
√
Cxx

, (4.21)

where Cxx is the corresponding diagonal element of the covariance matrix, ob-

tained in the track fit. In the ideal case the normalized error distributions of

the track parameters should be unbiased and Gaussian distributed with a width

of 1.0.

The residuals and the pulls for all track parameters in the CBM experiment

are calculated at the first hit of each track. The distributions for the x, tx and q/p

parameters together with their Gaussian fits are shown on Fig. 7.6 (the results

for y and ty are similar). All distributions are not biased with pulls widths close

to 1.0 indicating correctness of the fitting procedure. The slight deviations from

1.0 are caused by several assumptions made in the fitting procedure, mainly in

the part of the detector material treatment. The q/p pull is the widest being the

most sensitive to these simplifications [73].

The Kalman filter track fit algorithm is used to estimate parameters of the

tracks reconstructed in the STS and MVD detectors and their errors for the

CBM experiment. The algorithm works stable in single precision and is fully

vectorized [77]. The algorithm is also used in order to fit partially reconstructed

tracks inside the Cellular automaton track finder while searching for the next hit

measurement. It will be shown in the next section, which is devoted to the track

finding task.
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Figure 4.3: The residuals and the pulls distributions of the x (43.2 µm, 1.12), tx (0.30 mrad,

1.18) and q/p (0.93%, 1.32) track parameters, calculated in the position of the first hit inside

the CBM STS detector.

4.2 Track finding

Since one of the most challenging and time-consuming parts of event reconstruc-

tion is track finding, optimization of the track finding algorithm has a great
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impact on the computational effort needed for the data-analysis chain in a HEP

experiment. Due to the fact that track finding is sometimes required to be done

online, the speed of the algorithm plays an important role in experiments and a

number of various approaches of track reconstruction methods has been developed

in the course of time.

1. MC Simulation

2. Detector Hits

3. CA Track Finder

Figure 4.4: The illustra-

tion of the complexity of the

track finding problem: the

tracks from a simulated cen-

tral Au+Au UrQMD colli-

sion at 25 AGeV energy in

the CBM experiment (top),

only hits of the STS as

input information for the

track finder (middle) and the

reconstructed tracks with

the cellular automaton track

finder (bottom).

The approaches strongly differ from each other as well as the detector systems,

which they are used for.



74 Chapter 4. Reconstruction of particles trajectories

In the next section an overview of several track reconstruction methods will

be presented together with their advantages and disadvantages:

• conformal mapping,

• Hough transformation,

• track following,

• cellular automaton.

Due to the noise and impreciseness of detector measurements, a set of hy-

potheses is usually used in order to improve the efficiency and speed up the track

finding process. The possible hypotheses are the track model, track seeds from

other detectors and the position of track origin (for example, target region).

As far as the track model is concerned, the tracking methods can be classified

as global or local. The global methods need to treat all the measurements si-

multaneously, usually using the track model, while the local methods go through

the measurements one by one. In other words, the global methods have to con-

sider all the available measurement information while accepting or discarding a

certain track and local methods make such decisions based only on a subset of

the measurement information. Examples of global approaches considered below

are conformal mapping, Hough transform, while the track following and cellular

automaton methods are regarded as local.

The methods drastically differ in their approach, usually making a direct com-

parison difficult. Thus, usually experiments try to develop various methods in

the beginning and later decide upon the best one for the certain detector system

and the physics case. Let us consider some methods, which CBM tried to apply

for the track finding in the STS detector.

4.2.1 An overview of the track reconstruction methods

Conformal mapping

One of the standard global track reconstruction methods is Conformal map-

ping [85], which is used in the presence of a uniform magnetic field. The main

idea of the method is to simplify the event pattern by applying a map, which

transforms the circular tracks of charged primary particles in a uniform magnetic
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 Track reconstruction 7

Track finding: Conformal mapping
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Figure 4.5: The conformal mapping method for the track reconstruction task in CBM: orig-

inal tracks in real space (top) and straight tracks after conformal transformation (bottom) [86].

field into straight lines in a conformal space (Fig. 4.5). The conformal transfor-

mation used for this task transforms coordinates from measurement space (x, y)

into conformal space (x′, y′):
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x′ =
x− x0

(x− x0)2 + (y − y0)2
; (4.22)

y′ =
y − y0

(x− x0)2 + (y − y0)2
. (4.23)

Since reconstructing a straight line is much easier than searching for a circle,

in the conformal space these lines can be easily found with histograming. How-

ever, the form of the transformation immediately reveals the first obstacle of the

method: the transformation requires knowing in advance the position of the pri-

mary vertex (xpv, ypv). This problem is usually avoided by assuming a common

vertex with coordinates (0;0), which will turn the transformation equations into:

x′ =
x

x2 + y2
; (4.24)

y′ =
y

x2 + y2
. (4.25)

However, this simplification does not help to generalize the method for the search

of secondary tracks. Further simplification is done by assuming a uniform mag-

netic field, which is not true for a general case.

Despite the disadvantages, the conformal mapping method can be successfully

applied for the search of primary tracks in a simple event topologies, where it can

have a simple and fast implementation in hardware.

Hough transform

One more example of a global track finder algorithm is the Hough Transform [87].

This method converts the measurements from a real space (x, y) into the param-

eter space (a, b). Fig. 4.6 illustrates the example when the measurements of the

curved track, described by two parameters — track curvature and emission angle,

are plotted in the parameter space, providing as a result the intersection point of

the initial track parameters. Let us consider the simplest case of a straight track:

y = a · x+ b. (4.26)

In this case the transformation is:

b = − a · x+ y. (4.27)
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Thus, a certain position measurement in the detector plane (xi, yi) represents a

straight line in the parameter space (a, b). Together several such measurements

of one initial track are transformed into a set of lines in the parameter space

intersecting in the cluster region, which is usually localized in the algorithm with

a simple histograming.

Parameter space

Tr
ac

k 
cu

rv
at

ur
e

Emission angle

Real space

x

y

x,y - u,v

Figure 4.6: The Hough transform method for the track reconstruction task: original track

in the real space (left side) and straight lines in the parameter space, corresponding to certain

data points on the initial trajectory (right side).

The obvious limitation of the method arises from the need of a global track

model for the stage of transformation to the parameter space. However, even in

the case where an analytic global track model exists, usually it is a simplifica-

tion, since it cannot include the effects of multiple scattering or inhomogeneities

of a magnetic field. Also it is hard to obtain track errors in the case of the

transformation. When it comes to hardware implementation, the memory band-

width usually limits the implementation due to the need for multidimentional

histograming. In case of the CBM experiment the biggest obstacle with the

Hough-transform-based track finder (Fig. 4.7) was the memory issue, since the

algorithm required about 1.2 GB of RAM for the Hough-Space, otherwise it took

15 minutes due to memory swapping [88].

Track following

An example of a very intuitive local method of track reconstruction (Fig. 4.8)

is track following [89]. As the name suggests, the main idea of the method is

the prediction of the position of the initial track in the next consecutive detector

plane, assuming a certain local model of track propagation in the detector volume.
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304 Event reconstruction

Figure 13.3: One 2-dimensional Hough plane filled with transformed hits. A central plane processing the hits
near the beam pipe is shown here. Planes more apart from the beam pipe contain less transformed hits. There are
seven peaks in the histogram (black points) corresponding to seven found particle tracks. A peak is defined by
more than three hits in consecutive detector layers. Six peaks can be assigned to certain MC tracks. The lower
most peak corresponds to no real track, but accumulates a peak from five hits of different tracks.

Figure 13.4: Track finding efficiency for tracks with hits in at least three tracking stations as function of momen-
tum using the Hough transform method for central Au+Au events at different beam momenta

rate is highest for low and high momenta. At low momenta, the track multiplicity is highest and thus
combinatorial coincidences are more likely. Tracks at high momenta are less numerous, but correspond
to almost straight lines near the beam pipe with high track densities. The mean numbers of efficiency
and ghost rate for the three beam momenta are given in table 13.1. While the efficiency is almost the
same, the ghost rate increases quickly with beam momentum.

Both the efficiency and the ghost rate depend on the multiplicity of the event, the number of detector

Figure 4.7: One 2-dimensional Hough plane filled with transformed hits [88]. A central plane

processing the hits near the beam pipe is shown here. There are seven peaks in the histogram

(black points), corresponding to the seven particle tracks found. A peak is defined by more

than three hits in consecutive detector layers. Six peaks can be assigned to certain MC tracks.

The lower most peak does not correspond to any real track.

The prediction is checked by searching for registered hits in a certain corridor

region around the predicted position. The width of the corridor is chosen with

respect to the detector measurement precision and a possible multiple scattering

effect due to detector material budget.
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Figure 4.8: The 3D track following method for CBM. Prediction and search in XoZ and

Y oZ projection [88].

Most HEP experiments in the beginning needed an ideal Monte Carlo track

finder, which could collect reconstructed hits into tracks using Monte Carlo in-

formation. Based on such an ideal track finder it is very easy to implement a

realistic track following.

However, there are certain limitations, which made the method not applicable
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in certain cases. First of all, the algorithm is featured with an exponential growth

of combinatorial combinations to be considered with increasing track multiplicity.

Thus, the algorithm can work efficiently within a reasonable time only up to a

certain hit density. Another issue is raised, when it comes to implementation of

the algorithm on the compute devices. The problem is that the algorithm real-

izes a random memory access, while checking different next possible hits on the

track. This random memory access usually becomes a bottleneck for a program

implementation, due to the slow speed of such operations. Moreover, if one tries

to examine the logic of the approach, it is easy to see that during the search the

algorithm often has to repeat certain calculations several times, since some of the

results get discarded.

In the early stages of the CBM experiment, when the STS detector was still

planned as a pixel detector, the track following method was tested for the re-

construction routine (Fig. 4.8). The track reconstruction procedure was accom-

plished in 3D space on both x-z and y-z projections simultaneously [88]. The

procedure alternated between both views, predicting a track position on the next

station and searching for hits in the vicinity of the predicted position.

Starting from the middle of the target area, this point was sequentially con-

nected with all hits in the first station in y-z view, where tracks were close to

straight lines. The straight lines driven via these two points were prolonged to

the plane of the second station. All hits in an asymmetrical corridor around the

intersection point were then used for fitting a parabola in x-z view which is pro-

longed to the next station. Since several prolongations could happen, corridors

were set around each point predicted on the third station. A similar corridor was

set in the y-z view on the third station. If hits were found within these limits,

they were attached to the track.

When the STS detector was redesigned using double-sided strip detector mod-

ules, most of the methods could not cope with the increased number of hits and,

as a result, more intensive combinatorial search.

Cellular-automaton-based track finder

As was shown, one of the major obstacles to be solved by each track finder

is a huge and growing fast with track density amount of combinatorial combi-
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nations, which track finder has to consider in order to bind together one- or

two-dimensional measurements into five-dimensional tracks. Unfortunately, the

exponential growth of the combinatorial enumeration at high track densities usu-

ally makes it impossible to consider all combinations within a reasonable time

frame. The CBM experiment can serve as a proper illustration of this problem,

since the experiment has tried different tracking approaches for the planed pixel

version of the STS detector. Unfortunately, most of them could not work any-

more due to increased combinatorial combinations after switching from pixel to

double-sided strip version of the STS.

However, a solid solution for combinatorial optimization was provided by the

CA track finder algorithm. The CA track finder can be regarded as a local

version of the Hopfield neural network [90] and will be discussed in detail in the

next section.

4.2.2 Cellular automaton

Although the idea of everything being made up of large numbers of discrete

elements was discussed around 450 BC by Leucippus and Democritus, it was still

a long time before abstract idealizations like cellular automata were introduced.

In 1967, Konrad Zuse also suggested that the universe itself is running on a

cellular automaton or a similar computational structure. In 1969, he published

the book “Rechnender Raum” (Calculating Space) [91]. He proposed that the

physical laws of the universe are discrete by nature, and that the entire universe

is the output of a deterministic computation on a single cellular automaton. This

idea has attracted a lot of attention, since there is no physical evidence against

Zuse’s thesis. “Zuse’s Theory” became the foundation of the field of study called

digital physics.

The concept of cellular automaton as we know it today was originally proposed

in the 1940s by Stanislaw Ulam and John von Neumann in an attempt to develop

an abstract model of self-reproduction in biology, which eventually led to the

name “cellular automata”. After John Conway introduced his Game of Life [92],

the method became popular and, despite its biological name, in the course of

time the method accrued range of applications in computer science, mathematics,
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physics and chemistry.

The cellular automaton method models a discrete dynamical system, whose

evolution is completely determined by local mutual relations of constituent ele-

ments of the system. The described system must be expressed as a grid of ele-

ments, called “cells”. Each element at a certain step takes one of a finite number

of states, such as “on” and “off”, for instance. Usually the system is homoge-

neous, which means that all cells are treated the same way and the neighborhood

definition is the same for all cells. Only cells from their own neighborhood have a

direct influence on the cell state at the next step. An initial state is generated by

assigning a state to each cell. At the next time step the evolution of the system

is defined according to some fixed set of rules (generally, mathematical functions)

that define the new state for each cell based on the current state of the cell and

the states of the cells in its neighborhood. Typically, the rule for updating the

state of cells is the same for each cell and does not change over time, and is

applied to the whole grid simultaneously, though exceptions are known, such as

the stochastic cellular automaton and asynchronous cellular automaton.

The most famous and very illustrative example of the cellular automaton algo-

rithm is Conway’s Game of Life. The universe of the Game of Life is an infinite

two-dimensional orthogonal grid of square cells. Each of cells is in one of two pos-

sible states, alive or dead. Every cell interacts with its eight neighbors, which are

the cells that are horizontally, vertically, or diagonally adjacent. The evolution

at the next step is defined by the following rules:

• any live cell with fewer than two alive neighbors dies of isolation at the next

step,

• any live cell with two or three live neighbors stays alive at the next step,

• any live cell with more than three live neighbors dies of overpopulation at

the next step,

• any dead cell with exactly three live neighbors gets born and stays alive at

the next step.

Despite being a simple mathematical abstraction the cellular automaton sys-

tem exhibits the sophisticated feature of self-organization. Even starting from a

chaotic initial condition, the system organizes some typical structures, like the



82 Chapter 4. Reconstruction of particles trajectories

0 1 2

1

2

3

4

5

Steps

Pa
tte

rn
s

Time

death

blinker

block

beehive

beehive

Figure 4.9: The simple structures produced in the evolution of Game of Life. Some struc-

tures, like pattern 1, die out in the next generation. Some structures, like pattern 2, are called

oscillator and repeat its form each second generation. Some structures, like patterns 3, 4, 5,

create stable colonies.

ones shown in Fig. 4.9. Some of these structures are sentenced to die out, some

of them obtain a stable state or represent looped structures (like blinkers).

This interesting feature of self-organization makes the method applicable for

the track reconstruction problem. It can be regarded as a local version of recur-

rent neural network. Moreover, due to the locality, cellular automaton methods

are highly suited for parallel approaches. Thinking of a computer program for

such a model, every cell can be calculated by an independent thread, and on top of

that the data exchange between the threads is restricted to those threads process-

ing adjacent cells. For track finding application the method first time was used

to suppress noise hits in the event reconstruction for the ARES experiment [98].
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This application is considered in the details in the next section.

4.2.3 Cellular-automaton-based track finder

Different versions of the cellular-automaton-based track finder were successfully

applied in a number of HEP experiments like ARES1 [93], ALICE, HERA-B [94],

K2K [95], LHCb2 [96], NEMO3 [97], STAR and future CBM. All the above men-

tioned versions were adjusted to certain detector systems, and thus may be essen-

tially different from the original cellular automaton concept. However, the first

cellular-automaton-based track finder for the ARES experiment was actively ex-

ploiting the original idea of CA in order to suppress the noise and restore the

missing clusters due to the detector malfunction.

�
�

Figure 4.10: The cellular automaton method for the tracking algorithm in the ARES exper-

iment is similar to the Game of Life. The target is placed in the center. It is surrounded by 12

coaxial cylinder wire chambers. The clusters produced by reconstructed tracks are shown with

blue circles. The clusters killed in the algorithm evolution are shown as red crossed circles.

They should belong to noise clusters, δ-electrons and clusters produced by the track scattered

on the detector wall [98].

Indeed, the way ARES track finder was filtering out the noise measurements

was very similar to the Game of Life evolution. The discrete nature of the Multi-

Wire Proportional Chamber (MWPC) allows the consideration of clusters (con-

tinuous group of hired wires) as living cells. The dead cells are the empty ones,

1Automotive Research Experiment Station
2Large Hadron Collider beauty experiment
3Neutrino Ettore Majorana Observatory
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which contain no hits. As a rule, each living cell may either belong to a real

track or represent noise, each dead one may either belong to no track or be a

missed hit due to detector inefficiency. The main idea of CA tracking is to exploit

the concept of CA evolution in order to kill all noise living cells and restore the

missing ones forming real tracks.

The neighborhood of the cluster was defined as the region in the adjacent

chambers, where the track, which caused the cluster, could potentially pass.

Each cell belonging to a real track should have from 2 up to 4 neighbors. Having

stated this, the tracking algorithm should get rid of noise cells, which have more

than two neighbors, and restore missed cells, whose neighbors have less than 2

neighbors. To prevent suppression of tracks from the ends, imaginary chambers

before the first and after the last chamber were assumed as containing the needed

neighbors for the cells on the outer stations. The evolution was calculated in two

steps: first giving birth to the new cells and after killing the dead ones. The

birth and death steps are performed several times until a stable or cyclic state is

achieved. As a result the algorithm (Fig. 4.11) allows the suppressing of 65%–70%

of noise hits and decreases the volume of data to be processed by a factor of 3.

�
�

Figure 4.11: Distribution of the number of events according to the number of clusters in an

event before processing with CA algorithm and after (bold line). After the algorithm evolution

one can clearly see the picks, corresponding to one-, two-, and three-tracks collisions [98].

The initial CA-based track finder is suited for the ARES experiment and

worked successfully in that conditions. However, it needs major changes in order

to be applied to a detector with significantly higher track multiplicities. The first

step towards adapting the algorithm for a dense track environment is redefining
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the cell concept. The cell should reflect as many parameters of its track as pos-

sible. In the ARES experiment the cluster was defining position and direction

of the track. The situation changes if we consider other detector type like pixel

or strip detector, which provide spatial information only. Thus, one measure-

ment alone is not able to provide sufficient information about track parameters

in this case. The knowledge on the track parameters, contained by the cell, can

be improved, if we combine several consecutive detector measurements into one

cell.

Figure 4.12: The simplified illustration of the cellular automaton based track finding algo-

rithm. Here the tracking stations are shown by the vertical dashed lines, hits of two different

particles are shown by the blue and green circles, the noise hit is shown by the empty circle.

Track segments are shown by the solid lines with their thickness and color corresponding to a

possible position of a segment on a track.

The general scheme of the CA-based track finder in the case of a cell with

a higher dimensionality is shown in Fig. 4.12. In this example the cell is a

potential track segment, consisting of two detector measurements. The algorithm
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starts with detector measurements (hits) as input information. In the simplified

illustration the detector stations are shown with a dashed line, the blue hits were

produced by one particle, the green ones — by the other one, while the white

hit represents the noise. At the first stage the algorithm builds all possible track

segments before going into the main combinatorial search (1). After this stage is

finished the CA track finder never goes back to processing hits information again,

working only with created track segments instead.

After the cells were formed, the evolution of the cellular automaton takes

place. Taking into account the track model, the method searches for neighboring

segments, which share a hit in common and have the same direction within some

error, and, thus, potentially belong to one track. During this search the track

finder also estimates a possible position of the segment in the track (2). Beginning

with the first station the track finder goes to the last station moving from one

neighbor to the next assigning to each segment a counter, which stores the number

of neighbors to the left. Starting with a segment of the largest position counter,

the track finder follows a chain of neighbors collecting segments into a track

candidate (3). As a result one gets a tree structure of track candidates. In the

last stage (4) the competition between the track candidates takes place: only

the longest tracks with the best χ2-value sharing no hits in common with better

candidates are to survive.

Thus, the increased track multiplicity forcing the cell to combine several mea-

surements also changes the purpose of the evolution stage of the algorithm. In

the initial one-measurement case the aim was to resolve the measurements form

different tracks from each other. In the high track multiplicity case it is not pos-

sible, and the main aim of evolution phase is to simplify the track construction

process.

As one can conclude from the CA track finder strategy, the major part of the

algorithm is intrinsically local, since it is working only with data within a small

neighborhood region at each particular moment. In addition to that, the algo-

rithm transforms the tracking information step-by-step to a higher consolidation

extent: moving from hits to segments, from segments to candidates, from candi-

dates to tracks. Thus, the information processed and analyzed once by the track

finder is stored in a new form for the next stage with no need to read it again



4.2 Track finding 87

later. This optimizes memory access, since no data is read or processed twice.

These algorithm features make it suitable for parallel implementation on modern

many-core CPU/GPU computer architectures.

Different variations of this scheme were applied in HEP experiments with

high track multiplicity. In the next section details of the CA-based track finder

algorithm for the CBM experiment are discussed.

4.2.4 Cellular automaton track finder for CBM

The CA method’s features made the algorithm an appropriate solution for the

track reconstruction in the CBM main tracking detector STS. Let us consider in

detail the CBM version of the CA track finder.

A charged particle track in a magnetic field has 5 degrees of freedom. Hence,

a particle trajectory can be fully described with five parameters. The CBM state

vector was chosen in the following form: (xi, yi, txi, tyi, q/p). Here, xi, yi are the

coordinates of the point where the particle intersects the plane of the i-th STS

detector; txi, tyi are the slopes of the track to the OZ-axis; and q/p is the particle

charge to momentum ratio.

Let us define the triplet as a group of 3 hit measurements on adjacent detector

stations, potentially produced by the same particle. Since hit includes (xi, yi)

— two measurements of intersection of a particle with a certain detector plane,

the triplet represents the set of 6 coordinate measurements and allows the unique

determination of all five parameters of a reconstructed track segment. For this

reason in CBM the cells of the CA track finder are triplets.

The triplet parameters coincide with the track parameters: (xi, yi, txi, tyi, q/p).

It gives the opportunity to estimate the χ2 deviation between the hit measure-

ments and the parameters of reconstructed track segments with the Kalman filter

method. Such strategy has proved that already at the triplet level most random

3-hit combinations can be rejected according to the χ2-value, since they are un-

likely to represent a segment of a real track.

The strategy of the algorithm can be explained with the help of the pseudocode

scheme, which is shown in Fig. 4.13. The actual tracking procedure starts with

initialisation ( Fig. 4.13: pseudocode line 1). At this stage the algorithm allocates
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Pseudocode for CBM CA Track Finder
1 Sort_Input_Hits_According_to_Grid();
2
3 for track_set (high_p_primary, low_p_primary, secondary, broken)
4
5 switch (track_set)                                                     
6 case high_p_primary:
7 Build_Triplets (min_momentum_for_fast_tracks, 

primary_track_parameter_initilisation, triplets_wo_gaps);
8
9 case low_p_primary:
10 Build_Triplets (min_momentum_for_slow_tracks, 

primary_track_parameter_initilisation, triplets_wo_gaps);
11
12 case secondary:
13 Build_Triplets (min_momentum_for_slow_tracks, 

secondary_track_parameter_initilisation, triplets_wo_gaps);
14   
15 case broken:
16 Build_Triplets (min_momentum_for_slow_tracks, 

secondary_track_parameter_initilisation, triplets_with/
wo_gaps)

17
18 Find_Neighbours();
19
20
21
22
23 for track_length := NStation to 3 do
24 for station := FirstStation to NStation do
25 for triplets := First_Triplet_Station to 

Last_Triplet_Station do
26          track_candidate = Build_Best_Candidate (triplet);
27
28
29 Save_Candidates(all_track_candidates);
30
31 Delete_Used_Hits();

void function Build_Triplets (min_momentum, 
prim/sec_track_parameter_initilisation, 
triplets_with/wo_gaps)
{
  for station := (NStation-2) to FirstStation do
    for hits_portion := First_Portion_Station to 
Last_Portion_Station do

     Find_Singlets(hits_portion);
     Find_Doublets(singlets_in_portion);
     Find_Triplets(doublets_in_portion); 
}

void function Find_Neighbours (All_Triplets)

{
  for triplet := First_Triplet to Last_Triplet 
do

     Find_Save_Neighbours(triplet);
     Calculate_Level(triplet);
     
}

void function 
Save_Candidates(All_Track_Candidate)
{
   Sort_Candidates();
     for candidate := First_Candidate to 
Last_Candidate do
        if (used_hits) discard candidate
        else save candidate;
          
}

Figure 4.13: A pseudocode scheme for the CA track finder algorithm.

memory for the input information and prepares a special data structure to store

hits — the grid (Fig. 4.14).

The grid structure plays an important role for the speed of the algorithm,

since it provides fast access towards hits for the most time-consuming part of

triplets construction. While binding hits into triplets, one often faces a task of

finding a hit of the triplet in the certain spatial area of a station. In order to

do it quickly, a regular 2D grid is introduced on each station, with the cell size

inversely proportional to the hit density on the station. All hits are sorted and

stored in the memory in the order of their cell numbers. For each cell the pointer

to the first hit in this cell is stored.

The idea of grid approach is illustrated in Fig. 4.14. After extrapolation of the

track segment to the next station, the algorithm obtains the estimated position

(x, y) with extrapolation errors. It defines a certain region of interest on the

station, where potentially the next hit can be located. In order not to go through
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Figure 4.14: The grid structure for one STS station provides fast access towards the hit

measurements in the area of track extrapolation within the extrapolation errors.

the whole list of hits on the station and check whether they lay in the region of

interest, one can use the grid structure.

After defining the region of interest, the algorithm builds a special object —

HitArea, which is defined by the area of bins fully covering the region of interest

(shown with blue square in the figure). The grid structure allows a fast access

towards the hits laying within the HitArea. Since the grid stores indexes of

the first hits in the bin for each bin, to check all the hits in the HitArea, the

algorithm just needs to check several groups of hits, sorted and located locally

in the memory, instead of going through the whole list of hits on the station. In

this example, it would be:

• starting from 1st hit in bin 7 until 1st hit in bin 10,

• starting from 1st hit in bin 12 until 1st hit in bin 15,

• starting from 1st hit in bin 17 until 1st hit in bin 20.

This approach allows for quick identification of hits in a certain area of the station,

since they are located close to each other in the memory and the grid structure

instantly provides indexes of desired hits.

The most time-consuming part of the algorithm (90.4% of the total time) is

the triplet building stage. Triplets are built out of hit measurements, which can

potentially belong to the same track. Since the tracking algorithm is designed for

online reconstruction, the algorithm speed plays a crucial role and a lot of optimi-
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sation efforts were devoted to speed up the execution. One of such optimisations

come into play in the very beginning.

The Monte Carlo simulation has shown that the major part of the particles of

the particular physics interest come from the region of the primary vertex with

momentum greater than 0.1 GeV/c. Knowing in advance that the particle is

emerging from the primary vertex with a large momentum, drastically improves

the time needed to reconstruct such a track, due to a better initial track param-

eter initialization and a small curvature of the track. These observations have

led to the decision to split the reconstruction procedure into several stages, in

order to perform fast and computationally easy parts at first and suppress the

combinatorial enumeration for later stages.

Thus, the CA track finder consists of the following stages (pseudocode line 3):

1. the search for tracks from fast (p > 1 GeV/c) quasi-primary (emitted from

the target region) particles,

2. the search for tracks from slow (0.1 < p < 1 GeV/c) quasi-primary particles,

3. the search for tracks from secondary particles with arbitrary momentum,

4. the search for tracks with a missed hit on a station.

For each set of the tracks the same procedure is repeated with different initial

parameters and a different set of cuts. After each stage, the input hits included

in reconstructed tracks are tagged as used and removed from consideration in the

next stage. This approach suppresses possible random combinations of hits and

improves the speed of the algorithm at high track multiplicities.

After the type of initial triplet parameter initialization (for the primary or

secondary track search) and cut values (for the large or small momentum track

search) are defined by setting the desired track type (pseudocode line 3), the

actual triplet building procedure is to begin (pseudocode lines 5–16). Triplets

are built station by station, moving upstream starting from the sixth station to

the first station.

In the beginning in order to use SIMD registers, all input data is packed in

single precision SIMD vectors, so that all calculations later are vectorised. For

the reasons of memory optimization all hits on each station are split into portions

of N hits. N here is a number divisible by the number of elements in the SIMD
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1.

2.

3.

Figure 4.15: The illustration of three types of triplets built by the CA algorithm: 1) with

the second hit missing 2) with the third hit missing 3) with no missing hits (left side). Two

neighboring triplets, combined into a track (right side).

register, since the hits are processed in a SIMD-ised manner.

Each triplet is build in 3 steps: to the starting hit consecutively second and

third hits are added, rejecting non-physical combinations according to the local

track model at each step. Thus, at first each hit on the station is considered a

starting hit of the triplet. To the starting hit we add the target with some errors,

this way obtaining a certain spatial direction. This structure is called singlet.

The singlet together with its errors is extrapolated to the next station, taking

into account track model and possible multiple scattering. While searching for

the next hit on this station, the algorithm creates a new HitArea object. All hits

within the hit area potentially belong to the same track as the singlet hit does.

Adding each hit from the hit area to the singlet, one obtains an array of doublets.

The doublets are fitted with the Kalman filter method and some of them are

rejected due to high χ2-value. In same manner each doublet is propagated to the

next station and the array of triplets for the starting hit is obtained. The major

part of random combinations are rejected due to χ2-value after adding the third

hit to triplets.

Out of triplets discussed above one can construct tracks with consecutively

registered hits in each station only. However the detector inefficiency may lead

to the fact that some hits cannot be registered. In this case a hit on a certain
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station will be missing. In order to make the algorithm more stable towards

detector inefficiency there is one more additional stage of building triplets with

one hit missing (Fig. 4.15). This way we introduce two additional categories of

triplets:

• with hits on k-th, (k + 1)-th and (k + 3)-th stations

• with hits on k-th, (k + 2)-th and (k + 3)-th stations,

where k — is the starting station number. Since the probability of having two

hits missing in the raw in the track is less than 0.05%, nearly all tracks can be

reconstructed with this approach. After all triplets are constructed including the

ones with missing hits, they are copied to one general array.

Now the triplets should be grouped into track candidates. Since the momen-

tum is conserved in a magnetic field, in order to find triplets potentially belonging

to the same track, one needs to take into account all five state vector parame-

ters. Such so-called neighboring triplets should coincide in position, slope and

momentum. The easiest way of fulfilling this requirement is to define neighbors

as the triplets, sharing two common hits and having the same momentum within

estimated errors (Fig. 4.15). Thus, as the next step the algorithm loops over all

triplets and finds and stores for each one the list of possible neighbors according

to this definition.

In order to further simplify the procedure of combining triplets into tracks,

one can also estimate the position of the triplet in the track. It is done with the

help of, so-called, level, which is calculated for each triplet during the search for

neighbors. The level of a triplet is defined as the length of the longest continuous

chain of neighboring triplets in the direction to the target. The level of a triplet

helps to locate the triplet on the track: the greater the value it takes, the longer

track can be potentially constructed with a certain triplet.

Having estimated the possible position in the track, the triplets can be easily

connected into a candidate tracks (pseudocode lines 23–26). The main aim of

this procedure is to build the best set of tracks according to χ2-value, that share

no hits in common. It allows suppressing of random combinations of triplets. If

two track candidates share a hit in common, the preference is given to the longest

track, since the probability of a random hit combination to represent the track
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model decreases exponentially with the number of hits.

Thus, the procedure of constructing tracks is designed in such a way, that it

starts with building the longest tracks first. Their hits are tagged as used and

removed from consideration. After the longest tracks are found, the algorithm

consecutively searches for tracks with one hit less and so on until the primary

tracks with 3 hits only.

Starting with the triplets with the maximum level, the chain of neighbors

with a level consecutively descending by one is connected into track candidates.

A treelike structure of potential track candidates is formed in this manner, from

which the best track is selected according to the χ2 criterion.

Having all the candidates of a certain length constructed, the algorithm sorts

them according to their χ2. After this procedure is finished, candidates one by one

sequentially are checked to contain used hits. If at least one used hit is found, the

candidate gets discarded, if not — the candidate is stored (pseudocode line 29).

After the stage of track reconstruction for the current set of tracks is finished,

the final stage of the algorithm takes place (pseudocode line 31): all the hits used

in the reconstructed track are removed from the input information for the next

stage.

4.2.5 Track finding performance

In order to quantify the performance of track finding methods, one needs to

introduce a formal definition of efficiency. Usually the reconstruction efficiency

is defined as the number of successfully reconstructed tracks as a fraction of

all possible tracks of interest. Thus, for a quantitative definition of efficiency,

one needs to define a criterion whether a certain particle has been reconstructed

together with a definition of tracks of interest.

First of all let us define tracks of interest, which potentially can be recon-

structed with a certain detector system. On one hand, this definition should be

driven by the physics motivation of the experiment. In order to reconstruct the

momentum of a charged particle one needs at least three hits, otherwise there

are not enough measurements to define all track parameters. Thus, there is no

sense in reconstructing tracks shorter than three hits.
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On the other hand, these tracks of interest should be potentially recon-

structable with a certain detector system. This way one excludes the detector

acceptance from the efficiency definition, so that one can compare pure algorithm

reconstruction efficiency for different detector systems.

In the case of CBM collisions at 25 AGeV beam energy simulated by UrQMD

have shown that track multiplicity in the STS and the MVD detectors is so high

that it leaves no possibility of distinguishing between secondary tracks with three

hits and random combinations of three hits. Also for a particle with momentum

lower than 0.1 GeV/c the multiple scattering in the detector material is so strong,

that it is not possible to reconstruct such a distorted track shape. Taking these

aspects into account, in CBM the track is called reconstructable if it has crossed at

least four consecutive STS stations and its momentum is higher than 0.1 GeV/c.

Now let us introduce a criterion, whether a certain particle has been recon-

structed or not. There are two generally accepted concepts [99]:

Hit matching: the method analyzes the origin of each hit in the reconstructed

track using the Monte Carlo information. If the majority of hits originates from

the same particle (not less than some definite fraction of hits was caused by

this particle), the track is called reconstructed. The exact fraction is defined

in such a way, that the reconstructed track parameters are still not affected

significantly, if the track has not more than some percentage of wrongly attached

hits. Experience has shown that in the majority of cases if at least 70% of hits

belong to the same particle, the reconstructed track parameters allow for correct

physics analysis. This method is stable in the limit of very high track densities,

but it requires the Monte Carlo information.

Parameter matching: The reconstructed parameters of a track are compared

with those of the Monte Carlo simulated particle. If the parameters agree within

certain errors (for example, 3 σ around the true Monte Carlo particle parameters),

the track is called reconstructed. This method requires less functionality from the

simulation chain. It bears the danger of accepting random coincidences between

true particles and artifacts from the pattern recognition algorithm. In extreme

cases, this can lead to the paradox impression that the track finding efficiency

improves with increasing hit density.

The efficiency is defined as the ratio between reconstructed Nreco and recon-
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structable tracks Naccept:

ε =
Nreco

Naccept

. (4.28)

Since both hit and parameter matching concepts require Monte Carlo data,

they cannot be applied in case of real data. For real data the efficiency eval-

uation is tricky, but can be performed under certain conditions if at least two

independent track finders are available.

In this case the efficiencies of the track finder are uncorrelated and under

the assumption of the absence of wrongly reconstructed tracks, which were not

produced by any particle, the efficiency of one procedure can be determined by the

fraction of its own tracks among the tracks, found by the other procedure [100]:

If N is the total number of tracks, then:

N1 = N · ε1, (4.29)

where N1 is the number of tracks reconstructed by the 1-st track finder.

N2 = N · ε2, (4.30)

where N2 is the number of tracks reconstructed by the 2-st track finder.

N12 = N · ε1 · ε2, (4.31)

where N12 is the number of tracks reconstructed by both track finders. These

equations allow determination of the unknown efficiencies of both track finders.

However, since the CBM experiment is not operating yet, it works with sim-

ulated data and uses the hit matching version for definition of the reconstructed

track. A reconstructed track is assigned to a generated particle, if at least 70% of

its hits have been produced by this Monte Carlo particle. If the particle is found

more than once, all additionally reconstructed tracks are regarded as clones. A

reconstructed track is called a ghost, if it cannot be assigned to any generated

particle according to the 70% criterion.

The probability of reconstructing a certain particle strongly depends on its

parameters, mostly momentum and the point of origin. Fast particles with large

momentum usually have straight trajectories and are almost not influenced by

the multiple scattering. On the other hand, low momentum particles not only
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Figure 4.21: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 70.4

Primary high-p 94.9

Primary low-p 56.8

Secondary high-p 49.7

Secondary low-p 13.0

Clone level 0.3

Ghost level 0.3

MC tracks found 103

Time, ms/ev 4

Table 4.1: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.
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Figure 4.22: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 87.8

Primary high-p 95.8

Primary low-p 91.4

Secondary high-p 84.5

Secondary low-p 54.2

Clone level 0.9

Ghost level 5.6

MC tracks found 129

Time, ms/ev 6

Table 4.2: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.

Figure 4.16: Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for primary tracks with high momentum.

have more curved tracks and get randomly scattered in the detector material, but

also often leave the detector volume after a few stations. Thus, a small number

of hits also complicates the task of track reconstruction in this case. As far as the

point of origin is concerned, primary tracks have the advantage of the additional

measurement over secondary tracks — the target.

In order to better analyze the performance of the CA track finder, the effi-

ciency is calculated for different sets of tracks. First of all, the tracks are divided

into two momentum sets: high momentum (p >1 GeV/c) and low momentum

(0.1 GeV/c < p <1 GeV/c) tracks. Secondly, the tracks are divided into primary

tracks and the tracks, originating from short-lived particles’ decay points.

Let us briefly go through the list of four CA track finder iterations, outlining

the initialization parameters used and the efficiency performance achieved after

each of them.

In the very first stage the algorithm searches for high momentum primary

tracks. Since searching for almost straight tracks origination from the primary

vertex is relatively easy due to smaller extrapolation errors and, thus, less combi-

natorics, this iteration is relatively fast and supposed to suppress combinatorics

for later search.

The parameters, used in the stage for track estimate initialization, reflect the
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Clone level 0.3

Ghost level 0.3
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Figure 4.22: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 87.8

Primary high-p 95.8

Primary low-p 91.4

Secondary high-p 84.5

Secondary low-p 54.2

Clone level 0.9

Ghost level 5.6

MC tracks found 129

Time, ms/ev 6

Table 4.2: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.

Figure 4.17: Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for primary tracks with low momentum.

desired track category. The initial track position and errors in the covariance

matrix for the propagation in the magnetic field are defining the target area:

x = 0, y = 0 , ∆ x = 0.01 cm, ∆ y = 0.01 cm, which corresponds to a primary

track. The initialization of q/p track parameter is set to zero, since one does not

know in advance the sign of particle charge, while the ∆ q/p in the covariance

matrix is set to the value, which corresponds to the track with momenta of about

0.5 GeV/c making the propagation errors relatively small.

As a result, the track finding performance after the first iteration is presented

in the table in Fig. 4.16. As one can see, since the parameter initialization is

tailored to reconstruct primary tracks with high momentum, the efficiency for

the reconstruction of this category of tracks is of high value — 94.9% already

after the first iteration, while the reconstruction of low momenta and secondary

tracks is not sufficient.

In Fig. 4.16 the track reconstruction efficiency dependence as a function of

track momentum is illustrating that the first iteration, due to parameter initial-

ization used, is able to reconstruct tracks with momentum above 0.5 GeV/c.

The main aim of the second iteration is to include the search for low momenta

primary tracks as well. That is the reason why ∆ q/p in the covariance matrix

is initialized with 10 times higher value during this iteration. It corresponds to



98 Chapter 4. Reconstruction of particles trajectories

Momentum [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ef
fic

ie
nc

y 
[%

]

0

10
20

30
40

50

60
70

80
90

100

104 CHAPTER 4. RECONSTRUCTION OF PARTICLES TRAJECTORIES

Momentum [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ef
fic

ie
nc

y 
[%

]

0

20

40

60

80

100

Figure 4.23: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 89.2

Primary high-p 97.5

Primary low-p 92.4

Secondary high-p 86.6

Secondary low-p 54.7

Clone level 1.0

Ghost level 5.5

MC tracks found 131

Time, ms/ev 7

Table 4.3: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.
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Figure 4.24: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 90.9

Primary high-p 97.5

Primary low-p 92.6

Secondary high-p 91.1

Secondary low-p 63.8

Clone level 1.0

Ghost level 5.9

MC tracks found 134

Time, ms/ev 8

Table 4.4:

Figure 4.18: Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for secondary tracks.

the track with momenta until about 0.15 GeV/c, making the propagation errors

larger. All other parameters are used with no change at this point.

The resulting performance can be found in the table in Fig. 4.17. After the sec-

ond iteration, the reconstruction efficiency for the low momenta primary tracks

has increased from 56.8% to 91.4%. However, the ghost and clone rate get in-

creased as well due to increased combinatorics.

Also, the effect on the reconstruction efficiency as a function of momenta de-

pendence in Fig. 4.17 is noticeable, since after the second iteration the algorithm

is able to reconstruct tracks with momenta until about 0.1 GeV/c.

The third iteration is targeted to the search for secondary tracks. In order to

include the secondary tracks in the consideration the initial parameter initializa-

tion of position errors in the covariance matrix in this case is 10 times larger:

∆ x = 0.1 cm, ∆ y = 0.1 cm.

If one compares the track finder performance after the iterations with the

search for primary tracks with performance after the third iteration (Fig. 4.18),

one observes the improved reconstruction efficiency of secondary tracks: from

84.5% to 86.6% for high momenta tracks, and from 54.2% to 54.7% for low

momenta tracks.

In the last iteration the algorithm searches for the tracks with hits not reg-
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Figure 4.23: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 89.2

Primary high-p 97.5

Primary low-p 92.4

Secondary high-p 86.6

Secondary low-p 54.7

Clone level 1.0

Ghost level 5.5

MC tracks found 131

Time, ms/ev 7

Table 4.3: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.
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Figure 4.24: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 90.9

Primary high-p 97.5

Primary low-p 92.6

Secondary high-p 91.1

Secondary low-p 63.8

Clone level 1.0

Ghost level 5.9

MC tracks found 134

Time, ms/ev 8

Table 4.4:

Figure 4.19: Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for tracks with missing hits due to detector inefficiency.

istered in the STS due to detector inefficiency. The resulting performance is

presented in the table in Fig. 4.19. The overall reconstruction efficiency after the

last iteration has improved by about 2%.

There is a special procedure implemented in the algorithm to suppress clones,

which merges together potentially doubly reconstructed tracks. Also, there is a

special extender option, which tries to extend tracks in both directions via search

for unused hits, which can be attached to the already reconstructed track.

The reconstruction performance after switching on merger and extender op-

tions is presented in the table in Fig. 4.20. The clone level has decreased more

than two times from 1.0% to 0.4% after switching the merger option on.

The majority of signal tracks (decay products of D-mesons, charmonium, light

vector mesons) are particles with momentum higher than 1 GeV/c originating

from region very close to the collision point. Their reconstruction efficiency is,

therefore, similar to the efficiency of high-momentum primary tracks that is equal

to 97.5%.

The high-momentum secondary particles, e.g. in decays of K0
s and Λ particles

and cascade decays of Ξ and Ω, are created far from the primary vertex, therefore

their reconstruction efficiency is lower — 91.1%.

Significant multiple scattering of low-momentum tracks in the material of the



100 Chapter 4. Reconstruction of particles trajectories

Momentum [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ef
fic

ie
nc

y 
[%

]

0

10
20

30
40

50

60
70

80
90

100

4.2 Track finding 105

Momentum [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ef
fic

ie
nc

y 
[%

]

0

20

40

60

80

100

Figure 4.25: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 90.9

Primary high-p 97.5

Primary low-p 92.6

Secondary high-p 91.1

Secondary low-p 63.8

Clone level 0.4

Ghost level 5.9

MC tracks found 134

Time, ms/ev 10

Table 4.5: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.

Figure 4.20: Track reconstruction efficiency as a function of track momentum and track

finder performance after merging clones.

detector system and large curvature of their trajectories lead to lower recon-

struction efficiencies of 92.6% for primary tracks and of 63.8% for secondary

low-momentum tracks.

The total efficiency for all tracks is 90.9% with a large fraction of low-

momentum secondary tracks. The levels of clones and ghost tracks are 0.4%

and 5.9% respectively.

The behavior of the CA track finder in the case of higher track multiplicity

will be investigated in the next chapter.



Chapter 5

Track finding at high track

multiplicities

5.1 Challenging track multiplicities in HEP

To validate the Standard Model, scientists aim to observe phenomena at ever

higher energy densities and to measure their parameters with the highest pos-

sible precision. To achieve this one needs accelerators which are as powerful as

possible and the most precise detectors. The multiplicity of some important rare

probes is so low, that the statistically reliable measurement for them requires

HEP experiments to operate at ever increasing collision rates. One can predict

that in the future this tendency will only get stronger.

On the other hand, in the course of time, as one looks deeper into the struc-

ture of matter, particle detectors have been evolving from simple devices with a

few channels to very complex multi-layer systems with several millions of read-

out channels. Due to the ever increasing complexity of particle detectors and

accelerators, the domain is a driving force for technology. The need to look for

rare and complex signals forces the data acquisition systems and reconstruction

algorithms to develop accordingly.

Fig. 5.1 shows the graph of the maximum trigger rates and event sizes for the

operating experiments of the past three decades. The outermost points in this

graph are clearly given by the four LHC experiments, with the general-purpose

experiments (Compact Muon Solenoid (CMS) and A Toroidal LHC Apparatus
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(ATLAS)) pushing both the rate and size frontier, and the two specialized LHC

experiments pushing the rate (LHCb) and event size (ALICE) frontier, respec-

tively. A data point for the future CBM experiment in the chart takes a place at

107 MHz and event size of 40 kB.

12

106

107

PANDA

STAR

PHENIX

CBM

Figure 5.1: The graph of the operating requirements of some major operating experiments

in high-energy physics in the past 30 years and some future experiments. The X-axis denotes

the amount of data recorded in a single event, whereas the Y -axis represents the number of

events per second that have to be read out and analysed by intelligent filters [101].

A new generation of experiments is now emerging, in which the track density

is so high that success will crucially depend on the power of the reconstruction

methods. For modern experiments the collision rates have reached such an extent

that those are not only limiting the time available to perform reconstruction, but

also forcing the experiment to face the pile-up challenge.

The pile-up is a situation when several events occur so close in time, that

a particle detector has to process them simultaneously. For example, an event

display of a pile-up of 25 events during ATLAS Run1 is shown in Fig. 5.2. For

ATLAS Run2 the average pile-up is expected to increase by up to a factor of

2.5. The pile-up situation has a direct influence on the complexity of track
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reconstruction procedure, since the track multiplicity in this case rises up by

factors.

Figure 5.2: The event display of the ATLAS experiment illustrating the pile-up of 25 colli-

sions. The reconstructed vertices are shown with different color [102].

For tracking it means more events with a more complex pattern to be looked

at in less time. It results in stronger requirements to the speed and efficiency of

the tracking algorithm. Naively one would expect the reconstruction complexity

to scale with the number of tracks.

Unfortunately this is not the case, since the track finding is a combinatorial

problem similar to the famous travelling salesman problem. It belongs to the

class of NP-complete (nondeterministic polynomial time) problems according to

the theory of computational complexity. Thus, it is possible that the worst-

case running time for any algorithm for the problem increases superpolynomially

(perhaps, exponentially) with the track multiplicity. Let us assume that a track

finder is going to consider all possible combinations of N measurements in order

to find the most probable set of tracks. Since the total number of combinations is

N !, a full revision of all combinations is impossible for a large N within reasonable

time.

Thus, the first challenge for track finding in the case of increased multiplicity

is the exponential rise of the computing time per event — as suggested by combi-

natorics. Large detector occupancy leads to large combinatorics in track finding,

making the alrogithm much slower. Usually, faster algorithms are simply those

that try “less combinations”.

Moreover, large track multiplicity leads to large detector occupancy and re-
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sults in overlapping tracks. It naturally leads to increased number of wrongly

reconstructed tracks. A robust tracking algorithm must be able to handle large

variations in multiplicity. That is why the tracking stability becomes particularly

important for the modern HEP experiments.

The simulations of the continuous CBM beam predict that the experiment also

will have to deal with events overlapping in time. In order to test the CBM CA

track finder behavior in the high track multiplicity environment, a special study

was performed. The details of the study will be provided and discussed in the

next section.

5.2 CA track finder performance at high track

multiplicity

In order to test in a high track multiplicity environment the stability of the CA

track finder algorithm described in the previous chapter a special study has been

performed. A robust behavior of the algorithm in this test promises stability of

tracking in the case of increased track multiplicity due to a pile-up or a beam

instability.

However, the CBM experiment has some particular reasons to test tracking

routines with respect to high track multiplicities. Since the CBM experiment

will operate at extremely high interaction rates, different collisions may overlap

in time, leaving no possibility to separate them in a trivial way. Thus, the need

to analyze the so-called time-slices, which contain information from a number of

collisions, rather than isolated events, arises.

The need to work with time-slices instead of events is driven not only by

physical circumstances, but also is encouraged by computing hardware reasons.

Not only minimum bias events, but even central events have been proven to

be not big enough in order to be processed in parallel on a modern many core

computer architectures. For implementing in-event level parallelism these events

do not have enough sources of parallelism (like hits, segments, track candidates

for different reconstruction stages) in order to be reconstructed on 20 or more

CPU cores simultaneously.
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strip stereo angle 15o strip stereo angle 90o

Figure 5.3: The mechanism of generating fake hits (shown with empty circles) in a strip

detector with strip stereo angle 15o: hit is identified as an intersection of active strips (shown in

red), 3 real hits (shown with solid circles) generate 4 intersections (left side). A strip detector

with strip stereo angle 90o due to higher stereo angle has even more fake hits (right side).

These reasons bring us to introducing the concept of time-slice to the recon-

struction procedure. As a first step on a way towards the time-slice reconstruction

we introduce a container of packed minimum bias events with no time informa-

tion taken into account. To create such a group we combine space coordinates

of hits from a number (from 1 up to 100) of Au+Au minimum bias events at

25 AGeV ignoring such information as event number or time measurements.

In order to obtain such quasi-time-slices a special script was written, which

allowed packing the data from a number of minimum bias events into one super-

event. Such super-event the standalone reconstruction package could take as

input information the same way as a normal event [73, 103].

It is important to mention that this definition of a super-event does not pre-

cisely correspond to a pile-up simulation. The reason for this is that in this case

fake hits in the STS detector are created from strips on the event level, not within

the whole super-event.

It is a known fact that devices measuring single coordinates do not provide

three-dimensional points on a trajectory, but rather projections. Such devices

may be economic, since a relatively small number of channels is needed to cover
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CBM CA Track Finding at High Track Multiplicity

                    Towards 4D (space + time) event reconstruction !4

Au+Au mbias events at 25 AGeV, 8 STS, 0 x 7,5 strip angles

1 minimum bias event 
<Nreco> = 109

5 minimum bias events 
<Nreco> = 572

100 minimum bias events 
<Nreco> = 10340

Figure 5.4: Reconstructed tracks in a minimum bias event (left) and in a packed group of

100 minimum bias events (right), 109 and 10 340 tracks on average respectively.

a region with a good resolution. However 3D information can be only obtained

by combining several projections. Although 2 views are sufficient in order to

reconstruct 3D space points, in the presence of multiple tracks this leads to

ambiguities.

For this reason double-sided strip detectors, like STS, have a relatively large

rate of reconstructed fake hits, which were not produced by any particle. The

mechanism of fake hits production is explained in Fig. 5.3 and is due to the fact

that a hit is defined as an intersection of simultaneously activated back and front

strips. The number of such intersections does not correspond to the number

of hits in general when several hits were produced simultaneously within the

detector time precision.

The combined super-event was treated by the CA track finder as a regular

event and the reconstruction procedure was performed with no changes (Fig. 5.4).

Varying the number of minimum bias events in a group from 1 to 100, the

track reconstruction efficiency dependence has been studied with respect to the

track multiplicity. The efficiency definition was the same as in the previous

chapter. The resulting performance is summarized in Tab. 5.1. The compari-

son of performance results in cases of a normal minimum bias track multiplicity

(column 3D mbias), central event (column 3D central) and the extreme track

multiplicity of super-event made of 100 minimum bias events (column 3D + 1)
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Efficiency, % 3D mbias 3D central 3+1 D

All tracks 88.5 88.3 80.4

Primary high-p 97.1 96.2 94.3

Primary low-p 90.4 90.7 76.2

Secondary high-p 81.2 81.4 65.1

Secondary low-p 51.1 50.6 34.9

Clone level 0.2 0.2 2.5

Ghost level 0.7 1.5 8.2

MC tracks found/event 130 622 118

Time/event 8.2 ms 57 ms 31.5 ms

Table 5.1: Track reconstruction performance for Au+Au collisions at 25 AGeV in the case

of event-by-event analysis (3D) for minimum bias and central events, as well as for a hun-

dred events grouped on a hit level with no time information (3 + 1D). No track merging and

extending procedures are included.

is presented in the table.

As one can see in Fig. 5.5 high momentum primary tracks (High-p Prim), which

have particular physical importance, are reconstructed with excellent efficiency of

about 96%, which varies within less than 2% for up to a hundred events grouped.

If we include secondary tracks (High-p all) the efficiency is a bit lower —

93.7%, since secondary tracks may originate far from the target. This value varies

within about 3% for the extreme case of 100 minimum bias events grouped. The

efficiency for low momentum tracks is 79.8% (Low-p all) in case of minimum

bias track multiplicity and it changes within 6.5% window in case of the largest

track multiplicities. The ghost fraction remains at acceptable level (not more

than 10%) for up to the highest track multiplicities.

Thus, the CA track finder performance is proved to be stable with respect to

the high track multiplicities.

A test of performance at a higher track multiplicities is possible in this case,

but the efficiency definition needs to be modified. Since the hit density is so high

and hit measurements lay so close to each other, taking a neighbor hit instead of

a true hit does not affect reconstructed track parameters in the end. As discussed

in section 4.2.5, in this case parameter matching efficiency definition may be more

suitable.
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Figure 5.5: Track reconstruction efficiencies, ghost and clone rates for different sets of tracks

as a function of track multiplicity.

5.3 CA track finder speed vs. track multiplicity

However, not only an efficiency performance, but also the speed of a reconstruc-

tion algorithm is crucial for successful performance in the case of CBM. For the

implementation of a track reconstruction application, the good behavior of the

algorithm at high track multiplicities is essential, since e.g. an exponential rise of

the computing time per event — as suggested by combinatorics — may tend to

block computer nodes for an undue amount of time.

The time that the CA track finder needs to reconstruct a grouped event, was

studied as a function of the number of Monte-Carlo tracks in a group (Fig. 5.6).

The results show that the dependence is perfectly described with a second order

polynomial. This is a promising result, if one keeps in mind the exponential

growth of combinatorics with the track multiplicity.

In order to understand better the structure of the algorithm and how different

parts of the algorithm cope with increased track multiplicity, let us consider how
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Figure 5.6: The CA track finder time, needed to reconstruct groups of minimum bias events

without time information, with respect to track multiplicity. The dependence is fitted with a

second order polynomial.

the fraction of total time, needed for different parts of the algorithm, changes

with respect to number of events in the group. The dependence is presented in

Fig. 5.7.

As one can see for low track multiplicities triplet construction phase time is not

as important, since the prevailing part here is initialization. The data amount

in this case is small and, thus, can be loaded to cache memory. The triplet

construction stage is fast in this case.

However, at high track multiplicities the situation changes, and triplet con-

struction stage takes the major part of the algorithm time. Thus, one has to take

particular care in optimizing this stage, since it tends to prevail in the case of

increased combinatorics like no other stage. Since the major part of random hit

combinations are rejected at triplet stage, the track construction stage is hardly

affected by the increased combinatorics.

Summarizing, both speed and efficiency of CA track finder show stable behav-
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Figure 5.7: The time fraction of different stages of the CA track finder algorithm as a

function of a number of combined events. One can clearly see that the most sensitive towards

combinatorics stage is the triplet construction.

ior at high track multiplicities.

The time dependence can be improved further and turn into a linear one,

which corresponds to the case of event-based analysis, after introducing time

measurements into the reconstruction algorithm. The next step for the algorithm

development is to make its parallel implementation, which is the subject of the

next chapter.
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Parallel CA track finder

One of the key ingredients for the successful operation of the CBM experiment is

the development of fast and precise reconstruction algorithms suitable for online

data processing. In order to benefit from the advantages of modern parallel com-

puter architectures (many-core CPU/GPU), the existing reconstruction routines

need to be redesigned with parallelism in mind. The desired efficient intrinsically

parallel algorithms should reflect the massive hardware parallelism in computa-

tional scheme and data structures.

The CA track finder algorithm was redesigned and optimized with respect to

parallelism. The algorithm demonstrates a linear scalability on a many-core CPU

server, indicating the ability to be effectively run on a complex computer farm.

While vectorisation allowed for processing in parallel data streams, many-core

execution has enabled parallelism on the task level. The details of parallel CA

track finder algorithm development as well as achieved performance are discussed

in this chapter.

6.1 General overview of parallelisation strategy

Although intrinsic parallelism and data locality are the notable features of the

CA track finder, still a lot of efforts were required in order to develop an efficient

parallel implementation out of the existing vectorised, but sequential algorithm.

Reformulating the algorithm in terms of parallelism often may mean that

it has to be drastically changed or even written from scratch, since an efficient
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sequential version is not necessarily an efficient solution for a parallel run. Parallel

implementation requires certain features for the algorithm. Firstly, in order to

get correct results, the operations performed concurrently should be independent

from each other. Secondly, one has to keep in mind that the parallel section should

always be thread-safe, so that the shared data structures are used in a manner

that guarantees safe simultaneous execution by multiple threads. This can be

achieved by allocating local data structures to each thread and summarizing

results of their work afterwards or, alternatively, introducing synchronization

into thread execution.

The synchronization usually slows down the speed of a program, since threads

have to wait for each other or exchange results of their work, so the use of this

tool should be minimized. Also memory optimization and data structure scheme

become essential in case of parallel programming, due to increased memory de-

mand.

Thus, the CA track finder algorithm had to be redesigned with the idea of per-

formant parallel processing in mind. The main goal at this stage was to create an

entirely parallel implementation for a concurrent search for tracks within a single

grouped super-event (quasi time-slice). The target implementation should show

the maximum achievable speed-up factor on the testing architecture, while still

being fast in sequential run and providing stable and reliable results. Although

this issue is closely connected with the algorithm speed, particular attention was

devoted to the data structures and memory optimization.

The vectorized, but sequential in terms of core usage, version of the CA track

finder was taken as the starting point for developing a parallel version with the

use of the OpenMP and Pthreads interfaces.

Here it is important to highlight the difference between embarrassingly parallel

reconstruction of independent events concurrently, which is to a certain extent

trivial, and the problem of distributing a bunch of dependent tasks, performed

while reconstructing tracks produced in a time-slice in a parallel run. Unlike

the case of different events, where no synchronization by default is needed, the

reconstruction of a time-slice in parallel requires synchronization, so that the

work is distributed between threads in an efficient and thread-safe manner with

no race conditions.
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Figure 6.1: The parallelisation strategy and the data flow of the parallel CA track finder

algorithm. All stages of the algorithm can be executed in parallel using a number of cores. The

synchronization between threads is minimized: it is only needed during initial hit sorting and

track selection stages.

Since the major part of the tracks in CBM are straight, the logical extension

of the approach of event level parallelism would be to cut virtually the detector

into areas and reconstruct tracks in parallel inside those areas. However, this

strategy was not approved, since it makes the method less general and is binding

to a certain detector and physics case. Also, the search for low-momentum curved

tracks becomes difficult in this case.

Instead, each step of the CA track finder algorithm was examined in order to

reveal potential sources of parallelism. Fig. 6.1 depicts the overview of processing

steps of the developed parallel CA track finder implementation. At each stage

the source of parallelism elements are concurrently processed and stored in a new

form with a higher consolidation extent.

During the initialisation stage all the input hits are sorted and stored according

to the grid structure. Also, all the hits are split into portions with a number of

hits, divisible by the SIMD-vector width, for the future vectorized processing.
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At the triplet building stage portions of hits are processed concurrently with no

synchronization between threads giving as a result a set of triplets.

At the next stage of track candidate construction triplets are the source of

parallelism. For each starting triplet the algorithm creates concurrently the best

possible track candidate according to χ2-value and length. At this point threads

are still working independently, unlike the last stage of track selection, where

threads have to consult each other in order to divide the hits between the recon-

structed tracks. At the track selection stage the synchronization was implemented

via a table of common access.

At the final stage the hits, used in the accepted reconstructed tracks, are

removed from the input for the next iteration. Similar to the initialization stage,

at this point the hits represent the source of parallelism.

As far as the number of parallelism source elements is concerned, it is obvious

that its amount is growing linearly with the number of events in the input. Hence,

this amount can be controlled and in future the time length of a time-slice can

be chosen proportionally to a compute power of the processing node in order to

fully utilize hardware resources. In order to have enough sources of parallelism to

fill the whole CPU a super-event of 100 minimum bias Au+Au events was chosen

for the study and optimization .

An important issue while making a parallel implementation is to keep in mind

a certain computer architecture. The optimization and testing of the parallel CA

track finder was performed on the lxir075 server at GSI, which is equipped with

four Intel Xeon E7-4860 processors. It can operate in total with 80 threads in

parallel (Fig. 6.2). Each processor has 10 physical cores with hyper-threading.

It is an example of the NUMA architecture, that means that the memory access

time for the server depends on the memory location relative to the processor.

CPUs can communicate and exchange data between each other, but it takes

longer than accessing local CPU memory. Thus, the decision was made to send

one super-event to a single CPU for reconstruction, not to the whole node, in

order to avoid processors communication. This way such an architecture can be

filled with 4 super-events reconstructed in parallel.

The Intel Xeon E7-4860 is a server processor that was first available for pur-

chase in April 2011. It operates at a stock clock speed of 2.26 GHz. Following
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Figure 6.2: The lxir075 server at GSI is equipped with four Intel Xeon E7-4860 processors.

Due to HTT, it can operate in total with 80 threads in parallel.

the NUMA concept 16 GB of RAM is attached to each CPU. QPI allows CPUs

to access remote memory of each other. As for the cache memory, each core of

the Intel Xeon E7-4860 CPU has 32 KB of L1 cache for instructions, 32 KB of

L1 cache for data and 256 KB of L2 cache for data and instructions. In addition,

each CPU contains 24 MB of L3 cache memory, which is shared among the cores.

If one keeps in mind that vector registers contain up to 4 float or inte-

ger data elements in case of SSE instructions, the total pure hardware po-

tential speed-up factor of the lxir075 server can be calculated as follows:

f = 4 sockets · 10 cores · 1.3 threads · 4 SIMD ≈ 200. If we ex-



116 Chapter 6. Parallel track finder algorithm

clude vectorisation, the potential speed-up factor due to multithreading alone

within one CPU is: f = 10 cores · 1.3 threads ≈ 13.

Algorithm step % of total time

Initialization 2.0

Triplets construction 90.4

Tracks construction 4.1

Final stage 3.4

Table 6.1: The fraction of the total execution time for different steps of the CA track finder

algorithm in a sequential run.

Let us briefly go through each step of the CA Track Finder algorithm, outlining

which source of parallelism was used at each stage and what kind of changes were

made in order to reconstruct tracks in parallel inside one grouped event. The list

of the stages as well as the fraction of the total execution time for each of them

can be found in Tab. 6.1.

6.2 Initialization and final stages

The initial stage, when the input information for the algorithm gets prepared,

can be split into two logical parts:

• memory allocation for the input information,

• ordering the input information in the suitable for the track finder format:

sort hits according to the grid structure and split them into portions.

Memory allocation

In the original serial version of the algorithm, the memory was reallocated for

each event again in the very beginning of the CA track finder. No doubt, this

approach has an advantage, since in this case the algorithm knows in advance

how much memory is needed to store input and can allocate exactly the amount

of memory needed.

However, this way double work is done, since the memory originally allocated

for a certain event is released at the end of event reconstruction and has to be
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allocated again at the initial stage of the next event reconstruction. In case of a

single minimum bias event reconstruction this allocation time is negligible, but

in case of time-slice reconstruction it becomes significant.

One more obstacle of this approach is that memory allocation represents an es-

sentially sequential process and, thus, cannot be efficiently performed in parallel.

Keeping in mind these aspects, the decision was made to reuse the memory, once

allocated for the first reconstructed event. The memory should be allocated once

before calling the track finder routine for a grouped super-event (or, in future,

time-slice). For further reconstruction the memory volume, if needed, should be

extended.

Unfortunately, one cannot know in advance the size of input information. It

varies from one time-slice to another. For instance, it is possible that the next

reconstructed time-slice contains more hits and, thus, more memory is required

to store input information. Partial solution would be to estimate the average

size of time-slice and allocate an excessive amount of memory. But this does

not guaranty a safe execution, in case of some irregular situations. In order to

overcome this obstacle a special class, named L1Vector, was introduced for a safe

execution in case of unpredictable increase in the volume of input information.

The L1Vector class declaration is presented in List. 6.1. This class is based on

the standard library vector class, but has some extra functionality. The L1Vector

has a private member – fSize — to store the number of meaningful elements,

in addition to the normal std::size() — which corresponds to the actual size

of the vector array. If a new element is stored to the array, fSize is increased

by one, but the actual size of the array gets increased only if fSize gets larger

than std::size() (lines 8–11). Certainly, one should avoid situations when

two independent threads are trying to change the size of an array. For this

reason these lines are executed under #pragma omp critical directive to force

sequential execution at this point.

Before calling the track finder routine, the algorithm resizes all the input

vectors to the estimated size of time-slice input information. In the reconstruction

routine the algorithm tries to store input information in the already allocated

arrays, but each time checks if allocated memory is enough to do so. If not,

it will allocate additional memory. This approach avoids double work, while
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working fast in normal case, when there is enough memory. Also it guaranties a

safe execution in the case of unexpected memory excess.

1 #include <vector>

2 template <typename T> class L1Vector: public std::vector<T>

3 {public:

4 // return number of meaningful elements

5 unsigned int Size() const { return fSize; } /* set number of

meaningful elements to zero */

6 void Resize(const unsigned int n) { /* resize only to a larger

size */

7 if(n > std::vector<T>::size()) {

8 #pragma omp critical

9 std::vector<T>::resize(n);

10 }

11 fSize = n;

12 }

13 T& operator[] (const size_t index) { /* if no element exists --

create one */

14 if(index >= std::vector<T>::size()) {

15 #pragma omp critical

16 std::vector<T>::resize(index+1);

17 }

18 if(index>=fSize)

19 fSize = index + 1;

20 return std::vector<T>::operator[](index);

21 }

22 private: unsigned int fSize;

23 };

Listing 6.1: A class to store algorithm input information. Provides a safe way to

reuse the previously allocated memory for the time-slice reconstruction.

Thus the operation of memory allocation, which took place in the original

version of the algorithm, was avoided in the execution scheme of the parallel
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track finder.

Grid structure

The importance of fast access towards hit measurements in a certain spacial area

of a station for the CA track finder algorithm cannot be overestimated, since it

plays the central role at the time-consuming stage of triplet building. The role

of memory access in case of parallel calculations becomes even more important,

since the data flow increases proportionally to the number of threads accessing

the memory.

In order to avoid random memory access and benefit from cache line reading

approach, a regular 2D grid data structure was used on each station in the original

event-based algorithm scheme. The memory optimization in this case allows

fitting all calculations to smaller and faster caches.

Every measurement belongs to some bin in the structure according to it’s

spacial x and y-coordinates. All hits are sorted and saved in the order of their

bin number and for each bin the index of first hit in this bin is stored.

Thus, the procedure of introducing a grid structure can be divided into several

logical steps:

• define the size of bins according to the hit density,

• order the hits according to the bin number,

• count the number of hits in each bin,

• store the index of the first hit in the bin for each bin.

In the original version of the CA track finder for the grid sorting procedure

the standard C++ library std::sort function was used, which corresponds to

quicksort algorithm with an O(Nlog2N) complexity. However, the quick sort

algorithm is not an optimal solution in this case. For example, since all possible

values of the bin number are known, one can apply the counting sort algorithm

here.

The counting sort is a very efficient, in-place, high-performance sorting algo-

rithm. For arrays of numbers it does not move the elements, but instead counts

the occurrence of each possible value, and constructs the sorted array from these
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Figure 6.3: An Illustration of the Up-Sweep

phase of a work-efficient prefix sum algorithm.

Figure 6.4: An Illustration of the Down-

Sweep phase of a work-efficient prefix sum al-

gorithm.

counts. Counting sort determines, for each input element x, the number of ele-

ments less than x. It uses this information to place element x directly into its

position in the output array. Counting sort is a linear-time O(N) algorithm,

which performs 2n amount of work — n for reading/counting, n for writing/con-

structing. In addition to that, the counting sort algorithm is more suited for a

parallel implementation.

The counting sort scheme for the grid structure was implemented as follows:

having calculated the bin size according to the hit density, the algorithm loops

over all hits, defining for each hit a bin number, and calculating how many hits

are in each bin. In order to obtain the first hit index in each bin the algorithm

calculates prefix sum on the array with the number of hits in each bin. In the

next loop over hits each hit is placed to a proper place in a sorted output array

according to the corresponding bin number.

Most of the procedures in this scheme are trivial to run in parallel. However,

the essential part of the scheme is the calculation of exclusive prefix sum (also

called exclusive scan). Thus, the task of parallelisation of this part is reduced to

the task of parallel implementation of exclusive prefix sum algorithm.

Since prefix sum is a useful building block for many parallel algorithms, includ-

ing sorting and building data structures, it has been implemented for many par-

allel systems. The work-efficient parallel prefix scan algorithm has been proposed

by Blelloch [104] and optimized with a divide-and-conquer strategy. The proposed
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solution was to make a use of balanced binary trees, which often arise in paral-

lel computing. The procedure is performed in place and consists of two phases:

the up-sweep phase and the down-sweep phase. The up-sweep phase (Fig. 6.3)

traverse tree from leaves to root, computing partial sums on the way. The down-

sweep phase (Fig. 6.4) traverse the binary tree back from root to leaves, using

the partial sums to compute the prefix sums in place.

Algorithm 1 Up-Sweep Phase

1: for d← 0 to log2(n)− 1 do

2: for all i← 0 to n− 1 by 2d+1 in parallel do

3: a[i+ 2d+1 − 1]← a[i+ 2d − 1]⊕ a[i+ 2d+1 − 1]

4: end for

5: end for

Algorithm 2 Down-Sweep Phase

1: for d← log2(n)− 1 downto 0 do

2: for all i← 0 to n− 1 by 2d+1 in parallel do

3: a[i+ 2d+1 − 1]← a[i+ 2d − 1]⊕ a[i+ 2d+1 − 1]

4: end for

5: end for

The up-sweep and the down-sweep phases have log(n) steps and the complexity

of O(n). Therefore the complete algorithm has the total complexity of O(n) and

needs 2 log n steps to compute the prefix-operation on the given array.

The parallel OpenMP implementation for the complete algorithm is given in

Listing 6.2. The parallel pragma defines a start of a parallel block. At this

point a set of N threads, where N is given at the runtime, are created, all of

which execute the next parallel block. The for directive splits the following for-

loop so that each thread in the current parallel block gets a portion of the loop

iterations for the execution. The scheduling clauses for the for-loop define the

way, how the iterations are distributed between threads. In the algorithm, the

dynamic scheduling was chosen to process the for-loop concurrently. In this case
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each thread grabs a chunk of iterations from a queue, as soon as it has finished

the previous work, until all iterations have been handled.

1 int j = 2;

2 /* Up-Sweep Phase */

3 for (int i = 1; i < N_values; i = j) {

4 j = i << 1;

5 #pragma omp parallel for schedule(dynamic)

6 for (int m = j - 1; m < N_values; m += j) {

7 array[m] = array[m - i]+array[m];

8 }

9 }

10 /* Down-Sweep Phase */

11 for (int i = j >> 1; i > 1; k = j) { j = i >> 1;

12 #pragma omp parallel for schedule(dynamic)

13 for (int m = i - 1; m < N_values - j; m += i) {

14 array[m + j] = array[m]+array[m + j];

15 }

16 }

17

Listing 6.2: The parallel implementation of prefix scan algorithm with OpenMP.

Similar to the initial stage in the final stage the algorithm processes hits in

parallel and removes used hits from consideration for the next stages. In addition

to this, the grid structure needs to be updated accordingly.

6.3 Triplet building stage

The triplets, constructed out of hits in the adjacent detector layers, are the basic

building blocks for the further track construction. The triplet building stage

is the most time consuming as well as the central stage of the algorithm. The

result of the previous stage, the grid hit structure, is extensively used at this

stage, providing fast access to the hit measurements in a certain spacial area of

a station. The main parallelization idea at this stage is to process in parallel
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groups of starting hits, formed during the initialization stage.

This stage of the CA track finder algorithm is intrinsically parallel and works

locally with respect to the data. Due to this fact, there was no need to drastically

redesign this part. However, several crucial optimizations had to be done in order

to reveal the parallelism, which was hidden by the technical issues.

One particular example of inappropriate memory usage for a parallel run is

the way triplets were stored in the memory in the original algorithm version. The

constructed triplet was saved by allocating memory for each new object again and

afterwords storing this object to the array of triplets, by calling the push back()

function of the standard library C++ vector:

1 L1Triplet triplet;

2 triplet.Set( ihitl, ihitm, ihitr, istal, istam, istar,

3 0, qp, chi2); /* Set triplet parameters */

4 vTriplets.push_back(triplet); /* Store the triplet to array */

5

Listing 6.3: The sequential implementation of storing the constructed triplets.

While it is a correct and efficient procedure in the case of sequential run, in a

parallel implementation this piece will work neither correctly, nor efficiently.

The first reason for the wrong results is that several threads possibly try to

store triplets to the same array at once. Parallel implementation requires so-called

thread-safe execution, which means that for each thread one needs to provide a

separate array to store the data in order to avoid conflicting threads.

1 L1Triplet & tr = TripletsLocal[omp_get_thread_num][triplet_num++];

2 tr.Set( ihitl, ihitm, ihitr,

3 istal, istam, istar,

4 0, qp, chi2); /* Set triplet parameters */

5

Listing 6.4: The parallel implementation of storing the constructed triplets.

The second reason for an inefficient parallel execution of the example is that

in this case the array of triplets will grow gradually and at some point there will

not be enough space to store all the array elements in the initial location. In
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this case the CPU will have to move the whole array to a new memory location.

This time-consuming procedure will happen many times throughout the program

execution and will ruin the algorithm potential for parallelism.

In order to solve this issue, the memory for the constructed triplets must

be allocated in advance, similar to the way as it was done for the input hit

information. The proposed solution is shown in List. 6.4. This way the CPU

does not have to repeatedly perform the data relocation, since from the beginning

it has enough memory to save all the triplets to be built during the algorithm

execution. This issue was solved for several arrays used to store the output

information during the triplet building stage.

One more optimization was introduced to the triplet building stage in order

to reduce the number of memory accesses. In the initial event-based track finder

version, there was a special function, which was performing the task of finding

and storing the neighboring relations between the constructed triplets. This

procedure was done in a loop over the array of triplets, after all of them had been

built. Since the triplets are built in a loop over starting hit stations, one can

notice that at the point, when the algorithm builds triplet on a certain station

N , its potential neighboring triplets, which should start on the station (N − 1)

have already been built. Thus, all the information needed in order to define

the neighboring relations between triplets is available at the point the algorithm

accepts a certain triplet. The idea was to shift this task into the triplet building

stage, so that it is done on the fly in the triplet building loop. This way we get

rid of additional loop over all constructed triplets.

According to the definition neighboring triplets are those ones that share two

hits in common and coincide within certain errors in the momentum. The fol-

lowing scheme was chosen in order to implement the search for neighbors on the

fly while building triplets. A special array with the size of hits was introduced

(List. 6.5). The link to each approved triplet is stored in the array according to

its starting hit. Having this structure, the only thing one needs to do in order to

obtain all the neighbors for a certain triplet T is to take the triplets starting with

the middle hit of T and check whether their next hit also coincides with the the

hit of the supposed triplet. Also the momenta of both triplets should coincide

with each other within estimated errors.
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1 L1Triplet & T=TripletsLocal[omp_get_thread_num][triplet_num++];

2 TripletsStartWithHit[T.GetLHit()].push_back(&T); /* Store the

link to the triplet for a corresponding starting hit */

3

4 for ( int i=0; i < TripletsStartWithHit[T.GetMHit()].size(); ++i

){

5

6 L1Triplet* &Neighbour = TripletsStartWithHit[T.GetMHit()][i];

7 const fscal &qp2 = Neighbour->GetQp();

8 fscal &Cqp2 = Neighbour->Cqp;

9

10 if (Neighbour->GetMHit() != T.GetRHit()) continue; /*

Check for the 2nd common hit */

11 if ( fabs(T.qp - qp2) > (T.Cqp + Cqp2 ) continue; /* Check

for momenta to coincide within errors */

12 T.neighbours.push_back(Neighbour);

13 }

14

Listing 6.5: The implementation of defining neighboring triplets on the fly.

With the above-mentioned modifications the triplet building stage can be run

in parallel by a number of independent threads with no synchronization needed.

As an output each thread provides an array of constructed triplets together with

their neighboring relations.

6.4 Track construction stage

Having constructed triplets, the algorithm should combine them into tracks. As

a result the algorithm has to provide a set of the longest tracks, which have the

minimal χ2-value and share no hits in common. This stage can be arbitrarily

divided into two logical phases. During the first phase for each possible starting

triplet algorithm builds all chains of possible neighbors and out of this tree of



126 Chapter 6. Parallel track finder algorithm

candidates chooses and stores the best one according to the χ2 and the length.

During the second phase the track competition takes place, when each survived

candidate gets stored only if it shares no hits in common with a better candidate

according to the χ2 and the length.

Track candidate formation stage

Let us consider the first phase of joining compatible segments into a track can-

didate (Algorithm 3). During the track candidate formation stage the algorithm

tries to join segments into track candidates, starting with the outermost layer

proceeding inwards towards the beam line. Since the level of each triplet had

been obtained at the stage of building triplets, the procedure of binning triplets

together can be performed in a fast and easy manner.

The final goal is to obtain the best set of tracks according to χ2-value and track

length. Therefore, the algorithm starts building tracks out of triplets with the

highest calculated level, since these triplets have a higher probability to construct

the longer tracks. The algorithm starts the track building procedure with an

attempt to build longer tracks at first and in a loop decreases the potential

length of the track candidate being built down to the tracks of three or four hits

(line 1, length is calculated in the number of connected triplets building up the

track).

During the search for the candidate of a certain length the algorithm must

consider as a starting triplet all triplets on each station, from which it is still

possible to build up a candidate with the length of interest (lines 2–3). Each

triplet considered as a starting triplet has to fulfill two conditions:

• should be potentially able to create a track of a certain length (line 4),

• has no hits used in the longer tracks constructed before.

For the triplet, which fulfills both conditions, a special recursive function is called.

The function creates a tree of track candidates and chooses the best track within

this tree.

The function (Algorithm 4) takes as input three arguments: the starting triplet

itself, the track candidate containing the left hit of the starting triplet (created in
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Algorithm 3 For each starting triplet build and store the best track candidate.

1: for each track length← (NStations− 3) downto minLevel=(1 or 2) do

2: for each starting Station← 0 to (NStations− 3− length) do

3: for all triplets on station do

4: if (Triplet.Level < length) continue;

5: if (Triplet.LeftHitIsUsed) continue;

6: create L1Branch candidate Cand with left hit of Triplet;

7: L1Branch BestCand = Cand;

8: ExtendCandidate(BestCand, Cand, Triplet);

9: if BestCand.Length < (length+1) continue;

10: if BestCand.Length < (minLevel +3) continue;

11: vTrackCandidates.Store(BestCand);

12: end for

13: end for

14: end for

the line 6, Algorithm 3) and the track candidate called BestCandidate, which for

the initial call coincides with the candidate (created in the line 7, Algorithm 3).

Inside the function body the algorithm checks whether the considered triplet

is the last triplet of the track (Level = 0) (line 2, Algorithm 4). If so, the

middle and last hits of the triplet are checked not to be used and added to the

BestCandidate.

If the triplet is not the last one in the chain and has neighbors (line 8, Al-

gorithm 4), then the algorithm goes through the list of its neighbors and tries

to attach each neighbor to the existing chain. On each attempt the χ2-value is

checked not to exceed the certain value (line 14, Algorithm 4). If this condition

is fulfilled the function calls itself with the updated BestCandidate.

Thus, in a recursive manner the tree of all possible candidates, which start with

the current triplet, is created and the best one is chosen. At this point function

ExtenedCandidate terminates and returns the best track candidate built for a

certain starting triplet. The length of this candidate is checked that it is not

shorter than the required value, so that the candidate should not lose more than

one hit (line 10, Algorithm 3).
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Algorithm 4 Recursive function to add next triplet to the track candidate.

1: procedure ExtendCandidate(BestCand, NewCand, Neibouhr)

2: if Triplet.Level = 0 then

3: if (! Triplet.MiddleHitIsUsed) add hit to Cand;

4: if (! Triplet.RightHitIsUsed) add hit to Cand;

5: if (Cand.Chi2 > Chi2Cut) return;

6: else BestCand=Cand return;

7: end if

8: if !Triplet.Level = 0 then

9: for each Triplet.Neibouhr do

10: if Triplet.Neibouhr.LeftHitIsUsed then BestCand = Cand;

11: else

12: L1Branch NewCand = Cand;

13: add left hit of Triplet to NewCand;

14: if (NewCand.Chi2 > Chi2Cut) continue;

15: ExtendCandidate(BestCand, NewCand, Neibouhr);

16: end if

17: end for

18: end if

19: return;

20: end procedure

Since each starting triplet is processed independently at this point, introducing

the parallelism at this stage is trivial: each tread should process a set of starting

triplets and create the best track candidate for each triplet in the set. No syn-

chronization is needed at this point. So similar to the triplet building stage, the

main performance issue here is the memory usage. The procedure of saving the

accepted track candidate has been changed accordingly.

Track competition

After all track candidates of a certain length have been constructed, the track

competition takes place. In the end of this procedure each hit should participate
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in not more than one track. This procedure is aimed at ghost suppression, since

each hit is always attached to the best possible track according to the length and

the χ2, which has a higher probability of being produced by a real particle.

This stage of the algorithm had to be essentially rewritten for the parallel

implementation, since the scheme used in the event-based reconstruction was

intrinsically serial. Originally the following scheme was used: all the tracks were

sorted according to their length and χ2-value. The best track of all the tracks

built at this stage was considered and checked to have any used hits. If the

track had no used hits it was saved. In the case of presence of used hits it was

discarded. The same procedure was done with each track in the order of their

quality rank.

If a track candidate gets discarded due to the presence of a used hit, it will be

constructed again in the next iteration during the search for a shorter candidate

with one hit less.

Thus, unlike the triplet building stage, at this point we cannot avoid synchro-

nization between threads, since in this case threads have to consult each other

in order to decide to which track-candidate a certain hit should be attached in

order to obtain the best set of tracks in the end.

It is clear that this part of the algorithm was essentially serial, since each next

iteration essentially depends on the result of the previous iterations. Therefore,

this stage of the algorithm had to be designed from scratch in a parallel manner.

The alternative approach, which allows for a parallel run, was proposed. The

information exchange between threads was implemented via the table of common

access available to all the threads. The size of table corresponds to the number

of strips, contributing to the current super-event. For each strip in the table the

index of the best, according to χ2-value and length, candidate is stored. The

table is filled out on the fly while building track candidates. At the end of this

procedure for each strip in the table the index of the best candidate is stored,

which the strip should be assigned to.

Thus, the track competition reduces to the checking whether a certain track

candidate is the best candidate for all the strips, which it involves. This check

can be done concurrently for different track candidates with no synchronization

needed.
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Figure 6.5: The speed-up factor due to parallelisation for different steps and the full algo-

rithm on the Intel Xeon E7-4860 CPU with 10 physical cores and the Intel hyper-threading

technology for the case of reconstruction of 100 minimum bias Au+Au events at 25 AGeV

grouped. The achieved speed-up factor for the full CA track finder reconstruction algorithm

is 10.6.

6.5 CA track finder scalability on Intel Xeon

E7-4860 CPU

The resulting scalability and the speed-up factors for different steps as well as

for the full algorithm, obtained within one Intel Xeon E7-4860 CPU (20 hyper-

threaded cores), is presented in Fig. 6.5.

As it was mentioned earlier, the algorithm consists of several logical parts.

First, a short (2% of the total execution time) initialization, used to prepare hit

information for tracking, takes place. The main and the most time-consuming

part of triplet construction takes about 90% of the sequential execution time. Out

of triplets the tracks are constructed, that takes about 4%, and in addition 3.4%

for a final stage, when the input information for the next iteration is prepared.

All steps of the algorithm were parallelized inside the event, using different

sources of parallelism in each step: hits in the initialization and final stages,



6.5 Cellular automaton track finder scalability 131

triplets for the major part, track candidates for the track construction step.

Some steps have a better speedup for higher number of cores due to less thread

synchronization needed. The algorithm shows linear scalability. Due to the

hyper-threading one can expect a speed-up factor of about 13 on such a CPU

in the ideal case. The achieved speed-up factor is 10.6 for the full CA track

finder reconstruction algorithm on a CPU with 10 physical cores with the Intel

hyper-threading technology.



Chapter 7

Four-dimensional parallel track

finder algorithm

The unprecedented interaction rates for a heavy-ion collision experiment in CBM

require a novel read-out and data acquisition concepts.

At the collision rate of 10 MHz, the expected raw data flow is about 1 TB/s.

This is beyond the modern achievable archival rate, which means that the data

flow has to be reduced online by about two orders of magnitude. However, since

CBM is targeted to the measurement of rare observables, which are featured with

a complicated trigger signatures, the experiment requires a full event topology

reconstruction to be done online.

The huge data rates together with the absence of simple hardware triggers

make traditional latency-limited trigger architectures typical for conventional

experiments with a hardware trigger inapplicable for the case of CBM. In-

stead, CBM will employ a novel data acquisition concept with autonomous, self-

triggered front-end electronics.

The time-stamped data will be shipped and collected into a readout buffer in

a form of a time-slice of a certain length, which will be adjusted to the computa-

tional power of the reconstruction node. The time-stamped data will be delivered

to a large computer farm FLES.

This novel concept brings new challenges for software developers. CBM will

have to deal with a fraction of collisions, which overlap in time and can not be

resolved in a trivial way (Fig. 7.1). Thus, the task of defining physical events is
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Figure 7.1: The illustration of the complexity of defining physical events in the case of the

CBM experiment: the absence of a hardware trigger together with extreme collision rates lead

to a fraction of collisions, which overlap in time. Thus, the task of event building is shifted

from the hardware to the software.

shifted from the hardware to the software designers.

If in conventional experiments with event-by-event processing the association

of detector hits with a corresponding physical event was known a priori, it is

not true for the CBM, where the reconstruction algorithms should be modified

in order to process non-event-associated data. In this case the association of the

hit information with physical events must be performed in software and requires

full online event reconstruction not only in space, but also in time, so-called

4-dimensional track reconstruction.

In order to study the problem of event association and to develop proper

algorithms, simulations must be performed which go beyond the traditional event-

by-event processing as available from most experimental simulation frameworks.

The current chapter is devoted to the challenges of the free-streaming data

reconstruction, the detailed description of the 4D tracking algorithm and the

first version of the event building procedure, based on the developed tracking

algorithm.
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7.1 Time-slice concept

The CA track finder was proved to work quickly and reliably with respect to

the track multiplicity. Moreover, the algorithm parallel implementation shows

a strong linear scalability on many-core architectures. This implementation was

used to develop the time-based algorithm.

One particular problem, often addressed while discussing the time-slice-based

reconstruction, is the problem of possible event splitting on the border of two

consecutive time-slices. Indeed, as it is seen in Fig. 7.1, if one just cuts the data

into time-slices of a certain length, the information of a certain border collision

may be split in two parts included in two different time-slices. Although this

effect is negligible, since the length of time-slice is significant, the attempt to

reconstruct such time-slices, ignoring the presence of such events, may lead to

the loss of data.

One way to avoid such situations is to introduce a border time region of a

certain length, which will be duplicated and present in both time-slices. This

duplicated region will be examined and a time point with no data will be found.

A deterministic algorithm will re-define time-slices at this point by sending the

date before this point to the first time-slice, after this point — to the consecutive

time-slice. This procedure guarantees the correctness of reconstruction, while

avoiding duplicated work.

The next step towards the time-slice-based reconstruction is to take into ac-

count the time measurements of the STS detector in the tracking procedure. The

beam at FAIR will correspond to a free stream of particles without a bunch struc-

ture. Thus, the feasibility studies must be performed time-slice-wise, since the

traditional event-by-event analysis cannot reproduce the real life case for CBM.

In order to switch to the time-slice-based analysis, at first one needs to obtain a

simulation of a time-slice.

A dedicated procedure was introduced in order to group the Monte-Carlo hits

delivered by the event-by-event transport code into time-slices. At first, a group

of 100 Au+Au minimum bias events at 25 AGeV was taken. In future the number

of events in a time-slice can be changed easily and should be adjusted to the power

of the processing computing node.
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Figure 7.2: The distribution of the hit time measurements for 100 minimum bias Au+Au

collisions at 25 AGeV in the main tracking system of CBM, obtained assuming the average

interaction rate of 10 MHz and Poisson distribution of the time intervals between subsequent

events (top), the same distribution shown on a larger scale (bottom). Different collisions are

shown with a different filling and color. Events clearly overlap with each other.

Neglecting possible fluctuations in the beam intensity and, thus, non-constant

average collision rate, the CBM collision distribution in time can be described as

a Poisson process. The start time of each collision was obtained with the Poisson

distribution, assuming the average interaction rate of 107 Hz. A time stamp,

assigned to each STS hit was calculated as a sum of the start time of the event,

in which it was produced, and the time shift due to the time of flight from the

collision point to a hit position. On top of that to obtain a time measurement for

a hit in STS, the time stamp was smeared according to the Gaussian distribution

with a σ-value of the STS time measurement resolution — 5 ns.
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As a direct outcome of this procedure, the distribution of hit time measure-

ments in the STS detector for a time-slice of 100 mbias events at 10 MHz inter-

action rate is presented in Fig. 7.2. The distribution clearly shows that at this

interaction rate events do overlap with each other. Thus, the association of hits

with events is no longer trivial.

Therefore, event reconstruction must be performed not only in space, but

also in time. Space-time correlations must be employed, so that the tracking

procedure takes into account not just three spacial dimensions, but the fourth

dimension — time.

7.2 Time-based track reconstruction

As a first step towards development of the time-based tracking, the software

reconstruction routine was extended to deal with time-based data instead of iso-

lated events. After the algorithm was modified to be able to take time-slices as

an input, the procedure of searching for tracks should be changed accordingly, so

that the time information is used in order to improve the performance and the

speed of the track finder.

Switching to 4D tracking formally implies that the time coordinate should be

added to the state vector of a track:

(x, y, tx, ty, q/p)→ (x, y, tx, ty, q/p, t). (7.1)

and all the operations with a state vector (e.g. propagation, fitting) should involve

time coordinates to the same extent as it does spacial coordinates.

The full implementation of this approach will be added after taking into ac-

count TOF detector time measurement, since it is several orders of magnitude

more precise and should drastically improve the time coordinate resolution. For

the studies involving STS detector alone, the time is included into the track pa-

rameters, although the propagation and fitting is done, taking into account only

the spacial coordinates.

The question of how the hit time measurement can be used in the CA track

finder has a straightforward answer. Since the triplets are to be built of three

hits potentially produced by the same particle these hits should be correlated not
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Pseudocode for CBM CA Track Finder
1 Sort_Input_Hits_According_to_Grid();
2
3 for track_set (high_p_primary, low_p_primary, secondary, broken)
4
5 switch (track_set)                                                     
6 case high_p_primary:
7 Build_Triplets (min_momentum_for_fast_tracks, 

primary_track_parameter_initilisation, triplets_wo_gaps);
8
9 case low_p_primary:
10 Build_Triplets (min_momentum_for_slow_tracks, 

primary_track_parameter_initilisation, triplets_wo_gaps);
11
12 case secondary:
13 Build_Triplets (min_momentum_for_slow_tracks, 

secondary_track_parameter_initilisation, triplets_wo_gaps);
14   
15 case broken:
16 Build_Triplets (min_momentum_for_slow_tracks, 

secondary_track_parameter_initilisation, triplets_with/
wo_gaps)

17
18
19 for track_length := NStation to 3 do
20 for station := FirstStation to NStation do
21 for triplets := First_Triplet_Station to 

Last_Triplet_Station do
22          track_candidate = Build_Best_Candidate (triplet);
23
24
25 Save_Candidates(all_track_candidates);
26
27 Delete_Used_Hits();

void function Build_Triplets (min_momentum, 
prim/sec_track_parameter_initilisation, 
triplets_with/wo_gaps)
{
  for station := (NStation-2) to FirstStation do
    for hits_portion := First_Portion_Station to 
Last_Portion_Station do

     Find_Singlets(hits_portion);
     Find_Doublets(singlets_in_portion);
     Find_Triplets(doublets_in_portion); 
}

Cut on hit time

Time-based grid

Figure 7.3: The pseudocode scheme for the parallel time-based CA track finder algorithm.

In the time-based version the grid structure was modified to take into account time information.

Also, the STS time measurement is used to reduce combinatorics in the triplet building stage.

only in space, but also in time. Neglecting the time of flight between stations,

the hits belonging to the same track should coincide in time measurement within

the detector time precision.

This requirement can be easily checked and fulfilled by applying a time cut

on constructed doublets and triplets. All the combinations of hits, whose time

measurements differ from each other more than the expected time of flight plus

STS time precision should be rejected.

Since the neighboring triplets are defined as the ones sharing two hits in com-

mon, there is no need to change the later stages of combining triplets into tracks

and apply additional time cuts. The time requirement will be automatically

fulfilled due to the chosen triplet neighbor definition.

The modified scheme of the algorithm can be explained with the help of a pseu-

docode scheme (Fig. 7.3). The time requirement is checked inside Find Doublets

and Find Triplets functions. The time difference between neighboring hits
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Figure 7.4: The grid structure for one STS station to provide the fast access towards the hit

measurements in the area of track extrapolation in the case of event-based analysis (left side)

and the case of time-base tracking (right side).

should not be greater than three σ-values of the STS detector time resolution

of 5 ns. It is a justified assumption, since the time of flight between the consec-

utive detector planes is negligible in comparison to the detector time precision.

Despite the fact that the described modification turns the CA track finder

implementation into a 4D tracking algorithm, bringing the desired efficiency, it

still is not sufficient for the CBM experiment. In the case of CBM not only

performance, but also the speed of the algorithm is crucial. As it was shown, the

most time-consuming part of the algorithm is the triplet building stage. Thus,

providing the fast access towards the hit measurements in a certain spacial area

while building triplets is crucial.

In order to achieve the speed comparable with the event-by-event analysis, a

special grid data structure was introduced. In case of event-based analysis, all

the hits on a certain station were sorted and stored according to their spacial (xi,

yi) coordinates in the structure (Fig. 7.4, left side). In case of time-based tracking

this approach requires taking into account not only spacial coordinates, but also

the STS time measurement of a hit (xi, yi, t) (Fig. 7.4, right side), turning the

data structure from a 2D flat grid into a 3D scheme.
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single core - total time 849 ns

10 physical cores - total time 84 ns

single core - total time 849 ms

10 physical cores - total time 84 ms

Figure 7.5: The speed-up factor due to parallelisation for different steps and the full 4D CA

track finder algorithm on Intel Xeon E7-4860 CPU with 10 physical cores and hyper-threading

in the case of reconstruction of a time-slice of 100 minimum bias Au+Au events at 25 AGeV.

Otherwise the number of random combinations to be considered by the track

finder will grow exponentially for the case of time-slice-based reconstruction. Al-

ready at the stage of constructing doublets the CA track finder will have to

consider N2 times more combinations, where N is the number of collisions in a

time-slice, most of which will be rejected by the time cut. Thus, it is obvious that

the grid data structure needs to be changed accordingly in order to keep a con-

stant time to process a physical event in the traditional event-by-event analysis

and the time-slice-based reconstruction.

The extrapolation of the 3D grid approach to the 4D version of the track finder

has added one more dimension to this scheme — time. In this case all the hit

measurements of a certain station of one time-slice are stored in several spacial

grid structures as discussed above. Each grid time layer corresponds to a certain

time interval in the ideal case representing one collision.

L1HitArea object was changed accordingly: instead of processing one layer of

grid structure, in the 4D grid version algorithm needs to process several of them,

taking into account detector time precision and extrapolation errors.
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In the updated 4D grid version, the track finder instead of going through the

whole list of hits in a time-slice, which corresponds to a certain spacial area, will

have to address several layers of the grid structure corresponding to a certain time

interval of interest. In this case the time to construct a triplet within a time-slice

is comparable with the time to construct triplet in the case of event-by-event

analysis.

Certainly, the time measurement has a strong influence on the algorithm per-

formance and speed, which will be discussed in the next section. As for the

scalability of the algorithm on the Intel Xeon E7-4860 CPU after taking into

account STS hit time measurement, the resulting speed-up factor for the full

time-based algorithm within one CPU is 10.1 (Fig. 7.5).

Efficiency, % 3D 3+1 D 4D

All tracks 83.8 80.4 83

Primary high-p 96.1 94.3 92.8

Primary low-p 79.8 76.2 83.1

Secondary high-p 76.6 65.1 73.2

Secondary low-p 40.9 34.9 36.8

Clone level 0.4 2.5 1.7

Ghost level 0.1 8.2 0.3

MC tracks found/event 130 103 130

Time/event/core 8.2 ms 31.5 ms 8.5 ms

Table 7.1: Track reconstruction performance for 100 minimum bias Au+Au collisions at

25 AGeV in the case of the event-by-event analysis (3D), grouped on a hit level with no time

information (3 + 1D) and the time-based reconstruction (4D). No track merging and extending

procedures are included.

7.3 Four-dimensional track finder performance

After the algorithm was modified, the time-based track finder version was tested

to reproduce the results of the event-by-event analysis. In Tab. 7.1 one can find



7.3 Four-dimensional track finder performance 141

the efficiencies of the 4D CA track finder for different track sets in comparison

with the event-by-event analysis and the reconstruction in high track multiplicity

environment. One can see that the results of the 4D CA track finder are com-

parable to the ones of the event-by-event reconstruction with the 3D CA track

finder.

Also, the 4D CA track finder can nearly reproduce the speed of the 3D CA

track finder, due to optimised data access structure. The slight deference in the

performance of the event-by-event analysis and the time-slices-based reconstruc-

tion is due to the difference in the cut parameters optimization for low momenta

tracks.

Efficiency, % 3D 4D

All tracks 90.6 92.2

Primary high-p 97.6 97.9

Primary low-p 93.2 93.5

Secondary high-p 84.4 92.0

Secondary low-p 53.3 65.9

Clone level 8 3.1

Ghost level 7 4.2

MC tracks found 145 145

Time/event/core 11.7 ms 13.6 ms

Table 7.2: Track reconstruction performance for Au+Au minimum bias event at 25 AGeV

with the event-by-event analysis from the CBMROOT as well as for the time-slices-wise recon-

struction assuming the 10 MHz interaction rate [105]. Track merging and extending procedures

are included.

After the algorithm parameters were unified and adjusted to the ones used

in the CBMROOT framework [106] version for the event-based analysis, both

algorithms have showed the same performance. The resulting performance and

the speed for the reconstruction of Au+Au minimum bias event at 25 AGeV

with event-by-event analysis from the CBMROOT as well as for time-slices-wise

reconstruction assuming 10 MHz interaction rate are presented in Tab. 7.2.

This test was done in order to check the correctness of the reconstruction
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Figure 7.6: Residual and pull distributions for the tracks reconstructed by the 4D track

finder, calculated at the point of the first hit position in the CBM STS detector. The width of

the pull distributions is close to one, that indicates the correctness of the fit.

procedure and prove that the modifications have not affected the efficiency and

quality available for the case of event-based analysis.

As one can see including the time measurement and optimization of the 3D

CA algorithm towards the 4D reconstruction have made it possible to achieve the

speed comparable to the case of the event-by-event analysis. Moreover, the track

reconstruction efficiency has improved after taking into account the STS time

measurement, while comparing it to the event-based performance. The effect is

present even for the extreme case of 10 MHz interaction rate.

It can be explained by the presence of low momentum particles, which create

random combinations of hits in case of the event-based approach. These ran-

dom combinations can be rejected in the case of time-slices due to the hit time

measurement cut, thus further improving the performance.

The study of the CA track finder algorithm stability in a high track density

environment has shown that the speed of the algorithm was decreasing as a

second order polynomial with respect to the track density. The comparison of
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this result with the results obtained for the modified time-based version shows

that 4D algorithm is able to reproduce the speed and efficiency of the event-by-

event analysis. This corresponds to the desired linear growth of time with respect

to the number of events processed.

The track parameters as well as residual distributions were calculated at the

first hit position of each reconstructed track. The distributions for the x, tx, y,

ty and q/p parameters together with their Gaussian fits are shown in Figure 7.6.

All distributions are not biased with pull widths close to 1.0 indicating cor-

rectness of the fitting procedure. The slight deviations from 1.0 are caused by

several assumptions made in the fitting procedure, mainly in the part of the de-

tector material treatment. The q/p pull is the widest being the most sensitive

to these simplifications, since it is an indirect measurement, which requires at

least three hit measurements. The slightly narrow pull distributions for x and y

parameters are due to the underestimated hit errors in the current CBMROOT

implementation.

The algorithm was included into the CBMROOT framework. The simulation

of detector response in this case provides a time measurement, taking into account

the anticipated behavior of the detector, e.g. time-based clustering algorithm in

the STS detector. Cluster finding is the first step of the STS hit reconstruc-

tion. A cluster is a group of adjacent hit strips in a sensor with a common time

stamp. In an event-based scenario, fired strips are combined into a cluster only

by their location and charges. However, a time-slice includes many events, that

are distributed in time.

This, for instance, mean that a fake hit in this approach will be produced not

only for strips accidentally fired simultaneously within a single event, but within

a certain time interval. Thus, it puts the track finder to a more challenging

condition, due to the increased fake hit rate.

The performance for the algorithm included into the CBMROOT framework

for the case of reconstruction of time-slices, created of Au+Au minimum bias

events at 10 AGeV, is presented in the last column of Tab. 7.3. It is comparable to

the case of event-based analysis. The sightly higher clone level may be explained

by the time measurement cut, which may be too strict for this case and may

require additional optimization.
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Figure 7.7: Residual and pull distributions for the tracks reconstructed with the 4D track

finder included into the CBMROOT framework, calculated at the point of the first hit position.

The width of the pull distributions is close to one, that indicates the correctness of the fit.

The distributions of residuals and pulls for all track parameters in the CBM

experiment together with their Gaussian fits are shown in Fig. 7.7. All distri-

butions are not biased with pull widths close to 1.0 similarly to the results of

standalone algorithm.

7.4 Event building

As a rule, the track reconstruction is followed by the analysis of physical events

in the conventional data reconstruction chain. However, since resolving different

events for further physics analysis is a non-trivial task in the case of the CBM

experiment, the standard reconstruction routine should include event building,

the process of defining exact borders of events within a time-slice and grouping

tracks into event-corresponding clusters. For this task an efficient time-based
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Efficiency, % E-by-E 105 Hz 106 Hz 107 Hz CBMROOT 107 Hz

All tracks 92.1 92.6 92.6 92.2 91.3

Primary high-p 97.9 98.2 98.2 97.9 99.1

Primary low-p 93.6 94.1 94.1 93.5 93.6

Secondary high-p 92.0 92.7 92.7 92.0 88.9

Secondary low-p 65.7 66.7 66.6 65.9 56.8

Clone level 2.8 0.3 0.3 3.1 3.7

Ghost level 4.9 3.5 3.5 4.2 1.9

MC tracks found 145 146 146 145 88

Time, ms/ev 11.7 12.0 11.9 13.6 17.3

Table 7.3: Track reconstruction performance for 100 minimum bias Au+Au collisions at

25 AGeV in the case of event-by-event reconstruction, the time-slice-based reconstruction at

0.1 MHz, 1 MHz and 10 MHz interaction rates. The performance for the algorithm included

into the CBMROOT framework is shown for Au+Au minimum bias time-slices at 10 AGeV

and the 10 MHz interaction rate.

tracking algorithm is essential.

In order to perform further analysis, after the 4D track finder reconstruction is

finished, to each track a time measurement is assigned. The track time measure-

ment is calculated based on the STS time measurements of all hits contributing

to the track. It is defined as an average of hit time measurements, extrapolated

to the position of the reconstructed collision vertex. While extrapolating the time

measurements, the tracks are assumed to be produced by particles flying along a

trajectory close to the straight line with a speed close to the speed of light.

The initial distribution of hit measurements representing the complexity of

defining event borders in a time-slice at an interaction rate of 107 Hz is shown in

the upper part of Fig. 7.8. One can clearly see that at such extreme interaction

rate there are no isolated events.

At the next step the algorithm needs to group reconstructed tracks in time

into clusters of tracks belonging to the same collision, identifying thus physical

events. Based on the developed 4D CA track finder algorithm, the first version

of a simplified event building algorithm was implemented [107, 108].

The task is done by a histograming: reconstructed track time measurements

from a time-slice were used to fill a histogram with a bin width of 1 ns, which
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Figure 7.8: Part of a time-slice with 100 minimum bias events. The upper picture:

with a blue color the distribution of hit time measurements in a time-slice is shown.

The picture below: with a light blue color the initial distribution of hit measurements

is shown (same as in the upper picture), on the top of that reconstructed track clusters

are shown with di↵erent colors.

which tracks originate from. Even in the area of the severe initial event overlap

on a hit measurement level(Fig. 7.9) the time-based CA track finder allows to

resolve tracks from di↵erent collisions in time.

Figure 7.8: A part of a time-slice with 100 minimum bias Au+Au events at 25 AGeV. The

upper picture: with a blue color the distribution of hit time measurements in a time-slice is

shown. The picture below: with a light blue color the initial distribution of hit measurements is

shown (the same as in the upper picture), on the top of that reconstructed track time clusters

are shown with different colors.

corresponds to the reconstructed track time resolution. An event was built out of

the tracks from the consecutive non-empty bins in the histogram with an allowed

gap not wider than 4 empty bins in a raw. The width of an empty bin gap is a

parameter of the method, which can be adjusted.

The resulting time distribution of track clusters is shown in the lower part of

Fig. 7.8 on the background of initial hit measurements distribution. The recon-

structed track clusters clearly represent groups, corresponding to the collisions,

which tracks originate from. Even in the area of the severe initial event over-

lap on a hit measurement level (Fig. 7.9) the time-based CA track finder allows
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Built event types % of all events

Single events 83 %

Events in clusters 17 %

Splitted events 0 %
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Table 7.4: The results of the event

building procedure.

Figure 7.9: The event building: the reconstructed

track groups are well resolved on the blue background

of the initial collisions overlapped on a hit level.

resolving tracks from different collisions in time.

The summarized results of event building procedure are shown in Table 7.4.

One can see, that 83% of events were reconstructed without any event merging,

17% of events were reconstructed in merged double event clusters. Absence of

event splitting was achieved.

The presence of event merging shows that STS time measurement information

alone is not enough to resolve all events from each other on a track level at the

extreme interaction rate of 10 MHz and there is still 17% to be resolved later

with the use of event topology and multi-vertex analysis.

Here it is important to mention that all the discussed results were obtained for

the STS detector alone, whose time resolution was assumed to be 5 ns. In future

it is planned to include in the study the TOF detector, whose expected time reso-

lution is of the order of 80 ps, which is two orders of magnitude better. The TOF

detector measurement is expected to improve the experiment ability to resolve

data from different collisions. However, there is always a certain probability that

two events will overlap in time within a given detector time resolution.

In order to deal with such situations, additional information on the collision

topology should be employed. In this case the reconstructed event topology can

be used in the search for several independent primary vertexes. In the case when

more than one vertex are identified, the primary tracks can be easily associated
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Primary vs. secondary tracks

Figure 7.10: The multi-vertex analysis: primary tracks should be associated with the vertex,

which they originate from, secondary tracks are the subject of additional studies.

with a corresponding primary vertex, while the secondary tracks will contribute

to the source of additional background for the physics analysis (Fig. 7.10). The

extent of influence for the additional background can be investigated and esti-

mated in a dedicated study.



Chapter 8

Summary and conclusions

The CBM (Compressed Baryonic Matter) experiment at the upcoming FAIR

accelerator (GSI, Darmstadt, Germany) aims to explore the phase diagram of

strongly interacting matter at the highest net baryon densities by investigating

nuclear collisions from 2 to 45 AGeV. One of the most promising observables

carrying information on the early stage of collision are measurements of rare

probes (e.g. charmonium), which require unprecedented statistics for this energy

range and, thus, collision rates of up to 10 MHz. Taking into account multiplicity

of charged particles in a heavy-ion collision, one should expect a data flow rate

of 1 TB/s. Such a huge data rate makes it mandatory to select interesting events

online with a reduction factor of about two orders of magnitude in order to meet

the data recording rate of 10 GB/s.

CBM will operate on a continuous beam without bunch structure. As a result,

collisions may overlap in time, making the traditional event-based approach not

applicable. That requires the full online event reconstruction and selection not

only in space, but also in time, the so-called 4D event building and selection. The

problem is to be solved online on a dedicated many-core CPU/GPU computer

farm by the First Level Event Selection package. This requires the package to

be fast, precise and suitable for online data processing in order to use the full

potential of modern many-core computer architectures.

For the most time-consuming part of the reconstruction procedure the Cellu-

lar Automaton track finder is used. The efficiency of the algorithm proved to be

stable with respect to track multiplicity up to the extreme case of reconstruc-
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tion of 100 minimum bias events at once without usage of the time information.

The reconstruction time dependence on the track multiplicity in these conditions

behaves as a second order polynomial.

The event-based CA track finder was adapted for time-slice-based 4D track

reconstruction, which is a requirement in case of CBM for the event building.

The 4D CA track finder is able to reproduce the performance and the speed of the

event-based CA track finder. The algorithm was included into the CBMROOT

framework.

The 4D CA track finder is both vectorized (using SIMD instructions) and

parallelized (between CPU cores). The algorithm shows strong scalability on

many-core systems. The speed-up factor of 10.1 was achieved on a CPU with 10

hyper-threaded physical cores.

The 4D event building was implemented in the standalone FLES package for

the CBM experiment. It allows resolving the major part of overlapping on a

hit level events and group tracks into event-corresponding clusters without event

splitting. About 17 % of events are merged and cannot be separated using only

the time information at an interaction rate of 10 MHz. Resolving them is a task

for further multi-vertex analysis as well as for a study with the included TOF

(Time-Of-Flight) detector.

The 4D CA track finder algorithm is ready for time-slice-based reconstruction

for the CBM experiment.



List of Figures

1.1 A scheme of the QCD phase diagram of strongly interacting matter [9]. . . . 6

2.1 Layout of the FAIR facility (left side) [25]. The new facility and the existing

GSI complex are shown in red and grey, respectively. Aerial photo of the

construction site (right side) taken on April 22, 2015 [26] . . . . . . . . . . 11

2.2 Particle multiplicities times branching ratio for central Au+Au collisions at

25 AGeV calculated with the HSD transport code [27] and the statistical

model [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The CBM detector setup versions for electron (top) and muon registra-

tion (bottom). In the electron configuration the subdetectors are: Micro-

vertex Detector (MVD), Silicon Tracking System (STS), both placed in a gap

of 1 Tm superconducting magnet, then Ring Imaging Cherenkov Detector

(RICH), Transition Radiation Detectors (TRD), Resistive Plate Chambers

for time-of-flight measurements (TOF), Electromagnetic Calorimeter (ECAL)

and Projectile Spectator Detector (PSD) as a hadronic calorimeter. In the

muon configuration the RICH detector will be replaced by the Muon Cham-

bers System (MUCH) and ECAL will be removed. . . . . . . . . . . . . . 18

2.4 (A) Geometry of the superconducting dipole magnet. (B) Magnetic field

distribution in the Y -Z-plane at X=0 [41]. . . . . . . . . . . . . . . . . 19

2.5 (A) The 3D view of the MVD model, depicting the sensors (C) and the me-

chanical holding structure including the layout of the stations. (B) Fundamen-

tal layout of a CMOS sensor pixel [44]. (D) The MVD front-end electronics

including the flex print cables. . . . . . . . . . . . . . . . . . . . . . . 21



152 List of Figures

2.6 (A) The layout of the STS stations [31]. (B) The operational principle of

the silicon strip detector [45]. (C) The layout of the 6th STS station. The

color codes within the stations denote commonly read-out sensors. The circles

indicate the acceptance between polar angles 2.5o and 25o. . . . . . . . . . 22

2.7 (A) The layout of the RICH stations [46]. (B) The principle of the Cherenkov

radiation. The schematic view of the RICH detector with its imaging UV

mirrors. (C) The Cherenkov-cones are imaged on the detectors as rings. . . 23

2.8 (A) The scheme of the MuCh detector configurations, optimized for different

physics cases: low-mass vector mesons (shown with red and blue frames) and

J/ψ measurements (shown with a green frame)[47]. The schematic representa-

tions of the signal generation process in the GEM detector (C) and the straw

tube detector (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 (A) The scheme of the Transition Radiation detector for SIS100/300

and (B) the geometry of one detector module [48]. In the module schematic

signals produced by a pion and an electron are shown. The geometric propor-

tions and the field lines in the drift chamber are accurate [49]. . . . . . . . 27

2.10 (A) The scheme of the time-of-flight wall [50]. (B) The structure of the

float glass MRPC with 8-strip readout [51]. The simulated 2D squared mass

distribution versus momentum and (C) its projection (D). . . . . . . . . 28

2.11 (A) The layout of the electromagnetic calorimeter ECAL [53]. (B) A sampling

calorimeter scheme and (C) a schematic development of an electromagnetic

shower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 (A) The layout of the Projectile Spectator Detector (PSD) [54]. (B) The

reaction plane by definition contains the impact parameter vector (along the

X-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.13 The CBM data acquisition concept in comparison to conventional systems [55].

Usually, the collected data undergoes several trigger levels, where it gets re-

duced. This scenario is inapplicabele for CBM due to the absence of simple

triggers. Instead, the first (L1) trigger will be a High Level Trigger (HLT),

running on a computer farm. . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 The architecture of the First-level Event Selector (FLES) [56]. . . . . . . . 33



List of Figures 153

3.1 Flynn’s taxonomy, which classifies computer architectures by the number of

instruction and data streams. . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 A canonical five-stage pipeline (IF = Instruction Fetch, ID = Instruction De-

code, EX = Execute, MEM = Memory access, WB = Register write back)

(left side) and a five-stage pipelined superscalar processor, capable of issuing

two instructions per cycle (right side). It can have two instructions in each

stage of the pipeline, for a total of up to 10 instructions (shown in green) being

simultaneously executed. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The scheme of SIMD calculations principle: the instruction is executed on a

set of different data within the vector register. . . . . . . . . . . . . . . . 40

3.4 The scheme of task-level parallelism principle. The tasks are distributed be-

tween threads. The execution time is defined by the last thread to finish. . . 43

3.5 The tendency of computantional and memory access performance: the discrep-

ancy between improvements in the speed of calculations and memory access

is growing [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 The average memory access latency in cycle counts for different layers of cache

in CPU (left side). The scheme of hyper-threading technology principle (right

side): while one thread is fetching the data, the other can execute an instruc-

tion due to the duplicated register sets inside one physical core. . . . . . . . 45

3.7 The structure of the lxir039 server at GSI, which is equipped with two Intel

Xeon X5550 processors. Due to HTT, it can operate in total with 16 threads

in parallel. Each core of CPU has 32 KB of L1 cache and 256 KB of L2 cache.

8 MB of L3 cache memory is shared among the cores of a CPU. . . . . . . 48

3.8 The structure of streaming multiprocessor of the Nvidia GTX 980 GPU [65, 66]. 49

3.9 The structure of the Intel Xeon Phi [68]. . . . . . . . . . . . . . . . . . 52

3.10 An illustration of the OpenMP multithreading join-fork model, where the

master thread forks off a number of threads which execute blocks of code in

parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Traditional steps of track reconstruction: track finding and track fitting. Track

finding groups hit measurments into reconstructed tracks. Track fitting fits

reconstructed tracks in order to obtain track parameters afterwards. . . . . 61

4.2 The block diagram scheme of the conventional Kalman filter [77]. . . . . . . 65



154 List of Figures

4.3 The residuals and the pulls distributions of the x (43.2 µm, 1.12),

tx (0.30 mrad, 1.18) and q/p (0.93%, 1.32) track parameters, calculated in

the position of the first hit inside the CBM STS detector. . . . . . . . . . 72

4.4 The illustration of the complexity of the track finding problem: the tracks

from a simulated central Au+Au UrQMD collision at 25 AGeV energy in the

CBM experiment (top), only hits of the STS as input information for the track

finder (middle) and the reconstructed tracks with the cellular automaton track

finder (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 The conformal mapping method for the track reconstruction task in CBM:

original tracks in real space (top) and straight tracks after conformal trans-

formation (bottom) [86]. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 The Hough transform method for the track reconstruction task: original track

in the real space (left side) and straight lines in the parameter space, corre-

sponding to certain data points on the initial trajectory (right side). . . . . 77

4.7 One 2-dimensional Hough plane filled with transformed hits [88]. A central

plane processing the hits near the beam pipe is shown here. There are seven

peaks in the histogram (black points), corresponding to the seven particle

tracks found. A peak is defined by more than three hits in consecutive detector

layers. Six peaks can be assigned to certain MC tracks. The lower most peak

does not correspond to any real track. . . . . . . . . . . . . . . . . . . . 78

4.8 The 3D track following method for CBM. Prediction and search in XoZ and

Y oZ projection [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 The simple structures produced in the evolution of Game of Life. Some struc-

tures, like pattern 1, die out in the next generation. Some structures, like

pattern 2, are called oscillator and repeat its form each second generation.

Some structures, like patterns 3, 4, 5, create stable colonies. . . . . . . . . 82

4.10 The cellular automaton method for the tracking algorithm in the ARES ex-

periment is similar to the Game of Life. The target is placed in the center.

It is surrounded by 12 coaxial cylinder wire chambers. The clusters produced

by reconstructed tracks are shown with blue circles. The clusters killed in the

algorithm evolution are shown as red crossed circles. They should belong to

noise clusters, δ-electrons and clusters produced by the track scattered on the

detector wall [98]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Figures 155

4.11 Distribution of the number of events according to the number of clusters in

an event before processing with CA algorithm and after (bold line). After the

algorithm evolution one can clearly see the picks, corresponding to one-, two-,

and three-tracks collisions [98]. . . . . . . . . . . . . . . . . . . . . . . 84

4.12 The simplified illustration of the cellular automaton based track finding algo-

rithm. Here the tracking stations are shown by the vertical dashed lines, hits

of two different particles are shown by the blue and green circles, the noise hit

is shown by the empty circle. Track segments are shown by the solid lines with

their thickness and color corresponding to a possible position of a segment on

a track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.13 A pseudocode scheme for the CA track finder algorithm. . . . . . . . . . . 88

4.14 The grid structure for one STS station provides fast access towards the hit

measurements in the area of track extrapolation within the extrapolation errors. 89

4.15 The illustration of three types of triplets built by the CA algorithm: 1) with

the second hit missing 2) with the third hit missing 3) with no missing hits

(left side). Two neighboring triplets, combined into a track (right side). . . . 91

4.16 Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for primary tracks with high momentum. 96

4.17 Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for primary tracks with low momentum. . 97

4.18 Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for secondary tracks. . . . . . . . . . . 98

4.19 Track reconstruction efficiency as a function of track momentum and track

finder performance after the search for tracks with missing hits due to detector

inefficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.20 Track reconstruction efficiency as a function of track momentum and track

finder performance after merging clones. . . . . . . . . . . . . . . . . . . 100

5.1 The graph of the operating requirements of some major operating experiments

in high-energy physics in the past 30 years and some future experiments. The

X-axis denotes the amount of data recorded in a single event, whereas the

Y -axis represents the number of events per second that have to be read out

and analysed by intelligent filters [101]. . . . . . . . . . . . . . . . . . . 102



156 List of Figures

5.2 The event display of the ATLAS experiment illustrating the pile-up of 25

collisions. The reconstructed vertices are shown with different color [102]. . . 103

5.3 The mechanism of generating fake hits (shown with empty circles) in a strip

detector with strip stereo angle 15o: hit is identified as an intersection of

active strips (shown in red), 3 real hits (shown with solid circles) generate 4

intersections (left side). A strip detector with strip stereo angle 90o due to

higher stereo angle has even more fake hits (right side). . . . . . . . . . . 105

5.4 Reconstructed tracks in a minimum bias event (left) and in a packed group of

100 minimum bias events (right), 109 and 10 340 tracks on average respectively.106

5.5 Track reconstruction efficiencies, ghost and clone rates for different sets of

tracks as a function of track multiplicity. . . . . . . . . . . . . . . . . . 108

5.6 The CA track finder time, needed to reconstruct groups of minimum bias

events without time information, with respect to track multiplicity. The de-

pendence is fitted with a second order polynomial. . . . . . . . . . . . . . 109

5.7 The time fraction of different stages of the CA track finder algorithm as a

function of a number of combined events. One can clearly see that the most

sensitive towards combinatorics stage is the triplet construction. . . . . . . 110

6.1 The parallelisation strategy and the data flow of the parallel CA track finder

algorithm. All stages of the algorithm can be executed in parallel using a

number of cores. The synchronization between threads is minimized: it is

only needed during initial hit sorting and track selection stages. . . . . . . 113

6.2 The lxir075 server at GSI is equipped with four Intel Xeon E7-4860 processors.

Due to HTT, it can operate in total with 80 threads in parallel. . . . . . . . 115

6.3 An Illustration of the Up-Sweep phase of a work-efficient prefix sum algorithm. 120

6.4 An Illustration of the Down-Sweep phase of a work-efficient prefix sum algorithm.120

6.5 The speed-up factor due to parallelisation for different steps and the full al-

gorithm on the Intel Xeon E7-4860 CPU with 10 physical cores and the Intel

hyper-threading technology for the case of reconstruction of 100 minimum bias

Au+Au events at 25 AGeV grouped. The achieved speed-up factor for the

full CA track finder reconstruction algorithm is 10.6. . . . . . . . . . . . . 130



List of Figures 157

7.1 The illustration of the complexity of defining physical events in the case of the

CBM experiment: the absence of a hardware trigger together with extreme

collision rates lead to a fraction of collisions, which overlap in time. Thus, the

task of event building is shifted from the hardware to the software. . . . . . 133

7.2 The distribution of the hit time measurements for 100 minimum bias Au+Au

collisions at 25 AGeV in the main tracking system of CBM, obtained assuming

the average interaction rate of 10 MHz and Poisson distribution of the time

intervals between subsequent events (top), the same distribution shown on a

larger scale (bottom). Different collisions are shown with a different filling

and color. Events clearly overlap with each other. . . . . . . . . . . . . . 135

7.3 The pseudocode scheme for the parallel time-based CA track finder algorithm.

In the time-based version the grid structure was modified to take into account

time information. Also, the STS time measurement is used to reduce combi-

natorics in the triplet building stage. . . . . . . . . . . . . . . . . . . . 137

7.4 The grid structure for one STS station to provide the fast access towards the

hit measurements in the area of track extrapolation in the case of event-based

analysis (left side) and the case of time-base tracking (right side). . . . . . . 138

7.5 The speed-up factor due to parallelisation for different steps and the full 4D CA

track finder algorithm on Intel Xeon E7-4860 CPU with 10 physical cores and

hyper-threading in the case of reconstruction of a time-slice of 100 minimum

bias Au+Au events at 25 AGeV. . . . . . . . . . . . . . . . . . . . . . 139

7.6 Residual and pull distributions for the tracks reconstructed by the 4D track

finder, calculated at the point of the first hit position in the CBM STS de-

tector. The width of the pull distributions is close to one, that indicates the

correctness of the fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.7 Residual and pull distributions for the tracks reconstructed with the 4D track

finder included into the CBMROOT framework, calculated at the point of

the first hit position. The width of the pull distributions is close to one, that

indicates the correctness of the fit. . . . . . . . . . . . . . . . . . . . . 144



158 List of Figures

7.8 A part of a time-slice with 100 minimum bias Au+Au events at 25 AGeV. The

upper picture: with a blue color the distribution of hit time measurements in

a time-slice is shown. The picture below: with a light blue color the initial

distribution of hit measurements is shown (the same as in the upper picture),

on the top of that reconstructed track time clusters are shown with different

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.9 The event building: the reconstructed track groups are well resolved on the

blue background of the initial collisions overlapped on a hit level. . . . . . . 147

7.10 The multi-vertex analysis: primary tracks should be associated with the ver-

tex, which they originate from, secondary tracks are the subject of additional

studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1 Eine Illustration der Komplexität der Spurfindung (von links nach rechts): die

Spuren von einer simulierten Au+Au Kollision bei 25 AGeV; die Detektortr-

effer im STS als Eingangsinformation für den CA-Spurfinder; die mit dem

CA-Spurfinder rekonstruierte Spuren. . . . . . . . . . . . . . . . . . . . 173

2 Die Effizienz der Spurrekonstruktion und Geisterspur-Rate in verschiedenen

Spurgruppen im Vergleich zu Spur-Multiplizität. . . . . . . . . . . . . . . 175

3 Die Zeit, die der CA-Spurfinder benötigt, um Gruppen von Minimum-Bias-

Ereignissen ohne Zeitinformation zu rekonstruieren, als Funktion der Spuran-

zahl. Die Abhängigkeit wird mit einem Polynom zweiter Ordnung beschrieben. 177

4 Beschleunigungsfaktor aufgrund der Parallelisierung für verschiedene Schritte
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[46] C. Höhne et al., “Technical Design Report for the CBM Ring Imagine

Cherenkov (RICH),” GSI, Darmstadt (2013) 201 p.

https://www-alt.gsi.de/documents/DOC-2014-Aug-41.html


Bibliography 165

[47] S. Chattopadhyay et al., “Technical Design Report for the CBM Muon

Chambers (MuCh),” GSI, Darmstadt (2014) 192 p.

[48] D. Emschermann, “Development of the Münster CBM TRD prototypes and

update of the TRD geometry to version v13a,” CBM Progress Report 2012

(2013).

[49] P. Reichelt, “Simulationsstudien zur Entwicklung des
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Zusammenfassung

Motivation

In den letzten Jahrzehnten sind weltweit große experimentelle und theoretische

Anstrengungen unternommen worden, um die Eigenschaften von Kernmaterie

unter extremen Bedingungen zu erforschen. Experimente mit hochenergetischen

Schwerionen bieten die einzigartige Gelegenheit, heiße und dichte Kernmaterie im

Labor zu erzeugen und experimentell zu untersuchen. Ziel der Experimente ist

es, die Struktur und die Eigenschaften stark wechselwirkender Materie, die den

Gesetzen der Quanten-Chromo-Dynamik (QCD) unterliegt, zu erforschen, und

das QCD Phasendiagramm zu untersuchen. In Schwerionenstößen wird, je nach

Kollisionsenergie, entweder sehr heiße Materie erzeugt, ähnlich der im frühen

Universum wenige Mikrosekunden nach dem Urknall, oder sehr komprimierte

Materie, wie man sie im Zentrum von Neutronensternen vermutet.

Das Compressed Baryonic Matter (CBM) Experiment an der zukünftigen Fa-

cility for Antiproton and Ion Research (FAIR) in Darmstadt wird eine einzig-

artige Rolle bei der Untersuchung des QCD Phasendiagramms bei hohen Ma-

teriedichten spielen, weil es darauf ausgelegt ist, Schwerionenstöße mit bisher

beispiellos hohen Reaktionsraten zu messen. Hochratenexperimente sind er-

forderlich, um seltene diagnostische Proben, die auf die Eigenschaften dichter

Kernmaterie sensitiv sind, mit hoher Präzision und Statistik zu messen, wie zum

Beispiel mehrfach-seltsame Hyperonen, Leptonenpaare und Teilchen, die Charm-

Quarks enthalten. Die Zerfallstopologien dieser Teilchen sind komplex, sodass

kein Hardware-Trigger generiert werden kann, um die Daten zu selektieren. Da-

her wurde für das CBM-Experiment ein neuartiges Datenauslese- und Datenauf-

nahmekonzept entwickelt, das auf selbstgetriggerter (freilaufender) Front-End-
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Elektronik basiert. In diesem Fall muss die Datenanalyse erfolgen, was vierdi-

mensionale Rekonstruktions-Algorithmen erfordert. Diese sehr schnellen Algo-

rithmen zur online Ereignisrekonstruktion und Selektion in Echtzeit müssen an

die Architektur von Hochleistungsrechnern angepasst sein.

Die Central Processing Units (CPUs) mit Dutzenden Cores und Graphic Pro-

cessing Units (GPUs) mit tausenden Recheneinheiten sind die Hauptkomponen-

ten eines modernen Hochleistungsrechners. Diese Rechnertechnologien erlauben

die Berechnung mehrerer Aufgaben parallel und simultan. Um diese Architek-

turen effizient zu nutzen, müssen Parallelrechnungen angewendet werden. Es

ist zu erwarten, dass die Parallelisierung von Rechenleistung in Zukunft weiter

fortschreiten wird, mit mehr Cores pro CPU und mehr Elementen pro Vektor-

register. Daher ist es von entscheidender Bedeutung, das volle Potential dieser

komplexen Technologie auszunutzen. Zu diesem Zweck müssen Programme so

entworfen werden, dass die Geschwindigkeit der Anwendungen mit der Zahl der

parallelen Elemente in einem heterogenen System skaliert. Im Idealfall sollten

die Algorithmen eine starke lineare Skalierbarkeit auf parallelen Architekturen

aufweisen.

Rekonstruktion von Teilchenspuren

Die Analyse von Reaktionen in der Hochenergiephysik besteht in der möglichst

genauen Bestimmung der kinetischen Parameter der Teilchen. Geladene Teilchen,

die in der Reaktion erzeugt werden, ionisieren das Detektormaterial, und die

dadurch generierten Signale ermöglichen so eine Reihe von Positionsmessungen

entlang der Trajektorie. Die Topologie der Reaktion wird bestimmt durch die

Rekonstruktion der Spuren geladener Teilchen. Die Aufgabe der Spurrekon-

struktion besteht allgemein aus zwei Teilen: Spurfindung und Spurbestimmung.

Die Spurfindung stellt ein Problem der Mustererkennung dar, wobei ein kom-

pletter Satz von Detektorsignalen aufgelöst werden muss in Signale, die nur

von einem einzigen Teilchen erzeugt wurden. Die Spurbestimmung erfolgt nach

der Spurfindung und beinhaltet die Abschätzung von Spurparametern und ihren

Fehlern, um kinematische Eigenschaften von Teilchen zu bestimmen.

Derzeit finden eine Vielzahl von Spurfindungsmethoden Verwendung, die in
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Abbildung 1: Eine Illustration der Komplexität der Spurfindung (von links nach rechts):

die Spuren von einer simulierten Au+Au Kollision bei 25 AGeV; die Detektortreffer im STS als

Eingangsinformation für den CA-Spurfinder; die mit dem CA-Spurfinder rekonstruierte Spuren.

der Vorgehensweise voneinander stark abweichen, was einen direkten Vergleich

unmöglich macht.

Das Finden der Trajektorien geladener Teilchen bei hohen Spurdichten, wie

sie in Schwerionenkollisionen vorkommen, wird in der Regel als der schwierigste

und zeitaufwändigste Schritt des Rekonstruktionsverfahrens angesehen (Abbil-

dung 1). Grund dafür ist üblicherweise ein sehr spezifisches Problem der Kom-

binatorik, die mit der Spurmultiplizität rasch wächst, wenn Positionsmessungen

zusammengefasst werden in Gegenwart von Untergrundsignalen.

Der auf dem zellulären Automaten (Cellular Automaton, CA) basierende

Spurfinder stellt eine solide Lösung der kominatorischen Suchoptimierung dar.

Diese Methode profitiert von einer drastischen Unterdrückung der kombina-

torischen Möglichkeiten durch die Einführung von kurzen Teilspuren in einem

frühen Stadium vor der Hauptsuche.

Darüber hinaus erfolgt diese Methode in Bezug auf Datenverarbeitung

im wesentlich lokal und kann so auf modernen Many-Core-Architekturen

(CPU/GPU) parallel laufen. Die Eigenschaften der CA-Methode machen den

Algorithmus zu einer geeigneten Lösung für die Spurrekonstruktion im Silicon

Tracking System (STS), dem wichtigsten Spurdetektor des CBM-Experiments.

Um die Rekonstruktion im Falle einer hohen Spurdichte schnell und zuverlässig

zu gestalten, erfolgt die Suche nach Spuren im STS in mehreren Iterationen: bei

der ersten Iteration sucht der Spurfinder lediglich nach primären hochenergeti-

schen Spuren, bei der zweiten nach primären niedrigenergetischen Spuren und in

der letzten nach sekundären Spuren. Nach jeder Iteration werden alle Treffer von
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rekonstruierten Spuren als benutzt gekennzeichnet und im weiteren nicht mehr

berücksichtigt, wobei die Kombinatorik bedeutend reduziert wird.

Der Kalman-Filter wird für Bestimmung von Spuren verwendet, die in

den Spurdetektoren rekonstruiert wurden, um Spurparameter und ihre Fehler

abzuschätzen. Der Algorithmus arbeitet in einfacher Genauigkeit stabil und ist

vollständig vektorisiert. Er wird auch angewandt, um die Parameter teilweise

rekonstruierter Spuren innerhalb des CA-Spurfinders zu bestimmen, während er

nach Positionsmessungen in der nächsten Detektorstation sucht.

Für Auswertungszwecke wird eine rekonstruierte Spur einem simulierten

Teilchen zugeordnet, wenn mindestens 70% ihrer Treffer von diesem Teilchen

verursacht wurden. Ein simuliertes Teilchen wird als gefunden erachtet, wenn

es mindestens einer rekonstruierten Spur zugeordnet werden kann. Wenn ein

Teilchen öfter als einmal zugeordnet wird, werden sämtliche zusätzlich rekon-

struierten Spuren als Klone betrachtet. Eine “Geisterspur” bezeichnet eine rekon-

struierte Spur, die nicht zu einem erzeugten Teilchen nach dem o.g. 70%-Prinzip

zugeordnet werden kann.

Die Effizienz der Spurrekonstruktion für verschiedene Spurklassen sowie die

Anteile von Klon- und Geisterspuren werden in Tabelle 1 für Gold-Gold-

Kollisionen bei 25 AGeV, die mit dem UrQMD-Modell simuliert wurden, gezeigt.

Die Mehrzahl der Signalspuren (Zerfallsprodukte von D-Mesonen, Charmo-

nium, leichte Vektormesonen) sind Teilchen mit einem Impuls von mehr als

1 GeV/c und haben ihren Ursprung in unmittelbarer Nähe des Kollision-

spunkts. Ihre Rekonstruktionseffizienz ist daher ähnlich wie die Effizienz der

Hochimpulsprimärspuren, die 97,1% beträgt. Die Hochimpulssekundärteilchen

(z. B. Tochterteilchen von K0
s , Λ, Ξ und Ω) entstehen weit entfernt vom primären

Kollisionspunkt, so dass ihre Rekonstruktionseffizienz unter 81,2% liegt.

Signifikante Mehrfachstreuung von Niedrigimpulsspuren im Material des De-

tektorsystems und große Krümmung ihrer Bahnen lässt die Erfolgsrate einer

Rekonstruktion bei Primärspuren auf 90,4% und bei Sekundärspuren auf 51,1%

sinken.

Die Gesamteffizienz für alle Spuren beträgt 88,5% mit einem großen Anteil

von sekundären Niedrigimpulsspuren. Die Anteile von Klon- und Geisterspuren

betragen 0,2% bzw. 0,7%.
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Efficiency, % mbias central

All tracks 88.5 88.3

Primary high-p 97.1 96.2

Primary low-p 90.4 90.7

Secondary high-p 81.2 81.4

Secondary low-p 51.1 50.6

Clone level 0.2 0.2

Ghost level 0.7 1.5

Time/event 8.2 ms 57 ms
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Tabelle 1: Die Spurrekonstruktion

Performanz des CBM CA-Spurfinders

für verschiedene Sätze von Spuren

in den Minimum-Bias und zentralen

Ereignisse bei 25 AGeV.

Abbildung 2: Die Effizienz der Spurrekonstruktion

und Geisterspur-Rate in verschiedenen Spurgruppen im

Vergleich zu Spur-Multiplizität.

Spurfindung bei hoher Spurmultiplizität

In modernen Hochenergie-Schwerionenexperimenten sind die Spurdichten pro

Reaktion und die Reaktionsrate so hoch, dass eine erfolgliche Messung wesentlich

von der Effizienz der Rekonstruktionsmethoden abhängen wird. Die Kollisions-

raten in den gegenwärtigen Experimenten haben ein solches Ausmaß erreicht,

dass die verfügbare Zeit zur Rekonstruktion überlappender Signale äußerst knapp

ist. Signalüberlapp tritt auf, wenn mehrere Ereignisse so dicht nacheinander

auftreten, dass ein Teilchendetektor sie alle gleichzeitig verarbeiten muss. Der

Überlapp (pile-up) steigert die Komplexität der Spurrekonstruktion, weil die

Spurmultiplizität sich dabei um Faktoren erhöht.

Dies bedeutet für die Spurrekonstruktion, dass mehrere Ereignisse mit einem

komplexeren Muster in kürzerer Zeit berücksichtigt müssen. Dies steigert die

Anforderung an die Geschwindigkeit und Leistungsfähigkeit des Rekonstruktion-

Algorithmus. Intuitiv würde man erwarten, dass die Komplexität der Rekon-

struktion der Anzahl der Spuren entspräche, was leider nicht der Fall ist.

Die Spurfindung stellt vielmehr ein kombinatorisches Problem dar, das dem

berühmten Problem des Handlungsreisenden ähnlich ist. Die Problematik gehört

zur Klasse der NP-vollständigen (nichtdeterministischen Polynomialzeit) Pro-
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bleme gemäß der Theorie der Rechenkomplexität. Somit ist es möglich, dass

im schlimmsten Fall bei jedem Algorithmus das Problem superpolynomial (z.

B.ẽxponentiell) mit der Spurmultiplizität wächst.

Somit ist die erste Herausforderung für die Spurrekonstruktion im Falle einer

erhöhten Multiplizität der exponentielle Anstieg der Rechenzeit pro Ereignis.

Eine hohe Trefferdichte im Detektor resultiert in einer hohen Kombinatorik in

der Spurfindung und in einer Verlangsamung des Algorithmus. Darüber hinaus

führt eine große Spurenmultiplizität zu einer hohen Detektorbelegung, dass eine

erhöhte Anzahl von falsch rekonstruierten Spuren daraus resultiert. Ein guter

Spurfinder ist robust gegen große Multiplizitätsschwankungen. Deshalb ist die

Spurfinder-Stabilität besonders wichtig bei modernen HEP-Experimenten.

Da das CBM-Experiment bei extrem hohen Kollisionsraten betrieben wird,

können sich verschiedene Kollisionen zeitlich überlappen, so dass die Möglichkeit,

sie auf triviale Weise zu trennen, nicht besteht. Somit ergibt sich die

Notwendigkeit, statt isolierter Ereignisse sogenannte Zeitschnitte, die Infor-

mationen aus einer Anzahl von Kollisionen enthalten, zu analysieren. Die

Notwendigkeit, mit Zeitschnitten zu arbeiten statt mit Ereignissen, ist nicht nur

aus physikalischen, sondern auch aus computertechnischen Gründen erforderlich.

Nicht nur Minimum-Bias-Ereignisse, sondern auch zentrale Ereignisse erwiesen

sich als nicht groß genug, um auf modernen Mehrkernarchitekturen parallel ver-

arbeitet zu werden. In-Ereignis-Parallelität kann nicht implementiert werden,

weil diese Ereignisse nicht über genügend Quellen der Parallelität verfügen, um

mit vielen Kernen gleichzeitig rekonstruiert werden zu können.

Als erster Schritt auf dem Weg in Richtung Zeitschnitt-Rekonstruktion führen

wir einen mit Minimum-Bias-Ereignissen gepackten Container ohne Zeitinforma-

tionen ein. Zur Erstellung einer solchen Gruppe kombinieren wir Raumkoordi-

naten von Treffern aus einer Zahl (von 1 bis 100) von Ereignissen (minimum-bias

Au+Au bei 25 AGeV) und ignorieren solche Informationen wie Ereignisnummer

oder Zeitmessungen. Dabei wird vorausgesetzt, dass die Raumkoordinaten der

Treffer selbst in jedem einzelnen Ereignis aus den Rohdaten rekonstruiert wurden.

Die Problematik der für Streifendetektoren typischen, kombinatorischen Falsch-

treffer wird also nur auf Ereignisebene, nicht in der Gesamtgruppe berücksichtigt.

Die Gruppe wurde von dem CA-Spurfinder als einzelnes Ereignis behandelt,
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Abbildung 3: Die Zeit, die der
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Abbildung 4: Beschleunigungsfaktor aufgrund

der Parallelisierung für verschiedene Schritte und

den vollständigen Algorithmus auf Intel Xeon E7-

4860 CPU mit zehn physischen Kernen und Hyper-

Threading für den Fall von 100 zusammengefassten

Minimum-Bias-Ereignissen.

und das Rekonstruktionsverfahren wurde ohne Änderungen durchgeführt. Wir

haben die Effizienz der Spurrekonstruktion im Hinblick auf die Spurmultiplizität

untersucht, wobei wir die Anzahl der Minimum-Bias-Ereignisse in der Gruppe

variiert haben.

Abbildung 2 zeigt die Rekonstruktionseffizienz für verschiedene Spurklassen

als Funktion der Spuranzahl im (aus mehreren Minimum-Bias-Kollisionen zusam-

mengefassten) Ereignis. Primäre Hochimpulsspuren (RefPrim), die von beson-

derer physikalischer Bedeutung sind, werden mit einer Effizienz von etwa 96%

rekonstruiert wurden. Dies variiert bei bis zu 100 kombinierten Ereignissen um

weniger als 2%.

Bei der Berücksichtigung von Sekundärspuren (Refset) reduziert sich die

Effizienz auf 93,7% und variiert bis zu 3% bei den zusammengefassten Ex-

tremfällen von 100 Minimum-Bias-Ereignissen. Die Effizienz bei Niedrigim-

plusspuren beträgt 79,8% (ExtraPrim) und ändert sich innerhalb von 6% bei

größter Spurmultipliztät. Der Anteil der Geisterspuren bleibt auf einem akzep-

tablen Niveau (weniger als 10%) bis zu den höchsten Spurmultiplizitäten. So

erweist sich der CA-Spurfinder in Bezug auf Spurmultiplizitäten als stabil.



178 Zusammenfassung

Jedoch nicht nur die Effizienz, sondern auch eine Geschwindigkeit des

Rekonstruktionsalgorithmus ist für eine erfolgreiche Durchführung des CBM-

Experiments entscheidend. Die Zeit, die ein CA-Spurfinder benötigt, um ein

Gruppenereignis zu rekonstruieren, wurde als Funktion der Anzahl von Monte-

Carlo-Spuren in einer Gruppe untersucht. Die Ergebnisse zeigen, daß die

Abhängigkeit mit einem Polynom zweiter Ordnung angenähert werden kann (Ab-

bildung 3). Dies ist ein vielversprechendes Ergebnis, insbesondere im Hinblick

auf das exponentielle Wachstum der Kombinatorik bezüglich der Spurmulti-

plizität. Diese Abhängigkeit kann weiter verbessert und zu einer linearen Funk-

tion gemacht werden, die nach der Einführung der Zeitmessung im Rekonstruk-

tionsalgorithmus der Abhängigkeit der ereignisbasierten Analyse entspräche. So

zeigen sowohl die Geschwindigkeit und Effizienz des CA-Spurfinders stabiles Ver-

halten bei hoher Spurmultiplizität.

Paralleler CA-Spurfinder

Der CA-Spurfinder-Algorithmus wurde in Bezug auf Parallelität neu gestaltet

und optimiert. Jeder Schritt des Algorithmus wurde in einem Super-Ereignis

mit OpenMP- und Pthreads-Schnittstellen parallelisiert. In jedem Stadium wer-

den die Quelle der Parallelität-Elemente gleichzeitig verarbeitet und in einer

neuen Form mit einem höheren Konsolidierungsumfang gespeichert. Während

der Initialisierungsphase werden alle Eingangstreffer bezüglich ihrer Koordinaten

sortiert und in einem Raumgitter gespeichert. Eine gewisse Anzahl von Treffern

(teilbar durch die Breite des SIMD-Vektor) wird zusammengefasst und aufgeteilt,

um künftig verarbeitet zu werden. In der Aufbauphase von Triplets werden

Trefferteile verarbeitet ohne Synchronisation zwischen Threads, woraus sich eine

Reihe von Triplets ergibt. In der folgenden Phase der Spurkandidatenerstellung

sind Triplets die Quelle der Parallelität.

Gleichzeitig stellt der Algorithmus für jedes Ausgangstriplet den bestmöglichen

Spurkandidaten nach χ2-Wert und Länge auf. In dieser Phase arbeiten die

Threads noch unabhängig. In der vorangegangenen Phase der Spurselektion

mussten die Threads miteinander kommunizieren, um die Treffer zwischen den

Spuren zu verteilen. In der Spurselektionstufe wurde die Synchronisation mit-
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tels einer Tabelle des gemeinsamen Zugriffs implementiert. In der letzten Phase

werden die verwendeten Treffer für die nächste Iteration entfernt. Hier repräsen-

tieren die vorliegenden Treffer die Quelle der Parallelität, wie bei der Initia-

lisierungsphase.

Die sich ergebenden Beschleunigungsfaktoren für die verschiedenen Phasen

sowie für den gesamten Algorithmus innerhalb einer CPU (20 Hyper-Threading-

Kerne) sind in Abbildung 4 dargestellt. Einige Schritte haben aufgrund geringer

Thread-Synchronisation eine erhöhte Beschleunigung für eine höhere Anzahl von

Kernen. Der Algorithmus zeigt eine lineare Skalierbarkeit. Aufgrund von Hyper-

Threading kann man auf einer solchen CPU im Idealfall eine Beschleunigung

um einen Faktor 13 erwarten. Der erreichte Beschleunigungsfaktor ist 10.1 für

den gesamten Algorithmus auf einer CPU mit 10 physischen Kernen mit Hyper-

Threading.

4D paraller CA-Spurfinder

Da die Separierung unterschiedlicher physikalischer Ereignisse im CBM-

Experiment keine triviale Aufgabe ist, musste der CA-Spurfinder so modifiziert

werden, dass er auch Zeitinformationen berücksichtigen konnte. Der Algorith-

mus wurde so angepasst, dass er Eingangszeitschnitte erfasst, die Treffer von

dem Spurdetektor enthält. Jeder Treffer enthält zwei Raumkoordinaten x und y

in der Detektorebene z sowie die Zeitmessung t.

Die Zeitinformation wurde in dem CA-Spurfinder verwendet, um die

Geschwindigkeit und die Effizienz des Algorithmus zu verbessern. Da die Triplets

aus drei Treffern zusammengestellt werden sollen, die von ein und demselben

Teilchen erzeugt wurden, sollten diese Treffer nicht nur räumlich sondern auch

zeitlich korreliert sein. Vernachlässigt man die Flugzeit zwischen Detektorsta-

tionen, sollten die Treffer auf derselben Spur in der Zeitmessung innerhalb der

Detektor-Zeitgenauigkeit übereinstimmen. Treffergruppen, deren Zeitmessun-

gen sich um mehr als die erwartete Flugzeit inklusive Detektor-Zeitgenauigkeit

voneinander unterscheiden, sollten verworfen werden.

Die sich ergebende Performanz und die Geschwindigkeit der ereignisweisen

Analyse sowie für den 4D CA-Spurfinder für die Rekonstruktion von Zeitschnit-
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ten, die aus 100 Au+Au Minimum-Bias-Ereignissen bei 25 AGeV erzeugt wurden,

sind in Tabelle 2 dargestellt.

Deutlich zu beobachten ist, dass die Berücksichtigung der Zeit und die Opti-

mierung des 3D-CA-Algorithmus in Richtung 4D-Rekonstruktion es ermöglichen,

eine Geschwindigkeit zu erreichen, die vergleichbar mit der ereignisweisen Analyse

ist. Zudem konnte die Effizienz der Spurrekonstruktion nach Berücksichtigung

der Spurdetektor-Zeitmessung verbessert werden, so dass sie der ereignisbasierten

Analyse entspricht. Der Effekt ist auch für den Extremfall von 10 MHz Kolli-

sionsrate sichtbar. Das kann durch die langsamen Teilchen erklärt werden, die

im Falle von einem ereignisbasierten Ansatz zufällige Kombinationen von Tref-

fern erzeugen. Diese zufälligen Kombinationen können im Fall von Zeitschnitten

durch Schnitte der Trefferzeitmessung verworfen werden, wodurch die Leistung

verbessert wird.

Track category E-by-E 105 Hz 106 Hz 107 Hz CBMROOT

All tracks 92.1 92.6 92.6 92.2 91.3

Primary high-p 97.9 98.2 98.2 97.9 99.1

Primary low-p 93.6 94.1 94.1 93.5 93.6

Secondary high-p 92.0 92.7 92.7 92.0 88.9

Secondary low-p 65.7 66.7 66.6 65.9 56.8

Clone level 2.8 0.3 0.3 3.1 3.7

Ghost level 4.9 3.5 3.5 4.2 1.9

MC tracks found 145 146 146 145 88

Time, ms/ev 11.7 11.97 11.92 13.60 17.30

Tabelle 2: Effizienz (in %) der Spurrekonstruktion für 100 Minimum-Bias Au+Au Kolli-

sionen bei 25 AGeV bei ereignisweiser Rekonstruktion als auch bei zeitschnittbasierter Rekon-

struktion bei 0,1 MHz, 1 MHz und 10 MHz Kollisionsraten. Die Effizienz für den Algorithmus,

der im CBMROOT-Framework enthalten ist, wird für Au+Au Minimum-Bias-Zeitschnitten bei

10 AGeV und 10 MHz Kollisionsrate gezeigt.

Der Algorithmus wurde im CBMROOT-Framework implementiert. Dies

ermöglicht einen realistischen Input für den Spurfindungsalgorithmus, da nun

auch die Rekonstruktion der Detektortreffer zeitbasiert erfolgt und somit die für

Streifendetektoren typischen kombinatorischen Fehltreffer korrekt behandelt wer-

den. Dies stellt für den Spurfinder eine weitere Herausforderung dar.
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Die Effizienz des Algorithmus im CBMROOT-Framework im Falle der Rekon-

struktion von Zeitschnitten, die aus Au+Au Minimum-Bias-Ereignissen bei

10 AGeV bestehen, ist in der letzten Spalte der Tabelle 2 dargestellt. Diese Ef-

fizienz ist mit der ereignisbasierten Analyse vergleichbar. Die etwas höhere Klon-

rate könnte durch den Zeitmessungsschnitt erklärt werden, der für diesen Fall zu

streng sein kann und eine weitere Optimierung erforderlich machen könnte.

Fazit

Das First-Level Event Selektion (FLES) Softwarepaket für das CBM-Experiment

enthält alle Rekonstruktionsstufen: Spurfindung, Spuranpassung, Suche nach

kurzlebigen Teilchen, Ereignisbildung und Ereignisselektion.

Für den zeitaufwendigsten Teil des Rekonstruktionsverfahrens wird der Zel-

luläre-Automat-Spurfinder verwendet. Der CA-Spurfinder ist vektorisiert und

zwischen CPU-Kernen parallelisiert. Der ereignisbasierte Algorithmus wurde auf

zeitschnittbasierte Rekonstruktion angepasst, was bei CBM für die Ereignisbil-

dung erforderlich ist. Der 4D CA-Spurfinder ist in der Lage, eine Performanz und

Geschwindigkeit vergleichbar mit der ereignisbasierten Analyse im Falle extremer

Kollisionsraten von 10 MHz zu erzielen. Der Algorithmus ist im CBMROOT-

Framework implementiert. Somit ist das FLES-Paket betriebsbereit und kann im

CBM-Experiment bei der 4D-Rekonstruktion von Zeitschnitten eingesetzt wer-

den.
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