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Abstract

Background: Self-myofascial release (SMR) aims to mimic the effects of manual therapy and tackle dysfunctions of the
skeletal muscle and connective tissue. It has been shown to induce improvements in flexibility, but the underlying
mechanisms are still poorly understood. In addition to neuronal mechanisms, improved flexibility may be driven by
acute morphological adaptations, such as a reduction in passive tissue stiffness or improved movement between
fascial layers. The aim of the intended study is to evaluate the acute effects of SMR on the passive tissue stiffness of the
anterior thigh muscles and the sliding properties of the associated fasciae.

Methods: In a crossover study design, 16 participants will receive all of the following interventions in a permutated
random order: (1) one session of 2 × 60 s of SMR at the anterior thigh, (2) one session of 2 × 60 s of passive static
stretching of the anterior thigh and (3) no intervention. Passive tissue stiffness, connective tissue sliding, angle of first
stretch sensation, as well as maximal active and passive knee flexion angle, will be evaluated before and directly after
each intervention.

Discussion: The results of the intended study will allow a better understanding of, and provide further evidence on,
the local effects of SMR techniques and the underlying mechanisms for flexibility improvements.

Trial registration: ClinicalTrials.gov, identifier: NCT02919527. Registered on 27 September 2016.

Keywords: Foam rolling, Self-myofascial release, Flexibility, Tissue stiffness, Connective tissue, Fascia, Ultrasound, Cross-
correlation

Background
Self-myofascial release (SMR) is an intensive self-treatment
with rigid foam rollers and other small handheld tools based
on the exertion of compressive force to the soft tissue. Aim-
ing to tackle dysfunctions of the skeletal muscle and
connective tissue, it claims to mimic the effects of manual
therapy techniques. Recent studies indicate that SMR, inter
alia, improves range of motion (ROM) [1–13] without
concurrent decrease in neuromuscular performance [1, 2, 5,
10–12]. In addition to neuronal mechanisms, such as
increased stretch tolerance [1, 3, 4], flexibility increases
might be attributed to acute morphological adaptations:
First, the fasciae surrounding the muscles of the lower

extremity are composed of multiple fibrous layers. Loose

connective tissue enriched with hyaluronic acid [14, 15]
allows these layers to slide against each other during
motion (e.g., contraction or elongation of the underlying
muscle) [14]. Several authors assume a positive effect of
SMR on fascial sliding properties, e.g., through breaking
up adhesions or loosening cross-links [10, 16].
Another hypothesized morphological consequence of

SMR is the alteration of passive tissue stiffness, as occurs
after static stretching [17–22]. A plethora of studies have
demonstrated the existence of myofibroblasts (and their
ability to impact stiffness) in fascia [23, 24]. Moreover,
according to in vitro experiments, fascial hydration has
been shown to alter biomechanical tissue properties
[25]. Compression of the muscle and the surrounding
fascial tissue (as occurs by the use of a foam roller)
might hence stimulate contractile cell activity, affect
tissue hydration [10, 16] and microarchitecture of cell
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cytoskeleton [26] or muscle filament mechanical proper-
ties [27] and thereby alter tissue stiffness. Although these
mechanisms seem plausible, there is no scientific
evidence for these assumptions. Most studies focus
solely on functional parameters (e.g., flexibility, strength,
recovery) in practice-based settings. However, knowledge
of the underlying physiological processes would allow a
more effective selection of therapeutic and performance-
related indications. The aim of the intended study is to
evaluate the acute effects of SMR on the passive tissue
stiffness of the anterior thigh muscles and the sliding
properties of the associated fasciae. We hypothesize, that
(1) SMR is able to decrease passive stiffness in the same
manner as static stretching [17–22], that (2) increased
interlayer sliding of fascial layers occurs following treat-
ment and (3) that these processes are associated with an
increase in joint flexibility.

Methods
Study design
The study will adopt a randomized crossover design. After
signing informed consent prior to study enrollment,

healthy participants receive all of the following interven-
tions in a permutated random order:

1. One session of 2 × 60 s of SMR at the anterior thigh
2. One session of 2 × 60 s of passive static stretching of

the muscles at the anterior thigh
3. No intervention

At least 2 days prior to the experimental conditions,
participant receive a standardized familiarization session
including the testing procedure and an introduction to
the SMR intervention to minimize learning effects.
Before each intervention, main outcomes are measured.
Initial data collection is followed by a 15-min passive
break to prevent the measurement procedure to overlie
possible treatment effects. Immediately after the inter-
vention or control condition, post-intervention outcome
parameters are collected (see Additional file 1 and Fig. 1).
All experimental trials will be performed at the same
time of day (±2 h) for each subject. A period of at least
3 days serves as a wash-out phase between the three ex-
perimental testing sessions [22].

Fig. 1 Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) figure
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The study was approved by the local Ethics Committee
of the Faculty of Psychology and Sport Science (Goethe-
University Frankfurt). The collection, transfer, storing
and analyses of personal data during the trial is in
accordance with applicable law. Data are collected at the
Department of Sports Medicine, recorded on paper or
electronically and treated confidentially. Data transfer
requires pseudonymization and is restricted to the prin-
cipal investigator, study physicians and the competent
Ethics Committee for the assessment of study results
and adverse events.
The protocol was written in accordance to the Stand-

ard Protocol Items: Recommendations for Interventional
Trials (SPIRIT) guidelines, a copy of the SPIRIT Check-
list has been included as Additional file 2.

Inclusion/exclusion criteria
Subjects are eligible for the trial if they meet the following
criteria:

� Age between 20 and 40 years
� No history of orthopedic injuries in the lower

extremity in the last 12 months

Subjects are ineligible if they have any of the following
criteria:

� Any history of psychiatric, cardiovascular, endocrine,
neurological or metabolic disorders

� Any current medication that might affect pain
perception or proprioception

� Muscle soreness
� Pregnancy/nursing period
� Nonspecific musculoskeletal disorders

Sample size calculation
To determine the required sample size, an a priori sample
size calculation was performed using G*Power (G*Power,
Version 3.1, Heinrich-Heine University Düsseldorf,
Germany). Based on previous studies on the effect of static
stretching on tissue stiffness [21], we expect a medium
effect (f2 = 0.25; α = .05 and β = .80). Considering the
omnibus testing (2 × 3 repeated measurements ANOVA/
Friedman test), calculated sample size was n = 42. A 10%
dropout rate assumed and taking into account our cross-
over study design, the sample size to be recruited is n = 16
participants.

Randomization
A balanced permutation randomization sequence of treat-
ment orders is generated using an electronic randomization
algorithm (www.randomization.com). Body side of treat-
ment is randomized using the same algorithm.

Randomization is equivalent to the order of study
inclusion.

Interventions
Both interventions consist of two 60-s bouts of either dy-
namic SMR with a foam roller or static stretching of the
myofascial tissue of the anterior thigh. The SMR interven-
tion is performed in the prone position. The participants
are instructed to place their body weight on a polypropyl-
ene foam roller with a length of 30 cm and a diameter of
15 cm (Blackroll, Bottighofen, Switzerland). Applying
pressure to the tissue of the anterior thigh, they perform a
rolling motion from the proximal aspect of the thigh (in-
ferior to the anterior superior iliac spine) to the knee (see
Additional file 3). Once the foam roller reaches the super-
ior border of the patella, participants are instructed to re-
turn to the starting position and continue the sequence
for the remainder of the 60 s [5, 7]. The rolling frequency
is standardized using a metronome set at 60 beats per mi-
nute (bpm). Participants are instructed to roll at a velocity
of two metronome beats (thus, 2 s) for each rolling direc-
tion, resulting in 15 complete rolling cycles in 60 s
(0.25 Hz). Intensity of pressure is controlled subjectively
with a target Numerical Rating Scale (NRS) rating of 7/10
(0 representing no discomfort and 10 representing max-
imal discomfort) during the intervention. After a 30-s
break in a relaxed prone position, participants perform a
second bout.
Similar to SMR, also passive static stretching of the

anterior thigh muscles is performed in the prone
position with a pre-stretch of the hip (200° in total)
using a bed wedge with a 20° inclination. In this pos-
ition, the investigator performs a passive static stretching
maneuver by manually flexing the knee of the subject
while continuously controlling for secondary movement
of the lumbar spine. Stretch intensity is adjusted accord-
ing to the feedback of the subject (target NRS rating of
7/10). The position is held for 60 s, followed by a 30-s
rest in a relaxed position and a second bout of stretching
at the same target intensity for 60 s.

Outcomes
Main outcomes

Passive resistive torque (PRT) Passive resistive torque
of the quadriceps muscle-tendon unit is evaluated using
a computerized isokinetic dynamometer (Biodex system
3 Pro, Biodex Medical, Shirley, NY, USA). The partici-
pant is placed in a standardized position on the seat of
the dynamometer (see Additional file 4). The pelvis as
well as the thigh of the tested leg are fixed with restric-
tion straps to minimize secondary movement. The
opposite hip is fixed at 90° flexion to limit pelvic and
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lumbar motion. The knee axis is aligned with the rota-
tional axis of the dynamometer.
To obtain PRT, the lower leg is moved from full knee

extension (0°) to maximal achievable knee flexion angle
with an angular velocity of 5°/s in passive mode of the
dynamometer. Torque (T) and angle (θ) are recorded at
100 Hz. This procedure has been described as a reliable
method to evaluate passive tissue properties for various
positions and muscles (intraclass correlation coefficient
(ICC) ranging from 0.88 to 1.00) [28–33]. Torque data is
gravity corrected and filtered using a Butterworth, zero-
lag, fourth-order low-pass filter with a 10-Hz cutoff fre-
quency [22].

Tissue stiffness A fourth-order polynomial (FOP)
model is fitted on the T-θ data (and stiffness is calcu-
lated using the slope of the FOP model [34, 35]. Passive
resistive torque as well as stiffness values from four
angles during the last 13° of passive tissue tensioning
(1°, 5°, 9° and 13°) are calculated and serve as a quan-
tification of resistance and stiffness during passive
motion [22].
To monitor muscle activity, surface electromyography

(sEMG) is used with two surface electrodes (Ambu Blue
Sensor, Ambu GmbH, Bad Nauheim, Germany) placed
on the head of the M. rectus femoris muscle with an 8-
mm inter-electrode distance and one reference electrode
on the patella, according to SENIAM recommendations
[36]. Participants are provided with live biofeedback of
muscle activity to prevent involuntary muscle contraction.

Fascial sliding While assessing PRT, the probe of a
high-resolution ultrasound (US) device (Siemens Acuson
X300, Siemens Healthcare GmbH, Erlangen, Germany)
is positioned on the thigh (for details, see below). Sliding
of fascial layers is quantified with a frame-by-frame,
cross-correlation algorithm of the generated US images
obtained during the passive movement. The cross-
correlation method developed in MATLAB (The Math-
Works, Inc, Natick, MA, USA) by Dilley and colleagues
[37] is used to calculate the correlation coefficient
between the pixel gray levels for selected rectangle-
shaped regions of interest (ROIs) in two adjacent images.
The pixel shift providing the maximum correlation coef-
ficient corresponds to the relative movement between
two frames [37]. The method has been extensively used
to quantify nerve movement and represents a reliable
method to quantify tissue movement in vivo (ICC ran-
ging from 0.70 to 0.99) [37–44].
The linear array US transducer used (4–11.4-MHz,

38.4-mm footprint) is placed on the proximal third of
the muscle belly of the M. rectus femoris and sequences
of 20 s are captured at 10 frames/s during passive knee
flexion (starting at 0° until 100° of knee flexion at 5°/s).

US transducer location is marked on the skin with a
permanent marker. Participants are instructed to renew
the marker on a daily basis to ensure equal transducer
placement at all three testing sessions. Six ROIs are
placed on the superficial and deep layers of the fascia
lata, respectively, to quantify sliding of these layers
during passive stretching of the underlying muscle (see
Additional file 5). Maximal lateral movement of ROIs/
fascial layers is calculated and analyzed as a quantifica-
tion of fascial sliding.

Secondary outcomes

Flexibility and ROM Three parameters representing
flexibility and ROM are assessed. The position of the
first stretch sensation is quantified using the isokinetic
dynamometer in the above-described position. In passive
mode, the knee is flexed from full extension to flexion at
5°/s. The subject uses a switch to stop the passive move-
ment at the position of the first stretch sensation.
Maximal active as well as passive knee flexion ROM in

the sagittal plane is assessed in prone lying with a 3D
ultrasonographic movement analysis system (zebris
CMS20, zebris Medical GmbH, Isny, Germany). Inter- as
well as intra-rater reliability have been described as good
to excellent (r between .84 and .96) [45]. A triplet of
ultrasonographic markers is placed on the lower leg, a
second triplet is placed as a reference on the thigh. In
this position, participants are instructed to perform three
consecutive active knee flexion-extension cycles at a
self-selected velocity. Subsequently, the investigator
performs three passive knee flexion-extension cycles.
Movements are recorded in three dimensions at 20 Hz,
and maximal active as well as passive knee flexion ROM
in the sagittal plane can be calculated as the maximal
displacement relative to the starting position recorded
by the US markers.

Statistical analysis
The software SPSS (version 22.0, SPSS Inc., Chicago, IL,
USA) is used for statistical analyses. All calculation are
performed after checking the underlying assumptions
for (1) parametric or (2) nonparametric testing. Statisti-
cally significant differences between pre and post mea-
surements, as well as the three conditions (SMR,
stretching, control), are tested with (a) a 2 × 3 repeated
measurements ANOVA followed by LSD post hoc ana-
lyses or (b) Friedman test followed by Dunn-Bonferroni
tests. Associations between measures of tissue stiffness,
respectively fascial sliding and ROM measures are evalu-
ated with (a) Pearson or (b) Spearman correlation ana-
lyses. The level of statistical significance is set to α <
0.05. Due to the explorative design of the study, an

Krause et al. Trials  (2017) 18:114 Page 4 of 6



alpha-level correction will not be performed for the mul-
tiple hypotheses testing.

Discussion
The use of foam rollers in the context of treatment and
training of fascial tissues has gained considerable popu-
larity in the last decade. Current research suggests that
SMR techniques can improve ROM, but the effects on
passive tissue stiffness and fascial sliding as possible
influencing factors have not been evaluated yet.
Knowledge about these effects will allow a better

understanding of, and provide further evidence on, the
local effects of SMR techniques and the factors leading
to improvements in ROM. In contrast to static stretch-
ing, foam rolling does not seem to negatively affect
neuromuscular performance, so the acute biomechanical
mechanisms for increases in flexibility might differ.
The results of the intended study will have several

implications for clinical practice and the implementation
of SMR techniques into therapy and training. Knowledge
of the effect on passive tissue stiffness and fascial sliding
allows the clinician to determine the optimal timing for
the use of SMR during warm-up before competition or
during therapy to restore normal ROM.

Trial status
At the time of submission of this manuscript, recruit-
ment is ongoing.
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