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The Escherichia coli sensor kinase EnvZ modulates porin expression in response to various stimuli, including
extracellular osmolarity, the presence of procaine and interaction with an accessory protein, MzrA. Two major
outermembrane porins, OmpF andOmpC, act as passive diffusion-limitedpores that allow compounds, including
certain classes of antibiotics such as β-lactams and fluoroquinolones, to enter the bacterial cell. Even though the
mechanisms by which EnvZ detects and processes the presence of various stimuli are a fundamental component of
microbial physiology, they are not yet fully understood.Here,we assess the role of TM1during signal transduction in
response to the presence of extracellular osmolarity. Various mechanisms of transmembrane communication have
been proposed including rotation of individual helices within the transmembrane domain, dynamic movement of
themembrane-distal portion of the cytoplasmic domain and regulated intra-protein unfolding. To assess these pos-
sibilities, we have created a library of single-Cys-containing EnvZ proteins in order to facilitate sulfhydryl-reactivity
experimentation. Our results demonstrate that themajor TM1–TM1′ interface falls along a single surface consisting
of residue positions 19, 23, 26, 30 and 34. In addition, we show that Cys substitutions within the N- and C-terminal
regions of TM1 result in drastic changes to EnvZ signal output. Finally, we demonstrate that core residues within
TM1 are responsible for both TM1 dimerisation and maintenance of steady-state signal output. Overall, our results
suggest that no major rearrangement of the TM1–TM1′ interface occurs during transmembrane communication in
response to extracellular osmolarity. We conclude by discussing these results within the frameworks of several
proposed models for transmembrane communication.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Multidrug resistance (MDR) is a frequent problem associated with
nosocomial infections that limits therapeutic options [1]. In Europe,
antibiotic-resistant infections kill nearly 25,000 patients and represent a
total expenditure of approximately 1.5 billion € per year [2]. Surprisingly,
given the seriousness of these issues, our understanding of several key
molecular mechanisms involved in conferring MDR to Gram-negative
bacteria remains inadequate. The outer membrane (OM) is the first line
multidrug resistance; OM, outer
transmembrane helix; HAMP,
AP kinases and phosphatases;
rotein; IPTG, isopropyl-β-thio-
ylenediaminetetraacetic acid;
lectrophoresis; ATP, adenosine
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of defence for Gram-negative bacteria and serves as a major barrier that
restricts access of antibiotics to the cytoplasm. The OM is impermeable
to large, charged molecules and influx is largely controlled by porins,
which are water-filled open channels that span the outer membrane
[3–5]. β-Lactams and fluoroquinolones are prominent groups in our
current antibacterial arsenal and porins serve as their major pathway
for entry into the cell [6]. Thus, it should not be surprising that expression
of these porins is often altered in clinical isolates that exhibitMDR [7–13].
This is highlighted by a study of Klebsiella pneumoniae isolates collected
from different patients undergoing antibiotic treatment. In all isolates,
modified outer membrane permeability was observed. In most cases,
OmpK35, which belongs to the OmpF porin family that has a larger
channel size, was replaced with OmpK36, which belongs to the OmpC
family and possesses a smaller channel size [4].

EnvZ of Escherichia coli is a canonical sensor histidine kinase
(SHK) that responds to changes in the extracellular osmolarity of
inner-membrane impermeable compounds such as sucrose, or the
presence of certain lipophilic compounds, e.g. procaine, by modulating
the intracellular level of phosphorylated OmpR, its cognate response
regulator (RR) (Fig. 1A) [14–17]. Subsequently, phospho-OmpR regulates
the transcription of a number of genes, including those encoding two
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major outer membrane porins, OmpF and OmpC. At low intracellular
levels of phospho-OmpR (OmpR-P), transcription of ompF is upregulated,
whereas at higher levels of OmpR-P, transcription of ompF is repressed
and transcription of ompC is activated. This results in a predominance of
OmpF at low osmolarity and OmpC at higher osmolarities (Fig. 1B)
[18–20]. Most porins involved in antibiotic transport by Gram-negative
bacteria belong to these classical OmpF and OmpC families [4]. Dramatic
modification of the ratio of porin expression, also known as porin balance,
which can occur during antibiotic treatment, strongly suggests that
the underlying mechanisms of porin regulation by EnvZ need further
characterisation.

The molecular mechanisms of perception and response to various
classes of stimuli by EnvZ have long been studied but remain somewhat
unclear and occasionally contradictory. Detection of and allosteric
processing of intracellular osmolarity are perhaps the most well-
characterised cognate stimulus of EnvZ. A recent “stretch-relaxation”
model has been proposed, in which increased intracellular osmolarity
promotes a more folded conformation due to increased stabilisation of
intra-helical hydrogen bonding [21,22]. This conformation facilitates
enhanced rates of autophosphorylation and phosphotransfer to OmpR.
The authors also demonstrate that the cytoplasmic domain of EnvZ
(EnvZc) alone is sufficient for osmosensing in vivo, leading to a proposal
that the periplasmic and transmembrane (TM) domains are unneces-
sary for osmosensing [21,22]. However, two other research narratives
suggest roles for the periplasmic or TM domain of EnvZ during detec-
tion and response toMzrA, a protein that interacts with the periplasmic
Fig. 1. The EnvZ/OmpR osmosensing circuit regulates porin expression. (A) EnvZ is
bifunctional and possesses both kinase and phosphatase activity. The ratio of these
activities is modulated by the presence of extracellular osmolarity [14,15], procaine [72]
or MzrA [27,28]. OmpR serves as the cognate response regulator (RR) of EnvZ and thus
the intracellular level of phosphorylated OmpR (OmpR-P) is governed by EnvZ activity.
(B) OmpR-P levels control transcription of ompF and ompC, which can be monitored by
employing MDG147 [35] or EPB30 [36] cells that contain a transcriptional fusion of yfp
to ompF (yellow) and of cfp to ompC (blue). This allows the intracellular levels of OmpR-P
(red) to be estimated by monitoring the CFP/YFP ratio. The dashed line represents the
baseline level of OmpR-P from EPB30/pRD400 cells expressing wild-type EnvZ grown
under the low-osmolarity regime (0% sucrose). (C) EnvZ functions as a homodimer with a
cytoplasmic N-terminus, the first transmembrane helix (TM1, grey), a large periplasmic
domain (brown), the second transmembrane helix (TM2, grey), a membrane-adjacent
HAMP domain (blue) and the cytoplasmic domains responsible for dimerisation and
histidylphosphotransfer (DHp, red) and catalytic ATPase activity (CA, orange). The residues
subjected to Cys substitution are highlighted. Leu-32, indicated in red, could not be
substituted for a Cys residue. In addition, the location of the original Cys residue at position
277 is provided.
domain of EnvZ, and procaine or other lipophilic compounds that
potentially interacts with the transmembrane domain of EnvZ. A
“gearbox”-type model proposes that a rotation of the second trans-
membrane helix (TM2), which physically connects the stimulus-
perceiving periplasmic domain to the cytoplasmic HAMP domain
and domains required for intracellular signalling, is responsible for
transmembrane communication [23,24]. This model is supported
by experimentation with various chimeric receptors composed of
the periplasmic and TM domains from the aspartate chemoreceptor
of E. coli (Tar) and the cytoplasmic domains of EnvZ, respectively, in
whichmodulation of EnvZ signal output upon the addition of aspartate,
the cognate ligand of Tar, has been demonstrated [25,26]. Additionally,
recent studies have identified MzrA (modulator of EnvZ and OmpR
protein A), a small innermembrane protein that interactswith the peri-
plasmic domain of EnvZ in vivo resulting in increased EnvZ signal output
[27,28]. Although porin expression in E. coli cells lacking (ΔmzrA) or
overexpressing MzrA was drastically different than that in wild-type
cells, modulation of porin expression due to changes in extracellular
osmolarity still occurred in the absence or during overexpression of
MzrA. Therefore, these results suggest that MzrA and osmosensing act
independently to modulate signal EnvZ output [27,28]. Based on these
differentmodels of transmembrane communication, it remains important
to better understand the role of the TM domain during stimulus process-
ing by EnvZ in order to predict how porin balance can be targeted for
direct manipulation in bacteria exhibiting MDR.

Here, we focused on the TM domain due to its possible interaction
with procaine or other lipophilic compounds. In addition, the TM domain
resides between the periplasmic domain responsible for interaction with
MzrA and the cytoplasmic domain responsible for intracellular signal
transduction. Furthermore, several dynamic roles for TM1 and/or TM1′
have been observed. For example, a rotation between TM1 and TM1′
within McpB, a major chemoreceptor within Bacillus subtilis, was seen
upon addition of arginine, its cognate stimulus [29]. Also, comparison of
the apo and ligand-bound conformations of the periplasmic domains of
thenitrate/nitrite sensorNarX and the TMAO-binding TorT–TorS complex
suggest that TM1 plays an active role in transmembrane communication
[30,31]. Finally, a scissor-type model has recently been proposed in
cation−/antimicrobial peptide-binding PhoQ, which also involves
dynamic movement by TM1 [32]. In order to generate a more complete
understanding of the organisation of TM domain and its role during
stimulus perception and processing, we created a library of EnvZ recep-
tors that each contains a single Cys substitution between positions 11
and 41 and thus encompasses the entire region expected to comprise
TM1. We demonstrated that placing a Cys residue N- and C-terminal to
an internal core of 18 residues resulted in increased EnvZ signal output.
Within this internal core, a surface of three adjacent residues (positions
23, 27 and 30) was identified as being intolerant of Cys substitution, in
which EnvZ adopted an increased steady-state signal output. We also
mapped the surface responsible for TM1 dimerisation, which was found
to be composed primarily of residues 19, 23, 26, 30, and 34. Interestingly,
we did not observe any significant differences in the apparent TM1–TM1′
interfacewhen cellswere grownunder either the low- or high-osmolarity
regime. We conclude by examining these results within the context of
various models of transmembrane communication by sensor histidine
kinases.

2. Materials and methods

2.1. Bacterial strains and plasmids

E. coli strain MC1061 [F- hsdR2(rK- mK+)mcrA0 mcrB1] [33] was used
for all DNA manipulations, while strain MG1655 (F- λ- ilvG rfb50 rph1)
[34]was used to control for light scattering and cellular autofluorescence.
E. coli strains MDG147 [MG1655 Φ(ompF+-yfp+) Φ(ompC+-cfp+)] [35]
and EPB30 (MDG147 envZ::kan) [36] were used for analysis of steady-
state signal output from osmosensing circuits. Plasmid pRD400 [37]
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retains the IPTG-based induction of EnvZ originally present in plasmid
pEnvZ [38] while also encoding a seven-residue linker (GGSSAAG) [39]
and a C-terminal V5 epitope tag (GKPIPNPLLGLDST) [40]. Plasmid pEB5
[41] served as an empty control vector that does not express EnvZ.
2.2. Selection of residues comprising TM1 of EnvZ

The primary sequence of EnvZ (NP_417863.1) from E. coli K-12
MG1655 was subjected to a full protein scan with DGpred using a
minimal window of 9 residues and a maximal window of 40 residues
[42]. This software searched for putative TM helices by employing a
sliding window of variable lengths and calculating the ΔGapp for
transmembrane insertion throughout the length of the sequence
and suggested that residues between Phe-12 and Val-34 comprise
TM1. Alternatively, a software package that identifies TM helices with a
Markov model (TMHMM v2.0) [43] was employed and suggested that
the residues between Thr-15 and Phe-37 compose TM1. In both cases, a
motif commonly found within TM helices that consisted of positively
charged residues and adjacent aromatic resides bracketing a core of
aliphatic residues was found within the putative TM segments [44].
Based on these observations and tomaximise the probability of including
all residues within TM1, we elected to target all residues between
positions 11 to 41 for the creation of a library of single-Cys-containing
EnvZ receptors.
2.3. Analysis of EnvZ signal output in vivo

Bacterial cultures were grown as described previously [37] with
slight modifications. Briefly, MDG147 or EPB30 cells were transformed
with pRD400 expressing EnvZ that contains a Cys residue at the desired
position or pEB5, as required. Fresh colonies were used to inoculate
2-ml overnight culture of minimal medium A [45] supplemented
with 0.2% glucose. Ampicillin, sucrose and IPTG were added
where appropriate. Cells were grown overnight at 37 °C and diluted
at least 1:1000 into 7-ml of fresh medium. When the final bacterial
cultures reached an OD600nm ~0.3, chloramphenicol was added to a
final concentration of 170 μg/ml to inhibit protein synthesis. Fluo-
rescent analysis was immediately conducted with 2 ml of culture.
All fluorescence measurements were performed with a Varian
Cary Eclipse (Palo Alto, CA). CFP fluorescence was measured using
an excitation wavelength of 434 nm and an emission wavelength
of 477 nm, while YFP fluorescence was measured using an excita-
tion wavelength of 505 nm and an emission wavelength of
527 nm. These values were corrected for differences in cell density
by dividing the fluorescent intensities by OD600nm and for light
scattering/cellular autofluorescence by subtracting the CFP and
YFP fluorescence intensities determined for MG1655/pEB5 cells.
2.4. Analysis of sulfhydryl-reactivity in vivo

Cells were grown as described above with minor modifications.
Upon reaching an OD600nm ~0.3, cells were subjected to between 10
and 250 μM molecular iodine (as required) for between 1 and 10 min
(as required) while incubating at 37 °C. The reaction was terminated
with 8 mM N-ethylmaleimide (NEM) and 10 mM EDTA. Cells were
harvested by centrifugation and resuspended in standard 6X non-
reducing SDS-PAGE buffer supplementedwith 12.5mMNEM. Cell pellets
were then analysed on 10% SDS/acrylamide gels. Standard buffers and
conditions were used for electrophoresis, immunoblotting and detection
with enhanced chemiluminescence [46]. Anti-V5 (Invitrogen) was used
as the primary antibody, while peroxidase-conjugated anti-mouse IgG
(Sigma) was employed as the secondary antibody. Digitised images
were acquired with a ChemiDoc MP workstation (Bio-Rad), analysed
with ImageJ v1.49 [47] and quantified with QtiPlot v0.9.8.10.
3. Results

3.1. Overview of sulfhydryl-reactivity analysis

One of our primary interests is to determine how the transmembrane
(TM) domain of EnvZ allosterically processes and couples different senso-
ry inputs into a single unified output. To determine which residues of
EnvZ compose TM1, we subjected the primary sequence to a full protein
scan with DGpred [42], which suggested that residues Phe-12 to Val-34
comprise TM1. We also employed TMHMM v2.0 [43], which suggested
that the residues between Thr-15 and Phe-37 compose TM1. These
results are similar to previously proposed TM1 composition [48,49],
therefore, we employed sulfhydryl-reactivity experimentation between
residue positions 11 and 41 in order to ensure that the entire first trans-
membrane helix (TM1) was encompassed.

Sulfhydryl-reactivity possesses several distinct advantages. Firstly, it
is well-characterised and has been employed on many soluble and
membrane-spanning proteins and higher-order complexes [50]. Based
on these previous results, we have been able to compare our results
with those from other membrane-spanning receptors. Secondly, these
reactions can be performed in vivo, which allows EnvZ to remain within
its native environmentwhile retaining the ability to adjust extracellular
osmolarity. In addition, this leaves all accessory proteins, such as MzrA,
present andmodulatablewithin thehost cellmembrane. Finally, theuse
of an in vivo methodology allowed us to monitor signal output with a
dual-colour fluorescence-based system that we, and other groups,
have previously employed to determine which surfaces of TM1 are
intolerant of Cys substitutions [35,37,41]. In summary, the in vivo nature
of this assay facilitated mapping of the TM1–TM1′ interface under
different osmotic conditions, which is an important first step toward
understanding how EnvZ processes different allosteric signal inputs
into a single uniform modulation of bacterial porin balance.
3.2. Creation of a cysteine-less EnvZ (Cys-less)

Wild-type EnvZ from E. coli contains a single cysteine residue at posi-
tion 277 (Fig. 1C). Pre-existing Cys residues would make it significantly
more difficult to interpret the results of in vivo disulphide-mapping
experimentation, therefore, we created a cysteine-less (Cys-less) version
of EnvZ. The native Cys-277 codon was converted to a methionine
(C277M) because a previous sequence analysis determined that a Met
residue was the second most common, after Cys, at position 277 within
EnvZ proteins from other organisms [51]. A Ser residue was also chosen
(C277S) because it was shown to not affect the biochemical activities of
the purified cytoplasmic domain from E. coli (EnvZc) [52]. Finally, as a
small non-polar residue, an Ala (C277A) was also selected for analysis.
All substitutions were made using standard site-directed mutagenesis
techniques and expressed from pRD400 [37], which results in the
addition of a seven-residue linker (GGSSAAG) and a C-terminal V5 epi-
tope (GKPIPNPLLGLDST) that have previously been used within bacterial
receptors, including Tar and EnvZ, resulting in minimal effect to steady-
state signal output [37,39,53–58].

Tomeasure steady-state signal output from EnvZ/OmpR osmosensing
circuits possessing the Cys-less variants, two-colour fluorescent reporter
strains were used. MDG147 is a derivative of E. coli strain K-12 MG1655
that possesses transcriptional fusions of cfp to ompC and of yfp to ompF
within its chromosome. This allows the ratio of CFP to YFP fluorescence
(CFP/YFP) to provide a rapid and sensitive measure of the ratio of
ompC to ompF transcription, which estimates the intracellular level
of phosphorylated OmpR (Fig. 1B) [35,37,41]. MDG147 cells harbouring
the empty vector pEB5 [41] were grown in glucose minimal medium
under either the low- (0% sucrose) or high- (15% sucrose) osmolarity
regime and both CFP fluorescence and YFP fluorescence were measured.
As previously observed, an increase in CFP fluorescence along with a
concomitant decrease in YFP fluorescence, resulting in an increased CFP/



Fig. 3. Signal output from the library of single-Cys-containing EnvZ variants. (A) CFP/YFP
ratios from EPB30/pRD400 cells expressing one of the single-Cys-containing EnvZ variants
grown under the low-osmolarity (0% sucrose) regime. These ratios are also compared to
EPB30/pRD400 cells expressing the Cys-less (C277A) variant and are used to demarcate
the Cys-containing variants in Fig. 5B. (B) Magnified version of panel A in order to
emphasise the region up to a 2-fold increase in CFP/YFP over cells expressing the Cys-less
variant. (C) CFP/YFP ratios from EPB30/pRD400 cells expressing one of the single-Cys-
containing EnvZ variants grown under the high-osmolarity (15% sucrose) regime. These
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YFP ratio, was observedwhenMDG147/pEB5 cells were grown under the
high-osmolarity regime (Fig. 2A and B) [35,37].

To assess whether plasmid-based complementation could produce
similar steady-state signal output, EPB30 (MDG147 envZ::kan) cells
[36] were complemented with the Cys-less EnvZ variants expressed
from plasmid pRD400 [37]. EPB30/pRD400 cells expressing the C277M
variant resulted in CFP and YFP fluorescence similar to those harbouring
the control vector (EPB30/pEB5) under both osmotic regimes, therefore,
it was not considered for further analysis (Fig. S1). The C277A variant
facilitated steady-state output similar to plasmid-based wild-type
EnvZ under both regimes, while C277S resulted in slightly lower
steady-state signal output (Fig. S2). Based on these results, we
elected to continue with the C277A under conditions that produced
results similar to MDG147/pEB5 cells (Figs. 2A, B and S2).

3.3. Mapping TM1 surfaces responsible for maintenance of EnvZ signal
output

As described above, positions 11 through 41were selected to ensure
that all residues potentially comprising TM1 were converted to a Cys
residue. A library of single-Cys-containing EnvZ proteins was created
by employing standard site-directed mutagenesis using pRD400
containing the C277A variant as a template (Fig. 2). Although several
attempts were made, a Cys residue could not be placed at position 32.
We observed that the entire library, with a few exceptions,was expressed
within EPB30/pRD400 cells grown under the low- or high-osmolarity
regime (Fig. S4). Under both the low- and high-osmolarity regimes the
L23C variant was found at significantly lower steady-state levels. In
addition, the monomeric form of the P41C variant was only quantifiable
whenEPB30/pRD400 cellswere grownunder the high-osmolarity regime
(Fig. S4).

For EPB30/pRD400 cells each expressing a single-Cys-containing
receptor, we measured CFP fluorescence, YFP fluorescence and also cal-
culated the CFP/YFP ratio, which serves as an estimate of steady-state
EnvZ signal output. EPB30/pRD400 cells expressing the C277A variant
were used as the baseline for comparison (Figs. 2A, B and S2). Under
the low-osmolarity regime, a shift in signalling output toward the “on”
state results in increased CFP fluorescence (Fig. S3A), decreased YFP
fluorescence (Fig. S3B) and an overall increase in the CFP/YFP ratio
(Fig. 3A and B), while a shift toward the “off” state appears as decreased
CFP (Fig. S3A), increased YFP (Fig. S3B) and a decrease in CFP/YFP ratio
(Fig. 3A and B).

Several trends were observed during analysis of the entire single-
Cys-containing library. When EPB30/pRD400 cells were grown under
the low-osmolarity regime, EnvZ was less tolerant of Cys substitutions
at the N- and C-terminal regions of the library. Inmost cases, this results
Fig. 2. Signal output of the Cys-less variant of EnvZ. (A) CFP and YFP fluorescence from
MDG147/pEB5 (filled) and EPB30/pRD400 C277A (Cys-less; empty) cells grown under
the low- (0% sucrose) and high-osmolarity (15% sucrose) regimes. (B) The CFP/YFP ratio
from MDG147/pEB5 (filled) and EPB30/pRD400 C277A (Cys-less; empty) cells grown
under the low- and high-osmolarity regimes estimates EnvZ signal output. Error bars
represent standard deviation of the mean with a sample size of n ≥ 3.

ratios are also compared to EPB30/pRD400 cells expressing the Cys-less (C277A) variant
and are used to demarcate the Cys-containing variants in Fig. 5B. It is important to note
that cells expressing the P41C variant were analysed only when grown under the high-
osmolarity regime. The shaded areas represent the mean and a range of one standard
deviation of mean. These values are provided to aid in comparison. Error bars represent
standard deviation of the mean with a sample size of n ≥ 3.
in a shift toward the “on” state of EnvZ, demonstrated by an increase in
CFP fluorescence and a decrease in YFP fluorescence. These boundary
regions appear to flank a core of alternating increases and decreases in
EnvZ signal output, suggesting thatmultiple tightly packed EnvZ helices
exist within the hydrophobic core of the innermembrane. It should also
be noted that when EPB30/pRD400 cells were grown under the low-
osmolarity regime, a Cys at residue position 22 prevented cellular
growth, however, this was not observed when cells were grown
under the high-osmolarity regime (Figs. 3, S3 and S4). Interestingly,
these results occurred adjacent to the position that possessed the
most-biased steady-state signal output (Cys-23). When EPB30/pRD400
cells were grown under the high-osmolarity regime, we observed a
similar pattern of changes in the CFP fluorescence (Fig. S3C), YFP
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fluorescence (Fig. S3D) and in CYP/YFP ratio (Fig. 3C), however, these
changes were smaller in magnitude, perhaps due to the fact that the
EnvZ/OmpR circuit was already activated and thus disturbances due to
altered surface interactions would be of a smaller magnitude.

3.4. Identifying surfaces involved in TM1–TM1′ dimerisation

Based on the effect of the individual Cys substitutions on EnvZ signal
output, it appears that a potential helix is formedwithin the hydropho-
bic core of themembrane. Therefore, wewere interested in determining
whether the helical surface participating in TM1–TM1′ interaction
surface could be identified. To accomplish this, the library of single-
Cys-containing variants was expressed in EPB30/pRD400 cells and
upon reaching an OD600nm of approximately 0.3, cells were subjected
to 250 μM molecular iodine for 10 min and subsequently analysed by
non-reducing SDS-PAGE. These conditions have been previously shown
to promote disulphide formation in various membrane-spanning recep-
tors in vivo [50]. Upon comparisonof thewild-type and the C277Avariant,
under either osmotic regime, the presence of a higher molecular weight
band confirmed the necessity of Cys-277 removal (Fig. S5).

Based on these results, EPB30/pRD400 cells expressing the single-
Cys-containing EnvZ variants were grown under the low- (0% sucrose)
and high-osmolarity (15% sucrose) regimes and subjected to molecular
iodine, non-reducing SDS-PAGE and immunoblotting against the C-
terminal V5 epitope (Fig. S6). Data were tabulated for every position
with the exception of residue position 32, which could not be made as
described above. We observed three regions, each with a different
extent of disulphide bond formation. The N-terminal region (region I
in Fig. 4), comprising residues 11 to 18, exhibited almost no cross-
linking, except for aminimal amount at positions 11 and 15. The second
region (II), consisting of positions 19 to 37, demonstrated alternating
low and high levels of disulphide formation consistent with the
hydrophobic core of TM1. The final region (III) consists of the C-
terminal periplasmic positions in our library, residues 38 through
41, where the apparent helical pattern is interrupted and an overall
greater extent of sulfhydryl-reactivity is observed. Altering the reaction
conditions as shown in Figs. S7 and S8 further supported the differentia-
tion of the TM1 into Regions I through III.

4. Discussion

4.1. Establishing the surface of TM1 that promotes dimerisation

The results of sulfhydryl-reactivity experiments were plotted on a
helical net [59] to visualise the TM1–TM1′ interaction surface. Using
the well-defined distance and angular constraints of a disulphide bond
[60,61], we assessed the relative distance between Cys residues along
the TM1–TM1′ interface. These constraints can be estimated from the
Fig. 4. Extent of sulfhydryl-reactivity for each single-Cys-containing variant. EPB30/
pRD400 cells growing under the low- (empty circles, 0% sucrose) or high-osmolarity (filled
circles, 15% sucrose) regimes were analysed to determine the ratio of dimeric:monomeric
EnvZ at each position as shown in Fig. S6. As described within the text, three distinct
regions (I, II and III) were observed. Error bars represent standard deviation of the mean
with a sample size of n ≥ 3.
distance between β-carbons in disulphide bonds, which range from
3.4 to 4.6 Å in protein crystal structures [62]. Therefore, when we em-
ploy a fixed concentration of molecular iodine (250 μM) and reaction
time (10 min), the extent of crosslinking correlates with the distance
between the Cys residues (Fig. S6). Based on this correlation, residue
positions 23/23′ and 26/26′would be in closest proximity. By extension,
the significant reduction in crosslinking as the Cys residues become
more distal from these positions within the membrane core suggests
that the TM1 and TM1′ helices cross at an angle that results in increased
distance between residues near the membrane boundaries. Therefore,
we propose that the major TM1–TM1′ interaction surface consists of
residues Ile-19, Leu-23, Ser-26, Thr-30 and Val-34 (Fig. 5A). In addition,
minor reactivity was observed with residues Ser-11 and Thr-15, sug-
gesting that they are quite distant but most likely reside on the same
surface as the TM1–TM1′ interface. Adjacent residues at the periplasmic
end of TM1, ranging from position 38 to 40 also exhibited extensive
cross-linking, however the helical pattern was interrupted suggesting
that a less uniform structure exists within these residues (Figs. 4 and
5A). Also important to note is that no significant differences in the
TM1–TM1′ interface were observed when cells were grown under the
low- (0% sucrose) or high-osmolarity (15% sucrose) regime (Fig. 4).

We believe that the residues examined can be formally divided into
three distinct regions (Fig. 5A) based on the results obtained when
changing the concentration of iodine (Fig. S7) or the reaction time
(Fig. S8). The EnvZ variants within Region I (S11C and T15C) follow a
distinct pattern of forming disulphide bonds only in the presence of
the highest concentration of iodine (250 μM) and the longest duration
(10 min). These data suggest that the Cys residues are either very dis-
tant, such that they irregularly form a disulphide bond, or are internal
to the inner leaflet of the cytoplasmicmembrane. The variants in Region
II (I19C, L23C, S26C, T30C, V34C and A25C to aminor extent) all follow a
similar pattern that is different than the variants in thefirst region.Here,
a minor extent of crosslinking at the distal ends of the region, namely
I19C and V34C, is observed, while a maximal amount is seen near the
core that is comprised of L23C and S26C. This is further demonstrated
by comparing the extent of crosslinking at the higher concentrations
of iodine (100 μM and 250 μM). In addition, unlike residues in Region
I, the reaction is complete after 1 min regardless of the overall extent
of crosslinking (Fig. S8). The variants found in Region III (A38C, I39C
and L40C) follow a third distinct pattern. EnvZ A38C exhibited a much
greater extent of crosslinking than V34C, and thus does not conform
to the crossing helix pattern. In addition, EnvZ I39C and L40C show
crosslinking at all concentrations of iodine (Fig. S7) and thus suggest
that either the helix becomes broken/unwound, or that these residues
reside in the periplasm, or both. It is also worth noting that when cells
were grown under the low osmolarity regime and in the absence of
iodine (Fig. S4), crosslinking occurred at positions 38 through 40,
suggesting that they may reside within the oxidising environment of
the periplasm.

4.2. Mapping surfaces of TM1 responsible for maintenance of baseline EnvZ
signal output

In order to visualise which surfaces of TM1 are responsible for
maintenance of steady-state EnvZ signal output, we mapped the signal
output of the family of single-Cys-containing receptors onto a helical
net (Fig. 5B). This analysis resulted in the identification of three
subdomains intolerant of Cys substitutions (signal output greater than
150% of the Cys-less variant): the cytoplasmic end of TM1 (Surface I),
three residues in the core of themembrane (Surface II) and the periplas-
mic end of TM1 (Surface III). We did not consider surfaces II and III as
contiguous because surface III may be due to breaching the periplasmic
boundary, while surface II remained buried but truly intolerant of Cys
substitution. This becomes more clear when cells are grown under the
high-osmolarity (15% sucrose) regime (Fig. 5B). It is also important to
emphasise that the two residues in the membrane core (positions 17
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Fig. 5.Helical net diagrams illustrating the TM1–TM1′ interface and surfaces important formaintenance of baseline EnvZ signal output. (A) The TM1–TM1′ interface remains similarwhen
EPB30/pRD400 cells are grown under the low- (0% sucrose) or high-osmolarity (15% sucrose) regime. The extent of TM1-TM1’ crosslinking, measured as the ratio of dimeric:monomeric
EnvZmoieties at each position is represented by the intensity of darkness. Residue positions 23 and 26,which reside in close proximity, result in the greatest extent of cross-linking. As the
position of the Cys residue ismoved toward the cytoplasmic end of the helix, a decrease in reactivity is observed. The divergence from a helical pattern at the periplasmic end of TM1may
indicate that the periplasmic boundary of themembrane has been breached and/or that the helicity is not observed within this region. It should be noted that the P41C, indicated with an
asterisk, variant could only be analysed when grown under the high-osmolarity regime. (B) Cys substitutions that result in decreased signal output compared to the cys-less variant are
presented in blue colours, while those resulting in increased signal output are indicated in red. Regions responsible for maintenance of baseline signal output fall into three contiguous
surfaces (red dots residing under a transparent grey area): one at the cytoplasmic end (surface I), a small one within the membrane core (surface II) and one at the periplasmic end of
the helix (surface III). These surfaces are less pronounced when cells are grown under the high-osmolarity regime, possibly because the EnvZ/OmpR circuit is already stimulated by
external osmolarity. The white circles represent the Cys-32 mutant that could not be created and the Cys-22 variant that failed to grow under the low-osmolarity regime.
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and 24) are subject to both sulfhydryl-reactivity and intolerance of Cys
substitution with regard to steady-state signal output. Overall, similar
patterns were observed when EPB30/pRD400 cells were grown under
the high-osmolarity regime (15% sucrose), although the degree of
increased signal output was smaller, perhaps because the EnvZ/OmpR
circuit was already activated (Fig. 5B).

Two EnvZ mutants that reside within the region we analysed (V33E
and P41L) were previously shown to result significantly greater in-
creased steady-state signal output [63,64]. Our data with EnvZ P41C is
in agreement with the previously published results with P41L, which
demonstrates that the loss of the Pro residue results in greatly increased
steady-state EnvZ signal output. In fact, the P41C variant of EnvZ results
in the greatest change in signal output when grown under the high-
osmolarity regime (Fig. 3). However, with EnvZ V33C, we observed
different results than those previously published with the V33E variant.
This difference suggests that the loss of Val-33 is not the major driving
force for changing steady-state signal output and that the increased
activation is most likely due to the insertion of a Glu residue. This is
not unexpected as we previously demonstrated [65] that residues
with longer side chains within their R-group possess the ability to
snorkel and interactwith, or be repulsed from in this case, the negatively
charged phospholipid head groups in the cytoplasmic membrane. This
may explain why our V33C variant did not exhibit similar properties to
the previously published EnvZ V33E.
4.3. Evaluation within the context of current models for transmembrane
communication

These data demonstrate that the TM1–TM1′ interface does not
significantly change when EPB30/pRD400 cells are grown under
regimes possessing different osmolarities (Fig. 4). This suggests that
TM1–TM1′might be relatively static in amanner consistentwith results
previously observed with the aspartate and ribose/galactose chemore-
ceptors [66] and also recently with DcuS, the C4-dicarboxylate sensor
of E. coli [67]. However, other types of signalling mechanisms that
involve more dynamic roles for TM1 and/or TM1′ have been observed.
For example, a rotation between TM1 and TM1′ within McpB of
B. subtiliswas seen upon addition of arginine [29], its cognate stimulus,
whereas our results suggest that no rotation occurs along the TM1–
TM1′ interface in response to osmolarity. In addition, small piston-
type displacements of TM1 have been observed in the periplasmic
domain of NarX and the TorT-TorS complex [30,31] and these might
not be detectable within the current iteration of our assay.

From another perspective, our results are in agreement with recent
analyses involving PhoQ that proposed the existence of water-filled
hemichannel spanning through the cytoplasmic end of the TM domain
[68]. Our data suggesting that TM1 and TM1’ cross at an angle resulting
in an increasing distance between the residues as they become further
distal from the membrane core is consistent with the presence of
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water hemichannel possessing a cytoplasmic-facing opening. The pro-
posed necessity of a polar residue is also consistent with our previous
results involving “aromatic tuning” and the repositioning of non-polar
hydrophobic residues around the cytoplasmic end of TM2 resulting in
modified signal output [37,65,69]. Recently, further experimentation
proposed a scissor-type model, which would also be consistent with
our helical crossing angles. We are planning to undertake further
experimentation to thoroughly assess these models [32]. In light of
the plethora of proposed signalling mechanisms, recent publications
[70,71] suggest that different subclasses of bacterial receptors may
employ alternate mechanisms of signal transmission and that every
proposed mechanism should not be imposed upon all bacterial
membrane-spanning receptors.
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