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Transition path sampling is a powerful tool in the study of rare events. Shooting trial trajectories
from configurations along existing transition paths proved particularly efficient in the sampling
of reactive trajectories. However, most shooting attempts tend not to result in transition paths, in
particular in cases where the transition dynamics has diffusive character. To overcome the result-
ing efficiency problem, we developed an algorithm for “shooting from the top.” We first define
a shooting range through which all paths have to pass and then shoot off trial trajectories only
from within this range. For a well chosen shooting range, nearly every shot is successful, result-
ing in an accepted transition path. To deal with multiple mechanisms, weighted shooting ranges
can be used. To cope with the problem of unsuitably placed shooting ranges, we developed an
algorithm that iteratively improves the location of the shooting range. The transition path sam-
pling procedure is illustrated for models of diffusive and Langevin dynamics. The method should
be particularly useful in cases where the transition paths are long so that only relatively few shots
are possible, yet reasonable order parameters are known. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4997378]

I. INTRODUCTION

Dynamics in complex systems is often dominated by rare
events, from the nucleation of crystals to the folding of pro-
teins.1,2 The typical waiting time for the events of interest is
much longer than the event itself. Therefore, even if it is tech-
nically possible to propagate large systems long enough in
simulation time to witness a rare event, this direct sampling is
not efficient when the relevant transition makes up only a tiny
fraction of the trajectory. Transition path sampling (TPS) tries
to overcome the disparity of time scales through importance
sampling in trajectory space.1,3 A Markov process in trajec-
tory space is constructed whose target stationary distribution
is the distribution of transition paths that would be obtained in
long equilibrium runs.

Within a wide spectrum of sampling strategies, transi-
tion path (TP) shooting emerged as particularly powerful
sampling strategy.4 A point along an existing TP is cho-
sen at random, its velocities are perturbed, and then trajec-
tory segments are propagated forward and backward in time
starting from the perturbed phase point. If the two trajec-
tory segments end up in different metastable states, the new
path is accepted, after reversing time on the backward seg-
ment. Otherwise, it is rejected. This procedure is then applied
recursively.

a)Author to whom correspondence should be addressed: gerhard.hummer@
biophys.mpg.de

For TP shooting to be efficient, it is important that paths
are short and decorrelate after a few iterations. This requires
a reasonably high degree of acceptance of trial paths and
good connectivity of the TP ensemble under the iterative TPS
procedure. Unfortunately, in many interesting problems, the
probability of acceptance is low for almost any newly gen-
erated path. The probability of creating a TP starting from a
phase point x = (r, v) is p(TP|x) = φA(x)φB(x) + φB(x)φA(x),5

where φA(x) and φB(x) = 1 − φA(x) are the committor func-
tions, defined as the probability of arriving first at states A
and B, respectively. The underline in x ≡ (r,−v) indicates sign-
inverted velocities v. r are Cartesian coordinates. (Note that
because of a printing error, the underlines are missing in
Ref. 5.) For typical condensed-phase systems, the committors
(averaged over velocities v in the case of deterministic dynam-
ics) are close to either 0 or 1 nearly everywhere, except in a
small transition region. Therefore, the products of committors,
φAφB, are near zero almost everywhere.

To cope with the resulting problem of low acceptance,
Dellago et al.4 proposed to use phase-space dynamics and min-
imally perturb the momentum at the shooting point. However,
for systems with long TPs, typical of many problems in con-
densed phase, memory of the initial momentum is rapidly lost.
In forward-flux sampling6 and transition interface sampling,7

the problem is addressed by staging the sampling through a
sequence of non-intersecting dividing surfaces that foliate the
configuration space between the two metastable states. The
“aimless shooting” algorithm by Peters and Trout8 is an ele-
gant approach that operates within the standard TP shooting
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framework without using order parameters. Trial trajectories
are shot off from the point where shooting was last success-
ful or from points a certain number of frames before or after
in time. Recently, Brotzakis and Bolhuis9 built on the idea
of biasing the choice of the starting point and extended it to
one-way shooting for stochastically thermostatted dynamics.
Earlier, Juraszek and Bolhuis10 had combined transition inter-
face sampling with a bias on the shooting points to improve
the sampling efficiency for protein folding simulations. In an
alternative approach, one of us proposed to shoot TPs from a
single dividing surface,5 with random directions, as in aimless
shooting,8 but requiring an order parameter as in transition
interface sampling.7 Ideally, the dividing surface is chosen to
capture the ensemble of transition states at the top of the kineti-
cally relevant barriers.5 This approach promises to enhance the
efficiency of sampling, but it requires a well chosen dividing
surface, a good sampling of initial conditions on that sur-
face, and an elaborate accounting for the relative weights of
TPs.

In many practical cases, one has at least partial informa-
tion about the mechanism in the form of reaction coordinates,
as witnessed by the success of path sampling methods such as
forward-flux sampling6 and transition interface sampling,7 and
of the simpler Markovian form of milestoning.11 For instance,
despite the evident complexity in the folding of small proteins,
as seen in simulations,12 it was found that the fraction of native
contacts forms an excellent reaction coordinate.13,14 Our aim
is to use such information to bias the choice of shooting points.

We extend the procedure of “shooting from the top” by
initiating trial TPs recursively from a pre-defined “shooting
range” of finite width instead of a dividing surface. In this
way, we aim to meet the competing demands of high accep-
tance, efficient sampling over a broad range of TP families,
and simple accounting for the weights in the TP ensemble. To
avoid getting trapped in a single transition saddle (or tube),
one can combine “shooting from the top” with regular TP
shooting by using weighted shooting ranges. The resulting
algorithm requires minimal bookkeeping and is applicable to
a wide range of dynamics, including Newtonian dynamics with
and without certain thermostats, Langevin dynamics in phase
space, overdamped Langevin (or Brownian) dynamics, and
Metropolis Monte Carlo (MC) sampling. This type of shoot-
ing is particularly useful where one has dynamically relevant
order parameters,15 i.e., good reaction coordinates, and where
the cost of generating TPs is high (e.g., in protein folding or
conformational dynamics).

The paper is organized as follows. We first derive the
general algorithm of “TP shooting from the top.” We then
illustrate its application and characterize its efficiency for sim-
ple model systems. We also show how the shooting range can
be adaptively optimized to guide it toward the transition state
ensemble. To conclude, we discuss possible applications as
well as limitations and ways to address them.

II. THEORY
A. Path probability

In the following, we assume that trajectories are cre-
ated by integrating the equations of motions over discrete and

uniform intervals of time δt. Determined by the frequency of
saving intermediate structures, δt is usually a multiple of the
integration time step ∆t (or a certain number of MC steps).
We further assume that in the full phase space, the dynamics
is Markovian, not explicitly time dependent, microscopically
time reversible, and preserving an equilibrium distribution.
These conditions are satisfied by a wide range of dynamics
used in computer simulations, including deterministic Newto-
nian dynamics on a static potential surface, Langevin dynamics
in phase space, overdamped Langevin dynamics, and a vari-
ety of thermostatted dynamics. For dynamics with inertia,
the multidimensional phase points x = (r, v) include veloc-
ities v. For Brownian or MC dynamics, we consider only
coordinates x = r. Note that x is the state of the entire sys-
tem and also includes solvent degrees of freedom (and, in
the extended Lagrangian dynamics, the additional degrees of
freedom).

For a given dynamics, the probability of going from
one phase point to the next in time δt defines the
propagator or Green’s function p(xi→ xi+1)≡ p(xi+1, δt |xi, 0),
where ∫ dxi+1p(xi→ xi+1)= 1. The probability p of the
time reversed dynamics then satisfies the detailed balance
condition4

peq(xi+1)p(xi+1 → xi) = peq(xi)p(xi → xi+1), (1)

where x = (r,−v) denotes phase points with sign-inverted
velocities, and peq(x)= peq(x) is the conserved equilibrium
distribution.

Our aim is to sample trajectories from the TP ensemble.
TPs connect two non-overlapping regions A and B in phase
space directly. These regions are usually chosen to cover dis-
tinct metastable states with the boundaries of A and B defined
in terms of one or several order parameters. The probabil-
ity of a path X = (x0, x1, . . . , xN ) in the TP ensemble is then
proportional to3,5

p[X] ∝ peq(x0) *
,

N−1∏
i=0

p(xi → xi+1)+
-

×
*.
,

N−1∏
j=1

hC(xj)
+/
-

(
hA(x0)hB(xN ) + hB(x0)hA(xN )

)
, (2)

where we denote paths with capital letters and the arguments
of path probabilities with square brackets to distinguish them
from phase-space probability densities and transition proba-
bilities. The indicator functions are defined as hM (x) = 1 for
all x ∈ M and hM (x) = 0 otherwise, for M = A, B, and C, with
C as the phase-space region outside both A and B. Note that
here we use the TP definition of Ref. 5 for paths of variable
duration contained entirely in the transition region C (except
for the first and last points, with the paths truncated before
and after, respectively). That is, the last term accounts for the
possibility of A-to-B and B-to-A paths.

B. Transition path shooting

In its most general form, we select a shooting point xi from
an existing path X = (x0, x1, . . . , xN ) according to a probability
psel(xi |X), map it to another phase-space point x′ accord-
ing to a probability density ppert(x′ |xi), and then propagate
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trajectories first forward and then backward in time from x′

until either A or B are reached. If the forward and backward
trajectory segments end in opposite regions, A and B or B and
A, then the new path X ′ = (x′0, x′1, . . . , x′N′), with x′j = x′ for
some j by construction, forms a candidate TP. To time-order
paths so that they consistently go from A to B, the segment
ending in A is time reversed (i.e., re-ordered from end to begin-
ning) and placed at the beginning of the TP. This trial path is
then accepted or rejected according to a criterion that ensures
paths are sampled according to Eq. (2), using the Metropolis
Markov chain methodology (see Fig. 1). For this procedure to
sample from the correct distribution, the usual requirements
for Markov chain sampling have to be satisfied. In particular,
the TP space has to be connected, i.e., every path should be
reachable in principle from every other path in a finite number
of steps. By repeatedly applying this procedure, a sample of
representative TPs is generated.

In the following, we derive the acceptance criterion of
candidate TPs. In this derivation, we follow earlier stud-
ies1,4,16 with minor adjustments to account for the choice
of a shooting range. In particular, we require that path
ensemble probabilities, Markov-chain generation probabili-
ties, and acceptance probabilities are connected by detailed
balance,

p[X]pgen[X → X ′]pacc[X → X ′]

= p[X ′]pgen[X ′ → X]pacc[X ′ → X]. (3)

Since trajectory segments are generated by time integration,
the generation probability can be written in terms of the
propagator

FIG. 1. Schematic illustration of transition path “shooting from the top.” The
last accepted TP trajectory X (cyan) and the newly generated trial trajectory
X′ (red) are shown on top of a two-dimensional free energy landscape (where
dark colors indicate low free energies). The shooting point (green) lies on both
trajectories. The metastable regions A and B are indicated (white outlines) as
well as the “shooting range” within boundaries q(x) = q0 and q(x) = q1 (dashed
yellow lines). Trajectories X and X′ have n = 3 and n′ = 5 points within the
shooting range. The Metropolis acceptance probability to go from X to X′ is
thus 3/5 = 60%. Conversely, the acceptance probability to go from X′ to X is
100% because n < n′.

pgen[X → X ′] = psel(xi |X)ppert(x
′
j |xi)

×

N′−1∏
k=j

p(x′k → x′k+1)
j−1∏
m=0

p(x′m+1 → x′m). (4)

Here and in the following, we dropped the indicator functions
hM (xk) since in practice those are accounted for in an initial
rejection of all trial paths that are not candidate TPs. Using
Eq. (1) for p[X], we arrive at

pgen[X → X ′] =
psel(xi |X)ppert(x′j |xi)

peq(x′j )
p[X ′]. (5)

After substituting this and an analogous expression for
pgen[X ′ → X] into Eq. (3), we obtain an expression for the
ratio of acceptance probabilities,

pacc[X → X ′]
pacc[X ′ → X]

=
psel(x′j |X

′)ppert(xi |x′j )peq(x′j )

psel(xi |X)ppert(x′j |xi)peq(xi)
, (6)

in terms of ratios of the probabilities psel(x′j |X
′) and psel(xi |X)

of selecting candidate shooting points from existing paths X
and X ′, of the probability densities ppert(xi |x′j ) and ppert(x′j |xi) of
creating perturbed starting points from the candidate shooting
points, and of their equilibrium probability densities peq(x′j )
and peq(xi). The Metropolis acceptance criterion

pacc[X → X ′] = min

1,

psel(x′j |X
′)ppert(xi |x′j )peq(x′j )

psel(xi |X)ppert(x′j |xi)peq(xi)


(7)

satisfies this condition. Note that, for notational simplicity, in
Eqs. (6) and (7) we did not include the products of indicator
functions imposing that paths X and X ′ are transition paths
by having one of their two endpoints in A, the other in B, and
all other points in C, i.e., neither in A nor in B. As in regular
Metropolis Monte Carlo sampling, after rejecting a shooting
attempt that produced no TP or a TP of low weight, the last
accepted path is added once more to the growing TP ensemble.

In the simplest form of sampling by “shooting from the
top,” we define a shooting range S within which we choose
candidate shooting points. A similar formulation has been
used in S-shooting, a reactive-flux type rate calculation intro-
duced by Menzl et al.17 In the following, we assume that S is
defined as S = {x |q0 < q(x)< q1} in terms of a single scalar
order parameter q(x). However, more complex definitions
are possible, including a combination of weighted shooting
ranges, as described below. Usually, the region bounded by q0

and q1 will not overlap with the metastable regions A and
B, but this is not a requirement. Importantly, though, it is
required that all TPs pass through S at least once. For a given
path X, let the set Xsr = {xk |xk ∈ X; q0 < q(xk)< q1} contain
all of its n= |Xsr | points in the shooting range. Among these
points, we choose one at random, i.e., psel(xi |X)= 1/n if xi ∈ Xsr

and 0 otherwise. On the candidate TP X ′, the correspond-
ing set X ′sr = {x

′
k |x
′
k ∈ X ′; q0 < q(x′k)< q1} contains n′ = |X ′sr |

points, and psel(x′j |X
′)= 1/n′ if x′j ∈ X ′sr and 0 otherwise. For

simplicity, we generate perturbed shooting points x′j from xi

and xi from x′j such that ppert(xi |x′j )peq(x′j )= ppert(x′j |xi)peq(xi).
For stochastic dynamics, such as Langevin dynamics, we
simply set x′j = xi, without perturbation, and rely on the
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newly generated sequence of random numbers to create diver-
gent trajectories. For deterministic dynamics, we modify the
velocities in a way that is reversible, e.g., by random rotation
or by redrawing Maxwell-Boltzmann velocities that are then
rescaled to preserve the kinetic energy exactly. For such per-
turbations, the acceptance probability Eq. (7) for the new path
simplifies to

pacc[X → X ′] = min
[
1,

n
n′

]
, (8)

i.e., a candidate path is accepted with probability one if it has
fewer points within the shooting range and with a probability
equal to the ratio n/n′ of the number of points in the shooting
range if n ≤ n′. In this way, we correct for the bias towards
paths that dwell for long times in the shooting range. This
procedure can be thought of as a generalization of the proce-
dure of sampling transition paths of unequal length,5,7 where
n = N and n′ = N ′. As a further generalization, one can select
shooting points according to a weighting function, which will
be discussed below. In this context, we also refer to a recent
review by Bolhuis and Dellago,16 in which a biased choice
of shooting points has been discussed and the corresponding
acceptance criterion has been derived.

A minor technical issue is that for very narrow shooting
ranges, newly created paths saved at long intervals δt have only
one discrete point xi (the shooting point) in the range even if
they cross it multiple times. One can then widen the shooting
range, increase the saving frequency, or use a wider ppert(x′ |x),
in which also the Cartesian coordinates r are perturbed. A more
challenging problem is that TP space may be nearly disjoint,
e.g., in cases where a reaction can proceed with two distinct
mechanisms. In the above algorithm, candidate shooting points
are ideally concentrated in the saddle regions, which could
make it difficult to traverse from one saddle to another through
repeated accepted shooting moves. In practice, this may be less
of a problem since the choice of the order parameter q(x) will
hardly ever be ideal. Nonetheless, as a counter measure, one
can modify psel(x |X ′), e.g., by shooting with probability w
from the shooting range S and with probability 1−w from the
entire path (such that n = N and n′ = N ′ in the latter case).
Below, we describe a generalization of this idea to weighted
shooting ranges.

C. Sampling efficiency

Using TP theory,5,18 we can determine the expected prob-
abilities of generating a TP in a shooting move. The points on
TPs have a probability density in phase space given by5

p(x |TP) =
peq(x)[φA(x)φB(x) + φB(x)φA(x)]

∫ dx′peq(x′)[φA(x′)φB(x′) + φB(x′)φA(x′)]
, (9)

where φB(x) = 1 − φA(x). For a point x, the probability that
shooting will lead to a TP (i.e., of hitting A and B) is p(hit|x) ≡
p(TP|x) = φA(x)φB(x) + φB(x)φA(x). The probability p(hit) of
creating a TP in “shooting from the top,” averaged over points
x on existing TPs and in the shooting range, is thus

p(hit) =

〈
hS(x)[φA(x)φB(x) + φB(x)φA(x)]2

〉
eq〈

hS(x)[φA(x)φB(x) + φB(x)φA(x)]
〉

eq

, (10)

with 〈. . .〉eq being an average over the equilibrium distribution.
hS(x) is the indicator function for the shooting range, i.e., hS(x)
= 1 if q0 < q(x) < q1, and hS(x) = 0 otherwise. [Note that for
simplicity, we did not include ppert(x′ |x), which would require
an additional average.]

For dynamics that is Markovian in configuration space
with coordinates r, these expressions simplify to

p(r|TP) =
peq(r)φA(r)φB(r)

∫ dr′peq(r′)φA(r′)φB(r′)
(11)

and

p(hit) =
2
〈
hS(r)[φA(r)φB(r)]2

〉
eq

〈hS(r)φA(r)φB(r)〉eq
. (12)

For the inertial dynamics without recrossings assumed in tran-
sition state theory, and for x a transition state, the terms in
square brackets of Eq. (10) are equal to one. The maximum
acceptance probability is thus p(hit) = 1 if hS(x) captures the
transition states exactly and exclusively. By contrast, for dif-
fusive dynamics, the acceptance probability reaches its max-
imum at p(hit) = 1/2, again if hS(x) = 1 only for transition
states with φA(x) = φB(x) = 1/2. If the shooting range extends
beyond the region of transition states, p(hit) is reduced. If
one assumed that all TPs are accepted and the correlation
between consecutively sampled TPs is independent of the
extent of the shooting range (which is unlikely to be the case
in practice), the relative efficiency of sampling with different
shooting ranges would be proportional to p(hit) in Eq. (10)
or (12).

Importantly, even if the shooting range is defined sub-
optimally, the acceptance probability remains reasonably high.
The reason is that shooting is initiated from points distributed
according to p(x |TP) and not peq(x). As shown in Eq. (9),
the TP ensemble is already strongly biased towards transition
states. This bias helps explain why standard TPS with shooting
moves4 works reasonably well even without restricting the
shooting range.

D. Weighted shooting ranges
and adaptive optimization

So far, we have assumed a single shooting range within
which candidate shooting points are chosen at random. In the
following, we extend this approach to using a combination of
weighted shooting ranges. We assume that we have a suitably
chosen weight function w(x) according to which the points
should be chosen with w(x) ≥ 0. The probabilities to select
xi ∈ X and x′j ∈ X ′ are then

psel(xi |X) =
w(xi)∑

xk ∈X w(xk)
, (13)

psel(x
′
j |X
′) =

w(x′j )∑
x′k ∈X′ w(x′k)

. (14)

These expressions can be substituted into Eqs. (6) and (7) to
obtain the corresponding acceptance criteria. In this way, one
can, e.g., predominantly select candidate points from a core
shooting range [where w(x) is large] and occasionally from
the entire region outside A and B [where w(x) is small]. Biased
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choices of shooting points as a means to improve the sam-
pling efficiency have been discussed before by Bolhuis and
Dellago.16

The weight function w(x) can be adaptively optimized
during TPS. In practice, it will usually be formulated as a
function of one or several order parameters Q1, Q2, . . ., i.e., w
= w[Q1(x), Q2(x), . . .]. In Sec. V, we sketch possible machine
learning and reaction-coordinate based optimizations. Here,
we pursue an even simpler strategy in which the shooting
range is moved and its width is adjusted. In effect, this algo-
rithm maximizes the overlap of the shooting range with the
ensemble of points where shooting has been particularly suc-
cessful. Since the latter can be broadly identified as “transition
states,” the algorithm is related to procedures to optimize reac-
tion coordinates. However, such procedures are usually applied
after simulations are completed on the basis of transition path
and equilibrium ensembles.5,8,15,19 The optimization strategy
used here is also related to the aimless shooting algorithm by
Peters and Trout,8 which aims to concentrate shooting attempts
near the dividing surface without invoking an order parame-
ter. As a possible trade-off, by choosing the shooting point
at or near the last successful shooting point, aimless shoot-
ing produces sequences of TPs that tend to share a common
point or pass through a narrow region. By contrast, if a suf-
ficiently wide shooting range is used, shooting points can be
widely separated, which should accelerate the decorrelation
of TPs and facilitate the crossing between different transition
states.

We define the shooting range in terms of an order param-
eter q(r). The aim is to optimize this definition on the basis of
the collected statistics for p(hit|r), i.e., the probability, that a
TP shooting attempt initiated at r is successful in the sense of
producing a TP. We optimize both the location and the size of
the shooting range. In a shifting move, we move the center of
the shooting range towards the weighted center of p(hit|r) cal-
culated over the current shooting range. In a narrowing move,
we check if it would be beneficial to narrow down (or widen)
the shooting range symmetrically from both sides. Specifically,
we test if

∫trialSR dr p(hit|r)

∫SR dr p(hit|r)
≶

AtrialSR

ASR
,

where AtrialSR and ASR stand for measures of the areas of the
trial and existing shooting ranges. In our one dimensional
case, A is proportional to the width of the shooting range.
If one has a set of order parameters that in (linear) com-
bination define a decent reaction coordinate, straightforward
extensions of the iterative shooting range optimization proce-
dure outlined above can be used to translate, rotate, and narrow
or widen the shooting range to capture as much of the tran-
sition state ensemble as possible. More general approaches,
which change the order parameter itself, are discussed in
Sec. V.

III. MODEL SYSTEMS

We illustrate and test the TP shooting algorithm in appli-
cations to simple model systems. The validity of the ensem-
ble of reactive trajectories generated with the algorithm is

tested by comparison with the ensemble of reactive trajectories
harvested from long equilibrium trajectories.

As a numerical integrator for the overdamped Langevin
equation, we used the Euler-Maruyama discretization scheme
as implemented, e.g., in GROMACS,20

r(t + ∆t) = r(t) + D∆t F(r(t))/kBT +
√

2D∆tg,

where r(t) and r(t + ∆t) are the current and new positions,
respectively, ∆t is the time step, F(r) is the force evaluated at
r, D is the diffusion coefficient, kB is Boltzmann’s constant,
T is the temperature, and g is a vector of uncorrelated Gaus-
sian random numbers with zero mean and unit variance. This
integrator is used for the generation of the equilibrium tra-
jectories as well as in the corresponding TP sampling. Note
that this simple integrator conserves the Boltzmann equilib-
rium distribution only approximately in a time step dependent
manner.

To study inertial dynamics in phase space, we imple-
mented a leap-frog type “impulsive Langevin” integrator,21

which is also implemented in GROMACS.20 Trajectories were
advanced according to

v ′
(
t +
∆t
2

)
= v

(
t −
∆t
2

)
+

F(r(t))∆t
m

,

∆v = −αv ′
(
t +
∆t
2

)
+

√
kBT
m

α (2 − α)g,

r(t + ∆t) = r(t) +

(
v ′

(
t +
∆t
2

)
+
∆v

2

)
∆t,

v

(
t +
∆t
2

)
= v ′

(
t +
∆t
2

)
+ ∆v,

α = 1 − e−γ∆t ,

where v is the velocity, γ is the friction rate (with dimension of
inverse time), and g is again a vector of uncorrelated Gaussian
random numbers, drawn at each time step, with zero mean
and unit variance. In the following, we will refer to this time
integration simply as “Langevin.”

As a model system, we considered a two-dimensional
potential surface

V (x, y) = B
((

x2 − 1
)2

+ (x − y)2
)

,

where B is the barrier height in units of kBT. (In the following,
we will use reduced units, with mass m = 1, and energies in
units of kBT.) The two stable states are defined as all points (x,
y) with V (x, y) < 0.1B (see Fig. 2). The state referred to as A
is located around r = (−1,−1), whereas the state B is located
around r = (1, 1).

All probabilities were evaluated on a 2D grid with a spac-
ing of 0.01 from �2 to +2 on both axes. The probability p(r|TP)
was represented as a normalized histogram of points along
transition paths spaced uniformly in time.

Starting from an existing transition path, the shooting pro-
cedure for the overdamped case consists of choosing at random
a point within the shooting range and then propagating two
trajectory segments from there. If the two newly grown trajec-
tory segments reach different stable states, A and B or B and A,
the newly generated transition path is accepted according to
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FIG. 2. Top view of the potential V (x, y). The borders of the employed
shooting ranges are shown in red (narrow), magenta (misplaced), and cyan
(regular). Regular shooting uses the entire region outside the states A and B
indicated with cyan boundaries. For illustration, a transition path generated
with overdamped Langevin dynamics is shown in blue.

Eq. (7). The shooting procedure for the Langevin case con-
sists of selecting a random point on the old transition path
lying in the shooting range and propagating two trajectory
segments in opposite directions in time by inverting the veloc-
ities of the “backwards” segment. Whereas the coordinates r
of the shooting point are not changed, a new velocity vector v
is drawn at random and rescaled to match the absolute value
of the old velocity at the chosen shooting point. Therefore,
the total kinetic energy does not change and the acceptance
criterion stays simple.

Different choices of shooting ranges were employed to
quantify the effects of various options (see Fig. 2). The shoot-
ing range referred to as “narrow” is centered at the dividing
surface and is only 0.1 units wide. It is bordered by the two
functions x0(y) = �y � 0.05 and x1(y) = �y + 0.05. The shooting
range referred to as “misplaced” does not include the divid-
ing surface but completely separates the two stable states. Its
bordering functions are x0(y) = �y + 0.4 and x1(y) = �y + 0.7.
The shooting range “regular” consists of all points outside of
A and B. Using the “regular” range is thus equivalent to the
traditional TP shooting algorithm without a tightened shooting
range.4

We measure the efficiency of TP sampling with a par-
ticular shooting range as the ratio of generated transitions
to the total number of MC steps. To quantify the difference
between probability distributions p1(x, y) and p2(x, y), we use
the non-symmetrized Kullback-Leibler (KL) divergence

DKL(p1 | |p2) ≡
∑
i,j

p1(xi, yj) ln
p1(xi, yj)

p2(xi, yj)
, (15)

where the sum is over the bins i and j and the histograms are
normalized,

∑
i,j p1(xi, yj) =

∑
i,j p2(xi, yj) = 1. To compare

the TP densities, p(r|TP), we use DKL(EQ| |SR), i.e., the well-
sampled TP density from shooting with a shooting range (SR)
is used as reference p2 and the TP densities from long equilib-
rium (EQ) runs are used as p1. We also compare the distribution

of transition path times, i.e., the time on a TP between the last
point within A and the first point within B.

IV. RESULTS AND DISCUSSION
A. Transition path ensembles

TP sampling reproduced the equilibrium ensemble of tran-
sition paths, as harvested from long equilibrium trajectories,
for all shooting ranges, barrier heights, and integrators. This
can be best seen for a moderately high barrier (B= 3 kBT )
because there the equilibrium trajectory easily contains enough
transitions for a meaningful statistics. As shown in Fig. 3(c),
there are no systematic deviations between the distributions
p(r|TP) from TP sampling and from the equilibrium trajec-
tory. The KL divergences range from DKL(EQ| |narrowSR)
= 0.0019 to DKL(EQ| |regular)= 0.0038 and show excellent
agreement between the sampled and equilibrium distributions
(see Table I). The distribution of transition times, p(tTP), was
also correctly reproduced for all choices of shooting ranges
[see Fig. 3(d) for B= 3 kBT and Table I for other systems].

Similar results were obtained with the impulsive Langevin
integrator without noticeable systematic derivations between
the sampled and equilibrium distributions (Fig. S1 of the
supplementary material). Here the Kullback-Leibler diver-
gences are a bit higher (Table I) but still indicate that the
distributions are in excellent agreement.

For high barriers (B= 10 kBT ), where the TP sampling
becomes increasingly interesting because of the growing dis-
parity of time scales between waiting time and transition time,
the distributions p(r|TP) and p(tTP) were also correctly repro-
duced but a comparison with the equilibrium trajectory became
difficult because it only contained a few transitions. The
Kullback-Leibler divergences are therefore a bit higher than for
the lower barrier but still indicate excellent agreement between
the distributions with values from DKL(EQ| |narrowSR)
= 0.039 to DKL(EQ| |misplacedSR) = 0.061.

As can be seen from Fig. S2(C) of the supplementary
material, the different TP sampling schemes produce distribu-
tions that deviate by about the same amount from the equi-
librium distribution. These difference values are calculated at
every TP shooting attempt as the sum of the absolute values
of the difference between the distributions p(r|TP) from TP
sampling at that particular step and the corresponding distri-
bution from the complete equilibrium trajectory. Therefore, it
seems likely that this difference is due to the fact that the num-
ber of equilibrium transitions is too small to arrive at a good
equilibrium distribution. This is supported by the agreement of
the distributions of transition times obtained from the equilib-
rium trajectory and from TP sampling with different shooting
ranges [Fig. S2(D)].

B. Efficiency

The increase in efficiency in generating new transitions
through the definition of a shooting range varies naturally
depending on the shooting range location. The shooting range
“narrow,” which is centered at the dividing surface, reached
almost the ideal efficiency of 0.5 for the overdamped case inde-
pendent of the barrier height. By contrast, for high barriers, the
“misplaced” shooting range yielded an efficiency lower than

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-016799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-016799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-016799
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FIG. 3. Comparison of transition paths
from TP shooting and equilibrium sim-
ulations. Results are shown for the over-
damped Langevin integrator with a bar-
rier B = 3 kBT , a time step ∆t = 0.01,
and a diffusion coefficient D = 0.01.
Points were saved for analysis at every
time step (i.e., ∆t = δt). (Top) Normal-
ized probability densities p(r |TP) from
(a) equilibrium trajectories and (b) TP
shooting. The path of steepest descent
is marked by a blue dashed line. The
shooting range is marked by red lines
in panel (b). (c) Difference in p(r |TP)
from equilibrium and TP shooting. (d)
Normalized histograms of the transition
times tTP.

the “normal” shooting range. The reason is that for high barri-
ers, a shot initiated far from the dividing surface has almost no
chance of generating a transition, whereas with a wide shooting
range, the occasional “lucky draw” of a point near the dividing
surface dominates the efficiency in generating transitions.

While the efficiency of the narrow shooting range stays
almost constant as the barrier height increases (0.48 for
B= 3 kBT and 0.46 for B = 10 kBT ), the efficiency with
the “regular” shooting range drops with increasing barrier
height from 0.24 (B = 3 kBT ) to 0.11 (B = 10 kBT ). This
makes it clear that the definition of a shooting range becomes
increasingly important with increasing barrier heights.

It should also be noted that the efficiency in generating
new transitions with the Langevin dynamics is generally a bit

higher and increases with decreasing friction. The reason is
the partial conservation of momentum: a pair of trajectories
initiated with opposite velocities at the barrier top initially fall
off the barrier in opposite directions and are likely to continue
their path toward opposite states.

C. Iterative shooting range optimization

A misplaced shooting range can result in low efficien-
cies (see Fig. 4). To address this problem, we devised an
algorithm that is able to iteratively optimize the location of
the shooting range. After a fixed number of shots, we first
tried a narrowing move and, if no narrowing took place, a
shifting move. To retain the correct weighting between the

TABLE I. Kullback-Leibler divergences between the p(r |TP) distributions sampled by TP shooting for a given
shooting range and by equilibrium simulations. The number of unique transition paths in the respective TP
ensemble is listed in parentheses. For comparison, the same number of shooting attempts was made in every setup
independent of the shooting range.

System Equilibrium Narrow SR Misplaced SR Regular

Overdamped Langevin, B = 3 kBT (28 941) 0.001 85 (24 990) 0.003 61 (12 688) 0.003 82 (17 770)
Langevin, B = 3 kBT , γ = 50 (7 268) 0.007 22 (12 606) 0.011 33 (6 211) 0.008 21 (8 951)
Langevin, B = 3 kBT , γ = 20 (17 380) 0.008 71 (12 422) 0.015 01 (6 263) 0.009 51 (8 503)
Overdamped Langevin, B = 10 kBT (605) 0.038 6 (50 326) 0.061 2 (2 238) 0.043 2 (17 986)
Langevin, B = 10 kBT , γ = 50 (430) 0.047 7 (24 662) 0.095 7 (1 293) 0.051 7 (8 828)
Langevin, B = 10 kBT , γ = 20 (492) 0.079 7 (25 475) 0.125 3 (1 166) 0.086 2 (9 148)
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FIG. 4. Decomposition of the 200 000 MC shooting attempts into accepts,
rejects, and no transition generated depending on the choice of the shooting
range. The parameters used are B = 10 kBT , ∆t = 0.03, and D = 0.01 as for
Fig. S2 of the supplementary material.

transitions (and thereby generate an equilibrium ensemble of
transitions), the number of points in the shooting range has to
be recalculated for the current transition path after the shoot-
ing range is changed. If none of the saved points on the current
TP is in the trial shooting range, the shooting range is not
changed.

We have tested different numbers of shots between the
optimizing steps and have found that between 25 and 50
shots are sufficient to improve the location of the shoot-
ing range significantly. The algorithm then reached an opti-
mal shooting range after 15-30 optimizing steps. While in
general less optimizing steps are needed if more shots are
undertaken between two successive optimizations, it is ben-
eficial to move the shooting range as frequently as possible
to make use of the increased efficiency in generating TPs.
In production TP sampling, an initially optimized shooting
range should be kept fixed to create a properly weighted TP
ensemble.

Figure 5 shows the result of a shooting range optimization
every 50 shots, starting from a completely misplaced shooting
range x + y ∈ [−1.5,−0.5]. The algorithm reached an optimal
shooting range [�0.02, 0.02] after 16 optimizing steps (800
shots). When changing the optimization frequency to every 25
shots, the algorithm reached the optimal shooting range after
34 optimizing steps (850 shots).

V. CONCLUDING REMARKS

We described an algorithm that uses shooting ranges to
improve the efficiency in transition path sampling of rare
events. The key idea is that shooting off trajectories from points
in the transition state region is more likely to produce transition
paths than shooting trajectories from points close to the reac-
tant and product states. Similar reasoning has been used before
to shoot trajectories from a well chosen dividing surface5 or
near points where previous shots were successful.8,9 In a more
general form, one can choose shooting points according to a
weight function w(x) in configuration (or phase) space, which
would typically be defined in terms of an order parameter and
adopt large values in the transition state region.

The weight function could be adaptively optimized to
improve the sampling efficiency, e.g., by machine learning
techniques applied to the shooting statistics. Neural networks
have proven to be particularly flexible and efficient in rep-
resenting functions of many variables, including many-body
potential surfaces22 and committor functions.23 The latter
approach, possibly extended to build on recent advances in
machine learning,24 could prove useful here. In essence, for
given configurations r, we want to obtain an accurate estimate
of the committor φB(r) ≈ ϕB[Q1(r), Q2(r), . . .] expressed as a
function of scalar order parameters Qi (e.g., distances, angles,
and coordination numbers). The idea is to learn the function
ϕB from the statistics of shots collected during the preceding
TP sampling. The approximation ϕB to the committor, updated
occasionally, can then be used to select shooting points with a
bias toward points with high probability p(TP|r) ≈ 2(1−ϕB)ϕB

of creating transition paths.
An adaptive version of the reaction coordinate opti-

mization by Peters and Trout8 provides a simple and pow-
erful alternative to supervised learning approaches. These
authors assume that for a given scalar reaction coordinate
Q = Q(r|α) parametrized in terms of a vector of free param-
eters α, one can write the committor as a sigmoidal function,
ϕB(Q) = [1 + tanh(Q)]/2. Peters and Trout8 then maximized
the likelihood

L =
∏
ri→B

ϕB [Q(ri)]
∏
rj→A

(1 − ϕB[Q(rj)]) (16)

with respect to the free parameters α in Q = Q(r|α), where
the products are over individual shots ending in B and A,

FIG. 5. Iterative optimization of the shooting range. Results are shown for Langevin dynamics with B = 2 kBT and q = x + y as a collective variable. Optimization
attempts are made every 50 shots. (a) Center and width of the shooting range. Attempts 0, 8, and 17 are labeled. (b) Probability of generating and accepting
transition paths in random shots, as the optimization progresses from step 0 to 17. (c) Shooting range boundaries (lines) on top of the 2D energy surface for the
initial (step 0, red), an intermediate (step 8, blue), and the final optimal shooting range (step 17, green).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-016799
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respectively. Building on this idea and making the optimiza-
tion procedure adaptive, one would reoptimize the parame-
ters α at regular intervals. Incorporating the outcome of all
preceding shooting attempts in the likelihood maximization
should improve the quality both of Q as a reaction coordi-
nate and of ϕB(Q) as an estimator of the committor. In turn,
ϕB(Q) can then be used to bias the choice of shooting points,
e.g., by setting the weight function in Eqs. (13) and (14) to
w(r) ∝ [ϕB[Q(r)](1 − ϕB[Q(r)])]ν with a power ν > 0. In this
way, one would adaptively optimize the reaction coordinate Q
and use the improved coordinate to enhance the sampling of
new transition paths. Such iterative optimizations amount to
an attempt of localizing the transition state ensemble and are
thus closely related to reaction coordinate optimization meth-
ods.8,15,19 The difference here is that the relations5,8,18 between
the success in shooting and the committor and between the
committor and p(TP|r) are exploited directly and “on the fly.”
However, as in the “likelihood maximization” method,8 care
should be exercised when using Q as a reaction coordinate if
the TP ensemble, over which Q is optimized in this procedure,
differs substantially from the equilibrium ensemble. Estimat-
ing the true committor φB(r) as ϕB[Q(r)] at a point r typical of
the equilibrium ensemble, but not the TP ensemble, effectively
requires an extrapolation with the usual caveats.

When shooting points are chosen with a strong bias, such
as the restriction to a tight shooting range, a possible concern
is that the sampling space becomes effectively discontinuous.
As a result, one would get trapped in local minima in transi-
tion path space (which is in addition to the general concern
in TP sampling of having missed local intermediate states1).
To sample all possible and relevant mechanisms in an effi-
cient manner, it is important not only to have a high rate of
success in TP shooting but also to transition at least occasion-
ally between different “reaction mechanisms” corresponding
to separated saddles on the (free) energy surface. To avoid
getting trapped, one can use a weighted combination of shoot-
ing ranges and select, at least occasionally, points away from
the core shooting range. A simple solution in practice is to
select, with a certain frequency, the shooting point at ran-
dom in the entire transition region, i.e., as in normal TPS.
Such shots facilitate crossing between distinct transition states.
This particular protocol, and more complex ones with differ-
ent shooting ranges, can be expressed in terms of the weight
function w(x) in Eqs. (13) and (14). The acceptance criterion,
Eq. (7), requires no modification, if the correct probabili-
ties, Eqs. (13) and (14), to select shooting points are used.
Similarly, it is straightforward to adapt the acceptance crite-
rion to one-sided shooting9 for dynamics with a stochastic
thermostat.

It may also be interesting to put “shooting from the top”
into an historical context. The concept of shooting from a
dividing surface, which is ideally chosen to cut through the
barrier tops, features prominently in the reactive-flux based
methods of estimating reaction rates developed by Bennett25

and Chandler.26 Daru and Stirling27 extended this approach
from a dividing surface to a “saddle domain” in which tra-
jectories are initiated. More recently, Menzl, Singraber, and
Dellago17 introduced S-shooting, in which trajectories are ini-
tiated from a shooting range “S” as a generalization of the

Bennett-Chandler approach. Their algorithm samples from
the ensemble of all trajectories passing through S, whereas
here we sample only transition paths. Possibly one of the
earliest implementations of path sampling by shooting as a
means to probe rare events was in the context of diffusion-
influenced bimolecular reactions and protein-protein binding
in particular.28–30 Northrup, Allison, and McCammon28 gen-
erated association pathways by shooting Brownian dynamics
trajectories of one of the binding partners subject to interac-
tions with the other, where the mobile partner was initiated at a
given separation from the fixed one with random orientations.
Except for the (small) bias on the orientation at the (large)
separation and the lacking correction for recrossings, this con-
stitutes a shooting algorithm in the vein of the one presented in
Ref. 5.

“Shooting from the top” should prove particularly useful
in cases where the cost of generating transition paths is high
(as, e.g., in protein folding10) yet reasonable order parameters
are known.12–14 Arguably, this applies to quite a number of
practically relevant cases, as attested by the success of algo-
rithms such as forward-flux sampling,6 transition interface
sampling,7 and milestoning,11 whose efficiencies also rely on
having reasonable foliations of the space between reactants
and products.

SUPPLEMENTARY MATERIAL

See supplementary material for Figs. S1 and S2 which
show the results of transition path analyses with misplaced
shooting ranges for Langevin dynamics with barrier B
= 3 kBT and for overdamped Langevin dynamics with barrier B
= 10 kBT , respectively.
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